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Abstract
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Speckle Removal and Change Preservation by Distance-Driven
Anisotropic Diffusion of Synthetic Aperture Radar Temporal Stacks

by Nazia TABASSUM

Satellite imagery is often collected to perform remote sensing, or un-
cover changes in our Earth’s surface without having to traverse every cor-
ner. One application of using radar images is to observe changes in road
topography without having to physically examine all of the roads. Unfor-
tunately, radar images are often corrupted by speckle noise, which is a di-
rect result of interference from scatterers at the imaging aperture. There are
many speckle-reducing algorithms that work on either the temporal range
of the image or the spatial aspect of the image. Traditionally, with syn-
thetic aperture radar images, the mean of time series is utilized to produce
a single despeckled image that discards temporal information. We propose
a method that smoothes spatially and uses, but also preserves, temporal
information. Radar images are often collected of the same region over
time. To provide smoothing of such imagery without effacing temporal
changes in the scene, we put forth an anisotropic diffusion technique, us-
ing a PDE approach. This approach smoothes uniform areas and preserves
and enhances edges, such as roads or other features. In order to use this
anisotropic diffusion technique, we must first select a homogeneous region
in the image to calculate statistics of the speckle noise. This is often done
manually, and can be time consuming and inaccurate with a large stack
of radar images. We propose a method that uses the temporal informa-
tion to automatically select a homogeneous region prior to smoothing. Our
proposed smoothing method is a statistical approach designed to reduce
speckle noise in each image throughout the time series. Results demon-
strate the efficacy of the approach on real and synthetic data, showing lower
mean squared error than leading methods. The new filter incorporates tem-
poral information essential to detection of potential change events for trans-
portation infrastructure. Change preservation is shown with our approach
because temporal information is preserved, while signal-corrupting noise
is reduced.
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Chapter 1

Introduction

1.1 SAR Images

Synthetic aperture radar (SAR) is a form of radar used for imagery. The
name comes from the formation of a synthetic aperture by moving a radar
antenna over a region of interest, as opposed to using a beam-scanning
radar system from a fixed position. The antenna is affixed to a moving de-
vice in the air: in this case, a satellite. The distance the satellite moves before
returning to its original position creates the synthetic aperture, or synthetic
antenna size. As the aperture created does not depend on the length of
the physical antenna, we can achieve high imaging resolution with smaller
antennas, due to the large distance covered by the satellite (Radar Basics).

FIGURE 1.1: SAR satellite receiving backscattered pulses.

Creating one SAR image is done by sending radio wave pulses to the
area of interest. The echo of each pulse is received by the satellite and
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recorded, as shown in Figure 1.1 (Liew, 2001b). All of the backscattered
pulses gathered from one trip of the satellite back to its starting position are
collected and used to form one image of the region of interest (SAR Marine
User’s Manual).

Satellite images can be used for many different applications. These ap-
plications usually fall under a larger category called remote sensing. Re-
mote sensing refers to being alerted about changes in surfaces without hav-
ing to be present at the surface location. SAR imagery can also be used for
mapping out the surfaces of planet Earth and other planets. Some exam-
ples of remote sensing are measuring ecological changes along a coastline,
or monitoring crop growth.

Radar signals have both an amplitude and a phase component. The
images that we will discuss are SAR amplitude images. Amplitude refers
to the energy of the reflected signal. This energy depends on the material
of the surface being imaged. Hard objects, such as metal, backscatter more
and thus the amplitude in these regions is higher than in others. This results
in brighter spots in the image. Softer regions, such as grass, roads, etc.,
backscatter less of the incoming energy, so the amplitude is lower, and thus
the image region appears darker. (SAR Imagery 2016)

In our project, we focus on remote sensing for the United States Depart-
ment of Transportation (USDOT). Changes we would look for with satellite
images would be changes in road quality, sinkholes, land slides, bridges,
etc. Using imagery to observe changes in transportation infrastructure can
save time as usually Department of Transportation (DOT) employees will
have to traverse the roads in our network once a year to measure changes
in road conditions. Often, large catastrophes cannot be prevented because
we are not able to monitor areas remotely nor keep track of short-term
changes over time. Remote sensing can help us monitor areas more consis-
tently without sending out ground observers, as well as prevent disasters
such as bridge collapse, etc. An example of a collapsed bridge is shown
in Figure 1.2 (Interstate 35W Bridge Collapse Critical Response). We can see
the destruction that this type of disaster can cause, with perhaps dozens
of lives lost and extreme property and infrastructure damage that will cost
large amounts of money to repair. Preventing these disasters before they
occur using satellite imagery is our ultimate goal. Another more direct
and measurable consequence of this work is the ability to more intelligently
and effectively allocate DOT maintenance resources to where they are most
needed.

Satellite imagery can be expensive, however, so when using images for
remote sensing, we have to ensure accuracy of analysis of current condi-
tions and accuracy of predictions. We cannot afford to make incorrect pre-
dictions and lose several millions of dollars by sending out ground person-
nel and equipment to fix a situation (such as a sinkhole) that has not actu-
ally occurred. Noise can greatly inhibit the ability of our analysis methods
to accurately interpret the data, and, unfortunately, SAR images are very
noisy. We have developed software tools that work with GIS (Geographic
Information System) technology that raise an alarm if a bridge is moving
(Figure 1.3), or if the road surface is rough and needs to be repaved. How-
ever, these toolboxes can sometimes raise false alarms because of the noisy
nature of the data - we need to despeckle the data before we can use it to
analyze ground conditions.
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FIGURE 1.2: Catastrophic bridge collapse in Washington,
U.S.

FIGURE 1.3: Warning alarm raised on bridges shown in Ar-
cGIS.

The amplitude images that form our dataset are taken over Staunton,
Virginia. The images are taken by Tele-Rilevamento Europa (TRE.) These
images are taken over the period of one year, about once a week or so - the
interval between images is not always the same. There are 67 images in our
dataset. As these images are very large (over 600 MB each), we perform our
smoothing on small sections of these images, which are 509 by 332 pixels,
or 560 KB.

1.2 Noise

Noise is a random element that is often present in signals. It is an unwanted
aspect of a signal that distorts our ability to analyze the data. There are
many types of image noise, such as Gaussian noise, salt and pepper noise,
and shot noise, to name a few. In images, we mainly differentiate between
two classes of noise: additive and multiplicative. Multiplicative noise is of-
ten difficult to remove as it modulates the signal instead of just being added
on top. Additive noise removal methods can be used to remove multiplica-
tive noise by taking the log transform of the data - however, taking the log
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transform of an image is not lossless. It is more ideal to develop methods
that can smooth raw data that is not log transformed.

SAR images are corrupted with a multiplicative noise type called speckle
noise. Speckle noise is an inherent corruptive process of imaging using
radar, SAR, and ultrasound techniques. The noise occurs because most sur-
faces that are being imaged are very rough smaller than the scale of the
radio wavelength. The signal returning from the imaging surface to the
transducer aperture can be modeled as an array of scatterers. These scatter-
ers add constructively and destructively. The interference from these scat-
terers appears on the image as speckle noise, or dots on the image (Liew,
2001a). Because the noise is multiplicative, brighter regions in the image
have noise values with higher intensity, and darker regions have noise val-
ues with lower intensity. To smooth these images, often an average of a
certain number of "looks" is taken. One "look" is one period of the satellite’s
movement. If a few looks are averaged together, some of the noise can be
decreased - however, there is still much to be desired in terms of noise re-
moval. Also, any changes that occurred between looks will be lost during
this averaging process.

FIGURE 1.4: Example of speckle noise on a SAR image of a
coastline.

1.2.1 Noise Removal

In general, noise distorts image content by changing the gradient of pixel
intensities. This can be very degrading to an image because one of the main
features we like to extract from images are the edges. The edges are ex-
tracted based on image gradients - or the change in pixel intensities as we
move across the image. If the change in pixel intensity is very high, then we
presume that there is an edge at that location. When there are noisy values
in an image, spurious edges are detected which leads to distortion of the
information in the image.

Most noise removal methods rely on smoothing. Smoothing algorithms
make the sharp changes in pixel intensities more subtle. As a result, the
noisy pixels begin to take on intensities closer to those in the surrounding
regions of the image. However, blurring pixel gradients can lead to loss of
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edges. There is often a tradeoff between noise removal and edge preserva-
tion. We will show that our method removes noise yet retains important
edges of roads and other objects.

One popular noise removal technique is called anisotropic diffusion.
Anisotropy refers to not treating all regions of an image the same way.
Isotropic diffusion, for example, will smooth an entire image at the same
rate throughout, regardless of object details or edges. Anisotropic diffu-
sion will slowly diffuse the image but will treat regions in the image with
many edges differently from homogeneous regions. To clarify, regions with
heavy edges will be passed with an all pass filter, while regions with few
edges will be blurred with a low pass filter. The noise in regions with few
edges will be removed using this low pass filter.

However, as discussed earlier, noise obscures edge content. We want to
introduce a better way of detecting where there are edges in an image - this
method will be discussed more fully in Chapter 3. Anisotropic diffusion
is best used on images corrupted by additive noise, although there is an
approach adapted to speckle noise that is of interest.

Speckle reducing anisotropic diffusion, or SRAD, is the speckle reduc-
ing algorithm that our method is derived from. Yu and Acton, 2002 This
method works on the raw, not log transformed amplitude data. Our method,
called Distance-Driven SRAD, or DD-SRAD, extends the SRAD equation to
a temporal stack of images. Instead of smoothing each image in the stack
separately using SRAD, DD-SRAD uses all of the images in the stack to esti-
mate more accurately where edges are in the image. Our method provides
improvement over the original SRAD approach in the context of despeck-
ling a stack of images.

There are many other different methods of speckle noise removal which
will be discussed more in depth in Chapter 2. However, there are few meth-
ods of noise removal which operate on a stack of images and retain the in-
tegrity of each image in the stack. Our method is one of the first methods
to smooth an entire stack of SAR images - using the temporal information,
but still preserving this information.

1.3 Problem

The problem we endeavor to solve is smoothing a time-varying stack of
SAR images using temporal information without losing any of the individ-
ual images in the stack. Our method should reduce noise, retain edges, and
preserve temporal information with better performance than the state of
the art smoothing algorithms, as evidenced by lower mean squared error
and higher peak signal-to-noise ratio.

1.4 Goals

The goals of this project are threefold. First, we want to show that our
method removes more noise than other leading methods. Smoothing using
our method leads to a lower mean squared error and higher peak signal
to noise ratio than using other methods. Secondly, we hope to show the
reader that our method retains information in the time-domain better than
similar methods. Finally, we will show analytically that our method has
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lower overall complexity than the leading method for smoothing SAR im-
age stacks.

1.5 Overview

In this chapter, we have discussed the background of SAR imagery and
speckle noise, and touched on why smoothing of speckle noise in satel-
lite imagery is important. Chapter 2 will be an overview of state of the
art denoising methods. Our methodology for denoising will be covered in
Chapter 3, and results from this and other methods will be displayed and
assessed in Chapter 4. Chapter 4 will include discussion of Goals 1 and 2.
Analysis of chosen methods will be shown in Chapter 5, with discussion of
Goal 3. We will conclude our work in Chapter 6.
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Chapter 2

Literature Review

2.1 Anisotropic Diffusion

Anisotropic diffusion is a popular noise removal technique used to smooth
images corrupted by additive noise. The approach was first developed by
Perona and Malik in 1987 (Perona and Malik, 1987). The continuous equa-
tion for this approach is outlined in Equation 2.1.{

∂I
∂t = div [c (|OI|) · OI]
I (t = 0) = I0

(2.1)

In Equation 2.1, OI is the gradient of the image, || is the magnitude, div
is the divergence, I0 is the input image, and c(x) is a diffusion coefficient,
defined in one of two ways:

c(x) =
1

1 + (x/k)2
(2.2)

c(x) = exp[−(x/k)2] (2.3)

The magnitude of the gradient is used as an edge detector within c(|OI|).
As |OI| » k, then c(|OI|) → 0, and filtering becomes allpass. Similarly, as
|OI| « k, then c(|OI|)→ 1, and filtering becomes Gaussian, or isotropic.

A discrete form of Equation 2.1 is shown in Equation 2.4.

It+∆t
s = Its +

∆t

|ηs|
∑
pεηs

c(OIts,p)OI
t
s,p (2.4)

Its is the image sampled discretely and s is the pixel position in (x,y). ∆t is
the time step, and ηs is the window around s. |ηs| is simply the size of the
window. OIts,p = Itp − Its,∀ p ε ηs.

Anisotropic diffusion is an effective noise removal method, particularly
for additive noise types. Diffusion is an iterative noise removal process -
often the input image is smoothed slowly over time, for upwards of 100
iterations. For speckle noise, however, anisotropic diffusion can enhance the
noise, because the gradient magnitude may treat the noise as an edge. We
now move on to discuss filters specifically designed for speckle noise.

2.2 Adaptive Speckle Filters

There are a number of filters used in the SAR community specifically de-
signed to handle speckle noise. Some of these filters include the Lee, Frost,
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and Kuan filters. The Kuan filter is similar to the Lee filter (D. T. Kuan
and Chavel, 1987). All of these filters rely on a coefficient of variation, or a
measure of how the intensity varies within a window (whether variation is
caused by noise or signal.)

2.2.1 Lee Filter

The Lee filter is a windowing filter. In essence, the Lee filter computes a
linear combination of the average intensity within a window and the value
of the center pixel. The center pixel is then replaced with this linear com-
bination. The filter is adaptive because averaging occurs in homogeneous
regions, but the identity filter is applied in regions with edges. The coeffi-
cient of variation is low in homogeneous regions, and high in regions with
sharp features (Lee, 1980).

The Lee filter assumes linear speckle noise and minimizes mean square
error. The filter equation is

Îs = Īs + ks(Is − Īs). (2.5)

Īs is the average value within the window (ηs.) ks is the adaptive filter
coefficient

ks = 1− C2
u/C

2
s . (2.6)

This is the adaptive filter coefficient. The two forms that C2
u, which is con-

stant for an input image, take are:

C2
u = 1/ENL (2.7)

or

C2
u =

var(z′)

(z̄′)2
. (2.8)

ENL is defined as the effective number of looks of the input image, and z’
is a homogeneous region of the image.

C2
s operates similarly to the diffusion coefficient in 2.2 or 2.3 and is de-

fined as
C2
s = (1/|ηs|)

∑
pεη

(Ip − Īs)2/(Ip − Īs)2. (2.9)

If Cs approaches Cu, then ks approaches zero, leading to a mean filter. If Cs
approaches∞, then ks approaches 1, which is the edge case. This results in
little to no change on or near edges.

There is an edge-enhancing modification of the Lee filter, which only
includes pixels that seem to be from the same region in calculating local
statistics (Ju and Moloney, 1997). However, this filter still suffers from the
drawbacks of windowing, which will be discussed in Section 2.2.3.

2.2.2 Frost Filter

The Frost filter is similar to the Lee and Kuan filters in that there is a bal-
ance between all-pass filtering and averaging. The Frost filter incorporates
a filter kernel that has the shape of an exponential distribution. This expo-
nentially shaped filter can vary from an all-pass filter to a Gaussian filter on
an adaptive basis.
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The filter equation is
Îs =

∑
pεηs

mpIp. (2.10)

mp is
exp(−KC2

sds,p)/
∑
pεηs

exp(−KC2
sds,p) (2.11)

and ds,p is √
(i− ip)2 + (j − jp)2. (2.12)

(i,j) are the coordinates of the pixel s ((ip, jp) for pixel p), and K is the damp-
ing factor.

Similar to the Lee filter, as KC2
s → 0, averaging is achieved. As KC2

s →
∞, there is no filtering (at edges.)

2.2.3 Drawbacks of Adaptive Speckle Filters

There are a number of drawbacks to using any of these speckle filters. First,
these filters do not enhance edges. They only prevent smoothing near or
over edges. Furthermore, since filtering becomes all-pass in the presence
of an edge, any noise along an edge or on top of an edge will not be re-
moved. This is particularly problematic when considering transportation
applications of SAR imagery. Roads are the main edges in many of the SAR
images, and if the roads remain noisy, then the amplitude data on the road
cannot be assessed for road quality.

Secondly, these filters are non-directional. Near an edge, smoothing is
completely inhibited. However, an approach that makes more sense is to
only inhibit smoothing perpendicular to the edge, so that the edge is not
smoothed over. Smoothing parallel to the edge, on image pixels running
alongside the edge should not distort edge content.

Thirdly, there are hard thresholds used in all of the above filters. These
thresholds may lead to artifacts produced by averaging (blotchy patches)
and also noisy edges because of strict all-pass filtering.

Lastly, these filters are all window-based approaches, and thus are very
dependent on window size and type. Larger windows can lead to over-
smoothing, which registers as a blurred effect on the image. Smaller win-
dows may not smooth enough and can leave a large amount of noise be-
hind. Choosing the correct window size for each application may be a diffi-
cult problem to optimize. As for window shape, most common approaches
will use a square window. A square window leads to rounding of features
that are found in different orientations than the square window.

Because of these many drawbacks, SRAD was developed, which is dis-
cussed in the next section, Section 2.3.

2.3 Speckle Reducing Anisotropic Diffusion

Speckle Reducing Anisotropic Diffusion, or SRAD, proposes a new partial
differential equation (PDE) based on original anisotropic diffusion and the
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adaptive speckle filters. The SRAD PDE is as follows:{
∂I(x, y; t)/∂t = div[c(q)OI(x, y; t)]
I(x, y; 0) = I0(x, y), (∂I(x, y; t)/∂−→n )|∂Ω

(2.13)

where Ω is a 2D coordinate grid where the image is non-zero. ∂Ω is the
border of Ω, and −→n is the outer normal to said border.

The divergence of c(·)OI is calculated as:

dni,j = (
1

h2
)[cni+1,j(I

n
i+1,j−Ini,j)+cni,j(Ini−1,j−Ini,j)+cni,j+1(Ini,j+1−Ini,j)+cni,j(Ini,j−1−Ini,j)]

(2.14)
which leads us to the SRAD update function:

In+1
i,j = Ini,j +

∆t

4
dni,j (2.15)

As in the original anisotropic PDE, the diffusion coefficient can take one of
two forms:

c(q) =
1

1 + [q2(x, y; t)− q2
0(t)]/[q2

0(t)(1 + q2
0(t))]

(2.16)

c(q) = exp
{
−[q2(x, y; t)− q2

0(t)]/[q2
0(t)(1 + q2

0(t))]
}

(2.17)

The diffusion coefficient for the SRAD equation is composed of two parts:
the instantaneous coefficient of variation (q(x,y;t)), and the speckle scale
function (q0(t)). We can think of the instantaneous coefficient of variation,
or ICOV, as the coefficient of variation as we shrink our window of interest
to a single point.

The ICOV is defined as:

q(x, y; t) =

√
(1/2)(|OI|/I)2 − (1/16)(O2I/I)2

[1 + (1/4)(O2I/I)]2
(2.18)

and it contains both a gradient magnitude term and a Laplacian term. The
ICOV allows for edge detection in bright and dark regions because of the
addition of the Laplacian term. The speckle scale function is defined as:

q0(t) =

√
var[z(t)]

z(t)
(2.19)

where z(t) is a homogeneous region. This homogeneous region can be de-
fined by the user manually. Often, because manual selection takes time, the
user may choose to use the default setting for a homogeneous region. This
default is a hard-coded set of coordinates, and so mimicks a random selec-
tion of a region from an image. This default homogeneous region may not
even give a homogeneous region for every image that we use SRAD on, let
alone the most homogeneous or the largest homogeneous region.

SRAD is an improvement on both the original anisotropic diffusion al-
gorithm and on the adaptive speckle filters. At the midpoint of an edge,
the Laplacian term in Equation 2.18 undergoes a zero-crossing. This in-
sures that diffusion only occurs along the contour of the edge, which is an
improvement on adaptive filtering, where there is no smoothing along the
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edge contour. However, there is also a "negative" diffusion that occurs per-
pendicular to the edge. This is not present in simple anisotropic diffusion
and is a phenomenon of SRAD. This "negative" diffusion leaves the dark re-
gions of edges darker and the brighter regions brighter - essentially, SRAD
enhances contrast along edges. The edges in the resulting smoothed images
are more prevalent (Yu and Acton, 2002).

2.4 Space Adaptive Filtering: DespecKS Algorithm

This despeckle algorithm was developed in 2011 for use on SAR amplitude
image stacks (A. Ferretti and Rucci, 2011). Space adaptive filtering refers
to changing the filter parameters depending on position in the image. The
benefit of using a space adaptive filter is that these filters can remove noise
while still preserving image detail. Some of the methods we have described
in the previous sections can also be considered space adaptive filters.

To smooth the image stack using a space adaptive filter, there must be
a way to decide whether two pixels are statistically homogeneous pixels
(SHP). We can think of our image stack as concatenated data vectors of
intensity values. d(P ) is defined as:

d(P ) = [d1(P ), d2(P ), ..., dN (P )]T (2.20)

and is a vector of intensity values for arbitrary pixel P. d1(P ) is the pixel
value in the first image, etc. N is the number of images in the stack. To
test whether two data vectors ( d(P1) and d(P2), for example) are from the
same continuous distribution, we can use the Kolmogorov-Smirnov (KS)
test. This test will test the null hypothesis that pixels P1 and P2 are from the
same distribution. If this null hypothesis cannot be rejected at a particular α
significance level, then the pixels P1 and P2 will be considered statistically
homogeneous.

To perform the KS test on pixel vectors, a cumulative distribution func-
tion (CDF) must be built from the probability distribution function (PDF) of
each pixel’s sorted intensity values. The test determines whether the ampli-
tude data for the pixels are drawn from the same PDF. If we define x = |d|,
then we can write an unbiased estimator for the CDF of a pixel, SN (X), as

0, if X < x1
k
N , if xk ≤ X < xk+1

1, if X ≥ xN .
(2.21)

xi is the ith element in the list of pixel intensities.
The two sample KS test measures the maximum absolute difference be-

tween the cumulative distribution functions Sp1N and Sp2N . This difference,
which can also be used as a distance metric, is defined by

DN =
√
N/2 supxεR|S

p1
N (x)− Sp2N (x)|. (2.22)

The distribution of DN is approximated by

P (DN ≤ t) = 1− 2

∞∑
n=1

(−1)n−1e−2n2t2 (2.23)
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which is the CDF of the Kolmogorov-Smirnov distribution, H(t). It should
be noted that this CDF does not depend on the CDF of the input data. The
two vectors can be said to belong to the same distribution if DN ≤ c. The
threshold c is dependent on the chosen significance level α, where

α = 1−H(t). (2.24)

The DespecKS algorithm (A. Ferretti and Rucci, 2011) involves the follow-
ing steps:

1. For image 1 in the stack, move a sliding window (15 x 21) across the
image. P is the center pixel of the window.

2. All pixels in the estimation window are compared to P using the two-
sample KS test, given α. Pixels that pass the KS test (fail to reject the null
hypothesis) are labeled SHP.

3. Discard SHP that are not connected to P, directly or through other
SHP.

4. Intensity values for SHP are averaged spatially, and the value of P is
replaced with the SHP average, for each image in the stack.

A drawback to this method are that there is an unweighted averaging of
all SHP pixels. One could argue that although we cannot reject the hypothe-
sis that P1 is statistically homogeneous with P, it may be more likely that P2

is drawn from the same distribution as P than the probability that P1 is. For
this reason, it may be dangerous to average all SHP together, disregarding
the distance DN from P. For this reason, we use the KS distance, and other
distances in our smoothing algorithm, instead of the KS test combined with
averaging.

Another drawback is that the KS test has poor sensitivity in the tails of
the distribution to cases where the null hypothesis is untrue. Using the KS
distance will solve this problem, and we also test other distances to deter-
mine which ones perform better.

There is no one best way to solve the speckle denoising problem, as ev-
idenced by the many methods described above. We proceed to experiment
in the diffusion realm. We introduce a number of new methods which im-
prove denoising performance.
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Chapter 3

Methods

3.1 Median Driven Diffusion

Anisotropic diffusion and its other derivative forms use the edges of an im-
age as a basis for smoothing. Where the gradient magnitude is high, we
assume there is an edge and the diffusion equation behaves as an all-pass
filter. If the gradient magnitude is low, then we perform Gaussian filter-
ing. But this approach depends on the ability of the gradient magnitude to
determine edges. This approach can often relay many false positives, es-
pecially when the noise content is high. A high gradient magnitude may
signify a noisy region. If we all-pass filter this region, then the noise will
not be removed from the image.

In contrast, we propose a new idea using a time-series. Earlier we have
mentioned that we often use averaging to produce one smooth image from
a stack of noisy images. However, using this approach leaves us with one
image where all of the temporal information has been averaged together
and is no longer discernable. Instead, we would like to use this smoothed
image to drive our diffusion process.

Instead of calculating the gradient magnitude on the original noisy im-
age, we take the median of the temporal stack and calculate the gradient
magnitude on the median image. In Figure 3.1, we see edgemaps of both
one single SAR image and the median of a stack. The single SAR image has
many edges due to noise - there are no real discernable features. The me-
dian edgemap has delineation of where there are roads, and perhaps other
image features, such as buildings. The median edgemap still has edges
due to noise, but the overall number of spurious edges detected are visi-
bly fewer. The amount of noise removed depends on the size of the stack.
Our SAR image stacks are 67 images long, so the temporal median removes
more noise than on a stack with only 20 images. Since the median image
has better defined edges than the noisy image, the gradient magnitude of
the median image should be more representative of real edges than of noise.
We use this assumption to build our two methods based on the median.

(A) Edgemap of SAR (B) Edgemap of median

FIGURE 3.1: Comparing edges of Original SAR vs. Median
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Median Driven Anisotropic Diffusion: For this approach, we calculate the gra-
dient magnitude on the median of the image and use this coefficient of dif-
fusion in the anisotropic diffusion equation (2.1).

Median Driven SRAD: We use the same coefficient of diffusion as in Median
Driven Anisotropic Diffusion in the SRAD equation (2.13).

3.2 Distance Driven SRAD

Following the development of Median Driven SRAD, we decided to try and
improve upon our method. Inspired by the DespecKS method from Section
2.5, we use the idea of a KS distance between pixel time series to drive our
diffusion. Instead of using the edges of the median to diffuse the noisy
images, we propose a new coefficient of diffusion:

q(x, y; t) =

√
(1/2)(

∑
D2/I2)− (1/16)(

∑
D/I)2

[1 + (1/4)(
∑
D/I)]2

. (3.1)

This diffusion coefficient depends on the distance between neighboring
pixel time series, D. D replaces the gradient magnitude in the original SRAD
coefficient of diffusion. For instance, if there are two pixels on one section of
a road, we can assume that the intensity changes of the two pixels should
be similar through time. The distance, or difference between the time se-
ries of these pixels should be minimal. However, the difference between
the behavior of a pixel in a field next to the road and the pixel on the road
may be very divergent over time. The road may be paved at different times
of the year, leading to changes in intensity of the road pixel. A field pixel
may change intensity based on vegetation growth, cutting of grass, etc. As
the time series of these pixels behave differently through time, the distance
between them will be larger than that of the two road pixels. This large dis-
tance can be seen visually as an edge: the edge delineated by the boundary
of the road against the field. Just as gradient magnitude can denote edges,
thus distance between neighboring pixel series can also mark edges. We
use this edge detector as the basis for driving our Distance Driven SRAD,
or DD-SRAD. The idea was inspired by a similar use of distance in (A. Fer-
retti and Rucci, 2011).

There are a number of distances that one can use with DD-SRAD - we
have implemented and tested three different distance metrics.

3.2.1 Root Sum of Squares

This is a simple distance metric, similar to root mean square error (RMSE.)
The two pixel time series are differenced, with one difference value for each
time instance in the stack. This difference vector is squared to retain pos-
itive values. The squared differences are summed, and the square root is
then taken of the sum. This provides a Root Sum of Squares (RSS) differ-
ence metric for two time series, which can be compared to other distance
metrics.
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3.2.2 Kolmogorov-Smirnov

The Kolmogorov-Smirnov (KS) distance is a distance measured between
the empirical distribution functions of two time-series. An empirical dis-
tribution function is built for each pixel in the temporal stack. Neighbor-
ing pixels are differenced, using the largest two-point distance between the
points in the distribution functions. This distance can be between any two
points in the distribution function. The distance that we use is often re-
ferred to as the Kolmogorov-Smirnov test statistic (Massey, 1951).

3.2.3 Bhattacharyya

The Bhattacharyya distance is defined by the following equation:

DB(p, q) = −ln(BC(p, q)) (3.2)

The Bhattacharyya coefficient is defined as the following:

BC(p, q) =
∑
xεX

√
p(x)q(x). (3.3)

This distance is particularly good for noisy data, as it can be thought of
as the integral distance between two probability distributions, instead of
a distance between just two points, as in the KS distance (Bhattacharyya,
1943).

3.2.4 Gaussian Weighted vs. Unweighted Distances

We first tried treating all distances as equal, regardless of relative position
in the temporal stack. As a result, we sometimes noted ghost effects in the
images: a remnant of an object in one denoised image when the object had
not appeared in the original image. This was as a result of the object being
present in another of the images, at a far away time in the temporal stack.

To correct for this ghosting, we introduce a weighting of distances. This
consists of a Gaussian the length of the stack, shifted along the stack. For
instance, if we are smoothing the first image in the stack, the Gaussian is
centered on the first index in the stack. The images temporally closer to the
first image (such as the second and third images) will have distances that
are weighted higher than the distance between the first image and the tenth
image. This way, changes in edges further away in time are not registered
as edges in the current time instance. We combine Gaussian weighting with
RSS distance. Results will be shown in Chapter 4.

3.3 Homogeneous Region Detection

SRAD, and the derivative forms of SRAD we discuss here, require a ho-
mogeneous region to be selected at initialization in order to calculate the
statistics of the speckle noise. This homogeneous region can be selected at
random, or by hand by the user. A random selection is not ideal, as the
region selected may be non-uniform. A user selected region also presents
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many flaws: it is prone to error, may not be the largest possible homoge-
neous region, it is constrained to a rectangular window, and it is time con-
suming and arduous especially if one has to select a homogeneous region
for each of a large stack (60 plus) of images.

Homogeneous regions in an image are characterized by regions where
there are few or no edges. To detect the homogeneous region in the noisy
images, we perform edge detection on the median image. Performing edge
detection on a smooth image provides a more clear edge map, with less
spurious edges detected due to noise. Then we perform a filtering, where if
any pixel in a window has an intensity value correlating to an edge, then we
color the whole window as an edge. This filtering is done to make the ho-
mogeneous region detection less sensitive to small edges found by the edge
detection, so that there are large regions of homogeneity, instead of small
regions broken up by edges due to noise. The optimal window size may
vary for image stacks, so the user can view the homogeneous regions pro-
duced by varying window sizes, and choose the region that they are happy
with. The window size ranges generally from 3x3 to 9x9. The larger win-
dow sizes are less prone to error - however, as the window size increases,
the area of the homogeneous region detected decreases. After filtering, con-
nected component analysis is performed, and the largest connected com-
ponent (largest edge-free region) is taken as the homogeneous region. A
minimum for this region is set to at least 400 square pixels. If the homoge-
neous region found is smaller than 400 square pixels, a random region is
selected. However, in all of the experiments and datasets we have tried, the
homogeneous region found has always been larger than 400 square pixels.

In Chapter 4, we will show results from using Median driven SRAD and
from using DD-SRAD, in all its forms. Our methods will be compared to
the some of the leading methods discussed in Chapter 3. We will also show
the statistical significance of our homogeneous region detection algorithm.
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Chapter 4

Results/Findings

In this chapter, we will discuss the results from our homogeneous region
detection as well as from our smoothing algorithms. We will start by show-
ing that our homogeneous region detector locates regions of lower vari-
ance in the noisy images than when using a random region selection. We
will then test our smoothing algorithms against the state-of-the-art smooth-
ing methods. We will compare the mean-squared error and peak signal-to-
noise ratio after smoothing synthetic data sets, and will show that our meth-
ods have lower MSE and PSNR than the leading algorithms. We will also
show that our methods have low variance in homogeneous regions post
denoising. We will then show temporal change preservation by compar-
ing MSE of the temporally changing feature. Our method has lower local
MSE than a leading temporal smoothing method. We will finally compare
our preservation of temporal information against the average of an image
stack.

4.1 Homogeneous Region Detection

We wish to demonstrate the efficacy of our automatic selection of a homo-
geneous region. A homogeneous region should have low variability com-
pared to a non-homogeneous region. We will compare the variance of our
homogeneous region to a randomly selected region. We choose to compare
to a randomly selected region because the original SRAD implementation
uses an ad-hoc set of coordinates for choosing a homogeneous region - these
region coordinates/dimensions do not change based on the image being
smoothed, so the selection is, in essence, random. A homogeneous region
should have a lower variance than a non-homogeneous region. In Figure
4.1, we have displayed a detected homogeneous region on the edgemap of
the median of the sub-stack. There are few edge pixels within the boundary
of the homogeneous region detected.

To test our method for detecting homogeneous regions, we generated 10
stacks of sub-images from the large SAR data stacks. Each of the sub-image
stacks have 67 slices, and are approximately 300 pixels by 500 pixels. The
sub-images were clipped from all over the original data, so the underlying
terrain in each sub-image stack varies significantly from stack to stack.

To detect a homogeneous region for each sub-image stack, we ran our
homogeneous region detection method on the stack to pick one homoge-
neous region. A window size of 3x3 was used for filtering for all sub-image
stacks. This same homogeneous region was used for all slices in the sub-
stack. The variance of this homogeneous region was calculated for each
slice in the sub-stack.
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FIGURE 4.1: Homogeneous region displayed on edgemap
of median.

The randomly selected region is chosen with approximately the same
size as the detected homogeneous region for each sub-image stack. The ran-
domly selected region is a square region, selected at random from within
one image of the sub-stack. This same random region is used to clip all of
the slices of the sub-stack. The variances of all of the random regions of all
of the 10 sub-stacks are then calculated, 67 variances per sub-stack (corre-
sponding to 67 slices), for both detected and randomly selected regions.

4.1.1 Statistical Testing

Our goal is to show that the variances of regions detected by our homo-
geneous region detection method are lower than those of the regions that
are randomly selected. In Table 4.1, we can see some general statistics of the
two sample sets. As we can see, the statistics for the regions detected by our
method are always lower than the randomly selected region statistics. It is
interesting to note that the mean and mode values for the variances are not
so far apart as one might expect. However, the maximum variance values
are extremely different, over 10 times greater for the randomly selected re-
gion. Also, the standard deviation for Random regions is much higher than
that of Homogeneous Regions - showing that the local variance of Random
regions has wide spread. It is important to note that while some randomly
selected regions may have similar variances to detected homogeneous re-
gions, there is a risk that the randomly selected region will have high local
variance, and will thus be classified as inhomogeneous. If we use an in-
homogeneous region to calculate the speckle scale statistic, the SRAD or
DD-SRAD smoothing procedure will be corrupted.

First, we tested both distributions for normality, to see if a t-test or other
tests for normal distributions would be suited. I used the Jarque-Bera test
for both the variances of detected homogeneous regions and the variances
of randomly selected regions. The Jarque-Bera test tests against the null
hypothesis that the data in question is normally distributed with unknown
mean and variance (Jarque and Bera, 1987). The null hypothesis can be
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TABLE 4.1: Statistics for Variances of Randomly Selected vs.
Homogeneous Regions

Statistic Random Homogeneous

Min 0.1015 0.0545
Max 5.1184 0.2603
Mean 0.4982 0.1230
Std. Dev. 0.7458 0.0333
Median .2113 .1192
Mode .1015 .0545

rejected at the 1% significance level, meaning that the variances for the re-
gions are not normally distributed. Thus, we cannot use a simple t-test to
compare the distributions of variances.

Since we cannot assume the variances are normally distributed, we use
a two-sample Kolmogorov-Smirnov test to compare the two sets of vari-
ances. The two-sample Kolmogorov-Smirnov test tests against the null hy-
pothesis that the two datasets are from the same continuous distribution.
We test the two distributions of variances at the 1% significance level and
reject the null hypothesis. The two variance sample sets are not from the
same distribution.

Moreover, we can also test the alternative hypothesis that the empirical
continuous distribution function (ECDF) of the randomly selected region
variances is smaller than that of the detected homogeneous region vari-
ances. In general, if the ECDF of one sample set is smaller than another
ECDF, then the data values of the sample set with the smaller ECDF are
larger. The size of the ECDF has an inverse relationship with the magni-
tude of the data values in the sample set. The p-value for this test is 1.1666
x e−144, which is a very small number. The p-value of a test is the proba-
bility that we observe the test statistic (calculated from the samples) under
the null hypothesis. A small p-value indicates the low probability that such
a test statistic could occur under the assumptions of the null hypothesis.
The p-value for the Kolmogorov-Smirnov test is highly accurate for sample
sizes that are large, and is reasonably accurate for:

(n1 ∗ n2)/(n1 + n2) ≥ 4 (4.1)

where n1 and n2 are the two sample sizes. n1 and n2 are both equal to 670
for our experiment, and so this equation holds (with equality at 335).

We reject the null hypothesis that the ECDF’s are equal in favor of the
alternative hypothesis at the 1% significance level. Therefore, the ECDF
of the random region variances is smaller than the ECDF of the detected
region variances, and the variance values of the random regions are larger
than the values of the detected homogeneous regions.

4.2 Smoothing Algorithms

In this section, we will test our smoothing algorithms and other leading
smoothing algorithms to compare results against our goals (see Chapter 1.)
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(A) Original Image (B) Lee (C) SRAD

(D) DespecKS (E) Med-SRAD (F) DD-SRAD-RSS-W

FIGURE 4.2: Comparing Images from Smoothed SAR Stacks

(A) Original (B) Lee (C) SRAD

(D) DespecKS (E) Med-SRAD (F) DD-SRAD-RSS-W

FIGURE 4.3: Smoothed SAR Stack Edgemaps

We show some preliminary smoothing results on a SAR stack of 67 im-
ages in Figure 4.2. In Figure 4.2f, we see a result using DD-SRAD - this
image is the smoothest while also maintaining clear edges. We also show
the resulting edgemaps in Figure 4.3. There are more edges in Figure 4.3f
than in Figure 4.3c, but this may be beneficial as a secondary road is pre-
served in Figure 4.2f that is disconnected in Figure 4.2c. However, we must
find a way to quantify the performance of DD-SRAD compared to other
methods, so we run experiments on synthetic datasets.

4.2.1 Synthetic Datasets

To analyze our methods based on the goals, we test the methods on syn-
thetic datasets. We do this because many of the metrics used to evaluate
our methods, such as mean squared error (MSE), rely on comparing the
smoothed image to the original ground truth image (with no noise.) As we
do not have ground truth images for our satellite data, we simulate data
with similar features and add noise to this synthetic data. Then we can
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compare the smooth results from our methods to the original, non-noisy
images.

Noise is added to our synthetic images by generating speckle noise from
a Rayleigh distribution. A Rayleigh distribution can be formed from two
independent Gaussian random variables, with mean 0 and variance σ2. If
we call these random variables X ∼ N(0, σ2) and Y ∼ N(0, σ2), then the
random variable R is Rayleigh distributed (R ∼Rayleigh(σ)) where R =√
X2 + Y 2 (Hogema, 2005).

We generate two Gaussian random variables and combine them to form
a Rayleigh random variable. We then multiply our base synthetic images
with this Rayleigh variable to create multiplicative speckle noise. We use a
noise variance randomly chosen between .08 and .09 when generating the
Gaussian random variables - after using Immerkaer’s fast noise estimation
method on our SAR images, we find that the estimated noise variance is
between .08 and .09 for each image, so we use this noise variance for our
synthetic images as well (Immerkaer, 1996).

We generate two synthetic, noisy datasets. The dataset sizes are vari-
able, from 11 to 17 images. To simulate variation over time, we introduce
features at different points during the time-series, and change the intensity
of these objects over time. In our synthetic data, straight lines represent
roads, and circular or ovular objects represent bodies of water. Rectangular
objects are buildings.

4.2.2 Methods Tested and Parameters Used

Lee Filter

For the Lee Filter, we used a window size of 3. This window size refers
to the size of the window used for averaging. The other parameter is the
coefficient of variation in a homogeneous region. As the original Lee filter
does not include automatic homogeneous region detection, we select a ran-
dom region (40 pixels by 40 pixels) as a homogeneous region and calculate
statistics of this area.

SRAD

We ran the SRAD algorithm on all three datasets for 200 iterations, with a
smoothing time-step (4t) of .05. A small smoothing time-step smoothes a
minimal amount with each iteration, which is why there are so many itera-
tions performed. Using too large of a time-step in combination with fewer
iterations is not preferred, as this can negatively affect the stability of dif-
fusion algorithms. The homogeneous region chosen is the same randomly
selected 40x40 region used in with the Lee Filter.

DespecKS

We test a version of the DespecKS algorithm, written by ourselves. For the
DespecKS algorithm, we use a 15x21 window to test for SHP. The alpha
significance value is set to .05.
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Median Driven SRAD

Median Driven SRAD is also driven for 200 iterations, with step-size .05.
The same homogeneous region is used as in SRAD and Lee filtering.

DD-SRAD

All DD-SRAD algorithms are run for 200 iterations. The time-step used for
DD-SRAD is also .05. For all DD-SRAD algorithms, we use our homoge-
neous region detection algorithm to specify a homogeneous region, using
window-size 3x3.

DD-SRAD-KS: DD-SRAD-KS stands for Distance-Driven SRAD run using
KS distance.

DD-SRAD-B: DD-SRAD-B stands for Distance-Driven SRAD using Bhat-
tacharyya distance.

DD-SRAD-RSS: DD-SRAD-RSS uses RSS distance, weighted evenly across
all images regardless of position in the stack.

DD-SRAD-RSS-W: DD-SRAD-RSS-W refers to DD-SRAD using RSS dis-
tance, but using the weighted approach mentioned in Chapter 3.

4.2.3 Goals

The two goals mentioned in Chapter 1 are reintroduced in this section.

Goal 1 - Noise Removal

The first goal is to show that DD-SRAD has a lower average MSE and PSNR
than other leading methods. MSE is mean squared error - it is calculated by
subtracting the ground truth image from the smooth image, to determine
how many errors there are in the smooth image. This difference is squared
and averaged across the images to get an MSE for each stack. The average
MSE reported in Table 4.3 is averaged across the two synthetic datasets.

PSNR, or peak signal-to-noise ratio is implemented using MSE:

PSNR = 10log10(peakval2/MSE). (4.2)

peakval is the largest value allowed by the data; the synthetic datasets range
from 0 to 1, so peakval here is 1. PSNR is measured in decibels. A higher
value of PSNR is more desirable. In Table 4.3 we compare the MSE and
average PSNR for all methods tested.

Med-SRAD shows improvement upon the SRAD algorithm. Med-SRAD
has lower MSE than SRAD, and higher PSNR. Med-SRAD performs the
best out of all algorithms for Experiments 1 and 2. We will observe further
metrics to compare performance to the DD-SRAD methods.

Within DD-SRAD, DD-SRAD-B has the highest MSE and lowest PSNR.
DD-SRAD-KS, DD-SRAD-RSS, and DD-SRAD-RSS-W all perform with sim-
ilar MSE and PSNR values. DD-SRAD has lower MSE and higher PSNR
than both the Lee filter and the SRAD approach, which are representative
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TABLE 4.2: Average MSE and PSNR: Experiments 1 and 2

Method MSE PSNR

Lee .5902 2.2927
SRAD .5930 2.2746
DespecKS .6004 2.218
Med-SRAD .3607 4.4373
DD-SRAD-KS .5216 2.8319
DD-SRAD-B .5629 2.5020
DD-SRAD-RSS .5240 2.8115
DD-SRAD-RSS-W .5218 2.8303

TABLE 4.3: Mean and Standard Deviation for Homoge-
neous Regions: Experiments 1 and 2

Experiment 1 Experiment 2
Method Mean Std. Dev. Mean Std. Dev.

Lee .1019 .1427 .0584 .0958
SRAD .0814 .0286 .0474 .0276
DespecKS .1019 .1553 .0584 .1030
Med-SRAD .3344 .0741 .2659 .0535
DD-SRAD-KS .1097 .0378 .0827 .0343
DD-SRAD-B .1078 .1396 .0811 .0784
DD-SRAD-RSS .1088 .0546 .0823 .0402
DD-SRAD-RSS-W .1102 .0348 .0833 .0332

of speckle reduction techniques used by the SAR community. DD-SRAD
also has lower MSE and higher PSNR than the DespecKS method, which is
representative of speckle removal on temporal stacks.

We have measured the standard deviation and mean values of homoge-
neous regions for Experiments 1 and 2, shown in Table. These are averaged
over the stack. We prefer a lower standard deviation for homogeneous re-
gions. In the original, speckle-free image, a homogeneous region should
have little variation, so most variation is due to noise. After smoothing,
if a region has little variation, then we assume that the noise has been re-
moved (Yu and Acton, 2002).

For both experiments, the standard deviations of homogeneous regions
is lower for DD-SRAD-KS, DD-SRAD-RSS, and DD-SRAD-RSS-W than for
Med-SRAD. DD-SRAD-B does not have as low of a standard deviation as
its counterparts. We see that SRAD has the lowest standard deviation for
homogeneous regions, compared to the other methods. However, when
we observe images after smoothing, the flaws of SRAD become clear. In
Figure 4.4, we see in 4.4c that the SRAD algorithm has left many high in-
tensity speckle artifacts behind. However, Figures 4.4f, 4.4h, and 4.4i have
smoothed these bright noisy pixels.

The distance metrics analyze pixel behavior through time, unlike the
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(A) Original Image (B) Lee (C) SRAD

(D) DespecKS (E) Med-SRAD (F) DD-SRAD-KS

(G) DD-SRAD-B (H) DD-SRAD-RSS (I) DD-SRAD-RSS-W

FIGURE 4.4: Comparing results from Experiment 2

SRAD ICOV, which only uses spatial analysis. Using temporal analysis al-
lows us to compare the bright pixels to neighboring pixels - if the bright pix-
els follow the same behavior as neighboring pixels, then the bright speckle
noise is smoothed. The SRAD algorithm cannot perform this type of tem-
poral analysis, so bright speckle remains in the SRAD despeckled images.

Goal 2 - Time Variation Preservation

To measure whether our algorithms preserve time varying information, we
compare our algorithms with the DespecKS algorithm, the only other al-
gorithm that also takes advantage of the image stack. For each synthetic
dataset there is only one feature that appears or disappears over time. We
form a rectangular bounding box around this feature and calculate the MSE
for this region between smoothed images and the ground truth image. These
MSE’s are reported in Table 4.4.

We find that all DD-SRAD methods have lower MSE to the DespecKS
algorithm, showing that DD-SRAD preserves temporal information better
than the DespecKS algorithm. Using a weighted RSS distance produces
lower error than using a non-weighted RSS distance. However, at times,
other distances, such as the KS distance in Experiment 2, outperforms the
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TABLE 4.4: MSE of Time-Varying Structure

Method Experiment 1 Experiment 2

DespecKS .6158 .4263
DD-SRAD-KS .5548 .3685
DD-SRAD-B .6030 .4019
DD-SRAD-RSS .5571 .3703
DD-SRAD-RSS-W .5551 .3686

weighted RSS distance. If runtime of algorithms is a concern, then us-
ing weighted RSS distance is faster than using either KS distance or Bhat-
tacharyya distance, and results are comparable, or better, in terms of MSE.

The difference between performance in distances may be a result of us-
ing unscaled distances. The Bhattacharyya distance values are much larger
than the distances calculated using the two-sample KS test, or when us-
ing RSS distance. As a result, smoothing is inhibited to a greater extent
when using Bhattacharyya distance. In future experiments, distances met-
rics need to be scaled for comparison.

We also show change preservation on one of our time-varying datasets
in Figure 4.5. We show images 1, 8, and 9 from the stack. Our algorithm,
DD-SRAD-RSS-W is able to preserve the intensity changes of the big square.
Taking the median of the stack just leaves us with one image, with no in-
formation about the intensity changes of objects in the image. For predic-
tion and analysis in many applications, it is necessary to retain information
about when features are changing.
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(A) Original 1 (B) Original 8 (C) Original 9

(D) Noisy 1 (E) Noisy 8 (F) Noisy 9

(G) DD-SRAD-RSS-W 1 (H) DD-SRAD-RSS-W 8 (I) DD-SRAD-RSS-W 9

(J) Median

FIGURE 4.5: Showing change preservation - displaying the
log of the image
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Chapter 5

Analysis

5.1 Complexity Analysis

Big O notation is used in computer science to quantify an upper bound
on algorithm behavior. The "O" corresponds to the "order" of the function
being analyzed. Big O notation is stated as a function of the size of input
(N.) We use Big O to analyze the limiting behavior of a function as the size
of an input increases to infinity. Big O is used to delineate "worst-case"
complexity of algorithms (Big-O Cheat Sheet).

The implementations of these algorithms are in no way optimal - but
they were both written by the same individual, so the complexity of both
algorithms is comparable. We will not discuss the complexity of each step
in the algorithm, but will instead show and discuss the rate-limiting steps
for each algorithm.

5.2 Complexity of DespecKS

The DespecKS algorithm takes an input image stack of size N x N x K
pixels, where N is a measure of input size that we will push towards in-
finity. The first rate-limiting step in the DespecKS algorithm is to iterate
through all the rows, and then all the columns of the image stack, using
nested for-loops. Looping through the rows is of complexity O(N ). Subse-
quently looping through the columns is of complexity O(N ), so we multiply
the two complexities together to get O(N2).

While looping through columns, this algorithm then selects a window.
This window is of size M x L. We iterate through all the rows and columns
of this window, giving us a complexity of O(ML). M and L represent 15 x
21, respectively. The nested for-loops iterating through a window are part
of the for-loops iterating through the image, so we multiply the complexi-
ties to get O(N2ML).

Within the window, a KS test is performed between the center pixel of
the window and every other pixel in the window. The complexity of a two-
way KS test is O(K). This is because before performing a two-way KS test,
one must build two CDFs of the data vectors being tested. When build-
ing CDFs, a histograms of intensities must be built, and the frequencies
of certain intensities must be summed. This is the rate-limiting step of a
two-way KS test. A single sum operation over an intensity vector is of com-
plexity O(K), because K is the length of the stack (and thus, the intensity
vector.) There are two sum operations performed, so the complexity of a
two-way KS test is 2O(K). We drop constants when analyzing complexity,
so the simplified two-way KS test is of complexity O(K).
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Multiplying the complexity of the KS test with the previous complexity
gives us complexity O(N2MLK).

5.3 Complexity of DD-SRAD-KS

We compare the DespecKS algorithm to Distance-Driven SRAD using KS
distance, as they are the most comparable methods. They both make use of
temporal information, and they both perform numerous two-way KS tests.
DD-SRAD-KS first takes an input image stack of dimensions N x N x K
pixels. Smoothing is done for a number of iterations, which we will call I .
In our experiments, I = 200. For each iteration, we will perform smoothing
on all of the images. This gives us complexity of O(I).

Within each iteration, we will iterate through all the rows and columns
of the image stack. This set of nested for-loops, as in the case of DespecKS,
will give a complexity of O(N2). We will multiply this with O(I) from the
outer loop to get a complexity of O(N2I).

The next step is to perform a two-way KS test between the current pixel
and all neighboring pixels, within the nested for-loops of the previous step.
There are four neighbors for each pixel (north, South, East, and West), and
the complexity of each KS test is O(K), as discussed in the previous section.
So there are four KS tests done per pixel, giving us complexity 4O(K). Con-
stants are dropped when simplifying complexity, so the complexity of this
step is simply O(K). Multiplying O(K) by O(N2I) gives us a total complex-
ity of O(N2IK).

5.4 Comparison

The two complexities shown above have a couple of common terms: O(N2K).
So we compare the terms that are different after removing like terms: O(ML)
versus O(I). For our experiments we have used 200 iterations. We would
not prefer to use more iterations as the image may become oversmoothed.
The preferred window size for the DespecKS algorithm is 15 x 21, so M =
15 and L = 21. Thus, ML = 315, which leads to significantly increased
computational cost (in this case). So, in addition to demonstrating superior
performance in terms of solution quality, the DD-SRAD-KS method is also
capable of reduced computational cost.
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FIGURE 5.1: Flow diagram of DespecKS algorithm com-
plexity.
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FIGURE 5.2: Flow diagram of SRAD Vector algorithm com-
plexity.
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Chapter 6

Conclusion

SAR images can be used for many different applications, from farm and
ecological analysis, to transportation infrastructure monitoring. The database
we draw our images from contains images taken over Virginia, to remotely
sense problems with Virginia roads, highways, and bridges. Being able to
accurately sense changes in infrastructure topography can lead to better
predictions of events, and can support proactive behavior and preventing
disastrous consequences of said events (landslides, sinkholes, bridge col-
lapse, etc.) However, SAR images inherently contain speckle noise, which
degrades image structure and makes accurate analysis of amplitude data
difficult. To ensure accuracy of predictions, so that false alarms are not
raised, we must denoise SAR images before performing any type of analy-
sis with them.

For denoising SAR images, we have developed a method that performs
better than leading methods in speckled image denoising. Our method,
DD-SRAD, performs better than many single image denoising methods.
DD-SRAD also has lower MSE and higher PSNR than the only other popu-
lar denoising method for SAR image stacks (that utilizes temporal informa-
tion.) DD-SRAD not only removes more noise than this method, DespecKS,
but also preserves more temporal uniqueness than DespecKS. DD-SRAD
also has lower overall complexity than DespecKS, even though both meth-
ods make use of the temporal nature of the image stack.

To continue this work, scaled distances can be implemented, as well as
testing different types of distances besides the three tested here (RSS, KS,
and Bhattacharyya.) Also, weighted distances can be implemented for KS
and Bhattacharyya distances.

Moving away from diffusion, an improvement can be made to the De-
specKS algorithm to lower the complexity and improve the performance.
Instead of windowing through the whole image to find SHP, homogeneous
regions can be found using our homogeneous region detection method.
Each homogeneous region can be averaged. Then, SHP analysis can be
performed on the remaining non-homogeneous edges (roads, etc.) We will
implement this improvement on DespecKS in the near future, and compare
the results to DD-SRAD.



32

Bibliography

A. Ferretti A. Fumagalli, F. Novali C. Prati F. Rocca and A. Rucci (2011). “A
New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR”.
In: IEEE Transactions on Geoscience and Remote Sensing 49.9, pp. 3460–
3470.

Bhattacharyya, A. (1943). “On a measure of divergence between two statis-
tical populations defined by their probability distributions”. In: Bulletin
of the Calcutta Mathematical Society 35, pp. 99–109.

D. T. Kuan A. A. Sawchuk, T. C. Strand and P. Chavel (1987). “Adaptive
restoration of images with speckle”. In: IEEE Trans. Acoust., Speech, Sig-
nal Processing ASSP.35, 373–383.

Hogema, J. (2005). “Shot group statistics”. In:
Immerkaer, J. (1996). “Fast Noise Variance Estimation”. In: Computer Vision

and Image Understanding 64.2, pp. 300–302.
Interstate 35W Bridge Collapse Critical Response. Online. URL: http://www.

govtogovsolutions.org/Default.aspx?tabid=132.
Jarque, C. M. and A. K. Bera (1987). “A Test for Normality of Observa-

tions and Regression Residuals”. In: International Statistical Review 55.2,
pp. 163–172.

Ju, C. and C. Moloney (1997). “An edge-enhanced modified Lee filter for
the smoothing of SAR image speckle noise”. In: International Workshop
on Acoustic Signal Enhancement.

Lee, J. S. (1980). “Digital image enhancement and noise filtering by using
local statistics”. In: IEEE Trans. Pattern Anal. Machine Intell. PAM1.2.

Liew, S.C. (2001a). Interpreting SAR Images. Online. URL: http://www.
crisp.nus.edu.sg/~research/tutorial/sar_int.htm.

— (2001b). Microwave Remote Sensing. Online. URL: http://www.crisp.
nus.edu.sg/~research/tutorial/mw.htm.

Massey, F. J. (1951). “The Kolmogorov-Smirnov Test for Goodness of Fit”.
In: Journal of the American Statistical Association 46.253, pp. 68–78.

McCandless, S.W. and C.R. Jackson. SAR Marine User’s Manual. NOAA.
Perona, P. and J. Malik (1987). “Scale-space and edge detection using anisotropic

diffusion”. In: Proceedings of IEEE Computer Society Workshop on Computer
Vision, pp. 16–22.

Rowell, E. Big-O Cheat Sheet. Online. URL: http://bigocheatsheet.
com/.

SAR Imagery (2016). Online. URL: http://treuropa.com/technique/
sar-imagery/.

Wolff, Christian. Radar Basics. Online. URL: http://www.radartutorial.
eu/20.airborne/ab07.en.html.

Yu, Y. and S. T. Acton (2002). “Speckle Reducing Anisotropic Diffusion”. In:
IEEE Transactions on Image Processing 11.11, pp. 1260–1270.

http://www.govtogovsolutions.org/Default.aspx?tabid=132
http://www.govtogovsolutions.org/Default.aspx?tabid=132
http://www.crisp.nus.edu.sg/~research/tutorial/sar_int.htm
http://www.crisp.nus.edu.sg/~research/tutorial/sar_int.htm
http://www.crisp.nus.edu.sg/~research/tutorial/mw.htm
http://www.crisp.nus.edu.sg/~research/tutorial/mw.htm
http://bigocheatsheet.com/
http://bigocheatsheet.com/
http://treuropa.com/technique/sar-imagery/
http://treuropa.com/technique/sar-imagery/
http://www.radartutorial.eu/20.airborne/ab07.en.html
http://www.radartutorial.eu/20.airborne/ab07.en.html

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	SAR Images
	Noise
	Noise Removal

	Problem
	Goals
	Overview

	Literature Review
	Anisotropic Diffusion
	Adaptive Speckle Filters
	Lee Filter
	Frost Filter
	Drawbacks of Adaptive Speckle Filters

	Speckle Reducing Anisotropic Diffusion
	Space Adaptive Filtering: DespecKS Algorithm

	Methods
	Median Driven Diffusion
	Distance Driven SRAD
	Root Sum of Squares
	Kolmogorov-Smirnov
	Bhattacharyya
	Gaussian Weighted vs. Unweighted Distances

	Homogeneous Region Detection

	Results/Findings
	Homogeneous Region Detection
	Statistical Testing

	Smoothing Algorithms
	Synthetic Datasets
	Methods Tested and Parameters Used
	Lee Filter
	SRAD
	DespecKS
	Median Driven SRAD
	DD-SRAD

	Goals
	Goal 1 - Noise Removal
	Goal 2 - Time Variation Preservation



	Analysis
	Complexity Analysis
	Complexity of DespecKS
	Complexity of DD-SRAD-KS
	Comparison

	Conclusion
	Bibliography



