
A

Presented to
the faculty of the School of Engineering and Applied Science

University of Virginia

in partial fulfillment
of the requirements for the degree

by

Interpretable Monitoring for Self and Socially Aware Mobile
Robot Planning

Dissertation

Doctor of Philosophy

Rahul Peddi

December 2022

APPROVAL SHEET

This

is submitted in partial fulfillment of the requirements
for the degree of

Author:

Advisor:

Advisor:

Committee Member:

Committee Member:

Committee Member:

Committee Member:

Committee Member:

Committee Member:

Accepted for the School of Engineering and Applied Science:

Jennifer L. West, School of Engineering and Applied Science

Dissertation

Doctor of Philosophy

Rahul Peddi

This Dissertation has been read and approved by the examing committee:

Nicola Bezzo

Tariq Iqbal

Madhur Behl

Arsalan Heydarian

Tomonari Furukawa

December 2022

© 2022 Rahul Peddi

i

Interpretable Monitoring for Self and Socially

Aware Mobile Robot Planning

by

Rahul Peddi

B.S., Mechanical and Nuclear Engineering, Virginia Commonwealth

University, 2017

Abstract

Autonomous mobile robots (AMR) are rapidly being introduced into our world in transportation,

delivery, medical service, agriculture, and household applications. Their ability to reduce the burden

on humans has made them viable and increasingly popular sources of productivity, but with their

increased presence in our society, assuring that they behave in socially acceptable and safe ways is

critical to their widespread integration and success. However, in many real-world applications, these

robotic systems are subject to various uncertainties from different sources, such as the presence

of dynamic actors like humans and other robots, or the presence of external disturbances and

sensing/actuation faults. These uncertainties bring challenges to motion planning as they can cause

the robot to behave in strange and unnatural ways, deviating away from their desired behaviors,

towards humans, and potentially into unsafe situations. Many of these uncertainties appear during

robot operations, and robots typically use reactive motion planners, which may not be agile enough

to keep the system or its environment safe. More recently, robot planning has been achieved through

learning-based methods, which may have proactive components, but these approaches use black

boxes, making it challenging to understand why and how robots make certain decisions, which is

critical to gain trust and fully integrate robots into our shared world.

ii

This dissertation presents a set of proactive motion planning frameworks that promote social

awareness and safety for autonomous mobile robots operating under uncertainties. The frameworks

we develop monitor the future states of mobile robots and the nature of future interactions between

robots and dynamic actors to improve and refine motion planning accordingly to a given scenario;

whether it is a social navigation case study in which the robot must safely navigate in the presence

of multiple humans, or if uncertainties are coming from different sources like sensing/actuation

faults.

First, we introduce a Hidden Markov Model (HMM)-based predictive model that adds to

traditional prediction methods by accounting for uncertainties in predictions to plan proactive

motion for a robot in the presence of multiple humans. Explicit predictions, however, can be

restrictive in environments with multiple actors. To address this challenge, we reduce the problem to

a binary classification through the design of a Decision Tree (DT)-based interpretable monitor that

is used to predict and explain future interactions with dynamic actors for proactive non-interfering

motion planning. We further extend this monitoring approach to adapt and improve on the failure

modes of a baseline reactive motion planner, while also re-integrating HMM principles to enable

fast runtime updating, so that predictions and planning can improve as operations continue. To

extend our work to handle highly dynamic and dense environments, we leverage the idea of attention

within human-human interactions and design a deep neural network (DNN) based approach that

predicts which actors are most important to consider as constraints within the framework of a model

predictive controller (MPC). Finally, we show that the approaches presented in our work can extend

beyond the social navigation case study, through work in recovery from failures for a robot under

decision uncertainties. The techniques presented in this dissertation are validated through extensive

simulations and experiment case studies with real unmanned ground and aerial vehicles navigating

in the presence of humans.

“Everyone you will ever meet knows something you don’t”

– Bill Nye (The Science Guy)

iii

Acknowledgements

First, I would like to express my deepest gratitude to my advisor, Nicola Bezzo, for his mentorship

and support throughout my time at the University of Virginia. His endless guidance, support,

and encouraging words have helped me become the researcher and thinker that I am today. His

dedication to his students, not only as an advisor but also as a teacher is unmatched, and I’m

thankful that I had the opportunity to teach with him and learn how to teach from him throughout

my graduate studies. I will always be thankful for the five years that I have spent under his guidance.

I would also like to thank my dissertation committee members: Prof. Tariq Iqbal, Prof. Madhur

Behl, Prof. Arsalan Heydarian, and Prof. Tomonari Furukawa for insightful and constructive

feedback about my research as well as their support during my Ph.D. studies.

I would also like to express my gratitude to my friends and colleagues at UVA – Esen, Tony,

Paul, Shijie, Carmelo, Jacob, Phil, Lauren, Nick, Will, Patrick, Pravardhan, Garrett, and Beatrice.

I will forever cherish the conversations, laughs, and wonderful moments we’ve shared. Beyond work,

I would like to thank my closest friends: Shashi, Kern, Vaibhav, Hannah, Ayush, Parth, and Simha

(in no particular order, I promise) for all their support, love, and tolerance over the past few years –

and also for the endlessly distracting, but much-needed group chats. Also, special thanks to those

who did the NYT crossword with me every night for 532 straight days during the pandemic.

I would also like to thank my parents, Srinivas and Anitha, who deserve all the credit for who

I’ve become today; they helped me develop a love for learning, always encouraged me to ask hard

questions, and do my best at anything I do. I thank them and my sister, Sreya, for their persistent

understanding, help, and love over the years. They have always been there for me, whether it’s

sending food and snacks, providing support during my lowest moments, or sharing my joy during

my best moments. I am also grateful to my community and family friends in Richmond – their

words of encouragement, well wishes, and advice (both solicited and unsolicited) go a long way. I

iv

would also like to thank my family in India and in particular, my late grandfather, who is sorely

missed. He always made it a point to call me and provide the best advice whenever I had a new

publication or presentation.

Last but certainly not least, I’d like to thank my partner Talie for always being by my side, and

providing unconditional love and constant support. She is an endless supply of positive energy and

always knows how to turn a bad day around (usually through food). She is my best friend and the

joy of my life, and I thank her for always assuring me that doing my best would be enough, even

when I didn’t believe it.

Funding: I acknowledge the National Science Foundation (NSF) through grants #1816591

and #1823325, and the Defense Advanced Research Projects Agency (DARPA) under Contract

FA8750-18-C-0090.

v

Contents

Contents vi

List of Figures . ix

List of Tables . xiv

List of Abbreviations xv

1 Introduction 1

1.1 Related Work . 4

1.1.1 Traditional Motion Planning for Collision Avoidance 5

1.1.2 Prediction and Motion Planning . 6

1.1.3 Socially Aware Navigation in Dense Crowds 7

1.1.4 Decision-making Under Uncertainties . 8

1.2 Overview of the Research . 9

1.3 Dissertation Organization and Contributions . 10

1.4 Summary of Contributions . 13

2 Data-driven Proactive Intention-Aware Social Planning 15

2.1 Introduction . 15

2.2 Problem Formulation . 17

2.3 Prediction and Planning Framework . 18

2.3.1 HMM-based Training . 18

2.3.2 Online Prediction and Stochastic Reachability 21

2.3.3 Robot Motion Planning . 24

2.3.4 Online Model Updates . 27

2.4 Simulation and Experimental Results . 28

2.4.1 Simulations . 28

2.4.2 Experiments . 31

2.5 Discussion . 36

2.5.1 Limitations and Future Directions . 36

3 Interpretable Runtime Prediction and Planning in Co-Robotic Environments 37

3.1 Introduction . 37

3.2 Problem Formulation . 39

3.3 Methodology . 40

3.3.1 Decision Tree Formulation and Training . 41

3.3.2 Prediction and Explanation . 43

3.3.3 Corrective Counterfactual Analysis . 47

3.3.4 Corrective Planning and Control . 48

vi

3.3.5 Multiple Decision Trees . 49

3.3.6 Online Validation and Updating . 50

3.4 Simulations . 51

3.5 Experiments . 54

3.5.1 MOCAP Experiments . 54

3.5.2 On-Board Sensing Experiment . 55

3.6 Discussion . 56

3.6.1 Limitations and Future Directions . 56

4 Interpretable Adaptation of Virtual Physics-based Planner for Social Navigation 60

4.1 Introduction . 61

4.2 Preliminaries . 62

4.3 Problem Formulation . 64

4.4 Approach . 66

4.4.1 Probability-based Decision Tree Theory . 67

4.4.2 HMM and DT Training . 69

4.4.3 Prediction and Explanation . 71

4.4.4 Counterfactual Analysis and Priority-based Correction 72

4.4.5 Extension to Multiple Actors . 74

4.5 Simulations . 75

4.6 Experiments . 78

4.7 Discussion . 80

4.7.1 Limitations and Future Directions . 80

5 Attention-aware Robot Social Planning 83

5.1 Introduction . 84

5.2 Preliminaries . 86

5.2.1 Robot and Human Dynamic Models . 86

5.2.2 Model Predictive Controller Formulation . 88

5.3 Problem Formulation . 90

5.4 Approach . 91

5.4.1 Training Details . 92

5.4.2 Attention Prediction . 95

5.5 Results . 99

5.5.1 Implementation Details . 99

5.5.2 Simulations . 100

5.6 Discussion . 106

5.6.1 Limitations and Future Directions . 107

6 Interpretable Monitoring and Recovery Under Decision Uncertainties 108

6.1 Introduction . 109

6.2 Problem Formulation . 110

6.3 Approach . 111

6.3.1 Model Predictive Baseline Controller . 113

6.3.2 Decision Tree Detections and Uncertainty Assessment 114

6.3.3 Reachability Analysis and Controller Selection 117

6.4 Results . 119

6.5 Discussion . 125

vii

6.5.1 Limitations and Future Directions . 125

7 Conclusions and Future Directions 127
7.1 Conclusions . 127
7.2 Discussion and Future Directions . 130

viii

List of Figures

1.1 Autonomous mobile robotic systems are used for a variety of operations including

package delivery, transportation systems, commercial applications, and agricultural

purposes. 1

1.2 A reactive motion planner fails to account for the interaction between human and

robot, causing the human to deviate from the desired path. By reasoning about

the future interaction with the human, the robot is able to plan proactive and

accommodating motion. 3

1.3 Overview of the research presented in this dissertation. 9

2.1 Pictorial representation of the motivation behind this work. Our approach computes

temporal stochastic reachable sets and plans motion that proactively accommodates

human intentions. 16

2.2 Block diagram of the HMM-based data-driven intention-aware motion planning . . . 18

2.3 Diagram of 3 states within the Hidden Markov Model (HMM) used our framework . 21

2.4 (a) Set of real trajectories used for the training process in the experiments. (b)

Discretized trajectories according to a grid with cells 0.5m wide. 22

2.5 Stochastic reachable set of a human in the robot’s sensing range. The dotted line

shows the most likely future path for the human. Red markers represent reachable

states, and the color fades temporally along the horizon, with the lightest at t+H.

The probability of reachable states is shown by the size of the markers, which decrease

as probability decreases. 24

2.6 Motion plan prediction example. 27

ix

2.7 Scenarios with a robot (blue markers, black line) navigating to its goal in the presence

of two people (magenta and red markers and lines). The markers fade as time

increases and the actors reach their goals. The distance threshold is 1.5m. 30

2.8 Comparative results of the presented proactive approach and a reactive virtual physics

based approach. The markers become more transparent as time increases. Green

markers represent deviation points and associated times in each case. 32

2.9 Results from two-person experiments. (a) shows the trajectories of the humans and

the robot, while (b) shows the distance maintained between the robot and each

person, and (c) shows the overhead snapshots of these experiments. 33

2.10 (a) A robot with a poorly-trained model fails at detecting the human intention,

moving into the path of the human. However, when observing a similar trajectory,

due to the updating process, the robot predicts and accommodates the correct human

intention by moving to its left (b). 34

2.11 Results from 4 person camera experiment. Fig 2.11(f) shows a first-person view of

the robot when 3 of the 4 people are in the frame. 35

3.1 In our proposed approach, a robot predicts, explains and finds a corrective action to

avoid interfering with an oncoming human. 38

3.2 Block diagram of the presented approach. 40

3.3 Correlation matrix plot of attributes α from simulation data. 42

3.4 Attribute importance as a proportion of total attribute importance. 43

3.5 Training trajectories recorded in a lab environment with a VICON Motion Capture

System. 43

3.6 Example prediction DT. The internal nodes (white squares) of the tree are binary

tests on one of the attributes and the leaf nodes (colored squares) are the class

decisions. The bold path shows the current decision. 46

3.7 Human (red) and robot (blue) trajectories, showing the point (in yellow) at which a

prediction is made. The markers fade as time increases and the actors reach their goals. 46

3.8 Example correction decision tree. Nodes and split criteria only pertain to [vr, ℓ].

The bold path shows the optimal counterfactual Cn∗(t). 47

x

3.9 General example of a Decision Tree Ensemble Model. Two weak learners come

together to form a stronger learner. 49

3.10 Baseline simulation. 52

3.11 Simulation of runtime validation and updating. 53

3.12 Human (red) and robot (blue) paths in a multi-actor simulation 54

3.13 Snapshots and distances of lab experiment. 55

3.14 Experiment showing the effects runtime updates. 57

3.15 Snapshots, trajectories and distances of 2-person lab experiment. 58

3.16 Snapshots and trajectories of 2-person lab experiment. 59

4.1 In our proposed approach, a robot predicts, explains and finds a priority-aware

corrective action on top of a virtual-physics planner to avoid interfering with oncoming

actors . 61

4.2 Examples of VP planner trajectories and repulsive inputs. The trajectories are shown

by blue (robot) and red (actor) markers that fade as time passes. Yellow (robot) and

green (actor) markers represent the goals. 64

4.3 Block diagram of our priority-based interpretable monitoring and planning framework. 66

4.4 Generalized logistic function used to compute P (¬λ). Also shown is the complemen-

tary curve for P (λ) . 68

4.5 Prediction and explanation decision tree T h
p . 72

4.6 Correction decision tree T h
c . 73

4.7 Trajectories and results of robot (cool colors) and actor (warm colors) comparing the

presented approach with different objectives and the standard VP planner without

our approach. Velocities are indicated by the color-bars within the trajectories. . . . 76

4.8 Experiment Training Trajectories. 78

4.9 Ground vehicle experiment trajectories and snapshots of robot (cool colors) and actor

(warm colors) comparing the presented approach with different objectives and the

standard VP planner without our approach. 79

4.10 UAV experiment trajectories, snapshots, and results. 81

xi

5.1 The desired effect of our attentive social planning approach. Only the necessary actors

(colored in purple) are modeled to ensure the robot can find a socially acceptable

path through the environment without interfering with the behaviors of other actors

(in red). 85

5.2 MPC computation times with different numbers of actors included as constraints. . . 90

5.3 Block diagram of our attention-aware crowd navigation approach. 91

5.4 Training robot paths and actor initial positions and directions. 94

5.5 Attentive prediction network architecture . 95

5.6 Diagram of the multi-layer perceptron used in this work to estimate attention predic-

tions in pairwise interactions. In this diagram, the two layers have a different number

of hidden units indicated by the dots in between each node. The output indicates

which actors, if any, need to be modeled in the MPC, indicated by the magenta and

black color of the actors after passing through the network. 96

5.7 Visual example of pair decomposition and re-composition in the proposed approach . 97

5.8 An example of the comparison between the two proposed composition methods. MLP

outputs are shown on the left in a tabular form. The results of the two composition

methods show that Actor 3 is captured when the maximum is taken, but neglected

with the mean. 98

5.9 Training loss of the attention network. 99

5.10 Baseline simulation of attention predictions results in a dense setting. 100

5.11 7 actor scenario considered in this work. The actors are converging towards the

robot’s path and use the social force model to avoid each other and the robot. 101

5.12 Examples of trajectories under different methods. Our approaches perform similarly

to the full attention approach, while no attention causes major deviations. 102

5.13 Maximum recorded actor deviations in the 7 actor simulation. It should be noted

that deviations can occur on account of both robot and other actor behaviors. 103

5.14 Single-iteration computation times of the methods compared in the 7 actor simulation.104

5.15 Deviation assessment over 100 tests of our attention approaches. Deviations are

considered here as a proportion of worst case scenario deviations for each test. . . . 104

5.16 Examples of trajectories in a dense crowd under different methods. 105

xii

5.17 Comparisons of computation times and deviations in dense scenario. 106

6.1 In our proposed approach, an AMR experiencing either of two failures evaluates

decision uncertainties to find the safest way to correct its behaviors, even if it

temporarily compromises performance. 110

6.2 Block diagram of proposed approach. 112

6.3 Examples of robot behaviors under different failures, showing intertwining trajectories

and deviations with different colliding behaviors. 113

6.4 Examples of deviations obtained with different controllers on a particular failure. . . 113

6.5 DT used for initial failure detection. 115

6.6 Examples of local perturbations of different δ for multiple data points (black points). 116

6.7 DT used for initial failure detection. 117

6.8 Examples of reachable sets obtained with different controllers on a particular failure. 118

6.9 Controller selection process flowchart. 120

6.10 Simulation trajectories. 121

6.11 Comparison of decision-making with and without uncertainty assessment and con-

troller validation. 122

6.12 Controller validation results . 122

6.13 Results from simulation of unknown failure. 123

6.14 Snapshots and trajectories for baseline experiments 124

6.15 Trajectories of ellipse experiments. 124

6.16 Results from ellipse experiment. 125

xiii

List of Tables

2.1 Comparative simulation results . 29

4.1 Rewards from T h
r . 74

4.2 Results from comparative simulations. 77

xiv

List of Abbreviations

AMR Autonomous Mobile Robot

DT Decision Tree

DNN Deep Neural Network

HMM Hidden Markov Model

MLP Multi-Layer Perceptron

MPC Model Predictive Control(er)

RA Reachability Analysis

UAV Unmanned Aerial Vehicle

UGV Unmanned Ground Vehicle

xv

Chapter 1

Introduction

Autonomous mobile robots (AMR), such as unmanned ground vehicles (UGV) and unmanned aerial

vehicles (UAV) have become increasingly common in our daily lives: we see autonomous vehicles

and delivery robots around us in major cities [49], we find large service robots performing cleaning

or monitoring tasks in our hospitals and transit stations [73], and even households have started

to accept robots as an integral part of the home through small appliance robots, such as robotic

vacuum cleaners [98]. This is all possible due to technological advancements in robot design, sensing

and perception, and computation, and in fact, using these autonomous robots in many scenarios

has become advantageous over employing human workers or other technologies. Figure 1.1 depicts

some examples of real-world applications of AMRs.

Figure 1.1: Autonomous mobile robotic systems are used for a variety of operations including
package delivery, transportation systems, commercial applications, and agricultural purposes.

Overall, we as a society have begun to rely on these robots to perform tasks that are mundane or

1

dangerous for humans, such as warehouse operations [14], search and rescue operations in dangerous

environments [72], or automated navigation and surveillance [24]. However, in many of these real-

world tasks, robots interact with highly dynamic and uncertain physical environments. Assessing

and overcoming these uncertainties becomes integral for mobile robots to successfully serve their

purpose in the real world.

In this dissertation, the work is primarily focused on how AMRs can generate self and socially

aware motion planning in such highly dynamic environments. We define socially aware motion

planning as robot movement that respects common social norms, such as maintaining a comfortable

distance between actors (human and robot, in our case) and inducing minimal deviations in the

paths of nearby humans. To be successful in such settings, these AMRs must also be self-aware

and proactively plan how they should interact with the humans in the environment. A challenge,

however, is that these interactions carry a high degree of uncertainty, where unexpected human

behaviors might ultimately lead to undesired robot motion and even failures, jeopardizing the robot’s

ability to complete its task. Specifically, robots must handle uncertainties about human intentions,

future interactions the robot may have with nearby humans, and how behaviors of such humans

change over time and in the presence of others. For example, in the motivational Figure 1.2, a robot

navigating in the presence of a person can behave in a reactive way, through which it successfully

avoids collisions, but exhibits strange and unnatural behavior that forces the person to alter their

path, potentially sending robot and human into undesirable or even unsafe states.

On the other hand, people interact and cooperate with one another seamlessly, sharing the

burden of avoiding and accommodating one another. This is because humans not only implicitly

understand others’ intentions and how we will interact with them in the future, but we also implicitly

communicate our intentions by changing our behavior proactively, often well in advance of a possible

collision. If a robot could similarly predict the intentions and future interactions of nearby actors

and plan motion proactively, then it can behave in a more socially acceptable manner, making its

integration into real-world scenarios smoother.

Towards predicting these uncertain interactions between a robot and dynamic actors and planning

robot behaviors, end-to-end learning-based approaches have been shown to be powerful tools [64,

67, 30]. However, these approaches tend to use black-box models throughout the prediction and

planning phases, making it difficult to understand why the robot decides to move in a certain

2

Figure 1.2: A reactive motion planner fails to account for the interaction between human and robot,
causing the human to deviate from the desired path. By reasoning about the future interaction

with the human, the robot is able to plan proactive and accommodating motion.

way. Under uncertainties, this lack of reasoning about robot prediction and planning can lead to

unexpected behaviors or degraded performance, and it can compromise the safety of the robot and

its surroundings. Let us take, for example, the Uber Autonomous Vehicle crash in 2018 [82]. The

vehicle was not certain about the classification of a pedestrian, but made a decision anyway, which

proved to be fatal. If the car were able to at least reason about the uncertainty in its classification,

and include that reasoning in the decision-making process in some manner, the outcome may have

been different. This type of outcome makes it evident that it is critical to design prediction and

planning frameworks that can reason about predictions and associated uncertainties to proactively

prevent unsafe situations, promoting safe robot motion under uncertainties.

Given these challenges, we present a blend of data-driven and model-based methods to efficiently

and effectively handle uncertainties that mobile robots experience in the real world, while enabling

the robots themselves and users of these AMRs to reason about the outcomes of predictions and

planning behaviors for the robot. However, designing such approaches in a way that generalizes well

to many scenarios is challenging as uncertainties can be caused by a number of different factors,

such as the unknown behaviors of moving actors or the presence of sensing and actuation faults

that compromise the robot’s ability to complete its task.

In this dissertation, we provide several frameworks that consider this problem of a robot

navigating in the presence of multiple dynamic actors and reasoning about uncertainties that are

3

attributed to the actors. In addition, there may be uncertainties in decision-making that need

to be taken into account to guarantee that a system can safely operate around humans and in

safety-critical operations. To this end, we show that the methods presented for social navigation via

explainable monitoring can be extended to reason about uncertainties and demonstrate a case study

on assessing prediction uncertainties about external disturbances or sensor and actuator faults that

might be affecting a mobile robot.

With these considerations in mind, the objectives of this work are to solve the following challenges:

• How to predict future intentions of surrounding actors or future states of the system at runtime

to inform proactive and safe uncertainty-aware motion planning.

• How to provide explanations for predictions and directly leverage explanations and reasoning

to plan non-interfering, socially aware motion.

• How to enable robots to learn and model new behaviors of moving actors at runtime in highly

dynamic environments in the presence of multiple moving actors.

• How to adjust predictions and robot behaviors to improve proactive motion planning in the

presence of dense crowds of dynamic actors.

• How to include and account for uncertainties in robot decision-making to provide safe motion

planning in the presence of failures caused by disturbances and faults.

In the rest of this chapter, we review the related work and the state-of-the-art in safe motion

planning in the presence of dynamic actors and under uncertainties. We also overview our approaches

to solve these problems, and lastly, we summarize the contributions of this dissertation.

1.1 Related Work

In this section, we provide an overview of related literature in prediction and motion planning in the

presence of uncertainties. First, we start with a study of traditional motion planning for collision

avoidance techniques, followed by learning-enabled prediction techniques, including interpretable

machine learning for explainable predictions. We then discuss the literature on leveraging predictions

for motion planning algorithms to generate desirable behaviors in the presence of dynamic actors.

4

We also examine the literature on extending such approaches for handling not only dynamic actors,

but dense and highly dynamic crowds. We follow this with an overview of traditional and learning-

enabled techniques used to recover failing robots with decision uncertainties, to connect prediction

and planning to techniques to the general scope of robot motion planning under uncertainties.

1.1.1 Traditional Motion Planning for Collision Avoidance

The problem of motion planning for collision avoidance has been heavily studied in the literature

of mobile robotics to enable safe autonomous navigation in the presence of static and dynamic

obstacles. Traditional collision avoidance techniques include sampling-based and graph search

approaches. The A* search algorithm [21] for graph search has been shown to provide optimal

collision-free paths, but typically relies on a known environment where the positions of obstacles are

known. In some approaches derived from A* [28], including D* [104] and D* Lite [95], unknown

obstacles can be handled, but avoiding dynamic obstacles remains a challenge for graph search-based

approaches. Sampling-based approaches such as the rapidly-exploring random tree (RRT) [59],

which constructs a random tree to find a collision-free path, are used for a broad range of path

planning problems. Extensions of the RRT approach such as RRT* [74] and RRT*-smart [48] have

been leveraged for mobile robot navigation tasks, however, these approaches tend to scale poorly

and can have computational issues when handling multiple dynamic obstacles. The dynamic window

approach (DWA) [36] is another widely-used sampling-based algorithm, in which the search space

is restricted by dynamic feasibility constraints and the position of obstacles, making it viable for

avoiding dynamic obstacles at runtime. We compare some of the work presented in this dissertation

with DWA to further assess its viability in the social navigation case study.

In addition to sampling and graph-based approaches, physics-based approaches, such as velocity

obstacles [34] and artificial potential fields (APF) [53] have also been designed to avoid dynamic

obstacles in the environment. Velocity obstacles and their advancements, reciprocal velocity

obstacles [99, 54] and optimal reciprocal collision avoidance [100], have shown to perform best when

multiple agents are being controlled in the same manner, but do not account for uncertainties and

scale poorly to handling different behaviors of dynamic obstacles [5]. Artificial potential fields are

more flexible without making assumptions about the behaviors of dynamic obstacles, and have been

leveraged for mobile robot navigation in a number of applications [68, 40, 86]. These approaches are

5

very efficient and scale well to handling to multiple obstacles, but do suffer from the local minima

problem, particularly when dynamic obstacles are present in the environment, and a number of

approaches have been proposed to escape said local minima [20, 75]. While such approaches are

efficient and effective, a missing component is the ability to predict the future states of dynamic

obstacles, and leverage these predictions for motion planning.

1.1.2 Prediction and Motion Planning

Most traditional reactive planning methods are not sufficient without some proactive component

that performs predictions about the future states of dynamic obstacles and the robot itself. Several

approaches using graph search and directional rule-based methods [83, 44] have been used to provide

safe motion planning given strict a priori assumptions of actor trajectories based on heading and

velocity. These techniques typically predict or expect dynamic actors to behave in a certain way

and typically do not account for uncertainty and are unable to learn or update the expectations at

runtime, often resulting in “freezing” [97, 90] behaviors when dynamic actors behave differently from

what was expected. Reachability-based and confidence-based approaches [11, 35] rely on simplified

dynamic models to predict human motion to plan safe and proactive motion around dynamic

actors, while updating at runtime its belief about the expected goal of the actors. Reachability

analysis performs well in its representation of uncertainty surrounding dynamic actor motion and

control policy computation, however, it suffers from computational scalability [61], which affects its

applicability in cases with many actors.

Recent developments in machine learning algorithms such as deep neural networks and deep

reinforcement learning have enabled these techniques to be used for avoiding collisions with dynamic

obstacles. The work in learning-enabled prediction involves using neural network architectures to

predict the future positions/paths of dynamic obstacles [47, 67]. Methods such as recurrent neural

networks (RNNs) or long short-term memory networks (LSTMs) [47, 67] have made substantial

progress in this area by predicting the motion of nearby actors, and leveraging these predictions

to generate safe robot motion. There are also a number of Deep Reinforcement Learning based

approaches [31, 19, 56] used to attain socially acceptable behaviors, and in [106], the authors use deep

neural networks (DNNs) to achieve similar results. While these methods are effective for predicting

actor trajectories and generating good robot behaviors, they contain complex network architecture

6

and as a result, require a dedicated training phase to improve robot behaviors. Moreover, it is

difficult to understand the mapping from input states to prediction, and thus, it is difficult to reason

why a resulting behavior is appropriate or correct for the robot’s task.

This extensive use of ML techniques brought about the need for explaining how these black-box

models work [42]. The existing approaches were split into three categories: model explanation,

outcome explanation, and model inspection, each of which aims at explaining the model itself, the

reason for an output given the input, and the sensitivity of the model with respect to changing the

input, respectively. These approaches, however, provide explanations that are hard to understand

from a logical point of view and do not provide counterfactuals. To logically explain the reasoning

behind the outputs of ML models, authors in [87, 41] provide techniques to find local reasoning as

to why a data point was assigned to a certain class in simple classification learners, such as decision

trees [16] (DT) with decision rules and reasoning that are easier to understand for humans.

1.1.3 Socially Aware Navigation in Dense Crowds

With the integration of mobile robots into our world, there has been widespread interest and research

in enabling robots to navigate in dense crowds in a socially acceptable manner. Some of the works

discussed in the previous sections [31, 19] begin to address this problem, but have a rather small

“maximum” number of actors (3-5) they can consider at runtime. Typically, these types of works use

a distance heuristic and consider some number of actors closest to the robot to inform planning [69].

While this may be viable, other research has suggested crowds are highly dynamic and tend to agree

with the notion of limiting the focus of the robot [89, 90, 18, 91, 101], but each approach it from a

different perspective. Presented in [89] is a deep reinforcement learning (DRL) method to imitate

human behaviors in large crowds, but considers an exhaustive reachable set for human behaviors,

which may be impractical and unnecessary. Similarly, [90] presents the notion of a “freezing zone”

that the robot must avoid, and planning is also achieved through DRL. Authors in [91, 18] focus

directly on limiting the actors through grouping and attention mechanisms. These approaches,

however, use end-to-end learning and black boxes to move directly from perception to planning,

which makes it difficult to understand why the robot is behaving in a certain manner. However,

attention remains an interesting concept, as it provides an avenue for limiting the challenges of

navigating in very large crowds. In [101], authors present a model predictive controller (MPC)

7

that takes into account group behavior and learns to consider all actors and model them explicitly

into groups, around which a provably safe MPC planner can be used. We focus on this idea in this

dissertation, but blend the notion of attention with a strong baseline MPC controller that takes

into account the dynamics of the actors. Furthermore, by including the MPC, instead of using DRL

for robot control, we are able to reason about the planning outcomes based on the dynamics of the

robot and actors.

1.1.4 Decision-making Under Uncertainties

Decision-making for AMR has become a well-studied problem over the years [107], but safe decision-

making under uncertainties remains an open challenge. Many recent approaches use learning-enabled

components, such as deep neural networks (DNN) [58] and deep reinforcement learning (DRL) [56],

to make quick decisions with a reasonable level of accuracy for many applications [92]. However, a

vast majority of these techniques do not consider uncertainties and return only one decision, which

might be incorrect in the presence of measurement or process noise at runtime [84]. Significant effort

has been devoted to achieving uncertainty-aware decision-making with machine learning; authors

in [51, 2] use sampling-based methods, such as bootstrapping or Monte Carlo sampling with DNNs.

However, the effectiveness of sampling-based methods for uncertainty evaluation depends heavily

on the quality and number of samples taken and can become too computationally expensive for

robot control in many cases [65]. Moreover, methods using DNN and DRL contain black boxes,

which make it difficult for a user to understand why a particular decision was made, which has

been shown to improve the overall performance of decision-making systems [88]. Other approaches

make considerations on the training dataset through variational inference [94] on the training data

and active learning [96] to perturb and gain more information about decisions. We take inspiration

from these approaches and integrate them into our work in failure detection and recovery under

uncertainty.

As for detecting and recovering from sensor and actuator failures [1], control theorists have

proposed a number of approaches, in which detection often relies on state estimation [43] and

deviation/bias measurement and analysis [52], which are easy to understand and work well for

detecting different degrees of a particular type of failure, but do not extend well to detecting different

failures that can appear similar, thus making learning-based approaches more appealing [102].

8

The control techniques used for correction include adaptive control [50] and model predictive

control (MPC), which has been shown extensively to produce safe motion planning under degraded

conditions [108]. However, the black-box issue remains, and this brings about the desire to bridge

the gap between learning and control-based approaches to design a method to keep the system safe

under different sensor and actuator faults and disturbances.

1.2 Overview of the Research

Figure 1.3: Overview of the research presented in this dissertation.

The research presented in this dissertation consists of five main segments that include: 1) explicit

predictions of dynamic actor paths for proactive robot planning, 2) interpretable monitor design for

prediction and planning in co-robotic environments, 3) interpretable and proactive adaptation of a

reactive VP planner at runtime to improve social navigation, 4) attention-aware social navigation in

dense crowds, and 5) extension of interpretable uncertainty aware techniques to multi-class scenarios

9

with an application in planning under disturbances/faults. Figure 1.3 provides an overview of the

research presented in this dissertation, which is described in detail in the next section.

1.3 Dissertation Organization and Contributions

In this section, we present the composition of this dissertation by providing summaries of each

chapter and specifying contributions within each chapter. Chapter 2 focuses on explicitly predicting

future states of dynamic actors to plan proactive robot motion, Chapter 3 introduces the design

of an interpretable monitoring technique that bypasses explicit predictions for motion planning in

co-robotic environments, Chapter 4 further describes how interpretable monitoring can be used to

adapt and solve deficiencies of well-known and widely used motion planners for social navigation,

Chapter 5 focuses on expanding prediction and planning approaches to dense, dynamic crowds, and

Chapter 6 demonstrates how the techniques developed and utilized throughout this dissertation can

be extended to other domains in which uncertainties have an impact on robot motion planning.

Chapter 2: Data-driven Proactive Intention-Aware Social Planning

In this chapter, we discuss our novel data-driven framework for proactive intention-aware robot

motion in presence of multiple moving humans. We make explicit predictions about the future

positions of humans and assess the uncertainties around the predictions to provide context for

robot motion planning. Unique from other approaches, our uncertainty assessment is leveraged to

create stochastic reachable sets which are paired with a temporal virtual physics-based planner

for proactive planning. We also provide a technique for updating the predictive model at runtime

by collecting and incorporating observations of new and unexpected behaviors. We validate our

framework with simulations and experiments consisting of a UGV navigating proactively through

environments containing multiple humans. This chapter is based on the publication:

• R. Peddi, S. Gao, C. DiFranco, and N. Bezzo, “Data-driven Framework for Proactive Intention-

Aware Motion Planning of a Robot in a Human Environment,” in Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS) 2020.

10

Chapter 3: Interpretable Runtime Prediction and Planning in Co-Robotic Environments

In this chapter, we relax the requirement of explicitly predicting the future paths of dynamic actors.

We introduce the design of an interpretable monitoring approach for robot decision-making that

reduces the social planning problem to a binary classification about whether the robot will interfere

with the future paths of nearby dynamic actors. Different from prior research, our interpretable

monitor is used to provide explanations and counterfactuals for the interfering predictions, providing

reasoning for the prediction and providing options for how the robot can correct its interfering

behaviors. The prediction, explanation, and counterfactuals are used directly to provide a high-level

robot motion plan, which is then sent to a pure pursuit controller for low-level controls. Also unique

from other research, our framework is able to collect observations at runtime to update and improve

the predictive model and refine the behaviors of the robot. Our framework is validated with multiple

simulations and experiments consisting of a UGV navigating through environments containing

multiple humans without interfering with their paths. This chapter is based on the publication:

• R. Peddi and N. Bezzo, “Interpretable Runtime Prediction and Planning in

Co-Robotic Environments,” in Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS) 2021.

Chapter 4: Interpretable Adaptation of Motion Planners for Social Navigation

This chapter expands our interpretable monitoring approach to correcting the failures of well-known

and widely used virtual physics-based planners, such as artificial potential fields. We note that

such planners are efficient and scale well to avoiding collisions with multiple agents, but suffer from

local minima issues, which in dynamic environments can cause interference with nearby actors.

We leverage the interpretable monitor introduced in Chapter 3 to adapt the parameters of such

planners to ensure non-interfering behaviors. We additionally design a new method for the robot

to update and improve predictions and planning faster than the data collection methods in the

previous chapters. Furthermore, we extend the efficacy of the counterfactuals to adapt corrective

actions to the robot’s priorities, as we account for different desired behaviors for robots operating

in different environments with different applications. Our framework is validated with multiple

simulations and experiments consisting of a UGV and a UAV equipped with the virtual physics

11

planner that successfully navigates without interfering with the paths of multiple dynamic actors.

This chapter is based on the publication:

• R. Peddi and N. Bezzo, “An Interpretable Decision Tree-based Virtual Physics Method for

Non-interfering Social Planning,” in Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA) 2022 and in the IEEE Robotics and Automation Letters

(RA-L).

Chapter 5: Attention-aware Robot Social Planning

In this chapter, we expand on previous approaches by considering interactions between actors in

order to achieve socially aware robot motion planning in dense crowds. We demonstrate that by

modeling human-human interactions in dynamic crowds, the robot may be able to consider only

a subset of the actors, without the need to include every actor, in order to navigate successfully

through the crowd. We introduce an MPC framework that can predict the future states of the robot

and nearby actors based on the respective dynamic models, but we note that considering all actors

in a very dense environment can be too computationally expensive or intractable. To solve this

issue we design a predictive model that directly takes into account the states of nearby actors to

identify the minimal set of actors the robot should pay attention to. We show that this framework

generalizes and is successful for large, dense crowds in small spaces through extensive simulations of

a UGV navigating through crowds of different topologies. This chapter is based on the paper:

• R. Peddi and N. Bezzo, “Attentive Model Predictive Control for Crowd-aware Robot Naviga-

tion,” IEEE Robotics and Automation Letters (RA-L) (in preparation)

Chapter 6: Interpretable Monitoring and Recovery Under Decision Uncertainties

In this chapter, we consider that predictions from learning-enabled components can occasionally be

incorrect due to noise and other uncertainties, and that considering only a single prediction may

be unsafe. We extend the previously proposed monitoring approaches to deal with this issue by

directly considering uncertainties in predictions to inform safe motion planning. Furthermore, we

demonstrate that the proposed explainable monitoring methods can be extended beyond social

planning applications: mobile robots can often operate in uncertain environments and have a number

of sensors and actuators for perception and control, all of which can be the cause of failures; either

12

through external disturbances or sensing/actuation faults. We train our interpretable monitor for

detecting failures on an offline training phase with different failures and predefined controllers that

take into account different dynamics under each failure. At runtime, we not only detect and explain

which failure may be affecting the system, but also introduce a local perturbation-based approach

that considers prediction uncertainties to identify the safest controller to use even when the monitor

is uncertain about the cause of the failure. This approach is validated with both simulations and

experiments of a UGV experiencing different failures at runtime. This chapter is based on the

publication:

• R. Peddi and N. Bezzo, “A Decision Tree-based Monitoring and Recovery Framework for

Autonomous Robots with Decision Uncertainties,” IEEE International Conference on Robotics

and Automation (ICRA) 2023 (submitted)

Chapter 7: Conclusions and Future Directions

In this chapter, we conclude the dissertation by summarizing the results from all the aforementioned

works and discussing potential future directions to build on.

1.4 Summary of Contributions

To summarize, the work presented in this dissertation will contribute to the existing state-of-the-art

in robot motion planning under uncertainties and in the presence of dynamic actors by providing:

• A data-driven Hidden Markov Model-based approach to predict the future states of dynamic

actors to compute temporal stochastic reachable sets, which are used to generate proactive

and accommodating motion planning.

• A novel Decision Tree-based framework to make interpretable predictions about future inter-

fering interactions between a robot and surrounding dynamic actors, bypassing the need to

make explicit predictions at runtime. The predictions, explanations, and counterfactuals are

directly used for robot planning and control.

13

• An interpretable prediction and explanation method with fast runtime model updating to

augment and compensate for the local minima problems in Virtual Physics based planners with

application in non-interfering, priority-aware navigation in the presence of dynamic actors.

• A deep learning-based approach for attentive, non-interfering crowd navigation with a model

predictive controller that takes into account human-human interactions and bypasses the need

to consider as a constraint every single actor in dense crowds.

• An uncertainty-aware interpretable prediction approach paired with model predictive control

to deal with the decision uncertainties about external disturbances, noises, or sensing and

actuation faults that can cause the system to fail.

• A final contribution of this dissertation is in the extensive implementations with realistic

simulations and real-world experiments with UGVs and UAVs. In conjunction with the

experiments on real hardware, this thesis also provides training datasets containing a human

navigating in the presence of a mobile robot [77].

14

Chapter 2

Data-driven Proactive Intention-Aware

Social Planning

In this chapter, we introduce our data-driven framework for proactive intention-aware motion

planning for autonomous mobile robots in environments. This framework leverages Hidden Markov

Model (HMM) theory to predict the future states of dynamic actors and a control scheme based

on temporal virtual physics to plan safe and proactive robot motion. This approach is further

supplemented with stochastic reachability analysis to identify multiple possibilities of actor future

states and a method to concurrently learn, update, and improve the predictive model with new

observations at runtime. We validate this approach with both simulations and experiments focusing

on a UGV goal navigation problem in environments consisting of multiple humans. This work has

been published at the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS).

2.1 Introduction

In many cases, autonomous mobile robots that share space with humans perform their missions

by treating the surrounding humans as stationary obstacles. People, in turn, are expected to work

around the robot, and are required to learn to adapt to the robot that is often moving in unnatural

ways. Humans have to change their behaviors in response to what the robot is tasked to do. People,

on the other hand, interact and cooperate with one another nearly seamlessly. This is because

15

humans not only implicitly understand others’ intentions, they also implicitly communicate their

intentions by changing their behavior proactively, often well in advance of a possible collision.

In this chapter, we address the problem of enabling proactive intention-aware motion on a robot

that coexists with humans in environments like airports, train stations, labs, and offices. In our case,

proactive intention-aware motion refers to robot motion that accommodates the human’s future

motion while maintaining the robot’s desired goal, which brings about the following challenges:

1. How to efficiently and correctly predict the intentions and uncertainties about the intentions

of surrounding dynamic actors.

2. How to use uncertainty-aware intention predictions to plan motion that proactively avoids

collisions with the dynamic actors.

To predict the intentions of surrounding actors, we use a data-driven Hidden Markov Model-based

technique along with temporal virtual physics (VP) based planning based on a spring-mass-damper

system to generate proactive, accommodating robot motion. Furthermore, the prediction model

is updated at runtime by collecting observations to further improve robot behaviors as operation

continues. In Fig. 2.1 we show a pictorial example, in which the robot predicts forward the future

states of the actors to determine how it should move through the environment.

Figure 2.1: Pictorial representation of the motivation behind this work. Our approach computes
temporal stochastic reachable sets and plans motion that proactively accommodates human

intentions.

16

2.2 Problem Formulation

Consider a mobile robot tasked to go from an initial position q0 to a goal qg while negotiating and

accommodating its motion with surrounding actors, in particular humans, hi ∈ Sh(t), i = 1, . . . , nh,

where Sh(t) is a time varying set of nh humans in sensing range with the robot. Each human in

the environment is following some trajectory from an initial position qstarti to an a priori unknown

(to the robot) goal qgoali . We assume that the robot can localize itself within the environment and

distinguish between static obstacles and humans using on board and external sensors with standard

localization and sensing techniques [7]. The dynamics of the robot can be represented in the typical

state space form, ẋ = f(x,u) where x ∈ Rn is the state and u ∈ Rm is the control input. With

such premises, the robot has the objective to predict the intended motion of other actors in its

sensing range and proactively plan its motion to minimize the human changes in path due to the

presence of the robot. In doing that the robot is also implicitly communicating with the humans to

acknowledge that it understand their intention. Formally, the problem is:

Problem 2.1 (Intention Aware Proactive Motion Planning and Control) Consider a robot

navigating in an environment with other humans. Given a set of observed humans Sh, the objective

is to predict their reachable states Rh(t) at runtime over an horizon H, find a policy to anticipate

future robot reactions, and plan a trajectory to minimize human deviating maneuvers created by the

robot, such that:

||q(t)− qi(t)|| > ∆, ∀i ∈ Sh(t), t ≥ 0 (2.1)

where q(t) and qi(t) are the position of the robot and the ith human at time t respectively, and

∆ is minimum safe distance.

A secondary problem that we propose to investigate in this work is how to improve predictions

over time. To this end we use the theory of Hidden Markov Model (HMM) to collect a history

of observations and emission probabilities that are constantly updated online to consider runtime

behavior that either was never observed during training or to reinforce/change the expected future

predictions.

17

2.3 Prediction and Planning Framework

In this section we describe the framework adopted for prediction and control of a robot in a human

environment. Specifically, we follow the architecture depicted in the block diagram in Fig. 2.2.

Figure 2.2: Block diagram of the HMM-based data-driven intention-aware motion planning

At the core of our framework we consider a HMM that is trained using offline data and constantly

updated at runtime for more accurate predictions and to include new behaviors. The predictive

model generated by HMM training consists of a set of state observations O and emission matrix B.

Prediction is then executed by building a temporal reachable set R over a finite time horizon to

include future human states and the associated probabilities.

Then, the motion planner that we propose here will consider this prediction to find reactions

(deviations from the desired trajectory) of the robot at different time steps and proactively adjust

the robot actions toward the point in the trajectory where a deviation was predicted. At runtime

new observations are added to O and are then used to update the HMM, improving and refining B,

and thus improving future predictions and inferences.

While we decide to utilize an initial offline training phase, the proposed framework can also work

in the absence of offline training due to online updates. The inclusion of a library of trajectories

and offline training results in more informed predictions and reachability analysis from the start,

allowing us to better demonstrate the effectiveness of our motion planner. In the next sections, we

describe in detail each component of our framework.

2.3.1 HMM-based Training

To train the predictive model for human intentions we propose a Hidden Markov Model (HMM)

[103] which can be described by the tuple ⟨S,O, C,G,P,B⟩ where:

• S ∈ RN is the state space of the system which includes a finite set of unique states si ∈ S,

i = 1, . . . , N that can be visited by the system.

18

• O ∈ RT is a finite set of observations o(t) ∈ O collected over a finite past time horizon T ,

i.e., O = {o(t− T), o(t− T + 1), . . . , o(t)} and such that o(t) = si ∈ S. Note that the states

observed during T , S ′ ∈ Rn are a subset of S, S ′ ⊆ S and n ≤ N .

• C ∈ RT is the finite set of emissions, or inferences c(t) that relate to the action taken each

state, and C = {c(t− T), c(t− T + 1), . . . , c(t)}.

• G ∈ RM is a finite set ofM unique inferences that C can obtain, and gk ∈ G, where k = 1, . . . ,M ,

with M ∈ N.

• P ∈ RN×N is a transition probability matrix, that describes the probability of entering a

certain state, sj ∈ S ′, while currently in observed state si ∈ S ′, denoted as P(si → sj).

pij = P (si → sj) (2.2)

Each transition probability pij is initialized as 1/N . Transition probabilities are calculated by

counting the occurrences of each state transition over all transitions from that state:

pij = nij/ni∗ (2.3)

where Nij is the total number of transitions, si → sj , over T and Ni∗ is the total number

of transitions from si to any state, and Nij ≤ Ni∗ ≤ T . The state transition matrix is

right-stochastic, meaning that the sum of all rows is 1 and is of the form:

P =

p11 . . . p1N
...

. . .

pN1 pNN

 (2.4)

• B ∈ RN×M is the emission matrix, which lists the probability bik of obtaining emission gk

given state si:

bik = P (gk(t+ 1)|si(t)) (2.5)

19

where i = 1, . . . , N . Emission probabilities are initialized as 1/M , and are calculated as

follows:

bik = ngik/ngi∗ (2.6)

where ngik ≤ ngi∗ ≤ T .

B =

b11 . . . b1M
...

. . .

bN1 bNM

 (2.7)

The general pictorial representation of an HMM is shown in Fig. 2.3. In this image, nodes labeled s

represent observed states (S ′), while those labeled g represent the emissions (G).

Differently from a traditional HMM, the “hidden” part applies to the emissions, rather than the

states, which are directly observable (i.e., measurable) and therefore, have observable transitions.

Another key difference is that we utilize the set of observations O, to make informed predictions

for stochastic reachability in addition to the emission matrix, which provides important behavioral

information used for motion planning. Because of the human-robot interaction problem considered

in this work, the specific states recorded in O are:

s =

[
dx dy θ

]
(2.8)

where dx, dy, and θ are the relative x-y positions and heading of a person in the robot local frame,

respectively.

On the other hand, the emissions will capture qualitative inferences on how a human will behave

when approaching the robot: specifically in this work we are interested in predicting whether a

human starting from a state si will cross or not cross the robot’s path at some point in the future

during the operation, which impacts the way we plan robot motion; we want to accommodate more

to a person who is crossing the robot’s path.

The initial offline HMM training shown in Fig. 2.4 is executed on a set of trajectories specifically

designed to capture the accommodating and avoiding behaviors of a humans moving from random

initial positions to random goals in the environment around a robot that ignores the human and

just follows a straight path starting from (0,−2.5)m to (0, 3)m at v = 0.5m/s. This training dataset

20

Figure 2.3: Diagram of 3 states within the Hidden Markov Model (HMM) used our framework

is included as “hmm dataset.7z” in the GitHub repository in [77].

Collisions are not included in our training set because we assume that people in general do

not behave adversarially, and therefore will not intentionally try to collide with the robot. The

state vector (2.8) is discretized to prevent an infinite or exploding state-space. The dimension and

discretization of the state space are selected based on the capabilities of the robot. A larger state

space and finer discretization results in better approximation, but at an increased computational

complexity. Note that increasing the state space too much also increases the uncertainties associated

with the motion of the humans and hence it will generate overly conservative planning for the robot.

At runtime, observations are rounded to the nearest state in the discrete state space. Then,

future state predictions and reachable sets are computed with the approximated state, and are

geometrically transformed back to the observed state. Executing the training procedure creates a

set of observations O and emission matrix B, which serve as the predictive model for the likelihood

of future states and implicit behaviors given a certain state observation at runtime.

2.3.2 Online Prediction and Stochastic Reachability

At runtime, given an observation of a person’s state, o(t) = si ∈ S ′, we predict all possible future

states and associated probabilities over a finite horizon H to enable proactive motion planning. A

low H (e.g., H = 1s) can lead to predictions that are ineffective for proactive motion planning

resulting in mostly reactive behaviors, while a very large H can be wasteful, as uncertainties can

21

(a) Training trajectories. (b) Discretized training trajectories.

Figure 2.4: (a) Set of real trajectories used for the training process in the experiments. (b)
Discretized trajectories according to a grid with cells 0.5m wide.

grow too large with time in continually evolving and unstructured environments.

To obtain the future states and probabilities over the selected H, we propose to use Reachability

Analysis (RA), which is the process of computing the set of all reachable states for a system by

taking into account its dynamic model and state transitions over a future horizon H [10]. The

collection of all reachable states at a certain future time forms a reachable set, while a reachable

tube is a temporal sequence of reachable sets. In addition to reachable states, a stochastic reachable

set includes probabilities associated to each state [11], but generating such stochastic reachable sets

can become computationally complex [61].

To perform such stochastic reachability analysis, we consider first the finite set of observations,

O. At runtime, we consider the future states and associated conditional probabilities of all the

paths observed during training originating from the observed state at time t, si(t) over an interval

[t + 1, t +H]. The probability of any reachable future state sj ∈ S is given by p(sj(t + 1)|si(t))

and this is computed for any state along the path conditioned on the previous states. To limit

the computation complexity of such approach for every state we maintain a list of the Nh most

recent paths initiating from that state, obtaining a maximum of N ×Nh trajectories that are used

to perform such prediction. In this way, we also remove old and obsolete data and consider only the

22

most recent data in our prediction.

While p(sj |si) is readily available from the transition matrix P, we cannot condition on the

original state of the paths using only P, due to the memoryless property of Markov processes.

Instead, we leverage the set of observations, O to obtain the desired conditional probabilities.

We first identify the future states by searching for the Nh most recent instances of si in O,

followed by taking the subsequent H states in the set of observations. From this, we obtain nsi

reachable paths of future states that originate from each instance of si. The collection of all reachable

paths for a human in state si over the entire horizon forms the reachable tube, Rh
si ∈ Rnsi×H :

Rh
si =

s1(t+ 1) . . . s1(t+H)

...
. . .

snsi
(t+ 1) . . . snsi

(t+H)

 (2.9)

where each column of Rh
si consists of reachable states at the respective time-step.

Then, the probabilities of each temporal future state sj(t+ τ),∀sj(t+ τ) ∈ Rh
si are computed

by counting its occurrences as follows:

p(sj(t+ τ)) = nsj(t+τ)/nsi (2.10)

where nsj(t+τ) is the number of paths that contain state sj at time t+ τ , and τ ∈ [1, H].

We finally consider the emission matrix, B, to infer the likelihood that each state sj ∈ Rh
si in

the reachable tube will lead to a crossing behavior: pe(sj) = Bsj ,1.

This procedure is repeated over the horizon H, to obtain the most likely sequence of states and

associated probabilities that are appended to Rh
si . Reachable tubes for each human and associated

probabilities are concatenated and stored to create one reachable tube, R ∈ Rn×H , that encompasses

all n possible paths for all sensed humans. Then, R is deconstructed into temporal reachable sets

to be used for motion planning:

R(t+ τ) =

s1(t+ τ − 1) s1(t+ τ)

...

sn(t+ τ − 1) sn(t+ τ)

 (2.11)

23

where τ ∈ [1, H], and R(t + τ) ∈ Rn×2. Note that a temporal reachable set R(t + τ) includes

reachable states at τ − 1 and at τ to capture the motion between two consecutive time steps, to

prevent cross collisions in paths between discrete states. An example of the output of our reachability

analysis over horizon H = 5s for a human is shown in Fig 2.5. The most likely future path, connected

Figure 2.5: Stochastic reachable set of a human in the robot’s sensing range. The dotted line shows
the most likely future path for the human. Red markers represent reachable states, and the color
fades temporally along the horizon, with the lightest at t+H. The probability of reachable states

is shown by the size of the markers, which decrease as probability decreases.

by the dotted line, is obtained with P and is nearly consistent with a linear path. Only considering

this path, while potentially accurate, provides little advantage over well-known approaches [34, 44],

that explicitly assume dynamic obstacles will maintain their current speed and/or direction with

minor uncertainty. The stochastic reachable set in our approach leverages the other observations O

and captures uncertainties and irregularities that exist in human motion, addressing the possibility

that a human can enter states outside of the most likely path.

2.3.3 Robot Motion Planning

In this section, we present our motion planning technique that takes into account the temporal

stochastic reachable sets R(t+ τ) developed in Section 2.3.2 to proactively avoid and accommodate

future motion of surrounding humans. We utilize virtual spring-mass-damper interactions [62] to

generate robot motion that avoids and accommodate humans future states while reaching the goal.

In our work, virtual springs are built between robots and humans’ reachable states at every future

24

time-step, to drive the robot away from future predicted positions of humans, and at the same time,

we build a virtual spring that drives the robot to its goal.

The repulsive spring force directs the robot from its position qr(t) away from the temporal

reachable states sj ∈ R(t+τ). The springs for each reachable state have constants k(sj) = p(sj)pe(sj)

that depend on the state probabilities output from stochastic reachability analysis, p(sj), and the

crossing probability of the state from the emission matrix pe(sj) ∈ B. The inclusion of crossing

probability creates a stronger reaction to a crossing person and vice versa. The extension of a

repulsive spring for each reachable state is defined as dho = lh(sj)− lo, where lh(sj) = ||qr(t)−q(sj)||

is the distance from the robot to the position of each temporal reachable state, and lo is a safe

distance to maintain between robot and human.

In crowded situations, even with good predictions, a human may get very close to the robot,

compromising the safety of the operation. In such cases, we introduce a fail-safe distance, ld, subject

to ld < lo, which will produce stronger repulsive forces.

Then, the repulsive spring force at each time t+ τ , with τ ∈ [1, H], for each state sj ∈ R(t+ τ)

is computed as follows:

urep,(sj)(t+ τ) =

k(sj)dho

#»

dho, ld < lh(sj) ≤ lo

dhd
#»

dhd, lh((sj)) ≤ ld

0, otherwise

(2.12)

where
#»

dh· indicates a unit vector in the direction away from the human’s reachable state. Note

that probabilities are left out of the case lh(q(sj)) ≤ ld, and the spring stiffness is simply 1, which is

the maximum value k(sj) can take, creating the strongest repulsive forces.

The attractive force directs the robot from its position qr(t+ τ) towards the goal, qg = [xg, yg]
⊺,

and is computed as follows:

uatt(t+ τ) = katt(||qr(t+ τ)− qg||)
#»

dg (2.13)

where
#»

d g is the unit vector directed towards the goal, katt is the spring constant. Here, the distance

to goal is used as the extension of the spring, as the ultimate target of the robot is to reach the goal.

25

The summation of all components (attractive and repulsive forces) yields an input for the robot

at each time:

u(t+ τ) = uatt(t+ τ) +
n∑

j=1

urep,q(sj)(t+ τ)− cdv(t) (2.14)

where n is the number of states reachable at t + τ and cdv(t) is the spring damping effect. At

each time-step, the input is used to compute the robot’s next position, and the entire procedure is

repeated for the remainder of the horizon, resulting in a time series of inputs for the robot.

Instead of applying the first input in the predicted series (reactive approach), we proactively

replan the trajectory to accommodate the future states by finding the first time τ∗ in which the

robot deviates from a direct path (i.e., a straight line) to the goal,

τ∗ = argmin
τ

(u(t+ τ)), (2.15)

s.t. u(t+ τ) ̸= uatt(t+ τ)

Then, we compute a new set of inputs that directly sends the vehicle towards the planned position

at τ∗, accommodating the deviation caused by future states of surrounding humans:

u′(t+ τ) =

∑τ∗

τ=1 u(t+ τ)

τ∗
, τ ∈ [1, τ∗] (2.16)

where the numerator is the vector sum of the inputs between 1 and τ∗. Dividing this resultant

by τ∗ provides the value of the inputs to use to move directly toward the deviated position at τ∗.

When τ∗ < H, we include the previously calculated inputs, u(t+ τ), τ ∈ (τ∗, H], to populate the

complete series of inputs for the horizon, which is then smoothed with cubic spline interpolation

[12]. The final smoothed trajectory is sent to the robot, and is replanned at every time-step, as

the presence and motion of surrounding humans is constantly changing and evolving. Fig. 2.6(a)

shows an example of such motion plan. The robot is in state s0 at τ = 0 and wants to reach a

goal g. After running the prediction, a deviation from the planned straight line trajectory occurs

at τ∗ = 3 resulting in s3. With our procedure, the robot replans its trajectory to go directly to s3

from s0. Fig.2.6(b) shows the predicted action (black arrow computed with (2.14)) of the robot as a

26

resultant of the repulsive spring forces (red lines) and attractive force (light blue line) pushing the

robot away toward the right side of its desired trajectory. Note that, per (2.12), only the reachable

states within the range lo impact the robot.

(a) Overall plan of the robot at τ = 0 after predicting a
deviation at τ∗ = 3.

(b) The springs formed with the predicted human positions
at τ∗ = 3 and the resultant motion from the local frame
of the robot.

Figure 2.6: Motion plan prediction example.

In our approach, taking into account the probabilities of reachable states and emission probabil-

ities prevents the robot from reacting too much to an unlikely state or non-crossing state, while

ensuring that a more likely or crossing state creates a stronger reaction from the robot. Considering

only temporal reachable sets to plan at each time provides an advantage over a potentially circuitous

or “frozen” paths generated by approaches that consider the entire range of future positions at one

time [34]. In addition, replanning inputs based on future deviation generates robot behavior that

accommodates humans’ future intentions, creating an advantage over reactive dynamic obstacle

avoidance approaches that only consider the current positions of surrounding humans.

2.3.4 Online Model Updates

Our motion planner is predictive and proactive with respect to future states of humans, but due to

the dynamic nature of the environment, many new behaviors can be observed online. Consider a

case, for example, in which a robot observes a new behavior at one point during its operation. If

27

the predictive model can be updated online, the expectation that the same behavior could occur at

a later time can be exploited to improve predictions, and by extension, motion planning.

To this end, we propose online updates of observations and the emission matrix used for prediction

and planning. The set of observations O, main input to our stochastic reachability, is updated

with a new observed state transition at runtime o(t) = sj . The emission matrix, B, a key part

of our motion planning, is updated using the procedure described in (2.5)-(2.7), by incrementing

the instances of emissions and occurrences of the state, resulting in an updated B′ that includes

behavioral information from the new observations. Because the updated matrix is still bounded by

the size of the state space N and emission space M , and the update procedure is an element-wise

operation, the worst-case computational complexity cannot exceed O(NM) [71]. This update can

occur within one iteration of robot operation, rendering the updated predictive model usable at the

next iteration.

Updating and learning online is unique to our approach, as most learning-based techniques, such

as DNNs [106], consist of training complex connections between inputs and outputs that cannot

necessarily be accessed [27], making them difficult to update without fully retraining the network,

which can be a computationally intensive and time consuming procedure. In our approach on the

other hand, we understand that emission probabilities are computed by counting the instances of

each state and instances of behaviors, allowing us to easily update them as we add observations to

O at runtime.

2.4 Simulation and Experimental Results

The case study investigated consists of a robotic vehicle performing a go-to-goal operation in the

presence of moving humans. The robot is expected to predict the intentions of humans, accommodate,

and avoid them as it completes its mission.

2.4.1 Simulations

In the following simulation the robot is tasked to move in a 11m by 12m environment from an

initial point (0, 0)m to a goal at (0, 12)m while navigating around two humans moving in unknown

trajectories. The simulated robot trajectories and the distance maintained between the robot and

28

surrounding humans are shown in Fig. 2.7. Specifically, in Figs. 2.7(a) and 2.7(b), we compare our

predictive approach before and after model updates respectively: In Fig.2.7(b) the same simulation

was run 20 times updating the model after every run following the approach described above

demonstrating that over time the behavior improves, becoming smoother if similar behaviors are

recorded several times. In Fig. 2.7(c) we show the results for a reactive-based planner, in which the

robot is pushed away from the humans once they are in close proximity, resulting in motion away

from the goal.

In the simulations, the maximum velocity of the robot, vmax = 1m/s, was chosen to approximate

average human walking speed, which is usually between 0.7m/s and 1.4m/s. The resting length

parameter is set to krest = 2, giving lo ≈ 2m,, and the fail-safe distance threshold is set to ld = 1.5m.

The time horizon for prediction and control was set to H = 5s, and the robot observes an area of

radius 5m relative to its position.

The online update procedure increases probabilities of previously observed future states, decreas-

ing probability of surrounding reachable states, which in turn, exert weaker repulsive forces (see

(2.12)). Thus, the model updates reduce robot interactions with extraneous states. The effectiveness

of our approach can also be seen in the added time to goal. The robot time to goal in the presented

approach was recorded to t = 13.7s before and t = 12.6s after model updates, while in the reactive

approach, the completion time was t = 15s.

We also extensively test our approach on longer trajectories, where the robot traverses a 60m

long corridor in the presence of approximately 50 people who walk and stop intermittently. We

have also run a comparison with reactive spring-mass-damper planners, and with ORCA [100], a

well-known and widely used dynamic obstacle avoidance technique. Comparative results over 100

trials are shown in Table 2.1.

Approach
Added
Time (%)

Minimum
Distance (m)

Mission
Success (%)

Collision (%)

Presented Approach 15% 1.614 96% 0%

Reactive Virtual Springs 34% 1.436 68% 0%

ORCA 18% 1.453 93% 0%

Table 2.1: Comparative simulation results

29

(a) Predictive approach before online updates. (b) Predictive approach after online updates.

(c) Reactive approach. (d) Distance to nearest human.

Figure 2.7: Scenarios with a robot (blue markers, black line) navigating to its goal in the presence
of two people (magenta and red markers and lines). The markers fade as time increases and the

actors reach their goals. The distance threshold is 1.5m.

The target time for the trajectory is 60s, consistent with a straight path to goal at the maximum

velocity, vmax = 1m/s. Our presented approach adds on average 15%, while the reactive approach

and ORCA add 34% and 18% extra time, respectively. The reactive approach often takes circuitous

paths, and ORCA is prone to stopping when surrounding humans behave in irregular ways [5],

which contributes to the added time. Our approach, on the other hand, predicts the evolution of

the scenario and is able to find a path forward, even in the presence of unexpected and irregular

30

human behaviors.

The presented approach outperforms others in keeping the minimum distance, because the

reactive approach only considers current position and ORCA expects other agents (humans) to

follow reciprocal velocities, both of which perform poorly when humans take irregular paths with

uncertain velocities. For mission success, which we define as reaching the goal within 90s, our

approach succeeds in 96% of trials. The instances where our approach does not succeed coincide with

those of the other approaches, largely due to a very high density of humans in the corridor, allowing

for no safe path forward, due to the safe distance constraints in all three motion planning approaches.

Lastly, all three approaches succeed in avoiding collisions, which is the expected outcome.

2.4.2 Experiments

The proposed approach was also validated experimentally using a Clearpath Robotics Ridgeback

Omnidirectional Platform in an indoor environment. Two kinds of experiments were performed : 1)

using our a motion capture system to track the positions of humans and 2) using an on-board ASUS

Xtion RGB-D camera with the SPENCER people tracking package [63] to locate humans in the

environment. HMM predictions, reachable sets, and the motion plan are computed in MATLAB,

and the robot is controlled using the Robotics System Toolbox to interface MATLAB with ROS.

The training for both experiments consisted of 100 trajectories depicted in Fig. 2.4(a).

The robot is tasked to avoid and accommodate humans while moving from (−3.0, 0)m to (3.0, 0)m

at a maximum velocity of vmax = 0.5m/s, which is reduced from our simulations due to Lab space

constraints.

In Fig. 2.8, we show a comparison of the presented proactive approach and a reactive approach.

The proactive approach depicted in Figs. 2.8(a,c) predicts the person’s future states creating a

trajectory to accommodate the person motion while maintaining the direction to the goal. In the

reactive case in Figs.2.8(b,d), the robot is pushed backwards by the person moving diagonally. The

deviation in the reactive approach occurs when the person is closer to the robot at t = 5s.

In the second experiment, we recreate a similar situation as our simulations in Fig. 2.7. The

robot behaves similarly and successfully navigates around both humans, accommodating their

intentions (Fig. 2.9(a)). Notably, the robot reacts to the purple trajectory by moving in the +y

direction, despite the distance never nearing the threshold (Fig. 2.9(b)). These types of experiments

31

(a) Proactive approach trajectory. (b) Reactive approach trajectory.

(c) Proactive approach snapshots. (d) Reactive approach snapshots.

Figure 2.8: Comparative results of the presented proactive approach and a reactive virtual physics
based approach. The markers become more transparent as time increases. Green markers represent

deviation points and associated times in each case.

32

(a) (b)

(c)

Figure 2.9: Results from two-person experiments. (a) shows the trajectories of the humans and the
robot, while (b) shows the distance maintained between the robot and each person, and (c) shows

the overhead snapshots of these experiments.

33

were carried out with over 30 trajectories in the lab environment, resulting in no collisions and no

violations of the safe distance.

To test the ability of our approach to learn from new observations, we perform an experiment

with a model that is trained on an incomplete subset of trajectories, comparing before and after the

model updated during runtime. Initially, we observe the robot going toward the human’s path (Fig.

2.10(a)), as it makes incorrect intention predictions. The person, in this case, takes a slightly wider

path, reacting to the robot’s incorrect behavior. The model is updated and reinforced with the

observed trajectory at runtime, as discussed in Section 2.3.4. When a new similar scenario happens

again, the robot correctly predicts the human intention and deviates to accommodate the future

path as shown in Fig. 2.10(b).

(a) Trajectory prior to model update. (b) Trajectory after model update.

Figure 2.10: (a) A robot with a poorly-trained model fails at detecting the human intention, moving
into the path of the human. However, when observing a similar trajectory, due to the updating

process, the robot predicts and accommodates the correct human intention by moving to its left (b).

In the second experiment without MOCAP using only the on-board RGB-D camera, the robot

successfully accommodates four people and reaches the goal, showing that our approach scales

to more people and performs well despite noisy camera measurements and uncertainty in person

identification and tracking. An overlaid sequence of snapshots and a first-person view of the robot

are displayed in Fig. 2.11.

34

(a) (b)

(c) (d)

(e) (f)

Figure 2.11: Results from 4 person camera experiment. Fig 2.11(f) shows a first-person view of the
robot when 3 of the 4 people are in the frame.

35

2.5 Discussion

In this chapter, we have presented an approach for prediction and planning of a robot traversing a

shared environment with multiple humans. We leverage Hidden Markov Model theory to predict the

human intention and propose temporal stochastic reachability that is coupled with a virtual spring-

mass system-based method to generate proactive intention-aware motion for the robot. Results

show that our approach performs better than reactive dynamic obstacle avoidance approaches and

ORCA. Unique from other works in this field, a key feature here is that the predictive model is

constantly updated at runtime improving the behavior as more observations are made. The reason

that this happens is because human motion is not random and thus over time, the system is able to

learn and converge to common social behaviors.

2.5.1 Limitations and Future Directions

Our approach makes explicit predictions about the future positions of humans and accounts

for uncertainties surrounding these predictions. But in cases where there are multiple humans

surrounding the robot, it is conceivable that the “freezing robot” problem may appear. Although

temporal reachable sets reduce the possibility of the robot to completely stop, and any freezing in our

approach would be temporary, these behaviors might be too conservative and not necessary within

the flow of a dynamic environment. The uncertainty modeling through stochastic reachability is,

however, designed to be conservative, but we note that there may cases in which it is not necessary

to explicitly model the future positions of every actor. To deal with these considerations, we leverage

classification methods and relax the need to explicitly predict future positions of actors in the

environment. These techniques are introduced in the following chapters.

36

Chapter 3

Interpretable Runtime Prediction and Planning

in Co-Robotic Environments

In this chapter, we introduce our interpretable monitoring framework for proactive non-interfering

motion planning for autonomous mobile robots that share environments with dynamic actors. This

interpretable monitoring framework leverages decision tree (DT) theory to the predict and explain

the causes for why a robot may or may not interfere with the motion of nearby dynamic actors.

The DT-based monitor serves as a high-level planner for the robot and is paired with a pure-pursuit

low-level planner that determines the controls sent to robot. The key difference from end-to-end

learning based approaches is that our monitor is able to provide human-readable explanations

and reasoning for its decisions. Furthermore, we build lightweight DTs at runtime, enabling us to

incorporate new data as the robot observes new behaviors at runtime. We validate this approach

with both simulations and experiments with a UGV navigating in the presence of multiple people.

This work has been published at the 2021 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS).

3.1 Introduction

Predicting future states of dynamic actors to compute stochastic reachable sets is very powerful in

informing how the robot can generate proactive, accommodating motion. However, such explicit

predictions may not always be necessary and can be impractical for motion planning in environments

37

with lots of dynamic actors, in which the robot’s predictions may be inaccurate, constantly changing,

or too restrictive for robot motion. Another consideration is that typically, dynamic actors in the

presence of a moving robot will behave rationally and take upon the burden of avoiding the robot

on their own if the robot is not cooperating. An accommodating robot, on the other hand, should

proactively minimize creating such a burden on nearby actors.

Figure 3.1: In our proposed approach, a robot predicts, explains and finds a corrective action to
avoid interfering with an oncoming human.

Humans, contrary to most deployed robots, are able accommodate others in very intuitive and

easily interpretable ways without exactly predicting where others will go. We are generally aware

of our actions, and we can assess and explain if attributes of our behavior (e.g., how fast we are

moving) will lead to some type of interference with other people, causing them to change their

path [13]. We not only are able to explain whether we are interfering, but also intuitively use this

explanation to change our motion, all without making explicit future state predictions of other

actors. If robots could reason about their behavior and plan corrective actions in a similar way,

their motion would be easy to understand and interpret for surrounding humans.

More recently, advanced machine learning techniques like Long Short Term Memory (LSTM)

networks and Deep Reinforcement Learning (DRL) have been used to generate more natural robot

38

behaviors around humans [47, 31, 106]. While good robot behaviors can be produced, the approaches

often contain black-box models [3], and are unable to provide explanations or reasoning for decisions.

In addition, these approaches typically are not adaptable at runtime and require dedicated training

phases.

With that, the two main challenges we aim to solve in this chapter are the following:

1. How to predict and explain whether a robot will interfere with the path of a nearby moving

actor.

2. How to leverage predictions and explanations (i.e., interpretability) to inform the robot how it

should correct its behaviors to avoid interfering with dynamic actors.

To solve these challenges and interpretably mitigate robot behaviors that interfere the paths

of other dynamic actors, we propose a novel method that leverages decision tree theory [16] to

predict, explain, and plan corrective actions at runtime in situations in which a robot will interfere

with the motion of surrounding humans. Different from other learning-based approaches, besides

the explainability aspect, another contribution of our work is that previously unobserved and

misclassified data are considered at runtime through validation criteria to improve and refine

predictions and corrective actions in future operations. In Fig. 2.1, we show a motivating example

for this work in which a robot is able to predict, explain, and find a correction to avoid interfering

with a person’s intended path.

3.2 Problem Formulation

Consider a mobile robot tasked to navigate an environment while avoiding other actors, in particular,

humans. Without prior knowledge about the intended goal of the surrounding humans, this robot

would not be able to predict their path. We note however that humans tend to move in certain

way, typically in the direction of the desired goal. Let us define the path followed by a human as

q∗i , with i = 1, . . . , Nh where Nh is the number of humans in sensing range with the robot. With

such premises we would like to design a framework for a robot to directly predict interference with

all the humans in its sensing range and plan its motion accordingly to minimize the deviation of

human paths due to its presence along the way. Formally, the problem can be cast as:

39

Problem 3.1 (Non-Interfering Motion Planning and Control) Design a policy to predict

and explain future interfering interactions between a robot and surrounding humans and to plan

corrective actions, u, that do not cause human paths to deviate more than a distance δ from the

intended trajectory:

||qh(t)− q∗h(t)|| ≤ δ, ∀h = 1, . . . , Nh(t), t ≥ 0 (3.1)

where qh(t) and q∗h(t) are the observed path and intended path of the ith actor at time t respectively.

A correlated problem that we propose to investigate in this chapter is to improve robot behavior

over time in response to previous experience. To this end, we create a strategy to validate and

update predictions and planning at runtime when undesirable behaviors are observed or when

runtime observations are unmodeled in the training data.

3.3 Methodology

Our proposed interpretable monitoring framework follows the architecture in Fig. 3.2.

Figure 3.2: Block diagram of the presented approach.

At the core of our framework we leverage decision tree (DT) theory to predict interferences

and correct robot behaviors. With observations of surrounding humans αh(t), a local DT, Th

is constructed with a dataset of human-robot trajectories to compute a prediction Ph(t) and

explanation Eh(t) as to whether the robot will interfere (λ) or not interfere (¬λ) with paths of

surrounding humans. Then, when interference is predicted, a cascaded (secondary) tree T̂c is used to

40

generate corrective behaviors that reduces robot interference with human paths. Finally, a validation

scheme is proposed to update the dataset online, improving future DT operations.

3.3.1 Decision Tree Formulation and Training

Decision trees (DTs) are a form of supervised learning that consist of white-box models which

make predictions easy to interpret [16]. DTs are different from most learning-based approaches

for classification, such as DNNs [27], which use black-box models and it is difficult to identify the

causes that lead to a particular output, or even why that output is appropriate or correct for a

given application. In this work, DTs are constructed as binary classification models that are made

up of a network of nodes; the outermost nodes, known as leaves, correspond to labels given in the

training (decisions). Internal nodes define the split criteria for leaves based on the input variables

(attributes). The trees are grown using the Gini Index, which measures the degree or probability of

a particular element being wrongly classified when it is randomly chosen. Specifically, given a set of

elements labeled with Nc classes, let ρi be the fraction of elements labeled with class i, the Gini

index is computed as

IG(ρ) =

Nc∑
i=1

ρi
∑
k ̸=i

ρk =

Nc∑
i=1

ρi(1− ρi) =

Nc∑
i=1

(ρi − ρi
2) =

Nc∑
i=1

ρi −
Nc∑
i=1

ρi
2 = 1−

Nc∑
i=1

ρi
2 (3.2)

For training, we generate a dataset of trajectories in both simulation and in real experiments

that consist of human motion from multiple initial to final positions with varying velocity in the

presence of a moving robot. In the training, the robot does not react to the humans, so that the

prediction model can learn when an interference occurs. In simulation, humans are controlled by a

virtual physics-based method [78], which triggers a reaction (interference) if a distance threshold,

δth, is violated. By training in this way, the desired effect is that the robot plans actions that keep

a minimum distance of δth from all surrounding humans.

Attributes should be meaningful to the application, and typically more attributes improve

the precision of the prediction. However, too many attributes can lead to redundancy and poor

classification [16]. For the human-robot interaction case in this work, attributes are derived from

the joint state between the robot and surrounding human, based on explicit sensor data available

and implicit data we can compute (e.g., velocity from range sensor readings over time). Specifically,

41

we define the attributes as

α = [dx dy θ d d′ vh vr ℓ] (3.3)

where dx, dy, and θ, are relative x-y positions and heading, respectively, d and d′ are the Euclidean

distance and distance derivative (i.e., the rate of change of the Euclidean distance) between human

and robot, and vh and vr are the human and robot velocities, respectively. The robot’s operating

“lane,” ℓ is a discretization of the robot’s y-position, assuming that the robot is typically moving

forward, i.e., along the x-direction.

The attributes in α were selected via experimental sensitivity analysis and were validated by

testing for collinearity, which has shown to affect the performance of classification learners [39]. The

correlation matrix in Fig. 3.3 shows no strong linear correlations between any of the attributes,

indicating that they are not redundant. To further validate that α is meaningful, we also analyzed

Figure 3.3: Correlation matrix plot of attributes α from simulation data.

the average predictor importance [16] of the attributes over 100 random local trees taken from

subsets of the training data. A non-zero importance indicates that the attribute is valuable to

decision tree predictions, and it is clear in Fig. 3.4 that while some attributes may be more important

than others, all attributes have an effect on the prediction.

Through the training, we obtain a global dataset S = ⟨αs, λs⟩ that includes both the attributes

42

Figure 3.4: Attribute importance as a proportion of total attribute importance.

and corresponding classes of all training instances. Depicted in Fig. 3.5 is the set of experiment

training trajectories. There are 21 human paths, and the robot was run with velocities vt =

[0.2, 0.4, 0.6]m/s, and on lanes ℓt = [−1, 0, 1]m, giving a total of 189 trajectories. This training

dataset is included as “dtree dataset.7z” in the GitHub repository in [77]. Simulation training was

performed similarly with more trajectories, velocities, and lanes.

Figure 3.5: Training trajectories recorded in a lab environment with a VICON Motion Capture
System.

3.3.2 Prediction and Explanation

Let us now consider first the case of one human approaching the robot. To predict interference, we

construct local DTs at runtime with the observed attributes related to a surrounding human, αh(t),

since a global DT for the entire training set can often return inaccurate and imprecise predictions

and explanations due to the presence of irrelevant data.

43

A local tree, Th, is trained by collecting a subset of points Sh(t) ⊂ S from the global dataset

that are within a neighborhood ∆ of the attributes of αh(t):

Sh(t) ⊂ S | ||αh(t)−αs|| ≤ ∆ ∀αs ∈ S (3.4)

The distance ∆ is a measure of how close the local training data should be to the observed data. The

exact value of ∆ is selected based on the quality of the available training dataset. With a very rich

dataset, a small ∆ may result in very accurate predictions and explanations. For a sparse dataset,

∆ should be large enough to ensure the decision tree has enough context to generate accurate

predictions and explanations. At the same time, in tuning ∆, one should consider that a very large

value would provide little benefit over a global tree, while a very low ∆ may result in too small a local

dataset, removing relevant data. After constructing the local tree, the prediction Ph(t) ∈ [λ,¬λ] is

obtained by evaluating the runtime observation αh(t) in the tree: Ph(t) = Th(αh(t)).

Generally, a local tree is desirable for prediction and explanation, because a global tree that is

constructed with the entire dataset can be detrimental to reasoning about the causes that lead to

the predicted state. Intuitively, the robot should only compare a human moving with a heading

θ, for example, with training data that reflect similar behaviors; i.e. the heading should not vary

too much between local training points and the runtime observation. Another benefit to leveraging

local data is that predictions and explanations from a local set of points will be more compact and

easier to understand. When local data is used, the number of data points is also reduced, which

decreases computational complexity– necessary for building new trees online.

Given a prediction, we compute an explanation Eh(t) by traversing the path through Th. A

prediction directly corresponds to a leaf, Vp, within the tree. If V0 is the root of Th, an explanation

is computed by traversing a path, Γ from V0 to Vp, taking into account the split criterion, c, for the

Ni internal nodes along the path. The conjunction of split criterion along Γ is the explanation of

the prediction:

Eh(t) =
Ni∧
k=1

ck with Γ | Ph(t) (3.5)

44

Traversing all other paths, Γj ∈ q with j = 1, . . . , Nq that lead to the opposite decision, ¬Ph(t),

in a similar way, provides a set of counterfactual rules, Ch(t), to the previously obtained prediction:

Ch(t) =

Nq∨
j=1

Nj∧
k=1

ck with Γj | ¬Ph(t) (3.6)

where each path Γj contains Nj nodes to the leaf. These counterfactuals denote which attributes, if

changed, would reverse the decision.

Shown in Fig. 3.6 is an example of a local DT used for prediction and explanation based on the

following attributes,

αh(t) =

 dx dy θ d d′ vh vr ℓ

1.43 −4.71 −81 4.93 −0.43 1.0 0.6 0

The output of the DT is Ph(t) = λ, shown by the dark red path and leaf node. Through (3.5) we

compute an explanation:

Eh(t) = Interfering because: {d′ < 0.24, dx < 1.76}

Through (3.6), we compute the following counterfactuals:

Ch(t) = Not Interfering when:

{d′ > 0.24, dx < 1.15} ∨

{θ > −56, d′ > 0.24, dx < 1.15} ∨

{−0.45 ≤ d′ < 0.24, 1.76 ≤ dx < 1.83} ∨

{−0.58 ≤ d′ < 0.24, dx > 1.83, d < 4.65}

The point at which this prediction is made is highlighted in Fig. 3.7, taken from our MATLAB

simulations. The prediction is made as soon as the human is within sensing range (5m in this case)

of the robot.

As seen in the example, DTs used for prediction provide a logical and interpretable explanation,

but the counterfactuals cannot be controlled by the robot’s actions alone, as they pertain to

human-dependent attributes.

45

Figure 3.6: Example prediction DT. The internal nodes (white squares) of the tree are binary tests
on one of the attributes and the leaf nodes (colored squares) are the class decisions. The bold path

shows the current decision.

Figure 3.7: Human (red) and robot (blue) trajectories, showing the point (in yellow) at which a
prediction is made. The markers fade as time increases and the actors reach their goals.

46

3.3.3 Corrective Counterfactual Analysis

In case of interference, the counterfactuals provide a set of configurations in which the robot would

not have interfered with the path of the human. However, it is not practical to manipulate attributes

like distance derivative d′ or relative heading θ, since they depend on human motion.

The only controllable attributes in our case are the velocity and lane to track by the robot,

αr = [vr, ℓ]. To generate actionable counterfactuals, we build a secondary tree, Tc in which we

first fix the human dependent attributes αc = αh \ αr and search in the training set for similar

attributes as done in (3.4) creating a new set Sc ⊂ S (note that Sh ⊂ Sc). In this way, the new

DT remains local in the human-related attributes but includes different lanes and velocity pairs,

enabling the system to find suitable corrections. The new DT output in this way will be decisions

and counterfactuals that only include vr and ℓ.

In Fig. 3.8, we show the correction tree associated with the example in Section 3.3.2 and Fig. 3.6

in which the robot was initially running with vr = 0.6 and ℓ = 0. After running the procedure in

Figure 3.8: Example correction decision tree. Nodes and split criteria only pertain to [vr, ℓ]. The
bold path shows the optimal counterfactual Cn∗(t).

this section, with (3.6), we obtain the following set of actionable counterfactuals:

Ch(t) = Not Interfering when:

{vr < 0.25, ℓ < 0.5} ∨

{vr < 0.25, ℓ ≥ 0.5} ∨

47

{0.35 ≤ vr < 0.45}

To decide which counterfactual to select, we consider two measures that describe the quality of

the nodes of the tree, node error, en, and node risk, rn, with n = 1, . . . , Nc(t), where Nc(t) is the

number of counterfactuals. Node error is the fraction of differently classified training points at a

specific leaf. For a leaf that predicts ¬λ, the node error is:

en = 1− p(λ) (3.7)

Node risk is a weighted measure of impurity (Gini Index in our work):

rn = 1−
2∑

i=1

ρi
2 (3.8)

where ρi is the fraction of elements labeled with class i = [λ,¬λ]. A lower node risk indicates that

there will be less of chance of an incorrect decision. In our approach, we combine both measures by

taking the product enrn, since our goal is to identify the best node to use. The use of the product

is viable here because both node error and node risk represent different probabilities that rely on

information about the training points for the local tree, enabling the use of the general multiplication

rule of probabilities for identifying the best node [105]. Then, the optimal counterfactual is computed

as follows:

n∗ = argmin
n

(enrn) (3.9)

The selected counterfactual rule, Cn∗(t) consists of an optimal velocity and lane α∗ = [v∗r , ℓ
∗]. In

the example shown in Fig 3.8, α∗ = {vr < 0.25, ℓ < 0.5}.

3.3.4 Corrective Planning and Control

Once a counterfactual rule is selected, the robot moves to implement the correction, which is

represented as a “ghost” moving target, and the robot switches into a pure-pursuit based mode

of operation [46] until it reaches the ghost vehicle. This is necessary because the corrective action

represents what the robot should have been doing at the instance t at which the correction was found,

meaning that the robot would only satisfy non-interfering conditions if vr(t) = v∗r and ℓ(t) = ℓ∗.

48

During the pure-pursuit corrective operation, the robot uses the ghost vehicle’s state to make

predictions until the tracking error between robot and ghost e(t) = pg(t)− pr(t) ≈ 0, after which it

reverts to performing predictions based on the actual state of the robot. This is needed because as

the robot performs corrective behaviors, we observe transition states that are unmodeled in the

training data, since the robot does not react to the humans in the training. In general, for mobile

robotic applications as the ones discussed in this thesis, we can assume that transition times are

negligible and the robot can quickly reach the ghost vehicle.

3.3.5 Multiple Decision Trees

In this section, we discuss how our approach extends to scenarios with multiple actors. Predictions

and explanations can be computed as discussed previously, as the system needs to understand if

it’s interfering with each actor individually. Finding corrections, however, is more challenging, as

the corrective action must not only remove interference with one actor, but also should not cause

interference with others. This requires a method to consider multiple DTs at once, taking into

account different counterfactual rules.

To consider different counterfactual rules of multiple DTs at once, we use decision tree ensemble

models (DTEM). The main principle behind DTEM (Fig. 3.9) is that a group of weak learners come

together to form a strong learner. Some popular methods for generating DTEMs include bagging,

Figure 3.9: General example of a Decision Tree Ensemble Model. Two weak learners come together
to form a stronger learner.

49

boosting, or using random forests, but these consist of random sampling methods [9], which are not

viable for our case, since we need to capture all relevant data.

We instead take principles of majority voting DTEMs [4], which typically compare predictions

from each DT, and select the majority output. We extend this concept by considering a single

combined corrective tree, T̂c, that incorporates the local training data of all individual trees, rather

than just the prediction.

Before combining, the local data for each person are normalized such that |Si(t)| ≈ |Sj(t)| with i, j =

1, . . . , Nh, where | · | gives the size of the enclosed dataset. In this way, corrections will not be

incorrectly biased towards those with more local data. We combine to obtain the training dataset:

Ŝ(t) = [S1(t), . . . ,SNh
(t)], with which T̂c is constructed and counterfactuals are analyzed with the

procedure discussed in Sec. 3.3.3, to obtain the optimal target, α∗, and the robot is controlled as

described in Sec. 3.3.4.

Building T̂c in this way, however, only enables the system to find the best action if one exists

within the data, meaning that there can be cases where all considered corrective actions are

interfering. This can happen if: 1) the considered corrective data are sparse, meaning that the

training set is not rich enough or 2) all possible actions are not feasible, for example, if the robot

is surrounded by a crowd. For the former case, we propose a randomized approach to choose a

velocity-lane pair that is not included in the local data: αs \ ˆα(t) ∈ Ŝ(t). By doing so, the vehicle

explores new options until it finds a solution. If no solution is found, the robot switches into a

fail-safe mode of operation, which consists of a very low velocity and a reactive obstacle avoidance

behavior for safety.

3.3.6 Online Validation and Updating

Due to the dynamic and dense nature of the environment, new and unmodeled human behaviors

can be observed and corrective actions may not always eliminate all interference. Since our DTs are

constructed at runtime, it is possible to introduce new data to the training set S as observations are

made. To avoid an exploding dataset, we introduce two test cases for adding new data: 1) decision

validation, and 2) checking for unbounded observations.

Case 1 Decision validation is necessary when corrective actions from T̂c still result in an

interference. This can occur when observations contain attribute values that are close to splitting

50

conditions in the DTs leading to misclassification, or when a correction cannot be found within the

DTEM. If the robot observes that the distance threshold δth is violated at runtime, the recorded

attributes are included in S.

Case 2 If an observation is outside the bounds of the training data, reliable predictions or

corrections cannot be expected. It has been shown for learning components that testing data

within the vertices of the smallest convex set around training data produces the most accurate

predictions [26]. In this work, convex hulls are generated around local training data using the

Quickhull algorithm [93] to form a boundary denoted Conv(Ŝ). Then, we check if observations

are within the outermost points of each dimension (attribute) of the convex hull using linear

inequalities [6]:

min(Conv(Ŝ)) ≤ αh(t) ≤ max(Conv(Ŝ)) (3.10)

If any part of αh(t) is outside the convex hull, the data are labeled and included in S. The dataset

updates at runtime through the presented test cases, resulting in more refined local trees, and

therefore better decision-making in the future.

3.4 Simulations

We performed a series of simulations in MATLAB to test the effectiveness of our approach. Training

included velocities vr = [0.2, 0.4, 0.6, 0.8, 1.0]m/s, and lanes ℓ = [−2,−1, 0, 1, 2]m simulating a

classical non-holonomic UGV. The robot considers humans within a range of 5m and has a nominal

velocity of 0.6m/s, and corrections are limited to any discrete velocity or lane seen in the training,

that is from vr and ℓ, respectively.

In the baseline simulation shown in Fig. 3.10, the robot (blue) is tasked to move from (0, 0)m to

(6, 0)m while predicting, explaining, and correcting to avoid interfering with a person (red) moving

along a trajectory previously unknown to the robot (i.e., different from the training set).

The paths are shown in Fig. 3.10(a), and prediction, explanation, optimal correction, and ghost

vehicle are shown in Fig. 3.10(b). The robot predicts Ph(t) = λ and determines that it must apply

the correction: α∗ = [vr < 0.25, ℓ < −1.5]. The ghost vehicle (yellow marker) immediately applies

these corrections. In Fig. 3.10(d), the distance between robot and human is shown to verify that

the distance threshold δth = 1.5m is not violated.

51

(a) Paths of human(red) and robot(blue).

(b) Decision tree operations. (c) Distance to ghost vehicle. (d) Distance to human.

Figure 3.10: Baseline simulation.

In Fig. 3.11, we show the effects of online validation and learning by performing a simulation

with DTs trained on an incomplete training dataset. The robot’s goal is (14, 0)m and the humans

in this simulation take identical paths in succession to test whether the robot has improved its

behavior. The robot makes an incorrect decision at first, applying the explanation and correction

shown in Fig. 3.11(b), only slowing down to vr < 0.25m/s. Both test cases (Sec. 3.3.6) are violated,

shown by the deviation in the red path of Fig. 3.11(a) and the observation (red point) outside

the partial convex hull in Fig. 3.11(d). Note that partial 3-dimensional convex hulls are shown for

visualization purposes, due to the high dimensionality of our attributes, α ∈ R8. The magenta path

in Fig. 3.11(a) shows no interference, as a different correction was selected (Fig. 3.11(c)), since the

observations are now included in the local data (Fig. 3.11(e)).

We also extensively test our approach in handling multiple people at a time, shown in Fig. 3.12.

The robot navigates through 10 people, changing its lane (ℓ) and velocity (vr) to avoid interfering.

This test was run for 50 trials with random human trajectories. All decision tree operations in these

simulations took between 30− 90ms. Our approach successfully eliminated interferences 72% of

52

(a) Paths of humans (red, magenta) and robot (blue).

(b) Incorrect DT operations. (c) Corrected DT operations.

(d) Partial convex hull prior to updates. (e) Partial convex hull after updates.

Figure 3.11: Simulation of runtime validation and updating.

53

Figure 3.12: Human (red) and robot (blue) paths in a multi-actor simulation

the time, with an average minimum distance of δmin = 1.58m. Where interference occurred, we

observed that the robot was in dense crowds, negotiating with on average Nh(t) ≥ 7.

3.5 Experiments

The proposed approach was also validated experimentally on a Clearpath Robotics Ridgeback

Omnidirectional Platform (see Fig. 2.1) in indoor environments. In the first experiments, a VICON

motion capture (MOCAP) system was used to obtain robot and human states. In the second

experiment, the robot uses an on-board ASUS Xtion RGB-D camera with the SPENCER people

tracking package [63].

3.5.1 MOCAP Experiments

In the first experiment shown in Fig. 3.13, the robot predicts, explains, and takes corrective actions

proactively to avoid the human. The robot moves from (−2.5, 0)m to (2.5, 0)m at a nominal velocity

of vr = 0.6m/s, and the distance threshold δth = 1m. The robot predicts Ph(t) = λ and explains:

Eh(t) = Interfering because: {d′ < 0.21, dx > 2.59}

With the correction tree, the robot computes:

Ch(t) = Not Interfering when: {vr ≥ 0.5, ℓ > 0.5}

Thus, the corrective action is to maintain nominal velocity, and move to the lane in the positive

y-direction, to avoid interfering at the center of the environment. The minimum distance between

actors is δmin = 2.09m (Fig. 3.13(b)) , never nearing the distance threshold.

In the experiment shown in Fig. 3.14, we examine the effects of online validation and updating.

54

(a) Snapshots of experiment. (b) Distance between actors.

Figure 3.13: Snapshots and distances of lab experiment.

As a proof of concept, we removed a large portion of our training data, and as shown in the first

run in Fig. 3.14(c) we observed that the robot moved incorrectly toward the human. The distance

threshold is violated, δmin = 0.91m (Fig. 3.14(e)), and the person alters his path, reacting to the

robot’s interfering behavior. After the model is updated and reinforced at runtime, the robot makes

the appropriate correction and no interference is observed, with δmin = 2.13m (Fig. 3.14(c-d)).

In Fig. 3.15, we show the effectiveness of our approach with two people in the lab environment.

The robot has the goal to reach (2.5, 0)m and successfully avoids interference with both people at

once, even in a small space, showing that our approach scales to accommodating multiple actors at

the same time. The trajectories for all agents are shown in Fig. 3.15(e), and the minimum distance

between any human and robot was 1.23m, which is above the threshold δth = 1m.

3.5.2 On-Board Sensing Experiment

To demonstrate the applicability of our approach outside MOCAP settings, we deployed our

technique on the same robot using only the on-board RGB-D and Lidar sensors to identify and

track surrounding humans and localize itself. Fig. 3.16 shows the results for this experiment in

which the robot is able to successfully avoid interference with surrounding people and reaches its

goal without violating the distance threshold despite noisy camera measurements and uncertain

person detection and tracking.

55

3.6 Discussion

In this work, we have presented a novel approach for interpretable prediction and planning of a

robot in a co-robotic environment. We relax the requirement of explicitly predicting human paths,

and instead directly predict, explain, and find counterfactual rules for interfering behaviors with

binary decision trees and a library of pre-trained trajectories. Unique from other works in this

field, we validate robot behaviors to update the predictive model at runtime, resulting in improved

behaviors in future operations. While we focused on human-robot operations in this work, our

framework works for any motion planning operation with multiple actors. The results overall show

desirable and explainable robot behaviors among dynamic actors behaving in different ways.

3.6.1 Limitations and Future Directions

While we found that our approach shows good results, we note that performance can decrease in

very dense (N > 7) crowds, and this is primarily because the binary classification approach is,

by design, conservative and inflexible in differentiating between excessive interference and slight

interference beyond the threshold set in the training. Furthermore, since predictions are not made

during transition states, the appearance of new actors in that time may result in a robot that

switches into the fail safe mode too much. But it should be noted that causing some interference is

not necessarily unnatural or socially unacceptable, so this can be mitigated further by relaxing the

requirement about interfering with nearby actors and providing explanations and corrections that

are flexible to different desired priorities of the robot. Finally, we note that the method currently

used requires searching through a dataset to update and learn new behaviors online. This, however,

can get computationally expensive without limiting the size of the dataset. At the same time,

limiting the dataset may remove useful information the robot could use to better inform planning.

To handle these challenges, we leverage the idea of training the DT monitor with probabilities

measured, collected, and updated at runtime to assist decision-making in traditional planners and

controllers. We also modify the definition of interference to better prioritize desired robot behaviors

in multi-actor environments. These methods are introduced in the next chapter.

56

(a) Experiment paths of human (red) and robot (blue)
with an incomplete subset of training data.

(b) Experiment path of humans (red) and robot (blue)
after including the previous observation at runtime.

(c) Experiment snapshots before updates. (d) Experiment snapshots after updates.

(e) Distance between actors before update. (f) Distance between actors after update.

Figure 3.14: Experiment showing the effects runtime updates.

57

(a) Initial positions of actors. (b) Robot performs corrective behavior.

(c) Intermediate positions of actors (d) Final positions of actors.

(e) Trajectories of actors. (f) Distance between actors.

Figure 3.15: Snapshots, trajectories and distances of 2-person lab experiment.

58

(a) Initial positions of actors. (b) Robot performs corrective behavior.

(c) Actors arrive at final positions (d) Robot first person view.

(e) Trajectories of actors. (f) Distance between actors.

Figure 3.16: Snapshots and trajectories of 2-person lab experiment.

59

Chapter 4

Interpretable Adaptation of Virtual Physics-

based Planner for Social Navigation

In this chapter, we expand on the decision tree-based (DT) interpretable monitoring framework

presented in the previous chapter for priority-aware adaptation of a baseline virtual physics-based

(VP) planner. We note that these planners are efficient and scale well to avoiding collisions with

multiple agents, but leave the robot susceptible to getting stuck in local minima. In dynamic

environments, such issues can cause interference with nearby actors, an thus, we leverage our

interpretable monitor here to adapt the parameters of such planners to ensure non-interfering

behaviors. One key addition to our approach includes a Hidden Markov Model-inspired (HMM)

mechanism to store new data collected at runtime to update and improve predictions and planning

faster than the data collection methods introduced in the previous chapters. We also extend

the counterfactual analysis to adapt corrective actions to the robot’s priorities, which can vary

in different environments with different applications. These desired priority behaviors are taken

into account when performing counterfactual analysis within our framework. We show that the

interpretable monitoring framework, in addition to serving as the high-level motion planner as in the

previous chapter, can be flexible enough to adapt and adjust for failures of robotic planning systems.

Our framework is validated with multiple simulations and experiments consisting of a UGV and a

UAV equipped with the VP planner that successfully navigates without interfering with the paths

of multiple dynamic actors. This work has been published in the Robotics and Automation Letters

(RA-L).

60

4.1 Introduction

As humans, when navigating in the presence of others, we combine competing notions of accommo-

dating each other’s paths while also maintaining our own path or desired speed. We consider these

factors simultaneously to navigate in natural, socially-acceptable ways. Moreover, we prioritize

how we accommodate others based on our specific environment or task. For example, a doctor

rushing to aid an injured person will prioritize speed as much as safely possible. Importantly, we

make these decisions without explicitly predicting the paths of other actors, and we can explain and

understand why we make these decisions, continually learning and adapting our behaviors as we

experience different scenarios. If a robot could reason about its behavior and plan corrective actions

in a similar way, it could generate similarly natural and intuitive motion around other actors, while

maintaining priorities related to how much it should accommodate to surrounding actors.

In any cases, mobile robots that share environments with humans are typically already equipped

with a basic reactive motion planner that is used to reach goals in a safe manner, usually without

colliding with perceived obstacles in the environment. With these basic planners, however, motion

planning may result in undesirable deviations and potentially, collisions.

Figure 4.1: In our proposed approach, a robot predicts, explains and finds a priority-aware
corrective action on top of a virtual-physics planner to avoid interfering with oncoming actors

61

Virtual physics-based (VP) planners, including artificial potential fields (APF), are well-known

examples of this type of planner because they are easy to implement and are very efficient, typically

scaling well to handling multiple obstacles, irrespective of whether these obstacles are static or

dynamic. Robots using these reactive planners, however, can get stuck in local minima or in

prolonged divergence from the goal, as a result of not accounting for dynamism of the obstacles.

On the other hand, if this type of planner can be adapted in a predictive and proactive way, it

is possible to generate desirable accommodating behaviors. Then, the objective of our framework

becomes predicting whether a failure case will arise, understanding why such a failure will arise, and

finding a method to proactively correct the behavior of the system. This correction, in addition,

can be fine tuned to the priorities of the robot, which can include maintaining a target velocity or

maximizing distance from surrounding actors. Finally, another consideration in this work is that

our previous methods to update the model at runtime have relied on collecting and storing a large

window of data. In this work, we relax this requirement by leveraging principles from the HMM

presented in Chapter 2. Instead of storing observed data directly, we build and update at runtime a

probability matrix based on our observation. This probability matrix is used directly to inform local

DT training. In Fig. 2.1, we show a motivating example for our work, in which a robot equipped

with our approach predicts, explains, and finds a priority-based correction to avoid interfering with

an oncoming person.

This work presents three main contributions: 1) the design of an interpretable DT-based monitor

that predicts, explains, and finds corrections when a robot will interfere with nearby dynamic actors;

2) the formulation of a priority-based reward function to identify the correction that optimizes how

the robot should behave; 3) an HMM-based model to build and update decision trees at runtime

and improve predictions and planning over time without storing a large amount of data.

4.2 Preliminaries

Let us consider a mobile robot equipped with a VP planner that is tasked to navigate to a goal

in the presence of dynamic actors. Specifically, our planner is inspired by an efficient and scalable

virtual spring-mass-damper system borrowed from our previous work [78], in which the input u is

comprised of an attractive force that draws the robot towards its goal and repulsive forces that send

62

the robot away from the obstacles. Generally, this formulation is in terms of forces and accelerations,

but can be cast as kinematic constraints, depending on the capabilities and inputs of the robots,

many of which typically only accept velocity commands. Thus, for ease of implementation on a

wide range of robots, we cast the input u as a velocity which is governed by attractive and repulsive

effects.

The attractive input that moves the robot from its position pr(t) towards the goal pg is computed

as follows:

uatt(t) = katt(||pr(t)− pg||)
#»

dg (4.1)

where
#»

d g is the unit vector directed towards the goal and katt is the attractive spring constant. In

this work, the resulting velocity vector is limited by a maximum target speed: ||uatt(t)|| ≤ v∗. We

assume here that the robot is able to quickly reach its target speed, and the desired effect is that

the robot slows down and stops once it is close to the goal.

The repulsive inputs are computed as follows:

urep(t) =

krep(dho(t))

#»

dho, dh(t) ≤ lo

0, otherwise

(4.2)

where krep is a repulsive spring constant, dho(t) = lh(t) − lo and lh(t) = ||pr(t) − ph(t)|| is the

distance between robot and dynamic actor h, lo is the reaction distance threshold, and
#»

dho is a

unit vector in the direction away from the actor.

We then combine the attractive and repulsive effects along with a damping term with coefficient

cd to compute the input:

u(t) = uatt(t) +
n∑

j=1

urep(t)− cdu(t− 1) (4.3)

VP planners, as it is well-known, are a reactive approach for motion planning and robots using

these types of planners can often get stuck in local minima or experience prolonged divergence from

the goal. Local minima occur when repulsive and attractive inputs are equal leading to u = 0, and

prolonged divergence occurs when a repulsive input sends the robot away from the goal and is not

63

approaching urep = 0 quickly enough for the robot to converge to its target. Shown in Fig. 4.2 are

examples of two trajectories in which the VP planner results in a failure (Fig. 4.2(a-b)) due to a

local minima and prolonged divergence from path, and one example of a successful VP motion plan

(Fig. 4.2(c)). Figs. 4.2(d-f) display the magnitude of the repulsive input on the robot for each of

these trajectories.

(a) (b) (c)

(d) (e) (f)

Figure 4.2: Examples of VP planner trajectories and repulsive inputs. The trajectories are shown
by blue (robot) and red (actor) markers that fade as time passes. Yellow (robot) and green (actor)

markers represent the goals.

4.3 Problem Formulation

Consider a mobile robot equipped with the aforementioned VP planner navigating a shared environ-

ment with other dynamic actors. With the premises presented in Sec. 4.2, we would like to directly

predict when the VP planner will lead to interference and plan motion accordingly to correct the

behaviors of the robot. Formally, the problem is:

Problem 4.1 (Interpretable Interference Monitoring) Design a policy to predict and explain

future interfering interactions between a robot and nearby actors and find corrective control actions,

64

ucorr, for a VP planner such that the following non-interfering conditions are met:

||pr(t)− pi(t)|| > δs, ∀i = 1, . . . , Nh(t)

||pi(t)− p∗
i || ≤ σh, ∀i = 1, . . . , Nh(t) (4.4)

||pr(t)− p∗
r || ≤ σr

where pr(t) and pi(t), represent the robot and actor i positions, p∗
r and p∗

i are the reference positions

of robot and actor i along their respective desired paths, and δs is a minimum distance threshold that

can be obtained through testing (in this work it is set to 1m), and σr and σh are deviation thresholds

for robot and actor paths, respectively. In this work, we assume the desired path of actors can be

estimated by analyzing changes in direction of motion and checking the minimum distance between

robot and actor within the robot’s sensing range.

The robot also has different behaviors depending on the assigned priorities. For example, in

a conservative case, a robot may accommodate actors more, while a more aggressive robot may

prioritize moving faster, accommodating less to the motion of nearby actors. In this work, for ease,

we assume that the robot considers commonly observed behavioral priorities [57, 45] that pertain to

distance, deviation, and velocity, as follows:

1. Maintain a safe distance from dynamic actors (Rδ)

2. Minimize deviation from the robot’s desired path (Rσr)

3. Minimize actor deviation caused by the robot (Rσh
)

4. Minimize deviation from robot’s target speed (Rv)

Given the above priority considerations, we can then formulate the following reward function:

R(β) = β1Rδ + β2Rσr + β3Rσh
+ β4Rv, (4.5)

where β = [β1 β2 β3 β4] is the set of parameters that defines the weights given to each of the 4

considerations. It should be noted that different priorities can be considered beyond those mentioned

above.

65

Then, the problem becomes the following:

Problem 4.2 (Priority-based Motion Planning) Find a corrective input action within ucorr

from Problem 1 for the robot that maximizes the objective reward function given a particular set of

priorities β:

u∗ = argmax
u

R(β) (4.6)

Finally, a corollary problem we investigate is how the robot can learn and improve its behavior at

runtime in a manner that does not become more computationally expensive over time, and is viable

for long term deployment.

4.4 Approach

Our proposed priority-based interpretable monitoring and planning framework follows the architec-

ture in

Figure 4.3: Block diagram of our priority-based interpretable monitoring and planning framework.

At the core of our framework, a series of decision trees is used to: 1) predict and explain

interference between the robot and the actors, 2) obtain corrections and 3) select the proper

correction for the virtual physics planner based on different priority metrics imposed on the robot.

To enable runtime learning and adaptation, a Hidden Markov Model (HMM) is trained both offline

and at runtime to characterize probabilities of interference. In the event that the DT predicts that

the VP planner will not interfere, then no correction is needed and the robot plans motion according

to (4.3). In what follows we will discuss in more detail each element of Fig. 4.3.

66

4.4.1 Probability-based Decision Tree Theory

Decision trees (DTs) are a form of supervised learning that are interpretable, due to their white-box

models [16]. DTs take in a set of input variables (attributes) to predict a target output. When the

output takes a discrete set of values (classes), the DT is a classification tree. In these trees, the

outermost nodes correspond to class labels and internal nodes represent conjunctions of features

that return the respective class labels. DTs where the output takes continuous values are known as

regression trees [37], and the outermost nodes in these trees correspond to real numbers. In this

work, classification trees are used to predict and explain a future interference, and regression trees

are used to estimate priority rewards to decide how to correct robot behaviors.

Typically, DTs are trained with a dataset of historical observations containing input variables

and associated labels. A key feature in this work is that DTs are both constructed and constantly

updated at runtime, meaning that new data are constantly observed and incorporated into the

construction of DTs. Storing historical observation data can become computationally expensive

over time, bringing about the need for a faster approach to update and build DTs at runtime.

To this end, we propose a probability model for fast updating and construction of DTs. We take

inspiration from the emission matrices within Hidden Markov Models (HMM) [81], in which the

state space of the system, S ∈ RN , includes a finite set of unique states si ∈ S, i = 1, . . . , N , and

each state can be associated to an emission, G ∈ RM and gk ∈ G, where k = 1, . . . ,M , with M ∈ N.

Given N unique states and M unique emissions, the right-stochastic matrix A ∈ RN×M , in which

the sum of rows is 1, lists the probability aik of obtaining an emission gk given a state si, and is

formed as follows

A =

a11 . . . a1M
...

. . .

aN1 aNM

 (4.7)

In a typical HMM framework, values within A do not account for the fact that there may be very few

occurrences of a particular state, assigning very high probabilities with very little information, which

may lead to inaccurate classification. We instead include this consideration by treating emissions as

classes and computing classification probabilities that connect a particular state si to a class gk by

leveraging a generalized logistic function (GLF) [23], which is an extension of the sigmoid function,

67

of the form:

aik(x) =
L

1 +Qe−b(x−x0)
, (4.8)

where L is the maximum value; since this function is used to compute and update probabilities

between 0 and 1, a natural choice for this value is L = 1. The logistic growth rate is defined

by b and x0 is the midpoint of the curve. The parameter Q can be treated as an initial bias on

the midpoint (x = 0) of the function. If Q > 1, the GLF has a bias towards a lower probability,

aik(0) < 0.5, and vice versa. When Q = 1, there is no bias and aik(0) = 0.5. The value of Q is a

user defined parameter that depends on the application and can be used to tune how conservatively

a classification model makes decisions.

The value of x must capture the desired comparison between output classes. In this work, x is

computed as a weighted difference between observations of a certain state in each class:

x =

Nsik∗−Nsik

Nsi
·min(1,

Nsi
Nl

) Nsi > 0

0 Nsi = 0

(4.9)

where k∗ = ¬λ and k = λ represent the classification outputs in our work, Nsik∗ and Nsik are the

number of non-interfering and interfering observations at state si, respectively, and Nsi is the total

number of observations of si. The value Nl is a buffer chosen to reduce the impact in cases with very

few observations while allowing cases with sufficient observations (Nsi ≥ Nl) retain their intrinsic

values. Shown in Fig. 4.4 is the GLF that we obtained via experimental testing for this work, where

Figure 4.4: Generalized logistic function used to compute P (¬λ). Also shown is the complementary
curve for P (λ)

68

the midpoint is x0 = 0, the parameter Q = 1, and the growth rate is b = 4.5, giving the following

expression: p(x) = 1
1+e−4.5x .

Since growing DTs requires a dataset containing input states and outputs, we leverage A to

generate a fixed number of data, in which the distribution of outputs corresponds to class probabilities

in A. An important benefit of using this method to build and update DTs and probabilities at

runtime is that the only data storage requirements for each state are the values contained within

(4.9), which can be adjusted at runtime by updating the number of state and output observations,

and recalculating probabilities with (4.8) and (4.9). The complexity of this method does not increase

with time, and is viable for long term deployment.

4.4.2 HMM and DT Training

The training data used to build HMM matrices consists of trajectories of a robot using the

aforementioned VP planner with different target speeds in the presence of one actor moving from

various initial positions to various goals. In training and simulations, actors are also controlled by

the presented VP planner, to account for the fact that other actors are non-hostile and will alter

their paths to avoid collisions with the robot.

The attributes (inputs to DTs) are based on the available sensor data about the robot and

actors. Specifically, we leverage the following attributes that we have experimentally validated in

our previous work [80]:

α = [dx dy θ vh vr] (4.10)

where dx, dy, and θ, are relative x-y positions and heading and vh and vr are the actor and robot

speeds, respectively. Each unique set of attributes represents one of the states, or rows, within

the probability matrix: αi = si ∈ S, with i = 1, . . . , N . The collected attributes are limited to a

small sensing range around the robot since the goal of the robot is to avoid interfering with nearby

actors. The attributes are discretized uniformly to prevent an infinite or exploding state space.

While uniform discretization is leveraged given the smaller sensing range, it is worth noting that for

a robot considering a much larger sensing range or a different application, a variable discretization

may be more desirable, so that predictions regarding actors closer to the robot are more accurate

and granular than those further from the robot.

69

The output classes are either interfering (λ) or not interfering (¬λ), and are assigned based on a

violation of any condition in (4.4) at any point in a trajectory. The regression outputs describe how

well a set of attributes performs for a certain set of priorities (Prob. 2 in this work). Below, we

define how each of the rewards within (4.5) are computed.

The safe distance reward, Rδ, is constructed such that the maximum reward of 1 is assigned when

the threshold constraint δs is not violated and the reward proportionally decreases as a violation

worsens:

Rδ =

||pr(t)−ph(t)||

δs
, ||pr(t)− ph(t)|| < δs

1, ||pr(t)− ph(t)|| ≥ δs

(4.11)

The reward for actor path deviation is assigned differently as follows, since the desired effect is

lower deviation:

Rσh
=

0, ||ph(t)− p∗

h|| > σh

e
− ||ph(t)−p∗h||

σh , ||ph(t)− p∗
h|| ≤ σh

(4.12)

where σh represents the maximum permitted deviation that satisfies conditions in (4.4). The robot

path deviation reward Rσr , is similar to the actor deviation reward, but instead uses robot current

and desired position.

The velocity reward can be represented by any function that has a global maximum at the

desired speed and decreases as the robot’s speed diverges from vdes. We capture this effect with a

quadratic function that has a vertex at (vdes, 1), as follows:

Rv = −a(vr − vdes)
2 + 1 (4.13)

where a is a constant that determines the rate at which the reward decreases.

In the case where any one of the individual rewards is more important, that term should be

weighted higher. For example, the objective for an actor-focused case, in which the robot prefers

yielding to actors and incurring more deviation in its own path and velocity, can have the following

set of parameters, β = [0.2 0.1 0.5 0.2], further penalizing states that are predicted to cause more

actor deviation. βi = 0.25 ∀ i.

During training, an observed set of attributes is rounded to the nearest state, si ∈ S, which is

70

then associated to a class label (λ,¬λ) and a priority based reward output (4.5). Then, the class

probabilities are computed with (4.8) and (4.9) to populate a classification matrix Ac, and the

regression matrix, Ar is built based on the priority-based rewards obtained during training.

4.4.3 Prediction and Explanation

At runtime, to predict and explain interference with a surrounding actor, we build local decision

trees with an actor’s observed attributes αh(t). Local trees are more desirable for prediction and

explanation, because DTs constructed using the entire state space can contain irrelevant information,

reducing the quality of predictions and explanations [37]. The local tree, T h
p , is trained using a

subset of states sh(t) from S that are within a distance ∆ of the attributes of αh(t):

sh(t) ⊂ S s.t. ||αh(t)− si|| ≤ ∆ ∀si ∈ S (4.14)

The parameter ∆ defines how close the local training states are to the observed state, and this

value should be chosen based on the quality of the training set. It should be noted that too low a ∆

may remove relevant data, while too large a ∆ provides little benefit over a global tree. Then, the

prediction Ph(t) ∈ [λ,¬λ] is obtained as follows: Ph(t) = T h
p (αh(t)).

An explanation Eh(t) is then computed by traversing the path Γ from the root of the tree, V0,

to a prediction leaf, Vp, taking the conjunction of each split criterion, c, for the Ni nodes along the

path:

Eh(t) =
Ni∧
k=1

ck with Γ | Ph(t) (4.15)

Traversing all paths, Γj ∈ q with j = 1, . . . , Nq, that lead to the opposite decision provides a set

of counterfactuals, Ch(t):

Ch(t) =

Nq∨
j=1

Nj∧
k=1

ck with Γj | ¬Ph(t) (4.16)

where each path Γj contains Nj nodes to the leaf [80].

In Fig. 4.5 we show an example of a decision tree that predicts and explains a future interference

with one approaching actor.

71

Figure 4.5: Prediction and explanation decision tree T h
p .

The attributes in this particular example are the following:

αh(t) =

dx dy θ vh vr

0 −3 π/4 1.0 0.8

The prediction is Ph(t) = λ (interfering), indicated by the red path in the figure. Through (4.15),

the following explanation is obtained:

Eh(t) = Interfering because: {dx > −0.5 ∧ 0.9 < vh < 1.1}

Through (4.16), the following counterfactuals are then obtained:

Ch(t) = Not Interfering when:

{dx < −0.5} ∨

{dx > −0.5 ∧ vh < 0.9} ∨

{dx > −0.5 ∧ vh > 1.1}

4.4.4 Counterfactual Analysis and Priority-based Correction

When the VP planner is predicted to interfere with an actor, the counterfactuals of the DTs tell

which attributes, when changed, can revert the prediction. The robot, however, cannot change

72

attributes that are related to actor motion, and can only control its maximum target speed, vr,

which is used to obtain uatt (4.1). To find corrective target speeds for the robot, we build a set of

secondary trees, T h
c and T h

r , in which we fix all attributes except vr and find similar states from S

as done in (4.14), creating a new set sc ⊂ S (note that sh ⊂ sc). In this way, new DTs are still

relevant to other local attributes but include varied robot speed, enabling DTs to find from within

the finite state space S via (4.16) a set of non-interfering target speeds, vh
corr.

In Fig. 4.6, we show the correction tree associated with the example introduced in Section 4.4.3.

Figure 4.6: Correction decision tree T h
c .

The robot was moving at a desired speed of vr = 0.8. Through (4.16), we obtain the following

set of counterfactuals:

Ch(t) = Not Interfering when:

{vr < 0.45} ∨

{0.45 ≤ vr < 0.65} ∨

{0.65 ≤ vr < 0.75} ∨

{vr > 0.95}

In this example, the set of non-interfering speeds from our state space S is vh
corr = [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1.0]

73

While each target speed within vh
corr may satisfy the conditions for a non-interfering case, some

may result in better or worse performance, depending on the priority behavior of the robot (Problem

2).

The optimal target speed for given priority parameters is computed by comparing the output of

non-interfering speeds, v ∈ vh
corr, in the reward tree of actor h, as follows:

v∗ = argmax
v

T h
r (vcorr) (4.17)

This is then set as the maximum target speed for the attractive input, discussed in Sec. 4.2.

Shown in Table 4.1 is the output of the reward tree with the following parameters β =

[0.25 0.25 0.25 0.25], taken from the running example in the previous sections (Figs. 4.5, 4.6). The

non-interfering speeds are compared using the predicted reward, and through (4.17), we obtain that

v∗ = 0.4m/s.

Table 4.1: Rewards from T h
r

vi ∈ vcorr 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1.0

Reward 0.601 0.690 0.744 0.747 0.801 0.771 0.732 0.554 0.619

4.4.5 Extension to Multiple Actors

The set of non-interfering speeds for multiple surrounding actors is the intersection between individual

sets. Let vhcorr represent a set of non-interfering speeds for a single actor h within the sensing range

of the robot. Then the intersection of sets of all actors is represented as follows:

v̂corr =
⋂
h

vh
corr (4.18)

The set of combined non-interfering speeds, v̂corr includes speeds for which Ph = ¬λ ∀h = 1, . . . , Nh,

where Nh is the number of actors within the sensing range of the robot. Then the optimal target

speed for all actors is found similarly as in (4.17), but now includes summing the rewards:

v∗ = argmax
v

Nh∑
h=1

T h
r (v̂corr) (4.19)

74

There may, however, exist cases in which no global solution can be found, that is v̂corr = ∅, due

to particularly dense conditions and contradicting corrections. In these cases, the system reverts to

a fail-safe mode, in which the robot moves at a very low target speed with our VP planner. We treat

this as fail-safe because, in addition to our assumption that actors are non-hostile, assigning a low

speed has been shown to effectively communicate to actors that the robot is accommodating [57]

giving the actors more time to react and perform avoiding maneuvers. However, when actors take

upon the burden of avoidance, interfering conditions are often violated. These cases, as with all

observations, are recorded and probabilities are updated through (4.8) and (4.9) at runtime, refining

predictions so that the robot can learn to avoid getting into a similar interfering state in the future.

4.5 Simulations

In this section we provide several MATLAB simulations to evaluate and compare our approach with

other methods. Simulation training included a robot equipped with the previously described VP

planner with target speeds in the interval vr = [0.0, 1.0]m/s, discretized at 0.1m/s increments. The

desired speed was set to vdes = 0.8m/s. In the training, the robot performed its trajectory in the

presence of one actor also running the aforementioned VP planner, which had different initial and

final positions in each trajectory with a nominal speed of vh = 1m/s.

In the first simulation, we show the outcome of the running example presented throughout

this chapter so far (Figs. 4.5 and 4.6), in which a robot with a 5m sensing radius is navigating

in the presence of one actor and has a goal at (10, 0)m. The distance and deviation thresholds

are δs, σh, σr = 1m. Fig. 4.7 compares our approach under two different priority behaviors, and

contrasts results with the standard VP planner.

In Fig. 4.7(a) the robot prioritizes minimizing actor deviation by using priority reward parameters

β = [0.2 0.1 0.6 0.1]. The resulting trajectory consists of a very low target speed of 0.2m/s, and no

deviations. In Fig. 4.7(b) we repeat the same case study, but the robot is now tasked to prioritize

maintaining its desired speed (β = [0.2 0.1 0.1 0.6]). As can be noted in Fig. 4.7(d) the robot

maintains a speed of 0.6m/s, closer to the desired 0.8m/s, the maximum actor deviation (Fig. 4.7(e))

is 0.17m, and the robot’s is 0.05m due to the underlying VP planners but interference conditions (4.4)

are not violated. Fig. 4.7(c) shows the VP planner without our approach. The robot maintains its

75

(a) Trajectories minimizing actor deviation. (b) Trajectories minimizing deviation from robot desired
velocity.

(c) Trajectories with a standard VP planner (d) Speed comparison results between objectives.

(e) Path deviations with the desired speed objective (f) Path deviations with the VP planner

Figure 4.7: Trajectories and results of robot (cool colors) and actor (warm colors) comparing the
presented approach with different objectives and the standard VP planner without our approach.

Velocities are indicated by the color-bars within the trajectories.

76

desired speed of 0.8m/s, and the maximum actor deviation is 1.76m (Fig. 4.7(f)), which violates the

interference threshold, showing that our approach was effective in correcting the robot’s interfering

behaviors. The presence of such interference with only the VP planner indicates that our approach

is effective in predicting and finding the appropriate target velocities that proactively eliminate an

interference that would have been caused in the future.

We also extensively tested our approach in dense multi-actor environments, where the robot

traverses 12m, sharing an environment with 10 simulated actors running a standard VP planner to

avoid the robot. We compare our approach under different priorities with two widely-used planners:

ORCA [100] and DWA [36], which is the standard planner on ROS-enabled systems. The results

over 10 trials, in which the robot navigates through a total of 100 actors, are shown in Table 4.2.

Table 4.2: Results from comparative simulations.

Success
Rate (%)

Average Actor
Deviation (m)

Average Max
Robot Deviation (m)

Target Speed
Deviation (m/s)

Average Added
Time (%)

Standard VP Planner 62% 0.792 1.311 0 21%

Neutral Priorities 87% 0.351 0.407 0.598 45%

Maintaining Desired Speed 86% 0.356 0.463 0.507 41%

Minimizing Actor Deviation 89% 0.298 0.283 0.702 49%

ORCA 75% 0.433 0.981 0.544 41%

DWA 44% 0.361 1.511 0.821 64%

The success rate is defined as the proportion of total actors that were interfered. When prioritizing

minimal actor deviation, our approach outperforms others with an 89% success rate. However, we

find that results are similar under different priorities, since the solution set, v̂corr, is often limited

in dense environments. The actor deviation objective is the most conservative, resulting in lower

speeds and higher added time of 49%, when compared to the time an unobstructed path to the goal

would have taken. The standard VP planner has the lowest added time, but has a success rate of

64%. In the cases in which our approach fails, we found that the robot was negotiating with dense

crowds (Nh > 6) within its sensing range and no solutions were available.

The presented approach outperforms ORCA in all metrics, but we do note that ORCA out-

performs the standard VP planner, because ORCA expects surrounding actors to follow the same

algorithm and perform reciprocal avoiding behaviors. While actors using VP planners are not

exactly finding reciprocal velocities, they are partially satisfying ORCA expectations by avoiding the

robot. DWA, on the other hand, is searching for a set of admissible velocities given the occupancy

77

in the robot’s sensing range. Since this approach is not considering the future motion of dynamic

actors, we observe a larger robot deviation. This, in turn, increases the added time to the robot

trajectories, and results in a poorer success rate, when compared to other approaches.

4.6 Experiments

The proposed approach was also validated experimentally using unmanned ground (UGV) and aerial

(UAV) vehicles in indoor environments. HMM and DT operations were implemented in MATLAB

and interfaced with ROS through the ROS Toolbox, and executed at 10Hz. For all experiments,

the distance threshold δs = 1m and the deviation thresholds σr, σh = 0.5m. The training speeds

were set to 0.2, 0.4, and 0.6m/s while vdes = 0.6m. The robot starts at (-2.5,0)m and is tasked to

reach a goal at (2.5,0)m. We depict the trajectories from experiments training in Fig. 4.8, where

robot trajectories are in blue and actor trajectories are in red. This training dataset is included as

“dtreevp dataset.7z” in the GitHub repository in [77].

Figure 4.8: Experiment Training Trajectories.

Fig. 4.9 shows results from ground vehicle experiments on a Clearpath Robotics Ridgeback

Omnidirectional Industrial Robot inside our lab tracked by a VICON motion capture system

(MOCAP). With the more conservative priorities (Figs 4.9(a-d)), the robot reduces its target speed

to vr = 0.2m/s and no deviation on either the robot or the actors paths is detected. When the

robot prioritizes maintaining desired speed, our approach only reduces to vr = 0.4m/s with a minor

78

(a) Robot slows down after predicting interference (b) Robot no longer predicts interference with actors

(c) Robot returns to desired velocity to reach its goal (d) Trajectories minimizing actor deviation.

(e) Trajectories minimizing velocity deviation. (f) Trajectories with a standard VP planner.

Figure 4.9: Ground vehicle experiment trajectories and snapshots of robot (cool colors) and actor
(warm colors) comparing the presented approach with different objectives and the standard VP

planner without our approach.

79

deviation from its path of 0.04m. Under the standard VP planner, the robot deviates 0.53m, and

the actor deviates ∼1m from the desired path, violating the 0.5m threshold.

We also successfully tested the applicability of our approach outside MOCAP settings. We

deployed our technique on the same UGV using only the on-board RGB-D camera for person

detection and Lidar sensors for localization in the presence of 3 actors.

In the UAV experiment, we replicated a failure case shown in simulation (Fig. 4.7(c)) with an

aerial vehicle. We used the DJI Tello mini drone in the same lab environment, with the same goal

and parameters. Fig. 4.10 contains trajectories and snapshots from these experiments. The UAV

with the standard VP planner deviates 1.45m, taking a longer path to reach the goal. With our

approach, the robot adapts its speed and deviates only 0.11m. Notably, the UAV reaches the goal

2s faster, despite slowing down to avoid interference.

4.7 Discussion

In this chapter, we have presented a novel approach that leverages virtual physics planning by

compensating for local minima failures that cause interference with dynamic actors. We generate

proactive non-interfering behaviors between a robot and nearby dynamic actors through a decision

tree-based explainable monitor. A HMM-based probability model was also introduced to enable

DTs to update and improve predictions and planning quickly at runtime. In particular, this update

is more efficient when compared to the data-driven updating approaches presented in the previous

chapters. Finally, we presented a reward-based method to trigger different non-interfering behaviors

given the priority objectives of the robot. The main benefits of our approach are that it leverages the

efficiency and low overhead of VP planning methods and provides human interpretable explanations

when interference is detected. This framework scales well to real-world settings as demonstrated by

the different experiments conducted with different robots with different sensing capabilities.

4.7.1 Limitations and Future Directions

Dealing with multiple actors still remains a challenge in dense situations where a global solution

doesn’t exist. While in this work, the robot switches into a fail-safe mode, we note that there can

be situations in which a sequence of actions may be able to create non-interfering behavior while

80

(a) VP planner trajectories. (b) Trajectories with our approach.

(c) Snapshots for the experiment with just a VP planner. (d) Snapshots for the experiment with our approach.

(e) Distance between agents. (f) Deviation of robot path.

Figure 4.10: UAV experiment trajectories, snapshots, and results.

81

maintaining a certain level of performance of the robot. Another consideration is that this approach

considers human behavior with only data-driven training examples. Pairing a deterministic dynamic

model with data-driven predictions, on the other hand, could be more powerful for estimating the

future behaviors of actors and the robot. Furthermore, once actor dynamics are considered, and

interactions between actors are modeled, it may be the case that considering all actors equally may

not be prudent for finding an appropriate sequence of actions to correct robot behaviors. In future

work, we plan to expand on these thoughts and further investigate how we can consider crowd

interactions and prioritize certain actors in dense environments. We investigate these ideas in the

next chapter of this dissertation: we consider dynamic models of the robot and humans within a

model predictive control (MPC) framework and model interactions between humans to find out how

we can mitigate some of the aforementioned issues.

82

Chapter 5

Attention-aware Robot Social Planning

In this chapter, we expand on our previous work in the social navigation case study to improve

behaviors as the number of actors in the robot’s sensing range increases. Our previous approaches

have treated each individual separately, and composed together the individual corrective behaviors

to plan robot motion, but we note that considering the interactions between individual actors

in a crowd setting can help determine whether the robot will violate the previously considered

interference conditions. In this way, the problem we address in this chapter is the same: the

robot should avoid causing a burden on humans in the environment, while taking into account

human-human interactions within the crowd. To this end, we leverage the concept of attention

in crowd navigation, in which the robot predicts which actors it most needs to pay attention to

in order to move in a socially acceptable way. We formulate a model predictive control (MPC)

framework for robot motion that includes the dynamic model of the actors in the environment, and

we outline the computational and feasibility benefits of limiting the actors the robot pays attention

to. To achieve this, we design a deep neural network (DNN) to predict attention for pairs of humans

at runtime. Notably, we provide a composition method, through which we are able to extend the

predictions to scenarios with multiple actors while limiting training and DNN predictions to pairs

of humans. We show through extensive simulations that our approach is able to leverage pairwise

interactions to minimize the actors the robot considers while also maintaining a low level of overall

interference with all the actors. This work is in the final stages of preparation to be submitted to

the Robotics and Automation Letters.

83

5.1 Introduction

When mobile robots operate in real-world scenarios they may have to deal with several actors

at a time (e.g., in urban scenarios, airports, workspaces, etc.). However, including every actor

as a constraint to an optimal planning controller or training with any number of actors may be

computationally expensive, making navigating through these environments challenging for mobile

robots.

As humans, however, we find that we can often navigate such environments in a non-intrusive

way with relative ease. But how are we able to succeed in large crowds? Researchers in psychology

and cognitive science [60] have shown that we learn, through our experiences, to focus our attention

on the most important things in a given scenario, since we cannot pay attention to too many

different things at a time. In the case of crowd navigation, we are able to identify the people

within the crowd that we believe are most likely to be involved in some future interaction, and

we primarily devote our attention to the behaviors of these actors when we plan our motion. At

the same time, when deciding which actors to pay attention to, we implicitly encode the collective

impact of all other neighboring actors, resulting in behaviors that perhaps pay attention to only

a few actors, but seamlessly navigate through all actors. Importantly, we make these decisions

without necessarily making sophisticated predictions of the paths of the actors – we tend to make

simplifying assumptions about what people will do [13] – and we can provide physical context and

reasoning about how we use attention to plan our motion. For example, we may not necessarily

pay attention to the closest people to us in a crowd because we may interact first with a person

who is further away, but advancing towards us very quickly. Bringing the context back to robot

navigation, it is further beneficial to identify important actors, as considering all visible actors in a

crowd equally can be too computationally expensive, or may make it very difficult to find a solution

that satisfies conditions for all actors, as we observed in previous chapters of this dissertation. On

the other hand, if a robot could identify important actors and plan motion in a similar way as

humans do, it could generate similarly natural and seamless motion in dense crowds without causing

computational issues. To summarize, the main challenge we address in this chapter is:

• How to identify and only consider the most important actors while still capturing the impact

84

of less important actors in order to avoid interfering with all actors in the robot’s sensing

range.

Figure 5.1: The desired effect of our attentive social planning approach. Only the necessary actors
(colored in purple) are modeled to ensure the robot can find a socially acceptable path through the

environment without interfering with the behaviors of other actors (in red).

To this end, we propose an approach that leverages a deep neural network (DNN) along with

a novel composition module that takes in observable states of nearby actors (relative positions,

velocities), and determines which actors in the scene are most relevant to the robot’s planning.

Notably, our composition module enables us to train with pairs of actors, and at runtime, combine

pairwise predictions in crowds with multiple (i.e., more than a pair) actors. In this work, pairwise

interactions are leveraged since it has been shown in statistical and biological physics-based mod-

eling [22, 66] that pairwise interactions can be used to effectively approximate crowd behaviors.

Furthermore recent work in robot collision avoidance [19] has leveraged pairwise interactions within

a reinforcement learning framework to effectively avoid colliding with interacting agents. For robot

planning in our work, we leverage model predictive control (MPC) that takes into account the

dynamic model of the robot and actors to cast forward future predictions and avoid actors safely

and proactively while enabling the robot to reach its goal. Importantly, MPC works by solving an

85

optimal control problem, which is more precise than end-to-end learning-based planners, and thus

we do not need to train how to obtain controls for the robot. However, it should be noted that

our approach can work for any other controller that can plan motion in the presence of multiple

dynamic obstacles, since the main contribution of our approach (prediction and composition) is to

provide context for these controllers about which actors to avoid. Fig. 5.1 demonstrates the desired

effect of our approach, in which the robot is able to quickly find a path through a busy, dynamic

environment by limiting actors to whom it pays attention.

5.2 Preliminaries

In this section, we describe the premises of our robot crowd navigation case study. Let us consider

that a mobile robot navigating through a crowd is equipped with a Model Predictive Controller

(MPC). To plan robot behaviors, the MPC makes predictions about the future positions of both the

robot and the actors to find control inputs that minimize a certain cost function. Thus, the MPC

must contain information about the dynamics of the robot and actors, as well as constraints so the

robot plans a safe path to the goal.

5.2.1 Robot and Human Dynamic Models

First, we address the modeling aspect required to use an MPC. The robot follows a standard

non-holonomic unicycle model [29], where the state of the robot xr = [xr, yr, θr]
⊤ consists of x and

y positions and orientation θ. The input, ur = [vr, ωr]
⊤, to the robot contains linear and angular

velocities. The equations of motion for the robot are as follows:

ur = [vr, ωr]
⊤

ẋ = vr cos θ

ẏ = vr sin θ (5.1)

θ̇ = ωr

The humans, in this work, are assumed to use the well-known and widely-used social force

model [38], which has shown to effectively approximate the behaviors of humans in crowds [33].

86

The social force model is based on psychological forces that enable pedestrians to move to their

desired goals, while keeping a comfortable distance from others that share the environment. In this

work, we model the state of human i as xi = [xi, yi] and the social forces are modeled as velocities

ui = [vix , viy] that move the humans to their goals, which are unknown to the robot. Then the

equations of motion for human i are defined as follows:

ui = [vix , viy]

ẋi = vix (5.2)

ẏi = viy

The specific components of the input ui include the goal force, actor avoidance force, and obstacle

avoidance force. In the following formulations, time t is omitted for ease, but each of these forces

evolves with time with the changing states of the human i and the surrounding actors including the

robot j. The goal force for a human i is computed as follows:

ugi = kg(xgi − xi) (5.3)

where kg is a positive constant that affects the strength of the force and xgi is the goal for

human i. The actor avoidance force is a repulsive force that drives a human away from other moving

actors and is computed as:

uij = ai exp(
δh − dij

bi
)

#»

d ij (5.4)

where ai and bi are positive constants that affect the strength and effective range of repulsion from

each of the other actors. The distance between actors i and j is denoted by dij the desired distance

between humans, is given by δh, and
#»

d ij is a unit vector which directs human i away from actor j.

For ease, we consider the desired distance between all pairs of actors to be equal, but this is not a

necessary condition for the approach presented in this work. Finally, the obstacle repulsion force is

computed similarly to (5.4):

uio = ao exp(
ro − dio
bo

)
#»

d io (5.5)

where ao and bo are the positive constants that now represent obstacle avoidance force, dio is the

87

distance between human i and each obstacle o in the environment, ro represents a minimum distance

to maintain from obstacles, and the unit vector in this expression moves humans away from static

obstacles.

Then the total force applied to each human i at any time can be given by the sum of the

aforementioned forces:

ui = ugi + uij + uio (5.6)

This model is utilized to make predictions about future states of dynamic actors in the MPC

framework, which is described in the next section.

5.2.2 Model Predictive Controller Formulation

MPC is utilized in this work because it is a deterministic baseline controller that can predict future

values of some optimal control problem (OCP), and find inputs that minimize these future values

over a future horizon N . The MPC formulation consists of a cost function J to minimize at each

time step, and constraints that be must respected when minimizing this cost. We use the standard

MPC formulation with the following cost function:

J =(xr(t+N)− xgr)
⊺Q(x(t+N)− xgr)+

N−1∑
k=1

(xr(t+ k)− xgr)
⊺Q(xr(t+ k)− xgr)+

ur(t+ k − 1)⊺Rur(t+ k − 1) (5.7)

where N is the prediction horizon, xr(k) is the robot state, which consists of position and orientation,

[x y θ]⊤, for the kth prediction step, xgr is the goal state, ur(k) is the kth control input computed

by the MPC, and Q and R are the cost weighting matrices for state and control input reference

88

tracking, respectively. Then, the optimal control problem can be formulated as:

argmin
ur(0),...,ur(N−1)

J(xr(0),ur(0), . . . ,ur(N − 1)) (5.8)

subj. to:

xr(t+ k + 1) = f(xr(t+ k),ur(t+ k)), ∀k = [0, N] (5.9)

xi(t+ k + 1) = h(xi(t+ k),ui(t+ k)), ∀k = [0, N], ∀i ∈ H(t) (5.10)

||xr(t+ k)− xi(t+ k)|| > δs, ∀k = [0, N], ∀i ∈ H(t) (5.11)

ur(t+ k) ∈ U(t+ k), ∀k = [0, N − 1] (5.12)

xr(t+ k) ∈ X (t+ k), ∀k = [0, N] (5.13)

where (5.9) is a constraint on robot dynamics, (5.10) is a constraint on human dynamics, and (5.11)

is a constraint on the distance between the robot and humans. In these constraints, f(xr,ur)

represents the robot dynamic model (5.1), h(xi,ui) represents the human dynamic model (5.2),

H(t) is the set of humans within the robot’s sensing range, and δs is a minimum desired distance

between robot position [xr, yr] and human state xi, which can be drawn from the Proxemics model

for pedestrian personal space [32]. The Proxemics model is a psychologically motivated model that

suggests comfortable distance between humans is different than that between a human and a robot;

typically a robot should stay further from humans than other humans, and we account for this in

our constraint by setting δs > dij .

The feasible region for robot inputs (5.12) is defined by U , and X is the feasible region for the

robot state (5.13), given environmental constraints such as the position of walls and static obstacles.

Note that the human positions are not explicitly modeled into the feasible region F but (5.11)

instead restricts the feasible region for the robot indirectly through the desired distance requirement.

In the context of this work, we are most concerned with (5.11). While an MPC provides a

deterministic and safe baseline planner, this type of constraint can cause two main issues for robot

motion planning:

• Including all humans in the environment as individual constraints that must be respected

increases the computation time of the MPC, making it very slow to plan robot behaviors.

89

• As the number of humans in H grows, assuming all are formulated as individual constraints,

the robot’s feasible region X becomes more restricted, making it difficult for the MPC to find

a feasible solution.

Both of these issues are connected to modeling and trying to avoid all humans in H throughout

each step in the prediction horizon N , and these types of issues could cause the robot to get trapped

or “frozen” [97] in the environment, and place the burden on surrounding humans to deviate in

order to accommodate the robot. Shown in Fig. 5.2 is the effect of adding more constraints on MPC

computation time, where it is clear that adding constraints increases the computational cost of the

MPC. The challenge then becomes limiting negative effects of (5.11) in a way that the MPC is able

to quickly find a solution that still minimizes causing burden on the nearby humans.

Figure 5.2: MPC computation times with different numbers of actors included as constraints.

5.3 Problem Formulation

Consider a mobile robot equipped with the aforementioned MPC that is tasked to navigate to a

goal in a shared environment with other dynamic actors. With the premises presented in Sec. 5.2,

we would like to directly predict the smallest set of actors Ha ⊆ H the MPC needs to consider to

plan robot motion that minimizes interfering with the motion of all humans H in the environment.

Formally, the problem is:

Problem 5.1 (Attention-aware Social Planning) Given the control policy given in (5.8), de-

rive a strategy to find the minimum number of actors Ha ⊂ H to include in constraints (5.10) and

90

(5.11) such that the overall actor deviation from their desired path is minimized at all times:

[min J subj. to: Ha] → d∗

[min J subj. to: H] → d (5.14)

and d∗ ≤ d± ϵ

where d∗ is the overall deviation if the MPC optimization considers only Ha, and d is the deviation

when considering the entire set H, and ϵ is a small error term.

5.4 Approach

In this section, we describe our framework for attentive MPC-based social planning. Our framework

consists of an offline training phase, through which a prediction model is built to be leveraged in an

online deployment phase as depicted by the architecture in Fig. 5.3.

Figure 5.3: Block diagram of our attention-aware crowd navigation approach.

91

In the offline stage, a robot in the presence of humans performs go-to-goal navigation tasks

using an MPC, which takes into account both robot dynamics f(xr,ur) and human dynamics

h(xi,ui). Different attention combinations, indicated by the magenta and black human icons are

tested. The optimal combination Ha is the label, and the associated predictors include the positions

and velocities of the humans, xi,ui, ∀i ∈ H, and the robot’s error to goal, which captures, at high

level, the desired behaviors for the robot to reach its goal. The training is repeated with different

configurations of humans and robots. Then, the predictors and labels are used to train a prediction

model that will be used online to evaluate which actors the robot should pay attention to in order

to avoid interfering with all actors in the shared environment. At runtime, the robot observes the

positions and velocities of nearby actors and utilizes the trained attention prediction network to

predict which actors Ha ⊆ H to include as constraints for the MPC, which then computes and

sends inputs to the robot. This procedure is repeated at runtime since the environment is highly

dynamic and new actors can appear and leave the robot’s sensing range. In the following sections,

we describe in detail each part of the proposed approach.

5.4.1 Training Details

The training dataset used to build the attention prediction network consists of a robot using the

MPC presented in Sec. 5.2 to perform go-to-goal operations in the presence of multiple moving actors

with different attention combinations. In our previous work [78], we have modeled human-robot

interactions individually and composed them together to make predictions for multiple actors at

runtime. While this type of composition can show good results [79], it neglects the fact that

humans in the environment are also interacting with each other, and when humans alter each other’s

behaviors, it affects how the robot should plan its own behaviors. Thus, we include multiple moving

humans in the training samples, and model human-human interactions in crowds using the social

force model presented in Sec. 5.2.

Specifically, in the proposed approach, we leverage training data consisting of the robot and a

pair of humans (i.e., a set of two different humans with different initial positions and velocities). We

leverage pairwise interactions here since it is a minimal representation through which human-human

interactions can be captured and since these pairwise interactions have been shown to accurately

represent subsets of interactions between multiple actors [22, 66, 19]. Since our predictions leverage

92

the current state of actors at runtime, any changes caused by actors outside a particular pair are

captured and utilized to make new predictions. In this way, we capture the interactions between

all humans in the environment, enabling us to extend the aforementioned composition methods to

capture human-human interactions for any number of actors at runtime.

It is possible, however, to train with many more humans and still encode human-human

interactions, but this would greatly expand the training time since each attention combination must

be tested and moreover, training with too many actors may not capture simpler interactions when

only one or two actors are present.

Then, the outcome of the trained network is a binary classification ai, aj ∈ [0, 1] about which

actor(s), if any, in a pair the robot should pay attention to when planning its motion. The optimal

label is determined by comparing the ground truth deviations caused by the robot in all attention

combinations. The label used in the training for any pair of actors is one that minimizes both the

deviation caused by the robot and the number of actors the robot paid attention to while causing

minimal deviations.

The predictors used to obtain these labels in the training and at runtime consist of two parts:

human states and robot state. To build the predictors for human states, we follow a robot-centric

parametrization, in which we assume the robot is at the origin and considers all human state

information to be relative to the position of the robot. Then, the parametrized states of the humans

after this transformation is:

si = [dix diy vix viy] (5.15)

where dix = xr−xi is the relative x position of the human and diy = yr−yi is the relative y position

of the human in the robot frame. The x and y components of each human i are also collected as

part of the attributes used in predictions. We assume the robot is equipped with sensors capable of

detecting these states of the actors, since the primary focus of this work is on motion planning and

it has been shown that such information can be measured using cameras or LIDAR sensors [63].

Since robot low level controls are determined by the MPC, which is designed to minimize error

to a goal, the only robot states we model as part of the predictor include the error between current

93

and desired velocity and direction/heading of the robot:

sr = [ve, θe] (5.16)

with ve = vdes− vr and θe = θdes− θr. An illustration of the training dataset used in our simulations

is shown in Fig. 5.4. The robot has 7 different paths all beginning at x = 0, indicated by the

blue lines. We train each of these robot paths with every unique pair of actor initial positions,

shown by the 20 red markers, for each of the 8 directions shown on the right. This training set

provides a simple proof-of-concept example, in which we are assuming that we can capture similar

bounded cases at runtime, but it should be noted that with a richer and more diverse training set,

the performance of the prediction would improve.

Figure 5.4: Training robot paths and actor initial positions and directions.

The actors in this training data move at a nominal speed of 1m/s in their respective directions, as

indicated by studies on average human walking speed [13], but it should be noted that velocities will

deviate as humans interact with other humans and the robot. The robot, throughout its operation,

observes pairs of humans in multiple different configurations, which contributes to the overall quality

of the training dataset. A validation set is also built and tested to ensure that the trained network

will generalize well to new observations. The validation begins with similar premises as training set,

but variation is introduced by adding the following Gaussian noise: N (0, 2) to the initial positions

and the following: N (0, 0.5) to the velocities.

94

5.4.2 Attention Prediction

In this section, we introduce our attention-aware prediction model that can identify the set of

most important actors Ha ⊆ H in a given scenario. Our proposed predictive model consists of two

modules:

• Pairwise Interaction Module: takes into account pairs of humans among all actors i ∈ H

to model human-human interactions in the presence of the robot.

• Composition Module: aggregates the individual pairwise interactions to make final binary

attention predictions.

The overall attention prediction network architecture is depicted in Fig. 5.5. In the following

sections, we will discuss the formulations for each part of the architecture.

Figure 5.5: Attentive prediction network architecture

Pairwise Interaction Prediction Module

The pairwise interaction module is a deep neural network (DNN) that encodes the human-human

interactions that occur between pairs of humans in the environment. The first part of the interaction

module involves finding and combining the state predictor information for all unique pairs of actors.

In an environment with n actors, the total number of pairs can be represented by the binomial

coefficient
(
n
k

)
as follows:

np =

(
n

2

)
=

n!

2!(n− 2)!
=
n(n− 1)

2
(5.17)

For example, if the robot senses 2 actors np = 1, for 3 actors np = 3, for 5 actors np = 10, and for

10 actors np = 45. Note that k = 2 is fixed in our approach since we make predictions only about

95

pairwise interactions. The predictors for each pair can be expressed as follows:

pij = [si, sj], i ̸= j, ∀i, j ∈ H (5.18)

These predictors, along with the robot information contained in αr are then passed into the

interaction module, which consists of a multi-layer perceptron (MLP) that is used to predict the

attention outputs within each pair:

cij = ψ(pij , sr;W) (5.19)

where ψ(·) is a fully connected layer with ReLU activations [85] and W contains the network weights.

The output of our network, cij ∈ R2, contains attention prediction information for each human ci

and cj . This procedure is repeated for all np pairs, resulting in attention estimates for each human

in each pair. Then the next step becomes composing these estimates together in a way that captures

whether each actor requires attention or not. The desired outcome for attention predictions is a

binary variable ai ∈ [0, 1], where a prediction of 0 indicates the MPC will neglect to include the

actor as a constraint, and vice versa. The proposed MLP network only provides this information

about individual pairs of actors, bringing about to need to combine the predictions to correctly

identify the appropriate actors in a given scenario. In Fig. 5.6, we demonstrate the inputs and basic

architecture of the network used in this work, which consists two fully connected layers that predict

two outputs, one for each actor in the pair.

Figure 5.6: Diagram of the multi-layer perceptron used in this work to estimate attention
predictions in pairwise interactions. In this diagram, the two layers have a different number of

hidden units indicated by the dots in between each node. The output indicates which actors, if any,
need to be modeled in the MPC, indicated by the magenta and black color of the actors after

passing through the network.

In Fig. 5.7, we show a visual example of all pairs being decomposed and re-composed in a

96

scenario with 3 actors. Each pair is passed through the aforementioned MLP network, and the

predictions are then combined in the composition module, which we describe in the next section.

Figure 5.7: Visual example of pair decomposition and re-composition in the proposed approach

Composition Module

A number of techniques can be used to compose the previously obtained attention estimates together.

Pooling techniques [15] are used often in deep learning with images to reduce dimensionality of

the input and aggregate only the useful or necessary parts of a particular input. Two common

pooling techniques include max-pooling and mean-pooling. Max-pooling takes into the account the

maximum value within a given set of features, and utilizes this to make further predictions, while

mean-pooling takes the average of all values.

While in this work, we do not use images, we take inspiration from pooling methods and model

the attention estimates from each pair of actors as a set of features from which the final attention

prediction must be drawn. We provide two different methods by which the final prediction can be

made. First, a more conservative composition method, akin to max-pooling, is proposed. In this

case, the robot pays attention to any human i if at least one pairwise prediction suggested that

actor required attention:

ai =

1, max ci = 1

0, max ci = 0

(5.20)

where ci is the set of all attention estimates for an actor i: cij ∀j ∈ H, i ≠ j. This approach

provides conservative estimates since it only considers the maximum value within ci, ignoring all

other pairs where the actor may not have required attention.

Our less conservative approach for composition draws inspiration from mean pooling, in which

the attention prediction is sensitive to how often attention was required for an actor i in pairwise

97

decomposition. The attention prediction using this method can be computed as follows:

ai =

1, 1

n−1

∑
ci ≥ β

0, 1
n−1

∑
ci < β

(5.21)

where β is a threshold for predictions, typically set to β = 0.50, and n− 1 is the number of attention

estimates for each actor. With this approach, the attention predictions are more generalized to all

the pairs, but are less sensitive to the individual pairs, and can remove unnecessary considerations

if an actor has very few positive attention predictions during the pairwise interaction module. Both

of these approaches are viable depending on the application and task at hand for a mobile robot.

We note that (5.21) may neglect to tend to some actors that (5.20) will capture, but at the same

time the less conservative approach will have a lower computational cost and is more likely to

find feasible solutions. In Fig. 5.8, we show a practical example of the difference between the two

methods. Actor 3 is included under the conservative maximum composition and is neglected under

the mean composition and the threshold is set to β = 0.5.

Figure 5.8: An example of the comparison between the two proposed composition methods. MLP
outputs are shown on the left in a tabular form. The results of the two composition methods show

that Actor 3 is captured when the maximum is taken, but neglected with the mean.

A major benefit of using the mean instead of the maximum is that actors can be given more

granular attention scores in this way, which can be used in different types of motion planning

algorithms, but it is difficult to reason physically about the behaviors of the robot in response to

such scores [18], although our results seems to indicate that there is a correlation between these

scores and the interference created, however this is left for future work.

98

The output of our composition method is Ha, the set of all actors the robot should pay attention

to. This is then used as a part of (5.11) in the MPC optimal control problem formulation (5.8) to

find inputs for the robot. A comparison of our approach under both mean and maximum methods,

along with naive fully attentive and non-attentive approaches are included in the next sections.

5.5 Results

The case study investigated in this work and presented in this section consists of a robot navigating

to a goal in the presence of moving humans. The robot is expected to predict which humans to

pay attention to while maintaining low interference with all humans in its sensing range. We first

describe the implementation details followed by the simulation results.

5.5.1 Implementation Details

Figure 5.9: Training loss of the attention network.

We implemented the MPC using Casadi [8] in MATLAB and tested each attention combination

in all trajectories shown in Fig. 5.4 to obtain labels about which actors to pay attention to in each

scenario. The deep neural network was trained using the Deep Learning Toolbox integrated with

Tensorflow in MATLAB over 10 epochs with a batch size of 1000 using the Adam optimizer [76]

with a learning rate of 0.01 and a decay rate of 0.8 every epoch. The loss in training is measured by

the standard categorical cross-entropy function [70], and the resulting network’s training accuracy

was 97.55% and validation accuracy was 92.30%. The training loss is plotted in Fig. 5.9.

99

Training the network took approximately 30 minutes and the full attention prediction at runtime

consisting of both pairwise interaction and composition modules took approximately 60-90ms for up

to 25 actors on a i7-1065G7 laptop CPU. The UGV simulations and experiments are run at a rate

of 10Hz.

5.5.2 Simulations

We performed a series of simulations in MATLAB to test the effectiveness and viability of the

proposed approach. The robot, in our simulations, traverses from its initial position to a goal at

(x, y) = (10, 0). We assume the actor positions and velocities can be measured by the robot at each

iteration, and the actors follow the social force model described in Section 5.2.

Figure 5.10: Baseline simulation of attention predictions results in a dense setting.

In the baseline simulation shown in Fig. 5.10, we show the robot at (4, 0) in a dense setting

surrounded by 5 actors moving in different directions. Actors in red are not given attention within

the MPC framework, and the robot pays attention to the actor in purple.

In this case, the robot plans the path shown in green to avoid interfering with all actors by only

paying attention to actor 4. It is worth noting when the robot does not pay attention to actor 3,

a very low (< σh) deviation is caused by the robot’s behaviors. Our approach also captures that

100

paying attention to actor 4 does not cause more deviation with actor 3, leaving it acceptable to

ignore actor 3 in this scenario. This baseline scenario shows that our pairwise interaction approach

can effectively extend to multiple actors in crowded spaces.

In the next simulation, we test a scenario with 7 actors to further examine and compare the two

composition approaches presented. A sample of this scenario without attention predictions is shown

in Fig. 5.11. Most of the actors in this scenario converge towards the robot’s desired path while

avoiding each other and the robot based on social forces.

Figure 5.11: 7 actor scenario considered in this work. The actors are converging towards the robot’s
path and use the social force model to avoid each other and the robot.

This environment was tested in four different ways: first, we assume no attention, in which the

robot moves through the environment blindly and leaves the entirety of avoidance burden on the

actors. Then we test our approach under the two different composition methods we have presented,

and finally, we compare the results with a full attention scenario, in which a naive MPC considers

all actors in the environment equally until the robot reaches its goal. The desired effect here is that

our approach is able to achieve similar results to the full attention scenario without incurring the

same computational costs.

In Fig. 5.12, we show the trajectories of the different methods. The actors are in red when

the robot is not paying attention and magenta when when the MPC is considering the actor as a

101

constraint in the optimization. It is evident here that without any attention, the robot causes major

deviations in the crowd. When comparing our attention prediction approaches (Fig. 5.12(b-c)) and

the full attention MPC (Fig. 5.12(d)), in which every actor is considered in the optimization, we

note that the behaviors are similar and deviations caused by the robot appear minimal. The minor

difference between the two composition approaches is indicated by the black circle in Fig. 5.12(b),

where the actor deviates more than the same actor in Fig. 5.12(c).

(a) No attention. (b) Attention w/ mean composition.

(c) Attention w/ maximum composition. (d) Naive full attention.

Figure 5.12: Examples of trajectories under different methods. Our approaches perform similarly to
the full attention approach, while no attention causes major deviations.

In Fig. 5.13, we show the corresponding maximum deviations for each actor in this simulation

102

under each of the aforementioned methods. It is clear that the no-attention method causes higher

Figure 5.13: Maximum recorded actor deviations in the 7 actor simulation. It should be noted that
deviations can occur on account of both robot and other actor behaviors.

deviations with actors 1, 2, and 6. Our maximum composition approach performs similarly to our

mean composition approach, but a notable comparison here is that of actor 3, where our maximum

composition performs more closely to the full attention method, while the mean composition

approach causes more deviation. In some cases, deviations caused by the robot are difficult to

estimate. Take, for example, actors 4 and 5: since both no-attention and full attention methods

perform the same, we can deduce that the deviation that occurs is caused by other actors, rather

than the robot. In addition to deviations, we also consider computation costs in this simulation to

further validate that our attention prediction eases the computational burden on the robot. Results

presented in Fig. 5.14 show average computation time for a single iteration, which includes attention

prediction and MPC planning. Full attention takes the most time to complete an iteration of MPC

planning, since it is including every actor as a constraint, and in a particularly dense environment,

finding a solution in a limited feasible region can take longer. This further reinforces the need

for our attention-aware approach, which is faster even with the prediction module enabled. The

no-attention approach is the fastest since it performs no predictions and does not include the actors

as constraints in the MPC.

In Fig. 5.15, we show the results over 100 tests considering between 3 and 7 actors in each

scenario, much like the previous simulations shown. The y-axis in Fig. 5.15 is the proportion of the

worst-case deviations for each scenario of actors. These values are obtained by collecting deviations

103

Figure 5.14: Single-iteration computation times of the methods compared in the 7 actor simulation.

under each approach and normalizing over the worst case among our tests. In this way, a high

frequency at y = 1 indicates the robot caused large deviations, while lower values indicate the robot

outperformed the worst case. We note that, while scarce, there exist cases in which full attention

performs poorly. This is due to the inability of the MPC to find a solution given too restricted

an environment, which can cause the robot to get stuck and results in more deviations. We also

show the results of the ideal attention combination, which is determined by testing every attention

combination and finding the one that minimizes the deviations. Our approach under the maximum

composition method performs closest to the ideal results, while we note that the mean composition

approach can cause more deviations at times, indicated by the expansion of the upper interquartile

range. No attention, as expected, is typically the worst-case deviation example.

Figure 5.15: Deviation assessment over 100 tests of our attention approaches. Deviations are
considered here as a proportion of worst case scenario deviations for each test.

Finally, we show a simulation in which we test our approach in a very dense scenario consisting

of 24 actors. Trajectories comparing our approach against no-attention and full attention methods

are shown in Fig. 5.16.

The no-attention approach in Fig. 5.16(a) places the burden on the actors and thus causes large

deviations. The full attention approach shown in Fig. 5.16(b), on the other hand, considers all

104

(a) No attention.

(b) Full Attention.

(c) Proposed attention-aware approach.

Figure 5.16: Examples of trajectories in a dense crowd under different methods.

105

actors and fails to find a solution and stops, causing deviations. Our approach, contrary to the

previously presented approaches, as shown in Fig. 5.16(c) is able to find a path forward by only

paying attention to two of the actors, without stopping and causing more deviations in actor paths.

In Fig. 5.17, we show that our approach outperforms the no-attention and full attention approaches

when comparing actor deviations and computation time.

(a) Deviation comparison. (b) Computation time comparison.

Figure 5.17: Comparisons of computation times and deviations in dense scenario.

5.6 Discussion

In this work, we have presented a novel approach that leverages attention to promote socially

acceptable and proactive robot behaviors in the presence of multiple dynamic actors. We design a

neural network that considers each pair of actors to identify who the robot should pay attention

to, and we follow this with a composition module that combines the pairwise predictions to assess

which actors to consider given a set of actors of any size. The predictions are then fed into an MPC

that considers the dynamics and corresponding future positions of actors for proactive avoiding

behaviors. Our composition methods by which the network can make predictions for any number of

actors demonstrate good results despite being trained just pairs of actors. This is a major benefit of

our approach, as it can be time and resource consuming to train and collect data using multiple

dynamic actors. Furthermore, we show that by paying attention to just a few actors, the robot can

nearly replicate the behaviors as if all actors were modeled into the MPC at only a fraction of the

computational cost.

106

5.6.1 Limitations and Future Directions

While leveraging pairwise interactions and composition can conservatively capture attention pre-

dictions, we note that it may overestimate the needed attention in some cases. However, as with

any supervised learning approach, the training data must capture a good representation of what

is possible for the robot to observe at runtime, and training with a larger number of actors can

be resource-intensive. A possible future direction for this type of approach could be the ability to

update attention predictions given new observations and context at runtime. While training on

multiple actors may be difficult, considering pairs within multi-actor settings at runtime can be

used to refine pairwise predictions, which would overall make motion planning better. A potential

future direction can be to include an active learning-based approach through which the robot can

assess and adjust predictions at runtime.

107

Chapter 6

Interpretable Monitoring and Recovery Under

Decision Uncertainties

In this chapter, we expand our interpretable monitoring approaches beyond binary classification to

multi-class problems with high decision uncertainties. Typically, learning components only provide

one prediction, which may not be correct due to noise or other uncertainties in real-world settings,

and only considering this prediction may lead to an unsafe situation for a mobile robot. We develop

a local perturbation-based approach along with reachability analysis to identify uncertainties in

predictions at runtime, to ensure safe robot motion planning. In addition, we use this chapter

to further demonstrate the generality of the interpretable monitoring approaches presented thus

far by extending them to detecting failures for mobile robots. Mobile robots can be impacted at

runtime by external disturbances or sensing/actuation faults, all of which can cause damage to

the robots themselves and create unsafe situations in the robot’s environment. We demonstrate

in offline training different failures the robot may experience to build at runtime an interpretable

decision tree-based monitor for failure detection. We leverage MPC during this training phase to

estimate deviations from desired behaviors under any of these failures, and we build a library of

MPCs that takes into account different dynamics under each failure. At runtime, we not only detect

and explain which failure may be affecting the system, but also use our local perturbation-based

approach to consider detection uncertainties to identify the safest controller to use even when the

monitor is uncertain about the cause of the failure. We note that the safest controller may not

result in the highest performance for a particular failure, so we design a method by which different

108

controllers can be tested when safe and confidence in the highest-performing controller is reinforced

with a Bayesian update. This approach is validated with both simulations and experiments of a

UGV experiencing different failures at runtime. This work has been submitted and is under review

at the International Conference on Robotics and Automation (ICRA) 2023.

6.1 Introduction

We find autonomous mobile robots (AMR) performing a variety of tasks that require complex

decision-making, such as package delivery, search and rescue, and reconnaissance missions. Many of

these robots leverage learning-based decision-making algorithms to make decisions quickly, but most

of these algorithms only return one decision, which can often be incorrect due to lack of proper

context during training or noise and uncertainty in observations at runtime.

In addition, due to the inherent complexity of these systems, a number of factors, such as actuator

or sensor faults, can degrade the performance of the robots, which can cause critical damage to the

robot itself and compromise its mission. Furthermore, these different failures can often look the

same to a human observer and cause confusion for traditional methods. Learning-based approaches

that deal with such problems can encode more complex interactions in measurements, and can

make better decisions, but even in such critical applications, these only return one decision and do

not account for uncertainties. If the robot could assess uncertainties by evaluating other decisions,

particularly those that are similar to the initial decision, it might be able to take safer recovery

actions.

In this chapter, we insist on this principle and investigate the failure recovery case study, where a

robot must detect a system failure (e.g., on its sensors and actuators), if one is present, and account

for decision uncertainties to safely correct its behavior. Specifically, we propose an uncertainty-aware

and explainable decision tree (DT)-based monitor to detect at runtime which failure is affecting the

system, and what other failures may be plausible given the uncertainties in the initial DT detection.

Reachability analysis (RA) is then leveraged to identify safe corrective measures within a library

of pre-trained Model Predictive Controllers (MPCs), which are selected in this work because of

their inherent capability of predicting future states. Finally, a Bayesian performance validation

scheme is proposed to reinforce (or decrease) confidence in the selected corrective measure. As

109

Figure 6.1: In our proposed approach, an AMR experiencing either of two failures evaluates
decision uncertainties to find the safest way to correct its behaviors, even if it temporarily

compromises performance.

a complementary effect, differently from other learning-enabled methods, besides quantifying the

uncertainty in predictions, a human-interpretable explanation is generated which can potentially be

leveraged by a human operator to further improve uncertainty assessment and validation. Shown in

Fig. 6.1, is a pictorial demonstration of our approach, in which a conservative corrective measure is

taken to keep a failing AMR safe in the presence of uncertainties in decision-making (i.e., the robot

is uncertain if it is affected by failure 1 or 2).

This chapter presents three main contributions: 1) the design of an interpretable DT-based

monitor that detects if the system is experiencing a failure and the type of failure, 2) a perturbation-

based method to assess uncertainties in decision-making with a reachability-based method to

find safe corrective measures given decision uncertainties and 3) a Bayesian validation scheme to

increase/decrease confidence in the performance of the selected corrective measure.

6.2 Problem Formulation

Consider an autonomous mobile robot (AMR) that is navigating to a goal location. During this

task, a number of different failures, such as faulty sensors or actuators (wheel encoders, propellers)

or environmental disturbances (wind, ice), can cause the robot to perform poorly or fail altogether.

110

Distinguishing between these faults, however, can be very challenging for a human observer, standard

control-based failure detection, and even some learning-based failure detection methods, if poorly

trained, because of similarities between the behaviors caused by the faults, and in many cases,

waiting until differences appear may not be safe. We also note that in many cases, failures have

been experienced before and corrective measures that maximize performance and safety for each

failure can be prepared proactively. The challenge then becomes finding a technique to detect which

of these failures most closely represents the failure that might be affecting the AMR, and if the

uncertainty is high, assess which of the predefined corrective measures to use to keep the system safe

while collecting more data to make a more informed decision to safely recover the degraded system.

Problem 6.1 (Uncertainty Aware Failure Detection and Recovery) Consider an autonomous

robot tasked to navigate through a cluttered environment under the effect of an unknown failure fi.

Consider a set of pre-trained failures F = {f1, f2, ...fN} with associated corrective measures in the

form of control laws C = {c1, c2, ...cN}. The objective of this work is to design a framework to detect

the set of possible failures f ⊆ F that explain the behavior of the robot undergoing failure fi and

determine the appropriate control policy c∗ ∈ C that minimizes tracking error and maximizes safety

(i.e., avoids collision with surrounding obstacles):

||x(t)− xr(t)|| = 0, as t→ ∞ (6.1)

||x(t)− oi|| > 0, ∀i = [1, . . . , No] (6.2)

where x(t) = [x, y]⊤ is the position of the robot at time t, xr(t) is the desired reference state of the

robot, and oi(t) is the position of the ith obstacle and No is the number of obstacles.

6.3 Approach

In this section, we describe our framework for safe recovery of AMR navigation operations under

degraded conditions caused by faulty actuators/sensors or environmental conditions. Our framework

consists of offline and online stages, as demonstrated in Fig. 6.2.

In the offline stage, a robot performs navigation tasks using a model predictive controller (MPC)

due to its model-based predictive properties, that can be leveraged to detect failures at runtime. The

111

Figure 6.2: Block diagram of proposed approach.

robot is faced with different actuator and sensor failures, and a different MPC is tuned and tested to

maintain a desired level of performance under each failure. This set of MPCs, C, is used to generate

the training trajectories, in which we collect observations, α, associated failures, f ∈ F , deviations

observed for each controller-failure combination, σcf ∈ σ, and a local perturbation distances for

each observation δ, which is used at runtime to assess uncertainty in decision-making.

We build a decision tree (DT)-based monitor, T , to detect at runtime which failure, P(t),

might be affecting the system, and to compute an explanation, E(t) for this decision, which is

communicated to a human user for verification. The monitor output and user input are then used

for uncertainty analysis, which determines an additional set of failures, P(t), that might be possible.

Reachability analysis is then used to identify a set of safe corrective measures c(t) ⊆ C. Each

corrective measure is then assessed for confidence and runtime deviations to select one that is

most appropriate for the detected failure and uncertainties. This procedure is repeated, constantly

re-evaluating predictions and explanations to gain confidence in the robot’s decision-making and

converge to safe robot behaviors under degraded conditions. In the next sections, we describe in

detail each part of our approach.

112

6.3.1 Model Predictive Baseline Controller

A set of model predictive controllers (MPC), C is designed to deal with the different failures we

consider in this work. Each controller ci ∈ C is tuned appropriately based on the dynamics of each

degraded system. In this work, we use MPC since it inherently provides predictions for the robot’s

future states xp(t) = [x y θ]⊤, which will be compared with the observed state x(t) of the robot at

runtime to facilitate failure detection and will be used for the reachability analysis performed in

Sec. 6.3.3.

A key focus in this work is recovering failures that can appear very similar to a human observer,

as demonstrated by the intertwined deviating trajectories in Fig. 6.3. Robots undergoing each of

Figure 6.3: Examples of robot behaviors under different failures, showing intertwining trajectories
and deviations with different colliding behaviors.

these failures may have different dynamic models, or may require different weighting parameters to

achieve accurate reference tracking, and applying the incorrect controller to a misinterpreted failure

may result in unsafe conditions. Thus training is performed with all combinations of failures and

controllers to assess what deviations σcf may appear if an incorrect control policy is applied to a

particular failure. Shown in Fig. 6.4 is a pictorial example of deviations that are observed when

testing several controllers on a particular failure.

Figure 6.4: Examples of deviations obtained with different controllers on a particular failure.

113

6.3.2 Decision Tree Detections and Uncertainty Assessment

To detect which failure is affecting the system at runtime, we design an interpretable monitor that

leverages decision trees (DT), which are a form of supervised learning that consist of interpretable

white-box models [79]. DTs take in a set of input variables to make a prediction about some output.

DTs are made up of a network of nodes, and the outermost nodes, known as leaves, correspond to

labels given in the training (failures, in this work). In our failure detection case study, the input

variables were found through experimental evaluation and are defined as follows:

α = [∆x ∆y ∆θ ci] (6.3)

where ∆x, ∆y, ∆θ are deviations between the predicted state, xp(t) of the MPC and the observed

state, x(t) of the robot, and ci ∈ C is the controller being deployed by the robot at the time of

detection. The controller ci is included as a categorical predictor [55], which is discrete and serves

to better detect failures when any of the controllers are being used, since different deviations can be

expected when different controllers are deployed under each failure.

The training process consists of testing each controller ci ∈ C on an AMR undergoing each

failure in F in both simulation and in hardware experiments, since testing and results are shown in

both domains. The outcome of the training consists of the attributes α collected at each iteration

and each associated ground truth label fi. Each pair of attributes and labels will be denoted as a

sample si, and the collection of all samples (i.e., the entire training set) is denoted as S. A decision

tree, T , is grown using the training data, and after taking an observation, α(t), an initial failure

detection can be obtained:

P(t) = T (α(t)) = fi ∈ F (6.4)

After making the initial decision, a human readable explanation E(t) for this decision is computed by

traversing the path Γ from the root of the tree, V0, to a prediction leaf, Vp, taking the conjunction

of each split condition, c, for the Ni nodes along the path:

E(t) =
Ni∧
k=1

ck with Γ | P(t) (6.5)

114

Shown in Fig. 6.5 is a simple example of a DT used to make an initial detection with attributes

[x y] = [48 40]. The failure detected is P(t) = f0, and through (6.5), the following explanation is

obtained: E(t) = f0 because: {x < 48.5 ∧ y > 39.5}. The decision obtained from this procedure,

Figure 6.5: DT used for initial failure detection.

however, does not account for uncertainties, and as a result, provides information about only one

outcome of the DT, which can be incorrect in the presence of noise and uncertainty. Thus, it is

critical to understand what additional failures might be present by assessing these uncertainties.

Perturbation Based Uncertainty Assessment

To facilitate uncertainty assessment at runtime, uncertainties are first quantified in the training by

computing a local perturbation distance δsi that characterizes the distribution of the dataset in the

region around each training point si. In general, dense regions contain more context, resulting in

accurate decisions with more certainty and vice versa. However, distance to decision boundaries

plays an important role in determining uncertainty; even a decision taken in a dense region close to

decision boundaries may be incorrect due to noise. To capture these uncertainties, δsi is defined

as the radius of the smallest region around training data point si that contains Ns observations,

where Ns is a user-defined parameter that depends on the overall quality of the training data and

the available computational resources [16]. The local perturbation distance, δ∗, for the runtime

observation, α(t), is computed by finding the corresponding value of the closest training point in S:

δ∗ = δsi , where si = argmin
si

||α(t)− si|| ∀si ∈ S (6.6)

115

Using the computed perturbation distance, which characterizes uncertainties around α(t), a per-

turbed dataset containing input observations and outputs (different failures), is found as follows:

s(t) ⊂ S s.t. ||α(t)− si|| ≤ δ∗ ∀si ∈ S (6.7)

Collected from within the perturbed dataset is P(t), which we define as the set of all possible

failures for a given set of attributes and associated uncertainties. Shown in Fig. 6.6 is an example of

a uniformly distributed training dataset with two attributes, α = [x y] and four outputs, indicated

by the colored regions, akin to the DT in Fig. 6.5. The highlighted smaller rectangles inside each

(a) δ = 8 (b) δ = 16

Figure 6.6: Examples of local perturbations of different δ for multiple data points (black points).

figure show local perturbations with different δ around the black observations. It is evident that

with larger perturbations (right), another output (f3) is included in the local region for the data

at [x y] = [48 40], due to the proximity to the decision boundaries, indicating that f3 should be

included in P given the observation and δ = 16. It should be noted that we show this simple

example to help illustrate our perturbation in a more legible way, but in this work, we have more

attributes (6.3) that define decision boundaries, making visualizations more cluttered.

Shown in Fig. 6.7 is an example of a smaller local tree around the observation [X Y] = [48 40]

drawn from Fig. 6.6. Both trees, large and small, result in the same decision and explanation. The

failure detected is P(t) = f0, and through (6.5), the following explanation is obtained: E(t) = f0

because: {X < 48.5 ∧ Y > 39.5}. The tree in Fig. 6.5, however, captures that the observation is

116

Figure 6.7: DT used for initial failure detection.

close enough to decision boundaries to also include the possibility of f3.

Also included in this work is the ability for a human user to intervene based on the original

failure detection, P(t) ,and explanation, E(t), to modify P(t). For example, if the user decides that

the system should be certain about the initial detection, then they can set P(t) −→ P(t). The user

can also add failures to P(t) if their judgement suggests it is needed. In this way, the proposed

approach is able to further make use of the readability and interpretability of the DT monitor

towards recovering the degraded AMR.

6.3.3 Reachability Analysis and Controller Selection

To recover the AMR, we first use reachability analysis (RA) [25] to identify a set of controllers

c(t) ⊆ C that can be safely deployed for any of the possible failures. Reachable sets Rcf for all

combinations of controllers and failures in P(t) are computed by interpolating a region around the

MPC predictions xp(k) with k = [t, t+N]. The reachable set is bounded by maximum deviations

σcf collected in the training. Then, the set of safe controllers, c(t) is determined by verifying that

each reachable set is within an obstacle free region X (t):

c(t) = ci|Rcifj (t) ⊆ X (t), ∀ci|fi ∈ P(t), ∀fj ∈ P(t) (6.8)

Fig. 6.8 displays an example taken from our simulations, in which each reachable set is obtained with

different controllers assuming failure 1, and since Rc3f1 intersects with an obstacle, it is unsafe and

c3 ̸∈ c(t). Each controller within c(t) can be safely tested, and given no other context, the controller

117

Figure 6.8: Examples of reachable sets obtained with different controllers on a particular failure.

selected, c∗ ∈ c(t), is a conservative one with the lowest worst-case deviation for all failures in P(t):

c∗ = min
c

(max
c
σcifj), for each ci ∈ c, ∀fj ∈ P (6.9)

Controller Confidence Assessment and Validation

Selecting a corrective measure as described above is conservative and may not necessarily maximize

the performance of the degraded AMR. To improve its performance, the robot needs to gain context

at runtime about the effectiveness of the selected controller and decide whether to switch to another.

We model this context as a controller confidence Pr(ci) that evolves over time based on the observed

runtime deviation, which is computed as follows:

ηci(t) = ||∆x ∆y ∆θ|| (6.10)

where || · || represents the L2-norm. If using controller ci causes less deviation than a pre-defined

desired level of performance, ηci < η∗, the confidence in ci should be reinforced, and vice versa. This

controller confidence is formulated as an unknown discrete probability mass function (PMF) over

the different controllers with uniform initial confidence estimates: Pr(ci) = 1/Nc, ∀ci ∈ C, where

Nc is the total number of controllers in C. To reflect the desired effect of growing confidence with

positive reinforcement and vice versa, Pr(ci) is updated using recursive Bayesian inference [17],

given as follows:

Pr(ci|ρci) =
Pr(ρci |ci)Pr(ci)

β
(6.11)

118

where ρ represents whether the performance criterion ηci < η∗ is met, and β is a normalization

constant that is used to ensure that the integral of the discrete PMF is 1. A confidence threshold,

γ, is set to determine and select the controller that performs best for a given failure,

c∗ = ci|Pr(ci) ≥ γ (6.12)

In this work, we set γ = 0.75, but this choice depends on the application; higher values will be more

conservative and vice versa. When a controller meets this threshold, it is automatically deployed

given that it is in c(t), regardless of the output of the DT monitor. When a controller is deployed

and reinforced negatively, it is penalized according to (6.11), and if all controllers cause deviations

ηci > η∗, ∀ci ∈ c(t), then confidence for all controllers is reinitialized in order to allow the system

to test other controllers again based on which has caused the lowest deviations at runtime:

c∗ = argmin
c

η (6.13)

where η is the set of most recently observed deviations for each controller in c(t). This type of

situation arises when an unknown failure appears at runtime and every controller creates deviations

ηci > η∗ ∀ci ∈ c(t), but runtime deviations and reachable sets suggest the system can still remain

safe. We show one such case in Section 6.4.1, where a system under an unknown failure switches

between controllers to remain safe and maximize performance throughout its operation. The full

controller selection process in this work is shown in the flowchart in Fig. 6.9.

In a situation where no safe controller exists, c(t) = ∅ for all failures in P(t), the robot should

switch into an ad-hoc fail safe mode, which can vary based on the application. One possibility is to

stop operations and replan the desired path based on the deviations observed at runtime.

6.4 Results

The case study investigated in this work and presented in this section consists of an AMR navigation

task in the presence of different sensor and actuator failures. The robot is expected to detect the

failure affecting the system, assess uncertainties around this initial decision, and recover to a safe

mode of operation.

119

Figure 6.9: Controller selection process flowchart.

Simulations

In MATLAB simulations, the robot was tasked to move through an environment from an initial

point at (0, 0) to a goal at (25, 0) while avoiding obstacles in the presence of failures. The simulation

training set consisted of 5 failures, including: f1: velocity based steering loss where higher speeds

lead to more deviations, f2: steering loss of 30%, f3: icy conditions causing the robot to spin, f4:

windy conditions adding bias to the robot position, and f5: steering loss of 10%. The MPC had

a horizon of N = 5s, and a known map of the environment was used to define obstacle avoidance

constraints for the MPC. Shown in Fig. 6.10 is a comparison between robot behavior under nominal

conditions and behaviors under a failure.

The nominal trajectory (green) shows the desired behavior of the robot, while the red line shows

that a robot under a failure with no correction collides with a wall. In blue, we show that under our

approach, the robot is able to correct its behaviors and converge to nominal behaviors. Finally, the

magenta line depicts a version of our approach in which the uncertainty assessment and controller

validation are removed, and only the initial decision of the DT is utilized to select a controller. This

120

Figure 6.10: Simulation trajectories.

type of decision-making leads to a collision, validating that uncertainty assessment and controller

validation are needed in our framework for safe robot motion.

In Fig. 6.11, we compare the decision-making results of some of the cases listed in Fig. 6.10.

Fig. 6.11(a) shows the local decisions (blue markers) and controller selections (red markers) without

uncertainty assessment and validation. The selected controller always matches the decision P in this

case, and this as seen above, causes a collision. In Fig. 6.11(b), the cyan markers show the results of

the uncertainty assessment P, and despite the poor initial decisions, our approach captures the

correct failure. The system, heeding uncertainties, tests controllers c2 and c3 when they are safe

and learns, through negative reinforcement based on deviation (6.11), to instead use c1, which is

reinforced positively after deviations below η∗ are detected. In Fig. 6.12, we show the confidence in

controllers over time, in which system correctly converges to c1, even though the DT decisions were

noisy and uncertain.

We also conducted another simulation to further validate the effectiveness of the proposed

uncertainty aware approach with a failure that was not explicitly modeled in training set, but

is bounded by failures f2 and f5. In the results shown in Fig. 6.13(a), we observe that the

system does in fact select both c2 and c5 at different times since confidence in all controllers is at

the initial value (Fig. 6.13(b)) due to repeated negative reinforcement, and the system is using

runtime deviations (6.13) to decide which controller to select. Videos of these simulations and other

controller-failure combinations are available in the supplemental materials.

121

(a) decision-making without uncertainty assessment

(b) decision-making with uncertainty assessment

Figure 6.11: Comparison of decision-making with and without uncertainty assessment and
controller validation.

Figure 6.12: Controller validation results

122

(a) decision-making under unknown failure

(b) Controller validation results

Figure 6.13: Results from simulation of unknown failure.

Hardware Experiments

Physical experiments were also conducted to test the generality and feasibility of the proposed

approach. Experiment training consisted of 3 failures, which introduce different degrees (10%, 20%,

and 30%) of steering loss to the vehicle. Training and testing were done on a Clearpath Jackal UGV

in a lab environment with a Vicon Motion Capture system for localization. The MPC horizon was set

to N = 3s, and our approach was executed at 10hz. The first experiment is similar to the simulation

where the robot starting at (−2.5, 0) has a task to safely reach a goal at (2.5, 0) under a failure

that is introduced at runtime. In Fig. 6.14, we show that our approach recovers the robot safely,

while a robot under the same failure without our approach collides with an obstacle. In the second

experiment, the robot is tasked to track an ellipse trajectory to patrol the center of the environment.

Trajectories showing the effect of the proposed corrective approach are shown in Fig. 6.15, and

confirm that without correction enabled, the robot diverges from its task, compromising its mission,

while the proposed approach is able to maintain its performance despite the degraded conditions,

and noisy failure detection.

123

(a) Snapshots of experiments

(b) Trajectories of experiments

Figure 6.14: Snapshots and trajectories for baseline experiments

Figure 6.15: Trajectories of ellipse experiments.

124

(a) decision-making in ellipse trajectory

(b) Controller validation results

Figure 6.16: Results from ellipse experiment.

6.5 Discussion

In this work, we have presented a novel approach to handle uncertainties in decision-making for

recovering an autonomous mobile robot from failures caused by sensor and actuator faults. We design

an explainable decision tree-based monitor to detect failures and perturbation-based uncertainty

assessment with a library of model predictive controllers to recover the robot to a safe mode of

operation. The main benefit of our approach is that it considers and makes use of the uncertainties

in the output of a learning component for robot control, promoting safe robot navigation under

uncertain and noisy degraded conditions. Furthermore, the interpretability aspect of our approach

empowers human users to further provide input to uncertainty analysis, adding another layer of

assurance.

6.5.1 Limitations and Future Directions

As with many supervised learning approaches, the quality of the training set dictates the effectiveness

and applicability of the work. While we show results in extensive simulations and experiments,

dealing with unbounded, unknown, and untrained failures at runtime still remains a challenge in

situations where a safe controller may not exist. However, we do note that the interpretability

aspect in our approach, by including the human in the loop, can provide an avenue for runtime

125

updating and verification. Such issues can also be mitigated by using observed deviations to learn

the degraded dynamics safely at runtime through system identification methods or reinforcement

learning.

126

Chapter 7

Conclusions and Future Directions

In this chapter, we will conclude the dissertation with an overview of what we have accomplished

and learned, followed by a discussion of real-world applications for this work and also any future

directions and extensions that can build on what we have achieved thus far.

7.1 Conclusions

In this dissertation, we have focused on the problem of prediction and planning in dynamic

environments under various uncertainties. We primarily focused on a social navigation case study

where the source of uncertainty comes from the behaviors of nearby dynamic actors, but we

also showed that the frameworks and approaches presented in this dissertation can extend to

different types of uncertainties that can affect a mobile robot’s performance. All techniques we have

presented have been validated through extensive simulations and hardware experiments to show

their applicability on real robots.

First, we presented our work on making explicit uncertainty-aware predictions about the future

intended positions of humans. Different from the state-of-the-art in prediction and planning, our

method leverages Hidden Markov Models (HMM) to predict not only where dynamic actors are most

likely to be in the future, but also other less likely possibilities, accounting for uncertainties in the

behaviors of dynamic actors. This uncertainty assessment was formulated into temporal stochastic

reachability analysis, which informed an efficient and scalable virtual physics-based planner. A

major benefit of this approach was that our predictive model was updated and improved at runtime

127

as new behaviors were observed without the need for a long training period that is typical of other

learning-based approaches. Results showed the benefits of proactive uncertainty-aware planning

over traditional reactive methods, and that learning at runtime improves robot behaviors. However,

we also note that these explicit predictions, and particularly those aware of uncertainties were too

restrictive at times for robots in highly dynamic and dense environments – the robot would at times

pause since stochastic reachable sets were blocking its path.

To relax this restriction, we reduced the social navigation problem to a binary classification

through the design of an interpretable monitoring technique that uses decision trees to not only

predict, but also explain the causes for predictions about whether the robot will interfere with the

path of a nearby human. The major benefit of using decision trees is that context can be provided for

any prediction, and this provides major benefits to assurance and understanding of learning-enabled

robot planning. The predictions and explanations in our presented approach are leveraged to provide

counterfactuals, which provided options for how the robot could correct its behaviors. The ability to

not only find a corrective action, but provide options is another impactful contribution toward the

integration of robots into our world. In particular, this can apply to robotic systems with operators

that can provide input and receive readable feedback about robot decision-making.

We also showed the strength of decision tree-based interpretable monitoring by adapting efficient

and scalable reactive planners that suffer from local minima issues. We found that such approaches

can be used in general to correct undesirable robot behaviors, while providing explanations and

reasoning for why and how robot behaviors should be corrected. In addition to the interpretability

aspect, another major benefit of decision trees is that they can be trained quickly online. We

leveraged this aspect along with our HMM-based probability update to show that decision trees

not only make predictions and provide explanations, but can also update quickly at runtime, and

that predictions can improve immediately after new context is gained. This work was tested in the

social navigation cases study, where extensive simulation and experiment results were promising,

but showed that as the crowd size increases, a global solution that avoids interfering with all actors

under the DT-based approach may not exist.

To further extend the social navigation problem to handle larger crowds, we looked towards

model-based predictions for both robot and dynamic actors. We assumed actors follow a social

force-based model, and used a model predictive controller (MPC) to estimate the future states of the

128

robot and actors. Through modeling human-human interactions, we identified that not all actors

must be explicitly considered by the robot, since humans interact with each other and the presence

of other humans alters how the robot responds to each one, and in many cases completely remove

the need for the robot to consider certain actors. Thus, we paired a deep neural network (DNN)

with the MPC to predict which actors are most important for the robot to consider. Notably, we

included a method to compose together pairwise predictions at runtime so that attention-aware

social planning can be achieved by training only on pairs of actors, rather than lots of randomized

permutations. Results show that the robot is able to successfully minimize interfering with dense

crowds, while paying attention to a smaller number of actors. Furthermore, we show that our

attention prediction reduces computation time when compared to a naive MPC that considers all

actors. Importantly, through our attention prediction, we achieve this reduction in computation

time with minimal impact on the ability to avoid interference with all actors. We also introduced the

notion of different composition methods, and showed some early results about how motion planning

could be improved by considering more granular attention scores, rather than binary classifications.

While it should be noted that the DNN is not inherently interpretable, by using the precise and

optimal MPC that takes into account robot and human dynamics, we were able to understand

better the robot’s decision-making, particularly when compared to end-to-end learning approaches.

Finally, we showed how the approaches presented in this dissertation can be extended to cases

in which the robot’s decision-making itself is uncertain. Given that most learning components

return only one prediction, which can be incorrect due to noise and uncertain environments, we

designed a local perturbation-based technique to assess and quantify the uncertainties that were

present. We then used a reachability-based method to correct the behaviors of a robot in a manner

that is safe and sensitive to any of the possible predictions. The case study we investigated here

involved predicting the type of failure a robot was experiencing, which also showed that interpretable

monitoring approaches can extend beyond the social planning problem. The key result from this

work is that assessing the uncertainties of predictions is critical to promote safe planning for mobile

robots that are in highly uncertain environments dealing with challenging issues. To reinforce this,

we showed through our simulation results that our learning component would have performed poorly

and led to a collision had we not included the uncertainty assessment aspect.

129

7.2 Discussion and Future Directions

Throughout this dissertation, we have demonstrated that proactively handling uncertainties that

affect a robot’s behaviors is a vital component to the widespread use and integration of autonomous

mobile robots into our society. We have shown extensive simulations with realistic robot models and

experiments with real hardware in both a lab setting and a less structured indoor workspace setting.

Through these results, we have shown that by assessing uncertainties and planning proactively,

robots can behave in socially acceptable ways around humans, in dense crowds, and even when

external disturbances and faults are causing them to fail and behave in undesirable ways. The

applications studied in this work demonstrate the applicability of our frameworks to solve real-world

robotic problems.

A notable key contribution of this dissertation is the interpretability aspect for robot decision-

making, which enables operators or bystanders (i.e., pedestrians in the presence of an autonomous

vehicle) to either receive explanations or reason about why a robot made a particular decision,

as opposed to end-to-end learning approaches that use black boxes throughout prediction and

planning phases. While we show that robot social navigation can be improved with our methods,

we note that this type of work can extend to a number of real-world scenarios even beyond the case

studies we have investigated. Recent developments in human-robot teaming to accomplish tasks

have increased the importance of building trust and communication between “teammates,” and our

interpretable monitoring approaches, given that they efficiently return human-readable explanations

for robot decisions, provide an avenue for humans to further understand robot decisions. A more

concrete example is in robot-assisted surgery, in which a surgeon may be operating a robot that has

perception and actuation capabilities, and with our interpretable frameworks, both surgeon and

robot can communicate through explanations and counterfactuals to provide feedback about critical

decisions that affect patient health. We attest that this is a form of social acceptability; not merely

navigating around humans in an acceptable manner, but becoming an accepted part of our society

in all facets.

We believe that this research is still at an early stage and there are important challenges before

enabling autonomous mobile robots to fully integrate into our world. One particular consideration

in our intention and interaction prediction work is that predictions can be improved by considering

130

other context, such as features of the robot’s operating environment or cultural norms in the case

of social planning. For example, dynamic actor intentions may be drastically different in a hostile

battlefield, when compared to a busy transit station. Furthermore, beyond identifying important

actors to include in our planner, there are a number of cases in which the concept of attention can

be effectively leveraged, such as distinguishing between different types of drivers in an autonomous

vehicle case study, or identifying relevant features a robot should consider to improve planning in a

certain environment.

Another major consideration is that the approaches presented in this dissertation all utilize

supervised learning, which typically requires a good training dataset. While we provided several

approaches that can update and learn at runtime, we note that performance, in the end, relies on

the quality of the data collected. A major challenge with collecting and leveraging data collected at

runtime, however, is ensuring the robot’s behaviors can be safe and closely approximate desired

behaviors during that time. Future directions to address this issue could include studying more

runtime learning approaches that are able to guarantee system safety while learning to improve

behaviors. Safe reinforcement learning is a possible avenue for addressing the runtime learning

problem, but as with many RL algorithms, it can take a large number of episodes to learn a

reasonable policy, and finding a method to lower the number of episodes remains an open problem.

Overall, mobile robots have shown an immense potential to efficiently perform complex tasks

and improve lives both in work and home environments. The proactive and uncertainty-aware

planning techniques presented in this dissertation take these autonomous mobile robots one step

closer to becoming a part of our society.

131

Bibliography

[1] Boussad Abci, Maan El Badaoui El Najjar, Vincent Cocquempot, and Gérald Dherbomez.

“An informational approach for sensor and actuator fault diagnosis for autonomous mobile

robots”. In: Journal of Intelligent & Robotic Systems 99.2 (2020), pp. 387–406.

[2] Moloud Abdar et al. “A review of uncertainty quantification in deep learning: Techniques,

applications and challenges”. In: Information Fusion 76 (2021), pp. 243–297. issn: 1566-2535.

[3] A. Adadi and M. Berrada. “Peeking Inside the Black-Box: A Survey on Explainable Artificial

Intelligence (XAI)”. In: IEEE Access 6 (2018), pp. 52138–52160.

[4] Y. Akiba, S. Kaneda, and H. Almuallim. “Turning majority voting classifiers into a single

decision tree”. In: Proceedings Tenth IEEE International Conference on Tools with Artificial

Intelligence (Cat. No.98CH36294). 1998, pp. 224–230.

[5] J. Alonso-Mora, A. Breitenmoser, P. Beardsley, and R. Siegwart. “Reciprocal collision

avoidance for multiple car-like robots”. In: 2012 IEEE International Conference on Robotics

and Automation. 2012, pp. 360–366. doi: 10.1109/ICRA.2012.6225166.

[6] Gianluca Amato, Francesca Scozzari, and Enea Zaffanella. “Efficient Constraint/Generator

Removal from Double Description of Polyhedra”. In: Electronic Notes in Theoretical Computer

Science 307 (2014). Fifth International Workshop on Numerical and Symbolic Abstract

Domains (NSAD), pp. 3–15. issn: 1571-0661. doi: https://doi.org/10.1016/j.entcs.

2014.08.002.

[7] M. Amri, Y. Becis, D. Aubry, and N. Ramdani. “Indoor human/robot localization using

robust multi-modal data fusion”. In: 2015 IEEE International Conference on Robotics and

Automation (ICRA). 2015, pp. 3456–3463. doi: 10.1109/ICRA.2015.7139677.

132

https://doi.org/10.1109/ICRA.2012.6225166
https://doi.org/https://doi.org/10.1016/j.entcs.2014.08.002
https://doi.org/https://doi.org/10.1016/j.entcs.2014.08.002
https://doi.org/10.1109/ICRA.2015.7139677

[8] Joel A E Andersson, Joris Gillis, Greg Horn, James B Rawlings, and Moritz Diehl. “CasADi

– A software framework for nonlinear optimization and optimal control”. In: Mathematical

Programming Computation 11.1 (2019), pp. 1–36. doi: 10.1007/s12532-018-0139-4.

[9] R. E. Banfield, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer. “A Comparison of

Decision Tree Ensemble Creation Techniques”. In: IEEE Transactions on Pattern Analysis

and Machine Intelligence 29.1 (2007), pp. 173–180.

[10] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin. “Hamilton-Jacobi reachability: A brief

overview and recent advances”. In: 2017 IEEE 56th Annual Conference on Decision and

Control (CDC). 2017, pp. 2242–2253. doi: 10.1109/CDC.2017.8263977.

[11] Somil Bansal, Andrea Bajcsy, Ellis Ratner, Anca D. Dragan, and Claire J. Tomlin. A

Hamilton-Jacobi Reachability-Based Framework for Predicting and Analyzing Human Motion

for Safe Planning. 2019. arXiv: 1910.13369 [cs.RO].

[12] Somil Bansal, Varun Tolani, Saurabh Gupta, Jitendra Malik, and Claire Tomlin. Combining

Optimal Control and Learning for Visual Navigation in Novel Environments. 2019. arXiv:

1903.02531 [cs.RO].

[13] Randolph Blake and Maggie Shiffrar. “Perception of human motion”. In: Annu. Rev. Psychol.

58 (2007), pp. 47–73.

[14] Robert Bogue. “Growth in e-commerce boosts innovation in the warehouse robot market”.

In: Industrial Robot: An International Journal (2016).

[15] Abdelaziz Botalb, M Moinuddin, UM Al-Saggaf, and Syed SA Ali. “Contrasting convolutional

neural network (CNN) with multi-layer perceptron (MLP) for big data analysis”. In: 2018

International conference on intelligent and advanced system (ICIAS). IEEE. 2018, pp. 1–5.

[16] Leo Breiman, Jerome H Friedman, Richard A Olshen, and Charles J Stone. Classification

and regression trees. Routledge, 2017.

[17] Manuel Castellano-Quero, Juan-Antonio Fernández-Madrigal, and Alfonso Garcia-Cerezo.

“Improving Bayesian inference efficiency for sensory anomaly detection and recovery in mobile

robots”. In: Expert Systems with Applications 163 (2021), p. 113755.

133

https://doi.org/10.1007/s12532-018-0139-4
https://doi.org/10.1109/CDC.2017.8263977
https://arxiv.org/abs/1910.13369
https://arxiv.org/abs/1903.02531

[18] Changan Chen, Yuejiang Liu, Sven Kreiss, and Alexandre Alahi. “Crowd-Robot Interaction:

Crowd-Aware Robot Navigation With Attention-Based Deep Reinforcement Learning”. In:

2019 International Conference on Robotics and Automation (ICRA) (2019), pp. 6015–6022.

[19] Yu Fan Chen, Michael Everett, Miao Liu, and Jonathan P. How. “Socially aware motion

planning with deep reinforcement learning”. In: 2017 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS) (2017), pp. 1343–1350.

[20] Liu Chengqing, Marcelo H Ang, Hariharan Krishnan, and Lim Ser Yong. “Virtual obstacle

concept for local-minimum-recovery in potential-field based navigation”. In: Proceedings 2000

ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation.

Symposia Proceedings (Cat. No. 00CH37065). Vol. 2. IEEE. 2000, pp. 983–988.

[21] Boris V Cherkassky, Andrew V Goldberg, and Tomasz Radzik. “Shortest paths algorithms:

Theory and experimental evaluation”. In: Mathematical programming 73.2 (1996), pp. 129–

174.

[22] Alessandro Corbetta, Jasper A Meeusen, Chung-min Lee, Roberto Benzi, and Federico Toschi.

“Physics-based modeling and data representation of pairwise interactions among pedestrians”.

In: Physical review E 98.6 (2018), p. 062310.

[23] Mark Cutler and Jonathan P How. “Autonomous drifting using simulation-aided reinforce-

ment learning”. In: 2016 IEEE International Conference on Robotics and Automation (ICRA).

IEEE. 2016, pp. 5442–5448.

[24] Donato Di Paola, Annalisa Milella, Grazia Cicirelli, and Arcangelo Distante. “An autonomous

mobile robotic system for surveillance of indoor environments”. In: International Journal of

Advanced Robotic Systems 7.1 (2010), p. 8.

[25] Jerry Ding, Eugene Li, Haomiao Huang, and Claire J. Tomlin. “Reachability-based synthesis

of feedback policies for motion planning under bounded disturbances”. In: 2011 IEEE

International Conference on Robotics and Automation. 2011, pp. 2160–2165.

[26] S. Ding, X. Nie, H. Qiao, and B. Zhang. “A Fast Algorithm of Convex Hull Vertices Selection

for Online Classification”. In: IEEE Transactions on Neural Networks and Learning Systems

29.4 (2018), pp. 792–806.

134

[27] Y. Dong, H. Su, J. Zhu, and B. Zhang. “Improving Interpretability of Deep Neural Networks

with Semantic Information”. In: 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 2017, pp. 975–983. doi: 10.1109/CVPR.2017.110.

[28] Frantǐsek Duchoň, Andrej Babinec, Martin Kajan, Peter Beňo, Martin Florek, Tomáš Fico,

and Ladislav Jurǐsica. “Path Planning with Modified a Star Algorithm for a Mobile Robot”.

In: Procedia Engineering 96 (2014). Modelling of Mechanical and Mechatronic Systems,

pp. 59–69. issn: 1877-7058. doi: https://doi.org/10.1016/j.proeng.2014.12.098. url:

https://www.sciencedirect.com/science/article/pii/S187770581403149X.

[29] Gregory Dudek and Michael Jenkin. Computational principles of mobile robotics. Cambridge

university press, 2010.

[30] Stuart Eiffert, He Kong, Navid Pirmarzdashti, and Salah Sukkarieh. “Path planning in

dynamic environments using Generative RNNs and Monte Carlo tree search”. In: 2020 IEEE

International Conference on Robotics and Automation (ICRA). 2020, pp. 10263–10269.

[31] Michael Everett, Yu Fan Chen, and Jonathan P How. “Motion planning among dynamic,

decision-making agents with deep reinforcement learning”. In: 2018 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE. 2018, pp. 3052–3059.

[32] Takahiro Ezaki, Daichi Yanagisawa, Kazumichi Ohtsuka, and Katsuhiro Nishinari. “Simulation

of space acquisition process of pedestrians using Proxemic Floor Field Model”. In: Physica

A: Statistical Mechanics and its Applications 391.1 (2012), pp. 291–299. issn: 0378-4371. doi:

https://doi.org/10.1016/j.physa.2011.07.056. url: https://www.sciencedirect.

com/science/article/pii/S0378437111006054.

[33] Gonzalo Ferrer, Anais Garrell, and Alberto Sanfeliu. “Robot companion: A social-force based

approach with human awareness-navigation in crowded environments”. In: 2013 IEEE/RSJ

International Conference on Intelligent Robots and Systems. IEEE. 2013, pp. 1688–1694.

[34] Paolo Fiorini and Zvi Shiller. “Motion planning in dynamic environments using velocity

obstacles”. In: The International Journal of Robotics Research 17.7 (1998), pp. 760–772.

[35] Jaime F. Fisac, Andrea Bajcsy, Sylvia L. Herbert, David Fridovich-Keil, Steven Wang, Claire

J. Tomlin, and Anca D. Dragan. “Probabilistically Safe Robot Planning with Confidence-

135

https://doi.org/10.1109/CVPR.2017.110
https://doi.org/https://doi.org/10.1016/j.proeng.2014.12.098
https://www.sciencedirect.com/science/article/pii/S187770581403149X
https://doi.org/https://doi.org/10.1016/j.physa.2011.07.056
https://www.sciencedirect.com/science/article/pii/S0378437111006054
https://www.sciencedirect.com/science/article/pii/S0378437111006054

Based Human Predictions”. In: CoRR abs/1806.00109 (2018). arXiv: 1806.00109. url:

http://arxiv.org/abs/1806.00109.

[36] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. “The dynamic window approach to

collision avoidance”. In: IEEE Robotics & Automation Magazine 4.1 (1997), pp. 23–33.

[37] C. D. Franco and N. Bezzo. “Interpretable Run-Time Monitoring and Replanning for Safe

Autonomous Systems Operations”. In: IEEE Robotics and Automation Letters 5.2 (2020),

pp. 2427–2434.

[38] Y. Gao, P. B. Luh, H. Zhang, and T. Chen. “A modified social force model considering

relative velocity of pedestrians”. In: 2013 IEEE International Conference on Automation

Science and Engineering (CASE). 2013, pp. 747–751. doi: 10.1109/CoASE.2013.6654008.

[39] Akhil Garg and Kang Tai. “Comparison of statistical and machine learning methods in

modelling of data with multicollinearity”. In: International Journal of Modelling, Identification

and Control 18.4 (2013), pp. 295–312.

[40] Shuzhi Sam Ge and Yun J Cui. “Dynamic motion planning for mobile robots using potential

field method”. In: Autonomous robots 13.3 (2002), pp. 207–222.

[41] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Dino Pedreschi, Franco Turini, and

Fosca Giannotti. “Local rule-based explanations of black box decision systems”. In: arXiv

preprint arXiv:1805.10820 (2018).

[42] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Dino Pedreschi, and

Fosca Giannotti. A Survey Of Methods For Explaining Black Box Models. 2018. arXiv:

1802.01933 [cs.CY].

[43] Pinyao Guo, Hunmin Kim, Nurali Virani, Jun Xu, Minghui Zhu, and Peng Liu. “RoboADS:

Anomaly Detection Against Sensor and Actuator Misbehaviors in Mobile Robots”. In: 2018

48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN). 2018, pp. 574–585. doi: 10.1109/DSN.2018.00065.

[44] M. S. M. Hashim, T. Lu, and H. H. Basri. “Dynamic obstacle avoidance approach for

car-like robots in dynamic environments”. In: 2012 International Symposium on Computer

136

https://arxiv.org/abs/1806.00109
http://arxiv.org/abs/1806.00109
https://doi.org/10.1109/CoASE.2013.6654008
https://arxiv.org/abs/1802.01933
https://doi.org/10.1109/DSN.2018.00065

Applications and Industrial Electronics (ISCAIE). 2012, pp. 130–135. doi: 10.1109/ISCAIE.

2012.6482083.

[45] Michael Herman, Volker Fischer, Tobias Gindele, and Wolfram Burgard. “Inverse reinforce-

ment learning of behavioral models for online-adapting navigation strategies”. In: 2015 IEEE

international conference on robotics and automation (ICRA). IEEE. 2015, pp. 3215–3222.

[46] E. Horváth, C. Hajdu, and P. Kőrös. “Novel Pure-Pursuit Trajectory Following Approaches

and their Practical Applications”. In: 2019 10th IEEE International Conference on Cognitive

Infocommunications (CogInfoCom). 2019, pp. 000597–000602. doi: 10.1109/CogInfoCom47531.

2019.9089927.

[47] Zhe Huang, Aamir Hasan, and Katherine Driggs-Campbell. Intention-aware Residual Bidi-

rectional LSTM for Long-term Pedestrian Trajectory Prediction. 2020. arXiv: 2007.00113

[cs.RO].

[48] Fahad Islam, Jauwairia Nasir, Usman Malik, Yasar Ayaz, and Osman Hasan. “Rrt-smart:

Rapid convergence implementation of rrt towards optimal solution”. In: 2012 IEEE interna-

tional conference on mechatronics and automation. IEEE. 2012, pp. 1651–1656.

[49] Dylan Jennings and Miguel Figliozzi. “Study of Sidewalk Autonomous Delivery Robots

and Their Potential Impacts on Freight Efficiency and Travel”. In: Transportation Research

Record 2673.6 (2019), pp. 317–326. doi: 10.1177/0361198119849398.

[50] Xiao-Zheng Jin, Ji-Zhou Yu, Li Zhou, and Yong-Yue Zheng. “Robust Adaptive Trajectory

Tracking Control of Mobile Robots with Actuator Faults”. In: 2019 Chinese Control And

Decision Conference (CCDC). 2019, pp. 2691–2695.

[51] Gregory Kahn, Adam Villaflor, Vitchyr Pong, Pieter Abbeel, and Sergey Levine. “Uncertainty-

Aware Reinforcement Learning for Collision Avoidance”. In: CoRR abs/1702.01182 (2017).

[52] Azarakhsh Keipour, Mohammadreza Mousaei, and Sebastian Scherer. “Automatic Real-time

Anomaly Detection for Autonomous Aerial Vehicles”. In: 2019 International Conference on

Robotics and Automation (ICRA). 2019, pp. 5679–5685. doi: 10.1109/ICRA.2019.8794286.

[53] Oussama Khatib. “Real-time obstacle avoidance for manipulators and mobile robots”. In:

Autonomous robot vehicles. Springer, 1986, pp. 396–404.

137

https://doi.org/10.1109/ISCAIE.2012.6482083
https://doi.org/10.1109/ISCAIE.2012.6482083
https://doi.org/10.1109/CogInfoCom47531.2019.9089927
https://doi.org/10.1109/CogInfoCom47531.2019.9089927
https://arxiv.org/abs/2007.00113
https://arxiv.org/abs/2007.00113
https://doi.org/10.1177/0361198119849398
https://doi.org/10.1109/ICRA.2019.8794286

[54] Sujeong Kim, Stephen J. Guy, Wenxi Liu, David Wilkie, Rynson W. H. Lau, Ming C. Lin, and

Dinesh Manocha. “BRVO: Predicting pedestrian trajectories using velocity-space reasoning”.

In: I. J. Robotics Res. 34 (2015), pp. 201–217.

[55] Yong Soo Kim. “Comparison of the decision tree, artificial neural network, and linear

regression methods based on the number and types of independent variables and sample

size”. In: Expert Systems with Applications 34.2 (2008), pp. 1227–1234.

[56] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A. Al Sallab, Senthil

Yogamani, and Patrick Pérez. “Deep Reinforcement Learning for Autonomous Driving: A

Survey”. In: IEEE Transactions on Intelligent Transportation Systems 23.6 (2022), pp. 4909–

4926.

[57] Thibault Kruse, Alexandra Kirsch, Harmish Khambhaita, and Rachid Alami. “Evaluating

directional cost models in navigation”. In: Proceedings of the 2014 ACM/IEEE international

conference on Human-robot interaction. 2014, pp. 350–357.

[58] Sampo Kuutti, Richard Bowden, Yaochu Jin, Phil Barber, and Saber Fallah. “A Survey of

Deep Learning Applications to Autonomous Vehicle Control”. In: IEEE Transactions on

Intelligent Transportation Systems 22.2 (2021), pp. 712–733.

[59] Steven M LaValle et al. “Rapidly-exploring random trees: A new tool for path planning”. In:

(1998).

[60] Bertrand H Lemasson, James J Anderson, and R Andrew Goodwin. “Motion-guided attention

promotes adaptive communications during social navigation”. In: Proceedings of the Royal

Society B: Biological Sciences 280.1754 (2013), p. 20122003.

[61] Lucas Liebenwein, Cenk Baykal, Igor Gilitschenski, Sertac Karaman, and Daniela Rus.

“Sampling-Based Approximation Algorithms for Reachability Analysis with Provable Guaran-

tees”. In: June 2018. doi: 10.15607/RSS.2018.XIV.014.

[62] T. X. Lin, E. Yel, and N. Bezzo. “Energy-aware Persistent Control of Heterogeneous Robotic

Systems”. In: 2018 Annual American Control Conference (ACC). 2018, pp. 2782–2787. doi:

10.23919/ACC.2018.8431238.

138

https://doi.org/10.15607/RSS.2018.XIV.014
https://doi.org/10.23919/ACC.2018.8431238

[63] Timm Linder, Stefan Breuers, Bastian Leibe, and Kai O Arras. “On multi-modal people

tracking from mobile platforms in very crowded and dynamic environments”. In: 2016 IEEE

International Conference on Robotics and Automation (ICRA). IEEE. 2016, pp. 5512–5519.

[64] Shuijing Liu, Peixin Chang, Weihang Liang, Neeloy Chakraborty, and Katherine Driggs-

Campbell. “Decentralized structural-rnn for robot crowd navigation with deep reinforcement

learning”. In: 2021 IEEE International Conference on Robotics and Automation (ICRA).

IEEE. 2021, pp. 3517–3524.

[65] Antonio Loquercio, Mattia Segu, and Davide Scaramuzza. “A General Framework for Uncer-

tainty Estimation in Deep Learning”. In: IEEE Robotics and Automation Letters 5.2 (2020),

pp. 3153–3160.

[66] Christopher W. Lynn, Lia Papadopoulos, Daniel D. Lee, and Danielle S. Bassett. “Surges of

Collective Human Activity Emerge from Simple Pairwise Correlations”. In: Phys. Rev. X 9

(1 2019), p. 011022. doi: 10.1103/PhysRevX.9.011022. url: https://link.aps.org/doi/

10.1103/PhysRevX.9.011022.

[67] Julieta Martinez, Michael J Black, and Javier Romero. “On human motion prediction using

recurrent neural networks”. In: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. IEEE. 2017, pp. 2891–2900.

[68] Oscar Montiel, Ulises Orozco-Rosas, and Roberto Sepúlveda. “Path planning for mobile

robots using bacterial potential field for avoiding static and dynamic obstacles”. In: Expert

Systems with Applications 42.12 (2015), pp. 5177–5191.

[69] Mehdi Moussaid and Jonathan D Nelson. “Simple heuristics and the modelling of crowd

behaviours”. In: Pedestrian and Evacuation Dynamics 2012. Springer, 2014, pp. 75–90.

[70] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[71] L. Nasraoui, L. N. Atallah, and M. Siala. “Performance study of a reduced complexity

time synchronization approach for OFDM systems”. In: Third International Conference on

Communications and Networking. 2012, pp. 1–5. doi: 10.1109/ComNet.2012.6217742.

139

https://doi.org/10.1103/PhysRevX.9.011022
https://link.aps.org/doi/10.1103/PhysRevX.9.011022
https://link.aps.org/doi/10.1103/PhysRevX.9.011022
https://doi.org/10.1109/ComNet.2012.6217742

[72] Farzad Niroui, Kaicheng Zhang, Zendai Kashino, and Goldie Nejat. “Deep reinforcement learn-

ing robot for search and rescue applications: Exploration in unknown cluttered environments”.

In: IEEE Robotics and Automation Letters 4.2 (2019), pp. 610–617.

[73] Ali Gurcan Ozkil, Zhun Fan, Steen Dawids, Henrik Aanes, Jens Klestrup Kristensen, and

Kim Hardam Christensen. “Service robots for hospitals: A case study of transportation tasks

in a hospital”. In: 2009 IEEE international conference on automation and logistics. IEEE.

2009, pp. 289–294.

[74] Luigi Palmieri, Sven Koenig, and Kai O Arras. “RRT-based nonholonomic motion planning

using any-angle path biasing”. In: 2016 IEEE International Conference on Robotics and

Automation (ICRA). IEEE. 2016, pp. 2775–2781.

[75] Min Gyu Park, Jae Hyun Jeon, and Min Cheol Lee. “Obstacle avoidance for mobile robots

using artificial potential field approach with simulated annealing”. In: ISIE 2001. 2001 IEEE

International Symposium on Industrial Electronics Proceedings (Cat. No. 01TH8570). Vol. 3.

IEEE. 2001, pp. 1530–1535.

[76] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,

Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. “Automatic differentiation in

pytorch”. In: (2017).

[77] R Peddi. UVA-AMR Human-Robot Navigation-Dataset. https://github.com/rahulpeddi/

human-robot-navigation-datasets.

[78] R. Peddi, C. Di Franco, S. Gao, and N. Bezzo. “A Data-driven Framework for Proactive

Intention-Aware Motion Planning of a Robot in a Human Environment”. In: 2020 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS). 2020.

[79] Rahul Peddi and Nicola Bezzo. “An Interpretable Monitoring Framework for Virtual Physics-

Based Non-Interfering Robot Social Planning”. In: IEEE Robotics and Automation Letters

7.2 (2022), pp. 5262–5269.

[80] Rahul Peddi and Nicola Bezzo. “Interpretable Run-Time Prediction and Planning in Co-

Robotic Environments”. In: 2021 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS). IEEE. 2021, pp. 2504–2510.

140

https://github.com/rahulpeddi/human-robot-navigation-datasets
https://github.com/rahulpeddi/human-robot-navigation-datasets

[81] Rahul Peddi, Carmelo Di Franco, Shijie Gao, and Nicola Bezzo. “A data-driven framework

for proactive intention-aware motion planning of a robot in a human environment”. In: 2020

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. 2020,

pp. 5738–5744.

[82] Praveena Penmetsa, Pezhman Sheinidashtegol, Aibek Musaev, Emmanuel Kofi Adanu,

and Matthew Hudnall. “Effects of the autonomous vehicle crashes on public perception

of the technology”. In: IATSS Research 45.4 (2021), pp. 485–492. issn: 0386-1112. doi:

https://doi.org/10.1016/j.iatssr.2021.04.003. url: https://www.sciencedirect.

com/science/article/pii/S0386111221000224.

[83] M. Phillips and M. Likhachev. “SIPP: Safe interval path planning for dynamic environments”.

In: 2011 IEEE International Conference on Robotics and Automation. 2011, pp. 5628–5635.

doi: 10.1109/ICRA.2011.5980306.

[84] Quazi Marufur Rahman, Peter Corke, and Feras Dayoub. “Run-Time Monitoring of Machine

Learning for Robotic Perception: A Survey of Emerging Trends”. In: CoRR abs/2101.01364

(2021).

[85] Prajit Ramachandran, Barret Zoph, and Quoc V Le. “Searching for activation functions”.

In: arXiv preprint arXiv:1710.05941 (2017).

[86] John H Reif and Hongyan Wang. “Social potential fields: A distributed behavioral control

for autonomous robots”. In: Robotics and Autonomous Systems 27.3 (1999), pp. 171–194.

[87] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Why should i trust you?: Explaining

the predictions of any classifier”. In: Proceedings of the 22nd ACM SIGKDD international

conference on knowledge discovery and data mining. ACM. 2016, pp. 1135–1144.

[88] Cynthia Rudin and Joanna Radin. “Why are we using black box models in AI when we don’t

need to? A lesson from an explainable AI competition”. In: Harvard Data Science Review

1.2 (2019), pp. 10–1162.

[89] Sunil Srivatsav Samsani and Mannan Saeed Muhammad. “Socially compliant robot navigation

in crowded environment by human behavior resemblance using deep reinforcement learning”.

In: IEEE Robotics and Automation Letters 6.3 (2021), pp. 5223–5230.

141

https://doi.org/https://doi.org/10.1016/j.iatssr.2021.04.003
https://www.sciencedirect.com/science/article/pii/S0386111221000224
https://www.sciencedirect.com/science/article/pii/S0386111221000224
https://doi.org/10.1109/ICRA.2011.5980306

[90] Adarsh Jagan Sathyamoorthy, Utsav Patel, Tianrui Guan, and Dinesh Manocha. “Frozone:

Freezing-free, pedestrian-friendly navigation in human crowds”. In: IEEE Robotics and

Automation Letters 5.3 (2020), pp. 4352–4359.

[91] Adarsh Jagan Sathyamoorthy, Utsav Patel, Moumita Paul, Nithish K Sanjeev Kumar,

Yash Savle, and Dinesh Manocha. “CoMet: Modeling group cohesion for socially compliant

robot navigation in crowded scenes”. In: IEEE Robotics and Automation Letters 7.2 (2021),

pp. 1008–1015.

[92] Wilko Schwarting, Javier Alonso-Mora, and Daniela Rus. “Planning and decision-making for

autonomous vehicles”. In: Annual Review of Control, Robotics, and Autonomous Systems 1.1

(2018), pp. 187–210.

[93] S. Srungarapu, D. P. Reddy, K. Kothapalli, and P. J. Narayanan. “Fast Two Dimensional

Convex Hull on the GPU”. In: 2011 IEEE Workshops of International Conference on Advanced

Information Networking and Applications. 2011, pp. 7–12. doi: 10.1109/WAINA.2011.64.

[94] Jan Steinbrener, Konstantin Posch, and Jürgen Pilz. “Measuring the Uncertainty of Predic-

tions in Deep Neural Networks with Variational Inference”. In: Sensors 20.21 (2020). issn:

1424-8220.

[95] Xiaoxun Sun, William Yeoh, and Sven Koenig. “Moving target D* lite”. In: Proceedings of

the 9th International Conference on Autonomous Agents and Multiagent Systems: volume

1-Volume 1. 2010, pp. 67–74.

[96] Annalisa T. Taylor, Thomas A. Berrueta, and Todd D. Murphey. “Active learning in robotics:

A review of control principles”. In: Mechatronics 77 (2021), p. 102576. issn: 0957-4158.

[97] P. Trautman and A. Krause. “Unfreezing the robot: Navigation in dense, interacting crowds”.

In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2010,

pp. 797–803. doi: 10.1109/IROS.2010.5654369.

[98] B. Tribelhorn and Z. Dodds. “Evaluating the Roomba: A low-cost, ubiquitous platform for

robotics research and education”. In: Proceedings 2007 IEEE International Conference on

Robotics and Automation. 2007, pp. 1393–1399. doi: 10.1109/ROBOT.2007.363179.

142

https://doi.org/10.1109/WAINA.2011.64
https://doi.org/10.1109/IROS.2010.5654369
https://doi.org/10.1109/ROBOT.2007.363179

[99] J. van den Berg, Ming Lin, and D. Manocha. “Reciprocal Velocity Obstacles for real-time

multi-agent navigation”. In: 2008 IEEE International Conference on Robotics and Automation.

2008, pp. 1928–1935. doi: 10.1109/ROBOT.2008.4543489.

[100] Jur Van Den Berg, Stephen J Guy, Ming Lin, and Dinesh Manocha. “Reciprocal n-body

collision avoidance”. In: Robotics research. Springer, 2011, pp. 3–19.

[101] Allan Wang, Christoforos Mavrogiannis, and Aaron Steinfeld. “Group-based Motion Predic-

tion for Navigation in Crowded Environments”. In: 5th Annual Conference on Robot Learning.

2021.

[102] Jianguo Wang, Gongxing Wu, Lei Wan, Yushan Sun, and Dapeng Jiang. “Recurrent neural

network applied to fault diagnosis of Underwater Robots”. In: 2009 IEEE International

Conference on Intelligent Computing and Intelligent Systems. Vol. 1. 2009, pp. 593–598. doi:

10.1109/ICICISYS.2009.5357773.

[103] Z. Wang, P. Jensfelt, and J. Folkesson. “Multi-scale conditional transition map: Modeling

spatial-temporal dynamics of human movements with local and long-term correlations”. In:

2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2015,

pp. 6244–6251. doi: 10.1109/IROS.2015.7354268.

[104] David T Wooden. “Graph-based path planning for mobile robots”. PhD thesis. Georgia

Institute of Technology, 2006.

[105] Fen Xia, Wensheng Zhang, Fuxin Li, and Yanwu Yang. “Ranking with Decision Tree”. In:

Knowl. Inf. Syst. 17.3 (Dec. 2008), pp. 381–395. issn: 0219-1377.

[106] Yanyu Xu, Zhixin Piao, and Shenghua Gao. “Encoding crowd interaction with deep neural

network for pedestrian trajectory prediction”. In: Proceedings of the IEEE conference on

computer vision and pattern recognition. 2018, pp. 5275–5284.

[107] Esen Yel, Taylor J. Carpenter, Carmelo Di Franco, Radoslav Ivanov, Yiannis Kantaros,

Insup Lee, James Weimer, and Nicola Bezzo. “Assured Runtime Monitoring and Planning:

Toward Verification of Neural Networks for Safe Autonomous Operations”. In: IEEE Robotics

and Automation Magazine 27.2 (2020), pp. 102–116. doi: 10.1109/MRA.2020.2981114.

143

https://doi.org/10.1109/ROBOT.2008.4543489
https://doi.org/10.1109/ICICISYS.2009.5357773
https://doi.org/10.1109/IROS.2015.7354268
https://doi.org/10.1109/MRA.2020.2981114

[108] Shuyou Yu, Matthias Hirche, Yanjun Huang, Hong Chen, and Frank Allgöwer. “Model

predictive control for autonomous ground vehicles: a review”. In: Autonomous Intelligent

Systems 1 (Dec. 2021).

144

	Contents
	List of Figures
	List of Tables

	List of Abbreviations
	Introduction
	Related Work
	Traditional Motion Planning for Collision Avoidance
	Prediction and Motion Planning
	Socially Aware Navigation in Dense Crowds
	Decision-making Under Uncertainties

	Overview of the Research
	Dissertation Organization and Contributions
	Summary of Contributions

	Data-driven Proactive Intention-Aware Social Planning
	Introduction
	Problem Formulation
	Prediction and Planning Framework
	HMM-based Training
	Online Prediction and Stochastic Reachability
	Robot Motion Planning
	Online Model Updates

	Simulation and Experimental Results
	Simulations
	Experiments

	Discussion
	Limitations and Future Directions

	Interpretable Runtime Prediction and Planning in Co-Robotic Environments
	Introduction
	Problem Formulation
	Methodology
	Decision Tree Formulation and Training
	Prediction and Explanation
	Corrective Counterfactual Analysis
	Corrective Planning and Control
	Multiple Decision Trees
	Online Validation and Updating

	Simulations
	Experiments
	MOCAP Experiments
	On-Board Sensing Experiment

	Discussion
	Limitations and Future Directions

	Interpretable Adaptation of Virtual Physics-based Planner for Social Navigation
	Introduction
	Preliminaries
	Problem Formulation
	Approach
	Probability-based Decision Tree Theory
	HMM and DT Training
	Prediction and Explanation
	Counterfactual Analysis and Priority-based Correction
	Extension to Multiple Actors

	Simulations
	Experiments
	Discussion
	Limitations and Future Directions

	Attention-aware Robot Social Planning
	Introduction
	Preliminaries
	Robot and Human Dynamic Models
	Model Predictive Controller Formulation

	Problem Formulation
	Approach
	Training Details
	Attention Prediction

	Results
	Implementation Details
	Simulations

	Discussion
	Limitations and Future Directions

	Interpretable Monitoring and Recovery Under Decision Uncertainties
	Introduction
	Problem Formulation
	Approach
	Model Predictive Baseline Controller
	Decision Tree Detections and Uncertainty Assessment
	Reachability Analysis and Controller Selection

	Results
	Discussion
	Limitations and Future Directions

	Conclusions and Future Directions
	Conclusions
	Discussion and Future Directions

