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Abstract

Processor speeds are increasing much faster than memory speeds, and thus memory
bandwidth is rapidly becoming the limiting performance factor for many applications,
particularly those whose inner loops linearly traverse streams of \ietalata. Because

they execute sustained accesses, tlsd®@ming computationsre limited more by
bandwidth than by latencizxamples of these kinds of programs include vector (scientific)
computations, multi-media compression and decompression, encryption, signal
processing, image processing, text searching, some database queries, some graphics

applications, and DNA sequence matching.

This dissertation proposes and analyzes a method for designing a computer memory
subsystem to maximize memory performance for streaming computations, overcoming a
problem not addressed by traditional techniques. Our approach is baseesn atering
or changing the order of memory requests to improve the rate at which those requests are
serviced by a memory system with non-uniform access timespidpose a combined
hardware/software approach: the compiler arranges for the processor to transmit stream
information to aSteam Memory Conttler, or SMC, at run-time; and the SMC
dynamically reorders the accesses, attempting to issue them in a sequence that maximizes

effective memory bandwidth. The processor issues its memory requests in the natural order
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of the computation, and stream data iddmafd within the controller until requested by the

processor (for memory loads) or written to memory by the controller (for memory stores).

We demonstrate the viability andfedtiveness of this approach by exploring the
SMC design space through functional simulation and mathematical analgsisef\show
how the uniprocessor solution can be extended to modest-size symmetric multiprocessors,
and we address compiler and operating systems issues with respect to obtaining good
memory system performance. For long-vector computations, the SMC represents a
significant improvement over non-SMC systems, including those that employ traditional
caching. For our set of benchmark kernels, we observe speedups by factors of 2 to 23 over
systems that issue non-caching loads and stores in the natural order of the computation.
Furthermore, the technique is practical to implement, exploiting existing compiler
technology and requiring only a modest amount of special-purpose hardware. A prototype
uniprocessor implementation has been fabricated as part @fea fasearch &drt at the
University of Mrginia, and initial tests suggest that the SMC meets its performance

specifications.
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“Be not astonished at new ideas; for it is well known to you that a thing does
not therefore cease to be true because it is not accepted by many.”

— Benedict [Baruch] Spinoza (1632-1677)

Chapter 1

Introduction

This dissertation proposes and analyzes a method for designing a computer memory
subsystem to maximize memory performance, overcoming a problem not addressed by
traditional techniques. For applications involving long series of references to sequentially
addressed memory locations (such as scientific computations involving long vector
operands), our results demonstrate improvements in memory performance by factors of 2
to 23. Furthermore, the technique is practical to implement, exploiting existing compiler

technology and requiring only a modest amount of special-purpose hardware.

1.1 Memory Hierarchy

Figurel.l depicts the simplifiechemory hierachy of a typical computer system. This
organization is guided by two design principles: first, smaller memories positioned closer
to the CPU can be made to run faster thagelacomponents that are farther away; second,
data that has been accessed recently is likely to be used again in the near future, a property
referred to asemporal locality of eferenceThe data needed by the processor during a

particular interval of the progras’execution constitutes itgorking set’ In order to
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improve overall performance, compilers and architectures attempt to keep a psogram’

working set of data in the smaller, faster levels of the memory hierarchy.

MAIN /0
CPU CACHE MEMORY DEVICES
MEMORY BUS /0 BUS

Figure 1.1 Typical Memory Hierarchy

This work focuses on the first three levels of the hierandygisters cache and
main memoryRegisters are small, fast storagefénsf within the CPU. The compiler is
responsible for managing their use, deciding which values should be kept in the available
registers at each point in the progrdRegister pessureoccurs when the computatisn’

demand for registers exceeds the CPU'’s supply.

A cache is a small, fast memory located close to the CPU. Whenever the CPU issues
a memory reference, the cache checks to see if it contains the appropriate valclee A
hit occurs when the value is found in cacheaghe mis®ccurs when the value is not in
cache and must be fetched from main mem@gches typically exploit the principle of
spatial locality of eferencey fetching a fixed amount of data contiguous to the referenced
value. The assumption is that whenever a memory location is referenced, it is likely that
nearby locations will also be referenced in the near future. Caches can vary widely in their
size and ayanization, and there may be more than one level of cache in the hiefdresy

details are not important to our discussion; we do not address them further.

1. We use this term in a more informal sense than its original definition, which refers to virtual
memory pages [Den68].
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The next level of the hierarchy is main memovizich can be @anized in a variety
of ways. The important parameters for our discussion are width, bandwidth, interleaving,
and latencyWidth refers to the amount of data that is transferred on each access; for
simplicity, we assume this widthy bytes, is equal to the size of the data items directly
manipulated by the CPU. Memory chips can be arrangdzhmksso that accesses to
different banks can be overlapped in time, thereby increasing the memory system
throughput or bandwidth One common ganization is ainterleaved(byte-addressable)
memory system db banks, in which a physical memory addressiaps to bank (o /w)
modulo b ). b is sometimes referred to as timerleaving factor Figurel.2 depicts a
system with two interleaved banks. For simplicitye assume that memory is interleaved
according to the width of the memory systdmtencydescribes the amount of time

between the initiation and completion of an event, in this case a memory access.

contains addresses
BANKj {a | a/w mod b= 0}

CPU CACHE

contains addresses
BANK, {a | a/wmod b= 1}

—— —— o — — — — ]

MEMORY

F— === = = = —_——— -

Figure 1.2 Interleaved Memory System

Bandwidth and latency are important measures of memory system performance. W
distinguish between thgeak bandwidtlof a system, or the maximum possible throughput
of the main memoryand theeffective bandwidtlof a computation, or the amount of the
system$ peak bandwidth that the application exploits. In addition, we will occasionally
refer toattainable bandwidthor the bounds on fefctive bandwidth imposed by a given

application.
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The banks of the memory systems we consider are compoBgtariic Random
Access MemorfDRAM) devices. Each packaged DRAM chip contains an array of
memory cells, and current chips have capacities of up to 64Mbits. The cells store data as
chage on capacitors: the presence or absence ofjelara capacitor is interpreted as a
binary 1 or 0. This storage medium is ternythamic because the clggs must be
refreshed periodically to compensate for the capacitors’ natural tendency toghsdtres
storage arrays are typically square, and each cell is connected to a row line and a column
line. With this2%2D organization the bits of a particular word are spread across multiple
chips. D select a bit, the word address is split into two parts: row and column. The row
address is transmitted first, followed by the column address. Hdiadapted from

[Sta90]) depicts a'ZD, one-bit-per-chip memory organization.

row/col address strobe <— Ncols ——>

l<—

storage array
log, N

row select decoder

<—SMOIN —>

address lines

col select decoder |« row/col
& i/o circuits address strobe

bit bit
in out

Figure 1.3 DRAM Organization

The DRAMaccess timés the latency between when a read request is initiated and
when the data is available on the memory bus, whengds timeis the minimum time
between completion of successive requests.skstained accesses series of accesses

performed in succession — cycle time becomes the limiting performance factor.
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The term DRAM is slightly misleading: it was coined to indicate that accesses to
any “random” location require about the same amount of time, but most modern devices
provide special capabilities that make it possible to perform some access sequences faster
than others. For instance, nearly all current DRAMs implement a fofaspage mode

operation [Qui91].

Fast-page mode devices behagsefimplemented with a single, on-chip cache line,
or page A memory access falling outside the address range of the current page forces a new
one to be set up, a process that is significantly slower than repeating anatteessrrent
page. In fact, the pages are just the rows of the storage Baslypage mode takes
advantage of the fact that although a certain amount of time is needed to geeblear
selected page (row) before any particular column can be accessed, the page remains
chaged long enough for many other columns to be accessed, as well. Both the row and
column addresses must be transmitted for the initial acpege{nisy but only the
column addresses are sent for the subsequent acqeged(t3. DRAM pages should not
be confused with virtual memory pages. Throughout this dissertation the term “page” will

be used to refer to a DRAM page, unless explicitly stated otherwise.

Other common devicesfef similar features (nibble-mode, static column mode, or
a small amount of SRAM cache on chip) or exhibit novghnizations (such as Rambus
[Ram92], Ramlink, and the new synchronous DRAM designs [IEE92]). The details of their
implementation are not important here; itfexgs to note that the order of requests strongly

affects the performance of all these memory devices.

For interleaved memory systems, the order of requests is important on another
level: accesses to thirent banks can be performed faster than successive accesses to the

same bank.
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1.2 The Memory Bandwidth Problem

It has become painfully obvious that processor speeds are increasing much faster than
memory speeds. While microprocessor performance has improved steadily at a rate of 50-
100% per year over the past decade, DRAM performance has increased at an annual rate
of less than 10% [Hen90]. This disparity has caused memory to become the performance
bottleneck for many applications. For example, a 300 MHz DEC Alpha can perform more
than 20 instructions in the time required to complete a single memory access to a 40ns

DRAM. Not only is the current problem serious, but it is growing at an exponential rate.

This dissertation addresses the memory bandwidth problem for an important class
of applications: those whose inner loops linearly traverse streams of-keetdata, i.e.
structured data having a known, fixed displacement between successive elements. Because
they execute sustained accesses, ttstmmmed computationare limited more by
bandwidth than by latencizxamples of these kinds of programs include vector (scientific)
computations, multi-media compression and decompression, encryption, signal
processing, image processing, text searching, some database queries, some graphics
applications, and DNA sequence matching WMl often couch our discussion in terms of

scientific computation, but our results are applicable to a much wider class of applications.

1.3 Motivation

Caching has often been used to bridge the gap between microprocessor and DRAM
performance, but as the bandwidth problem grows, tleetafeness of the technique is
rapidly diminishing [Bur95,WI95]. Even if the addition of cache memory is disignt
solution for general-purpose scalar computing (and even portiensof vector-oriented
computations) its generalfettiveness for vector processing is questionable. The vectors
used in streamed computations are normally taelto cache, and each element is visited
only once during lengthy portions of the computation. This lack of temporal locality of

reference makes caching less effective than it might be for other parts of the program.
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In addition to traditional caching, other proposed solutions to the memory
bandwidth problem range from software prefetching [Cal91,Kla91,Mow92] and iteration
space tiling [Car89,Gal87,Gan87,Lam91,Por883%], to prefetching or non-blocking
caches [Bae91,Che92,Soh91], unusual memory systems [Bud71,Gao93,BBX1,V
Yan92], and address transformations [Har87,Har89]. The following chapters discuss the
merits and limitations of each of these in the context of streaming, but all these solutions
overlook one simple fact: they presume that memory components require about the same

time to access any random location. As noted above, this assumption no longer applies.

Vector computergieliver high performance for numerical problems that can be
vectorized. These architectures achieve their performance through heavy pipelining: they
support streaming data through a single pipeline, and allow multiple pipelines to operate
concurrently on independent streams of data [Sto98¢tov processors range from
auxiliary processors attached to microcomputers to expensive, high-speed supercomputers.
The latter class of machines feature special, high-speed memory systems (usually
composed oStatic RAMswhich are not as dense as DRAMSs, but are generally faster and
don't require data-refresh cycles). These memory systems often include sophisticated

circuitry to avoid bank conflicts when loading vector registers.

Although the solution we propose here is described in terms of general-purpose,
microprocessebased systems, it is equally applicable to vector computers: the SMC can
be used to maximize memory performance when loading or storing vector operands. It
provides the same functionality as the conflict-avoidance hardware (and works well for
combinations of vector strides that often hinder the latter hardware), in addition to taking
advantage of memory component features (for those devices that have non-uniform access
times), prefetching read operands, andéyufg writes. Furthermore, the SMC can achieve
vector-like memory performance for streamed computations with recurrences that prevent

vectorization.
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1.4 Organization of the Thesis

The research described here is basedoness orderingor changing the order of
memory requests to improve the rate at which those requests are senggachpdse a
combined hardware/software approach that dynamically reorders accesses at run-time; the
high-level architecture of this system is depicted in Figudeln this system, the compiler
arranges for the processor to transmit stream information &ttfean Memory Contitler,
or SMC at run-time. The SMC reorders the accesses, attempting to issue them in an order
that maximizes effective memory bandwidth. The processor issues its memory requests in
the natural order of the computation, and stream dataferédfwithin the controller until

requested by the processor (for loads) or written to memory by the controller (for stores).

info about future references (determined at compile-time)

Stream
Memor
CPU . Memory S S stenz/
Controller y
accesses issued i accesses issued in
the “natural” order data buffered to the “optimal” order
“match” CPU and (determined at run-time)

Memory orders

Figure 1.4 Dynamic Access Ordering System

In order to demonstrate the viability andeefiveness of this approach, one must
perform the following tasks:
1) develop the necessary compiler technology,
2) derive upper bounds on the bandwidth attainable via access-ordering,

3) explore the dynamic access ordering design space through functional simulation,

and
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4) establish that dynamic access ordering hardware can be built with a reasonable
level of complexity and that it can run at the necessary speed, withimatiafy

processor cycle time or lengthening the path to memory for non-stream accesses.

This dissertation focuses on the second and third items in the list; the first and last
items are beyond the scope of this thesis, but are part ofjex lasearch &frt at the
University of Mrginia. We report on them here to establish that the necessary compiler
infrastructure exists and that the hardware can be implemented to meet its requirements.
With respect to the first item, the compiler need only detect the presence of streams and
arrange to transmit information about them to the hardware at run-time, and Benitez and
Davidsons recurrence detection and optimization algorithm [Ben91] can be used to do this.
With respect to the fourth item, the hardware development project has proceeded in parallel
with the investigations discussed here [Alu95,Lan95a,Lan95b,McG94,McK94a]. At the
time of this writing, an initial implementation has been fabricated and is being tested. Gate-
level and back-annotated hardware timing simulations indicate that this design meets its
specifications. The following chapters address the remaining tasks: developing analytic

performance models and exploring design tradeoffs via functional simulation.

The dissertation is structured as follows. After an introduction and investigation of
access ordering, we examine the dynamic access ordering design space by analyzing
different classes of streamed computations for uniprocessor and symmetric multiprocessor
SMC systems. The remainder of the dissertation discusses the design and performance of
our initial hardware implementation and addresses compiler and operating systems
considerations for SMC systems. The general structure of the dissertation is illustrated by

the tree shown in Figure 1.5:
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Maximizing Memory Bandwidth for Streamed Computations

N

Introduction Access Ordering The SMC Conclusions
Dense Matrix Uniprocessor Sparse Matrix Implementation
Performance Performance Concerns
Uniprocessors Symmetric Uniprocessor Compiler Other Systems
Multiprocessors Hardware Recommendations Issues

Development

Figure 1.5 Dissertation Structure

Some of our results have been published previoudie uniprocessor SMC
architecture and parts of the corresponding simulation results from CBRaptest
Chapter3 were described in [McK94a,McK94b,McK95b]. The analytic models in
Chapter3 and Chaptet and a description of the Symmetric Multiprocessor SMC
organization introduced in Chapt#mere first presented in [McK95b]. Parts of the results
in Chapter2 appear in [McK95a]. Complete results for the functional simulations and
analytic models presented in Chafahrough Chaptes can be found in our technical

reports [McK93a,McK93b,McK94c,McK94d].



“Had | been present at the creation, | would have given some useful hints
for the better ordering of the universe”

— Alfonso X [Alfonso the Wise] (1221-1284)

Chapter 2

Access Ordering

A comprehensive, successful solution to the memory bandwidth problem must exploit the
richness of the full memory hierarchyoth its architecture and its component
characteristics. One way to do this is a&cess atering changing the order of memory
requests to increase bandwidth. This dissertation focuses on maximizing bandwidth for
interleaved memories composed of page-mode DRAMSs, but the concepts presented here
apply to any memory system in which access costs are sensitive to the history of requests.
These include distributed shared memories, systems composed of devices like the new
Rambus [Ram92] or JEDEC synchronous DRAMSs [IEE92], and disks. In fact, access-
ordering is a well established technique in many domains: intelligent disk controllers
attempt to minimize rotational and transfer latencies, airlines request that passengers board
planes in an order that maximizesi@éncy, and ancient farmers undoubtedly saw the

wisdom of sowing all the seeds for one field before moving on to another.

This chapter examines access-ordering in depth by analyzing the performance of

five different access-ordering schemes when used to load a single Wasbrof these

11
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techniques for increasing memory bandwidth are not hettthe goal here is to determine
the upper bounds on their performance in order to aid architects and compiler designers in

making good choices among them.

The structure of this chapter is depicted in Fidglife W present a simple example
of how changing access order can improve bandwidth and provide a classification of access
ordering schemes, discussing how several existing approaches to the bandwidth problem
fit into this framework. In order to better determine the impact access order has on
bandwidth, we derive performance models for our five representative access ordering
schemes and partially validate these with timings on an Intel i860XR Throughout this and

subsequent chapters, the term “page” refers to a DRAM page, unless otherwise noted.

Access Ordering

Example Summary
Access Ordering Evaluation of Access Related Work
Taxonomy Ordering

Compile_Time Run-Time /\

Performance Models Performance Examples

T T

Naive Block Streaming Static Dynamic Analytic Results  Empirical Results
Accessing Prefetching Access Access
Ordering  Ordering

Figure 2.1 Chapter Structure

2.1 Bandwidth Example

To illustrate one aspect of the bandwidth problem — and how it might be addressed at
compile time — consider executing the fifth Livermore Ldbjdiagonal elimination)
[McM86] using non-caching accesses to reference a single bank of page-mode DRAMSs.
For simplicity we omit arithmetic instructions from our code fragments. Figl2@)

presents abbreviated code for a straightforward translation of the computation:

i Xi — Z % (Yi=%_4) (2.1)
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This computation occurs frequently in practice, especially in the solution of partial
differential equations by finite d&rence or finite element methods [Gol93]. Since it
contains a first-order linear recurrence, it cannot be vectorized. Nonetheless, the compiler
can generate streaming code using Benitez and Davedi®en91] recurrence detection
and optimization algorithm. In the optimized code, each computed xalkieetained in a
register so that it will be available for usexas, on the following iteration (see Chapter
for a full description of the algorithm). Except in the case of very short vectors, elements
fromx,y, andz are likely to reside in diérent DRAM pages, so that accessing each vector
in turn incurs the page miss overhead on each access. Memory references likely to generate

page misses are emphasized in the figure.

loop: loop:

load Z[i] load Z[i]

load VI[i] load  z[i+1]

store  X]i] load VI[i]

jump loop load  Vy[i+1]
store  X]i]
store  Xx[i+1]
jump loop

(a) (b)

Figure 2.2 tridiag Code

In the loop of Figur@.2(a), a page miss occurs for every reference. Unrolling the
loop and grouping accesses to the same vexgan Figure.2(b), amortizes the page-miss
costs over two accesses: three misses occur for every six references. Reducing the page-
miss count increases processmmory bandwidth significantlfror example, consider a
device for which the time required to service a page miss is four times that for a page hit, a
miss/hit cost ratio that is representative of current technolgg natural-order loop in
Figure2.2(a) only delivers 25% of the attainable bandwidth, whereas the unrolled,
reordered loop in Figur2.2(b) delivers 40%. Externalfe€ts such as bus turnaround

delays are ignored for the sake of simplicity.
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Figure2.3 shows déctive memory bandwidth versus depth of unrolling, given a
page-miss/page-hit cost ratio of 4. The line at the bottom represents memory performance
for the loop body of Figur2.2(a) when all accesses miss the current DRAM page, and the
top line indicates the bandwidth attainable if all accesses hit the page. The middle curve
shows bandwidth when the loop is unrolled and accesses to each vector are grouped as in
Figure2.2(b). This reordering yields a performance gain of almost 130% at an unrolling
depth of 4, and over 190% at a depth of 8. In theeeycould improve performance 240%

by unrolling 16 times, but in most cases the register file would be too small to permit this.
e s

200 ]
] ordered

150 -

bandwidth (Mb/s)

100

50 — natural

T T T T T T T T 171
56 7 8 910111213141516
depth of unrolling

Figure 2.3 tridiag Memory Performance

2.2 Taxonomy of Access Ordering Techniques
There are a number of options for when and how access ordering can be done, so first we
provide a brief taxonomy of the design space. Access ordering systems can be classified by

three key components:
- stream detectionSD), the recognition of streams accessed within a loop, along
with their parameters (base address, stride, etc.);

- access orderingp©), the determination of that interleaving of stream references

that most efficiently utilizes the memory system; and

- access issuingd(), the determination of when the load/store operations will be

issued.



Chapter 2: Access Ordering 15

Each of these functions may be addressed at compile @mer by hardware at
run time RT This taxonomy classifies access ordering systems by a (SfeAQ A)

indicating the time at which each function is performed.

2.2.1 Compile-Time Schemes

Benitez and Davidson [Ben91] detect streams at compile time, and Moyer [Moy93] has
derived access-ordering algorithms relative to a precise analytic model of memory systems.
Moyer’s scheme unrolls loops and groups accesses to each stream, so that the cost of each
DRAM page-miss can be amortized over several references to the same page. Lee develops
subroutines to mimic Cray instructions on the Intel i860XR [Lee93]. His routine for
streaming vector elements reads data in blocks (using non-caching load instructions) and
then writes the data to a pre-allocated portion of cache. Meadows describes a similar
scheme for the PGI i860 compiler [Mea92], and Loshin and Budge give a general

description of the technique [Los92].

Traditional caching and cache-based software prefetching techniques
[Cal91,Che92,Gor90,Kla91] may also be considergdT, CT, CT) schemes. The
compiler detects streams (if stream detection is performed at all); the compiler determines
the order of the memory accesses (stream elements are generally accessed a cache line at a
time); and the compiler decides where in the instruction stream the accesses are issued.
Compiler optimizations for wide-bus machines [Ale93] and memory-access coalescing
[Dav94] also fall into the(CT, CT, CT) category as do schemes that prefetch into
registers [ChM92,Kog81] or into a speciateload buffer[ChB92]. The “ordering”
selected in the latter prefetching schemes is simply the protesatural access order for
the computation. All prefetching techniques attempt to overlap memory latency with
computation, which can lead to significant performance increases. Most such techniques
can be rendered morefadtive by combining them with an access-ordering scheme to

exploit architectural and device characteristics of the underlying memory system.
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The purely compile-time approach can be augmented with an enhanced memory
controller that provides bigr space and that automates vector prefetching, producing a
(CT, CT, RT system. Doing this relieves register pressure and decouples the sequence of
accesses generated by the processor from the sequence observed by the memory system:
the compiler determines a sequence of vector references to be issued and buffered, but the

actual access issue is executed by the memory controller.

Again, schemes that decouple the issuing of the memory accesses from the
processos instruction execution without performing sophisticated access scheduling can
be considered(CT, CT, RT schemes. For instance, Chieuh [Chi94] proposes a
programmable prefetch engine that fetches vector data for the next loop iteration. This data
is stored in a special Hef, the Array Register File until the corresponding iteration is
executed, at which point the prefetched data is transferred to cache. Using a separate
prefetch bufer avoids cache conflicts between the current and future working sets of vector
data, but not between the vectors and the scalar data that they may displace. The scheme
has a limited prefetch distance the time between a prefetch operation and the
corresponding load instruction. Furthermore, it assumes that all memory accesses take
about the same amount of time, making no attempt to imprdeetieé bandwidth by

reordering vector accesses.

The (CT, CT, CT) and (CT, CT, RT solutions arestatic in the sense that the
order of references seen by the memory is determined at compileDymamicaccess
ordering systems determine the interleaving of a set of references at run-time, either by
introducing logic into the memory controlldsy executing code to decide the reference

pattern, or by some combination of the two.



Chapter 2: Access Ordering 17

2.2.2 Run-time Schemes

Foradynami¢CT, RT, R7 system, stream descriptors are developed at compile time and
sent to the memory controller at run time, where the order of memory references is
determined dynamically and independently. Determining access order dynamically allows

the controller to optimize behavior based on run-time interactions.

Fully dynamic(RT, RT R systems implement access ordering without compiler
support by augmenting the previous controller with logic to decide what to fetch and when.
Whether or not such a scheme is superiotd  RT, R system depends on the relative
quality of the compile-time and run-time algorithms for deciding the access pattern, the
extent to which prefetching is exploited (that is, whether or not there is a limited prefetch

distance), and the relative hardware costs.

Several (RT, RT R) “vector prefetch units” that induce stream parameters at
run-time have been proposed [Bae91,FuP92,Skl92]. Cache-based sequential hardware
prefetching [Dah94,Dah95] eliminates the need for detecting strides dynamically
Unfortunately the prefetch distance of these run-time techniques is generally limited to a
few loop iterations (or a few cache lines). In addition, cache-based schefeedreui
cache conflicts: the prefetched data may replace other needed data, or may be evicted
before it is used. None of these schemes explicitly orders accesses to fully exploit the
underlying memory architecture. The lookahead technique proposed by Bird and Uhlig
[Bir91] uses aBank Active Sceboardto order accesses dynamically to avoid bank
contention, but like most others, this scheme does nothing to exploit device characteristics

such as fast-page mode.

Palacharla and Kessler [Pal95] investigate code restructuring techniques to exploit
an (RT, RT RY unit-stride read-aheadstream butr and fast-page mode memory

devices on the Cray T3D. The prefetched data is transferred to cache when the processor
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requests it. The order in which vectors are fetched is decided at compile-time, but to avoid

cache conflicts, the amount of each vector to fetch at once is determined at run-time.

2.3 Evaluation of Access Ordering

In order to analyze the performance of a representative subset of access ordering

techniques, we have selected five implementation schemes:

naive odering or using caching loads to access vector elements in the natural

order of the computation;
- streamingelements using non-caching loads, and then copying them to cache;
- block-prefetchingvector elements to cache (before entering the inner loop);
- static access orderinsao) at the register level, using non-caching loads; and

- hardware-assistatnamic access orderingao).

The first, naive ordering, provides a basis for comparing the performance
improvements of the other schemes. These techniques require no heroic compiler
technology: the compiler need only detect streams. Dynamic access ordering requires a
small amount of special-purpose hardware, and our static and dynamic access ordering
techniques both require non-caching load instructions. Although rare, these instructions are
available in some commercial processors, such as the Convex al85]\&nd Intel i860
[Int91]. Most current microprocessors (including the DEC Alpha [Dig92], MIPS [Kan92],

Intel 80486, Pentium, and i8604B91], and the PowerPC [Mot93]) provide a means of
specifying some memory pages as non-cacheable, even though these mechanisms is not

generally accessible to the user.

Our investigation tayets one aspect of cache performance that has been

overlooked: the time to load a vecgtoegardless of whether or not data is reused. W
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therefore focus on the cost of memory accesses within the parts of programs that process

vector data, the inner loops.

Although one would suspect that the performance of these schemes (at least for
unit-stride vectors) will be ranked agive< streanx prefetch sao d,wewishto
verify these relationships, and to quantify théedénces in performanceo This end, we
develop general analytic models for each scheme. tién show what the actual
performance dierences between schemes is for one particular set of real machine
parameters, those of the i860XR. Due to limitations of available hardware, only three of the
techniques could be implemented and tested, but the results of these experiments give us at

least a partial validation of our models in the context of a real system.

2.3.1 Performance Models

In this section, we develop analytic performance models for a memory system composed
of page-mode DRAMS. In order to derive upper bounds on performance, we assume that
there are no cache conflicts, DRAM pages are infinitely long (we ignore compulsory page

misses from crossing page boundaries), and vectors are aligned to cache-line boundaries.

All costs represent an integral number of cycles; we omit the ceiling functions in
our formulas in order to avoid notational clutiéke assume each bus transaction or caching
reference transfers one vector element. These formulas are independent of the number of
banks in an interleaved memory system, since we assume that page-miss latencies for

separate banks can be overlapped. Let:
o be the vector stride, or distance between consecutive elements (unit-stride means
that successive elements are contiguous in memory);
z Dbe the size of a cache line in terms of vector elements; and

z, be the size of a block, or submatrix, of data (in vector elements) to be loaded.
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We add a few definitions to characterize memory access costs. Let:

t,, be the cost of reads that hit in the cache;
to be the cost of writes that hit in the cache;
tombe the DRAM page-miss cost, in cycles; and

ton be the DRAM page-hit cost, in cycles.

Section 2.3.1.1 through Section 2.3.1.5 introduce each scheme and present the

corresponding performance model. Comparative results are given in Section 2.3.2.

2.3.1.1 Naive Accessing

As a baseline for comparison, we wish to determine performance for a computation in
which no attempt is made to tailor access order to memory system parameteatcate

the average number of cycles used by caching instructions to load vector elements in the
natural order of the computation.evdssume that for each cache-line fill, the first access
incurs the DRAM page-miss overhead. The DRAM page status may have been flushed by
accesses to other data in between cache line fills for a particular. \Estbrremaining
access in the line hits the current page. Unfortunatdlgno > 1, some of these accesses

fetch data that will not be used.

Figure2.4 illustrates which vector accesses hit or miss the DRAM page when this
access method is used on a system whose cache lines hold four vector eleméntSije
first element in each cache line generates a DRAM page-miss: in the figure, these elements

are highlighted both in memory and in their corresponding positions within the cache lines.
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CPU CACHE MEMORY
. i 2
R IR B " EEE EEE |

}7 vectorx 4‘

B DRAM page miss
[0 DRAM page hit

Figure 2.4 Naive Accessing (Traditional Caching)

Assuming that the cost of reading from cache is subsumed by the cost of performing
a cache-line fill, the average pgdement cost of using caching loads in this manner is the
number of cycles to fill a line, divided by the amount of useful dgtarin (o, z) )
contained therein:

_ tom? (z-1) ton _ (tpm+ (z-1) tph)min(o, z)

T . .= .
naive z/min (0, z) Z,

(2.1)

This formula describes fetctive bandwidth whenever vectors are accessed in the
computations natural order even when loop-unrolling is applied. Note that the

effectiveness of naive ordering decreases rapidly as vector stride increases.

2.3.1.2 Block Prefetching

Blockingor tiling changes a computation so that sub-blocks of data are repeatedly
manipulated [And92,Gal87,Gan87,Lam91,Por88I84]. This technique reduces average
access latency by reusing data at faster levels of the memory hieeardimgay be applied
to registers, cache, TLB, and even virtual membor example, multiplication af x n
matrices can be blocked to reuse cached data. Righikustrates the data access patterns

of the unblocked loops when the matrices are stored in row-major order:
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fori=1tondo
forj=1tondo
fork =1tondo
C[i.jl = C[i.j] + Ali.k] * BIK,][;

C A B

RO e —

2

Figure 2.5 Data Access Pattern in Unblocked (Natural) Matrix Multiplication

Unless the cache is & enough to hold at least one of the matrices, the elements
of B in the inner loop will be evicted by the time they are reused on the next iteration of the
outeri loop. Likewise, whether or not the rowAfemains resident until the next iteration
of thej loop depends on the size of the cache. If the code is modified to ad erza
sub-matrix oB, this data will be reusegl times each time it is loaded. The blocking factor
is chosen so that the sub-matrix and a corresponding (lgggtegment of a row oA fit

in cache. Figure 2.6 illustrates the data access patterns of the blocked loops:

forj_block=1tonbyz p do
for k_block=1tonbyz p do
fori=1tondo
for j = j_block to min(j_block+z p-1, n) do
for k = k_block to min(k_block+z p-1, n) do

Cli.jl = CIi,j + Ali,K] * B[k,;

C A B

H

pill N
T T

j_block — k_block 2 j_block —
(sizez )

Figure 2.6 Data Access Pattern in Blocked Matrix Multiplication

k block




Chapter 2: Access Ordering 23

We can also apply the notion of blocking to caching veatoesses, regardless of
whether or not the data is reused: to minimize the total DRAM page-miss overhead, vector
elements can be prefetched into the cache in chunks. When the processor uses the vector

block within an inner loop, the data should still be cache-resident.

Even though we are not specifically concerned with data reuse, we must still
consider issues of interference, for there may be other memory references between when
the data is fetched and when it is referenced by the proc&stermining optimal block
size in the presence of cache conflicts may bigcdlif, but algorithms to address this
problem have been presented elsewhere [Lam91,Tem93]. The ideas presented here can be

incorporated into those algorithms to yield even better memory performance.

The processor need not explicitly redddata values in order to preload the vector:
touching one element per line will bring the entire line into cache (of course, the cache
controller must still fetch each word from memory). Architectures that can prefegeh lar
blocks require even fewer instructions (for instance, the DEC Alpha can prefetch up to 512
bytes [Dig92]). Figure.7 depicts the DRAM costs incurred by block prefetching in the

absence of a block-prefetch instruction.

CPU CACHE MEMORY
fori=1l,nb
orflorj:i,i}r/zZ bb H Zb I
o - H < | T T~ ]
for k=i,i+
i vectorx =~ ———|

B DRAM page miss
[0 DRAM page hit

Figure 2.7 Block Prefetching

The mean cost of block-prefetching a vector element to cache and reading it from

there during the computation is:
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tpm+ ((z,xmin(0,z)) —-1) tIoh .

Tprefetch = Zb cr

2.2)

Thez, xmin (g, z) term represents the number of accesses required to load the block of
vector data; foo > 1, some of these accesses fetch extraneous data. For unit-stride vectors,

the first term approaches the minimmlm cycles per element as block size increases.

2.3.1.3 Streaming into Local Memory

Copyingimproves memory system performance by moving non-contiguous data to be
reused into a contiguous area, much like a vgutocessogatheroperation. For instance,

in parallelizing a Fast Fourierdnsform, Gannon and Jalby use copying to generate the
transpose of a matrix, giving both row-wise and column-wise array accesses the same
locality of reference [Gan87]. Lam, Rothgeand V@If [Lam91] investigate blocking in
conjunction with copying in order to eliminatelf-interferenceor cache misses caused by
more than one element of a given vector mapping to the same location. This optimization
also reduces TLB misses and increases the number of data elements that will fit in cache

when the vector being copied is of non-unit stride.

Copying attempts to explicity manage the cache as a fast, local meByry
exploiting memory properties, this technique may also benefit single-use vectors and those
that do not remain in cache between uses. For example, when accessing non-unit stride
vectors,streamingdata via non-caching loads and then writing it to cache avoids fetching
extraneous data, and may yield better performance than the previous, block-prefetching
scheme. Since each read of a vector element incurs a read from memory as well as a cache
write and read, streaming will provide the most benefit when cache accesses and DRAM
page hits cost much less than DRAM page misses. This optimization may also prove
valuable for caching unit-stride vectors if page misses are fairly expensive and block

prefetching is inefficient due to hardware limitations.
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Assuming a write-back cache, the cost per element copied includes the costs of

reading the data using non-caching loads, writing it to the cache, and reading it back from

cache later:

t +(z,—-1)t
— pm b ph
Tstream - Zb + (tcw+ tcr) (2'3)

Figure2.8 illustrates the pattern of DRAM page hits and misses for this technique, along
with the layout of the corresponding data when written to cache. Since non-caching loads

fetch data from memory, the CPU is interposed between memory and cache in the figure.

- CACHE CPU MEMORY

% T H fori=1,n by z b | Z, |

S - | forj=iji+z b I |

=5 H r1=x{i] - I I T

b2 buf[jj=r1 Y, rx

g 1 > forju=i,i+; b |7 ecto 4'
...=buffj]

B DRAM page miss
O DRAM page hit

Figure 2.8 Streaming Data into Cache

Note that the cost of initially allocating the local memory is not reflected in this
formula. For unit-stride vectors, tigyeamdiffers fromTyeterchonly by the time to write
the vector elements to cache. On some architectures, it may be possible to overlap the

writes to cache with non-caching loads, in which ¢ggerops out of the equation.

2.3.1.4 Static Access Ordering

Moyer derives compile-time ordering algorithms [Moy93] to maximize bandwidth for non-
caching register accesses. This approach unrolls loops and orders non-caching memory
operations to exploit architectural and device features of thettaremory system. The
tridiag example of Section 2.1 illustrates the resulting bandwidth benefits: unrolling eight

times yields a performance improvement of almost a 200%.
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CPU MEMORY
fori=1,n by z b ﬁs %
ri=x{i] -y [ IEEEEEE BN ]

r2=x[i+1]
ot ——  vectorx —|

rm=x[i+z p-1]

B DRAM page miss
OO DRAM page hit

Figure 2.9 Static Access Ordering

Figure2.9 gives a pictorial representation of static access ordering for a single
vector Using this approach, the average-@lement cost for fetching a block of the vector
is:

t .+ (z,-1)t
7. = lom* 7D (2.4)

sao
Z,

This formula assumes that the first access to each block incurs the DRAM page-
miss overhead. Subsequent accesses in that block hit the current page, and happen faster
This allows us to amortize the overhead of the page miss over as many accesses as there
are registers available to hold data. The Intel iI960MM has a local register cache with 240
entries that could be used to store vector elements for this scheme [Lai92], and the AMD
AM29000 has 192 registersdh91], but most processors have far fewer registers at their
disposal. Assuming, = 8 for vectors of 64-bit words would probably be optimistic for
most computations and current architectures. Since unrolling increases the length of the
inner loop, instruction cache size must also be taken into account when decided how far to
unroll. Note that for unit-stride vectors,, differs from TpefercnOnly by the last term in

the latter, which is constant for a given architecture.
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2.3.1.5 Dynamic Access Ordering

Performing registelevel access ordering at compile time can significantly improve
effective memory bandwidth, but the extent to which the optimization can be applied is
limited by the number of available registers and by the lack of alignment information
generally available only at run-time. Cache-level access ordering by block prefetching or
streaming alleviates register pressure, but these are still compile-time approaches, and thus
they also suér from the lack of data placement and alignment information. As with other
forms of cache blocking, thefettiveness of these techniques depends on the amount of
cache interference. For good performance, block size should be adapted to cache and
computation parameters. Finallgaching vectors inevitably displaces scalar data that

would otherwise remain resident.

These limitations exist in part because the ordering is being done at compile time,
and in part because of the prograndlemands on registers and cache. A system that
reorders accesses at run-time and provides separéte $pdce for stream data can reap
the benefits of access ordering without these disadvantages, at the expense of adding a

small amount of special-purpose hardware.

Figure2.10 depicts our scheme for dynamic access ordering. Memory is interfaced
to the processor through a controllétemory Scheduling Unigr MSU) that includes
logic to issue memory requests and logic to determine the order of requests during streamed
computations. A set of control registers allows the processor to specify stream parameters
(base address, stride, length, and data size), and a set of high-speedhulds stream
operands. The stream berfs are implemented logically as a set of FIFOs, with each stream
assigned to one FIFOogjetherthe MSU and SBU comprisestream Memory Conttler
(SMC), that prefetches read-operands, fdrsf write-operands, and reorders stream
accesses to maximize bandwidth. For non-stream accesses, the MSU provides the same

functionality and performance as a traditional controller.
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Figure 2.10 Stream Memory Controller System

This olganization is both simple and practical from an implementation standpoint:
similar designs have been built. In fact, thgamization is almost identical to the “stream
units” of the WM architecture [W92], or may be thought of as a special case of a
decoupled access-execute architecture [Goo85,Smi87]. Another advantage is that this
combined hardware/software scheme requires no heroic compiler technology — the
compiler need only detect the presence of streams, as in Benitez and Daadtpanithm

[Ben91]. Information about the streams is transmitted to the SMC at run-time.

What follows is a bound on SMC performance for loading a single vector of a
multiple-vector computation. 8/extend this model to bound bandwidth for the entire

computation for uniprocessor systems in Chapter 3 and for SMP systems in Chapter 4.

Let f be the FIFO depth in vector elements, andzletepresent the number of
elements that can be fetched in succession. FRjltellustrates the SMC reading a single
vector The MSU fetches data from memory into the FIFGidspaind the CPU dequeues

elements by reading from the memory-mapped register representing the head of the FIFO.
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Figure 2.11 Dynamic Access Ordering via the SMC

If we assume that the FIFO is initially empty, the mean time to load an element is:

_ bt (=D,
dao ~ Z
b

T (2.5)

Obviously asz, increases[T, , tends tot  , the minimum time to perform a

dao ph’

DRAM access. If the vector is completely fetched before the processor starts consuming
data, therg, = f, but if the processor consumes data from the FIFO while the memory
system is filling it,z, must reflect this. Les represent the number of streams in the
computation. If the processor accesses the FIFOs (in round robin order) at the same rate as
the memory system, then while the memory is filling a FIFO of digptie processor will
consumef/s more data elements from that stream, freeing space in the FIFO. While the
memory supplie$/s more elements, the processor removigs?, and so onThe total

number of accesses required to fill the FIFO can be represented as a series thggsctmver

0 .1 1 1 0_ f
5= I+ B HE B Y @9

When we substitute this back into Equation 2.5, we get:

pm DS 1 1%ph (s—l)tpm+(fs—s+ 1)thh

Tdao = 0 fs [ fs
Ds_ 1[:'

2.7)
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2.3.2 Performance Examples

For purposes of validation, we wish to focus on a single platform in both the analytic and
experimental portions of this work. The Intel iB60XR was selected because it provides the
non-caching load instructions necessary for our experimental measures. Unless otherwise

specified, the data presented here is generated using parameters from that system:

vector elements are 64-bit words;
- cache lines are 32 bytes, or 4 vector eleménts: 4) ;

- pipelined loads fetch one 64-bit word, and DRAM page misses and page hits take

10 and 2 cycles, respectively;

- caching loads and stores that hit the cache can transfer 2 vector elements, or 128

bits, in each cyclgt, =t ,=1) ;

- the write-back cache holds 8K bytes, and is two-way set associative with pseudo-

random replacement; and

- DRAM pages are 4K bytes.

2.3.2.1 Analytic Results

We first look at the performance of our ordering schemes for unit-stride vectors on a
memory system matching the parameters of our i860XR systerthéf look at how these
performances are fatted by changing the parameters of the memory system to vary the

cost ratio between DRAM page misses and page hits, or by changing the vector stride.

Figure2.12 illustrates the comparative performance of the five access schemes
described in Section 2.3.1. Although blocking is not relevant to accessing vector elements
in their natural order — all blocks are the size of a cache line — we include that line for
reference. The dynamic access ordering results given here are for a computation involving

three vector operands (such as the first and fifth Livermore Loops [McMgaip
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fragmentand ourtridiag example from Section 2.1).vArage cycles per element will be
slightly lower for computations on fewer vectors and slightly higher for computations

involving more. For dynamic access ordering, block size corresponds to FIFO depth.

Figure2.12(a) shows the average cycles per element to fetch a unit stride vector
using each of our schemes. The four schemes that consider access order consistently
perform better than the naive, natural-order access pattern. Note thae#mg prefetch
and sao curves are a constant distance apart: thegrdinly by the cost of the cache
accesses involved in each. The curve dao may be a little misleading, since most
architectures provide too few registers for static access ordering to be used with block sizes

greater than 8. Nonetheless, we depict the theoretical performance for large block sizes.
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Figure 2.12 Vector Load Performance

To emphasize the impact that order has dacée bandwidth, Figur2.12(b)
illustrates the corresponding percentages of peak system bandwidth delivered by each of
the ordering schemes. Naive ordering uses only 50% of the available bandwidth. Streaming
and block-prefetching can deliver over 65% and 78%, respectfeelglock sizes of 128
or more elements. Using blocks of size 8, static access ordering achieves 67% of the total
system bandwidth.This scheme could deliver 80% of peak with 16 registers to hold stream
operands. Of the five schemes, dynamic access ordering makes fin@sttefse of the
memory system, delivering over 96% of peak bandwidth for a FIFO depth of only 32

elements. Performance approaches 100% for FIFOs that are over 128 elements deep.
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We expect the miss/hit cost ratio to increase. For example, the new EDO DRAMs
[Mic94] behave much like fast-page mode DRAMSs, but they allow the column address for
the next access to be transmitted while the data for the current access is latched. This
concurrency reduces the page-hit cycle time. As DRAM page misses become
comparatively more expensive, accessing data in the natural order delivers less and less
bandwidth, but the performance of the other four schemes stays almost constant for block
sizes of 64 or more. This is illustrated in Fig@r&3. The graphs on the left depict average
time to access a vector element, and those on the right indicate percentage of peak

bandwidth.

Figure2.13(a) and (b) show performance when page hits are three times as fast as
page misses. Static access ordering, dynamic access ordering, and block prefetching all out-
perform naive ordering for block sizes greater than 8. Dynamic access ordering delivers
data at nearly the maximum rate for FIFO depths of 32 or more. Streaming only makes
sense on such a system if it can be done grelalocks, since the extra cache write and read

are expensive relative to memory access costs.

Figure2.13(c) and (d) illustrate performance when a DRAM page miss COsts Six
times a page hit. In this case, naive ordering performs worse than all other schemes,
delivering less than half the available bandwidth. At a cost ratio of 12, shown in
Figure2.13(e) and (f), the dérences are even more striking. Naive ordering barely uses
25% the system bandwidth, but at a block size of only 64, streaming, block-prefetching,

and dynamic access ordering deliver 60%, 70%, and 95% of peak, respectively.

If the cost ratio increases as a result of a reduction in the page-hit cost, the cycle
time of the systems represented by Figlife3(e) would be one fourth of those represented
by Figure2.13(a). Peak bandwidth for the systems of FiQui&(e) is thus four times those
of Figure2.13(a). D emphasize this relationship, we held page-miss costs constant, and

reduced page-hit times proportionately to create Figure 2.14.
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Figure 2.13 Vector Load Performance for Increasing Page Miss/Hit Cost Ratios
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Figure 2.14 Scaled Vector Load Performance for Decreasing Page Hit Costs

Figure2.15 illustrates the results of using each of our schemes for non-unit stride
vectors. As stride increases, the performance of naive ordering degrades sharply — from
50% of available bandwidth at stride 1 to 25% at stride 2, 16.7% at stride 3, and 12.5% at
strides of 4 or more. Cache performance is constant for strides greater than the line size,
since for such strides only one element resides in each line. Like naive ordering, block-
prefetching fetches extraneous data, but since prefetching amortizes page-miss overheads

over a greater number of accesses, it yields better performance than accessing data in the

natural order.

The cost of performing the extra cache write and read $treans performance
to 50% of available bandwidth. For non-unit strides, howes#eaming is always
preferable to block-prefetching. Again, dynamic access ordering exploits nearly the full
bandwidth for FIFOs of depth 64 or more. Note that the percentage of bandwidth delivered
for any of the schemes that use non-caching loads is independent of vector stride:

performance begins to degrade only when vector stride becongeswéh respect to

DRAM page size.
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Figure 2.15 Vector Load Performance for Increasing Strides

2.3.2.2 Empirical Results

In order to validate our formulas, we have implemented three of the accessing schemes on
an Intel i860XR processor: naive ordering, streaming, and static access ordering. The

iIB60XR cache controller prevents block-prefetching as described in Section 2.3.1.2. On
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this machine, each successive cache-line fill incurs a 7-cycle delay [Moy91], causing the
memory controller to transition to its idle state. The next memory access takes as long as a
DRAM page-miss, regardless of whether or not it lies in the same page as the previous

access.

The i860XR supports a dual-instruction mode that allows cache writes to be
overlapped with pipelined, non-caching loads. When these operations are overlapped,
block-prefetching vectors of unit stride uses the same number of instruction cycles as
streaming. W may therefore take the measured streaming performance to be some
indication of the performance one could expect from an implementation of block-

prefetching.

Although our hardware to support dynamic access ordering is not yet available for
gathering general empirical data, the results of Section 2.3.2.1 lead us to expictean ef
implementation of dynamic ordering asymptotically to perform about the same as static
access ordering. This is part of the motivation for investigating the performance of static

ordering for unrealistically large block sizes.

Our empirical results measure the performance of three routines to load vectors of

64-hit elements:

- naive()uses caching loadfd.qfor stride onefld.dfor others) to bring the vector

into cache.

- sao() uses non-caching loadgfid.d to read the vectorThe routine reuses

registers in order to simulate large block sizes.

- stream()overlaps 64-bit non-caching loads with 128-bit stores to local (cache-
resident) memotyreloading the data from cache to registers during the

computation.
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Since we want to determine bounds on memory system performance, these routines
are designed to exert maximum stress on the memory by assuming that arithmetic
computation is infinitely fast. The cache was flushed before each experiment, and each
routine was timed 100 timéOur graphs present the arithmetic mean of these timings. Al
vectors are 1024 elements long. The time to allocate local (cache) memory is omitted from
our streaming results. If the local memory is reused, this overhead will be amortized over
many vector accesses that hit the cache. If not, the allocation cost must be considered when

deciding whether to apply the optimization.
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Figure 2.16 Vector Load Performance for the i860XR

1. Timings were taken using tldelock()routine.
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Figure2.16 presents vectdwad performance for vectors of various strides. The
analytic results for streaming were generated using a version of Equation 2.3 that accounts
for the overlapping of cache writes with non-caching reads. In all cases, measured
performance approaches theoretical bounds fgelatock sizes. Diérences for smaller
blocks can be attributed to overhead costs for subroutines and loops, and to page misses

from crossing DRAM page boundaries (our models do not account for such misses).

The performance aftreamandsaois fairly independent of vector stride, whereas
the average cost per access of naive ordering rises steadily with increasing stride (up to the
cache line size). For these machine parameters, static access ordering always beats naive
ordering for blocks layer than the cache-line size. The point at which streaming yields
better memory performance than naive caching depends on stride and implementation
details. If the code to perform streaming were generated by the compiler, or if function in-
lining were used to mitigate the costs of a streaming subroutine call, the technique might

become profitable for even smaller block sizes.

2.4 Related Work

In addition to the various access-ordering schemes discussed in the taxonomy of Section
2.2, a lage body of research characterizes and evaluates the memory performance of
scientific codes. Most of this research focuses on:
a) hiding or tolerating memory latency,
b) decreasing the number of cache misses incurred, or
c) avoiding bank conflicts in an interleaved memory system.
Nonblocking caches and prefetching to cache [Bae91,Cal91,Dah94, Gup91,Kla91l,

Mow92,Soh91], prefetching to registers (as in the IBM 3033 [Kog81], or as proposed by
Fu, Patel, and Janssens [FuP92]), or prefetching to special preléexd PeiP91] can be
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used to overlap memory accesses with computation, or to overlap the latencies of more than
one access. These methods can improve processor performance, but techniques that simply
mask latency do nothing to increasteefive bandwidth. Such techniques are still useful,

but they will be most effective when combined with complementary technology to exploit

memory component capabilities.

Modifying the computation to increase the reuse of cached data can improve
performance dramatically [Gal87,Gan87,Car89,Por&B®/Lam91,Em93]. These
studies assume a uniform memory access cost, and so théydadrEss minimizing the
time to load vector data into cache. These techniques will also deliver better performance

when integrated with methods to make more efficient use of memory resources.

Lam, Rothbey, and VeIf [Lam91] develop a model of data conflicts and
demonstrate that the amount of cache interference is highly dependent on block size and
vector stride, with lagge variations in performance for matrices ofetiént sizes. For best
results, block size for a computation must be tailored to matrix size and cache parameters,
and eficient blocked access patterns tend to use only a small portion of the cache. This may
limit the applicability of cache-based access ordering techniques discussed here. Block-
size limitations can be circumvented by providing a separaterbspace for vector

operands.

Loshin and Budge [L0s92] describe streaming in an article on compiler
management of the memory hierarchge’s investigations of the NASEK library and
the work of Meadows, Nakamoto, and Schuster [Mea92] on the PGI i860 compiler both
address streaming in conjunction with other operations. These reports do not attempt to
develop a general performance model, nor do they present measured timing results specific

to this particular optimization.
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Copying incurs an overhead cost proportional to the amount of data being copied,
but the benefits often outweigh the cost [Lam91], aamddm, Granston, and Jalbye[hn93]
present a compile-time technique for determining when copying is advantageous. Using
caching loads to create the copy can cause subtle problems with self-interference. As new
data from the original vector is loaded, it may evict cache lines holding previously copied
data. Explicitly managing the cache becomes easier when a cache bypass mechanism is
available. Data coherence issues must be addressed when vectors are shared (see Section

7.6 and Section 8.1 for a discussion of coherence issues).

Research on blocking and copying has focused primarily on improving
performance for data that is reused, the traditional assumption being that there is no
advantage to applying these transformations to data that is only used once. In contrast,
reports on the NASKCK routines [Lee91,Lee93] and the PGI compiler [Mea92] suggest
that by exploiting memory properties, these techniques may also benefit single-use vectors

and those that do not remain in cache between uses. Our results support these conclusions.

Palacharla and Kessler [Pal95] investigate software restructuring to improve
memory performance on a Cray T3D. This machine includes a single, stride-one “read-
ahead” stream bfdr to prefetch data to cache. When enabled, the read-ahéaxdéiches
the next consecutive cache line whenever there is a cache miss. The prefetched data is held
in the bufer until requested by the processar until another cache miss occurs, causing
the current read-ahead line to be discarded and another to be prefetched. Exploiting the
read-ahead mechanism also exploits the fast-page mode of trerm&mory components.

In order to make é&kctive use of both architectural features, the authors recommend
unrolling loops and grouping accesses to each vexsan Moyer’s static access ordering
[Moy93]. They also implement block prefetching (as described in Section 2.3.1.2) by
reading one element of each cache line for a block of data before entering the inner loop.

Their measurements indicate that the combination of these schemes yields performance
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improvements from 31% to 75% for simple streaming examples, and overall execution
time improvements from 9% and 30% for the benchmarks they caonsiier determine
blocksize dynamically at run-time in order to minimize cache conflicts, but do not

investigate copying to explicitly manage the cache.

Several schemes for avoiding bank contention, either by address transformations,
skewing, prime memory systems, or dynamically scheduling accesses have been published
[Bir91,Bud71,Gao93,Har87,Har89,Rau9l]; these, too, are complementary to the

techniques for improving bandwidth that we analyze here.

Both Moyer [Moy91] and Lee [Lee90] investigate the floating point and memory
performance of the i860XR. Results from our experiments with this architecture agree

largely with their findings.

2.5 Summary

As processors become fasteremory bandwidth is rapidly becoming the performance
bottleneck in the application of high performance microprocessors to -i&etor
algorithms. Here we have examined the time to load a vector using ferexifaccess-
ordering schemes, putting maximum stress on the memory system in order to determine
performance bounds. Four of these schemes are purely software techniques; one requires
the addition of a modest amount of supporting hardware. The nmitcerdf schemes

exploit the ability to bypass the cache.

A comprehensive, successful solution to the memory bandwidth problem must
exploit the richness of thieilll memory hierarchy: it cannot be treated as though it were
uniform access-time RAM. This requires not only finding ways to improve cache
performance, but providing alternatives for computations that @ahibit the properties

necessary to make caching effective.
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This knowledge should guide processor design and operating system
implementation. @ get good memory performance, the user needs more control over what
gets cached and howand mechanisms to take advantage of memory component
capabilities should be readily available. Unfortunatiis is not the case for most current
microprocessor systems. For cases where such mechanisms are available, we have
demonstrated how several straightforward techniques can improve bandwidth
dramatically These schemes require no heroic compiler technoland are
complementary to other common code optimizations. Our results indicate that access

ordering can deliver nearly the full memory system bandwidth for streamed computations.



| bring fresh showers for the thirsting flowers,
From the seas and the streams.

— Percy Bysshe Shelley (1792-1822)

Chapter 3

Uniprocessor SMC Performance

The previous chapter demonstrated the impact of access orderinfpcivefmemory
bandwidth when loading a single vect@f the five approaches studied, dynamic access
ordering boasts the highest upper bound on attainable bandwidth. Given the promise of this
approach, this chapter examines dynamic access ordering in greater detail, analyzing its
performance for dense matrix computations on uniprocessor systems. Later chapters will

consider sparse matrix computations and symmetric multiprocessor systems.

We begin by surveying the design space of access ordering policies for Stream
Memory Controller (SMC) systems.a\have developed a set of ordering heuristics for
which we conducted numerous simulation experiments. In order to evaluate the
effectiveness of these heuristics, we extend the analytic model of CBa@ection
2.3.1.5, to describe multiple-stream computations, and we develop a startup-delay model
of the overhead costs incurred by dynamic access ordering. Even though our discussion is
couched in terms of the SMC model, these bounds relate to any scheme that performs

batched adering by fetching stream or vector data in blocks. Finalkg compare our

43
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analytic bounds to the best performances of any of the simulated ordering heuristics, and
present sample simulation results for two representative ordering policies. The structure of

this chapter is depicted in Figure 3.1:

Uniprocessor SMC Performance

Ordering Policy
Design Space

Summary

Analytic Simulation
Models Models
Bank FIFO
Selection Selection
Modeling Asymptotic Simulation Comparative
Assumptions Models Environment Results
Startup Delay
Model

Figure 3.1 Chapter Structure

3.1 Ordering Policy Design Space

By exploiting the underlying memory architecture, dynamic access ordering attempts to
issue accesses in an order that improves memory bandwidth. For any memory system
composed of interleaved banks of DRAM components, there are at least two facets to this
endeavor: taking advantage of the available concurrency among the interleaved banks, and
taking advantage of the device characteristics. At each “decision point” (each available

memory bus cycle), the ordering hardware must decide how best to achieve these goals.

In the following discussion, we assume the FIFO-based SMC implementation
introduced in Chapte? and depicted in Figui®2. For this aganization, the ordering-
policy design space can be divided into two subspaces: algorithms that first choose a bank

(Bank-Centricschemes), and those that first choose a FFFEQ-Centric schemes].

1. This division of the design space generalizes to implementations thaedgtoy FIFOs. The
analog of a FIFO-Centric scheme would first choose a buffer or a particular vector access.
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Figure 3.2 Uniprocessor Stream Memory Controller (SMC) System

In a Bank-Centric (BC) scheme, each bank operates independently; the range of
addresses for one baslcurrent DRAM page need not be related to those of anothesbank’

current page. Any BC algorithm for choosing the next access must:

1) select the memory bank(s) to which the next access(es) will be issued, and

2) choose an appropriate access from the pool of ready accesses for each memory

bank (this is equivalent to selecting a FIFO to service).

Here aready acceseefers to an empty position in a read FIFO (that position is ready to be
filled with the appropriate data element) or a full position in a write FIFO (the

corresponding data element is ready to be written to memory).

FIFO-Centric (FC) schemes perform the two tasks in the reverse order: once the
FIFO to service has been determined, the selection mechanism chooses an appropriate bank

from the set servicing that FIFO.

3.1.1 Bank Selection

BC ordering mechanisms first choose the bank to access. Strategies for selecting banks vary

in the number of banks to which accesses may be issued at once, the number of banks
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considered in the search process, and the order in which they are considexreghiasent

the number of memory operations that may be initiated during one cycle (for uniprocessors,
in most casea = 1). The spectrum of bank-selection strategies ranges from an exhaustive
search that keeps looking urgiidle banks are found (or no unexamined banks remain) to
the simple strategy that only considarbanks, initiating accesses for the subset of idle
banks. Most of our BC ordering policies start with the next bank in sequence after the one

to which the last access was initiated.

Our BC policies each rely on one of three bank-selection schemes: a parallel
strategy that attempts to initiate accesses to all idle banks at once (this scheme assumes a
separate bus to each bank); a limited (“token-passing”) round-robin strategy that only
considers the next bank in sequence; and a gremayd-robin strategy that considers each

bank in turn until it finds an idle one for which there exists a ready access.

The first of these attempts to take full advantage of available concurbendize
need for multiple buses makes it generally impractical to implement. On the surface, it
seems that this algorithm should perform at least as well as the others, but this isn’
necessarily so. The interaction between bank availghaltiyess initiation, and processor
activity is complex, and often non-intuitive. The second scheme is the easiest to implement,
and in spite of its simplicityits performance rivals that of the others. The last scheme

strikes a middle ground in terms of hardware requirements.

3.1.2 Fifo Selection

The spectrum of FIFO-selection schemes ranges from sophisticated algorithms that use all
available information to decide what to do next, to those that make the easiest and quickest
possible choice. For instance, an ordering algorithm may look for an access that hits a
current DRAM page, or it may simply choose the next access from the current FIFO (or the

next FIFO in sequence). If an algorithm looks for a page hit but ftad’one, it may try
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to choose the “best” candidate based on which FIFO requires the most service. When trying
to select the best FIFO, an algorithm may consider the total contents of the FIFO, or it may
restrict itself to just the portion of the FIFO for which a particular bank is responsible (this

is asubFIFO.

Some algorithms require that a FIFO (subFIFO) meet a certain “threshold” in order
to be considered for service; for instance, a read FIFO (subFIFO) might need to be at least
half empty before it can be considered among the best candidates. The rationale for this
springs from the overhead involved in accessing a new DRAM page: any time the SMC
must switch DRAM pages, the cost of that miss should be amortized over as many accesses
as possible. If a FIFO contains seciently few ready accesses to a given page, it may be
worthwhile to wait until there are more. If there are no “best” candidates, an algorithm may

either choose the next access in sequence or do nothing until the next decision-making time.

In selecting the “best” FIFO or bank to use next, any access ordering scheme must
impose an ordering on the resources (banks or FIFOs). This priority dictates the order in
which the resources will be considered or which subset will be selected. For instance, our
BC ordering strategies use one of two FIFO orderings: one set of strategies begins its search
by examining the FIFO last accessed by any bank, and the other begins with the FIFO last
accessed by the currently selected bank. The first of these encourages several banks to be
working on the same FIFO, while the second encourages different banks to be working on
different FIFOs. It is not intuitively obvious which of these is preferable, and in fact, our

experiments demonstrate no consistent performance advantage to either [McK93a].

3.2 Analytic Models
For the systems we consideandwidth is limited by how many page-misses a computation
incurs. This means that we can derive a bouna@igrordering algorithm by calculating

the minimum possible number of page-misses, and we can use this bound to evaluate the
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performance of our heuristics. Similgriwe can calculate the minimum time for a
processor to execute a loop by adding the minimum time the processor must wait to receive
all the operands for the first iteration to the time required to execute all remaining

instructions.

These calculations provide us with two different bounds: the first gives asymptotic
performance limits for very long vectors, and the second describes limits due to startup
effects. The asymptotic model bounds bandwidth between the SMC and mesnergas

the startup-delay model bounds bandwidth between the processor and SMC.

We first look at how SMC startup costs impact overall performance, then we
examine the limits of the SME€’ability to amortize page-miss costs as vector length
increases asymptotically.8Mevelop each of these models for uniprocessor SMC systems,

then extend them in Chapter 4 to describe multiprocessor SMC performance.

3.2.1 Modeling Assumptions

We assume the system is matched so that bandwith between the processor and SMC equals
the bandwidth between the SMC and memand the vectors we consider are of equal
length and stride, share no DRAM pages in common, and are aligned to begin in the same
bank. W assume a model of operation in which the processor accesses its FIFOs in round-

robin order, consuming one data item from each FIFO during each loop iteration.

In order that the bound we derive be conservative, we impose several constraints.
We ignore bus turnaround delays and other exterfedtef We model the processor as a
generator of only non-cached loads and stores of vector elements; all other computation is
assumed to be infinitely fast, putting as much stress as possible on the memory system. In
calculating the number of page misses incurred by a multiple-stream computation, we
assume that DRAM pages are infinitelyger Misses resulting from crossing page

boundaries are ignored in our model. Finallgg assume that the SMC always amortizes
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page miss costs over as many accesses as possible: read FIFOs are completely empty and
write FIFOs are completely full whenever the SMC begins servicing them. Each of these
constraints tends to make the bound more conservative (in the sense that it begemes lar

and hence harder to achieve in practice.

3.2.2 Startup-Delay Model

Unlike the traditional performance concern over processor utilization, we foousroary
utilization for stream computations. The processaictivity afects memory usage, and
thus good overall performance requires that the processor not be left unnecessarily idle:

bothresources must be used wisely.

Since we assume the bandwith between the processor and SMC equals that between
the SMC and memoypptimal system performance allows the processor to complete one
memory access each bus cycle. The Memory Scheduling Unit (MSU) attempts to issue as
many accesses as possible to the current DRAM pages, and thus most of our access-
ordering heuristics tend to fill the currently selected FIFO(s) completely before moving on
to service others. At the beginning of a computatios stneams, the processor will stall
waiting for the first element of th& stream while the MSU fills the FIFOs for the first
s—1 streams. By the time the MSU has provided all the operands for the first loop
iteration, it will also have prefetched enough data for many future iterations, and the

computation can proceed without stalling the processor again soon.

Deeper FIFOs cause the processor to wait longer at startup, but if the vectors in the
computation are sfi€iently long, these delays are amortized over enough fast accesses to
make them insignificant. Unfortunately, short vectofsrdffewer accesses over which to
amortize startup costs; initial delays can represent a significant portion of the computation

time.
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To illustrate the problem, consider an SMC with FIFOs of dégdftwe disregard
DRAM page misses, the total time for a computation is the time to fetch the first itaration’
operands plus the time to finish processing all data. For a computation involving two read
streams of lengtm = f, the processor must wditycles (while the first FIFO is being
filled) between reading the first operand of the first stream and the first operand of the
second stream. According to our model (in which arithmetic and control are assumed to be
infinitely fast), the actual processing of the data requifesycles, one to read each
element in each vectoFor this particular system and computation, this time is at least
f+2f = 3f cycles. This is only 66% of the optimal performance26fcycles (the
minimum time to process all the stream elements). Fig@@resents a time line of this
example: the processor and memory both require the same number of cycles to do their

work, but the extent to which their activities overlap determines the time to completion.

-
¢ delay 3 I processor busy—>=

94— memory busy — |

I |

L 2 2 2 >

I I I I

0 f 2f 3f
time in cycles

Figure 3.3 Startup Delay for 2 Read-Streams of Length

In our analysis, a vector that is only read (or only written) consists of a single
stream, whereas a vector that is read, modified, and rewritten constitutes two streams: a
read-stream and a write-stream. ksetands,, represent the number of read-streams and
write-streams, respectivelyand lets = s +s,, be the total number of streams in a

computation. The bandwidth limits caused by startup delays can then be described by:

ns

0 i —_—
% peak bandwidth= fs—1) +ns

x 1000 (3.1)

Figure3.4 illustrates these limits as a function of the log of the ratio of FIFO depth

to vector length for a uniprocessor SMC system reading two streams and writing one. When
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vector length equals the FIFO deptlog (f/n) = 0), this particular computation can
exploit at most 75% of the system bandwidth. In contrast, when the vector length is at least
16 times the FIFO depthlog (f/n) = —4), startup delays become insignificant, and

attainable bandwidth reaches at least 98% of peak.
100 —
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max % peak bandwidth
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9876-5-432-1012 3

log(fifo depth/vector length)
Figure 3.4 Performance Limits Due to Startup Delays

3.2.3 Asymptotic Models

If a computatiors vectors are long enough to make startup costs negligible, the limiting
factor becomes the number of fast accesses the SMC can make. The following models

calculate the minimum number of DRAM page misses that a computation must incur.

The termsstreamandFIFO will be used interchangeably since each stream is assigned to
one FIFO. For simplicity of presentation we refer to read FIFOs unless otherwise stated;
the analysis for write FIFOs is analogou fivst present a model of small-stride, multiple-

vector computations; we then extend this for single-vector or large-stride computations.

3.2.3.1 Multiple-Vector Computations

Let b be the number of interleaved memory banks, antl bt the depth of the FIFOs.
Every time the MSU switches FIFOs, it incurs a page miss in each memory bank: the
percentage of accesses that cause DRAM page misses is &éi/leést a stream whose
stride is relatively prime to the number of banks. Strides not relatively prime to the number

of banks prevent us from exploiting the full system bandwidth, since they hibrmill
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banks. In calculating performance for vectors with these strides, we must adjust our
formulas to reflect the percentage of banks actually usedcalé¢ulate this as the total
number of banks in the system divided by the greatest common denominator of that total

and the vector stridda/gcd(b, o) . The fraction of accesses that miss the page is at least
b/gcd(b, o)
—

Let v be the number of distinct vectors in the computation, arslbdetthe number
of streams ¢ will be greater tharv if some vectors are both read and written). If the
processor accesses the FIFOs (in round robin order) at the same rate as the memory system,
then while the MSU is filling a FIFO of depththe processor will consunfiés more data
elements from that stream, freeing space in the FIFO. While the MSU suipjdiesore
elements, the processor can rembie? , and so on. Thus the equation for calculating the

miss rate for each vector is:

b/gcd(b, 0) 3.2)
f%1+l Dl[? D1E¥3+ E
D_D “C

In the limit, the series in the denominator cogesrtos/ (s—1) , and the formula reduces
b(s—1)

0 5cd(b, 0) xfs"

The number of page misses for each vector is the same, but a read-modify-write
vector is accessed twice as many times as a read-vector and requires two FIFOs, one for the
read-stream and one for the write-stream. For such vectopgntentagef accesses that
cause page misseshalf that of a read-vector. To calculate the average DRAM page-miss
rate for the entire computation, we amortize theveetor miss rate over all streams. If we
assume that none of the banks is on the correct page when the MSU changes FIFOs, then

b(s—1) %

this average is 3cd(b. o) xfsxé . But if:

1) the MSU takes turns servicing each FIFO, providing as much service as possible

before moving on to service another FIFO;
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2) the MSU has filled all the FIFOs and must wait for the processor to drain them

before issuing more accesses; and

3) the MSU begins servicing the same FIFO it had been working on last,

then the MSU need not pay the DRAM page-miss overhead again at the beginning of the
next turn. The MSU may avoid paying the-{pank page-miss overhead for one vector at
each turn. When we exploit this phenomenon, our average page-missfoatthe whole
computation becomes:

p = b(s=1)  (v=1) _b(s=1 (v-1)
gcd(b, o) xfs S gcd(b, o) x f<2

(3.3)

Let tyy be the cost of servicing an access that hits the current DRAM page, and let
tom be the cost of servicing an access that misses the peger étrides that are not
relatively prime to the number of banks do not hit all banks, and the maximum achievable
bandwidth for a computation is limited by the percentage of banks ugsetuétf scale our
bandwidth formula accordingldividing by the greatest common denominator of the total
number of banks and the vector stride. The asymptotic bound on percentage of peak

bandwidth for the computation is thus:

t
0 e oh 100.0
Yo peak bandwidth (Txt * (=N *) X gcd(b, o)

(3.4)

3.2.3.2 Single-Vector and Large-Stride Computations

For a computation involving a single vegtonly the first access to each bank generates a
page miss. If we maintain our assumption that pages are infinitgly, lall remaining
accesses will hit the current page. In this case, the model produces a page-miss rate of 0,
and the predicted percentage of peak bandwidth is 180caf more accurately bound
performance by considering the actual number of data elements in a page and calculating

the precise number of page-misses that the computation will incur.
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Likewise, for computations involving vectors withdarstrides, the predominant
factor afecting performance is no longer FIFO depth, but how many vector elements reside
in a page. The number of elements is the page size divided by the stride of the vector data
within the memory bank, and the distance between elements in a given bank is the vector
stride divided by the number of banks the vector hits.réfer to the latter value as the

effective intrabank stride For example, on a system with two interleaved

S
gcd(b,0)
banks, elements of a stride-2 vector have dectfe intrabank stride of 1, and are

contiguous within a single bank of memory.

Decreasing DRAM page size and increasing vector strfdete8MC performance
in similar ways. Letz, be the size of a DRAM page in vector elements. Then for
computations involving either a single vector or multiple vectors witipelafective

intrabank strides, the average page-miss rate per FIFO is:

r= ol
gcd(b, o) Xz,

(3.5)

For single-vector computations or computations in wiiiehnumber of elements
in a pageis less than the FIFO depth, we must use Equation 3.5 to compue
percentage of peak bandwidth is then calculated from Equation 3.4, as before. Neither
FIFO depth nor the proces&®laccess patternfa€ts performance limits for Ige-stride

computations.

3.3 Simulation Models

In order to validate the SMC concept, we have simulated a wide range of SMC
configurations and benchmarks, varying dynamic order/issue policy; number of memory
banks; DRAM speed and page size; benchmark kernel; FIFO depth; and vector length,
stride, and alignment with respect to memory banks. The cross product of these parameters

spans a large design space:
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32 x 4 X 6 x 7 x 3 x 2 = 32,000
ordering memory benchmark FIFO vector _data data
policies configurations kernels depths lengths alignments points

The sheer magnitude of this quantity of data and the overwhelming similarity of the
performance curves for most ordering policieguaragainst including all the results here.
Instead, we present highlights, focusing on general performance trends. Detailed

uniprocessor results can be found in our technical reports [McK93a,McK93c].

3.3.1 Simulation Environment

As mentioned above, we model the processor as a generator of non-cached loads and stores
of vector elements in order to put as much stress as possible on the memory system.
Instruction and scalar data references are assumed to hit in cache, and all stream references
use non-caching loads and stores. All memories modeled here consist of interleaved banks
of page-mode DRAMs, where each page is 4K bytes, and unless otherwise noted, the

DRAM page-miss cycle time is four times that of a page-hit.

The vectors we consider are 10, 100, and 10,000 doublewords in length, and are
aligned to share no DRAM pages. Unless otherwise noted, all vectors begin in the same
bank. W& have chosen 10,000 elements as our “long” vectors, although much longer
vectors (on the order of millions of elements) certainly exist in practice. These vectors are
long enough that SMC startup transients become insignificant; performance for million-
element vectors is not materially féifent. This length is also short enough to represent an

amount of work that can reasonably be accomplished between context switches.

All results are given as a percentage of the systpegk bandwidth, the bandwidth
necessary to allow the processor to perform a memory operation each cycle. When
correlating the performance bounds of our analytic model with our functional simulation

results, we present only the maximum percentage of peak bandwidth attained by any order/
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issue policy simulated for a given memory system and benchmark. FiG¢
initialization requires two writes to memory-mapped registers for each stream; since this

small overhead does not significantly affect our results, it is not included in these results.

3.3.1.1 Benchmark Suite

The benchmark kernels used are listed in FiguseDaxpy, copyscale andswapare from

the BLAS (Basic Linear Algebra Subroutines) [Law79,Don79]. These vector computations
occur frequently in practice, and thus have been collected into libraries of highly optimized
routines for various host architecturelydro andtridiag are the first and fifth Livermore
Loops [McM86], a set of kernels culled from important scientific computations. The former
is a fragment of a hydrodynamics computation, and the latter performs tridiagonal gaussian
elimination. Since these two benchmarks share the same access pattern, their simulation
results are identical, and will be presented togetti@xpy denotes a “vector axpy”
operation: avectora times a vectox plus a vector. This computation occurs in matrix-
vector multiplication by diagonals, which is useful for the diagonally sparse matrices that
arise frequently when solving parabolic or elliptic partiafedd@ntial equations by finite

element or finite difference methods [Gol93].

These benchmarks were selected because they are representative of the access
patterns found in real codes, including the inner loops of blocked algofitNorsetheless,
our results indicate that variations in the procéss@ference sequence have littiteef

on the SMC'’s ability to improve bandwidth.

1. For a discussion of blocking, see Chapter 2, Section 2.3.1.2.
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copy: i Y < X;

daxpy: Ui Y, « axty,

hydro: i Xi — QY% (FXzX, 0+ tX2X, 1)
scale: Ui X « ax

swap: i tmp « y Y, < X X, « tmp
tridiag: i Xi « % (Y, =X _,)

vaxpy: Ui Y, < ax +y,

Figure 3.5 Benchmark Algorithms

3.3.1.2 Ordering Policies

The results presented in this chapter focus on two ordering schemes, one Bank-Centric and
one FIFO-Centric. At each available bus cycle, the BC policy considers the next memory
bank,bank. The Memory Scheduling Unit (MSU) tries to issue an access that hits the
current DRAM page, but if no such access exists, it issues an access for the FIFO requiring
the most service frorhank. If bank is busy or there are no ready accesses to it, then no

access is initiated during that bus cycle.

In the FC scheme, the MSU services each FIFO in turn, initiating accesses for the
current FIFO until no ready accesses remain. The MSU then advances to the next FIFO and
proceeds to initiate accesses for it. While servicing a particular FIFO, if the next ready

access is to a busy bank, the MSU simply waits until the bank is idle.

3.3.2 Comparative Results

3.3.2.1 Analysis versus Simulation

Figure3.6 depicts bandwidth as a function of FIFO depth for four of our multiple-vector
benchmarks using 100-element vectors on twieriht SMC systems. The graphs in the
left column illustrate medium-vector performance on a system with a single bank of

memory; those on the right show performance for a system with eight banks. Figure
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presents the corresponding data for computations on 10,000-element vectors, and

Figure3.8 illustrates performance fecale our single-vector kernel, on the same systems.

For multiple-vector computations on short vectors, the startup-delay bound is the
limiting performance factoas evidenced by the curves in Fig8ré. Short vectors prevent
the SMC from dectively amortizing both the startup costs and DRAM page-miss
overheads. Since the computation only uses a portion of each FIFO equal to the vector
length, performance is constant for FIFO depths greater than the vector length. For longer
vectors, as in Figurd.7, startup-delays cease to impose significant limits to achievable

bandwidth, and simulation performance approaches the asymptotic bound.

SMC performance on thecalebenchmark, depicted in Figu8eB, is consistently
high. With only one vector in the computation, the only page-misses occur at startup and
page boundaries. The longer vectors of Figud¢c) and (d) let the SMC amortize costs
over more accesses. Accordingherformance for these is up to 20% of peak greater than

for the vectors of Figurg.8(a) and (b). In both cases, the theoretical limits are nearly 100%.



59

Chapter 3: Uniprocessor SMC Performance

8 Banks

1 Bank

| — 21§
“ - 95z
| \_ - 82T
__,\\ L v9
\., - ze
\ - o1
1 -
I I B 8
o o o o o o
o e} o < N
—
yipmpueq xesd %,
ke)
c
32
85
> 8
[
oL c
T o0
oo’
2 E3S
S E
n © 0
;o
. I — 21§
“ ! - 95z
. \_ 82T
' \ - 9
S - e
.\ o1
K
=TT T7138
o o o o o o
o 5] o < N
—
yipimpued xead 9%
Adxep

fifo depth

(b)

fifo depth

(@)

— ¢1S
= 9G¢
— 8¢t

80 —

yipimpureq xead 94

— ¢1S
= 9G¢
I~ 8¢T
— ¥9
= c€

-9t

I I I
o o o
®© © <

upimpueq xead %

Beipuy/olpAy

I
o o
Y

8

fifo depth

(d)

fifo depth

(c)

— ¢1S
= 9G¢
— 8¢t
— V9
- c€

— 91

80 —
0
0
0

yipimpueq xead 94

— ¢1S
= 9G¢
I~ 8¢T
— ¥9
= c€

9t

I I I
o o o
©®© © <

upimpueq xead %

dems

I
o o
Y

8

fifo depth

(f)

fifo depth

(e)

— ¢1S
= 9G¢
— 8¢t
— V9
- c€

— 91

100 —
80 —
0
0
0

yipimpueq xead 94

— ¢1S
= 9G¢
I~ 8¢T
— ¥9
= c€

9t

I I I
o o o
©®© © <

upimpueq xead %

Adxen

I
o o
Y

8

fifo depth

(h)

fifo depth

(9)

Figure 3.6 Medium-Vector Performance for Multi-Vector Kernels
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Figure 3.7 Long-Vector Performance for Multi-Vector Kernels
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Figure 3.8 Long- and Medium-Vector Performance forscale

If we increase the number of memory banks, we decrease the number of vector
elements in each bank, which limits the SKI@bility to amortize page-miss and startup
costs. Performance for systems with fewer banks is thus closer to the asymptotic limits than
for a system with many banks. If we assume that total system bandwidth scales with
interleaving, the latter systems deliver a smaller percentage of alangehbandwidth.

To illustrate this, Figur8.9(a) and Figure 3.9(b) shavepyperformance for long vectors
relative to the peak bandwidth of a 1-bank and an 8-bank system, and F8faje

illustrates how these absolute bandwidths relate to each other.
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Figure 3.9 copyPerformance When Bandwidth Scales with Interleaving

All examples so far have used unit-stride vectors, but the same performance limits
apply for vectors of any small stride. FigudO0 illustratesraxpysimulation results and
performance limits for increasing strides on a uniprocessor SMC system with one bank, a
FIFO depth of 256, and DRAM pages of 4K byte® Uge the Ige-stride model from
Section 3.2.3 to compute the asymptotic limits, since for these system parameters and
strides, the number of elements in a page is negerlignan the FIFO depth. Performance

is constant for strides greater than 128, since beyond this point only one element resides in

any page.
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Figure 3.10 Asymptotic Limits for Increasing Strides
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3.3.2.2 Bank-Centric versus FIFO-Centric Ordering

Figure 3.1 through Figur&.16 demonstrate how our two representative ordering
strategies compare for stride-1 vectors on SMC systems with one, twoafoueight

banks of memoryThe similarity in the shapes of the performance curves for tfezatit
benchmarks illustrates the SMQ’elative insensitivity to access patterns in its ability to
improve bandwidth. In all cases, asymptotic behavior for long vectors approaches 100% of
the peak bandwidth that the memory system can deliver. For these vectors, the BC and FC
ordering schemes perform almost identicatye only significant diérences occurring for

extremely shallow FIFOs.
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Figure 3.16 Simulation Performance forvaxpy

The simpler FC ordering policy performs competitively with the BC policy for unit-
stride vector computations, but for strides that are not relatively prime to the number of

banks, FC only uses a subset of the banks at a time. Since BC can arranderéont dif
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subsets of banks to be servicingfeliént FIFOs simultaneouslyt can exploit the
concurrency of the memory system under a greater variety of circumstances. Even the most
sophisticated ordering cannot compensate for an unfortunate data placement, though — for
instance, if all operands were to reside in a single bank of an interleaved system. T
illustrate the diferences between the BC and FC ordering policies, Fiyaiedepicts a
snapshot of SMC activity for each scheme on a computation involving two stride-2 vectors
that reside in dferent banks. Here we show what happens when the base address of vector
X hitsbanky and the base address of veatdnits bank. The BC scheme of Figure 3.17(a)
keeps all banks buslgut because the FC scheme of Fidide’ (b) only fills one FIFO at a

time, it can only use half the banks.

SBU Banks SBU Banks
x[0] X[0]
FIFO 0 FIFO O
p== s e
FIFO 1 x[1] FIFO 1 x[1]
. idle

(a) Bank-Centric Ordering (b) FIFO-Centric Ordering

Figure 3.17 Bank Concurrency for Stride-2 Vectors with Staggered Alignment

Figure3.18 demonstrates the féifences in performance between BC and FC
ordering for non-unit stride, long-vector computations on a system with eight banks. As in
our previous examples, the vectors in Figduk8(a) and (b) are aligned such that ithe
elements of all vectors reside in the same bank. For Fjl&éc) and (d), we staggered

the vectors so that thi# vector of each kernel beginsbank.
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Figure 3.18 BC versus FC for Non-Unit Stridevaxpy

For non-unit stride vectors, the first alignment causes the computation to use only a
subset of the banks, restricting achievable bandwidth on the 8-bank system to 50%, 25%,
and 12.5% of peak for strides of 2, 4, and 8, respectiVlly computations represented in
Figure3.18(d) are subject to the same limits: since the FC scheme only services one stream
at a time, relative alignment of the vectors has fecebn performance. In contrast, the
BC scheme is able to overlap accesses ferdiiit banks, exploiting more of the memory
systems concurrencyBandwidth for vectors of stride 2, 4, and 8 reach 66%, 50%, and 25%
of peak, respectivelyas illustrated in Figurg.18(c). This represents a performance

improvement of 32% for stride-2 vectors, and 100% for larger strides.
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3.3.2.3 Reordered versus Natural-Order Accesses

Graphs (e) and (f) in Figure 3.11 through Figure 3.16 illustrate SMC performance on very
short vectors, only 10 elements in length. For these computations, bandwidth is entirely
dominated by the startup-delay bound. Although performance is not as dramatic as for very
long vectors, the SMC is still able to deliver between 55% and 75% of peak bandwidth for
all benchmarks on a single-bank system. This represents a significant performance
improvement over using non-caching loads and stores in the natural order for these
computations. Figurd.19 depicts the relationships between non-SMC and SMC
performance for all benchmarks and vector lengths on systems with one and eight memory
banks! Because the accesses take the same amount of time for each iteration, the
percentage of bandwidth exploited in the natural-order computations is independent of

vector length.

Figure3.19(a) and (b) represent performance when all vectors begin in the same
bank. Figure3.19(c) uses the staggered alignment, as per FaylLé¢c). Staggering the
vectors tends to reduce the number of bank conflicts for the natural-order computations,
and so the percentages of peak bandwidth for the non-SMC case tend to be slightly higher
in Figure3.18(c) than in Figur8.18(b). Because the SMC reorders accessderatites
in operand alignment have littlefect on its ability to maximize bandwidth: the SMC

performances in Figure 3.19(b) and (c) are almost identical.

1. The non-SMC data was generated with Moyer’s static access ordering software [Moy93].
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3.4 Summary

In Chapte2 we saw that reordering can optimize stream accesses to exploit the underlying

memory architecture. In this chaptese investigated combining compile-time detection of

streams with execution-time selection of the access order and issdes@ibed the basic
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design of a uniprocessor Stream Memory Controller (SMC), developed analytic models to
bound its performance, and analyzed its simulation performance for a wide variety of
design parameter valueswd different limits govern the percentage of peak bandwidth

delivered:

- startup-delay bounds, or the amount of time a processor must wait to receive data

for the first iteration of an inner loop; and

- asymptotic bounds, or the number of fast accesses over which the SMC can

amortize DRAM page-miss costs.

Our analysis and simulation indicate that, using current memory parts and only a few
hundred words of buffer storage, an SMC system can consistently achieve nearly the peak
bandwidth that the memory system can deliMareover it does so with naive code, and

performance is independent of operand alignment.

In addition, our results emphasize an important consideration in the design of an
efficient SMC system that was initially a surprise to us — FIFO depth must be selectable
at run-time so that the amount of streamfdru$pace to use can be adapted to individual
computations. Using the equations presented here, compilers can either compute optimal
FIFO depth (if the vector lengths are known), or they can generate code to perform the

calculation at run-time.
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Multiprocessor SMC Performance

The previous chapter demonstrated that dynamic access ordering can significantly improve
bandwidth for dense matrix computations on uniprocessor systems. This chapter explores
the usefulness of the technique for the same class of computations on modest-size

symmetric multiprocessor (SMP) systems.

Symmetric Multiprocessor SMC Performance

System Conclusions
Architecture
Task Analytic Simulation Related Work
Scheduling Bounds Models
Startup Delay Asymptotic Ordering Performance Results
Model Models Policies Factors

Figure 4.1 Chapter Structure
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4.1 System Architecture

When adapting the general SMC framework to an SMP system, a number of options
exist regarding component placement. The md&tieft oiganization is one in which the
entire SMC system and all processors reside on a single chip; this igdmézation we
consider here. Since we assume a modest number of processors, such an implementation
should soon be possible. If a single-chip implementation is not feasible, hpsexenal
options remain. Placing a full SMC system on each chip is likely to scale poorly and be
prohibitively expensive, since extensive iAEU communication would be needed to
coordinate accesses to the shared memory system. In contrast, a single, centralized,
external SMC should perform well for a moderate number of processors. A third, hybrid
approach places the SBUs on-chip while the centralized access-order/issue logic remains
external. The MSU would need to consider the costs of moving data on fatite of
processor/SBU chips, but amortizing such costs is precisely what the MSU does well; such
an oganization should therefore perform competitively with the single-chip version, but

verifying this assertion is beyond the scope of this dissertation.

CPU

SBU @
_[ CACHE| @

ooo
0oo
MSU

o
SBU s
CPU { L
CACHE @

Figure 4.2 Symmetric Multiprocessor SMC Organization

In the multiprocessor SMC system in Figdt&, all processors are interfaced to
memory through a centralized Memory Scheduling Unit. The architecture is similar to that

of the uniprocessor SMC, but here each CPU has its own Streder Buit. Note that
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since cache placement does ndéctfthe SMC, logically the system could consist of a
single cache for all CPUs or separate caches for each — the choice is an implementation
issue. Figurd.2 depicts separate caches to emphasize that the SBUs and cache reside at

the same logical level of the memory hierarchy.

Due to both the high communication requirements for a fully distributed approach
and the limitations on the number of processors that may share a centralized resource, we
do not expect SMP SMC systems to scale tgpelanumbers of processors. Here we focus
on the performance of SMP systems with two to eight processors. Analysis of SMC

systems that scale to larger numbers of CPUs an interesting issue for further research.

4.2 Task Partitioning

The way in which a computation is partitioned for a multiprocessor can have a marked
effect on bandwidth. In particula8MC performance is influenced by whether the working

sets of DRAM pages needed byfeient processors overlap during the course of the
computation. If they overlap, the set of FIFOs using data from a page willgee. Mfith

more bufer space devoted to operands from that page, more accesses can be issued to it in
succession, resulting in greater bandwidth. Three general scheduling techniques are
commonly used to parallelize workloads: prescheduling, static scheduling, and dynamic

scheduling [Ost89}.

Preschedulingrequires that the programmer divide the workload among the
processors before compiling the program. There is no notion of dynamic load balancing
with respect to data size or number of processors. This type of scheduling is particularly
appropriate for applications exhibiting functional parallelism, where each CPU performs a
different task. Since performance on a single CPU is relatively independent of access

pattern [McK93a], we model prescheduled computations by running the same benchmark

1. As in Osterhaug [Ost89], we usehedulingto refer to when and how a computation is divided
into tasks. For the purposes of this discussohedulings synonymous witlpartitioning.
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on all processors. The vector is split into approximately equal-size pieces, and each
processor performs the computation on a single piece. Hd@irdepicts this data

distribution for a stride-1 vectoand the corresponding inner loops for a two-CPU system.

addresst  addressd + nx 8 bytes) CPUy's code: for (i=0;i<n/2;i++) {
[* operations on Xx][i]*/
vector X | | | )

1 CPU]_’S code: for (l = n/2, i< n; i++) {
CPY, [* operations on Xx][i]*/
}

Figure 4.3 Prescheduling: Data Distribution for 2-CPU System

CPW,

In static schedulingtasks are divided among the processors at runtime, but the
partitioning is performed in some predetermined .wWHyus a process must determine
which tasks it must do, perform that work, then wait for other processes to finish their tasks.
We model static scheduling by distributing loop iterations among the processors, as in a
Fortran DOALL loop. This parallelization scheme, also knoweyac schedulingmakes
the effective strideat each of thevl participating CPUsM x o, whereo represents the
natural stride of the computation. Depending on the number of memory banks relative to
the number of processors and the strides and alignment of the vectdies,emtdgubset of
banks may provide all data for each processyure4.4 illustrates the data distribution
and code for this scheme. Since each ofNh&€PUs performs everi 1 iteration, all
processors use the same set of DRAM pages throughout most of the computation. If the
CPUs proceed at didrent rates, some may cross page boundaries slightly sooner than
others, but recent empirical studies suggest that the slowest processor is normally not more

than the mean execution time of one loop iteration behind the average processor [LiN94].

Alternatively a static scheduling scheme could partition the data as we have done
for prescheduling. SMC results for this kindobdck schedulingvould be identical to those
for our model of prescheduling.@Will use the term “block scheduling” when referring to

the performance of both prescheduling and static block scheduling.
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addresst  addressd + nx 8 bytes) CPWs code: for (i=0;i<n;i+=2){
[* operations on Xx][i]*/

}

vector x| | |

TCQL&TCQL&TCQL& CPU'scode: for(i=1;i<n;i+=2){
CPU,CPUYy CPUy I* operations on X[i]*/

}
Figure 4.4 Cyclic Static Scheduling: Data Distribution for a 2-CPU System

In dynamic schedulinga pool of tasks is maintained. Each processor schedules its
own tasks by repeatedly removing a task from the pool and performing it; if the pool is
empty the CPUs wait for tasks to appe&or a computatios’ inner loops, SMC
performance for dynamic scheduling is similar to either block scheduling or cyclic
scheduling, depending on how the work is apportioned into tas&sth@/efore omit

separate results for this scheduling technique.

4.3 Analytic Bounds

As in the uniprocessor models of Cha@eme derive bounds on both the maximum
possible bandwidth (via calculating the minimum number of page-misses) and the
minimum execution time for a computation on a given multiprocessor SMC sysiem. W
then use these bounds to evaluate the performance of our ordering heuristics. Our

assumptions are those of Section 3.2.1:

the system is matched so that bandwith between the processor and SMC equals

the bandwidth between the SMC and memory;
- the processor generates only non-cached loads and stores of vector elements;

- vectors are of equal length and stride, share no DRAM pages in common, and are

aligned to begin in the same bank;

- each processor accesses its FIFOs in round-robin, aafesuming one data item

from each FIFO during each loop iteration;
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- bus turnaround delays are ignored;

- DRAM pages are infinitely lge (that is, page misses from crossing DRAM page

boundaries are ignored); and

- read FIFOs are completely empty and write FIFOs completely full whenever the

SMC begins servicing them.

In addition, we assume that each vector is divided into equal-size blocks, with each

CPU responsible for processing one block.

4.3.1 Startup-Delay Model

In a multiprocessor environment, we can bound the performance of the entire parallel
computation by first calculating the minimum delay for the last CPU to begin its share of
the processing, and then adding the minimum time for that CPU to execute its remaining
iterations. In developing these formulas, we assume that all CPUs are performing the same

operation, but are acting on different data.

Here, as beford, is the depth of the FIFOSs, is the vector length, ansl ands,
represent the total number of streams and the number of read-streams in a computation,
respectivelyN is the number of processors in the systemMuglthe number of those that
participate in the computation. Note that in our multiprocessor formnlasflects the
length of the entire vector being processed in parallel, thus wa/ldeto indicate the
amount of data being processed by a single CPU. The startup-delay formula for

uniprocessor SMC systems, developed in Section 3.2.2, is:

100ns

0 :
Yo peak bandwidth= f————_(sr —1) s

(4.1)

We will derive two models, each tailored to a particular SMC implementation. The
way in which the MSU fills the FIFOs affects how long the CPUs must wait to receive the

operands for their first iteration. If the M3Wrdering heuristic only services one FIFO at
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a time, then the last CPU must wait while the MSU fetches the read-streams for all other
processors plus all but one of its own read-streams. On the other hand, if the MSU can

service more than one FIFO at a time, all CPUs can start computing sooner.

In the former case, when the MSU only services one FIFO at a time, the minimum
number of cycles required to fill that FIFOlgN times the minimum for a uniprocessor
system (because the bandwidth of the system is balanced, and there &reORivs that
can each execute a memory reference per cycleMblepresent the number of processors
participating in the computation. Then the CPUs are udidN times the potential
bandwidth, and the number of streams that must be fetched before the last CPU can start is
(Mxs) —1. Each of these streams is of lengthM. The startup-delay formula under

these circumstances is:

%peak bandwidth= S x M 100
0o f 0O Ms, —1) + N
N/ woMs —1) +s
100Mns (4.2)

~ Mf(Ms,—1) + Nns

For the latter case, let us assume that the MSU can perform acceSs&3RQs
at a time (one FIFO for each participating CPU). Each processor need only wait for all but
one of its own read-streams to be fetched, and the average rate at which those FIFOs are
filled will be one element per processor cycle. Whdn=N , the formula for startup
delays is the same as for the uniprocessor SMC system (Equation 4.1) for vectors of length
n/M. When M<N, the average time to fill a FIFO will bEl/N times that for a

uniprocessor, and the general formula becomes:

0 th = S M
Y% peak bandwidth MO F O . ><le00
Ny mo(S—1 +s
100Mns (4.3)

- Mf(Ms —M) +Nns
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The startup delays for the two cases$adionly by a factor oM — 1 in the first term
of the sum in the denominatoEquation 4.2 bounds bandwidth for block-scheduled
workloads (where diérent CPUs share no DRAM pages) and for MSUs that use FIFO-
Centric ordering (described in Section 3.1). Equation 4.3 bounds bandwidth for cyclically
scheduled workloads and MSUs that use Bank-Centric ordering. Of course, Equation 4.3

can be used for the same situations as Equation 4.2, but it computes a looser bound.

4.3.2 Asymptotic Models

In Section 3.2.3 we developed models to calculate the minimum number of DRAM page
misses that a computation must incur on a uniprocessor SMC system. This lets us derive
the theoretical maximum bandwidth for a particular computation and system. Here we

extend those models to bound SMC performance on symmetric multiprocessor systems.

Given the similarity of the memory subsystems for the SM@amzations
described in Figur8.2 and Figurd.2, we might expect an SMP SMC system to behave
much like a uniprocessor SMC with agarnumber of FIFOs. For SMP systems, though,
some of the assumptions made in the uniprocessor performance models no longer hold. For
instance, we can no longer assume that each stream occupies only one FIFO. As we saw in
Section 4.2, the distribution of vectors among the FIFOs depends upon how the workload
is parallelized. The parallelization schemfeetls the processors’ pattern of DRAM page-

sharing, which in turn affects performance.

In the following,t,, andt,, represent the cost of servicing DRAM page-hits and
page-misses, respectively, and v are the number of streams and vectors in the
computation, and indicates the stride, or distance between their consecutive eleitments;
denotes the number of interleaved memory bankspagdd(b, o) indicates how many
of those are hit by the vector stridedenotes the FIFO depth; and finallydenotes the

page-miss rate for the computation.
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In Chapter3, we developed bandwidth limits for uniprocessor SMC computations:

Lon . 100.0
(r tim) +((1-r1) tih) gcd(b, o)

100t
= P (4.4)
(rx (tpm—tph))gcd(b, o) +tphgcd(b, 0)

% peak bandwidth=

The global page-miss rate, , for multiple-vector, small stride computations is:

_ b(s=1) (v—1) (4.5)

r 2
gcd(b, o) xfs

For single-vector or large-stride computations and DRAM paggseséments:

r= ol
gcd(b, o) Xz,

(4.6)

In extending these models to multiprocessor systems, we can bound SMC
performance for both block-scheduled and cyclically scheduled workloads by calculating
the minimum number of page misses for the extreme case when all CPUs share the same
DRAM pages. W could also compute a very conservative estimate of performance by
calculating the maximum percentage of peak bandwidth that is achievable when no CPUs

share DRAM pages at any point in the computation.

The system is balanced so that if eaclNOCPUs can consume a data item each
cycle, the memory system provides enough bandwidth to pefbrfiast accesses (page
hits) in each processor cycle. Each processor can only consume data from its set of FIFOs,
while the MSU may arrange for all accesses to be for a single FIFO at a time: this means
that the memory system can now fill a FINQiimes fasterLetM be the number of CPUs
participating in the computation. When all processors use the same DRAM pages, we have
distributed each of os streams owrFIFOs (each stream is assigned to a single FIFO
per CPU). This situation is analogous to using a single FIFO of #epthM x f for each

stream.
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Since we assume a model of computation in which each processor accesses its
FIFOs in round-robin order, consuming one data item from a FIFO at each access, it takes
the MSUF/N cycles to supplyF items for a stream. During this time, each CPU will
consume&S more data elements from this stream, for a tota}'\ill—gf freed FIFO positizons.
While the MSU is filling those FIFO positions (%IEES cycles), the CPU can remo%l/l«%f2

more, and so on. Thus our model for calculating the page-miss rate of each stream becomes:

b/gcd(b, 0) 4.7)
O 0

4 M, OMP OMB | T
FD1+NS+DNSD +DNSD +"'D

The series in the denominator corges to (FNs) / (Ns— M) , and our equation

for the average page-miss rate is now:

_ _b/ged(bo)  v-1_b(Ns—M (v-1) (4.8)
(FNS)/(Ns=M) s ged(b, 0) x FNS |

The percentage of peak bandwidth is computed as in Equation 4.4:

% peak bandwidth = o
6 peak bandwidt (r < (tym—t,y) gcd(b, o) +t  gcd(b, o)

4.4 Simulation Models

Having derived the analytic bounds on attainable bandwidth, we now compare them with
the simulation performance of the multiprocessor SMC systems we conSiaer
environment and benchmark suite for our SMP simulation models are the same as for a
uniprocessor SMC, and are described in Section 3.3.1. The vectors used here are 10,000
and 80,000 elements in length, and are aligned to share no DRAM pages in common.

Unless otherwise noted, all vectors begin in the same bank.

All results are given as a percentage of the systpeak bandwidth, the bandwidth
necessary to allow each CPU to perform a memory operation each processor cycle. As in

Chapter3, when correlating the performance bounds of our analytic model with our
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functional simulation results, we present only the maximum percentage of peak bandwidth

attained by any order/issue policy simulated for a given memory system and benchmark.

4.4.1 Ordering Policy

The overwhelming similarity of the performance curves presented in Cl3aptet our
uniprocessor SMC studies indicates that neither the ordering strategy nor the picessor
access pattern has adarefect on the MSWE ability to optimize bandwidth [McK93a,
McK93c]. For moderately long vectors whose stride is relatively prime to the number of

memory banks, the SMC consistently delivers nearlyuteystem bandwidth.

In symmetric multiprocessor SMC systems, howgtlere are more factors that
can potentially déct performance, thus ¢i#rent partitioning techniqgues and vector
alignments may benefit from @fent ordering algorithms. In particulathe task-

scheduling technique may:

- change the effective vector stride on any processor (as in cyclic scheduling), and

- affect the “working set” of DRAM pages that are needed during a portion of the
computation (with cyclic scheduling, all processors are likely to be using the same
set of DRAM pages, whereas with block schedulingfeéht processors are

likely to be working on different sets of pages).

By exploiting the underlying memory architecture, the SMC attempts to issue
accesses in an order that optimizes bandwidth. Section 3.1 describes the two subspaces of
the design space of access-order/issue algorithms: algorithms that first choose a bank

(Bank-Centricschemes), and algorithms that first choose a FFFEX-Centric schemes).

In order to select the “best” FIFO or bank to use next, an access ordering scheme
must either consider all possibilities in parallel, or it must impose some ordering on the

resources (FIFOs or banks) so that it can examine them sequeiatl\simulations
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assume that not all possibilities can be evaluated at onee.théftefore model
multiprocessor SMC systems using several resource-ordering variations in order to

determine their effects on performance.

For instance, the order in which the FIFOs are considered for servicefeein af
delivered bandwidth. Winvestigate two diérent ways in which the MSU selects the next
FIFO to service: by examining the FIFOS in sequential round-robin order by processor (all
of CPUy's FIFOs are considered before ang®U,’'s), and by examining the FIFOs in an
interleaved, round-robin order (in which the MSU first consitFO for CPU, then

FIFOg for CPUy, etc., before considerirfgFO, for CPU).

4.4.1.1 Bank-Centric Approach

In any Bank-Centric ordering policghe MSUS job can be broken into two subtasks:
selecting the banks to use next, and deciding which accesses from which FIFOs to issue to
those banks. ¥consider two strategies for making the bank selediighaustive Round-

Robin SelectioandToken Round-Robin Selectidn the Exhaustive Round-Robin (or just
Exhaustive selection scheme, the MSU considers each bank in turn until it has initiated as
many accesses as it can, or it has considered all banks. This strategy starts its search by

considering the bank after the last one to which the MSU initiated an access.

With Token Round-Robin selectid¢foker), the MSU only considers a subset of the
banks at each decision point, attempting to issue accesses to the idleeagamivie two
different ways of partitioning the banks into subsets. If the MSU can issudNupdcesses
at a time, the first algorithm considers the next séN difanks in sequence. Thus the first
set contains bankdénk, ..., bank.4}, the second containdfink, ..., banky.4}, and
so forth. V¢ refer to this ordering asequential bank setén the second variation, a set
contains all banks whose indices are congruent modulo the number of procdssuss: {

bank, bank,, ...}, etc. We refer to this amodular bank sets
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Once the MSU has selected a set of banks, it must then decide which accesses te issue. W
examine two related schemes for choosing the FIFO to service, both of which are described
in Chapter3. We refer to the first FIFO-selection policy as simply Benk-Centric
algorithm, oBC. For a selected memory batlank, the algorithm examines the FIFOs in

order beginning with the last FIFO for which an accedsaok was initiated. If the MSU

finds a ready access that tbenk’s current DRAM page, it issues that access. If no ready
accesses for the bank hit the current DRAM page, then an access is issued for the FIFO

requiring the most service frobank. (This is the BC ordering policy of Section 3.3.1.2.)

The second FIFO-selection algorithm is a more sophisticated variant of the first.
Consider the case where no ready accesses hit the current DRAM page. Instead of initiating
an access for the FIFO requiring the most service from the current bank, the MSU issues
an accesenly if a FIFO meets the following threshold-of-service criterion. The portion of
a read FIFO for which the current memory bank is responsible must be at least half empty
or the corresponding portion of a write FIFO must be at least half full. This ensures that
there will be several fast accesses over which to amortize the cost of switching the DRAM

page. We refer to this scheme asThesshold Bank-Centrialgorithm or TBC.

4.4.1.2 FIFO-Centric Approach

The second class of access-ordering schemes contains those that first choose a FIFO to
service, and then issue accesses from that FIFO to their corresponding banks as appropriate.
We investigate a very simpkFO-Centric orFC, algorithm: the SMC looks at each FIFO

in turn, issuing accesses for the same FIFO stream while:

1) not all elements of the stream have been accessed, and

2) there is room in the FIFO for another read operand, or another write operand is

present in the FIFO.
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If the current FIFO contains no ready accesses to an idle bank, no access is initiated. (This

is the FC ordering policy of Section 3.3.1.2.)

4.4.1.3 Algorithms Simulated

There are many possible means of choosing which banks to access, which FIFOs to service,
and in what order to consider each of these resources in making these decisions. These
elements can be combined in myriad ways. Here we focus on five strategies that generally
perform well and are representative examples from the design space of dynamic ordering

policies:

1) Exhaustive Round-Robin Bank-Centric selection with sequential bank sets,
2) Token Round-Robin Bank-Centric selection with sequential bank sets,
3) Token Round-Robin Bank-Centric selection with modular bank sets,

4) Token Round-Robin Threshold Bank-Centric selection with sequential bank sets,

and

5) FIFO-Centric Selection

We expect dken BC selection to perform about the same as Exhaustive BC
selection, but the former should be less expensive to implemenhwkstigate two types
of Token BC selection — one using sequential bank sets and one using modular bank sets
— in order to determine whatfetts the bank-ordering scheme has on performanee. W
also look at dken selection with a threshold-of-service requiremeokém TBC) to
determine whether implementing a threshold criterion improves performance, and if so, by
how much. Finallywe compare the performance of the Bank-Centric approaches to that of
our simple, FIFO-Centric (FC) policiC is the most economical policy to implement, but
we expect that it will not perform as well as the more sophisticated BC policies for all

system configurations and workloads.
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The relationships between the elements of these ordering strategies can be

represented as a tree in which the path to each leaf designates a particulaapaticy

Figure 4.5
Access-Ordering Policies
Bank-Centric FIFO-Centric
Exhaustive Token
Bank Selection Bank Selection
No No
Threshold-of-Service Threshold-of-Service Threshold-of-Service
Criterion Criterion Criterion
sequential sequential modular sequential
bank sets bank sets bank sets bank sets

Figure 4.5 Five Ordering Policies

4.4.2 Performance Factors

The percentage of peak bandwidth delivered is ultimately determined by thes lsliSility
to exploit both fast accesses (in the form of DRAM page hits) and the memory system’
concurrency. The MSU'’s effectiveness can be influenced by several factors, including:

- data distribution

- FIFO depth, and

- workload distribution.

These contribute in varying degrees to SMP SMC performance, thus we first take a

closer look at them in order to better interpret the results presented in Section 4.4.3.

1. In the uniprocessor SMC study, FC is calddToken BC is called1, Token TBC is called?2,
and Exhaustive BC is calld®il [McK93a].
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4.4.2.1 Data Layout

As noted in Section 4.2, SMC performance is dramaticdicted by whether the working

sets of DRAM pages needed byfeient processors overlap during the course of the
computation. If they do overlap, the set of FIFOs using data from a page wiljee\th

more bufer space devoted to operands from a page, more (fast) accesses can be issued to

it in succession.

For the experiments described here, we use a DRAM page size of 4K bytes (so each
page holds 512 eight-byte elements). On an eight-way interleaved memeoirycur an
initial page miss on each bank, but the computation does not cross page boundaries until
512x 8 = 4096 elements of a given vector have been accessed. On a 16-bank system, the
vectors cross DRAM page boundaries at element 8192; on a 32-bank system, at element
16,384; and so on. Figu#eb illustrates the layout of a vector with respect to DRAM pages
for block-scheduled workloads where the page size times the interleaving factor is slightly

less than the amount of data to be processed at edth of CPUs.

| | L
<_CP%4>’<7CPU14>‘

[ 1 DRAM page AL] DRAM page H_ | DRAM page C

Figure 4.6 Vector Layout in Memory

On a two-CPU system with eight banks, block scheduling divides a 10,000-element
vector so that each CPU processes approximately 5000 elements, thus the streams for the
two CPUs never share pages during the computation. The data layout for each bank is
pictured in Figuret.7(a). This figure presents much the same information as in Fdyre
except that the vector blocks for each processor have been arranged vertically to indicate

the portions of data that are being processed in parallel by the different CPUs.
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CPU, | | CPU, | |
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CPU; | [ |

(a) 2 CPUs (b) 4 CPUs

Figure 4.7 Distribution of 10,000-Element Vector for 8 Banks

Figure4.7(b) shows the distribution of the same 10,000-element vector on-a four
CPU system with eight banks; the pattern of DRAM page-sharing bet@@ep and
CPU, is essentially the same as for a two-CPU, 16-bank system (but in that case each CPU
would process twice as many elemen&jU, andCPU; share DRAM pages for almost
two-thirds of the computation, af@PU; andCPU, share for the initial one-third. At the

end,CPU, andCPU; will be on the same pages.

On a fourCPU system with 16 banks, all processors share the same pages for about
one-third of the computation, with three processors sharing throughout. On a 32-bank, four
CPU system the computation never crosses a page boumt&ahigh degree of page-

sharing among processors maximizes the MSU's ability to issue fast accesses.

When we use block scheduling to parallelize a computation on 80,000-element
vectors, no page-sharing among CPUs is possible for the modest-size SMP systems we
investigate here. For an eight-CPU system, the data is divided so that each CPU processes
10,000 elements. Thus each processor crosses at least two DRAM page boundaries during
its computation. This data layout, pictured in Figi& causes the MSU to switch DRAM

pages frequently, which decreases effective bandwidth.
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Figure 4.8 Blocked Distribution of 80,000 Elements for 8 Banks and 8 CPUs

The equations of Section 4.3.2 compute an upper bound on attainable bandwidth for

a computation, but we can compute a better performestoaatef we take into account

the diferent page-sharing patterns encountered during the course of the block-scheduled
computation, adjusting the number of vectors and streams accordingly. For instance, if we
draw a vertical line at each of the page boundaries in Fyid(b), we divide the
computation into three distinct phases, each havingexelit page-sharing pattern. If we

then assume that all processors proceed at approximately the same rate — that is, if we
assume that thepatial divisions of data correspondtemporalphases of the computation

— we can apply the asymptotic model to each phase, computing the overall percentage of

peak bandwidth as a weighted average of the maximum performances.

For cyclic task scheduling, eachMf CPUs performs every Miteration of the loop being
parallelized. Thus all processors access the same set of DRAM pages during any phase of

the computation, resulting in fewer page misses and higher bandwidth.

4.4.2.2 FIFO depth
The second factor f&fcting SMC performance is FIFO depth. Thieef of using deeper
FIFOs is similar to that for increasing DRAM page-sharing among the processors: deeper

FIFOs provide more btdr space devoted to operands from a given page, enabling the
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MSU to amortize DRAM page-miss overheads over a greater number of fast accesses.
Longer FIFOs result in a lger startup cost, though: if the vectors in the computation are
not suficiently long in relation to the FIFO depth, the startup costs will not be amortized

effectively, resulting in poorer overall performance.

4.4.2.3 Workload Distribution

Workload distribution is the third factor influencing SMC performance. Data layout and
FIFO depth can interact to create an uneven distribution of the workload over time:
depending on when a processor starts its computation and on the pattern of DRAM page-
sharing among the CPUs, some CPUs may finish before others. For instance, processors
sharing many DRAM pages are likely to finish earlier than others. This happens because
the MSU accesses the shared pages more frequattdsnpting to perform as many fast
accesses as it can before performing accesses that generate DRAM page-misses. When a
processor drops out of the computation, the MShbol of potential accesses shrinks.

While the last CPUs are finishing up at the end of the computation, the MSU may not be
able to keep the memory banks husy FIFO depth increases, the “faster” processors tend

to finish even earliethe ending phase becomes longed performance defs even more.

4.4.3 Results

As in ChapteB, all results are given aspercentage of peak bandwidtivhere peak
bandwidth represents the performance attainable if each processor could complete a
memory access every cycle. Performance is presented as a function of FIFO depth and
number of memory banks (available concurrency in the memory system). Unless otherwise
stated, all vectors are aligned to DRAM page boundaries, tasks are apportioned such that
all vectors (and each CP&Jvector blocks, for block-scheduled workloads) are aligned to
begin inbank),, and the MSU uses interleaved FIFO ordering. The multiprocessor SMC
technical report [McK94c] gives complete simulation results for all benchmarks on a wider

range of SMC configurations. We present only highlights of these results here.
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The number of banks is kept proportional to the number of processors, thus the
curves for an eight-CPU system represent performance on a system with four times the
number of banks as the corresponding curves for a two-CPU sysieikedfy the peak
memory system bandwidth and DRAM page-miss/page-hit cost ratio constant. This means
that for our experiments, an eight-bank system has four times the DRAM page-miss latency
as a two-bank system. Increasing the number of banks results in fewer total accesses to each
bank. Since page-miss costs are amortized over fewer fast accesses in a system with 16
banks than in a system with two banks, the performance curves for the 16-bank system

represent a smaller portion ofrauchlarger bandwidth.

Building an SMC system with a FIFO depth less than the number of memory banks
would prevent the MSU to exploit the full concurrency of the memory system in most
cases. Nonetheless, we include results for such systems for completeness, for purposes of

comparison, and to illustrate an interesting behavior.

4.4.3.1 Block Scheduling versus Cyclic Scheduling

Block scheduling breaks the vectors into chunks, assigning each chunk to a different CPU
to be processed. Given that théeefs of changes in relative vector alignment, vector
length, or the implementation of an ordering policy (e.geddht FIFO orderings) are

fairly independent of the proces&oraccess pattern, most of the graphs presented here
focus on a single benchmarklaxpy Like the uniprocessor SMC systems studied
[McK93a], multiprocessor SMC performance approaches (and often exceeds) 90% of the

peak system bandwidth for sufficiently long vectors and appropriately-sized FIFOs.

Figure4.9 through Figurd.11l present performance curves ttaxpyon 10,000-
element vectors and each of our five ordering schemes on SMP SMC systems with two,

four, and eight processors. Each graph includes the startup-delay performance bound, and
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the asymptotic bound for a system in which the number of banks equals the number of

processors. Asymptotic bounds for other systems are omitted for the sake of readability.

% peak bandwidth
% peak bandwidth
% peak bandwidth

256 —
512 -

I
o]
N
—

32
64 —

T 1 I
0 © o < © ©
— ™ © —

256 —
512 -

I
oe]
N
—

fifo depth fifo depth fifo depth

32
64 —

I
® ©
—

(a) Token BC (seq. sets) (b) Token BC (mod. sets) (c) Token TBC (seq. sets

100 —y

< 100 7 < ) ——— startup-delay bound
_'g 80 — 'g 80 | —— asymptotic bound
3 1 3 2 banks
S 60 g 60 —-—- 4 banks
< 40_-1,’1 < 40 — — — —  8banks
§ g § —————— 16 banks
o 20 - o 20—+
X 1 X
0 T T T T 1 0 T T T T 1
0 © NN < 0 © 0 © NN < 0 ©
Se e SRy Seedrg
fifo depth fifo depth
(d) Exhaustive BC (e) FC

Figure 4.9 BlockeddaxpyPerformance for 2 CPUs

The overwhelming similarity of the curves within each figure (underscored by the
fact that these results are representative of those for all benchmarks) leads us to conclude
that small variations in the dynamic access-ordering policy have littectebn
performance. For instance, in most casekeh Bank-Centric ordering (TBC), with its
threshold-of-service criterion, performs almost identically to simple Bank-Centric ordering
(BC). When their performances fdif, TBC's is slightly lower Exhaustive bank-selection
affords little advantage over either variation of the simpéen bank selection. Similarly
changing the ordering in which banks or FIFOs are considered generally results in

performance differences of less than 1% of peak [McK94c].
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Figure 4.10 BlockeddaxpyPerformance for 4 CPUs

FIFO-Centric ordering performs slightly worse than Bank-Centric ordering for

relatively shallow FIFO depths. Because the simpler FC scheme concentrates on servicing

a single FIFO for as long as possible, it cannot take full advantage of DRAM page-sharing

among diferent FIFOs. Nonetheless, for FIFOs of depth 256 or 512 p&formance is

competitive with BGS. Henceforth when we refer to BC access ordering, we shall mean

BC using the dken selection variation with sequential bank ordering, unless otherwise

stated. This particular scheme is representative of the family of general Bank-Centric

schemes: they all perform similarfection 4.6 discusses the tradeof implementing BC

over FC, or vice versa.
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Figure 4.11 BlockeddaxpyPerformance for 8 CPUs

For the simulations represented in Figdre through Figurd.11, all vector blocks
were aligned to begin imank). To evaluate the performance effects of operand alignment,
we simulated our benchmarks again, this time aligning the vector d&Rhto begin in
bank bank (b/N) ON @ system witlb banks and\N processors. Figu#12 illustrates
daxpyperformance for BC ordering with both operand alignments. Performance is similar
for both data layouts: the largest differences occur for the four-CPU system with 32 banks
and 8-deep or 32-deep FIFOs, and for the eight-CPU systems with 8N banks and eight-deep
or 16-deep FIFOs. Four four CPUs and FIFOs of depth 8 and 32, the SMC delivers 7.6%
of peak bandwidth less and 6.2% of peak bandwidth more, respectiely the operands
are aligned to a single bank. For eight CPUs, tiferéifices are as @ as 17% of peak.

These effects are due to bank concurrency, and are discussed in Section 4.4.3.2.
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Figure 4.12 BlockeddaxpyPerformance for 2 Data Alignments

The curves in Figurd.9 through Figurd.12 illustrate the relationship between

FIFO depth and vector length: as the number of processors grows and the amount of data

processed by each CPU decreases, performance becomes limited by the startup-delay

bound. For instance, this bound only begins to dominate performance at FIFO depths 64

and 128 for the two-bank, two-CPU systems in Figui2(a) and (d), but the crossover

point between the startup-delay and the asymptotic bounds is between 32 and 64 for the

eight-CPU systems in Figudel2(c) and (f). When an appropriate FIFO depth is used, the

systems with two, fourand eight CPUs and an equivalent number of memory banks all

deliver over 90% of peak bandwidth. Systems with more banks deliver at least 82% of

peak.
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Figure4.13 shows the performance of our eight-CPU systems on 80,000-element
vectors aligned to begin in the same bank. Now that each CPU hggraslaare of data
over which to amortize costs, the startup-delay bound ceases to be the limiting performance
factor The system with 64 banks and 16-deep FIFOs in Figyd&(d) constitutes the one
instance where the exhaustive strategy performs slightly better than the other Bank-Centric
schemes. This phenomenon is due more to serendipity than to an inherent superiority of the

ordering strategy. The causes behind it will be examined in Section 4.4.3.2.
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Figure 4.13 BlockeddaxpyPerformance for 8 CPUs and 80,000-Element Vector

These results emphasize the importance of adjusting the FIFO depth to the
computation. Deeper FIFOs do not always result in a higher percentage of peak bandwidth:
for good performance, FIFO depth must be adjustable at run-time. Compilers can use the

models presented in Section 4.3 to calculate the optimal depth.
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Whereas block scheduling parallelizes a task by breaking a vector into chunks and
distributing them among the processors, cyclic scheduling interleaves loop iterations across
the computational elements, thus each oMh€PUs participating in a computation would
be responsible for every th jteration. Figuret.14 through Figurd.17 illustrate
performance for SMP SMC systems using cyclic scheduling. These systems have two to
eight processors, and all CPUs are used in each computation. Since all processors use the
same DRAM pages throughout the computation, the performance delivered by SMP SMC
systems using this scheduling technique is almost identical to that for the analogous
uniprocessor SMC systems: for long vectors, deep FIFOs, and workloads that allow the
MSU to fully exploit bank concurrencthe SMC can consistently deliver almost the full

system bandwidth.
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Figure 4.14 CyclicdaxpyPerformance for 2 CPUs
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Figure4.14 illustrates the percentages of peak bandwidth attained for 10,000-

elementdaxpy on two-CPU systems under the five dynamic access-ordering policies.

Figure 4.15 and Figur4.16 depict analogous results for SMC systems with four and eight

processors, and Figudel? illustrates performance for eight CPUs and 80,000-element

vectors. Included in each graph are startup-delay bounds and asymptotic performance

bounds for systems in which the number of banks equals the number of processors.
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When cyclic scheduling is used, SMP SMC performance is insensitive to variations

in BC ordering, and is almost constant for a given ratio of CPUs to banks. For instance, the

bandwidth attained by the eight-CPU systems with FIFO depths up tof@&2 dibm that

delivered by the analogous two-CPU systems by less than 1% of peak bandwidth. At FIFO

depths of 256 and 512, thesdeliénces are less than 4.1% and 8.9% of peak, respectively
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Figure 4.16 CyclicdaxpyPerformance for 8 CPUs

In contrast, as the number of processors increases, attainable bandwidth for the
FIFO-Centric scheme is severely limited by lack of bank concurrénith cyclic
scheduling, the effective stride for each FIFO becomes the natural stride, , multiplied by
M, the number of participating CPUs, since each processor operates only om/lé’\‘/ery
vector element. The fefctive stride thus causes each FIFO to use driM of the banks
used by the natural stride. This means that wiesr N, an SMC system using FC
ordering will probablynot be able to exploit the full system bandwidth. When all vectors
are aligned to begin in the same bank, performance for a computation whose natural stride
is relatively prime to the number of banks is generally limited to 50% of peak bandwidth
for the two-CPU systems, 25% for the feiPU systems, and 12.5% for the eight-CPU

systems. Performance for other natural strides will be even lower.
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Figure 4.17 CyclicdaxpyPerformance for 8 CPUs and 80,000-Element Vectors

Cyclic scheduling may still be used profitably with FC ordering by using only a
subsetof the processors, the size of which must be chosen to be relatively prime to the
number of memory banks. This makes thteaive stride relatively prime, thereby
maximizing the MSWs ability to exploit memory system concurrendéynder these
circumstances, attainable bandwidth becomes limited by the percentage of CPUs used,
rather than by the percentage of memory banks useded this, consider the graphs in
Figure4.18. The graphs in the top row shdaxpyperformance for SMP SMC systems
with FC ordering when all CPUs are used. Those on the bottom indicate performance when
one fewer processors is used. Whether or not using fewer CPUs yields a net performance

gain depends on the total number of processors and the FIFO depth.
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For instance, in Figuré.18(a), performance is limited to 50% of peak because the
MSU uses only half the memory banks at a time. This happens because cyclic scheduling
makes the computatianéffective strideM times the natural stride; for this example, the
effective stride is 2, and the data for any given FIFO will only hit every other memory bank.
Performance is also limited to 50% of peak in Figude(d), but for a dierent reason:
here only one processor is being used. Even though the attainable performance for very
deep FIFOs is the same in both cases, performance for shallower FIFOs is not identical: at
FIFO depths of 32 to 256, the workloads of FigluE8(d) achieve a greater percentage of
peak bandwidth.
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Figure 4.18 CyclicdaxpyPerformance for FC Ordering

For FC ordering and cyclically scheduled workloads on systems with four or more
CPUs and adequate FIFO depth, performance improves dramatically when using one fewer

CPUs. For example, when only three of the four CPUs are used, the system with four banks
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shown in Figuret.18(e) delivers 74.6% of peak bandwidth at a FIFO depth of 32, as
compared with 24.3% when all CPUs are used, as in HgL&¢b). As the total number of
processors increases, performanciekhces become even more dramatic. The eight-CPU
system with eight banks in Figu4el8(f) delivers 83.2% of peak at a depth of 128 when

only seven processors are used. In contrast, the same system using all eight CPUs reaches

only 12.3% of peak, as depicted in Figure 4.18(c).

For very shallow FIFOs, systems with many banks deliver better performance than
those with few This happens because the FC ordering mechanism forces the MSU of a
many-bank system to switch FIFOs often. The phenomenon is evident in the performance

curves for systems witBN banks in Figuré.18, and will be discussed in Section 4.4.3.2.
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Figure4.19 illustrates comparative SMC performance of BC ordering for two
different operand alignments. The vectors used to generate the results in the top row were
aligned to begin in the same memory bank. For the results in the bottotheaf vector
of the computation was aligned to begirbank. Again, performance is fairly constant for
a given ratio of processors to banks, with all systems delivering almost the full system
bandwidth for deep FIFOs. The staggered vector alignment inhibits bank concurrency in
systems with relatively shallow FIFOs, hence we see dips in some of the performance
curves. In all cases, performancdeliénces are less than 13% of peak bandwidth, and the

differences diminish to less than 3% of peak for 512-deep FIFOs.

4.4.3.2 Performance Trends

The performance factors outlined in Section 4.4.2 all interact to shape the performance
curves presented here. Most curves show bandwidth growing steadily as FIFO depth
increases, but several anomalies appear repeatedly throughout many of the graphs. These
phenomena can be attributed to startfgot$, consequences of the size of the workload on

each CPU, and general effects due to memory bank utilization and concurrency.

Startup-Delay Effects

As the number of processors increases, the amount of data processed by each processor
decreases. This contributes to the tafledfthe performance curves for thgdratridiag

and scale benchmarks in Figuré.20(a)-(c). The ééct is most pronounced for block-
scheduled workloads and eight-CPU systems using 10,000-element vectors, as in
Figure4.20(a) and (c). This is the same phenomenon observed for 100-element vectors on
the uniprocessor SMC systems of Chateand it occurs for both BC and FC ordering. It

illustrates the net effect of competing performance factors associated with FIFO depth:

1) The MSU needs sfitiently deep FIFOs to be able to keep the banks busy most

of the time and to amortize page-miss costs over a number of page-hits.
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2) Deeper FIFOs cause longer startup delays for the CPUs, and performance

declines when there are not enough accesses over which to amortize startup costs.
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Figure 4.20 Tail-Off Phenomenon for 10,000-Element Vectors and 8 CPUs

Since thescale benchmark uses only one vecttire MSU rarely has to switch
DRAM pages when cyclic scheduling is used to parallelize the computation. The initial
page misses in each bank and those that result from crossing DRAM page boundaries
account for most of the page misses for the entire computation (others might occur if some
of the processors proceed faster than others, crossing page boundariesedri@using
the MSU to switch between the new and old pages). Such computations enjoy a uniformly

high percentage of peak bandwidth, as evidenced by the curves in Figure 4.20(d).

Just as it did in the uniprocessor case, the thiéfbéct disappears under ¢gar
workloads. This is evident in theydratridiag performance curves of Figude21 — at a

FIFO depth of 512, we have not yet hit the point of diminishing returns. This corresponds
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to the analytic models presented in Section 4.3: the extent to which thé pdiepdmenon
occurs is dictated by the ratio of vector length to FIFO depth and the number of read-

streams in the computation.

Figure4.20(c) illustrates another factor that comes into play for block-scheduled
workloads under BC ordering: shallow FIFOs force the MSU to switch FIFOs fairly often,
causing it to service the FIFOs of all CPUs relatively evertlys prevents any processor
from getting too far ahead of the others, creating a more even workload for the MSU, and
thereby promoting better bank utilization. Témale performance curves for the 64-bank
system in Figurd.20(c) demonstrate this phenomenon: the SMC delivers over 90% of

peak at a FIFO depth of only 32.

Unfortunately the circumstances under which shallow FIFOs vyield good
performance are hard to predict, and in many cases a FIFO depth that is less than the
number of banks may severely inhibit performance. For instance, the same 64-bank system
with eight-deep FIFOs in Figu#e20(c) is limited to 46.5% of peak: the shallow FIFO
depth prevents the MSU from keeping the banks.dosyeasing the FIFO depth increases
the available work for each bank at any given time. At depths of 64 or more, systems with

32 and 64 banks perform virtually identically.
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Figure 4.21 hydro/tridiag Performance for 80,000-Element Vectors and 8 CPUs
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Higher Performance for More Banks

Relative bandwidth tends to decrease as the number of memory banks increases. In spite of
this, for block-scheduled workloads on SMC systems with four and eight CPUs and BC
access-ordering, systems with a greater number of banks sometimes perform competitively
with those with fewer banks. This is duegially to the data partitioning. For instance, for
block-scheduled computations on vectors of 10,000 elements, the data is partitioned such
that for systems with 32 or 64 banks, all processors operate on the same set of DRAM
pages. Since the systems with more banks incur fewer page-misses, their raw performance

occasionally equals or exceeds that of systems with fewer banks.

The curves foscalein Figure 4.20(c) are a good example. Given the simplicity of
the access pattern and the fact that all CPUs are working on the same page, the MSU is able
to keep each bank busy most of the time. Thus a systenNw@tRUs andtN or 8N banks
(and the extra concurrency theyoafl) often performs better than one with fewer banks.
Figure4.22 illustrates this &ct for two-CPU and fou€PU systems; here the systems

with 8N memory banks deliver a higher percentage of peak than some of the other systems.
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Performance Curve Humps

As we saw in Figurd.20(c), shallow FIFO depths can sometimesrease bank
concurrencyFor our block-scheduled benchmarks, this generally occurs for FIFOs of 16

to 32 elements, and results from the way BC ordering with shallow FIFOs promotes good
bank utilization and an even rate of progress among the processors. This causes the
“humps” in the performance curves of the block-scheduled 32-bank and 64-bank systems
in Figure 4.1 and Figuret.12(c) and (f). The FIFO depths at which this serendipity occurs
depend on the number of streams in the computation, the degree of page-sharing among the

CPUs, the number of CPUs, the DRAM cycle time, and the number of memory banks.

This efect is less noticeable for eight-CPU systems undgetawvorkloads. The
80,000-element vectors are divided so that each CPU processes roughly 10,000 elements,
allowing the SMC to amortize startudesfts over many data accesses. The data layout is
such that no processors share any DRAM pages during any portion of the computation (as
pictured in Figuret.8), thus page-sharingfefts are minimized. The MSU must switch
between pages more often, though, and the size of the data set causes the computation to
cross more page boundaries. The curves in F@@Ha) are therefore smoother than the
corresponding curves for the shorter vectors in Figuzé(a), but performance for shallow

FIFOs is lower.

Another interesting peak occurs in Figdré5(e) and Figurd.16(e) for the four
CPU and eight-CPU systems wi8N banks when FC ordering is used with a cyclically
scheduled workload. In general, this phenomenon occurs for systems wghk adarber
of banks and shallow FIFOs. In our simulations, whenever the MSU switches FIFOs,
accesses are initiated for the new FIFO while others are still being completed for the old
FIFO. If different FIFOs use didrent subsets of the memory banks, this overlap may yield
better bank utilization. Note that in such cases, good performance depends on the FIFO

ordering scheme used by the dynamic access-ordering policy: when all vectors are aligned
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to begin in the same bank, servicing iflé=IFO for all processors followed by tte )t
etc., will allow more bank concurrency than servicing the FIFOs of a single CPU in

sequence.

With the particular data layout of Figu4el6(e), for instance, thid" elements of
each vector reside in fi#rent banks, thus not all FIFOs require service from the same set
of banks at the same time. The shallow FIFO depth causes the MSU to change FIFOs often.
Togetherthe data alignment and the frequent switching allow the MSU to keep more than
1/N of the banks busy at a time. Thus in this case the MSU is able to deliver more than
12.5% of peak bandwidth, in spite of the limitations of FC ordering for thec{efly)

non-unit stride vectors generated by cyclic scheduling.

For multiprocessor SMC systems using block scheduling and FC ordering, these
anomalies tend to occur whenever there is a high degree of DRAM page-sharing among the
processors and the FIFO depth equals the number of banks. Systems configured so that
FIFO depth matches the interleaving factor allow all banks to work on the same FIFO at
once, thereby promoting bank concurrendye FIFOs are shallow enough that the MSU
must switch FIFOs often, thus the CPUs proceed at a fairly even pace. More than one
processor is using the same set of DRAM pages, so many page-hits are possible.
Figure 4.23 illustrates this effect fecaleandswap
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Figure 4.23 Blocked FC Performance for 8 CPUs and 10,000-Element Vector:
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4.5 Related Work

Dubois, Scheurich, and Briggs [Dub86] study thieaf of bufering memory
requests on multiprocessor performance, proposing a framework to analyze coherence
properties. Their approach allows them to identify restrictions tietd that diferent

coherence policies impose on shared-memory systems.

Shing and Ni [Shi91] propose a shared memogawization and interconnection
network structure that supports conflict-free accesses to the shared memory in
multiprocessors. Their scheme uses time multiplexing to force the processors to take turns
accessing the interleaved memory banks: each CPU can access a subset of the banks on
each turn. The scheme does not reorder accesses to maximizesau@Rdtion of its time

slots.

Balakrishnan, Jain, and Raghavendra [Bal88] and Seznec and Lenfant [Sez92]
propose array storage schemes to avoid bank conflicts for parallel processors. Such
schemes could be used to increase the number of strides for which SMC systems using FC

ordering would perform well.

Li and Nguyen [LiN94] study the empirical performances of static and dynamic
scheduling. Here cyclic scheduling refers to Fortran DOALL loops (as in our model of this
scheduling technique), and dynamic scheduling refersetb schedulingin which
processors compete for parallel loop iterations by fetching and updating a loop index
variable. For their simulations, the finishing time of the slowest processor normally does
not exceed the average processor by the mean execution time of one loop iteration. Their
results suggest that most DOALL loops have an equal workload améergulifiterations
(with respect to operation counts). feifences in the execution time of an iteration on
different processors (from cache misses or coherence actions, for example) tend to be

small, and these variations do not appear to be accumulative: thaysapmficantly
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influence the finishing time of the slowest procegdordynamic scheduling technique can

guarantee a better workload distribution.

4.6 Summary

Once again, our results underscore the importance of using an appropriate FIFO depth for
a particular computation: for good memory system performance, FIFO detbe
selectable at run-time. Chapiepresents equations to determine the right FIFO depth for

a particular computation on a given SMC system.

On SMP SMC systems, Bank-Centric access ordering is the clear implementation
choice, for it allows the MSU to exploit locality of DRAM page references across FIFOs
for all processors. If hardware requirements and cost preclude the use of BC ordering, FC
ordering may perform adequatefthough more care must be taken in parallelizing tasks.

Chapter 7 discusses compile-time strategies for maximizing FC performance.

Of the two families of ordering schemes examined here, FC is easier to implement
in hardware, for it requires less information in order to select the M&&Xt access. With
deep FIFOs, FC systems amortize DRAM page-miss overheads ovg adanber of fast
accesses, even though the algorithm deesqglicitly attempt to maximize page hits. For
vector strides that are relatively prime to the number of banks, FC can successfully exploit
the memory systerm'available concurrencynder these circumstances, E@erformance

is competitive with BC’s.

Nonetheless, FC ordering is much more sensitive than BC to changes in vector
length and alignment, and FC consistently delivers a lower percentage of peak bandwidth
than BC for shallow to medium-depth FIFOs. Moreowenen the vector stride is not
relatively prime to the number of memory banks, FC is severely limited in its ability to

exploit bank concurrency.
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Bank-Centric ordering, on the on the other hand, provides more consistent, robust
performance at the expense of slightly more complicated reordering circlitey
variations to BC ordering that we have investigated have little impact on performance. No

consistent trends are discernible, thus the simplest BC scheme should perform adequately.

Our results indicate that the order in which the MSU considers the FIFOs for service
can interact with other performance factors to impact results. The optimal FIFO ordering
algorithm would give priority to any FIFOs with accesses to current DRAM pages, and then
to the FIFOs that, if not serviced, will cause a processor to stall soonest (either waiting for
read data to arrive or for a position in a write FIFO to become available). The two schemes
implemented here are simple (and easily implemented) heuristics, neither of which has

proved consistently superior to the other.

Dynamic access ordering via the SMC can be &c&fe means of improving
memory bandwidth for streaming computations on symmetric multiprocessor systems.
Using only a modest amount of berf space, the SMC consistently delivers nearly the full
system bandwidth for cyclically scheduled computations on long vectors with strides that
are relatively prime to the number of memory banks. SMC performance for block-
scheduled parallel computations is not as dramatic, but still represents a significant
improvement over performing memory accesses in the natural order specified in the

computation.



“Not to go back is somewhat to advance,
And men must walk, at least, before they dance.

— Alexander Pope (1688-1744)

Chapter 5

Sparse Matrix Computations

Chapter3 and Chaptet demonstrated that the SMC yields substantial increases in
effective memory bandwidth for dense matrix computations on uniprocessors and
symmetric multiprocessors. This chapter investigates a class of computations for which the
SMC does not improve bandwidth: irregular computations on sparse matriedgstV

survey common data structures for representing sparse matrices, then discuss the memory
access patterns generated by sparse matrix computations. Such computations can be
broadly classified into two sets: those whose access patterns are fairly, r@gdilirose

that perform many “random” accesses to dense matrix structures. We analyze the memory
performance of a representative access pattern from the latter class, and show that the SMC

has limited usefulness. The structure of this chapter is depicted in Figure 5.1:

Sparse Matrix Computations

Data Structures Summary

Access Patterns Results
Modeling Assumptions

Figure 5.1 Chapter Structure
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5.1 Sparse Matrix Data Structures

A matrix is consideredparseif the number of non-zero elements is small compared to the
number of zeros. In practical terms, a sparse matrix is one for which it is worthwhile to use
special technigues to avoid storing or operating with the zeros. In general, a matrix having
no more than 20% non-zero entries would benefit from special treatment, and a typical
large sparse matrix usually has five to ten non-zeros per row [Eva85]. Sparse matrices often
arise in discretized problems from such domains as electrical networks, structural analyses,
partial differential equations, power distribution systems, nuclear physics, and operational

research.

If a matrix is sparse in a very regylatructured waythen it may only be necessary
to store the values of the non-zero elements; information about the corresponding positions
of the elements is encoded in the algorithm manipulating the matrix, and thus need not be
stored explicitly as in the tridiagonal elimination kernel of Cha@erThe memory

performance of such computations will resemble that of other dense-matrix computations.

For sparse matrices that are not regutdas necessary to store information about
where the non-zero elements occline rest of this section briefly surveys a range of
storage schemes, each representing trégledth respect to storage overhead versus ease-
of-access to the matrix elements. Which structure will yield the best performance depends
on the access patterns of the computation as well as the characteristics of the particular

memory system.

Linked Lists

Linked-list schemes provide equivalent access by rows and columns [Knu73]. Each list
entry contains two pointers, one to the next non-zero element in the row and one to the next
non-zero element in the column. The symmetry of access to rows and columns simplifies

coding, and adding or deleting entries dynamically becomes Eedgrtunately the
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indirect addressing reduces locality of reference, which can have advirse eh
memory system performance (at many levels of the hierarchy). Depending on the nature of
the computation, row and column indices may need to be stored with each element,

increasing the storage overhead.

Bitmaps

We could represent a sparse ma#igy a bit pattern such thataf; is nonzero, théi,j)th
element in the bitmap is 1, otherwise it is 0. The values of the corresponding non-zero
elements are stored in a one-dimensional aifalie bitmap is aganized in a row-wise
fashion, accessing the sparse matrix along its columns will beuttifand vice versa.

Adding or deleting entries is also expensive, requiring the one-dimensional array of values

to be shuffled whenever the matrix changes.

Hashing

In many areas of computer science, hash coding is often used to store sparse data. Hashing
requires a map from the domain of interest, in this case the row and column indices of the
non-zero elements, to the structure in which the data is held. If more than one set of indices
can map to the same entry of the data structure, the scheme must incorporate a mechanism
for resolving collisions. Although there are some instances where working with sparse
matrices using some form of hash coding can be useful, the regular way in which sparse
matrix computations access their data makes such a scheme generally inappropriate for
scientific computation [Duf85]. Hashing tends to spread out accesses to the data structure:
sets of sparse matrix index values that are close together are unlikely to map to memory
locations that are near one anothEris lack of locality of reference renders streaming

inappropriate for such data structures.
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Unordered Triples

One easy way to specify a sparse matrix is to store the non-zeros agajiplg$ which

are held contiguously in any ordénfortunately manipulating this data structure by row

or column requires scanning the entire structure. It is not uncommon to permit input to
sparse matrix routines using this form, but a more structured form is commonly used when

performing operations on the data [Duf85].

Use of Coordinates

Another simple method is to use a one-dimensional array for the storage of the non-zero
elements in each row, along with their coordinates. Elements may or may not be sorted by
column within each rowBoth the row and column indices may be stored with each
element, or the overhead storage can be minimized by eliminating redundant information.
For instance, we can maintain a separate array of pointers to the first element/column-index
pair each rowinstead of keeping copies of the row index with each elementsaume

that the entries within a row are contiguous in the one-dimensional ath@ywise the
scheme is equivalent to the unordered-triples scheme mentioned above. If the rows are not
kept in sequence, then extra storage is required to mark the end of each row or to indicate

how many entries each row contains.

If the structure is to be modified dynamicalligen we must either leave gaps to
accommodate additional data, or we must allocate more space for the row (for example, at
the end of the structure), and copy its conterasiods garbage-collection schemes can be
used to manage growth. D{iDuf85] gives a thorough explanation of this general storage

technique.

Since some variation of this scheme is commonly used in practice, this is the data
organization that we assume in this chapter. We assume that the sparse matrices are stored

by row and that the columns are sorted within each 8eparate arrays of row pointers or
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column indices could be maintained, or the index information could be stored in the same
array as the elements. Keeping the column index in the same structure as the matrix
elements increases locality of reference, which can improve memory system performance.

Figure 5.2 depicts this organization:

row pointers: | 0| 1| 2

I =

.

column/element array; Jo || == | J1 || 2 (@] 0 | s |Be

Figure 5.2 Sparse Matrix Data Structure

5.2 Access Patterns

As in previous chapters, our concern here is not withntitere of the computation
performed by sparse matrix codes, but withghternof memory accesses generated by
these computations. In general, access patterns span a spectrum with respect to the
regularity of their structure. For sparse matrix codes, one end of the spectrum represents
having inner loops very regular access patterns, such as those that for each element of a
sparse matrix process an entire row or column of a dense matrix. At the other end of the
spectrum lie computations whose inner loops perform many “random” accesses to dense
matrix structures, where the access pattern is dictated by the structure of a sparse matrix.
We refer to these classes a&parse-regular and sparse-irregular computations,

respectively.

5.2.1 Regular Access Patterns
Since the access patterns of inner loops of the sparse-regular computations resemble dense-
matrix computations, and since memory performance is dominated by a compstation’

inner loops, performance for sparse-regular computations will be similar to that of the

1. By “random” we mean “lacking a definite pattern”, and do not wish to imply anything about the
mathematical probabilities of specific events.
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dense-matrix kernels of previous chapters. As an example, consider scaling a sparse matrix
A stored in a one-dimensional arrayas {, &;) pairs. ¢ need not read the index
information stored inc; we may simply treax as a stride-two, dense vectoMemory

system performance for such a computation will resemble that facdiebenchmark
described in Chapt&. We do not address sparse-regular computations further here, except
to note that for inner loops that process whole rows or columns of dense matrices, FIFO

depth must be adjusted according to the length of the streams in the inner loops.

5.2.2 Irregular Access Patterns

As an example of a computation whose access pattern is dominated by irregular accesses,
consider Jacobi iteration used to solve the linear sy#tgnx b for a sparse matriR,

whereA is stored in a one-dimensional array jpsy) pairs. Let another array hold the
number of entries in each ro@iven an initial approximatior® to the solution, the next

iterate is given by<i(1) = a%%bi - Z a; xj(o) E [Gol93]. For the sake of simplicity in our
example, let us assume tlr|1at thé idliagonal elemgeid the first item stored in each row

Pseudocode for a possible memory access pattern is depicted in Figure 5.3:

# streamAin FIFQ

# streanb in FIFO,

# stream row information in FIFO
# streanx out FIFG;

loop1l:
read FIFO 4 # geth;
read FIFO » # get #elts in row
read FIFO g # getj
read FIFO g # get diagonal element
loop2: # for each non-diagonal elt in raw

read FIFO o # getj
read FIFO o # gety;

read x # scalar access
goto loop2
write FIFO ¢ # store new;
goto loopl

Figure 5.3 Sample Computation with Stream and Scalar Accesses

1. We assume that either the index information occupies the same number of bytes as the element
value, or space is left between the indices and elements.
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The scalar access pdominates the inner loop, since we assume that each access
tox incurs a DRAM page miss. This limits the rate at which the CPU consumes values from
FIFOq, which limits the amount of bigr space available for the MSU to fill. After the
initial fill, the MSU will only be able to perform two accesse§&tBO, at a time. Under

these circumstances, the MSU can’t amortize page-misses over many fast accesses.

Unrolling the inner loop and grouping accesses, as in static access ordering
(described in Section 2.3.1.4), lets the processor dequeee taaiunks of data frofIFO
in between the groups of scalar accesses. This allows the MSU to amortize page-miss costs
over more accesses that hit the page, but the number of fast accesses that can be issued at

a time is fixed by the depth of unrolling.

Under these circumstances, ordering accesses dynamically has fewer advantages
than it does for dense-matrix computations. There is still potential for overlapping memory
latency with computation, since the stream accesses are decoupled from the psocessor
activity. Another potential advantage is that by using the FIFO to store stream operands, we
avoid some of the register pressure caused by unrolling the loop. If successive elements of
x happen to lie in the same DRAM page, performing static access ordering (in conjunction
with using the SMC) can take advantage of even more fast accesseoulll also
restructure the outer loop to fetch several elements aff a time, or to write several

elements ok. If registers are scarce, some of these values could be written to cache.

5.3 Modeling Assumptions

We must first ask under whether streaming is profitable for sparse-irregular computations,
and if so, under what circumstances Wnducted simulation experiments to determine
whether the potential benefits listed above can be realized in pracécasdVdevelop a
bound to describe attainable bandwidth for sparse-irregular computations. Our modeling

assumptions are similar to those of Section 3.2.1.:
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the system is matched so that bandwith between the processor and SMC equals

the bandwidth between the SMC and memory;
- the processor generates only non-cached loads and stores of vector elements;

- vectors are of equal length and stride, share no DRAM pages in common, and are

aligned to begin in the same bank;
- bus turnaround delays are ignored; and

- for the analytic model, DRAM pages are infinitely large.

In our simulations, all references use non-caching loads and stores. All memories
modeled consist of a single bank of page-mode DRAMSs, where each page is 4K bytes.
Adding more banks would notfatt the performance trends we observe, since the non-
stream accesses in the loop would prevent the MSU from keeping the banks busy
regardless of their numbeWe restrict our experiments to uniprocessor SMC systems;
performance for SMC systems will be similafthough the éécts of the performance

factors described in Section 4.4.2 will come into play.

5.4 Results

The inner loop of th@cobi computation, shown in Figute4, involves a scalar access that
stalls the processor on each iteration. This makes the interaction between the psocessor
activity and the memorg’ more complex than for the dense-matrix computations of
previous chapters. Nonetheless, we may formulate a performance bound jaotie

loop. Letf be the FIFO depth amdbe the length of the sparse structure.dsefpresent the
number of sparse structure elements needed to represent one element of the original matrix
(there aren/d values and(n —1) x (n/d) indices), and left indicate the depth of
unrolling. For the natural-order loop in our exampde= 2 andp = 1. For notational
convenience, let us refer to the size of the block of data being dequengd-asx |1 .

Finally, lett,, andt,, describe the DRAM page-miss and page-hit costs in CPU cycles.
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loop: # for each non-diagonal elt in row
read FIFO o # get]
read FIFO o # geta;
read X # scalar access
goto loop

Figure 5.4 Inner Loop of Sparsgacobi Kernel

The computation will incur a startup delay 1%]+ (f+z,-1) ton cycles; this
represents the cost of the initial page miss plus the remaining fast accesses to fill the rest of
the FIFO as well as the positions vacated when the CPU reads tlag &fetents. After

the initial delaythe MSU will be able to perfornjz, — 1) fast accesses and 1 slow one at

(n—(f+27,-1))
0

n/d elements ok is at Ieasttpmx n/&. If the CPU must wait while the MSU finishes

each of the times the MSU services the FIFO. The time to access the
filling the FIFO before each scalar access, the cost will gerd&he minimum number of

cycles for the entirgacobiinner loop is:

(tom* (Z=Dty) (N=F-2,+ 1) nt,

t
z, o)

tom* (F+2,—1)t ) + (5.1)

cycles - (

Let s, and s, represent the number of read-streams and write-streams,
respectively and let the total number of streams & s +s,,. Let n represent the
number of non-stream accesses within the loap c#h generalize the above equation for
computations involving accesses to other data by multiplying the first two addesds by
and multiplying the last term by . Each write-stream will take -

b

cycles, since there is no startup cost involved. The general formula is:

sw(tpm+ (z,-1) tph) (n—f-z+1)
%

t =S (tpm+ (f+z,-1) tph) + (5.2)

cycles
Zp
+nn%m
0
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The percentage of peak system bandwidth is the minimum time to load all operands

divided by the total number of cycles computed abd\sn+n (n/9)) tor/ orin

cycles’

this casel.5n/ Loycles: A more appropriate measure ofi@éncy might be the percentage

of attainablebandwidth, which takes the fact that all non-stream accesses incur the DRAM
page-miss overhead, and is computed(aatph +n(n/d) tpm) /t

cycles: For thejacobi

loop and a miss/hit cost ratio of 4, the attainable bandwidth is 50% of peak.

We parameterize computations by the number of elements in the original sparse

matrix. In all our example® = 2, and so reading a 5000-element sparse matrix requires

10,000 stream accesses.
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Figure 5.5 5000-Element Sparse Matrix Performance

Figure5.5 illustrates the memory performance jeeobi with sparse matrices of
5000 elements on a uniprocessor system with one bank and DRAM page-miss/page-hit cost
ratios ranging from 2 to BAs expected, bandwidth is nearly constant for all FIFO depths:
the percentage of peak attained is limitedpyhe number of elements dequeued at a time
(in this case, 2), not by the total size of the buffer. Unfortunately, using the SMC results in
lower performance than using non-caching loads to access the data in the natural order of

the computation. The processor stalls for longer periods of time when using the SMC, since

1. The non-SMC results were generated using Moyer’s static access ordering software [Moy93].
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it must often wait for the MSU to finish filling the FIFO before fetching the rex=iue.
This introduces a phenomenon similar to the startup delay described in Section 3.2.2, but

in this case we incur the overhead every time we refill the FIFO.

For instance, on a single-bank system with a DRAM miss/hit cost ratio of 4, the
SMC is limited to 30% of peak system bandwidth for the unoptimized loop, as opposed to
33.3% when the SMC is not used. This happens because the memory system is idle for one
cycle during each loop iteration: the MSU must wait while the CPU dequeues an operand
from the FIFO before it can initiate an access to fill the position. In this case, each loop
iteration takes(tpm+ tph) cycles to fill the FIFO, plutspm cycles to fetch thr value, plus
one cycle waiting to begin another FIFO fill. This results in a total of 10 cycles, as opposed

to the nine cycles required for this loop when the processor accesses memory directly.

If the system supports non-blocking loads, the dequeueing of dat&lfifédg may
be overlapped with the memory accesses to vegteliminating the extra cycle delay
described above. Even so, for the kind of computation described here, such a system cannot

exceed the performance of a non-SMC system when static access ordering is used.

Figure5.6 demonstrates that modifying the loop to perform more FIFO accesses at
a time improves SMC performance only sligh#ftainable bandwidth is limited to 50%
of peak, as indicated by the range of the gghaxis. Unrolling to a depth of two
(z,=0xn =4) yields 33.3% of peak bandwidth for a miss/hit cost ratio of, fand
unrolling four times delivers about 35% of peak. Even when loop unrolling is used, the
SMC still cant compete with registdevel static access ordering. Unrolling four times and
grouping accesses increases non-SMC performance to 44.4% of peak. Further unrolling
yields little benefit for SMC performance: even at an unrolling depth of 20, the SMC only

delivers 37% of the peak system bandwidth.
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Figure 5.6 Effects of Loop Unrolling on Sparse-Matrix Performance

In Chapter3 we saw that incorporating threshold-of-service criterioimnto our
dynamic ordering schemes had littldeet on memory performance for dense matrix
computations. The specific “threshold” we investigated involved waiting until a read-FIFO
was at least half-empty before refilling it (or waiting until a write-FIFO was at least half-
full before draining it). On the surface, it appears that such a threshold might be more useful
for computations involving many non-stream accesses mixed in with the stream accesses,

or for computations in which the streams are accessed with very different frequencies.

Figure5.7 illustrates SMC performance with and without the threshold-of-service
criterion forjacobi on an SMC system for which the miss/hit cost ratio is 4. These graphs
indicate that performance for the threshold-ordering system is better when the FIFO depth
is less than the number of operands being dequeued in succession. Under such conditions,
the threshold criterion is almost always met, and there is lefesedi€te between the
performances of the two ordering schemes. All of our simulation results indicate that for
this memory system an ordering algorithm incorporating a threshold-of-service criterion
never outperforms a greedy one that keeps the memory system busy whenever there is work
to do, and performing static access ordering without using the SMC yields better effective

bandwidth than using the SMC.
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Figure 5.7 SMC Performance for 5000 Elements and a Miss/Hit Cost Ratio of «

Figure5.8 illustrates the comparative performance of the greedy and threshold
schemes for a memory system with a DRAM page-miss/page-hit cost ratio of eight. For the
unoptimized (z, = 2) loop and one unrolled to a depth of two, the threshold scheme
performs better than the greedy one fofisigintly deep FIFOs. More importantifpor this
system the threshold scheme delivers better performance than static access ordering for the

natural-order loop.
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5.5 Summary

In Chapter3 and Chaptet we saw that dynamic access ordering via the SMC can
significantly increase &fctive bandwidth for streaming computations. In this chapter we
explored the décts of dynamic access ordering for computations involving sparse
matrices, those for which the number of non-zero elements is small compared to the
number of zeros. Such matrices can often be manipulated nficiengtiy when stored in

a compressed form, omitting the zeros and recording the positions and values of the non-

zero elements.

We began the chapter by surveying possible data structures for representing sparse
matrices. Accessing some of these by row or column yields memory access patterns with
little spatial locality and so dynamic access ordering is not applicable to computations on
all these structures. &\those a common form of storage that permits streaming, a one-
dimensional array holding tuples of coordinates and elements, and we examined access

patterns for computations using that data structure.
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As with the other kinds of computations investigated, the memory performance of
large sparse-matrix computations is dominated by the inner loopsob&kerved that
computations whose inner loops involve regular access patterns to dense structures will
have similar memory performance to the benchmark kernels described in previous
chapters. W therefore focus on computations that “randomly” access dense data structures
within their inner loops, examining the memory performance of a typical such computation

in detail.

The presence of non-stream (and non-cached) accesses within a loop severely
hinders the SM@ ability to improve bandwidth. In most cases we examined, decoupling
the memory references from the processaccess pattern actually costs more cycles than
letting the processor access memory dire@lnamic access ordering only makes sense
for memory systems in which the cost ratio of slow accesses to fast ones is relatively high
(in our experiments this was true for cost ratios of 8 or more), and then only when the
dynamic ordering mechanism waits until a certain amount of service is required before
servicing a FIFO. Unrolling loops and grouping accesses improves non-SMC performance
more than SMC performance, so thdéetive bandwidth without the SMC soon overtakes

that delivered by the SMC, even when a threshold ordering scheme is used.

For sparse-matrix computations such as the one examined here, the best memory
performance can most likely be obtained by tiling or blocking the computation (see
Chapter2, Section 2.3.1.2) and caching reused data. Even if data cannot be reused, chunks
of the sparse matrix structure can be block-prefetched or streamed into cache to take
advantage of DRAM page-mode or similar device characteristics. Harienify laige
block sizes (in the absence of cache conflicts), the cost of each access to the sparse matrix
will be very near the cost of a fast memory access plus the cost of a cache hit. The same
effect could be achieved with the SMC if we can choose a FIFO depth at leageasslar

the block of data being manipulated, so that all data in the block will be fetched at once.
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The results of this chapter emphasize the importance of designingntine
memory hierarchy to work togetheffiefently. If the non-stream accesses within sparse-
irregular loops use caching load instructions, good memory performance requires either
that the cache line be the size of one data element, or that there be some facility for loading
only a portion of a cache line at a time. Fetching an entire cache line that is larger than the
element size is likely to pollute the cache with data that will not be used (see Ghapter
Section 2.3 for a discussion of cachigcefncy). Finally non-blocking load instructions are

essential if we are to overlap accesses to different levels of the memory hierarchy.



“Few things are harder to put up with than the annoyance of a good
example.”

— Mark Twain (1835-1920)

Chapter 6

The SMC Hardware

As noted in Chaptel, our team is developing a combined hardware/software scheme for
implementing access ordering dynamically at run-time. The hardware component of this
approach is th&tream Memory Conttler (SMC). We contributed to the architectural
design of the SMC, but the implementation and fabrication are due to members of
University of Virginias Center for Semicustom Integrated Systems within the Department
of Electrical Engineering: Assaji Aluwihare, Jinyldr, Trevor Landon, Bob Klenke, Sean

McGee, Bob Ross, Max Salinas, Andy Schwab, and Kenneth Wright.

The purpose of this chapter is to demonstrate that the SMC concept is feasible (it
can be built to run “at speed”), and to validate that the assumptions made in the analysis
and software simulations of previous chapters are reasonabtbaflend, we present a
brief description of the hardware developmerforef the SMC components, and the
programmers interface, correlating the performance of our back-annotated timing
hardware simulation model with the analytic models and bus-level simulation results of

Chapter 3. The structure of this chapter is illustrated in Figure 6.1:

131
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SMC Hardware

Overview Summary

Architecture Programmer’s Interface

Figure 6.1 Chapter Structure

6.1 Overview

The Stream Memory Controller (SMC) is a 132-pin ASIC implemented in aubn?3-

level metal HP26B process and fabricated through MOSIS. The 71,590-transistor chip is
being tested at the time of this writing. The 40MHz Intel i860 host processor can initiate a
new bus transaction every other clock cycle, and quadword instructions allow the i860 to
read 128 bits of data in two consecutive clock cycles. The SMC can deliver a 64-bit

doubleword of data every cycle.

The SMC was designed using a top-down approach with state-of-the art synthesis
tools [Cas93, Log92, Men93]. The hardware design has been validated usingfévantif
methods: functional simulation, gate-level simulation, static timing analysis, and back-
annotated timing simulation. Functional simulations have verified the operation of the
ASIC against its specification as well as demonstrated that performance corresponded to
that of the bus-level simulations of ChapefThe functional model was entered into the
synthesis tool to generate a gate-level simulation model, which was used to verify that the
functionality of the synthesized design matched that of the original model. The majority of
our high-speed optimization decisions have been based on the use of static timing analysis
tools and back-annotated timing simulation models. The back-annotated simulation model
was created by including delays, based on capacitive loading and routing information, in
the gate-level simulation model. The result was then used to verify system operation at a
given clock frequency and to locate critical timing paths. Static timing analysis calculated

worst-case output delays for each component in the system.
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Figure6.2 depicts comparative performance of the back-annotated hardware timing
simulations and the analytic bounds and functional simulation results fovastpsy
benchmark using medium and long vectors. See Chapter 3 for derivations of these bounds
and a discussion of the simulation environment. As in previous chapters, these results are
given as a percentage of peak system bandwidth, or the bandwidth required to perform a

memory operation every cycle.
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Figure 6.2 SMC Performance for thevaxpyBenchmark

The system parameters of the hardware prototyper difightly from the systems
simulated; in particularthe hardware incurs extra delays (due to the turn-around time
between reading and writing on the external bus) that have been abstracted out of our
models, and so performance is limited to about 90% of the system peak. Nonetheless, this
data gives us some indication of how actual SMC behavior relates to our models. It is still
too early to make definitive claims, but the trends suggested in lEdueppear to agree

with our other analysis and simulations.

6.2 Architecture

Figure6.3 depicts the architecture of the dynamic access ordering system,
including the i860 GP (“General Purpose”) node and the SMC daughterboard. The SMC is
bit-sliced as a 4-way interleaved system; Figurkillustrates the ganization of each 16-

bit SMC ASIC.
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The multiplexor (nuX chips depicted between the SMC ASICs and memory in
Figure6.3 ensure that only one entity at a time drives the bus, allowing both banks to share
a single data bus. Data is loaded into a register inside the mux chip one cycle before it is
needed at the memomphereby guaranteeing that the data and address are stable when the

DRAM write is initiated.

The SMCs Memory Scheduling Unit (MSU) implements the simple FIFO-centric
ordering policy described in Chapt&rSection 3.3.1.2. In this scheme, the MSU services
each FIFO in turn, initiating accesses for the current FIFO until no ready accesses remain.
The MSU then advances to the next FIFO and proceeds to initiate accesses for it. While
servicing a particular FIFO, if the next ready access is to a busy bank, the MSU simply

waits until the bank is idle.

This version of the SMC, pictured in Figwes, includes four FIFOs that are 16
doublewords deep and can each be set to read or write. The DRAM chips a@61(dut
we do not use the 4 parity bits) 60ns page-mode components with pages of size 1 Kbytes.
The minimum cycle time for fast page-mode accesses is 35ns, and random accesses require
110ns. Wit states make the SMCobbserved access time for sustained accesses 50ns (2
processor cycles) for page hits and 175ns for page misses (7 processor cycles — this
includes the time to close the previous page status and set up the new DRAM page). Since
there are two interleaved banks of memdoy streams with relatively prime strides the
SMC can deliver one data item every 25ns processor cycle. Further details of the design,
implementation, and testing of the SMC ASIC and daughterboard can be found in other

publications [McG94, Lan95a, Lan95b, Alu95].
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Figure 6.5 SMC Chip

6.3 Programmer’s Interface

The processor interacts with the SMC via a set of memory-mapped registers. Stream
parameters and status information are conveyed by writing or readi@ptifiguration/
Status/Control (CSC) registers, and data is enqueued in or dequeued via registers
representing the heads of the FIFOs. Stream addresses and lengths are 21 bits wide in the

prototype system, and strides are 16 bits wide. Stream data is assumed to be 64 bits wide.

Figure6.7 lists the addresses of each of the CSC registers. Because the system is
organized as four 16-bit SMCs, each of the 64-bit registers is logically divided into four 16-
bit fields. Each field of thstatus registershown in Figur®.6, contains a system reset bit,
followed by three unused bits, a read-mode/write-mode bit for each FIFO, and an active bit

per FIFO. The four low bits of each field are unused, and the mode bits are writ€hanly
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active bits are read-onhand are set automatically when the last FIFO configuration

register is written. The active bit is cleared when the MSU finishes a stream.
SMCy, SMC, SMC, SMCj

15 0 15 015 015 0

unused unused

™
o
L
L

active bits mode bits

FIFO,
FIFO,
FIFO,
FIFO,
FIFO,
FIFO,

)
o
L
LL

system reset

Figure 6.6 Status Register Composition

Register Address
FIFOq 0x80000000
FIFO, 0x80000020
FIFO, 0x80000040
FIFO4 0x80000060
CSC status 0x80000080

Figure 6.7 Memory Mapping of CSC Registers

There are four 16-bit configuration registers per FIFO for each bit-sliced SMC. As
shown in Figures.8, these create the 4 64-bit configuration registers that are visible to the
programmerSuccessive registers begin at consecutive doubleword addresses, with the set
for each FIFO begining at the address listed in Figufeln configuring the SMC, the
programmer must compose 64-bit words by replicating 16-bit fields. The first register in
each set holds the stream stride. The next register is composed of the low 16 bits of the base
address of the stream, and the third register holds the stream length. The top six bits of each
16-bit field in the fourth register are unused. The next five-bit field holds the high bits of

the length, and the low five bits hold the high bits of the base address.
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redo
regs;
rego

regs

SMC, SMC, SMC, SMCy
stride stride stride stride
base base base base
0-15 0-15 0-15 0-15

len len len len
0-15 0-15 0-15 0-15

not
used

len
16-21

base
16-21

not
used

len
16-21

base
16-21

not
used

len
16-21

base
16-21

not
used

len
16-21

base
16-21

Figure 6.8 CSC Register Composition for Each FIFO
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Figure6.9 lists the addresses for the memory-mapped registers representing the

FIFO heads. Reading from a given address dequeues a 64-bit operand when reading from

the FIFO, and writing to the address enqueues a 64-bit operand.

6.4 Summary

Figure 6.9 Memory Mapping of FIFO Heads

Register Address
FIFOq 0x80000800
FIFO, 0x80000810
FIFO, 0x80000820
FIFO4 0x80000830

This chapter has described the ongoing SMC hardware developrfmhtvwethin the

Center for Semicustom Integrated Systems at the Universityirgin\a. A prototype

(“proof of concept”) version of the Stream Memory Controller has been fabricated and is

being tested at the time of this writing. Preliminary results suggest that the assumptions

made in the analysis and simulations for this dissertation were reasonable, and that the

SMC will perform as expected. This initial version further demonstrates that dynamic

access ordering hardware can be built with a reasonable chip area and conapiexfigat

the SMC meets its timing requirements without increasing processor cycle time.



“Intelligence ... is the faculty of making artificial objects, especially tools to
make tools.”

— Henri Bergson (1859-1941)

Chapter 7

Compiling for Dynamic Access
Ordering

Our solution to the memory bandwidth problem represents a combined hardware/software
approach. Previous chapters described the design and performance of the hardware portion,
the Stream Memory ControllelThe necessary compiler and operating system support
constitute the software part of this approach, and in this chapter we address five compiler
issues related to dynamic access ordering: stream detection, code transformations, optimal
FIFO depth selection, parallelization schemes, and data coherence. The structure of this

chapter is depicted in Figure 7.1:

Compiling

Streaming Summary

Related
Cache Work
Coherence

Unrolling
Selecting
FIFO Depth

Task Selecting the
Partitioning Number of CPUs

Figure 7.1 Chapter Structure
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7.1 Generating Code for Streaming

In any dynamic access ordering system, the compiler must detect the presence of streams
and arrange to transmit information about them to the hardware at run-time. One way to do
this is via Benitez and Davids@n¢ode generation and optimization algorithms [Ben92].
Their algorithms were developed for the WM, a novel superscalar architecture with
hardware support for streaming (MJ3]. Although designed for architectures with
hardware support for the access/execute model of computation in general [Smi84], many

of the techniques are applicable to stock microprocessors.

Although these algorithms were not developed as part this dissertation, the compiler
technology they represent is a necessary part of our approach to access ordering. W
therefore include a description of the algorithms here. These algorithms have not been
transcribed verbatim: any errors introduced in adapting them for SMC systems are solely
the responsibility of this authoFhe interested reader is referred to Bensteersions for

further details [Ben91,Ben94].

Streaming code can often be generated for codes that are impossible to vectorize.
For instance, streaming naturally handles codes containing recurrence relations,
computations in which each element of a sequence is defined in terms of the preceding

elements.

We first present an algorithm to handle such recurrences, then we give the algorithm
to generate streaming code for the optimized loops. Both algorithms require that the loop’
memory accesses be divided into groupgantitions that reference disjoint sections of
memory For example, each local or global udeclared variable, whether scalar or array
defines a partition. Each partition can be uniquely identified by a local, global, or label

identifier; this is thepartition handle
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7.1.1 Recurrence Detection and Optimization Algorithm

This algorithm breaks recurrences by retaining write-values until needed by a later
iteration. The retained values are “pipelined” through a set of registers, advancing one

register on each iteration until consumed by a read instruction, as shown in Figure 7.2.
|_degree of recurrencel)(_|

vector X:

registers: - (- -

ri M1 M g1

Figure 7.2 Pipelining Recurrence Values through Registers

As an example, consider the fifth Livermore lodpdiagonal elimination
[McM86]. Naive C code for this loop is depicted in Figdrd(a). On each iteration, only
thex value from the previous iteration is needed, and so a single regidieesté hold

the retained values for this particular recurrence, as in Figure 7.3(b).

for (i=2;i<n;i++) r=x[1];
X[i]=z[i]* (y[i]- [i - 11); for (i=2;i<n;i++){
X[i] = z[i] * (y[i] - r);
r=x[i;
}
(a) natural loop (b) optimized loop

Figure 7.3 Example Recurrence Relation — Tridiagonal Elimination

The following algorithm relies omduction variable detectiorBriefly, a variablg
of a loop is an induction variable if every tifnehanges, it is incremented or decremented
by some constant. Each induction variaplean be represented by a basic induction
variablei and two constantg,andd, such that at the point wherés defined, its value is
given byc*i+d . In other wordsg denotes a scale factandd denotes an édet. Aho, Sethi,
and Ullmans compiler textbook contains a complete description of induction variable

detection [Aho88].
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The steps in the recurrence algorithm are:

1) Divide the loops memory accesses into partitions that reference disjoint sections
of memory. If the proper partition is unknown for a particular reference, add that
memory reference to all partitions. Record where each reference occurs and

whether it is a read or a write.

2) Determine the induction variables in the loop, and for each induction vajjable

determine its associatedandd values, and whetheis increasing or decreasing.
3) For each partition, do:

a) If not all references in the partition have the same induction variable or

the same value (i.e. scale factor), mark the partitioruasafe

b) Algebraically simplify eacld value in the partition by removing the par-
tition handle and any invariant register values. If dmglue cannot be
simplified into a literal constant, mark the partitiorsafe The resulting
literal constant is theelative offsebetween the reference and the induc-
tion variable. If the relative tdet is not evenly divisible by trevalue,

mark the partitiorunsafe

4) For all safepartitions containing both reads and writes (no other partitions can

contain recurrences), do:

a) ldentify pairs of memory references in which a read fetches the value
written on a previous iteration, and for each such palculate the iter-
ation distance between the references. This is the absofetedde of
the relative dkets for the references; the maximum distance divided by
the stride of the loop determines the number of registers needed to han-

dle the recurrence. We refer to these memory referenceadsrite
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pairs and to the number of registers required aslégFeeof the recur-

rence.

b) For each read/write pair, generate code before each write to copy the
value to a registeand replace the corresponding reads with register ref-
erences. Update the partition to reflect that the read is no longer per-

formed in the loop.

c) Generate code at the top of the loop to advance the recurrence values

through the register pipeline at the start of each new loop iteration.

d) Build a looppre-headetto perform the initial reads (i.e. prime the reg-

ister pipeline).

7.1.2 Streaming Optimization Algorithm

After recurrences have been detected, the compiler attempts to exploit opportunities for
streaming operations. This algorithm uses the memory partition information collected by
the previous algorithm. Step 4 above excludes read-only and write-only streams, whereas

the following algorithm applies to all streams in safe partitions.

1) If any memory recurrences remain in the loop, do not stream.

2) Determine the number of iterations through the loop. If the count is unknown, set
it to co. If the count is too small, do not generate streaming code. (Thé autof

which streaming is no longer profitable is architecture-dependent.)

3) For each memory reference in all safe partitions, if the memory reference is

executed each time through the loop, do:

a) Calculate the stride.
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b) Determine the number of times the memory reference is executed (i.e. if
it should not be executed on the final loop iteration, generate code appro-

priately).

c) Allocate the appropriate FIFO (read FIFOs for read-references, write-

FIFOs for write references).

d) Generate code in the loop pre-header to test whether the loop should be

executed and to jump around the loop if necessary.

e) Generate the stream-initiation code before the loop. For the Stream
Memory Controllerthis code transfers stream parameters (base address,

stride, stream length) to the Stream Buffer Unit.
f) Change loads and stores to reference the appropriate FIFOs.

g) If the loop countige , add instructions to stop streaming at all loop

exits.

h) If the induction variable is dead on loop exit, delete the increment of the

induction variable.

3) Perform strength reduction on the optimized loop [Aho88].

7.2 Unrolling and Scheduling Accesses

Unrolling and grouping accesses is the crux of the compile-time access ordering
techniques described in Chap2eiThese compiler optimizations can be useful for dynamic
access ordering systems, as well. This section discusses how the technique may be used to
amortize the costs of intehip communication in a multiple-chip SMC implementation
(e.g., bus turn-around delays when switching between reading and writing), or to improve

the code generated by the streaming algorithms of the previous section.
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Thus far, we have only considered dynamic access ordering systems in which both
the processor(s) and the Stream Memory Controller reside on a single chip. Indeed, if
dynamic access ordering hasfgi€nt merit, the appropriate hardware should be integrated
into the processor chip. In the meantime, howewerare interested in the possibility of
enhancing the performance of existing processors via the addition of a sepertea]

SMC chip such as the one described in Chapter 6.

In any external SMC ganization, performance depends on processor bus
utilization as well as memory utilization. The cost of switching between reading and
writing should be amortized over as many accesses as possible. Good performance requires
unrolling loops and grouping reads and writes in order to minimize the number of bus read/
write transitions. As in Moyeés static access ordering methods [Moy93], the degree to

which this can be done depends on processor parameters such as the size of the register file.

The performance #fcts of unrolling and grouping accesses is illustrated in
Figure7.4. This graph showslaxpy performance for 10,000-element vectors on a
uniprocessor with an external SMC implemented with Bank-Centric (BC) ordeviey.
use the memory system parameters of the i860XR: there are two banks composed of
4Kbyte, page-mode DRAMs, and page misses take five times as long as pageblets. T
faithful to the i860, we assume that single-operand requests result in at most half the
maximum bus bandwidth. Requests to 128-bit words operate in a burst mode and can utilize
the full bandwidth. In the SMC system, 128-bit loads fetch two data items from the

memory-mapped registers used for the FIFO heads.

The maximum bus bandwidth fdaxpyunrolled to a depth of 16 is only 96% of the
peak system bandwidthoBee this, note that there are 3 vector access (reqdeading

and writingy) x 16 = 48 memory references, and switching between reading and writing

1. See Chapter 3, Section 3.1, for an explanation of the various dynamic ordering schemes.
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adds two cycles of delay on each iteration; 48 accesses in 50 cycles = 96% of peak. The
SMC is able to deliver 95.6% of peak (or 99.6% of the attainable bandwidth) at a FIFO
depth of 128. In this case, unrolling 16 times realizes a net performance gain of about 20%
of peak over unrolling twice. These particular unrolling depths were chosen for purposes
of illustration: on a real i860XR, there are only enough registers to unroll to a depth of 10
(and this requires exploiting the pipelined functional units for temporary storage). Even so,
when we unroll 10 times the SMC delivers 93.3% of peak, or 99.5% of the attainable

bandwidth.

100 —

< '/_/,f-_:‘f'/_' -7 —— unrolled 16
S s . _  ---- unrolled 8
-% 60 i — — - unrolled 4
s —-— unrolled 2
% 40 —— natural
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fifo depth

Figure 7.4 daxpyPerformance for an Off-Chip SMC

Unrolling and grouping accesses can be used in conjunction with the recurrence and
streaming algorithms of Section 7.1. For instance, the performance of the code generated
by the recurrence algorithm can be improved by unrolling the loop to a depth equal to the
degree of the recurrence arehamingthe registers holding the retained values. This
eliminates the “register pipeline” and the need to copy the recurrence values at top of loop.
Grouping memory accesses to streams will exploit memory component capabilities in both

external SMC and non-SMC systems. Finatlyalar reads and writes can be grouped to

avoid bus-turnaround delays.

7.3 Selecting FIFO Depth

The results presented in Chapgdeand Chapte4 emphasize the importance of tailoring

FIFO depth to a particular computation. The compiler can use the analytic performance



Chapter 7: Compiling for Dynamic Access Ordering 147

models from those chapters to determine the FIFO depth with the maximum theoretical

bandwidth.

Consider the uniprocessor performance models from Chapide have two
different equations describing peak performance: one bounding bandwidth between the
CPU and the SMC, and one bounding bandwidth between the SMC and méheofiyst

of these, the startup-delay bound, is Equation 3.1:

100ns

0, i - - - -
Yo peak bandwidth= (s —1) +ns

(7.2)

Recall thath denotes the vector lengthijs the total number of streanss,is the
number of read-streams, aind the FIFO depth. The second bound, given in Equation 3.4,

limits bandwidth as the vector length goes to infinity:

t
0 o oh 100
Y% peak bandwidth (Txt * (=N *) X gcd(b, o)

(7.2)

Herer denotes the percentage of accesses that miss the current DRAM page, which
is defined ag = (b(s-1) (v—l))/fszgcd(b, o) , whereb stands for the number of
memory banksy denotes the number of vectors in the computation,caisdthe vector
stride. When we substitutanto Equation 7.2 and simplify, we get:

Lon 100

(s—=1) (v-1) Ot —t ) +t gcd(b, o)
Hged(b, o) x 2D P™ PP

% peak bandwidth=

_ 1005t
T m 2
%Eb(s- 1) (v=1) (t,,—t;) +ged(b, ) st ,

(7.3)

To calculate the FIFO depth at which these two curves intersect, we set Equation
7.1 equal to Equation 7.3, and simplify:

b(s-1) (v—1) (t,,—t)

2

E,S%Eﬁ (1-ged(b, 0)) f - =0 (7.4)
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Applying the quadratic formula to solve fogives:

gcd(b, 0) -1+J(1_ ged(b, c))2+4(sf_1) b(s—1)3(v—1) (tom—to)
ns tph

f= 5T (7.5)

ns

The next step after determining the theoretically optimal FIFO dépik, to

evaluate:

1) the startup-delay bound for the maximum FIFO setting that is not greatdy than

and

2) the asymptotic bound for the minimum FIFO setting that is not less.than

Selecting the setting with the higher bound ensures that the bandwidth limit for the
computation will be as high as possiblee Vdre not guaranteed to approach this
performance limit in practice, though. Simply choosing the smallest FIFO depth that is not
less than the intersection poimtay yield better performance in practice. Experiments
should be conducted with real workloads in order to tailor the algorithm to a specific

hardware implementation.

Determining the optimal FIFO depth for multiprocessor workloads is handled
similarly. First we substitute Equation 4.8 (the page-miss rate for the computation) into
Equation 4.4 (the SMP asymptotic performance bound), and set the result equal to Equation

4.3 (the SMP startup-delay bound):

MNSton _ .
: 2 Mf) (Ms, —M) +sn
E?%’(Ns— M (v-1) (t,,—t,) +gcd(b, 0) MNS't (Mf) (Ms, —M)

(7.6)

Groupingf terms yields:

Ms,—M

- b(Ns— M (v=1) (t,—t.p)

2
MNstph

o + B~ ged(b, 0) - 0 (@7

ns
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The positive root is:

1. |01 ?  4(Ms,—M)b(Ns—- M (v-1) (t, —t,)
ged(b, 0) v +JDM ged(b,0) g + — h
P

2(Ms, —-M) (7.8)
ns

f=

WhenM = N = 1, Equation 7.8 reduces to Equation 7.5. The table in Figére
shows the optimal FIFO depth versus best simulation performance for some sample
computations. All results are fdaxpywith stride-one vectors. These SMC systems use BC
ordering, and page misses cost four times page hits. Cyclic scheduling is used for the SMP

systems, and all CPUs are used for the computatiod (sdV).

max performance
£
£ _ |2
5 . N
5| & | 8 £ S 3
S| o g 3 L o
> o o] o L >
1 1 15 16 88.23
8| 1 4 29 32 84.51
1 8 40 64 69.93
o 2 2 76 128 97.63
§. 4 4 57 128 96.89
—
8 8 33 64 95.93

Figure 7.5 Optimal FIFO Depth versus Best Simulation Performance fodaxpy

In the above formulash, N, ty, and ty, will be fixed constants for a given
architecture. Given that there will probably be only a modest number of possible FIFO-
depth settings, it may make sense for the compiler to precompute the appropriate settings

for a given range of computation parameters and store them in a table.
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7.4 Choosing a Parallelization Scheme

As we saw in Chaptet, Bank-Centric (BC) access ordering generally out-performs the
simpler FIFO-Centric (FC) ordering schemes. As noted in Section 4.2, our model of static
scheduling (really partitioning), also known@glic schedulingdistributes the task such

that a processty set of iterations contains indices thatfetifby M, the number of
participating CPUs. W could also implement static scheduling by assigning blocks of

consecutive iterations to each processor, atoick scheduling

For systems implemented with BC ordering, cyclic scheduling delivers good
performance more consistently than block scheduling. On systems implemented with
FIFO-Centric ordering, though, block scheduling may perform better, since the it does not
change the &fctive stride(s) of the streams in the computation (and therefore toesn’
reduce the amount of bank concurrency that the MSU can exploit). The performance
bounds of Section 4.3 can be used to calculate which scheduling method enables higher
bandwidth. The cyclic-scheduling performance estimate discussed in Section 4.4.2.1 may
prove useful in deciding which scheme to implement (assuming the user has a choice, of

course).

7.5 Selecting the Number of Processors

In general, the best multiprocessor SMC performance is obtained by using all CPUs in the
system. The only exception to this rule is for systems implemented with FC ordering: if
cyclic scheduling is used to parallelize a computation, tleetefe stride of each task will
probably not be relatively prime to the number of memory banks. In such cases, better
performance may be obtained by using thgdat number of CPUs that is relatively prime

to the number of memory banks times stride(s) of computation. The analytic performance
bounds of Chaptet can be used to determine whether using fewer CPUs yields better
theoretical bandwidth. Once again, this decision algorithm should be tuned to each

particular system. Empirical tests on real, representative workloads will reveal whether
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using fewer processors actually performs better in practice (and precisely under what

circumstances). Such experiments are beyond the scope of this dissertation.

7.6 Cache Coherence

The addition of the Stream Memory Controller with its non-caching path to main
memory introduces the problem of data coherence between cache and the Stfeam Buf
Unit, or between separate FIFOs in the SBU. A system is saiddohieeentif all copies
of a memory location remain consistent when the contents of that memory location are

modified.

One obvious solution to the coherence problem is simply to make the SMC and
cache address physically separate portions of menfotlye SMC and cache access a
shared memory space, coherence could be maintained by a hardware scheme in which each
entity in the processts local memory — in this case, the cache(s) and the SBU —
monitors all transactions to the shared memuvnen a processor detects a memory
reference to an object that has been copied into its local memeither invalidates
[Go083,Kat85] its local copy so that the next reference will force a current copy to be
obtained from global shared mempooy it updates the copy with the new value [Atk87,

Tha87].

The term “snooping” usually refers to this type of coherence mechanism for bus-
based, shared-memory multiprocessors, but the same principles can be applied to maintain
coherence between I/O and cache, between cache and the SMC, betigeent &fFOs
in the SMC, or even between I/O and the SMC. Whatever mechanism is used for coherence
between cache and 1/0O can probably be extended to provide the same level of coherence

between the SMC and 1/O, and we do not consider this problem further here.

An important consideration for any hardware-based coherence solution is whether

it increases processor cycle time or on the number of cycles required to access data at any
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level of the hierarchyObviously any coherence scheme with a deleterious impact on the

performance of other parts of the system becomes unattractive.

Although snooping mechanisms may be relatively simple to implement, they are
often prohibitive either in cost or in serialization [Cyt88]. The mdsicéf/e solutions to
the coherence problem will likely involve a combination of hardware and software. This
section briefly surveys the potential compile-time solutions for uniprocessor SMC/cache
coherence. Our purpose is to demonstrate that technology to address the problem exists:
exploring the relative merits of each of the proposed solutions (or how to improve them) is
beyond the scope of this dissertatiore Wil address the general coherence problem for

multiprocessors in more detail in Chapter 8.

The compiler could place all stream data in non-cacheable merhengby
achieving the samefett as a system in which the SMC and cache reference physically
distinct memory partitions. Most current microprocessors (including the DEC Alpha
[Dig92], MIPS [Kan92], Intel 80x86 series and i86@pb1], and the PowerPC [Mot93])

provide a means of specifying some memory pages as non-cacheable.

Another option is to flush the cache before entering streaming loops. Completely
flushing the cache may be prohibitively expensive, making startup costs geofdar
streaming to be profitable in most circumstances (for instance, this was true for the Meiko
system used at Livermore Labs¢®4]). Whether or not this is the case depends on the

parameters of the particular system in question.

Programmable caches allow the compiler to manage coherence through software.
This requires at least two operatiomszalidate andpost (which copies a value back to
main memory). Cytron et al. [Cyt88] develop algorithms to determine when a cached value
must update its shared variable, or when a cached value is potentially stale. Their work

shows how automatic techniques can effectively manage software-controlled caches.
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Some decisions that cannot be made at compile-time can be made dynaFuocally
instance, the compiler could generate two versions of a loop body and insert run-time
checks to determine which one to execute, avoiding streaming if there were potential
aliasing problems (i.e., if two or more variables could refer to the same memory location).
Yet another possibility is to allow programmer directives to specify whether streaming is
safe for a given vectorhese last two solutions can be used to avoid data dependences (and

thus coherence problems) between two (or more) streams within the SMC.

7.7 Related Work

Unrolling loops and grouping accesses, as in Section 2.3.1.2 and Section 7.2, have been
used to compile for at least one other dynamic access ordering system: Palacharla and
Kessler employ these techniques in conjunction with preloading data to cache in order to

exploit page-mode devices and the read-ahead hardware of the Cray T3D [Pal95].

As discussed in Section 4.6 and Section 7.4, the superior performance of cyclic
scheduling over block scheduling results from the fact that the former allows all processors
to share the same working set of DRAM pages throughout most of the computation. Li and
Nguyens studies of workload distribution support this conclusion [LiIN94]. Cyclic
scheduling can thus be viewed as an instangamd schedulingf memory resources, in

this case DRAM pages.

Such explicit, cooperative management of shared resources has been shown to be
an important factor in obtaining good performance on multiprocessor platforms. For
instance, Li and Petersen [LiP91] show that for memory system extensions, direct
management of remote memories performs better than using the extended memory
modules as a transparent cache between main memory and disk. Leutenegger [Leu90] and
Ousterhout et al. [Ous80] gure for gang scheduling of CPU resources.gBuret al.

[Bur94] confirm the importance of gang CPU scheduling ampliearthat for good
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performance, virtual memory pages must be gang scheduled as well. They show that the
traditional benefits that paging provides on uniprocessors are diminished by the
interactions between the CPU scheduling discipline, the applications’ synchronization
patterns, context switching and paging overheads, and the applications’ page reference
patterns. The work of Peris et al. [Per94] strongly suggests that memory considerations

must be incorporated in the resource allocation policies for distributed parallel systems.

Other studies focus specifically on memory hierarchy utilization. For instance,
Loshin and Budge [L0s92] gue for memory hierarchy management by the compiler
Burger et al. [Bur95] demonstrate the declinineetiveness of dynamic caching for
general-purpose microprocessors, algguisg for explicit compiler management of the

memory hierarchy.

7.8 Summary

This chapter has addressed the compiler aspects of our proposed hardware/software
approach to the memory bandwidth problem: stream detection, code transformations,
optimal FIFO depth selection, parallelization schemes, and data cohevemdyave
reported algorithms to detect recurrence relations and to generate code for streaming, and
have suggested modifications to improve their performaneehdMe presented methods

for choosing an appropriate FIFO depth for a computation on a particular SMC system.
Although these computations are developed in the context of the SMC, similar methods can
be applied to the performance bounds of the other access-ordering schemes presented in

Chapter 2 in order to determine optimal block size.

In addition, we have discussed the impact of task scheduling on data distribution
and performance, and the corresponding influence of data distribution on the number of
processors to allocate. Finallye listed potential approaches to cache coherence. The next

chapter addresses coherence between CPUs in SMP systems.



“It is better to know some of the questions than all of the answers.”

— James Thurber (1894-1961)

Chapter 8

Other Systems Issues

Previous chapters have mapped the Stream Memory Controller design space through
analysis and functional simulation, described our tedrardware realization of the SMC,

and addressed compiling for dynamic access ordering. Here we focus on a number of
systems issues that relate to this dissertation: multiprocessor data coherence, virtual
memory management, and context switching Jovide a brief survey of possible
approaches, but comprehensive solutions to any of these problems are beyond the scope of

this dissertation. The structure of this chapter is depicted in Figure 8.1:

Data Coherence Conclusions

Virtual Memory Context Switching

Figure 8.1 Chapter Structure

8.1 Data Coherence
The coherence problerarises when multiple copies of a single datum can be resident in

more than one location simultaneoustyaking it is possible for dérent copies to have
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different values at the same time. Coherence may be enforced entirely in hardware, entirely
in software, or by some combination of the two. Maintaining coherence requires that
special actions be taken whenever a processor writes to a block of data for which copies
exist in other places in the memory hierarchy: the copies must either be invalidated or
updated with the new values. Similaréyprocessor must be able to obtain a current copy

of a data block. The granularity of the memory object for which coherence is maintained
has ranged from individual cache blocks [Aga88,Arc86,G0086,Kat85] to virtual memory

pages [Bol89,LiH89].

For uniprocessor SMC systems, coherence problems can arise between the cache
and the SMC, between two (or more) FIFOs within the SMC, or between either SMC or
cache and main memory in the presence of 1/0O. Possible solutions to these problems are
surveyed in Section 7.6. These range from hardware-based snooping schemes, to
combination schemes that provide hardware support (e.g., in the form of programmable
caches) for compiler-managed coherencdata-specific optimizatioridin94] that select

appropriate code to execute based on run-time analysis.

Enforcing coherence Igely in software is usually cheaper to implement, and fits in
well with the general RISC philosophy of moving complexity to software, keeping
hardware simple in order to make it fast. In our opinion, minimal hardware support for
coherence includes cache-management instructions sutyaédateandpost as well as
the analogous SMC operations to discard the contents of a read-FIFO and force the flushing

of a write-FIFO.

Multiprocessor SMC systems must not only enforce coherence within each
processing node, but they must also provide some mechanism to maintain coherence
among the dferent processors’ local memories and global, shared meiloeyfirst of

these is easily addressed, for the same techniques used to provide coherence on single-
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processor systems can be applied to each node of a multiprocessor system. Maintaining

coherence among the separate processing nodes is more difficult, however.

There are two aspects to the shared-memory multiprocessor coherence problem: the
model of the memory system presented to the prograpameérthe mechanism by which
the system maintains coherence among the levels of the shared memory hierarchy (e.g.
cache, SMC FIFO bidrs, and main memory). The first of these, the memory consistency
model, defines the order of writes tofeient objects from the point of view of each of the
processors, whereas the second, the coherence mechanism, ensures that all processors see

all of the writes to a specific object in the same logical order [Lil93].

8.1.1 Memory Consistency Models

The systens memory consistency model defines the progransmeew of the time
ordering of events (read, write, and synchronization operations) that occurfererdif
processors. The fewer assurances the system makes with respect to the order of events, the
greater the potential overlap of operations within the same processor and arfevegtdif
processors [Lil93]. Exploiting this potential concurrency can increase system performance

[Gha91,Gup91,Tor90,Zuc9?2].

Thesequentiabonsistency model requires that all memory operations are executed
in the order defined by the program, and that each access to the shared memory must
complete before the next shared-memory access can begin [Lil93]. In other words, the
execution of the parallel program must appear as some interleaving of the execution of the
parallel processes on a sequential machine [Lam79]. Stlieg odering of memory

accesses severely limits the allowable overlap of memory operations.

Other memory consistency models, suclp@asessor consistendha90,Gha9l,
Go091],weak odering [Adv90,Dub86,Dub88], andelease consistendZar91,Gha90],

allow a greater overlap of memory reads and writes. The processor consistency model
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ensures that the writes executed by a processor are observed by the other processors in the
same order in which they were issued. In other words, a multiprocespmcessor
consistenif the result of any execution is the same as if the operations of each individual

processor appeared in the sequential order specified by its program [Go091].

The weak-ordering consistency model [Dub86,Dub88] relaxes the guaranteed
ordering of events of the sequential and processor consistency models such that only
memory accesses to programedefined synchronization variables are guaranteed to occur
in a “sequentially consistent” ordefAccesses to other shared variables between these
synchpnization point€an occur in any arbitrary ord&ach processor must guarantee that
all of its outstanding shared-memory accesses complete before it issues a synchronization

operation [Lil93].

The release consistency model [Gha90] weakens the ordering constraints on

synchronization variables by splitting the synchronization operation into sepagaliee
andreleaseoperations. In order to obtain exclusive access to some shared-memory object,
a processor executes an acquire operation. When exclusive access to the object is no longer
needed, the processor executes a release operation. The processor must wait for all its
shared-memory accesses to complete before issuing the release, thereby ensuring that all
changes the processor made to the object are performed before exclusive access is
surrendered. This splitting of the synchronization operation into two separate phases allows

an even greater overlap of memory operations by all processors.

8.1.2 Coherence Mechanisms
The coherence mechanisms that implement these memory consistency models fall into two
general categories: snooping schemes [Arc86,G0083,Kat85,Tha87], and directory-based

schemes [Aga88,Cen78,Cha91l,Len90,0Kr90]. The best solution for a given system
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depends on several factors, including the number of processors, the anticipated workloads,

the desired memory consistency model, and the desired system cost.

8.1.2.1 Snooping

As noted in Section 7.6, snooping coherence mechanisms require that each processor
monitor all transactions to the shared memeither invalidating or updating its copy
whenever it detects a memory reference to an object that has been copied into its local
memory Since the interconnection (typically a shared bus) generally broadcastethe ef

of a write operation immediatelythese snooping coherence mechanisms usually

implement a strongly ordered consistency model.

The shared bus can become a severe bottleneck. Proposed solutions increase the
number of buses and use more elaborate interconnection strategies [Arc88,GI8388,W
but any snooping scheme is ultimately limited by contention for the shared interconnect.
This limits the use of this class of coherence schemes to small-scale multiprocessor

systems.

Since the multiprocessor SMC systems we consider here contain only a modest
number of processors, it may be feasible to implement a snooping coherence mechanism,
but the expense of implementing such a solution may not be justified. For instanuos, it’
clear that a strong-ordering memory consistency model is necessary for these systems. A
considerable disadvantage is that snooping requires that coherence be maintained at a fine
data granularityin this case the size of a FIFO entdf course, the impact on cache and
SMC access time must be taken into account. Simulation performance studies using precise
hardware models and realistic workloads should be conducted to assess the cost-

effectiveness of any proposed snooping scheme.
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8.1.2.2 Directories

Directory-based coherence schemes tend to scale better than snooping schemes,
and they der more flexibility in the choice of memory model presented to the programmer
Directory-based approaches require a processor to communicate with a common directory
whenever the CPWY’actions may cause an inconsistency between its local memory and
those of other processors or the global shared memory [Cen78]. The directory maintains
information about which processors have a copy of which objects. Before a processor can
write to an object, it must request exclusive access from the directory. The directory sends
messages to all processors with a local copy of the object, forcing them to invalidate their
copies. When all processors with copies have returned acknowledgments, the directory
grants exclusive access to the writing proceds&ewise, if a processor tries to read an
object to which another processor has exclusive access, the directory sends a message to
the writing processor instructing it to write the new value back to global mewibey
receiving the new value, the directory sends a copy to the requesting (reading) processor

[Lil93].

Directory schemes dér in the granularity of the objects for which coherence is
maintained, the amount of information they maintain about shared objects, where that
information is stored, and whether copies are invalidated or updated when thesobject’
value changes. If the directory waits for invalidation and write-back acknowledgments
before letting a writing processor proceed, it implements a strongly ordered consistency
model. Weak ordering can be implemented by delaying a writing processor only when it
accesses a synchronization variable. The processor must ensure that it has received
acknowledgments from the directory for all its writes to shared-data objects before it

proceeds past a synchronization point [Lil93].

These schemes alsofdif in the extent of the role software plays in maintaining

coherence: some schemes rely entirely on hardware [Aga88,Arc85], whereas others use
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minimal hardware and move many of the responsibilities to software. Systems that
implement coherent shared memory through a combination of hardware and software
mechanisms includsoftware-extende@nd compiler-assistednechanismls. Software-
extended schemes provide limited hardware support and trap to software handlers when
necessary [Cha94,Hil93]. Since most data blocks in a shared memory system are shared by
a small number of processors [Aga88h89], a limited hardware pointer scheme is

sufficient for tracking copies of shared data blocks in most cases.

Compilerassisted mechanisms rely on the compiler to reduce the coherence
overhead, either by telling the directory hardware which type of coherence action tol
perform for a given reference, or by decreasing the number of coherence actions generated
by the program. For instance, Nguyen et al. [Ngu94] present a compile-time optimization
that selects updating, invalidating, or neither for each write reference in a program. This
adaptive coherence enforcement mechanism frequently results in less total netfork traf

than hardware-only mechanisms.

Li, Mounes-Dussi, Lilja, and Nguyen combine hardware directory-based schemes
with static program analysis to mark write references that are eligible to bypass the
invalidation process [LiZ93,LiM94]. Their results suggest that this reference marking can
reduce invalidation requests significantlgspecially when combined with locality-

preserving task partitioning and scheduling.

A third type of compiler assistance involves generating multiple versions of a piece
of code at compile-time, as in Jinturkar[Jin94] data-specific optimizations, and
dynamically selecting the appropriate one to execute. This approach could be used to
determine at run-time whether a vector is shared (whether or not coherence actions are
necessary at all) and to select an appropriate course of action. As discussed in Section 7.6,
it can also be used to detect potential problems with-prredural aliasing — that is,

when more than one variable can refer to the same location in memory.
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It seems likely that some form of hardware directory mechanism with software
support would be appropriate and codicefnt for modest-size, shared-memory
multiprocessor SMC systems. It may be feasible to enforce coherence on blocks of stream
data up to the size of DRAM pages. Using géargranularity decreases the number of
coherence messages required during a computation. The results of Li, Mousss-dnd
Lilja [LiZ93,LiM94], Nguyen et al. [Ngu94] and Jinturkar [Jin94] suggest that much of the
responsibility for maintaining consistency can be moved to the compdethat the
accompanying hardware mechanisms can be made as simple and fast as possible. The
compiler’s knowledge of stream access patterns should make it easier to generate efficient
code to maintain coherence. Coherence schemes that rely on program annotations to

improve efficiency [Hil94] may also prove useful for SMC systems.

8.2 Virtual Memory

Most modern computers perform multiprogramming: they run several processes
concurrently letting each one take turns using the CPU for small intervals of time. Each
process typically has a very dgraddress space, of which it only uses small portions at any
one time Virtual memoryis an eficient means of sharing a smallphysical address space
among several concurrently active processes: physical memory is divided into blocks, or
pages(virtual memory pages should not be confused with DRAM pages), and allocated to
the diferent processes. The operating system typically ugesga tableto map each
virtual addressissued by the program to the correspongimgsical addessof the memory

system.

Most computer systems provide hardware support foattdsess translatiorn the
form of a small cache for recently used page table entries; this cache is commonly referred
to as aranslation-lookaside buffeor TLB. When a virtual address is referenced but the
corresponding translation information is not present in the TLB,Bamissoccurs. This

mapping information must be supplied (from the page table) before the process can
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continue. The TLB can be considered another component of the memory hicSancnal
modern architectures (including the MIPS R2000/3000 [Kan92], the DEC Alpha [Dig92],
and the HP R-RISC) handle TLB misses in software [Bal94]. This makes the hardware
simpler and the operating system more flexible, but it also increases the penalty for a TLB
miss. When valid mapping information for a particular virtual memory page is not present

in the page table, @age faultoccurs.

SMC systems introduce a new problem with respect to the implementation of
virtual memory: as the MSU prefetches data, it must translate virtual addresses to physical
addresses, and in doing so it may generate TLB misses or virtual memory page faults. The
processor is no longer the only source of page faults. This same problem arises for other
kinds of hardware that prefetch data or perform speculative execution, but the SMC case

differs in that:

- information about the CPW’future access pattern is known, and thus SMC

prefetches are ngpeculativeand

- prefetching is performed on a large scale.

The first of these diérences ensures that prefetched data will always be consumed
by the CPU (assuming that the program completes normallyné&d not wait until the
processor references the faulting address to take the exception, since servicing the fault
early cannot possibly map unnecessary data paggsitier with the second téfence,
this makes it possible to perform translation ogéablocks of data at a time. For instance,
the number of translations that must be performed may be minimized through the use of
superpagescontiguous sets of virtual memory pages such that each set is treated as a unit.
Several recent microprocessor architectures support superpages, including the MIPS

R4x00 [Kan92], DEC Alpha [Dig92], $fRC, PowerPC, ARM, and HRPAFRISC [Tal94].

1. Superpages are restricted to being a power of 2 times the base page size, and must be aligned
(with respect to its size) in both the virtual and physical address spaces [Tal94].
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Two possible approaches to virtual memory in SMC systems are to provide no
special support for address translation within the SMC, or to equip the SMC with circuitry
to manage this problem (in the latter case, the SMC would need the same kind of access

that the cache has to the TLB and other address translation hardware).

With respect to the first option, it is nwcessaryor the SMC to support page faults
at all. For instance, the operating system could instead provide a routine to allocate or map
(and “lock down”) a certain number of virtual memory pages. The compiler would then
strip-mine inner loops such that the data accesses within each tiled loop do not extend
beyond the pages allocated by this system call (which would presumably be executed
immediately prior to entering that loop). A similar routine would indicate when the pages
could be “unlocked”. Programs not adhering to this protocol would be incorrect by

definition.

Alternatively if we support page faults in hardware within the SMC, we must
decide when we will allow these faults to occAis noted above, it is not necessary to
perform translation on every virtual address referenced, as is commonly done within the
CPU. A better strategy would be to perform address translation only on page (or superpage)
boundaries. This allows the SMC to amortize virtual memory overhead costs over many
accesses, just as it does with DRAM page miss costs. Again, it may be desirable to allow a

program to lock a set of pages in memory for the duration of their use.

8.3 Context Switching
When a CPU interrupts the current process to begin running another, it perfoontex
switch The current state must be saved so that the process may be resumaddater

saved state of the new process must be restored before it can begin running.

Like all high-performance schemes, the additional hardware in SMC systems

introduces a potentially lge amount of state per process. If the SMC is only used by one
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process at a time, then there is no need to save its state when the operating system switches

contexts. If the SMC is shared, though, then the two main issues to address are:

- How much state should be (or must be) saved? and

- When should (must) it be saved?

One extreme solution is simply to discard data in read FIFOs, since it can be
refetched the next time the process runs. It may not be necessary for the operating system
to implement precise interrupts for context switch€ontinuing for up to 1000 cycles or
more may make an imperceptiblefdience in a usé& observations of system response. If
it is permissible to continue executing the process for some number of cycles beyond when
the interrupt occurs, other strategies become possible. For instance, the SMC could be
instructed to stop prefetching stream operands, but execution of the process could continue

until at least one of the read FIFOs is drained.

Data in write FIFOs must be flushed to memory before the new process begins
running. The flushing of the write FIFOs could be overlapped with the loading of the new
process context, as long as the entire SBU state is saved before a new process tries to
access the SMC (or shared data that was previously in the SMC). Alternathesdpw
write buffers could be added to hold the data being flushed, allowing the new process to use
the SMC sooneiWhether or not the expense of such a scheme would be justified is an open
guestion. Of course, the state of each FIFO (current address, operand count remaining,

stride) must be saved as well.

Another interesting question is whether the SMC can be profitably used for saving
and restoring contexts. The same SMC commands needed for maintaining memory

consistency — i.e., for invalidating the contents of a read FIFO or forcing a write FIFO to

1. We distinguish betweeénterrupts such as those generated by a timer or DMA fanltis, which
must be repaired for execution to continue.
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be flushed to memoras described in Section 8.1 — can be used by the operating system

to manage the SMC when switching contexts.

8.4 Summary

In this chapter we touched on issues of data coherence, virtual memory management, and
context switching as they relate to SMC systems. Although comprehensive solutions to
these are beyond the scope of this dissertation, we have outlined a number of possible
approaches. Choosing the appropriate solutions for a particular system and its intended
workloads requires detailed and accurate system simulation and analysis; the cost/
performance tradefs involved with each proposed solution must be evaluated. Finaly
strongly recommend that the mechanisms to address these problems be designed together
— both hardware and software — in order to minimize the overall complexity of the

resulting system and to ensure that the different mechanisms work well together.



“One must have a good memory to be able to keep tmipes one makes.”

— Friedrich Wilhelm Nietzsche

Chapter 9

Conclusions

Processor speeds are increasing much faster than memory speeds, and thus memory
bandwidth is rapidly becoming the limiting performance factor for many applications. This

dissertation has presented a partial solution to the growing memory bandwidth problem.

We have proposed and analyzed a method for designing a computer memory
subsystem to maximize memory performance for streaming computations. Our technique
is practical to implement, exploiting existing compiler technology and requiring only a
modest amount of special-purpose hardware. Our solution — the Stream Memory
Controller or SMC — reorders memory accesses dynamically at run-time to overcome a

problem not addressed by traditional techniques.

Here we have explored dynamic access ordering within the context of memory
systems composed of fast page-mode DRAMS, but the technique may be applied to other
memory systems, as well. In addition to taking advantage of memory component features
(for those devices that have non-uniform access times), prefetching read operands, and

buffering writes, the SMC provides the same functionality as the conflict-avoidance
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hardware used in many vector computers (in fact, the SMC is more general, delivering
good performance under a wider variety of circumstances). Furthermore, the SMC can
achieve vectolike memory performance for streamed computations whose data

recurrences prevent vectorization.

We have demonstrated the viability anfitefiveness of this approach by exploring
the SMC design space through functional simulation and mathematical anaky$iavev
shown how the uniprocessor solution can be extended to modest-size symmetric
multiprocessors, and have addressed issues of obtaining good performance. The design of
SMC systems with a greater number of processors and distributed shared memory presents

an interesting topic for future research.

Our results indicate that for long-vector computations, the SMC represents a
significant improvement over non-SMC systems, including those that employ traditional
caching. Furthermore, the SMC is scalable: even for gelmumber of banks (we
investigate systems with up to eight times as many memory banks as processors), the SMC
can deliver nearly 100% of the system bandwidth. For our set of benchmark kernels, we
observe speedups by factors of 2 to 23 over systems that issue non-caching loads and stores
in the natural order of the computation. Thegéarspeedups occur for systems with a
greater number of interleaved banks, indicating that the SMC can effectively exploit more
of the memory systemm’available concurrency than can non-SMC systems. In addition, the
SMC will continue to deliver good performance as memory technology evolves and the

disparity between fast and slow access times increases.

The dynamic access ordering hardware proposed here is both feasibliceard ef
to implement: a prototype uniprocessor implementation has been fabricated, and initial
tests suggest that it meets its performance specifications. The SMC neither increases the
processos cycle time nor lengthens the path to memory for non-stream accesses. The

hardware complexity is a function of the number and size of the streaf@rsbuf
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(implemented as FIFOs) and SMC placement (whether or not it is integrated into the
processor chip). The current version uses about 70,000 transistors and features 4 moderate-
size FIFOs; this is a relatively modest number of transistors when compared to the 3-10
million used in current microprocessors. SMC complexity is expected to scale linearly with
increasing FIFO depth. Although this author contributed to the architectural design, the
hardware development is not part of this dissertation research; the implementation is the
work of a team of researchers in the Electrical Engineering and Computer Science

departments at the University of Virginia.

Several conclusions from these results were a surprise to us. First, FIFO depth must
be tailored to the parameters of a particular computation. Long-vector computations benefit
from very deep FIFOs, whereas computations on shorter streams require shallower FIFOs.
We have presented methods that compilers can use to calculate an appropriate FIFO depth
for a particular computation on a given system. Second, the way in which a problem is
partitioned for a multiprocessor system can have a significhett @n memory system
performance. Better feictive bandwidth is obtained when processors share the same
working set of DRAM pages. Finallyn many cases (particularly for uniprocessor SMC
systems), a relatively naive access-ordering policy performs competitively with a more
sophisticated heuristic, and the programmer or compiler can often arrange to avoid the

situations in which the simpler policy would perform poorly.

We have examined many dynamic ordering policies, and have evaluated their
performance with respect to the bounds on attainable bandwidth for a given computation
and system. Our simulation studies indicate that many of these policies perform well in
practice, but they are heuristics: we have not formulated an optimal ordering algorithm.
Although we suspect that such an algorithm (or algorithms) would be impractical to
implement due to the complexity of the required hardware, it (they) would nonetheless be

interesting to derive. In addition, investigating the applicability of our ordering policies to
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other problem domains, such as the inventory management systems studied in the field of

Operations Research, might prove a fruitful direction for future research.

Although dynamic access ordering has been shown to be hifgndyiet for dense-
vector computations, it does not solve the memory bandwidth problem for computations
exhibiting irregular, “random” access patterns — for instance, our simulation experiments
for sparse-matrix access patterns indicate that better performance can be obtained without
using the SMC. Such computations also pose a problem for traditional approaches to the
memory bandwidth problem. The design of a memory system to bridge the processor
memory performance gap for this class of computations remains an important area of

research.

Adding cache to the memory hierarchy heralded great improvements in memory
system performance, and cache hit rates of over 98% are common for many applications.
Even though caching captures most memory references for the parts of programs with
spatial and temporal localjtif cannot catch them all. Of the reference patterns that do not
benefit from caching, the majority arise from streaming computations; dynamic access
ordering therefore represents an important second step toward designing memory
hierarchies to bridge the processoemory performance gap. A system integrating
intelligent caching with a dynamic access ordering mechanism such as the Stream Memory

Controller can exploit nearly the full bandwidth the memory system has to offer.



Appendix A

Access Ordering Source

This appendix contains the source code used to conduct the access ordering experiments
described in Chapt@. The drivers for each of the three access-ordering subroutines are
nearly identical, but each is included to avoid confusion. Each program was compiled and
run on a single node of the iPSC/860 at Oak Ridge National Labs. Access to this machine
was provided by the Joint Institute for Computer Science (JICS) at the University of

Tennessee, Knoxville.

These programs output their resultdéRFLDs, or millions of floating point loads
per second. d calculate the average number of cycles per access, divide the clock rate (in
this case 40MHz) by the MPFLD values. Peak memory bandwidth corresponds to a

memory operation every 2 cycles.
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/* naive.c */
#include <stdio.h>

#define Scale 1000000.0
#define Maxdim 0x10000
#define Reps 100
#define Cachesize 1024

double flush[Cachesize],
X[Maxdim];
extern double dclock();
extern void smflush(double?*),
naive(int, double*);

main()
{ . .
inti,
n,
ops;
double tbegin,
tclock,
dummy,
tend,
mflds,
total;

printf("veclen\tmflds\n
tbegin = dclock();

\n");
[* approximate dclock() overhead, */

for (i=0; i <Reps; i++){ /*loop overhead, etc. */

dummy = dclock();

tclock = dclock() - tbegin;

for (n = 16; n <= Maxdim; n *= 2) {

total = 0.0;

for (i=0; i < Reps; i++) {

smflush(flush);

tbegin = dclock();

naive(n, x);

tend = dclock();

total += (tend - tbegin);

}

total -= tclock;
ops = n * Reps;

mflds = (double) ops / (double) (total * Scale);
printf("%d\t%2.7f\n", n, mflds);
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1
1

file “smflush.s”

[/l void smflush(double flush[])

1
1
1
1
1
1
1
1

173

This routine attempts to perform a complete cache flush
(adapted from Steve Moyer)

flush[] must be at least 1024 elements in length
(it gets loaded 20x to try to “outsmart” the 2-way,
set-associative cache’s random replacement strategy)

flush
reps

_decr

line
_fptr
text
.align
smflush_::
smflush::

adds
adds
adds

.outer:

adds
bla
subs

.inner:

bla
fld.d

adds

btne

.exit:

bri
nop

=rl6
=rl7
=r18
=rl19

=r20

=r21

8

20,r0,_reps
-4,r0,_decr
32,10, line

1020,r0,_i
_decr,_i,.inner
r1e, line,_fptr

_decr,_i,.inner
_line(_fptr)++,f0

-1, _reps,_reps

0,_reps,.outer

rl

/I _reps = outer loop count
/I _decr=innerloop decrement
/I _line =flush addrincrement

/I _i=inner loop count
/l'init LCC
/I _fptr = &flush[-4]

/I load next cache line
/I decr outer loop count
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file “load_fld.s”

1

[/l void naive(int n, double x[]);

174

1
I This routine reads the vector x[] using caching load
I instructions.
1
n =rl6 /l int n (parameter)
X =rl7 /I double x[] (parameter)
text
.align8
_naive_
_naive::
fst.q f4,-16(sp)++ I/l push fp regs on stack
adds -4,r0,r18
adds rl8, n, n In-4
bla r18, n,.loop
addu -16, X, _x
Jloop:
fld.q 16(_x)++,f4
bla r18, n,.loop
fld.q 16(_x)++,f8
.exit:
fld.q 0(sp),f4 /I pop fp registers
bri rl /I return
adds 16,sp,sp
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[* stream.c */
#include <stdio.h>

#define Scale 1000000.0
#define Maxdim 0x10000
#define Reps 100
#define Cachesize 1024

double flush[Cachesize],
Im[Cachesize],
x[Maxdim];
extern double dclock();
extern void smflush(double *),
alloc_cache(double *),

/*to flush cache before each exp. */
/* local memory (cache alloc’d) */

stream(int, double *, double *);

main()
{ . .
inti,
n,
ops;
double tbegin,
tclock,
dummy,
tend,
mflds,
total;

[* time at beginning of trial */
/* loop & clock overhead time */
[* for throwaway clock values */
/* time at end of trial */
/* millions of fp loads / sec */
/* running sum of trial times */

printf("veclen\tmflds\n
tbegin = dclock();

\n");

[* approximate dclock() overhead, */

for (i=0; i <Reps; i++) { /*loop overhead, etc. */

dummy = dclock();
}
tclock = dclock() - tbegin;
for (n = 16; n <= Maxdim; n *= 2) {
total = 0.0;
for (i=0; i < Reps; i++) {
smflush(flush);
alloc_cache(Im);
tbegin = dclock();
stream(n, x, Im);
tend = dclock();

[* try to flush cache */
/* allocate local memory */

[* stream vector x[] */

total += (tend - tbegin);

}

total -= tclock;
ops = n * Reps;
mflds = (double) ops

/* number of loads issued */
/* millions of fp loads/sec */

/ (double) (total * Scale);
printf("%d\t%2.7f\n", n, mflds);
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f

1
1
1
1
1
1
1
1
1
1
1
1

ile “alloc_cache.s”

void alloc_cache(double Im[1024]);

This routine allocates an array of “local memory”
in cache.

the XR cache is 128 sets by 32 byte-lines

it's 2-way set associative, but since replacement
is pseudorandom (and we have no control over it)
we only want to use 1/2 the cache, in order to
guarantee reasonable performance

_Im =rl6 /I beginning of local mem
_reps =rl7 //'loop counter (outer)
_line =r18 /I sizeof(cacheline) (32 bytes)
_decr =r19 // loop decrement
_Imp =r20 // pointer into local mem
text
.align8
_alloc_cache_::
_alloc_cache::
adds 32,10, line /I cache inc == linesize
adds -4,r0,_decr
adds 508,r0,_reps /I reps = 512 total lines
bla _decr,_reps,.loop // setLCC
subs _Im,_line,_Imp /I _Imp = &Im[-4]
Jloop:
bla _decr,_reps,.loop
fid.d _line(_Imp)++,f0  // load cache line
bri rl /I return

adds 16,sp,sp
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file “load_streaml.s”

1

[/l void stream(int n, double x[], double Im[]);

1

I This routine loads (pipelined) the vector x][] into
I local (cache) memory and reads it from there
1
I the following restriction applies:
I n>=8,n%8 =0
1
n =rl6 /l int n (parameter)
X =rl7 /I double x[] (parameter)
_Im =rl8
i =rl9 [/l loop counter (inner)
_dbl =r20 /I sizeof(double) (8 bytes)
_line =r21 /I sizeof(cacheline) (32 bytes)
_decr =r22 // loop decrement
-m =r23 /[ iteration count
_quad =r24 /I sizeof(quadword) (16 bytes)
_Xp =r25 /I pointer into X[]
_reps =r30 //'loop counter (outer)
_Imp =1r31 // pointer into local mem
text
.align8
_Stream_::
_Stream::
fst.q f0,-64(sp)++ I/l push fp regs on stack
fst.q f4,16(sp)
fst.q 8,32(sp)
fst.q f12,48(sp)

/l assume we’re give good params for now . . .

adds 8,r0, _dbl
subs _X,_dbl,_xp

1
/[ streaming loops:
1

or _n,r0,_m
.outer:

adds -1024, m,r0

bnc.t .pre

or 1024,r0,_reps

or _m,r0,_reps

I set up pipeline
.pre:
pfld.d _dbl(_xp)++,f0

/I inc = sizeof(double)
Il _xp = &x[-1] (Xin)

// outer loop reps = N

/l set CC (m - 1024 < 07?)
/l'if m >=1024

/l do inner loop 1024 times
/I else do remaining reps

/I load x0
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or -8,r0,_decr // loop decrement
pfld.d _dbl(_xp)++,f0 /' load x1
adds -16,_reps,_i Il reps -= 16 (2 * decr)
pfld.d _dbl(_xp)++,f0 /' load x2
or 16,r0,_quad /I cache inc = sizeof(quad)
pfld.d _dbl(_xp)++,f4 /I X0 & load x3
subs _Im,_quad,_Imp /I _Imp = &Im[-2]
pfld.d _dbl(_xp)++,f6 Il x1 & load x4
nop
pfld.d _dbl(_xp)++,f8 Il X2 & load x5
bla _decr,_i,.stream //setLCC
pfld.d _dbl(_xp)++,f10  // x3 & load x6
I note: x_0 denotes x[0] for next iteration
I 8 elements of x[] get loaded each iteration of .stream loop
.Stream: /I LCC branch label
fst.q f4,_quad(_Ilmp)++ // store f4, f6 (xO, x1)
pfld.d _dbl(_xp)++,f12 /[ x4 & load x7
nop Il pause
pfld.d _dbl(_xp)++,f14 /I x5 &load x_0
fst.q f8,_quad(_Imp)++ // store f8, f10 (x2, x3)
pfld.d _dbl(_xp)++,f16  // x6 & load x_1
nop Il pause
pfld.d _dbl(_xp)++,f18 /[ X7 &x_2
fst.q f12,_quad(_Imp)++ // store f12, f14 (x4, x5)
pfld.d _dbl(_xp)++,f4 /' x_0 & load x_3
nop Il pause
pfld.d _dbl(_xp)++,f6 /I'x_1 &load x_4
fst.q f16,_quad(_Imp)++ // store f16, f18 (x6, x7)
pfld.d _dbl(_xp)++,f8 /' x_2 & load x_5
bla _decr,_i,.stream // loop back
pfld.d _dbl(_xp)++,f10  //x_3 & load x_6
.post:
fst.q f4,_quad(_Ilmp)++ // store 4, f6 (xO, x1)
pfld.d _dbl(_xp)++,f12 /[ x4 & load x7
nop Il pause
pfld.d ro(_xp),f14 /I x5 & dummy x7
fst.q f8,_quad(_Imp)++ // store f8, f10 (x2, x3)
pfld.d ro(_xp),f16 /I X6 & dummy x7
nop Il pause
pfld.d ro(_xp),f18 Il X7 & dummy x7
fst.q f12,_quad(_Imp)++ // store f12, f14 (x4, x5)
nop
fst.q f16,_quad(_Imp)++ // store f16, f18 (x6, x7)
.etc:
adds _decr,_reps,_i /lreps=n-8
bla _decr,_i,.rdloop //setLCC
subs _Im,_quad,_Imp /I _Imp = &Im[-2]
.rdloop:

fld.q _quad(_Imp)++,f4 /[ unrolled 8
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fld.q _quad(_Imp)++,f8

fld.q _quad(_Imp)++,f12

bla _decr,_i,.rdloop // loop back

fld.q _quad(_Imp)++,f16

adds -1024, m, m /I decrement count

subs ro,_m,r0 /I set CC (m > 07?)

bc .outer I if any reps left to do
.exit:

fld.q 0(sp),fo /I pop fp registers

fld.q 16(sp)++.,f4

fld.q 16(sp)++,f8

fld.q 16(sp)++,f12

bri ri /[ return

adds 16,sp,sp
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/* sao.c */
#include <stdio.h>

#define Scale 1000000.0
#define Maxdim 0x10000
#define Reps 100

#define Cachesize 1024

double flush[Cachesize],
X[Maxdim];

extern double dclock();

extern void smflush(double*),

main()

{

sao(int, double*, int);

inti,
n,
ops;
double tbegin,
tclock,
dummy,
tend,
mflds,
total;

printf("veclen\t\tblksz\tmflds\n

tbegin = dclock();  /* approximate dclock() overhead, */

\n");

for (i=0; i< Reps; i++) { /*loop overhead, etc. */

dummy = dclock();
}
tclock = dclock() - tbegin;
for (n = 16; n <= Maxdim; n *= 2) {
for (b =8; b<1024; b*=2){
total = 0.0;

for (i=0; i < Reps; i++) {

smflush(flush);

tbegin = dclock();

sao(n, X, b);
tend = dclock();

total += (tend - tbegin);

}

total -= tclock;
ops = n * Reps;

mflds = (double) ops / (double) (total * Scale);
printf("%d\t%d\t%2.7f\n", n, b, mflds);
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file “load_sao.s”
1
[/l void sao(int n, double x[], int b);
1

I This routine loads (pipelined) the vector x][] into
I registers (reusing registers to simulate large
I register sets)
1
I assumes:
I 1Dn>=8,n%8=0
1 2)b%8=0
1
n =rl6 I/l int n (parameter) veclen
X =rl7 /I double x[] (parameter)
b =rl8 I/l int b (parameter) blocksize
_reps =rl9 //'loop counter (outer)
i =r20 [/l loop counter (inner)
_dbl =r21 /I sizeof(double) (8 bytes)
_decr =r22 // loop decrement
-m =r23 /[ iteration count
_Xp =r24 /I pointer into X[]
text
.align8
_sao_::
_sao::
fst.q f0,-64(sp)++ I/l push fp regs on stack
fst.q f4,16(sp)
fst.q 8,32(sp)
fst.q f12,48(sp)

/l assume we’re give good params for now . . .

adds 8,r0, _dbl /I inc = sizeof(double)
subs _X,_dbl,_xp Il _xp = &x[-1] (Xin)

1
/[ streaming loops:
1

or _n,r0,_ m // outer loop reps = N
.outer:

subs b, mr0 /[setCC (m-b<0?)

bnc.t .pre /lifm>=Db

or _b,r0,_reps /l do inner loop b times

or _m,r0,_reps /I else do remaining reps
.pre:

pfld.d _dbl(_xp)++,f0 // load x0

or -8,r0,_decr // loop decrement
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.Stream:

.post:

.exit:

pfld.d
adds
pfld.d
nop
pfld.d
nop
pfld.d
nop
pfld.d
bla

pfld.d

nop
pfld.d
nop
pfld.d
nop
pfld.d
nop
pfld.d
nop
pfld.d
nop
pfld.d
nop
pfld.d
bla

pfld.d

nop
pfld.d
nop
pfld.d
nop
pfld.d
subs
pfld.d
subs
bc

fld.q
fld.q
fld.q
fld.q

bri
adds

_dbl(_xp)++,f0

-16,_reps,_i
_dbl(_xp)++,f0
_dbl(_xp)++,f4
_dbl(_xp)++,f6
_dbl(_xp)++,f8

_decr,_i,.stream
_dbl(_xp)++,f10

_dbl(_xp)++,f12
_dbl(_xp)++,f14
_dbl(_xp)++,f16/
_dbl(_xp)++,f18
_dbl(_xp)++,f4
_dbl(_xp)++,f6
_dbl(_xp)++,f8

_decr,_i,.stream
dbl(_xp)++,f10

_dbl(_xp)++,f12
ro(_xp),f14

ro(_xp),f16
b, m, m

ro(_xp),f18
ro,_m,r0
.outer

0(sp),fo
16(sp)++.,f4
16(sp)++,f8
16(sp)++,f12

ri
16,sp,sp

/l'load x1
Il reps -= 16 (2 * decr)
Il load x2

/I X0 & load x3
/I x1 & load x4

/I X2 & load x5
/l set LCC
/I X3 & load x6

/I LCC branch label

Il x4 & load x7
Il pause
/I x5 & load x_0
Il pause
/x6 &load x_1
Il pause
/I X7 & x_2
Il pause
/I'x_ 0&load x_3
Il pause
/I'x_ 1&load x_4
Il pause
/I'x_ 2 &load x_5
/l'loop back
/I'x_3 &load x_6

Il x4 & load x7

Il pause
/I x5 & dummy x7

Il pause
/I X6 & dummy x7

/I decrement count
Il X7 & dummy x7
/I set CC (m > 07?)

I if any reps left to do

/I pop fp registers

/] return
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