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Abstract

Generally, at least two features are needed to characterize a growth process fully at any

time point: the level of growth and the rate of growth. The level of growth represents the

current status of a process at a given time point and can be viewed as a static measure of

that process. The rate of growth represents how fast the level of the process is changing at

that time point and can be viewed as a dynamic measure of the process. The widely used

growth curve models usually focus on the analysis of the level of growth. However,

techniques for analysis of rates of growth are still relatively rare. Because of the

significance of rates of growth in understanding dynamic processes, a stronger and more

versatile approach is proposed to model them by constructing growth rate models. The

concepts of growth processes and current analytical techniques are first reviewed and both

the simple rate of growth and the compound rate of growth are defined. Then, different

models are developed to analyze rates of growth. Growth rate models are constructed to

analyze simple rates of growth and random coefficient models are developed to analyze

compound rates of growth. The proposed models are applied to analyze an empirical data

set – the National Longitudinal Study of Youth (NLSY) – consisting of children’s

mathematics performance data and covariates of gender and behavioral problems (BPI).
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Individual differences are found in both simple and compound rates of growth. BPI and

gender have different relationship with simple rates of growth at different ages. BPI is also

found to be negatively related to compound rates of growth. Finally, a systematic

simulation study is conducted to validate the results from the analysis of the NLSY data

and to investigate the performance of two main models, the quadratic growth rate model

and the random coefficient latent difference score model. The simulation results support

the validity of the results from the empirical data analysis. It is further found that the

parameter estimates for both models are unbiased and the standard error estimates are

consistent.



iii

List of Tables

4.1 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Fit indices for the linear, quadratic, and exponential growth curve models . 55

4.3 Parameter estimates for the quadratic growth curve model . . . . . . . . . 56

4.4 Estimated average and variability of rates of growth for mathematics per-

formance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Results from the growth rate analysis . . . . . . . . . . . . . . . . . . . . . 57

4.6 DICs for the three LDSM models . . . . . . . . . . . . . . . . . . . . . . . 60

4.7 Parameter estimates for the random coefficient LDSM without covariates. . 61

4.8 Results from the random coefficient LDSM with covariates . . . . . . . . . 62

5.1 Simulation results for the quadratic growth rate model with the same miss-

ing data patterns as the NLSY data (R=200) . . . . . . . . . . . . . . . . . 75

5.2 Simulation results for the quadratic growth rate models with manipulated

conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Investigation of convergence for the quadratic growth rate models . . . . . 80



iv

5.4 Simulation results for the random coefficient LDSM with the same missing

data patterns as the NLSY data . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 Simulation results for the random coefficient LDSM with manipulated con-

ditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.6 Number of convergent iterations for the random coefficient LDSM with

different burn-ins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.1 N = 100, T = 10, M = 10, R = 198 . . . . . . . . . . . . . . . . . . . . 110

A.2 N = 100, T = 10, M = 4, R = 74 . . . . . . . . . . . . . . . . . . . . . . 111

A.3 N = 100, T = 10, M = 3, R = 8 . . . . . . . . . . . . . . . . . . . . . . 112

A.4 N = 100, T = 5, M = 5, R = 193 . . . . . . . . . . . . . . . . . . . . . . 113

A.5 N = 100, T = 5, M = 4, R = 200 . . . . . . . . . . . . . . . . . . . . . . 114

A.6 N = 100, T = 10, M = 3, R = 161 . . . . . . . . . . . . . . . . . . . . . 115

A.7 N = 200, T = 10, M = 10, R = 167 . . . . . . . . . . . . . . . . . . . . 116

A.8 N = 200, T = 10, M = 4, R = 118 . . . . . . . . . . . . . . . . . . . . . 117

A.9 N = 200, T = 10, M = 3, R = 30 . . . . . . . . . . . . . . . . . . . . . . 118

A.10 N = 200, T = 5, M = 5, R = 196 . . . . . . . . . . . . . . . . . . . . . . 119

A.11 N = 200, T = 5, M = 4, R = 200 . . . . . . . . . . . . . . . . . . . . . . 120

A.12 N = 200, T = 5, M = 3, R = 186 . . . . . . . . . . . . . . . . . . . . . . 121

A.13 N = 500, T = 10, M = 10, R = 168 . . . . . . . . . . . . . . . . . . . . 122

A.14 N = 500, T = 10, M = 4, R = 194 . . . . . . . . . . . . . . . . . . . . . 123

A.15 N = 500, T = 10, M = 3, R = 85 . . . . . . . . . . . . . . . . . . . . . . 124

A.16 N = 500, T = 5, M = 5, R = 198 . . . . . . . . . . . . . . . . . . . . . . 125



v

A.17 N = 500, T = 5, M = 4, R = 200 . . . . . . . . . . . . . . . . . . . . . . 126

A.18 N = 500, T = 5, M = 3, R = 200 . . . . . . . . . . . . . . . . . . . . . . 127

A.19 N = 1000, T = 10, M = 10, R = 178 . . . . . . . . . . . . . . . . . . . . 128

A.20 N = 1000, T = 10, M = 4, R = 199 . . . . . . . . . . . . . . . . . . . . 129

A.21 N = 1000, T = 10, M = 3, R = 115 . . . . . . . . . . . . . . . . . . . . 130

A.22 N = 1000, T = 5, M = 5, R = 198 . . . . . . . . . . . . . . . . . . . . . 131

A.23 N = 1000, T = 5, M = 4, R = 200 . . . . . . . . . . . . . . . . . . . . . 132

A.24 N = 1000, T = 5, M = 3, R = 198 . . . . . . . . . . . . . . . . . . . . . 133

A.25 Simulation results with N=100 and T=10 . . . . . . . . . . . . . . . . . . . 134

A.26 Simulation results with N=100 and T=5 . . . . . . . . . . . . . . . . . . . 135

A.27 Simulation results with N=200 and T=10 . . . . . . . . . . . . . . . . . . . 136

A.28 Simulation results with N=200 and T=5 . . . . . . . . . . . . . . . . . . . 137

A.29 Simulation results with N=500 and T=10 . . . . . . . . . . . . . . . . . . . 138

A.30 Simulation results with N=500 and T=5 . . . . . . . . . . . . . . . . . . . 139

A.31 Simulation results with N=1000 and T=10 . . . . . . . . . . . . . . . . . . 140

A.32 Simulation results with N=1000 and T=5 . . . . . . . . . . . . . . . . . . . 141



vi

List of Figures

1.1 Different growth processes defined by growth functions of time. . . . . . . 12

1.2 Different growth processes from which growth is defined as a function of

previous state. The general form is yt = b0 + b1 ∗ yt−1. The sequence of

the parameter values on the top of each plot is b0, b1, y0, respectively. . . . . 13

2.1 Simple rate of growth rt is characterized by the derivative of the growth

function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 A graphical demonstration of the LLA method . . . . . . . . . . . . . . . . 25

3.1 A path diagram for a linear growth curve model. . . . . . . . . . . . . . . . 30

3.2 A path diagram for the simplex model. . . . . . . . . . . . . . . . . . . . . 31

3.3 A path diagram for the univariate latent difference score model. . . . . . . . 32

3.4 The path diagram for a simple growth rate model using path analysis . . . . 35

3.5 A path diagram for the quadratic growth rate model. . . . . . . . . . . . . 38

3.6 Simplex models with individual compound rates of growth. This represent

the path diagram for the ith individual. . . . . . . . . . . . . . . . . . . . . 44



vii

3.7 LDSM with random compound rate of growth. Represented here is the

path diagram for the ith individual. . . . . . . . . . . . . . . . . . . . . . . 45

4.1 The longitudinal plot of PIAT Math. The thick line is the mean trajectory. . 52

4.2 The longitudinal plot of PIAT Math for boys’ and girls’ data. . . . . . . . . 53

4.3 The longitudinal plot of PIAT Math for low and high BPI children. . . . . . 53

4.4 The plot of average growth trajectory and rates of growth of mathematics

performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 The estimated coefficients with error bars for the covariates and their in-

teraction at each age. The error bars are calculated as the 95% confidence

intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 The simplified flow chart for running the simulation for the quadratic growth

rate models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 The simplified flow chart for running the simulation for the compound

growth rate models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 The density plot for the non-zero parameters in the quadratic growth rate

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 The density plot for the parameters in the random coefficient LDSM. . . . . 82



viii

Table of Contents

Abstract i

List of Tables ii

List of Figures vi

Acknowledgment xii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Methodological motivation . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Substantive motivation . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Structure of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Growth Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 What is a growth process? . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 How does one measure a growth process? . . . . . . . . . . . . . . 10

1.3.3 How does one analyze a growth process? . . . . . . . . . . . . . . 11

1.4 Growth Curve Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14



ix

1.5 Multilevel Time Series Models . . . . . . . . . . . . . . . . . . . . . . . . 15

2 The Rate of Growth 17

2.1 Definition of the Rate of Growth . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Differences between the simple rate of growth and the compound

rate of growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Estimation Methods for the Rate of Growth . . . . . . . . . . . . . . . . . 20

2.2.1 The parametric method . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 The semi-parametric method . . . . . . . . . . . . . . . . . . . . . 22

2.2.3 The non-parametric method . . . . . . . . . . . . . . . . . . . . . 24

2.3 Additional Comments on Estimation of the Compound Rate of Growth . . . 26

3 Methods for Analyzing the Rate of Growth 28

3.1 Existing Methods for Analyzing the Rate of Growth . . . . . . . . . . . . . 28

3.1.1 Linear growth curve models . . . . . . . . . . . . . . . . . . . . . 28

3.1.2 Simplex models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.3 Latent difference score models (LDSM) . . . . . . . . . . . . . . . 30

3.2 Proposed Methods for Analyzing the Rate of Growth . . . . . . . . . . . . 33

3.2.1 Path analysis of rates of growth . . . . . . . . . . . . . . . . . . . 33

3.2.2 Simple growth rate models . . . . . . . . . . . . . . . . . . . . . . 35

3.2.3 Random coefficient simplex models . . . . . . . . . . . . . . . . . 42

3.2.4 Random coefficient latent difference score models . . . . . . . . . 44

4 Applications 48



x

4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.1 Overview of the data . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.2 Descriptive statistics . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Goals of Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Analyses of the Simple Rate of Growth of Mathematics Performance . . . . 54

4.4 Analyzing the Compound Rate of Growth for Mathematics Performance . . 58

4.5 Conclusions from the Empirical Analysis . . . . . . . . . . . . . . . . . . 61

5 Simulation Study 64

5.1 Simulation Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1.1 Simulation design for the quadratic growth rate model . . . . . . . 65

5.1.2 Simulation design for the random coefficient LDSM . . . . . . . . 66

5.1.3 Empirical data based simulation . . . . . . . . . . . . . . . . . . . 67

5.2 Implementation of the simulation . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.1 Simulation implementation for the simple growth rate models . . . 67

5.2.2 Simulation implementation for the compound growth rate models . 69

5.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3.1 Simulation results for the quadratic growth rate model . . . . . . . 74

5.3.2 Simulation results for the random coefficient LDSM . . . . . . . . 80

5.4 Summary of the Simulation Study . . . . . . . . . . . . . . . . . . . . . . 86

6 Summary and Discussion 87

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



xi

6.2.1 Methodological implications . . . . . . . . . . . . . . . . . . . . . 89

6.2.2 Substantive implications . . . . . . . . . . . . . . . . . . . . . . . 91

6.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

References 96

APPENDICES 109

A Simulation Results 110

A.1 Simulation results for the quadratic growth rate models . . . . . . . . . . . 110

A.2 Simulation results for the random coefficient LDSM . . . . . . . . . . . . . 129

B Scripts and Codes 142

B.1 R codes for simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

B.1.1 R codes for simulating the quadratic growth rate model . . . . . . . 142

B.1.2 R codes for simulating the random coefficient LDSM model . . . . 144

B.2 An example script for quadratic growth rate models . . . . . . . . . . . . . 146

B.3 WinBUGS codes for the random coefficient LDSM . . . . . . . . . . . . . 148



xii

Acknowledgment

I would like to gratefully and sincerely thank the members of my dissertation

committee, John Nesselroade, Jack McArdle, Steven Boker, Karen Schmidt, Aki

Hamagami, and Feifang Hu. Without their constructive guidance and suggestions, the

completion of this dissertation would not have been possible.

My deepest gratitude is to my advisor, John Nesselroade, for his guidance,

understanding, patience, and encouragement during my graduate studies at the University

of Virginia. I have been amazingly fortunate to have an advisor who gave me the freedom

to explore on my own, and at the same time guidance whenever I need it. I hope that one

day I become as good an advisor to my students as John has been to me.

I greatly acknowledge Jack McArdle for his continuous encouragement and

insightful advice at different stages of my research. I am grateful to him for holding me to

a high research standard and helping me succeed.

I would like to thank Steven Boker for his insightful comments and constructive

criticisms. I thank Karen Schmidt for her warm-hearted support and help. I am indebted

to Aki Hamagami for numerous constructive discussions. I also thank Feifang Hu for his

useful suggestions and encouragement.



xiii

I am grateful to Ryan Bowels, Sy-Miin Chow, Ryne Estabrook, Kevin Grimm,

Ellen Hamaker, Nilam Ram, and many others for their friendship.

I am deeply grateful to my family for their constant love, concern, and support. I

would like to thank my wife, Lijuan Wang, for all her love and support for already more

than 10 years. I would like to thank my parents for their support, encouragement, and love.



1

1. Introduction
This dissertation is motivated by the need for general methodology to investigate

growth processes more comprehensively and the need to understand better the

development of mathematical ability. In this introductory chapter, I will first discuss the

methodological and substantive motivations. Then, I will briefly review and introduce the

background of the current study.

1.1 Motivation

1.1.1 Methodological motivation

Investigating time-related patterns of constancy and change of psychological

processes is a primary reason for collecting longitudinal data. Most longitudinal repeated

measures data tend to share at least three features: (1) the same entities are repeatedly

observed over time; (2) the same measurements (including parallel tests) are used; and (3)

the timing for each measurement is known (Baltes & Nesselroade, 1979; McArdle &

Nesselroade, 2003; Zhang, Hamagami, Wang, Grimm, & Nesselroade, 2007). The need to

analyze longitudinal data has stimulated the development of longitudinal data analytic

techniques and models which, in turn, have further advanced the collection of longitudinal

data. Growth curve models (e.g., Browne, 1993; Browne & Du Toit, 1991; Laird & Ware,

1982; McArdle & Nesselroade, 2003; Meredith & Tisak, 1990; Rao, 1958; Tucker, 1958,
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1966) exemplify a widely used technique aiming to achieve the objectives of longitudinal

research described by Baltes and Nesselroade (1979) – explicitly to analyze

intra-individual change and inter-individual differences in intra-individual change.

Generally, at least two features are needed to fully characterize a growth process at

any time point: the level of growth and the rate of growth. The level of growth represents

the current status of a process at one time point and it can be viewed as a static / trajectory

measure of that process. The rate of growth represents how fast the process is growing /

changing at that time point, and it can be viewed as a dynamic measure of that process.

Individual differences in the rate of growth are of obvious importance. Two persons of the

same ability at a given time may differ markedly in ability at a future time if their rates of

growth are different. If rates of growth differ, it is important to know whether there is any

correspondence between degrees of intelligence and rates of growth (Freeman & Flory,

1943). Even for the same person, the growth pattern at level x can be very different from

that at level y (Cattell, 1966b). Thus, to represent a process more completely, both the

level of growth and the rate of growth need be considered simultaneously.

When admittedly simpler versions of growth curves were initially used to analyze

individual differences of physical and intellectual growth, researchers actually emphasized

the rates of growth at different development phases of children (Freeman & Flory, 1937,

1943; Scammon, 1927). However, the growth curve models developed subsequently are

generally modeling the trajectories of growth processes directly instead of change and

rates of growth that researchers may be more interested in. The best fitting models

basically give researchers the growth functions that best represent the trajectory / curve of

the longitudinal data. The modeling of rates of growth is actually the analysis of the
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dynamics of that process. This is one of the reasons that researchers have attempted to

interpret the results from many data analyses using growth curve models in terms of rates

of growth(e.g., Biesanz, Deeb-Sossa, Papadakis, Bollen, & Curran, 2004; Bollen &

Curran, 2006; Kaplan, 2002; Neale & McArdle, 2000; Reynolds, Finkel, Gatz, &

Pedersen, 2002; Tate, 2000).

Although rates of growth are of substantial interest to researchers, techniques for

the analysis of rates of growth are, with a few exceptions, still rare. The rate of growth can

only be analyzed easily and explicitly in limited growth curve models, specifically, the

linear growth curve model and one variety of the quadratic growth curve model. From a

hierarchical model perspective, this is mainly because in the second level of a growth

curve model, the single random coefficient is actually a combination of several random

coefficients forming the rate of growth. Thus, it is generally difficult or even impossible to

analyze the rate of growth for more complex instances such as the exponential model in

the usual growth curve modeling and estimation framework. This is a serious deficit

because exponential growth is known to be very common in human development and

biological growth and development. Actually, only with the linear growth curve model

and the quadratic growth curve model has the rate of growth been analyzed. For the linear

growth model, the latent slope parameter can be interpreted as the rate of growth directly

(e.g., Kaplan, 2002; Neale & McArdle, 2000). However, the rate of growth in linear

models is a constant which is not typical of human development, especially over a long

period (e.g., Freeman & Flory, 1943). For the quadratic growth model, the linear random

coefficients (slope parameters) at time zero can be interpreted as the instantaneous rates of

growth (e.g., Bollen & Curran, 2006; Schuster & von Eye, 1998; Taylor, Graham,
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Cumsille, & Hansen, 2000). An obvious drawback of the instantaneous rate of growth is

that time zero is usually not part of the measurement process or may not even exist.

Outside the framework of growth curve modeling, e.g., dynamic system analysis,

researchers have also shown interest in developing methods and models to analyze rates of

growth. For example, Sandland and McGilchrist (1979) proposed a stochastic growth

curve model based on stochastic differential equations. This method focused on the

analysis of a single subject. Boker and colleagues have developed a set of dynamical

systems models based on differential equations and the estimation of derivatives (Boker &

Nesselroade, 2002; Boker, Neale, & Rausch, 2004). These models can be used to

investigate complex dynamical systems by modeling the relationship among derivatives of

a system. These methods are focused on the inter-relationship among first and second

derivatives. However, the emphasis here will be on how to predict the rate of growth, the

first derivative, by theoretically interesting covariates.

1.1.2 Substantive motivation

This study is also motivated by substantive research questions, namely how do

rates of mathematical ability develop and how are they related to interesting covariates

such as gender and behavioral problems? There is an extensive history on the analysis of

cognitive development through growth curves in psychological research. Thurstone and

Ackerson (1929) investigated growth features of mental development based on the Binet

tests. Freeman and Flory (1937) studied the individual growth curves of intellectual ability

and further discussed intellectual growth in terms of rates of growth. Recently, McArdle
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and colleagues have applied different growth curve modeling techniques to analyze

individual differences in cognitive development trajectories (e.g., McArdle & Epstein,

1987; McArdle & Anderson, 1990; McArdle, Ferrer-Caja, Hamagami, & Woodcock,

2002; McArdle & Bell, 1999).

Mathematical ability is an extensively studied cognitive ability (e.g, Douglas &

Kinney, 1938; Felson & Trudeau, 1991; Hyde, Fennema, & Lamon, 1990). This may be

in part because the study of mathematics can provide psychologists a well-specified

domain of information to examine a wide range of cognitive processes. Longitudinal

analyses regarding the development of mathematics have been also conducted (e.g.,

Grimm, 2005; Kowalski-Jones & Duncan, 1999; Williamson, Appelbaum, & Epanchin,

1991). These studies have found that mathematical ability develops in a curvilinear

fashion with respect to time such that the rate of growth is decelerating with increasing

age through childhood and into adolescence.

Relationships between mathematical ability and selected covariates have also been

studied. Gender differences in mathematics performance, especially, have been

investigated extensively in many studies (e.g, Douglas & Kinney, 1938; Felson &

Trudeau, 1991; Hyde et al., 1990). An early review by Douglas and Kinney (1938)

showed that males outperformed females significantly on mathematics tests. A recent

review (Hyde et al., 1990) basically arrived at the same conclusion. However, gender

differences in rates of growth (learning) of mathematics have generally been studied only

in the linear growth models although mathematics development is a nonlinear process

(e.g., Grimm, 2005; Kowalski-Jones & Duncan, 1999; Williamson et al., 1991). Gender

differences in the nonlinear growth of mathematics still need to be studied explicitly.
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Relationships between cognitive abilities and various behavior problems have also

been investigated. It was found that children with higher levels of behavior problems

tended to do less well in school and to have lower verbal and reading skills than their more

behaviorally competent peers (e.g., Arnold, 1997; Arnold et al., 1999; McClelland,

Morrison, & Holmes, 2000). In a recent longitudinal study, Bub, McCartney, and Willett

(2007) found that children with higher initial levels of internalizing and externalizing

behaviors at 24 months had lower cognitive ability and achievement scores in the first

grade.

However, a couple of perspectives on the nature of mathematical ability

development and change are still missing from the literature. First, a systematic analysis

of rates of growth of mathematical ability is needed. Previous research has found that the

development of mathematics is not linear over time. Thus, rates of growth of mathematics

cannot be adequately analyzed using linear growth curve models. When nonlinear growth

curve models are used, how to analyze the rate of growth is an area that still needs to be

investigated. Second, how rates of growth of mathematics are related to covariates such as

gender and behavior problems also needs much more investigation. Therefore, to

contribute further to this literature, I will examine how rates of mathematical ability

develop and how they relate to the covariates of gender and a general measure of behavior

problems. Of course, there are many other covariates to study. By illustrating how one can

tackle the analytical steps here, it is the writer’s hope that future research involving a

variety of covariates, the choice of which is driven by substantive concerns, will be

facilitated.
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Summarization of motivations

To summarize, motivated by both methodological and substantive questions, I will

develop and evaluate appropriate models for the analysis of inter-individual differences in

rates of mathematics growth and how the inter-individual differences in rates of growth

are related to two important covariates of gender and behavioral problems discussed

earlier. First, I will give a definition of growth processes in the context of current research

and review some selected methods that have been used to analyze growth processes.

Second, I will define two kinds of growth rates, the simple rate of growth and the

compound rate of growth and review selected methods for estimating these rates of

growth. Third, I will propose and examine several other more general models for

analyzing rates of growth based on existing growth curve modeling methods. Fourth, I

will demonstrate the application of growth rate models using a public data set consisting

of children’s mathematics performance scores and the covariates of gender and

behaviorial problems. Finally, I will carry out a simulation study to evaluate the

performance of the models used in the empirical data analysis.

1.2 Structure of the Dissertation

The dissertation is organized in the following way. In the remainder of this

chapter, I will define growth process as used in the current framework and review methods

that can be used to analyze growth processes. In Chapter 2, I will present two ways to

define the rate of growth and then summarize and discuss different methods for estimating

rates of growth. In Chapter 3, I will first review existing methods for analyzing rates of
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growth and then propose several other methods based on existing methods. In Chapter 4, I

will apply the proposed growth rate models to analyze mathematical ability data and

develop answers to the substantive questions identified above. In Chapter 5, I will discuss

the simulation design and present the simulation results. In Chapter 6, I will summarize

the main findings and discuss implications of this dissertation research.

1.3 Growth Processes

1.3.1 What is a growth process?

Broadly speaking, process is a naturally occurring or designed sequence of

changes of properties or attributes of a system over time. More precisely, a process is a

particular trajectory in a system’s state space. A state space is a space in which all

possible states of a system are represented, with each possible state of the system

corresponding to one unique point in the state space. Thus, a process is a trajectory which

connects the points in a state space. Clearly, the sequence in which the points are

connected matters. From a behavioral perspective, Cattell (1966b, p. 394) defined a

process as “a sequence of values on a variety of behavior measurements, stimulus

measurements, etc. ... A process can be in one person or in several persons, constituting in

the latter case a social process.” Browne and Nesselroade (2005) emphasized that process

involves patterns of changes that are defined across variables and organized over time (see

also, Nesselroade & Molenaar, 2004).

Growth generally refers to an increase in quantity, such as size, number, value, or
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strength of an attribute over time. The quantity can be rather concrete (e.g., growth in

height, growth in an amount of money) or abstract (e.g., a system becoming more

complex, an organism becoming more mature). However, growth in this study is not

limited to increases. Growth, in this context, also means change of an attribute. It also

could be a negative change in an attribute, quantity, or any measurable quality.

Henceforth, in this proposal the term growth can implicitly result from various dynamic

states including increase, decrease, fluctuation, or even no change at all. Clearly, growth

itself can be viewed as one kind of process. I use the term growth process to emphasize

development-related phenomena.

The research proposed here focuses on one kind of growth process – psychological

process – which can be defined as change of some psychological construct over time in a

theoretically interesting way (Boker, 2002). Broadly speaking, these processes include

repression, projection, personality development, cognitive maturation, and so on (Cattell,

1966b). As one kind of process, psychological processes are intrinsically complex issues

to investigate because we need to first define these processes operationally and secondly

we need to take into account issues of individual differences and dynamic processes.

Boker (2002, p. 406) included examples with a wide range of time scales, “decade to

decade changes in cognitive abilities (Donaldson & Horn, 1992), year to year changes in

adolescent substance abuse (Boker & Graham, 1998), month to month changes in seasonal

affective disorder (Sarrias, Artigas, Martı́nez, & Gelpı́, 1989), week to week changes in

self-reported mental health in recent widowhood (Bisconti, 2001), minute to minute

changes in anxiety levels of children in response to perceived marital discord (Cummings

& Davies, 2002), second to second changes in interpersonal coordination of gestures
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during conversation (Rotondo & Boker, 2002), and millisecond to millisecond changes in

neurophysiological evoked response (Hari, Rif, Tiihonen, & Sams, 1992).” Other

examples include day to day changes in positive and negative emotion (Lebo &

Nesselroade, 1978) and diurnal changes in perceived control (Roberts & Nesselroade,

1986).

1.3.2 How does one measure a growth process?

Since a growth process is defined in terms of changes over time, it is not sufficient

to characterize it using only one state of that process as in the case of cross-sectional

studies. To capture more fully the characteristics of a process, multiple observation must

be made at multiple time points. This operation usually generates a sequence of data

points representing measurements taken at successive times, spaced at, often uniform,

time intervals. Data with such a structure are usually called longitudinal data or time

series data. There are no distinct differences between longitudinal data and time series

data. But a single time series should provide sufficient data for statistical analysis. Time

series models generally involve time series for only one experimental unit, univariately or

multivariately. However, a longitudinal case may only include data from two time points

but with observations from multiple subjects. For psychological research, longitudinal

data collection has become a practical, commonly used routine. However, the collection

of extensive time series data is still relatively rare.
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1.3.3 How does one analyze a growth process?

One common method of analyzing growth process data is to model the growth

process as a function of time. This is also the approach most widely used in behaviorial

research. A general model can be written as,

yt = f(t, b) + et,

where yt is the observed datum at time t, f is a function of time which can be any kind of

linear or nonlinear function, b = (b1, b2, . . . , bp) is a vector of p unknown parameters with

p depending on models, and et represents the error at time t.

For example, if the growth process is a linear one, the following linear model can

be used,

yt = b0 + b1t+ et,

with b = (b0, b1) representing the intercept and slope, respectively. An exponential growth

process can be modeled by

yt = b0 + b1e
b2t + et,

where b = (b0, b1, b2). b2 is usually called the constant rate of growth and b0 and b1

represent the initial value and asymptote value, respectively.

Figure 1.1 plots four different growth processes representing four growth

functions, namely linear growth, quadratic growth, exponential growth, and sinusoidal

growth. Clearly, with different growth functions, we can fit a variety of growth processes.

As stated earlier, modeling growth processes as a function of some measure of
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b0 = 2, b1 = 1, b2 = −7

2

Figure 1.1. Different growth processes defined by growth functions of time.

time is the most common practice in psychological research. However, there is another

way that is less familiar to psychologists and that models a growth process as a function of

its previous states. This method has been widely applied in time series analysis. A general

model can be written as,

yt = f(yt−1, . . . , yt−p, b) + et,

where yt is the observed score at time t, f can be any linear or nonlinear functions. The

autoregressive (AR) models can be viewed as a special case of this more general model,

and b and et are as defined above.

A simple example of the general model is the AR(1) (Hamilton, 1994) with
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intercept b0,

yt = b0 + b1 ∗ yt−1 + et.

Here b1 is usually called the autoregressive parameter. By varying the parameters b0 and

b1, and the initial state y0, we can produce different growth processes as illustrated in

Figure 1.2.

1,1,1

t

y

.3,-.8,1

t

y

1,.5,1

t

y

-1,.5,1

t

y

Figure 1.2. Different growth processes from which growth is defined as a function of
previous state. The general form is yt = b0 + b1 ∗ yt−1. The sequence of the parameter
values on the top of each plot is b0, b1, y0, respectively.
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1.4 Growth Curve Models

Longitudinal research in behavioral sciences usually involves obtaining data from

multiple subjects over multiple occasions. The above discussion is only focused on the

analysis of a single subject. Growth curve models have emerged in psychological research

as a major tool for analyzing longitudinal data representing multiple participants. Growth

curve models have been widely used in the analysis of growth processes via longitudinal

data in which one or more variables are measured repeatedly over multiple occasions (e.g.,

Browne, 1993; Browne & Du Toit, 1991; Laird & Ware, 1982; McArdle & Nesselroade,

2003; Meredith & Tisak, 1990; Rao, 1958; Tucker, 1958, 1966). From a hierarchical

model standpoint, a typical growth curve model is a two level model (e.g., Bollen &

Curran, 2006; Demidenko, 2004; Hox, 2002). The first level fits a growth curve with

random coefficients for each individual and the second level models the relations between

the random coefficients and covariates of interest.

Mathematically, the first level of a growth curve model can be written as,

yit = f(t, bi) + eit, t = 1, . . . ,T, i = 1, . . . ,N, (1.1)

where yit is the measurement for individual i at trial or occasion t, f(t, bi) is a function of

time representing the growth curve with individual parameter values

bi = (bi1, bi2, . . . , bip), a p× 1 vector of random coefficients, and eit is the error term with

E(eit) = 0 and Cov(ei) = ΣT×T. Usually, it is simply assumed that Cov(ei) = Iσ2.
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For the second level,

bi = B Xi + ui

p× 1 p× q q × 1 p× 1

, (1.2)

whereX is the design matrix with 1s in the first column and data for the covariates in the

other columns,B is the coefficient matrix, and ui represents the errors with E(ui) = 0

and Cov(ui) = D. As one can see, in the growth curve models, only bi, instead of a

combination of bi, is used in the second level (Eq 1.2).

For estimating growth curve models, the maximum likelihood estimation (MLE)

method is commonly used (e.g., Demidenko, 2004; Laird & Ware, 1982). MLE for growth

curve models is embedded in commercial statistical packages, such as SAS PROC

MIXED and PROC NLMIXED and Splus LME and NLME. Recently, Bayesian methods

have received more and more attention as useful tools for estimating a variety of models

including growth curve models, especially complex growth curve models which can be

difficult or impossible to estimate in the current MLE framework using MLE based

software (e.g., Lee & Chang, 2000; Lee & Liu, 2000; Wang & McArdle, 2008;

Menzefricke, 1998; Pettitt, Tran, Haynes, & Hay, 2006; Seltzer, Wong, & Bryk, 1996;

Zhang et al., 2007).

1.5 Multilevel Time Series Models

Multilevel time series models have not been widely used in psychological

research. The main reason may be that they require intensive data collection. However,
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the models can be specified in the multilevel framework conveniently. Here, I only focus

on the multilevel autoregressive models because they are directly related to the rate of

growth to be discussed later (e.g., Goldstein, Healy, & Rasbash, 1994). This model can be

expressed as


yit = f(yit−1, . . . , yit−p, bi) + eit

bi = BXi + ui

, t = 1, . . . ,T, i = 1, . . . ,N. (1.3)

The symbols in this model have the same meaning as those in the growth curve models

presented earlier.

A special case is the multilevel AR(1) model without covariates which can be

written as 

yit = b0i + b1iyit−1 + eit

b0i = β0 + u0i

b1i = β1 + u1i

, t = 1, . . . ,T, i = 1, . . . ,N, (1.4)

where b0i is the intercept and b1i is the autoregressive coefficient for the ith participant.

The overall means for intercept and autoregressive coefficient are β0 and β1. u0i and u1i

are deviations for the individual intercept and autoregressive coefficient from their means.
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2. The Rate of Growth
Estimation of the rate of growth is a primary concern of the remainder of this

dissertation. Thus, in this chapter, I will discuss several methods for estimating growth

rates and then propose different ways to model the growth rate in the chapters to follow.

One point to reiterate here is that although I am using the term “rate of growth”, the rate

concept discussed here can equally work for the rate of change.

2.1 Definition of the Rate of Growth

The rate of growth is usually defined as the change in one variables with respect to

one unit of change in another variable. This can be expressed as in

rate = r =
Change in y
Change in t

=
∆y

∆t
.

To distinguish it from the compound rate of growth discussed later, I refer to this rate of

growth as the simple rate of growth1. If the growth process can be expressed using a

continuous time function, the simple rate of growth can be obtained as the first derivative

1I am aware that the simple rate of growth (especially in terms of interest in finance) usually means the
growth over the initial starting values (principle in terms of interest). I use the simple rate of growth in my
dissertation to distinguish the rate defined here from the compound rate of growth defined later. The simple
rate of growth discussed in the current framework can be a constant or vary across time.
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of the growth function with respective to time as

rt = y′t =
d

dt
f(t, b),

where f(t, b) can be any continuous and differentiable function with population

parameters b. Intuitively, this is the simple rate of growth when ∆t approaches 0.

Geometrically, the simple rate of growth is the slope of the tangent line of the

growth function at any given time, three examples of which are shown in Figure 2.1. In

this figure, the growth function represents a fluctuating growth process. At t0, the simple

rate of growth is 0. Clearly, yt0 may not be 0. At t1 and t2, the levels of growth are the

same yt1 = yt2 . However, the simple rates of growth are very different; r1 = .5 and

r2 = −1. Thus, based only on the level of growth, one cannot distinguish the two states of

growth. But, using level together with the simple rates of growth, the differences between

the two states are obvious.

f(t)

t0 t1

r1 = .5

r0 = 0

r2 = −1

t2

rt = df(t)
dt

Figure 2.1. Simple rate of growth rt is characterized by the derivative of the growth func-
tion.

One can also model a growth process as a function of its previous states as in the

time series models. The rate of growth can be defined similarly in this framework. Such a
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rate can be defined as,

rt =
yt − yt−1

yt−1

. (2.1)

This rate is the change of a process over the level of its previous state. This kind of rate is

widely used in economics and finance where it is called the compound rate.

Through a simple transformation, one can relate this compound rate to the

autoregressive model. Equation 2.1 can be rewritten as

yt = yt−1 + rtyt−1 = (1 + rt)yt−1,

which has the same form as the autoregressive model in Eq 1.4 where the rate is a

constant.

2.1.1 Differences between the simple rate of growth and the

compound rate of growth

The major difference between the two kinds of rates lies in the consideration given

to the initial states of a growth process. In the simple rate of growth, initial states are not

considered so that the simple rate of growth can be the same with the same change for

very different initial states. However, for the compound rate of growth, persons with large

initial states will show lower compound rates of growth, given the same changes over time.

Consider a simple example here. Assume y1
t = 100, y1

t+1 = 105 and y2
t = 10, y2

t+1 = 15,

with the superscripts 1 and 2 representing two persons. If one calculates the simple rates

of growth for the two persons, they will be both r = 5 for the two persons. However, the
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compound rates of growth will be .05 and .5, respectively, for the two persons.

2.2 Estimation Methods for the Rate of Growth

In this section, I will discuss three methods for estimating the simple rate of

growth. They include the parametric method, the semi-parametric method, and the

non-parametric method. These methods also work similarly for estimating compound

rates of growth. Here, I only focus on the three methods because they represent a wide

range of rate estimation methods. However, the other methods, such as the Kalman filter

method (Maybeck, 1979), Savitzky-Golay filter method (Savitzky & Golay, 1964) and

spline method (Schoenberg, 1946), can also be used to estimate rates of growth. These

methods can be related to the three methods discussed here. For example, the filter

methods can be viewed as non-parametric ways to calculate the derivatives whereas the

local linear approximation methods and the spline method can be viewed as a special case

of the semi-parametric method.

2.2.1 The parametric method

The first way to estimate the simple rate of growth to be discussed here can be

called the parametric method. This method involves first fitting a growth function

yt = f(t, b) + et with some unknown parameters b to the data. Here, et is the error which

is assumed to be independent of time. After estimating b through some methods such as

the ordinary least squares (OLS) method, one can obtain the growth function f(t, b̂). Then

based on the estimated growth function, one can calculate the simple rate of growth by
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using

rt =
d

dt
f(t, b̂). (2.2)

For example, if the growth process is a linear process, one can fit a linear function

yt = b0 + b1t+ et to the data. The OLS method can be used to estimate b0 and b1. Then

the simple rate of growth is

rt =
d

dt
f(t, b̂0, b̂1) = y′t ≡ b̂1. (2.3)

In this example, the simple rate of growth is a constant over time which subsequently will

be called the constant or time-invariant growth rate.

If the growth process is exponential, one can fit an exponential function

yt = b0 + b1e
b2t + et. Similarly, b0 , b1 and b2 can be estimated by using the OLS method.

The simple rate of growth is

rt =
d

dt
f(t, b̂0, b̂1) = y′t = b̂2b̂1e

b̂2t. (2.4)

Clearly, the simple rate of growth for the exponential process is changing over time. This

will be referred to as time-varying rate of growth.

One assumption underlying this method is that the growth function must be

differentiable at least at the points where the derivative is to be estimated. Furthermore, it

is assumed that the errors are not related to time so that their derivative will be 0. Because

the growth function is assumed to represent the true growth process, one can think of the

simple rate of growth based on the derivative as an error-free estimate of the true rate of
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growth. However, there may be specification errors in the rate estimate attributable to

one’s choice of the growth function.

2.2.2 The semi-parametric method

The simple rate of growth can also be calculated using semi-parametric methods.

For example, one such way is to calculate the simple rate of growth in the functional data

analysis framework (Ramsay & Silverman, 2005). Ramsay and colleagues suggest the use

of basis functions to approximate functional data (e.g., Ramsay & Silverman, 2002,

2005). A basis function is an element of the basis for a function space which, in turn, is a

set of functions of a given kind relating a set X to a set Y . Each function in the function

space can be represented as a linear combination of the basis functions. In terms of the

current research, any psychological process can be approximated arbitrarily well by a

linear combination of a sufficiently large number of basis functions so that

yt =
K∑
k=1

ckφk(t) + et (2.5)

where K is the total numbers of basis functions, φk(t) represents a basis function, and ck

are the coefficients. If K is large enough, et ≡ 0.

There are two sets of widely used basis functions. The first is the polynomial basis

function which can be used to construct a polynomial function,

1, t, t2, t3, . . . , tk, . . . , . (2.6)
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Another is the Fourier basis function,

1, sin(ωt), cos(ωt), sin(2ωt), cos(2ωt), . . . , sin(kωt), cos(kωt), . . . , . (2.7)

By choosing different K and ck, we can approximate the growth data observed.

For example, if K = 3, we can approximate the data using a quadratic function based on

the polynomial basis functions written as,

ŷt = ĉ1 + ĉ2t+ ĉ2t
2. (2.8)

By using the Fourier basis function, one can have

ŷt = ĉ1 + ĉ2 sin(ωt) + ĉ2 sin(2ωt). (2.9)

After deciding on values for K and ck, the rate of growth can be estimated using

the first derivative of the estimated growth function as

rt =
K∑
k=1

ĉk
dφk(t)

dt
. (2.10)

By increasing K, we can approximate the observed data with increasing accuracy

until it is exactly reproduced. If the estimated growth function is the true underlying

growth process, there will be no error in the estimated rates of growth. Otherwise, the

estimated rates involve errors. As in the parametric method, the errors are assumed to be

independent of time. Ideally, the features of the basis functions should match those of the
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underlying growth processes. Then, with a minimum K, one can estimate the growth

processes well enough to provide accurate estimates of the derivatives. However, if the

basis functions do not match the underlying growth processes, serious specification errors

can occur.

Both the choice of basis function forms and number of basis functions need to be

given special attention. If data are periodic, the Fourier basis functions are commonly

used. If data are not periodic, the polynomial basis functions are typically used. When it

comes to the decision of number of basis functions, one needs to consider the power to fit

the polynomial function. The choice of K amounts to a the tradeoff between data fidelity

and smoothness. More discussion on this can be found in Ramsay and Silverman (2005).

2.2.3 The non-parametric method

In addition to the parametric and semi-parametric methods, non-parametric

methods have been used in psychological research for estimating derivatives (Boker &

Nesselroade, 2002; Boker et al., 2004). This method estimates the derivatives of the

process for each occasion of measurement without fitting a growth function to data

beforehand. One particular method for estimating derivatives from manifest variable

processes is called Local Linear Approximations (LLA).

LLA assumes that in a short time interval, a process can be viewed as

approximately linear. Thus, the derivative at a time t can be estimated using data observed

within some small interval τ . To proceed, one can first calculate the slopes of the intervals

(t− τ, t) and (t, t+ τ). Then, the first derivative at time t is approximated by the average



25

of these two slopes. Specifically,

rt =
(yt − yt−τ ) + (yt+τ − yt)

2τ∆t
=
yt+τ − yt−τ

2τ∆t
. (2.11)

Here ∆t is the time step of measurement occasions (see also, Boker & Ghisletta, 2001).

The mechanism of this method is shown in Figure 2.2. From time t− τ to time t,

the slope is s1 = (yt − yt−τ )/τ and from time t to time t+ τ , the slope is

s2 = (yt+τ − yt)/τ . If the growth process is a smooth one, the derivative at time t – the

thick tangent line – should be somewhere between s1 and s2. Thus, we can approximate

the derivative using the average. Notice that it is also the slope between time t− τ and

t+ τ . Although this method seems simple, its estimation of the derivatives can do

remarkably well in estimating dynamical parameters (e.g, Boker et al., 2004).

τ τ

t− τ t t + τ

yt+τ

yt−τ

yt

s1 = yt−yt−τ

τ

s2 = yt+τ−yt

τ

rt = s1+s2
2 = yt+τ−yt−τ

2τ = s3

s3 = yt+τ−yt−τ

2τ

Figure 2.2. A graphical demonstration of the LLA method
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The advantage of LLA is that it requires only m occasions of measurement to

estimate the derivatives up to the (m− 1)th order. Furthermore, the estimation of

derivatives is model-independent. However, Boker and Nesselroade (2002) showed that it

may have biased estimates of the dynamical parameters when the interval τ is not optimal.

Especially when the underlying growth process between t and t+ τ is not a monotonic

function, the estimated rates of growth can be very misleading. Furthermore, if one is

interested in the dynamics of a variable where a score cannot be directly observed, then

LLA is inappropriate. In this case one may need to use the parametric or semi-parametric

methods.

Boker and colleagues also developed a method – latent differential equations – to

estimate the derivatives and the dynamic system models simultaneously (e.g., Boker &

Nesselroade, 2002; Boker et al., 2004). The latent differential equation method (LDE) can

be viewed as a way to estimate derivatives which sits between the LLA method and the

semi-parametric methods. The LDE method can be viewed as a way to reduce

measurement errors in the estimation of derivatives.

2.3 Additional Comments on Estimation of the

Compound Rate of Growth

To estimate the compound rate of growth, one can also use the parametric and

non-parametric methods. For the parametric method, we can first estimate the unknown

parameters by assuming that the underlying processes are generated from models in
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Equation 1.3. With the estimated model, one can calculate the compound rate of growth

using Equation 2.1. This rate can be viewed as error-free under certain conditions. For the

non-parametric approach, one can calculate the rate of growth directly from the observed

data based on its definition in Equation 2.1. In this case, there is error in the rate estimates.
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3. Methods for Analyzing the Rate of

Growth
After estimating the rate of growth, the next step is to model it. Although there is

lack of general models for analyzing the rate of growth, there are several models that can

analyze rates of growth in a limited way. I will first review some existing models. Then I

will propose and examine some more general methods.

3.1 Existing Methods for Analyzing the Rate of Growth

The linear growth curve model can be used to analyze simple rates of growth and

the simplex model and the latent difference score model can be used to analyze constant

compound rates of growth.

3.1.1 Linear growth curve models

The linear growth curve model is one kind of growth curve model targeted for

representing linear growth processes (e.g., Bryk & Raudenbush, 1987; McArdle &

Epstein, 1987; Meredith & Tisak, 1990; Rao, 1958). One form of the model can be
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written as, 

yit = b0i + b1it+ eit

b0i = β0 + u0i

b1i = β1 + u1i

, i = 1, . . . , N, t = 1, . . . , T, (3.1)

where V ar(eit) = σ2, Cov[(u0i, u1i)
t] = D, and β = (β0, β1)

t. This model is a special

case of the growth curve model in Eqs 1.1 and 1.2. It is widely used because the

parameters are easy to interpret and the model can be estimated using commonly available

SEM software. A path diagram for the linear growth curve model is plotted in Figure 3.1

with 5 occasions of data. b0i is interpreted as the initial level of the growth process and b1i

is interpreted as the slope of the growth process. This model can be viewed as a growth

rate model because b1i is equal to the simple rate of growth. Actually, this model has been

frequently applied to analyze the constant simple rate of growth (e.g., Kaplan, 2002;

McArdle & Nesselroade, 2003; Neale & McArdle, 2000; Taylor et al., 2000).

3.1.2 Simplex models

The compound rate of growth can be analyzed using simplex models (e.g.,

Loehlin, 1998; Jöreskog, Sörbom, Du Toit, & Du Toit, 2001; McArdle & Epstein, 1987).

One form of this model is portrayed in Figure 3.2. In its mathematical form, the model

can be written as

yit = b1yit−1 + eit, i = 1, . . . , N, t = 2, . . . , T. (3.2)
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Figure 3.1. A path diagram for a linear growth curve model.

Here V ar(eit) = σ2. The parameter b1 is equal to one plus the overall compound rate of

growth. This model is useful for short time series from multiple participants. However, the

model assumes that there are no individual differences in the compound rate of growth.

3.1.3 Latent difference score models (LDSM)

Another model that can be used to analyze the compound rate of growth is the

latent difference score model (e.g., Hamagami & McArdle, 2000; McArdle & Hamagami,

1999, 2001). The path diagram for a simple case of the model is shown in Figure 3.3.

There are five occasions of observed data represented in the model. Underlying each
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Figure 3.2. A path diagram for the simplex model.

observed variable Yi, i = 1, . . . , 5, there is an unobserved true variable yi, i = 1, . . . , 5.

The difference score between any two consecutive measurements is calculated by

di = yi+1 − yi.

The LDSM model can be expressed as



yi1 = y0i

dit−1 = βyit−1

yit = yit−1 + dit−1

Yit = yit + eit

, i = 1, . . . , N, t = 2, . . . , T. (3.3)

In this model, dit−1 is the difference score between yit and yit−1 which underlies the

observed data Yit and Yit−1. The measurement error eit has a mean 0 and variance σ2. The

initial level y0i for each individual is different with mean µ0 and variance σ2
0 . β = dit−1/yit

in this model can be viewed as the compound rate of growth although in the original work

of McArdle and colleagues it is termed as the multiplicative change over time. As in the

simplex models, β in this model is usually assumed to be the same for all participants.

Here I only present a simple case of latent difference score models to fit the current
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Figure 3.3. A path diagram for the univariate latent difference score model.

compound rates of growth framework. However, McArdle and Hamagami have developed

much more complex models based on latent difference scores. For example, the models

allow (a) the difference scores to be related to invariant slope scores and (b) the relation

between initial level and slope to be tested (McArdle & Hamagami, 2001). The authors

also developed multivariate latent difference score models which can be used to investigate

the interrelationship across different domains (McArdle & Hamagami, 2001). More

complex models have also been discussed recently (Hamagami & McArdle, 2007). These

models have been used by researchers to answer many different substantive questions

(e.g., Hamagami & McArdle, 2007; King et al., 2006; Malone et al., 2004; McArdle,

Hamagami, Meredith, & Bradway, 2000; Schindler, Staudinger, & Nesselroade, 2006).
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There are several differences between the simplex model and the latent difference

score model. First, in the LDSM, β is directly the compound rate of growth. But in the

simplex model, b1 − 1 is equal to the compound rate of growth. Second, in the LDSM, the

rate is calculated from the latent variable so that it can be viewed as error-free. Third, in

the LDSM model, the intercept is considered explicitly in the model, whereas in the

simplex model, it is not.

3.2 Proposed Methods for Analyzing the Rate of Growth

In this section, I will investigate several methods for analyzing the rate of growth

in a more general way. Certainly, many different models can be developed to analyze rates

of growth. Here, I only focus on the selected methods that can be derived directly from the

existing models. The simple growth rate models can be used to analyze simple rates of

growth. The multilevel simplex models and the latent difference score models can be used

to analyze compound rates of growth.

3.2.1 Path analysis of rates of growth

Path analysis can be used to analyze both the simple rate of growth and the

compound rate of growth in two steps. In the first step, one can estimate the rate of growth

using any of the three methods discussed in the previous chapter. In the second step, a

desired model can be fitted to the rates of growth for further inference.

Assume one observes longitudinal dependent data (outcome)

yit, i = 1, . . . , N, t = 1, . . . , T and covariates (predictors)
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Xit : p× T, i = 1, . . . , N, t = 1, . . . , T . Here, the covariates can be either time-varying

or time-invariant. Using the estimation methods of rates of growth, we can obtain

rit, i = 1, . . . , N, t = 1, . . . , T . The models can be developed to investigate the

relationship between rates of growth and covariates. If the rate of growth is a constant for

each individual, the model will be a multiple regression model. If the rate of growth is

time-varying, a path model (e.g., Loehlin, 1998), which can be viewed as a generalization

of the multiple regression model, can be fitted.

The general path model for modeling the relationship between rates of growth and

covariates can be expressed as

ri = B Xi + ei

T × 1 T × p p× 1 T × 1

, (3.4)

whereB are path coefficients and e are unexplained residuals. A path diagram of the

model is portrayed in Figure 3.4. In this model, there are four occasions of rates of growth

and two time-invariant covariates. This model can be estimated using a two-stage method.

In the first stage, the rates of growth may be estimated by different rate estimation

methods. In the second stage, the estimated rates of growth are regarded as observed

variables in the path model. The path model can then be estimated conveniently using

regular SEM software such as LISREL and Mplus. This method works for both simple

rates of growth and compound rates of growth.
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Figure 3.4. The path diagram for a simple growth rate model using path analysis

3.2.2 Simple growth rate models

Growth curve modeling can be viewed as a parametric method for estimating the

rate of growth. In this case, simple growth rate models can be constructed by adding an

extra equation which brings the relationship between the simple rate of growth and

possible covariates into the existing growth curve models. Mathematically, a general form

of such a model can be expressed as,



yit = f(t, bi) + eit

bi = BXi + ui

d

dt
f(t, bi)|t = rit = ctbi = ΓtXi + vit

, t = 1, . . . ,T, i = 1, . . . ,N, (3.5)

In this model, yit is the observed datum (outcome score) for individual i at time t. f can

be any continuous function. eit is the residual error following a normal distribution with

mean 0 and variance σ2
t . As in the growth curve models, ui follows a multivariate normal
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distribution with µ(ui) = 0 and Cov(ui) = D. Thus, the first part of the model is exactly

the same as the growth curve model. Beyond the growth curve model, the derivative of the

growth function is modeled and predicted by covariatesX . The derivative (rate of

growth) of the growth function rit can be expressed as a linear combination of the random

coefficient parameters bi = (b1, . . . , bp)
′ and the weights ct = (ct1, . . . , ctp). Γt are

regression coefficients for covariates. Note that vit, E(vit) = 0 and V ar(vit) = δ2
t , is the

residual part which is not explained by the covariates. vit is assumed to be normally

distributed here.

A potential problem of the model is that it requires the estimation of more

parameters than can be estimated in one step. One way to overcome this problem is to

transform the model. Without loss of generalization, we can assume that the jth element

of ct, ctj 6= 0, then the equation rit = ctbi can be written as

bj = rit − cjtbji ,

where cjt = (ct1, . . . , ctj−1, ctj+1, . . . , ctp) and bji = (b1, . . . , bj−1, bj+1, . . . , bp)
′. By

substituting bj in the above formula, we have



yit = f(t, rit, b
j
i ) + eit

bji = BjXi + uji

rit = ΓtXi + vit

, t = 1, . . . ,T, i = 1, . . . ,N, (3.6)

whereBj = (B1, . . . , Bj−1, Bj+1, . . . , Bp) and uji = (ui1, . . . , uij−1, uij+1, . . . , uip). The
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unique feature of the model is that we express the growth curve as a function of the rate of

growth. This model will be called the simple growth rate model henceforth in this

dissertation.

To illustrate, consider the quadratic growth rate model. A quadratic growth model

can be written as, 

yit = bi1 + bi2t+ bi3t
2 + eit

bi1 = β01 + β11x1i + β21x2i + ui1

bi2 = β02 + β12x1i + β22x2i + ui2

bi3 = β03 + β13x1i + β23x2i + ui3

. (3.7)

The rate of growth for the quadratic growth model is

rit =
d

dt
f(t, bi)|t = 0bi1 + bi2 + 2tbi3. (3.8)

In the case of two covariates, the rate can be modeled as,

rit = γt0 + γt1x1i + γt2x2i + vit.

From Eq (3.8), we have bi2 = rit − 2tbi3. Then we have the quadratic growth rate model

as 

yit = bi1 + rijt+ bi3(t
2 − 2jt) + eit

bi1 = β01 + β11x1i + β21x2i + ui1

bi3 = β03 + β13x1i + β23x2i + ui3

rij = γj0 + γj1x1i + γj2x2i + vij

, j = 1, . . . , T, (3.9)
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where rij represents the rate of growth for ith individual at time j. Because the rate of

growth is changing with time for the quadratic growth curve, we use the time index j to

indicate it. The path diagram for the quadratic growth rate model is given in Figure 3.5.

e3

y3

b1 rj b3

e2

y2

e1

y1

e4

y4

e5

y5

x1 x2

1

1
1 1 1

1 1
2 3 4

5

a = 1− 2j
b = 4− 4j
c = 9− 6j
d = 16− 8j
e = 25− 10j

γt1

1 1 1 1 1

d2
1 d2

3

σ2 σ2 σ2 σ2 σ2

β01

µx1

µx2

γt2

γt0 β03

δ2
j

a
b

c d
e

d12 d23

d13

β11 β12
β31

β32

Figure 3.5. A path diagram for the quadratic growth rate model.

Rotation of growth curve

Tucker (1958, 1966) proposed applying principal components analysis to learning

data (Persons × Trails) to identify meaningful dimensions that can be used to explain the

individual differences in outcome scores. The widely used growth curve models can be

viewed as confirmatory factor models with factors already identified. For example, for a

linear growth curve model, we may hypothesize and fit a level factor and a slope factor.
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For the quadratic growth curve model,

yit = bi1 + bi2t+ bi3t
2 + eit,

where bi1, bi2, and bi3 can be viewed as factor scores for ith individual for three factors,

level, slope, and quadratic terms, and (1, t, t2) are factor loadings. In matrix notation, the

above model can be written as,



yi1

yi2

yi3

...

yiT


=



1 1 1

1 2 4

1 3 9

...
...

...

1 T T 2




bi1

bi2

bi3

 +



ei1

ei2

ei3

...

eiT


Sometimes, when the aim of growth curve analysis is to find the curves that best fit

the data, the resulting factors may be very difficult or even impossible to interpret in a

meaningful way. Researchers have suggested rotating factors to enhance their meaning.

Although factor rotation methods have been well studied in the framework of factor

analysis (see recent reviews by Browne, 2001; Jennrich, 2007), applying rotation to

growth curves is not yet popular. Tucker (1966) suggested that rotation to simple structure

may not be meaningful in the framework of learning curves. Cleary (1974, p. 938) pointed

out that “a factor is considered to be nontrivial if the loadings exhibit relatively smooth

changes over successive measures.” Arbuckle and Friendly (1977) further developed this

factor retention idea to a rotation criterion for growth curves. The basic idea is to obtain
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rotated factor loadings by minimizing

T∑
t=2

(lt−1 − lt)2,

where lt, t = 1, . . . , T are the factor loadings. The factor loadings after rotation will have

a smoother curve with respect to time.

The construction of simple growth rate models can be viewed as a method to rotate

the factors of the growth curve to predefined target factors. More specifically, after

rotation, one of the factors will be the rate of growth. Using the quadratic model as an

example, the rotation for the factors is


bi1

rij

bi3

 =


1 0 0

0 1 2j

0 0 1




bi1

bi2

bi3

 = Q


bi1

bi2

bi3

 ,

whereQ here represents the rotation matrix. With this rotation matrix, the factors bi1 and

bi3 remain the same but the second factor now is the rate of growth at time j. Note that the

second row of elements (= cj) is determined by the first derivative of the growth curve.

When the factors are rotated, the factor loadings need to be rotated

correspondingly in order to keep the covariance structure unchanged. For the quadratic
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model example, one has

Λ =



1 1 1

1 2 4

1 3 9

...
...

...

1 T T 2


Q−1 =



1 1 1

1 2 4

1 3 9

...
...

...

1 T T 2




1 0 0

0 1 −2j

0 0 1

 =



1 1 1− 2j

1 2 4− 4j

1 3 9− 6j

...
...

...

1 T T 2 − 2Tj


,

where Λ denotes the factor loadings after rotation. Note that the elements in this matrix

correspond to the loadings on the path in Figure 3.5.

It can also be shown that the rotation satisfies the criterion used by Arbuckle and

Friendly (1977) as discussed earlier. Actually, for the original quadratic growth curve

model, we have 1

S1 =
T∑
t=2

{[t2 − (t− 1)2]}2

=
T∑
t=2

(2t− 1)4

.

And for the quadratic growth rate model, we have

S2 =
T∑
t=2

{[t2 − 2tj − (t− 1)2 + 2(t− 1)j]}2

=
T∑
t=2

(2t− 1− 2j)4

.

1Since the loadings in the first two columns are the same, one only needs to focus on the loadings in the
third column.
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Then,

S2 − S1 =
T∑
t=2

(2t− 1− 2j)4 −
T∑
t=2

(2t− 1)4

= 8jT (j − T )[(j − T )2 + j2 + T 2 − 1]

.

Thus, for any j ≤ T , we have S2 ≤ S1. This means that overall the loadings for the

quadratic growth rate model are smoother than those of quadratic growth curve model.

Estimation of the simple growth rate models

The simple growth rate models can be estimated by SEM methods using any SEM

software. All the model fit statistics and model comparison indices for SEM models, such

as chi-square tests, Akaike information criterion (AIC; Akaike, 1973), Bayesian

information criterion (BIC; Schwarz, 1978), and the root mean squared error of

approximation (RMSEA; Browne & Cudeck, 1993), can be used to compare models and

select the best fitting model.

3.2.3 Random coefficient simplex models

The simple growth rate models can be used to analyze the simple rate of growth.

In this section and the section that follows, the random coefficient simplex models and the

random coefficient latent difference score models will be discussed to analyze the

compound rate of growth.

Although simplex models are mainly used to analyze the average compound rate

of growth and ignore individual differences in the rate of growth, they can be extended

easily to include random effect parameters to represent individual differences in the
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compound rate of growth. For example, an extension can be portrayed as shown in Figure

3.6. In this model, we estimate compound rates of growth bi for each individual and then

use a covariate X to predict the variability of the compound rate of growth.2

Mathematically, this model can be expressed as,


yit = biyit−1 + eit,

bi = β0 + β1Xi + vi

i = 1, . . . , N, t = 1, . . . , T, (3.10)

where yit is the observed datum for ith individual at time t, β0 and β1 are intercept and

slope, V ar(eit) = σ2 is the error variance, and V ar(vi) = d2 is the variability or the

residual variance of compound rates of growth bi. Both eit and vi are normally distributed.

In the path diagram in Figure 3.6, a new symbol was used (labeled ◦) following

McArdle and Hamagami (1996). It represents a special kind of unobserved variable. This

unobserved variable “has no variance and it acts only as a placeholder (augmenting the

model matrices with an extra row and column)” (McArdle & Hamagami, 1996, p. 94). In

this case, yt−1 first connects to yt through a constant β1 (the regression coefficient) and the

covariate X . Then yt−1 connects to yt through a constant d (the standard error) and the

residuals v. The path diagram correctly represents the random coefficient simplex model.3

2Keep in mind that the actual compound rate of growth for this model is bi − 1.

3I would like to thank Dr. Jack McArdle for his help in drawing the path diagram.
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Figure 3.6. Simplex models with individual compound rates of growth. This represent the
path diagram for the ith individual.

3.2.4 Random coefficient latent difference score models

Similar to the random coefficient simplex models, the LDSM can be extended to

include random coefficients for β. In this case, the model can be written as,



yi1 = y0i

dit−1 = biyit−1

yit = yit−1 + dit−1

Yit = yit + eit

bi = β0 + β1Xi + vi

, i = 1, . . . , N, t ≥ 2, (3.11)

where yit is the observed datum for ith individual at time t. In this model, bi is different

for each individual. The other parameters have the same meaning as in the LDSM

discussed earlier. The variability of individual differences on the compound rate of growth

or the unexplained residual variance of bi can be measured by V ar(vi) = d2. A path
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diagram of this model is given in Figure 3.7. For clearer representation of key features,

some symbols on the path are omitted because they are the same as the symbols on the

path in the last segment from y4 to d4.

1
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Figure 3.7. LDSM with random compound rate of growth. Represented here is the path
diagram for the ith individual.

For the estimation of random coefficient simplex models and random coefficients

LDSMs, Bayesian estimation methods can be used. Besides the models in Eqs 3.10 and

3.11, the other derived models can be fitted. For example, one can model the relationship

between initial status and compound rate of growth. To test whether the relationship is

significant, one can fit both models to check the change of the deviance information

criterion (DIC, Spiegelhalter, Best, Carlin, & Linde, 2002a).
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The deviance information criterion (DIC; Spiegelhalter, Best, Carlin, & Linde,

2002b) is a widely used criterion for model selection in the Bayesian framework. DIC is

defined as a Bayesian measure of model fit with a penalty for model complexity pD,

DIC = D(θ) + pD = D(θ) + 2pD,

where Dbar = D(θ) is the posterior mean of -2(Loglikelihood function) and

Dhat = D(θ) is the -2(Loglikelihood function) calculated at the posterior mean of θ. For

more complex models, Dbar and Dhat become smaller but pD becomes bigger. Overall,

the smaller DIC represents the better fit of the model.

The random coefficient models discussed above are different from the multilevel

factor models (e.g., Goldstein & Browne, 2002; Goldstein & McDonald, 1988; Goldstein

& Browne, 2005; McDonald & Goldstein, 1989). The multilevel factor models assume

that there are different factors in each level but the factor loadings within a given level are

the same for all individuals. These models partition the total covariance matrix into

between and within cluster covariance matrices and the respective covariance matrices are

represented by separate structural equations. Therefore, model parameters are usually not

random coefficients. The random coefficients models, however, assume that rates of

growth, analogous to the factor loadings, are different for each individual. These models

can be viewed as extensions of the random coefficient models discussed by McArdle and

Hamagami (1996), where the basis coefficients (loadings) vary across groups. Because of

the limitation of estimation methods and computation, McArdle and Hamagami did not

estimate the basis coefficients for each individual. However, they pointed out that a further
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step can be taken to investigate the individual differences in the basis coefficients. This

step is implemented now in the random coefficient LDSM.



48

4. Applications
As pointed out in the first chapter, the development of mathematical ability has

been well studied but researchers have mainly focused on level, rather than rate of growth

(Felson & Trudeau, 1991; Grimm, 2005; Hyde et al., 1990; Kowalski-Jones & Duncan,

1999; Williamson et al., 1991). Research on the rate of growth of mathematical ability is

still rare partly because of the lack of growth rate modeling techniques. In this chapter, I

will introduce an empirical set of data on mathematical ability and apply the proposed

models in the previous chapter to investigate rates of growth and the nature of individual

differences in the rate of growth of mathematical ability. Furthermore, many studies have

investigated the relationships between mathematical ability and the covariates of gender

and behavioral problems (Arnold, 1997; Arnold et al., 1999; Bub et al., 2007; Felson &

Trudeau, 1991; Hyde et al., 1990). However, few studies have investigated the relationship

between rate of mathematics ability growth and those covariates. Thus, the relationships

between the rate of growth of mathematical ability and these two covariates will be

examined in this dissertation.
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4.1 Data

4.1.1 Overview of the data

All the empirical data to be used are from the National Longitudinal Survey of

Youth 1979 cohort (NLSY79, Center for Human Resource Research, 2006). The NLSY79

is a multi-purpose panel survey that originally included a nationally representative sample

of 12,686 men and women who were 14 to 21 years of age on December 31, 1978.

Annual interviews have been completed with most of these respondents since 1979, with a

shift to a biennial interview mode after 1994. Beginning in 1986, the children of NLSY79

female respondents have been interviewed and assessed every two years. The assessments

measure cognitive ability (including mathematical performance), temperament, motor and

social development, behavior problems, and self-competence of the children as well as the

quality of their home environment.

Data from the NLSY79 child sample will be used to study the relationships

between mathematical performance and gender and behaviorial problems by means of the

growth rate models proposed in the previous chapter. Specifically, the models will be fitted

to one cognitive variable – the Peabody Individual Achievement Test (PIAT) mathematics

assessment. These measurements were collected from the year 1986 to the year 2004 with

a two-year interval between testings. The Peabody Individual Achievement Test (PIAT) is

a wide-ranging measure of academic achievement for children aged five and over and is

widely used in research. The current study uses one of the three subtests from the full

PIAT battery - the Mathematics (PIAT Math) assessments. This subtest consists of 84

multiple-choice items arranged in increasing order of difficulty. The scores of this subtest
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range from 0 to 84. For computation convenience, the scores were divided by 10.

The two covariates to be used in the analysis are gender and scores on the

Behavior Problems Index (BPI). The two covariates are used because of their significance

in the study of mathematical ability (Arnold, 1997; Arnold et al., 1999; Bub et al., 2007;

Felson & Trudeau, 1991; Hyde et al., 1990). The BPI was created by Nicholas Zill and

James Peterson to measure the frequency, range, and type of childhood behavior problems

for children age four and over (Peterson & Zill, 1986). Many items were derived from the

Achenbach Behavior Problems Checklist (Achenbach & Edelbrock, 1983) and other child

behavior scales (Graham & Rutter, 1968; Kellam, Branch, Agrawal, & Ensminger., 1975;

Rutter, Tizard, & Whitmore, 1970). Possible scores on the BPI range from 0 to 28. In the

NLSY study, BPI was repeatedly measured. However, because of missing data, composite

scores were created by averaging BPI over age and were used in the data analysis.

4.1.2 Descriptive statistics

The data are from N = 1, 233 children ranging in age from 6 to 15 years with a

10-year span. Descriptive statistics for the measures at each age are given in Table 4.1.

About 48% of the children are female. The mean scores for PIAT math are increasing with

age but the rates of increase are slowing down. The longitudinal plot of PIAT math is

given in Figure 4.1. From the plot, one can see that the growth trajectory of mathematics

performance is not linear with time. The mean trajectories of mathematics performance

for girls and boys are also plotted as shown in Figure 4.2. From the plot, it appears that

there is no difference on mathematics performance for girls and boys. The data are then
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divided into two groups, the low BPI and high BPI groups, using the threshold of the BPI

mean. The mean trajectories for low and high BPI children are given in Figure 4.3.

Overall, it seems that children with low BPI outperform children with high BPI.

Table 4.1. Descriptive Statistics
Variable Age N Mean Std Min Max
Gender 1,233 0.48 0.50 0 (M) 1 (F)
BPI 1,233 7.42 5.16 0 28

Math

6 630 1.34 0.51 0 3.6
7 498 2.00 0.77 0.5 5.2
8 601 2.81 0.99 0.5 6.6
9 499 3.71 1.04 0.1 6.5

10 585 4.43 1.07 0.1 7
11 459 4.83 1.08 0.3 7.5
12 458 5.11 1.10 0.6 8.2
13 302 5.35 1.11 0.1 7.6
14 212 5.58 1.16 0.8 8.3
15 80 5.62 1.16 2.8 8.1

Note. Std: standard deviation; Min: minimum;
Max: maximum; M: male; F: female;
Math: mathematical performance.

For this application, age, instead of measurement occasions, will be used as the

time scale for the following reasons. First, age is a natural scale for analysis of child

development. Using measurement occasions, children with different ages will be forced

into one group. Second, using age as the time scale makes the interpretation of the results

very easy. Thus, the time scale for the analysis will be age in years ranging from 6 to 15.

Missing data appeared at each age. At age 8, about 48.9% of data were missing. At age 15

about 93.5% of data were missing. The total percentage of missingness was about 64.9%.

In all following analyses, missing data will be assumed as missing at random (MAR) (e.g.,

Little & Rubin, 1987; McArdle & Hamagami, 1991; Rubin, 1976). The simulation study

in the next chapter will show that the MAR assumption gives valid results for the current
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substantive data analysis.
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Figure 4.1. The longitudinal plot of PIAT Math. The thick line is the mean trajectory.

4.2 Goals of Analysis

Here, I reiterate the goals of the analysis of the substantive data on children’s

mathematical performance. For almost a century, the development of mathematical ability

has been developed extensively (Bub et al., 2007; Douglas & Kinney, 1938; Grimm, 2005;

Hyde et al., 1990). However, much of the research has focused on the level of

development of mathematical ability. Thus, the overall goal of this research is to add to

the literature by analyzing the rate of growth of mathematical ability. To achieve the goal,
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Figure 4.2. The longitudinal plot of PIAT Math for boys’ and girls’ data.

6 8 10 12 14

1
2

3
4

5
6

Age

M
at

he
m

at
ic

s 
pe

rf
or

m
an

ce

Overall
Low
High

Figure 4.3. The longitudinal plot of PIAT Math for low and high BPI children.
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two main questions should be answered. First, are there individual differences in the rate

of growth of mathematical ability? Second, how are the individual differences related to

the two important covariates of gender and BPI? In the remainder of the chapter, I will

answer the two questions by analyzing both the simple rate of growth and the compound

rate of growth.

4.3 Analyses of the Simple Rate of Growth of

Mathematics Performance

The children’s mathematics performance will be first analyzed by using simple

growth rate models. To apply simple growth rate models to the data, one needs to

determine generally what kind of growth curves the data follow. Here, I first fitted the

linear, quadratic, and exponential growth curve models to the data to determine the best fit

curve for the data based on the fitting indices. Several fit statistics including the

Chi-square, AIC, BIC, and RMSEA are summarized in Table 4.2. Based on BIC and

RMSEA, we can see that the quadratic growth curve model fitted the current data best.

The parameter estimates from the quadratic growth curve model are presented in Table

4.3.

From the results in Table 4.3, we can draw the following conclusions. First, there

were large individual differences in the level of the quadratic growth with a rough 95%

confidence interval of (-.296, 1.292). Second, there were also individual differences in the

slope and quadratic parameters although they were not as large as those for the level
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Table 4.2. Fit indices for the linear, quadratic, and exponential
growth curve models

Linear Quadratic Exponential
Chi-square 950 231 294
d.f. a 49 45 48
AICb 10728 10017 10074
BICb 10804 10114 10156
RMSEAc 0.122 0.058 0.064
CI for RMSEAc [0.115, 0.129] [0.051, 0.065] [0.058, 0.072]
a Degrees of freedom.
b Akaike information criterion (AIC) and Bayesian information

criterion (BIC)
c Root mean squares error of approximation (RMSEA) and confi-

dence interval (CI).

parameter. The 95% confidence intervals for the slope and quadratic terms were (.469,

1.577) and (-.084, -.008). Third, the variances of the residual were heteroscedastic with a

pattern of general increases and then decreases.

Since the quadratic growth curve best represented the observed data, I can fit a

quadratic growth rate model to investigate how the rates of growth change over time and

how they are related to the covariates of gender and BPI. The rates of mathematics

performance growth are given in Table 4.4. The average rates of growth declined linearly

with age and the variability of rates of growth, however, first decreased and then

increased. There were individual differences in rates of growth before age 12. To

demonstrate the results intuitively, the average growth trajectory and rates of growth are

plotted in Figure 4.5.

The covariates – gender and BPI variables – were then used to predict rates of

growth of children’s mathematics performance. Besides the main effects of gender and

BPI, their interaction was also included in the models. The results are summarized in
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Table 4.3. Parameter estimates for
the quadratic growth curve model a

Estimate s.e.
Mean
L 0.298 0.026
S 1.023 0.015
Q -0.046 0.002
Covariance
L-L 0.257 0.078
L-S -0.055 0.033
L-Q 0.003 0.003
S-S 0.08 0.017
S-Q -0.005 0.002
Q-Q 3.73E-04 1.59E-04
e-e
1 0.042 0.033
2 0.322 0.029
3 0.44 0.031
4 0.5 0.041
5 0.367 0.034
6 0.317 0.037
7 0.297 0.037
8 0.34 0.047
9 0.33 0.068
10 0.219 0.12
a s.e.: standard error; L,S,Q: level,

slope and quadratic terms in the
quadratic model; e-e: variance of
residual/measurement errors.

* Significant at alpha level .001.

Table 4.5 and Figure 4.5. The following conclusions can be drawn. First, the coefficients

of the covariates for the simple rate of growth were linearly related to age. Second, the

standard errors of the estimated coefficients first decreased and then increased. Third, BPI

was negatively related to the rates of growth from early age until age 13. Children with a

larger BPI tended to grow more slowly on mathematics performance. However, at age 14

and 15, BPI was no longer related to rates of mathematics growth. Fourth, gender
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Table 4.4. Estimated average and vari-
ability of rates of growth for mathemat-
ics performance

Age Mean Variance
6 0.931 (0.012) 0.061 (0.011)
7 0.838 (0.01) 0.044 (0.007)
8 0.745 (0.007) 0.030 (0.004)
9 0.653 (0.005) 0.020 (0.002)

10 0.56 (0.005) 0.012 (0.001)
11 0.467 (0.007) 0.007 (0.002)
12 0.374 (0.009) 0.005 (0.004)
13 0.282 (0.012) 0.007 (0.008)
14 0.189 (0.015) 0.011 (0.012)
15 0.096 (0.018) 0.018 (0.018)

Note. Numbers in the parentheses
are the standard errors.

differences in rates of growth appeared only at age 8 and 9. At those age, boys seemed to

show quicker improvement in their performance on mathematics. Fifth, the interaction

between gender and BPI evolved at age 8-11. Closer examination revealed that the

positive interaction occurred. Thus, for the same increase in BPI, girls show less decrease

in simple rates of growth. The MPlus codes for the model estimation are given in

Appendix B.2.

Table 4.5. Results from the growth rate analysis
Age Intercept s.d. BPI s.d. Gender s.d. B*G s.d.
6 0.953* 0.017 -0.051* 0.017 -0.039 0.024 0.032 0.024
7 0.856* 0.013 -0.049* 0.013 -0.034 0.019 0.031 0.019
8 0.76* 0.01 -0.046* 0.009 -0.028* 0.014 0.03* 0.014
9 0.664* 0.007 -0.044* 0.007 -0.022* 0.01 0.029* 0.01
10 0.568* 0.007 -0.042* 0.007 -0.016 0.01 0.028* 0.01
11 0.472* 0.009 -0.039* 0.009 -0.01 0.012 0.027* 0.012
12 0.376* 0.012 -0.037* 0.012 -0.004 0.017 0.026 0.017
13 0.28* 0.016 -0.035* 0.016 0.002 0.022 0.025 0.022
14 0.184* 0.02 -0.032 0.019 0.008 0.028 0.024 0.028
15 0.088* 0.024 -0.03 0.023 0.014 0.034 0.023 0.034
Note. * Significant at alpha level .05.
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Figure 4.4. The plot of average growth trajectory and rates of growth of mathematics
performance.

4.4 Analyzing the Compound Rate of Growth for

Mathematics Performance

The relationship between the simple rate of growth and the covariates BPI and

gender was analyzed in the previous section. In this section, how BPI and gender are

related to the compound rate of growth of mathematics performance will be investigated

by using the random coefficient LDSMs.

Three models were fitted to the data. First, the latent difference score model with

the fixed compound rate of growth was fitted to the data. Second, the random coefficient

LDSM was then employed to see whether there were individual differences in the

compound rate of growth. In the third model, the covariance between the compound rate
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Figure 4.5. The estimated coefficients with error bars for the covariates and their interaction
at each age. The error bars are calculated as the 95% confidence intervals.
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of growth and the initial level was estimated. To compare the three models, the model fit

index DIC was obtained and is given in Table 4.6.

Table 4.6. DICs for the three LDSM models

#p Dbar Dhat pD DIC
Model 1 13 10238 9278 960 11198
Model 2 14 10160 9158 1005 11169
Model 3 15 10030 8712 1337 11386

Note. #p: number of parameters. Model 1:
fixed compound rate of growth. Model 2:
random compound rate of growth. Model 3:
correlated compound rate of growth and ini-
tial level.

From Table 4.6, the more complex models with more parameters fitted the data

better based on Dbar and Dhat. However, the models also became more complex (see

pD). Overall, the second model fitted the data best based on DIC supporting the

conclusions that (a) there existed individual differences in the compound rate of growth

and (b) the compound rate of growth did not covary with the initial level of children’s

mathematical performance. The parameter estimates for the second model are

summarized in Table 4.7. The average compound rate of growth was about .171 and the

variance of the rate of growth was about .0001.

To further investigate how the individual differences in the compound rate of

growth were related to the covariates of BPI and gender, the model with the covariates was

fitted. The results of this analysis are given in Table 4.8. The two covariates, gender and

BPI, and their interaction term were used to predict the compound rate of growth. From

the results, BPI was again found to be negatively related to the rates. However, gender and

the interaction between gender and BPI were not found to be related to the compound rate
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Table 4.7. Parameter estimates for the random coefficient LDSM without co-
variates.

estimate s.e. 2.50% median 97.50%
mean initial µ0 1.987 0.029 1.930 1.988 2.042

variance initial σ2
0 0.157 0.010 0.139 0.157 0.178

compound rate r 0.171 0.003 0.166 0.171 0.177
variance rate d2 0.0001 0.0000 0.0001 0.0001 0.0002

residual variance (σ2
e )

6 0.654 0.054 0.553 0.653 0.765
7 0.479 0.039 0.408 0.478 0.559
8 0.523 0.036 0.456 0.522 0.600
9 0.865 0.068 0.740 0.861 1.006

10 0.954 0.069 0.825 0.951 1.096
11 0.660 0.067 0.540 0.656 0.801
12 0.153 0.043 0.069 0.151 0.238
13 0.583 0.103 0.404 0.575 0.807
14 2.086 0.284 1.575 2.070 2.682
15 4.055 0.840 2.687 3.963 5.973

Note. 2.5% and 97.5%: the upper and lower limits for the confidence inter-
val.

of growth.

4.5 Conclusions from the Empirical Analysis

To summarize, the growth rates of children’s mathematical performance were

analyzed through both the simple growth rate models and the compound growth rate

models. The relationship between the rate of growth and two important covariates, BPI

and gender, was also investigated. Now, I will discuss the results by focusing on the

substantive questions of individual differences in rates of growth and their relationships to

gender and BPI.

The development of mathematical performance was found to be a quadratic

growth process. The simple rate of growth was a linear function of age. The individual
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Table 4.8. Results from the random coefficient LDSM with covariates

estimate s.e. 2.50% medium 97.50%
Mean initial µ0 1.986 0.030 1.928 1.985 2.042

Variance initial σ2
0 0.150 0.010 0.132 0.150 0.169

Intercept β0 0.172 0.003 0.166 0.172 0.179
BPI β1 -0.008 0.002 -0.011 -0.008 -0.004

Gender β2 -0.002 0.002 -0.006 -0.002 0.003
BPI*Gender β3 0.004 0.002 -0.001 0.004 0.008

Rate variance d2 0.0001 0.0000 0.0001 0.0001 0.0002

residual variance (σ2
e )

6 0.646 0.054 0.546 0.644 0.757
7 0.488 0.040 0.415 0.486 0.571
8 0.528 0.037 0.460 0.526 0.603
9 0.866 0.068 0.740 0.863 1.008

10 0.959 0.069 0.831 0.956 1.105
11 0.662 0.068 0.537 0.659 0.803
12 0.165 0.044 0.084 0.163 0.256
13 0.585 0.106 0.399 0.578 0.813
14 2.067 0.290 1.553 2.052 2.684
15 4.091 0.865 2.677 3.997 6.083

Note. After a burn-in iteration of 5000, the generated Markov chain con-
verged. The results are from the WinBUGS program based on 20000 addi-
tional iterations. B*G: interaction between BPI and gender.

differences in simple rates of growth were evident based on the analysis. The simple rate

of growth was related to BPI and gender in different ways at different ages. For example,

BPI was negatively related to the simple rate of growth before age 13. Gender was only

related to the simple rate of growth at age 8 and 9. Because the relationship between the

simple rate of growth and the covariates was changing over time, it was not sufficient to

investigate it at a certain time merely as relationships between covariates and the

instantaneous rate of growth. Rather, the rates of growth at each time should be

investigated as in the current analysis.

Individual differences in the compound rate of growth for mathematical

performance were also found. Compound rate of growth was not found to be related to
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initial mathematical performance. This is reasonable because the calculation of the

compound rate of growth has already taken initial performance into account. Compound

rate of growth was negatively related to BPI but bore no relationship to gender. The

disappearance of gender effect is probably because the compound rate of growth was

analyzed as a time-invariant constant.
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5. Simulation Study
The NLSY mathematical performance data were analyzed using both the quadratic

growth rate model and the random coefficient LDSM in the previous chapter. To further

validate the results from the empirical study and establish conditions where the proposed

model performs appropriately, a simulation study was carried out and is reported in this

chapter. The simulation study was focused directly on the quadratic growth rate model

and the random coefficient latent difference score model which were used in the empirical

data analysis. The general purpose was to see how well the estimation methods associated

with the two models were able to recover the values of the parameters that defined the

simulated data under the various design conditions.

5.1 Simulation Design

Overall, the simulation is designed to investigate whether the results from the

substantive research are valid and how the proposed models and estimation methods are

affected by some possibly important factors such as sample size and amount of missing

data. More specific details of the design of the simulation are first presented for both the

quadratic growth rate model and the random coefficient LDSM.
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5.1.1 Simulation design for the quadratic growth rate model

For the quadratic growth rate model, the population parameters for the basis model

in the simulation are based on the results from the empirical study but with simplification.

The model used in the NYSL data can be written as



yit = bi1 + rijt+ bi3(t
2 − 2jt) + eit

bi1 = β01 + β11BPIi + β21GENDERi + β31BPI ∗GENDER + ui1

bi3 = β03 + β13BPIi + β23GENDERi + β33BPI ∗GENDER + ui3

rij = γj0 + γj1BPIi + γj2GENDERi + γj3BPI ∗GENDER + vij

, j = 1, . . . , T.

(5.1)

The population parameters are given by β01 = .3, β11 = β21 = β31 = 0, β03 = −.05, and

β13 = β23 = β33 = 0. To determine the rate, the parameters at time t = 1 are used. Thus,

γ10 = 1, γ11 = −.05, γ12 = γ13 = 0, cov(u1, u3, v) = diag(.25, .0004, .06), and

V ar(e) = .3. As in the empirical data, two covariates, one binary variable with mean .5

and one continuous variable following the standard normal distribution, are used in the

simulation. This serves as the baseline model in the simulation. The R codes for data

generation are given in Appendix B.1.1.

Multiple conditioning factors for the simulation design are considered in the

simulation. First, different patterns of missing data are simulated. Note that for the

quadratic growth rate model, at least three occasions of data are needed for each

participant. In the first case, no missing cases characterized the simulated data. The

second missing data pattern included records with only three consecutive observations

retained out of the total repeated measures. Note that in this missing pattern, all three
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occasions are not randomly selected from total occasions but the only first measurement

occasion is randomly selected for each subject. The third missing data pattern included

observations recorded on four consecutive occasions. The sample size and total number of

study occasions were also varied in the simulation. The sample size was set at N=100,

200, 500, and 1,000. The total number of study occasions was set at 5 and 10,

respectively. For each condition, 200 replications of data are generated and analyzed for a

total of 3× 4× 2 = 24 (missingness × sample size × number of occasions) conditions.

5.1.2 Simulation design for the random coefficient LDSM

For the random coefficient LDSM, the population parameters were set based on

the estimates in Table 4.8. To be precise, µ0 = 2, β0 = .15, β1 = −.01, β2 = 0, σ2
0 = .5,

σ2 = .5, and d2 = .0001. Three influence factors were considered in the simulation. First,

the sample size was set at N=100, 200, 500, and 1,000. Second, the total number of study

occasions was set at 5 and 10, respectively. Third, missing data conditions were

manipulated. In the first case, all repeated measures were obtained; thus, no missingness

is involved in this condition. The second missing data pattern included records with three

consecutive observations. The third missing data pattern included recorded on four

consecutive occasions. Thus, the simulation design is a 4× 2× 3 (sample size × number

of occasions × missingness) study with 24 cells. In each cell, 200 samples of data were

simulated and analyzed. R codes for simulating the data are given in Appendix B.1.2.
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5.1.3 Empirical data based simulation

To verify the results from the empirical study, the Monte Carlo study was

conducted, simulating data with the same sample size of N=1233 and the same missing

data pattern as the empirical data used in the previous chapter. The parameter values were

set the same as in the simulation designs for the simple growth rate model and the

compound growth rate model previously discussed. A total of 200 replications of data

were simulated and the data were analyzed using both the simple quadratic growth rate

models and the compound growth rate models (the random coefficient LDSM model).

5.2 Implementation of the simulation

In the real data analysis in the previous chapter, the simple growth rate models

were estimated using the maximum likelihood estimation method and the Mplus software.

The compound growth rate models were estimated using Bayesian methods and the

WinBUGS software. However, because the simulation study involves the analysis of a

large number of replications of data, it is neither feasible nor efficient to analyze each

replication of data manually. Therefore, an automated procedure was implemented and

will be described next.

5.2.1 Simulation implementation for the simple growth rate models

All the simulations for the simple growth rate models are implemented using

software R (R Development Core Team, 2005) and Mplus (Muthén & Muthén,

1998-2007). The data are generated in R and Mplus is called within software R to analyze
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the data and obtain the parameter estimates. A simplified flowchart for this procedure is

depicted in Figure 5.1 and the complete R codes are provided in Appendix B.1.1. The

Mplus codes for the model estimation are provided in Appendix B.2.

The simulation procedure first sets the constant parameters to control the whole

simulation. Specifically, the number of replications (R), the sample size (N ), the number

of occasions of observed data (T ), and the number of non-missing data (M ) for each

individual are decided at the start of the simulation. For each replication of the simulation,

the R function – quad.gen – is called to generate a set of data. The data are then

analyzed using Mplus by calling Mplus in R using the function of system(). Note that

although the data are generated based on the simple rate of growth at time 1, the rates of

growth at the other time are also estimated in the simulation. The above procedure is

repeated with a total of R times. All the results are put together in the file

res-N-T-M.txt.

The file res-N-T-M.txt contains the parameter estimate and the standard error

for each parameter and the model fit statistics. The R function proc.res is then used to

process the results to calculate several summary statistics. First, the mean parameter

estimates (ME) and the standard deviations (s.d.) are calculated based on the parameter

estimates from all the replications. Second, the mean standard errors (m.s.e.) are

calculated. Third, the mean upper and lower limits of the 95% confidence intervals are

obtained. Fourth, the coverage probability, which is the percentage of the replications

where the 95% confidence interval can cover the true parameter values, is also calculated

for each parameter.
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Set counter i=1

Generate data in R

Run Mplus within R to obtain the 
parameter estimates

Save the results to a file

i=R?i=i+1
NO

Process results

YES

END

START

Input N, T, M, R

Figure 5.1. The simplified flow chart for running the simulation for the quadratic growth
rate models.

5.2.2 Simulation implementation for the compound growth rate

models

All the simulations for the random coefficient LDSM models are implemented

using R (R Development Core Team, 2005) and JAGS (Just Another Gibbs Sampler;

Plummer, 2008). JAGS is software to implement Bayesian estimation. JAGS can be

viewed as a Linux version of WinBUGS (Spiegelhalter, Thomas, Best, & Lunn, 2003).

JAGS is used here to take the advantage of the high performance cluster available from the

Information, Technology and Communication Center at the University of Virginia.
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The data are generated in R and JAGS is called to analyze the data and obtain the

parameter estimates within R. A simplified flowchart for this procedure is depicted in

Figure 5.2 and the complete R codes are provided in Appendix B.1.2. The JAGS or

WinBUGS codes for the model estimation are provided in Appendix B.3.

The simulation procedure first sets the constant parameters to control the whole

simulation. Specifically, the number of replications (R), the sample size (N ), the number

of occasions of observed data (T ), and the number of non-missing data for each individual

(M ) are decided before the simulation. For each replication of the simulation, the R

function – ldsm.gen – is called to generate a set of data. The data are then analyzed

using JAGS by calling JAGS in R using the function of system(). All the results are put

together in the file res-N-T-M.txt.

The file res-N-T-M.txt contains the parameter estimate, the standard error,

the 95% confidence interval, and the convergence diagnostic statistics for each parameter.

The R function proc.res is then used to process the results to calculate several

summary statistics. First, the mean parameter estimates (ME) and the standard deviations

(s.d.) are calculated based on the parameter estimates from all the replications. Second,

the mean standard errors (m.s.e.) are calculated. Third, the mean upper and lower limits of

the 95% confidence intervals are obtained. Fourth, the coverage probability which is the

percentage of the replications where the 95% confidence interval can cover the true

parameter values is also calculated for each parameter.
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Set counter i=1

Generate data in R

Run JAGS within R to obtain the 
parameter estimates

Save the results to a file

i=R?i=i+1
NO

Process results

YES

END

START

Input N, T, M, R

Figure 5.2. The simplified flow chart for running the simulation for the compound growth
rate models.

5.3 Simulation Results

The simulation results for the quadratic growth rate models are first presented and

then the results for the random coefficient LDSM are presented. Under each condition of

the simulation, the average parameter estimates, the standard deviations and mean

standard errors, the average upper and lower limits of the 95% confidence intervals, and

the coverage probability of the confidence intervals are obtained.

Let θ denote a vector of all parameters in the model with θi representing the ith

parameter of a total of P parameters. The average parameter estimates ( ¯̂
θi) and standard
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deviation (s.d.(θ̂i)) of θi can be calculated from the parameter estimates of the simulated

data. Thus,

¯̂
θi =

R∑
j=1

θ̂ij/R,

and

s.d.(θ̂i) =

√√√√ R∑
j=1

(θ̂ij − ¯̂
θi)2/(R− 1),

with θ̂ij denoting the parameter estimates for the ith parameter in the jth set of simulation

data and R denoting the total number of the simulation data.

Let s.e.ij represent the standard error for the ith parameter in the jth set of

simulation. The average standard error, a.s.e., is calculated by

a.s.ei =
R∑
j=1

s.e.ij/R.

Let uij and lij be the upper and lower limits of a confidence interval for the ith

parameter in the jth set of simulation. The average upper and lower limits of the

confidence intervals can be obtained as

m.li =
R∑
j=1

lij/R,

and

m.ui =
R∑
j=1

uij/R.

The coverage probability of the confidence intervals for each parameter is
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calculated by

CPi =
R∑
j=1

sgn[g(θi)]/R,

where

sgn[g(θi)] =


1, if uij > θi and lij < θi

0, otherwise

with θi representing the true parameter value for the ith parameter used to generate the

simulation data.

To conveniently compare the simulation results among different conditions,

several more general summary statistics are employed. First, the average bias is calculated

for all parameters. The bias (bi) for the ith parameter is

bi =


|(¯̂
θi − θi)/θi|, if θi 6= 0

|(¯̂
θi − θi)|, if θi = 0

,

with θi representing the true parameter value for the ith parameter used to generate the

simulation data. The average bias is then calculated by

b̄ =
P∑
i=1

bi/P.

The smaller the bias b̄ is, the less bias the parameter estimates are.

The model accuracy or the mean standard deviation (m.s.d) of parameter

estimates is calculated as

m.s.d =
P∑
i=1

s.d.i/P.
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The smaller the standard deviation m.s.d is, the more efficient and accurate the parameter

estimates are.

Finally, the average coverage probability m.CP is obtained as

m.CP =
P∑
i=1

CPi/P.

The closer the coverage probability is to the confidence level, the more accurate the

confidence interval construction method.

5.3.1 Simulation results for the quadratic growth rate model

Results from the empirical data based simulation

The results for the simulation with the same sample size and the same missing data

patterns as the empirical data are given in Table 5.1. The densities for all parameters are

plotted in Figure 5.3. The results provide some information on the validity of the

parameter estimates from the empirical data. Examining the results, one can reach the

following conclusions. First, the distributions of the parameter estimates from all the

replications are approximately symmetric. Second, the maximum absolute bias for all

parameter estimates is about 0.009 and for most of the parameters, the absolute bias is less

than .002. Thus, the parameter estimates can be viewed as essentially unbiased. Third, the

maximum absolute difference between the standard deviation of the parameter estimates

and the mean standard error of the parameter estimates is about 0.0066. Thus, the

estimated standard errors for the parameter estimates can be considered to be consistent.
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Fourth, for an accurate confidence interval, a 95% confidence interval should have a .95

coverage probability. Note that although the coverage probability for each parameter is

not exactly equal to .95, it is very close. Overall, one can conclude that the simulation

results accurately reflect the true parameter values making it reasonable to accept the

results from the empirical data analysis.

Table 5.1. Simulation results for the quadratic growth rate model with the same
missing data patterns as the NLSY data (R=200)

Parameter TRUE Estimate s.d. a.s.e. 95% CI CP
V ar(e) 0.3 0.300 0.0116 0.0111 0.278 0.321 0.945
β01 0.3 0.298 0.0476 0.0495 0.201 0.395 0.965
γ10 1 0.999 0.0195 0.0207 0.959 1.040 0.965
β03 -0.05 -0.050 0.0027 0.0027 -0.055 -0.045 0.96
β11 0 -0.009 0.0430 0.0496 -0.107 0.088 0.975
β21 0 0.002 0.0724 0.0701 -0.135 0.139 0.955
β31 0 0.008 0.0672 0.0701 -0.129 0.145 0.945
γ11 -0.05 -0.048 0.0178 0.0207 -0.089 -0.008 0.985
γ12 0 -0.001 0.0289 0.0292 -0.058 0.057 0.97
γ13 0 -0.001 0.0273 0.0293 -0.058 0.056 0.97
β13 0 0.000 0.0025 0.0027 -0.005 0.005 0.955
β23 0 0.000 0.0041 0.0038 -0.007 0.007 0.915
β33 0 0.000 0.0037 0.0038 -0.008 0.007 0.97
cov(u1, u1) 0.25 0.249 0.0643 0.0609 0.129 0.368 0.945
cov(u1, v1) 0 0.000 0.0228 0.0223 -0.044 0.043 0.94
cov(v1, v1) 0.06 0.060 0.0110 0.0107 0.039 0.081 0.93
cov(u1, u3) 0 0.000 0.0028 0.0027 -0.005 0.005 0.93
cov(v1, u3) 0 0.000 0.0012 0.0012 -0.002 0.002 0.935
cov(u3, u3) 0.0004 0.0004 0.0002 0.0002 0.0001 0.0007 0.935

Note. s.d.: empirical standard deviation for the parameter estimates based
on the replications of the simulation. a.s.e.: the average standard error for
the parameter estimates. 95% CI: 95% confidence interval. CP: the 95%
coverage probability.

Simulation results for the manipulated conditions

A total of 24 conditions with different sample sizes, measurement occasions, and

missing data patterns were considered in the simulation. For each condition, R = 200
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Figure 5.3. The density plot for the non-zero parameters in the quadratic growth rate model.

replications of data were generated and analyzed. The detailed results for each condition

are given in the Appendix. To facilitate the discussion and simplify the demonstration,

only the general summary statistics including the average bias, the average standard

deviation, and the average coverage probability are provided here. These summary

statistics are provided in Table 5.2. The number of times that the simulations converged

out of 200 replications are also given in the table.

First, not all simulations converged, especially when the data were collected from

10 study occasions.1 When the total number of occasions was five, most of the simulations

1In the simulation, the growth rates at each occasion were estimated. If at any occasion the estimation did
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converged even with missing data. But when the total number of study occasions was 10,

there were still 10%-15% of simulations that did not converge even without missing data.

When only three data points were available among the 10 observation occasions, less than

100 replications of simulation converged, even with a sample size of N = 500. As few as

8 replications of the simulation converged with a sample size of N = 100. The bias,

accuracy, and coverage probability were calculated based on the converged replications.

Table 5.2. Simulation results for the quadratic growth rate models with manip-
ulated conditions

T=5 T=10
Sample size 5-dp 4-dp 3-dp 10-dp 4-dp 3-dp

Convergence

100 193 200 161 198 74 8
200 196 200 186 167 118 30
500 198 200 200 168 194 85

1000 198 200 200 178 199 115

Bias

100 0.214 0.231 0.461 0.023 0.076 0.358
200 0.055 0.058 0.268 0.016 0.012 0.157
500 0.048 0.083 0.058 0.004 0.009 0.053

1000 0.004 0.032 0.016 0.002 0.014 0.013

Accuracy

100 0.102 0.149 0.190 0.050 0.139 0.182
200 0.073 0.106 0.132 0.036 0.092 0.122
500 0.046 0.067 0.083 0.023 0.058 0.073

1000 0.033 0.047 0.060 0.016 0.040 0.051

CP

100 0.948 0.934 0.943 0.931 0.971 0.954
200 0.940 0.926 0.933 0.938 0.960 0.972
500 0.951 0.940 0.952 0.944 0.951 0.957

1000 0.957 0.955 0.951 0.952 0.942 0.946

Note. 5-dp: five consecutive data points. 4-dp: four consecutive data points.
3-dp: three consecutive data points. Convergence: the number of times
that the simulations had converged. Bias: the average bias. Accuracy: the
average standard deviation. CP: the coverage probability.

Second, overall, with more data points and larger sample sizes, the bias of the

not converge, the whole simulation was considered as not convergent even if at all the other occasions the
estimations converged.
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parameter estimates was smaller. With a sample size of 1000, all biases were less than 4%

even with missing data present. When the sample size was 500, the biases for most of

conditions were about 5%. When the sample size was 200 and the total number of

measurement occasions was 5, the biases for the complete data and missing data with 4

consecutive observations were relatively acceptable. However, with only 3 consecutive

observations, the bias was as large as 26.8%. With 10 occasions of measurement, the

biases were very small for the conditions of both complete and missing data with 4

consecutive observed data. With a sample size of 100, the biases were very large for the

conditions with 5 consecutive observations.

Furthermore, with the same sample size, the results based on 10 occasions of

complete data were much less biased than those based on 5 occasions of complete data.

Even with the same amount of observed data or missing data, the results for the missing

data conditions from a total of 10 study occasions were still much less biased than those

from the conditions with a total of 5 occasions of measurement. Not surprisingly, these

results indicate that data collected from a longer time span can provide more useful

information than data from a shorter time span.

Third, with less missing data and larger sample sizes, the parameter estimates were

more accurate with smaller standard deviations. It is again found that the parameter

estimates were more accurate for the missing data conditions from a total of 10

measurement occasions than those from a total of 5 measurement occasions.

Fourth, for most of the conditions, the coverage probability of a 95% confidence

interval was close to .95. This further supports accepting the parameter estimates and the

standard error estimates at face value, at least under simulation design conditions.
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Convergence problem and treatment

In the above simulation, it was found that lack of convergence was a problem

especially when missing data were present. Two methods were then attempted to see

whether or not the convergence rate could be improved. The first method involved

increasing the number of iterations for the maximization algorithm. The second method

tried was to change the starting values of the unknown parameters.

Because change in the number of iterations and the starting values are difficult to

automate, only two sets of small scale simulation are conducted to examine the

convergence issues. In the first simulation, complete data with T = 10 occasions of

observations are simulated for R = 200 replications. In the second simulation, missing

data with only 3 consecutive observations out of 10 occasions are simulated for R = 50

replications. After conducting the simulation using the default number of iterations (1000)

and starting values, the number of iterations are first increased to 2000 to implement the

simulation again. Then another two sets of starting values, the choice of which was based

on the descriptive statistics of the simulated data, are used to implement the simulation.

The results for the simulation are provided in Table 5.3. With the default settings,

164 out of 200 replications of simulation converged for the complete data case and 6 out

of 50 replications converged for the missing data case. Increasing the number of iterations

from 1000 to 2000 did not improve the convergence. The new sets of starting values did

largely improve the convergence. For example, all replications of the simulation

converged for the complete data case. For the missing data case, the convergence rate

increased almost threefold.
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Table 5.3. Investigation of convergence for the
quadratic growth rate models

Default Iterationsa Starting valuesb

Completec 164/200 164/200 200/200
Missingd 6/50 6/50 23/50

Note. aincreased iterations from 1000 to 2000,
bchange in starting values, ccomplete data case,
dmissing data case.

5.3.2 Simulation results for the random coefficient LDSM

Results for the empirical data based simulation

Just as for the quadratic growth rate model, the results of the random coefficient

LDSM simulation with the same sample size and missing data pattern as in the empirical

data are provided in Table 5.4. The densities for the parameters are given in Figure 5.4.

First, the maximum absolute bias for all parameter estimates was about 0.002 and for most

of the parameters, the absolute bias was less than .001. Thus, the parameter estimates can

be viewed as unbiased when the non-informative priors were used. Second, the maximum

absolute difference between the standard deviation of the parameter estimates and the

mean standard error of the parameter estimates was about 0.0013. Thus, the estimated

standard errors for the parameter estimates can be considered to be consistent. Third, the

coverage probability for each parameter was mostly close to .95. One exception was the

coverage probability for d2 which was much larger than .95. Overall, the simulation

results accurately reflected the true parameter values making it reasonable to accept the

results from the empirical data analysis.
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Table 5.4. Simulation results for the random coefficient LDSM with the same
missing data patterns as the NLSY data

Parameter TRUE Estimate s.d. a.s.e. 95% CI CP
µ0 2 2.0019 0.0246 0.0247 1.9538 2.0504 0.941
β0 0.15 0.1498 0.0018 0.0021 0.1457 0.1539 0.956
β1 -0.001 -0.0099 0.0020 0.0019 -0.0137 -0.0062 0.937
β2 0 0.0003 0.0027 0.0027 -0.0050 0.0056 0.966
β3 0 -0.0002 0.0027 0.0027 -0.0055 0.0050 0.941
σ2
e 0.5 0.5007 0.0127 0.0131 0.4756 0.5270 0.951
σ2

0 0.5 0.4982 0.0222 0.0235 0.4540 0.5460 0.951
d2 0.0001 0.0001 0.0000 0.0000 0.0001 0.0002 0.990

Note. s.d.: empirical standard deviation for the parameter estimates based
on the replications of the simulation. a.s.e.: the average standard error for
the parameter estimates. 95% CI: 95% confidence interval. CP: the 95%
coverage probability.

Simulation results for manipulated conditions

As was described earlier, the results for each manipulated condition of the

simulation for the random coefficient LDSM were obtained through Bayesian methods.

For each condition, R = 200 replications of data were generated and analyzed. The

detailed results from all 24 conditions discussed previously in the simulation design

section are given in the Appendix. Again, only the general summary statistics including

the average bias, the average standard deviation, and the average coverage probability are

provided here in Table 5.5. The number of times that the simulations converged out of 200

replications is also given in the table.

First, not all simulations converged, especially when there are 5 occasions of data.2

Actually, only about 15% – 25% of the simulations converged with missing data when the

2The convergence was monitored on each parameter of the model by the Geweke statistics (Geweke,
1992). The Geweke statistics were calculated based on 30,000 iterations with the first 10,000 iterations
discarded. If there was one or more parameters that did not converge, the overall model was viewed as not
convergent. It should be expected that with more iterations the converge rate would become higher.
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Figure 5.4. The density plot for the parameters in the random coefficient LDSM.

total number of occasions was 5. Even when the total number of occasions was ten, only

about half of the simulations converged when missing data were present. The bias,

accuracy, and coverage probability are calculated based on the converged replications of

the simulations.

Second, overall, with more data points and larger sample sizes, the bias of the

parameter estimates was smaller. For example, with the sample size of 1000, the number

of occasions of 10 and without missing data, the average bias was about .6%. When the

the number of occasions was 5, in only one condition with the sample size of 1000 and no

missing data, the bias was less than 5%. The bias appears mainly attributable to the
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Table 5.5. Simulation results for the random coefficient LDSM with manipulated
conditions

T=5 T=10
Sample size 5-dp 3-dp 2-dp 10-dp 3-dp 2-dp

Convergence

100 131 44 30 160 123 101
200 135 59 33 171 128 105
500 104 45 35 164 107 107

1000 95 33 25 166 100 100

Bias

100 0.142 0.237 0.237 0.019 0.121 0.137
200 0.103 0.163 0.303 0.004 0.081 0.092
500 0.056 0.219 0.330 0.006 0.043 0.070

1000 0.046 0.082 0.101 0.006 0.023 0.031

Accuracy

100 0.033 0.045 0.045 0.026 0.043 0.047
200 0.023 0.030 0.037 0.016 0.028 0.032
500 0.015 0.021 0.025 0.011 0.016 0.020

1000 0.009 0.014 0.019 0.008 0.012 0.014

CP

100 0.952 0.935 0.935 0.943 0.945 0.942
200 0.954 0.953 0.928 0.967 0.967 0.954
500 0.946 0.942 0.911 0.957 0.956 0.968

1000 0.960 0.939 0.945 0.953 0.960 0.951

Note. 5-dp: five consecutive data points. 3-dp: three consecutive data
points. 2-dp: two consecutive data points. Convergence: the number of
times that the simulations had converged. Bias: the average bias. Accuracy:
the average standard deviation. CP: the coverage probability.

estimates of d2. For data from a total of 10 study occasions, the results largely improved

even with missing data. For example, with the sample size of 500 and 3 consecutive

observations, the bias was only about 4.3%. Once again, it is found that even with the

same amount of available data, the results from those data collected over 10 measurement

occasions were better than those from the data collected over only 5 measurement

occasions.

Third, with less missing data and larger sample sizes, the parameter estimates were

more accurate as evidenced by smaller standard deviations. It can also be seen that the

parameter estimates were more accurate for the missing data conditions with 10
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measurement occasions than with 5 measurement occasions, although the same amount of

observed data were available. Actually, in each missing data condition, only 2 or 3

consecutive observations were available.

Fourth, for some of the conditions with large sample sizes (≤ 500) and 10

measurement occasions, the coverage probability of a 95% confidence interval was close

to .95. Depending on the conditions, the coverage probability can be overestimated or

underestimated.

Overall, when estimating the random coefficient LDSM, one should pay attention

to the convergence problem. To ensure better results, a larger sample size and a longer

measurement span are recommended. Alternatively, one can increase the burn-in data

points to ensure the convergence of the model.

Convergence problem and treatment

As was the case for the quadratic growth rate model, lack of convergence is also a

problem in parameter estimation for the random coefficient LDSM. In general,

convergence is still a problem deserving much investigation for Bayesian analysis (Brooks

& Roberts, 1998; Cowles & Carlin, 1996). Convergence sometimes can be achieved by

increasing the number of burn-in iterations (Geman & Geman, 1984; Raftery & Lewis,

1992). How the number of burn-in iterations is related to convergence is investigated

briefly here.

To examine the convergence problems more fully, the following simulation is

implemented. Data with N = 200 individuals and T = 5 occasions of observations are

generated. Data with missing elements are also generated keeping only either 2 or 3
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consecutive occasions of observation. These data are then analyzed using three different

numbers of burn-in iterations, 20,000, 30,000, and 50,000. This process is then repeated

for R = 200 times. The number of convergent replications resulting under the conditions

just described is given in Table 5.6.

Table 5.6. Number of convergent iterations for
the random coefficient LDSM with different burn-
ins

20000 30000 50000
2-dp 30 (22) 35 (28) 41 (38)
3-dp 47 (31) 51 (38) 59 (48)
Complete data 99 (38) 113 (48) 121 (67)

Note. The results are based onR = 200 repli-
cations. 3-dp: three consecutive data points.
2-dp: two consecutive data points. The num-
bers in the parentheses are the time in minutes
for one replication of simulation.

Overall, with a larger number of burn-in iterations, the random coefficient LDSM

is more likely to converge. For example, for the case of complete data, there are 99 out of

200 replications of simulation that converged with a burn-in of 20,000. The number of

convergent replications increased to 113 with a burn-in of 30,000 and then to 122 with a

burn-in of 50,000.

With an even larger number of burn-in iterations, a higher convergent rate can be

expected. Certainly, this is at the cost of computational resources as demonstrated by the

computation time in Table 5.6. There is no automatic way to decide how large a burn-in

number is sufficient to achieve convergence. However, in real data analysis that does not

require repetitions as in the simulation study, one can gradually increase the burn-in

iterations to monitor and exert some control over convergence.
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5.4 Summary of the Simulation Study

Simulation studies were carried out in this chapter to investigate the validity of the

results from the empirical data analysis and the performance of the simple growth rate

models and the compound growth rate models under a variety of conditions. The

simulation with the data taking on the same structure as the empirical data showed that the

results for the analysis of children’s mathematics performance can be trusted. Based on

the manipulated simulation conditions, one can conclude the following. (a) The

convergence of both models and estimation methods should be given careful attention.

The convergence of the quadratic growth rate model could be obtained by using better

starting values. The convergence could be achieved simply increase the number of burn-in

iterations for the random coefficient LDSM. (b) The parameter estimation can be viewed

as unbiased and the standard error estimation can be viewed as consistent. (c) Data

collected over a longer time span appear to provide more information than those collected

over a shorter time span.
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6. Summary and Discussion

6.1 Summary

In order to understand growth processes more completely, in this dissertation I

have proposed investigating not only the level of growth but also the rate of growth.

Although it is not the first attempt to emphasize analysis of the rate of growth (e.g. Boker

& Nesselroade, 2002; Freeman & Flory, 1937; Kaplan, 2002), to my knowledge this

dissertation is one of few attempts to systematically define and analyze rates of growth

within the framework of longitudinal data analysis.

First, two kinds of growth rates were distinguished – the simple rate of growth and

the compound rate of growth. Their main difference lies in the emphasis given to the

initial status of a growth process. In the simple rate of growth, initial status is ignored

whereas it is included in calculating compound rates of growth includes. Awareness of the

distinction is important in selecting methods and techniques for analyzing and modeling

growth processes. Three rate of growth estimation methods – parametric,

semi-parametric, and nonparametric – were presented. These three methods represented a

wide range of the possible methods available for estimating rates of growth.

Second, a general set of models was derived from growth curve models to

represent and analyze the simple rate of growth. In simple growth rate models, the rate of

growth was defined as the first derivative of the growth function. It was shown that simple
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growth rate models can be viewed as the results of certain rotations of growth curve

models. Simple growth rate models can be estimated using SEM methods provided by

software such as Mplus.

Third, several approaches for modeling compound rates of growth were discussed.

Particularly, the random coefficient latent different score model was derived from the

widely used latent different score models to allow for individual differences in compound

rates of growth. The models can be estimated using Bayesian methods and implemented

in software such as WinBUGS.

Fourth, both the simple growth rate models and the random coefficient LDSM

were used to analyze the simple and compound rates of growth of children’s mathematical

performance data from the NLSY. The results showed individual differences in both the

simple and compound rates of growth. It was also found that the covariates BPI and

gender showed different relationships with the simple rates of growth at different ages.

Only BPI was found to be related to the compound rate of growth in that children with a

lower BPI had a larger compound rate of growth.

Fifth, simulations were used to validate the results from the analysis of the NLSY

data and to investigate the performance of the proposed models, mainly the quadratic

growth rate models and the random coefficient LDSM, under a variety of conditions. It

was found that for both models, the results from the empirical data analysis were given

additional credence by the simulation outcomes. It was further found that the parameter

estimates for both models can be viewed as unbiased and the standard error estimates

were consistent. For both models and their estimation methods, convergence problems are

substantial and should be paid careful attention.
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In summary, a set of growth rate models for both the simple rate of growth and the

compound rate of growth were presented. The applications and merits of such models

were demonstrated through the analysis of the NLSY data and the performances of the

models were evaluated through the systematical simulation. These models can provide

useful information above and beyond the analysis of the level of growth.

6.2 Implications

The findings reported in this dissertation study have several key implications from

both methodological and substantive perspectives. Those implications will now be

discussed in more detail.

6.2.1 Methodological implications

For those interested in understanding growth processes, the analysis of only the

level of growth but not the rate of growth is not sufficient because individuals with the

same levels of growth can have very different rates of growth (Cattell, 1966a; Freeman &

Flory, 1937). However, the techniques for modeling rates of growth have not been much

investigated compared to the widely available growth curve models for the level of

growth. As the first attempt that systematically investigated models and methods for rates

of growth, the current work can help lead the way to more thorough, informative changes

of growth data.

It was shown that rates of growth can be constructed through different methods.

The estimation of rates of growth not only is the foundation of the growth rate modeling in
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the current study but also provides useful methods that can be applied to broader areas

such as dynamical systems analysis and functional data analysis (Boker & Nesselroade,

2002; Boker et al., 2004; Ramsay & Silverman, 2005). Thus, this study support

broadening the applications and impact of growth rate modeling by both illustrating

procedural aspects and supporting their validity.

Simple growth rate models can be constructed from certain rotations of the well

developed growth curve models. This implies several important and useful features of

simple growth rate models. (a) Simple growth rate models can be versatile. Essentially, for

any growth curve model, its corresponding growth rate model can be constructed through

rotation. (b) Simple growth rate models inherit the model fit statistics from their ancestral

growth curve models. Thus, the model comparison methods for growth rate models are

readily available. In other words, the best fitting growth rate models can be selected based

on comparisons of their corresponding growth curve models. (c) Growth curve models can

be viewed as special cases of growth rate models. For example, the quadratic growth curve

model can be viewed as a quadratic growth rate model at time 0. For any nonlinear growth

processes, the analysis of growth rates can provide information above and beyond that of

growth curve models. (d) Simple growth rate models can be estimated through available

methods and software. The interpretation of the models is readily meaningful in terms of

rates of growth. Both of these make growth rate models practically feasible and useful.

The random coefficient LDSM is a natural extension of the LDSM. The new

model not only inherits the merits of LDSM such as the direct analysis of underlying true

difference scores but also allows the analysis of individual differences for compound rates

of growth. The estimation of random parameters has been somewhat difficult in case of
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nonlinear models and modeling methods (Browne, 1993; McArdle & Hamagami, 1996;

Neale & McArdle, 2000). The Bayesian estimation methods for the random coefficient

LDSM in the current study can be applied to other models involving random parameters.

Finally, growth rate models were applied to children’s mathematics performance

data to answer substantive questions on individual differences in rates of growth and their

relationships with gender and BPI. It seems worth emphasizing that the accompanying

simulation study demonstrated that growth rate models can perform well under many

different situations. All of these outcomes reinforce the promise and the practicality of the

methodology of growth rate models for further enhancing substantive research.

6.2.2 Substantive implications

The current study also has some important substantive implications. The growth of

mathematical performance was a nonlinear process, specifically, a quadratic growth

process. The simple growth rate of mathematical performance was declining with

increasing age. These results are consistent with previous research (Grimm, 2005;

Kowalski-Jones & Duncan, 1999), but they also reinforce the additional richness of

findings possible when the application of growth curve models is extended to include

analysis of rates of growth enabling one to capture more dynamic change information.

Males have been shown to outperform females in school performance of

mathematics (Kimball, 1989; Marsh & Yeung, 1998). However, the current study

uncovered some subtleties that warrant further discussion. Gender was found to be related

to the simple rate of mathematical performance only at age 8 and 9 across the age span 6
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to 15 years. It appears that there is a narrow “window” during which boys separate

themselves from girls because of significantly greater rates of growth in mathematical

performance. However, because the rates of growth do not differ after age 9, even though

they keep improving, the girls never catch up to the boys and the differences established at

that early age tend to persist. This main effect of gender needs to be tempered, however,

by a significant interaction between gender and BPI which will be described next.

There are positive interaction effects between gender and BPI from age 8 to age

11. For both boys and girls, higher BPI corresponds to lower simple rates of growth of

mathematics performance. For the same increase in BPI, girls show less decrease in

simple rates of growth. After a certain threshold of BPI, girls could show higher rates of

growth in mathematics performance. However, the current observation of BPI did not

exceed the threshold.

It was generally found that BPI was negatively related to rates of mathematical

performance. This is consistent with the general conclusion that children with higher

levels of behavior problems tended to perform less well in school (Arnold, 1997; Arnold

et al., 1999; McClelland et al., 2000). Based on the current results, children performed

worse seemingly in part because of the slower rates of improvement.

6.3 Limitations

Several factors limit the general conclusions that can be drawn from the present

study. Substantively, it is a correlational, rather than an experimental study so conclusions

regarding the direction of effects cannot be unequivocally drawn. Thus, the results from



93

the empirical study only reflect correlational inferences instead of causal ones. In other

words, although BPI was negatively related to rates of mathematical performance growth,

one cannot determine whether or not higher BPI caused lower rates of growth only based

on currently available data. At some point, controlled experimental designs must be used

to answer such questions. It is also found that the relationships between gender and BPI

and simple rates of growth were changing with age. This intriguing phenomenon needs to

be explained more broadly in additional data sets.

Methodologically, it was assumed for the random coefficient LDSM that the

individual compound rate of growth was a constant. However, it is possible that

compound rates of growth are time-varying but the current data did not allow the analysis

of time-varying compound rates of growth.

Finally, there are also limitations with regard to the simulation study. First, the

high computation demand of Bayesian methods constrained the total number of iterations

to be 30,000 for the random coefficient LDSM. This partly resulted in the low

convergence rate of the simulations. Second, the current simulation focused on only

parameter estimates. When computation power is not so limited, the simulation on the

model comparisons, especially for the compound growth rate models, will be an important

extension. Third, the simulation results are based on the converged replications. The

results should be interpreted with cautions.
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6.4 Future directions

It was proposed that analyzing both the level of growth and the rate of growth will

provide a better understanding of growth processes in longitudinal data. Conceptually, this

idea of the analysis of the rate of growth can be extended to any research related to change.

For example, in cluster analysis, mixture models etc., one can investigate the classification

of participants based on the rate of growth as well as level of growth. Here, I will simply

mention several extensions of the current work that I plan to carry out in the near future.

First, the investigation of simple growth rate models has been focused on the

quadratic growth rate model. The other models, such as the exponential growth rate

model, will be investigated in more detail. Furthermore, the covariates used in the current

study were time-invariant. The inclusion of time-varying covariates will be examined in

the future. Finally, the growth rate models discussed so far are all univariate. Multivariate

models that represent the relationships among rates of growth across different domains

will also be examined in a later time.

Second, the random coefficient latent different score model used in the current

study was an extension of a simple latent different score model. The idea of random

coefficients can be applied to more complex latent different score models proposed by

McArdle and colleagues (e.g., McArdle & Hamagami, 2001; ?, ?). A future study will be

conducted to investigate how to apply and estimate more complex random coefficient

latent difference score models.

Third, Browne (1993) has proposed a Taylor approximation method for estimating

nonlinear growth curve models with random parameters. Alternatively, the Bayesian
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estimation method used for random coefficient latent difference score models in the

current study can be readily applied to estimate such nonlinear growth curve models. In a

future study, I will compare the Bayesian method and approximation method for random

coefficient growth curve models to determine the relative advantages and disadvantages of

the two approaches.

Fourth, based on the simulation from the two specific models, the quadratic growth

rate model and the random coefficient latent difference score model, it was found that

even with the same amount of data, the data collected from a longer span of time can

actually provide more information than those collected from a shorter span of time. This

result, although not surprising, has very important implications for the design and

collection of longitudinal data. A systematical study will be carried out to investigate the

mechanics of the influence of missing data in this situation in order to propose ways to

gather more information with limited resources.
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A. Simulation Results

A.1 Simulation results for the quadratic growth rate

models

Table A.1. N = 100, T = 10, M = 10, R = 198

Parameter TRUE Estimate s.d. a.s.e. 95% CI CP
V ar(e) 0.3 0.299 0.018 0.016 0.268 0.331 0.924
β01 0.3 0.310 0.113 0.113 0.087 0.532 0.955
γ10 1 0.995 0.050 0.047 0.904 1.087 0.899
β03 -0.05 -0.050 0.004 0.004 -0.058 -0.041 0.949
β11 0 0.004 0.116 0.115 -0.221 0.228 0.955
β21 0 -0.017 0.157 0.160 -0.331 0.297 0.970
β31 0 0.001 0.164 0.162 -0.316 0.319 0.955
γ11 -0.05 -0.051 0.052 0.047 -0.144 0.041 0.914
γ12 0 0.007 0.072 0.066 -0.122 0.137 0.914
γ13 0 0.001 0.072 0.067 -0.130 0.131 0.939
β13 0 0.001 0.004 0.004 -0.008 0.009 0.960
β23 0 -0.001 0.006 0.006 -0.013 0.012 0.949
β33 0 -0.001 0.006 0.006 -0.013 0.011 0.934
cov(u1, u1) 0.25 0.211 0.084 0.091 0.032 0.390 0.909
cov(u1, v1) 0 0.007 0.031 0.030 -0.051 0.065 0.914
cov(v1, v1) 0.06 0.057 0.016 0.015 0.027 0.087 0.899
cov(u1, u3) 0 -0.001 0.003 0.003 -0.006 0.004 0.919
cov(v1, u3) 0 0.000 0.001 0.001 -0.002 0.002 0.929
cov(u1, u3) 0.0004 0.0004 0.0001 0.0001 0.0001 0.0006 0.899

Note. s.d.: empirical standard deviation for the parameter estimates based
on the replications of the simulation. a.s.e.: the average standard error for
the parameter estimates. 95% CI: 95% confidence interval. CP: the 95%
coverage probability.
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Table A.2. N = 100, T = 10, M = 4, R = 74

Parameter TRUE Estimate s.d. a.s.e. 95% CI CP
V ar(e) 0.3 0.301 0.027 0.030 0.242 0.360 0.959
β01 0.3 0.304 0.230 0.282 -0.249 0.858 0.986
γ10 1 0.990 0.076 0.094 0.806 1.174 1.000
β03 -0.05 -0.049 0.009 0.011 -0.070 -0.028 0.973
β11 0 -0.072 0.341 0.299 -0.657 0.514 0.932
β21 0 -0.041 0.410 0.403 -0.830 0.749 0.986
β31 0 0.024 0.460 0.435 -0.828 0.876 0.932
γ11 -0.05 -0.027 0.104 0.098 -0.219 0.166 0.932
γ12 0 0.014 0.124 0.133 -0.247 0.276 0.973
γ13 0 -0.007 0.150 0.142 -0.285 0.271 0.919
β13 0 -0.002 0.011 0.011 -0.024 0.020 0.959
β23 0 -0.002 0.016 0.015 -0.032 0.028 0.959
β33 0 -0.001 0.015 0.016 -0.032 0.031 0.946
cov(u1, u1) 0.25 0.295 0.365 0.426 -0.539 1.129 0.986
cov(u1, v1) 0 -0.029 0.121 0.155 -0.332 0.274 1.000
cov(v1, v1) 0.06 0.070 0.047 0.059 -0.046 0.187 1.000
cov(u1, u3) 0 0.006 0.014 0.025 -0.043 0.054 1.000
cov(v1, u3) 0 -0.002 0.005 0.007 -0.016 0.013 1.000
cov(u1, u3) 0.0004 0.0005 0.0006 0.0009 -0.0012 0.0023 1.000

Note. s.d.: empirical standard deviation for the parameter estimates based
on the replications of the simulation. a.s.e.: the average standard error for the
parameter estimates. 95% CI: 95% confidence interval. CP: the 95% coverage
probability.
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Table A.3. N = 100, T = 10, M = 3, R = 8

Parameter TRUE Estimate s.d. a.s.e. 95% CI CP
V ar(e) 0.3 0.297 0.036 0.042 0.215 0.379 1.000
β01 0.3 0.160 0.442 0.356 -0.539 0.859 0.875
γ10 1 1.029 0.122 0.122 0.790 1.267 0.875
β03 -0.05 -0.050 0.013 0.015 -0.079 -0.021 1.000
β11 0 0.151 0.293 0.354 -0.543 0.845 0.875
β21 0 -0.066 0.458 0.503 -1.052 0.921 1.000
β31 0 -0.169 0.487 0.507 -1.162 0.824 0.875
γ11 -0.05 -0.110 0.131 0.120 -0.345 0.126 0.875
γ12 0 0.048 0.113 0.172 -0.290 0.385 1.000
γ13 0 0.086 0.165 0.175 -0.256 0.428 0.875
β13 0 0.005 0.011 0.015 -0.024 0.034 1.000
β23 0 -0.005 0.014 0.021 -0.045 0.036 1.000
β33 0 -0.014 0.015 0.022 -0.056 0.029 0.875
cov(u1, u1) 0.25 0.446 0.613 0.625 -0.779 1.671 1.000
cov(u1, v1) 0 -0.105 0.245 0.246 -0.587 0.376 1.000
cov(v1, v1) 0.06 0.115 0.089 0.098 -0.077 0.307 1.000
cov(u1, u3) 0 0.017 0.028 0.045 -0.071 0.105 1.000
cov(v1, u3) 0 -0.008 0.008 0.013 -0.034 0.018 1.000
cov(u1, u3) 0.0004 0.0015 0.0008 0.0016 -0.0017 0.0047 1.000

Note. s.d.: empirical standard deviation for the parameter estimates based
on the replications of the simulation. a.s.e.: the average standard error for the
parameter estimates. 95% CI: 95% confidence interval. CP: the 95% coverage
probability.
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Table A.4. N = 100, T = 5, M = 5, R = 193

Parameter TRUE Estimate s.d. a.s.e. 95% CI CP
V ar(e) 0.3 0.303 0.029 0.030 0.243 0.362 0.959
β01 0.3 0.298 0.184 0.178 -0.051 0.646 0.938
γ10 1 1.000 0.092 0.092 0.820 1.180 0.969
β03 -0.05 -0.050 0.021 0.021 -0.090 -0.010 0.948
β11 0 -0.015 0.175 0.178 -0.363 0.333 0.964
β21 0 -0.008 0.243 0.253 -0.504 0.488 0.974
β31 0 0.023 0.254 0.254 -0.476 0.522 0.948
γ11 -0.05 -0.044 0.089 0.092 -0.224 0.135 0.943
γ12 0 0.008 0.127 0.131 -0.248 0.264 0.959
γ13 0 -0.017 0.127 0.131 -0.275 0.240 0.938
β13 0 -0.001 0.020 0.021 -0.042 0.039 0.959
β23 0 -0.002 0.030 0.029 -0.060 0.055 0.938
β33 0 0.004 0.029 0.029 -0.054 0.062 0.948
cov(u1, u1) 0.25 0.160 0.265 0.261 -0.351 0.671 0.912
cov(u1, v1) 0 0.041 0.122 0.125 -0.204 0.286 0.927
cov(v1, v1) 0.06 0.037 0.067 0.070 -0.099 0.174 0.943
cov(u1, u3) 0 -0.009 0.027 0.028 -0.063 0.045 0.933
cov(v1, u3) 0 0.005 0.014 0.015 -0.025 0.034 0.959
cov(u1, u3) 0.0004 -0.0008 0.0033 0.0037 -0.0080 0.0063 0.964

Note. s.d.: empirical standard deviation for the parameter estimates based
on the replications of the simulation. a.s.e.: the average standard error for the
parameter estimates. 95% CI: 95% confidence interval. CP: the 95% coverage
probability.
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Table A.5. N = 100, T = 5, M = 4, R = 200

Parameter TRUE Estimate s.d. a.s.e. 95% CI CP
V ar(e) 0.3 0.303 0.032 0.033 0.237 0.368 0.960
β01 0.3 0.295 0.268 0.244 -0.183 0.773 0.920
γ10 1 1.005 0.137 0.120 0.770 1.241 0.915
β03 -0.05 -0.051 0.032 0.028 -0.107 0.004 0.910
β11 0 -0.006 0.262 0.252 -0.499 0.487 0.940
β21 0 -0.001 0.377 0.346 -0.679 0.676 0.915
β31 0 -0.023 0.385 0.357 -0.723 0.678 0.935
γ11 -0.05 -0.046 0.130 0.124 -0.289 0.196 0.940
γ12 0 -0.002 0.189 0.171 -0.336 0.332 0.925
γ13 0 0.011 0.181 0.176 -0.333 0.356 0.960
β13 0 -0.001 0.030 0.029 -0.059 0.056 0.945
β23 0 0.000 0.044 0.040 -0.079 0.078 0.930
β33 0 -0.001 0.043 0.041 -0.082 0.081 0.955
cov(u1, u1) 0.25 0.134 0.454 0.447 -0.742 1.009 0.935
cov(u1, v1) 0 0.048 0.218 0.220 -0.383 0.480 0.930
cov(v1, v1) 0.06 0.035 0.114 0.117 -0.196 0.265 0.930
cov(u1, u3) 0 -0.010 0.057 0.056 -0.119 0.100 0.935
cov(v1, u3) 0 0.005 0.028 0.029 -0.051 0.061 0.930
cov(u1, u3) 0.0004 -0.0009 0.0071 0.0070 -0.0147 0.0129 0.945

Note. s.d.: empirical standard deviation for the parameter estimates based
on the replications of the simulation. a.s.e.: the average standard error for the
parameter estimates. 95% CI: 95% confidence interval. CP: the 95% coverage
probability.
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Table A.6. N = 100, T = 10, M = 3, R = 161

Parameter TRUE Estimate s.d. a.s.e. 95% CI CP
V ar(e) 0.3 0.296 0.044 0.042 0.214 0.379 0.925
β01 0.3 0.287 0.316 0.297 -0.295 0.869 0.925
γ10 1 1.007 0.150 0.142 0.728 1.286 0.938
β03 -0.05 -0.052 0.037 0.035 -0.120 0.016 0.919
β11 0 0.018 0.335 0.309 -0.588 0.625 0.932
β21 0 0.027 0.437 0.424 -0.803 0.858 0.925
β31 0 -0.007 0.485 0.437 -0.864 0.849 0.938
γ11 -0.05 -0.050 0.153 0.148 -0.340 0.239 0.950
γ12 0 -0.013 0.213 0.203 -0.410 0.384 0.938
γ13 0 0.002 0.230 0.208 -0.406 0.410 0.963
β13 0 -0.002 0.034 0.036 -0.072 0.069 0.975
β23 0 0.004 0.051 0.049 -0.092 0.100 0.932
β33 0 0.003 0.051 0.050 -0.095 0.102 0.950
cov(u1, u1) 0.25 0.045 0.589 0.619 -1.168 1.259 0.932
cov(u1, v1) 0 0.090 0.295 0.303 -0.504 0.685 0.932
cov(v1, v1) 0.06 0.017 0.154 0.156 -0.289 0.323 0.957
cov(u1, u3) 0 -0.025 0.081 0.092 -0.206 0.156 0.975
cov(v1, u3) 0 0.011 0.040 0.043 -0.073 0.095 0.969
cov(u1, u3) 0.0004 -0.0024 0.0102 0.0108 -0.0235 0.0188 0.950

Note. s.d.: empirical standard deviation for the parameter estimates based
on the replications of the simulation. a.s.e.: the average standard error for the
parameter estimates. 95% CI: 95% confidence interval. CP: the 95% coverage
probability.
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Table A.7. N = 200, T = 10, M = 10, R = 167

Parameter TRUE Estimate s.d. a.s.e. 95% CI CP
V ar(e) 0.3 0.300 0.012 0.011 0.278 0.322 0.916
β01 0.3 0.298 0.082 0.081 0.139 0.458 0.952
γ10 1 1.000 0.031 0.033 0.936 1.064 0.952
β03 -0.05 -0.050 0.003 0.003 -0.056 -0.044 0.964
β11 0 -0.004 0.076 0.082 -0.164 0.157 0.958
β21 0 0.018 0.114 0.115 -0.208 0.244 0.952
β31 0 0.011 0.114 0.116 -0.216 0.239 0.958
γ11 -0.05 -0.046 0.034 0.033 -0.111 0.019 0.940
γ12 0 -0.002 0.047 0.046 -0.093 0.089 0.934
γ13 0 -0.007 0.052 0.047 -0.099 0.085 0.946
β13 0 -0.001 0.003 0.003 -0.007 0.006 0.940
β23 0 0.000 0.004 0.004 -0.009 0.008 0.946
β33 0 0.001 0.005 0.004 -0.007 0.010 0.934
cov(u1, u1) 0.25 0.238 0.065 0.067 0.107 0.370 0.928
cov(u1, v1) 0 0.004 0.023 0.021 -0.038 0.046 0.916
cov(v1, v1) 0.06 0.056 0.011 0.011 0.035 0.078 0.904
cov(u1, u3) 0 0.000 0.002 0.002 -0.004 0.004 0.946
cov(v1, u3) 0 0.000 0.001 0.001 -0.001 0.002 0.922
cov(u1, u3) 0.0004 0.0004 0.0001 0.0001 0.0002 0.0006 0.910

Note. s.d.: empirical standard deviation for the parameter estimates based
on the replications of the simulation. a.s.e.: the average standard error for
the parameter estimates. 95% CI: 95% confidence interval. CP: the 95%
coverage probability.
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Table A.8. N = 200, T = 10, M = 4, R = 118

Parameter TRUE Estimate s.d. a.s.e. 95% CI CP
V ar(e) 0.3 0.301 0.021 0.021 0.259 0.343 0.958
β01 0.3 0.308 0.205 0.192 -0.068 0.684 0.941
γ10 1 0.997 0.063 0.064 0.871 1.122 0.924
β03 -0.05 -0.050 0.007 0.007 -0.064 -0.035 0.941
β11 0 0.000 0.181 0.192 -0.377 0.377 0.975
β21 0 -0.029 0.294 0.274 -0.566 0.508 0.932
β31 0 0.017 0.281 0.280 -0.532 0.566 0.932
γ11 -0.05 -0.052 0.063 0.065 -0.179 0.074 0.975
γ12 0 0.007 0.094 0.091 -0.172 0.186 0.924
γ13 0 0.001 0.088 0.093 -0.181 0.183 0.958
β13 0 0.000 0.007 0.008 -0.014 0.015 0.975
β23 0 0.000 0.011 0.011 -0.021 0.021 0.941
β33 0 0.000 0.011 0.011 -0.021 0.021 0.949
cov(u1, u1) 0.25 0.247 0.263 0.284 -0.309 0.802 0.992
cov(u1, v1) 0 -0.004 0.092 0.103 -0.206 0.199 0.992
cov(v1, v1) 0.06 0.059 0.037 0.040 -0.019 0.136 0.958
cov(u1, u3) 0 0.002 0.013 0.017 -0.031 0.034 0.992
cov(v1, u3) 0 0.000 0.004 0.005 -0.010 0.010 0.992
cov(u1, u3) 0.0004 0.0004 0.0005 0.0006 -0.0008 0.0016 0.992

Note. s.d.: empirical standard deviation for the parameter estimates based
on the replications of the simulation. a.s.e.: the average standard error for the
parameter estimates. 95% CI: 95% confidence interval. CP: the 95% coverage
probability.
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Table A.9. N = 200, T = 10, M = 3, R = 30

Parameter TRUE Estimate s.d. a.s.e. 95% CI CP
V ar(e) 0.3 0.291 0.020 0.029 0.235 0.348 0.967
β01 0.3 0.313 0.199 0.232 -0.142 0.768 0.967
γ10 1 1.006 0.073 0.080 0.848 1.163 0.967
β03 -0.05 -0.051 0.010 0.010 -0.070 -0.031 0.967
β11 0 0.053 0.181 0.243 -0.424 0.530 1.000
β21 0 0.037 0.330 0.338 -0.626 0.699 1.000
β31 0 -0.044 0.287 0.354 -0.738 0.650 1.000
γ11 -0.05 -0.070 0.087 0.082 -0.232 0.092 0.933
γ12 0 -0.034 0.111 0.115 -0.260 0.193 0.900
γ13 0 0.015 0.121 0.119 -0.220 0.249 1.000
β13 0 0.002 0.009 0.010 -0.017 0.021 1.000
β23 0 0.003 0.014 0.014 -0.024 0.030 0.933
β33 0 0.000 0.014 0.014 -0.028 0.028 0.933
cov(u1, u1) 0.25 0.405 0.317 0.415 -0.409 1.219 1.000
cov(u1, v1) 0 -0.071 0.118 0.158 -0.381 0.239 0.967
cov(v1, v1) 0.06 0.091 0.050 0.062 -0.031 0.213 0.967
cov(u1, u3) 0 0.009 0.015 0.030 -0.050 0.068 1.000
cov(v1, u3) 0 -0.004 0.005 0.008 -0.020 0.013 0.967
cov(u1, u3) 0.0004 0.0008 0.0007 0.0010 -0.0012 0.0029 1.000

Note. s.d.: empirical standard deviation for the parameter estimates based
on the replications of the simulation. a.s.e.: the average standard error for the
parameter estimates. 95% CI: 95% confidence interval. CP: the 95% coverage
probability.
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Table A.10. N = 200, T = 5, M = 5, R = 196

Parameter TRUE Estimate s.d. a.s.e. 95% CI CP
V ar(e) 0.3 0.300 0.022 0.021 0.259 0.342 0.944
β01 0.3 0.327 0.133 0.128 0.076 0.577 0.934
γ10 1 0.991 0.072 0.066 0.862 1.119 0.913
β03 -0.05 -0.048 0.016 0.015 -0.077 -0.019 0.944
β11 0 0.011 0.135 0.128 -0.239 0.262 0.929
β21 0 -0.026 0.190 0.181 -0.381 0.330 0.918
β31 0 0.006 0.172 0.182 -0.350 0.363 0.964
γ11 -0.05 -0.054 0.065 0.066 -0.183 0.075 0.974
γ12 0 0.009 0.100 0.093 -0.174 0.191 0.913
γ13 0 0.002 0.089 0.093 -0.181 0.185 0.969
β13 0 0.001 0.015 0.015 -0.028 0.030 0.969
β23 0 -0.002 0.022 0.021 -0.043 0.039 0.949
β33 0 0.000 0.020 0.021 -0.041 0.041 0.959
cov(u1, u1) 0.25 0.243 0.209 0.190 -0.129 0.616 0.944
cov(u1, v1) 0 0.003 0.099 0.091 -0.175 0.181 0.934
cov(v1, v1) 0.06 0.056 0.056 0.050 -0.043 0.154 0.908
cov(u1, u3) 0 -0.001 0.022 0.020 -0.040 0.038 0.929
cov(v1, u3) 0 0.001 0.012 0.011 -0.020 0.022 0.929
cov(u1, u3) 0.0004 0.0001 0.0029 0.0026 -0.0050 0.0053 0.929

Note. s.d.: empirical standard deviation for the parameter estimates based
on the replications of the simulation. a.s.e.: the average standard error for the
parameter estimates. 95% CI: 95% confidence interval. CP: the 95% coverage
probability.
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Table A.11. N = 200, T = 5, M = 4, R = 200

Parameter TRUE Estimate s.d. a.s.e. 95% CI CP
V ar(e) 0.3 0.299 0.024 0.023 0.253 0.345 0.965
β01 0.3 0.295 0.193 0.174 -0.047 0.636 0.925
γ10 1 1.005 0.094 0.086 0.837 1.172 0.920
β03 -0.05 -0.052 0.022 0.020 -0.091 -0.012 0.905
β11 0 0.007 0.181 0.176 -0.338 0.352 0.945
β21 0 0.017 0.260 0.246 -0.466 0.500 0.930
β31 0 -0.009 0.262 0.248 -0.495 0.478 0.940
γ11 -0.05 -0.054 0.088 0.087 -0.223 0.116 0.940
γ12 0 -0.010 0.127 0.121 -0.247 0.228 0.910
γ13 0 0.007 0.125 0.122 -0.232 0.246 0.925
β13 0 0.000 0.020 0.020 -0.040 0.040 0.960
β23 0 0.003 0.030 0.029 -0.053 0.059 0.940
β33 0 -0.001 0.029 0.029 -0.057 0.056 0.930
cov(u1, u1) 0.25 0.221 0.394 0.320 -0.407 0.850 0.905
cov(u1, v1) 0 0.012 0.190 0.157 -0.297 0.320 0.910
cov(v1, v1) 0.06 0.053 0.100 0.084 -0.111 0.217 0.895
cov(u1, u3) 0 -0.002 0.047 0.040 -0.080 0.076 0.910
cov(v1, u3) 0 0.001 0.024 0.020 -0.039 0.041 0.920
cov(u1, u3) 0.0004 0.0001 0.0059 0.0050 -0.0097 0.0100 0.925

Note. s.d.: empirical standard deviation for the parameter estimates based
on the replications of the simulation. a.s.e.: the average standard error for the
parameter estimates. 95% CI: 95% confidence interval. CP: the 95% coverage
probability.
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Table A.12. N = 200, T = 5, M = 3, R = 186

Parameter TRUE Estimate s.d. a.s.e. 95% CI CP
V ar(e) 0.3 0.305 0.032 0.031 0.245 0.365 0.941
β01 0.3 0.304 0.235 0.208 -0.105 0.712 0.892
γ10 1 0.999 0.107 0.100 0.803 1.194 0.909
β03 -0.05 -0.050 0.026 0.024 -0.097 -0.003 0.925
β11 0 -0.003 0.213 0.212 -0.418 0.412 0.935
β21 0 -0.003 0.326 0.297 -0.585 0.579 0.914
β31 0 0.016 0.319 0.302 -0.576 0.609 0.968
γ11 -0.05 -0.051 0.102 0.101 -0.249 0.146 0.946
γ12 0 0.001 0.155 0.142 -0.277 0.280 0.957
γ13 0 -0.002 0.153 0.144 -0.284 0.281 0.946
β13 0 0.000 0.025 0.024 -0.048 0.048 0.957
β23 0 0.000 0.039 0.034 -0.067 0.067 0.909
β33 0 0.001 0.037 0.035 -0.067 0.069 0.941
cov(u1, u1) 0.25 0.118 0.459 0.435 -0.734 0.970 0.909
cov(u1, v1) 0 0.057 0.225 0.213 -0.361 0.476 0.930
cov(v1, v1) 0.06 0.033 0.118 0.110 -0.183 0.249 0.935
cov(u1, u3) 0 -0.012 0.066 0.064 -0.139 0.114 0.941
cov(v1, u3) 0 0.006 0.031 0.030 -0.053 0.065 0.941
cov(u1, u3) 0.0004 -0.0012 0.0078 0.0075 -0.0159 0.0135 0.935

Note. s.d.: empirical standard deviation for the parameter estimates based
on the replications of the simulation. a.s.e.: the average standard error for the
parameter estimates. 95% CI: 95% confidence interval. CP: the 95% coverage
probability.
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Table A.13. N = 500, T = 10, M = 10, R = 168

Parameter TRUE Estimate s.d. a.s.e. 95% CI CP
V ar(e) 0.3 0.299 0.007 0.007 0.285 0.313 0.964
β01 0.3 0.302 0.048 0.052 0.201 0.404 0.982
γ10 1 1.001 0.022 0.021 0.960 1.042 0.940
β03 -0.05 -0.050 0.002 0.002 -0.054 -0.046 0.952
β11 0 0.002 0.058 0.052 -0.099 0.104 0.940
β21 0 -0.007 0.073 0.073 -0.150 0.136 0.935
β31 0 -0.001 0.081 0.073 -0.144 0.143 0.911
γ11 -0.05 -0.051 0.023 0.021 -0.093 -0.010 0.923
γ12 0 0.002 0.030 0.030 -0.056 0.060 0.952
γ13 0 0.001 0.032 0.030 -0.057 0.060 0.946
β13 0 0.000 0.002 0.002 -0.004 0.004 0.929
β23 0 0.000 0.003 0.003 -0.006 0.005 0.929
β33 0 0.000 0.003 0.003 -0.006 0.005 0.917
cov(u1, u1) 0.25 0.250 0.041 0.043 0.165 0.334 0.958
cov(u1, v1) 0 -0.001 0.013 0.014 -0.028 0.026 0.970
cov(v1, v1) 0.06 0.060 0.007 0.007 0.046 0.073 0.958
cov(u1, u3) 0 0.000 0.001 0.001 -0.003 0.003 0.935
cov(v1, u3) 0 0.000 0.001 0.001 -0.001 0.001 0.952
cov(u1, u3) 0.0004 0.0004 0.0001 0.0001 0.0003 0.0005 0.935

Note. s.d.: empirical standard deviation for the parameter estimates based
on the replications of the simulation. a.s.e.: the average standard error for
the parameter estimates. 95% CI: 95% confidence interval. CP: the 95%
coverage probability.
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Table A.14. N = 500, T = 10, M = 4, R = 194

Parameter TRUE Estimate s.d. a.s.e. 95% CI CP
V ar(e) 0.3 0.298 0.013 0.013 0.272 0.324 0.948
β01 0.3 0.305 0.127 0.121 0.066 0.543 0.954
γ10 1 0.998 0.040 0.040 0.919 1.077 0.943
β03 -0.05 -0.049 0.004 0.005 -0.059 -0.040 0.964
β11 0 0.008 0.125 0.122 -0.232 0.248 0.928
β21 0 -0.015 0.172 0.172 -0.352 0.322 0.959
β31 0 -0.007 0.193 0.173 -0.347 0.332 0.928
γ11 -0.05 -0.052 0.042 0.041 -0.132 0.028 0.933
γ12 0 0.006 0.056 0.057 -0.106 0.118 0.954
γ13 0 0.003 0.063 0.058 -0.110 0.116 0.918
β13 0 0.000 0.005 0.005 -0.009 0.009 0.959
β23 0 -0.001 0.007 0.007 -0.014 0.012 0.948
β33 0 0.000 0.007 0.007 -0.013 0.013 0.954
cov(u1, u1) 0.25 0.253 0.176 0.179 -0.097 0.604 0.959
cov(u1, v1) 0 -0.004 0.063 0.065 -0.130 0.123 0.959
cov(v1, v1) 0.06 0.061 0.024 0.025 0.012 0.109 0.954
cov(u1, u3) 0 0.001 0.010 0.011 -0.020 0.021 0.964
cov(v1, u3) 0 0.000 0.003 0.003 -0.006 0.006 0.974
cov(u1, u3) 0.0004 0.0004 0.0004 0.0004 -0.0003 0.0012 0.964

Note. s.d.: empirical standard deviation for the parameter estimates based
on the replications of the simulation. a.s.e.: the average standard error for the
parameter estimates. 95% CI: 95% confidence interval. CP: the 95% coverage
probability.
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Table A.15. N = 500, T = 10, M = 3, R = 85

Parameter TRUE Estimate s.d. a.s.e. 95% CI CP
V ar(e) 0.3 0.301 0.017 0.019 0.264 0.338 0.976
β01 0.3 0.331 0.141 0.146 0.044 0.617 0.941
γ10 1 0.992 0.052 0.050 0.893 1.090 0.965
β03 -0.05 -0.050 0.006 0.006 -0.061 -0.038 0.941
β11 0 0.003 0.177 0.149 -0.289 0.296 0.941
β21 0 0.004 0.207 0.207 -0.401 0.409 0.929
β31 0 0.000 0.223 0.210 -0.411 0.411 0.929
γ11 -0.05 -0.049 0.055 0.051 -0.148 0.050 0.953
γ12 0 -0.007 0.073 0.071 -0.146 0.131 0.918
γ13 0 -0.002 0.075 0.071 -0.142 0.138 0.953
β13 0 -0.001 0.007 0.006 -0.012 0.011 0.953
β23 0 0.001 0.009 0.008 -0.015 0.018 0.929
β33 0 0.001 0.009 0.008 -0.015 0.018 0.953
cov(u1, u1) 0.25 0.297 0.227 0.240 -0.172 0.767 0.976
cov(u1, v1) 0 -0.022 0.084 0.093 -0.204 0.160 0.965
cov(v1, v1) 0.06 0.069 0.035 0.037 -0.004 0.142 0.965
cov(u1, u3) 0 0.005 0.014 0.018 -0.031 0.040 1.000
cov(v1, u3) 0 -0.002 0.004 0.005 -0.012 0.008 1.000
cov(u1, u3) 0.0004 0.0006 0.0005 0.0006 -0.0006 0.0018 0.988

Note. s.d.: empirical standard deviation for the parameter estimates based
on the replications of the simulation. a.s.e.: the average standard error for the
parameter estimates. 95% CI: 95% confidence interval. CP: the 95% coverage
probability.
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Table A.16. N = 500, T = 5, M = 5, R = 198

Parameter TRUE Estimate s.d. a.s.e. 95% CI CP
V ar(e) 0.3 0.299 0.011 0.013 0.273 0.325 0.980
β01 0.3 0.302 0.080 0.081 0.143 0.460 0.955
γ10 1 1.001 0.040 0.042 0.919 1.082 0.939
β03 -0.05 -0.049 0.009 0.009 -0.068 -0.031 0.949
β11 0 0.012 0.080 0.081 -0.146 0.171 0.949
β21 0 0.007 0.111 0.114 -0.217 0.230 0.949
β31 0 -0.020 0.122 0.114 -0.243 0.204 0.934
γ11 -0.05 -0.057 0.042 0.042 -0.138 0.025 0.949
γ12 0 -0.003 0.058 0.059 -0.118 0.112 0.965
γ13 0 0.010 0.062 0.059 -0.106 0.125 0.944
β13 0 0.001 0.010 0.009 -0.017 0.020 0.919
β23 0 0.000 0.013 0.013 -0.026 0.026 0.960
β33 0 -0.002 0.014 0.013 -0.028 0.024 0.944
cov(u1, u1) 0.25 0.240 0.118 0.119 0.006 0.474 0.949
cov(u1, v1) 0 0.003 0.055 0.057 -0.109 0.115 0.944
cov(v1, v1) 0.06 0.058 0.031 0.032 -0.004 0.120 0.955
cov(u1, u3) 0 -0.001 0.012 0.013 -0.026 0.024 0.944
cov(v1, u3) 0 0.001 0.007 0.007 -0.013 0.014 0.965
cov(u1, u3) 0.0004 0.0001 0.0016 0.0017 -0.0031 0.0034 0.965

Note. s.d.: empirical standard deviation for the parameter estimates based
on the replications of the simulation. a.s.e.: the average standard error for the
parameter estimates. 95% CI: 95% confidence interval. CP: the 95% coverage
probability.
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Table A.17. N = 500, T = 5, M = 4, R = 200

Parameter TRUE Estimate s.d. a.s.e. 95% CI CP
V ar(e) 0.3 0.301 0.016 0.015 0.272 0.330 0.915
β01 0.3 0.292 0.113 0.110 0.076 0.507 0.940
γ10 1 1.002 0.056 0.054 0.896 1.108 0.940
β03 -0.05 -0.050 0.014 0.013 -0.075 -0.025 0.945
β11 0 0.007 0.110 0.111 -0.210 0.224 0.965
β21 0 0.008 0.162 0.156 -0.298 0.313 0.940
β31 0 -0.008 0.153 0.157 -0.315 0.299 0.960
γ11 -0.05 -0.055 0.055 0.054 -0.162 0.052 0.935
γ12 0 0.001 0.077 0.077 -0.149 0.151 0.940
γ13 0 0.005 0.078 0.077 -0.146 0.156 0.945
β13 0 0.001 0.012 0.013 -0.024 0.026 0.945
β23 0 -0.001 0.018 0.018 -0.036 0.034 0.950
β33 0 -0.002 0.019 0.018 -0.037 0.034 0.945
cov(u1, u1) 0.25 0.217 0.214 0.202 -0.179 0.613 0.925
cov(u1, v1) 0 0.013 0.105 0.100 -0.182 0.208 0.925
cov(v1, v1) 0.06 0.053 0.055 0.053 -0.051 0.157 0.940
cov(u1, u3) 0 -0.003 0.027 0.025 -0.053 0.046 0.920
cov(v1, u3) 0 0.002 0.013 0.013 -0.024 0.027 0.945
cov(u1, u3) 0.0004 -0.0001 0.0032 0.0032 -0.0063 0.0062 0.940

Note. s.d.: empirical standard deviation for the parameter estimates based
on the replications of the simulation. a.s.e.: the average standard error for the
parameter estimates. 95% CI: 95% confidence interval. CP: the 95% coverage
probability.
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Table A.18. N = 500, T = 5, M = 3, R = 200

Parameter TRUE Estimate s.d. a.s.e. 95% CI CP
V ar(e) 0.3 0.301 0.019 0.019 0.264 0.339 0.955
β01 0.3 0.294 0.126 0.133 0.034 0.553 0.960
γ10 1 1.000 0.059 0.063 0.876 1.124 0.970
β03 -0.05 -0.050 0.014 0.015 -0.080 -0.020 0.955
β11 0 0.006 0.132 0.133 -0.255 0.267 0.955
β21 0 0.017 0.192 0.188 -0.352 0.385 0.930
β31 0 0.012 0.188 0.189 -0.358 0.382 0.945
γ11 -0.05 -0.052 0.064 0.064 -0.177 0.072 0.955
γ12 0 -0.006 0.091 0.090 -0.182 0.171 0.940
γ13 0 -0.001 0.089 0.090 -0.178 0.176 0.935
β13 0 0.000 0.016 0.015 -0.030 0.030 0.945
β23 0 0.002 0.023 0.022 -0.041 0.044 0.960
β33 0 0.001 0.023 0.022 -0.042 0.043 0.940
cov(u1, u1) 0.25 0.195 0.267 0.274 -0.343 0.733 0.950
cov(u1, v1) 0 0.020 0.131 0.135 -0.244 0.284 0.960
cov(v1, v1) 0.06 0.052 0.068 0.070 -0.085 0.188 0.960
cov(u1, u3) 0 -0.003 0.038 0.041 -0.082 0.076 0.960
cov(v1, u3) 0 0.001 0.018 0.019 -0.036 0.038 0.960
cov(u1, u3) 0.0004 0.0002 0.0046 0.0047 -0.0091 0.0095 0.960

Note. s.d.: empirical standard deviation for the parameter estimates based
on the replications of the simulation. a.s.e.: the average standard error for the
parameter estimates. 95% CI: 95% confidence interval. CP: the 95% coverage
probability.
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Table A.19. N = 1000, T = 10, M = 10, R = 178

Parameter TRUE Estimate s.d. a.s.e. 95% CI CP
V ar(e) 0.3 0.300 0.005 0.005 0.290 0.310 0.955
β01 0.3 0.302 0.038 0.037 0.230 0.374 0.955
γ10 1 1.000 0.015 0.015 0.971 1.029 0.949
β03 -0.05 -0.050 0.001 0.001 -0.053 -0.047 0.944
β11 0 -0.003 0.036 0.036 -0.074 0.068 0.944
β21 0 0.000 0.053 0.052 -0.101 0.101 0.944
β31 0 0.000 0.051 0.052 -0.101 0.101 0.938
γ11 -0.05 -0.050 0.016 0.015 -0.079 -0.021 0.921
γ12 0 0.001 0.022 0.021 -0.040 0.042 0.955
γ13 0 0.001 0.023 0.021 -0.040 0.042 0.916
β13 0 0.000 0.001 0.001 -0.003 0.003 0.938
β23 0 0.000 0.002 0.002 -0.004 0.004 0.972
β33 0 0.000 0.002 0.002 -0.004 0.004 0.972
cov(u1, u1) 0.25 0.249 0.030 0.031 0.189 0.309 0.961
cov(u1, v1) 0 0.000 0.009 0.010 -0.019 0.019 0.978
cov(v1, v1) 0.06 0.060 0.004 0.005 0.050 0.069 0.972
cov(u1, u3) 0 0.000 0.001 0.001 -0.002 0.002 0.955
cov(v1, u3) 0 0.000 0.000 0.000 -0.001 0.001 0.972
cov(u1, u3) 0.0004 0.0004 0.0000 0.0000 0.0003 0.0005 0.949

Note. s.d.: empirical standard deviation for the parameter estimates based
on the replications of the simulation. a.s.e.: the average standard error for
the parameter estimates. 95% CI: 95% confidence interval. CP: the 95%
coverage probability.
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Table A.20. N = 1000, T = 10, M = 4, R = 199

Parameter TRUE Estimate s.d. a.s.e. 95% CI CP
V ar(e) 0.3 0.299 0.010 0.009 0.281 0.318 0.940
β01 0.3 0.306 0.085 0.085 0.139 0.472 0.935
γ10 1 0.996 0.028 0.028 0.940 1.051 0.940
β03 -0.05 -0.050 0.003 0.003 -0.056 -0.043 0.935
β11 0 -0.004 0.094 0.085 -0.171 0.163 0.925
β21 0 -0.006 0.118 0.120 -0.242 0.230 0.945
β31 0 0.012 0.126 0.121 -0.226 0.250 0.955
γ11 -0.05 -0.047 0.030 0.028 -0.103 0.009 0.915
γ12 0 0.003 0.037 0.040 -0.076 0.081 0.960
γ13 0 -0.007 0.039 0.040 -0.086 0.072 0.970
β13 0 0.000 0.003 0.003 -0.007 0.006 0.940
β23 0 0.000 0.005 0.005 -0.009 0.009 0.930
β33 0 0.001 0.005 0.005 -0.008 0.010 0.975
cov(u1, u1) 0.25 0.232 0.125 0.123 -0.009 0.473 0.930
cov(u1, v1) 0 0.006 0.046 0.045 -0.082 0.093 0.925
cov(v1, v1) 0.06 0.057 0.018 0.017 0.023 0.090 0.925
cov(u1, u3) 0 0.000 0.007 0.007 -0.014 0.015 0.955
cov(v1, u3) 0 0.000 0.002 0.002 -0.004 0.004 0.935
cov(u1, u3) 0.0004 0.0004 0.0003 0.0003 -0.0001 0.0009 0.965

Note. s.d.: empirical standard deviation for the parameter estimates based
on the replications of the simulation. a.s.e.: the average standard error for the
parameter estimates. 95% CI: 95% confidence interval. CP: the 95% coverage
probability.

A.2 Simulation results for the random coefficient LDSM
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Table A.21. N = 1000, T = 10, M = 3, R = 115

Parameter TRUE Estimate s.d. a.s.e. 95% CI CP
V ar(e) 0.3 0.298 0.013 0.013 0.272 0.324 0.957
β01 0.3 0.305 0.107 0.102 0.105 0.504 0.948
γ10 1 0.998 0.038 0.035 0.930 1.066 0.939
β03 -0.05 -0.050 0.005 0.004 -0.058 -0.042 0.913
β11 0 0.000 0.115 0.103 -0.201 0.202 0.913
β21 0 0.001 0.137 0.144 -0.281 0.284 0.939
β31 0 -0.005 0.136 0.145 -0.290 0.279 0.965
γ11 -0.05 -0.052 0.039 0.035 -0.120 0.017 0.904
γ12 0 -0.002 0.049 0.049 -0.098 0.095 0.939
γ13 0 0.005 0.048 0.050 -0.092 0.102 0.939
β13 0 0.000 0.005 0.004 -0.008 0.008 0.904
β23 0 0.001 0.006 0.006 -0.011 0.012 0.957
β33 0 -0.001 0.007 0.006 -0.012 0.011 0.930
cov(u1, u1) 0.25 0.246 0.153 0.165 -0.079 0.570 0.957
cov(u1, v1) 0 0.002 0.058 0.064 -0.124 0.127 0.983
cov(v1, v1) 0.06 0.061 0.025 0.026 0.010 0.112 0.974
cov(u1, u3) 0 0.000 0.011 0.013 -0.025 0.025 0.974
cov(v1, u3) 0 0.000 0.003 0.004 -0.007 0.007 0.974
cov(u1, u3) 0.0004 0.0005 0.0004 0.0004 -0.0004 0.0013 0.974

Note. s.d.: empirical standard deviation for the parameter estimates based
on the replications of the simulation. a.s.e.: the average standard error for the
parameter estimates. 95% CI: 95% confidence interval. CP: the 95% coverage
probability.
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Table A.22. N = 1000, T = 5, M = 5, R = 198

Parameter TRUE Estimate s.d. a.s.e. 95% CI CP
V ar(e) 0.3 0.299 0.009 0.009 0.281 0.318 0.960
β01 0.3 0.299 0.053 0.057 0.187 0.411 0.960
γ10 1 1.000 0.028 0.029 0.942 1.058 0.955
β03 -0.05 -0.050 0.006 0.007 -0.063 -0.037 0.955
β11 0 -0.005 0.056 0.057 -0.117 0.106 0.949
β21 0 0.009 0.077 0.081 -0.149 0.167 0.980
β31 0 0.008 0.084 0.081 -0.150 0.167 0.944
γ11 -0.05 -0.049 0.029 0.029 -0.107 0.009 0.980
γ12 0 -0.001 0.040 0.042 -0.083 0.080 0.970
γ13 0 -0.005 0.041 0.042 -0.087 0.077 0.955
β13 0 0.000 0.006 0.007 -0.013 0.013 0.949
β23 0 0.000 0.009 0.009 -0.018 0.019 0.975
β33 0 0.001 0.009 0.009 -0.017 0.019 0.949
cov(u1, u1) 0.25 0.246 0.087 0.085 0.080 0.412 0.944
cov(u1, v1) 0 0.000 0.040 0.041 -0.080 0.079 0.960
cov(v1, v1) 0.06 0.060 0.022 0.023 0.015 0.104 0.949
cov(u1, u3) 0 0.000 0.009 0.009 -0.018 0.017 0.960
cov(v1, u3) 0 0.000 0.005 0.005 -0.010 0.010 0.939
cov(u1, u3) 0.0004 0.0004 0.0011 0.0012 -0.0019 0.0027 0.949

Note. s.d.: empirical standard deviation for the parameter estimates based
on the replications of the simulation. a.s.e.: the average standard error for the
parameter estimates. 95% CI: 95% confidence interval. CP: the 95% coverage
probability.
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Table A.23. N = 1000, T = 5, M = 4, R = 200

Parameter TRUE Estimate s.d. a.s.e. 95% CI CP
V ar(e) 0.3 0.300 0.012 0.010 0.280 0.321 0.945
β01 0.3 0.301 0.072 0.078 0.148 0.453 0.970
γ10 1 1.001 0.036 0.038 0.926 1.076 0.960
β03 -0.05 -0.050 0.008 0.009 -0.068 -0.032 0.970
β11 0 0.011 0.082 0.078 -0.142 0.164 0.945
β21 0 0.003 0.098 0.110 -0.213 0.219 0.980
β31 0 -0.011 0.123 0.110 -0.228 0.205 0.930
γ11 -0.05 -0.054 0.039 0.038 -0.129 0.021 0.950
γ12 0 -0.002 0.049 0.054 -0.108 0.104 0.975
γ13 0 0.006 0.057 0.054 -0.100 0.113 0.945
β13 0 0.001 0.009 0.009 -0.017 0.019 0.955
β23 0 0.000 0.011 0.013 -0.025 0.025 0.975
β33 0 -0.001 0.013 0.013 -0.026 0.024 0.940
cov(u1, u1) 0.25 0.230 0.143 0.144 -0.052 0.511 0.955
cov(u1, v1) 0 0.007 0.073 0.071 -0.132 0.145 0.945
cov(v1, v1) 0.06 0.058 0.038 0.038 -0.016 0.132 0.950
cov(u1, u3) 0 -0.002 0.017 0.018 -0.037 0.033 0.960
cov(v1, u3) 0 0.000 0.009 0.009 -0.017 0.018 0.950
cov(u1, u3) 0.0004 0.0003 0.0022 0.0023 -0.0042 0.0047 0.945

Note. s.d.: empirical standard deviation for the parameter estimates based
on the replications of the simulation. a.s.e.: the average standard error for the
parameter estimates. 95% CI: 95% confidence interval. CP: the 95% coverage
probability.
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Table A.24. N = 1000, T = 5, M = 3, R = 198

Parameter TRUE Estimate s.d. a.s.e. 95% CI CP
V ar(e) 0.3 0.300 0.013 0.013 0.274 0.326 0.945
β01 0.3 0.298 0.090 0.095 0.112 0.484 0.975
γ10 1 1.000 0.043 0.045 0.911 1.089 0.980
β03 -0.05 -0.049 0.010 0.011 -0.071 -0.028 0.970
β11 0 -0.004 0.091 0.095 -0.191 0.183 0.960
β21 0 0.000 0.125 0.134 -0.263 0.262 0.965
β31 0 0.013 0.140 0.135 -0.251 0.276 0.930
γ11 -0.05 -0.046 0.046 0.045 -0.135 0.043 0.945
γ12 0 -0.002 0.062 0.064 -0.127 0.123 0.955
γ13 0 -0.008 0.070 0.064 -0.133 0.118 0.925
β13 0 -0.001 0.011 0.011 -0.022 0.021 0.950
β23 0 0.000 0.014 0.015 -0.030 0.030 0.955
β33 0 0.002 0.016 0.015 -0.028 0.032 0.920
cov(u1, u1) 0.25 0.239 0.214 0.197 -0.147 0.624 0.930
cov(u1, v1) 0 0.005 0.102 0.096 -0.183 0.194 0.945
cov(v1, v1) 0.06 0.057 0.051 0.050 -0.040 0.154 0.950
cov(u1, u3) 0 0.000 0.031 0.029 -0.057 0.056 0.955
cov(v1, u3) 0 0.000 0.014 0.013 -0.026 0.027 0.960
cov(u1, u3) 0.0004 0.0004 0.0035 0.0034 -0.0062 0.0070 0.960

Note. s.d.: empirical standard deviation for the parameter estimates based
on the replications of the simulation. a.s.e.: the average standard error for the
parameter estimates. 95% CI: 95% confidence interval. CP: the 95% coverage
probability.
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Table A.25. Simulation results with N=100 and T=10

TRUE Estimate s.d. a.s.e. 95% CI CP

10
-1

0

µ0 2 1.99708 0.07595 0.07738 1.84598 2.14966 0.956
β0 0.15 0.14993 0.00354 0.00370 0.14267 0.15718 0.956
β1 -0.001 -0.00995 0.00360 0.00364 -0.01709 -0.00281 0.963
β2 0 0.00021 0.00539 0.00503 -0.00966 0.01011 0.938
β3 0 0.00004 0.00585 0.00517 -0.01014 0.01019 0.900
σ2
e 0.5 0.50105 0.02485 0.02423 0.45579 0.55067 0.938
σ2

0 0.5 0.51993 0.08724 0.07963 0.38571 0.69666 0.900
d2 0.0001 0.00011 0.00004 0.00005 0.00005 0.00025 0.994

10
-3

µ0 2 2.02027 0.12772 0.11745 1.79806 2.25864 0.919
β0 0.15 0.14777 0.01375 0.01292 0.12272 0.17339 0.927
β1 -0.001 -0.00857 0.01056 0.00978 -0.02781 0.01070 0.951
β2 0 0.00141 0.01411 0.01360 -0.02517 0.02814 0.943
β3 0 -0.00170 0.01560 0.01393 -0.02912 0.02558 0.935
σ2
e 0.5 0.50362 0.05719 0.05145 0.41258 0.61392 0.927
σ2

0 0.5 0.51581 0.10207 0.09878 0.35121 0.73674 0.959
d2 0.0001 0.00018 0.00007 0.00020 0.00005 0.00074 1.000

10
-2

µ0 2 2.01767 0.14182 0.13740 1.76066 2.29922 0.933
β0 0.15 0.15047 0.01478 0.01611 0.11927 0.18240 0.942
β1 -0.001 -0.00982 0.01283 0.01120 -0.03174 0.01222 0.913
β2 0 -0.00049 0.01378 0.01533 -0.03055 0.02970 0.962
β3 0 0.00044 0.01837 0.01612 -0.03113 0.03220 0.904
σ2
e 0.5 0.49752 0.06869 0.07230 0.37545 0.65790 0.933
σ2

0 0.5 0.51385 0.10268 0.11136 0.33008 0.76557 0.952
d2 0.0001 0.00020 0.00014 0.00026 0.00005 0.00096 1.000

Note. s.d.: empirical standard deviation for the parameter estimates based on
the replications of the simulation. a.s.e.: the average standard error for the
parameter estimates. 95% CI: 95% confidence interval. CP: the 95% coverage
probability.
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Table A.26. Simulation results with N=100 and T=5

TRUE Estimate s.d. a.s.e. 95% CI CP

5-
5

µ0 2 2.01152 0.08119 0.08537 1.84603 2.18098 0.939
β0 0.15 0.14895 0.01166 0.01257 0.12449 0.17383 0.962
β1 -0.001 -0.01163 0.01268 0.01177 -0.03455 0.01142 0.939
β2 0 0.00170 0.01672 0.01642 -0.03056 0.03382 0.947
β3 0 0.00136 0.01864 0.01679 -0.03150 0.03434 0.931
σ2
e 0.5 0.50624 0.03527 0.03646 0.43969 0.58245 0.962
σ2

0 0.5 0.50427 0.08632 0.08469 0.36144 0.69233 0.939
d2 0.0001 0.00019 0.00009 0.00025 0.00005 0.00092 1.000

5-
3

µ0 2 2.01966 0.09953 0.10416 1.82064 2.22839 0.977
β0 0.15 0.14988 0.02544 0.02183 0.10759 0.19202 0.886
β1 -0.001 -0.01272 0.02086 0.01992 -0.05198 0.02550 0.886
β2 0 0.00332 0.02809 0.02588 -0.04748 0.05341 0.932
β3 0 0.00777 0.03224 0.02788 -0.04732 0.06245 0.909
σ2
e 0.5 0.49966 0.05417 0.05124 0.40914 0.60971 0.955
σ2

0 0.5 0.49803 0.09721 0.09512 0.33833 0.70945 0.932
d2 0.0001 0.00026 0.00013 0.00049 0.00005 0.00163 1.000

5-
2

µ0 2 2.01966 0.09953 0.10416 1.82064 2.22839 0.977
β0 0.15 0.14988 0.02544 0.02183 0.10759 0.19202 0.886
β1 -0.001 -0.01272 0.02086 0.01992 -0.05198 0.02550 0.886
β2 0 0.00332 0.02809 0.02588 -0.04748 0.05341 0.932
β3 0 0.00777 0.03224 0.02788 -0.04732 0.06245 0.909
σ2
e 0.5 0.49966 0.05417 0.05124 0.40914 0.60971 0.955
σ2

0 0.5 0.49803 0.09721 0.09512 0.33833 0.70945 0.932
d2 0.0001 0.00026 0.00013 0.00049 0.00005 0.00163 1.000

Note. s.d.: empirical standard deviation for the parameter estimates based on
the replications of the simulation. a.s.e.: the average standard error for the
parameter estimates. 95% CI: 95% confidence interval. CP: the 95% coverage
probability.



136

Table A.27. Simulation results with N=200 and T=10

TRUE Estimate s.d. a.s.e. 95% CI CP

10
-1

0

µ0 2 2.00164 0.05151 0.05408 1.89599 2.10804 0.965
β0 0.15 0.15005 0.00246 0.00255 0.14503 0.15505 0.936
β1 -0.001 -0.00995 0.00231 0.00250 -0.01484 -0.00503 0.971
β2 0 0.00009 0.00351 0.00348 -0.00672 0.00693 0.965
β3 0 0.00018 0.00348 0.00353 -0.00675 0.00710 0.971
σ2
e 0.5 0.50236 0.01802 0.01718 0.46978 0.53709 0.959
σ2

0 0.5 0.50413 0.04917 0.05389 0.40890 0.61978 0.971
d2 0.0001 0.00010 0.00002 0.00004 0.00005 0.00019 1.000

10
-3

µ0 2 2.00332 0.08483 0.08149 1.84729 2.16657 0.930
β0 0.15 0.14941 0.00937 0.00895 0.13187 0.16720 0.945
β1 -0.001 -0.01041 0.00654 0.00673 -0.02360 0.00270 0.969
β2 0 -0.00016 0.00855 0.00960 -0.01897 0.01877 0.992
β3 0 0.00094 0.00881 0.00965 -0.01800 0.01983 0.977
σ2
e 0.5 0.49809 0.03851 0.03571 0.43294 0.57283 0.945
σ2

0 0.5 0.50337 0.06526 0.06656 0.38658 0.64689 0.977
d2 0.0001 0.00016 0.00007 0.00015 0.00005 0.00059 1.000

10
-2

µ0 2 2.01177 0.09804 0.09582 1.83047 2.20539 0.943
β0 0.15 0.14895 0.01165 0.01093 0.12772 0.17044 0.952
β1 -0.001 -0.00995 0.00843 0.00761 -0.02493 0.00499 0.905
β2 0 0.00075 0.01088 0.01055 -0.01982 0.02145 0.943
β3 0 0.00003 0.01069 0.01071 -0.02100 0.02104 0.971
σ2
e 0.5 0.50771 0.04836 0.05139 0.41687 0.61792 0.952
σ2

0 0.5 0.50345 0.06954 0.07547 0.37193 0.66751 0.962
d2 0.0001 0.00017 0.00008 0.00017 0.00005 0.00066 1.000

Note. s.d.: empirical standard deviation for the parameter estimates based on
the replications of the simulation. a.s.e.: the average standard error for the
parameter estimates. 95% CI: 95% confidence interval. CP: the 95% coverage
probability.
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Table A.28. Simulation results with N=200 and T=5

TRUE Estimate s.d. a.s.e. 95% CI CP

5-
5

µ0 2 1.99993 0.06334 0.05981 1.88342 2.11801 0.933
β0 0.15 0.14911 0.00854 0.00887 0.13183 0.16666 0.956
β1 -0.001 -0.00901 0.00834 0.00819 -0.02498 0.00706 0.941
β2 0 0.00106 0.01003 0.01148 -0.02146 0.02364 0.970
β3 0 -0.00035 0.01153 0.01164 -0.02337 0.02243 0.933
σ2
e 0.5 0.50101 0.02675 0.02539 0.45358 0.55307 0.948
σ2

0 0.5 0.49173 0.05555 0.05754 0.39014 0.61522 0.948
d2 0.0001 0.00017 0.00007 0.00018 0.00005 0.00069 1.000

5-
3

µ0 2 2.00743 0.06895 0.07494 1.86256 2.15572 0.949
β0 0.15 0.15163 0.01484 0.01593 0.12089 0.18306 0.949
β1 -0.001 -0.00912 0.01493 0.01304 -0.03454 0.01672 0.881
β2 0 -0.00261 0.01668 0.01830 -0.03807 0.03335 0.966
β3 0 0.00031 0.01815 0.01884 -0.03684 0.03725 0.932
σ2
e 0.5 0.49707 0.03422 0.03569 0.43185 0.57166 1.000
σ2

0 0.5 0.50139 0.06834 0.06688 0.38349 0.64517 0.949
d2 0.0001 0.00022 0.00016 0.00033 0.00005 0.00115 1.000

5-
2

µ0 2 2.03651 0.09669 0.09150 1.86299 2.21890 0.848
β0 0.15 0.14547 0.02300 0.02192 0.10332 0.18714 0.879
β1 -0.001 -0.01619 0.01609 0.01612 -0.04776 0.01427 0.909
β2 0 -0.00457 0.02983 0.02311 -0.04978 0.04073 0.879
β3 0 0.00576 0.02359 0.02358 -0.03973 0.05113 0.970
σ2
e 0.5 0.50490 0.04590 0.05126 0.41427 0.61481 0.939
σ2

0 0.5 0.50971 0.06259 0.07907 0.37082 0.68022 1.000
d2 0.0001 0.00027 0.00015 0.00046 0.00005 0.00162 1.000

Note. s.d.: empirical standard deviation for the parameter estimates based on
the replications of the simulation. a.s.e.: the average standard error for the
parameter estimates. 95% CI: 95% confidence interval. CP: the 95% coverage
probability.
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Table A.29. Simulation results with N=500 and T=10

TRUE Estimate s.d. a.s.e. 95% CI CP

10
-1

0

µ0 2 1.99946 0.03401 0.03411 1.93275 2.06644 0.951
β0 0.15 0.14985 0.00154 0.00160 0.14670 0.15297 0.957
β1 -0.001 -0.01003 0.00154 0.00155 -0.01306 -0.00700 0.939
β2 0 -0.00007 0.00207 0.00218 -0.00434 0.00420 0.982
β3 0 -0.00014 0.00219 0.00219 -0.00444 0.00416 0.945
σ2
e 0.5 0.50119 0.01069 0.01087 0.48029 0.52288 0.945
σ2

0 0.5 0.49995 0.03235 0.03351 0.43838 0.56961 0.957
d2 0.0001 0.00010 0.00002 0.00003 0.00006 0.00016 0.982

10
-3

µ0 2 1.99232 0.04893 0.05124 1.89377 2.09468 0.953
β0 0.15 0.15002 0.00552 0.00559 0.13907 0.16098 0.953
β1 -0.001 -0.01019 0.00426 0.00421 -0.01843 -0.00196 0.925
β2 0 -0.00021 0.00579 0.00587 -0.01172 0.01129 0.981
β3 0 0.00003 0.00644 0.00596 -0.01161 0.01168 0.935
σ2
e 0.5 0.50547 0.02105 0.02274 0.46283 0.55192 0.953
σ2

0 0.5 0.49617 0.03949 0.04110 0.42100 0.58194 0.953
d2 0.0001 0.00013 0.00008 0.00009 0.00005 0.00037 0.991

10
-2

µ0 2 2.00768 0.06201 0.05993 1.89290 2.12731 0.940
β0 0.15 0.14983 0.00730 0.00683 0.13649 0.16322 0.950
β1 -0.001 -0.01001 0.00537 0.00460 -0.01899 -0.00095 0.930
β2 0 -0.00079 0.00611 0.00653 -0.01362 0.01201 0.970
β3 0 -0.00021 0.00669 0.00653 -0.01306 0.01260 0.980
σ2
e 0.5 0.50342 0.02734 0.03196 0.44461 0.56980 0.990
σ2

0 0.5 0.49973 0.04582 0.04670 0.41433 0.59726 0.980
d2 0.0001 0.00015 0.00009 0.00012 0.00005 0.00048 1.000

Note. s.d.: empirical standard deviation for the parameter estimates based on
the replications of the simulation. a.s.e.: the average standard error for the
parameter estimates. 95% CI: 95% confidence interval. CP: the 95% coverage
probability.
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Table A.30. Simulation results with N=500 and T=5

TRUE Estimate s.d. a.s.e. 95% CI CP

5-
5

µ0 2 2.00177 0.03673 0.03803 1.92767 2.07666 0.971
β0 0.15 0.15030 0.00601 0.00548 0.13965 0.16125 0.942
β1 -0.001 -0.01056 0.00532 0.00509 -0.02049 -0.00051 0.942
β2 0 -0.00145 0.00785 0.00723 -0.01569 0.01261 0.933
β3 0 0.00061 0.00799 0.00728 -0.01370 0.01484 0.923
σ2
e 0.5 0.49970 0.01754 0.01598 0.46932 0.53196 0.894
σ2

0 0.5 0.50383 0.03853 0.03681 0.43606 0.58023 0.962
d2 0.0001 0.00014 0.00004 0.00012 0.00005 0.00047 1.000

5-
3

µ0 2 2.01247 0.05186 0.04680 1.92188 2.10506 0.933
β0 0.15 0.14992 0.01045 0.01008 0.13051 0.16977 0.933
β1 -0.001 -0.01047 0.00799 0.00827 -0.02702 0.00572 0.978
β2 0 -0.00198 0.01196 0.01172 -0.02440 0.02137 0.956
β3 0 -0.00007 0.01315 0.01172 -0.02336 0.02286 0.911
σ2
e 0.5 0.49967 0.02436 0.02258 0.45733 0.54592 0.933
σ2

0 0.5 0.50177 0.04626 0.04171 0.42521 0.58856 0.933
d2 0.0001 0.00027 0.00046 0.00026 0.00007 0.00099 0.956

5-
2

µ0 2 2.02090 0.06289 0.05771 1.91042 2.13534 0.857
β0 0.15 0.14428 0.01541 0.01339 0.11857 0.17036 0.886
β1 -0.001 -0.00742 0.01249 0.01025 -0.02729 0.01309 0.886
β2 0 0.00472 0.01184 0.01376 -0.02239 0.03201 0.971
β3 0 -0.00400 0.01793 0.01453 -0.03198 0.02453 0.829
σ2
e 0.5 0.50219 0.03694 0.03203 0.44328 0.56885 0.914
σ2

0 0.5 0.50678 0.04403 0.04963 0.41615 0.61041 0.971
d2 0.0001 0.00033 0.00055 0.00032 0.00006 0.00126 0.971

Note. s.d.: empirical standard deviation for the parameter estimates based on
the replications of the simulation. a.s.e.: the average standard error for the
parameter estimates. 95% CI: 95% confidence interval. CP: the 95% coverage
probability.
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Table A.31. Simulation results with N=1000 and T=10

TRUE Estimate s.d. a.s.e. 95% CI CP

10
-1

0

µ0 2 1.99884 0.02463 0.02416 1.95156 2.04631 0.958
β0 0.15 0.15002 0.00109 0.00113 0.14779 0.15222 0.958
β1 -0.001 -0.01002 0.00121 0.00109 -0.01216 -0.00788 0.934
β2 0 -0.00014 0.00152 0.00153 -0.00314 0.00287 0.952
β3 0 -0.00022 0.00155 0.00154 -0.00325 0.00280 0.940
σ2
e 0.5 0.50087 0.00788 0.00771 0.48596 0.51619 0.958
σ2

0 0.5 0.50184 0.02383 0.02374 0.45733 0.55035 0.970
d2 0.0001 0.00010 0.00002 0.00002 0.00006 0.00014 0.952

10
-3

µ0 2 2.00033 0.03669 0.03645 1.92981 2.07253 0.950
β0 0.15 0.15000 0.00414 0.00398 0.14219 0.15786 0.960
β1 -0.001 -0.01015 0.00269 0.00295 -0.01599 -0.00437 0.980
β2 0 -0.00030 0.00433 0.00414 -0.00839 0.00779 0.910
β3 0 -0.00017 0.00396 0.00418 -0.00836 0.00796 0.980
σ2
e 0.5 0.50020 0.01679 0.01590 0.47004 0.53232 0.950
σ2

0 0.5 0.50662 0.02686 0.02950 0.45142 0.56706 0.950
d2 0.0001 0.00012 0.00004 0.00007 0.00005 0.00029 1.000

10
-2

µ0 2 1.99790 0.03932 0.04251 1.91575 2.08208 0.947
β0 0.15 0.15050 0.00481 0.00480 0.14122 0.15993 0.958
β1 -0.001 -0.00991 0.00360 0.00326 -0.01627 -0.00354 0.905
β2 0 -0.00017 0.00438 0.00454 -0.00903 0.00877 0.958
β3 0 0.00027 0.00487 0.00458 -0.00870 0.00926 0.937
σ2
e 0.5 0.50264 0.02163 0.02249 0.46047 0.54855 0.958
σ2

0 0.5 0.49844 0.03345 0.03284 0.43732 0.56585 0.947
d2 0.0001 0.00012 0.00005 0.00007 0.00005 0.00033 1.000

Note. s.d.: empirical standard deviation for the parameter estimates based on
the replications of the simulation. a.s.e.: the average standard error for the
parameter estimates. 95% CI: 95% confidence interval. CP: the 95% coverage
probability.
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Table A.32. Simulation results with N=1000 and T=5

TRUE Estimate s.d. a.s.e. 95% CI CP

5-
5

µ0 2 2.00163 0.02529 0.02684 1.94911 2.05437 0.978
β0 0.15 0.15043 0.00389 0.00386 0.14293 0.15807 0.912
β1 -0.001 -0.01007 0.00387 0.00357 -0.01708 -0.00305 0.956
β2 0 -0.00011 0.00472 0.00505 -0.01000 0.00975 0.956
β3 0 0.00060 0.00502 0.00506 -0.00937 0.01046 0.934
σ2
e 0.5 0.50116 0.01032 0.01134 0.47938 0.52380 0.967
σ2

0 0.5 0.49894 0.02165 0.02573 0.45064 0.55147 0.978
d2 0.0001 0.00014 0.00005 0.00009 0.00005 0.00040 1.000

5-
3

µ0 2 2.00031 0.03307 0.03292 1.93646 2.06549 0.909
β0 0.15 0.14792 0.00842 0.00689 0.13416 0.16123 0.879
β1 -0.001 -0.00885 0.00516 0.00561 -0.01988 0.00217 0.939
β2 0 0.00203 0.00846 0.00812 -0.01402 0.01770 0.939
β3 0 -0.00139 0.00763 0.00824 -0.01744 0.01470 0.970
σ2
e 0.5 0.49772 0.01334 0.01580 0.46776 0.52963 1.000
σ2

0 0.5 0.50570 0.03479 0.02946 0.45059 0.56593 0.879
d2 0.0001 0.00015 0.00006 0.00014 0.00005 0.00055 1.000

5-
2

µ0 2 1.99589 0.04328 0.03872 1.92036 2.07147 0.880
β0 0.15 0.15259 0.01015 0.00902 0.13578 0.17094 0.920
β1 -0.001 -0.00880 0.00686 0.00690 -0.02241 0.00467 0.960
β2 0 -0.00064 0.00810 0.00971 -0.01966 0.01808 1.000
β3 0 -0.00251 0.01064 0.01014 -0.02229 0.01763 0.920
σ2
e 0.5 0.49863 0.02771 0.02236 0.45677 0.54434 0.920
σ2

0 0.5 0.49362 0.04402 0.03309 0.43178 0.56135 0.960
d2 0.0001 0.00017 0.00006 0.00016 0.00005 0.00064 1.000

Note. s.d.: empirical standard deviation for the parameter estimates based on
the replications of the simulation. a.s.e.: the average standard error for the
parameter estimates. 95% CI: 95% confidence interval. CP: the 95% coverage
probability.
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B. Scripts and Codes
B.1 R codes for simulation

B.1.1 R codes for simulating the quadratic growth rate model
## Set working directory
setwd("D:/zzy/research/Dissertation/Simulation/simplerate")

library(mvtnorm)
mub<-c(.3, -.05, 0)
covb<-array(c(.25, 0, 0, 0, .0004, 0, 0, 0, .06), dim=c(3,3))
gamma<-c(1, -.05, 0)
sige<-sqrt(.3)
quad.gen<-function(N, T, M){
y<-array(,dim=c(N,T))
x<-array(,dim=c(N,2))
MY<-array(9999, dim=c(N,T))
for (i in 1:N){
## Generate b_i
x[i,2]<-rbinom(1,1,.5)
x[i,1]<-rnorm(1)
lsq<-rmvnorm(1, mub, covb)
for (t1 in 1:T){

## generate data
r<-gamma[1]+gamma[2]*x[i,1]+gamma[3]*x[i,2]+lsq[3]
y[i,t1]<-lsq[1]+r*t1+lsq[2]*(t1*t1-2*t1)+rnorm(1,0,sige)

}
start<-sample(1:(T-M+1),1)
MY[i, start:(start+M-1)]<-y[i, start:(start+M-1)]

}
Y<-cbind(MY, x)
Y
}

ptm <- proc.time()
N<-100
T<-10
M<-2
R<-200
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resfile<-paste("res-",N,"-",T,"-",M,".txt", sep="")
for (i in 1:R){

write.table(quad.gen(N,T,M), "quad_sim.txt",
row.names=F, col.names=F)

for (j in 1:10){
cmd.quad<-paste("c:/programs/mplus/mplus ",

"rate", j, ".inp out1.out", sep="")
system(cmd.quad,invisible = TRUE)
if (file.exists("quadest.txt")){

results<-scan("quadest.txt", quiet=TRUE)
cat(c(i,j))
cat("\n")
cat(c(i,j,results), file=resfile, append=T)
unlink("quadest.txt")

}else{
cat(c(i,j))
cat("\n")
cat(c(i,j,9999), file=resfile, append=T)

}
cat("\n", file=resfile, append=T)

}
}
proc.time()-ptm

## Function to process the simulation results
proc.res<-function(resfile){
par.true<-c(.3, .3, 1, -.05, 0, 0, 0, -.05, 0, 0, 0,

0, 0, .25, 0, .06, 0, 0, .0004)
results<-read.table(resfile)
ndim<-dim(results)
stat<-t(array(rep(c(N,T,M, ndim[1]/10),19), dim=c(4,19)))
stat<-cbind(par.true,stat)
for (j in 1:10){

temp<-results[results[,2]==j,]
temp.stat<-NULL
for (i in 3:21){
est<-temp[,i]
sdest<-temp[,(19+i)]
low.ci<-est-1.96*sdest
up.ci<-est+1.96*sdest
coverage<-(up.ci>par.true[i-2]) & (low.ci<par.true[i-2])
cvg.low<-(low.ci>par.true[i-2])
cvg.up<-(up.ci<par.true[i-2])
temp2<-cbind(temp[,2],est,sdest,low.ci,up.ci,
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coverage,cvg.low,cvg.up)
temp.stat<-c(temp.stat,apply(temp2, 2, mean))
}
stat<-cbind(stat, t(array(temp.stat, dim=c(8,19))))

}
write.table(stat, "stat.txt",row.names=F, col.names=F, sep=’,’)
}

proc.res(resfile)

B.1.2 R codes for simulating the random coefficient LDSM model
library(mvtnorm)
library(coda)

## Function to generate data
ldsm.gen<-function(N, T, M){
## N: sample size
## T: No. of occasions
# Mean of the initial level
mu0<-c(2,0)
# Covariance matrix of the initial level and rate of growth
sig0<-array(c(.5,0,0,.0001),dim=c(2,2))
# standard deviaiton of the residual errors
sige<-sqrt(.5)
beta<-c(.15, -.01, 0)
y<-array(,dim=c(N,T))
Y<-array(,dim=c(N,T))
x<-array(,dim=c(N,2))
MY<-array(NA, dim=c(N,T))
b<-rep(0,N)
for (i in 1:N){
## Generate b_i
x[i,2]<-rbinom(1,1,.5)
x[i,1]<-rnorm(1)
yb<-rmvnorm(1,mu0,sig0)
y[i,1]<-yb[1]
b[i]<-beta[1]+beta[2]*x[i,1]+beta[3]*x[i,2]+yb[2]
for (t1 in 2:T){
## generate data
y[i,t1]<-(1+b[i])*y[i,t1-1]

}
}
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for (i in 1:N){
for (t1 in 1:T){

Y[i,t1]<-y[i,t1]+rnorm(1,0,sige)
}
start<-sample(1:(T-M+1),1)
MY[i, start:(start+M-1)]=Y[i, start:(start+M-1)]

}
X<-cbind(MY, x)
X
}

## Set the sample size and number of occasions
N<-100
T<-10
M<-10

## Data file name
datafile<-paste("data-",N,"-",T,"-",M,".txt", sep="")
## results file name
resfile<-paste("res-",N,"-",T,"-",M,".txt", sep="")
## batch file name
batch<-paste("batch-",N,"-",T,"-",M,".cmd", sep="")
## command to run JAGS
cmd.jags<-paste("/share/apps/contrib/JAGS-1.0.1/bin/jags

<", batch, sep="")

## Write the batch file to run JAGS
coda<-paste( "coda *, stem(\"", N,"-",T,"-",M,"\")\n", sep="" )
cat("model in ldsm.bug\n", file=batch)
cat("data in ", datafile, "\n", file=batch, append=T)
cat("compile\n", file=batch, append=T)
cat("inits in ini.R\n", file=batch, append=T)
cat("initialize\n", file=batch, append=T)
cat("update 10000\n", file=batch, append=T)
cat("monitor set par\n", file=batch, append=T)
cat("update 10000\n", file=batch, append=T)
cat(coda, file=batch, append=T)

for (b in 1:201){
X<-ldsm.gen(N, T, M)
dump("N", file=datafile)
dump("T", file=datafile, append=T)
dump("X", file=datafile, append=T)
system(cmd.jags)
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codaindex<-paste( N, "-", T, "-", M,"index.txt", sep="")
codadata<-paste( N, "-", T, "-", M,"chain1.txt", sep="")

data<-read.coda(codadata, codaindex)
res<-summary(data)
cat(c(b,t(cbind(res$statistics, res$quantiles))),

file=resfile, append=T)
cat("\n", file=resfile, append=T)

## Calculate the coverage probability

cov.fun<-function(para,lower,upper){
ndim<-dim(lower)
cov.prob<-NULL
for (i in 1:ndim[2]){
cov.prob<-c(cov.prob, sum(lower[,i]<para[i] &

para[i]<upper[,i])/ndim[1])
}
cov.prob
}

## original results
proc.res<-function(){

res<-read.table(resfile)
coverage<-cov.fun(c(2,.15,-.01,0,0, 0.5,.5, .0001),

res[,c(6,15,24,33,42,51,60,69)],
res[,c(10,19,28,37,46,55,64,73)])

cbind(mean(res[,c(2,11,20,29,38,47,56,65)]),
sd(res[,c(2,11,20,29,38,47,56,65)]),
mean(res[,c(3,12,21,30,39,48,57,66)]),
mean(res[,c(6,15,24,33,42,51,60,69)]),
mean(res[,c(10,19,28,37,46,55,64,73)]), coverage)

}
}

B.2 An example script for quadratic growth rate models
TITLE: Growth Rate Model for Age 15
DATA:

FILE IS "quad_sim.txt";
VARIABLE:

NAMES ARE math1-math10 bpi gender;
USEVARIABLES ARE
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math1-math10 bpi gender bsex;
missing=all(9999);

DEFINE:
bsex=bpi*gender;

ANALYSIS: TYPE = mean; !MISS;
ESTIMATOR = ML;
ITERATIONS = 2000;

COVERAGE = .00;
MODEL:

level BY math1@1;
level BY math2@1;
level BY math3@1;
level BY math4@1;
level BY math5@1;
level BY math6@1;
level BY math7@1;
level BY math8@1;
level BY math9@1;
level BY math10@1;

slope BY math1@1;
slope BY math2@2;
slope BY math3@3;
slope BY math4@4;
slope BY math5@5;
slope BY math6@6;
slope BY math7@7;
slope BY math8@8;
slope BY math9@9;
slope BY math10@10;

qslope BY math1@-1;
qslope BY math2@0;
qslope BY math3@3;
qslope BY math4@8;
qslope BY math5@15;
qslope BY math6@24;
qslope BY math7@35;
qslope BY math8@48;
qslope BY math9@63;
qslope BY math10@80;

!Means
[math1-math10@0];
[level slope qslope*];
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!Variances
math1-math10 (1);
level qslope slope;
level on bpi gender bsex;
qslope on bpi gender bsex;
slope on bpi gender bsex;

SAVEDATA:
RESULTS=quadest.txt;
FORMAT is F10.5;

B.3 WinBUGS codes for the random coefficient LDSM
model{

for (i in 1:N){
X[i,1]˜dnorm(y[i,1],theta)
y[i,1]˜dnorm(mu,psigs)
for (t in 2:T){

X[i,t]˜dnorm(y[i,t], theta)
y[i,t]<-(beta[i]+1)*y[i,t-1]

}
beta[i]˜dnorm(mub[i], invsigb)
mub[i]<-b[1]+b[2]*X[i,T+1]+b[3]*X[i,T+2]

+b[4]*X[i,T+1]*X[i,T+2]
}

theta˜dgamma(.001,.001)
psigs˜dgamma(.001,.001)
invsigb˜dgamma(1.0E-8,1.0E-8)
mu˜dnorm(0,.00001)

for (i in 1:4){
b[i]˜dnorm(0,1.0E-6)

}

par[1]<-mu
par[2]<-b[1]
par[3]<-b[2]
par[4]<-b[3]
par[5]<-b[4]
par[6]<-1/theta
par[7]<-1/psigs
par[8]<-1/invsigb
}
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