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Abstract

Sparse representation based dictionary learning has been exploited in solving various image

analysis problems - image classification, tracking, quality assessment, de-noising, image

reconstruction. The objective of dictionary learning is to obtain an adaptive basis function

from the data and simultaneously provide a compact representation. In this work we

employ sparse representation based dictionary learning techniques for segmentation, image

classification and video analysis problems.

In image and video processing applications, one of the major challenges is the choice of

appropriate features for image representation. Various techniques exist that employ different

analytical methods to extract color, texture and frequency information from images. However,

these methods do not identify which of this information are more relevant for a particular

image. Neither do these methods have any discrimination power to recognize more informative

local image regions.

In this work, we first tackle the problem of query specific image feature descriptor selection.

Depending on the image content, different features e.g., color texture, structure can prove

to be more relevant in representing and discriminating an image. We use a discriminative

dictionary learning method in designing a classifier and an information theoretic measure to

select the most appropriate feature for an image. This method attempt to identify the feature

descriptors that provide more information about an image conditioned on the available images

in a class.

In image classification, while identifying the relevant feature type is important, it is also
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Abstract

crucial to identify the essential contents of an image which discriminate it from the others.

While the above mentioned solution is appropriate for determining image specific feature

type, it does not incorporate any local image analysis to identify image regions associated

with an object. To address this problem, we develop a method that leverages salient object

detection framework to learn the dictionary and sparse codes from an image. The method

simultaneously detects relevant image regions and computes a compact image representation.

We also devise similarity measures exploiting the sparse representations for comparing image

pairs. This similarity measure is used in image classification particularly for scenarios where

training data is limited. Our method outperformed the state of the art methods by an average

of 12% in overall accuracy for histo-pathological tissue image classification

Although the above mentioned saliency guided dictionary learning method is applied to

image classification, the application is not limited to just object recognition. The method is

hence exploited for event detection from video. The saliency based dictionary learning and

the similarity measure is used first for a frame by frame analysis to identify the temporal

occurrence of an event. To make the system more robust to occlusion, dynamic background,

we further employ a spatio-temporal saliency driven low rank and sparse representation

scheme. The technique reconstructs the salient regions as foreground and low saliency regions

as background. The methods were validated for applications of unusual and hazardous event

detection from videos and achieved significant improvement over state of the art background

subtraction methods for anomaly detection.
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Chapter 1

Introduction

During the past decades there have been numerous attempts to simulate the working principles

of the human brain in signal and image processing. A major challenge in this area is to

perceive how a natural scene is processed in the human visual cortex [3], which aids in

distinguishing different patterns in the signals. Olshaussen and Field [4, 5] proposed a

theory in this context which states that neurons in human visual cortex can be characterized

by spatially localized, oriented, bandpass filters. Additionally during the processing of

sensory information, only a few of these neurons are activated. Such processing mechanism

has multiple advantages: energy and storage efficiency, the elimination of redundancy and

extraction of explicit information from natural signals. This nature of human sensory neurons

motivated the sparse coding technique in processing natural images, where an image is

modeled as a linear combination of basis functions. The coefficients of the linear combination

are characteristic image representation which are unique for a particular image. The sparse

codes for image and a basis function which mimic the neurons in human visual cortex can be

computed using an efficient coding scheme.

Sparse coding techniques usually involve representing an image as a linear combination of

an over-complete basis where only a few of the basis elements are used in representation. Thus

sparse coding techniques achieve two fold advantage: (i) it projects the inherent patterns
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to a higher dimensional space, helping the creation of more unique representations, (ii) the

sparse code are generated using only a few of the basis elements, that reduces the size of

the representations facilitating significant compression of signals, storage and transmission.

To achieve an efficient sparse coding, the basis used for the representation need to be

designed appropriately. Off-the-shelf basis functions such as wavelets, Fourier, have been

used extensively in traditional image processing applications. These basis functions are

efficient in particular low level images analysis applications such as de-noising (Fourier),

compression (DCT, wavelet). While these pre-defined basis functions have been successfully

applied in certain applications, in recent years researchers have focused on obtaining data

specific dictionary [6–9], that would provide more compact and unique representations.

1.1 Scope of the thesis

Sparse representation based dictionary learning has been an active area of research in

the field of image processing and computer vision with applications ranging from, image

retrieval [10,11], classification [9,12–16], segmentation [17,18] to video tracking [19,20], scene

change detection [21]. Sparse coding techniques provide compact representations but do not

incorporate discrimination. Hence consolidating discriminatory functions or selecting more

distinguishing characteristics from the data can help to adequately exploit the sparse coding

scheme.

A major challenge in image analysis applications lies with the selection of relevant

image features. Various analytical methods exist in literature [22–24] which extract image

information such as color, frequency, texture, commonly called feature descriptor. However,

the content variation in images implies that just one of these feature descriptors cannot

appropriately describe every image. Accordingly, one needs to identify the more suitable and

discriminative feature descriptor congruent with the image content. In high level computer

vision applications, while identifying the ideal feature descriptor is necessary, it is also critical
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to recognize local image regions which are responsible for differentiating between images, or

in other words specify the subject of an image.

In this thesis we aim at integrating a discriminative feature selection problem

in conjunction with learning an over-complete basis for a sparse representation.

This achieves two-fold advantage: (a) identifying discriminative features, (b) extracting

compact patterns exploiting the selected features. The generated sparse codes are used in

the application of image classification. We further demonstrate that the developed method is

not limited to the application of image recognition and a similar approach can be exploited

in event detection from video. In this section we detail the existing challenges related to

the selection of relevant feature for compact image representation. In the following part we

discuss the challenges specific to the applications of segmentation, image classification and

event detection from video.

Image segmentation: Image segmentation methods address the problem of automatically

detecting region(s) of interest from an image. They are typically used to spatially locate

objects or extract boundaries of objects for further investigation. In biomedical image anal-

ysis, segmentation is commonly used for detection of tumors, cells and cellular components

to help in the diagnosis, analyzing progression of the diseases, surgery planning or simply

for behavioral study in presence/absence of certain stimuli. In non-biological application

segmentation is typically used for applications of detection of faces, objects which can further

be used for recognition and tracking.

Generally, in applications involving segmentation, manually detecting objects or tracing their

boundaries are time consuming, hence the need for automatizing the process. However, given

the variety of imaging techniques, developing a generic segmentation method is impractical.

In this thesis we mainly address the problem of ultrasound image segmentation in presence

of substantial amount of noise, clutter and illumination variation.
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• Segmentation in presence of inhomogeneous intensity : Although in literature, there exists

a considerable amount of research on segmentation exists, modeling the intensity variation

in images is still an open ended problem. In presence of noise, clutter and intensity

variations, good quality edge information is not available. In such scenarios, some of the

traditional segmentation models [25,26], where the curve propagation is dominated by

intrinsic image properties such as edge, intensity are not effective. Hence there is the

need to resort to region base segmentation techniques where the image can be partitioned

into regions exhibiting similar properties e.g., color, texture, etc. However, in presence of

varying intensity inside a particular object, a more sophisticated method which can model

the intensity variation is desired. To deal with this we employ a data driven method

to learn the intensity variation pattern present in a particular application of ultrasound

imaging technique.

Image classification: Image retrieval or classification techniques aim at identifying similar

images from a pre-labeled dataset. For classification purpose, initially a set of image data is

collected and each of the images is annotated by a category consistent with the image content.

The objective is to automatically decide the category of any new test image based on the

model learned from the training dataset. For example, an interesting application is biometric

classification, which involves identification of persons based on images of fingerprints, iris,

face and others. Image recognition methods are popular in biomedical imaging as well, and

are used for various purposes ranging from shape based cell categorization, assessment of

tumors, detection of diseases from histo-pathological images, etc.. Security, surveillance

and industrial automation are other areas which have extensive use of image retrieval and

classification.

Image classification involve various approaches to identify images or parts of images based on

a given image database. Generalized image classification faces numerous challenges. One such

challenge is the choice of image features to appropriately describe an object. Identifying the

image features that are characteristic of a particular object and simultaneously discriminate
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between different objects is critical. Obtaining meaningful features from an image or a

particular image category is desired in computer vision applications. Feature selection can

occur at two levels in image classification: identifying either a feature descriptor for an

image or relevant local regions which contain object level information.

• Feature descriptor selection: This denotes the selection of feature types from a larger

pool of different feature descriptors. The feature descriptors typically capture the color,

texture and frequency content of an image, which are computed using some analytical

formulation. Commonly used feature extraction methods, [24,27–29] encode the frequency,

texture or color content of an image. The scale-invariant feature transform SIFT [22],

for example, attempts to identify object key-points and extract features surrounding

the points. While [23] encodes the local gradients of an image to extract structural

information. However, a single feature descriptor may not be sufficient to represent all

images universally. For example, images of flags of different countries may be differentiated

by color features, while structural features may be necessary in discriminating between

buildings. In most cases of image classification, the object to be retrieved is unknown

and the image database consists of various object categories. Hence the type of feature

that would be more discriminative for the recognition of a particular object is not known.

In such scenarios, an adaptive feature selection or fusion approach is necessary for the

discriminative representation of an object.

• Leveraging relevant local features : While high level feature selection methods adaptively

select feature descriptors, these methods do not differentiate objects from background, or

discriminate if a local feature is more significant in representing an image. The major

challenge in this respect to identify the object or the local features of interest from the

image. Most of the object recognition approaches are based on global image information.

Local features are combined in was that yield global information of the image. Recognition

task is then performed exploiting these features. On the other hand, if the object of

interest can be extracted from the image, more essential and object related characteristics
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can be extracted. Meaningful features often relate to the discriminative feature descriptors

from the image that capture object level information. Challenges still remain in the field

of detecting objects in an image, which are considered salient by the human vision system

and how to leverage this saliency for object recognition problems.

Event detection: Applications of event detection denote detecting the temporal occurrence

of anomalies which differ significantly from regular patterns. Pertaining to surveillance and

traffic videos, an interesting problem is to recognize any unwanted incidents e.g., accidents,

collisions, sudden fire, etc. In addition to recognizing the occurrence of such incidents,

detecting the time of the incident is also of critical importance. Sparse and low rank

representation of a temporal sequence is commonly used in anomaly or event detection. In

these methods, a sequence is represented as superposition of low rank and sparse matrix,

where the low rank represents the background and the sparse matrix gives a notion of the

event. But in videos with highly dynamic background identifying events from the sequence

using the sparse and low rank model is still a challenging task.

• Leveraging local spatio-temporal feature: While selection of relevant features aids in

image recognition problems, it can also be employed in analyzing and detecting sudden

incidents taking place in videos. Salient object detection, or saliency map computation

mimics the human vision by determining regions in an image that draw human attention.

Temporal analysis of detected salient regions or computation of simultaneous spatio-

temporal saliency map can be exploited in solving this problem. In this thesis, we envision

a spatio-temporal saliency map to identify potential event regions. This aids in addressing

the challenges posed by the low rank, sparse representation techniques for event detection

from videos with dynamic background.
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1.2 Objectives and Contribution

The objective of this thesis is to exploit the basics of low-level image analysis techniques in

applications such as object detection and subsequently classification. Given the scope of the

thesis the goal can be consolidated as the solution of three main questions in image analysis

and computer vision applications:

i. What are the more discriminative features for an image which can describe and differen-

tiate the contents of images more accurately?

ii. How and in what ways can feature selection enhance and benefit the sparse coding

technique for image classification?

iii. Are the benefits only limited to classification?

To address the above challenges, we envision a saliency detection engine that will aid in

useful feature detection and an integrated sparse representation framework for classification

and recognition of images. We then extend the approach to a temporal sequence of images

to detect unusual and hazardous events from videos. The main emphasis of this thesis is to

make advances related to dictionary learning paradigm integrated with discriminative feature

selection. In this section we state the specific problems, and our approach to solve them.

Contribution 1: The salient idea of our first contribution is to compute the optimal set

of functions to model the region intensities. This provides an elegant solution to deal with

intensity inhomogeneities prevalent in many imaging applications such as ultrasound and

fluorescence microscopy. In DL2S [17], we employ the method of dictionary learning to

learn the basis functions for image representation. For a particular application, if data with

varying intensity profile is available, we hypothesize that the learned basis function can

capture the finer details in addition to the mean intensity of the images. To our knowledge,

DL2S is the first of its kind lo learn a data adaptive dictionary to model image intensities

for segmentation. We integrate the dictionary learning with the region based Chan-Vese [30]
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model for ultrasound image segmentation. Our approach models the inside and outside

region of an object as linear combination of the learned dictionary.

Contribution 2: The second objective is to solve the feature descriptor selection problem

for image classification. In this work, Meta-algorithm for image feature nomination [12],

we aim at developing an image classification framework based on dictionary learning and

sparse representation of images. A discrimination function, integrated in the dictionary

learning method, aids in differentiating features belonging to different classes. The feature

descriptor selection is performed after the classification decision is made using the different

feature types for the query image. The query image specific feature type nomination is

based on information theoretic measures which provide higher mutual information between

the query and the determined image category.

Contribution 3: The third contribution integrates a low level feature selection method

with dictionary learning technique for image classification. The low level features are

obtained by way salient region detection.

In the second problem, we design a method to leverage local relevant features from an

image. Super-pixel based over-segmentation of the images is performed to extract features

and determine the salient object regions in the image. These local features and the saliency

are then adopted in a dictionary learning framework to obtain the sparse codes. We develop

a saliency guided dictionary learning framework (SDL) where we learn the over-complete

basis from an image while emphasizing the reconstruction of image patches based on their

saliency values. Salient object detection is exploited here to provide information regarding

the importance of the candidate features. We also propose an extended work where the

salient object detection can be refined while updating the dictionary (SDLs) to adjust

between reconstruction error and saliency values. In literature, methods have been proposed

which threshold the saliency map to retain salient image features for different applications.
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Our proposed method is the first of its kind to integrate the salient feature detection with

sparse representation based dictionary learning for image classification.

Since in this work the dictionary is learned for each image in an unsupervised manner,

a robust similarity measure is necessary to compare pair of images to perform image

classification. The adoption of saliency in the sparse coding framework is particularly

advantageous in devising the similarity measure. When comparing pair of images with

similar content, the learned dictionary represents the discriminative image features with

greater accuracy and yields approximately similar sparse codes. Consequently we employ

the learned sparse representations to develop a similarity measure to compare images and

exploit this for image classification in applications where training data is limited.

In this approach we develop similarity measures by comparing the compressibility of the

sparse codes between a pair a of images when represented with each other’s dictionary.

Further, the contribution of each dictionary atom in representing the image is accounted

for, in obtaining a histogram of the sparse codes. This sparse code histograms are employed

in computing the similarity between images.

Contribution 4: As stated earlier, the use of saliency guided dictionary learning and

the proposed similarity measure are not limited to image classification. In our fourth

contribution we aim to detect and analyze unusual and anomalous events in a video. While

detecting sudden incidents occurring in a video, often prior knowledge abut the incidents

is not available. Hence supervised machine learning approaches are not appropriate in

such scenarios. To solve this we exploit the saliency detection based dictionary learning

framework and the similarity measure in a spatio-temporal (2d + time) framework. The

objective is to detect the spatial location of the change as well as to identify the time of

occurrence. We first employ the method developed in SDL and exploit that for a frame by

frame analysis of the video. We further refine the method to accommodate for a low rank

representation to better handle the dynamic backgrounds.
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1.3 Thesis outline

The thesis is arranged as follows. In Chapter 2, we provide the background and state of

the art methods. The proposed methods involve three broad image analysis disciplines

- dictionary learning, feature selection and similarity measure. Therefore, to present a

review of the literature, we categorize the prior art in three distinct categories. Since the

different applications are mainly based on dictionary learning techniques, we further provide

background on sparse representation based dictionary learning in image processing problems

of segmentation, classification and video analysis with applications to tracking and event

detection.

In Chapter 3 we describe the dictionary learning level set DL2S for image segmentation

in presence of intensity inhomogeneity and apply it for ultrasound image segmentation.

In Chapter 4 we describe the Meta-algorithm for feature nomination and demonstrate

the efficacy of our proposed method in image classification.

In Chapter 5, we discuss our third contribution of salient feature guided dictionary learning

(SDL and SDLs). Then we show two approaches of similarity evaluation exploiting the

sparse representations. The method is used in classification of histo-pathological tissue images.

We also show a second application of military vehicle recognition using the above mentioned

approach.

In Chapter 6 we discuss the use of this saliency guided dictionary learning and the

proposed similarity measures in detecting sudden anomalous events from video captured

using car-mounted or hand held camera. We further show that the frame by frame analysis

can be extended to a volumetric approach for identifying the temporal occurrence of the

events.

In Chapter 7 we summarize the methods and discuss the possible future extensions and

other applications of the developed methods.
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Chapter 2

Background

Sparse representation based dictionary learning has been used in various applications of image

processing and computer vision. The literature is vast and spans the problems of image de-

noising, registration, segmentation, classification, quality assessment and extends to analysis of

video for object tracking, event detection, activity recognition, etc. [1,6,8,14,16,19,20,31–37].

Since the works presented in this thesis is broadly related to three main topics, we divide the

background in three different sections. In this chapter we first give a background on sparse

representation based dictionary learning which forms the main basis of the works proposed

in this thesis. The background on the three main applications of the thesis: segmentation,

image classification and event detection using dictionary learning is also discussed here. Then

in the next section background on different feature type and object-relevant local feature

selection methods are discussed. Finally, we discuss the literature on similarity measures

used in image analysis.

2.1 Dictionary learning

Sparse coding aims at representing a signal as a linear combination of basis function by

exploiting the redundancy in an over-complete basis [38–40]. In image analysis applications,

sparse coding techniques exploit the sparseness in natural image statistics. In linear represen-
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tation of data, a given signal y ∈ Rm is represented as a linear combination of some basis

function given as,

y ≈ Dx (2.1)

Here the columns of D act as basis functions and x contains the coefficients of linear

combination. Sparse coding techniques resort to the fact that only a few of the columns

actually contribute in reconstructing the signal i.e., most of the elements in x are zero. Given

a basis function D ∈ Rm×K , the optimization for sparse representation is given as

min
x
‖x‖0 s.t. ‖y −Dx‖2

2 ≤ ε (2.2)

x ∈ RK is the corresponding sparse representation of the data y. The `0 norm imposes the

sparsity constraint on x.

Traditional image analysis applications generally use pre-selected basis functions e.g.,

Fourier, wavelet, also called as analytic basis functions (since they are derived from pre-defined

mathematical formulation). In applications like image de-noising (Fourier, wavelet), image

compression (DCT), these analytic dictionaries have shown promising result. However, each

of these pre-defined basis are reasonable in representing different types of signals [41]. For e.g.,

Fourier basis is good for representing more uniformly smooth signals. Discontinuities in signals

generate high coefficients over all the frequencies and thus imposing sparsity constraint lead

to higher reconstruction error. On the other hand the wavelet basis is good for approximating

point singularities, but in images, where edges are more prominent, wavelet is not a good

choice for representation. These analytic dictionaries are easy to implement but are only

appropriate in representing particular type of data.

In recent years research focus has been on developing data driven basis functions. A

well known and extensively used method in this context is Principle Component Analysis

(PCA) [42], where the basis functions are learned form the data. Principle Component
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Analysis aims at finding a new orthogonal coordinate system. The co-ordinates are ordered

in a way that the first coordinate principle component (PC) is in the direction of maximum

variability in the data, second PC is in the direction of the second highest variation and so

on. Once the PCs are obtained the data can now be projected on this new coordinate system

which gives maximum separation between different dimensions. However, not all the PCs

are required to represent the data, only the first few can be used thus significantly reducing

the data dimension. For scenarios where the data distribution cannot be characterized by

a mean and covariance, PCA cannot perform efficiently. A more generalized methods is

Independent component analysis (ICA) [43]. Here the goal is to obtain a linear representation

of non-Gaussian distributed data with assumption that the components are statistically

independent. The method aims to find a transformation matrix such that the transformed

data is sparse. However, the assumptions of statistical independence is not always true in

practical scenarios.

Olshausen and Field [4], first demonstrated that an over-complete basis learned from the

data (image patches in this case) for sparse representation mimics the human vision system.

Instead of representing all data using a single set of learned basis as in PCA, the data can be

represented as a linear combination of a subset of the over-complete basis. This concept of

choosing a subset of the basis to represent the data introduces the idea of sparsity. Olshausen

and Field [4] demonstrated that this theory is in unison with the working principle of the

human visual system. Henceforth a number of work has been proposed in the literature to

obtain a data driven basis function [6, 44], where the dictionary is learned from the available

data for a more compact representation.

The main objective is to design an over-complete basis function from the available data

(image or image patches) for a sparse compact representation. Given a set of images or image

patches denoted by yi, where i is the total number of images (image patches), the dictionary
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learning algorithm solves the following optimization,

min
D,x

N∑
i=1

‖yi −Dxi‖2
2 s.t. ‖xi‖0 ≤ τ, ∀i (2.3)

Here D is the dictionary learned and xi the sparse representation for each data yi. ‖.‖0 is

the `0 norm that denotes number of non zero elements in a vector and τ allowable maximum

number of non-zero elements used for representation. Each column of the dictionary is often

denoted as atoms.

The method of optimal directions (MOD) [44] solves the objective function in (2.3) by

alternating between sparse coding and solving for the dictionary. The dictionary is solved in

the least square sense, i.e., D = YX†, where X† is the pseudo inverse of X.

In [6], the K-SVD, so far the most popular algorithm for dictionary learning was introduced.

The K-SVD algorithm also solves the optimization in (2.3) as a two-step approach. First, the

sparse solution is obtained by minimizing the following.

min
x

N∑
i=1

‖yi −Dxi‖2
2 s.t. ‖xi‖0 ≤ τ, ∀i (2.4)

The orthogonal matching pursuit (OMP) algorithm [45] is used to solve (2.4). The next step

updates the dictionary using the sparse codes obtained from (2.4). Instead of solving the

dictionary as a least square solution as in MOD, the K-SVD updates each column of the

dictionary, by solving a low rank approximation problem.

The dictionary is updated by solving minD

∑N
i=1 ‖yi −Dxi‖2

2. The objective function is

re-written as

N∑
i=1

‖yi −Dxi‖2
2 = ‖Y −

N∑
j=1,j 6=k

DjX
j − dkx

k‖2
2 = ‖Ek − dkX

k‖2
F (2.5)

Thus dk is obtained by taking the singular value decomposition of Ek=UΣV and dk = U(:, 1).

The singular value decomposition(SVD) is done K times which is the number of columns in
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D in each iteration. A consolidated description of K-SVD is given in algorithm 1

Algorithm 1 Dictionary Learning Algorithm
Input : Yi, K, τ
Output :D, X
For time t = 0

Initialize D0: The initialization of D0 is done by selecting top K salient data points with

For time t > 0 until convergence (or a fixed number of iterations)

Sparse code update: While keeping the dictionary fixed, update xi using (2.4).

Dictionary update: Keeping the sparse code fixed update each column of the dictionary
by using (2.5) and solving

min
D

N∑
i=1

‖yi −Dxi‖2
2

min
dk
‖Ek − dkX

k‖2
F ∀k

dk is obtained by taking the singular value decomposition of Ek=UΣV and dk = U(:, 1).
Xk is the kth row of X ∈ RK×N

2.2 Applications of dictionary learning

As mentioned earlier, a number of applications have exploited the technique of dictionary

learning. In image de-noising, in-painting, tracking, etc., [6, 7] the basis functions are learned

from image patches for local image analysis. Further, [9, 12, 13, 46–50] exploit the method for

image classification purpose, where, the dictionary is learned to represent certain category of

images using discriminative functions.

Initially dictionary learning algorithm was applied in image de-noising application, where

the dictionary is learned from small patches extracted [6, 51] from a noisy image. The linear

combination of the dictionary and the sparse codes were then exploited to provide a de-noised

representation of the image. Methods have been developed for both gray scale [6,51] and color

images [32]. While de-noising has been one of the first applications to demonstrate the impact
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of dictionary learning in obtaining sparse representation of the images, it has since been

extensively used in other applications like image segmentation, image classification, visual

tracking, event detection. In this section, we discuss these three applications of dictionary

learning, which are more relevant to the works proposed in this thesis.

2.2.1 Local image analysis/segmentation

Local image analysis or image segmentation involves identifying objects in an image. Image

segmentation aims at dividing an image in two distinct regions: foreground and background.

Segmentation strategies using contour propagation have been studied and used for various

image processing tasks over the last few decades. Parametric [25, 26, 52, 53] or geometric

active contour [30,54] models for segmentation are based on intrinsic image properties like

intensity, edge, etc. Object boundary detection is performed either by explicit [25, 26, 53]

or implicit [30,55] motion of the curve such that the contour finally converges to the object

boundary. Snake models [25, 26] are traditionally formulated as an optimization problem

where an edge based external energy is generally used to drive the snake toward the object

boundary. However, in many imaging scenarios obtaining quality edge maps is often difficult

since an edge detector performance is susceptible to noise and clutter.

Mumford and Shah [56] proposed an alternative approach where the segmentation criteria

relies solely on the gray values of the image pixels. This region based approach was made

popular later by Chan and Vese [30], who used level sets to propagate geometric snakes to

segment the image into sets of constant intensity regions. Due to the nature of this algorithm,

Chan-Vese’s method is also popularly known as a piecewise constant model. However, as

noted in [57–59], the piecewise constant framework is inadequate to capture variation in

region intensities, thus resulting in improper segmentation. While such local approaches can

accommodate the inhomogeneities to an extent, choosing a proper window size for gathering

region based statistics is often a non-trivial task. Therefore, based on the choice of the

neighborhood size, such algorithms have a tendency to be either too local, or overly global. A
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separate set of algorithms have been suggested [60,61] which extends the piecewise constant

idea in [30] to accommodate nonlinear intensity profiles. It may be debated that adding edge

information to the region based framework can improve segmentation. However, extracting

accurate edge map is a challenging issue by itself for such applications due the presence of

speckle and clutter.

Segmentation of the imaged organs are carried out using a plethora of techniques like

active contours, morphological operations and others [62–64]. In a recent paper, Mukherjee

and Acton [54] introduced a method known as L2S, which generalizes the Chan-Vese model

by approximating the foreground and background regions as piecewise polynomial functions,

computed by linear combination of a few Legendre basis functions. Although the method

proposed can handle intensity inhomogeneities to a greater extent, the segmentation quality

relies heavily on the number of chosen basis functions.

Many other methods using dictionary learning based local image analysis and segmentation

have been proposed in literature. In these methods, image segmentation is regarded as

clustering of local regions based on some common properties or features and detect regions

probable to belonging to an object or not. In [7, 65] the authors demonstrated a dictionary

learning to cluster local image regions to further aid in image segmentation. The proposed

approaches, model the data as a linear combination of low dimensional subspaces and the

data that share same dictionary atoms are clustered together. Different clusters are allowed to

share atoms in these methods making is possible to extend it to soft clustering. However, these

methods require a initial cluster identification and final segmentation results are susceptible

to these initialization methods.

It is also believed that segmentation quality can be improved by introducing prior

information about the shape of the object [66–68]. This shape information is often introduced

using statistical modeling [69,70] of the object shapes in the training set. Various methods

have exploited dictionary learning to obtain a prior information about the shape. Dictionary

learned using pre-segmented lung images are exploited as shape priors for parametric active
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contour models in [18,71]. These methods have significant improvement in performance of

segmentation, but the application of such algorithms are limited. Such techniques require

pre-segmented objects to compute the shape model which is a tedious task, especially when

one is dealing with a significant number of images. Moreover, since the methods learn

the shapes of objects to be segmented, they perform as expected only for segmentation of

pre-defined object types. It is worthwhile to mention that segmentation accuracy can be

significantly enhanced by adopting supervised learning based methodologies [72,73]. However,

such algorithms rely extensively on manually annotated data.

2.2.2 Image classification

Classification in general is defined as a categorizing a new observation to any of the prior

known categories. In computer vision classification is based on categorizing an image based on

its contextual information. Classification can be supervised [74–76] or unsupervised [77–79]

i.e., when prior information about the categories are present or absent respectively. In

content based image classification techniques, in conjunction with designing a good classifier,

extracting informative features are also necessary. The above mentioned methods generally

extract feature descriptors from images using analytical formulation and using traditional

classifiers such as support vector machines [80], neural networks [81] to extract decision

boundaries for the dataset.

Recently, sparse representation based methods have been employed in supervised as well

as unsupervised classification of images. As stated earlier, the sparse linear representation

with respect to an over-complete basis projects the features in a higher dimensional space

thus making the inherent image properties more distinctive. Additionally in supervised

classification, the classifier model can be learned concurrently with the sparse codes.

Wright et al., [15] demonstrated in their seminal work on sparse coding based classification,

a more compact representation can be obtained when an image is represented as a linear

combination of similar images from the database. Such a data dependent basis function was

18



2.2. APPLICATIONS OF DICTIONARY LEARNING

shown to handle outliers in a more efficient manner. The sparse representation technique for

classification has been adopted for recognition of various objects including biometrics, digits,

histo-pathological images [14, 48,49].

Sparse representation based classification

Sparse representation based classification adopts the idea, that images of a particular object

can be represented as a linear combination of similar images. In other words, each object

category belong to a subspace. All data in this subspace can be represented as linear

combination of the basis function that spans the subspace. Wright et al. [15] in their work

showed the application of face recognition, where images of a particular subject obtained

under various pose or lighting condition is treated as a category or a subspace. The theory

presented in [15] states that a test sample can be compactly represented by choosing a few

of the training samples. If yq be the test image from class c and Dc = [yc1 , . . . ,ycn ] be the

training samples of class c, then the test image will lie in the linear space spanned by Dc.

The test sample can then be written as a linear combination of all the training samples given

by

yq = [D1,D2, . . . ,DC ]xq

xq is the coefficients of linear combination and is non-zero at locations corresponding to

atoms representing the category of yq. For classification, the sparse representation for the

test image is first computed using the `1 relaxation, given by

min
xq
‖yq − [D1,D2, . . . ,DC ]xq‖2

2 + ‖xq‖1 (2.6)

Finally, the classification rule is determined based on minimum reconstruction error for a

particular class

class(yq) = min
c
‖yq −Dc(xq)c‖2

2 (2.7)
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‖yq −Dc(xq)c‖2
2 is the residual error when represented with only a particular class features

and (xq)c are the coefficients of xq corresponding to the columns of Dc. Sparse codes learned

using fixed basis have also been exploited in shape based matching [35] using nearest neighbor

classifiers. The sparse representation classification has been extended to other robust models,

where the sparse codes are learned by incorporating other structural information about the

data. Some works have integrated features descriptors via sparse coding [14,82] in contrast

to using only gray-scale intensity images. Others have introduced spatial constraints in the

optimization problem which learn the sparse codes by exploiting spatial information between

images in a dataset [83–86]

Sparse representation based classification has been proven to be very efficient in applica-

tions of image classification in handling illumination variations, pose variation and occlusion.

However, there is always the issue of whether the images of an object category in a dataset are

capable of representing all the images belonging to that class. To resolve this issue, learning

the basis from training samples instead of using the images directly has proven to be more

effective for classification purpose.

Discriminative dictionary learning

Dictionary learning is a technique for obtaining a data adaptive over-complete basis for a

more compact representation. For image classification, a dictionary is learned for each class

using the following in the training step

min
D,x

N∑
i=1

‖yi −Dxi‖2
2 s.t. ‖xi‖0 ≤ τ ∀ i (2.8)

For classifying a test sample, it uses the same strategy as shown in (2.6) and (2.7). In

such a framework for dictionary learning in classification, a dictionary is required to learn

for each class. For multi-class classification task, this becomes computationally expensive

as the number of categories increases and additionally no discrimination is made between
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dictionaries of different classes. Hence an attempt was made to learn the dictionaries for all

the categories using a single cost function. However, to achieve this, some discrimination

function between classes need to be incorporated in the optimization. The idea of including

an inter class discrimination in the cost function was introduced in [9, 12, 13, 16, 87]. The

general idea proposed in these papers usually involve solving an optimization of the following

form,

min
D,x

N∑
i=1

‖yi −D,xi‖2
2 + f (Ic,DX) s.t. ‖xi‖0 ≤ τ ∀i (2.9)

Here, f (Ic,D,X) is inter class discriminatory function involving the dictionaries, sparse

codes and class membership indicator function Ic. The main idea behind the discriminatory

function is that features from same class share similar dictionary atoms which i.e., same

category image representations will now belong to the same subspace. This also accomplishes

that when represented with respect to the dictionary, the sparse representation are similar

for data belonging to same class and significantly different between categories.

The linear model for dictionary learning has enabled in the design of more discriminative

sparse codes by incorporating the intra-class discriminatory function. However, for image

datasets, the inter-class separability is not necessarily linear. To accommodate the non-

linearity in the data, some works have proposed a non-linear dictionary learning technique.

The objective of these works is to obtain sparse codes and a dictionary from non-linearly

transformed data [36,88–91]. This achieves non-linear data separation in two levels: first in

the kernel representation and then in the sparse coding step. The non-linearly transformed

test image is then classified based on minimum residual error.

The dictionary learning techniques for classification mostly focus on generating discrimi-

native representation. However, these do not incorporate any feature type selection or local

region identification from images to boost the classification mechanism. Here in the thesis,

we focus on selecting the more discriminative features from images and integrating it into the

dictionary learning technique. The discriminative feature computation for image classification

identifies more prominent features of an image or an image category. Simultaneously it takes
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advantage of obtaining robust sparse representation using the dictionary learning algorithm.

2.2.3 Tracking and event detection from video

Object tracking and event detection problems are spatial-temporal sequence analysis problems.

In video tracking [92, 93] the objective is to predict the motion of a moving object from a

time sequence, while event detection [94–96] problems aim at detecting significant change

occurring in a video. A number of issues need to be addressed in these problems e.g., pose

variation, illumination changes, occlusion.

Object tracking in video

The traditional object tracking methods based on particle filter [92, 93, 97], kalman filter [98],

impose a motion model on an object template. Based on the motion model and observation,

the most likely position of the template is determined using probabilistic prediction models.

These methods in general do not apply any variational model on the template which can

handle illumination, pose variation or occlusion.

Similar to object recognition problems, sparse representation can aid in modeling the

changes and variations in the object occurring due to affine transformations, illumination or

occlusion. In sparse representation based visual tracking, the target is modeled as a linear

combination of some dictionary or basis function which can capture the pose/illumination

variation in addition to the motion models.

In [20,34], the authors propose a model where the target to be tracked is represented as

a linear combination of pre-detected target template and sample error set is used to model

the occlusion. Although the paper shows promising results, depending on the dimension

of the template, a large number of target templates are necessary to represent the new

predictions appropriately. In [99], the authors extended the `1 norm to a mixed norm

problem to accommodate interdependency between predicted templates. Additionally the

dictionary is updated dynamically to adapt to the variations due to occlusion, illumination
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and affine motion. In [19], the authors proposed a work for visual tracking under varying

illumination. Here the intensity change of the target was represented as a sparse combination

of Legendre polynomials, which are specifically designed for illumination change prediction

on the template. These methods are designed to track or predict the present state of a target

object based on past predictions and are not capable of detecting events or changes in scenes.

Abnormal event detection from video

Event detection from video is a broad field which can relate to any change in the temporal

sequence that does not adhere to the original pattern of the sequence. This can indicate

unusual or suspicious behavior of certain objects, malicious activity, change in usual trajectory

patterns, sudden changes in scene due to accidents, etc. A sub problem in this category is

abnormal, hazardous event detection which refer to unpredictable incidents or events that

occur in a video abruptly and do not follow any regular pattern e.g., road accidents, sudden

fire, etc.

Event or anomaly detection in videos is an active area of research in the field of image and

video analysis. [100,101] exploits motion analysis of object trajectories in detecting anomalies

in motion pattern. In [102], the authors use a background subtraction framework for detecting

fire. A clustering based method is used in [103], while [104–106] employs temporal analysis of

spatial saliency maps in detecting anomalies in surveillance videos, crowded scenes. In [107],

the authors analyze a graphical representation of a video to detect events and the extent of

abnormality of the events.

Sparse and low rank representations have recently been used in event detection. In [33],

the authors present a dynamic sparse coding technique to detect changes in scenes. In [108],

the authors develop a weighted sparse representation scheme, while [109] uses dictionary

learning on the histogram of maximal optical flow projection features of video frames. The `1

norm of the representation is used to predict abnormal frames.
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Sparse coding with low rank representation has been a more popular model for event

detection [110]. In such models, generally the event is designed as a sparse vector whereas

the background is modeled as low matrix. The change in scene is obtained by taking absolute

error between the observation and the estimated background. In [111], the authors exploit the

low rank method in simultaneously detecting object motion and outliers. Whereas in [112]

the authors analyze the trajectories in a low rank matrix completion and group sparsity

framework to detect abnormalities in video. A class of structured sparsity is introduced

in [113] to model the moving object while the background is modeled as a low rank matrix.

Similar approaches were also proposed in [114, 115]. ADM [1] and DRMF [2] methods for

anomaly detection also use a low rank and sparse representation based background subtraction

method for detecting events in videos.

However, in scenarios where the videos are captured using hand-held or camera fitted with

a car, camera jitter, motion of other objects lead to a dynamic background. In these scenarios,

background is not static and thus background subtraction yields significant false positives.

Thus background subtraction methods are not the preferred choice in such situations. A more

sophisticated method which is able to handle significant background changes are desirable.

2.3 Feature Selection

Informative feature selection from a single image or for a particular category to obtain a

more content specific descriptor of an image has been an interesting field of research. In

order to obtain a image specific feature descriptor, one can aim at selecting from a pool of

feature extraction methods (feature type selection). On the other hand, detecting local image

regions which would describe the content of a single image (relevant local feature selection) is

another approach to extract discriminative features from images.
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2.3.1 Feature type selection

Depending on the complexity of the database items, it may be almost impossible to correctly

represent every item based on a single feature. So far, to our knowledge, these exist no

such analytic feature extraction technique which can extract significantly discriminative

image characteristic universally across all object categories. This calls for feature boosting

strategies, where multiple feature selection routines are combined to generate the feature set

(or pool). An approach to solve for the intra-class scatter of image properties is to select

the optimal set of features discriminative of a class. Such feature selection methods for

enhancing image retrieval performance by retaining only the more informative features for a

class via maximizing mutual information [116–118]. However, these methods use any one

single feature type and hence suffer from a particular drawback which renders the above

mentioned methods unreliable for classification, specifically for databases characterized by

significant content variability.

In [119] a method of hierarchically arranging image features according to relevance for a

particular class is discussed. The works in [120, 121] select subset of classifiers/predictors

or a subset of optimal features for classification. While these methods have their specific

advantages, the suffer from one common drawback. All these methods emphasize the selection

of the optimal set of features using one particular analytical feature descriptor computation

technique. These do not attempt to identify for an unknown image which is the optimal

characteristics, color, texture or structure that differentiates it from the others.

2.3.2 Relevant local feature selection

While the feature type selection tries to identify the major characteristics present in an

image, the low level local feature selection is often viewed as extracting the object of interest

from an image and using the features from this region in further applications. A commonly

practiced method in object detection is to perform segmentation to partition the image into

foreground and background. A number of works [30,52,54] have been directed toward this
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task. However, segmentation accuracy can suffer from variation in initialization. Additionally

noise statistics, morphological complexities of objects and the presence of clutter often leads

to a problem specific solution, which is difficult to generalize to a typical image retrieval

or classification setting. This objective can be somewhat achieved by incorporating prior

knowledge of the object of interest [17,18]. Obtaining a robust shape model from the dataset

requires a sufficient representation of all object shapes and morphologies, which is difficult to

obtain specifically in applications of histo-pathological image analysis.

While segmentation routines tend to divide an image into foreground and background,

salient object detection technique give weight to local image regions. The assigned weights are

proportional to how probable a region is in belonging to an object of interest. Based on human

visual attention model, salient object detection method [122–124] detect regions which are

unique in a local neighborhood and capture human attention. Saliency is typically described

as property of the image regions which makes them distinct from other regions and attracts

human attention [124,125]. Human visual attention has been an active field of research in

psychology, neural sciences, biology. It has found various use in image analysis and computer

vision because of its ability to improve performance in object detection, segmentation [126],

recognition [127,128], and tracking [129,130]. Recent research on visual saliency detection

can be broadly classified into two main approaches : top down and bottom up.

The top down approach exploits prior knowledge about object from a given dataset to

obtain specific object from the image [131,132]. Low-rank matrix recovery scheme in used in

detecting salient regions in [133]. Here, an image is represented as a combination of low rank

matrices that represent the background and noise while a sparse matrix represent the salient

regions. However, these models rely on a prior knowledge of objects which is not readily

available is all applications. These methods demonstrate acceptable results when a labeled

dataset is available and the test images indeed contain objects from the training dataset.

The bottom-up approach on the other hand is based on key interest point or region

detection depending on local contrast of various low-level image features. These low-level
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image features are driven by intensity or color variation at each pixel, edges, gradients, spatial

frequencies etc. or their combinations. The work proposed in [124] uses a combination of

intensity values, spatial frequency, orientation in an image to detect local contrast based

saliency in images. In [134] a bottom-up method using a coherent computational approach

employing contrast sensitivity functions and center surround operation was presented. Others

use global approaches - frequency domain [122] or graph [123,135] analysis of the entire image

to obtain the salient regions. The proposed algorithm in this paper performs saliency guided

dictionary learning in an unsupervised scenario, hence the bottom up saliency detection

approach is more suited for the methodology.

2.4 Similarity measure

Image classification or event detection, in addition to informative feature selection, designing

a robust similarity measure has always been a critical step. Although sparse representation

methods or Kernel methods makes the discriminatory pattern more prominent, the data

may not be linearly separable. As a result the distance between two data points cannot be

measured correctly by Euclidean distance. This calls for a more sophisticated and robust

similarity measure design.

Similarity between images has been explored using global as well as local image features for

applications such as image quality measurements, classification, retrieval, registration. In [136]

the structural similarity of images has been used for image quality assessment. The authors

in [137] employ a method of representing images as Gaussian mixtures and Kullback Leibler

(K-L) divergence [138] between the estimated Gaussian mixtures for similarity computation

in image retrieval. Various histogram matching approaches have been proposed to measure

similarity between image features [139, 140]. An efficient earth mover’s distance based

similarity between histograms of image features was proposed in [141] for shape recognition

and interest point matching between images.
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Recently, some works have employed the compressibility of images in computing similarity.

The compression based distance measures were shown to be parameter free unlike the

above mentioned approaches. Additionally these methods take advantage of the sparsity in

natural images. These approaches generally encode images with a particular compression

technique e.g. JPEG, JPEG2000, MPEG and exploit the compressibility for computing

similarity [142,143]. The similarity distance are computed using formulations influenced from

information theory [144,145] for pattern matching. The authors in [146] use an encoder to

convert media data to text and further use compression of the text data for retrieving images.

In [147], the authors propose a compressor based on finite context models on intensity domain

of images and uses normalized compression distance [145] to measure similarity.

More recent methods [10,11] do not rely on available compression method. Instead, they

use the information available form one image to encode other images and exploit the extent

of compressibility in the cross representation to measure similarity. Since the dictionary

learning method provides a compact representation of an image, the learned dictionary from

patches of an image can be exploited as the optimal compressor of the image. The work

of [10,11,148] uses this concept to design a similarity measure. In comparing a pair of images,

one is represented with the dictionary of the other, and this forms the basis of the designed

similarity measure in this thesis.
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Chapter 3

Dictionary learning level set (DL2S)

The primary contribution of this work is to develop a region based segmentation framework

which is capable of handling intensity inhomogeneity. The salient idea of this letter is to

compute the optimal set of functions which can model the region intensities. In various

imaging techniques such as ultrasound, fluorescence microscopy, limited power and processing

ability degrade the image quality. Speckle is more prominent in such images, which are

further degraded by contrast variation and heterogeneous illumination.

In a recent work, L2S [54], the authors developed a method which uses a set of pre-specified

Legendre basis functions to perform region based segmentation of an object in presence of

heterogeneous illumination. We hypothesize that in problems where a set of training images

for the object is available for analysis (such as depth image sequence of blood vessels via

ultrasound imaging), segmentation accuracy can be significantly improved by learning the

basis functions instead of specifying them implicitly. Our solution to this problem involves the

integration of a level set segmentation methodology with the dictionary learning framework.

Intensity inhomogeneity is a prominent problem in imaging applications like ultrasound

or fluorescence microscopy [149]. In such scenarios, due to presence of noise, intra-object

intensity inhomogeneity, accurate edge information is often not available since an edge

detector’s performance is susceptible to noise and clutter. Therefore, it is of considerable
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interest to develop a solely region dependent technique that can accommodate artifacts such

as noise, clutter and illumination variation.

Some researchers have described local region based algorithms to tackle the intensity

variations [57–59,150]. In L2S [54], Legendre functions are used to compute the polynomial

function that approximates the image region intensities. Despite its merits, L2S suffers from

certain issues. First, the segmentation quality relies heavily on the number of chosen basis

functions. Second, L2S suffers from scalability issues since the pre-specified bases cannot

represent any arbitrary intensity variation. To cope with these drawbacks of regions based

segmentation techniques, we propose a data-driven approach to model the intensity profile of

the images which is capable of handling the intra-object intensity variations.

Objective

As it turns out, recent research in the field of sparse modeling and dictionary learning [6,7,15]

have shown that for a given set of training data, one can obtain an optimal set of basis

elements (atoms) to represent a signal. This is the main highlight of our proposed method–

instead of explicitly specifying the set of basis elements, we estimate an optimal set of bases

from the set of training images using dictionary learning. As mentioned earlier, segmentation

accuracy can be enhanced by adopting supervised learning based methodologies [72, 73].

However, such algorithms rely extensively on manually annotated data. In contrast to such

learning based methodologies, our solution does not require annotated data for segmentation.

To demonstrate our technique, we choose an important segmentation problem for ul-

trasound imaging. Blood vessels are imaged in C-mode using a portable, low cost, battery

operated ultrasound device. Our objective is to segment the vessel boundary to assist medical

practitioners for performing phlebotomy application such as intravenous needle placement.

Images captured using these portable devices suffer from low contrast, noise and speckle in

addition to inhomogeneous illumination of the objects which makes segmentation challenging.
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(a) (b)

Figure 3.1: (a) shows sample images from a class and (b) shows dictionary learned from the images
in that class

3.1 Methodology

The Chan-Vese framework [30] proposes to partition the image f(χ) (χ ∈ Ω ⊆ R2) into sets

of constant illumination regions. The optimal partition is obtained by locally minimizing the

following energy functional:

∫
Ω

|f(χ)− c1|2m1(χ)dχ+

∫
Ω

|f(χ)− c2|2m2(χ)dχ (3.1)

Here, we define φ as a level set function whose zero level set denotes the object boundary. φ

is constructed such that its value is positive inside the zero level contour and negative outside.

The local minimizer φ∗ of (3.1) partitions the image such that the two region intensities are

best approximated by the constant scalars c1 and c2, which are updated iteratively using

alternating minimization. m1(χ) = Hε(φ) is the regularized version of the standard Heaviside

function, the extent of regularization being controlled by the parameter ε, m2(χ) = 1−m1(χ).

3.1.1 Generalized Chan-Vese

As mentioned earlier, the constant intensity model fails to capture the intensity heterogeneity,

common in most ultrasound imagery. To account for the nonlinear intensity profile, a
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generalized version of Chan-Vese’s model can be formulated as follows:

Ê(φ, a,b) =

∫
Ω

|f(χ)−
k∑
i=0

aidi(χ)|2m1(χ)dχ+

∫
Ω

|f(χ)−
k∑
i=0

bidi(χ)|2m2(χ)dχ

+ ν

∫
Ω

|∇Hε(φ)|dχ+ λ
(
||a||22 + ||b||22

)
(3.2)

Here Dk(χ) = [d1(χ), . . . ,dk(χ)]T is a dictionary which will be discussed in detail shortly.

d0(χ) = 1. d1, . . . ,dk are dictionary elements or atoms which are used to model the non-

linearity in the intra-region intensities of the images. The third term in (3.2) introduces

smoothness in the solution, which is controlled using the parameter ν. a = [a0, . . . , ak]
T ,b =

[b0, . . . , bk]
T are (k + 1) dimension real valued coefficient vectors. The parameter λ reduces

over-fitting, by constraining the `2 norm of the coefficient vectors.

With k = 0, (3.2) reduces to the piecewise constant model in (3.1). In other words,

(3.2) generalizes the traditional Chan-Vese technique by introducing capability to handle

heterogeneous image regions. Here d1, . . . ,dk can be interpreted as ‘detail functions’ to model

the intensity variation in conjunction to the constant illumination term d0. As earlier, (3.2)

can be optimized with respect to φ, a and b using alternating minimization.

Unlike [54], where the dictionary was pre-specified, we hypothesize that if a dataset

of example images is available, we can enhance the segmentation performance by learning

an optimal set of basis functions (dictionary elements) for region intensity approximation

instead of using a pre-defined set of basis. For the application described in this paper, we

are concerned with sets of ultrasound images, imaged using similar type of devices. The

multi-depth images are captured at the same scale, and are preregistered. As a result, we

have the provision to learn these functions di(χ) directly from the dataset.

3.1.2 Dictionary Learning Level Set (DL2S)

Sparse coding techniques have gained popularity recently. Such algorithms have been used for

a multitude of applications ranging from image denoising, inpainting, restoration, classification,
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retrieval etc [6, 7, 15, 32]. Given a set of training data, the goal of dictionary learning is

to compute a set of basis elements, also called atoms, such that each training data can

be represented as a linear combination of only a few of these atoms. The key idea is to

utilize the underlying sparsity of the training data, while minimizing the reconstruction

error. Mathematically, if F = [f1, . . . , fN ] denotes the set of N discretized, vectorized and

mean subtracted training images, we can use dictionary learning technique to compute

the dictionary Dk = [d1, . . . ,dk]
T mentioned in (3.2) by solving the following optimization

problem

Dk = arg min
D,αi

N∑
i=1

||fi −DTαi||22 s.t. ||αi||0 ≤ θ, ∀i (3.3)

Here αi is a coefficient vector corresponding to the ith training image and θ is a scalar which

dictates the level of sparsity. There are a number of methods in the literature that use

some approximation to solve the hard optimization problem (3.3). For example, k-SVD [6]

combines a greedy methodology using orthogonal matching pursuit algorithm to provide

a fast solution to this problem. Dictionary learning exploits sparsity in the data (3.3) by

constraining `0 norm of the coefficients.

3.1.3 DL2S curve evolution

Let us denote D̂k = [d0(χ)T Dk(χ)]T . We first try to minimize (3.2) with respect to a and b,

by taking derivatives and setting the result to zero. A closed form solution is obtained as

follows:

â = [K + λI]−1

∫
Ω

D̂(χ)f(χ)m1(χ)dχ (3.4)

b̂ = [L + λI]−1

∫
Ω

D̂(χ)f(χ)m2(χ)dχ (3.5)
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(a) (b) t = 10 (c) t = 20 (d) t = 40 (e)t = 70 (f)t = 140

Figure 3.2: (a) shows initialization of the L2S (top row, blue) and DL2S (bottom row, yellow)
curve. (b), (c), (d), (e) and (f) show the curve evolution at t = 10, 20, 40, 70 and 140 respectively

where [.] denotes a matrix. K and L are k × k Gramian matrices [151], in which the (i, j)th

entries are obtained as

[K]i,j = m1(χ) 〈di,dj〉 and [L]i,j = m2(χ) 〈di,dj〉 (3.6)

0 ≤ i, j ≤ k and 〈, 〉 denotes the Euclidean inner product operator. With the updated

coefficient vectors, we can now minimize (3.2) with respect to φ using variational calculus.

We obtain the following partial differential equation using gradient descent technique for

minimization.

∂φ

∂t
=
[
−|f(χ)− âT D̂k(χ)|2 + |f(χ)− b̂T D̂k(χ)|2

]
δε(φ) + νδε(φ)div

(
∇φ
|∇φ|

)
(3.7)

Where δε(φ) is a regularized version of the Dirac delta function. We initialize φ|t=0 = φ0 and

δε(φ)
|∇φ|

∂φ
∂n̂

= 0 at the domain boundary. The gradient flow of DL2S is computed iteratively by

discretization of (3.7) using a finite difference scheme.

3.2 Experimental Results

We use five different sets of images to evaluate the performance of our algorithm. Out

of them, three datasets contain images of medical phantoms which mimic human veins.

These phantoms are generally used by medical practitioners for device calibration. The
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(a) (b) (c) (d)

Figure 3.3: Comparison of segmentation results using manual and automatic initialization
methods. (a) initialized contour (b) segmentation results of Chan-Vese (white), (c)

segmentation via L2S (black) and (d) segmentation via DL2S model (yellow)

remaining two datasets consists of human vein images, captured in vivo. Each dataset

contains approximately 18 to 60 images, captured in C-mode using a portable, battery

operated ultrasound scanner. The different images in a given set correspond to the image of

a vein at various depths. Note that each dataset consists of registered blood vessel images.

The vessel orientation and scale are also consistent. A separate dictionary is computed using

the mean subtracted images for each of the datasets.

Dependency on contour initialization: We show the performance of our algorithm using

both manual and automatic initialization methods. The segmentation results with manual

and automatic initialization for Chan-Vese [30], L2S [54] and DL2S are shown in Fig. 3.3 for

the same image. We observe that the segmentation performance of L2S drops significantly

for automatic initialization, which is also true for Chan-Vese method. In comparison DL2S

has similar segmentation results for both initialization technique. In Fig. 3.2, the evolution

steps for L2S [54] and DL2S is shown. As noticed, from the experiments on ultrasound image

datasets, DL2S converges faster than L2S.

Dependency on dictionary size: We perform sensitivity analysis experiment to study

the performance of the segmentation algorithm with changing dictionary size. The Dice

indices are plotted (along Y-axis) for L2S [54] (Fig. 3.5 (a)) ans DL2S (Fig. 3.5 (b)) to show
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Figure 3.4: Segmentation comparison of DL2S other region based methods is shown. The
original C-mode ultrasound images captured with a portable scanner are shown in the first
row. Rows 2, 3, 4 and 5 show the segmentation results using the methods of Chan-Vese [30]
(white), L2S [54] (black), Li et al. [57] (green) and Lankton et al. [58] (cyan). The last row

shows the performance of DL2S (yellow).

the performance with changing basis/dictionary size (along X-axis) for 7 randomly chosen

images. In comparison to L2S, where performance decreases with increasing number of basis

functions, DL2S exhibits a more stable performance. Based on experiment evaluation, we fix

the number of dictionary elements k = 8 which is at most 50% of the size of the smallest

dataset. We choose sparsity inducing parameter θ = 3 such that about 30% or less number

of atoms can be used for representing the training images.

Quantitative comparison of segmentation: Fig. 3.4 shows the segmentation performance

Table 3.1: Quantitative Comparison

Dataset DL2S Chan-Vese [30] L2S [54] Lankton [58] Li [57]
(i) 0.93±0.02 0.91±0.07 0.89±0.09 0.83±0.06 0.86±0.08
(ii) 0.90±0.04 0.88± 0.05 0.90±0.06 0.70±0.09 0.71±0.12
(iii) 0.86±0.08 0.85±0.11 0.85±0.12 0.65±0.12 0.56±0.12
(iv) 0.83±0.06 0.73±0.12 0.70±0.19 0.72±0.05 0.67±0.04
(v) 0.76±0.10 0.75± 0.14 0.72±0.16 0.73±0.12 0.72±0.15

of the methods due to Chan-Vese (white) [30]), L2S [54] (black), Li et al. (green), Lankton
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(a) (b)

Figure 3.5: (a) Dice index for L2S with changing number of basis functions, (b) Dice index
for DL2S with changing size of dictionary.

et al. (cyan) and, DL2S (yellow) in rows 2-6 of Fig. 3.4, respectively. Qualitative results

suggest that DL2S is able to capture the blood vessels more appropriately in presence of

severe contrast and intensity inhomogeneity. A quantitative comparison for five datasets

((i)− (v)) are shown in Table 3.1. The Dice index, D =
2|st ∩ sg|
|st|+ |sg|

, is evaluated for all the

aforementioned algorithms. Here sg denotes the ground truth segmentation (achieved by

human experts) and st is the solution using an automated algorithm. The average Dice

indices, along with the standard deviations are shown in Table I. Each row in the table

corresponds to the Dice value for a particular dataset, for each algorithm.

On average, using DL2S, we observe an increase in segmentation accuracy by more

than 12% over all the sets of ultrasound images. Additionally, it should be noted here, for

a particular dataset, the variability in the classification accuracy is significantly small in

comparison to the competing methods. We also evaluated the computational time, whereby

DL2S was slightly more expensive than [30], [54] and slightly less expensive than [57] and [58].

On a Windows-7 PC with 16GB RAM and Intel i7 processor. On a 240×400 image, the

average computational time (sec) for DL2S is 15.34 as compared to 5.27, 9.54, 36.4 and 19.13

for L2S, Chan-Vese, Lankton et al. and Li et al. respectively.
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3.3 Discussion

The Chan-Vese method performs segmentation by approximating an image f(χ) by a piecewise

constant image g(χ). To make the model more flexible, we add higher order terms which can

capture the intensity variations in the regions. Going by the intuition of Chan and Vese, it is

fair to approximate the mean image of a dataset as a piecewise constant image.

Assuming a mean image which is approximately piecewise constant, the dictionary atoms

learned from the mean subtracted dataset can be utilized to provide the non-linear variation

necessary to model the intensity inhomogeneity. The energy functional in (3.2) essentially

incorporates this idea in a mathematical framework. One can also think of the dictionary

atoms as incorporating higher order details, learned to suit the dataset. The dictionary atoms

aid in retaining the more significant image properties and compactly represent the dataset.

DL2S is applicable where a set of pre-registered training data is available, for example

multi-depth ultrasound images of blood vessels, in temporal image sequences of biomedical

objects such as carotid artery, heart videos. In applications involving a temporal image

sequence, the first few frames of the video can be treated as the training data to learn the

dictionary.
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Chapter 4

Image classification via feature

nomination

Standard image retrieval or classification techniques generally follow a two-step approach.

First, in the training step, a set of discriminative features are chosen to represent an image

which are exploited to learn a classifier. In the second step: the validation or test step, the

same set of discriminative feature descriptors is chosen to represent the test image, and the

features are then input to the classifier model which determines the category of the test image.

As described earlier, identifying the features which are more relevant in distinguishing between

different category images is a crucial task in the application of classification. The performance

of the classifier models rely highly on the image features, which generally emphasize the color,

texture or frequency content of the image. An appropriate choice of the features can boost

the performance of the classifier significantly. Due to the intra-class and inter-class content

variability in natural image classification, a single feature type is not sufficient to capture

all the informations correctly. This calls in for a meta-algorithm [12] which would choose

automatically the more relevant feature descriptor for an image from a given collection of

feature types.

In the following sections we discuss a method for feature nomination by adopting a
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dictionary learning based classification technique. The main objective of this work is to

design a mutual information based score for feature nomination for a particular test image.

For datasets demonstrating considerable variability in contents of the images of same

or different category, the task of selecting one representative feature type is often non-

trivial. Depending on the complexity of the database items, it may be almost impossible

to correctly represent an item based on a single feature type. This is chiefly because

one particular type of feature descriptor may not be sufficiently discriminative for all the

categories of objects present in the database. This calls for feature boosting strategies,

where multiple feature selection routines are combined to generate the feature vector set.

Figure 4.1: Overview of supervised image classification

Some methods [116–118] em-

ploy a method to retain more

informative local features by

maximizing mutual informa-

tion for enhancing image re-

trieval. However these meth-

ods use any one single feature

type and hence suffer from a particular drawback which renders the above mentioned methods

unreliable for classification and retrieval purposes, especially for databases characterized by

significant content variability.

As shown in Fig. 4.1, for different classes, classification accuracy changes with the feature

type. With greater intra-class complexity, feature descriptors extracted by one particular

method may not be discriminative enough to represent one class. Motivated by this fact, we

design a system, which is capable of choosing the appropriate feature given a test image for

accurate classification based on sparse representation.
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Objective

In this chapter we aim at developing a method for designing compact and class-specific

dictionary that can be utilized for classification. The original features can then be represented

as a linear combination of this dictionary where the features from the same class share

a common dictionary atom making it more class distinctive. Simultaneously, from this

dictionary learning algorithm, we obtain a classifier weight matrix. This is used to interpret

the sparse codes of the test image and assign a class label. A relevance measure between

features and the class to which they belong can be obtained by maximizing mutual information

between the test feature and the class features. So, finally for a given test image, once the

sparse codes for different feature types and corresponding class labels are determined, we

deploy an information theoretic technique for selecting the most relevant feature. The final

classification is obtained using the nominated feature descriptor. An overview of the image

classification system for meta-algorithm is shown in Fig. 4.2.

Figure 4.2: Overview of supervised image classification
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4.1. META-ALGORITHM FOR FEATURE NOMINATION

4.1 Meta-algorithm for feature nomination

For designing the meta-algorithm for feature selection, we employ the discriminative dictionary

learning based classification scheme.

Notations: Let us define a matrix Y = [Y1,Y2, . . . ,YC ], where C is the number of

classes present in the dataset. Here Yi = [y1,y2, . . . ,yNi ], (Yi ∈ Rn×Ni). yv ∈ Rn × 1

denotes a feature vector for vth image in ith class containing Ni images, i.e., v = 1, 2, . . . , Ni.

The dictionary D = [D1,D2, . . . ,DC ] is learned from the set of training examples and

Di ∈ Rn×K is the sub-dictionary representative of each class. Let xv ∈ RM (M = KC) be

the sparse code for representing yv. The sparse codes for a class can be embedded in the

matrix Xi = [x1,x2, . . . ,xNi ] ∈ RM×Ni . X = [X1,X2, . . . ,XC ], denote the sparse codes for

the dataset.

4.1.1 Discriminative dictionary learning and classification

As shown in Section 2.2.2, the discriminative dictionary learning aims to learn a single

dictionary instead of separate dictionaries for each class. In doing so, a discrimination function

need to be introduced in the learning framework to make the sparse codes discriminative.

The purpose is to build class representative dictionary, so that sparse codes generated for

features belonging to the same class, share similar dictionary atoms [9, 13]. The following

optimization to obtain the desired dictionary.

min
X,D,Ã,W

‖Y −DX‖2
F + α‖Q− ÃX‖2

F + β‖H−WX‖2
F s.t. ‖xv‖0 ≤ t ∀ v (4.1)

Q = [Q1,Q2, . . . ,QC ], Qi ∈ RKC×Ni , is the label determining the pair of dictionary atom

and signal sharing the same class. Qi(a, b) = 1 if da is a dictionary atom used for representing

class i and yb is a training data from the same class i. Ã is a transformation matrix that

would regularize the sparse codes of the same class to share similar dictionary atoms. H is

the matrix containing the class labels i.e., H(i, b) = 1 if yb is a member of class i. Assuming
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a linear classifier model; the label of an input signal is given as:

(l(yv) = i) = max
i

Wxv (4.2)

W is the classifier determinant parameter, which regularizes the sparse codes from same class

to share similar dictionary atoms.

Optimization The dictionary is first initialized by selecting random columns for the

data Y. Then the dictionary and the sparse codes are updated by solving the dictionary

learning step without the class discrimination constraints given as follows,

min
X,D
‖Y −DX‖2

F s.t. ‖xv‖0 ≤ t, ∀ v (4.3)

The optimization is solved using the K-SVD algorithm [6] as discussed in (2.5) in Section

2.1. This D and X serves as the initial dictionary and sparse codes in the discriminative

dictionary learning method. Ã and W are initialized by solving the following equations,

minÃ ‖Q− ÃX‖2
2 + λ1‖Ã‖2

2

minW ‖H−WX‖2
2 + λ1‖W‖2

2 (4.4)

A closed form solution of both Ã and W can be obtained by solving the above equations

given as follows,

Ã = QXT (XXT + λ1I)−1

W = HXT (XXT + λ2I)−1 (4.5)
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I is an identity matrix ∈ RM×M . The three functions of X in the optimization can be

combined and the optimization equation can be written as follows

min
X,D,Ã,W

∥∥∥∥∥∥∥∥∥∥
Y − DX

√
αQ −

√
αÃX

√
βH −

√
βWX

∥∥∥∥∥∥∥∥∥∥

2

F

s.t. ‖xv‖0 ≤ t, ∀ v (4.6)

This can be written as

min
X,D̂
‖Ŷ − D̂X‖2

F s.t. ‖xv‖0 ≤ t, ∀ v;

where Ŷ =


Y

√
αQ
√
βH

 and D̂ =


DX

√
αÃX
√
βWX

 (4.7)

the (4.7) can be solved by using K-SVD algorithm [6] as shown in algorithm:1. The columns

of D are normalized after each iteration. D, W and Ã are normalized using the euclidean

norm of the columns of D i.e., D = [ d1

‖d1‖22
, . . . , dK

‖dK‖22
], W = [ w1

‖d1‖22
, . . . , wK

‖bldK‖22
] and Ã =

[ a1

‖d1‖22
, . . . , aK

‖dK‖22
].

4.1.2 Mutual information based feature nomination

Our goal is to devise a method or automatically choose the more relevant feature for a query

image. To achieve that, we propose an information theoretic approach to dynamically choose

the feature descriptor based on a given query type and the image contents. A relevance

measure between features and the class they belong to can be obtained by maximizing the

mutual information [116, 117]. For a given feature x the mutual information between the

feature and its class, l(x) = i, is given by.

I(x, l(x) = i) = H (i)−H (i|x) (4.8)
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where H (x) is the entropy of x given by,

H (x) = p(x) log(
1

p(x)
) (4.9)

For any class i the class probability is given as, p(i) = Ni
N
, i = 1, 2, . . . , C. If number of

training images per class constant, that implies the entropy of a class is also constant. Thus

maximizing the mutual information between a feature and a class would mean minimizing

the conditional entropy H (i|x), which is given as:

H (i|x) = p(i|x) log
1

p(i|x)
=
p(x|i)p(i)
p(x)

log
p(x)

p(x|i)p(i)
(4.10)

The class conditional probability measure for a feature can be estimated by using a Parzen

window technique using a Gaussian kernel. Thus p(x|i) = 1
Ni

∑Ni
v=1 K (x− xv,Σ). Where,

K (x − xv,Σ) = 1

2π
M
2 |Σ|

1
2
e−(x−xv)TΣ−1(x−xv). xv refers to a member of the training data of

class i and the marginal is given as p(x) = ΣC
i=1p(x|i)p(i). When a feature descriptor for the

test data x and its class label i is available, the mutual information provides a measure of

certainty of x belonging to class i.

4.1.3 Image classification by meta-algorithm

We define a feature descriptor type Fl where l = 1, 2, . . . , L and L denotes the number

of feature types being used for classification. For our experiments we use four features

F1: SIFT [22], F2: Histogram of oriented gradients (HOG) [23], F3: local binary pattern

(LBP), and F4: HSV color histograms. We use our feature nomination algorithm to choose

between these four features to provide the ultimate classification result. The feature vector

Yl = [Yl
1,Y

l
2, . . . ,Y

l
C ] corresponds to feature type l, for classes 1, 2, . . . , C. The respective

sparse codes are Xl = [Xl
1,X

l
2, . . . ,X

l
C ]. The sparse codes for a particular feature descriptor
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l is obtained by solving the following

min
Xl,Dl,Ãl,Wl

‖Yl −DlXl‖2
2 + α‖Q− ÃlXl‖2

2 + β‖H−WlX l‖2
2 (4.11)

As the number of features in the training set remains the same irrespective of the feature

descriptor type, Q, H which correlate between the features and their classes, remain same.

For a given query image q, the feature descriptor ylq for feature type l is computed and

the respective sparse code xlq is obtained by solving, minxlq
‖ylq −Dlxlq‖2

2 s.t ‖xlq‖0 ≤ t The

feature specific class label for the test image is given by (l(xlq) = i) = maxi ((W
l)xlq).

Once the class labels corresponding to the feature descriptors Fl are obtained, it is required

to identify the most relevant class for the query. Comparing the class conditional densities, a

measure of how likely the test image will actually belong to the class label assigned to it,

can be obtained. The class conditional entropy is computed for the sparse codes xlq, and

compare we compare H (xlq|l(xlq)) for all l. Thus the final classification result is given by the

nominated feature type l :

l(q) = min
l

H (xlq|l(xlq)) (4.12)

Image features

1. SIFT: Scale invariant feature transform [22] is a feature extraction method by identi-

fying key-points from images and extracting features from a local region around the

key-point. These key-points are detected by analyzing the image in scale space. The

image is first convolved with Gaussian filter with different standard deviation (scale).

The difference of a Gaussian is obtained from differencing adjacent Gaussian blurred

images. The key point is then identified as the maximum in a local region and along the

scale. Histograms of the gradient magnitudes over a local region around the key-point is

computed. The descriptors obtained are rotation, illumination and affine transformation
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invariant. SIFT has been used in a number of applications like object recognition,

key-point matching, finding correspondence in images etc.

2. HOG: Histogram of oriented gradients [23] computes the image gradient in local regions

or blocks. The gradient magnitudes are accumulated in a histogram with bins ranging

from 0-180 or 0-360 degrees. Creating the histograms in this manner contain the

information about the gradient magnitudes and their corresponding orientation. HOG

has been found to be particularly useful in detection of detecting humans, vehicles,

animals etc. which demonstrate distinctive structure.

3. LBP: Local binary pattern [27] is a method for extracting local texture information

from images. In a local block, the neighborhood of each pixel is analyzed in clockwise

of anti-clockwise direction and a binary number of 0 or 1 is assigned to the pixels

if it is less or greater than the center pixel respectively. The sequence of 0s and 1s

gives a binary number. These binary numbers associated with each pixel in the local

regions are used to create a histogram. LBP has been shown to be useful in texture

classification.

4. Color Histogram: The color histogram are created by looking at the intensity profile

of the image and creating a histogram using the frequency of occurrence of each of the

intensity values. To generate a histogram using all the three color channels, the RGB

values for each pixel need to be considered.

Dataset and results

Experiments were performed using the Caltech 101 dataset, which contains (Fei-Fei, Fergus

and Perona) 101 different categories with 9,144 images. Sample images from the dataset are

shown in 4.3. The number of images in a class varies from 31 to 800. We choose randomly

selected 28 images per class to train the classifier for each of SIFT, HOG, LBP and HSV

color histograms. The remaining images were used as test images.
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Figure 4.3: Sample images for the Caltech 101 dataset

For SIFT we extract the features in similar lines with [13]. We first compute the SIFT

features on 16x16 grid with spacing of 2 pixels. Then we compute the spatial pyramid [139]

structure for 3 levels, breaking the image into 4 blocks and then into 8 blocks. Then, the

dimensionality of the extracted features was finally reduced using PCA. For HOG features, we

compute the spatial pyramid by concatenating the histograms of the first, second and third

level i.e., by breaking the image in 1x1, 3x3 and 5x5 blocks. Similar features were computed

using LBP and color histograms, but only two levels were used to create the spatial pyramid

structure. The sparse codes and the class labels we obtained using these four features. Finally

the feature descriptor voting using the conditional entropy was accomplished using these

sparse codes and the features for the obtained class labels.

In Fig. 4.4(a), we show accuracy percentage using feature descriptor voting scheme for

classes which have accuracy more that 50%. The accuracy % is calculated as # imagesaccurately classified
# images in the class

. About 10% of the classes for the dataset have 100% accuracy and 12.7% classes have

more than 90% accuracy. Assuming that accurate class labels will be obtained for at the

least one of the feature descriptor type, out feature voting scheme chooses the correct class

for 88.93% cases. A comparison using the bagging predictor [120] with our classification
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Figure 4.4: The figure shows classification accuracy for classes with greater that 50% accuracy

algorithm is shown in Figure 4. In our case, once the class label for each feature is obtained

using the predictor, the optimal class is chosen when at least two of the sub-classifiers have

identified the same class. Our method consistently gives a better result with an average 20%

improvement in accuracy.

4.1.4 Discussion

Here we show a discriminative dictionary learning based classification scheme and introduced

a information theoretic feature nomination algorithm to automatically decide the more

discriminative feature for the query image. Our method described here chooses the most

distinctive query specific feature for more accurate classification and at the same time does

not require comparing the query feature with all the training features.

However, it employs a linear classifier model and is not able to capture the non linearity in

the data. This problem can be addressed by non-linearly transforming the data (see appendix

A) and learning the dictionary from the nonlinearly transformed data. The method discussed

in (see appendix A) modifies the features nomination to a feature combination paradigm

where the contribution of each feature type is determined by a information theoretic measure.

The Meta-algorithm extracts the features from the images by prioritizing all the regions

in the image uniformly i.e., does not account for the object of interest in the image. In addition
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it requires pre-annotated images or categories for learning the classifier. In applications where

large datasets of annotated images are not available, the classifier often leads to over-fitting.

In such scenarios local discriminative features for each image needs to be identified. To deal

with this type of scenarios, a saliency guided dictionary learning technique that prioritize local

features to boost the classification system is developed and discussed in the next chapter.
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Chapter 5

Saliency based dictionary learning

and image similarity

In literature, image classification problem is well addressed and there exist a number of

sophisticated algorithms to perform the same. However majority of these methods are

designed for a supervised framework, where they employ a pre-annotated training dataset.

Additionally, the efficiency of these algorithms are proportional to the training data available.

However, obtaining adequate data to learn a robust classifier has often proven to be difficult

in several scenarios. To perform image retrieval or classification with limited training data,

where the class labels cannot be exploited to learn a discrimination function, one needs to

extract more informative local features from the images. Additionally, a robust similarity

measure needs to be computed to compare a query with the training images.

The dictionary learning technique can be employed to provide an elegant solution to this

problem in an unsupervised framework since the dictionary learning algorithm is independent

of image annotations. The learned dictionaries and the corresponding sparse codes can

be utilized in devising similarity measures for a pair of images [10, 11] in an unsupervised

scenario. The algorithms developed for learning a dictionary generally give equal importance

in reconstructing the image patches. But in an unsupervised scenario, where a robust
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similarity measure needs to be computed between images, it is desired and necessary that

the dictionary is learned from more meaningful image features.

To adequately exploit the limited training data in classification, we envision a saliency

guided dictionary learning method and subsequently an image similarity technique for the

application of classification. Our hypothesis is that extracting more meaningful features from

the image is a key aspect in obtaining a more robust similarity measure between images. Some

works employ image segmentation and extract features form the segmented regions. While

these methods are efficient in extracting features relevant to the object, these algorithms

may not be able to extract the region of interest efficiently. Moreover, the dictionary learned

from an image using the relevant features, gives a compact representation of the image itself

and is capable of representing images with similar content, with comparable sparse codes.

Motivated by this, we design a saliency guided dictionary learning method and employ the

sparse codes for computing similarity measure between a pair of images.

Objective

In this work, we propose a saliency guided dictionary learning framework where we learn a

dictionary from of an image while emphasizing the reconstruction of image patches based

on their saliency values. Salient object detection is exploited here to provide information

regarding the importance of the candidate features. The work focuses on penalizing the local

regions based on their uniqueness in an image, such that the learned dictionary provide a

precise representation of salient image regions . This is advantageous in devising the similarity

measure. When comparing a pair of images with similar content, the learned dictionary will

represent the discriminative image features with greater accuracy and yield approximately

similar sparse codes. Hence, we employ the sparse codes learned from the saliency guided

dictionary to design a similarity measure.

In this work we address two main objectives:

52



Figure 5.1: Overview of the image similarity method for images I1 and I2. For each image I1 and
I2, a super-pixel segmentation is performed and an initial saliency map is obtained. The features
extracted from and the corresponding saliency weights for each super-pixel are used to obtain a
dictionary, update the saliency and compute the sparse codes, which are then used to evaluate

similarity between the images.

a. First, we aim at designing a dictionary learning algorithm by leveraging the salient regions

in an image. The objective is to generate a representative dictionary which can reconstruct

the salient image regions with greater precision. The characteristic image features are

manifest in the generated sparse codes.

b. Adopting the sparse representation to devise a similarity measure is the second objective

of the proposed method. Here, we exploit the extent of contribution of each dictionary

atom in an image representation while formulating the similarity measure. The sparse

linear representation of an image with respect to the dictionary learned from another is

analyzed to quantify the similarity between images.

Finally, we evaluate our algorithm in the application of histo-pathological tissue image

classification. The overview of the method is shown in Fig. 5.1.
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5.1 Saliency dictionary learning

The saliency guided dictionary learning method aims a obtaining a dictionary from local

image regions which reconstructs salient features precisely. The local image features are

reconstructed as a sparse linear combination of the dictionary by leveraging the saliency

values. It should be noted here that no thresholding is performed to segment the salient

regions, and hence we avoid a well known disadvantage of saliency based object detection

methods: an ad hoc threshold selection [128]. We first propose an algorithm where the salient

regions are detected and is fixed in the dictionary learning step (SDL). We further extend

this algorithm to incorporate a spatial constraint on saliency which acts as a smoothness

prior. Additionally, the saliency update is consolidated with the dictionary learning step

(SDLs) to account for the reconstruction error.

5.1.1 SDL: Saliency based dictionary learning

The saliency map obtained from an image is used to learn the dictionary where the features

from the more salient superpixel regions are given greater priority in the dictionary con-

struction. Let yi ∈ Rm×1 be a feature extracted from a local region i , the overcomplete

dictionary is denoted by D ∈ Rm×K , and the corresponding sparse codes are xi ∈ RK×1. For

each region i, the normalized saliency value for the region is denoted by wi. The saliency

based dictionary is obtained by solving the following optimization.

min
D,x

N∑
i=1

wi‖yi −Dxi‖2
2 + ‖xi‖0 (5.1)

Here N is the total number of regions in an image. In the optimization problem given in

(5.1), the saliency values of local regions are exploited as weights in the dictionary learning

objective function. This facilitate that the features of the salient regions have smaller

reconstruction error compared to those from the less salient regions. WIn our paper we use a

contrast based salient region detection scheme to extract a probabilistic map for each of the
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local regions.

ŝi =
∑
j

‖fi − fj‖2exp(
−‖ci − cj‖2

2σ2
) (5.2)

This method of contrast based saliency detection given in eq. (5.2) captures local

uniqueness of an image region. The local regions are obtained using super-pixel segmentation

by employing the well known SLIC (Simple Linear Iterative Clustering) algorithm [152]. Here

fi is the mean color feature and ci be the centroid of super-pixel i. ŝi gives a measure of

uniqueness of a super-pixel with respect to its neighbors and the neighborhood is determined

by σ. The normalized saliency of a region is wi = ŝi∑
i ŝi

.

Optimization

The algorithm can be solved in a two-step approach. We first minimize eq. (5.1) to obtain

the sparse codes. The following optimization is solved with fixed dictionary to obtain the

sparse representation.

∀i min
xi
‖xi‖0 s.t. wi‖yi −Dxi‖2

2 ≤ ε (5.3)

ε is a threshold on the reconstruction error. The orthogonal matching pursuit algorithm [45]

is used to solve (5.3). The next step updates the dictionary using the sparse codes obtained

from eq. (5.3). The dictionary is updated by solving minD
∑N

i=1 wi‖yi−Dxi‖2
2. The objective

function can be re-written as,

N∑
i=1

‖
√
wiyi −

√
wiDxi‖2

2

=
N∑
i=1

‖
√
wiyi −

N∑
j=i 6=k

√
widjx

j
i −
√
widkx

k
i ‖2

2

=
N∑
i=1

‖(ek)i −
√
widkx

k
i ‖2

2 = ‖Ek − dkX
kW

1
2‖2

F (5.4)
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Thus dk is obtained by taking the singular value decomposition of Ek=UΣV and dk = U(:, 1).

It should be noted here that Ek is the reconstruction error of each region when not using

the kth atom and are weighted by the saliency of the regions. Ek defined in 2.5, is the error

weighted uniformly. The region saliency values, used in this manner, emphasize the data

points which should contribute more in updating the dictionary atoms. Xk is the kth row of

X ∈ RK×N , W is a diagonal matrix with diagonal entry W(i, i) = wi.

Algorithm 2 Algorithm SDL

Input : Superpixels i, fi, ci, yi ∀i
Output :wi, D, X
For time t = 0

Initialize D0: The initialization of D0 is done by selecting top K salient data points

Compute saliency map: ŝi using (5.2) and obtaining the normalized saliency weights by
wi = ŝi∑

i ŝi

For time t > 0 until convergence (or a fixed number of iterations)

Sparse code update: While keeping the dictionary fixed, update xi using (5.3).

Dictionary update: Keeping the sparse code fixed update each column of the dictionary
by using (5.4) and solving

min
D

N∑
i=1

wi‖yi −Dxi‖2
2

min
dk
‖Ek − dkX

kW
1
2‖2

F ∀k

dk is obtained by taking the singular value decomposition of Ek=UΣV and dk = U(:, 1).
Xk is the kth row of X ∈ RK×N

5.1.2 SDLs: Saliency based dictionary learning with spatial con-

straint

In SDL described in Section 5.1.1, we design a dictionary learning scheme where we learn

a dictionary with the reconstruction error weighted by the region saliency values. In the

optimization process, the saliency values are fixed to the initial detection.
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In this section we design an algorithm, where the saliency values get adaptively updated

at each iteration, as we learn the dictionary. The saliency map calculated in sec. 5.1.1

was based on contrast in a local neighborhood. This often leads to a non-smooth map,

which is higher near the object boundaries and non-homogeneous inside the object regions.

Figure 5.2: The figure shows the neighborhood selection of
a super-pixel. The neighboring super-pixels (denoted by

small black dots), which have a common boundary portion
and second order neighbor (denoted by small blue dots) are

considered to be in the neighborhood of the superpixel
(denoted by larger circle). The lines between main

superpixel and its neighboring superpixels denote the
presence of an edge between the regions.

This non-smooth nature of the

saliency map can be observed from

the second row of Fig. 5.3. To

account for this we design a new

algorithm, where we constrain the

saliency map by a spatial smooth-

ness function. Additionally, the

saliency map is updated in conjunc-

tion with the dictionary to take into

account, that regions with high re-

construction error should not have

high saliency values. The SDLs al-

gorithm is formulated by the follow-

ing optimization.

min
D,X,W

N∑
i=1

wi‖yi −Dxi‖2
2 +

∑
i,j

aij‖wi − wj‖2
2 + µ

N∑
i

d̃ii‖wi −
w0

d̃ii
‖2

2 + ‖xi‖0 (5.5)

The weights between nodes are assigned as

aij


= e−‖fi−fj‖

2
if j ∈ Ni

= 0 otherwise

(5.6)

Here Ni is the neighborhood of super-pixel i. The neighborhood is denoted by the super-pixels
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that share a part of their boundary with that of i as shown in Fig. 5.2. D̃ is a a diagonal

matrix with diagonal entries, d̃ii =
∑N

j=1 aij. The spatial smoothness constraint is imposed

by
∑

i,j aij‖wi − wj‖2
2, such that in a local neighborhood if there is a strong connectivity,

the saliency map should be homogeneous. The term
∑N

i d̃ii‖wi −
w0

d̃ii
‖2

2 restrain the saliency

values to the previously detected saliency.

Optimization

Since the objective function is non-convex with respect to W, D and X, the variables are

updated by an alternative minimization process.

i. Update W: For the update step pf saliency values, the dictionary and the sparse codes

are kept fixed. To obtain W, we differentiate the cost function with respect to each wi

and set it to 0. The optimization can be solved by writing it in vector notation as follows,

∂C

∂w
=

∂

∂w

{
N∑
i=1

wi‖yi −Dxi‖2
2 +

∑
i,j

aij‖wi − wj‖2
2 +

1

2
µ

N∑
i

d̃ii‖wi −
w0

d̃ii
‖2

2

}

=
∂

∂w

{
ETw +

1

2
wT (D̃−A)w +

1

2
µ(w − D̃−1w0)T D̃(w − D̃−1w0)

}
(5.7)

setting ∂C
∂w

∣∣
w∗

= 0, a closed form solution of w ∈ RN×1 can be obtained as

w∗ = β−1(D̃− αA)−1(µw0 − E). (5.8)

The details of the derivation is given in appendix C.1 Here E = [‖y1 −Dx1‖2, ‖y2 −

Dx2‖2 . . . ‖yN −DxN‖2]
T . α, β are functions of µ, such that α = 1

1+µ
and β = 1 + µ.

Since for an image, D̃ and A is fixed, the matrix inversion in eq. (5.8) needs to be

computed only once.

ii. Update D: After updating the saliency weights, the dictionary is updated next. The

dictionary update is done in the similar manner as in (5.4) while keeping the W and X

fixed
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iii. Update X: the update of X is also done in the similar manner as it is done in SDL.

While keeping W and D fixed, X is obtained by solving (5.3).

Algorithm 3 Algorithm SDLs

Input : Superpixels i, fi, ci, yi ∀i
Output :W, D, X
For time t = 0

Initialization: D0 is initialized by selecting random patches from the image. Initialize W0

using normalized saliency values obtained from eq. (5.2). Compute the matrix inverse in eq.
(5.8).

For time t > 0 until convergence or fixed number of iterations

Sparse code update: While keeping the dictionary and the saliency weights fixed, updtae
xi using (5.3). The E is computed using the dictionary and the corresponding updated
sparse codes.

Dictionary update: Keeping the sparse code fixed update each column of the dictionary
by using (5.4) and solving (6.11).

Update saliency map: The saliency map Wt for iteration t is obtained by solving the
closed form solution presented in (5.8). Set W0 = Wt. The update for the saliency is
performed till the condition Wt −Wt−1 ≤ τ is reached.

A compact algorithmic description for SDL and SDLs is shown in algorithm 2 and 3 respec-

tively.

5.2 Image similarity using sparse codes

The saliency incorporated dictionary learning provides us with compact sparse codes, which

can further be analyzed in comparing images. To obtain the similarity between a pair of

images, we exploit the sparse codes in designing a histogram for the images. These features

can be compared using any histogram comparing methods e.g., K-L divergence, chi-square

measure, histogram bin ratio, etc. or other distance measures to obtain the similarity

between images [137,141]. As demonstrated [10,11,143,154], compressibility of the sparse

representation can be exploited in computing similarity between images.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.3: The first row of the figure shows the original images. The second and third rows show
the saliency maps computed by eq. (5.2) and the final maps when updated using SDLs respectively.
Images (a-c) show samples from the Bisque dataset containing breast cancer tissue images. (d-h)
shows an image from the ADL tissue dataset. (i) and (j) show samples from the colorectal cancer

tissue dataset.

5.2.1 Cross dictionary representation

Let I1 and I2 be the two images for which similarity is to be computed. Y1 = [y1, . . . ,yN1 ]

and Y2 = [y1, . . . ,yN2 ] are the features obtained from the two images where N1 and N2 are

the number of super-pixels in the images respectively. W1 ∈ RN1×N1 and W2 ∈ RN2×N2 are

the matrices containing the saliency values of I1 and I2 along the diagonal corresponding to
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.4: The first row of the figure shows the original images. The second and third rows show
the saliency maps computed by eq. (5.2) and the final maps when updated using SDLs respectively.

The images are from the datasets used in [10] and [153].

each super-pixel i. Let D1 and D2 be the dictionaries learned from the images Y1 and Y2

respectively and X1 = [x1, . . . ,xN1 ] and X2 = [x1, . . . ,xN2 ] be the corresponding self sparse
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codes obtained by solving the following

∀i ∈ 1...N1 min
xi
‖xi‖0 s.t.‖(Y1 −D1X1)W

1
2
1 ‖2

F ≤ ε

∀i ∈ 1...N1 min
xi
‖xi‖0 s.t.‖(Y2 −D2X2)W

1
2
2 ‖2

F ≤ ε (5.9)

D1 and D2 are considered as the universal encoder that provide a compact representation

X1 and X2 for images I1 and I2 respectively. When I1 and I2 are represented with respect to

D2 and D1, the relative sparse codes X1|2 and X2|1 are obtained using the following,

∀i ∈ 1...N2 min
xi
‖xi‖0 s.t.‖(Y1 −D2X1|2)W

1
2
1 ‖2

F

∀i ∈ 1...N2 min
xi
‖xi‖0 s.t.‖(Y2 −D1X2|1)W

1
2
2 ‖2

F (5.10)

Where xi denote a column of X.

5.2.2 Similarity measure using codelength overhead

It has been shown in [11,142,146,147] that compressibility of an image when represented with

respect to information available from a second image, can be exploited to obtain a similarity

measure between the two images. As stated in [155], the code length of a datum gives another

way to represent its probability distribution. If we consider y as the data to be encoded by

encoder Di (the dictionary learned from the data can be assumed as the universal encoder for

that data, which was also mentioned in [11]), the code obtained is x and l(x) is the length of

the codeword x, then there exists a sub-probability mass function for x, P (x) = 2−l(x) ( [155]).

Moreover it was shown in [155] that if P1(x) denotes the sought-after universal representation

of x and Pi(x) is any other representation of the data x, then the quantity of interest to be

minimized in finding the universal representation is the difference between the codelengths
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generated by two different encoders, given by,

log
1

P1(x)
− log

1

Pi(x)

This term is often called as codelength overhead. While this quantity can provide an insight

in choosing the optimal encoder (or the distribution) to represent the data, we exploit this

concept of codelength overhead in evaluating the similarity between two data (image in this

case). Consider x1 and x2 be sparse codes of the two images whose similarity needs to be

measured and θ1 and θ1 are the encoders that provide most compressed representation of the

images. Here, by universal representation, we seek the most compressible representation of x.

In this case we assume that the universal representation as well as the encoder providing

the representation is available in the form of the learned dictionary and the sparse codes,

respectively. The purpose is to evaluate how well their encoders can represent each other.

Hence, we can say that the codelength overhead between the two data, when encoded with

the other’s universal encoder, can provide a measure for similarity between the data, given as

s(x1, x2) = max
θ∈θ1,θ2

| log
1

Pθ(x1)
− log

1

Pθ(x2)
| (5.11)

The maximum value of the two differences provides the worst case codelength difference

between the two images. It also emphasizes the idea that if two images have similar

content, the codes obtained when represented with each others encoders will achieve similar

compressibility.

Properties of s(x1, x2)

1. Positivity : s(x1, x2) ≥ 0, since it is defined as the absolute value of the codelength

difference, the quantity s(x1, x2) is always greater that 0.

2. Symmetricity : s(x1, x2) = s(x2, x1), as the codelength difference is obtained when

represented with respect to each other’s encoders, the difference remains the same, as
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well the maximum value of the difference.

3. s(x1, x2) = 0, when x1 = x2.

Let θ1 = D1 and θ2 = D2, then log 1
PD1

(X1)
= ‖X1‖0

N1
, log 1

PD2
(X1)

=
‖X1|2‖0
N1

, log 1
PD2

(X2)
= ‖X2‖0

N2
,

log 1
PD1

(X2)
=
‖X2|1‖0
N2

. The similarity between I1 and I2 can be obtained by using the similarity

measure explained in sec. 5.2.2,

s(X1, X2) = max
D∈D1,D2

| log
1

PD(X1)
− log

1

PD(X2)
|

Since the dictionary learned from the images takes into account the saliency of the image

regions, images with similar content will have a comparable compressed representation with

respect to each others dictionary.

For image classification, the codelength of the query image is compared to that of all the

images in the dataset, and the one with the minimum codelength overhead is chosen as the

best matching image which is same as the 1 nearest neighbor classifier, given by

min
Xm,m∈1..M

max
D∈D1,Dm

| log
1

PD(X1)
− log

1

PD(Xm)
| (5.12)

where M denotes the number of images in the dataset.

5.2.3 Histogram using compression of sparse codes

In this work, we propose a similarity measure that exploits histograms using the sparse

codes xi, which can be used in conjunction with any histogram based similarity measure. To

design the histogram, we use this compressibility of the codes while taking into account the

contribution of each dictionary atom [21]. The basic idea presented here for designing the

similarity between images is to represent the feature of one image with respect to another and

compare how well their respective dictionaries can represent one another. If I is an image

and X the sparse code representation of local image features, the sparse code histogram is
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computed as

hI(k) = ‖Xk‖0 (5.13)

where Xk is the kth row of the matrix X. The dictionary atoms act as the bin centers of

the histogram and the number of features that share the dictionary atom constitute the

bin frequency. Construction of such histogram gives an idea, how frequently one particular

dictionary atom is being used in representing the image features. The histogram is normalized

by the total number of super-pixel features. We denote the histogram of the self sparse codes

as :

h1(k) = ‖Xk
1‖0; h2(k) = ‖Xk

2‖0 (5.14)

While the relative sparse code histograms can be writen as:

h1|2(k) = ‖Xk
1|2‖0; h2|1(k) = ‖Xk

2|1‖0 (5.15)

Each histogram bin accounts for the frequency of occurrence of a dictionary atom in represent-

ing an image feature. While the histogram from the self sparse codes, gives the frequency of

occurrence of the atoms in an images, the relative sparse code histograms shown the frequency

of occurrence when the images are represented with each others dictionary.

When two images are significantly different from one another with respect to their

content, the change in the actual sparse code histograms h1, h2 as well as the relative sparse

code histograms h1|2, h2|1 will also be significant. This change can be quantified by the

Kullback−Leibler (KL) divergence [138] method, which is a measure to compute difference

between two discrete probability distribution function p and q and is given as,
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KL(p||q) =
∑
i

p(i) log
p(i)

q(i)
(5.16)

In particular, we compute the final KL divergence as an aggregate of the KL divergence of

histogram pairs,

S(I1, I2) = KL(h1||h2|1) +KL(h2|1||h1) +KL(h2||h1|2) +KL(h1|2||h2) (5.17)

The similarity measure developed here follows the following property,

1. Symmetry i.e., S(I1, I2) = S(I2, I1). The KL divergence KL(p||q) itself is not symmetric

but, KL(p||q) +KL(q||p) is symmetric.

2. Positivity i.e., S(I1, I2) ≥ 0 The KL divergence between two normalized histograms

always greater than 0. In eq. (5.17), each of the four parts have equal contribution,

thus S(I1, I2) is also greater than 0

We perform k nearest neighbor [156] search using the K-L divergence of the sparse code

histograms for image classification. The images in the dataset showing minimum divergence,

S is given as the best match. For a dataset containing p = 1 . . . P images and q is a test

(query image), the best match is given by the following

min
p
S(Ip, Iq) (5.18)

5.3 Experiments

Sparse representation and dictionary learning have been efficiently used in various image

classification methods [12,47,65,91]. However, all these methods incorporate the information

of the image category to design a classifier while learning a sparse representation of the
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features. In certain applications, specifically histo-pathological tissue classification, manual

labeling of large datasets are often expensive and training dataset is limited. Here we

perform image classification for histo-pathological tissue image retrieval and military vehicle

type identification. In both applications, large annotated datasets are not readily available.

Another challenge is the imbalance in the various categories of the training dataset. In

practical scenarios in tissue image classification for e.g., the number of images available for

healthy tissue might be significantly less than that of diseased tissues. In such scenarios,

designing a classifier which would detect the class boundaries efficiently becomes a challenging

task. In the following subsections, we demonstrate the validation of our proposed method.

We first describe the image features used in our experiments, the comparison algorithms and

finally describe in details the three different tissue datasets and the experimental results.

5.3.1 Image feature

In sparse representation based classification using local features, both image intensities or

other discriminative image features have been exploited. However since in our experiments,

the local image regions are defined by the super-pixels of different size, using just image

intensity lead to different size feature vectors. Moreover, image intensity or color histograms

are not sufficient to discriminate between images, specially in case of Hematoxylin and Eosin

(H&E) histo-pathological tissue images. In [157] it was demonstrated that texture features can

efficiently discriminate between different tissue types. Also in case of differentiating between

military camouflage uniform patterns or discriminating between military and civil vehicles,

texture patterns play a key role. In our experiments we employ local Gabor features [24,158]

to represent the super-pixels. In the literature, it has been shown that Gabor filters can

approximate the characteristics of certain cells in the mammalian visual cortex and can be

exploited in getting the texture information of an image. 2D Gabor filters are obtained by

combining Gaussian kernel with sinusoidal functions of different frequency and orientation.
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(a) (b)

Figure 5.5: (a) shows the superpixel construction for an image. (b) shows the different Gabor filter
response L1 . . . L32 and how the final local feature yi is obtained by taking the spatial maximum for

a superpixel at each level of response

The Gabor filters are regulated by the standard deviation of the Gaussian filters and the

orientation of the sinusoidal functions. An image is convolved with different combinations

of the standard deviation and the frequency to get the Gabor filter response. The mean

response of each filter bank can be used as a global texture feature of the image. For a local

region, we first convolve the image with 32 Gabor filters, for 8 orientations and 4 different

Gaussian filters. We then compute the maximum response within a superpixel for each of

the 32 filters and thus obtain a 32 dimensional Gabor feature for each region as shown in

Fig. 5.5. To account for the variation in intensity, we also include local color features in our

descriptor. For each super-pixel, we compute the mean color of the region in CIE L∗a∗b color

space along each channel. We concatenate the color and Gabor feature of a region to get the

final local descriptor.

5.3.2 Performance evaluation

We compare our algorithm with four different methods from literature. First, we compare

with the sparse representation based classification [15] scheme. Second we compare with

the method of spatial pyramid matching [139], a scheme for aggregating local features while

keeping their spatial relation. The third and fourth methods are based of compression based
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similarity measure [10, 11]. We also show comparison of the designed similarity measure

without incorporating the saliency.

i. Sparse representation based classification (SRC): In [15] is was shown that an image of

a specific category can be represented as a linear combination of other images in the

dataset. It was shown in [15], in face image retrieval, that the face image of a subject

could be represented as a linear combination of that subjects face images acquired under

various lighting conditions. A test image is represented as a sparse combination of these

basis for each of the category present and classified based on the minimum reconstruction

error. In our comparisons, we apply SRC on the vectorized gray-scale images. Let

[D1,D2, ...,Dk] denote the dictionary, where Di is the sub-dictionary created by stacking

the vectorized gray-scale images of class i as columns of the dictionary. The sparse code

x of a test image y is obtained by minimizing the equation

min
x
‖y −Dx‖2 + γ‖x‖1 (5.19)

The classification is done based on minimum reconstruction error using each sub-dictionary

given as follows

min
i
‖y −Dixi‖2 (5.20)

Here xi is the elements of vector x corresponding to the sub-dictionary Di. We use

the CVX (http://cvxr.com/cvx/ ) package to compute the sparse representation of the

images.

ii. Spatial pyramid matching (SPM):The method described in [139] combines local image

features while retaining the spatial correspondence. In this method an image is partitioned

into subregions, and for each subregion a histogram of local features is computed. Finally

the histograms from each subregion are concatenated to obtaining the final feature

representation. For our experiments we use the same local image features as described in

Sec. 5.3.1 and two pyramid levels. We compare the spatial pyramid histograms using
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KL divergence, such that if p and q are the spatial pyramid histograms of two images,

then the KL divergence is given as:

KL(p||q) =
∑
i

p(i) log
p(i)

q(i)
+
∑
i

q(i) log
q(i)

p(i)
(5.21)

The test image is classified using a nearest neighbor classifier given by equation (5.18).

iii. Sparse representation based compression distance (SCD): In [11], the authors developed

a compression based similarity measure. Here, a dictionary and corresponding sparse

codes are learned for each image in the dataset. While computing the similarity, a pair

of images are represented with respect to each other’s dictionary. The compressibility of

these sparse codes are exploited in computing a similarity measure.

iv. Saliency guided dictionary and sparse code compression distance (SLIDE, SLIDEs, SLID-

Edl): In [10], the local image features were represented based on a learned dictionary by

leveraging the salient region features, similar to SDL presented in the paper. While the

similarity measure is based on code length overhead, where the code length is defined by

the `0 norm of the sparse representation. The overhead for a pair of images is given by

the difference in the code lengths when represented with the dictionary of another image.

SLIDE is based on the idea that two images with similar content will be represented

more compactly with each other’s dictionaries. We refer SLIDE and SLIDEs when we

use the SDL and SDLs algorithm in conjunction with the compression distance, whereas

we SLIDEdl refers to using the sparse code compression based distance without saliency

detection.

v. Saliency guided dictionary and sparse code sparse code histogram(SDL,SDLs,DL+KLdiv):

When we refer SDL and SDLs, we denote the two algorithms in combination with sparse

code histogram and K-L divergence for similarity evaluation. We also show results using

dictionary learning without leveraging the saliency values. Here the dictionary is learned
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Table 5.1: Confusion matrix % for ADL dataset

Class Kidney Lung Spleen
Method Inflamed Normal Inflamed Normal Inflamed Normal

SDL 97.8 2.2 97.4 2.6 95 5
SDLs 95.6 4.4 100 0 95 5

DL+KLdiv 93.3 6.7 97.4 2.6 97.5 2.5
SLIDE [10] 24.5 75.5 92.3 7.7 57.5 42.5

Inflamed SCD [11] 82.3 17.7 41 59 65 35
SRC** [15] 71.1 28.9 43.8 56.4 67.5 32.5
SPM [139] 86.7 13.33 94.9 5.13 87.5 12.5

SHIRC* [14] 83.1 16.9 71.0 29 69.4 30.6
DFDL* [16] 90.0 10 97.4 2.6 92.0 8

SDL 12.5 87.5 2.56 97.4 9.8 90.2
SDLs 10 90 2.56 97.4 7.3 92.7

DL+KLdiv 10 90 5.1 94.9 9.8 90.2
SLIDE [10] 15 85 67.3 32.7 56.1 43.9

Normal SCD [11] 73 27 35.9 64.1 60.8 39.2
SRC** [15] 20 80.0 28.2 71.8 43.9 56.1
SPM [139] 10.4 89.5 10.8 89.2 23.1 76.9

SHIRC* [14] 7.9 92.1 9 91.0 9.2 90.8
DFDL* [16] 11.8 88.2 3.5 96.5 7.1 92.9

*Results as presented by the authors in the paper.

**Experiments with full images.

by solving the optimization problem given in (2.2) using the super-pixel Gabor features

for each image. The similarity between image is performed using the KL-divergence of

the sparse code histograms as described in Sec. 5.2 and the similarity measure given in

(5.17)

5.3.3 Application to tissue image classification

In tissue images, saliency detection helps in accentuating the structures that distinguish

between healthy and diseased cells or differentiate one tissue type from another. For example,

in differentiation between malignant and benign tumor, often the smoothness of the nuclei

are taken into account [159]. While in other applications there different types to tissues

are required to be classified [160] based on their textural patterns to determine cellular

composition.For example, in Fig. 5.3 (e) and (f), the samples from a colorectal tissue image

dataset, the saliency maps make the structural characteristics of the images more prominent.

We demonstrate two applications: first to distinguish between malignant and benign tissues,
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RMSD inflamed (%): SDL = 3.3; SDLs = 7.2; RMSD inflamed (%): SDL = 1.3; SDLs = 5; RMSD inflamed (%): SDL = 1.3; SDLs = 2.2
SLIDE = 10.6; SRC = 7.4; SPM = 3.7 SLIDE = 3.8; SRC = 9.0; SPM = 0 SLIDE = 11.3; SRC = 2.2; SPM = 2.5

RMSD normal (%): SDL = 8.2; SDLs = 4.2; RMSD normal (%): SDL = 1.8; SDLs = 3.4; RMSD normal (%): SDL = 2.7; SDLs = 3.8;
SLIDE = 19.9 ; SRC = 4.5; SPM = 4.3 SLIDE = 9.2; SRC = 8.9; SPM = 3.3 SLIDE = 6.7; SRC = 11.6; SPM = 8.6

(a) Kidney (b) Lung (c) Spleen

Figure 5.6: Plot showing classification accuracy (%) with changing size of training dataset
for five different methods SDL, SDLs, SLIDE [10], SPM [139] and SRC [15]. The x -axis

denotes the number of training images used per class while the classification accuracy % is
plotted along the y-axis. Below each figure the RMSD for the two classes are given.

Kidney inflammation

Kidney normal

Figure 5.7: ADL tissue examples of kidney.

as a binary classification problem, and second differentiate between tissue types as a multiclass

classification problem. Three different datasets have been used in this experiment. We provide

a detailed description of the three datasets below. For all the three datasets, we compute

a combination of local Gabor and color features as discussed in sec. 5.3.1, to learn the

dictionary and sparse codes.

For all our experiments we use α = 0.9. A value of α close to 1 preserves the neighborhood

graph structure . For SDLs, at each iteration step, a normalization needs to be performed.

Although the error ε are restricted to 10−5 or below, there can be scenarios where (‖yi−Dxi‖2)

is greater that wi in eq. 5.8. To restrict the degeneration of updated saliency values, we
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Lung inflammation

Lung normal

Figure 5.8: ADL tissue examples of lung.

Spleen inflammation

Spleen normal

Figure 5.9: ADL tissue examples of spleen.

normalize (µw0 − E) between 0 to 1 at each iteration. The size of super-pixels in our

experiments is limited to 64 pixels. But since the super-pixels are dependent on the local

image structure, the number of pixels is not fixed. The number of dictionary atoms are

fixed to 25% of total number of super-pixels or number of data points. Since the size of the

images in one dataset is fixed, hence the number of super-pixels and dictionary size is also

fixed for a dataset. In computing the similarity measure, since the sparse code histograms

are normalized by the total number of super-pixels, a difference in dictionary size within a

dataset, will not affect the similarity values. We use nearest neighbor classifier to obtain the

class of the test images. We provide the confusion matrix for each of the three dataset and

state the overall classification accuracy. In the following section we report the performance
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Benign

Malignant

Figure 5.10: Image samples from the breast cancer tissue dataset

t

Figure 5.11: The bar graph shows the classification accuracy (%) obtained per class as well the
overall dataset for seven different methods.

evaluation of the methods for three publicly available datasets.

ADL tissue dataset: The datset contains tissue images from three mammalian organs -

lung, kidney and spleen first presented in [14]. Each of the organ images have two categories:

tissue showing inflammation and normal or healthy tissue. Each category contains about

150-170 Hematoxylin and Eosin, (H&E) stained images for each of inflammation and normal

tissue, of which about 25% are used for testing and the rest are used for training purpose. The

images are manually annotated by pathologists from Animal Diagnostics Lab, Pennsylvania

State University. More details about the dataset is available in [14]. Sample images of the

dataset are shown in Fig. 5.7,5.8 and 5.9.
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(a) Benign (b) Malignant

Figure 5.12: A closeup view of example breast cancer tissue images

We give the confusion matrix for the dataset in Table 5.1 for SDL, SDLs along with the

comparison algorithms. The values marked in bold are the maximum accuracies achieved

for the dataset. For a thorough comparison, we also provide the values of the original work

SHIRC [14] and DFDL [16] for the ADL dataset. The accuracy % for these two methods

are reported directly from the papers. As can seen from the table, our method outperforms

the current state of the art methods. Also, SDLs performs better that SDL in majority of

the categories. For tissue image classification, it is desired that diseased tissue images are

classified accurately and at the same time, it is necessary that the healthy tissues are not

classified as diseased. It is observed from the table, our methods perform consistently for all

in classifying both healthy and diseased tissues for all the three organs.

Quantitative evaluation: The mean overall classification accuracy for ADL dataset is

maximum using SDLs(95.5%) followed by SDL (94.8%), DFDL (about 94.6%, as reported

in the paper), DL+KLdiv (93.8%), SPM (83.3%) and SHIRC (about 78.9%). From table

5.1, it is seen that in some scenarios, for e.g., normal kidney, inflamed lung and in spleen,

DL+KLdiv, which is using KL divergence on sparse code histogram for dictionary learning,

performs almost the same as either SDL or SDLs. This can be accounted for by looking at

the images in Fig. 5.7,5.8 and 5.9. For these categories, the spatial distribution of the cells

and contrast between the discriminative structures are not significant even to human eye,

hence the saliency maps obtained are more uniform inside the image. In contrast, the tissue

for a normal lung is characterized by more prominent structures and contrast created due to

the large opening in alveoli [14], which can be highlighted by the saliency region detection
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methods. Thus leveraging the saliency values results in an average overall increase of 13.1%

and 14.3% in accuracy for the kidney dataset using SDL and SDLs respectively. For lung

dataset the increase in accuracy for SDL and SDLs both show an average increase of 15.5%.

For the spleen dataset, SDL shows an average increase of 15.7% and SDLs show 17.0%. For

the ADL dataset, overall we achieve an average increase of 14.8% and 15.6% for SDL and

SDLs respectively.

Classification accuracy versus training size: As mentioned earlier, one of the major issues

in tissue image classification is the limited availability of data and inconsistent number of

images per category. One of the desired properties of a classifier or the similarity measure is

that it performs consistently with limited training dataset. In Fig. 5.6 (a),(b) and (c) we

show the overall accuracy for the kidney, lung and spleen dataset respectively. To perform

the experiment, we selected randomly 20, 40, 60, 80 and 110 images from the training set

for each of the categories and plot the classification accuracy % for the different size of the

training dataset. To evaluate the stability of an algorithm with changing training size, we

calculate the root mean squared deviation (RMSD) given by
√∑

i
(acci−acci−1)2

n
, where acci is

the classification accuracy corresponding to i = 2 . . . 5 and training size 40, 60, 80 and 110.

Lower the value of RMSD, more consistent is the performance of an algorithm with changing

size of training dataset.

For the kidney dataset for both SDL and SDLs the accuracy increases with a RMSD of

3.4% and 3.2% respectively, while SPM shows an increase initially by then decreases with a

RMSD of 3.7%. Accuracy for SLIDE on the other hand decreases with increasing number of

training images with RMSD of 5.6% and SRC shows a more unstable accuracy with RMSD

of 3.9%. For the lung dataset SDL shows a more steady performance with RMSD of 0.9%

in comparison to SDLs, which shows an RMSD of 2.4%. SPM, SRC and SLIDE shows an

RMSD of 1.6%, 2.7% and 8.7% respectively. Contrary to kidney dataset, SLIDE here shows

an increase in performance with increasing training data and SPM has a more steady change

in accuracy. For the spleen dataset, SDL and SDLs shows an RMSD of 0.9% and 1.1%, while
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SPM, SRC and SLIDE allows an RMSD of 5.1%, 4.0% and 4.3%. In Fig. 5.6, below each

figure we also provide the RMSD for individual classes and the method that shows the most

steady accuracy with changing training size for each of these classes is marked in bold. It is

observed that SDL shows the most steady response in majority of cases while SDLs is the

second best.

For all three datasets, we notice that SDL, SDLs and SPM provide a more robust

performance with different sized training. But SDL and SDLs both show an increase of

in average overall accuracy of 14.8% and 15.6% for the ADL dataset over the competing

methods. Thus leveraging the saliency map in dictionary learning proves to be more effective

for classification.

Breast cancer tissue: The dataset contains 58 Hematoxylin and Eosin (H&E) stained

images of breast cancer tissue available at http://bioimage.ucsb.edu/research/bio-segmentation.

This dataset presented in [159] was originally obtained from Yale Tissue Microarray Facility.

The dataset consists of two categories: malignant and benign with total 26 malignant and

32 benign images which are labeled by experienced pathologists. Sample images of the two

classes from the dataset are shown in Fig. 5.10. A closer look at the two classes of the

dataset reveals the characteristics of each of them. The benign breast cancer tissue in Fig.

5.12(a) shows that the nuclei are arranged more compactly and show textural smoothness in

comparison to the malignant tissue samples in Fig. 5.12(b). In malignant tissues, the nuclei

are more inhomogeneous and the staining is not as prominent as in benign tissues. Since the

two types of tissues can be distinguished by the nuclei structure, detecting the salient objects

can be advantageous, which would mostly highlight the nucleus regions as is evident from

Fig. 5.3(a), (b) and (c).

For classification of the dataset, we perform leave one out method, i.e., we select one

image as a test image and compare with all other images in the training set and classify

based on 1-nearest neighbor classifier using the similarity measure defined in eq. (5.18). The

confusion table is given in table 5.2. While SDLs performs better in detecting malignant
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Table 5.2: Confusion matrix % for breast cancer tissue dataset

Method Benign Malignant

SDL 90.6 9.37
SDLs 87.5 12.5

DL+SC KLdiv 84.34 15.66
Benign SLIDE [10] 50 50

SCD [11] 53.13 46.87
SRC** [15] 78.13 21.87
SPM [139] 81.25 18.75

SDL 38.46 61.5
SDLs 34.62 65.4

DL+SC KLdiv 46.15 53.85
Malignant SLIDE [10] 36.62 63.38

SCD [11] 69.23 30.77
SRC** [15] 65.38 34.62
SPM [139] 46.42 53.58

**Experiments with full images.

tissues, SDL classifies benign tissues with greater accuracy. The individual class recall and

overall classification accuracy is given in Fig. 5.11. For both SDL and SDLs, the classification

accuracy for the breast cancer tissue dataset obtained is 77.6% while that using DL+kldiv is

70.7% and SPM is 69%. For this dataset SDL and SDLs achieve and average overall increase

in accuracy by 17.92% for SDL and 17.93% for SDLs.

From table 5.2 we notice that the performance for the benign tissues are always greater

than that of malignant tissue. One of the reasons is possible due to the fact that all the nuclei

in the tissues annotated as malignant show malignancy as well as benign properties, thereby

increasing the chances of mis-classification. One of the ways to tackle this problem is to

detect the nuclei and classify them individually and finally classify based on the percentage of

nuclei in the tissue showing malignancy properties. This cell level classification was performed

in one of the experiments in [159] and shows promising results. However our algorithm is

limited in this context and can only perform classification at an image level.

Colon cancer tissue: For the previous two datasets, we show a binary classification

problem. For both ADL and the breast cancer tissue dataset, the tissue images belong to
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(a) SDL (b) SDLs

(c) DL+KLdiv (d) SPM

Figure 5.13: The confusion matrix (%) for the colorectal tissue dataset is shown in the figure
for the four methods SDL, SDLs, DL+KLdiv, SPM [139].The predicted class is given along

the y-axis.

two classes: normal and diseased. For the colon cancer tissue classification, we extend our

application to multi-class classification problem. The colon cancer tissue dataset obtained

from [160] contain eight different types of tissue obtained from human colorectal cancer sites.

As mentioned in [157], the samples obtained from human tumors are complex structures and

consists of various tissue types. The progression of the disease can be evaluated by analyzing

the tissue composition in tumors. Manually quantifying the tissue composition in the tumor

images is time consuming and expensive, which necessitates automated analysis of the images.

The different tissue types can be distinguished by the patterns they exhibit in the H&E

stained slides on the tumor samples. As demonstrated in the paper, textural analysis of the

histo-pathological images prove to be often effective in distinguishing the tissue types.

The dataset contains 8 different tissue categories obtained from H&E stained slides of

colorectal tumor samples. The tissue categories was created by manually annotating smaller

overlapping regions of size 150× 150 from these samples. The eight categories include: tumor

tissues, stroma, complex structured stroma, lympho, debris, mucosa, adipose and background.
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Tumor

Stroma

Complex Stroma

Lympho

Debris

Mucosa

Adipose

Figure 5.14: (a) Sample images from the colon cancer tissue dataset.

Sample images from 7 classes are shown in Fig. 5.14. For our experiments, we classify the

tissues in these seven classes, since the last category or the background do not contain any

objects, or do not show any patterns which makes it impractical to use saliency on such

images. There are total 4375 images for the seven classes, with 625 images per class. For our

experiments, we use 468 images per class as training images and the rest 157 as test images.

The confusion matrix for the dataset is given in table 5.13. For testing, we randomly

select a subset of 450 training samples per class and 150 images from the test set. We

perform 10-fold experiments, each time selecting a different combination of training and
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Table 5.3: Retrieval accuracy % for military vehicle dataset 1

Category 1 Category 2 Category 3 Category 4

SDL 41.3 92.4 61.1 38.2
SDLs 47.8 88.5 77.8 41.2

DL+KLdiv 50 91.0 58.3 52.9
SLIDE 54.4 83.4 41.8 66.2
SLIDEs 47.8 65.4 47.2 26.4
SLIDEdl 36.3 76.9 28.1 7.6

SPM [139] 47.8 87.1 44.4 50.0
ID [144] 71.4 16.7 16.1 4.3

Category 1 Category 2 Category 3 Category 4

Figure 5.15: Sample images from dataset 2 from each of 4 categories

test images per class and performing experiments using 20 nearest neighbor classifier. The

columns correspond to test class and the rows represent predicted category. Since more

competing performance was obtained using DL+KLdiv and SPM for previous two datasets,

hence we compare the classification accuracy for this dataset using these two methods. As

we can see from the confusion matrix, SDL and SDLs has a higher recall in classifying tumor

tissues. SDL and SDLs shows an average increase of 7% and 11% in recall respectively for

tumor tissue in comparison with other methods. On the other hand, the precision on average

decreased by 0.1% for both SDL and SDLs while the F-measure increased by 4.0% and 5.7%

respectively.

5.3.4 Application to military image classification

Experiments for image retrieval using the saliency guided dictionary learning framework for

image similarity evaluation (SLIDE ) were performed for two datasets.

Dataset 1: It contains 190 images of military vehicles and weapons. The images are divided

into four categories - fighter jets, light and heavy duty land vehicles, naval vessels and
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Table 5.4: Retrieval accuracy % for military dataset 2

Category 1 Category 2 Category 3 Category 4

SDL 41.1 33.2 52 74.4
SDLs 45.8 45.8 48 70

DL+KLdiv 58.3 16.7 52 72
SLIDE 50.4 45.8 32.5 66.2
SLIDEs 50 20.8 20.2 34.0
SLIDEdl 32.6 76.9 27.8 7.6

SPM [139] 41.6 33.3 20 68.8
ID [144] 58.3 12.5 48.0 34.4

Category 1 Category 2 Category 3 Category 4

Figure 5.16: Sample images from dataset 3 from each of 4 categories

weapons with 46, 78, 36 and 30 images, respectively. The images are obtained from various

sites through the Google search engine. The major challenge with this dataset lies in the

following aspects. First the variability in background- the objects are imaged with different

backgrounds. Second there may be multiple objects in one image. In both these scenarios,

saliency detection aids the process of emphasizing the relevant regions while computing the

similarity. The third is the variability in the object - the objects vary in shape, orientation

and texture rendered due to camouflage patterns. To accommodate diversity, a combination

of color and texture features are used. The sample images of this dataset are shown in Fig.

5.15 and the retrieval results in Table 5.3.

Dataset 2 contains 120 images of different military vehicles divided into four categories of

fighter jets and helicopters, light utility land vehicles, naval vessels and heavy duty land

vehicles with 24, 24, 25 and 47 images respectively. It contains images of land vehicles in two

different categories, which makes the dataset more challenging. The retrieval results of for

this dataset are given in Table 5.4 and sample images are shown in Fig. 5.16.

For all the datasets, a combination of color and Gabor features [24] are used as described
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in Section 5.3.1. Approximately Ni = 500 superpixels were extracted from each image and

the dictionary size was fixed to K = 100. The results are evaluated using a ’leave one out’

strategy. We compare the retrieval accuracy % (# images with correct prediction
# images in that category

) of SLIDE with

the similarity measures proposed in [11, 144]. It can be seen that SLIDE outperforms the

other algorithms in the majority of cases (77.8%). We also observe that our similarity measure

performs significantly even without incorporating salient object detection.

5.4 Discussion

In this paper we introduce a novel method of saliency based sparse coding and dictionary

learning for computing image similarity between a pair of images. The method leverages

salient object detection technique to obtain prominent features form images. The designed

dictionary learning technique exploits these saliency to obtain the sparse codes and set of

basis function for image representation such that the more salient image regions has more

contribution in the dictionary. We show two ways to learn the saliency and dictionary learning

in this paper, the first uses a constant saliency map to update the dictionary, the second

method updates the saliency up with the dictionary and sparse codes by incorporating a

spatial smoothness constraint.

The similarity measure is designed based on the fact that a dictionary learned from an

image will have similar contribution in representing another image from the same category.

For the test phase in classification, the saliency weighted dictionary and sparse codes are

learned for the query image and then for each pair of query and training image the features

are represented with each other’s dictionary. The final four sets of self and relative sparse

codes are compared using KL divergence. The test image is classified based on the image

that gives minimum similarity score.

The methods were applied in the application of histopathological tissue image classification.

We perform experiments on three different datasets. The first dataset (ADL) contains diseased
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and normal tissues of three mammalian organs - kidney, lung and spleen obtained from [14,16].

The second dataset contains malignant and normal breast cancer tissue dataset [159] and the

third contains colon cancer tissues [160]. For all the three datasets, we show that including

the saliency improves the classification accuracy and also performs significantly better than

the state of art methods. Additionally, for the military vehicle detection dataset, our methods

outperforms the stae of the art.

SDL and SDLs both can also be further extended in as a supervised method, which

can be advantageous for multi-class classification problem. The feature saliency of a local

image region can be computed based on information of all the local image features in one

category and then learn one dictionary for each category. When computing saliency of

individual images, it does to provide any information about co-saliency of regions between

two images and hence similar regions in two images can have different saliency values. The

supervised approach, where the saliency can be normalized of a particular category. We

have shown applications of tissue image classification, but the methods are not limited to

histo-pathological image analysis. Since the dictionary is learned in an unsupervised manner,

the similarity measure designed can be applied in other applications e.g., clustering event

detection.
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Chapter 6

Event detection by leveraging region

saliency

The previous two chapters were focused on spatial feature selection from images, which

are used to enhance more discriminative features based on the spatial relationships with

neighboring regions. In this chapter, we will extend this method to a 3D framework to analyze

videos for unusual event detection. In contrast to dealing with single images, both spatial

and temporal feature relation need to be considered. This problem can be tackled in two

different ways. First, a frame-by-frame analysis can be performed. Second, the entire video

can be treated 3D data, and a volumetric analysis can be attempted. The spatio-temporal

analysis of videos can be exploited in different applications e.g., object motion tracking,

activity recognition, event detection. This chapter emphasizes unusual and hazardous event

detection from video.

Event detection generally denotes any change in the temporal sequence that does not

adhere to the original pattern of the sequence. This process can indicate unusual or suspicious

behavior of certain objects, malicious activity, change in usual trajectory patterns, accidents,

etc. A sub problem in this category is adverse event detection that refer to unpredictable

incidents or events that occur in a video abruptly and can cause damage to life and property.
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These types of events do not follow any regular pattern and their occurrence in a video

sequence is occasional for e.g., road accidents, sudden fire, etc. In a surveillance system,

automatically detecting such rare and adverse incidents can help in further analysis and

examination of the situation. Additionally, this detection would help in delivering timely aid

and relief.

Traditional approaches for change or event detection generally rely on spatio-temporal

feature [94,161], saliency analysis [104–106], motion trajectory pattern detection [100,162], or

background subtraction methods [102,163,164]. A more recent trend in event detection is based

on sparse and low rank representation approaches [1,2,110–115,165]. The aforementioned

methodologies are developed based on the assumption that the temporal change in background

is limited. As a consequence, the background can be analyzed by a low rank matrix.

Recently, to obtain a more sophisticated supervision in safety and security, car-mounted

and wearable cameras have been introduced. However, in scenarios where the videos are

captured using wearable/hand-held or camera fitted on a car, camera jitter, camera motion

add to changing dynamic background. In such scenarios, the background becomes dynamic

hence in addition to dealing with detecting an event in the video, one need to take care of

occlusion, camera motion and highly changing background. In such scenarios, the background

becomes dynamic and the assumption of slow changing background is then invalid. In order to

increase robustness to the background changes we propose a spatio-temporal analysis approach

that combines a saliency-driven sparse representation technique. The spatio-temporal saliency

aids identifying distinctive features which can act as an indicator of significant spatio-temporal

changes. The saliency driven sparse representation assist in discriminative between events

and changes occurring due to background motion or occlusion.
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Objective

To address the abnormal event detection problem while accounting for significantly dynamic

background we first propose a frame-by-frame analysis. In order to increase robustness to

the background changes we propose a spatio-temporal analysis approach (SSPARED). The

method combines a saliency-driven sparse representation of each frame with an information

theoretic metric, based on the Kullback-Leibler divergence. Similar to our image classification

framework, we employ a cross-dictionary representation between frames and the temporal

changes between consecutive sparse representations is quantified by the K-L divergence. We

envision that the frames demonstrating significant change in the representation would indicate

the occurrence of events.

While the consecutive frame analysis aids in solving the problem, the method can be

computationally expensive. Moreover, it does not account for the temporal change in the

saliency map. In order to deal with this, we perform a volumetric analysis of the video by local

sparse and low rank representation of the frames aided by spatio-temporal saliency. Spatial

saliency detection [126,166] generates a map mimicking human visual attention model that

highlights unique regions. Spatio-temporal saliency detects regions in video volume which are

distinct from other locations, spatially as well as temporally. The saliency detection captures

any changes in scene which occurs with time but not necessarily capture the abnormal events

exclusively, especially when changes can occur due to background motion. We exploit this

change detection capability of spatio-temporal saliency by integrating it with a sparse and

low rank representation in the proposed method SpLoRed. The method is based on the

idea that depending on the region saliency, a local region can be considered as a part of

an event or background. Higher saliency regions are more probable of being a part of an

event and is modeled as sparse linear combination of some basis function learned from the

data. Regions with low saliency values can be then considered as part of background and are

modeled as a low rank matrix. Thus, the saliency balances the event and background. The

final event detection is performed by analyzing the sparse representations and the background
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approximation.

6.1 SSPARED:Saliency and sparse code analysis for

rare event detection in video

As stated earlier, this method solves the detection problem by analyzing consecutive frames

in a video. In this method, we exploit the saliency guided dictionary learning technique to

obtain the sparse code for the consecutive frames. The saliency based dictionary learning is

solved in the similar manner as described in the method SDL discussed in section 5.1.1 in the

previous chapter. For a pair of consecutive frames, the local features are represented with

respect to each other’s dictionary and the sparse code histograms are obtained. Temporal

change in the KL-divergence of the sparse code histograms are then analyzed to quantify the

change in the scenes and detect the occurrence of the event.

For consecutive frames at t and t − 1, the features extracted are denoted by Yt and

Yt−1. The dictionaries learned for frames t and t− 1 are Dt and Dt−1 respectively and their

corresponding sparse representations are Xt and Xt−1. We call them self sparse codes. When

Yt and Yt−1 are represented with respect to Dt−1 and Dt, the sparse representation Xt|t−1

and Xt−1|t are called relative sparse codes. Wt and Wt−1 are the saliency matrices whose

diagonal contain the saliency values for the corresponding superpixels. In the next sections,

we describe how we compute and analyze the temporal sparse code histograms. Finally, we

provide results of our method as well as comparison to other methods, using four different

videos captured under different conditions and showing various hazardous events.

6.1.1 Rare event detection with sparse code histograms

To detect the time of occurrence of unusual event we perform a comparison between each

two consecutive frames by representing each frame using the dictionary learned from the

other. The histograms formed from the sparse representation are then compared using the
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Algorithm 4 Algorithm for rare event detection

For each frame t ≥ 0

1. Superpixel segmentation to obtain Yt = [y1....yN ]

2. For each superpixel i compute saliency using 5.2 and obtain Wt. N denotes the total
number for superpixels in one frame.

3. Obtain the dictionary Dt and the corresponding sparse codes Xt using the superpixel
features Yt and the saliency Wt

a. The dictionary Dt is initialized by choosing K most salient features.

b. The sparse codes Xt are obtained by solving (5.3) keeping Dt fixed.

c. The dictionary Dt is updated keeping Xt fixed, by solving (5.4) which for each
frame is written as,

∑N
i=1(wi)t‖(yi)t −Dt(xi)t‖2

2

=
N∑
i=1

‖
√

(wi)t(yi)t −
N∑

j=i 6=k

√
(wi)t(dj)t(x

j
i )t −

√
(wk)t(dk)t(x

k
i )t‖2

2

=
N∑
i=1

‖(ek)i − (wk)tdkx
k
i ‖2

2 = ‖(Ek)t −
√

(wk)t(dk)tX
k
t ‖2

F (6.1)

dk is obtained by taking the singular value decomposition of (Ek)t=UΣV and
(dk)t = U(:, 1).

For t > 0

1. Obtain Xt|t−1, Xt−1|t as the representation fo Yt and Yt−1 with respect to Dt−1 and
Dt respectively.

2. Compute histograms HIt , HIt|t−1
, HIt−1 ,HIt−1|t using (6.2).

3. Compare the histograms by KL-divergence method using 6.4

4. Compute the change in the KL-divergence, which if greater than a threshold τ indicates
an unusual event has occured in the scene.
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a. Original frames video 1

b. Saliency map video 1

a. Original frames video 2

b. Saliency map for video 2

Figure 6.1: The figure shows original video frames in (a) and (c) for video 1 and 2 respectively.
The corresponding saliency maps for a video sequence 1 and 2 are shown in (b) and (d) respectively.

Kullback–Leibler (KL) divergence method. Applying (5.3) to the images at frames t and

t−1, we can learn, for the features Yt and Yt−1, the self sparse codes Xt and Xt−1 by solving

the following,

min
(xi)t
‖(xi)t‖0 s.t. ‖(Yt −DtXt)W

1
2
t ‖2

2 ≤ ε

min
(xi)t−1

‖(xi)t−1‖0 s.t. ‖(Yt−1 −Dt−1Xt−1)W
1
2
t−1‖2

2 ≤ ε

When Yt and Yt−1 are represented with respect to Dt−1 and Dt, the relative sparse codes

Xt|t−1 and Xt−1|t, are obtained by solving the following, ∀i ∈ 1, 2, . . . , N
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a. Original Frames

b. Saliency Map

c. Background Subtraction using median of previous frames

Figure 6.2: Sample frames for video 2 (a) with a comparison between the saliency maps (b), the
median background subtraction approach in (c).

a. Original Frames

b. Saliency Map

c. Background Subtraction

Figure 6.3: Sample frames for 4th video (a) with a comparison between the saliency maps (b) and
the median background subtraction (c) approaches.

min
(xi)t|t−1

‖(xi)t|t−1‖0 s.t.‖(Yt −Dt−1Xt|t−1)W
1
2
t ‖2

2 ≤ ε

min
(xi)t−1|t

‖(xi)t−1|t‖0 s.t.‖(Yt−1 −DtXt−1|t)W
1
2
t−1‖2

2 ≤ ε
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Temporal sparse code histogram

As shown in [11, 154], compressibility of the sparse representation can be exploited in

computing similarity between images. After representing the frame using the histogram

computed from the sparse codes xi, we exploit this compressibility while taking into account

the contribution of each dictionary elements. The advantage of this representation is that the

histograms can be further used as a representative feature of the images. If It is the frame at

time t, the self sparse code histogram is computed as

HIt(k) = ‖Xk
t ‖0 (6.2)

where Xk
t is the kth row of the matrix Xt that contains the sparse codes representing It. The

dictionary atoms act as the bin centers of the histogram and the number of features that

share the dictionary atom constitute the bin frequency. The histogram is normalized by the

total number of superpixel features.

The histograms constructed from the relative sparse codes can be obtained by

HIt|t−1
(k) = ‖Xk

t|t−1‖0; HIt−1|t(k) = ‖Xk
t−1|t‖0

We call HIt|t−1
and HIt−1|t relative sparse code histograms

Change detection using sparse code histogram

When the change between two consecutive frames is significant, the change in the actual

sparse code histograms HIt , HIt−1 and the relative sparse code histograms HIt|t−1
, HIt−1|t will

also be significant. We can quantify this change by using the KL divergence [138] to measure

the difference between the histograms:

KL(p||q) =
∑
i

p(i) log
p(i)

q(i)
(6.3)
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(a) (b)

Figure 6.4: (a) shows the KL divergence D(It, It−1) between frames of video 1. The ground truth
of the actual event is marked in green. In (b) the change in the KL divergence η(t) for video 1. The

ground truth of the actual event is marked in green.

In particular, we compute the final KL divergence as an aggregate of the KL divergence of

histogram pairs

D(It, It−1) = KL(HIt ||HIt−1|t) +KL(HIt−1|t||HIt) +KL(HIt−1 ||HIt|t−1
) +KL(HIt|t−1

||HIt−1)

The difference η(t) = D(It, It−1)−D(It−1, It−2) is computed and used to identify significant

changes occurring between frames t − 1 and t. Assuming that no event occurs within the

first n frames, τ is computed as maximum of η(t) for t = 1...n. For the following frames,

if η(t) > τ , t is detected as the time of occurrence of an unusual event. In case of events

occurring within the first n frames, the approach still works and will detect the end of the

event. In Fig.6.4(a) and Fig.6.4(b) we show respectively D(It, It−1) and η(t) plotted for video

1 (see Section 6.2). The ground truth for the event occurrence is shown in green. As it can be

seen from the plot, the event causes considerable alteration in scene and is correctly identified

by our approach. The algorithmic description of the method is given in algorithm:4.

6.2 Experimental Results

Experiments were performed on four video sequences demonstrating varying types of rare

events under different scenarios. We compare our method with ADM [1] and DRMF [2], two
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video 1

video 2

video 3

video 4

Figure 6.5: Sample videos showing examples of rare events.

methods based on the background subtraction approach. The change in the scene is detected

by evaluating, the absolute error (Et) between the observation and the estimated background,

for each time frame t. The temporal change of Et, Et − Et−1 is used to detect the rare event

in the sequence.

In video 1 (76 frames), the two events are the disappearance and reappearance of the

object. In this case, the change in the scene does not occur abruptly in one frame, but

gradually over 18 frames and the ground truth consists of the range of consecutive frames

from the start of the occlusion event to its end. The detection results for this sequence are

presented in Fig. 6.6. The ground truth is in green, the events detected by SSPARED are

marked in red, and those by ADM and DRMF are denoted by black and blue respectively.

As it can be seen from the figure, SSPARED demonstrates significantly better results by

accurately detecting both events whereas ADM and DRMF fail to detect the first event

(disappearance) and produce a false alarm rates (#frames false event detected
#frames with no event

) of 5% and 17%

respectively.

Video 2 in Fig. 6.7 is captured by a camera fitted to a car, and the event is marked by

a blast occurring in a gas line. The video sequence shows significant background variation

caused by the motion of passing vehicles and the changing view along the road. In this video,
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Figure 6.6: Detection results for video 1 using SSPAPRED (red), ADM [1] (black) and DRMF [2]
(blue). The ground truth is shown in green. Some sample frames of the videos sequences are

provided along with the detection.

Figure 6.7: Detection results for video 2 using SSPAPRED (red), ADM [1] (black) and DRMF [2]
(blue). The ground truth is shown in green. Some sample frames of the videos sequences are

provided along with the detection.

12 frames are identified as ground truth, and 48 frames contain no event. It could be argued

that the fire event continues after the frames selected as ground truth, but, in practice, we

may be interested in detecting the initial occurrence rather than the actual temporal extent

of the event. Hence, the ground truth for the event is marked as the first few frames of its

occurrence instead of the entire temporal stretch of the event. In this sequence SSPARED

detects the occurrence of incident accurately and yield 0% false alarm rate. ADM detects the
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Figure 6.8: Detection results for video 3 using SSPAPRED (red), ADM [1] (black) and DRMF [2]
(blue). The ground truth is shown in green. Some sample frames of the videos sequences are

provided along with the detection.

event but yields a false alarm rate of 16%. DRMF fails to detect the event and yields a false

alarm rate of 2%.

Figure 6.9: Detection results for video 4 using SSPAPRED (red), ADM [1] (black) and DRMF [2]
(blue). The ground truth is shown in green. Some sample frames of the videos sequences are

provided along with the detection.

Video 3 in Fig. 6.8 is obtained by a camera fitted to a car as well, but the video is captured

during daytime, thus creating even larger variation in the background. The video has 11

frames marked as ground truth, and the remaining 28 frames contain no event. The event

involves a vehicle accident followed by a fire. While SSPARED detects the event accurately,
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Table 6.1: Confusion matrix (%) for event detection in video

Event No Event
SSPARED [21] 100 0

Event ADM [1] 60 40
DRMF [2] 60 40

SSPARED [21] 5.8 94.2
No Event ADM [1] 15.8 84.2

DRMF [2] 13.9 86.1

it also creates a false alarm rate of 7%. ADM fails to detect the event and creates false alarm

rate of 12%. DRMF detects the event accurately but creates false alarm rate of 32%. The

main cause for the high false alarm rate can be found in the appearance of other vehicles

within the scene.

Video 4 in Fig. 6.9(d) presents the unusual event of a fire explosion in a gas station

captured by a hand-held camera. In this case, the jitter caused by the hand motion is the

main reason for the changes in the background. The sequence has 7 frames marked as ground

truth and 38 frames with no event. SSPARED detects the event but produces false alarm

rate of 10% . Interestingly, the false alarms are caused mainly by the changing appearance of

the fire. ADM and DRMF detects the event but generate false alarm rate of 10% and 2%.

The event detection results for the four videos using SSPARED and comparison algorithms

are consolidated and presented as a confusion matrix in 6.1.

Discussion

In SSPARED we propose a novel framework for rare event detection that leverages a dictionary

learning approach where features are weighted using saliency maps. The proposed method

has the advantage of localizing the compact representation towards the presence of salient

features hence highlighting occurring changes within video sequences independently of the

less relevant changes in the background. By exploiting an information theoretic approach,

we have shown that the histograms of the sparse codes can be used to precisely detect the
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time of occurrence of an event in a video achieving improved performances with respect to

existing state-of-the-art methods.

SSPARED requires a frame by frame analysis in which a dictionary is learned for each frame,

and also the sparse codes are computed by cross-dictionary representation of consecutive

frames. This frame-by-frame makes the method computationally expensive. Hence, we

propose a method which analyzes the video as a volume to determine the temporal occurrence

of an event. In the following section, we discuss the sparse and low rank based volumetric

analysis of video with application to rare event detection.

6.3 SpLoRed:Spatio-temporal saliency guided sparse

and low rank representation

As stated earlier, sequence of video frames can be represented as a combination of a low rank

matrix and a sparse matrix. The low rank matrix provide an estimation of the background

while the sparse matrix account for the changes occurring in the scene. These methods have

been effective in detecting scene changes or events in surveillance videos [1, 2, 110–115,165]

with static background. In our application due to presence of jitter, motion of the background,

approximating the background a low-rank matrix can be erroneous. As shown in Fig. 6.10(a)

and 6.11(a), from the temporal change of the frames, it is difficult to say at what time the

event is occurring as well as if the change is due to an event of changes in background.

In general, it can be seen that when analyzing the temporal changes in local regions of

a video, some regions demonstrate limited variation in scene while others show significant

changes as shown in Fig. 6.10(b) and 6.11(b). For e.g., in Fig. 6.10(b), the events are most

prominent in the blocks 2 and 7, while significant temporal change is demonstrated by blocks

2, 4, 5 and 7. A similar pattern is noticed in Fig. 6.11. This implies that the temporal changes

in the blocks may result from a changing background, an actual event or a combination of

both. Additionally, when an event occurs in the video, it can either occur in a block partially
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(a) (b)

Figure 6.10: The temporal change of intensity profile for each block in 2nd video. (a) shows the
temporal change considering the entire frame, (b) shows the temporal change occurring for each

block. The x-axis denotes time for both figures. The event occurs at 9th frame in this case.

or entirely. Hence, designing the event as sparse is not appropriate. In this proposed method,

we design the temporal set of block features as a summation of two matrices (i) a sparse

linear combination of a dictionary which models the foreground or events and (ii) a low rank

representation that approximates the background is given by the following equation,

Yi ≈ DXi + Bi (6.4)

Here, each column of Yi ∈ Rp×N , given as yi,t, denotes features from the ith block of tth

video frame. The dimension of a feature vector or a block is given by p and N denote the total

number of frames in the video. The features for all the blocks in N frames are represented as

a linear combination of a dictionary D ∈ Rp×K . The coefficients of linear combination are

denoted by Xi ∈ RK×N . The low rank matrix for a block is given by Bi ∈ Rp×N . In order to

identify whether a block contributes to the foreground and background, we add a constraint

based on the spatio-temporal saliency of a block. This is based on the hypothesis that a

salient block signifies an event, and thereby should be assigned greater importance.
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(a) (b)

Figure 6.11: The temporal change of intensity profile for each block in 2nd video. (a) shows the
temporal change considering the entire frame, (b) shows the temporal change occurring for each
block. The x-axis denotes time in both figures. Here, the event occurs from 26th frame onwards

In the next subsections, we first describe the method for computing the spatio-temporal

saliency and then the mathematical derivation of the proposed approach. Finally, we provide

the experimental validation using our method and comparison with state of the art methods.

6.3.1 Spatio-temporal saliency

Spatio-temporal saliency, i.e., the 3D(2D+t) equivalent of this problem still needs to be

explored. In this work, we employ a contrast based method for spatio-temporal saliency

detection. Let ci be the mean color of block i and pi denote the centroid of the block. E(i, j, t2)

denotes an edge between block i and block in j of frame t2. We define the edge weights as

follows:

E(i, j, t2) =


1 if (j, t2) ∈ Ni

0 otherwise

(6.5)

The neighborhood Ni of a block i is shown in Fig. 6.12. The neighborhood consists of the

blocks in the same location along time and their first order neighbors. The adjacent spatial
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Figure 6.12: The figure shows the neighborhood of a block in computing spatio-temporal saliency.
The cuboid formed using blocks with blue centroid shown in the upper left corner constitute the

space-time neighborhood of the block with red centroid.

blocks are defined as first order neighbors. The saliency values for the blocks are computed

using,

si =
N∑
t2=1

M∑
j=1

‖ci − cj,t2‖2
2exp(−‖pi − pj,t2‖2

2)E(i, j, t2) (6.6)

The weights are normalized per block and defined as wi,t1 =
si,t1∑N
t1=1 si,t1

, where si,t1 is the

saliency for block i at frame t1 obtained using (6.6). We denote (.)i,t1 as values corresponding

to ith block in tth frame.

6.3.2 Sparse and low rank representation

As shown in (6.4), we model the temporal extent of each local region or block as a combination

of a low rank matrix and a sparse linear combination of a dictionary. We need to optimize for

the low rank approximation, as well as the dictionary and the sparse code. The optimization

problem is defined as follows,
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min
D,X,B

N∑
i=1

fi(D,Xi,Bi)

We define,

fi(D,Xi,Bi) = ‖Yi −DXi −Bi‖2
F + ‖Bi‖∗ + ‖Yi −DXi‖2

FWi +
N∑
t1=1

‖xi,t1‖1 (6.7)

Here Wi denotes a diagonal matrix, for which the diagonal entries contain the normalized

saliency values W(i, i) = wi

The dictionary D is learned from all the features in the entire video, while the sparse

codes and the low rank matrix are computed for each block separately. To solve the problem

defined in (6.7), we perform the optimization as an alternating minimization process i.e., we

sequentially update X, D and B respectively. X, D are initialized by solving the following

min
D,x
‖Y −DX‖2

F s.t. ‖xi,t1‖0 ≤ τ ∀ i = 1 . . .M and t1 = 1 . . . N

Here Y = [Y1,Y2, . . . ,YM ] and X = [X1,X2, . . . ,XM ]. `0 is the sparsity inducing norm

and τ is the upper bound on the sparsity level. The optimization in (6.8) is solved using the

K-SVD algorithm [6]. The K-SVD algorithm solves the optimization as a two step process.

It first optimizes the function in (6.8) with respect to X to obtain the sparse codes using the

orthogonal matching pursuit algorithm [45]. In the next step, each column of the dictionary

is updated using the precomputed sparse codes. The background feature for each block is

initialized as Bi = Yi −DXi. After initialization, we update X, D and B alternatively until

a convergence criterion is reached.

Update of sparse code X

The solution of the sparse code is given by fixing the dictionary D and B to their previously

updated values. To solve for the sparse codes, we have to minimize the objective function
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defined in (6.7) with respect to x, i.e., minx gx(x), where

min
x

N∑
t1=1

M∑
i=1

‖yi,t1 −Dxi,t1 − bi,t1‖2
F + wi,t1‖yi,t1 −Dxi,t1‖2

F + ‖xi,t1‖1 (6.8)

Generally, the `1 norm optimization can be solved using matching pursuit algorithms. Here

we propose a to solve the above problem using the alternating direction method of multipliers

(ADMM) [167] In [168] the authors used ADMM to solve for the sparse codes with graph

regularization. In order to solve for the sparse variable, the sparsity constraint need to be

separated from the main variable. We introduce a variable Z, which has same dimension as

that of X and rewrite the function of (6.8) as follows,

min
x

N∑
t1=1

M∑
i=1

‖yi,t1 −Dxi,t1 − bi,t1‖2
F + wi,t1‖yi,t1 −Dxi,t1‖2

F + ‖zi,t1‖1 s.t. X = Z (6.9)

In the optimization, we update each column of X separately. The augmented Lagrangian

form of the above equation can be written as follows

Lρ(X,Z,U) =
N∑
t1=1

M∑
i=1

‖yi,t1 −Dxi,t1 − bi,t1‖2
F +

wi,t1‖yi,t1 −Dxi,t1‖2
F + ρ‖xi,t1 − zi,t1 + ui,t1‖2

2 + ‖zi,t1‖1

ui,t1 is the scaled dual variable. Each of the variables X,Z and U is updated alternatively

given by the update rule.

x
(k+1)
i,t1

= min
x

N∑
t1=1

M∑
i=1

‖yi,t1 −D(k)xi,t1 − b
(k)
i,t1
‖2
F

+ wi,t1‖yi,t1 −D(k)xi,t1‖2
F + ρ‖xi,t1 − z

(k)
i,t1

+ u
(k)
i,t1
‖2

2

z
(k+1)
i,t1

= min
z

N∑
t1=1

M∑
i=1

ρ‖x(k+1)
i,t1

− zi,t1 + u
(k)
i,t1
‖+ ‖zi,t1‖1

u
(k+1)
i,t1

= u
(k)
i,t1

+ x
(k+1)
i,t1

− z
(k+1)
i,t1

(6.10)
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Here k is the iteration number. Here x
(k+1)
i,t1

can be obtained using a closed form solution,

while z
(k+1)
i,t1

can be solved using soft-thresholding method and a least square update on the

non-zero components of z
(k+1)
i,t1

. For details of the solution see Appendix C.2.1

Update of dictionary D

The objective of learning a dictionary is to obtain a set of over-complete basis functions,

the linear combination of which will provide an approximation of the original signal. The

dictionary for the (k+1)th iteration, D(k+1), is computed by solving the following minimization

problem

min
D

N∑
t1=1

M∑
i=1

‖yi,t1 −Dx
(k+1)
i,t1

− b
(k)
i,t1
‖2
F + wi,t1‖yi,t1 −Dx

(k+1)
i,t1
‖2
F (6.11)

Each column of the dictionary is updated separately. A closed form solution for each dictionary

atom can be obtained by taking the derivative of the above function and setting it to zero.

Details of the optimization is given in Appendix C.2.2.

Update of background B

The background matrix is constructed as a low rank approximation of the difference between

the actual feature and the linear combination of a dictionary of a block. As discussed earlier,

since we seek the background for the temporal sequence of a block to be low rank, we optimize

B for each block separately, i.e., ∀i = 1, 2 . . .M , the optimization is described by,

min
Bi
‖Yi −DXi −Bi‖2

F + ‖Bi‖∗ (6.12)

Here Yi ∈ Rp×N is a sub-matrix of Y containing the features on block i along time. Xi ∈

RK×N are the corresponding sparse codes. ‖.‖∗ denotes the nuclear norm for low lank matrix

completion. We use the soft-impute algorithm [169] to optimize the equation given in (6.12).
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6.4 Event detection from video using SpLoRed

The event detection using SpLoRed, is performed by analyzing the error for low rank

reconstruction of the background. In the method, each block can be thought of as a

combination of foreground and background. In certain blocks where no event occurs, the

blocks are reconstructed entirely as a background while the blocks where actual events occur

are reconstructed as foreground. Based on this idea of the SpLoRed algorithm, we analyze

the background reconstruction error of each block to identify the occurrence of an event.

Temporal detection of events

Event detection for the proposed algorithm can be analyzed in two ways. One can either

check the minimum reconstruction of a block with its foreground which is given by the sparse

linear combination of the learned dictionary, or based on where the maximum change in the

background occurs. The salient idea of this work is to reconstruct the blocks which are more

probable to contain event as a linear combination of a learned dictionary. The difference

of the block and the low rank reconstruction of the background gives a notion of the event

occurring in each block

A measure of to detect the temporal change in a video due to an event in a frame can be

obtained by analyzing the difference between the block and the low rank reconstruction of

the background, which is given by ‖yi,t1 − bi,t1‖2
2 for block i. To consolidate this idea for a

particular frame, the maximum error over all the blocks for a that frame is computed and as

follows,

ε̇(t1) = max
i
‖yi,t1 − bi,t1‖2

2 (6.13)

The temporal occurrence of an event is identified by thresholding ε̇(t1) in the similar

manner as done in SSPARED [21]. The threshold is chosen by taking the maximum value of

ε̇(t1) for the first 5 frames i.e., t = 1...5.
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Table 6.2: Confusion matrix (%) for event detection in video

Event No Event
SSPARED [21] 100 0

Event SpLoReD 100 0
ADM [1] 60 40

DRMF [2] 60 40
SSPARED [21] 5.8 94.2

No Event SpLoReD 2.7 97.3
ADM [1] 15.8 84.2

DRMF [2] 13.9 86.1

(a) (b)

Figure 6.13: The top row shows sample frames from videos. In (a) we plot ε̃b and in (b) we plot
˜εbf . The ground truth is given by red. In the top row the ground truth is marked by red. The

blocks detected by (a) and (b) are marked by black and blue on the frames respectively

The experiments were performed on the four videos. For video 1, SpLoRed detect the

event but has a false positive of 8.6%. For the 2nd and 4th video, our method detects the

event without any false positive. For the 3rd video the method yields a false positive of 3.5%.

While detecting an event correctly is important, lower level of false positive is equally crucial.

The overall performance over all the four videos is consolidated in table 6.2. The event

detection results for the comparison algorithms are also shown in table 6.2. As is noticed from

the confusion matrix in table 6.2, SpLoRed and sspared perform equally well in detecting an

event, but SpLoRed reduces false positive in identifying events.
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(a) (b)

Figure 6.14: The top row shows sample frames from videos. In (a) we plot ε̃b and in (b) we plot
˜εbf . The ground truth is given by red. In the top row the ground truth is marked by red. The

blocks detected by (a) and (b) are marked by black and blue on the frames respectively

Spatial localization of events

An advantage of the algorithm proposed this section, is that by analyzing the errors for each

block, the events can be localized spatially as well, in contrast to SSPARED. In Fig. 6.13

and 6.14, the blocks which spatially exhibit the event are marked in red.

To spatially locate the events, we first plot the mean error of the background along time

and a combination of the background error and the foreground error. The mean background

error is given by ε̃b(i) = 1
N

∑N
t1=1 ‖yi,t1 − bi,t1‖2

2. The mean foreground error is given by

ε̃f (i) = 1
N

∑N
t1=1 ‖yi,t1 −Dxi,t1‖2

2.

In Fig. 6.13(a), we plot ε̃b (black) and in Fig. 6.13(b), we plot ε̃bf = ε̃b + ε̃f (blue). The

ground truth is marked in red. The maximum values of the errors are used to spatially localize

the events. It can be noticed from the graphs that in both scenarios the with maximum value

of ε̃b the central block can be identified correctly. On the other hand, with ε̃bf , the peaks are

more prominent, but for the second video, it generates a false positive.
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Discussion

In this proposed method, we have developed an algorithm to detect hazardous events from

temporal sequence by a volumetric analysis of the blocks extracted from the video. The

proposed solution exploits the spatio-temporal saliency values to learn a sparse representation

which provides an estimate of foreground. A low rank approximation, on the other hand,

is performed to estimate the background. The approach can be employed to identify the

temporal occurrence of the event as well as spatially localize the event. As observed from the

experimental results, SpLoRed performs significantly better than the competing methods in

detection the time of occurrence of the event as well as identifying the spatial region where

the event occurs.
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Chapter 7

Conclusion and future work

In image processing and computer vision, extracting informative features has been an

important aspect in various applications. Extraction of features in traditional image processing

usually denote obtaining color, texture, frequency information of the images. With recent

advancement of sparse representation and dictionary learning techniques it was shown that

the low-level image features like color, texture, etc. can be made more distinctive between

images. In sparse representation, the image features are represented as a linear combination

of an over-complete basis function. This generates a higher dimensional feature, but the

sparsity constraint uses only a few elements of the over-complete basis achieving significant

compression. This two fold process of representation in higher dimension and simultaneous

compression makes the inherent pattern in the data more prominent.

The initial experiments of sparse representation based dictionary learning, where the

sparse codes and the over-complete basis for representation are learned simultaneously, was

shown to achieve significant improvement over the existing image de-noising algorithms. With

advancement in research it was shown that these methods yield noticeable improvement in

classification as well as tracking applications. However, a critical aspect of dictionary learning

methods in image analysis applications, which still needs to be explored, is the choice of

features and how to integrate them in the learning paradigm. For a single image, whether
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color, texture, structure or frequency information is a more reliable representation is still a

big challenge. Another problem which demands more research is identifying the local image

regions which are more informative. In this thesis, we addressed the above mentioned open

problems in dictionary learning methods in the application of image classification and event

analysis in video.

7.1 Discussion and summary of the proposed works

In this concluding chapter, we summarize each method and discuss the advantages and

limitations of each of the proposed method. We also discuss the future directions of these

applications. In the preceding chapters, we proposed methods for integrating feature selection

with sparse representation techniques to identify more informative features. The proposed

methods were designed for image segmentation, classification and event detection from video.

In the first application, we demonstrated that for image segmentation, the non-homogeneous

intensity profile can be better modeled using available data increasing segmentation accuracy.

In the second contribution, we showed a method of nominating more relevant features for

a query image to improve image classification. In the third application, we demonstrated

that extracting local relevant features from images can be more effective in identifying the

more discriminative features from a single image to aid classification. Finally, in our fourth

application we showed that the feature selection method can be extended to a 3D framework

i.e., analyzing videos to detect unusual events.

A. In Chapter 3, we proposed a novel segmentation algorithm to deal with intensity inho-

mogeneity present in various imaging techniques. In this work, a novel segmentation

method is proposed which combines the idea of dictionary learning and region based

segmentation algorithm in presence of significant clutter and heterogeneous intensity. The

method was applied to a blood vessel segmentation from ultrasound image for phlebotomy

applications. The method can be summarized as follows
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• The presence of clutter and noise added with contrast variation yields improper edge

information and hence we employ a region based technique for image segmentation.

• The salient idea of the method is that if similar training images are available, the

intensity profile can be learned from these training samples.

• In our approach region intensities are modeled as linear combination of columns of

learned dictionary. The dictionary atoms act as the ’detail functions’ in addition to

the mean constant intensity of an image.

• In the region based segmentation method, instead of using two constant intensities to

separate the regions, our method uses a linear combination of the learned dictionaries

to model the two region intensities.

Our method outperforms other region based methods such as Chan-Vese [30], L2S [54],

etc.. The images obtained are a sequence of depth images of blood vessels, hence depending

on the depth, the image intensity varies significantly. However, if training images of this

depth sequence are available, the intensity profile can be modeled using dictionary learning

methods. From the experimental validation, it is observed that DL2S outperforms the

state of the art in terms of handling heterogeneous image intensity, contour initialization

and demonstrates accurate segmentation in cluttered images without the use of explicit

shape priors. Moreover, we achieve significant improvement in segmentation accuracy

when using learned basis function in comparison to using pre-defined basis function. In

our application, the data available is pre-registered. In scenarios where pre-registered

data is unavailable, a preprocessing step is needed prior to learning the dictionary.

B. In Chapter 4 we proposed the meta-algorithm for feature nomination. The method can

be summarized as follows:

• The meta-algorithm employs a discriminative dictionary learning based classification

scheme and an information theoretic feature nomination algorithm to automatically
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decide the most discriminative feature type, from a pool of features, for the query/test

image.

• For a test image, initially, classification decision is made using each of these feature types.

Next, feature nomination is performed such that, from a pool of features descriptors,

the query-specific discriminative feature can be identified.

• The class label for the query for the different feature descriptors and the corresponding

sparse representation is obtained using discriminative dictionary learning. The sparse

representations of the query and that of the class identified by dictionary learning are

analyzed to finalize which feature type is more informative about the query. The final

classification is done based on the nominated feature type.

We showed experimental results on the Caltech 101 [170] dataset and achieved significant

improvement over bagging method of classifier selection. The discriminative dictionary

learning employed in the meta algorithm uses a linear classifier model which may not be

appropriate for different datasets. Generally, in complicated datasets as in images, the

different classes are often not linearly separable. In such scenarios, the meta-algorithm

fails to perform adequately. This problem can be addressed by non-linearly transforming

the data (see learning the dictionary from the nonlinearly transformed data as discussed

in A). We used only four different types of feature descriptors, whereas in literature a vast

pool of feature types exists. Additionally, the Meta-algorithm extracts the features

from the images by prioritizing all the regions in the image uniformly i.e., does not account

for the object of interest in the image. In applications where pre-annotated data is limited,

obtaining an over-complete dictionary is not feasible.

C. To deal with scenarios where training data is limited, we propose the method of saliency

guided dictionary learning SDL. With a small sized training dataset, learning a classifier

often leads to over fitting thus increasing the mis-classification rate. In SDL and SDLs
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in Chapter 5, we propose a method for selecting local discriminative features to obtain a

more robust representation of the images. The method SDL is summarized as below.

• The method integrates the salient region detection technique with sparse coding based

dictionary learning. The idea is to learn compact representation of a single image

by leveraging the saliency values of local regions such that the more salient regions

contribute more towards learning the dictionary.

• The learned sparse codes were employed in computing a similarity measure between

pair of images which was further used in the application of classification

• We designed two different similarity measures exploiting the sparse codes. The first

involved analyzing the compressibility of the sparse codes, when a pair of images are

represented with respect to each other’s dictionary.

• The second method designs a sparse code histogram using the cross-dictionary repre-

sentation and uses K-L divergence method to compare between images.

SDL uses a static, local contrast based saliency detection technique to identify relevant

image regions. These local saliency detection techniques do not employ any smoothness

constraint and hence the intra object regions and not uniform. The saliency is higher

towards the boundary regions of the object. However, to extract information about

an object, we require intra-object regions as well. To address this issue, we develop

SDLs, which employs a smoothness constraint to obtain the saliency map along with the

dictionary update. The method can be summarized as below.

• SDLs employs a graph based smoothness criterion to obtain a smoother saliency map

for an image.

• The saliency map is updated as we update the dictionary, to incorporate the reconstruc-

tion error i.e., a region with high reconstruction error should not have a high saliency

value.
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• The sparse codes obtained using SDLs were also used in conjunction with the compres-

sion based and sparse code histogram based similarity measure for image classification

As mentioned earlier, we developed a similarity measure for comparing image pairs by

leveraging the more discriminative image regions. The goal was to exploit the similarity

measure in image classification where training data is limited. Histo-pathological tissue

image classification is a classical example where obtaining pre-annotated dataset is

challenging. SDL and SDLs were employed in tissue image classification and also for

military vehicle recognition. Both methods achieved significant improvement over the

state of the art.

One of the major issues with the method is that it requires comparing image pairs which

is computationally expensive. However, since the matching part is independent of other

images, it can be parallelized to great extent. The histogram used for similarity measure

is obtained by consolidating the local sparse codes. In certain cases of histological tissue

classification, local analysis is required. In such scenarios analyzing the local sparse codes

are more desirable.

The applications of saliency based dictionary learning is not limited to image classification

and can be extended to video analysis problems for identifying events.

D. In Chapter 6, we extend the saliency based dictionary learning in analyzing rare unusual,

specifically hazardous events from video. We devise two methods for detecting unusual

events from videos SSPARED and SpLoRed. The method developed in SSPARED,

analyses consecutive frames to detect events from videos. The method is summarized as

follows,

• SSPARED employs the saliency based dictionary learning technique similar to SDL

• The features of consecutive frames are analyzed using the cross-dictionary representation.

The K-L divergence of sparse code histograms of consecutive frames provide a measure

of change of the histograms.
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• The change in the K-L divergence is tracked to identify the temporal occurrence of the

event.

This method involves frame by frame analysis of the video to identify the occurrence

of the event in the video. Comparing every frame in a video is again computationally

expensive. Moreover, the saliency detection is performed per frame basis and does not

involve any temporal information. Since regions can be more relevant in space and time,

the temporal transition of these local regions need to be incorporated.

To deal with this, we designed SpLoRed, which involves a volumetric analysis of the

video to analyze and detect an event. The method is summarized as follows,

• In SpLoRed unlike SSPARED, we extract spatio temporal saliency by analyzing the

video as a block.

• In addition to integrating saliency guided dictionary learning we introduce a low rank

representation to identify the regions which has no events. The saliency provides an

information about regions with probable events.

• In this problem, each frame is represented as a combination of sparse representation

based dictionary learning and a low rank representation. The low rank matrix represents

the background of the blocks while the sparse linear combination of the dictionary

atoms represents the foreground.

• Analyzing both low rank background representation and the foreground provide an

information about the spatial and temporal location of the event.

Both SpLoRed and SSPARED aid in analyzing videos to detect rare and hazardous

events and achieve significantly better results in comparison to other background subtrac-

tion based method for event or change detection. However, SpLoRed unlike SSPARED

performs a volumetric analysis of the video. This is advantageous since it is a more global

method in comparison to frame by frame methods. SSPARED is susceptible to local
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changes occurring due to occlusion, camera jitter, etc. These problems can be overcome

using SpLoRed.

In this section, we discussed the summary of each of the proposed methods and their

limitations. In the next section, we will discuss the future prospects for the methods and

applications.

7.2 Concluding remarks and future works

In this work, we developed sparse representation based dictionary learning integrated with

relevant feature detection method. We further employed the sparse codes in devising a

similarity measure to compare a pair of images. We demonstrated the developed algorithms

in applications of image segmentation, classification and event detection.

Our approach for image segmentation, as evident from the quantitative and qualitative

experimental results, is capable of handling inhomogeneous intensity better than other region

based segmentation methods. However, in our experiments, we performed the training for

obtaining intensity profile on a leave one out basis. An ideal extension of this approach would

be to train the intensity profile on phantom images and test on real time images.

We validated the efficacy of our classification algorithm in histo-pathological tissue image

classification as well as other natural image classification applications. We further showed

that the developed method for image similarity is not limited to the application of image

classification and can be extended to video analysis. The similarity measure developed

here can also be exploited in unsupervised methods as in clustering. Since both SDL and

SDLs perform a similarity between a pair of images and do not incorporate any class label

information in learning the sparse codes unlike the meta-algorithm. Hence this the method

developed in this work can be exploited for unsupervised classification when class labels not

present.
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Additionally, the sparse representations obtained from SDL and SDLs can be exploited

as image features in conjunction with other classification techniques to handle larger datasets.

In our experiments, we used the local Gabor filter response as feature descriptors for the

images. Gabor features are appropriate for extracting texture information from the images but

to extend the work from tissue to any natural image classification, using just Gabor features

is not sufficient. An ideal extension of this work would be integrating the meta-algorithm

for feature nomination with the SDLs. This will allow us to exploit the advantages of both

local feature selection as well as identifying the more relevant feature descriptors to boost

the classification framework.

Furthermore, for the rare and unusual event detection application, the method identifies

the frames or time of occurrence of the events. At this point the algorithm exploits the

saliency and sparse representation techniques to detect events. However, the method is not

capable of identifying between hazardous and non-hazardous events for a more practical

surveillance. To provide a complete solution for such a problem, an integrated method for

detection and recognition which can differentiate between hazardous and non-hazardous

events needs to be incorporated.
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Appendix A

Multi-kernel dictionary learning

The work proposed in the meta-algorithm for feature nomination in chapter 1 show the efficacy

of selecting and combining the salient features from a pool of feature types in image retrieval

and classification applications. The sparse representation based classification techniques

have been developed on the linear representation of the data. But as stated earlier, these

methods fail to capture the non-linearity present in the datasets. To deal with non-linearity

in the data, the Kernel trick is applied which non-linearly transforms a data to a higher

dimensional space. In [89, 90] it has been shown that sparse representation based kernel

learning has proved to be efficient for classification purpose. In [171], kernel representation

based dictionary learning has shown to efficiently capture the non-linearity in the data and

at the same time give a compact representation of the data in the kernel space.

In [12], we demonstrated that for robust classification, choice of feature is of significant

importance. A single feature cannot discriminatingly represent all the images in the dataset.

Hence we developed a method in which a classifier is designed in a discriminative dictionary

learning framework for each of the different feature types. For a test image, the most

appropriate feature type is chosen based on the class conditional entropy with respect to the

features. One drawback of this method is that it identifies only one feature type as the most

significant feature. However in practice we have seen that the nominated feature may not be
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Figure A.1: Overview of the MKDL algorithm

the most discriminative feature for a particular query. This drawback has motivated us to

develop a feature combination based dictionary learning framework for robust classification.

Motivated by this fact, we develop an information theoretic kernel combination method

embedded in the dictionary learning framework. One advantage of the kernel space represen-

tation, other than a higher-dimensional representation, lies in the fact that different features

can be combined in the kernel space using multiple kernel functions [172]. The kernel-sparse

representation techniques [89, 90] mainly deal with a single kernel in sparse representation or

dictionary learning framework. Our method learns a dictionary in the kernel space for each of

the classes in the learning phase. We employ a mutual information based approach to obtain

the most desirable weights for kernel combination. In the testing phase, our method exploits

the learned dictionaries and the kernel weights to assign a class label to the test. The steps

involved in the classification system are shown in the block diagram (see Fig. A.1). The

training phase involves discriminative feature and the respective kernel matrix computation.

The next step in training exploits a combination of these features for a classifier design using

a dictionary learning framework. The testing part involves extracting similar types of features

as used for training part and using the learned to identify the class for the test image.
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A.1. KERNEL DICTIONARY LEARNING

A.1 Kernel dictionary learning

Let φ̂ : RN → H be the non-linear transformation that transforms the features to a higher

dimensional kernel space referred to as reproducing kernel Hilbert space (RKHS). The data

Y = [y1,y2, . . . ,yNc ] can now be represented as φ̂(Y ) = [φ̂(y1), φ̂(y2), . . . , φ̂(yNc)] and the

kernel similarity function can be defined as K (yi,yi) = φ̂(yi)
T φ̂(yi). Similar to sparse

representation in feature space, the test data can be represented as a linear combination

of the nonlinearly transformed training data [36,88–90]. Similarly, the dictionary learning

framework can be adapted in the non-linear kernel feature space. Let D be denoted as the

dictionary in the kernel-feature space.

min
D,X
‖φ̂(Y)− DX‖2

2 s.t ‖xi‖0 ≤ T ∀i = 1 . . . Nc (A.1)

(A.1) solves for the dictionary as well as the sparse codes for representing the non-linearly

transformed data, which can also be written as

min
D,X
‖φ̂(Y)− φ̂(Y)DX‖2

2 s.t ‖xi‖0 ≤ T ∀i = 1 . . . Nc

≈ min
D,xi

Nc∑
i=1

‖φ̂(yi)− φ̂(Y)Dxi‖2
2 s.t ‖xi‖0 ≤ T

Where D = φ̂(Y)D and by optimizing for D and xi, the desired dictionary can be obtained.

The objective function for the reconstruction error is written in terms of kernel functions as,

‖φ̂(yi)− φ̂(Y)Dxi‖2
2 = φ̂(yi)

T φ̂(yi)− 2xTi DT φ̂(Y)T φ̂(yi) + xTi DT φ̂(Y)T φ̂(Y)Dxi

= K (yi,yi)− 2xTi DTK (Y,yi) + xTi DTK (Y,Y)Dxi

With pre-specified kernel function K , the optimization problem can be solved without any

prior knowledge of the non-linearity in the data space.
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A.2. FEATURE COMBINATION BY MULTIKERNEL DICTIONARY LEARNING

A.2 Feature combination by multikernel dictionary learn-

ing

An advantage of kernel space representation of features is, combination of different features

is possible using multiple kernel functions. The goal is to exploit the discriminative property

of different features and combine them to achieve a robust classification system. The kernel

function in A.1 can be written as a weighted sum of multiple kernel functions. K =
∑S

s=1 βsKs

K is the kernel function obtained from a linear combination of S different kernel functions for

S different features. If f denote function transforming the feature to the kernel feature space,

we can re-write the entropy for the transformed feature as H (c|f(x)). The weights for the

kernel combination are hence obtained by minimizing the conditional entropy for a class,

min
B

H (c|K = f(Y, B)) s.t
S∑
s=1

βs = 1and βs ≥ 0 ∀ s (A.2)

The problem discussed in chapter 4 exploits a dictionary learning based linear classifier each of

the different feature types and then chooses the most discriminative feature for classification

using the class conditional entropy. Here we address the feature combination problem by

multi-kernel dictionary learning.

The training phase involves learning the kernel weights Bc = [β1 . . . βS], the dictionary Dc

and the sparse codes Xc for each of the classes c = 1 . . . C. We define the linear combination

of the kernel matrix K =
∑S

s=1 βsKs(.)such that Ψ(.)TΨ(.) = K. Ψ is defined as the non-

linear transform from feature space to kernel feature space. The learning phase involves an

alternating minimization approach.

i Optimization for Bc: with fixed D We solve , to obtain the kernel weights. We initialize

βs = 1
S
∀s ∈ [1 . . . S], such that

∑S
s=1 βs = 1.To solve for Bc, we use a random search

method [173]. We randomly select weight values from a Gaussian distribution such

that, βts ∼ N (βt−1
s , 1) and normalized by

∑S
s=1 βs Then select the βs values for which
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A.3. IMAGE CLASSIFICATION BY FEATURE MKDL

H (c|K = f(Y, B)) is minimum. t denotes the iteration step.

ii Updating dictionary D and sparse codes X: Bc is kept fixed, Dc is initialized by randomly

selecting K columns of Yc. First keeping Dc fixed, we update the sparse codes Xc at

time step t solving the following

min
Xc

‖Ψ(Yc)− Dt−1
c Xc‖2

F s.t ‖xi‖0 ≤ T ∀i ∈ 1, . . . , Nc (A.3)

We use orthogonal matching pursuit [45] to solve eq. (A.3). Once the sparse codes are

obtained the next step is to update the dictionary. Keeping the sparse codes fixed, we

solve the following equation, with the constraint that the columns of the dictionary will

be orthonormal. minDtc ‖Ψ(Yc)− Dt−1
c Xt

c‖2
F

The objective function can re-written as eq. (A.2) and the optimized over Dt
c [171]. We use

the K-SVD algorithms [6] for the dictionary update.

A.3 Image classification by feature MKDL

The classification of the test image is performed based on the minimum reconstruction error

with respect to the class dictionaries. Once the feature vectors for the query image, yq is

available, ∀c = 1 . . . C, the kernel combination for the test image is obtained asKc = f(yq, BC),

such that Kc = ΨT
c Ψc. The respective sparse codes xcq corresponding to the class dictionary.

The test image is identified to belong to the particular class for which the reconstruction

error is minimum.

(l(yq) = c) = min
c
‖Ψc(yq)− Dcx

c
q‖2

2 (A.4)

We performed experiments on Caltech 101 dataset [170]. The dataset has 101 categories

with about 9000 images. About 3000 images were used for training. 30 images were chosen at

random per class to perform the training. The rest, about 6000 images were used for testing.
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Figure A.2: The figure shows the per class classification accuracy for 70 classes in the
dataset.

Figure A.3: Figure shows comparison results with meta algorithm

We performed the experiment with spatial pyramid [139] representation of scale invariant

feature transform (SIFT) descriptors [22], with Gaussian K (yi,yi) = exp−γ‖yi−yj‖
2
2 and

polynomial K (yi,yi)) = yTi yj and histogram of oriented gradients (HOG) [23] descriptors

with polynomial kernel. In Fig. A.2, we plot the classification accuracy of 70 classes in

ascending order of their classification accuracy. Fig. A.3 shows comparison of classification

accuracy of MI-MKDL with meta-algorithm for feature nomination [12] of 24 sample classes.
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Discussion

Here, we first introduce a sparse representation based dictionary learning algorithm using

kernel space feature representation and then extend this representation by way of multi-kernel

learning. The method transforms data into high dimensional feature space to capture the non

linearity in the data. The multi-kernel learning allows feature combination and is optimized

using mutual information, yielding weights for kernel combination. In contrast to previous

work [12], in this paper, we approach this problem as a selection of the salient feature

type(s) from a pool of feature types rather than selecting an individual feature from the

pool. Our approach utilizes multiple kernels within the dictionary-learning framework where

a combination of dictionary atoms represents individual categories. The category specific

feature combination parameters or weights for kernel combination are determined by the

mutual information techniques.

126



Appendix B

Analyzing similarity measure for

saliency based dictionary with

selected images

In this section we show experimental results and effects of dictionary atoms on some hand

picked images. This small experiments also demonstrates the effect of object rotation and

noise on the similarity measure devised in chapter 5.

B.1 Validation of the proposed method on sample im-

ages

To demonstrate the effect of the parameters on similarity measure, we perform experi-

ments on some sample images. These images are obtained from 53 objects database in

http://www.vision.ee.ethz.ch/datasets/. The experiments were performed on six sample im-

ages obtained from the dataset as shown in Fig. B.1. The first two columns (Fig. B.1 (a)

and (b)) are the images selected from the dataset with rotated version of the same object.

The third and fourth columns (Fig. B.1 (c) and (d)) are the noisy versions of the original
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images, obtained by adding Gaussian noise to the original images. The images with blue

border are used as the test images. The three rows correspond to the three classes.

We performed experiments using different combinations of dictionary size (K) and number

of superpixels (N). The Number of dictionary atoms ranged from K = 100 and 200 while

the number of superpixels computed were N = 1200 and 520. In Fig. B.2 we plot the mean

similarity value using SDL, SDLs and DL+KLdiv (marked as DL) for each the image

pairs by fixing either K or N . For example when we use class 1 (a) image (Fig. B.1(a) row

1), the first row of Fig. B.2 shows the mean similarity values for each of the othe 9 images in

the dataset (Fig. B.1(b,c,d) of rows 1,2 and 3).

Class 1

Class 2

Class 3

(a) (b) (c) (d)

Figure B.1: Sample images for analyzing effect of dictionary and superpixels on the similarity
between images. (a) and (b) are rotated versions of the same image obtained from the dataset. (c)
and (d) are the original images with Gaussian noise.The images with blue border are used as test

images to compare with the others.

Below each of the figure we denote the value of number of dictionary atoms and superpixels.

Also below each figure we denote the mean and variation of the similarity values with respect

to each of the classes for each of SDL, SDLs and DL+KLdiv. Compared to SDL and

128



B.1. VALIDATION OF THE PROPOSED METHOD ON SAMPLE IMAGES

K = 100;N = 1200, 520 K = 200;N = 1200, 520 K = 100, 200;N = 1200 K = 100, 200;N = 520

Class 1 vs 1 : SDLs = 0.17±0.10; Class 1 vs 1 : SDLs = 0.43±0.11 Class 1 vs 1 : SDLs = 0.43±0.13 Class 1 vs 1 : SDLs = 0.20±0.12

SDL = 0.05±0.01; DL = 0.04±0.04 SDL = 0.15±0.08; DL = 0.17±0.24 SDL = 0.05±0.02 ; DL = 0.06±0.03 SDL = 0.09±0.04 ; DL = 0.12±0.05

Class 1 vs 2: SDLs = 0.27±0.17 Class 1 vs 2: SDLs = 0.57±0.14 Class 1 vs 2: SDLs = 0.63±0.14 Class 1 vs 2 = SDLs = 0.30±0.18

SDL = 0.06 ± 0.02; DL = 0.10±0.04 SDL = 0.18±0.09; DL = 0.24±0.10 SDL = 0.06±0.03; DL = 0.09±0.04 SDL = 0.11±0.05; DL = 0.16±0.06

Class 1 vs 3: SDLs = 0.26±0.16 Class 1 vs 3: SDLs = 0.67±0.16 Class 1 vs 3: SDLs = 0.54±0.08 Class 1 vs 3 = SDLs = 0.36±0.25

SDL =0.07 ± 0.04; DL = 0.10±0.06 SDL = 0.19±0.08; DL = 0.24±0.11 SDL =0.08 ±0.04; DL = 0.09±0.05 SDL =0.11±0.05 ; DL = 0.16±0.07

Test image from Class 1

K = 100;N = 1200, 520 K = 200;N = 1200, 520 K = 100, 200;N = 1200 K = 100, 200;N = 520

Class 2 vs 1: SDLs = 0.25±0.09 Class 2 vs 1: SDLs =0.71 ±0.14 Class 2 vs 1: SDLs = 0.57±0.20 Class 2 vs 1: SDLs = 0.47±0.32

SDL = 0.07±0.02; DL = 0.13±0.06 SDL =0.21±0.09 ; DL = 0.23±0.13 SDL = 0.09±0.04; DL = 0.12±0.05 SDL = 0.13±0.07; DL =0.2±0.08

Class 2 vs 2: SDLs = 0.07±0.01 Class 2 vs 2: SDLs =0.26±0.05 Class 2 vs 2: SDLs = 0.14±0.08 Class 2 vs 2: SDLs = 0.17±0.12

SDL = 0.04±0.01; DL = 0.04±0.02 SDL = 0.12±0.05; DL =0.13±0.06 SDL = 0.05±0.03; DL =0.05±0.03 SDL = 0.07±0.03; DL =0.08±0.05

Class 2 vs 3: SDLs = 0.20±0.03 Class 2 vs 3: SDLs = 0.93±0.30 Class 2 vs 3: SDLs = 0.28±0.09 Class 2 vs 3: SDLs =0.63±0.41

SDL = 0.09±0.03; DL = 0.2±0.06 SDL = 0.24±0.09 ; DL = 0.34±0.16 SDL = 0.11±0.05 ; DL =0.17±0.06 SDL = 0.14±0.08; DL =0.27±0.08

Test image from Class 2

K = 100;N = 1200, 520 K = 200;N = 1200, 520 K = 100, 200;N = 1200 K = 100, 200;N = 520

Class 3 vs 1: SDLs = 0.21±0.09 Class 3 vs 1: SDLs= 0.56±0.10 Class 3 vs 1: SDLs= 0.41±0.13 Class 3 vs 1: SDLs=0.41±0.30

SDL = 0.06±0.02; DL = 0.09±0.03 SDL =0.19±0.09 ; DL = 0.21±0.09 SDL = 0.08±0.03; DL =0.09±0.03 SDL = 0.11±0.05; DL =0.14±0.06

Class 3 vs 2: SDLs=0.18±0.06 Class 3 vs 2: SDLs= 0.69±0.26 Class 3 vs 2: SDLs=0.29±0.15 Class 3 vs 2: SDLs= 0.56±0.37

SDL = 0.08±0.02; DL = 0.18±0.05 SDL =0.23±0.11 ; DL = 0.34±0.12 SDL =0.09±0.05 ; DL = 0.17±0.05 SDL =0.15±0.06 ; DL = 0.15±0.08

Class 3 vs 3: SDLs=0.10±0.04 Class 3 vs 3: SDLs=0.41±0.21 Class 3 vs 3: SDLs=0.11±0.05 Class 3 vs 3: SDLs=0.29±0.23

SDL = 0.05±0.01; DL = 0.04±0.02 SDL =0.16±0.08 ; DL =0.16±0.08 SDL =0.06±0.03 ; DL =0.05±0.03 SDL =0.09±0.04 ; DL =0.09±0.05

Test image from Class 3

Figure B.2: The bar graph plots the mean similarity value and the variance for each
combination of test and train image for various parameter value. For e.g., the first bar graph
shows the similarity between the test image from class one and the other nine images from
the training set when no. of dictionary atoms, K = 100 and the variance in the similarity

with no. of superpixels, N = 1200 and 520. The first three columns in each bar graph
correspond to class 1, next three to class 2 and the last three belong to class 3. Below each

graph, the mean similarity measure and the variance for each class is given.

DL+KLdiv, SDLs has a higher inter-class variance, which is very significant in distinguishing

or separating between two classes.
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B.1. VALIDATION OF THE PROPOSED METHOD ON SAMPLE IMAGES

It is also noted from the intra-class variance should be small in addition to higher inter-

class variance. From the parameters, it is noted that the above criteria holds for N = 1200

with varying K and K = 200 with varying N . Hence in our experiments in chapter 5, we use

dictionary atoms around 0.2%− 0.3% os the number of superpixels.
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Appendix C

Derivations of the mathematical

results

C.1 Derivation of SDLs equation

The update for the saliency weights for the SDLs algorithm is obtained by solving the

following equation

∂C

∂w
=

∂

∂w

{
N∑
i=1

wi‖yi −Dxi‖2
2 +

∑
i,j

aij‖wi − wj‖2
2 +

1

2
µ

N∑
i

d̃ii‖wi −
w0

d̃ii
‖2

2

}

=
∂

∂w

{
ETw +

1

2
wT (D̃−A)w +

1

2
µ(w − D̃−1w0)T D̃(w − D̃−1w0)

}
(C.1)

setting ∂C
∂w

∣∣
w∗

= 0 we get,

0 = ET + wT (D̃−A) + µwT D̃− µwT
0 D̃−1

wT (D̃−A) + µwT D̃ = µwT
0 D̃−1D̃− ET

(1 + µ)wT (D̃− αA) = µwT
0 − ET (C.2)
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C.2. DERIVATION OF SPLORED EQUATIONS

Since D̃ is a diagonal matrix, (D̃−1)T = D̃−1. Also D̃− αA is a symmetric matrix matrix,

hence (D̃− αA)T = D̃− αA The closed form solution of w ∈ RN×1 can be obtained as

w∗ = β−1(D̃− αA)−1(µw0 − E). (C.3)

C.2 Derivation of SpLoRed equations

C.2.1 Update of sparse codes

The sparse codes X is updated column by column and hence can be updated in parallel. The

update rule for X given in eq. (6.10), can be simplified and re-written as,

x
(k+1)
i,t1

= min
x
‖yi,t1 −D(k)xi,t1 − b

(k)
i,t1
‖2
F + wi,t1‖yi,t1 −D(k)xi,t1‖2

F + ρ‖xi,t1 − z
(k)
i,t1

+ u
(k)
i,t1
‖2

2

A closed form solution for x
(k+1)
i,t1

can be obtained by taking the derivative of the above

function with respect to x and setting it to 0. Each column of X can then be updated using

the solution of the following equation.

(x
(k+1)
i,t1

)T [(wi,t1 + 1)(D(k))TD(k) − 0.5ρ2] =

[(wi,t1 + 1)(yi,t1)− b
(k)
i,t1

]TD(k) − 0.5ρ2(z
(k)
i,t1
− u

(k)
i,t1

) (C.4)

(.)T denote the transpose of a variable. The Z can be updated using the soft thresholding

algorithm. Similar to X, we solve for each column of Z in eq. (6.10) and update using the

following equation

z
(k+1)
i,t1

=


h− 0.5λ if h > 0.5λ

h + 0.5λ if h < −0.5λ

0 if − 0.5λ ≥ h ≤ 0.5λ

(C.5)

Here h = x
(k+1)
i,t1

+ u
(k)
i,t1

. The final values of Z is obtained by a least square update on
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the active set of the dictionary. We define the active set as, Θi,t1 = {α|z(k+1)
i,t1

6= 0} i.e.,

the non-zero locations of the vector z
(k+1)
i,t1

. We update the non-zero components of z
(k+1)
i,t1

using z
(k+1)
i,t1

= ((D̂(k))T (D̂(k)))−1(D̂(k))Ty
(k+1)
i,t1

. D̂ denote the sub-dictionary consisting of the

columns in the set Θi,t1 .

C.2.2 Update of dictionary atoms

Here we update each column of the dictionary at a time. The minimization equation given in

eq. (6.11) can be re-written as a function of a single column of D as follows

N∑
t1=1

M∑
i=1

‖(yi,t1 − b
(k)
i,t1

)− dl(x
(k+1)
i,t1

)l −
K∑

m=1 m6=l

dm(x
(k+1)
i,t1

)m‖2
2 +

‖
√
wi,t1(yi,t1 − dl(x

(k+1)
i,t1

)l −
K∑

m=1 m 6=l

dm(x
(k+1)
i,t1

)m)‖2
2 (C.6)

= ‖Y −B− dl(X
(k+1))l −

K∑
m=1 m6=l

dm(X(k+1))m‖2
F +

‖(Y − dl(X
(k+1))l −

K∑
m=1 m 6=l

dm(X(k+1))m)W
1
2‖2

F (C.7)

= ‖E1 − dl(X
(k+1))l‖2

F + ‖E2 − dl(X
(k+1))lW

1
2‖2

F (C.8)

Here d(.) denotes the (.)th column of D, while X(k+1))(.) denote the (.)th row of (k + 1)th

iteration of X. The closed for solution for each column of d can be obtained as follows

dl =
E1((X(k+1))l)T + E2W

T ((X(k+1))l)T

‖((X(k+1))l)‖2
2 + ‖((X(k+1))l)W‖2

2

(C.9)

The closed form solution is obtained using the active set Θi,t1 of X.
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