
Efficient Genomic Interval Intersection Algorithms

A Dissertation

Presented to

the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the requirements for the Degree

Doctor of Philosophy (Computer Science)

by

Ryan M Layer

May 2014

c© 2014 Ryan M Layer

Abstract

The comparison of diverse genomic datasets is fundamental to understanding genome biology. Because

individual experiments typically focus on a single genomic feature (e.g., genes, regulatory elements, genetic

variants), the discovery and characterization of higher-level functions requires the integration of many different

experimental results. For example, certain genomic sequences called enhancers have been shown to modulate

gene expression. Since these sequences also tend to have specific chemical markers (histone marks) and can be

targets of sequence-specific DNA binding proteins (transcription factors), comparing the set of sequences with

certain histone marks to the set that are bound by transcription factors can lead to the discovery of novel

enhancers. This is a difficult problem, especially considering that it is common for these types of experiments

to identify millions of sequences. However, it can be simplified by the use of a reference genome, which is a

representative nucleotide sequence for the chromosomes in an organism’s genome. A reference provides the

coordinate system for mapping a given sequence to an interval based on the relative position of its matching

subsequence. By mapping the sequences in feature sets to intervals, the comparison between sets is reduced

to an interval set intersection problem. That is, if two features intersect, then they share common genomic

sequences and can thus possibly have a biologically relevant relationship.

Given the utility of efficient interval intersection in genomic analysis, especially in the face of every-larger

data sets, this thesis introduces three algorithms that improve upon the state-of-the-art. The Binary Interval

Search (BITS) algorithm is an optimal algorithm for counting the number of intersections between two sets

that is well suited for parallel processing on a GPU. By counting intersections without full enumeration (a

fundamentally harder problem), BITS enables the large-scale comparison of thousands of genomic features

on a single machine that would have otherwise required a cluster of over 100 nodes. The split-then-sweep

algorithm extends the basic concepts introduced by BITS to the consideration of many genomic interval

sets. Sets are partitioned into independent slices, which in many cases reduces the number of the intervals

that must be considered, and in all cases exposes a significant amount of parallelism. Slicing improved

sequential runtimes and parallel runtimes by a factor of 2 and 19, respectively. The LUMPY algorithm uses

interval intersection as a platform to identify differences in genome structure from high-throughput sequencing

i

Abstract ii

data. Unlike any other algorithm in this domain, LUMPY is able to jointly consider many different types of

evidence. This greatly increases its sensitivity, especially in cases where only a fraction of cells contain a

specific variation, which is typical in cancer genomes. These algorithms significantly advance the field by

greatly expanding the data that can be considered in the analysis of genome intervals and high-throughput

sequencing data.

Approval Sheet

This dissertation is submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

Ryan M Layer

This dissertation has been read and approved by the Examining Committee:

Gabriel Robins, Adviser

James Cohoon, Committee Chair

Kevin Skadron

Ira Hall

Aaron Quinlan

Accepted for the School of Engineering and Applied Science:

James Aylor, Dean, School of Engineering and Applied Science

May 2014

iii

To my wife Lindsey, for making me better.

iv

Acknowledgments

I would like to thank all of my advisors: Professors Gabriel Robins, Ira Hall, and Aaron Quinlan. Gabriel for

guiding me into the field of computational biology, helping me through all the twists, turns, and bumps of

my journey, and his constant focus on what is important. Ira for helping me change directions at exactly the

right time, always knowing why my ideas wouldn’t work then helping me to fix them, and helping me to

realize where and how I could make a difference. Aaron for showing interest in the little script that eventually

became my main research topic, helping me to appreciate that usability and documentation are important,

and including me in his crazy ideas. They have always treated me like a colleague, and I expect to continue

to rely on them throughout my career.

Thank you to Professor Anindya Dutta for his guidance and patience during my transition into genomics

and his pep talks when I was sure this was a bad idea. I am also grateful to all of the members of Dutta lab,

especially Dr. Neerja Karnani, Dr. Migon Keaton, and Dr. Pankaj Kumar, who spent many hours helping

me understand and appreciate the biology behind the algorithms.

Professor Kevin Skadron has my gratitude for sparking my interest in parallel algorithms. His computer

architecture class gave me appreciation for a topic that I was sure to otherwise avoid. Kevin was gracious

enough to continue advising and support me well after his course ended and through a difficult series of paper

rejections, revisions, and finally acceptance.

I am grateful to all of the current and former members of the Hall and Quinlan labs: Colby Chiang,

Royden Clark, Greg Faust, Michael Lindberg, Dr. Ankit Malhotra, Svetelana Shumilina Neil Kindlon, and

Dr. Uma Paila. The constant discussions in lab helped many of my mediocre ideas became good ones.

I would also like to thank my mom and sister for their suggestions; my dad, who is not a computer

scientist or a biologist, for reading this entire document and making it much better; Ryan Dale for providing

a number of scripts that aided in the analysis and interpretation of the results in Chapter 4; Michael Boyer

for his help with CUDA; and Johnathan Dorn for his help improving Chapter 5.

v

Contents

Contents vi
List of Tables . viii
List of Figures . ix

1 Introduction 1

2 Background 5
2.1 Interval Intersection . 5
2.2 Genomic Analysis . 6
2.3 Structural Variation . 8

3 Related Work 10
3.0.1 Interval Intersection . 10
3.0.2 Structural Variation . 11

4 Binary Interval Search (BITS): A Scalable Algorithm for Counting Interval Intersections 13
4.1 Introduction . 13
4.2 Methods . 14

4.2.1 Binary Interval Search (BITS) Algorithm . 14
4.2.2 Time Complexity Analysis . 17
4.2.3 Parallel BITS . 17

4.3 Results . 18
4.3.1 Comparing BITS to Extant Sequential Approaches . 18
4.3.2 Applications for Monte Carlo Simulations . 20
4.3.3 Uncovering Novel Genomic Relationships . 21

4.4 Conclusion . 22

5 Slice-then-Sweep: A Parallel Algorithm for N-way Interval Set Intersection 25
5.1 Introduction . 25
5.2 Methods . 26

5.2.1 Sweep . 27
5.2.2 Slice . 29

5.3 Results . 34
5.3.1 Performance with Simulated Interval Sets . 34
5.3.2 Performance with Published Genomic Interval Sets . 35

5.4 Conclusion . 36

6 LUMPY: A Probabilistic Framework for Structural Variant Discovery 39
6.1 Introduction . 39
6.2 Methods . 40

6.2.1 Overview . 40
6.2.2 Breakpoint . 41
6.2.3 Breakpoint Evidence . 43

vi

Contents vii

6.3 Results . 46
6.3.1 Performance Comparisons . 46
6.3.2 Benefits of Integrating All Signals for SV Discovery . 54
6.3.3 Comparison Details . 55

6.4 Conclusion . 57

7 Conclusion 59

Bibliography 63

List of Tables

4.1 Runtime (seconds) comparison for MC simulations. Timings in italics were extrapolated owing
to long run times. 21

viii

List of Figures

2.1 Interval equality and inequality relationships. 5
2.2 Interval ai contains interval aj . 5
2.3 Intersections between intervals and intervals sets. 6
2.4 The N -way intersection I(S) =

{
{s1,2, s2,2, s3,3}, {s1,2, s2,3, s3,3}

}
. 6

2.5 The DNA fragment x aligns to chromosome (chr) 17 of the reference between positions
41,280,732 and 41,280,751. 7

2.6 Source DNA is sheered into similarly sized fragments, and each fragment undergoes pair-end
sequenced that produces the sequences x and y. In pair-end sequencing, the regions between x
and y (dashed line) are unsequenced. 7

2.7 The sequence X produces a split-read alignment when its subsequences x1 and x2 align to
distant regions of the reference. In this case R(x2).s� R(x1).e. 8

2.8 Unexpected pair-end alignments can indicate that a region of the source DNA differs from the
reference. 9

4.1 Comparing a naive binary search for interval intersection to the BITS approach. 15
4.2 Run times for counting intersections with BITS, BEDTools, and UCSC “Kent source”. 19
4.3 BITS-CUDA measurements of spatial correlations among 159 genome features from the

ENCODE project and from the UCSC Genome Browser. 23

5.1 An example set of intervals sets S, and level-one and -two slices of S. Interval s2,2 is in two
level-one slices because it intersects both s1,1 and s1,2, and s2,3 is not in any slice because it
does not intersect any interval in S1. 30

5.2 If the sliced based on s1,2 is created first, then it can be inferred that s1,1 is not part of an
N -way intersection and a slice based on it does not need to be created. 31

5.3 The non-empty level-one slices comprise less than half of the full set. 33
5.4 The runtime performance of N -way intersection problems on simulated data. The proportion

of intervals in an intersection increases from 1% to 100% from top to bottom. Data series
marked by an “*” have runtimes that exceed the limits of the graph in subsequent cases. . . . 37

5.5 The runtime performance of N -way intersection problems on DNase I hypersensitive sites.
Data series marked by an “*” had runtimes that exceed the limits of the graph in subsequent
cases. 37

5.6 The runtime performance of N -way intersection problems on CTCF binding sites. Data series
marked by an “*” had runtimes that exceed the limits of the graph in subsequent cases. . . . 38

6.1 LUMPY workflows. (a) A LUMPY workflow using three different signals (read-pair, split-read
and read-depth) from one sample, as well as prior knowledge regarding known variant sites.
(b) A LUMPY workflow using a single signal type (in this case, read-pair) from three different
samples. Note that multi-signal and multi-sample workflows are not mutually exclusive. . . . 40

6.2 Detection performance for 2500 deletions, tandem duplications, inversions or translocations
randomly embedded at different levels of sequence coverage. 48

6.3 Performance comparison using known deletions at varying intra-sample allele frequencies. . . 51
6.4 Performance comparison of deletion detection in high and low coverage Illumina sequencing

data from the NA12878 individual. 53

ix

List of Figures x

6.5 ROC curves comparing deletion prediction performance in the NA12878 individual. 54

Chapter 1

Introduction

An organism’s genome encodes the instructions that guide all development and behavior [1], and can determine

an individual’s susceptibility or resistance to many classes of diseases. Within a genome, the sequences

for all of the different genomic features (e.g., genes, fragile sites, repeat sequences, etc.) are arranged in a

linear order along chromosomes. A reference genome provides a common point of comparison by allowing

DNA sequences to be mapped to their interval positions within the reference. For example, the BRCA1

gene sequence maps to the interval on chromosome 17 from position 41,196,312 to 41,277,500 in build 37

reference of the human reference genome. Since the completion of first human genome assembly [2], the

genomics community has labored to annotate it by identifying the chromosomal intervals that harbor, for

example, genes associated with disease, significant conservation across diverse species, or the many functional

elements that modulate gene expression. Each such annotation is itself a distinct set of genome intervals, and

the majority of discovery in genomics research involves, in some way, comparing the relationships between

genomic features. Such comparisons involve screens for interval intersection: that is, if feature sets contain

intervals that overlap one another, then an underlying biological relationship can often be inferred. As such,

an efficient intersection algorithm provides researchers with the ability to identify genomic regions that are

common among multiple (or unique to an individual) datasets, and place their experimental results in a

broader context.

Considering the recent growth in the amount of high-throughput sequencing data that has become available

and the steep drop in the costs associated with sequencing, there is a need for efficient algorithms to process

this data. To meet this need, this thesis presents three algorithms that can power the next generation of

genomic analysis:

1

Chapter 1 Introduction 2

1. Binary Interval Search (BITS), an optimal sequential algorithm and a work-efficient parallel algorithm

to count the number of intersections between two interval sets;

2. Split-then-sweep, an efficient divide-and-conquer algorithm to find the intersections among a set of

interval sets that also exposes significant amounts of fine-grain parallelism; and

3. LUMPY, a novel algorithm to detect changes to an organism’s genome that can integrate many types

of high-throughput sequencing evidence and is enabled by interval intersection.

Pair-wise interval set intersection is a fundamental operation that, given two sets of intervals, produces

the set of interval pairs in opposing sets that intersect. Interval intersection is the fundamental operation in a

broader class of “genome arithmetic” techniques, and as such, it underlies the functionality found in many

genome analysis software packages [3, 4, 5, 6]. When comparing large data sets, researchers are often more

interested in statistics concerning the intersection than the full list of intersecting intervals. For example, an

intersecting set that is larger than expected can indicate that two genomic features are closely related. This

type of analysis can be accomplished by counting the number of intersecting intervals, which does not require

the fundamentally more difficult problem of full enumeration. Given the need for this type of comparison,

and the fact that all of the currently available algorithms are based on enumeration, this thesis introduces the

Binary Interval Search (BITS) algorithm, a novel and scalable solution to count the number of intersections

between two sets of intervals. BITS uses two binary searches (one each for start and end coordinates) to

identify intersecting intervals. The sequential version of BITS is optimal, outperforms existing approaches,

and is intrinsically suited to parallel architectures such as the NVIDA CUDA Graphics Processing Unit

(GPU) [7]. BITS provides researchers the unique ability to compare thousands of data sets on a single

GPU-enabled machine, a task that would otherwise require a cluster with over 100 nodes.

A natural extension to pair-wise intersection is an algorithm to find the N -way intersections among a

larger number of interval sets. That is, given a set of N interval sets, determine the set of intervals that

intersect across all N sets. Identifying intersections common to many sets is particularly important when

attempting to distill biological insights from large, multi-dimensional (e.g., features across tissue types and

developmental stages) datasets such as those produced by the ENCODE [8] or Roadmap Epigenomics [9]

projects. These projects endeavor to catalog the spectrum of functional elements in the human genome,

and in so doing, they have thus far produced thousands of distinct sets of genomic features among many

different cell types. Understanding the biological relationships of these functional elements requires a higher-

level analysis that considers many sets at once. This thesis introduces a “slice-then-sweep” algorithm as

a novel and efficient solution to the N -way intersection problem. While any algorithm that can identify

intersections between pairs of interval sets can be extended to find N -way intersections by iterative pair-wise

Chapter 1 Introduction 3

set comparisons, such approaches require a significant amount of overhead to create intermediate results and

track intersection provenance. One widely-used algorithm, the linear sweep, has been directly extended to find

N -way intersections [10], but may lead to over-processing and has little opportunities for parallelization. In

contrast, the slice-then-sweep algorithm attempts to minimize wasted computation and increase the amount

of parallelism by creating independent slices of the data. The slice step identifies and discards regions (slices)

that cannot possibly contain an N -way intersection, and the resulting slices of the data are completely

independent and can therefore be efficiently processed by linear sweeps in parallel. While the speedup

provided by slicing depends on the number of intervals that can be excluded, experiments have shown that

even in the worst case the slice-then-sweep strategy performs as well as a linear sweep. Moreover, by enabling

parallelization, slicing provides significant speedups for the analysis of typical large-scale genomics datasets.

Beyond enabling the direct comparison of interval data sets, efficient intersection algorithms also provide a

platform for more complex genomic analysis algorithms. This thesis considers the problem of finding changes

in chromosome structure between a sample genome and the human reference genome. These changes are

collectively known as structural variation (SV), a term that encompasses diverse genomic alterations including

deletion, tandem duplication, insertion, inversion, translocation, or complex rearrangement of relatively large

(e.g., > 100 base pairs) segments. While SVs are considerably less common than smaller-scale forms of genetic

variation, they have a greater functional potential due to their larger size, and they are more likely to alter

gene structure or dosage. For example, 95% of patients with chronic myelogenous leukemia have a genome

that contains a translocation between chromosomes 9 and 22 that resulted in the oncogenic BCR-ABL gene

fusion. Paired-end high throughput sequencing data can provide evidence of SV in the form of several types

of signals, including sequences that align in unexpected configurations (read-pair signal) and sequences that

contain sub-sequences that align to distant locations (split-read signal). Comprehensive discovery of SVs

requires the integration of multiple signals. However, owing to inherent technical challenges, existing SV

discovery algorithms either use a single signal in isolation, or at best use two signals sequentially. Such

approaches suffer from limited sensitivity when an SV is captured by only a few sequences, as often occurs

in low coverage datasets or at somatic variants with low intra-sample frequencies. In particular, sensitive

detection of low frequency somatic SVs in heterogeneous tumor samples is an unsolved problem with major

clinical implications. To address this problem, this thesis presents LUMPY, a novel and extremely flexible

probabilistic SV discovery framework capable of integrating any number of SV detection signals including

those generated from read alignments or prior evidence jointly from multiple samples. LUMPY enables

straightforward signal integration by mapping each SV signal to a common abstract representation in the

form of paired probability distributions, and then performs SV prediction operations at this higher level.

These prediction operations are made possible by an efficient data structure that enables interval insertion,

Chapter 1 Introduction 4

deletion, and intersection. This approach allows for simple and natural signal integration, inherently produces

a probabilistic measure of breakpoint position, and can be easily extended to new signals as sequencing

technologies and SV detection strategies evolve.

The compilation of this work represents a significant contribution to the general field of computational

biology and bioinformatics and specifically to the field of SV detection. The BITS and the slice-then-sweep

N -way intersection algorithms provide researchers with new comparison operations that can support either

direct data set comparison, or enable higher-level analysis. The LUMPY algorithm both demonstrates the

utility of an efficient interval intersection platform, and advances the state-of-the-art in SV detection.

The rest of this thesis is organized as follows. Chapter 2 covers the basic concepts and notation regarding

interval intersection, genomic analysis, and SV. Chapter 3 is a review of related work in the interval intersection

and SV fields. The BITS algorithm is given in Chapter 4, the N -way slice-then-sweep algorithm in Chapter 5,

and the LUMPY algorithm in Chapter 6. Finally, conclusions and future work is proposed in Chapter 7.

Chapter 2

Background

2.1 Interval Intersection

An interval a = 〈a.start, a.end〉 is a continuous set of values of between start and end locations (e.g., a gene),

and an interval set A = {a1, . . . , aN} is a collection of intervals (e.g., all known genes). Two intervals a

and b intersect when a.start ≤ b.end and a.end ≥ b.start. For convenience, let a = b if a and b intersect

(Figure 2.1a, 2.1b), a < b if a ends before b starts (a.end < b.start) (Figure 2.1c), a > b if a starts after b

ends (a.start > b.end) (Figure 2.1d), a ≤ b if a intersects b and starts before b (Figure 2.1a), and a ≥ b if a

intersect b and ends after b (Figure 2.1b). It is possible for interval ai to contain aj if ai ≤ aj and ai ≥ aj

(Figure 2.2). Let a ≡ b only if a and b refer to the same interval in the same set.

a

b
(a) a = b and a ≥ b

a

b
(b) a = b and a ≤ b

a

b
(c) a < b

a

b
(d) a > b

Figure 2.1: Interval equality and inequality relationships.

ai
aj

Figure 2.2: Interval ai contains interval aj .

The intersection of an interval a and interval set B is the set of intervals: I(a,B) = {bi|bi ∈ B, a = bi}

(Figure 2.3a), and the intersection of two interval sets A and B is the set of interval pairs: I(A,B) =

{ai×I(ai, B)|ai ∈ A} (Figure 2.3b). Chapter 4 describes an algorithm that counts the number of intersections

between two interval sets.

5

Chapter 2 Background 6

a

b1B : b2 b3
(a) I(a,B) = {b2, b3}

a1 a2

b1B :

A :

b2 b3
(b) I(A,B) = {〈a1, b2〉, 〈a2, b2〉, 〈a2, b3〉}

Figure 2.3: Intersections between intervals and intervals sets.

The intersection among a set of intervals sets S = {S1, . . . , SN}, where Si = {si,a, . . . , si,b}, (the N -way

intersection, Figure 2.4) is a set of interval sets

I(S) =

s1,j , s2,k, . . . , sN,l
∣∣∣∣∣∣∣
sa,b ∈ Sa,

sa,b = sc,d∀sa,b, sc,d ∈ {s1,j , s2,k, . . . , sN,l}

Where each set contains exactly one interval from each Si ∈ S, and all of the intervals within a set intersect.

In the N -way intersection problem, it is assumed that sets are free of contained intervals. This assumption

simplifies the problem by eliminating redundant intersections that are all based on the on a common region.

Chapter 5 introduces an algorithm that can reduce computation time and allow for parallel execution by

partitioning the sets into independent slices.

s1,1 s1,2

s2,1S2 :

S1 :

S3 :

S { s2,2 s2,3

s3,1 s3,2

Figure 2.4: The N -way intersection I(S) =
{
{s1,2, s2,2, s3,3}, {s1,2, s2,3, s3,3}

}

2.2 Genomic Analysis

Genome assembly is the process of reconstructing the nucleotide sequences that make up the chromosomes in an

organism’s genome. The current trend in genomic analysis is to define a reference genome for each species that

is the consensus sequence of several individuals. A reference genome provides a common point of comparison

for different types of analysis through a process called alignment. Given some DNA sequence x, alignment to

the reference R(x) = 〈c, o, s, e〉 maps x to its relative genomic location among the full set of sequences in the

reference. A genomic location is defined by a chromosome c, an orientation o (DNA is double stranded, and

orientation refers to either the “+” or “−” strand), a start position s, and an end position e. For example,

considering the human reference genome and sequence x = ACGGGGTCTCGAAAAAAGGA, R(x) =

〈17,−, 41280732, 41280751〉 (Figure 2.5). Depending on the complexity of the genome, the completeness of

its reference assembly, and the genetic divergence of the sample, it is possible for a sequence to map to zero

locations or many locations.

2.2 Genomic Analysis 7

x = ACGGGGTCTCGAAAAAAGGA

chr17: AAGCTTCTCA . . .GATCTCTTTAACGGGGTCTCGAAAAAAGGAGAATGGGATG . . .

1 10 R(x).s = 41280732 R(x).e = 41280751

Figure 2.5: The DNA fragment x aligns to chromosome (chr) 17 of the reference between positions 41,280,732
and 41,280,751.

Paired-end high throughput sequencing is the most widely used genomic sequencing technology. The process

involves fragmenting genomic DNA into roughly uniformly-sized fragments, and sequencing both ends of each

fragment to produce paired-end reads 〈x, y〉, which are referred to as read-pairs (Figure 2.6). When both x and

y align to a single location in the reference and both ends align to the same chromosome (R(x).c = R(y).c),

it is assumed that x aligns before y (R(x).s < R(x).e < R(y).s < R(y).e). If R(x).c 6= R(y).c, then

R(x).c < R(y).c. While in practice it is not possible to know the position of read x in the sample genome (in

the absence of whole-genome assembly), it is useful to refer to S(x) = 〈c, o, s, e〉 as the alignment of x with

respect to the originating samples genome.

Source DNA:

Fragmentation:

Pair-end sequencing:
x = AACGT y = GCCGT

Figure 2.6: Source DNA is sheered into similarly sized fragments, and each fragment undergoes pair-end
sequenced that produces the sequences x and y. In pair-end sequencing, the regions between x and y (dashed
line) are unsequenced.

In some cases, an end of a read-pair that does not align to a single location contains subsequences that

align to distant locations within the reference. These split-read alignments are often evidence of differences

between a sample and the reference. A split-read alignment is a single DNA fragment X (e.g., one end

of a paired-end read) that does not contiguously align to the reference genome (Figure 2.7). Instead, X

contains a set of two or more substrings xi . . . xj (X = x1x2 . . . xn), where each substring aligns to the

reference R(xi) = 〈c, o, s, e〉, and adjacent substrings align to non-adjacent locations in the reference genome

R(xi).e 6= R(xi+1).s+ 1 for 1 ≤ i ≤ n− 1. A single split-read alignment maps to a set of adjacent split-read

sequence pairs (〈x1, x2〉, 〈x2, x3〉, . . . , 〈xn − 1, xn〉), and each pair 〈xi, xi + 1〉 is considered individually.

Chapter 2 Background 8

x1 x2{ {

X = CTCGAACTAGATTCTACGCTC

. . .GGCGCCTCGAACTAGTGACG . . .GGCTATTCTACGCTCGGCGC . . .R:

R(x1).s R(x1).e R(x2).s R(x2).e

Figure 2.7: The sequence X produces a split-read alignment when its subsequences x1 and x2 align to distant
regions of the reference. In this case R(x2).s� R(x1).e.

2.3 Structural Variation

One common type of genomic analysis is to identify large differences (> 100 bp) between a sample genome

and the reference. These differences, referred to as structural variation (SV), have the potential to alter gene

structure or dosage. Paired-end high-throughput sequencing data can provide evidence of SV in the form

of several types of signals, including sequences that align in unexpected configurations (read-pair signal)

and sequences contain subsequences that align to distant locations (split-read signal). Most SV detection

algorithms are based on a single signal, or consider signals one at a time. Chapter 6 introduces an algorithm

that pools all available signals.

The expected alignment for a DNA fragment with paired-end reads 〈x, y〉, is for the two ends to be from

the same chromosome (R(x).c = R(y).c), the first end to be on the + strand (R(x).o = +), the second end

to be on the − strand (R(y).o = −), and for the outer distances between the ends to match the fragment

size (R(y).e−R(x).s = S(y).e− S(x).s) (Figure 2.8a). Any other configuration is a possible SV signal. For

example, a read-pair that spans a region of the sample genome that is missing a stretch of DNA (a deletion

with respect to the reference) will result in a pair with ends that align further from each other than expected

(R(y).e−R(x).s� S(y).e−S(x).s) (Figure 2.8b), and a sample in which two chromosomes have been spliced

together (a translocation) will result in a pair with mismatched chromosomes (R(x).c 6= R(y).c). Other

configurations, such as matching orientations, are signals for different types of SV (duplications, insertions,

and inversions).

Since the expected alignment for a single fragment X is for the the full fragment to align contiguously

(R(xi).e = R(xi+1).s+ 1), the existence of a split-read is a possible SV signal. For example, if a X spans a

deletion, then a large gap with exist between two of the alignments within X (R(xi).e� R(xi+1).s), and if

X spans a translocation then the alignments will not have matching chromosomes (R(xi).c 6= R(xi+1).c).

2.3 Structural Variation 9

Source DNA:

Fragment:

Reference:

S(x).s S(y).e

x

R(x).s R(x).e

y

R(y).s R(y).e

(a) R(y).e − R(x).s = S(y).e − S(x).s is the expected
alignment.

S(x).s S(y).e

x

R(x).s R(x).e

y

R(y).s R(y).e

(b) R(y).e− R(x).s� S(y).e− S(x).s indicates a region of
DNA (dotted line) in reference has been deleted in the source.

Figure 2.8: Unexpected pair-end alignments can indicate that a region of the source DNA differs from the
reference.

Chapter 3

Related Work

3.0.1 Interval Intersection

Interval intersection has many applications in genomics, and several algorithms have been developed that, in

general, are either based on trees [3, 11], or linear sweeps of pre-sorted intervals [12].

The UCSC genome browser introduced a widely-used scheme based on R-trees. This approach partitions

intervals from one dataset into hierarchical “bins.” Intervals from a second dataset are then compared to

matching bins (not the entire dataset) to narrow the search for intersections to a focused portion of the

genome. While this approach is used by the UCSC Genome Browser, BEDTools [13], and SAMTOOLS [5],

the algorithm is inefficient for counting intersections since all intervals in each candidate bin must be

enumerated in order to count the intersections. Since the number of intersections is at most quadratic, any

enumeration-based algorithm is O(N2).

Moreover, these existing approaches are poor candidates for parallelization. Thread divergence can be a

significant problem for hierarchical binning methods. If intervals are not uniformly distributed (e.g., exome

sequencing or RNA-seq), then a small number of bins will contain many intervals while most other bins will

be empty. Consequently, threads searching full bins will take substantially longer than threads searching

empty bins.

Recent versions of BEDTools and BEDOPS [14] conduct a linear “sweep” through pre-sorted datasets

while maintaining an auxiliary data structure to track intersections as they are encountered. While the

complexity of such sequential sweep algorithms is theoretically optimal, the amount of parallelism that exists

is limited, and some overhead is required to guarantee correctness. Any linear sweep algorithm must maintain

the “sweep invariant” [15], which states that all segment starts, ends, and intersections behind the sweep

must be known. A parallel sweep algorithm must either partition the input space such that each section

10

Chapter 3 Related Work 11

can be swept in parallel without violating the invariant, or threads must communicate about intervals that

span partitions. In the first case parallelism is limited to the number of partitions that can be created, and

threads can diverge when the number of intervals in each partition is unbalanced. In the second case, the

communication overhead between threads prevents work efficiency and can have significant performance

implications. In BITS, the amount of parallelism depends only on the number of intervals and not the

distribution of intervals within the input space, and there is no communication between threads.

Any pair-wise algorithm can find N -way intersections by iteratively comparing sets. However, this approach

requires a significant amount of overhead to create intermediate results and track intersection pedigree.

One widely-used algorithm, the linear sweep, can be directly extended to find N -way intersections [10], but

may lead to over-processing and has little opportunities for parallelization. To address these problems, the

slice-then-sweep algorithm minimizes over-processing and increase parallelism by creating independent slices

of the data. Slices that cannot contain an N -way intersection is discarded, and the remaining subsets of the

data are processed in parallel.

3.0.2 Structural Variation

Given the importance of SV detection, a number of methods have been proposed. The basic strategy for

all methods is to cluster SV signals that have similar breakpoint locations. Most of the available methods

utilize one SV signal, typically aberrant read-pairs that aligned to the reference genome in an unexpected

configuration.

HYDRA [13] groups aberrant read-pairs that span the same genomic interval. Groups are then iteratively

pruned to maximize the number of mutually supported read-pairs. BreakDancerMax [16] identifies large SV

(> 100 bp) by scanning the genome for regions with more aberrant read-pair ends than expected, and makes

a prediction for any two regions connected by at least two read-pairs. BreakDancerMini [16] identifies small

SV (10 – 100 bp) by using a sliding window to compare the distance between the ends of normal read-pairs

in the window to the expected distance. GASV [17] utilizes knowledge of the fragment size to map aberrant

read-pairs that to a polygon in 2D space G × G (G is a concatenation of chromosomes in the reference

genome) that contains the breakpoint. Read-pairs that span the same breakpoint will map to intersecting

polygons. After all of the polygons have been created, a plane sweep algorithm is used to find polygons that

intersect. Any region that is common to a minimum number of polygons reported as a breakpoint.

Newer methods integrate a second SV signal to refine predictions made from aberrant read-pairs.

GASVPro [18] is an extension of GASV that uses read-depth to refine reported breakpoints. Read-depth

refers to the number of correctly aligned read-pairs that cover a given region, and the GASVPro authors

Chapter 3 Related Work 12

observed that the number of read-pairs that align correctly should decrease in the region surrounding a true

breakpoint. Based on this, a probabilistic model that compares the actual coverage to the expected is used

to assign a likelihood to breakpoints reported by the GASV method. DELLY [19] refines predictions made

from read-pairs by attempting to reconstruct the breakpoint sequence. A breakpoint joins non-adjacent

reference regions to create a novel junction sequence. When a junction sequence is captured by one end of a

read-pair, the end will, at best, only partially align to the reference. DELLY scans each region identified

by aberrant read-pairs for these partially aligning ends. The ends are processed by an assembly algorithm

in an attempt to reconstruct the junction sequence. The objective is for the read-pair prediction and the

breakpoint assembly to corroborate the SV location.

Chapter 4

Binary Interval Search (BITS): A

Scalable Algorithm for Counting

Interval Intersections

4.1 Introduction

The Binary Interval Search (BITS) algorithm is a novel and scalable solution to the fundamental problem

of counting the number of intersections between two sets of genomic intervals. BITS uses two binary

searches (one each for start and end coordinates) to identify intersecting intervals. As such, the algorithm

executes in Θ(M logM) time, where M is the number of intervals, which can be shown to be optimal by

a straight-forward reduction to element uniqueness (known to be Θ(M logM) [20]). In contrast, counting

intersections by enumeration is less efficient, as enumerating intervals requires time Θ(W +M logM), where

W is the number of intersections which can be quadratic to the input size. The sequential version of BITS

outperforms existing approaches, and BITS is intrinsically suited to parallel architectures. The parallel

version performs the same amount of work as the sequential version (i.e., there is no overhead) which means

the algorithm is work-efficient, and because each parallel thread performs equivalent work, BITS has little

thread divergence. Although thread divergence degrades performance on any architecture (finished threads

must wait for over-burdened threads to complete), the impact is particularity acute for GPUs where threads

share a program counter and any divergent instruction must be executed on every thread.

13

Chapter 4 Binary Interval Search (BITS): A Scalable Algorithm for Counting Interval Intersections 14

4.2 Methods

A seemingly facile method for finding the intersection of A and B would be to treat one set, A, as a “query”

set, and the other, B, as a “database”. If all of the intervals in the database were sorted by their starting

coordinates, it would seem that binary searches could be used for each query to identify all intersecting

database intervals.

However, this apparently straight-forward searching algorithm is complicated by a subtle detail. If the

intervals in B are sorted by their starting positions, then a binary search of B for the query interval end

position ai.end will return the interval bj ∈ B, where bj is the last interval in B that starts before interval

ai ends (e.g, interval e in Figure 4.1A). This would seem to imply that if bj does not intersect ai, then no

intervals in B intersect ai, and if bj does intersect ai, then other intersecting intervals in B could be found

by scanning the intervals starting before bj in decreasing order, stopping at the first interval that does not

intersect ai. However, this technique is complicated by the possibility of intervals that are wholly contained

inside other intervals (e.g., interval c in Figure 4.1B).

An interval bj ∈ B is “contained” if there exists an interval bk ∈ B where bk.start ≤ bj .start and

bj .end ≤ bk.end. Considering such intervals, if the interval found in the previous binary search bj does not

intersect the query interval ai, it cannot be concluded that no interval in B intersects ai, because there

may exist an interval bj−x ∈ B where bj−x.end > ai.start. Furthermore, if bj does intersect ai, then the

subsequent scan for other intersecting intervals cannot stop at the first interval that does not intersect ai; it

is possible that some earlier containing interval intersects ai. Therefore, the scan is forced to continue until

it reaches the beginning of the list. As contained intervals are typical in genomic datasets, a naive binary

search solution is inviable.

4.2.1 Binary Interval Search (BITS) Algorithm

The Binary Interval Search (BITS) algorithm uses two binary searches to identify interval intersections while

avoiding the aforementioned complexities caused by contained intervals. The key observation underlying

BITS is that the size of the intersection between two sets can be determined without enumerating each

intersection. For each interval in the query set, two binary searches are performed to determine the number of

intervals in the database that intersect the query interval. Each pair of searches is independent of all others,

and thus all searches can be performed in parallel.

Existing methods define the intersection set based on inclusion: that is, the set of intervals in the interval

database B that end after the query interval ai begins, and which begin before ai ends. However, contained

intervals make it difficult to find this set directly with a single binary search.

4.2 Methods 15

A
a d

e f

c

g

Database
intervals

a b c d e f g

Binary search of query end
into database sorted
by start coordinates

Query does not
intersect interval c.

Thus falsely conclude that
query does not intersect

intervals a or b.

Query
intersects interval e.

Correctly conclude that
>=1 intersection exists

c b a e f d g

Step 1: Binary search of query.start
into database sorted by

end coordinates. This excludes
database interval c.

a b c d e f g

Step 2: Binary search of query.end
 into database sorted by

start coordinates. This excludes
database intervals e,f,g.

Step 3: Infer the count of intervals
that intersect the query by subtracting

the size of the excluded
set from the size of the database

B

b

Query
interval

a d

e f

c

g

a b c d e f g

b

C a d

e f

c

gb

B E B S

Figure 4.1: Comparing a naive binary search for interval intersection to the BITS approach. A. Binary
searches of intervals sorted by start coordinate will occasionally identify overlapping intervals. However,
contained intervals prevent knowing how far one must scan the database to identify all intersections. B.
Contained intervals also cause single binary searches to falsely conclude that no intersections exist for a given
query interval. C. To overcome these limitations, BITS uses two binary searches of the database intervals:
one into a sorted list of end coordinates and the other into a sorted list of start coordinates. Each search
excludes database intervals that do not intersect the query, leaving solely the intervals that must intersect
the query.

BITS is based on a different, but equivalent, definition of interval intersection based on exclusion: that is,

by identifying the set of intervals in B that do not intersect ai, the number of intervals that must intersect

ai can be inferred. Formally, the set of intervals I(B, ai) ∈ B that intersect query interval ai ∈ A are the

intervals in B that are neither in the set of intervals ending before (“left of”, set L below) ai begins, nor in

the set of intervals starting after (“right of”, set R below) ai ends. That is:

L(B, ai) ={b ∈ B|b.end < ai.start}

R(B, ai) ={b ∈ B|b.start > ai.end}

I(B, ai) =B \ (L(B, ai) ∪R(B, ai))

Chapter 4 Binary Interval Search (BITS): A Scalable Algorithm for Counting Interval Intersections 16

Finding the intervals in I(ai, B) for each ai ∈ A by taking the difference of B and the union of L(B, ai) and

R(B, ai) is not efficient.

However, the size of L(B, ai) and the size R(B, ai) can be easily found and then used to then infer the

size of I(B, ai). From the size of I(B, ai), the decision problem, the counting problem, and the per-interval

counting problems can be directly answered. The size of I(B, ai) also serves as the termination condition for

enumerating intersections that was missing in the naive binary search solution.

Algorithm 1: Single interval intersection counter
Input: Sorted interval starts and ends BS and BE , query interval a
Output: Number of intervals c intersecting a

Function ICount(BS , BE , a) begin
first← BinarySearch(BS , a.end)
last← BinarySearch(BE , a.start)
c← first− last /* = |B| − (last+ (|B| − first)) */

return c

The BITS algorithm is based upon one fundamental function, ICount(BS , BE , ai) = |I(B, ai)| (Algo-

rithm 1), which determines the number of intervals in the database B that intersect query interval ai. As

shown in Figure 4.1C, the database B is split into two integer lists BS = [b1.start, b2.start, . . . , bM .start] and

BE = [b1.end, b2.end, . . . , bM .end], which are each sorted numerically in ascending order. Next, two binary

searches are performed, last = BinarySearch(BE , ai.start) and first = BinarySearch(BS , ai.end).

Since BE is a sorted list of each interval end coordinate in B, the elements with indices less than or equal to

last in BE correspond to the set of intervals in B that end before ai starts (i.e., to the “left” of ai). Similarly,

the elements with indices greater than or equal to first in BS correspond to the set of intervals in B that

start after ai ends (i.e., to the “right” of ai). These two values are used to directly infer the size of the

intersection set I(B, ai) (i.e., the count of intersections in B for ai):

|B| − first =|R(B, ai)|

last =|L(B, ai)|

|B| − (last+ (|B| − first)) =|I(B, ai)|

The BITS solution to the counting problem. Since BITS operates on arrays of generic intervals (〈start, end〉),

and input files are typically chromosomal intervals (〈chrom, start, end〉), the intervals in each dataset are

first projected down to a one-dimensional generic interval. This is a straight forward process that adds an

offset associated with the size of each chromosome to the start and end of each interval. Once the inputs are

projected to interval arrays A and B, the Counter (Algorithm 2) sets the accumulator variable c to zero;

then for each ai ∈ A, accumulates c = c+ ICount(BS , BE , ai). The total count c is returned.

4.2 Methods 17

Algorithm 2: Interval intersection counter
Input: Database interval array B and query interval array A
Output: Number of intersections c between A and B

Function Counter(A,B) begin
BS ← [b1.start, . . . , b|B|.start]

BE ← [b1.end, . . . , b|B|.end]

Sort(BS)
Sort(BE)
c← 0
for i← 1 to |A| do

c← c+ ICount(BS , BE , A[i])

return c

4.2.2 Time Complexity Analysis

The time complexity of BITS is O((|A|+ |B|) log |B|), which can be shown to be optimal by a straight-forward

reduction to element uniqueness (known to be Θ(M logM) [20]). To compute ICount(BS , BE , ai) for each

ai in A, the interval set B is first split into two sorted integer lists BS and BE , which requires O(|B| log |B|)

time. Next, each instance of ICount(BS , BE , ai) searches both BS and BE , which consumes O(|A| log |B|)

time. For the counting problems, combining the results of all ICount(BS , BE , ai) instances into a final result

can be accomplished in O(|A|) time.

4.2.3 Parallel BITS

Performing a single operation independently on many different inputs is a classic parallelization scenario.

When based on the subroutine ICount(BS , BE , a), which is independent of all ICount(BS , BE , x) for

intervals x in the query set where a 6= x, counting interval intersections is a pleasingly parallelizable problem

that easily maps to a number of parallel architectures.

NVIDIA’s CUDA is a single instruction multiple data (SIMD) architecture that provides a general interface

to a large number of parallel GPUs. The GPU is organized into multiple SIMD processing units, and the

processors within a unit operate in lock-step. The BITS algorithm is especially well suited for the this

architecture for a number of reasons. First, CUDA is optimized to handle large numbers of threads. By

assigning each thread one instance of ICount(BS , BE , a), the number of threads will be proportional to

the input size. CUDA threads also execute in lock-step and any divergence between threads will cause

reduced thread utilization. While there is some divergence in the depth of each binary search performed by

ICount(BS , BE , a), it has an upper bound of O(log|B|). Outside of this divergence ICount(BS , BE , a) is a

classic SIMD operation [21]. Finally, the only data structure required for this algorithm is a sorted array, and

thanks to years of research in this area, current GPU sorting algorithms can sort billions of integers within

seconds [22, 23].

Chapter 4 Binary Interval Search (BITS): A Scalable Algorithm for Counting Interval Intersections 18

4.3 Results

4.3.1 Comparing BITS to Extant Sequential Approaches

A sequential version of the BITS algorithm (“BITS-SEQ”) was implemented as a stand-alone C++ utility.

The performance of this implementation was assessed relative to BEDTOOLS intersect and UCSC Genome

Browser’s (“UCSC”) [3] bedIntersect utilitiesfor counting the total number of observed intersections between

sets of intervals of varying sizes (Figure 4.2). The comparisons presented are based on sequence alignments

for the CEU individual NA12878 by the 1000 Genomes Project [24], as well as RefSeq exons. All run-times

were measured on a 2.66 GHz quad-core Intel Xeon X555 CPU with 8 MB of cache running Ubuntu Linux

version 4.4.3 (kernel version 2.6.32-34). Run-times for CUDA were measured on an NVIDIA Tesla C2050

GPU with 448 1.15 GHz cores, 3 GB of global memory, CUDA driver version 4246739, and CUDA runtime

version 4.0. The source code was compiled using gcc version 4.4.3, and NVIDIA CUDA compilation tools

release 4.0, V0.2.1221. In each case, run-times measure the performance of the intersection algorithm and

thus do not include disk reading, writing, or the time required to initialize the GPU.

Owing to the different data structures used by each algorithm, the relative performance of each approach

may depend on the genomic distribution of intervals within the sets. As discussed previously, tree-based

solutions that place intervals into hierarchical bins may perform poorly when intervals are unevenly distributed

among the bins. The impact of differing interval distributions was tested by randomly sampling 1 and

10 million alignment intervals from both whole-genome and exome-capture datasets for NA12878. Each

algorithm was evaluated considering three different interval intersection scenarios. First, the intervals from

different distributions were tested by comparing the intersection between exome-capture alignments and

whole-genome alignments. Since each set has a large number of intervals and a different genomic distribution,

the expected number of intersections is a small (relative to the total set size). Next, a uniform distribution

was tested by counting intersections between Refseq exons and whole-genome sequencing alignments. Here

each interval set is, for the most part, evenly distributed throughout the genome; thus, each exon is expected

to intersect roughly the same number of sequencing intervals, and a large number of sequencing intervals will

not intersect an exon. Lastly, a biased intersection distribution was tested by counting intersections between

exons and exome-capture alignments. By design, exome sequencing experiments intentionally focus collected

DNA sequences to the coding exons. Thus, the vast majority of sequence intervals will align in exonic regions.

In contrast to the previous scenario, nearly every exon interval will have a large number of sequence interval

intersections, and nearly all sequencing intervals will intersect an exon.

4.3 Results 19

BITS BED UCSC BITS BED UCSC BITS BED UCSC BITS BED UCSC BITS BED UCSC BITS BED UCSC
105

106

107

108

109

R
un

tim
e

(m
ic

ro
se

co
nd

s)

105

106

107

108

109

R
un

tim
e

(m
ic

ro
se

co
nd

s)

Exons (query) v.
Exome (database)

Exons (query) v.
Genome (database)

Exome (query) v.
Genome (database)

Exons (query) v.
Exome (database)

Exons (query) v.
Genome (database)

Exome (query) v.
Genome (database)

A B

Biased
distribution

Uniform
distribution

Different
distributions

UCSC 1.7X
BED 21.6X

UCSC 1.2X
BED 21.7X

UCSC 1.3X
BED 27.9X

UCSC 2.1X
BED 11.4X

UCSC 1.5X
BED 11.2X

UCSC 5.2X
BED 28.7X

Biased
distribution

Uniform
distribution

Different
distributions

Figure 4.2: Run times for counting intersections with BITS, BEDTools, and UCSC “Kent source”. A. Run
times for databases of 1 million alignment intervals from each interval distribution. B. Run times for databases
of 10 million alignment intervals from each interval distribution. Bars reflect the mean run time from five
independent experiments and error bars describe the standard deviation. Gray bars reflect the run time
consumed by data structure construction, while white bars are the time spent counting intersections. Above
each BITS execution time the speed increase is given relative to BEDTools and “Kent source”, respectively.
“Exons” represents 400,351 RefSeq exons (autosomal and X, Y) for the human genome (Build 37). BED =
BEDTools; UCSC = “Kent source”.

BITS excels at counting intersections.

In all three interval distribution scenarios, the sequential version of BITS had superior runtime performance

for counting intersections. BITS was between 11.2 and 27.9 times faster than BEDTools and between 1.2

and 5.2 times faster than UCSC (Figure 4.2). This behavior is expected; whereas the BEDTools and UCSC

tree-based algorithms must enumerate intersections to derive the count, BITS infers the intersection count

by exclusion without enumeration.

BITS excels at large intersections and biased distributions.

The relative performance gains of the BITS approach are enhanced for very large datasets (Figure 4.2B). Since

tree-based methods have a fixed number of bins, and searches require a linear scan of each associated bin, the

number of intervals searched grows linearly with respect to the input size. In the worst-case where all intervals

are in a single bin, a search would scan the entire input set. In contrast, BITS employs binary searches so the

number of operations is proportional to log of the input size, regardless of the input distribution.

Similarly, exome-capture experiments yield biased distributions of intervals among the UCSC bins.

Consequently, most bins in tree-based methods will contain no intervals, while a small fraction contain many

intervals. When the query intervals have the same bias, the overhead of the UCSC algorithm is more onerous,

Chapter 4 Binary Interval Search (BITS): A Scalable Algorithm for Counting Interval Intersections 20

as a small number of bins are queried and each queried bin contains many intersecting intervals that must be

enumerated in order to count overlaps. As the BITS algorithm is agnostic to the interval distributions, it will

outperform the UCSC algorithm (Figure 4.2A, 4.22B) for common genomic analyses such as ChIP-seq and

RNA-seq, especially given the massive size of these datasets.

4.3.2 Applications for Monte Carlo Simulations

Identifying statistically significant relationships between sets of genome intervals is fundamental to genomic

research. However, owing to complex evolutionary history, different classes of genomic features have distinct

genomic distributions, and as such, testing for significance can be challenging. One widely-used, yet

computationally intensive alternative solution is the use of MC simulations that compare observed interval

relationships to an expectation based on randomization. All aspects of the BITS algorithm are particularly

well suited for MC simulations measuring relationships between interval sets. As described, all intersection

algorithms begin detecting intersections between two interval sets by setting up their underlying data structures

(e.g., trees or arrays). The BITS setup process involves mapping each interval from the two-dimensional

chromosomal interval space (i.e., chromosome and start/end coordinates) to a one dimensional integer interval

space (i.e., start/end coordinates ranging from 1 to the total genome size). Once the intervals are mapped,

arrays are sorted by either start or end coordinates. In contrast, the UCSC setup places each interval into a

hash table. As shown in Figure 4.2, data structure setup is a significant portion of the total runtime for all

approaches.

However, in the case of many MC simulation rounds where a uniformly distributed random interval set is

generated and placed into the associated data structure, the setup step is faster in BITS, whereas the setup

time remains constant in each simulation round for UCSC. For BITS, the mapping step is skipped in all

but the first round and in each simulation round only an array of random starts must be generated. The

result is a 6x speedup for MC rounds over the cost of the initial intersection setup. For UCSC, both the

chromosome and the interval start position must be generated and then placed into the hash table with no

change in execution time.

This speedup in BITS is extended on parallel platforms where the independence of each intersection is

combined with efficient parallel random number generation algorithms [25] and parallel sorting algorithms [22,

23]. MC simulations have obvious task parallelism since each round is independent. BITS running on CUDA

(“BITS-CUDA”) goes a step further and exposes fine-grain parallelism in both the setup step, with parallel

random number generation and parallel sorting, and the intersection step where hundreds of intersections

execute in parallel. The improvement is modest for a single intersection (only parallel sorting can be applied

4.3 Results 21

to the setup step) where BITS-CUDA is 4x faster than sequential BITS and 40x faster than sequential UCSC.

However, as the number of MC rounds grows performance improves dramatically. At 10,000 MC rounds and

1e7 intervals, BITS-CUDA is 267x faster than sequential BITS and 3,414x faster than sequential UCSC. An

improvement of this scale allows MC analyses for thousands of experiments (e.g., 25,281 pairwise comparisons

in Section 4.3.3).

BITS has better performance than UCSC for MC simulations that measure the significance of the overlaps

between interval sets in Table 4.1. As both the number of MC rounds and the size of the dataset grows, the

speedup of both sequential BITS and BITS-CUDA increases over UCSC. For the largest comparison (1e7

intervals and 10,000 iterations), BITS-SEQ is 12x faster than UCSC, and BITS-CUDA is 267x faster than

BITS-SEQ and 3,414x faster than sequential UCSC.

Table 4.1: Runtime (seconds) comparison for MC simulations. Timings in italics were extrapolated owing to
long run times.

Number of MC iterations
Size Tool 1 100 1000 10000
1e5 BITS-CUDA 0.73 1 4 28

BITS-SEQ 0.41 7 68 680
UCSC 0.17 14 138 1,381

1e6 BITS-CUDA 2 3 1 103
BITS-SEQ 5 120 1,200 12,000
UCSC 6 878 8,780 87,800

1e7 BITS-CUDA 14 22 97 835
BITS-SEQ 66 2,235 22,350 223,500
UCSC 568 28,508 285,080 2,850,800

4.3.3 Uncovering Novel Genomic Relationships

The efficiency of BITS for MC applications on GPU architectures provides a scalable platform for identifying

novel relationships between large scale genomic datasets. To illustrate BITS-CUDA’s potential for large-scale

data mining experiments, a screen was performed for significant genomic co-localization among 159 genome

annotation tracks using MC simulation. This analysis was based upon functional annotations from the

ENCODE project [26] for the GM12878, H1-hESC, and K562 cell lines, including assays for 24 transcriptions

factors (often with replicates), 8 histone modifications, open chromatin, and DNA methylation. Diverse

genome annotations from the UCSC genome browser (e.g, repeats, genes, and conserved regions) were also

included.

BITS-CUDA was used to find the log2 ratio of the observed and expected number of intersections for

each of the 25,281 (i.e., 159*159) pairwise dataset relationships using 1e4 MC simulations (Figure 4.3). As

Chapter 4 Binary Interval Search (BITS): A Scalable Algorithm for Counting Interval Intersections 22

expected, this analysis revealed that 1) the genomic locations for the same functional element are largely

consistent across replicates and cell types, 2) methylated and semi-methylated regions are similar across cell

types, and 3) most functional assays were anti-correlated with genomic repeats (e.g., microsatellites) owing to

sequence alignment strategies that exclude repetitive genomic regions. Perhaps not surprisingly, this unbiased

screen also revealed intriguing patterns. First, the strong enrichment among all transcription factors (TF)

assays suggests that a subset of TF binding sites are shared among all factors. This observation is consistent

with previous descriptions of “hot regions” [27]. In addition, there is a significant, specific, and unexplained

enrichment among the Six5 TF and segmental duplications.

Pursuing the biology of these relationships is beyond the scope of the current manuscript. However, the

ability to efficiently conduct such large-scale screens facilitates novel insights into genome biology. This

analysis presented a tremendous computational burden made feasible by the facility with which the BITS

algorithm could be applied to GPU architectures. Indeed, each iteration of the MC simulation tested for

intersections among 4 billion intervals among the 25 thousand datasets, yielding over 44 trillion comparisons

for the entire simulation. Whereas this simulation took 9,069 minutes on a single computer with one GPU

card. It would take at least 112 traditional processors to conduct the same analysis using standard approaches

such as the UCSC tools or BEDTools.

4.4 Conclusion

BITS is an optimal algorithm for interval intersection that is uniquely suited to scalable computing architectures

such as GPUs. This algorithm takes a new approach to counting intersections; unlike existing methods that

must enumerate intersections in order to derive a count, BITS uses two binary searches to directly infer the

count by excluding intervals that cannot intersect one another. By restating the problem this way, BITS

provides a speedup of 12x in the sequential case and 3,414x in the parallel case over existing methods. This

level of improvement allows researchers to make comparisons between thousands of data sets that require

trillions of comparisons on a single machine.

While BITS is a scalable solution for comparing pairs of interval sets, it is not well suited for the discovery

of complex biologic relationships that exist across many genomic features. The ability to find intersections

across N data sets (the N -way intersection problem) is particularly important given the recent efforts of

projects such as ENCODE [8] and Epigenetics Roadmap [9] which are continuously producing large volumes

of multi-dimensional data sets. Pair-wise algorithms like BITS have been extended to the N -way intersection

problem, but they do not scale due to overhead and a lack of parallelism. In the next chapter the key insight

from BITS —that an interval set can be efficiently partitioned into subsets of intervals that begin before and

4.4 Conclusion 23

H3k27me3 H3k27me3 H3k27me3
Mxi1 Tbp Chd2

Usf2 Nrf1 Yy1
Yy1-1 Yy1-2 Rfx5

Taf1-1 Taf1-2 Un-meth
Egr1-1 Cmyc Egr1-2

Chd2 Tbp Yy1-1
Cmyc Egr1-1 Mxi1

Taf1-1 Taf1-2 Egr1-2
Gabp-1 Srf-2 Gabp-2

Srf-2 Srf-1 Srf-1
Srf-2 Usf1-1 Srf-1

Usf2 Usf1-1 Usf1-2
Atf3 Atf3 Usf1-2

Usf1-2 Usf1-1 Atf3-1
Rfx5 Atf3-2 Usf2

Znf143 Jund FAIRE
Dnase Znf143 Dnase

Dnase Pol2 FAIRE
Znf143 Chd2 Jund

Tbp Yy1-1 Mxi1
Rfx5 Un-meth Yy1-2

Egr1-1 Egr1-2 CpG islands
Taf1-2 Sp1-2 Taf1-1

Nrf1 Nrf1 Sp1-1
Gabp-2 Gabp-1 Un-meth

Pol2-2 Pol2-3 Pol2-1
Pol24h8-2 Pol24h8-1 Pol2-1

Pol2-2 Pol2-2 Pol2
Pol24h8-2 Pol24h8-1 Pol2-1

Pol24h8-2 Pol24h8-1 5’UTRs
Gabp-2 Gabp-1 Promoters

Six5-2 Six5-1 Six5-1
Sp1-2 Sp1-2 Sp1-1

Six5-2 Six5-1 Sp1-1
Cmyc Conservation Six5-2

Semi-meth Semi-meth Exons
Downstream 3’UTRs Semi-meth

Meth Meth Meth
Rad21-2 Rad21-3 Whole_gene

Rad21-1 Rad21-2 Rad21-1
Rad21-1 Rad21-3 FAIRE

Rad21-3 Jund Rad21-2
H3k36me3 H4k20me1 H3k36me3

H3k9me1 H4k20me1 H3k36me3
H3k9ac H3k27ac H4k20me1

H3k4me3 H3k4me2 H3k4me1
H3k4me2 H3k4me1 Pol2b

H3k4me3 H3k9ac H3k27ac
H3k9ac H3k4me2 H3k4me3

Ctcf Ctcf H3k4me1
Segdups Aluy Ctcf

L1 Introns Microsatellites

H
3k

27
m

e3
 H

3k
27

m
e3

 H
3k

27
m

e3

M
xi

1
 T

bp
 C

hd
2

U
sf

2
 N

rf1
 Y

y1
Yy

1-
1

 Y
y1

-2
 R

fx
5

Ta
f1

-1
 T

af
1-

2
 U

n-
m

et
h

Eg
r1

-1
 C

m
yc

 E
gr

1-
2

C
hd

2
 T

bp

Yy
1-

1
C

m
yc

 E
gr

1-
1

 M
xi

1
Ta

f1
-1

 T
af

1-
2

 E
gr

1-
2

G
ab

p-
1

 S
rf-

2
 G

ab
p-

2
Sr

f-2
 S

rf-
1

 S
rf-

1
Sr

f-2
 U

sf
1-

1
 S

rf-
1

U
sf

2
 U

sf
1-

1
 U

sf
1-

2
At

f3
 A

tf3
 U

sf
1-

2
U

sf
1-

2
 U

sf
1-

1
 A

tf3
-1

R
fx

5
 A

tf3
-2

 U
sf

2
Zn

f1
43

 J
un

d
 F

AI
R

E
D

na
se

 Z
nf

14
3

 D
na

se
D

na
se

 P
ol

2
 F

AI
R

E
Zn

f1
43

 C
hd

2
 J

un
d

Tb
p

 Y
y1

-1
 M

xi
1

R
fx

5
 U

n-
m

et
h

Yy
1-

2
Eg

r1
-1

 E
gr

1-
2

 C
pG

 is
la

nd
s

Ta
f1

-2

Sp
1-

2
 T

af
1-

1
N

rf1
 N

rf1
 S

p1
-1

G
ab

p-
2

 G
ab

p-
1

 U
n-

m
et

h
Po

l2
-2

Po

l2
-3

Po

l2
-1

Po
l2

4h
8-

2
 P

ol
24

h8
-1

 P
ol

2-
1

Po
l2

-2
 P

ol
2-

2
 P

ol
2

Po
l2

4h
8-

2
 P

ol
24

h8
-1

 P
ol

2-
1

Po
l2

4h
8-

2
 P

ol
24

h8
-1

 5
’U

TR
s

G
ab

p-
2

 G
ab

p-
1

 P
ro

m
ot

er
s

Si
x5

-2
 S

ix
5-

1
 S

ix
5-

1
Sp

1-
2

 S
p1

-2

Sp
1-

1
Si

x5
-2

Si

x5
-1

 S
p1

-1
C

m
yc

 C
on

se
rv

at
io

n
 S

ix
5-

2
Se

m
i-m

et
h

Se
m

i-m
et

h
 E

xo
ns

D

ow
ns

tre
am

 3

’U
TR

s
 S

em
i-m

et
h

M
et

h
 M

et
h

 M
et

h
R

ad
21

-2
 R

ad
21

-3
 W

ho
le

_g
en

e
R

ad
21

-1
 R

ad
21

-2
 R

ad
21

-1
R

ad
21

-1
 R

ad
21

-3
 F

AI
R

E
R

ad
21

-3
 J

un
d

 R
ad

21
-2

H
3k

36
m

e3
 H

4k
20

m
e1

 H
3k

36
m

e3
H

3k
9m

e1
 H

4k
20

m
e1

 H
3k

36
m

e3
H

3k
9a

c
 H

3k
27

ac
 H

4k
20

m
e1

H
3k

4m
e3

 H
3k

4m
e2

 H
3k

4m
e1

H
3k

4m
e2

 H
3k

4m
e1

 P
ol

2b
H

3k
4m

e3
 H

3k
9a

c
 H

3k
27

ac
H

3k
9a

c
 H

3k
4m

e2
 H

3k
4m

e3
C

tc
f

C
tc

f
H

3k
4m

e1
Se

gd
up

s

Al
uy

 C

tc
f

L1

 In
tro

ns

M
ic

ro
sa

te
llit

es

-8 -6 -4 -2 0 2 4 6 8

Enrichment score
(log2 (observed intersection count / median simulated intersection count)

Figure 4.3: BITS-CUDA measurements of spatial correlations among 159 genome features from the ENCODE
project and from the UCSC Genome Browser. Each comparison gives an enrichment score reflecting the log2
ratio of the observed count of intersections over the median count of intersections from 10000 MC simulations.
Each set of three labels on the X and Y axes correspond to three consecutive rows or columns, respectively.
Assays from the GM12878 cell line are in green, H1-hESC in blue, and K562 in red. Annotation tracks from
the UCSC Genome Browser are in black.

Chapter 4 Binary Interval Search (BITS): A Scalable Algorithm for Counting Interval Intersections 24

after a particular interval– is used as the basis for a new algorithm that can reduce that amount of work

required to find intersections across many sets and exposes a significant amount of fine-grain parallelism.

Chapter 5

Slice-then-Sweep: A Parallel

Algorithm for N-way Interval Set

Intersection

5.1 Introduction

Understanding complex biologic relationships between functional elements requires the comparison of many

genomic features. For example, proteins that bind to DNA (transcription factors) are known to regulate

gene expression, and the presence of certain chromatin markers (histone modifications) has been correlated

with gene transcription. Therefore, finding genomic intervals that are common across transcription factor

binding sites and several relevant histone modification sites can lead to the discovery of novel gene enhancers.

Algorithms that find the intersection between two genomic interval sets have received considerable attention [11,

3, 14, 12, 10, 28], but the ability of these algorithms to consider many interval sets is limited. Interval sets

can be intersected iteratively, but there is considerable overhead associated with creating the intermediate

results and tracking intersection provenance. The linear sweep algorithm can be directly extended to the

N -way intersection problem, but over-processing and a lack of parallelization limit its scalability.

This chapter introduces a novel “slice-then-sweep” algorithm to solve the N -way intersection problem

that is based on the same principle used by the BITS algorithm from the previous chapter: interval sets can

be efficiently partitioned into subsets of intervals that begin before and after a particular interval. The first

step in the algorithm uses this technique to quickly divide the N sets into independent slices. Slices that

25

Chapter 5 Slice-then-Sweep: A Parallel Algorithm for N -way Interval Set Intersection 26

cannot possibly contain an N -way intersection are discarded, and the remaining sets are processed by linear

sweeps in parallel. Evolutionary pressure has driven organisms to become as efficient as possible, and most

individual genomic features play a role in more than one cellular process. The effect of this diversity is that a

comparison of a set of genomic features will typically have many more intervals than N -way intersections, and

slicing can significantly reduce that amount of data that is considered by the subsequent sweeps. However,

even in the worst case where none of the slices can be discarded, the sequential slice-then-sweepstrategy still

performs as well as the standard linear sweep. Furthermore, the amount of parallelism exposed by slicing is

independent of the data-reduction and provides significant speedups in all cases.

5.2 Methods

It is clear that any pair-wise interval intersection algorithm can be extended to the N -way problem by

considering pairs of sets iteratively; however, the overhead associated with this method limits its practical

use. Given a set S = {S1, . . . , SN}, the result of I(S1, S2) = R1,2 can be input into an intersection with

S3 by mapping the set of pairs in R1,2 to a set of intervals that contain the regions common to each pair.

That result is then paired with with S4, and so on. Once all interval sets have been considered, the final set

contains intervals that are common to each N -way intersection. From those common intervals, the full N -way

intersection can be constructed by either tracking back through each intersection, or using a secondary data

structure to maintain a list of intervals common to each result. This extra bookkeeping, the effort required to

create the N − 1 intermediate results, and the fact that regions are being reconsidered many times, adds a

considerable amount of overhead.

One widely used algorithm, the linear sweep, can be efficiently extended to consider N sets. The sweep

scans the intervals across the sets to determine if any are in-context at the same time. In many data sets the

number of N -way intersections is much smaller than the number of intervals, and a considerable amount

of processing time can be saved by skipping regions of the input space that cannot possibly contain an

intersection. Since the sweep algorithm must track each interval as it starts and ends, it is not able to skip

over these regions. Furthermore, this type of serial processing has limited opportunities for parallel execution.

The “slice-then-sweep” strategy is a novel algorithm that can improve performance by both skipping

regions that clearly lack N -way intersections, and exposing a significant amount of fine-grain parallelism.

This algorithm efficiently slices the interval sets into independent regions so that only slices lacking empty

regions are considered. Since the regions are inherently independent, they can also be easily processed in

parallel. While the extent of the performance gain in the sequential case depends on the number of intervals

that are excluded, the slice-then-sweep strategy performs as well as a linear sweep even in the worst case

5.2 Methods 27

where none of the intervals may be excluded. Furthermore, the number of excluded intervals does not affect

the level of parallelism that is achieved by slicing.

5.2.1 Sweep

The generalized sweep algorithm proposed by Bentley and Ottmann [29] is the basis for several pair-wise

genomic interval intersection solutions [10, 14]. The two sorted interval sets are treated as stacks, and at

each step the minimum interval between the sets (the current interval) is popped and added to an ordering

data structure that maintains the set of intervals that are in-context. Intervals that end before the current

interval starts are no longer in-context and are thus removed from the ordering. Intervals that intersect will

be present in the ordering at the same time. The pair-wise sweep algorithm has been extended to solve

the N -way intersection problem by adding an ordering for each of the interval sets and a priority queue to

manage the removal of in-context intervals [10]. When all N orderings are not empty, the Cartesian product

of the orderings gives a set of N -way intersections.

At each iteration, the N -way sweep (Algorithm 3) considers the interval with the next smallest start

position across the ordered sets in S. This process is similar to a merge operation and is managed by a

priority queue Q where the minimum element in the queue has the highest priority. Each queue element

q ∈ Q is associated with an interval x ∈ Si and is assigned a priority equal to the interval start position

(q.p = x.start) and a value equal to the index of the contributing set (q.v = i). Initially, the queue contains

the first element in each set. As the sweep progresses, the next interval to be considered is determined by

popping the highest priority element q0 from Q. To replace this element with another that corresponds to

the next element from the same set, an interval is popped from Sq0.v, and a new element qn is added to the

queue where qn.p = x.start and qn.v = q0.value. Using a priority queue with O(logN) inserts and removes

the time required to sweep N sets is proportional to O(M logN) were M is the total number of intervals

among the sets.

Within the sweep, N ordering data structures o1 . . . oN maintain the set of intervals that are in-context.

Since the sets in S are free of contained intervals, each ordering data structure can be represented by the pair

of indices oi = 〈oi.start, oi.end〉 that specify the range of intervals in Si that are in-context. For example,

if o1 = 〈3, 4〉 then s1,3 and s1,4 are in-context. If oi.start > oi.end, then none of the intervals in Si are

in-context. Each ordering is initialized to be empty (oi = 〈0,−1〉 for i = 1 . . . N) and intervals are added by

incrementing oi.end and removed by incrementing oi.start.

When q0 is popped from Q, any interval that is in-context and ends before q0.p (the start position of the

interval associated with q0) must be removed from context. Instead of scanning the orderings, which would

Chapter 5 Slice-then-Sweep: A Parallel Algorithm for N -way Interval Set Intersection 28

Algorithm 3: The N -way sweep algorithm.

Input: A set S = {S1, . . . , SN} of ordered interval sets
Output: The set N -Way intersections by index

Function Sweep begin
NW ← an empty set of N -way intersections
o← set of N pairs
Q← priority queue for intervals to be swept
C ← priority queue for in-context intervals
for i← 1 to N do

oi.start← 0; oi.end← −1
x← pop (Si)
qn.p← x.start; qn.v ← i
push (Q, qn)

empty ← N
while ¬empty (Q) do

q0 ← pop (Q)
if ¬empty (Sq0.v) then

x← pop (Sq0.v)
qn.p← x.start; qn.v ← q0.v
push (Q, qn)

while q0.p ≥ top (C) do
c←pop (C)
oc.v .start← oc.v .start+ 1
if oc.v .end < oc.v .start then

empty ← empty + 1

if oq0.v .end < oq0.v .start then
empty ← empty − 1

if empty = 0 then
nw ← ∅
for i← 1 to N do

s←sequence (oi.start, oi.end)
nw ← nw × s

append (NW,nw)

oq0.v .end← oq0.v .end+ 1
cn.p← Soq0.v.end.end

cn.v ← q0.v
push (C, cn)

return NW

require O(N) time, another priority queue C is used to determine which orderings need to be updated in

time O(logN) for each interval that is removed from context. Similar to Q, the minimum element in C has

the highest priority, and the value of each element is the index of the contributing set. But unlike Q, the

priority of the elements in C are interval end positions. To update the orderings, elements are popped from

C until the top element has a priority greater than or equal to q0.p. For every popped element c, the ordering

oc.v is updated (oc.v += 1). An element associated the current interval is then added to C.

With the out-of-context intervals removed from the orderings, the interval corresponding to q0 is placed

in-context (oq0.v += 1). If none of the orderings are empty, then an N -way intersection has been found. Each

ordering represents the sequences of interval indices that are in-context. The Cartesian product of sequences

defined by o1 . . . oN yields a set of N -way intersections. For example, if the orderings equal 〈1, 1〉〈3, 4〉〈2, 2〉,

then the product gives a set of N -way intersections {(1, 3, 2), (1, 4, 2)}.

5.2 Methods 29

Within the scan each interval is added to and removed from the priority C exactly once, and the time

required to scan a set of N interval sets with M total intervals is O(M logM). Since N ≤ M , total time

required to sweep a set the set is O(M logM +M logN +W) = O(M logM +W) where W is the number

of N -way intersections.

5.2.2 Slice

While the sweep algorithm is an efficient, general solution, it must consider all of the intervals in S. As a

result, when the number of intersections is much smaller than the number of intervals (as is common in the

case of typical genomics datasets), a significant amount of time is spent sweeping regions of S that do not

contain intersections. Here a new algorithm is proposed that attempts to minimize this type of over-processing

by creating slices of S. Any slice that cannot possibly contain an N -way intersection is discarded so that

processing can focus on more promising regions. Slicing also creates independent subsets of S that can be

processed in parallel.

Slices are composite sets that contain a subset of consecutive intervals from each set in S. Since the

intervals in each subset are consecutive, a slice T = t1 . . . tN can be represented by a set of start and end

pairs tj = 〈tj .start, tj .end〉, where tj .start denotes the index of the first interval of the slice from Sj and

tj .end denotes the last. A subset is empty when tj .start > tj .end.

A slice is at level λ when the intervals in tλ+1 . . . tN intersect all of the intervals in t1 . . . tλ, and all of the

intervals in t1 . . . tλ intersect each other. For example, the subsets in Figure 5.1b are level-one slices of the

set in Figure 5.1a (which itself is considered a level-zero slice), and the subsets in Figure 5.1c are level-two

slices. A slice at a particular level may contain an empty subset (such as the third slice in Figure 5.1b and

the second slice in Figure 5.1c) if there are no intersecting intervals in the corresponding set. An interval may

exist in multiple slices (such as interval s2,2 in the first two level-one slices) if it intersects more than one

interval in a higher level, and an interval may be excluded from any slice (such as interval s2,3) if it doesn’t

intersect any higher-level intervals. A level-N slice with exactly one interval per subset is equivalent to an

N -way intersection.

Basic slicing

Considering that none of the sets in S have fully-contained intervals, a single level-one slice can be found

with two binary searches per set for the start and end coordinates of a top-level interval s1,i (Algorithm 4).

The first binary search (binarySearchEnds) finds the insert position of s1,i.start among the list of end

coordinates in Sj , giving the index of the last interval in Sj to end before s1,i starts. The second binary

Chapter 5 Slice-then-Sweep: A Parallel Algorithm for N -way Interval Set Intersection 30

S1 : s1,1 s1,2 s1,3

S2 : s2,1 s2,2 s2,3

S3 : s3,1 s3,2 s3,3

(a) The set S

s1,1

s2,1 s2,2

s3,1

s1,2

s2,2

s3,2

s1,3

s3,3
(b) The three level-one slices of S

s1,1

s2,1

s3,1

s1,1

s2,2

s1,2

s2,2

s3,2
(c) The three level-two slices of S

Figure 5.1: An example set of intervals sets S, and level-one and -two slices of S. Interval s2,2 is in two
level-one slices because it intersects both s1,1 and s1,2, and s2,3 is not in any slice because it does not intersect
any interval in S1.

search (binarySearchStarts) finds the insert position of s1,i.end among the list of start coordinates in Sj ,

giving the index of the first interval in Sj to start after s1,i ends. The range between these two positions

gives the intervals in Sj that intersect s1,i, and the values to ti. If that range is empty, then the start position

will be greater than the end position.

Algorithm 4: The basic N -way slice operation.

Input: A set S = {S1, . . . , SN} of ordered interval sets, and a base interval s1,i ∈ S1

Output: A level-one slice C

Function Slice begin
C ← set of N start and end pairs {c1, . . . , cN}
c1.start← i; c1.end← i
for j ← 2 to N do

left←binarySearchEnds (s1,i.start, Sj)
right←binarySearchStarts (s1,i.end, Sj)
cj .start← left+ 1; cj .end← right− 1

return C

The time required to compute all level-one slices for each interval in S1 is O(|S1| log(NM)), where |Si|

is the number of intervals in Si, N is the number of interval sets in S, and M is the number of intervals

in S. The creation of each subset of each slice takes time O(log(|Si|)), and the time to create a full slice

is O(
∑

log(|Si|)) = O(log(
∏
|Si|)) = O(log(NM)) (given that

∏N
i=1 |Si| ≤ NM). There are |S1| level-one

slices, making total time O(|S1| log(NM)).

Pivot slicing

While the basic slicing process is reasonably efficient, when level-one slices are created in a particular order

information about the distribution of intervals can be utilized by future slicing operations to both reduce

the search space and possibly prevent some slices from being created. For example, consider the set in

Figure 5.2. In the basic process, three level-one slices are created ({{s1,1}, {}, {s3,1}}, {{s1,2}, {}, {s3,2}},

and {{s1,3}, {s2,1, s2,2}, {s3,2}}). Two of the these slices contain an empty subset (the two based on intervals

5.2 Methods 31

s1,1 and s1,2), and thus they cannot possibly be part of an N -way intersection. If the process instead started

by creating the slice centered on s1,2, then it could have been inferred that the slice on s1,1 would contain

an empty subset (since s1,1 ≤ s1,2 and s2,i > s1,2 for i = 1, . . . , |S2|), and that it did not need to be created

since it could not possibly lead to an N -way intersection.

S1 : s1,1 s1,2 s1,3

S2 : s2,1 s2,2

S3 : s3,1 s3,2 s3,3

Figure 5.2: If the sliced based on s1,2 is created first, then it can be inferred that s1,1 is not part of an N -way
intersection and a slice based on it does not need to be created.

The “emptiness” of future slices can be inferred by systematically creating slices based on a pivot interval

s1,p ∈ S1 (Algorithm 5). The algorithm is similar to the previous slicing method, requires less work, and in

many instances results in fewer slices. With respect to the pivot (e.g., the middle interval), the sets in S

are partitioned into left, center, and right slices. The left slice includes intervals that are less than or equal

to s1,p, the center slice includes intervals that intersect s1,p, and the right slice includes intervals that are

greater than or equal to s1,p. Any slice containing an empty subset is discarded. Non-empty left and right

slices are recursively re-sliced in a breadth-first search style algorithm (Algorithm 6), and the center slices

make up the set of level-one slices. To find the N -way intersections, level-one slices can be similarly re-sliced

into left, center, and right slices, and the center slices are then level-two slices. The center slices of level-two

slices are level-three slices and are re-sliced into level-four slices, and so on until level-N . After level-N , all

non-empty center slices give the N -way intersections.

Algorithm 5: The left, center, and right N -way slice operation.

Input: A set S = {S1, . . . , SN} of ordered interval sets, a slice T = {t1, . . . , tN}, and a pivot interval s1,p where
t1.start ≤ p ≤ t1.end

Output: The list of left, center, and right slices [L,C,R]

Function LCRslice begin
L← set of N start and end pairs {l1, . . . , lN}
C ← set of N start and end pairs {c1, . . . , cN}
R← set of N start and end pairs {r1, . . . , rN}
l1.start← 1; l1.end← p− 1
c1.start← p; c1.end← p
r1.start← p+ 1; r1.end← |S1|
for j ← 2 to N do

left←binarySearchEnds (si,p.start, Sj , tj .start, tj .end)
right←binarySearchStarts (si,p.end, Sj , tj .start, tj .end)
lj .start← tj .start; lj .end← right− 1
cj .start← left+ 1; cj .end← right− 1
rj .start← left+ 1; rj .end← tj .end

return [L,C,R]

To allow for re-slicing, LCRslice is defined in terms of a slice T and a pivot in the first subset of T .

The binary searches are also modified to operate only within the bounds of the current slice. This reduces

Chapter 5 Slice-then-Sweep: A Parallel Algorithm for N -way Interval Set Intersection 32

Algorithm 6: The pivot slice algorithm.

Input: A set S = {S1, . . . , SN} of ordered interval sets
Output: The list of level-one slices L

Function PivotSlice begin
Q← a queue of slices
L← an empty set of level-one slices
T ← set of N start and end pairs
for i← 1 to N do

ti.start← 1; ti.end← |Si|
push (Q,T)
while q ←pop (Q) do

p← (q1.start+ q1.end+ 1)/2
[L,C,R] =LCRslice(S, s1,p)
if L is not empty then

push (Q,L)

if R is not empty then
push (Q,R)

if C is not empty then
append (L,C)

return L

the amount of work required to find all slices since only the first round of slicing considers all intervals in S

(ti.start = 1 and ti.end = |Si| for i = 1 . . . N), and subsequent rounds consider increasingly smaller subsets

of S. At each iteration slices are roughly divided in half by setting the pivot interval to the medoid interval

in t1.

Slice and sweep

N -way intersections can be found by re-slicing each level-one slice into level-two slices, then level-three slices,

and so on. Following this procedure, level-N slices will contain exactly one interval per subset, and all the

intervals will intersect each other. However, as with the sweep operation, re-slicing level-one slices may result

in over-processing.

The slice operation is best suited for cases where the proportion of intervals involved in an N -way

intersection is much smaller than the total number of intervals. While this property exists in many real-world

data sets, it may not continue to exist in the level-one slices of the data. Consider the full set and the

level-one slices in Figure 5.3. The non-empty, level-one slices contain less than half the number of intervals

that are in the full set. If these two slices were then re-sliced, the resulting level-two slices would contain

the exact same number of intervals as the level-one slices and only one additional interval would have been

added to the possible N -way intersections. To obtain the final result, such wasted processing would continue

through the remaining sets with a runtime total runtime of O(WN log(NM)), where W is the total number

of N -way intersections.

5.2 Methods 33

S1 :

S2 :

S3 :

S4 :
(a) The set S.

ta tb
S1 :

S2 :

S3 :

S4 :

(b) The two non-empty, level-one slices of S.

Figure 5.3: The non-empty level-one slices comprise less than half of the full set.

Considering that over-processing occurs in the sweep when the proportion of intervals inN -way intersections

to the total number of intervals is low, and in the slice when the proportion is high, it follows that the most

efficient algorithm is a hybrid that intelligently switches from slicing to sweeping. Conceptually, slicing should

stop before the amount of work required to slice is greater than the amount of work required to sweep the

intervals that would have been excluded by the slice. Since determining exactly when this transition will

occur requires a priori knowledge of the final result (i.e., the total number of the N -way intersections in the

slice), a heuristic must be used.

While the number of intervals that would be removed by performing an additional level of slicing is

unknown, it is obviously bound by the total number of intervals in the slice. To account for the varying

number of sets, the decision to slice or sweep can be based on the ratio of the number of intervals in the slice

to the number of sets. As the ratio approaches one, the potential for the slicing algorithm to remove intervals

decreases. Outside of pathological cases (very long intervals or very dense collections of intervals), the ratio

drops to near one after the first level of slicing. Based on this observation, the slice and sweep algorithms

presented here switch to sweeping after one level of slicing. If the ratio for a slice is exactly one (there is only

one interval per subset) then a sweep in not needed and the intervals in each slice are simply tested to see if

they form an N -way intersection. The runtime of this algorithm is equal to the time required to create the

level-one slices plus the time required to sweep those slices, which is O(|S1| log(NM) +M ′ log(M ′) +W),

where M ′ is the number of intervals that were not excluded by the slice.

Parallel slice and sweep

Beyond reducing the over-processing in the sweep algorithm, slicing also creates inherently independent

sections of S that can be processed in parallel. While pivot slicing reduces the amount of work required to

create a set of level-one slices, the basic slicing algorithm is a better candidate for parallelization since each

slice is completely independent (pivot slicing creates new slices at each step, creating a dependency between

slices) and there are no shared resources (pivot slicing has a queue that must be locked on push and pop). In

Chapter 5 Slice-then-Sweep: A Parallel Algorithm for N -way Interval Set Intersection 34

the parallel slice and sweep algorithm, each thread creates one level-one slice. Then, any non-empty level-one

slice is swept. Each thread maintains a private list of N -way intersections that are merged in the final step of

the algorithm.

5.3 Results

To assess the performance of these algorithms, the sweep (sweep), pivot-slice (pslice), pivot slice then sweep

(pslice-sweep), and parallel slice then sweep that is based on the basic slice operation (Pbslice-sweep) algorithms

were implemented as stand-alone C utilities using the Pthreads library for parallel thread manipulation. As

pointed out in the previous section, the relative performance of each algorithm depends on the distribution of

the data. As the proportion of intervals involved in an N -way intersection increases, the opportunities for the

split algorithm to reduce the amount of data that must be considered diminishes. To identify where slicing no

longer provides improvement over sweeping, the performance of the algorithms were tested against simulated

data sets with a varying numbers of sets and varying proportion of N -way intersections. Each algorithm was

also tested using previously published data from a large-scale DNase I hypersensitive site study [30], and

CTCF transcription factor sites from the ENCODE project [31].

All tests were performed on an Intel Xeon(R) CPU with eight 2.6 GHz cores (16 threads), and 20 MB of

cache. The system was running Red Hat Linux version version 2.6.32-358.6.1.el6.x86 64, with gcc version

4.4.7-3. Unless otherwise noted, the results do not include disk read or write time. The software tested here

is freely available at https://github.com/ryanlayer/nway.

5.3.1 Performance with Simulated Interval Sets

To test the extent to which the slice algorithms can improve performance over the sweep algorithm, each was

tested against uniformly distributed random data sets with varying numbers of sets and varying proportions

of N -way intersections. Each set within the test contained 10,000 intervals, each interval was 100 base pairs

long, and all intervals were placed within the genome. The number of sets ranged from 10 to 200, and the

proportion of N -way intersections ranged from 1% to 100%.

In each test, the sites of the intersections were randomly generated. Then for each set and for each

site, an interval was generated to contain the site at a random point within the interval. The remaining

non-intersecting intervals were then added at random locations within the range. Each test was executed

three times and the mean runtime in microseconds is given in Figure 5.4.

As expected, the benefit of slicing as highest when the proportion of intervals in an N -way intersection

was low. At 1%, all of the slice-based algorithms outperformed the sweep, including the slice-only algorithm

5.3 Results 35

which is known to over process. The pivot slice-sweep algorithm was up to three times faster than sweep, and

the sequential slice-then-sweep was nearly seven times faster. The parallel slice-then-sweep had a dramatic

improvement with a 25 to 30 fold speedup over the sequential sweep.

When the proportion of intersections increases, the opportunities for slicing to reduce the amount of work

decreases. As a result, when the density of intersections increases, the improvement of the slice algorithms

decreases. However, the sequential slice-then-sweep algorithm performed as well as or better than the sweep

in every case, and the parallel slice-then-sweep was up to 7.5 times faster when 50% of the intervals were in

N -way intersections, and up to 5 times faster when all intervals were in an N -way intersect.

The over processing in the slice-only algorithm was clearly demonstrated in many of the larger tests where

the runtime was greater than the plot area (denoted by a “*”). Similarly, the extra work that is required to

find level-one slices using the basic slicing method resulted in poor performance when using a single thread.

5.3.2 Performance with Published Genomic Interval Sets

In an attempt to understand the function of specific regions of the human genome, large-scale studies are

continuously publishing interval sets that describe the locations of particular genomic features and cellular

functions across many different cell types. The experiments used to find these sites can have a significant

amount of noise and each experiment can result in hundreds of thousands of sites. By comparing results

among many experiments, researchers can narrow the search space to the most promising regions and develop

new hypotheses and future experiments that focus on these regions.

Maurano et al. [30] published sites of DNase I hypersensitivity observed among more than 200 fetal tissue

samples (e.g., lung, heart, kidney). These sites mark regions of the genome that are accessible to cellular

processes such as DNA binding proteins and are thought to be active regions of the genome. The interval

sets have on average 2e5 intervals per set, intervals have a mean length of 500, and there are 15,340 N -way

intersections across the 200 datasets (7.5% of intervals in an intersection).

The ENCODE project has published thousands of interval sets [31], including CTCF binding sites from

over 100 different cell lines (e.g., the myelogenous leukemia line K562, and the cervical cancer line Hela).

CTCF is a transcription factor that has been shown to have a role in repressing cellular activity. The interval

sets have on average 1.8e5 intervals per set, intervals have a mean length of 215, and there are 17,071 N -way

intersections across the 100 datasets (9.5% of intervals in an intersection).

Considering the data set sizes and the proportion of intersecting intervals in these data sets, the runtime

improvements of the slice algorithms over the sweep algorithm were consistent with the results from the

simulated data. In the DNase I hypersensitive sites data set, the slice-then-sweep algorithm was nearly twice

Chapter 5 Slice-then-Sweep: A Parallel Algorithm for N -way Interval Set Intersection 36

as fast as sweep, and the parallel versions of slice-then-sweep were 5x, 10x and 19x faster for four, eight, and

16 threads, respectively (Figure 5.5). While the CTCF data did not have as many data sets (100 vs. 200 for

DNase I and the simulations) the speedup trends was still consistent, with the slice-then-sweep 1.5x faster

and the parallel slice-then-sweep being 6x, 10x, and 19x faster with four, eight, and 16 threads, respectively

(Figure 5.6). Both data sets also demonstrated the issues with wasted processing in the slice algorithm.

5.4 Conclusion

In order to improve upon the efficiency of linear sweep approaches to interval intersection, the slice-then-sweep

algorithm employs a hybrid strategy that is designed to find intersections across all N data sets. Given its

inherent potential for parallelism by partitioning interval sets into independent subsets, slice-then-sweep

provides an approach that scales to the size and complexity of modern genomics datasets. When considering

real data, slicing cuts the sweep runtime in half when using a single thread, and is up to 19x faster when

using multiple threads. By vastly expanding the number of sets that can be considered, the slice-then-sweep

algorithm, along with BITS from the previous chapter, provide researchers with the ability to generate new

hypotheses that are based on the relationships between genomic features.

Efficient interval intersection is both a means to compare genomic features, and a platform from which to

build higher-level genomic analysis algorithms. High-throughput genomic sequencing produces billions of

reads from a single sample, and when aligned to a reference genome, billions of genomic intervals. Each of

these intervals carries information about the structure of the samples genome. In the following chapter, the

LUMPY algorithm uses an interval intersection framework to detect structural variations in the sample’s

genome from high-through sequencing data. Considering these variations have been linked to a broad range

of diseases, from cancer to autism, this is one of the most important problems in genomics.

5.4 Conclusion 37

Threads:
1
4
8
16

sweep
pslice
pslice-sweep
Pbslice-sweep

Algorithms:

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Number of Interval Sets

R
un

tim
e

(m
irc

ro
se

co
nd

s)
1%3.05

1.55

0.0

3.05 10%

1.55

0.0

*

25%3.05

1.55

0.0

*

50%3.05

1.55

0.0

*
*

75%3.05

1.55

0.0

* *

100%3.05

1.55

0.0

*
*

Figure 5.4: The runtime performance of N -way intersection problems on simulated data. The proportion of
intervals in an intersection increases from 1% to 100% from top to bottom. Data series marked by an “*”
have runtimes that exceed the limits of the graph in subsequent cases.

Threads:
1
4
8
16

sweep
pslice
pslice-sweep
Pbslice-sweep

Algorithms:

Number of Interval SetsR
un

tim
e

(m
irc

ro
se

co
nd

s)

6.06

3.06

0.0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

*

Figure 5.5: The runtime performance of N -way intersection problems on DNase I hypersensitive sites. Data
series marked by an “*” had runtimes that exceed the limits of the graph in subsequent cases.

Chapter 5 Slice-then-Sweep: A Parallel Algorithm for N -way Interval Set Intersection 38

Threads:
1
4
8
16

sweep
pslice
pslice-sweep
Pbslice-sweep

Algorithms:

Number of Interval SetsR
un

tim
e

(m
irc

ro
se

co
nd

s)

2.06

1.06

0.0
10 20 30 40 50 60 70 80 90 100

*

Figure 5.6: The runtime performance of N -way intersection problems on CTCF binding sites. Data series
marked by an “*” had runtimes that exceed the limits of the graph in subsequent cases.

Chapter 6

LUMPY: A Probabilistic Framework

for Structural Variant Discovery

6.1 Introduction

Modern high-throughput paired-end DNA sequencing technologies are able to produce billions of reads from

a single sample. Each read contains information about the composition of the source’s genome. Structural

variations (SVs) that exist in the sample can be detected by analyzing the full set of reads. This type of

analysis is particularly important since many diseases have been linked to genetic alterations. The issue is

that the majority of the sequencing platforms currently in use produce reads that are only about 100 bases

long, which is a tiny faction of the full genome (the human genome is over 3 billion bases long). This, along

with a number of stochastic errors associated with the sequencing process makes it difficult to distinguish a

true SV signal from the noise. Therefore, the comprehensive discovery of human genome SVs from sequencing

data requires the integration of all available signals (see Section 2.3). However, owing to inherent technical

challenges, existing SV discovery algorithms either use a single signal in isolation, or at best use two signals

sequentially. Such approaches suffer from limited sensitivity when a variant is captured by few reads, as

often occurs in low coverage datasets or at somatic mutations with low intra-sample allele frequencies. In

particular, sensitive detection of low frequency somatic SVs in heterogeneous tumor samples is an unsolved

problem with clinical implications.

This thesis presents LUMPY, a novel and extremely flexible probabilistic SV discovery framework capable

of integrating any number of SV detection signals, including those generated from read alignments or prior

evidence, jointly across multiple samples. LUMPY enables straightforward signal integration by mapping

39

Chapter 6 LUMPY: A Probabilistic Framework for Structural Variant Discovery 40

Sample

Paired-End
Aligner

Split-Read
Aligner

CNV
Predictor

Source Files

Breakpoint
Evidence

Breakpoints
1.0

0.0

Split-Read
Module

Generic
Module

Cluster

Predicted
Breakpoint

Regions

{
{

{

{Input

{ Known Variants

Generic
Module

Sample 1

Paired-End
Aligner

1.0

0.0

Cluster

Sample 2

Paired-End
Aligner

1.0

0.0

Sample 3

Paired-End
Aligner

1.0

0.0

Read-Pair
Module

Read-Pair
Module

Read-Pair
Module

Read-Pair
Module

A B
Source Files

Breakpoint
Evidence

Breakpoints

Predicted
Breakpoint

Regions

{
{

{

{Input

{

Figure 6.1: LUMPY workflows. (a) A LUMPY workflow using three different signals (read-pair, split-read
and read-depth) from one sample, as well as prior knowledge regarding known variant sites. (b) A LUMPY
workflow using a single signal type (in this case, read-pair) from three different samples. Note that multi-signal
and multi-sample workflows are not mutually exclusive.

each SV signal to a common abstract representation in the form of breakpoint probability distributions and

then performs SV prediction operations at this higher level. This approach allows for simple and natural

signal integration, inherently produces a probabilistic measure of breakpoint position, and can be easily

extended to new signals as sequencing technologies and SV detection strategies evolve. Results from both

simulated and real data demonstrate that integration of read-pair and split-read signals yields improved

sensitivity over extant methods, especially when the SV signal is reduced owing to either low coverage or low

variant frequency in heterogeneous samples such as cancer.

6.2 Methods

6.2.1 Overview

The LUMPY framework is based upon a general probabilistic representation of an SV breakpoint that

allows any number of alignment signals to be integrated into a single discovery process. A breakpoint is

defined as a pair of bases that are adjacent in an experimentally sequenced “sample” genome but not in

the reference genome. To account for the varying level of genomic resolution inherent to different types of

alignment evidence, a breakpoint is represented with a pair of probability distributions spanning the predicted

breakpoint regions (Figure 6.1). The probability distributions reflect the relative uncertainty that a given

position in the reference genome represents one end of the breakpoint.

This framework provides distinct modules that map signals from each alignment evidence type to the

common probability interval pair. For example, paired-end sequence alignments are projected to a pair of

6.2 Methods 41

intervals upstream or downstream (depending on orientation) of the mapped reads (Figure 6.1a). The size of

the intervals and the probability at each position is based on the empirical size distribution of the sample’s

DNA fragment library. The distinct advantage of this approach is that any type of evidence can be considered,

as long there exists a direct mapping from the SV signal to a breakpoint probability distribution. Here, three

modules are provided for converting SV signals to probability distributions: read-pair, split-read, and generic.

The framework is also readily extensible to new signals that may potentially result from new DNA sequencing

technologies or alternative SV detection approaches. The read-pair module maps the output of a paired-end

sequence alignment algorithm such as NOVOALIGN [32] or BWA [5], the split-read module maps the output

of a split-read sequence alignment algorithm (e.g., YAHA [33], BWA-SW [34], or BWA-MEM [35], and the

generic module allows users to include SV signal types that do not have a specific module implemented (e.g.,

a priori knowledge such as known SV, and/or output from copy number variation discovery tools).

Once the evidence from the different alignment signals is mapped to breakpoint intervals, overlapping

intervals are clustered and the probabilities are integrated. Any clustered breakpoint region that contains

sufficient evidence (based on user-defined arguments) is returned as a predicted SV. The resolution of the

predicted breakpoint regions is improved by trimming the positions with probabilities in the lower percentile

of the distribution (e.g., the lowest 0.1 percent).

It is well established that variant calling is improved by integrating data from multiple samples [36,

37, 38, 39]. The LUMPY framework naturally handles multiple samples by tracking the sample origin of

each probability distribution during clustering (Figure 6.1b). As an example of a typical analysis, LUMPY

can identify SVs in a whole-genome, 50X coverage paired-end Illumina dataset from the NA12878 CEPH

individual in 12.2 hours using 8 Gb of memory using a single processor. Given that these performance

characteristics are comparable to existing approaches for SNP and INDEL detection, and that there is

an approximately linear relationship between data volume, time and memory usage, it is anticipated that

simultaneous analysis of tens and eventually hundreds of human genomes will be possible with LUMPY using

commodity hardware.

LUMPY in an open source C++ software package (available at https://github.com/arq5x/lumpy-sv)

that is capable of detecting structural variation from multiple alignment signals in BAM [5] files from one or

more samples.

6.2.2 Breakpoint

A breakpoint is a pair of genomic coordinates that are adjacent in a sample genome but not in a reference

genome. Breakpoints can be detected, and their locations predicted by various evidence classes such as

Chapter 6 LUMPY: A Probabilistic Framework for Structural Variant Discovery 42

paired-end sequence alignments or split-read mappings. To support the inclusion of different evidence classes

into a single analysis, LUMPY defines a high-level breakpoint type as a collection of the evidence that

corroborates the location and variety (e.g., deletion, tandem duplication, etc.) of a particular breakpoint.

Since many evidence classes provide a range of possible locations, a breakpoint’s location is represented with

a pair of breakpoint intervals where each interval has a start position, an end position, and a probability

vector that represents the relative probability that a given position in the interval is one end of the breakpoint.

More formally, a breakpoint is a tuple b = 〈E, l, r, v〉, where b.E is the set of evidence that corroborates the

location and variety of a particular breakpoint; b.l and b.r are left and right breakpoint intervals each with

values b.l.s and b.l.e that are the start and end genomic coordinates and b.l.p is a probability vector where

|b.l.p| = b.l.e− b.l.s and b.l.p[i] is the relative probability that position b.l.s+ i is one end of the breakpoint

(similar for b.r); and b.v is the breakpoint variety. Within the context of this method, breakpoint variety

determinations are based on the orientation of the evidence. It is important to note that while a breakpoint

may be labeled as a deletion when it contains evidence from a paired-end sequence alignment with a +/-

orientation, the breakpoint may in fact be the result of some other event or series of complex events.

If there exist two breakpoints b and c in the set of all breakpoints B where b and c intersect (b.r intersects

c.r, b.l intersects c.r, and b.v = c.v), then b and c are merged into interval m, b and c are removed from B,

and m is placed into B. The evidence set m.E is the union of the evidence sets b.E and c.E.

A straight-forward method to define breakpoint intervalsm.l andm.r would be to letm.l.s = max(b.l.s, c.l.s)

and m.l.e = min(b.l.e, c.l.e), similar for m.r. However, if a spurious alignment is merged into a set of genuine

breakpoints, the resulting breakpoint interval can be pulled away from the actual breakpoint. The impact

of an outlier can be minimized or eliminated once the full set of corroborating alignments is collected for a

given breakpoint, but collecting the full set is complicated by the fact that alignments are considered in order

and outliers typically occur first. To account for this a liberal merge process is used where m.l.s is the mean

start position for the left intervals in m.E, and m.l.e is the mean end position for the left intervals in m.E,

similar for m.r.

Once all the evidence has been considered, an SV call s (also a breakpoint) is made for each breakpoint

b ∈ B that meets a user-defined minimum evidence threshold (e.g., four pieces of evidence). The boundaries

of the breakpoint intervals s.l and s.r are the trimmed mixture distributions of the left and right intervals

in b.E. Let s.l.s = max({e.l.s|e ∈ b.E}), s.l.e = min({e.l.e|e ∈ b.E}), and s.l.p[i] =
∑
e∈b.E e.l.p[i− o] where

o is the offset value e.l.s − s.l.s (similar for s.r). The value at s.l.p[i] (or s.r.p[i]) represents the level of

agreement among the evidence in b.E that position i is one end of the breakpoint. The intervals s.l and s.r

are then trimmed to include only those positions that are in the top percentile (e.g., top 99.9 percent of

values). An outlier in b.E will extend the interval s.l, but the extended region will have little support from

6.2 Methods 43

other elements in b.E and values of s.p in that region will be relatively small and are likely to be removed in

the trimming process.

6.2.3 Breakpoint Evidence

LUMPY uses an abstract breakpoint evidence type to combine distinct SV alignment signals such as read-pair

and split-read alignments with the general breakpoint type defined above. This abstract type defines an

interface that allows for the inclusion of any data that can provide the following functions: is bp determines

if a particular instance of the data contains evidence of a breakpoint, get v determines the breakpoint variety

(e.g., deletion, tandem duplication, inversion, etc.), and get bpi maps the data to a pair of breakpoint

intervals.

To demonstrate the applicability of this abstraction, three breakpoint evidence instances are given:

paired-end sequencing alignments, split-read alignments, and a general breakpoint interface. Read-pair and

split-read are among the most frequently used evidence types for breakpoint detection, and the general

interface provides a mechanism to include any other sources of information such as known variant positions

or output from other analysis pipelines (e.g., read-depth calls). As technologies evolve and the understanding

of structural variation improves, other instances can be easily added.

Paired-End Alignments

Paired-end sequencing involves fragmenting genomic DNA into roughly uniformly-sized fragments and

sequencing both ends of each fragment to produce paired-end reads 〈x, y〉, which will be referred to as

“read-pairs”. Each read is aligned to a reference genome R(x) = 〈c, o, s, e〉, where R(x).c is the chromosome

that x aligned to in the reference genome, R(x).o = +|− indicates the alignment orientation, and R(x).s

and R(x).e delineate the start and end positions of the matching sequence within the chromosome. It is

assumed that both x and y align uniquely to the reference and that R(x).s < R(x).e < R(y).s < R(y).e.

While in practice it is not possible to know the position of read x in the sample genome (in the absence of

whole-genome assembly), it is useful to refer to S(x) = 〈o, s, e〉 as the alignment of x with respect to the

originating sample’s genome.

Assuming that genome sequencing was performed with the Illumina platform, read-pairs are expected to

align to the reference genome with a R(x).o = +, R(y).o = − orientation, and at distance R(y).e−R(x).s

roughly equivalent to the fragment size from the sample preparation step. Any read-pair that aligns with an

unexpected configuration can be evidence of a breakpoint. These unexpected configurations include matching

orientation R(x).o = R(y).o, alignments with switched orientation R(x).o = −, R(y).o = +, and an apparent

Chapter 6 LUMPY: A Probabilistic Framework for Structural Variant Discovery 44

fragment length (R(y).e − R(x).s) that is either shorter or longer than expected. The expected fragment

length is estimated to be the sample mean fragment length L, and the fragment length standard deviation

to be the sample standard deviation s from the set of properly mapped read-pairs (as defined by the SAM

specification) in the sample data set. Considering the variability in the sequencing process, the expected

fragment length is extended to include sizes L+ vls, where vl is a tuning parameter that reflects spread in

the data.

When x and y align to the same chromosome (R(x).c = R(y).c), the breakpoint variety can be inferred

from the orientation of R(x) and R(y). If the orientations match, then the breakpoint is labeled as an

inversion, and if R(x).o = − and R(y).o = + then the breakpoint is labeled as a tandem duplication. Any

breakpoint with the orientation R(x).o = + and R(y).o = − is labeled as a deletion. When x and y align to

different chromosomes (R(x).c 6= R(y).c), the variety is labeled inter-chromosomal. At present, LUMPY does

not explicitly support identification of insertions that are spanned by paired-end reads, however, if desired

these can be identified in a post-processing step through assessment of “deletion” calls.

To map 〈x, y〉 to breakpoint intervals l and r, the ranges of possible breakpoint locations must be

determined and probabilities assigned to each position in those ranges. By convention, x maps to l and y to r,

and for the sake of brevity the focus will be on x and l since the same process applies to y and r. Assuming

that a single breakpoint exists between x and y, then the orientation of x determines if l will be upstream

or downstream of x. If the R(x).s = +, then the breakpoint interval begins after R(x).e (downstream),

otherwise the interval ends before R(x).s (upstream).

The length of each breakpoint interval is proportional to the expected fragment length L and standard

deviation s. Since it is assumed that only one breakpoint exists between x and y, and that it is unlikely

that the distance between the ends of a pair in the sample genome (S(y).e− S(x).s) is greater than L, then

it is also unlikely that one end of the breakpoint is at a position greater than R(x).s + L, assuming that

R(x).o = +. If R(x).o = −, then it is unlikely that a breakpoint is at a position less than R(x).e− L. To

account for variability in the fragmentation process, the breakpoint is extended to R(x).e+ (L+ vfs) when

R(x).o = +, and R(x).s− (L+ vfs) when R(x).o = −, where vf is a tuning parameter that, like vl, reflects

the spread in the data.

The probability that a particular position i in the breakpoint interval l is part of the actual breakpoint

can be estimated by the probability that x and y span that position in the sample. For x and y to

span i, the fragment that produced 〈x, y〉 must be longer than the distance from the start of x to i,

otherwise y would occur before i and x and y would not span i (contradiction). The resulting probability is

P (S(y).e− S(x).s > i− R(x).s) if R(x).o = +, and P (S(y).e− S(x).s > R(x).e− i) if R(x).o = −. While

one cannot directly measure the sample fragment length (S(y).e − S(x).s), it is possible to estimate its

6.2 Methods 45

distribution by constructing a frequency-based cumulative distribution D of fragment lengths from the same

sample that was used to find L and s, where D(j) gives the proportion of the sample with fragment length

greater than j.

Split-Read Alignments

A split-read alignment occurs when a single DNA fragment X does not contiguously align to the reference

genome. Instead, X contains a set of two or more substrings xi . . . xj (X = x1x2 . . . xn), where each substring

aligns to the reference R(xi) = 〈c, o, s, e〉, and adjacent substrings align to non-adjacent locations in the

reference genome R(xi).e 6= R(xi + 1).s + 1 or R(xi).c 6= R(xi + 1).c for 1 ≤ i ≤ n1. A single split-read

alignment maps to a set of adjacent split-read sequence pairs (〈x1, x2〉, 〈x2, x3〉, . . . , 〈xn−1, xn〉), and each

pair 〈xi, xi+1〉 is considered individually.

By definition, a split-read mapping is evidence of a breakpoint and therefore the function is bp trivially

returns true.

Both orientation and mapping location must be considered to infer the breakpoint variety for 〈xi, xi+1〉.

When the orientations match R(xi).o = R(xi + 1).o, the event is marked as either a deletion or a tandem

duplication. Assuming that R(xi).o = R(xi + 1).o = +, R(xi).s < R(xi + 1).s indicates a gap caused by a

deletion and R(xi).s > R(xi + 1).s indicates a tandem duplication. These observations are flipped when

orientations R(xi).o = R(xi + 1).o = −. When the orientations do not match R(xi).o 6= R(xi + 1).o, the

event is marked as an inversion and the mapping locations do not need to be considered. When x and y align

to different chromosomes, the variety is marked as inter-chromosomal. LUMPY does not currently attempt

to identify insertions that are completely contained within a long read, but this will be supported in future

versions. This capability requires long-read aligners to report the number and order of alignments within a

read (which is not formally supported in the current SAM format specifications).

The possibility of errors in the sequencing and alignment processes creates some ambiguity in the exact

location of the breakpoint associated with a split-read alignment. To account for this, each alignment pair

〈xi, xi + 1〉 maps to two breakpoint intervals l and r centered at the split. The probability vectors l.p and

r.p are highest at the midpoint and decrease exponentially toward their edges. The size of this interval is a

configurable parameter vs and is based on the quality of the sample under consideration and the specificity of

the alignment algorithm used to map the sequences to the reference genome.

Depending on the breakpoint variety, the intervals l and r are centered on either the start or the end of

R(xi) and R(xi + 1). When the breakpoint is a deletion l is centered at R(xi).e and r at R(xi + 1).s, and

when the breakpoint is a tandem duplication l is centered at R(xi).s and r at R(xi + 1).e. If the breakpoint

is an inversion, l and r are both centered either at the start positions or end positions of R(xi) and R(xi + 1),

Chapter 6 LUMPY: A Probabilistic Framework for Structural Variant Discovery 46

respectively. Assuming that R(xi).s < R(xi + 1).s, if R(xi).o = + then l and r are centered at R(xi).e

and R(xi + 1).e, otherwise they are centered at R(xi).s and R(xi + 1).s. If R(xi).s > R(xi + 1).s, then the

conditions are swapped.

Generic Evidence

The generic evidence subclass provides a mechanism to directly encode breakpoint intervals using the BEDPE

format [10]. BEDPE is an extension of the popular BED format that provides a means to specify a pair of

genomic coordinates; in this case the pair represents the two breakpoint positions in the reference genome.

This subclass extends the framework to include SV signal types that do not yet have a specific subclass

implemented. For example, the a set of variants that are known to exist in the population can be included

in the analysis of an individual or variants that are known to exist in a particular type of cancer can be

included in the analysis of a tumor. This signal can be included in the analysis by expanding the edges of

the predicted intervals to create breakpoint intervals, and encoding these intervals in BEDPE format. Each

BEDPE entry is assumed to be a real breakpoint (is bp), the variety is encoded in the auxiliary fields in

BEDPE (get v), and the intervals are directly encoded in BEDPE (get bpi).

6.3 Results

6.3.1 Performance Comparisons

LUMPY’s performance was compared to three other popular and actively maintained SV discovery packages:

GASVPro [18], DELLY [19] and PINDEL [40]. These algorithms were selected due to their widespread

use and inclusion in large-scale projects such as The Cancer Genome Atlas (GASVPro) and 1000 Genomes

(DELLY and PINDEL). Moreover, PINDEL was one of the first published SV discovery tools, and GASVPro

and DELLY both consider a secondary SV signal along with paired-end alignments (read-depth and split-read,

respectively). Both GASVPro and DELLY have also demonstrated substantial improvement over other

popular SV tools such as Breakdancer [16] and HYDRA [13].

Detection performance was measured using both simulated data and previously published Illumina

sequencing data from the widely studied NA12878 CEPH individual. The first simulation measured each

tool’s basic detection capabilities in a prototypical scenario by simulating 2500 homozygous variants from

various SV classes at random genomic locations. The second simulation assessed the power of each tool to

detect 5516 known deletion variants present at varying allele frequencies within a mixed sample, as often

occurs in heterogeneous tumors. Lastly, the analysis of SVs in the NA12878 genome assessed the performance

6.3 Results 47

of each tool on real data containing sequencing errors and other detection confounders that are difficult to

simulate. In addition, the analysis of NA12878 (and her parents) measured the effect of considering either

multiple samples or prior SV knowledge on LUMPY’s performance. In each case, performance was measured

in terms of sensitivity and false discovery rate (FDR) by comparing the predicted SV breakpoints to known

breakpoints. Predictions that overlapped simulated variants were considered true positives, and all other

predictions were considered false positives.

The simulated results were based on alignments generated by NOVOALIGN, and the NA12878 results

were based on BWA alignments. In both cases, YAHA was used to generate split-read alignments. LUMPY

was also tested using alternative read alignment pipelines using either BWA-backtrack or BWA-MEM for

paired-end alignment, and BWA-MEM for split-read alignment (with roughly similar results; see Figure 6.2d

and 6.2e).

Homozygous variants of different SV types

To assess the impact of coverage, SV type and SV size on algorithm performance, a set of sample genomes

was simulated that included 2500 deletions, tandem duplications, inversions and translocations, randomly

placed throughout the human genome (build 37). Variants were created with an in-house SV simulation tool

(SVSIM) that made alterations to the reference genome [41]. For each SV type, the variant size ranged from

100bp to 10kb. Then the WGSIM read simulator [35] was used to sequence each simulated genome at 2X,

5X, 10X, 20X, and 50X haploid coverage.

LUMPY was consistently more sensitive than the other algorithms across nearly all coverage levels and

SV types (Figure 6.2a). DELLY detected three more translocations than LUMPY at 20X coverage, at

the expense of 93 more false positives. LUMPY and DELLY were the only algorithms that detected all

variant types; GASVPro and PINDEL did not support detection of tandem duplications (tandem duplication

support has since been added to PINDEL). LUMPY’s superior sensitivity was most dramatic in lower

coverage tests (<10X). For example, LUMPY detected 32.4% and 87.2% of all deletions at 2X and 5X

coverage, respectively, whereas GASVPro detected 7.4% and 49.8%, DELLY detected 8.4% and 57.2%, and

PINDEL detected 7.4% and 50%. At best, LUMPY was 35.5 times more sensitive than PINDEL for detecting

translocations at 5X coverage (69.1% vs. 2%). At worst, LUMPY was 1.06 times more sensitive that DELLY

for detecting translocations at 2X coverage (69.1% vs. 65.1%). At higher coverage (10-50X), LUMPY’s

sensitivity advantage persisted; it ranged from 88.8% to 99.6% across all SV types, whereas GASVPro

ranged from 14.3% to 94.3%; DELLY ranged from 76.7% to 96.8%; and PINDEL ranged from 0.2% to 96.5%

(excluding the SV types which GASVPro and PINDEL are incapable of detecting).

Chapter 6 LUMPY: A Probabilistic Framework for Structural Variant Discovery 48

Deletions Duplications Inversions Translocations

Sequencing Coverage

0.0

0.2

0.4

0.6

0.8

1.0

S
en

si
tiv

ity

Sequencing Coverage

0.0

0.2

0.4

0.6

Fa
ls

e
D

is
co

ve
ry

 R
at

e

A

B

2x 5x 10x 20x

Deletions Duplications Inversions Translocations

0.8

1.0

LUMPY (pe+sr)
GASVPro (pe+rd)
DELLY (pe+sr)
PINDEL (sr)

50x2x 5x 10x 20x 50x2x 5x 10x 20x 50x2x 5x 10x 20x 50x

2x 5x 10x 20x 50x2x 5x 10x 20x 50x2x 5x 10x 20x 50x2x 5x 10x 20x 50x

Sequencing Coverage

0

100

200

N
um

be
r o

f F
al

se
 P

os
iti

ve
s

C

2x 5x 10x 20x

Deletions Duplications Inversions Translocations

300

500

50x2x 5x 10x 20x 50x2x 5x 10x 20x 50x2x 5x 10x 20x 50x

400

Deletions 5x Coverage

0.0

0.2

0.4

0.6

0.8

1.0

S
en

si
tiv

ity

0.0

0.002

0.004

0.006

Fa
ls

e
D

is
co

ve
ry

 R
at

e

D E
0.008

NOVOALIGN
YAHA
NOVOALIGN + YAHA
BWA-MEM

pe

Deletions 5x Coverage

sr pe+sr
LUMPY Signal Types

pe pe+sr
LUMPY Signal Types

sr

Figure 6.2: Sensitivity and accuracy for 2500 deletions, tandem duplications, inversions or translocations
randomly embedded at different levels of sequence coverage. LUMPY and DELLY considered paired-end (pe)
and split-read (sr) alignments, GASVPro considered paired-end alignments and read-depth (rd), and PINDEL
considered split-read (sr) alignments. (A) Sensitivity. LUMPY was the most sensitive in most cases, and
had a marked improvement at lower coverage levels. (B) False discovery rate (FDR). The FDR for LUMPY
was low in all but the highest coverage cases. GASVPro and PINDEL do not support tandem duplications,
but false calls were made in some cases which resulted in a 100% FDR. (C) The absolute number of false
positive calls. LUMPY has a high number of false positives in some cases, but these are counterbalanced by
a higher number of true positives (part a), resulting in a similar FDR (part b). The impact to LUMPY’s
sensitivity (D) and false discovery rate (E) for different sequence alignment strategies for the homozygous SV
simulation presented in 5x deletion sections of (A), (B), and (C). Since BWA-MEM produces both paired-end
(pe) and split-read (sr) alignment signals in a single alignment step, it serves as a basis of comparison to
the NOVOALIGN (pe) and YAHA (sr) strategy that was used for the presented LUMPY results. Either
alignment strategy is suitable and demonstrates the generality of the LUMPY framework for SV detection.

6.3 Results 49

LUMPY’s FDR remained low (less than 2%) in all but the highest coverage cases (Figure 6.2b), and

there was only one instance where LUMPY’s FDR was more than 2 percentage points higher than the best

performing tool (GASVPro’s FDR for inversions at 50X was 1.6% while LUMPY’s was 4.5%). In general, the

FDR for LUMPY, GASVPro, and PINDEL increased as coverage increased, ranging from 0% to 7.2% for

LUMPY, 0% to 7.1% for GASVPro, and from 0% to 53.2% for PINDEL. In contrast, the FDR for DELLY

dropped as coverage went from 2X to 20X, then increased again at 50X, ranging between 3.3% and 35.2%.

These patterns suggest that coverage-based parameter tuning could be used to minimize FDR for all the tools.

FDR calculations depend on the number of true positives, which vary widely across SV varieties (Figure 6.2c).

In certain cases (e.g., translocations), LUMPY had a far higher absolute number of false positives, but these

were counterbalanced by a much higher number of true positives. Alternatively, in cases where a specific

SV type was not supported and no true positive calls were made (i.e., GASVPro and PINDEL for tandem

duplications), the FDR reached 100%.

Heterogeneous tumor simulation

Variant detection is especially challenging in tumor studies because biopsied samples generally include a

mixture of abnormal and normal tissue, and because many tumor samples are composed of multiple clonal

lineages defined by distinct somatic mutations. To assess the performance of LUMPY in this more realistic

scenario, where increased sensitivity is crucial, heterogeneous samples were simulated by pooling reads from

an abnormal genome and a normal genome at varying ratios. The source of the simulated abnormal genome

was the human reference genome (build 37) modified (using SVSIM) with 5516 non-overlapping deletions

identified by the 1000 Genomes Project [42], and an unmodified human reference genome was used to simulate

the normal genome. As above, each genome was sequenced using WGSIM, and the reads from the two

genomes were combined in varying proportions to create a single heterogeneous sample. The ratio of the reads

from the abnormal genome (SV allele frequency) varied between 5% and 50%, and the total coverage ranged

from 10X and 80X. For example, to simulate a sample with a 5% SV allele frequency at 10X coverage, the

abnormal genome was sequenced at 0.5X coverage and the normal genome at 9.5X coverage: when combined,

the two sets of reads represented a single heterogeneous sample sequenced at 10X coverage.

LUMPY was more sensitive than GASVPro, DELLY, and PINDEL in all cases, especially when the

coverage of the abnormal genome was low owing to either lower coverage, low SV allele frequency, or both

(Figure 6.3a). For example, at 10X coverage and 20% SV allele frequency LUMPY detected 31% of the SVs,

whereas GASVPro, DELLY, and PINDEL detected only 9.2%, 10.9%, and 6.2% of the SVs, respectively.

This represented a 2.9-fold increase in sensitivity over the next best method. In general, to achieve the same

level of sensitivity, GASVPro, DELLY and PINDEL required roughly twice as much evidence as LUMPY (by

Chapter 6 LUMPY: A Probabilistic Framework for Structural Variant Discovery 50

either increased coverage or SV allele frequency). For example, at 20X coverage LUMPY detected 6.2% of

variants present at 5% SV allele frequency, whereas GASVPro, DELLY, and PINDEL required 10% SV allele

frequency to achieve similar sensitivity (10.3%, 8.8%, and 5.5%, respectively). This trend was also apparent

across SV varieties in the previous homozygous test (Figure 6.2a).

The FDR for LUMPY was lower than all other tools in all cases (Figure 6.3b), ranging from 0% to 3.4%.

For GASVPro, DELLY, and PINDEL, the FDR was particularly high when SV allele frequency was low. For

example, at 10X coverage the FDR for GASV was 5.8 times higher at 5% SV allele frequency than at 50%

frequency, DELLY FDR was 3.5 times higher, and PINDEL FDR was 111.9 times higher. At 20X coverage

these differences are 4.1, 10.9, and 21.5 times higher at 5% frequency than at 50% frequency for GASVPro,

DELLY, and PINDEL, respectively. This was in contrast to LUMPY, where modest coverage-associated

increases to FDR can likely be managed via parameter tuning, without significantly decreasing sensitivity.

SV detection in the NA12878 genome

Although it is difficult to precisely measure the sensitivity and accuracy of SV predictions made from a

real data set, it is important to evaluate each tool’s performance when confronted with real data containing

artifacts that are not easily captured by simulations (e.g., PCR artifacts, chimeric molecules, reads from poorly

assembled genomic regions, etc.). This experiment compared SV detection performance in the NA12878

individual by analyzing the Illumina Platinum Genomes dataset, which represents 50X coverage of the

NA12878 genome (European Nucleotide Archives; ERA172924). This data set was also subsampled to 5x

coverage to assess SV detection in low coverage scenarios.

To estimate sensitivity and FDR, predictions made by each tool were compared to two truth sets: the

first set was based on 3376 validated, non-overlapping deletions from the 1000 Genomes project [42], and the

second set included the same 3376 validated deletions as well as 2128 additional deletion predictions made

by at least two tools using the 50X dataset (5504 total deletions). The rationale for two truth sets is that,

although the 1000 Genomes callset is the most comprehensive set of deletions for NA12878, it still represents

only a subset of the actual deletions in that individual’s genome. This study had the benefit of higher quality

sequencing data, longer reads and improved SV detection tools, and thus was likely to discover novel deletions

that were missed by Mills et al.[42]. Furthermore, since PINDEL was one of the tools used to generate

the 1000 Genomes callset[42], it was biased against predictions made by LUMPY, GASVPro and DELLY.

Therefore, although some of the predictions included in the larger truth set may not reflect genuine SVs,

these calls nonetheless represented real differences between the sequencing data and the reference genome

and, as such, provided a more realistic estimate of the FDR for each tool.

6.3 Results 51

10x 20x 40x 80x

0.05 0.1 0.2 0.50.05 0.1 0.2 0.50.05 0.1 0.2 0.50.05 0.1 0.2 0.5
SV Allele Frequency

0.0

0.2

0.4

0.6

0.8

1.0
S

en
si

tiv
ity

10x 20x 40x 80x

0.05 0.1 0.2 0.50.05 0.1 0.2 0.50.05 0.1 0.2 0.50.05 0.1 0.2 0.5
SV Allele Frequency

0.0

0.2

0.3

0.4

Fa
ls

e
D

is
co

ve
ry

 R
at

e

0.0

0.2

0.4

0.6

0.8

1.0

S
en

si
tiv

ity

40x

0.05 0.1 0.2 0.5
SV Allele Frequency

LUMPY (pe)
LUMPY (sr)
LUMPY (pe+sr)
GASV (pe)
GASVPro (pe+rd)
DELLY (pe)
DELLY (sr)
DELLY (pe+sr)
PINDEL (sr)

A

B

C

0.1

LUMPY (pe)
GASVPro (pe+rd)
DELLY (pe+sr)
PINDEL (sr)

Figure 6.3: Performance comparison using known deletions at varying intra-sample allele frequencies. To
measure SV detection sensitivity and accuracy in the case of a heterogeneous tumor sample, 5516 non-
overlapping deletions identified by the 1000 Genomes Project were embedded in an ”abnormal” genome prior
to read simulation. Simulated reads from the abnormal genome and the unaltered reference genome were
mixed in varying proportions to obtain simulated datasets with different SV allele frequencies. Sequencing
coverage levels are shown above each plot, and SV allele frequencies are shown beneath each plot. (a) SV
detection sensitivity for the four tools. LUMPY and DELLY considered paired-end (pe) and split-read
(sr) alignments, GASVPro considered paired-end alignments and read-depth (rd), and PINDEL considered
split-read (sr) alignments. In all cases, LUMPY was more sensitive than GASVPro, DELLY, and PINDEL,
and showed a marked improvement when the coverage of the abnormal genome was low due either to low
sequence coverage or low SV allele frequency. In general, to achieve the same level of sensitivity as LUMPY,
the other tools required twice as much evidence from the abnormal genome. (b) The false discovery rate
(FDR) for each tool. The FDR for LUMPY was better than all other tools in all cases, with a notable
improvement when SV allele frequency was low. (c) The change in sensitivity when considering two SV
detection signals versus a single signal alone is shown for the three tools at 40x coverage and at different SV
allele frequencies. At low SV allele frequencies (e.g., 5%), LUMPY’s use of two signals (i.e., pe+sr) has a
super-additive effect on sensitivity relative to either signal alone (i.e., pe or sr), whereas the sensitivity of
GASVPro and DELLY was either unchanged or modestly improved with one signal versus two.

Chapter 6 LUMPY: A Probabilistic Framework for Structural Variant Discovery 52

A unique strength of LUMPY relative to other tools is the ability to consider different types of evidence

from multiple samples. To demonstrate this capability, results for three different LUMPY configurations were

included: (1) the standard configuration of read-pair and split-read signals from NA12878; (2) read-pair and

split-read signals from NA12878, as well as prior knowledge (using LUMPY’s generic evidence module) of

deletions discovered by the 1000 Genomes Project using low coverage whole genome sequencing (phase 1,

release version 3); (3) read-pair and split-read signals from both NA12878 and her parents (NA12891 and

NA12892). The last two calling strategies are specific to LUMPY and are intended to demonstrate both the

ability and the benefit of including data from different samples and from prior results.

At 5X coverage (Figure 6.4a), LUMPY was more sensitive than both GASVPro and PINDEL (17.6%

versus 9.5% and 16.1% for the first truth set and 13.5% versus 7.6% and 10.8% for the second truth set) and

had an either equivalent or better FDR (33.7% versus 56.1% and 33.4% for the first truth set and 18.9%

versus 43.9% and 28.5% for the second). While DELLY was more sensitive than LUMPY (19.3% for the

first truth set and 16.1% for the second), it was at the expense of at least 0.5-fold higher FDR (51.5% and

35.1%). However, when LUMPY was provided with priors from the 1000 Genomes low coverage deletion

calls, sensitivity was increased to 22.5% with a negligible effect on false positives (leading to a lower FDR).

Sensitivity was further improved to 27.0% when LUMPY performed simultaneous variant calling on NA1287

and her parents, with a similarly small effect on FDR, which clearly demonstrated the benefit of pooled

variant calling on genetically related samples. Overall, the effect of the second truth set at lower coverage was

similar between LUMPY, GASVPro, and DELLY with FDR decreasing by 14.8, 12.2, and 16.4 percentage

points, respectively. The effect on PINDEL was the smallest, with FDR decreasing by only 5 percentage

points; however, this smaller effect was expected considered that PINDEL was used in part to create the

baseline truth set [42].

At 50X coverage (Figure 6.4b) and considering the first truth set, LUMPY, PINDEL and DELLY had

similar sensitivity (62.1%, 63% and 61.3%, respectively), and all outperformed GASVPro (55.1%). Owing

to the incompleteness of the first truth set, all of the tools had high FDR. LUMPY performed the best at

54%, followed by GASVPro at 70.9%, PINDEL at 72%, and DELLY at 84.8%. When considering the second

truth set, the effect on performance was dramatic for all the tools except PINDEL (as expected). LUMPY

had the highest sensitivity at 73.3%, followed by DELLY at 71.3%, GASVPro at 61.9%, and PINDEL where

the sensitivity actually dropped to 51.8% (due to the increased size of the second truth set). LUMPY also

had the lowest FDR at 14.8%, followed by GASVPro at 42%, PINDEL at 63.1%, and DELLY at 71.5%.

As expected given the substantially higher coverage, the inclusion of either priors from known SVs or the

parental genomes had little effect on LUMPY’s sensitivity. Overall, these results demonstrate that LUMPY

provides substantial improvements in discovery sensitivity over existing methods while also maintaining

6.3 Results 53

5x 50x

0.0

0.2

0.4

0.6

0.8

1.0

S
en

si
tiv

ity
Fa

ls
e

D
is

co
ve

ry
 R

at
e

LUMPY (pe+sr)
LUMPY with prior (pe+sr+prior)
LUMPY trio (pe+sr)
GASVPro (pe+rd)
DELLY (pe+sr)
PINDEL (sr)

A

0.0

0.2

0.4

0.6

0.8

1.0

Mills et al. Mills et al. or
called by 2+ tools

Mills et al. Mills et al. or
called by 2+ tools

Mills et al. Mills et al. or
called by 2+ tools

Mills et al. Mills et al. or
called by 2+ tools

0.0

0.2

0.4

0.6

0.8

1.0

S
en

si
tiv

ity
Fa

ls
e

D
is

co
ve

ry
 R

at
e

B

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.4: Performance comparison of deletion detection in high and low coverage Illumina sequencing data
from the NA12878 individual. To measure each tool’s performance on data that is representative of a typical
experimental data set, previously published Illumina sequencing data from the NA12878 individual that was
aligned using BWA was considered. LUMPY considered paired-end (pe) and split read (sr) alignments for
NA12878, LUMPY prior considered paired-end alignments and split read alignments for NA12878 and 1000
Genomes variants as prior evidence (prior), LUMPY trio considered paired-end alignments and split read
alignments for NA12878 and her parents NA12891 and NA12892. DELLY considered paired-end (pe) and
split-read (sr) alignments, GASVPro considered paired-end alignments and read-depth (rd), and PINDEL
considered split-read (sr) alignments. Sensitivity and FDR was estimated using non-overlapping validated
deletions from Mills et al. [XX] as well as predictions made by at least two tools. (a) SV detection sensitivity
and FDR for the four tools on a 5X coverage subsample of the original data. LUMPY was more sensitive
than both GASVPro and PINDEL and had an either equivalent or better FDR. DELLY was slightly more
sensitive than LUMPY, but also had a much higher FDR. The inclusion of prior evidence or parental genomes
improves sensitivity without increasing false positives. (b) SV detection sensitivity and FDR for the four
tools on the original 50X coverage data. LUMPY, DELLY, and PINDEL had similar sensitivity in the Mills
et al. case, and in the extended truth set LUMPY and DELLY had the highest sensitivity. LUMPY had
lower FDR than all other tools in both cases. The effect of prior evidence and parental genomes is reduced in
higher coverage data.

Chapter 6 LUMPY: A Probabilistic Framework for Structural Variant Discovery 54

LUMPY (pe+sr)
LUMPY with prior (pe+sr+prior)
LUMPY trio (pe+sr)
GASVPro (pe+rd)
DELLY (pe+sr)
PINDEL (sr)

Mills et al. or called by 2+ tools

Mills et al.

False PositivesFalse Positives

Tr
ue

 P
os

iti
ve

s

Mills et al. or called by 2+ tools

Tr
ue

 P
os

iti
ve

s
Mills et al. 50x5x

Tr
ue

 P
os

iti
ve

s
Tr

ue
 P

os
iti

ve
s

A B
4500

1000

1500

2000

2500

3000

4000

3500

0 2000 4000 6000 8000 10000 12000
False PositivesFalse Positives

4500

1000

1500

2000

2500

3000

4000

3500

0 2000 4000 6000 8000 10000 12000

1200

0

200

400

600

1000

800

0 100 200 300 400 500 600 700

0 100 200 300 400 500 600 700

1200

0

200

400

600

1000

800

Figure 6.5: ROC curves comparing deletion prediction performance in the NA12878 individual. ROC curves
are shown comparing the correctly predicted deletions made by LUMPY, GASVPro, DELLY, and PINDEL
to the deletions in the standard Mill et al truth set, as well as the extended truth set which also includes the
deletion predictions identified by two or more tools. As in Figure 6.4, prediction performance was measured
with both 5X average genome coverage (A) and 50X average genome coverage (B). Each tool was given the
same set of input alignments in BAM format and the SV calls made by each tool were compared to the truth
sets using identical criteria (see Methods). Each point on a given tool’s ROC curve represents a minimum
evidence support threshold ranging from 4 to 11, inclusive for 5X coverage and 4 to 15, inclusive for 50X
coverage. The curves are colored following the same convention described in Figure 6.4.

equivalent or lower false discovery rates.

Importantly, while the comparisons presented in Figure 6.4 were based upon the choice of a single detection

threshold chosen for each tool, LUMPY’s detection accuracy remained superior across a broad spectrum

of thresholds (Figure 6.5), indicating that the framework itself, not arbitrary parameter choices, underlie

LUMPY’s increased performance.

6.3.2 Benefits of Integrating All Signals for SV Discovery

LUMPY’s superior sensitivity in these performance tests is a direct consequence of the fact that it simultane-

ously integrates multiple SV detection signals during SV discovery. The benefits of this approach are clear

from the super-additive effect of combining read-pair and split-read signals within the LUMPY framework,

relative to using either signal alone (Figure 6.3c). In contrast, although other tools such as GASVPro [18],

DELLY [19] and Genome STRiP [36] also exploit multiple SV detection signals, they first use one signal (i.e.,

read-pair) to drive discovery and then refine and genotype candidates with a second signal (i.e., split-read or

read-depth). An intrinsic limitation of stepwise integration is that other available signals cannot increase the

6.3 Results 55

number of true positive SV calls beyond those candidates identified by the signal used for initial discovery.

Consistent with this interpretation, inclusion of a second SV detection signal has little to no effect on DELLY’s

or GASVPro’s sensitivity (Figure 6.3c) relative to using the primary read-pair signal alone.

6.3.3 Comparison Details

Both simulated and real datasets were used to compare the sensitivity and false discovery rate of LUMPY to

other SV detection algorithms (GASVPro, DELLY, and PINDEL). Two types of simulations were performed:

one in which homozygous variants of diverse varieties were introduced at random positions throughout the

reference genome, and another in which a heterogeneous tumor sample was simulated by mixing reads from

a modified ”abnormal” human reference genome (containing 1000 Genomes deletions) and a unmodified

”normal” human reference genome in varying proportions. The publicly available Illumina sequencing data of

the NA12878, NA12891, and NA12892 individuals was also used. Two scenarios were considered: the original

50X coverage files, and 5X subsamples of the original data sets.

In the case of the homozygous simulation, SVSIM was used to create new versions of the human reference

genome (build 37) containing 2500 simulated variants of each variety. For deletions, tandem duplications

and inversions 2500 non-overlapping variants ranging from 100 bp to 10000 bp in size were randomly placed

in the genome. To simulate translocations, 2500 non-overlapping inter-chromosomal regions of 1000 bp,

derived from random donor sites in the reference genome were randomly inserted. Although the true variant

variety in this case is actually an insertion, the inserted segment exceeds the insert size of the sequencing

library as well as the read length, and thus the breakpoints formed by such insertions accurately simulate a

translocation. Each simulated genome was sampled to 40X, 20X, 10X, 5X, and 2X coverage.

To simulate a heterogeneous tumor sample, simulated reads from both a modified and unmodified version

of the human reference genome (build 37) were combined. The modified genome was created using SVSIM,

and included 5516 non-overlapping deletions identified by the 1000 Genomes Project. Each simulation

combined reads from both the modified and unmodified genomes in varying proportions. The proportion of

reads that were derived from the modified genome are referred to as the SV allele frequency. The simulated

SV allele frequencies were 5%, 10%, 20% and 50%, and the simulated coverages were 10X, 20X, 40X, and

80X. For example, in the simulation with 5% SV allele frequency and 10X coverage, the modified genome was

sampled at 0.5X coverage and the unmodified genome was sampled at 9.5X coverage. The two sets of reads

were then pooled into a single 10X coverage sample.

For all simulations, WGSIM was used to sample paired-end reads with a 150 bp read length, a 500 bp

mean outer distance with a 50 bp standard deviation, and default error rate settings. Paired-end reads were

Chapter 6 LUMPY: A Probabilistic Framework for Structural Variant Discovery 56

mapped to the reference genome with NOVOALIGN version V2.07.08, using the random repeat reporting

and allowing only one alignment per read. From the NOVOALIGN output, all soft-clipped (≤20 bp clipped

length) and unmapped reads were realigned with the split-read aligner YAHA using a word length of 11 and

a minimum match of 15. The NOVOALIGN output was used as input to DELLY ,GASVPro, and PINDEL,

and both NOVOALIGN and YAHA output were used as input to LUMPY. In all algorithms, the minimum

evidence threshold was four. For LUMPY, the tuning parameters were:

• min non overlap was set to 150

• discordant z was set to 4

• back distance was set to 20

• weight was set to 1

• min mapping threshold was set to 1

For GASVPro the parameters were:

• LIBRARY SEPARATED was set to all

• CUTOFF LMINLMAX was set to SD=4

• WRITE CONCORDANT was set to true

• WRITE LOWQ was set to true

For DELLY the parameters were:

• map-qual was set to 1

• the inc-map flag was set

DELLY paired-end (pe) and split-read (sr) calls were combined into a single paired-end and split-read (pe+sr)

call set by taking the union of the two sets where the split-read call was retained when a call was common to

both sets. For PINDEL the parameters were:

• minimum support for event was set to 4

• all chromosomes were considered

• report interchromosomal events was set to true

6.4 Conclusion 57

For the real data, LUMPY, GASVPro, DELLY, and PINDEL considered Illumina sequencing of the

NA12878 individual. The LUMPY trio results also considered sequencing data from that individual’s parents,

NA12891 and NA12892. All sequencing samples were retrieved from the European Nucleotide Archives

(submission ERA172924), and were previously aligned using BWA. Soft-clipped (20 bp clipped length) and

unmapped reads were realigned with the split-read aligner YAHA using a word length of 11 and a minimum

match of 15. The LUMPY prior results also considered all 1000 Genomes variant calls using the generic

evidence module. The original sequencing files were at 50X coverage and were used in the 50X experiments.

The 5X experiments considered sequencing files that were created by subsamples 10% of the original paired-end

alignments. For all the tools, only deletion predictions on chromosomes 1 though X were considered. Each

tool was run with the same options that were used in the simulation experiments, except for the minimum

mapping quality for LUMPY, GASVPro, and PINDEL was increased to 10. Since PINDEL uses paired-end

reads differently than the other tools, the default mapping quality of 20 was used. Each call required support

of at least four. In the LUMPY trio result, a call had to have support of four from at least one individual

(NA12878, NA12891, or NA12892) and at least one piece of support from NA12878. The weight for the 1000

Genomes variant calls in the LUMPY prior result was set to 2. For the identification of the truth sets, the

Mills et al. study validated 14012 deletions in NA12878 across 11 independent laboratories. Once duplicate

predictions were removed, the first truth set contained 3376 non-overlapping deletions. Between the four

tools considered here, 4027 predictions were made by at least 2 tools (2035 were made by all four tools), and

2128 of those merged predictions were not observed by Mills et al. The 3376 Mills et al. validated deletions

were combined with the 2128 additional predictions to produce a second, more comprehensive, truth set

containing 5504 deletion calls.

The SV breakpoints predicted by each algorithm were compared to the known variants. A true positive

was a predicted variant call that intersected within 50 bp of both ends of the simulated breakpoints in the

reference genome. All other predictions were considered to be false positives. Since the output of DELLY

is a single interval, 100 bp regions flanking the ends of the predicted interval were taken as the predicted

breakpoint.

6.4 Conclusion

LUMPY is a general probabilistic framework for SV discovery that is more sensitive than existing discovery

tools across all SV types and coverage levels, and in both real and simulated human genome datasets.

LUMPY’s high sensitivity is a direct consequence of combining multiple SV detection signals. LUMPY

integrates disparate signals by converting them to a common format in which the two predicted breakpoint

Chapter 6 LUMPY: A Probabilistic Framework for Structural Variant Discovery 58

intervals in the reference genome are represented as paired probability distributions. SV prediction operations

are then performed at this higher level. This novel approach has the key advantage that any SV detection

signal can be integrated into the framework so long as breakpoint probabilities can be assigned to each base

pair in a candidate breakpoint region. Potential detection signals include paired-end and split-read alignments,

alignments from assembled contigs, raw read-depth measurements, or CNVs detected by segmentation of

read-depth, array comparative genomic hybridization, or SNP array data. As demonstrated in the analysis of

the NA12878 genome, inclusion of previously discovered SVs as priors can significantly enhance SV discovery

sensitivity, which is an example of the flexibility and generality of the framework. As sequencing technologies

and SV detection strategies evolve, new sources of evidence can be easily incorporated without modifying the

underlying logic of the SV detection algorithm itself; the sole requirement is the development of a new module

that maps the SV detection signal to a paired probability distribution. Importantly, LUMPY’s increased

sensitivity does not come at the cost of excessive spurious SV predictions. LUMPY therefore represents an

important technological advance, especially in the context of cancer genomics where sensitivity is crucial for

identifying low frequency variants within heterogeneous tumor samples.

Chapter 7

Conclusion

This thesis presented three algorithms that have significantly advanced the fields of bioinformatics and

computational biology. The BITS algorithm introduced a new way to efficiently divide an interval set into

subsets that begin before and end after a particular interval, which enabled an optimal sequential algorithm

to perform 12x faster than the next best solution and a parallel algorithm to perform 3,414x faster. The

slice-then-sweep algorithm carried this insight forward into the consideration of many interval sets, yielding a

sequential speedup of 2x and a parallel speedup of up to 19x. LUMPY generalized the concept of a genomic

breakpoint to allow for a significant expansion in the number of signals that can be considered in SV detection,

which resulted in a dramatic improvement to sensitivity in both normal human tissue and heterogeneous

samples such as tumor genomes. While these contributions empower researchers to consider the vast amounts

of data that will be produced in the coming years, the pace of advancement requires continuous innovation.

This thesis concludes with a number of specific improvements and extensions to this work, as well as more

general thoughts on future directions.

Given the efficiency with which the BITS algorithm counts intersections, it is also well suited to other

genomic analyses including RNA-seq transcript quantification, ChIP-seq peak detection, and searches for

copy-number and structural variation. Moreover, the functional and regulatory data produced by projects

such as ENCODE have led to new approaches [43] for measuring relationships among genomic features.

Many of these new tests are based on counting the occurrence of particular relationships, and it is likely

that some can be efficiently solved using a BITS-style algorithm. For example, implementing the absolute

distance test, which measures the significance of the distance between genomic intervals, would require only

two extra comparisons beyond the standard BITS method. Other tests, such as the Jaccard test, which

focuses on the total size of the intersecting set, are substantively different than BITS but are still good

59

Chapter 7 Conclusion 60

candidates for parallelization. Since determining which test is most insightful depends on many factors, an

efficient solution that calculates the results of many tests will be the most useful. For example, using only

the intersection-based test would fail to characterize the significance of the relationship between two features

that are in close proximity but do not intersect, such promoters and genes.

An important generalization of the N -way intersection problem is to find intersections occurring among

at least k of N interval sets. While the slice-then-sweep algorithm does not solve the “k of N” problem,

it may be possible to extend the algorithm by either merging level-one slices for some subset of the N set

or by considering inverted slices (formed by space between intervals). The outstanding issue with these

solutions would be to prevent an exponential number of comparisons between slices. Another important

consideration for future research is to minimize the memory footprint of the algorithm in order to enable

scaling to thousands of genomic interval sets. Recent advances such as Tabix [44] allow random access

into overlapping intervals within compressed genomic interval files. Modifications to this format such as

Grabix [45] allow random access to arbitrary records in such files and therefore permit slicing interval sets

without loading them into memory. Extending the slice-then-sweep algorithm to leverage such functionality

could greatly boost scalability and enable researches to discover new relationships between genomic features

that were previously thought to be unrelated.

The most obvious improvement to LUMPY would be the inclusion of read-depth information for duplication

and deletion variants. At present, this can be accomplished by incorporating the result of an external read-

depth analysis tool through LUMPY’s generic module; however, more significant improvements should be

possible using raw read-depth data. Second, for applications that require ultra-sensitive detection of known

structural variants such as low-coverage population scale sequencing LUMPY could be packaged with dataset

priors reflecting the positions and allele frequencies of previously identified SVs. While this is feasible using

the existing LUMPY framework, substantial improvements to sensitivity may require more comprehensive and

accurate SV catalogs than are currently available. Finally, a major challenge for SV detection is distinguishing

bona fide variants from false positives caused by alignment artifacts and other sources of error. By using

machine learning to train on a set of known variants, it should be possible to derive a probabilistic measure of

variant confidence that is based not only on the number of clustered reads, but also on the shape of the final

integrated probability distribution. Alternatively, knowledge of the shape of “true” breakpoint probability

distributions could potentially be used as an objective function during read clustering. In a more general

sense, LUMPY’s approach for integrating SV detection signals - in essence, performing genome interval

comparison operations using probability distributions rather than “flat” features - could be useful for any

application that involves comparison of genomic features whose exact coordinates are unknown, and whose

positional uncertainty can be represented rationally in the form of a probability distribution. Rapid and

Chapter 7 Conclusion 61

efficient probabilistic comparisons could be enabled through extensions to existing interval-based software

such as BEDTools [6, 28].

LUMPY’s performance makes it a good candidate for inclusion in clinical applications. Although it

was not part of the formal comparison, LUMPY made SV predictions significantly faster than other widely

used tools. When considering high-coverage data sets, LUMPY returned results in less than an hour when

other tools required days and in some cases over a week to complete. This difference is critical in many

time-sensitive clinical settings, such as treatment decisions for high-grade cancers and genetic diagnostics in

neonatal intensive care units. In these cases, SV predictions would help determine the course of treatment,

but doctors cannot wait days to make a decision. To address this issue, LUMPY has been included in a

larger bioinformatics pipeline that aims to characterize and prioritizing genetic variation in under 24-hours.

By moving raw sequencing data to a fully characterized genome in a relevant time line, the pipeline aims to

remove a significant barrier to the clinical adoption of genome sequencing technologies.

More broadly, the current trend in genomics is to gain analytic power by drastically increasing sample

sizes. Projects that include thousands of individuals have already been completed, and new projects will

attempt to increase that number to a million. Unfortunately, the tools required to analyze these future data

sets are not up to the task. While the work presented here is a step in the right direction, the need for more

scalable algorithms and architectures remains. A number of different methods have been developed to handle

large volumes of information. In particular, NoSQL solutions like BigTable [46] have had success in some

problem domains, but the adoption in genomics remains small. This is partly due to the systems that these

solutions run on and the sensitivity of the data. Many researchers are weary of placing their data, which can

contain identifiable genetic information, on shared resources like Amazon cloud. However, this resistance is

likely to be temporary given the direction of the field and advances in data security. The National Institute

of Health (NIH) has recognized the waste associated with replicating data sets on individual research clusters.

Going forward, the model will be to bring algorithms to the data, and not data to the algorithms.

A more fundamental issue is the extent to which these new architectures aid the types of analysis that are

on the horizon. NoSQL refers to a class of key-value based data stores that are highly flexible and optimized

for many simple operations. For example, Facebook is using HBase [47] (a popular open-source clone of

Google’s BigTable) to manage a user messaging service that currently handles 500 million transactions per

day. While this use-case clearly demonstrates scalability, it does not demonstrate applicability. NoSQL

queries return a set of rows based on a key. It is not clear how this operation can be used to support the

intersection of many interval sets, or even the efficient intersection of a single large interval set. One solution

is to place intervals in bins (similar to an R-Tree), and then let the bin ID be the key and the set of intervals

in a bin be the value. To find an intersection for a given query interval, the IDs of the bins that intersect

Chapter 7 Conclusion 62

the query are calculated, and the intervals in those bins are retrieved. While this technique does reduce the

number of intervals that are considered, since the number and size of the bins is fixed, the number of intervals

in each bin grows linearly with the number of intervals in the set. Clearly a new method that more naturally

supports intervals is required in order to leverage the scalability that NoSQL data stores provide. The main

challenge for this method will be to address the two most typical access patterns: scan all intervals across a

given sample, and scan all samples containing a given interval. This will be particularly difficult since most

data stores are optimized to handle only one of these access patterns, typically at the expense of the other.

Furthermore, the technical barriers associated with large-scale genomic analysis must be reduced. Currently,

researchers analyze data sets using a collection of command line tools weaved together with Unix utilities like

grep and awk. Similar to how SQL and newer query languages like HIVE and PIG have made large-scale

data analytics possible for a wider section of less technical users, an interval-based genome query language

would make the large volumes of published data more accessible to biologists, and allow them to concentrate

on hypotheses generation and verification. There is some early work in this area, but these solutions are

limited to either work flow tools [4] or domain-specific languages that focus on only one type of analysis [48].

To be successful a general-purpose genomic analysis language must be both powerful and usable, which tend

to be competing goals. Given its success, SQL should be a model for striking this balance.

Low-cost, high-throughput genome sequencing will have a significant impact on the future of research

and medicine. The challenge will be to provide access to such a vast amount of data while simplifying the

process so that users with less technical training (e.g., clinicians, traditional biologists) can also leverage the

data. One step that has already been taken is the development of a strategy that will allow analysis to be

performed on the same systems that house the data (e.g., Amazon cloud). By reducing the burden associated

with collecting disparate data sets and nearly eliminating the up-front storage and compute costs, large-scale

analysis will become possible for even the smallest operations. While this is a major component of the

scalability and accessibility solution, it only addresses the physical requirements. The appropriate software

systems must also be deployed to ensure that data can be accessed efficiently and easily. An interval-based

access system and an intuitive genomic query language can ensure that users are able to quickly find the data

they need without the technical barriers currently associated with genomic analysis. Exactly how to achieve

either of these solutions remains open, and should be at the forefront of computer science research.

Bibliography

[1] J.D. Watson et al. Molecular biology of the gene. Cold Spring Harbor Laboratory Press, sixth edition,
2007.

[2] International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human
genome. Nature, 209:860–921, 2001.

[3] W.J. Kent et al. The human genome browser at UCSC. Genome Research, 12(6):996–1006, 2002.

[4] B. Giardine et al. Galaxy: a platform for interactive large-scale genome analysis. Genome Research,
15(10):1451–1455, Oct 2005.

[5] H. Li et al. The sequence alignment/map (SAM) format and SAMtools. Bioinformatics, 25:2078–2049,
2009.

[6] A.R. Quinlan and I.M. Hall. BEDTools: a flexible suite of utilities for comparing genomic features.
Bioinformatics, 26(6):841–842, 2011.

[7] NVIDIA Corporation. NVIDIA CUDA C programming guide version 5.5, 2014.

[8] The ENCODE Project Consortium. An integrated encyclopedia of dna elements in the human genome.
Nature, 489:57–74, 2012.

[9] B.E. Bernstein et al. The NIH roadmap epigenomics mapping consortium. Nature Biotechnology,
28(10):1045–8, 2010.

[10] A.R. Quinlan and I.M. Hall. BEDTools: a flexible suite of utilities for comparing genomic features.
Bioinformatics, 26(6):841–42, 2010.

[11] A.V. Alekseyenko and C.J. Lee. Nested containment list (NCList): a new algorithm for accelerating
interval query of genome alignment and interval databases. Bioinformatics, 23(11):1386–1393, 2007.

[12] J.E. Richardson. fjoin: simple and efficient computation of feature overlaps. Journal of Computational
Biology, 13:1457–1464, 2006.

[13] A.R. Quinlan et al. Genome-wide mapping and assembly of structural variant breakpoints in the mouse
genome. Genome Research, 20(5):623–35, 2010.

[14] S. Neph et al. BEDOPS: High performance genomic feature operations. Bioinformatics, 28:1919–1920,
2012.

[15] M. McKenney and T. McGuire. A parallel plane sweep algorithm for multi-core systems. In Proceedings
of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems, GIS ’09, pages 392–395, New York, NY, USA, 2009. ACM.

[16] K. Chen et al. BreakDancer: an algorithm for high-resolution mapping of genomic structural variation.
Nature Methods, 6(9):677–81, 2009.

[17] S.S. Sindi et al. A geometric approach for classification and comparison of structural variants. Bioinfor-
matics, 25(12):i222–30, 2009.

63

Bibliography 64

[18] S.S. Sindi et al. An integrative probabilistic model for identification of structural variation in sequenc-
ing data. Genome Biology, 13(3):R22, 2012.

[19] T. Rausch et al. DELLY: structural variant discovery by integrated paired-end and split-read analysis.
Bioinformatics, 28(18):i333–9, 2012.

[20] J. Mirsa and D. Gries. Finding repeated elements. Science of Computer Programming, 2:143–152, 1982.

[21] D. Kirk and W. Hwu. Programming Massively Parallel Processors: A Hands-On Approach. Elsevier,
2010.

[22] D. Merrill and A. Grimshaw. High performance and scalable radix sorting: a case study of implement-
ing dynamic parallelism for GPU computing. Parallel Processing Letters, 21(3):245–272, 2011.

[23] N. Satish et al. Designing efficient sorting algorithms for manycore GPUs. In International Symposium
on Parallel and Distributed Processing, 2009, IPDPS ’09, pages 1–10. IEEE, 2009.

[24] The 1000 Genomes Project Consortium. A map of human genome variation from population-scale
sequencing. Nature, 467(7319):1061–73, 2010.

[25] S. Tzeng and L.Y. Wei. Parallel white noise generation on a GPU via cryptographic hash. In Proceed-
ings of the 2008 Symposium on Interactive 3D Graphics and Games, I3D ’08, pages 79–87, New York,
NY, USA, 2008. ACM.

[26] ENCODE Project Consortium. Identification and analysis of functional elements in 1% of the human
genome by the ENCODE pilot project. Nature, 447(7146):799–816, 2007.

[27] M.B. Gerstein et al. Integrative analysis of the Caenorhabditis elegans genome by the modENCODE
project. Science, 330(6012):1775–1787, 2010.

[28] R.M. Layer et al. Binary interval search: a scalable algorithm for counting interval intersections.
Bioinformatics, 29(1):1–7, 2013.

[29] J.L. Bentley and T.A. Ottmann. Algorithms for reporting and counting geometric intersections. IEEE
Transactions on Computers, C-28(9):643–7, 1979.

[30] M.T. Maurano et al. Systematic localization of common disease-associated variation in regulatory DNA.
Science, 337(6099):1190–5, 2012.

[31] ENCODE Project Consortium et al. A user’s guide to the encyclopedia of DNA elements (ENCODE).
PLoS Biology, 9(4):e1001046, 2011.

[32] C. Hercus. Novoalign. http://www.novocraft.com, 2014. [Online; accessed 21-January-2014].

[33] G.G. Faust and I.M. Hall. YAHA: fast and flexible long-read alignment with optimal breakpoint
detection. Bioinformatics, 28(19):2417–24, 2012.

[34] H. Li and R. Durbin. Fast and accurate short read alignment with burrows-wheeler transform. Bioin-
formatics, 26(5):589–95, 2010.

[35] H. Li. WGSIM. https://github.com/lh3/wgsim, 2014. [Online; accessed 21-January-2014].

[36] R.E. Handsaker et al. Discovery and genotyping of genome structural polymorphism by sequencing on a
population scale. Nature Genetics, 43(3):269–76, 2011.

[37] M.A. DePristo et al. A framework for variation discovery and genotyping using next-generation dna
sequencing data. Nature Genetics, 43(5):491–8, 2011.

[38] F. Hormozdiari et al. Simultaneous structural variation discovery among multiple paired-end sequenced
genomes. Genome Research, 21(12):2203–12, 2011.

Bibliography 65

[39] A.R. Quinlan et al. Genome sequencing of mouse induced pluripotent stem cells reveals retroelement
stability and infrequent dna rearrangement during reprogramming. Cell Stem Cell, 9(4):366–73, 2011.

[40] K. Ye et al. Pindel: a pattern growth approach to detect break points of large deletions and medium
sized insertions from paired-end short reads. Bioinformatics, 25(21):2865–71, 2009.

[41] G. Faust and Hall I.M. SVSIM. Unpublished, 2014.

[42] R.E. Mills et al. Mapping copy number variation by population-scale genome sequencing. Nature,
470(7332):59–65, 2011.

[43] A. Favorov et al. Exploring massive, genome scale datasets with the GenometriCorr package. PLoS
Comput Biol, 8(5), 2012.

[44] H. Li. Tabix: Fast retrieval of sequence features from generic TAB-delimited files. Bioinformatics,
27:718–719, 2011.

[45] Quinlan A.R. Grabix. https://github.com/arq5x/grabix, 2014. [Online; accessed 21-January-2014].

[46] F. Chang et al. Bigtable: A distributed storage system for structured data. ACM Transactions on
Computer Systems, 26(2):4:1–4:26, 2008.

[47] Hbase. http://hbase.apache.org, 2014. [Online; accessed 21-January-2014].

[48] C. Kozanitis et al. Using genome query language to uncover genetic variation. Bioinformatics, 20(1):1–
8, 2014.

[49] J. Ostell et al. Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins. Wiley
Interscience, second edition, 2001.

[50] O. Aparicio et al. Chromatin immunoprecipitation for determining the association of proteins with
specific genomic sequences in vivo. Current protocols in molecular biology / edited by Frederick M.
Ausubel ... [et al.], Chapter 21, 2005.

[51] D.S. Johnson et al. Genome-wide mapping of in vivo protein-DNA interactions. Science,
316(5830):1095–9203, 2007.

[52] M. Ben-Or. Lower bounds for algebraic computation trees. In Proceedings of the fifteenth annual ACM
symposium on Theory of computing, STOC ’83, pages 80–86, New York, NY, USA, 1983. ACM.

[53] M.T. Goodrich et al. External-memory computational geometry. In Proceedings of the 1993 IEEE
34th Annual Foundations of Computer Science, pages 714–723, Washington, DC, USA, 1993. IEEE
Computer Society.

[54] H.P. Kriegel et al. The combination of spatial access methods and computational geometry in geo-
graphic database systems. In Data Structures and Efficient Algorithms, Final Report on the DFG
Special Joint Initiative, pages 70–86, London, UK, 1992. Springer-Verlag.

[55] M. Suess and C. Leopold. A users experience with parallel sorting and OpenMP. In Proceedings of
Sixth European Workshop on OpenMP, EWOMP ’09, pages 23–28. Springer-Verlag, 2004.

[56] J.T. Robinson et al. Integrative genomics viewer. Nature Biotechnology, 29:24–26, 2011.

[57] A. McKenna et al. The genome analysis toolkit: a mapreduce framework for analyzing next-generation
DNA sequencing data. Genome Research, 20(9):1297–1303, Sep 2010.

