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The Hypoelliptic Heat Kernel of Infinite-dimensional Lie Groups:
Heisenberg-like Quasi-invariance and the Taylor Isomorphism

Donnelly Kevin Phillips

(ABSTRACT)

The Gaussian distribution on Rn translates to infinite-dimensional (separable)
Banach spaces by assuming the structure of an abstract Wiener space. The equivalent
of the Gaussian distribution on Lie groups is called the heat kernel measure, named
for its connection to a version of the Lie group equivalent of the heat equation. In
this work, we will investigate combining these ideas to define what it means for G to
be a (simply connected graded nilpotent) abstract Wiener Lie group. We will impose
2 major complications. Firstly, we restrict our attention to the hypoelliptic setting,
in which the diffusion is only infinitesimally generated by a subset of the possible
directions, called “horizontal” directions. Secondly, we allow for the possibility that
there are infinitely-many “vertical” directions. Imposing both of these restrictions
simultaneously complicates the analysis, and will require specifying a generalization of
the Hörmander (bracket-generating) condition. Presented here are 2 primary results.
The first is a quasi-invariance result for Heisenberg-like groups, meaning that we
restrict to when G is nilpotent of step-2. There, we show that, under the right
conditions, the infinite-dimensional heat kernel measure is invariant under shifts of
a certain group, which we call the Cameron-Martin subgroup. The second result
is a Taylor isomorphism that allows for G to be of arbitrary step. It provides a
classification of the “L2 holomorphic” functions on G. While there are a number of
works that illustrate similar results, this work is the first to show such results for
infinite-dimensional hypoelliptic diffusions in the presence of infinitely-many vertical
directions.
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Chapter 1

Common Notions

1 Introduction

The R-valued Gaussian distribution is a pivotal object of probability theory. It plays
a role in the solution to the heat equation, while also approximately describing the
distribution of a random walk on R with independent steps. But consider that the
notions of heat and random motion are concepts that readily apply to other types
spaces. For example, one can consider infinite-dimensional vector spaces. A vector
space equipped with a nondegenerate Gaussian measure is called an abstract Wiener
space. Such spaces can model data that is considered “high-dimensional” or consisting
of many components. Additionally, this also applies to the path space of a random
walk, where one tracks every position at every time-step, rather than just the endpoint
distribution. Every abstract Wiener space has a Hilbert subspace called the Cameron-
Martin subspace, whose inner product determines the Gaussian distribution, and it
plays a critical role in its analysis.

On the other hand, one can consider “curved spaces,” like manifolds or Lie groups.
These spaces (when given a Riemannian structure) are equipped with a distribution
called the heat kernel measure, named for its connection to (the Riemannian manifold
equivalent of) the heat equation. Such spaces are capable of modelling data that has
dependency. For example, a random 3-D orientation can be realized as a random
element orthogonal 3× 3 matrix, and while such objects are naturally 9-dimensional,
they only exhibit 3 degrees of freedom, the other 6 entries being determined via
(nonlinear) relationships with the first 3 (indeed, the set of possible orientations can
be realized as SO(3), a 3-dimensional Lie group). It stands to reason that data
that both is high-dimensional and exhibits dependencies could be modelled by a
distribution on a space that is both infinite-dimensional and curved.

The aim of the research presented here is to investigate the heat kernel distribution
of infinite-dimensional simply connected nilpotent Lie groups. Contrary to much of
the previous research, we impose 2 complications. Firstly, we restrict our attention
to the hypoelliptic heat kernel, meaning that our distribution only “spreads” in a
subset of the possible directions. Secondly, we allow for the possibility that there are
infinitely-many other directions, called “vertical” directions. To impose both of these
restrictions causes complications (even the definition of the heat kernel distribution

1



itself is less obvious), for which previous methods of analysis do not suffice. To the
best of the author’s knowledge, this work is the first of its kind to explore this setting
in the Lie group context.

It will be reiterated in Section 4 and Section 9 that there are 3 spaces that appear
in our analysis:

1. G, an (simply connected graded nilpotent) abstract Wiener Lie group, with
heat kernel distributed element gt and distribution νt.

2. gCM , the Cameron-Martin subalgebra with Lie bracket [·, ·].

3. GCM , the Cameron-Martin subgroup with a horizontal (Carnot-Carathéodory)
metric d.

In the presence of infinitely-many vertical directions, it is possible for all 3 of these
spaces to be different sets from one another.

There organization of this thesis is the following. Chapter 1 will introduce some
of the common background, theory, and notions that this work will use. Included
are notes on Hilbert space tensor products, weakly Hilbert-Schmidt maps, abstract
Wiener spaces, Lie groups, and the Hörmander condition. It is also there that we will
provide a generic definition for simply connected nilpotent abstract Wiener Lie groups
and provide examples. Chapter 2 will prove a quasi-invariance result, which can be
interpreted as a smoothness result for the heat kernel measure νt. There, in order to
implement generalized curvature-dimension bounds, we assume that our Lie group is
“Heisenberg-like” (simply connected graded nilpotent of step 2). Chapter 3 will prove
a Taylor isomorphism, which classifies the space of “L2 holomorphic” functions. This
is achieved under the assumption that our construction is simply connected, graded,
nilpotent, and complex.
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2 Background

2.1 Hilbert space constructions

For the entirety of this work, even if not explicitly stated, we will assume that all
Hilbert spaces are separable (and thus possess a countable orthonormal basis).

2.1.1 Some functional analysis

Recall, for example from [Rud91], that the unit ball of a real Hilbert space is weakly
compact. Aside from this, we will also make use of results below, which, while they
are well-understood, are not always explicitly stated in literature.
Proposition 2.1. For a bounded linear operator between Hilbert spaces, T : H → Z,
T ∗ is bounded below if and only if T is surjective.

Proof. First recall that an operator T is invertible if and only if T ∗ is invertible, for
TS = ST = I if and only if T ∗S∗ = S∗T ∗ = I. Now suppose T ∗ is bounded below,
meaning that there exists a constant c > 0 such that, for all z ∈ Z, ‖T ∗z‖H ≥ c‖z‖Z .
If T ∗(zn) converges to some h ∈ H, then ‖zn−zm‖Z ≤ 1

c
‖T ∗(zn)−T ∗(zm)‖H , so (zn)n∈N

must be Cauchy, and hence convergent to some z ∈ Z, for which the continuity of
T ∗ implies T ∗(z) = h. This shows us that im(T ∗) is a closed subspace of H. Since
T ∗ being bounded below implies that T ∗ is injective, we have that T ∗ : Z → im(T ∗)
is invertible, so that T : im(T ∗) → Z is invertible, and hence T : H → Z must
be surjective. Conversely, T being surjective implies T : ker(T )⊥ → Z is (by the
open mapping theorem) an invertible operator, which implies T ∗ : Z → ker(T )⊥ is
invertible, and hence bounded below. Indeed, we have

‖z‖Z = ‖T ∗−1T ∗z‖Z ≤ ‖T ∗−1‖ ‖T ∗z‖H

Proposition 2.2. Suppose vn ∈ H is a bounded sequence such that, for a dense
collection J ⊆ H∗, for all α ∈ J , α(vn) → α(v). Then vn converges weakly to v.

Proof. Say ‖vn‖H ≤ C for all n ∈ N. Let α ∈ H∗, so there exists a sequence (αm)m∈N
in J such that αm → α (in H∗). Then, for any m ∈ N,

lim
n→∞

|α(vn)− α(v)|

≤ lim
n→∞

(∣∣(α− αm)(vn)
∣∣+ ∣∣αm(vn)− αm(v)

∣∣+ ∣∣(αm − α)(v)
∣∣)

≤ 2C‖α− αm‖H∗ + lim
n→∞

∣∣αm(vn)− αm(v)
∣∣

= 2C‖α− αm‖H∗ .
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Then for this to be true for all m ∈ N implies that limn→∞ |α(vn)− α(v)| = 0, which
implies the desired weak convergence.

2.1.2 Tensor products

Given real or complex Hilbert spaces K1, K2, we may take the (real or complex)
algebraic tensor product of K1 and K2 consisting of finite sums of simple tensors, or
formal pairs of the form h ⊗ k, which satisfy for all h1, k1 ∈ K1, h2, k2 ∈ K2, and α
(in R or in C),

h1 ⊗ h2 + h1 ⊗ k2 = h1 ⊗ (h2 + k2)

h1 ⊗ h2 + k1 ⊗ h2 = (h1 + k1)⊗ h2

(αh1)⊗ h2 = h1 ⊗ (αh2) = α(h1 ⊗ h2)

We may define an inner product as the unique (real or complex) bilinear map satis-
fying

〈h1 ⊗ h2, k1 ⊗ k2〉K1⊗K2 = 〈h1, k1〉K1〈h2, k2〉K2 ,

which determines a norm. We refer to the closure with respect to the norm as the (real
or complex) Hilbert space tensor product of K1 and K2, simply denoted as K1 ⊗K2.
If {e1,j}j∈Λ1 and {e2,j}j∈Λ2 are orthonormal bases of K1 and K2 respectively, then
{e1,j1 ⊗ e2,j2}(j1,j2)∈Λ1×Λ2 is an orthonormal basis of K1 ⊗ K2. Given Hilbert spaces
K1, . . . , KN , we may naturally inductively define the N -fold Hilbert space tensor
product K1 ⊗ . . .⊗KN . See [Jan97, Appendix E] for more information.

One useful example is the following: for any real (or complex) Hilbert space K, let
L2([0, 1], K) denote the square-integrable measurable functions from [0, 1] to K with
typical L2 inner product. Then L2([0, 1], K) ∼= L2([0, 1],R)⊗K (or L2([0, 1],C)⊗K).
See, for example, [Jan97, Example E.12].

2.1.3 Hilbert-Schmidt and weakly Hilbert-Schmidt maps

Recall that, for N ∈ N, a continuous real- or complex-linear map M : H → K is
called Hilbert-Schmidt if, given orthonormal bases {ej}j∈ΛH

and {fj}j∈ΛK
of H and

K respectively, ∑
j∈ΛH

∥∥M(ej)
∥∥2
K

=
∑
j∈ΛH

∑
ℓ∈ΛK

∣∣〈M(ej), fℓ〉K
∣∣2 < ∞ .

We will let HS(H,K) denote the set of Hilbert-Schmidt maps H → K. The set
of Hilbert-Schmidt maps naturally have a norm determined by the following real or
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complex inner product:

〈M1,M2〉HS(H,K) =
∑
j∈ΛH

〈
M1(ej),M2(ej)

〉
K

=
∑
j∈ΛH

∑
ℓ∈ΛK

〈M1(ej), fℓ〉K〈M2(eJ), fℓ〉K .

For real Hilbert spaces H and K, we have a natural identification of HS(H,K) with
(H ⊗K)∗ via H ⊗K 3 h⊗ k 7→ 〈k,M(h)〉K ∈ R, and thus a natural identification of
HS(H,K) with H ⊗K.

Consider the following estimate.

Proposition 2.3. For Hilbert spaces A,B,C, if T : A → B is Hilbert-Schmidt
and L : B → C is linear continuous, then L ◦ T is Hilbert-Schmidt, and satisfies
‖L ◦ T‖HS(A,C) ≤ ‖L‖B,C‖T‖HS(A,B).

On the other hand, if T : B → C is Hilbert-Schmidt and L : A → B is linear
continuous, then ‖T ◦ L‖HS(A,C) ≤ ‖T‖HS(B,C)‖L‖A,B.

Proof. Let {aj}j∈ΛA
, {bj}j∈ΛB

, {cj}j∈ΛC
be bases of A, B, C respectively. Then

‖L ◦ T‖HS(A,C) =
∑
j∈ΛA

‖LT (aj)‖2C ≤
∑
j∈ΛA

‖L‖2B,C‖T (aj)‖2B ,

which proves the first inequality. For the second,

‖T ◦ L‖HS(A,C) =
∞∑
j=1

‖TL(aj)‖2C =
∞∑
j=1

∞∑
ℓ=1

|〈TL(ak), cℓ〉C |2

=
∞∑
j=1

∞∑
ℓ=1

|〈ak, L∗T ∗(cℓ)〉A|2 =
∞∑
ℓ=1

‖L∗T ∗(cℓ)‖2A

≤ ‖L∗‖2B,A

∞∑
ℓ=1

‖T ∗(cℓ)‖2B = ‖L‖2A,B

∞∑
ℓ=1

∞∑
k=1

|〈T (bk), cℓ〉C |2

= ‖L‖2A,B‖T‖2HS(B,C) .

More generally, a we say that a multilinear map M : K1× . . . KN → K is Hilbert-
Schmidt if, given orthonormal bases {en,j}j∈Λn of Kn, we have

N∑
n=1

∑
jn∈Λn

∥∥M(e1,j1 , . . . , eN,jN )
∥∥2
K
<∞ .
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Hilbert-Schmidt maps will always have a continuous linear extension to the tensor
product K1 ⊗ . . . ⊗KN → K. In fact, as before, there is a natural identification of
the set of such Hilbert-Schmidt maps with elements of K1 ⊗ . . .⊗KN ⊗K.

If K is finite-dimensional, a multilinear map having an extension to K1 ⊗ . . . ⊗
KN → K is equivalent to being Hilbert-Schmidt. We will now characterize this
property of multilinear maps in a way that allows K to be infinite-dimensional. This
and other information on weakly Hilbert-Schmidt maps is provided in [KR97, section
2.6].

Proposition 2.4. Given any Hilbert spaces K,K1, . . . , KN with orthonormal basis
{en,j}j∈Λn ⊆ Kn and any real (complex) multilinear map M : K1 × . . . ×KN → K,
M having a linear continuous extension M̃ : K1 ⊗ . . .⊗KN → K is equivalent to the
existence of a constant C ∈ R such that

N∑
n=1

∑
jn∈Λn

∣∣〈v,M(e1,j1 , . . . , eN,jN )〉K
∣∣2 ≤ C‖v‖2K ,

or equivalently,

C := sup
∥v∥K=1

N∑
n=1

∑
jn∈Λn

∣∣〈v,M(e1,j1 , . . . , eN,jN )〉K
∣∣2 < ∞ .

We refer to this criterion as being weakly Hilbert-Schmidt. Furthermore, the
extension M is surjective if and only if there exists a constant c > 0 such that

N∑
n=1

∑
jn∈Λn

∣∣〈v,M(e1,j1 , . . . , eN,jN )〉K
∣∣2 ≥ c‖v‖2K ,

or equivalently,

c := inf
∥v∥K=1

N∑
n=1

∑
jn∈Λn

∣∣〈v,M(e1,j1 , . . . , eN,jN )〉K
∣∣2 > 0 .

Proof. First assuming the existence of the constant C, we will define a map W : K →
K1 ⊗ . . .⊗KN as

Wv =
N∑

n=1

∑
jn∈Λn

〈v,M(e1,j1 , . . . , eN,jN )〉K e1,j1 ⊗ . . .⊗ eN,jN .

6



Indeed, this will be a linear continuous map because

‖Wv‖K1⊗...⊗KN
=

N∑
n=1

∑
jn∈Λn

∣∣〈Wv, e1,j1 ⊗ . . .⊗ eN,jN )〉K1⊗...⊗KN

∣∣2
=

N∑
n=1

∑
jn∈Λn

∣∣〈v,M(e1,j1 , . . . , eN,jN )〉K
∣∣2

≤ C‖v‖2K .

Then consider that W ∗ : K → K1 ⊗ . . .⊗KN satisfies

W ∗

(
N∑

n=1

∑
jn∈Λn

aj1,...,jN e1,j1 ⊗ . . .⊗ eN,jN

)

=
N∑

n=1

∑
jn∈Λn

aj1,...,jNM(e1,j1 , . . . , eN,jN ) .

Thus, M̃ := W ∗ is indeed the desired linear continuous extension.

For the other direction, if M̃ is continuous linear, then so is its adjoint M̃∗. Then

N∑
n=1

∑
jn∈Λn

∣∣〈v,M(e1,j1 , . . . ,eN,jN )〉K
∣∣2

=
N∑

n=1

∑
jn∈Λn

∣∣〈v, M̃(e1,j1 ⊗ . . .⊗ eN,jN )〉K
∣∣2

=
N∑

n=1

∑
jn∈Λn

∣∣〈M̃∗v, e1,j1 ⊗ . . .⊗ eN,jN )〉K1⊗...⊗KN

∣∣2
= ‖M̃∗v‖2K1⊗...⊗KN

≤ ‖M̃∗‖2‖v‖2K .

To discuss surjectivity, we know that, by Proposition 2.1, M̃ is surjective if and
only if M̃∗ is bounded below, so the equality

N∑
n=1

∑
jn∈Λn

∣∣〈v,M(e1,j1 , . . . , eN,jN )〉K
∣∣2 = ‖M̃∗v‖2K1⊗...⊗KN

proves the claim.
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2.1.4 The paths of finite energy

We define the set of paths of finite energy and list a number of facts that will be useful
throughout. For any real (complex) Hilbert space K, we will define H0([0, 1], K) as
the set of finite-energy paths in K, that is,

H0([0, 1], K) =

{
f : [0, 1] → K : f absolutely continuous,

∫ 1

0

‖f ′(t)‖2Kdt <∞
}
,

which naturally has the real (complex) inner product

〈f, g〉H0([0,1],K) :=

∫ 1

0

〈f ′(t), g′(t)〉Kdt .

Then H0([0, 1], K) will also be a real (complex) Hilbert space.

We see that, for t ∈ [0, 1], we may interpret
∫ t

0
f ′(s)ds as a Bochner integral, for

which we have
∫ t

0
f ′(s)ds = f(t). In fact, point evaluation is continuous with respect

to the norm on H0([0, 1], K). Indeed, for t ∈ [0, 1],

‖f(t)‖2K =

∥∥∥∥ ∫ t

0

f ′(s)ds

∥∥∥∥2
K

≤

(∫ t

0

‖f ′(s)‖2Kds

)(∫ t

0

1ds

)
= t‖f‖2H0([0,t],K) . (1.1)

We have a natural isomorphism with L2([0, 1], K) given via the integration oper-
ation I : L2([0, 1], K) → H0([0, 1], K), defined as

If(t) =

∫ t

0

f(s)ds =

∫ 1

0

1[0,t](s)f(s)ds .

That this is an isomorphism is justified by the fundamental theorem of calculus.

2.2 Abstract Wiener space, Brownian motion, stochastic in-
tegrals

2.2.1 Definition

In [Wie23], Norbert Wiener introduced the classical Wiener space: the set of con-
tinuous functions f : [0, 1] → R with f(0) = 0 equipped with the Gaussian measure
induced by a standard Brownian motion B· : Ω× [0, 1] → R, wherein the functions of
finite energy H0([0, 1],R) played a crucial role in determining the Gaussian structure.
Leonard Gross in [Gro67] generalized the notion by considering a Gaussian measure
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on a general Banach space W whose structure is determined by a dense Hilbert sub-
space H. This construction is called an abstract Wiener space, which we will now
describe. This information is primarily derived from [Dri10; DG10; Bog14; Kuo75].

Given a real separable Banach space W , a measure µ on W is called a Gaussian
measure if its characteristic functional satisfies, for u ∈ W ∗,

µ̂(u) :=

∫
W

eiu(x)dµ(x) = e−
1
2
q(u,u)

for some nonnegative symmetric bilinear form q : W ∗ × W ∗ → R. For now, we
will assume that Gaussian measures on W are nondegenerate, meaning that they are
with “full support” (every open subset of W has positive measure), which corresponds
precisely to q being positive definite (so an inner product) on W ∗ ×W ∗.

For w ∈ W , define
‖w‖H := sup

u∈W ∗\0

|u(w)|√
q(u, u)

.

Then define H = {w ∈ W | ‖w‖H < ∞}. Then H is a subset called the Cameron-
Martin subspace of W . By using properties of Gaussians, it can be derived that, for
u ∈ W ∗, we have that u ∈ L2(W ), and in fact u is an R-valued Gaussian random
variable. Moreover, the inner product q determines the covariance across all elements
of W ∗, since q(u, v) =

∫
W
u(x)v(x)dµ(x) = 〈u, v〉L2(W,R).

We may take the completion of W ∗ with respect to the L2 inner product as
W ∗L

2(W ). Define the map J : W ∗ → W as J(u) =
∫
W
u(x)x dµ(x) via Bochner

integrals. Then J is injective, continuous with respect to ‖ · ‖L2(W ), and thus extends
to W ∗L

2(W ), and J
(
W ∗L

2(W ))
= H. Then H has a natural inner product 〈·, ·〉H

defined as the push-forward of 〈·, ·〉L2(W ). Then the map J provides a natural way to
view W ∗ ⊆ H ⊆ W , by identifying W ∗ with J(W ∗), under which we may conclude
that the inclusions are dense. Equivalently, if we are given that H is a Hilbert space
and dense subset of W , we may use the Riesz representation theorem to naturally
view W ∗ ⊆ H∗ ∼= H ⊆ W , again concluding that both inclusions must be dense.

The triple (W,H, µ) is what is referred to as an abstract Wiener space. Knowing
that H is a Hilbert space whose inner product determines the measure µ, we will
often simply write (W,H). Having provided the definition, the next subsection is
devoted to listing more properties for abstract Wiener spaces.

2.2.2 Further properties

When we view W ∗ ⊆ H ⊆ W , the elements h ∈ W ∗ ⊆ H are precisely those h ∈ H
for which the map 〈·, h〉H : H → H has an extension to a continuous linear map
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〈·, h〉H : W → W . Given a finite-rank projection P : H → H where PH ⊆ W ∗, we
may find a finite orthogonal set {h1, . . . , hk} ⊂ W ∗ such that

P =
k∑

j=1

〈·, hj〉Hhj

from which we see that P has a continuous linear extension P : W → PH. We will
denote the set of such projections (or possibly their extensions) as Proj(W ).

By density, it is possible to choose an orthonormal basis {ej}j∈N for H that lies
entirely within W ∗. Then we may take an increasing sequence (nm)m∈N in N and
define

Pm =
nm∑
j=1

〈·, ej〉Hej .

We call (Pm)m∈N an increasing set of finite-rank projections, and will denote the set
of such sequences as Proj(W )↑. It is a fact that Pm → IW , the identity on W , in the
operator norm topology.

It is a fact that, for any h ∈ H, the map 〈h, ·〉H : H → H always has a (not
necessarily continuous) measurable linear extension 〈·, h〉H : W → W (see [Bog14,
Section 3.7] for information on measurable linear maps, or see [Zha82] for the more
generic “quasilinear map”). Using this, it is possible to take any linear map A : H →
H and derive a measurable linear extension to W → W . Related to this is the fact
that if (W,H) is an abstract Wiener space and Z is a separable Hilbert space, then
any Hilbert-Schmidt map H → Z has a measurable-linear extension W → Z.

As remarked in [Gro67], there are 2 key examples of abstract Wiener spaces.
Firstly is of course the classical Wiener space from the start of Section 2.2. Secondly,
if W is a Hilbert space, then (W,H) is an abstract Wiener space if and only if the
inclusion H ↪→ W is Hilbert-Schmidt.

The Fernique theorem tells us that, for some ε > 0,∫
W

eϵ∥x∥
2
W dµ(x) <∞ ,

which suffices to prove that
∫
W
‖x‖pWdµ(x) < ∞ for all p ∈ N. In particular, a

Gaussian-distributed element in W is in Lp for all p ∈ [1,∞).

This work does not provide an introduction to Brownian motion or stochastic
calculus. Instead, we will simply refer the reader to the standard reference [Øks98],
which covers the finite-dimensional scenario. Following [Kuo75] or [Bog14], we have a
(infinite-dimensional) notion of a Brownian motion on W , in which we may compute
stochastic integrals. Though for the purposes of this work and our definitions, we
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will only consider stochastic integrals of the projections of this Brownian motion and
limits in probability therein.

Lastly, we remark that, in everything discussed above, one may apply a complex
structure. If W is a complex Banach space, and we let W ∗ denote the complex dual,
and if we assume that we have a sesquilinear nonnegative symmetric bilinear form
(or Hermitian inner product) q : W ∗ × W ∗ → C, then we may replace q in the
construction with the real part Re q, for which the measure will be called a complex
Gaussian measure. In this case, H will naturally be a complex Hilbert space.

2.3 Lie algebras, Lie groups

2.3.1 Nilpotent Lie algebras, their simply connected Lie groups, and the
Baker-Campbell-Hausdorff formula

A real (complex) Lie algebra is a (possibly infinite-dimensional) real (complex) Banach
space g with a Lie bracket [·, ·] : g× g → g that must satisfy the properties of being
(complex) bilinear, anti-symmetric ([x, y] = −[y, x]) and satisfy the Jacobi identity,
meaning

[[x, y], z] + [[z, x], y] + [[y, z], x] = 0 .

When g is infinite-dimensional, we will add the criterion that [·, ·] is bilinear con-
tinuous, meaning ‖[x, y]‖g ≤ C‖x‖g‖y‖g for some C (we will later impose an even
stronger condition, namely that [·, ·] is weakly Hilbert-Schmidt, as noted in (A2.1)
and (A3.1). A Lie algebra is nilpotent if the lower central series defined as g1 = g
and gn = [g, gn−1] is eventually 0 for n ≥ N for some N . We will refer to N as the
step of g.

A Lie group G, on the other hand, is a smooth manifold that also has a group
operation · : G × G → G such that the map (g1, g2) 7→ g1 · g−1

2 is smooth. Every
nilpotent Lie algebra has a naturally associated simply connected Lie group, which is
simply the vector space g itself with the operator · defined by the Baker-Campbell-
Hausdorff formula:

x · y := x+ y +
1

2
[x, y] +

1

12
[x, [x, y]]− 1

12
[y, [x, y]] + . . . (1.2)

=
N∑

n=1

∑
ri+si>0
ri,si≥0

(−1)n−1

n

adr1x ◦ ads1y ◦ . . . ◦ adrnx adsny(∑n
j=1(rj + sj)

)∏n
j=1 ri!si!

,

where we define the linear map adx : g → g as adx(y) = [x, y]. These are the primary
types of Lie groups and Lie algebras that this thesis explores, and is worthy of several
remarks.
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Remark 2.5. 1. First and foremost, for the uninitiated, we remark that the exact
coefficients in (1.2) are not significant. All that is important is that there exists
an expression for the group operation in terms of the Lie bracket.

2. The typical framework is to begin with a (finite-dimensional) Lie group G by
specifying the manifold and group operator ·. The corresponding Lie algebra,
g, is defined as Te(G), the tangent space at e ∈ G. To define its Lie bracket,
for each h ∈ g, we associate a vector field h̃ on G (whose definition depends on
·), called the left-invariant vector field (a definition provided in Section 2.3.2),
and define the Lie bracket such that ˜[h1, h2] = h̃1h̃2− h̃2h̃1 (in likeness to taking
the “Lie bracket of vector fields”). In our construction, we are able to view
g as being both the Lie algebra and the Lie group because we simultaneously
assume that the bracket is nilpotent and that the corresponding group is simply
connected.

3. In the typical setting described above, the Baker-Campbell-Hausdorff formula
is still a valid consequence, but it requires interpretation. Firstly, we note that
general Lie groups have an exponential map exp : g → G, and the formula (1.2)
gives the expression for z when exp(x)·exp(y) = exp(z). Secondly, for generalG,
this series is summed over all n ∈ N, for which one must interpret this formula in
the sense of formal power series by regarding x and y as formal noncommuting
algebra elements with the identification xy − yx = [x, y]. Alternatively, it is
possible to take the series somewhat literally, as it is convergent for x and y
sufficiently close to 0. In our construction, there is no interpretation necessary,
because we view exp as the identity map and the Baker-Campbell-Hausdorff
formula is necessarily a finite sum with no question of its convergence.

4. Note that this construction makes sense even if g is infinite-dimensional, in spite
of Lie groups traditionally being thought of as finite-dimensional manifolds.
This is simply by virtue of the fact that g possessing a nilpotent Lie bracket
allows one to define a group operation on g itself via (1.2). When we view g as
a group, we will still endow it with the topology induced by ‖ · ‖g. Assuming
that [·, ·] is bilinear continuous, and knowing that g−1 = −g for all g ∈ g, we
may conclude that the map (g1, g2) 7→ g1 · g−1

2 is continuous with respect to
‖ · ‖g, which allows us to consider g to be an infinite-dimensional Lie group in
a sense consistent with other literature; see, for example, [Sch10].

5. Periodically, especially when our nilpotent Lie algebra g is finite-dimensional,
when we wish to emphasize its group structure defined by (1.2), we will either
write exp(g) or G instead of g. Be aware that, in Chapter 2 and Chapter 3,
we will define gCM , an infinite-dimensional Lie algebra, and we will write it
as exp(gCM) to emphasize the group structure. The symbol GCM will refer to
a special subgroup of exp(gCM), which will generally be a proper subset with
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an entirely different topology. The reason for this complication is due to the
hypoelliptic nature of our setup. See Section 4.2.2 and Section 9.2 for more
discussion.

2.3.2 Linear derivatives, left-invariant derivatives, and the generalized
Baker-Campbell-Hausdorff formula

We continue assuming the construction in the previous section, where g is a (possibly
infinite-dimensional) nilpotent Lie algebra, as well as its own simply connected Lie
group (written as exp(g)). As a vector space, g has a natural definition for linear
derivatives. For f : g → R (or f : g → C) , we write, for x, h ∈ g,

f ′(x)h = ∂hf(x) =
d

dt

∣∣∣
t=0
f(x+ th)

whenever this derivative exists. More generally, we write

f (n)(x)(h1, . . . , hn) := ∂h1 . . . ∂hnf(x) .

We will now begin to introduce an alternate notion of derivative that respects
the group structure on exp(g) = g. We regard exp(g) as having, at every point
x ∈ exp(g), tangent spaces Tg(exp(g)), each naturally isomorphic to Te(exp(g)) ∼= g.
For x ∈ exp(g), v ∈ g, we let vx ∈ Tx(exp(g)) denote the tangent vector satisfying
vxf = f ′(x)v.

Let Lg : exp(g) → exp(g) denote left-multiplication by g, so that Lgh = g · h.
Then for all x ∈ exp(g), its derivative Lg∗ : Tx(exp(g)) → Tgx(exp(g)) satisfies

(Lg∗vx)f = (f ◦ Lg)
′(x)v =

d

dt

∣∣∣
t=0
f(g · (x+ tv)) .

Equivalently, we may write Lg∗vx = d
dt

∣∣
t=0

(g · (x + tv)). It can be seen that this is
independent of x and this can be worked out to be the finite sum

Lg∗vx =
d

dt

∣∣∣
t=0

(g · (tv)) = c1v + c2[g, v] + c3[g, [g, v]] + . . .

where cj denote a set of coefficients that can be derived from the Baker-Campbell-
Hausdorff series, (1.2). The map Lg−1∗ is referred to as the Maurer-Cartan form, and
we will regard it as the canonical map that identifies the tangent spaces Tx(exp(g))
all as Te(exp(g)) ∼= g.

For g ∈ g, h = he ∈ Te(exp(g)) = g, we define the vector field h̃ on exp(g) as h̃g :=
Lg∗he. Then h̃ is the left-invariant vector field on exp(g) satisfying h̃e = h. It can be
regarded as a first-order differential operator in which, for smooth f : exp(g) → C,

h̃f(g) := h̃gf(e) = (Lg∗h)f(e) =
d

dt

∣∣∣
t=0
f(g · (th)) ,
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and we call h̃f : exp(g) → C the left-invariant derivative of f with respect to h. This
name is given due to the property that h̃(f ◦ Lg) = (h̃f) ◦ Lg. More generally, we
write

f̂(g)(h1, . . . , hn) := h̃1 . . . h̃nf(g) .

We may use the language of left-invariant derivatives to express the following
generalization to the Baker-Campbell-Hausdorff formula, which is derived in [Str87].

Theorem 2.6. Given a path A : [0, 1] → g, the solution to the differential equation

σ′(t) = Lσ(t)∗A
′(t) σ(0) = e

is given by

σ(T ) =
N∑

n=1

∑
σ∈Sn

(
(−1)e(σ)

/
n2

[
n− 1

e(σ)

])
×
∫
∆n

T

[. . . [A′(tσ(1)), A
′(tσ(2))], . . . , A

′(tσ(n))] (1.3)

where ∆n
T = {(t1, . . . , tn) ∈ [0, T ]n : t1 ≤ . . . ≤ tn}, Sn is the permutation group on

n elements, e(σ) = |{k ∈ {1, . . . , n} : σ(k) > σ(k + 1)}| is the number of “errors” of
σ, and

[
a
b

]
is a choose b with repetition.

As with the Baker-Campbell-Hausdorff formula, this can be regarded as a formal
infinite formal sum for general Lie groups, but will be a finite sum in our context.
Also, as explained in [Str87], this can be viewed as a generalization of the Baker-
Campbell-Hausdorff formula, as the coefficients in (1.2) can be recovered by taking
a particular choice of A in (1.3), though it results in a different expression for the
coefficients.

2.3.3 Lie group-valued Brownian motion

For any finite-dimensional Lie group G, one may consider a natural notion of a (left-
invariant) Laplacian ∆G, defined for smooth f : G→ R as

∆Gf =
n∑

j=1

x̃i
2f

where {x1, . . . , xn} ⊆ g is some linearly-independent set. For any such Laplacian
∆G, there is a naturally associated diffusion process (gt)t≥0 called G-valued Brownian
motion, for which ∆G is the infinitessimal generator. It can be realized as the solution
to the Stratonovich stochastic differential equation, provided that (Bt)t≥0 is a (flat)
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Brownian motion in g in which {x1, . . . , xn} are the principle directions of diffusion
(or, more precisely, Bt = B

(1)
t x1+ . . .+B

(n)
t xn where each (B

(j)
t )t≥0 is an independent

standard Brownian motion),

δgt = Lgt∗δBt g0 = e .

When G is a simply connected nilpotent Lie group, we may use Theorem 2.6 to deduce
that gt takes on the form of the following Stratonovich stochastic integral

gt =
N∑

n=1

∑
σ∈Sn

(
(−1)e(σ)

/
n2

[
n− 1

e(σ)

])∫
∆n

t

[. . . [δBsσ(1)
, δBsσ(2)

], . . . , δBsσ(n)
] .

The fixed-time distribution of gt is referred to as the heat kernel measure on G, named
for its connection to the (Lie group equivalent of the) heat equation:

d

dt

∣∣∣
t=0

E[f(g · gt)] = ∆Gf(g) .

This measure acts as the Lie group equivalent of the Gaussian measure for Rn, acting
as the limiting distribution of random walks. See, for example, [Bre04].

If span{x1, . . . , xn} = g, then the Laplacian and associated diffusion is referred
to as “nondegenerate” or ”elliptic.” On the other hand, if {x1, . . . , xn} fails to span
all of g, it is often to instead assume that it satisfies the Hörmander condition, or
“bracket-generating” condition, meaning

span
{
xj1 , [xj1 , xj2 ], . . . , [. . . [xj1 , xj2 ], . . . , xjk ]

}n
j1,...,jk=1

= g .

This is what is often meant when we call a diffusion “hypoelliptic.” It is a theorem of
Hörmander [Hör67] that such a diffusion shares some of the nice properties of elliptic
diffusions, such as smoothness and strict positivity of the density of the probability
measure with respect to Haar measure.

One of the primary goals of this thesis is to make sense of hypoelliptic diffusions
on Lie groups in infinite-dimensions, which will require us to combine the ideas of
this section with those related to abstract Wiener space. We will begin to explore
this concept in the next section, Section 3. The infinite-dimensional equivalent of the
Hörmander condition, however, will be reserved for the introductions in Chapter 2
and Chapter 3.
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3 Nilpotent abstract Wiener Lie groups

It should be noted that this section is not necessary to understand the main results in
this work, since Chapter 2 and Chapter 3 have self-contained definitions for nilpotent
abstract Wiener Lie groups (specifically in Section 7 and Section 10.3 respectively).
The primary value of this section is proving that we have a general framework and
examples of infinite-dimensional heat kernel measure without the extra assumptions
of Chapter 2 and Chapter 3. However, thoroughly understanding this section requires
knowledge of stochastic calculus.

In this work, we say that nilpotent abstract Wiener Lie groups consist of a pair
(G,X), where

1. G, a separable Banach space on which we will define the heat kernel measure
νt.

2. X, a vector subspace of G equipped with a nilpotent Lie bracket [·, ·] : X×X →
X and a Hilbert subspace (XH , 〈·, ·〉XH

).

that satisfy assumptions (A1.1) and (A1.2), defined in Section 3.1. It will be seen
that the Lie bracket on X determines geometric structure on G, and in particular how
random paths naturally transverse. Meanwhile, the Hilbert space XH will determine
the generating directions for the heat kernel diffusion. By allowing for the possibility
that XH 6= X, we set the stage for discussing hypoelliptic diffusions.

It will be seen that G has a similar role to W when (W,H) is an abstract Wiener
space, because G is merely a Banach space “large enough” to contain the random
variable of interest. In particular, in spite of using the letter “G,” we do not assume
that any kind of group structure exists on G. There are situations in which G will have
some form of group structure. For example, the path space of a finite-dimensional
Lie group is discussed in Example 3.5, wherein we in fact have a continuous bracket
[·, ·] and group operator · (defined pointwise). Also, the context for Chapter 2 will
suffice to discuss a measurable group action of a special subgroup on G.

First, in Section 3.1, we provide a general definition, which is independent of
whether the diffusion is elliptic or otherwise. Then in Section 3.2, we will discuss
criteria for determining if a space satisfies the definition. Lastly, in Section 3.3, we
provide examples.

3.1 The general definition

As stated in the introduction above, we assume that G is a separable Banach space
that contains a vector space X, which has a Lie bracket [·, ·] : X × X → R and
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contains a (separable) Hilbert space XH . As discussed in Section 2.3, we may view
X as a simply connected nilpotent Lie group, defining the product via the Baker-
Campbell-Hausdorff formula, (1.2).

We assume the following:

XH determines a Gaussian measure on G. (A1.1)

This means that, viewing G∗ ⊆ X∗
H

∼= XH ⊆ G, there exists a (Radon) Gaussian
measure µ on G whose Fourier transform is given by, for f ∈ G∗,∫

G

ei f(x)dµ(x) = e−
1
2
⟨f,f⟩XH

Note that this is not the same as saying (G,XH) is an abstract Wiener space, since we
did not assert that 〈·, ·〉XH

is positive definite on G∗, which allows for the measure to
be degenerate (in fact, this will be the case for our hypoelliptic examples of interest).
Instead, we may define W = XH

∥·∥G , and say that (W,XH) is an abstract Wiener
space.

As discussed in Section 2.2, there exists a W -valued Brownian-motion (Bt)t≥0.
Any finite-rank orthogonal projection P : XH → XH has a measurable-linear exten-
sion to W → PXH , so that we may realize PBt as a PXH-valued Brownian motion.
By defining

gP := PXH + span([PXH , PXH ]) + . . .+ span([. . . [PXH , PXH ], . . . , PXH ]) ,

we may realize gP ⊆ X as a finite-dimensional simply connected nilpotent Lie algebra
(generated by PXH), and likewise we may realize GP = gP as a simply connected
nilpotent Lie group. Then, as a Lie group, we have GP -valued Brownian motion,
(gPt )t≥0, which is the solution to the stochastic differential equation

δgPt = LgPt ∗δPBt g0 = e .

As explained in Theorem 2.6 and Section 2.3.3, this must have as its solution

gPt =
N∑

n=1

∑
σ∈Sn

cσ

∫
∆n

T

[. . . [δPBsσ(1)
, δPBsσ(2)

], . . . , δPBsσ(n)
] (1.4)

for some constants cσ, where δ corresponds to the Stratonovich stochastic integral.

Now we may state our second assumption:

For some t > 0, there exists a G-valued random variable gt
such that, for all f ∈ G∗, there exists an increasing sequence
of finite-rank projections (Pm)m∈N ∈ Proj(W )↑ such that
f(gPm

t ) converges to f(gt) in probability.

(A1.2)
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Or, in other words, for all δ > 0, limm→∞ P(|f(gPm
t )− f(gt)| ≥ δ) = 0.

For such a Banach space G and nilpotent Lie algebra X ⊆ G, we say that (G,X)
(or simply G, when the context is clear) is an (infinite-dimensional simply connected)
nilpotent abstract Wiener Lie Group when (A1.1) and (A1.2) are satisfied, for which
the heat kernel measure on G, sometimes denoted νt, is defined as the distribution of
gt. We will regard gt as equalling, in a weak sense,

gt =
N∑

n=1

∑
σ∈Sn

cσ

∫
∆n

t

[. . . [δBsσ(1)
, δBsσ(2)

], . . . , δBsσ(n)
] .

We remark that, in spite of the subscript “t” in gt, (A1.2) only asks that the
limit holds for a fixed value of t, though this criterion is independent of the value
of t. Indeed, if gPm

t converges in probability to gt, then by replacing (Bt)t≥0 with
(Bβt)t≥0 for some β > 0, (1.4) will be equal in distribution to gPβt, and knowing that,
as stochastic processes, (Bβt)t≥0 ∼ (

√
βBt)t≥0, we see that (1.4) would once again

converge in probability to a random variable.

In the commutative case (N = 1), G is merely an abstract Wiener space, for which
the assumption is sufficient to know that gt = Bt is the fixed-time distribution of a
stochastic process (gt)t≥0, which constitutes an Lp martingale for all p ∈ [1,∞). It is
entirely possible that this assumption implies similar properties of gt for general N ,
but without the special properties and results for Gaussian distributions, such as the
Fernique and Skorohod theorems, it cannot be easily deduced1.

Parallel to how Leonard Gross first introduced abstract Wiener spaces in [Gro67],
this definition is inspired by the existence of 2 key examples. The first is when G
is a Hilbert space in which the inclusion XH → G has sufficient Hilbert-Schmidt
properties. The exact properties are discussed in Example 3.4, using calculations
inspired by [Mel21]. The second is the path space of a finite-dimensional nilpotent
Lie group. The existence of the heat kernel distributed element is worked out in
[CD08], and we provide further discussion in Example 3.5.

3.2 Expressions in terms of Itô integrals

In this subsection, we will express the stochastic integrals in (1.4) in terms of Itô inte-
grals. This will provide an alternate criterion, (A1.2′), which imposes a requirement
on the Lie bracket, implies (A1.2), holds, and further implies that for any f ∈ G∗ and
any choice of (Pm)m∈N ∈ Proj(W )↑, f(gPm

t ) converges to f(gt) in L2. In this thesis,
such L2 convergence will be proven to be satisfied in the following cases.

1It may be worth noting that there will be many nice properties exhibited by the Hilbert spaces
(see, for example, [DZ14]) and path space examples (see [CD08]).
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1. G is a Hilbert space under a “tracial Hilbert-Schmidt” assumption on the iter-
ated brackets [. . . [·, ·], . . . , ·] : XH × . . .×XH → G.

2. G = W0([0, 1], A) is the path space of a finite-dimensional simply connected
nilpotent Lie group A, for which XH will be a subset of the finite-energy paths
in A.

3. X is a step 2 Lie algebra.

4. X is complex Lie algebra and (XH , 〈·, ·〉XH
) is a complex Hilbert space (which

we model as a real Hilbert space via the real inner product <〈·, ·〉XH
).

The first 2 will be discussed in Example 3.4 and Example 3.5. The third will be the
context of Chapter 2, and the stochastic properties will be detailed in Section 7. The
fourth is the starting point for Chapter 3, with discussion appearing in Section 10.3.

We define J n
m = {α ∈ {1, 2}m |

∑m
k=1 αk = n}, and for α ∈ J n

m we let pα := #{k :
αk = 1} = 2m−n and qα := #{k : αk = 2} = n−m. Then let V be a Hilbert space2.
Given a real-multilinear Hilbert-Schmidt map M : Xn

H → V , and given α ∈ J n
m, and a

real basis {ej}j∈N ofXH , we define the α-trace TrαM : Xpα
H → V as follows. If we have

ordered sets {i1, . . . , ipα} = k : αk = 1}, {j1, . . . , jqα} = {k : αk = 2}, then let σ ∈ Sm

be such that (σ(1), . . . , σ(m)) = (j1, . . . , jqα , i1, . . . , ipα), so that (ασ(1), . . . , ασ(m)) =
(2, . . . 2, 1, . . . 1) ∈ J n

m, and define Mσ−1(h1, . . . , hn) := M(hσ−1(1), . . . , hσ−1(n)). Then
define

TrαM(h1, . . . , hpα) =
∞∑

ℓ1,...,ℓqα=1

Mσ−1(eℓ1 , eℓ1 , . . . , eℓqα , eℓqα , h1, . . . , hpα) .

We say TrαM is well-defined provided that this produces another Hilbert-Schmidt
map, and moreover that this series converges in HS(Xpα

H , V ) norm, in which case this
expression is independent of basis chosen. Alternatively, we may write, for finite-rank
PXH → XH where PXH has basis {ej}1≤j≤r,

Trα(M ◦ P×pα)(h1, . . . , hpα) = TrαM(Ph1, . . . , Phpα)

= M̃(Phα1 ⊗ . . .⊗ Phαm) ,

where M̃ is the tensor product extension (Proposition 2.4), Phαik = Phk, and Phαjk =∑r
ℓ=1 eℓ⊗eℓ, and then if (Pr)r∈N is a sequence of finite-rank projections onto span{ej}1≤j≤r,

define TrαM = limr→∞ Trα(M ◦P pα), again provided that the sequence converges in
HS(Xn

H , V ), in which case the limit will be independent of sequence (Pr)r∈N chosen.
2We will mostly consider V = R, but example Example 3.4 will use a more general V .
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If M : Xn
H → V is a Hilbert-Schmidt map for which TrαM exists for all α ∈ J n

m

for all bn/2c ≤ m ≤ n, then we define the tracial norm as

‖M‖Tr(XH ,V ) = max
⌊n/2⌋+1≤m≤n

‖TrαM‖HS(Xpα
H ,V ) .

We now present a lemma that describes precisely how to convert the Stratonovich
integrals of interest into Itô integrals.

Lemma 3.1. Given a finite-rank projection P : XH → XH and {ej}j∈N a (real) basis
of XH such that {ej}1≤j≤r is a basis of PXH , let

dPXα,i
t =

{
dPBt if αi = 1∑r

ℓ=1 eℓ ⊗ eℓ dt if αi = 2
.

Define ∆n
t = {(s1, . . . , sn) ∈ [0, t]n : 0 ≤ s1 ≤ . . . ≤ sn ≤ 1}. Then we may write

the following iterated Stratonovich integral into the iterated Itô integral below.∫
∆n

t

δPBs1 ⊗ . . .⊗ δPBsn =
n∑

m=⌊n/2⌋

1

2n−m

∑
α∈J n

m

∫
∆n

t

dPXα,1
s1

⊗ . . .⊗ dPXα,n
sn . (1.5)

Given a Hilbert-Schmidt multilinear map M : Xn
H → C with ‖M‖Tr <∞, we have that

there exist constants {bαa}α∈J n
m,0≤a≤qα and polynomials {fα

t : [0, t]pα → R}α∈J n
m,0≤a≤qα

such that∫
∆n

t

M(δPBs1 , . . . , δPBsn)

=
n∑

m=⌊n/2⌋

1

2n−m

∑
α∈Jm

n

∫
∆pα

t

fα
t (s)TrαM(dPBs1 , . . . , dPBspα ) . (1.6)

Furthermore, if we let ZP denote the random variable

ZP :=

∫
∆n

t

M(δPBs1 , . . . , δPBsn) ,

then, we have, for some K > 0(
E|ZP |2

)1/2 ≤ K‖M ◦ P n‖Tr(Xn
H ,V ) . (1.7)

This inequality in turn tell us that, if (Pm)m∈N is an increasing sequence of finite-
rank projections, then ZPm converges in L2 to a random variable, which we denote
by ∫

∆n
t

M(δBs1 , . . . , δBsn) .
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Proof. This entire calculation is inspired by (and is partially identical to) those done
in [Mel21, section 4.1], for which most steps below can be checked against. By classical
Stochastic calculus, for 2 independent R-valued Brownian motions (bt)t≥0, (b′t)t≥0, the
Itô formula tells us that∫ t

0

bsδbs =
1

2
b2t =

∫ t

0

bsdbs +
1

2
t ,

∫ t

0

bsδb
′
s =

∫ t

0

bsdb
′
s .

Then, by the Itô formula, for a bilinear map S : PXH × PXH → R, the PXH
∼= Rr-

valued Brownian motion (PBs)t≥0, satisfies∫ t

0

∫ s2

0

S(δPBs1 , δPBs2) =

∫ t

0

S(PBs, δPBs)

=

∫ t

0

S(PBs, dPBs) +
1

2

r∑
j=1

S(ej, ej) .

Regarding the Stratonovich integral as an inductively-defined iteration of integrals,
the equality in (1.5) will come from iteratively applying this formula.

For the second equality, first consider that∫
∆n

t

M(δPBs1 , . . . , δPBsn)

=
n∑

m=⌊n/2⌋

1

2n−m

∑
α∈J n

m

∫
∆n

t

TrαM(dPBsiα1
, . . . , dPBsiαpα

)dsjα1 . . . dsjαqα ,

where we again define the ordered sets

{iα1 , . . . , iαpα} = {k : αk = 1} {jα1 , . . . , jαqα} = {k : αk = 2} .

Then integrating over the jαk indices results in some polynomial fα
t (s) = fα(s1, . . . , spα , t),

arriving at equation (1.6) .

Now we address the inequality. Note that we have a constant K1 such that

E
∣∣∣∣ n∑
m=n/2

1

2n−m

∑
α∈Jm

n

∫
∆pα

t

fα
t (s)Tr

αM(dPBs1 , . . . , dPBsn)

∣∣∣∣2
≤ K1

n∑
m=n/2

1

22n−2m

∑
α∈Jm

n

E
∣∣∣∣ ∫

∆pα
t

fα
t (s)Tr

αM(dPBs1 , . . . , dPBsn)

∣∣∣∣2 .
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And, for each α, by the Itô isometry,

E
∣∣∣∣ ∫

∆pα
t

fα
t (s)Tr

αM(dPBs1 , . . . , dPBsn)

∣∣∣∣2
=

∫
∆pα

t

‖fα
t (s)Tr

α(M ◦ P×n)‖2HS(PXpα
H ,V )ds

=

(∫
∆pα

t

|fα
t (s)|2ds

)
‖Trα(M ◦ P×n)‖2

HS(PX×pα
H ,V )

,

and each

‖Trα(M ◦ P×n)‖HS(PXpα
H ,V ) = ‖Trα(M ◦ P×pα)‖HS(Xpα

H ,V )

≤ ‖M ◦ P×pα‖Tr(Xn
H ,V )

Then (1.7) follows.

Lastly, consider that, for any increasing sequence (Pr)r∈N, we have that ‖M−M ◦
P×n
r ‖Tr(X×n

H ,V ) → 0 because, for any α ∈ J n
m,

‖TrαM − Trα(M ◦ P×n)‖HS(Xm
H ,V )

≤ ‖TrαM − (TrαM) ◦ P×m
r ‖HS + ‖(TrαM) ◦ P×m − (Trα(M ◦ P×n)‖HS ,

which necessarily converges to 0 by assumption. Hence, ZPr must be Cauchy, and
thus convergent, in L2. And note that the calculation above justifies that the limit is
independent of the sequence (Pr)r∈N chosen.

Theorem 3.2. Suppose that, for all f ∈ G∗

max
1≤n≤N

max
σ∈Sn

∥∥∥f([. . . [·, ·]1,1, . . . , ·]n−1,1 ◦ σ̃
)∥∥∥

Tr(Xn
H ,R)

<∞ , (A1.2′)

where we let σ̃ denote the natural action of σ ∈ Sn on Xn
H . Then for all (Pm)m∈N ∈

Proj(W )↑ of finite-rank projections, for all f ∈ G∗, f(gPm
t ) converges in L2 to f(gt).

Proof. We may write

f(gPm
t ) =

N∑
n=1

∑
σ∈Sn

cσ

∫
∆n

t

f
(
[. . . [δPmBsσ(1)

, δPmBsσ(2)
], . . . , δPmBsσ(n)

]
)

and apply Lemma 3.1 to know that f(gPm
t ) is converging in L2 independent of the

choice of (Pm)m∈N, and its limit must be the limit in probability f(gt).
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3.3 Examples

Example 3.3 (Hilbert-Schmidt bracket). Let G be a Banach space and X a Hilbert
space for which (G,X) is an abstract Wiener space. We also assume that we have a
Lie bracket [·, ·] : X×X → X, and impose the assumption that it is Hilbert-Schmidt.
Under these assumptions, using XH = X, (G,X) is a real nilpotent abstract Wiener
Lie group. This object is the primary focus of [Mel21] (see Definition 4.2). In fact,
[Mel21] shows in Proposition 4.1 that a version of (A1.2′) holds (essentially equivalent
to (1.8) in the following example), and in Proposition 4.3 proves that gPm

t converges
to gt in L2 with respect to ‖ · ‖G.

While this setup is considered generally in [Mel21], it also encapsulates previous
research. Suppose further that span[X,X ] is a finite-dimensional subspace of X.
Such G have been referred to as being semi-infinite Lie groups in [Mel09], and are
also the object of study in [DG08; DG10; DM13] assuming a Heisenberg-like structure
(nilpotent of step 2). In this case, the assumption that the Lie bracket is Hilbert-
Schmidt is critical to prove the existence of the heat kernel distribution.

It is also possible to make this example subelliptic (as suggested in [Mel21, Remark
4.6]). Still assuming that X is a Hilbert space and subset of the Banach space G with
Hilbert-Schmidt Lie bracket, now suppose that we have an orthogonal decomposition
X = XH ⊕XV where (A1.1) and (A1.2′) hold (that they hold for the choice XH = X
implies that they hold when XH is instead chosen to be a closed subspace of X), and
further that [X,X ] ⊆ XV . Then we may say that XH consists of the “horizontal”
(or generating) directions, while XV consists of “vertical” directions (in likeness to
the horizontal and vertical directions of the classical sub-Riemannian structure on
the Heisenberg group). If we again impose that XV is finite-dimensional and that
X has a Heisenberg-like structure, then this describes the setup for the results in
[BGM13; GM13; DEM16]. Again, the assumption that the bracket (which we may
view as a map [·, ·] : XH ⊕XH → XV ) is Hilbert-Schmidt is a necessity when XV is
finite-dimensional.

However, the assumption that the bracket is Hilbert-Schmidt is, for the purposes of
this thesis, a problematic restriction. If [·, ·] : XH×XH → XV is Hilbert-Schmidt, then
its tensor product extension (Section 2.1.3) [·] : XH ⊗XH → XV is a Hilbert-Schmidt
operator. When XV is infinite-dimensional, this prevents the extension from being
surjective, which forces critical assumptions to fail (specifically assumption (A2.3) in
Chapter 2, as explained in Section 4.2.1, and (A3.2) in Chapter 3, explained further
in Section 9.4.1). Thus, this assumption is unsuitable for our hypoelliptic framework
of interest.

When we develop our theorems and examples for Chapter 2 and Chapter 3, we
do give all of X (called gCM) a Hilbert space structure, but instead assume that the
bracket is weakly Hilbert-Schmidt (see (A2.1) and (A3.1)), which does not contradict

23



our other assumptions.

Example 3.4 (General Hilbert space). Suppose that we have spaces XH ⊆ X ⊆ G
where XH is a Hilbert space, X is a vector space with a Lie bracket [·, ·] : X×X → X,
andG is a separable Hilbert space. Not only do we assume that the inclusionXH ↪→ G
is Hilbert-Schmidt, but we go further and assume

max
1≤n≤N

max
σ∈Sn

∥∥∥ [. . . [·, ·], . . . , ·]︸ ︷︷ ︸
n

◦σ̃
∥∥∥
Tr(Hn,G)

<∞ , (1.8)

where σ̃ is the induced action of σ on Hn. Then by Lemma 3.1, we see that gPm
t

converges in L2 with respect to ‖ · ‖G. Thus, (G,X) is an nilpotent abstract Wiener
Lie group.

Example 3.5 (Hypoelliptic path space). In this example, we will consider the path
space of a finite-dimensional simply connected nilpotent Lie group, which itself will
be an infinite-dimensional simply connected nilpotent Lie group under pointwise mul-
tiplication and brackets. We remark that the existence of a Brownian motion on the
path space of any Lie group is thoroughly answered in [CD08].

Suppose first that A is any real finite-dimensional simply connected nilpotent Lie
algebra (and Lie group) with 〈·, ·〉A. Further suppose that we have a subspace AH ⊆ A
which adopts the inner product 〈·, ·〉AH

= 〈·, ·〉A|AH×AH
. We define the Banach space

W0([0, 1], A) := {f : [0, 1] → A | f continuous, f(0) = 0}

with the norm ‖f‖W0([0,1],A) = sups∈[0,1] ‖f(s)‖A, and we have a pointwise-defined
bracket and group operator on W0([0, 1], A) defined as, for all f, g ∈ W0([0, 1], A), for
s ∈ [0, 1],

[f, g](s) := [f(s), g(s)] (f · g)(s) := f(s) · g(s) ,

Indeed, this Lie bracket (and thus product) of continuous functions is again contin-
uous. Then we have that (G,X) is a nilpotent abstract Wiener Lie group, where

G = W0([0, 1], A) X = H0([0, 1], A) XH = H0([0, 1], AH) ,

where H0 denotes the set of finite-energy paths, as defined in Section 2.1.4. We
naturally equip X = H0([0, 1], A) with the same pointwise-defined Lie bracket (the
bracket of finite-energy paths is again of finite energy), and XH = H0([0, 1], AH) with
its inner product 〈·, ·〉H0([0,1],AH).

We know that (W0([0, 1], AH),H0([0, 1], AH)) forms an abstract Wiener space
(which proves (A1.1)), on which we have a Gaussian measure and may define (flat)
W0([0, 1], AH)-valued Brownian motion (Bt)t≥0. We remark that point evaluations
will serve as our primary elements in G∗ = W0([0, 1], A)

∗, and in particular note that
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(Bt(τ))t≥0 is an AH-valued Brownian motion for every τ ∈ [0, 1]. Then the heat
kernel distribution on W0([0, 1], A) is the distribution of g1, which has the following
pointwise definition for all τ ∈ [0, 1].

g1(τ) =
N∑

n=1

∑
σ∈Sn

cσ

∫
∆n

1

[. . . [δBsσ(1)
(τ), δBsσ(2)

(τ)], . . . , δBsσ(n)
(τ)]

Note that the differentials are taken with respect to s 7→ Bs(τ)), and with the notation
defined in (1.4). Since (Bt(τ))t≥0 is finite-dimensional, this can readily be written as
an Itô integral using (1.6).

The rest of this example is devoted to explicitly showing that this satisfies (A1.2′).
For any partition P = {0 = s0 < s1 < . . . < sn+1 = 1} ⊆ [0, 1], let πP be the map
H0([0, 1], AH) → H0([0, 1], AH) defined as the piecewise linear approximation of f ,
that is,

πPf(s) :=


s
s1
f(s1) if 0 ≤ s ≤ s1

f(s1) +
s−s1
s2−s1

(f(s2)− f(s1) if s1 < s ≤ s2
...

f(sn) +
s−sn
1−sn

(f(1)− f(sn)) if sn < s ≤ 1

.

Then if Pm is a sequence of refined partition of [0, 1], then (πPmBt)0≤t≤1 converges
to (Bt)0≤t≤1 almost surely and in L2 with respect to W0([0, 1], AH). Then if

gP1 (τ) :=
N∑

n=1

∑
σ∈Sn

cσ

∫
∆n

1

[. . . [δπPBsσ(1)
(τ), δπPBsσ(2)

(τ)], . . . , δπPBsσ(n)
(τ)] ,

then for all τ ∈ P , gP1 (τ) = g1(τ). From here, we see that for all τ1, . . . , τn ∈ [0, 1],
there exists Pm such that gPm

1 (τn) → g1(τn) for all n. But we may state something
stronger.

Theorem 3.6. For a finite set τ = {τ1 ≤ . . . ≤ τK} ⊆ [0, 1], let τ ∗ : W0([0, 1], A) →
A be defined as τ ∗(f) = 1

K

∑K
k=1 f(τk). Then span{〈v, τ ∗(·)〉A : v ∈ A, τ =

{τ1, . . . , τk} ⊆ [0, 1]} is dense in W0([0, 1], A)
∗. Moreover,

max
1≤n≤N

max
σ∈Sn

∥∥∥〈v, τ ∗(·)〉A ◦ [. . . [·, ·], . . . , ·] ◦ σ̃
∥∥∥
Tr(H0([0,1],AH)n,R)

≤ C‖〈v, τ ∗(·)〉A‖W0([0,1],A)∗ , (1.9)

and thus we have a continuous inclusion W0([0, 1], A)
∗ ↪→ L2(W0([0, 1], A)), which

suffices to prove that
(
W0([0, 1], A) , H0([0, 1], A) , H0([0, 1], AH)

)
will constitute a

nilpotent abstract Wiener Lie group.
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Proof. For the density, we need only consider that, for any φ ∈ W0([0, 1], A)
∗, if

{v1, . . . , vdim(A)} is a basis of A, then the following is true for all f ∈ W0([0, 1], A):

W0([0, 1], A) 3 f(·) = 〈v1, f(·)〉Av1 + . . .+ 〈vdim(A), f(·)〉Avdim(A)

R 3 φ(f) = φ(〈v1, f(·)〉Av1) + . . .+ φ(〈vdim(A), f(·)〉Avdim(A)) .

Each map of the form W0([0, 1],R) 3 g 7→ φ(g(·)vj) is in W0([0, 1],R)∗. And the set
of piecewise-linear approximations πτg are dense in W0([0, 1],R)∗. This suffices to
prove the stated density.

Next, recall from Section 2.1.4 that H0([0, 1], AH) ∼= H0([0, 1],R)⊗ AH , so it has
as basis {ekhi}k∈N,1≤i≤dim(AH), where {hi}1≤i≤dim(AH) is a basis of AH and {ek}k∈N is
a basis of H0([0, 1],R). This can be taken as

{ek}k∈N =

{
1√
2πk

(1− cos(2πkt)) , 1√
2πk

sin(2πkt)
}

k∈N
∪
{
t
}
,

which can in particular be assumed to satisfy supt∈[0,1] |ek(t)| ≤ 1
k
. Then take 1 ≤

n ≤ N , σ ∈ Sn, and without loss of generality, using the notation from Lemma 3.1,
assume α ∈ J n

m takes on the form (α1, . . . , αm) = (1, . . . , 1, 2, . . . , 2), with p = pα and
q = qα defined as before.

Then∥∥∥Trα(〈v, τ ∗(·)〉A ◦ [. . . [·, ·], . . . , ·] ◦ σ̃
)∥∥∥

HS(H0([0,1],AH)p,R)

=

dim(A)∑
i1,...,ip=1

∞∑
k1,...,kp=1

∣∣∣∣∣
dim(A)∑

j1,...,jp=1

∞∑
ℓ1,...,ℓq=1

〈
v, τ ∗(·)

〉
A

(
[. . . [·, ·], . . . , ·] ◦ σ̃

)

×
(
ek1hi1 , . . . , ekphip , eℓ1hj1 , eℓ1hj1 , . . . , eℓqhjq , eℓqhjq

)∣∣∣∣∣
2

=

(∑
i·

∣∣∣∣∣∑
j·

〈
v, [. . . [·, ·], . . . , ·] ◦ σ̃

〉
A

(
hi1 , . . . , hip , hj1 , hj1 , . . . , hjq , hjq

)∣∣∣∣∣
2)

×

(∑
k·

∣∣∣∣∣∑
ℓ·

τ ∗
(
ek1 . . . ekpe

2
ℓ1
. . . e2ℓq

)∣∣∣∣∣
2)

The first of these 2 factors will be bounded by C1‖v‖A. This can be done either
by repeatedly invoking dim(A) < ∞, or by noting that its square root satisfies the
properties of a norm and knowing that all norms in finite dimensions are equivalent.
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As for the second factor,

∞∑
k1,...,kp=1

∣∣∣∣∣
∞∑

ℓ1,...,ℓq=1

1

K

K∑
r=1

ek1(τr) . . . ekp(τr)eℓ1(τr)
2 . . . eℓq(τr)

2

∣∣∣∣∣
2

≤
∞∑

k1,...,kp=1

∣∣∣∣∣
∞∑

ℓ1,...,ℓq=1

1

k1
. . .

1

kp

1

`21
. . .

1

`2q

∣∣∣∣∣
2

=

(
π2

6

)p+q

.

Then, knowing that ‖〈v, τ ∗(·)〉A‖W0([0,1],A)∗ = ‖v‖A, we have a uniform bound of the
form∥∥∥〈v, τ ∗(·)〉A ◦ [. . . [·, ·], . . . , ·] ◦ σ̃

∥∥∥
Tr(H0([0,1],AH)n,R)

≤ C‖v‖A = C‖〈v, τ ∗(·)〉A‖W0([0,1],A)∗

over all of the (finitely-many) choices of n, σ, and α, (1.9) will follow. We will also have
a similar bound if we replace 〈v, τ ∗(·)〉A with an arbitrary element of W0([0, 1], A)

∗

by using the fact that any such general element can be approximated via sums of
dim(A)-many elements of the form 〈v, τ ∗〉A, as described at the beginning of the
proof. The conclusions of the theorems will follow by Lemma 3.1 and Theorem 3.2.
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Chapter 2

A Quasi-invariance theorem

4 Introduction

In this chapter, the first of our 2 main results, we will extend a quasi-invariance result
from [BGM13] for certain shifts of the hypoelliptic heat kernel measure on infinite-
dimensional Heisenberg-like groups. Such groups, as previously defined in [DG08;
BGM13; DEM16], take on the form W × C, where (W,H, µ) is an abstract Wiener
space containing the “horizontal” directions that generate the diffusion, and C is
the center of the group, and consisting of the “vertical” directions. The longstanding
assumption in these works is that, whileW may be infinite-dimensional, C is restricted
to being a finite-dimensional Hilbert space. Here, we provide additional structure and
assumptions on these groups that allow us to discuss and prove quasi-invariance in
the case when C is infinite-dimensional. As done in [BGM13], this will be achieved
by proving so-called generalized curvature-dimension bounds, which first appeared in
[BG17].

One often discusses the smoothness of a measure by computing its density with
respect to Lebesgue measure and discussing the smoothness of the density function.
However, in infinite-dimensions, there is no equivalent of Lebesgue measure, so one
must take a different approach to discussing the smoothness of a measure. Instead
of using a Lebesgue measure as a reference measure, we could instead compare the
measure to a shifted version of itself. This is what is exhibited by the Cameron-Martin
theorem for an abstract Wiener space (W,H), which states that, if µ is the Gaussian
measure on W whose structure is determined by H (meaning, for f ∈ W ∗ ⊆ H,∫
G
eif(x)dµ(x) = e−

1
2
⟨f,f⟩H ), then the measure µ exhibits “quasi-invariance,” meaning

that, if h ∈ H and Ah denotes the map Ah(x) = x + h, then µ ◦ Ah is absolutely
continuous with respect to h, and dµ◦Ah

dµ
= e−

1
2
⟨h,h⟩H+⟨x,h⟩H . This can be interpreted

as a type of smoothness result for the measure. The quasi-invariance result that we
will show is similar in nature.
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4.1 Considerations

While the methods in [BGM13] are capable of handling the major complicating factor,
namely hypoellipticity of the diffusion, we are presented with obstacles when trying
to apply the methods when there are infinitely-many vertical directions. The quasi-
invariance result requires one to discuss how the Carnot-Carotheodory distance, which
determines the sub-Riemannian structure on W × C, acts in infinite-dimensions.
In [BGM13], it was shown that this distance is topologically equivalent to using
the metric ‖ · ‖H + K

√
‖ · ‖C for some K ≥ 0, which is used to show that the

Carnot-Carotheodory distance is well-approximated by finite-dimensional “projected
subgroups” of W × C. However, it is proven in Section 6 that, if C is infinite-
dimensional, then we cannot expect such a K to exist. Nevertheless, by using a
different approach, an approximation result for the Carnot-Carotheodory distance is
proven and used.

A second impediment comes from the group structure on W×C. Let ω : W×W →
C be a bilinear, antisymmetric map, which determines the group structure of W ×C.
In previous works (meaning dim(C) <∞), it has been assumed that ω : H ×H → C
is Hilbert-Schmidt. Supposing for now that C is an infinite-dimensional Hilbert space,
we maintain that ω : H ×H → C Hilbert-Schmidt, as this is a necessary assumption
to ensure W×C-valued Brownian motion is defined. However, attempting to proceed
with the methods of [BGM13] using the norm and inner product structure of C will
fail. Indeed, to satisfy the desired curvature-dimension bound, we need to make use
of the strictly positive constant (referred to as ρ2 in [BGM13]):

bωc2H⊗H := inf
∥c∥C=1

∞∑
i,j=1

〈ω(ei, ej), c〉2C > 0 .

The quasi-invariance result incorporates the ratio ∥ω∥HS

⌊ω⌋H⊗H
into the bound. But if ω

is Hilbert-Schmidt, and if {cℓ}ℓ∈N is an orthonormal basis for C, then the sequence
indexed by ` given as

xℓ :=
∞∑

i,j=1

〈ω(ei, ej), cℓ〉2C

is summable, as
∑∞

ℓ=1 xℓ is equal to the Hilbert-Schmidt norm of ω, so xℓ converges
to 0, implying that bωcH⊗H = 0. In fact, one can show that if bωcH⊗H > 0, then
‖ω‖HS = ∞. We are forced to reconcile that, under any set of assumptions, ∥ω∥HS

⌊ω⌋H⊗H
=

∞

Even so, we are able to achieve desired curvature bounds. Rather than using the
structure of C alone, we also rely on the existence of a dense Hilbert subspace Z ⊆ C.
Under additional assumptions and with a sharper bound, we can replace ‖ω‖HS with
an alternate constant and prove a quasi-invariance result.
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4.2 Summary of assumptions and results

Let H and Z be separable Hilbert spaces. Given any skew-symmetric bilinear map
ω : H × H → Z, applying the ideas from Section 2.3, we may consider H × Z as a
(potentially infinite-dimensional) graded step-2 nilpotent Lie algebra, also sometimes
referred to as a “Heisenberg-like” Lie algebra, by defining the Lie-bracket as

[(h1, z1), (h2, z2)] = ω(h1, h2) .

This, in turn, allows us to considerH×Z as a (potentially infinite-dimensional) simply
connected graded step-2 nilpotent Lie group (or “Heisenberg-like” group, perhaps
called exp(H × Z) when emphasizing the group structure) by defining the product

(h1, z1) · (h2, z2) =

(
h1 + h2 , z1 + z2 +

1

2
ω(h1, h2)

)
.

We further impose technical assumptions on ω, namely that, for orthonormal
bases {ej}j∈N and {fℓ}ℓ∈N respectively,

‖ω‖2H⊗H := sup
∥z∥Z=1

∞∑
i,j=1

〈ω(ei, ej), z〉2Z < ∞ (A2.1)

‖ω‖2H⊗Z := sup
∥h∥H=1

∞∑
j,ℓ=1

〈ω(h, ej), fℓ〉2Z < ∞ (A2.2)

bωc2H⊗H := inf
∥z∥Z=1

∞∑
i,j=1

〈ω(ei, ej), z〉2Z > 0 . (A2.3)

We may also readily discuss the notion of group-valued Brownian motion, provided
that we restrict to finite-dimensions. We assume that we have Banach spaces W and
C that contain H and Z respectively as dense subsets, and that (W,H) is an abstract
Wiener space, as defined in Section 2.2. This suffices to say that we have a Brownian
motion (Bt)t≥0 on W . Any finite-rank projection P : H → H (that is, P ∈ Proj(W ))
has a measurable linear extension to P : W → PH, and can be used to define a finite-
dimensional Brownian motion (PBt)t≥0 on PH. Then we may define the stochastic
process (gPt )t≥0, as

gPt =

(
PBt ,

∫ t

0

ω(PBs, ·)dPBs

)
.

This is essentially hypoelliptic exp(PH × Z)-valued Brownian motion, and is consis-
tent with the definition in Section 2.3.3.
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Our final technical assumption is the following.
For all t > 0, there exists a W × C-valued random vari-
able gt such that, given an increasing sequence of finite-rank
projections (Pm)m∈N ∈ Proj(W )↑, for every f ∈ (W × C)∗,
f(gPm

t ) → f(gt) in probability.

(A2.4)

We define1 the hypoelliptic heat kernel measure on W × C, denoted νt, to be the
distribution of gt.

The quasi-invariance result makes use of a metric subgroup of exp(H ×Z) that is
intrinsically related to both the Cameron-Martin subspace of W and the subelliptic
structure induced by νt. Let AC denote the set of absolutely continuous paths σ :
[0, 1] → H × Z, on which we may define the length2 `(σ) =

∫ 1

0
‖Lσ(t)−1∗σ

′(t)‖H×Zdt.
We say σ is horizontal if Lσ(t)−1∗σ

′(t) ∈ H × {0} for all t ∈ [0, 1], and we denote
the set of such paths as ACh. Then for any (h, z) ∈ H × Z, we define the Carnot-
Caratheódory distance from the origin as

d(e, g) = inf
{
`(σ)

∣∣∣ σ ∈ ACh , σ(0) = e , σ(1) = g
}
.

We will study the set of elements that are of finite horizontal distance from the
origin, that is, {g ∈ H × Z | d(e, g) < ∞}. It will be illustrated that, unlike for
finite-dimensional C, we cannot expect this set to be exactly equal to exp(H × Z).
The objective of Chapter 2 is to prove Theorem 8.4, which states that, for elements g
of finite horizontal distance, the shifted measure νt ◦Lg∗ on W ×C is absolutely con-
tinuous with respect to νt, and we give Lp bounds on the Radon-Nikodym derivative,
which be a function of d(e, g).

4.2.1 The Hörmander condition

As remarked in Section 2.3.3, when discussing smoothness properties of densities of
a diffusion, it is often crucial to make use of our Hörmander condition. In previous
works on Heisenberg-like groups, even with infinitely-many horizontal directions and
finitely-many vertical directions, this clearly corresponded to span{ω(ei, ej)}∞i,j=1 = C.
It is the Hörmander condition that implies the existence of the nonzero constant

inf
∥c∥C=1

∞∑
i,j=1

〈ω(ei, ej), c〉2C > 0 . (2.1)

1Note that, in [BGM13], the heat kernel measure νt was essentially defined as the limiting distri-
bution of gPm

2t . In this thesis, we will not introduce this factor of 2, in the interest of being consistent
with the notation of Chapter 3, which is inline with notation for many finite-dimensional Taylor
isomorphism theorems, like [DG97] and [DGS09a]. This means that formulae in this work will differ
from those in [BGM13].

2Recall from Section 2.3.2 that Lg : exp(H × Z) → exp(H × Z) is left-multiplication by g, and
that Lg∗ : H × Z → H × Z is its derivative.
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When C is infinite-dimensional, it is not clear what the equivalent of the Hörmander
condition is meant to be, but we will now provide 2 equivalent interpretations. The
first is to simply declare that it is the existence of a constant resembling (2.1), which in
this case is the strict positivity of the constant bωcH⊗H (that is, assumption (A2.3)).
On the other hand, in Section 5.2, we will show that (A2.1) implies that ω has an
extension to the Hilbert space tensor product ω : H ⊗ H → Z, and that (A2.3)
implies this extension is surjective. Then, in a certain sense, {ω(ei, ej)}∞i,j=1 generates
Z, which parallels the finite-dimesional Hörmander condition.

4.2.2 Naming convention

There are 3 major spaces that play a role in proving the quasi-invariance result. Here,
we will provide their official titles and notation, as well as rationale for their titles.
They are

1. G = W ×C, an abstract Wiener nilpotent Lie group, satisfying (A2.4), and thus
possessing the heat kernel measure νt.

2. gCM = H × Z, the Cameron-Martin subalgebra, with Lie bracket determined
by ω, satisfying (A2.1), (A2.2), and (A2.3).

3. GCM = {g ∈ exp(gCM) : d(e, g) < ∞}, the Cameron-Martin subgroup, pos-
sessing the right-invariant metric d.

We first remark that our construction of a nilpotent abstract Wiener Lie group
is consistent with the general definition provided in Section 3, in which X = gCM

and XH = H. As in the general case, the primary assumption on G is that it is
“large enough” to contain the probability distribution, and its role mimics that of W
when (W,H) is an abstract Wiener space. We do not assume that ω has an extension
(continuous, measurable, or otherwise), but (A2.2) suffices to show that there is a
measurable action of GCM on G, which is necessary to even describe quasi-invariance.
This will be described further in Section 7.

We can make sense of gCM by considering our generalized Hörmander condition.
Indeed, in a sense, we may view H × Z as the Lie algebra generated by H, the
Cameron-Martin subspace of W . It is not necessarily true that every element of Z
is a finite linear-combination of elements in ω(H,H), but they do lie in the image
of ω̃ : H ⊗ H → Z, and can be written as a potentially infinite sum of elements in
ω(H,H).

On the other hand, we may regard GCM as the group generated by H, but this
too requires some interpretation of the word “generated.” Not only does GCM include
finite products of the form (h1, 0) · . . . · (hn, 0), but it also includes endpoints of
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horizontal paths σ : [0, 1] → exp(gCM), which must satisfy, for some path A : [0, 1] →
H,

σ′(t) = Lσ(t)∗A(t) σ(0) = e .

Such endpoints are generalized products of elements in H in the same way that the
solution to this differential equation results in a generalization of the Baker-Campbell-
Hausdorff formula, see Theorem 2.6 and [Str87].

The sets gCM and GCM are only related in that they are both, in some sense,
generated by H, the former by the Lie bracket and the latter by group multiplication.
Their relationship with each other is not equivalent to finite-dimensional Lie groups,
since we generally have exp(gCM) 6= GCM . However, in Chapter 3, there will be some
discussion in which we regard elements in gCM as corresponding to left-invariant
vector fields on GCM , see Section 11.3.

4.2.3 Further directions

In the text [Wan14, Section 5.2], the curvature-dimension bounds (as discussed on
Section 5.1) are further generalized. It would be interesting if such bounds, and hence
quasi-invariance, could be generalized to account for step n nilpotent Lie groups. Here
is a possible setup for considering an infinite-dimensional step 3 nilpotent Lie group.
We assume that we have a separable Hilbert space and Lie algebra H = X ⊕ Y ⊕ Z,
where the Lie bracket [·, ·] : H ×H → H is weakly Hilbert-Schmidt with surjectivity
properties, meaning that, for bases {ej}j∈ΛX

, {fℓ}ℓ∈ΛY
, {gp}p∈ΛZ

of X, Y , and Z
respectively, for y ∈ Y and z ∈ Z,

cX‖y‖2Y ≤
∑

i,j∈ΛX

〈
y, [ei, ej]

〉2
Y

≤ CX‖y‖2Y

cy‖z‖2Z ≤
∑

j∈ΛX ,ℓ∈ΛY

〈
z, [ej, fℓ]

〉2
Z

≤ CY ‖z‖2Y ,

where CX and CY play the role of ‖ω‖H⊗H , and cX and cY play the role of bωcH⊗H . We
would also assume the existence of constants KX , KY that play the role of ‖ω‖H⊗Z ,
that resemble, for x ∈ X, y ∈ Y ,∑

j∈ΛX ,ℓ∈ΛY

〈
fℓ, [ej, x]

〉2
Y

≤ KX‖x‖2X

∑
j∈ΛX ,p∈ΛZ

〈
gp, [ej, y]

〉2
Z

≤ KY ‖y‖2Y .

It seems reasonable for such inequalities to give rise to further generalized curvature
dimension bounds. If we define the differential operators, for sufficiently smooth
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f ∈ C∞(H),
∆Xf =

∑
j∈ΛX

ẽj
2f

ΓX(f) = ΓX(f, f) =
∑
j∈ΛX

(
ẽjf
)2

ΓX
2 (f) = ∆XΓ

X(f)− 2ΓX(f,∆Xf)

ΓY (f) = ΓY (f, f) =
∑
ℓ∈ΛY

(
f̃ℓf
)2

ΓY
2 (f) = ∆XΓ

Y (f)− 2ΓY (f,∆Xf)

ΓZ(f) = ΓZ(f, f) =
∑
p∈ΛZ

(
g̃pf
)2

ΓZ
2 (f) = ∆XΓ

Z(f)− 2ΓZ(f,∆Xf) ,

then there may be functional inequalities that resemble (2.3). One seemingly plausible
candidate is, for all s, ν ∈ R,

ΓX
2 (f) + sνΓY

2 (f) + sν2ΓZ
2 (f)

≥ (A− Bsν)ΓY (f) + CsνΓZ(f)− (D
1

sν
+ Esν)ΓX(f) (2.2)

for some positive constants A,B,C,D,E ∈ R. However, it does not seem that this
inequality is quite satisfied under the provided conditions. Taking inspiration from
calculations in [Mel21] (see also Section 10.3), it is possible that introducing a trace-
type estimate like

∑
k∈ΛX

( ∑
i,j∈ΛX

〈
z, [[ei, ek], ej]〉Z

)2

≤ C‖z‖2Z

could give rise to another operator

∑
k∈ΛX

( ∑
i,j∈ΛX

˜[[ei, ek], ej]f

)2

,

whose addition would allow for an inequality resembling (2.2). Such an inequality
seems to provide a reverse Poincare inequality: if PTf = eT/2∆Xf = E[f(·gT )] is the
heat semi-group, then

ΓX(PTf) ≤ C

T

(
PT (f

2)− (PTf)
2
)
.

for some constant C. The proof would require a modified argument, making use of
the functional

Φ(t) = a(t)Pt(Γ
X(PT−tf)) + b(t)Pt(Γ

Y (PT−tf)) + c(t)Pt(Γ
Z(PT−tf))
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with “controls” a(t), b(t), and c(t) defined by a differential equation; see the proof
of [BGM13, Proposition 2.5]. However, without transverse symmetry, as in (2.4) (or,
at a minimum, some type of bound resembling (2.4)), a reverse logarithmic Sobolev
inequality, and thus a quasi-invariance result, would be out of reach.

It would also be worthwhile to explore further smoothness properties of the Radon-
Nikodym derivative νT ◦Lg

νT
, like differentiability, even merely in the step-2 case, as

was done in [DEM16]. This relied on examining the Radon-Nikodym derivative of
νT with respect to νT ⊗ dc, that is, the product of a Gaussian measure on W and
Lebesgue measure on the (finite-dimensional) C. When C is infinite-dimensional,
such a Lebesgue measure will not exist, and a different approach would have to be
taken.
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5 Setup

5.1 A brief exposition to curvature-dimension bounds

The discussion below is primarily derived from [BG17] and [BGM13]. For now, let G
be a finite-dimensional Lie group with operation · and Lie algebra g. For x ∈ g, we
may define the corresponding left-invariant vector field x̃ satisfying

x̃f(g) =
d

dt
f(g · (tx)) ,

which coincides with the notion described in Section 2.3.2

Then assume G has a left-invariant Laplacian ∆G given as

∆Gf(g) =
n∑

i=1

x̃i
2f(g)

for some x1, . . . , xn ∈ g. Given t ∈ R, we have a heat operator et/2∆G : C∞(G) →
C∞(G), a probability measure νt, a probability density ρt with respect to the left-
invariant Haar measure dg, and a corresponding Lie group Brownian motion (gt)t≥0

all satisfying3

Ptf(h) = et/2∆Gf(h) = E[f(h · gt)] =

∫
G

f(h · g)dνt(g) =

∫
G

f(h · g)pt(g)dg .

Critical to our analysis is the Carré du champ operator Γ : C∞(G)×C∞(G) → R,
defined as as

Γ(f1, f2) =
n∑

i=1

(
x̃if1

)(
x̃if2

)
.

And Γ2 : C∞(G)× C∞(G) → R as

Γ2(f1, f2) =
1

2

(
∆GΓ(f1, f2)− Γ(∆Gf1, f2)− Γ(f1,∆Gf2)

)
,

where we abbreviate Γ(f) := Γ(f, f) and Γ2(f) := Γ2(f, f).

Suppose G is equipped with a (nondegenerate) Riemannian metric, meaning that
x1, . . . , xn span all of g. Then the Ricci curvature tensor, denoted Ric, satisfies the
equality below.

Γ2(f) = ‖∇2f‖2 + 2Ric(∇f,∇f)
3Note that, in [BGM13], the heat kernel measure νt was defined as the distribution of g2t, rather

than gt. Thus, formulae in this work will differ from those in [BGM13].
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By applying the Cauchy-Schwarz inequality, we see ‖∇2f‖22 ≥ 1
n
(∆f)2, so the

inequality Ric(∇f,∇f) ≥ ρ implies

Γ2(f) ≥
1

n
(∆f)2 + ρΓ(f) .

Inequalities of this type have proven to be useful for a wide variety of applications,
as demonstrated in [BÉ85; BL06; BQ99; Led00]. Dimension-independent properties
can be derived with merely Γ2(f) ≥ ρΓ(f). However, having a lower bound on the
Ricci curvature, meaning Ric(x, x) ≥ ρ ∈ R for all x ∈ g, is not immediately available
in the sub-Riemannian case.

The generalized curvature-dimension bounds, first used in [BG17] and later in
[BBG14; BB12], apply in sub-Riemannian contexts while still being powerful enough
to emulate the classical curvature bounds. In this context, we do not assume that
the “diffusion directions” {x1, . . . , xn} span all of g, which induces a “degenerate”
geometry, but still satisfy the Hörmander condition (Section 2.3.3), meaning that

span
{
xj1 , [xj1 , xj2 ], . . . , [[xj1 , xj2 ], . . . , xjk ]

}n
j1,...,jk=1

= g .

It is a theorem of Hörmander that such a diffusion shares some of the nice properties
of elliptic diffusions, such as smoothness and strict positivity of the density.

In this case, we say that g is comprised of “horizontal” xi directions that generate
the diffusion, and refer to the remaining directions as being “vertical.” So suppose
∆G is given by ∆Gf =

∑n
i=1 x̃if , where {xi}ni=1 ∪ {zi}mi=1 is a basis of g. Then we

define operators

ΓZ(f1, f2) =
m∑
ℓ=1

(
z̃if1

)(
z̃if2

)
ΓZ
2 (f1, f2) =

1

2

(
∆GΓ

Z(f1, f2)− ΓZ(∆Gf1, f2)− ΓZ(f1,∆Gf2)
)
,

where we again abbreviate ΓZ(f) := ΓZ(f, f) and ΓZ
2 (f) := ΓZ

2 (f, f). Then the
generalized curvature-dimension bounds are as follows: there exist α, β > 0 such
that, for all ν > 0

Γ2(f) + νΓZ
2 (f) ≥ αΓZ(f)− β

ν
Γ(f) . (2.3)

In [BG17], this was used in combination with transverse symetries

Γ(f,ΓZ(f)) = ΓZ(f,Γ(f)) . (2.4)

These imply a reverse logarithmic Sobolev inequality4

Γ(lnPTf) ≤
2
(
1 + 2β

α

)
T

(
PT (f ln f)
PTf

− lnPTf

)
4We remark that this formula differs from those in [BGM13], due to our definition of νt.
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A survey of different types of logarithmic Sobolev inequalities and their many uses is
presented in [Led11]. It is known that a reverse logarithmic Sobolev inequality leads
to Wang-type Harnack inequalities: setting C = 2(1 + 2β

α
), for all f ∈ L∞(G),

(PTf)
p(x) ≤ PTf

p(y) exp
(

Cp

p− 1

d(x, y)2

4T

)
.

Wang type Harnack inequalities are equivalent to integrated Harnack inequalities:
there exists a constant c where (PTf)

p(x) ≤ cPTf
p(y) if and only if(∫

G

(
pT (x, z)

pT (y, z)

)1/(p−1)

pT (y, z)dz

)p−1

≤ c

This estimate is naturally related to quasi-invariance estimates. Indeed, if we let
JL be the Radon-Nikodyn derivative of νT ◦Lg with respect to νT , then we know that
JL corresponds to a smooth function. We may write JL = dνT ◦Lg

dνT
= ρT ◦Lg

ρT
, and can

write
‖JL‖Lq(G,νT ≤ c

We compile this into a single statement.

Theorem 5.1. Suppose that, for all f ∈ C∞(G), the generalized curvature dimension
bounds (2.3) and transverse symmetries (2.4) hold. Then for JL

g (x) = dνT ◦Lg

dνT
(x) =

ρT (g·x)
ρT (x)

, and assuming 1
p
+ 1

q
= 1,

‖JL
g ‖Lp(G,νT ) ≤ exp

((
1 +

2β

α

)
(p+ 1)d(e, g)2

2T

)
.

with a similar bound holding for JR
g (x) =

dνT ◦Rg

dνT
. In other words, using Lq(G, νT )

∗ ∼=
Lp(G, νT ), for all f ∈ Lp(G, νT ),∣∣∣∣ ∫

G

f(g · x)dνT (x)
∣∣∣∣ =

∣∣∣∣ ∫
G

f(x)d(νT ◦ Lg−1)(x)

∣∣∣∣
≤
∣∣∣∣ ∫

G

f(x)dνT (x)

∣∣∣∣ exp
((

1 +
2β

α

)
(p+ 1)d(e, g)2

2T

)
.

So, using this approach, the key to arriving at dimension-independent quasi-
invariance estimates is proving dimension-independent generalized curvature-dimension
bounds.
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5.2 Assumptions on the bilinear map

As discussed in Section 4.2 that we are given separable Hilbert spaces H,Z, and a
bilinear map ω : H×H → Z. For now, let {ej}j∈N and {fℓ}ℓ∈N be orthonormal bases
of H and Z respectively. We define (independently of basis chosen)

‖ω‖2H⊗H := sup
∥z∥=1

∑
i,j

〈ω(ei, ej), z〉2Z < ∞ . (A2.1)

As explained in Section 2.1.3, the property that ‖ω‖H⊗H < ∞ is referred to
as being weakly Hilbert-Schmidt. This property is characterized by the fact that ω
extends to a linear operator ω̃ : H ⊗H → Z with operator norm ‖ω‖H⊗H . Indeed,

sup
∥z∥=1

∑
i,j

〈ω(ei, ej), z〉2Z = sup
∥z∥=1

∑
i,j

〈ei ⊗ ej, ω̃
∗z〉2H⊗H

= ‖ω̃∗‖L(Z,H⊗H) = ‖ω̃‖L(H⊗H,Z) .

In addition to contributing to showing that W × C-valued Brownian motion is well-
defined, this will be used in a critical way in Section 6 when discussing finite-
dimensional approximations of horizontal distance.

We also assume

bωc2H⊗H := inf
∥z∥=1

∑
i,j

〈ω(ei, ej), z〉2Z > 0 . (A2.3)

The significance of bωcH⊗H is the following: if ‖ω‖H⊗H <∞, then bωcH⊗H is the
operator lower-bound of ω̃∗ : Z → H ⊗H. Indeed,

‖ω̃∗(z)‖2H⊗H =
∞∑

i,j=1

〈ω̃∗(z), ei ⊗ ej〉2H⊗H

=
∞∑

i,j=1

〈z, ω(ei, ej)〉2Z ≥ bωc2H⊗H‖z‖2Z .

And as proven in Proposition 2.1, ω̃∗ is bounded below if and only if ω̃ is surjective.
Thus, bωcH⊗H > 0, if and only if ω̃ is surjective. Importantly, this implies that
span(ω(H × H)) is dense in Z, but note that the converse is not necessarily true.
That is, span(ω(H × H)) being dense does not imply the existence of such a lower
bound.

Furthermore, we assume

‖ω‖2H⊗Z := sup
∥h∥=1

∑
i,ℓ

〈ω(h, ei), fℓ〉2Z < ∞ . (A2.2)
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Phrased another way, we assume that the trilinear map 〈ω(·, ·), ·〉Z : H ×H ×Z → R
extends to a continuous map H ×H ⊗Z → R. This constant is not needed to define
the notion of (group-valued) Brownian motion on W ×C, and will not play a role in
Chapter 3. However, for this result, this constant tempers the group and differential
structure on G, and will appear in the generalized curvature-dimension bounds.

The reader should note that ω being Hilbert-Schmidt is stronger than ‖ω‖H⊗H <
∞ and ‖ω‖H⊗Z < ∞, since max(‖ω‖H⊗H , ‖ω‖H⊗Z) ≤ ‖ω‖HS(H⊗H,Z). But, as re-
marked in the introduction, the assumptions that ‖ω‖H⊗H < ∞, bωcH⊗H > 0, and
dim(Z) = ∞ will contradict ω being Hilbert-Schmidt.

From this, we may regard H × Z as a (infinite-dimensional) Lie algebra, where
[h1 + z1, h2 + z2] = ω(h1, h2). By identifying H × Z with exp(H × Z), we may also
regard H×Z as a group (sometimes referred to as exp(H×Z) when we do) with the
product

(h1, z1) · (h2, z2) =
(
h1 + h2, z1 + z2 +

1

2
ω(h1, h2)

)
.

5.3 Finite-dimensional projections and subgroups

Continuing the assumptions from the previous section, we further assume that H
and Z are densely contained in Banach spaces W and C. Using the same methods
as in Section 2.2, we may say that there are dense inclusions W ∗ ⊆ H ⊆ W and
C∗ ⊆ Z ⊆ C, and that any finite rank projections P : H → H and Q : Z → Z have
continuous linear extensions to P : W → H and Q : C → Z. We will use Proj(W )
and Proj(C) respectively to denote the sets of these projections. By density, we may
also consider increasing sequences (Pn)n∈N and (Qm)m∈N, for which Pn → IW and
Qm → IC in the strong operator topology, and we denote the sets of such sequences
as Proj(W )↑ and Proj(C)↑.

For P ∈ Proj(W ) ∪ {IH} and Q ∈ Proj(C) ∪ {IZ}, we define GP,Q as the set
PH × QZ. We may regard this set as a Lie algebra with bracket determined by
Qω : PH × PH → QZ, and as a group by using the group operation ·Q defined as

(x1, y1) ·Q (x2, y2) =
(
x1 + x2, y1 + y2 +

1

2
Qω(x1, x2)

)
.

Observe that GP,Q is typically not a subgroup of G (it generally does not have the
same group operattion!), and the continuous projection P × Q : G → GP,Q is not
a homomorphism. Still, GP,Q will still serve as a “geometric” approximation of G.
When considering projections, we will often require span(ω(PH ×PH)) ⊇ QZ. This
is to be expected, because this corresponds to the hypoelliptic differential equation
defining Brownian motion on GP,Q satisfying the Hörmander condition.
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5.4 The group structure on H × Z

In this section, we will discuss more structure on H × Z and recall some facts and
notation from Section 2.3.

We regard H × Z as a Lie algebra. In fact, we will sometimes refer to it as gCM ,
the Cameron-Martin subalgebra, with a Lie-bracket [·, ·] : gCM ×gCM → gCM defined
as

[(h1, z1), (h2, z2)] =
(
0, ω(h1, h2)

)
.

In this way, we may also regard it as a group by defining a group operation via
the Baker-Campbell-Hausdorff formula, as described in Section 2.3, ultimately giving

(h1, z1) · (h2, z2) =

(
h1 + h2, z1 + z2 +

1

2
ω(h1, h2)

)
.

When emphasizing the group structure, we will refer to gCM as exp(gCM). Note that
this differs from GCM , which is described in Section 6.

As noted in Section 7, we do not assume that ω : W ×W → C is continuous. To
make sense of the main result, we only need to recognize that left-multiplication by
an element in exp(gCM) induces a measurable action on W × C, see Section 7.2 for
more details.

5.5 Convergence of constants

Given any P ∈ Proj(W )∪{IH}, Q ∈ Proj(C)∪{IZ}, if {ej}1≤j≤r≤∞ is a basis of PH,
then we may consider ‖Qω‖PH⊗PH , calculated as

‖Qω‖2PH⊗PH := ‖Q ◦ ω ◦ (P ⊗ P )‖2PH⊗PH := sup
∥z∥Z=1
z∈QZ

r∑
i,j=1

〈ω(ei, ej), z〉2Z

and we may similarly consider bQωcPH⊗PH , and ‖Qω‖PH⊗QZ . We will consider these
“projected” constants and prove that they converge to (or are bounded by) their
infinite-dimensional counterparts. The value here lies in that these constants appear
in the generalized curvature-dimension bounds in Section 8.2, as well as the quasi-
invariance result in Section 8.3.

For any metric space V , we let BV
≤1 denote the closed unit ball of V centered at

0.

Lemma 5.2. For any weakly Hilbert-Schmidt bilinear map ω : H×H → Z, bωcH⊗H >
0 if and only if ω̃(H ⊗ H) = Z. As a consequence, if P ∈ Proj(W ) ∪ {IW}, Q ∈
Proj(C), and if span(Qω(PH × PH)) = QZ, then bQωcPH⊗PH 6= 0.
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Remark 5.3. The consequence of Lemma 5.2 above is equivalent to remark 4.1 in
[BGM13].

Proof. We have that bωcH⊗H is the lower-bound of ω̃∗. Indeed,

‖ω̃∗(z)‖2H⊗H =
∞∑

i,j=1

〈ω̃∗(z), ei ⊗ ej〉2H⊗H

=
∞∑

i,j=1

〈z, ω(ei, ej)〉2Z ≥ bωcH⊗H‖z‖2Z .

As shown in Proposition 2.1, ω̃∗ is bounded below if and only if ω̃ is surjective.
From this, the general consequence follows since, if P ∈ Proj(W ) ∪ {IH} and Q ∈
Proj(C) with span(ω(PH × PH)) ⊇ QZ, then

Qω̃(PH ⊗ PH) = Q̃ω(PH ⊗ PH) = span(Qω(PH × PH)) = QZ ,

which implies that ˜Qω ◦ (P ⊗ P ) is surjective, so that bQωcPH⊗PH > 0.

Lemma 5.4. If (Pn)n∈N ∈ Proj(W )↑, Q ∈ Proj(C)↑, and span(ω(P1H×P1H)) ⊇ QZ,
then

bQωcPnH⊗PnH −−−→
n→∞

bQωcH⊗H ‖Qω‖PnH⊗PnH −−−→
n→∞

‖Qω‖H⊗H .

And if (Qn)n∈N ∈ Proj(C)↑,

bQnωcH⊗H −−−→
n→∞

bωcH⊗H ‖Qnω‖H⊗H −−−→
n→∞

‖ω‖H⊗H .

And for any P ∈ Proj(W ) ∪ {IW}, Q ∈ Proj(C) ∪ {IC}, ‖Qω‖PH⊗QZ ≤ ‖ω‖H⊗Z.

Proof. For all n, let {ej}1≤j≤rn be an orthonormal basis of PnH, so that {ej}j∈N is
an orthonormal basis of H. Then define the function Fn : BQZ

≤1 → R as Fn(z) =∑rn
i,j=1〈ω(ei, ej), z〉2Z , and F : BQZ

≤1 (0) → R as F (z) =
∑∞

i,j=1〈ω(ei, ej), z〉2Z . Then we
see that all Fn and F are continuous by the existence of ‖ω‖H⊗H < ∞, and that,
pointwise, Fn increases and converges to F in n. Since BQZ

≤1 is compact, by Dini’s
theorem (see, for example, [Rud76, Theorem 7.13]), Fn converges uniformly to F .
Then

sup
z∈BQZ

≤1 (0)

Fn(z) −−−→
n→∞

sup
z∈BQZ

≤1 (0)

F (z)
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and we may also deduce that −Fn converges uniformly to −F , and that

inf
z∈BQZ

≤1 (0)

Fn(z) = − sup
z∈BQZ

≤1 (0)

(−Fn(z))

−−−→
n→∞

− sup
z∈BQZ

≤1 (0)

(−F (z)) = inf
z∈BQZ

≤1 (0)

F (z) .

This proves the first 2 claimed convergences. For the next 2, we regard F as being
defined on BZ

≤1 (on which it is still continuous). Consider that BQmZ
≤1 is a nested,

increasing sequence of sets such that
⋃∞

m=1B
QmZ
≤1 is dense in BZ

≤1. Thus,

sup
z∈BQmZ

≤1

F (z) −−−→
m→∞

sup
z∈

⋃
m BQmZ

≤1

F (z) = sup
h∈BZ

≤1

F (z)

and likewise for the infimum. This proves the last 2 claimed limits.

The final inequality follows from the definitions. Indeed, if {ej}1≤j≤r and {fℓ}1≤ℓ≤s

are bases of PH and QZ respectively, then

‖Qω‖2PH⊗QZ = sup
h∈BPH

≤1

r∑
j=1

s∑
ℓ=1

〈fℓ, ω(h, ej)〉2Z ≤ ‖ω‖2H⊗Z .

5.6 Examples

The examples below determine the structures of H,Z, and ω. We remark that these
can always be made into nilpotent abstract Wiener Lie groups as defined in Section 3
by asserting that W and C are Hilbert spaces in which the inclusions H → W and
Z → C are , as discussed in Example 3.4.

Example 5.5. If both H = span{e1, . . . , en} and Z = span{f1, . . . , fm} are finite-
dimensional, then any bilinear anti-symmetric defintion of ω will suffice, provided that
span{[ei, ej]}ni,j=1 = Z. If H is infinite-dimensional and Z is finite-dimensional, then
this becomes the object of study in [BGM13], for which we need the additional as-
sumption that the bracket [·, ·] is Hilbert-Schmidt. Thus, for the remaining examples,
we will consider the presence of infinitely-many horizontal and vertical directions.

Example 5.6. Let {ej}j∈N and {fℓ}ℓ∈N be orthonormal bases of H and Z respectively,
and define ω as

ω(ei, ej) =


fℓ if i = 2`− 1, j = 2`
−fℓ if i = 2`, j = 2`− 1
0 otherwise

.
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Or, in other words,

ω

(
∞∑
i=1

αiei ,

∞∑
j=1

βjej

)
=

∞∑
ℓ=1

(
α2ℓ−1β2ℓ − α2ℓβ2ℓ−1

)
fℓ .

For any ` ∈ N, span(e2ℓ−1, e2ℓ, fℓ) is a subgroup of H × Z, and is isomorphic to
the classical Heisenberg group. In this way, we may regard this example as an infinite
product of Heisenberg groups.

Observe that, for any z ∈ Z,
∞∑

i,j=1

〈z, ω(ei, ej)〉2Z =
∞∑
ℓ=1

∞∑
j=1

(
〈z, ω(e2ℓ−1, ej)〉2Z + 〈z, ω(e2ℓ, ej)〉2Z

)
=

∞∑
ℓ=1

(
〈z, ω(e2ℓ−1, e2ℓ)〉2Z + 〈z, ω(e2ℓ, e2ℓ−1)〉2Z

)
=

∞∑
ℓ=1

2〈z, fℓ〉2Z = 2‖z‖2Z ,

so, in this case, we have ‖ω‖H⊗H = bωcH⊗H = 2. And, for h ∈ H, first consider that

〈ω(ei, h), fℓ〉Z =
∞∑
j=1

〈h, ej〉H〈ω(ei, ej), fℓ〉Z

= δi,2ℓ−1〈h, e2ℓ〉H − δi,2ℓ〈h, e2ℓ−1〉H .

and
∞∑

i,ℓ=1

〈ω(ei, h), fℓ)〉2Z =
∞∑
ℓ=1

(
〈ω(e2ℓ−1, h), fℓ〉2Z + 〈ω(e2ℓ, h), fℓ〉2Z

)
=

∞∑
ℓ=1

(
〈h, e2ℓ〉2H + 〈h, e2ℓ−1〉2H

)
= ‖h‖2H ,

so that ‖ω‖H⊗Z = 1.

Example 5.7. The previous example can be likened to taking an infinite product
of the standard 3-dimensional Heisenberg group. We now generalize the idea by
taking an infinite product of finite-dimensional Heisenberg-like groups, where each
need not be identical to one another, nor does there need to be an upper-bound on
the dimension.

Let {H(n)}n∈N, {Z(n)}n∈N be sequences of finite-dimensional Hilbert spaces, and
for each n, ω(n) : H(n) ×H(n) → Z(n) an antisymmetric bilinear map. Suppose that
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we know

inf
n∈N

bω(n)cH⊗H > 0 sup
n∈N

‖ω(n)‖H⊗H <∞ sup
n∈N

‖ω(n)‖H⊗Z <∞ .

Then set H :=
⊕∞

n=1H
(n) and Z :=

⊕∞
n=1 Z

(n), and define ω : H ×H → Z as

ω
(
(h(1), h(2) . . .) , (k(1), k(2), . . .)

)
=
(
ω(1)(h(1), k(1)) , ω(2)(h(2), k(2)) , . . .

)
.

For each H(n), set {e(n)j }1≤j≤dim(H(n)) to be an orthonormal basis. Then we may
identify each e(n)j with the embedded element inH, which implies that {e(n)j }1≤j≤dim(H(n)),n∈N
is an orthonormal basis of H. Then we check, for z = (z(1), z(2), . . .) ∈ Z,

∞∑
n=1

dim(H(n))∑
i,j=1

〈
z, ω(e

(n)
i , e

(n)
j )
〉2
Z

=
∞∑
n=1

dim(H(n))∑
i,j=1

〈
z(n), ω(n)(e

(n)
i , e

(n)
j )
〉2
Z(n)

≤
∞∑
n=1

‖ω(n)‖2H⊗H‖z(n)‖2Z(n) ≤
(

sup
n∈N

‖ω(n)‖H⊗H

)2 ∞∑
n=1

‖z(n)‖2Z(n)

=
(

sup
n∈N

‖ω(n)‖H⊗H

)2
‖z‖2Z ,

and similarly, we can arrive at the bound

∞∑
n=1

dim(H(n))∑
i,j=1

〈
(z1, . . .), ω(e

(n)
i , e

(n)
j )
〉2
Z

≥
(

inf
n∈N

bω(n)cH⊗H

)2
‖z‖2Z .

And if {f (n)
ℓ }1≤i≤n is a basis of Z(n), then if h = (h(1), h(2), . . .) ∈ H, then

∞∑
n=1

dim(H(n))∑
i=1

dim(Z(n))∑
ℓ=1

〈
f
(n)
ℓ , ω(h, e

(n)
i )
〉2
Z

=
∞∑
n=1

dim(H(n))∑
i=1

dim(Z(n))∑
ℓ=1

〈
f
(n)
ℓ , ω(n)(h(n), e

(n)
i )
〉2
Z(n)

≤
∞∑
n=1

‖ω(n)‖2H⊗Z‖h(n)‖2H(n) ≤
(

sup
n∈N

‖ω(n)‖H⊗Z

)2
‖h‖2H .

Example 5.8. If H and Z are separable, infinite-dimensional Hilbert spaces with
bases {ej}j∈N and {fℓ}ℓ∈N respectively, then define ω by asserting

〈fℓ, ω(ei, ej)〉Z =
1

(|i− `|+ 1)(|j − `|+ 1)
sgn(i, j) ,
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where we define

sgn(i, j) =


1 if i < j
−1 if i > j
0 if i = j

.

Then this too will satisfy our assumptions. First note that, for any ` ∈ N, we have
∞∑
i=1

1

(|i− `|+ 1)2
≤ π2

3
.

Then
∞∑

i,j=1

〈z, ω(ei, ej)〉2Z =
∞∑

i,j,ℓ=1

〈z, fℓ〉2Z〈fℓ, ω(ei, ej)〉2Z

≤
∞∑

i,j,ℓ=1

〈z, fℓ〉2Z
1

(|i− `|+ 1)2(|j − `|+ 1)2

≤
∞∑
ℓ=1

〈z, fℓ〉2Z
( ∞∑

i=1

( 1

|i− `|+ 1

)2)2

≤ π4

9
‖z‖2Z ,

and
∞∑

i,j=1

〈z, ω(ei, ej)〉2Z ≥
∞∑
ℓ=1

〈z, fℓ〉2Z
1

(|(`+ 1)− `|+ 1)2(|(`− 1)− `|+ 1)2

=
1

16
‖z‖2Z

and

∞∑
i,ℓ=1

〈fℓ, ω(h, ei)〉2Z =
∞∑

i,j,ℓ=1

〈h, ej〉2H〈fℓ, ω(ei, ej)〉2Z

≤
∞∑

i,j,ℓ=1

〈h, ej〉2H
1

(|i− `|+ 1)2(|j − `|+ 1)2

≤ π2

3

∞∑
j,ℓ=1

〈h, ej〉2H
1

(|j − `|+ 1)2

≤ π4

9

∞∑
j=1

〈h, ej〉2H =
π4

9
‖h‖2H .

So while the previous 2 examples consist of “sparse structural constants,” this
example illustrates that one can have many nonzero entries, provided that they have
sufficient decay.
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The next 3 examples are actually nonexamples. However, they will still satisfy
‖ω‖H⊗H < ∞ and can be used as examples for the result in Chapter 3 (after taking
the complexification as needed).

Example 5.9. For {ej}j≥0 a basis for H and {fℓ}ℓ≥1 a basis for Z, we now define ω
as

ω(ei, ej) =


fj if i = 0, j 6= 0
−fi if j = 0, i 6= 0
0 otherwise

.

Or, in other words,

ω

(
∞∑
i=0

αiei ,
∞∑
j=0

βjej

)
=

∞∑
ℓ=1

(
α0βℓ − αℓβ0

)
fℓ .

This can be likened to taking Example 5.6 and identifying all the odd-indexed basis
vectors in H as e0. Then

∞∑
i,j=0

〈z, ω(ei, ej)〉2Z =
∞∑
i=1

(
〈z, ω(ei, e0)〉2Z + 〈z, ω(e0, ei)〉2Z

)
= 2

∞∑
i=1

〈z, fℓ〉2Z = 2‖z‖2Z .

But
∞∑
i=0

∞∑
ℓ=1

〈fℓ, ω(e0, ei)〉2Z =
∞∑
i=1

〈fi, ω(e0, ei)〉2Z =
∞∑
i=1

〈fi, fi〉2Z = ∞ .

Hence, this example satisfies 0 < bωcH⊗H = ‖ω‖H⊗H <∞, but ‖ω‖H⊗Z = ∞.

Example 5.10. Let {fk,ℓ}k<ℓ∈N be a (doubly-indexed) orthonormal basis of Z, and
define ω such that

ω(ei, ej) =


fi,j if i < j
−fi,j if j < i
0 if i = j

.

This constitutes the free infinite-dimensional step-2 graded nilpotent Lie group. It is
readily seen that

∞∑
i,j=1

〈z, ω(ei, ej)〉2Z = 2
∑
1≤i<j

〈z, fi,j〉2Z = 2‖z‖2Z .
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But
∞∑

i,k,ℓ=1

〈fk,ℓ, ω(e1, ei)〉2Z =
∞∑
i=2

〈f1,i, ω(e1, ei)〉2Z =
∞∑
i=2

〈f1,i, f1,i〉2Z = ∞ ,

so again we have ‖ω‖H⊗Z = ∞.

Example 5.11. We now consider the path space of a finite-dimensional Heisenberg-
like group. This explores paths of finite-energy, for which the notation and some
theory is presented in Section 2.1.4. This is the Hilbert space structure for the graded
step-2 equivalent of Example 3.5, where we use w to denote the pointwise Lie-bracket.
As it turns out, even though ‖w‖H⊗H < ∞, it can be demonstrated that ‖w‖H⊗Z =
∞.

To define this space precisely, let H = span{e1, . . . , en} and Z = span{f1, . . . fm}
be finite-dimensional vector spaces, with ω : H ×H → Z continuous, bilinear. Then
we may consider H × Z to be a finite-dimensional Heisenberg-like group, equal to
its own Lie algebra, with Lie bracket and group operator determined by ω. We then
consider H = H0([0, 1], H) and Z = H0([0, 1], Z), and we define w : H ×H → Z as
w(h1, h2)(t) = ω(h1(t), h2(t)). Then H×Z is the Cameron-Martin subalgebra for an
infinite-dimensional Heisenberg-like group; see Example 3.5 for more information.

Consider the bilinear map m : H0([0, 1],R)×H0([0, 1],R) → H0([0, 1],R) defined
as m(f, g)(t) = f(t) · g(t). Recall that we may use

{√
2 sin(2πkt),

√
2 cos(2πkt)}k∈N ∪

{1} as an orthonormal basis of L2([0, 1],R), so identifying H0([0, 1],R) as the set of an-
tiderivatives on L2([0, 1],R),

{
1√
2πk

sin(2πkt), 1√
2πk

cos(2πkt)
}
k∈N∪{t} is an orthonor-

mal basis for H0([0, 1],R). Since H0([0, 1], H) = H0([0, 1],R)⊗H and H0([0, 1], Z) =
H0([0, 1],R)⊗Z, we have

{
1√
2πk

sin(2πkt)ej, 1√
2πk

(1−cos(2πkt))ej
}
k∈N,1≤j≤n

∪{tej}1≤j≤n

is an orthornomal basis of H, and we have a similar basis for Z.

Then for a function f ∈ H0([0, 1],R) and an element v ∈ H, f(·)v ∈ H, and

∞∑
k,ℓ=1

n∑
i=1

m∑
j=1

〈
w
( 1√

2πk
sin(2πkt)ei , f(t)v

)
,

1√
2πk

sin(2π`t)fj
〉2

H

=
∞∑

k,ℓ=1

〈
1√
2πk

sin(2πkt) f(t) , 1√
2πk

sin(2π`t)
〉2

H

(
n∑

i=1

m∑
j=1

〈ω(ei, v), fj〉2Z

)
.

This demonstrates the connection between w and m. If we can show that

‖m‖H0([0,1],R)⊗H0([0,1],R = ∞ ,

then we could conclude that ‖w‖H⊗Z = ∞.
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Before beginning the true calculation, we remark that, if g ∈ L2([0, 1],R), then
(doubly-indexed) sequences of the form

(
1
k

∫ 1

0
g(t) sin(2πkt) sin(2π`t)

)
k,ℓ∈N are square-

summable. This is because
∞∑
k=1

∞∑
ℓ=1

1

k2

(∫ 1

0

g(t) sin(2πkt) sin(2π`t)dt
)2

=
∞∑
k=1

1

k2

∞∑
ℓ=1

〈
g(t) sin(2πkt), sin(2π`t)

〉2
L2

=
∞∑
k=1

1

k2
‖g(t) sin(2πkt)‖2L2 ≤

∞∑
k=1

1

k2
‖g(t)‖2L2 =

π2

6
‖g(t)‖2L2 .

and note that this does not change if one or both sine functions are replaced with
cosine functions. Then, for any f ∈ H1

0([0, 1],R),
∞∑

k,ℓ=1

〈
1√
2πk

sin(2πkt),m(f(t),
1√
2π`

sin(2π`t))
〉2

H1
0([0,1],R)

=
∞∑

k,ℓ=1

(∫ 1

0

√
2 cos(2πkt)

(√
2 cos(2π`t)f(t) + 1√

2πk
sin(2π`t)f ′(t)

)
dt

)2

=
∞∑

k,ℓ=1

(
2

∫ 1

0

cos(2πkt) cos(2π`t)f(t)dt

+
1

πk

∫ 1

0

cos(2πkt) sin(2π`t)f ′(t)dt

)2

.

Then, based on the remarks above, we know that
(
1
k

∫ 1

0
cos(2πkt) sin(2π`t)f ′(t)dt

)
k,ℓ∈N

is square-summable, so the summability of the expression above is determined by the
square-summability of (

∫ 1

0
cos(2πkt) cos(2π`t)f(t)dt)k,ℓ∈N.

Using integration by parts, we get
∞∑

k,ℓ=1

(∫ 1

0

cos(2πkt) cos(2π`t)f(t)dt
)2

=
1

4

∞∑
k,ℓ=1

(∫ 1

0

(
cos(2π(k + `)t) + cos(2π(k − `)t)

)
f(t)dt

)2

≥ 1

4

∞∑
k,ℓ=1
k ̸=ℓ

(∫ 1

0

1

2π(k + `)
sin(2π(k + `)t)f ′(t)dt

+

∫ 1

0

1

2π(k − `)
sin(2π(k − `)t)f ′(t)dt

)2

.
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It can be seen that
(

1
k+ℓ

∫ 1

0
sin(2π(k+`)t)f ′(t)dt

)
k,ℓ∈N is square summable because

∞∑
k,ℓ=1

1

(k + `)2

(∫ 1

0

sin(2π(k + `)t)f ′(t)dt

)2

≤
∞∑

k,ℓ=1

1

k2

(∫ 1

0

sin(2πkt) cos(2π`t)f ′(t)dt+

∫ 1

0

sin(2π`t) cos(2πkt)f ′(t)dt

)2

,

so we need only to determine the square-summability of
(

1
k−ℓ

∫ 1

0
sin(2π(k−`)t)f ′(t)dt

)
k,ℓ∈N.

However, if 〈sin(2πt), f(t)〉L2 6= 0, then

∞∑
k,ℓ=1
k ̸=ℓ

1

(k − `)2

(∫ 1

0

sin(2π(k − `)t)f ′(t)dt

)2

≥
∞∑
k=1

(∫ 1

0

sin(2πt)f ′(t)dt

)2

= ∞ .

From this, we may conclude that, in this example, ‖w‖H⊗Z = ∞.

The path space of a nilpotent Lie group will be explored further in Example 10.21,
where it will satisfy the criteria for Chapter 3 (upon taking the complexification if
needed).
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6 Horizontal distance approximations

We consider a subgroup of G called GCM , the Cameron-Martin subgroup, which
satisfies, for all P ∈ Proj(W ), GP ⊆ GCM ⊆ exp(gCM). This group is intrinsically
related to both the Cameron-Martin space of W and the subelliptic structure induced
by ∆G. We will first spend time defining this distance and related notions, followed
by showing how this distance is well-approximated in finite dimensions.

6.1 Preliminaries

Recall that we give gCM = H×Z a group structure (called exp(gCM) when we do so),
from which we have left-invariant vector fields as described in Section 2.3.2, defined
as

Lg∗v =
d

dt

∣∣∣
t=0

(
g · tv) = v +

1

2
[g, v] .

And the map Lg−1∗ : gCM → gCM , the Maurer-Cartan form, is regarded as the map
that cannonically identifies the tangent spaces of exp(gCM) together.

With this is mind, let C1 = C1([0, 1], exp(H × Z)) denote the set of continuously
differentiable paths σ : [0, 1] → exp(H × Z) = H × Z, on which we may define the
length `(σ) =

∫ 1

0
‖Lσ(t)−1∗σ

′(t)‖H×Zdt. We say σ is “horizontal” if Lσ(t)−1∗σ
′(t) ∈

H × {0} for all t ∈ [0, 1], and we denote the set of such paths as C1
h. Then for any

(h, z) ∈ H × Z, we define the horizontal distance from the origin as

d(e, (h, z)) = inf
{
`(σ)

∣∣∣ σ ∈ C1
h , σ(0) = e , σ(1) = (h, z)

}
.

The horizontal distance d is a (infinite-dimensional) example of Carnot-Carathéodory
distance. This idea was first introduced (in finite dimensions) by Carathéodory in
[Car09], though it wasn’t known if it constituted a proper metric (specifically, that
it was always finite) until being proven in Chow [Cho40] and Rashevsky [Ras38].
As a modern reference, see [ABB20, Rashevsky-Chow Theorem, Theorem 3.31], or
[Mon02].

We then define the Cameron-Martin subgroup as GCM = {g ∈ H ×Z : d(e, g) <
∞}.

Proposition 6.1.

1. For g = (h, z) ∈ GCM , α > 0, d(e, δαg) = d(e, (αh, α2z)) = αd(e, (h, z)).

2. For all g1, g2, a ∈ GCM , d(g1, g2) = d(g1 · a, g2 · a).

3. d is a metric.
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Proof. For a horizontal path σ = (A,B) : [0, 1] → H × Z, δασ = (αA, α2B) satisfies

Lδασ(t)−1∗(δασ)
′(t) =

d

ds

∣∣∣
s=0

(δασ
′(t)) ·

(
sδασ(t)

−1
)

= δα

(
d

ds

∣∣∣
s=0

σ′(t) · (sσ(t))
)

= δα

(
Lσ(t)−1∗σ

′(t)
)

= αLσ(t)−1∗σ
′(t) ,

where the last equality holds because Lσ(t)−1∗σ
′(t) ∈ H × 0. From this, we see that σ

is horizontal if and only if δασ is. And

`(δασ) =

∫ 1

0

‖Lδασ(t)−1∗δασ
′(t)‖H×Zdt

=

∫ 1

0

‖δα(Lσ(t)−1∗σ
′(t))‖H×Zdt

=

∫ 1

0

‖αLσ(t)−1∗σ
′(t)‖Hdt = α`(σ) .

Hence, there is a one-to-one correspondence between horizontal paths connecting e
to g and those connecting e to δαg, and this correspondence scales the length by α.
It follows that d(e, δαg) = αd(e, g).

For translation-invariance, suppose σ : [0, 1] → H × Z is in C1
h, where σ(0) = g1,

σ(1) = g2. Then σ · a : [0, 1] → H × Z satisfies (σ · a)′(t) = a · σ′(t), and

L(a·σ(t))−1∗(a · σ)′(t) =
d

ds

∣∣∣
s=0

(σ′(t) · a) · s(σ(t) · a)−1)

=
d

ds

∣∣∣
s=0

σ′(t) · s(σ(t))−1) = Lσ(t)−1∗σ
′(t) ,

and thus, σ · a is C1, horizontal, and `(a · σ) = `(σ). As before, there is a one-to-one
correspondence between horizontal paths connecting g1 to g2 and those connecting
g1 · a to g2 · a which preserves the lengths of the paths. This proves the second point.

Showing d is a metric involves classical methods for metrics defined by minimizing
over paths. We only need to observe that constant paths σ ≡ g ∈ GCM are horizontal
with length 0 to see d(g, g) = 0. And if φ : [0, 1] → [0, 1] be φ(t) = 1 − t, then we
may reverse a horizontal path σ by taking σ ◦ φ, which is again horizontal (as are all
smooth parametrizations of σ), and σ ◦ φ(0) = σ(1), σ ◦ φ(1) = σ(0). Hence, for all
g1, g2 ∈ GCM , d(g1, g2) = d(g2, g1).

And if σ1, σ2 : [0, 1] → H × Z are both horizontal where σ1(1) = σ2(0), then we
may define the concatenation as

σ1 ∼ σ2(t) =

{
σ1(2t) if 0 ≤ t ≤ 1

2

σ2(2t− 1) if 1
2
≤ t ≤ 1

.
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Then let ψ : [0, 1] → [0, 1] be a smooth, increasing function such that ψ′(1
2
) = 0.

Then (σ := σ1 ∼ σ2) ◦ ψ is C1, will again be horizontal, and

(σ(0) = σ1(0) σ
(1
2

)
= σ1(1) = σ2(0) σ(1) = σ2(1) ,

which proves the triangle inequality.

We will soon transition to defining d by minimizing over paths of finite energy.
Recall from Section 2.1.4 that, for any Hilbert space K, we define H0([0, 1], K) as
the set of finite-energy paths A : [0, 1] → K satisfying A(0) = 0 with ‖A‖H0([0,1],K) =
‖A′‖L2([0,1],K) < ∞. We will primarily consider H0([0, 1], H), which will later be
abbreviated to H0, but we will also discuss H0([0, 1],R).

There is an explicit description of the paths that lie in C1
h, which was made use of

in [BGM13].

Theorem 6.2. Every σ ∈ C1
h with σ(0) = 0 takes on the form

σ(t) =

(
A(t),

1

2

∫ t

0

ω(A(s), A′(s))ds

)
.

Define ν(A,B) = 1
2

∫ 1

0
ω(A(s), B′(s))ds, and ν(A) = ν(A,A). We may realize d

as

d(e, (h, z)) = inf
{
‖A‖H0 | A ∈ H0 , A(1) = h , ν(A) = z

}
.

Proof. If σ = (A,B) : [0, 1] → H × Z is in C1, then

Lσ(t)−1∗(σ
′(t)) =

(
A′(t) , B′(t)− 1

2
ω(A(t), A′(t))

)
,

so the assumption that Lσ(t)−1∗σ
′(t) ∈ H×0 implies that B(t) = 1

2

∫ t

0
ω(A(s), A′(s))ds.

Note that any C1 path has finite energy, so A ∈ H0([0, 1], H). And we may calculate

`(σ) =

∫ 1

0

‖Lσ(t)−1∗(σ
′(t))‖H×Zdt =

∫ 1

0

‖A(t)‖Hdt = `(A) .

Hölder’s inequality shows that `(A) ≤ ‖A‖H0 , and that `(A) = ‖A‖H0 when A
is parametrized by arclength. Moreover, reparametrizing a path neither changes its
endpoints nor whether it’s horizontal. Hence, minimizing C1-paths over the length is
equivalent to minimizing finite-energy paths over the energy.

53



We will now study convergence properties of the map ν. As noted in Sec-
tion 2.1.4, we may define the “integral” map I : L2([0, 1],R) → H0([0, 1],R) as
If(t) =

∫ t

0
f(s)ds. Then I can be viewed as mapping to L2([0, 1],R), and is bounded

linear. In fact, we have

Lemma 6.3. The bilinear map Z : L2([0, 1],R)×L2([0, 1],R) → L2([0, 1],R) defined
as (A1, A2) 7→ IA1(·)A2(·) (integrate the first input, then apply pointwise multiplica-
tion) is weakly Hilbert-Schmidt.

Proof. Let f ∈ L2([0, 1],R). Then use {
√
2 sin(2πkt),

√
2 cos(2πkt)}k∈N ∪ {1} =

{ek}k∈Z as a basis of L2([0, 1],R). Then

∞∑
k=−∞

∞∑
ℓ=−∞

∣∣∣〈f(t), I(ek) eℓ〉L2([0,1],R)

∣∣∣2
=

∞∑
k=−∞

∞∑
ℓ=−∞

∣∣∣〈f(t)Iek, eℓ〉L2([0,1],R)

∣∣∣2
=

∞∑
k=−∞

∥∥∥f(t)I(ek)∣∣∣|2L2([0,1],R)

=
∞∑
k=1

1

2π2k2

∥∥∥f(t)(cos(2πkt)− 1)
∥∥∥2
L2([0,1],R)

+
∞∑
k=1

1

2π2k2

∥∥∥f(t) sin(2πkt)
∥∥∥2
L2([0,1],R)

+
∥∥∥tf(t)∥∥∥2

L2([0,1],R)

≤
∞∑
k=1

5

2π2k2
‖f‖2L2([0,1],R) + ‖f‖2L2([0,1],R)

≤ K‖f‖2L2([0,1],R)

for some K, which proves the claim.

Lemma 6.4. The bilinear map S2 : H0([0, 1],R) × H0([0, 1],R) → R defined as
S2(A,B) =

∫ 1

0
A(s)B′(s)ds is Hilbert-Schmidt.

Proof. Recall that I : L2([0, 1],R) → H0([0, 1],R) is an isomorphism. Then the map

(A,B) 7→
(
t 7→

∫ t

0

A(s)B′(s)ds

)
(2.5)

is precisely Z under the identification L2([0, 1],R) I−→ H0([0, 1],R).
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The map S2 is the map in (2.5) composed with point-evaluation at 1, which is con-
tinuous on H0-spaces, as noted in Section 2.1.4. This implies that S2 is weakly Hilbert-
Schmidt, or equivalently Hilbert-Schmidt, since R is trivially finite-dimensional.

Theorem 6.5. The bilinear map ν : H([0, 1], H)×2 → Z is weakly Hilbert-Schmidt,
and extends to H([0, 1], H1)

⊗2.

Proof. Recall from Section 2.1.4 that H([0, 1], H) ∼= H([0, 1],R) ⊗ H. Then, if we
realize ν as being defined on (H([0, 1],R) ⊗ H)×2, we may write, for simple tensors
f1 ⊗ v1, f2 ⊗ v2 ∈ L2([0, 1],R)⊗H,

ν(f1 ⊗ v1, f2 ⊗ v2) = ν(f1v1, f2v2)

=
1

2

∫ 1

0

ω(f1(s)v1, f
′
2(s)v2)ds

=
1

2

(∫ 1

0

f1(s)f
′
2(s)ds

)
ω(v1, v2)

=
1

2
S2(f1, f2) ω(v1, v2) .

Since both S2 and ω are weakly Hilbert-Schmidt, we can conclude that the map
1
2
S2⊗ω : H([0, 1],R)×2⊗H×2 → R⊗Z ∼= Z has an extension to H([0, 1],R)⊗2⊗H⊗2 ∼=

H([0, 1], H)⊗2. Then by the equation above, ν has a continuous extension as well, or
equivalently, ν is weakly Hilbert-Schmidt.

6.2 More on the Topology

While not strictly necessary for our proofs, this subsection will discuss some topo-
logical considerations for GCM . The main proof of [BGM13] relied on equating the
topology of GCM with that induced by the norm ‖ · ‖H×Z =

√
‖ · ‖2H + ‖ · ‖2Z . It will

be shown in this section that this equivalence does not generally hold. We will still
leverage the same estimates, but will ultimately require a different argument to prove
Theorem 6.16.

The following 2 results offer some understanding the topology of GCM .

Theorem 6.6. Define dZ : Z × Z → R as dZ(z1, z2) = d((0, z1), (0, z2)). The set
GCM is equal to {(h, z) ∈ H × Z : dZ(0, z) <∞}. Moreover, the topologies on GCM

determined by d and ‖ · − · ‖H + dZ(·, ·) are homeomorphic (but note that the metrics
are not necessarily equivalent).
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Proof. We will use estimates to bound each metric by a function in terms of the other,
which will justify both the set and the topological equivalence. Fix (h0, z0) ∈ GCM .
For (h, z) ∈ GCM , by properties of d in Proposition 6.1, and using Lemma 6.12 in the
next section, and the fact that ω is anti-symmetric,

d((h0, z0), (h, z)) = d(e, (h, z) · (h0, z0)−1)

≤ d(e, (h− h0, 0)) + d(e, (0, z − z0)) + d

(
e,
1

2
ω(h0, h− h0)

)
≤ ‖h− h0‖H + dZ(z, z0) +

√
π

2

√
‖h0‖H

√
‖h− h0‖H .

This proves that one direction is continuous. On the other hand, let A be a path
that satisfies A(0) = 0, A(1) = h − h0, and ν(A,A) = z − z0 − 1

2
ω(h0, h). Then its

length is no longer than the shortest path that starts at h0 and ends at h, which has
a length of ‖h− h0‖H . This proves

‖h− h0‖H ≤ d(e, (h, z) · (h0, z0)−1) = d((h0, z0), (h, z)) .

Then, using the triangle inequality and translation-invariance of d,

dZ(z0, z) = d(e, (0, z − z0))

≤ d(e, (0, z − z0) · (h, 0) · (h0, 0)−1) + d(e, (h, 0) · (h0, 0)−1)

≤ d((h0, z0), (h, z)) + ‖h− h0‖H + d

(
e,
(
0,

1

2
ω(h0, h)

))
≤ 2d((h0, z0), (h, z)) +

√
π

2

√
‖h0‖H

√
‖h− h0‖H

≤ 2d((h0, z0), (h, z)) +

√
π

2

√
‖h0‖H

√
d((h0, z0), (h, z)) ,

and therefore

‖h− h0‖H + dZ(z, z0) ≤ 3d((h0, z0), (h, z)) +
√
π
√

‖h0‖H
√
d((h0, z0), (h, z)) ,

which completes the proof.

Lemma 6.7. The inclusion (GCM , d) → (H × Z,
√

‖ · ‖2H + ‖ · ‖2Z) is continuous.

Proof. Let (h, z) ∈ GCM , so let A ∈ H0([0, 1], H) be a path such that A(0) = 0,
A(1) = h, and ν(A) = z. Note that

‖h‖H ≤ `(A) ≤ ‖A‖H0 .
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Since ν is a continuous, bilinear map, then we have

‖h‖2H + ‖z‖2Z = ‖h‖2H + ‖ν(A,A)‖2Z ≤ ‖A‖2H0
+K‖A‖4H0

for some constant K. By taking the infimum over all such paths A, we may deduce√
‖h‖2H + ‖z‖2Z ≤ d(e, (h, z)) +

√
Kd(e, (h, z))2 .

This proves continuity at e. For any (h0, z0) ∈ GCM , by using Theorem 6.6, we may
write that there exists K such that d((h0, z0), (h, z)) ≤ Kd(e, (h− h0, z − z0)), which
completes the proof.

Before continuing, we will prove a formula that will be used in a calculation in
Example 6.10.

Lemma 6.8. If A ∈ H0([0, 1], H) is a loop (meaning A(1) = 0), then A takes on the
form

A(t) =
∞∑

j,k=1

(
αj,k

1√
2πk

(
cos(2πkt)− 1

)
ej + βj,k

1√
2πk

sin(2πkt)ej
)
, (2.6)

for which we have

ν(A,A) =
1

2π

∞∑
i,j,k=1

1

k
αi,kβj,kω(ei, ej) ,

which converges in ‖ · ‖Z .

Proof. Consider that, since H0([0, 1], H) ∼= H0([0, 1],R) ⊗ H, we have a basis of
H0([0, 1], H) given as{

1√
2πk

(
cos(2πkt)− 1

)
ej ,

1√
2πk

sin(2πkt)ej
}

j,k∈N
∪
{
tej
}
j∈N ,

where {ej}j∈N is a basis of H. Then for any A ∈ H0([0, 1], H), if A(1) = 0, then there
exist square-summable constants {αj,k, βj,k}j,k∈N such that (2.6) holds.

Then, recalling that {cos(2πk), sin(2πk)}k∈N∪{1} is an orthogonal set in L2([0, 1],R),
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we have

ν(A,A) =
1

2

∫ 1

0

ω(A(t), A′(t))dt

=
∞∑

i,j,k,ℓ=1

1

2πk

∫ 1

0

ω

(
αi,k

(
cos(2πkt)− 1

)
ei + βi,k sin(2πkt)ei ,

αj,ℓ

(
− sin(2π`t)

)
ej + βj,ℓ cos(2π`t)ej

)
dt

=
∞∑
k=1

1

2πk

∞∑
i,j=1

αi,kβj,k

(∫ 1

0

cos(2πkt)2dt
)
ω(ei, ej)

− αj,kβi,k

(∫ 1

0

sin(2πkt)2dt
)
ω(ei, ej)

=
1

2π

∞∑
i,j,k=1

1

k
αi,kβj,kω(ei, ej) .

Note that one may use the fact that ω : H×H → Z is continuous bilinear, along with
the Cauchy-Schwartz inequality, to show that this series always converges in ‖ · ‖Z .

Remark 6.9. In [BGM13], recall that it was assumed dim(C) < ∞. In that case,
we have that ω : H ×H → C is Hilbert-Schmidt, and there exists a constant K such
that d(e, (h, c)) ≤ ‖h‖H +K

√
‖c‖C . However, we now have tools that demonstrate

that this inequality cannot hold in infinite dimensions. Indeed, if we maintain that
ω : H × H → C is Hilbert-Schmidt, then the proof of Theorem 6.5 can be adapted
to show ν : H0([0, 1], H)×H0([0, 1], H) → C is Hilbert-Schmidt (since S2 is Hilbert-
Schmidt and ν = 1

2
S2⊗ω), and in particular the extension ν̃ must be Hilbert-Schmidt

and thus compact, so it is not surjective. This implies that there exists c ∈ C such
that ν(A,A) 6= c for all A ∈ H0([0, 1], H), so that d(e, (0, c)) = ∞. This certainly
contradicts d(e, (0, c)) ≤ K

√
‖c‖C .

In Example 6.10 below, we present an explicit calculation for horizontal distance
that shows that we cannot expect this to be remedied even if ‖ · ‖C is replaced with
‖ · ‖Z .

Example 6.10. In this example, we will consider Example 5.6 and use Theorem 6.6
to compute the set GCM and determine its topology. Recall that in Example 5.6 we
define ω : H ×H → Z as

ω

(
∞∑
i=1

αiei ,

∞∑
j=1

βjej

)
=

∞∑
ℓ=1

(
α2ℓ−1β2ℓ − α2ℓβ2ℓ−1

)
fℓ .
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Suppose that A ∈ H0([0, 1], H) is a loop, so that it takes on the form (2.6).
Applying the definition of ω in Example 5.6 to the formula for ν(A,A) in Lemma 6.8
yields

ν(A,A) =
1

2π

∞∑
j,k=1

1

k

(
α2j−1,kβ2j,k − α2j,kβ2j−1,k

)
fj

Now, specifically for Example 5.6, given such loop A, we will prove that there
exists another path A0 ∈ H0([0, 1], H) that satisfies the following properties:

1. A0(1) = 0 (so that A0 is also a loop).

2. ν(A0, A0) = ν(A,A).

3. ‖A0‖H0([0,1],H) ≤ ‖A‖H0([0,1],H).

4. A0 is of the form A0(t) = (1 − cos(2πt))
∑∞

j=1 cje2j+1 + sin(2πt)
∑∞

j=1 cje2j for
some square-summable coefficients {cj}j∈N, and in particular A0 is a circle.

Indeed, set pj =
∑∞

k=1
1
k
(α2j−1,kβ2j,k − α2j,kβ2j−1,k). Then define

A0(t) =
1√
2π

( ∞∑
j=1

√
|pj|e2j−1

)(
cos(2πt)− 1

)
+

1√
2π

( ∞∑
j=1

sgn(pj)
√
|pj|e2j

)
sin(2πt) .

Then A0(1) = 0, and

ν(A0, A0) =
1

2π
ω

(
∞∑
i=1

√
|pi|e2i−1 ,

∞∑
j=1

sgn(pj)
√
|pj|e2j

)

=
1

2π

∞∑
j=1

sgn(pj)|pj| fj =
1

2π

∞∑
j=1

pjfj = ν(A,A) ,

while, using the Cauchy-Schwartz inequality,

‖A0‖2H0([0,1],H) = 2
∞∑
j=1

|pj| ≤ 2
∞∑

j,k=1

1

k

(
|α2j−1,kβ2j,k|+ |α2j,kβ2j−1,k|

)
≤

∞∑
j,k=1

1

k

(
α2
j,k + β2

j,k

)
≤ ‖A‖2H0([0,1],H) .
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This proves the 4 points above. This implies that length-minimizing paths are cir-
cles, which is consistent with finite-dimensional Heisenberg group (see, for example,
[HZ15]).

We now will compute GCM for Example 5.6 and its topology. Suppose that
z =

∑∞
ℓ=1 γℓfℓ ∈ Z. Then d(e, (0, z)) < ∞ if and only if there exists a path A ∈

H0([0, 1], H) satisfying A(0) = 1 and ν(A,A) = z, and the calculation above justifies
that we may replace A with the path A0 ∈ H0([0, 1], H) given as

A0(t) =
1√
2π

(
cos(2πt)− 1

)
h+

1√
2π

sin(2πt)v ,

where

h =
√
2π

∞∑
j=1

√
|γj|e2j−1 v =

√
2π

∞∑
j=1

sgn(γj)
√

|γj|e2j .

For this path A0, we have that

‖A0‖2H0([0,1],H) = 4π
∞∑
ℓ=1

|γj| .

Thus, (0, z) ∈ GCM if and only if the path A0 actually lies in H0([0, 1], H), which is
equivalent to

∑∞
ℓ=1 |γℓ| <∞. If this holds, then we have

d(e, (0, z)) = ‖A0‖H0([0,1],H) = 2
√
π

√√√√ ∞∑
ℓ=1

|γℓ| .

By Theorem 6.6, we see that GCM = {(h, z) ∈ H × Z :
∑∞

ℓ=1〈|z, fℓ〉Z | < ∞}, and
further that, as topological spaces, GCM

∼= `2 × `1.

Example 6.11. In this example, we will show that it is in fact possible that GCM

has a nicer-behaved topology. Recall Example 5.9. While this has been labelled as a
“nonexample” for the main theorem (because ‖ω‖H⊗Z = ∞), we may still perform a
revealing horizontal distance calculation. There, for {ej}j≥0 a basis for H and {fℓ}ℓ≥1

a basis for Z, we define ω as

ω

(
∞∑
i=0

αiei ,

∞∑
j=0

βjej

)
=

∞∑
ℓ=1

(
α0βℓ − αℓβ0

)
fℓ .

Then given any z =
∑∞

ℓ=1 γℓfℓ, we may define the pathA(t) = 1√
π

(
(1−cos(2πt))

√
‖z‖Ze0+
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sin(2πt) 1√
∥z∥Z

(∑∞
k=1 γkek

))
. Then A is a circle of radius

√
∥z∥Z
π

, and

ν(A,A) = ω

(√
‖z‖Ze0 ,

1√
‖z‖Z

∞∑
k=1

γkek

)
=

∞∑
k=1

γkω(e0, ek) =
∞∑
k=1

γkfk = z ,

while

d(e, (0, z)) ≤ `(A) = 2π

√
‖z‖Z
π

= 2
√
π 4

√√√√ ∞∑
ℓ=1

γ2ℓ .

Using Theorem 6.6, we may deduce that GCM consists of H×Z. In fact, we may com-
bine this estimate with Lemma 6.7 to deduce that H ×Z and GCM are topologically
equivalent.

6.3 Convergence of horizontal distance

The calculation in Example 6.10 tells us H×Z → GCM is not necessarily continuous,
but the lemma below does give us partial control. An argument showing essentially
the same result can be found in [GM13][Proposition 2.17].
Lemma 6.12. d(e, (0, ω(h, v))) ≤ 2

√
π
√

‖h‖H‖v‖H .

Proof. Define h′, v′ ∈ H as h′ = h, v′ = v − ⟨h,v⟩H
⟨h,h⟩H

h. Then define h′′ = h′ ·
√

∥v′∥H
∥h′∥H

and v′′ = v′ ·
√

∥h′∥H
∥v′∥H

. Then it can be seen that ω(h′′, v′′) = ω(h′, v′) = ω(h, v), while
‖h′′‖H‖v′′‖H = ‖h′‖H‖v′‖H ≤ ‖h‖H‖v‖H . Moreover, ‖h′′‖H = ‖v′′‖H and h′′ ⊥ v′′.

Define the path A : [0, 1] → H as A(t) = 1√
π

(
(cos(2πt) − 1)h′′ + sin(2πt)v′′

)
.

Then A(0) = A(1) = 0, while the calculation below (or Lemma 6.8) shows

ν(A,A) =

∫ 1

0

ω
(
(cos(2πt)− 1)h′′ + sin(2πt)v′′ , − sin(2πt)h′′ + cos(2πt)v′′

)
dt

= ω(h′′, v′′)

∫ 1

0

(cos2(2πt) + sin2(2πt))dt = ω(h′′, v′′) = ω(h, v) .

And since A is a circle in H, we know

`(A) = 2π ·
∥∥∥∥ 1√

π
h′′
∥∥∥∥
H

= 2
√
π
√

‖h′′‖H‖v′′‖H ≤ 2
√
π
√

‖h‖H‖v‖H .

The desired inequality follows.
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Recall that, for any P ∈ Proj(W ) ∪ {IH}, Q ∈ Proj(C), we may define the
group (GP,Q, ·Q), where GP,Q = PH ×QZ. Then for (h1, z1), (h2, z2) ∈ GP,Q , define
dP,Q((h1, z1), (h2, z2)) to be the horizontal distance via horizontal paths of GP,Q, that
is,

dP,Q(e, (h, z)) = inf
{
`(A)

∣∣∣ A ∈ H0([0, 1], PH) , A(0) = 0 , A(1) = h ,

1

2

∫ 1

0

Qω(A(s), A′(s))ds = z
}
.

It is useful to apply properties of Bochner integrals to deduce 1
2

∫ 1

0
Qω(A(s), A′(s))ds =

Q1
2

∫ 1

0
ω(A(s), A′(s)) = Qν(A,A). Also note that, if P 6= IH and ω(PH×PH) ⊇ QZ,

then Lemma 6.12 implies dP,Q(e, g) <∞ for all g ∈ GP,Q, though Lemma 6.13 below
covers P = IH .

Lemma 6.13. For P ∈ Proj(W ) ∪ {IH} and Q ∈ Proj(C) where span(Qω(PH ×
PH)) = QZ, dP,Q(e, g) ≤ ‖h‖H +K(Q)

√
‖z‖Z.

Remark 6.14. As previously remarked, we cannot expect the constant K to be
independent of Q, as this would show GCM is homeomorphic to H × Z, which is
certainly not true in Example 6.10.

Proof. By assumption, we may choose a basis of QZ of the form {Qω(aℓ, bℓ)}mℓ=1.
Then if z ∈ QZ is z =

∑m
ℓ=1 αℓQω(aℓ, bℓ), then, using Lemma 6.12,

dP,Q(e, (0, z)) ≤
m∑
ℓ=1

√
|αℓ| dP,Q(e, (0, ω(aℓ, bℓ))) ≤ 2

√
π

m∑
ℓ=1

√
|αℓ|
√
‖aℓ‖H‖bℓ‖H

≤ 2
√
π max

1≤ℓ≤m

(√
‖aℓ‖H‖bℓ‖H

) m∑
ℓ=1

√
|αℓ| ≤ K

√
‖z‖Z

for some constant K. Then

dP,Q(e, (h, z)) ≤ d(e, (h, 0)) + d(e, (0, z)) ≤ ‖h‖H +K
√

‖z‖Z .

A version of Theorem 6.15 was shown in [BGM13, Lemma 3.25], using an equiv-
alent of Lemma 6.13 above. Here, we present an alternate proof that leverages ν.

As a side note, if ν was merely determined to be a continuous bilinear map, then
the following proof would be invalid. If B : H × H → Z is a bilinear map, and
xn weakly converges to x, then we cannot conclude B(xn, xn) weakly converges to
B(x, x). Indeed, if we define B(x, y) = 〈x, y〉H , then B(en, en) = 1, but en weakly

62



converges to 0 while B(0, 0) = 0 6= 1. However, if B extends to a continuous linear
map B̃ : H⊗H → Z, then we can consider the sequence xn⊗xn, show that it weakly
converges, then realize that B(xn, xn) = B̃(xn ⊗ xn) must weakly converge. Thus, in
the arguments below, we are making use of the weakly Hilbert-Schmidt assumption.

For the sake of brevity, for the remainder of this section, we will abbreviate
H0([0, 1], H) as H0, and H0([0, 1], PH) as PH0.
Theorem 6.15. For any (Pn)n∈N ∈ Proj(W )↑ and fixed Q ∈ Proj(C) with span(Qω(Pn0H×
Pn0H)) = QZ and g = (h, z) ∈ Pn0H×QZ for some n0 ∈ N (and thus for all n ≥ n0),
then

dPn,Q(e, g) −−−→
n→∞

dIH ,Q(e, g) .

And for more arbitrary g ∈ H ×QZ,

dIH ,Q(e, πPr,Qg) −−−→
r→∞

dIH ,Q(e, g) .

Proof. First, we remark that, for n ≥ n0, dPn,Q(e, g) < ∞ by Lemma 6.13. Since
PnH0 ⊆ H0,{

A ∈ H0 : A(1) = h, Qν(A,A) = z
}

⊇
{
A ∈ PnH0 : A(1) = h, Qν(A,A) = z

}
6= ∅ .

which implies dIH ,Q(e, g) ≤ dPn,Q(e, g) <∞. In fact, it can be deduced that dPn,Q(e, g)
is decreasing in n. For m ∈ N, choose Am ∈ H0 such that Am(1) = h, Qν(Am, Am) =
z, and |‖Am‖H0 − dIH ,Q(e, g)| < 1

m
. Then we consider the sequence of endpoints of

“projected” paths
gn =

(
Pnh,Qν(PnAm, PnAm)

)
.

Then we have dPn,Q(e, gn) ≤ ‖PnAm‖H0 . Using this and applying Lemma 6.13, for
n ≥ n0,

dIH ,Q(e, g) ≤ dPn,Q(e, g) ≤ dPn,Q(e, gn) + dPn,Q(gn, g)

≤ dPn,Q(e, gn) + dPn,Q
(
e, (0, Qν(Am, Am)−Qν(PnAm, PnAm))

)
≤ ‖PnAm‖H0 +K

√∥∥Qν(Am, Am)−Qν(PnAm, PnAm)
∥∥
Z

≤ ‖Am‖H0 +K

√∥∥Q̃ν(Am ⊗ Am − PnAm ⊗ PnAm)
∥∥
Z

≤ dIH ,Q(e, g) +
1

m
+K

√∥∥Q̃ν(Am ⊗ Am − PnAm ⊗ PnAm)
∥∥
Z
,

where Q̃ν : H0 ⊗ H0 → Z is the extension of Qν. Then we know that as n → ∞,
PnAm ⊗ PnAm → Am ⊗ Am in H0 ⊗H0, so by the continuity of Q̃ν, we must have

dIH ,Q(e, g) ≤ lim
n→∞

dPn,Q(e, g) ≤ dIH ,Q(e, g) +
1

m
.
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To be true for all m, we must have, dPn,Q(e, g)
n→∞−−−→ dIH ,Q(e, g).

The second statement is justified by the reverse triangle inequality and Theo-
rem 6.6, or more simply with Lemma 6.12. Using the latter approach, for g = (h, z),
we have∣∣dIH ,Q(e, (Prh, z))− dIH ,Q(e, (h, z))

∣∣
≤ dIH ,Q((Prh, z), (h, z))

= dIH ,Q
(
e,
(
h− Prh,−

1

2
Qω(h, Prh)

))
≤ ‖h− Prh‖H +

√
2π
√

‖h‖H
√

‖h− Prh‖H .

Theorem 6.16. For any (Qm)m ∈ Proj(C)↑ with span(ω(H×H)) ⊇ QmZ for all m,
for any g ∈ GCM ,

dIH ,Qm(e, πIH ,Qmg) −−−→
m→∞

d(e, g) .

Proof. Let g = (h, z) ∈ GCM . Consider that, for any path A, if Q, Q̂ ∈ Proj(C)∪{IZ}
satisfy QZ ⊆ Q̂Z, then Q̂ν(A,A) = Q̂z implies Qν(A,A) = QQ̂ν(A,A) = Qz, which
implies that{

A ∈ H0 : A(0) = 0, A(1) = h, Qν(A,A) = Qz
}

⊇
{
A ∈ H0 : A(0) = 0, A(1) = h, Q̂ν(A,A) = Q̂z

}
,

so we have dIH ,Q(e, πIH ,Qg) ≤ dIH ,Q̂(e, πIH ,Q̂g), so dIH ,Qm(e, πIH ,Qmg) is increasing in
m. We may also deduce dIH ,Qm(e, πIH ,Qmg) ≤ d(e, g) for all m, so that we have
limm→∞ dIH ,Qm(e, πIH ,Qmg) ≤ d(e, g).

For every m, choose the path Am ∈ H0 such that Am(0) = 0, Am(1) = h,
Qmν(Am, Am) = Qmz, and

∣∣dIH ,Qm(e, πIH ,Qmg)− ‖Am‖H0

∣∣ ≤ 1
m

. Then, in particular,
the sequence Am satisfies the bound ‖Am‖H0 ≤ d(e, g) + 1

m
. By the Banach-Alaoglu

theorem, there exists a subsequence Amk
that weakly converges to some A ∈ H with

‖A‖H0 ≤ d(e, g).

The remainder of this proof will show that A(0) = 0, A(1) = h, ν(A,A) = z,
and d(e, g) = ‖A‖H0 ≤ limm→∞ dIH ,Qm(e, πIH ,Qmg). First note that, as discussed in
Section 2.1.4, the evaluation maps A 7→ A(0) and A 7→ A(1) are linear and continuous
on H0, so we must have A(1) = limk→∞Amk

(1) = limk→∞ h = h, and likewise
A(0) = 0.

Furthermore, note that, for any simple tensor B⊗C ∈ H0⊗H0, 〈Amk
⊗Amk

, B⊗
C〉H0⊗H0 = 〈Amk

, B〉H0〈Amk
, C〉H0 . This allows us to conclude that if a ∈ H0 ⊗H0 is
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a finite sum of simple tensors, then 〈Amk
⊗ Amk

, a〉H0⊗H0 → 〈A ⊗ A, a〉H0⊗H0 . Since
the set of such tensors forms a dense set in H0⊗H0, and since Amk

⊗Amk
is a bounded

sequence, this convergence must hold for all tensors in H0 ⊗H0 by Proposition 2.2.
Thus, Amk

⊗ Amk
is weakly convergent to A ⊗ A. By the continuity of ν̃, we know

that ν(Amk
, Amk

) weakly converges to ν(A,A).

Next, we know that, for all m, Qmν(Am, Am) = Qmz. Fix m0 ∈ N and x ∈ Qm0Z.
If m ≥ m0, then Qmx = x, and for all v ∈ Z, 〈v, x〉Z = 〈v,Qmx〉Z = 〈Qmv, x〉Z , so
that 〈

ν(Am, Am), x
〉
Z

=
〈
Qmν(Am, Am), x

〉
Z

= 〈Qmz, x〉Z = 〈z, x〉Z ,

so 〈ν(Am, Am), x〉Z converges to 〈z, x〉 for every x ∈ Qm0Z for any m0. Since⋃∞
m0=1Qm0Z is dense in Z, and since the continuity of ν̃ implies the boundedness

of ν(Am, Am), we may conclude ν(Am, Am) weakly converges to z.

We have shown that ν(Amk
, Amk

) weakly converges to ν(A,A), but at the same
time must weakly converge to z. Hence, ν(A,A) = z. Thus, A ∈ H0 is such that
‖A‖H0 ≤ d(e, g), A(0) = 0, A(1) = h, and ν(A,A) = z. Therefore, d(e, g) = ‖A‖H0 ,
so that

d(e, g) = ‖A‖H0 ≤ lim inf
k→∞

‖Amk
‖H0

≤ lim
k→∞

(
dIH ,Qmk (e, g) +

1

mk

)
= lim

m→∞
dIH ,Qm(e, g) ,

which proves the claim.

Remark 6.17. In proving this theorem, we have revealed an interesting fact: for
any g ∈ GCM , there exists a path A such that d(e, g) = ‖A‖H2 . This can be proven
more directly by considering approximations Am ∈ H0 with Am(0) = 0, Am(1) =
h, ν(A,A) = z and

∣∣‖A‖H0 − d(e, g)
∣∣ < 1

m
, without considering finite-dimensional

projections. It is interesting that one can prove the existence of (energy- or) length-
minimizing paths in the infinite-dimensional context. Such results are usually in
finite-dimensional situations and rely on compactness arguments, though they also
prove smoothness properties of such paths. Proving the existence of such paths in
our case relied on the weak-compactness exhibited by separable Hilbert spaces.
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7 The distribution: definition and convergence of
finite-dimensional projections.

The goal of this section is to first define the hypoelliptic heat kernel distribution on
G = W ×C, and flesh out the consequences of (A2.4). Secondly, we will show a sense
in which finite-dimensional approximations, denoted gPn,Qm

t , converge to gt that will
be suitable for proving Theorem 8.4.

7.1 The distribution

We first provide a definition for the distribution, which will be inline with Section 3.
First off, note that, if Bt is a Brownian motion on W and P ∈ Proj(W ), then PBt is
a Brownian motion on PH. Next, knowing that H is a Lie algebra with Lie bracket
[·, ·], for P ∈ Proj(W ), we let gP = PH×span(ω(PH,PH)), Lie subalgebra generated
by PH, equal to its own Lie group GP = gP . As finite-dimensional Lie groups, the
groups GP have a notion of Brownian motion, which can be realized as the solution
to the Stratonovich differential equation

gPt = LgPt ∗δPBt gP0 = e .

And we may refer to Theorem 2.6 and Section 2.3.3 to derive the following ex-
pression for Brownian motion on GP as the Stratonovich integral

gPT =

(
PBT ,

1

2

∫
0≤t1≤t2≤T

ω(δPBt1 , δPBt2)

)
=

(
PBT ,

1

2

∫ T

0

ω(PBt, δPBt)

)
.

where we may view the process (ω(PBt, P ·) : Ω× PH → Z)t≥0 as being adapted to
the filtration determined by (Bt)t≥0. Using this perspective, for the remained of this
section, we will often write

∫ T

0
ω(PBt, ·)δPBt instead of

∫ T

0
ω(PBt, δPBt) to more

closely resemble notation used for classical stochastic calculus.

We say that G is a (simply connected graded step-2 nilpotent) abstract Wiener Lie
group if

For any t > 0, there exists a G-valued random variable gt
such that, given an increasing sequence of finite-rank pro-
jections {Pm}m∈N ∈ Proj(W )↑, for every f ∈ G∗, f(gPm

t ) →
f(gt) in probability.

(A2.4)

It can be quickly shown that this convergence naturally happens when C is a Hilbert
space for which the inclusion Z ↪→ C is Hilbert-Schmidt. This is shown in [DG08],
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where the argument will suffice even if dim(C) = ∞; the key property is that the
composition ω : H ×H → Z ↪→ C would be Hilbert-Schmidt, and

E
∥∥∥∥∫ T

0

ω((Pn − Pm)Bt, ·)d(Pn − Pm)Bt

∥∥∥∥2
C

=
1

2
T 2

n∑
i,j=m+1

∞∑
ℓ=1

〈cℓ, ω(ei, ej)〉2C .

This is consistent with the definition in Section 3, in which X = gCM and XH = H.
Note that, as discussed in Section 3, the limit in (A2.4) occurring for some t > 0 is
equivalent to it occurring for all t > 0. Also, this definition will necessarily satisfy
(A1.2′) due to (A2.1) and the traceless aspect of ω; see Theorem 7.1 and its proof
below.

As has been assumed in [BGM13; DEM16; GM13], we have the following

Theorem 7.1. Letting δBs denote the Stratonovich differential and dBs the Itô dif-
ferential, we have that for any P ∈ Proj(W ),∫ T

0

ω(PBt, ·)δPBt =

∫ T

0

ω(PBt, ·)dPBt .

Proof. Let {ei}1≤i≤r be a basis of PH. Then note that if (bt)t≥0, (b
′
t)t≥0 are standard,

independent Brownian motions on R, then we have∫ T

0

bt δbt =

∫ T

0

bt dbt +
1

2
t

∫ T

0

bt δb
′
t =

∫ T

0

bt db
′
t .

This suffices to justify∫ T

0

ω(PBt, ·)δPBt =

∫ T

0

ω(PBt, ·)dPBt +
1

2

r∑
i=1

ω(ei, ei) .

But since ω is anti-symmetric, ω(h, h) = 0 for all h ∈ H. This proves the claim.

Theorem 7.1 justifies using the following notation:

gT =

(
BT ,

∫ T

0

ω(Bt, ·)dBt

)
.
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7.2 The action of exp(gCM) on G

As noted in Section 4, we do not5 assume that ω has a continuous extension to
ω : W ×W → C. Instead, our assumptions suffice to show that we have a measurable
action of exp(gCM) on G→ G.

Considering the ‖ω‖H⊗Z constant, we see that ω(h, ·) : H → Z is Hilbert-Schmidt.
Then using the theory of measurable linear maps on Hilbert spaces, (discussed in
Section 2.2, or consider [Bog14; Zha82]), this extends to a measurable map ω(h, ·) :
W → Z, which can be defined as

ω(h,w) = lim
m→∞

ω(h, Pnw) ,

where (Pn)n∈N ∈ Proj(W )↑, and the limit converges almost surely in ‖ · ‖Z . Or
alternatively, we can write

ω(h,w) =
∞∑
ℓ=1

〈ω(h, ·)∗fℓ, w〉H ,

again converging almost surely in ‖ · ‖Z .

Using this measurable extension, for (h, z) ∈ H × Z = exp(gCM), we can define
L(h,z) : W ×C → W ×C as the measurable extension of left multiplication by (h, z),
meaning

L(h,z)(w, c) =

(
h+ w , z + c+

1

2
ω(h,w)

)
.

We will henceforth denote this as (h, z) · (w, c). Similarly, note that we may likewise
discuss the right action R(h,z)(w, c) = (w, c) · (h, z).

7.3 The Fourier transform

In [DEM16], there were formulae derived related to the Fourier transform of gT ,
which allowed for interpretation of the distribution of MT :=

∫ T

0
ω(Bt, ·)dBt. The

5As a brief aside, there are situations in which we may talk about the existence of a measurable
bilinear extension ω on W×C, and hence measurable group operation, without assuming ‖ω‖H⊗Z <
∞. If C is assumed to be a Hilbert space, then ω : H ×H → C is Hilbert-Schmidt, which suffices
to show ω has an L2-extension to W × W → C. If W × C is a (step-2 graded) path space, as in
Example 3.5, then W × C has a continuous (pointwise) bracket that corresponds to a continuous
bilinear definition of ω. Both of these instances are examples of when (C,Z) is also an abstract
Wiener space, for which another approach is possible. In [Car78], it is shown that one may take the
tensor product of abstract Wiener spaces to arrive at a new abstract Wiener space. In particular, the
injective tensor product W⊗ϵW is an abstract Wiener space, whose Cameron-Martin subspace is the
Hilbert space tensor product H ⊗H. Since our assumptions tell us that we have a continuous linear
extension ω̃ : H ⊗H → Z, then we should have a measurable-linear extension to ω̃ : W ⊗ϵ W → C,
which may have a measurable restriction to W ×W .
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purpose of this section is to highlight the fact that such formulae carry over to when
C is infinite-dimensional. We know that ω is weakly Hilbert-Schmidt, which means
〈z, ω(·, ·)〉Z is Hilbert-Schmidt. Then, as shown in [DEM16], 〈z,

∫ T

0
ω(Bt, ·)dBt〉Z =∫ T

0
〈z, ω(Bt, ·)〉ZdBt is an L2-limit of the random variables

∫ T

0
〈z, ω(PnBt, ·)〉ZdPnBt.

Furthermore, we have the following result [DEM16, Theorem 2.1]:

Theorem 7.2. For any bounded measurable f : R → C,

E[f(BT )e
i
∫ T
0 ⟨z,ω(Bt,·)⟩ZdBt ] = E[f(BT )e

− 1
2

∫ T
0 |⟨z,ω(Bt,·)⟩Z |2dt] .

This is equivalent to saying that, conditioned on BT ,
∫ T

0
〈z, ω(Bt, ·)〉ZdBt has

the same distribution as
∫ T

0
〈z, ω(Bt, ·)〉ZdB′

t, where B′
t is a Brownian motion on W

independent of B. This is also equivalent to saying
∫ T

0
〈z, ω(Bt, ·)〉ZdBt is distributed

as a “stochastic” Gaussian with random covariance determined by the function ρT :
Z → Z given as

ρT =

∫ T

0

ω(Bt, ·)ω(Bt, ·)∗dt .

More precisely, we may write

〈z1, ρT z2〉Z =

∫ T

0

〈ω(Bt, ·)∗z1, ω(Bt, ·)∗z2〉Hdt ,

where the map W 3 w 7→ ω(w, ·)∗z ∈ H is the measurable-linear extension of H 3
h 7→ ω(h, ·)∗z ∈ H, which is guaranteed to exist since ω(h, ·) : H → Z is Hilbert-
Schmidt, as is its adjoint ω(h, ·)∗ : Z → H. Indeed, the formula in the theorem above
can be rewritten as

E[f(BT )e
i⟨z,MT ⟩] = E[f(BT )e

− 1
2
⟨z,ρT z⟩Z ] .

Note that this formula determines the Fourier transform of gT = (BT ,MT ), sine
every α ∈ C∗ can be realized as the continuous extension of 〈z, ·〉Z for some z ∈ Z.
Thus, an alternate definition of the heat kernel measure on G could be a distribution
whose Fourier transform is given above.

7.4 Convergence of finite-dimensional projections

Recall that, as introduced in Section 5.3, GP,Q is a (finite-dimensional) Lie group with
group multiplication ·Q : GP,Q ×GP,Q → GP,Q defined as

(h1, z1) ·Q (h2, z2) =
(
h1 + h2, z1 + z2 +

1

2
Qω(h1, h2)

)
.
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Using the reasoning from the previous section, such groups also have Brownian mo-
tion, which can be realized as the expression

gP,Qt =

(
PBt,

∫ t

0

Qω(PBs, ·)dPBs

)
.

The primary objective of this section is to prove to what extent we have gPn,Qm

T

converging to gT for fixed time T , or more generally, for any (h, z) ∈ H×Z, gPn,Qm

T ·Qm

πPn,Qm(h, z) converging to gT ·(h, z). In particular, we will show that, for any bounded
continuous cylinder function f ,

lim
m→∞

lim
n→∞

E[f(gPn,Qm

T ·Qm πPn,Qm(h, z))] = E[f(gT · (h, z))] .

First, we recall a lemma from [DEM16].

Lemma 7.3. Let MT denote the continuous, square-integrable R-valued martingales
defined on Ω up to time T , for which we define

‖M‖MT
:= E sup

t∈[0,T ]

|Mt|2 .

Then the map
Lf (H,H) 3 A 7→

∫ ·

0

〈ABt, ·〉HdBt ∈ MT

is defined for A ∈ Lf (H,H), the set of finite-rank linear operators on H, using
classical stochastic calculus, and is continuous with respect to the Hilbert-Schmidt
norm. As such, it extends to a continuous linear map on HS(H,H).

Consequently, we may deduce that if An → A in HS(H,H), then
∫ T

0
〈AnBt, ·〉HdBt →∫ T

0
〈ABt, ·〉HdBt in L2(Ω,R).

As a remark, the entirety of the proof of Lemma 7.3 can be encapsulated in the
inequalities below, the first from Doob’s maximal inequality, the second from the Itô
isometry:

sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

〈ABs, ·〉HdBs

∣∣∣∣ ≤ 4 E
∣∣∣∣ ∫ T

0

〈ABs, ·〉HdBs

∣∣∣∣
= 4

∫ T

0

E‖ABs‖2Hds = 4T‖A‖2HS(H,H) .

Theorem 7.4. For (Pn)n∈N ∈ Proj(W )↑ and fixed Q ∈ Proj(C) and b ∈ Z, we have
that 〈

b,

∫ T

0

Qω(PnBt, ·)dPnBt

〉
Z

n→∞−−−→
〈
b,

∫ T

0

Qω(Bt, ·)dBt

〉
Z
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in L2(Ω,R). Furthermore, for Qm ∈ Proj(Z)↑, we have that〈
b,

∫ T

0

Qmω(Bt, ·)dBt

〉
Z

m→∞−−−→
〈
b,

∫ T

0

ω(Bt, ·)dBt

〉
Z

in L2(Ω,R).

Proof. Define wb : H → H as6 wb(h) := ω(h, ·)∗b. Observe that〈
b,

∫ T

0

Qω(PBt, P ·)dBt

〉
Z

=

∫ T

0

〈
Qb, ω(PBt, P ·)〉ZdBt

=

∫ T

0

〈PwQb(PBt), ·〉HdBt .

Thus, the crux of the proof, as is essentially demonstrated in [DEM16], lies in
showing that wb ∈ HS(H,H), and further that it is well-approximated by Pn ◦
wQmb ◦ Pn. Indeed,

‖wb‖2HS(H,H) =
∞∑

i,j=1

〈wb(ei), ej〉2H =
∞∑

i,j=1

〈ω(ei, ·)∗b, ej〉2H

=
∞∑

i,j=1

〈b, ω(ei, ej)〉2H ≤ ‖ω‖2H⊗H‖b‖2Z .

So, for any Pn ∈ Proj(W )↑ and Q ∈ Proj(C), choose an orthonormal basis
{ei}i∈N ⊆ H such that PnH = span{e1, . . . , en}, so that we have

‖wQb − Pn ◦wQb ◦ Pn‖HS(H,H) =
∞∑

i,j=1

〈wQb(ei)− PnwQb(Pnei), ej〉2H

=
∞∑

i,j=n+1

〈Qb, ω(ei, ej)〉2Z ,

which converges to 0 as n→ ∞. By Lemma 7.3, this means that∫ T

0

〈PnwQb(PnBt), ·〉ZdBt →
∫ T

0

〈wQb(Bt), ·〉ZdBt ,

or equivalently,〈
b,

∫ T

0

Qω(PnBt, ·)dPnBt

〉
Z

→
〈
b,

∫ T

0

Qω(Bt, ·)dBt

〉
Z
.

6To ensure the notation is clear, as used in the previous subsections, for a fixed h ∈ H, we regard
ω(h, ·)∗ : Z → H to be the adjoint of ω(h, ·) : H → Z
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Additionally, for Qm ∈ Proj(C)↑,

‖wb −wQmb‖HS(H,H) =
∞∑

i,j=1

〈wb(ei)−wQmb(ei), ej〉2H

=
∞∑

i,j=1

〈b−Qmb, ω(ei, ej)〉2Z ≤ ‖ω‖2H⊗H‖b−Qmb‖2Z ,

which also converges to 0 as m→ ∞, which gives the second claimed convergence.

Theorem 7.5. Let f be a bounded continuous cylinder function. Then for any
Pn ∈ Proj(W )↑ and fixed Q ∈ Proj(C),

E[f(gPn,Q
T ·Q πPn,Q(h, z))]

n→∞−−−→ E[f(gIW ,Q
T ·Q πIW ,Q(h, z))] .

Also, we may hold gIW ,Q
T fixed and still have convergence, so

E[f(gIW ,Q
T ·Q πPn,Q(h, z))]

n→∞−−−→ E[f(gIW ,Q
T ·Q πIW ,Q(h, z))] ,

and for (Qm)m ∈ Proj(C)↑,

E[f(gIW ,Qm

T ·Qm πIW ,Qm(h, z))]
m→∞−−−→ E[f(gT · (h, z))] .

Proof. For g = (w, c) ∈ W × C, a ∈ H, b ∈ Z, we simplify notation by writing
〈a, g〉H = 〈a, w〉H and 〈b, g〉Z = 〈b, c〉Z . Note that we may write

gPn,Q
T ·Q πPn,Q(h, z)

=
(
PnBT + Pnh ,

1

2

∫ T

0

Qω(PnBt, Pn·)dBt +Qz +
1

2
Qω(PnBT , Pnh)

)
,

so we begin by showing that the image of the expression above under the maps 〈a, ·〉H
and 〈b, ·〉Z , for some a ∈ H, b ∈ Z, will converge weakly in n (in fact, we show that
they converge in L2(Ω,R)).

For a ∈ H, Using the embedding H → L2(Ω,R), we have that 〈a, PnBT 〉H =
〈Pna,BT 〉H → 〈a,BT 〉H (in L2(Ω,R)). By Theorem 7.4, for b ∈ Z,〈

b,

∫ T

0

Qω(PnBt, Pn·)dBt

〉
Z
→
〈
b,

∫ T

0

Qω(Bt, ·)dBt

〉
Z
.
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And we have

E
∣∣〈b,Qω(BT , h)〉Z − 〈b,Qω(PnBt, Pnh)〉Z

∣∣2
= E

∣∣〈b,Qω((I − Pn)BT , h)〉Z − 〈b,Qω(PnBT , (I − Pn)h)〉Z
∣∣2

≤ 2E
∣∣〈b,Qω((I − Pn)BT , h)〉Z

∣∣2 + 2E
∣∣〈b,Qω(PnBT , (I − Pn)h)〉Z

∣∣2
= 2

∞∑
i=n+1

〈b,Qω(ei, h)〉2Z + 2
n∑

i=1

〈b,Qω(ei, (I − Pn)h)〉2Z

≤ 2
∞∑

i=n+1

〈ω(·, h)∗Qb, ei〉2H + 2
n∑

i=1

〈
b , Qω

(
ei,

(I − Pn)h

‖(I − Pn)h‖H

)〉2

Z

‖(I − Pn)h‖2H

≤ 2‖(I − Pn)ω(·, h)∗Qb‖2H + 2‖ω‖2H⊗H‖Qb‖2Z‖(I − Pn)h‖2H ,

where the above converges to 0. Thus, 〈b,Qω(PnBT , Pnh)〉Z → 〈b,Qω(BT , h)〉Z in
L2(Ω,R). Therefore, we may conclude that

〈a, PnBT + Pnh〉H
n→∞−−−→ 〈a,BT + h〉H〈

b,
1

2

∫ T

0

Qω(PnBt, Pn·)dBt +Qz +
1

2
Qω(PnBT , Pnh)

〉
Z

n→∞−−−→
〈
b,
1

2

∫ T

0

Qω(Bt, ·)dBt +Qz +
1

2
Qω(BT , h)

〉
Z
.

Or, in other words, 〈a, gPn,Q
T ·Q πPn,Q(h, z)〉H

n→∞−−−→ 〈a, gIW ,Q
T ·Q πIW ,Q(h, z)〉H and

〈b, gPn,Q
T ·Q πPn,Q(h, z))〉Z

n→∞−−−→ 〈b, gIW ,Q
T ·Q πIW ,Q(h, z))〉Z . Then if f is a bounded

continuous cylinder function, then it can be written as

f(·) = F (〈a1, ·〉H , . . . , 〈ak, ·〉H , 〈b1, ·〉Z , . . . , 〈bℓ, ·〉Z)

for some bounded continuous F : Rk+ℓ → C, a1, . . . , ak ∈ H, b1, . . . , bℓ ∈ Z. By
the above, we may deduce (〈a1, gPn,Q

T ·Q πPn,Q(h, z)〉H , . . . , 〈bℓ, gPn,Q
T ·Q πPn,Q(h, z)〉Z)

converges in L2(Ω,Rk+ℓ), which implies E[f(gPn,Q
T ·Q πPn,Q(h, z))]

n→∞−−−→ E[f(gIW ,Q
T ·Q

πIW ,Q(h, z)).

The proof for the second convergence pans out identically. For the third con-
vergence, Theorem 7.4 tells us

〈
b,
∫ T

0
Qmω(Bt, ·)dBt

〉
Z

converges in L2(Ω,R) to〈
b,
∫ T

0
ω(Bt, ·)dBt

〉
Z

, and we may compute

E
∣∣〈b, ω(Bt, h)〉Z − 〈b,Qmω(Bt, h)〉Z

∣∣2 =
∞∑
i=1

〈b, (I −Qm)ω(ei, h)〉2Z

≤ ‖ω‖2H⊗H‖(I −Qm)b‖2Z‖h‖2H .
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Then 〈b, gIW ,Qm

T ·Qm πIW ,Qm(h, z))〉Z
m→∞−−−→ 〈b, gT · (h, z)〉Z . As before, this implies

that, for any bounded continuous cylinder function f , E[f(gIW ,Qm

T ·Qm πIW ,Qm)]
m→∞−−−→

E[f(gT · (h, z))].
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8 Dimension-independent generalized curvature-
dimension inequality

We will review the differential operators that go into curvature-dimension inequalities,
proving that G satisfies such an inequality, and concluding with Theorem 8.4.

8.1 Defining the differential operators

We now redefine the differential operators involved in deriving generalized curvature-
dimension bounds. The bounds, inequalities, and derivatives need only be considered
for finite dimensions. As such, for the next 2 sections, we will fix projections P ∈
Proj(W ), Q ∈ Proj(C) such that span(Qω(PH × PH)) = QZ, and describe P - and
Q-dependent inequalities for functions defined on GP,Q.

As described in Section 2.3.2, for any F ∈ C∞(GP,Q) (meaning F a smooth func-
tion F : GP,Q → R) and element (h, z) ∈ PH ×QZ, we define

F ′(w, c)(h, z) = ∂(h,z)F (w, c) =
d

dt

∣∣∣
t=0
F ((w, c) + t(h, z)) ,

and
F ′′(w, c)((h1, z1)⊗ (h2, z2)) = ∂(h1,z1)∂(h2,z2)F (w, c) .

Recall that each group GP,Q has a Q-dependent product, namely ·Q , so our defini-
tions of “left-invariant” derivatives will also be Q-dependent. With this in mind, for
(h, z) ∈ PH×QZ, for this section, we will let (̃h, z) denote the unique (Q-dependent)
left-invariant differential operator satisfying (̃h, z)F (e) = ∂(h,z)F (e). More precisely,
we have

(̃h, z)F (w, c) = ∂(h,z+ 1
2
Qω(w,h))F (w, c) .

We now create notation for the differential operators introduced in (2.3). For any
F ∈ C∞(GP,Q), and given a basis {ei}ni=1 of PH, define the (P - and Q-dependent)
left-invariant Laplacian ∆F ∈ C∞(GP,Q) as

∆F (x) =
n∑

i=1

[
(̃ej, 0)

2

F
]
(x) .

For any F1, F2 ∈ C∞(GP,Q), define

Γ(F1, F2)(x) =
n∑

j=1

(
(̃ei, 0)F1

)
(x)
(
(̃ei, 0)F2

)
(x) .
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We remark that these are both independent of basis chosen. Then define

Γ2(F1, F2)(x) =
1

2

(
∆Γ(F1, F2)− Γ(F1,∆F2)− Γ(F2,∆F1)

)
.

We will also abbreviate Γ(F ) = Γ(F, F ) and Γ2(F ) = Γ2(F, F ). We may similarly
define, for a basis {fℓ}mℓ=1 of QZ,

ΓZ(F1, F2) =
m∑
ℓ=1

(
(̃0, fℓ)F1

)(
(̃0, fℓ)F2

)
ΓZ
2 (F1, F2) =

1

2

(
∆ΓZ(F1, F2)− ΓZ(F1,∆F2)− ΓZ(F2,∆F1)

)
,

which again will be independent of basis.

8.2 Generalized curvature-dimension bounds

The generalized bounds will be in terms of bωcH⊗H and ‖ω‖H⊗Z . To make good
use of these, we will state a useful interpretation of these constants. Firstly, given a
sequence of numbers (bℓ)∞ℓ=1, we may deduce the following bound from the discussion
in Section 5.2:

bωc2H⊗H

∞∑
ℓ=1

b2ℓ ≤
∞∑

i,j=1

( ∞∑
ℓ=1

〈ω(ei, ej), fℓ〉Zbℓ
)2

≤ ‖ω‖2H⊗H

∞∑
ℓ=1

b2ℓ .

Secondly, consider the trilinear map 〈ω(·, ·), ·〉Z : H × H × Z → R. Recall that the
assumption ‖ω‖H⊗Z <∞ implies that this map extends to a bilinear map H×H⊗Z.
Then, given sequences (ai,ℓ)i,ℓ and (bj)j,∣∣∣∣ ∞∑

i,j,ℓ=1

〈ω(ei, ej), fℓ〉Zai,ℓbj
∣∣∣∣ ≤ ‖ω‖H⊗Z

√√√√ ∞∑
i,ℓ=1

a2i,ℓ

√√√√ ∞∑
j=1

b2j .

If we assumed ω : H×H → Z was Hilbert-Schmidt, then one could write an inequality
for triply-indexed sequences ai,j,ℓ, namely

∣∣∣∣ ∞∑
i,j,ℓ=1

〈ω(ei, ej), fℓ〉Zai,j,ℓ
∣∣∣∣ ≤ ‖ω‖H⊗H⊗Z

√√√√ ∞∑
i,j,ℓ=1

a2i,j,ℓ ,

and this is what is essentially leveraged to derive the bounds in [BGM13]. However,
due to allowing dim(C) = ∞, such an inequality is not available to us. Nevertheless,
this section is devoted to showing that sufficient bounds still hold.

76



Lemma 8.1. For any F ∈ C∞(GP,Q),

bQωc2PH⊗PHΓ
Z(F ) ≤

n∑
i,j=1

( ˜(0, Qω(ei, ej))F
)2 ≤ ‖Qω‖2PH⊗PHΓ

Z(F ) .

Proof.
n∑

i,j=1

(
˜(0, Qω(ei, ej))F

)2
=

n∑
i,j=1

( m∑
ℓ=1

〈Qω(ei, ej), fℓ〉Z (̃0, fℓ)F
)2

≥ bQωc2PH⊗PH

m∑
ℓ=1

(
(̃0, fℓ)F

)2
= bQωc2PH⊗PHΓ

Z(F ) .

Thus, we have shown the lower bound. The proof for the upper bound is identical.
Lemma 8.2. For any smooth F ∈ C∞(GP,Q),

ΓZ
2 (F ) =

n∑
j=1

m∑
ℓ=1

(
(̃ej, 0)(̃0, fℓ)F

)2
and

n∑
i,j=1

(
(̃ei, 0)Q ˜(0, ω(ei, ej))F

)(
(̃ej, 0)F

)
≤ ‖Qω‖PH⊗QZ

√
Γ(F )

√
ΓZ
2 (F ) .

Proof. The first equality can be derived from the definition of ΓZ
2 (F ) and the fact

that (̃h, 0)(̃0, z)F = (̃0, z)(̃h, 0)F for any h ∈ H, z ∈ Z, which is shown in detail in
[BGM13].

For the inequality,
n∑

i,j=1

(
(̃ei, 0) ˜(0, Qω(ei, ej))F

)(
(̃ej, 0)F

)
=

n∑
i,j=1

m∑
ℓ=1

〈Qω(ei, ej), fℓ〉Z
(
(̃ei, 0)(̃0, fℓ)F

)(
(̃ej, 0)F

)

≤ ‖Qω‖PH⊗QZ

√√√√ n∑
j=1

(
(̃ej, 0)F

)2√√√√ n∑
j=1

m∑
ℓ=1

(
(̃ei, 0)(̃0, fℓ)F

)2
= ‖Qω‖PH⊗QZ

√
Γ(F )

√
ΓZ
2 (F ) .
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Theorem 8.3. For any ν > 0 and any F ∈ C∞(GP,Q),

Γ2(F ) + νΓZ
2 (F ) ≥

bQωc2PH⊗PH

4
ΓZ(f)−

‖Qω‖2PH⊗QZ

ν
Γ(F ) .

Proof. As shown in [BGM13],
n∑

i,j=1

(
(̃ei, 0)(̃ej, 0)F

)2
=

n∑
i,j=1

(
1

2

(
(̃ei, 0)(̃ej, 0)F + (̃ej, 0)(̃ei, 0)F

)
+

1

2

(
(̃ei, 0)(̃ej, 0)F − (̃ej, 0)(̃ei, 0)F

))2

= ‖∇2
PHF‖2 +

1

4

n∑
i,j=1

(
˜(0, Qω(ei, ej))F

)2
,

where
∇2

PHF :=
1

2

n∑
i,j=1

(̃ei, 0)(̃ej, 0)F + (̃ej, 0)(̃ei, 0)F

denotes the “symmetrized Hessian.” Then by Lemma 8.1,
n∑

i,j=1

(
(̃ei, 0)(̃ej, 0)F

)2
≥ 1

4

n∑
i,j=1

(
˜(0, Qω(ei, ej))F

)2
≥

bQωc2PH⊗PH

4
ΓZ(F ) .

And by Lemma 8.2,∣∣∣∣ n∑
i,j=1

(
(̃ei, 0) ˜(0, Qω(ei, ej))F

)
(̃ej, 0)F

∣∣∣∣ ≤ ‖Qω‖PH⊗QZ

√
Γ(F )

√
ΓZ
2 (F )

≤
‖Qω‖2PH⊗QZ

ν
Γ(F ) + νΓZ

2 (F ) .

Then

Γ2(F ) =
1

2

(
∆Γ(F )− 2Γ(F,∆F )

)
=

n∑
i,j=1

(
(̃ei, 0)(̃ej, 0)F

)2
+

n∑
i,j=1

(
(̃ei, 0) ˜(0, Qω(ei, ej))F

)
(̃ej, 0)F

≥
bQωc2PH⊗PH

4
ΓZ(F )−

‖Qω‖2PH⊗QZ

ν
Γ(F )− νΓZ

2 (F ) ,

which proves the claim.
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We also have the following relation:

Γ(F,ΓZ(F )) = ΓZ(F,Γ(F )) , (2.7)

which is immediately satisfied under our assumptions since every (̃h, 0) commutes with
every differential operator (̃0, z). As shown in [BGM13] and described in Theorem 5.1,
we have that (2.7) and Theorem 8.3 ultimately allows us to conclude that, for any
P ∈ Proj(W ), Q ∈ Proj(C), any F ∈ C∞(GP,Q), and any g ∈ GP,Q,∫

GP,Q

|F (x ·Q g)|dνP,QT (x)

≤ ‖F‖Lq′ (GP,Q,νP,Q
T ) exp

((
1 +

8‖Qω‖2PH⊗QZ

bQωc2PH⊗PH

)(1 + q)dP,Q(e, g)2

2T

)
. (2.8)

8.3 Quasi-invariance

Theorem 8.4. For all g ∈ GCM , νT is quasi-invariant with respect to the measurable
extensions of left- and right-multiplication, Lg and Rg : G→ G respectively. And for
all p ∈ (1,∞), the Radon-Nikodyn derivative satisfies7

∥∥∥∥d(νT ◦Rg)

dνT

∥∥∥∥
Lp(G,νT )

≤ exp
((

1 +
8‖ω‖2H⊗Z

bωc2H⊗H

)
(1 + p)d(e, g)2

2T

)
,

∥∥∥∥d(νT ◦ Lg)

dνT

∥∥∥∥
Lp(G,νT )

≤ exp
((

1 +
8‖ω‖2H⊗Z

bωc2H⊗H

)
(1 + p)d(e, g)2

2T

)
.

Proof. Let g = (h, z) ∈ GCM . Then choose any (Pn)n∈N ∈ Proj(W )↑, (Qm)m∈N ∈
Proj(C)↑. Consider that, for everym ∈ N, there exists an nm such that span(Qmω(PnmH×
PnmH)) = QmZ. This is because, by our Hörmander condition, ω̃(H ⊗ H) = Z, so
Qmω̃(H ⊗ H) = QmZ. Since

⋃
n∈N PnH is dense in H, we must have (Sn)n∈N :=(

Qmω̃(PnH ⊗ PnH)
)
n∈N is an increasing sequence of subspaces whose union is dense

in QmZ. Since QmZ is finite-dimensional, we must have Snm = QmZ for some
nm ∈ N.

Let p, q ∈ (1,∞) with 1
p
+ 1

q
= 1, and let f be a bounded continuous cylinder

function on G, which implies that f ◦ ιP,Q ∈ C∞(GP,Q) for any P ∈ Proj(W ), Q ∈
Proj(C). Then the finite-dimensional estimate (2.8) tells us that, for any m ∈ N,
r ≥ nm, and n ≥ r, πPr,Qmg ∈ GPn,Qm , and

7We provide a final reminder that these bounds will differ from those in [BGM13] due to our
definition of νT .
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∫
GPn,Qm

∣∣∣(f ◦ ιPn,Qm
)(
x ·Qm πPr,Qmg

)∣∣∣dνPn,Qm

T (x)

≤ ‖f ◦ ιPn,Qm‖Lp(GPn,Qm ,νPn,Qm
T )

× exp
((

1 +
8‖Qmω‖2PnH⊗QmZ

bQmωc2PnH⊗PnH

)
(1 + q)dPn,Qm(e, πPr,Qmg)2

2T

)
. (2.9)

We will use (2.9) to arrive at an infinite-dimensional estimate by first taking the
limit as n→ ∞, then r → ∞, and lastlym→ ∞. To take these limits, we apply Theo-
rem 7.5 for ‖f(x·QmπPr,Qmg)‖Lq′ (GPn,Qm ,νPn,Qm

T ) and ‖f‖Lp(GPn,Qm ,νPn,Qm
T ), Theorem 6.15

and Theorem 6.16 for dPn,Qm(e, πPr,Qmg), and Lemma 5.4 for bQmωc2PnH⊗PnH
. We also

remark that ‖Qmω‖PnH⊗QmZ ≤ ‖ω‖H⊗Z , and that our assumptions and Lemma 5.2
guarantee bQmωc2PnH⊗PnH

> 0. Putting it all together, this results in∫
G

∣∣f(x · g)∣∣dνT (x) ≤ ‖f‖Lp(G,νT ) exp
((

1 +
8‖ω‖2H⊗Z

bωc2H⊗H

)
(1 + q)d(e, g)2

2T

)
.

The remainder of this argument is identical to the reasoning provided in [BGM13],
included here for convenience. Since this holds for all bounded continuous cylinder
functions f : G→ R, it must hold for all f ∈ Lp(G, νT ) by density (see, for example,
[Dri10, Theorem 39.7]). Then, for g ∈ GCM , the linear functional φg defined on
bounded continuous cylinder functions as

φg(f) =

∫
G

f(x · g)dνT (x) =

∫
G

(f ◦Rg)(x)dνT (x) =

∫
G

f(x)d(νT ◦Rg−1)(x) (2.10)

has a continuous extension to φg : L
p(G, νT ) → R, still defined by (2.10), and satisfies

the bound ∣∣φg(f)
∣∣ ≤ ‖f‖Lp(G,νT ) exp

((
1 +

8‖ω‖2H⊗Z

bωc2H⊗H

)
(1 + q)d(e, g)2

2T

)
.

Then the Riesz representation theorem tells us Lp(G, νT )
∗ ∼= Lq(G, νT ), so there exists

Jr
g ∈ Lq(G, νT ) such that

φg(f) =

∫
G

f(x)Jr
g (x)dνT (x)

that satisfies

‖Jr
g‖Lq(G,νT ) = ‖φ‖Lp(G,νT )∗ ≤ exp

((
1 +

8‖ω‖2H⊗Z

bωc2H⊗H

)
(1 + q)d(e, g)2

2T

)
.
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Therefore, noting that d(e, g) = d(e, g−1), we have that d(νT ◦Rg)

dνT
exists, equals Jr

g ,
and satisfies the supposed Lq bound. We may arrive at the bound for d(νT ◦Lg)

dνT
by using

nearly identical analysis on expressions resembling
∫
G
|f(g · x)|dνT (x). Alternatively,

one can use right-translation invariance and make the observation that νT is invariant
under the map G 3 x 7→ −x ∈ G, and

∫
G
f(−(g · x))dνT (−x) =

∫
G
f(g−1 · x)dνT (x).
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Chapter 3

A Taylor isomorphism theorem

9 Introduction

In this chapter, we will discuss spaces of measurable holomorphic functions on infinite-
dimensional that are L2 with respect to the heat kernel measure. Naturally, given the
nature of this result, we remark to the reader that, unlike Chapter 2, one may have
to apply “complexification” to most of the foundational concepts, like dual spaces,
Hilbert space tensor products, abstract Wiener space, and Lie groups.

9.1 A brief history of Taylor isomorphisms on Lie groups

Below, we paraphrase introductory information provided in [Cec08] and [DGS09a].
Also see [GM96] for more overview. Let f : Cn → C be holomorphic. Then we may
reconstruct f from its Taylor coefficients using

f(z) =
∞∑
k=0

1

k!

∞∑
j1,...,jk=1

(
∂z1 . . . ∂zkf

)
(0) zj1 . . . zjk .

Let µt denote the standard Gaussian measure on C. Then if f is also assumed to be in
L2(Cn) (with respect to µt, then the monomials

{
tk

k!
zj1 . . . zjk

}
k∈Z,1≤jm≤n

constitute an
orthonormal set in L2(Cn), from which we may deduce that the series above converges
in L2 and

‖f‖2L2(Cn) =
∞∑
k=0

tk

k!

∞∑
j1,...,jk=1

∣∣∣(∂z1 . . . ∂zkf)(0)∣∣∣2 . (3.1)

Next, given any complex (finite-dimensional or infinite-dimensional separable)
Hilbert space H, let T (H) =

⊕∞
k=0H

⊗k be the tensor algebra on H, and T (H)′ its
algebraic dual. Then, given a basis {ej}j∈N ⊆ H, we may define a norm on T (H)′ as

‖α‖2T (H)′t
:=

∞∑
k=0

tk

k!

∞∑
j1,...,jk=1

∣∣α(ej1 ⊗ . . .⊗ ejk)
∣∣2 ,
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which is independent of basis chosen. Then (3.1) above demonstrates that the “Taylor
map” that sends f to the symmetric form α ∈ T (H)′ determined by

α(v1 ⊗ . . .⊗ vk) := ∂v1 . . . ∂vkf(0)

is an isometry with closed image with respect to the norm ‖ · ‖Tt(H)′ . This is the
essence of the Taylor isomorphisms first introduced by Fock [Foc28], later clarified by
Segal [Seg56; Seg62] and Bargmann [Bar67].

Such an isomorphism has been proven to hold in the Lie group context. Given
a complex n-dimensional Lie group G with Lie algebra g, a Hermitian inner prod-
uct 〈·, ·〉g : g × g → C with complex orthonormal set {ej}1≤j≤n naturally corre-
sponds to a real inner product under which {ej, iej}1≤j≤n is an orthonormal set,
which determines a heat kernel distribution on G. By considering holomorphic func-
tions on G and replacing the linear derivatives ∂v with the left-invariant derivatives
ṽf(g) := f(Lg∗v) =

d
dt

∣∣
t=0
f(g · tv), one can arrive at a similar isomorphism. There

were a series of papers that dealt with increasingly general assumptions, starting with
[Hal94] for compact complex Lie groups, eventually culminating in [DG97] for general
complex Lie groups with elliptic heat kernels. It wasn’t until [DGS09a] that this was
done for the subelliptic heat kernels, which removed the positive-definiteness from
the Hermitian inner product. In this setting, one requires the Hörmander condition
to be satisfied; see Section 9.4.1 for further discussion. A precise restatement of re-
sults from [DGS09a] for this context will be provided in Section 11.1.3. Related is
[DGS09b], in which an alternate proof of the surjectivity of the Taylor map is shown,
which remarkably extends to infinite dimensions as shown in Theorem 11.9.

Taylor isomorphisms of this nature have also been proven in a number of infinite-
dimensional group settings, including [Gor00a; Gor00b; Gor02; DG10] (all nonde-
generate). There are 2 papers that discuss infinite-dimensional results that are most
relevant to our context. The first is [Cec08], which proved a Taylor isomorphism for
the path space of a simply connected graded complex nilpotent Lie group, but again
for nondegenerate heat kernels. The second is [GM13], which, to the author’s knowl-
edge, is the only piece that shows a Taylor isomorphism for the subelliptic infinite-
dimensional setting aside from this work. However, it restricted itself to Heisenburg-
like groups, meaning step-2 nilpotent, and furthermore was “semi-infinite” in the
sense that the center was assumed finite-dimensional.

This work completes the train of thought. Many of these methods can be ad-
justed to elliptic settings, and path space will be a single example in our setting, so
this work can be viewed of as an extension of [Cec08]. On the other hand, one may
consider this work as taking [GM13] and simultaneously accounting for higher-step
and infinitely-many “vertical directions.” Therefore, our setup can be seen as encom-
passing both of these settings. The road to achieving the Taylor isomorphism is paved
with substantial original ideas and proofs.
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9.2 Overview of assumptions

We present here an overview of our setup, with the details present in Section 10. Sim-
ilarly to Chapter 2, in order to describe the Taylor isomorphism, we must introduce
3 spaces:

1. G, an abstract Wiener nilpotent Lie group with heat kernel distributed element
gt, satisfying (A3.3).

2. gCM , the Cameron-Martin subalgebra, with Lie bracket [·, ·], satisfying (A3.1)
and (A3.2).

3. GCM , the Cameron-Martin subgroup, with right-invariant metric d.

We first introduce gCM = H1 ⊕ . . . ⊕ HN , a complex Hilbert space and graded
nilpotent Lie algebra with Lie bracket [·, ·] : gCM×gCM → gCM . The graded structure
imposes that [Hm, Hn] ⊆ Hm+n (where, for convenience, we define Hn = 0 for n > N).
We also require the following technical assumption: for every 1 ≤ n < N , where
{en,j}j∈Λn is a basis of Hn,

sup
∥h∥Hn+1

=1

∑
j∈Λ1,k∈Λn

∣∣〈[e1,j, en,k], h〉Hn+1

∣∣2 < ∞ (A3.1)

inf
∥h∥Hn+1

=1

∑
j∈Λ1,k∈Λn

∣∣〈[e1,j, en,k], h〉Hn+1

∣∣2 > 0 . (A3.2)

These assumptions have interesting consequences; see Section 9.4.1 for further dis-
cussion.

The bracket gives rise to a group operation · : gCM × gCM → gCM , defined
by the Baker-Campbell-Hausdorff formula (which is, in this case, a finite sum, see
Section 2.3). In this way, we can regard gCM as a graded nilpotent Lie group, some-
times called exp(gCM) when emphasizing the group structure. For g ∈ exp(gCM),
let Lg : exp(gCM) → exp(gCM) denote the left multiplication map x 7→ g · x, which
naturally has as derivative Lg∗ : gCM → gCM (as in Section 2.3.2). Let AC de-
note the set of absolutely continuous paths σ : [0, 1] → exp(gCM), on which we
may define the length `(σ) =

∫ 1

0
‖Lσ(t)−1∗σ

′(t)‖gCM
dt. We say σ is horizontal if

Lσ(t)−1∗σ
′(t) ∈ H1 = H1 × 0 × . . . × 0 for all t ∈ [0, 1], and we denote the set of

such paths as ACh. Then for any h ∈ exp(gCM), we define the horizontal distance
from the origin as

d(e, g) = inf
{
`(σ)

∣∣∣ σ ∈ ACh , σ(0) = e , σ(1) = g
}
.

Then we define GCM = {g ∈ exp(gCM) | d(e, g) <∞}.
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We now define the finite-dimensional subgroups that will serve as approximations
to G. For a finite-rank projection P : gCM → gCM , define

GP = PH1 ⊕ span(([PH1, PH1])⊕ . . .⊕ span([PH1, . . . , [PH1, PH1] . . .]) ⊆ GCM .

This will be a group/algebra under the restricted multiplication/bracket, and by
definition will satisfy the Hörmander condition. We will naturally identify gP = GP ,
and denote the canonical inclusion map as ιP : GP → G.

Finally, we let G = W1 × . . . × WN be an infinite-dimensional complex graded
nilpotent abstract Wiener Lie group, which is an example of the notion that is intro-
duced in Section 3. First, we assume that each Hn is a dense subset of Wn, and that
(W1, H1) constitutes an abstract Wiener space. Given a Brownian motion (Bt)t≥0 on
(W1, H1), we may consider GP -valued Brownian motion (gPt )t≥0 as the solution to the
Stratonovich stochastic differential equation

δgPt = LgPt ∗δPBt gP0 = e .

Then the primary assumption on G is the following.

For some t > 0, there exists a G-valued random variable gt
such that, for every f ∈ G∗, there exists an increasing se-
quence of finite-rank projections {Pm}m∈N ∈ Proj(W )↑ such
that f(gPm

t ) → f(gt) in probability.

(A3.3)

The distribution of gt is called the heat kernel distribution). We will discuss this
condition and demonstrate some conclusions in Section 10.3, and we will provide
examples in Section 10.4.2. Note that G will indeed satisfy the definition in Section 3
for a nilpotent abstract Wiener Lie group, using X = gCM and XH = H1.

9.3 Statement of theorems

Similar to other infinite-dimensional Taylor isomorphisms, ours spans 3 different func-
tion spaces, which will now be described.

Let P denote the set of continuous holomorphic cylinder polynomials G → C,
which are linear combinations of monomials of the form

f1(·) . . . fk(·)

for some (complex-linear) f1, . . . , fk ∈ G∗. Then define HL2
t (G) as the closure of P

with respect to L2(G), equipped with the L2 inner product. Though, as remarked in
Section 11.1, these functions are not, strictly speaking, holomorphic.

Our second space will be denoted HL2
t (GCM), which can roughly be thought of as

the “L2 holomorphic functions on GCM .” However, this exact space will not be defined
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until Section 11.5.3. Standing in its place for most of this work will be HL2
t (
⋃

P G
P ),

the set of functions f :
⋃

P G
P → C for which f ◦ ιP : GP → C is in HL2

t (G
P ), the

L2 holomorphic functions on GP , under the norm

sup
P∈Proj(W1)

‖f ◦ ιP‖HL2
t (G

P ) .

In the event that
⋃

P G
P = GCM , there is no distinction between HL2

t (
⋃

P G
P ) and

HL2
t (GCM). Otherwise, it will be proven that every function in HL2

t (
⋃

P G
P ) has a

unique natural extension to GCM , defined in Theorem 11.23, where the set of such
extensions will constitute HL2

t (GCM).

Our third and final space will be an infinite-dimensional noncommutative Fock
space. Starting with the tensor algebra T (gCM) with algebraic dual T (gCM)′, let
J(gCM) the 2-sided ideal of T (gCM) generated by v ⊗ w − w ⊗ v − [v, w]. Then let
J(gCM)0 be the backwards anihilator of J(gCM), that is,

J0(gCM) = {α ∈ T (gCM)′ : 〈α, v〉 = 0 ∀v ∈ J(gCM)} .

Then, for α ∈ J0(gCM), and a basis {ej}j∈N ⊆ H1, define the norm

‖α‖J0
t (gCM ) =

∞∑
k=0

tk

k!

∞∑
j1,...,jk=1

|〈α, ej1 ⊗ . . .⊗ ejk〉|2 .

Then we may define J0
t (gCM) = {α ∈ J0(gCM) : ‖α‖J0

t (gCM ) <∞}.

The subelliptic Taylor isomorphism, which is stated in its final form in Theo-
rem 11.23, will take the form of the composition of the maps R and T , illustrated
below.

HL2
t (G)

R−−−−→ HL2
t (GCM)

T−−−−→ J0
t (gCM) .

The first map, R, will be an extension of restriction, P 3 f 7→ f |GCM
∈ HL2

t (GCM).
The second map, T , will be an extension of the Taylor map, so that T f(h1⊗. . .⊗hk) =
h̃1 . . . h̃kf(e). Both of these maps will be isometric isomorphisms. Furthermore, the
composition T ◦ R is unitary.

There are other facts that will be proven along the way. For example, in Sec-
tion 11.5, we will provide expressions for inverting the maps R and T , including a
way in which we have Taylor expansions for functions in HL2

t (G) and HL2
t (GCM).

9.4 Further discussion

9.4.1 The Hörmander condition

Recall from Section 2.3.3 that, given a (real finite-dimensional) Lie group G and a
heat kernel with corresponding real inner-product q, and an associated real basis
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{xj}1≤j≤n ⊆ g orthonormal with respect to q, the Hörmander condition is satisfied
when

span{xj1 , [xj1 , xj2 ] , [[xj1 , xj2 ], xj3 ] , . . .}nj1,...,jn=1 = g ,

and a result by Hörmander [Hör67] implies that the corresponding heat kernel density
is strictly positive and smooth.

Throughout this work, as stated above, we make use of a generalized Hörmander
condition (referred to as our Hörmander condition). As explained in Section 10.1
(using methods in Proposition 2.4), (A3.1) implies that the restrictions of the Lie
bracket [·, ·]|H1×Hn : H1 × Hn → Hn+1 have continuous extensions to the Hilbert
space tensor product [·]|H1⊗Hn : H1 ⊗ Hn → Hn+1, and (A3.2) implies that these
extensions are surjective. In Theorem 10.1, it will be proven that this is equivalent
to the surjectivity of the extensions of the compositions [. . . [·, ·], . . . , ·] : Hn

1 → Hn to
H⊗n

1 7→ Hn. This certainly resembles the Hörmander condition in finite-dimensions,
as it is consistent with the idea that H1 generates gCM as a Lie algebra. It will be
seen that this condition serves a similar role to that the Hörmander condition played
in [DGS09a] and [GM13], like showing that ‖ · ‖J0

t (gCM ) is a genuine norm.

9.4.2 The Cameron-Martin subalgebra and subgroup

The comments regarding gCM and GCM made in Section 4.2.2 can be once again made
here. Our Hörmander condition allows us to recognize that gCM is the Lie algebra
generated by H1, the Cameron-Martin subspace of W1. Meanwhile, the generalized
Baker-Campbell-Hausdorff formula (Theorem 2.6, or [Str87]) suggests that GCM can
be thought of as the group generated by H1. But, in general, gCM 6= GCM (see
Example 6.10). However, there will be some discussion in which we regard elements
in gCM as corresponding to left-invariant vector fields on GCM , see Section 11.3. Of
course, the Taylor map itself presents a connection between these spaces by showing
that HL2

t (GCM) and J0
t (gCM) are isomorphic.

9.4.3 Further directions

One could consider a “partially degenerate” diffusion, where the diffusion is par-
tially generated by some directions on higher-step strata. Also, with the exception
of surjectivity, many of these results should hold if the graded structure is removed,
though it may take some reworking to prove theorems regarding horizontal distance
approximations. To mimic the argument presented here, it would be critical to show
that the weak-limit of horizontal paths is again horizontal, though this could perhaps
be shown by justifying that horizontal paths correspond to paths whose line integral
against a “vertical-valued vector field” is always 0, and showing this criterion is closed
under weak limits.
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Removing the nilpotency assumption opens many more questions. In addition to
requiring new approaches to defining the heat kernel measure on G and taming an
even less well-behaved horizontal distance on GCM , one will have to propose an even
more general infinite-dimensional Hörmander condition for gCM . One possibility is
the following: there exist constants 0 < c ≤ C <∞ such that, given an orthonormal
basis {ej}∞j=1 of H1, for any h ∈ gCM ,

c‖h‖2gCM
≤

∞∑
n=1

∞∑
j1,...,jn=1

∣∣∣〈[ej1 , . . . , [ejn−1 , ejn ] . . .], h
〉
gCM

∣∣∣2 ≤ C‖h‖2gCM

This is equivalent to assuming that the continuous linear map between Hilbert spaces⊕̃∞
n=1H

⊗n
1 −→ gCM

(h1 , h2 ⊗ h3 , h4 ⊗ h5 ⊗ h6, . . .) 7−→ h1 + [h2, h3] + [h4, [h5, h6]] + . . .

is continuous and surjective, where
⊕̃∞

n=1H
⊗n
1 denotes the Hilbert space direct sum,

or `2 sum, of the H⊗n
1 s1.

1The sum
⊕̃∞

n=1H
⊗n
1 is necessarily a Hilbert space, in contrast to our definition of the tensor

algebra T (H1) =
⊕∞

n=0 H
⊗n
1 used in this work, which uses an algebraic direct sum, as described in

Section 11.1.
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10 Brackets, Geometry, Stochastics

This section is devoted to listing our assumptions and providing examples, providing
far more details than those in Section 9.2. Firstly, in Section 10.1, we introduce the
Cameron-Martin subalgebra gCM , on which the Lie bracket has structured assump-
tions, along with discussion of our Hörmander condition. Secondly, in Section 10.2,
we will define GCM , the Cameron-Martin subgroup, which carries the geometric in-
formation of our setup. Lastly, in Section 10.3, we will describe G the ambient space
on which our stochastic process will exist.

10.1 Brackets: the Cameron-Martin Subalgebra

We let gCM be a complex Hilbert space with Hermitian inner product 〈·, ·〉gCM
, and

is also a complex nilpotent Lie algebra, meaning that it has a nilpotent Lie bracket
[·, ·] : gCM × gCM → gCM , as defined in Section 2.3 that is complex bilinear.

We assume that gCM is graded, meaning that it has an orthogonal decomposition
gCM = H1 ⊕ . . . ⊕ HN in which [Hm, Hn] ⊆ Hm+n (we say Hn = 0 for n > N). We
denote the restrictions of [·, ·] as [·, ·]m,n := [·, ·]|Hm×Hn : Hm ×Hn → Hm+n, and will
sometimes refer to them as (m,n) brackets. For a = (a1, . . . , aN), b = (b1, . . . , bN) ∈
gCM , we may compile the (m,n) brackets into the full bracket [·, ·] as

[a, b] =
N∑

m,n=1

[am, bn]m,n .

The rest of this section will prove facts and equivalences of certain conditions on
[·, ·]. We will summarize our full set of assumptions of [·, ·] at the end of this section.
Of critical relevance is the notion of a multilinear map being weakly Hilbert-Schmidt,
as defined in Proposition 2.4. The extension of a bracket [·, ·] to the tensor product
will sometimes simply be denoted as [·].

Theorem 10.1. Assuming that the (1, n)-brackets [·, ·]1,n : H1 × Hn → Hn+1 are
weakly Hilbert-Schmidt (and thus have an extension to H1 ⊗Hn) for all 1 ≤ n ≤ N ,
then

1. the iterated (1, n)-brackets [·, . . . , [·, ·]1,1 . . .]1,n−1 : H1×. . .×H1 → Hn are weakly
Hilbert-Schmidt.

2. all the (1, n)-brackets have surjective extensions if and only if all the iterated
(1, n)-brackets have surjective extensions.
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Proof. If B : K1 × K2 → K3 and C : K4 × K3 → K5 are weakly Hilbert-Schmidt
bilinear maps on Hilbert spaces, then consider the composition of maps determined
by

K4 ⊗K1 ⊗K2 3 a⊗ b⊗ c 7→ a⊗ B(b, c) 7→ C(a,B(b, c)) ∈ K5 ,

from which we see that, using ·̃ to denote extensions to tensor products, ˜C(·, B(·, ·)) =
C̃ ◦ (I ⊗ B̃). Then this composition will be continuous on the tensor product K4 ⊗
K1 ⊗K2.

Then observe that the extension of [·, . . . , [·, ·]1,1 . . .]1,n−1 to H⊗n
1 can be realized

as
[·]1,n−1 ◦ (I ⊗ [·]1,n−2) ◦ . . . ◦ (I ⊗ . . .⊗ I ⊗ [·]1,1) .

We note that a function f is surjective if and only if I ⊗ f is surjective. This fact,
along with induction, will justify both points.

Theorem 10.2. Assuming that the iterated 1-brackets [·, . . . , [·, ·]1,1 . . .]1,n−1 : H1 ×
. . .×H1 → Hn are weakly Hilbert-Schmidt with surjective extension for all 2 ≤ n ≤ N ,
then we have

1. all (m,n)-brackets [·, ·]m,n : Hm × Hn → Hn+m (and iterations thereof) are
weakly Hilbert-Schmidt.

2. the compiled bracket [·, ·] : H × H → H (and iterations thereof) is weakly
Hilbert-Schmidt.

Proof. Note that the previous proof justifies that all types of iterated brackets will
be weakly Hilbert-Schmidt, provided that we prove the (m,n) brackets and compiled
bracket are weakly Hilbert-Schmidt.

First consider that, since the bracket [·, ·] is assumed to satisfy anti-symmetry and
the Jacobi property, then its extension [·] to gCM ⊗ gCM must satisfy corresponding
properties. With this in mind, for a ∈ Hm, b ∈ Hn, if

[∑∞
j=1 cj ⊗ dj

]
1,m−1

= a, then
by the Jacobi identity,

[a, b]m,n =

[[ ∞∑
j=1

cj ⊗ dj

]
1,m−1

, b

]
m,n

= −
∞∑
j=1

[
[dj, b]m−1,n, cj

]
m+n−1,1

−
∞∑
j=1

[
[b, cj]n,1, dj

]
n+1,m−1

=
∞∑
j=1

[
cj, [dj, b]m−1,n

]
1,m+n−1

−
∞∑
j=1

[
dj, [cj, b]1,n

]
m−1,n+1

,
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which can be realized as a sum of a composition of brackets of lower index. Indeed,
set R : H1 ⊗Hm−1 ⊗Hn → Hm−1 ⊗H1 ⊗Hn to be the canonical isomorphism, and
let φn : Hn → H1 ⊗ Hn−1 be a one-sided inverse of [·]1,n−1 (so that [·]1,n−1 ◦ φn =
IHn , existence is guaranteed by the assumed surjectivity; we provide more details for
similar maps in the proof of Theorem 11.2). Then taking

∑
j cj ⊗ dj = φn(a), the

equation above means

[·,·]m,n = [·]1,m+n−1 ◦ (I ⊗ [·]m−1,n) ◦
(
φn ⊗ I

)
− [·]m−1,n+1 ◦ (I ⊗ [·]1,n) ◦R ◦

(
φn ⊗ I

)
.

So ultimately, [·, ·]1,n and [·, ·]m−1,n being weakly Hilbert-Schmidt for all n implies that
[·, ·]m,n is weakly Hilbert-Schmidt for all n, so the first point follows by induction. The
second point follows by the fact that the compiled bracket is a sum of brackets of the
form [·, ·]m,n.

For the remainder of this paper, we will assume that (gCM , [·, ·]) is a complex
graded nilpotent Lie algebra, and that the (1, n)-brackets [·, ·]1,n satisfy the following
assumptions: for all 1 ≤ n < N , we assume {en,j}j∈Λn is a basis for Hn, and

sup
∥h∥Hn+1

=1

∑
j∈Λ1,k∈Λn

∣∣〈[e1,j, en,k]1,n, h〉Hn+1

∣∣2 < ∞ (A3.1)

inf
∥h∥Hn+1

=1

∑
j∈Λ1,k∈Λn

∣∣〈[e1,j, en,k]1,n, h〉Hn+1

∣∣2 > 0 . (A3.2)

Using results from Proposition 2.4, we see that (A3.1) is equivalent to the (1, n)
brackets being weakly Hilbert-Schmidt, and (A3.2) tells us that the extension to the
tensor product is surjective onto Hn+1. The results in this section demonstrate that
this is equivalent to assuming that every iterated (1, n)-bracket [·, . . . , [·, ·]1,1, . . .]1,n is
weakly Hilbert-Schmidt with surjective extension onto Hn+1, or equivalently that the
iterated (1, n) brackets have similar finite, nonzero constants.
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10.2 Geometry: group structures and the Cameron-Martin
subgroup

One goal of this section is to describe the different group structures the lie in gCM ,
including exp(gCM) and finite-dimensional approximations exp(gP ) = GP . Most
of this section will be dedicated to defining and describing GCM , which satisfies
GP ⊆ GCM ⊆ exp(gCM), and is the critical geometric object of study in this work.
Importantly, in this section, we will prove Theorem 10.11 , which shows that the
geometric structure of GCM is well-approximated by the finite-dimensional subgroups
GP .

Many of the definitions, notions, and theorems will be similar to those in Section 6,
but both the increased step and the nature of the result we must prove requires
different methods. Thus, we will not rely on Section 6, and we instead provide
Section 10.2 as an essentially self-contained section.

10.2.1 Introducing group structures

First off, recall from Section 2.3 that we may view the Lie algebra gCM as being equal
to its own corresponding simply connected Lie group exp(gCM) by defining a group
operation through the Baker-Campbell-Hausdorff formula, (1.2).

Let Proj(H1) denote the set of finite-rank projections P : H1 → H1. Then for
P ∈ Proj(H1), we define

gP = PH1 ⊕ span([PH1, PH1])⊕ . . .⊕ span([PH1, . . . , [PH1, PH1] . . .]) .

In other words, gP is the Lie algebra generated by PH1. This too can be realized
as a simply connected nilpotent Lie group, written as exp(gP ), or more often GP , to
emphasize the group structure. By definition, this group will satisfy the Hörmander
condition, as mentioned in Section 9.4.1.

Let C1 = C1([0, 1], exp(gCM)) donote the set of continuously differentiable paths in
exp(gCM) = gCM , on which we may define the length `(σ) =

∫ 1

0
‖Lσ(t)−1∗σ

′(t)‖gCM
dt.

We say σ is horizontal (or “admissible” as it appears in sub-Riemannian geometry
literature) if Lσ(t)−1∗σ

′(t) ∈ H1 = H1 × 0× . . .× 0 for all t ∈ [0, 1], and we denote the
set of horizontal C1 paths as C1

h.

For g1, g2 ∈ gCM , we define the horizontal distance as

d(g1, g2) = inf
{
`(σ) | σ ∈ C1

h, σ(0) = g1, σ(1) = g2} .

Then we define GCM as

GCM := {g ∈ gCM : d(e, g) <∞} .

92



Then we have

Proposition 10.3.

1. We let δα : G → G denote the natural dilation on exp(gCM), so for g =
(g1, . . . , gN) ∈ exp(gCM), δα(g) = (αg1, α

2g2, . . . , α
NgN). Then, for any g =

(g1, . . . , gN) ∈ GCM , α ∈ C,

d(e, δαg) = d(e, (αg1, α
2g2, . . . , α

NgN)) = |α| d(e, g) .

2. For all g1, g2, a ∈ GCM , d(g1, g2) = d(g1 · a, g2 · a).

3. d is a metric on GCM .

Proof (sketch). A curve is horizontal if and only if

Lσ(t)−1∗σ
′(t) =

d

ds

∣∣∣∣
s=0

(
− σ(t) · (s σ′(t))

)
∈ H1 .

Then Proposition 10.3 will follow from the fact that many operations on horizontal
curves will still be horizontal. For the first point, we may pointwise-apply δα to
produce a horizontal curve whose length is |α|-times longer. For the second, we may
pointwise multiply a horizontal curve by an element in GCM to produce one of equal
length. We may also “reverse” a horizontal path and concatenate 2 horizontal paths
(perhaps after a C1 reparametrization, if necessary) to deduce the symmetric and
transitive properties of d. The reader may review the proof of Proposition 6.1 for
more explicit calculations of this sort.

Define dP as the horizontal distance on GP , meaning

dP (h1, h2) = inf{`(σ) | σ[0, 1] → GP horizontal, σ(0) = h1, σ(1) = h2} .

That dP is always finite on GP will follow by the references above. However, using
the graded Lie group structure, we will show that this holds with “bare hands.”

Proposition 10.4. For all P ∈ Proj(W1), dP is finite on GP . In particular, we
have GP ⊆ GCM .

Proof (sketch). First note that elements of the form h = (h, 0, . . . , 0) ∈ PH1 × 0 ×
. . . × 0 have dP (e, h) = ‖h‖H1 by using the horizontal straight-line path from the
origin, that is, σ(t) = th. We also note that, using the properties in Proposition 10.3,
for all g1, g2 ∈ gCM , dP (e, g2 · g1) ≤ dP (e, g1) + dP (g1, g2 · g1) = dP (e, g1) + dP (e, g2).
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Thus, the proof reduces to showing that all elements in GP can be written as a finite
product of elements in PH1. This is ultimately a consequence of PH1 generating GP

as a Lie algebra.

Indeed, let h = (h1, . . . , hN). Suppose that we have a finite product g1 · . . . · gk =
(h1, . . . , hn−1, zn, . . . , zN) ∈ GP , for some zj ∈ Hj (we see from the preceding para-
graph that this is true for n = 2). Then, by the definition of GP , hn − zn ∈
span([. . . [PH1, PH1], . . . , PH1]), so there exists a finite collection {am,j}m∈Λ,1≤j≤n ⊆
PH1 where hn − zn =

∑
m∈Λ[. . . [am,1, am,2], . . . , am,n]. Then am,1 · am,2 · a−1

m,1 · a−1
m,2 =

(0, [am1 , am2 ], . . .). Similarly, we may take a product in {am,j, a
−1
m,j}m∈Λ,1≤j≤n to pro-

duce an element of the form g = (0, . . . , 0, hn − zn, . . .). Then g1 · . . . · gk · g =
(h1, . . . , hn−1, hn, z

′
n+1, . . . , z

′
N) is also a product of elements in PH1, for some z′j ∈ Hj.

We may iteratively repeat this procedure to produce a product in PH1 equal to our
initial h.

We can immediately deduce that the inclusions (GP , dP ) ↪→ (GCM , d) are contin-
uous, since d(h1, h2) ≤ dP (h1, h2).

10.2.2 Weakly Hilbert-Schmidt integral maps

A few of the results and proofs will closely resemble those in Section 6, but we will
repeat them here for convenience. We define the “integral” map I : L2([0, 1],C) →
L2([0, 1],C) as If(t) =

∫ t

0
f(s)ds. Then I indeed maps to L2([0, 1],C) and is bounded

linear (and in fact Hilbert-Schmidt).

Lemma 10.5. The bilinear map Z : L2([0, 1],C)×L2([0, 1],C) → L2([0, 1],C) defined
as Z(A1, A2)(t) = IA1(t)A2(t) is weakly Hilbert-Schmidt.

Proof. Let f ∈ L2([0, 1], H). Then use {e2πikt}k∈Z as an orthonormal basis of L2([0, 1],C).
Then
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∞∑
k=−∞

∞∑
ℓ=−∞

∣∣∣〈f(t), I(e2πikt) e2πiℓt〉
L2([0,1],C)

∣∣∣2
=

∞∑
k=−∞

∞∑
ℓ=−∞

∣∣∣〈f(t)I(e2πikt), e2πiℓt〉
L2([0,1],C)

∣∣∣2
=

∞∑
k=−∞

∥∥∥f(t)I(e2πikt)∣∣∣|2L2([0,1],C)

=
∑
k ̸=0

1

k2

∥∥∥f(t)(e−2πikt − 1)
∥∥∥2
L2([0,1],C)

+
∥∥∥tf(t)∥∥∥2

L2([0,1],C)

≤
∞∑

k=−∞

4

k2
‖f‖2L2([0,1],C) + ‖f‖L2([0,1],C)

≤ K‖f‖2L2([0,1],C) ,

which proves the claim.

Recall that we define H0([0, 1],C) in Section 2.1.4 as the set of finite-energy paths
in C, meaning functions f : [0, 1] → C such that

∫ 1

0
|f ′(t)|2dt < ∞, which has a

natural norm and inner product structure.

Lemma 10.6. The bilinear map S2 : H0([0, 1],C) × H0([0, 1],C) → H0([0, 1],C)
defined as S2(A,B)(t) =

∫ t

0
A(s)B′(s)ds is weakly Hilbert-Schmidt.

Proof. By the definition of 〈·, ·〉H0([0,1],C), we see that I : L2([0, 1],C) → H0([0, 1],C)
is an isomorphism. Then the map S2 is precisely Z from Lemma 10.5 under the
identification L2([0, 1],C) I−→ H0([0, 1],C).

Lemma 10.7. For a multilinear map M : K1 ⊗ . . . ⊗Kn → K, we may define the
continuous map M : H0([0, 1], K1) ⊗ . . . ⊗ H0([0, 1], Kn) → H0([0, 1], K) on simple
tensors as

M(A1 ⊗ . . .⊗ An)(t) =

∫
∆n

t

M(A′
1(s1), . . . , A

′
n(sn))ds , (3.2)

where ∆n
t = {s ∈ [0, 1]n : 0 < s1 < . . . < sn < t}

Proof. First note that, by Lemma 10.6, we have the weakly Hilbert-Schmidt map
S2 : H0([0, 1],C)⊗2 → H0([0, 1],C) given by S2(f1, f2)(t) =

∫ t

0
f1(s2)f

′
2(s2)ds2 =∫ t

0

∫ s2
0
f ′
1(s1)f

′
2(s2)ds1ds2 =

∫
∆2

t
f ′
1(s1)f

′
2(s2)ds. Then we inductively define

Sk : H0([0, 1],C)k → H0([0, 1],C)
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as

Sk(f1, . . . , fk)(t) := S2

(
Sk−1(f1, . . . , fk−1) , fk

)
(t)

=

∫ t

0

Sk−1(f1, . . . , fk−1)(s)f
′
k(s)ds .

Then letting ·̃ denote the extension to the tensor product, we see that if Sk−1 has an
extension S̃k−1, then so does Sk, since Sk(f1, . . . , fk) = S̃2 ◦ (S̃k−1 ⊗ I)(f1 ⊗ . . . ,⊗fk),
from which we apply induction to deduce that Sk must extend continuously to
H0([0, 1],C)⊗k for all 2 ≤ k ≤ n. Note that we can also write

Sk(f1, . . . , fk)(t) =

∫ t

0

(∫
∆k−1

sk

(f ′
1(s1) . . . f

′
k−1(sk−1))ds1 . . . dsk−1

)
f ′
k(sk)dsk

=

∫
∆k

t

f ′
1(s1) . . . f

′
k(sk)ds .

Now define M : H0([0, 1],C)⊗n ⊗ (K1 ⊗ . . . ⊗ Kn) → H0([0, 1],C) ⊗ K as M =
Sn ⊗M . Then, for f1, . . . , fn ∈ H0([0, 1],C) and xk ∈ Kk, expressions of the form
f1⊗ . . .⊗fn⊗x1⊗ . . .⊗xn constitute simple tensors in H0([0, 1],C)⊗n⊗K1⊗ . . .⊗Kn,
and we have

M(f1 ⊗ . . .⊗ fn ⊗ x1 ⊗ . . .⊗ xn) =

(∫
∆n

t

f ′
1(s1) . . . f

′
n(sn)ds

)
M(x1, . . . , xn)

=

∫
∆n

t

M
(
(x1f1)

′(s1) . . . (xnfn)
′(sn)

)
ds . (3.3)

As discussed in Section 2.1.4, H0([0, 1], K) ∼= H0([0, 1],C) ⊗K and H0([0, 1], Kn) ∼=
H0([0, 1],C) ⊗ Kn for all n. Then under this identification, we may realize M :
H0([0, 1], K1)⊗ . . .⊗H0([0, 1], Kn) → H0([0, 1], K), and by (3.3), our definition of M
will satisfy (3.2).

10.2.3 Horizontal paths

Theorem 10.8. A horizontal path σ ∈ C1
h with σ(0) = e necessarily takes on the

form, for some C1 path A : [0, 1] → H1,

σ(t) =
N∑

n=1

∑
σ∈Sn

cσ

∫
∆n

T

[. . . [A′(tσ(1)), A
′(tσ(2))], . . . , A

′(tσ(n))] , (3.4)

where the coefficients cσ are defined in Theorem 2.6. Moreover, `(σ) =
∫ 1

0
‖A′(s)‖H1ds.
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Proof. The horizontal criterion imposes Lσ(t)−1∗σ
′(t) ∈ H1. And for g ∈ gCM and

x ∈ gCM , recall from Section 2.3 that

Lg∗x = c1x+ c2[g, x] + c3[g, [g, x]] + . . .

Then, using the graded structure of gCM , we can deduce that Lσ(t)−1∗σ
′(t) = c1σ

′(t)+
c2[−σ(t), σ′(t)]+ . . . has, as its H1 component, σ′

1(t). By the horizontal condition, we
must have Lσ(t)−1∗σ

′(t) = σ′
1(t).

Now set A = σ1, which is necessarily C1. Then Lσ(t)−1∗σ
′(t) = A′(t), or σ′(t) =

Lσ(t)A
′(t). Then by Theorem 2.6, we must have that (3.4) holds.

Furthermore, `(σ) =
∫ 1

0
‖Lσ(s)−1∗σ

′(s)‖gCM
ds =

∫ 1

0
‖A′(s)‖H1ds.

Lemma 10.7 and Theorem 10.8 will come together to give us the following.

Corollary 10.9. There exist multilinear maps νk : H0([0, 1], H1)
k → H0([0, 1], Hk)

such that every horizontal path σ : [0, 1] → gCM with σ(0) = e can be expressed as

σ(t) = ν(A)(t) : =
(
ν1(A)(t), ν2(A,A)(t), . . . , νN(A, . . . , A)(t)

)
∈ H1 ×H2 × . . .×HN = gCM = exp(gCM) ,

where ν1A = A, and each νk is weakly Hilbert-Schmidt and extends to H0([0, 1], H1)
⊗k.

And we may realize d as

d(e, h) = inf
{
`(A) | A : [0, 1] → H1 is C1, A(0) = 0, νA(1) = h

}
= inf

{
‖A‖H0([0,1],H1) | A ∈ H0([0, 1], H1), νA(1) = h

}
.

Proof. Using (3.4) and keeping the graded structure in mind, we need only assign

νn(A1, . . . , An)(t) :=
∑
σ∈Sn

cσ

∫
∆n

t

[. . . [A′
1(tσ(1)), A

′
2(tσ(2))], . . . , A

′
n(tσ(n))] .

Then Theorem 10.8 tells us that any horizontal path σ : [0, 1] → gCM can be realized
as σ = (ν1(A), . . . , νN(A, . . . , A)) when A = σ1, and Lemma 10.7 tells us that each
νn is weakly Hilbert-Schmidt.

As for the last remark, we know that, by Holder’s inequality, `(σ) =
∫ 1

0
‖A′(s)‖H1ds ≤√∫ 1

0
‖A′(s)‖2H1

ds. We also have that these are equal when A is parametrized by ar-
clength. Such a reparemetrization does not change the endpoints of νA, which can
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be observed by demonstrating that this holds for S2. Indeed, for any increasing C1

bijection φ : [0, 1] → [0, 1] ,

S2(A ◦ φ,B ◦ φ)(t) =

∫ t

0

A(φ(s))B′(φ(s))φ′(s)ds

=

∫ ϕ(t)

0

A(u)B′(u)du =
(
S2(A,B) ◦ φ

)
(t) .

Lastly, consider that the set of C1 paths in H1 is dense in H0([0, 1], H1) (in the same
way that the set of continuous functions are dense in L2([0, 1], H)). This completes
the proof.

As remarked in Section 6, nice continuity properties are not always exhibited
by general multilinear maps, but the components of ν are bounded linear maps on
tensor powers of H1. This allows us to conclude that ν will have certain continuity
properties that bounded linear maps enjoy, such as respecting weak convergence. The
next lemma uses this (and only this) to illustrate 3 specific properties that will be
used in Theorem 10.11. This is just a matter of proving properties of linear maps;
there is nothing else special about ν being used here.

For this lemma and the theorem to follow, we will abbreviate H0 := H0([0, 1], H1).

Lemma 10.10 (Continuity of ν).

1. If Am converges weakly to A in H0, then νAm(1) converges weakly to νA(1) in
gCM .

2. If Am converges in norm to A in H0, then νAm(1) converges in norm to νA(1)
in gCM .

3. If ‖Am −Bm‖H0

m→∞−−−→ 0 and νAm(1) weakly converges to some g ∈ gCM , then
νBm(1) must also weakly converge to g.

Proof. For the first point, consider that the set of finite sums of simple tensors in H⊗n
1

forms a dense set, and that for any simple tensor α ∈ H⊗n
1 , 〈α, (Am)

⊗n〉H⊗n
1

m→∞−−−→
〈α,A⊗n〉H⊗n

1
. And (Am)

⊗n is bounded in H⊗n
1 . Then, by Proposition 2.2, we must

have (Am)
⊗n → A⊗n weakly in H⊗n

1 . Since each νn : H⊗n
0 ([0, 1], H1) → H0([0, 1], Hn)

is linear continuous, and as is point evaluation H0([0, 1], Hn) 3 f 7→ f(t) ∈ C (see
Section 2.1.4), then each νn(A⊗n

m ) converges weakly to νn(A⊗n), so that νAm converges
weakly to νA, and νAm(1) converges weakly to νA(1).
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The proof of the second point is similar. If Am → A, then

‖A⊗n
m − A⊗n‖H⊗n

0

≤ ‖A⊗n
m − A⊗(n−1)

m ⊗ A‖H⊗n
0

+ ‖A⊗(n−1)
m ⊗ A− A⊗n‖H⊗n

0

= ‖Am‖n−1
H0

‖Am − A‖H0 + ‖A⊗(n−1)
m − A⊗(n−1)‖H⊗(n−1)

0
‖A‖H0 .

so by remarking that the sequence Am is bounded and applying induction, we may
deduce A⊗n

m → A⊗n, from which we can conclude νAm(1) converges in norm to νA(1).

For the third point, if ‖Am − Bm‖H0 → 0, then, arguing similarly to the above,
‖(Am)

⊗n − (Bm)
⊗n‖H⊗n

0
→ 0 for all 1 ≤ n ≤ N , so by the continuity of ν, ‖νAm(1)−

νBm(1)‖gCM
→ 0. Then for any f ∈ g∗CM , |f(νAm(1))−f(νBm(1))| ≤ ‖f‖g∗CM

‖νAm(1)−
νBm(1)‖gCM

→ 0. Thus, the convergence of f(νAm(1)) implies the convergence of
f(νBm(1)), so νBm(1) must weakly converge.

Theorem 10.11. Let g ∈ GCM . Then there exists a sequence (Pm)m ∈ Proj(W1)
↑

and gm ∈ GPm such that

1. gm
m→∞−−−→ g in ‖ · ‖gCM

.

2. dPm(e, gm)
m→∞−−−→ d(e, g).

Proof. Recall that we abbreviate H0([0, 1], H1) as H0, and we also write H0([0, 1], PH1)
as PH0 for P ∈ Proj(W1). Since g ∈ GCM , we may choose Am ∈ H0 such that
νAm(1) = g, and such that

d(e, g) ≤ ‖Am‖H0 ≤ d(e, g) +
1

m
.

For every m ∈ N, choose Pm ∈ Proj(W1) such that (Pm)m∈N ∈ Proj(W1)
↑ and

‖PmAm − Am‖H0 <
1
m

. Now for each m, choose Bm ∈ PmH0 such that νBm(1) =
νPmAm(1), and

dPm(e, νPmAm(1)) ≤ ‖Bm‖H0 ≤ dPm(e, νPmAm(1)) +
1

m
.

Now observe that

sup
m∈N

‖Bm‖H0 ≤ sup
m∈N

dPm(e, νPmAm(1)) + 1 ≤ sup
m∈N

‖PmAm‖H0 + 1

≤ sup
m∈N

‖Am‖H0 + 1 ≤ d(e, g) + 2 .
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Thus, by weak compactness, we may choose a subsequence (Bnm)m ∈ H0 weakly
converging to some B ∈ H0.

By Lemma 10.10, point-evaluation respects weak convergence, so that (regarding
the limits below as weak limits in gCM)

νB(1) = wlim
m→∞

νBnm(1) = wlim
m→∞

νPnmAnm(1) .

And ‖PnmAnm − Anm‖H0 ≤ 1
nm

m→∞−−−→ 0, so again using Lemma 10.10,

wlim
m→∞

νPnmAnm(1) = wlim
m→∞

νAnm(1) = g .

Then νB(1) = g, and

d(e, g) ≤ ‖B‖H0 ≤ lim inf
m→∞

‖Bnm‖H0 ≤ lim inf
m→∞

dPnm (e, νPnmAnm(1))

≤ lim sup
m→∞

dPnm (e, νPnmAnm(1)) ≤ lim sup
m→∞

‖PnmAnm‖H0

≤ lim sup
m→∞

‖Anm‖H0 = d(e, g) .

Thus, dPnm (e, νPnmAnm(1))
m→∞−−−→ d(e, g). Also, we may similarly say that

d(e, g) ≤ ‖B‖H0 ≤ lim inf
m→∞

‖Bnm‖H0 ≤ lim sup
m→∞

‖Bnm‖H0 ≤ d(e, g) .

Then we know that ‖Bnm‖H0 → ‖B‖H0 , meaning that B is actually the norm limit
of (Bnm)m, so ν(Bnm)(1) converges in ‖ · ‖gCM

to ν(B)(1) = g. Thus, by setting
gm = νBnm(1) = νPnmAnm(1), we are done.

Remark 10.12. If g ∈ GP , then we can say something stronger: for any Pm ∈
Proj(W1) where P1 = P , dPm(e, νPmA(1)) ↓ d(e, νA(1)) (no subsequence necessary).
This can be proven with a slightly modified argument, roughly as follows. Choose
a sequence of paths Am ∈ PH so that νAm(0) = e, νAm(1) = g, and dPm(e, g) ≤
‖Am‖H ≤ dPm(e, g) + 1

m
. Now choose a weakly-convergent subsequence Anm , weakly

converging to some A ∈ H. Then, arguing as before, one gets νA(1) = g and a chain
of inequalities that lets us conclude limm→∞ dPnm (e, g) = d(e, g). But dPm(e, g) is a
decreasing sequence, so we must have limm→∞ dPm(e, g) = d(e, g).
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10.3 Stochastics: Infinite-dimensional heat kernel measure

This section is devoted to providing the definition and properties for an infinite-
dimensional heat kernel distribution on a Banach space G, inline with the definition
provided in Section 3.

We now make a remark that parallels one made at the start of Section 7. It is
natural to assume that G itself is a simply connected nilpotent Lie group with a
group structure, perhaps by means of a continuous bilinear bracket [·, ·] : G×G→ G.
Alternatively, it is possible to assume that the bracket is merely “measurable bilinear,”
in which [x, ·] : G → G is measurable for all x ∈ G, or even just x ∈ gCM , all while
the restriction of the bracket to gCM has more structure. In this result, we will take
the most abstract stance possible: we do not assume that [·, ·] has a well-defined
extension to G whatsoever. Just as with abstract Wiener spaces, the structure on
gCM will determine the probabalistic structure on G, and this is all that will be
needed.

10.3.1 Definition

Let G be a complex Banach space, in which gCM = H1⊕ . . .⊕HN ⊆ G is continuously
and densely included. For 1 ≤ n ≤ N , we let Wn := Hn

∥·∥G . In this way, we may
write G = W1 + . . .+WN , and Wn ∩Wm = {0} for n 6= m.

We further assume that (W1, H1) is an abstract Wiener space. From this, we
know we have a “flat” W1-valued (or, if you prefer, w1-valued) Brownian motion Bt,
as described in Section 2.2. Then, letting Proj(W1) denote the set of (complex-linear)
finite-rank projections of H1 that extend continuously to W1 (and thus to G), then,
for P ∈ Proj(W1), PBt is a PH1-valued Brownian motion. We may define GP -valued
Brownian motion, gPt , as the solution to the stochastic differential equation

dgPt = LgPt ∗δPBt g0 = e ,

where δ denotes the Stratonovich stochastic integral. As described by Theorem 2.6
and Section 2.3.3, the solution is given by

gPt =
N∑

n=1

∑
σ∈Sn

(
(−1)e(σ)

/
n2

[
n− 1

e(σ)

])
×
∫
∆n

T

[. . . [δPBsσ(1)
, δPBsσ(2)

], . . . , δPBsσ(n)
] , (3.5)

where δ corresponds to the Stratonovich stochastic integral. We will henceforth refer
to the constants as cσ. Here, by the graded structure, each n = {1, . . . , N} corre-
sponds to a different stratum.
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We say that G is an (infinite-dimensional complex graded simply connected) nilpo-
tent abstract Wiener Lie Group if the following holds.

For some t > 0, there exists a G-valued random variable gt
such that, for every f ∈ G∗, there exists an increasing se-
quence of finite-rank projections {Pm}m∈N ∈ Proj(W )↑ such
that f(gPm

t ) → f(gt) in probability.

(A3.3)

We will regard gt as equalling

gt =
N∑

n=1

∑
σ∈Sn

cσ

∫
∆n

t

[. . . [δBsσ(1)
, δBsσ(2)

], . . . , δBsσ(n)
] .

Note that this G indeed satisfies the definition for a nilpotent abstract Wiener Lie
group from Section 3, where X = gCM and XH = H1. Also, recall from Section 3
that this limit occurring for some t > 0 is equivalent to it occurring for all t > 0.
Furthermore, the traceless nature of the iterated brackets, along with (A3.1), will
imply that (A1.2′) holds; see Lemma 10.14, Theorem 10.15 and their proofs.

Before proving deeper properties of the heat kernel measure, we present a fact
analogous to a result in abstract Wiener space. See also [GM13, Proposition 2.30]
and [Mel21, Proposition 4.7].

Proposition 10.13. P(gt ∈ gCM) = 0.

Proof. The random variable gt = ((gt)1, . . . , (gt)N) ∈ W1 × . . .×WN satisfies (gt)1 =
Bt, a Brownian motion onW1. Then we can write P(gt ∈ gCM) ≤ P(Bt ∈ H1) = 0.

10.3.2 Convergence of linear functionals

This section will use the complex structure to prove that holomorphic linear functions
in G∗ must lie in Lp(G) for all p ∈ [1,∞) with respect to the distribution of gt, and in
fact the convergence f(gPm

t ) to f(gt) occurs in Lp for all p ∈ [1,∞). Below, we state
and prove a helpful lemma that uses the complex structure. Indeed, this is a direct
consequence of assuming that Bt is a complex Brownian motion, and that iterated
brackets [. . . [·, ·], . . . , ·] are complex multilinear.

Lemma 10.14. The following Stratonovich and Itô integrals are almost-surely equal:∫
∆n

t

δPBt1 ⊗ . . .⊗ δPBtn =

∫
∆n

t

dPBt1 ⊗ . . .⊗ dPBtn . (3.6)

Proof. Note that this result is essentially proven as Theorem 6.26 in [Dri15]. We will
make use of formulae from Section 3.
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Let {fℓ}1≤ℓ≤2r be a real basis of PH1. We define Jm
n = {α ∈ {1, 2}m |

∑m
k=1 αk =

n}, and then let

dPXα,j
t =

{
dPBt if αj = 1∑2r

ℓ=1 fℓ ⊗ fℓ if αj = 2

(which is independent of the basis chosen). Then∫
∆n

t

δPBs1 ⊗ . . .⊗ δPBsn =
n∑

m=n/2

1

2n−m

∑
α∈J n

m

∫
∆n

t

dPXα,1
s1

⊗ . . .⊗ dPXα,n
sn . (3.7)

Say {fℓ}1≤ℓ≤2r = {ej}1≤j≤r ∪ {iej}1≤j≤r, where {ej}1≤j≤r is a complex basis of
PH1. Then

2r∑
ℓ=1

fℓ ⊗ fℓ =
r∑

j=1

ej ⊗ ej +
r∑

j=1

iej ⊗ iej = 0 .

Then (3.7) need only be summed for m = n, which yields (3.6).

As a result of Lemma 10.14,

gPt =
N∑

n=1

∑
σ∈Sn

cσ

∫
∆n

t

[. . . [dPBsσ(1)
, dPBsσ(2)

], . . . , dPBsσ(n)
] .

In this way, we may view

gt =
N∑

n=1

∑
σ∈Sn

cσ

∫
∆n

t

[. . . [dBsσ(1)
, dBsσ(2)

], . . . , dBsσ(n)
] .

Theorem 10.15. Define

ΦP
t,k :=

∫
∆k

t

dPBs1 ⊗ . . .⊗ dPBsk

and let α ∈ H∗⊗k
1 . Then E|α(ΦP

t,k)|2 = tk

k!
‖α‖2

PH∗⊗k
1

.

Proof. This is a proof by induction. First note that for k = 1, ΦP
t,1 = PBt, so if

α ∈ H∗
1 , then E|α(ΦP

t,1)|2 = t‖α‖PH∗
1
. Next, we continue inductively, so suppose the
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statement holds for k − 1. If α ∈ H⊗k
1 , then 〈α, (·)⊗ h〉 ∈ PH∗⊗k−1

1 for any h1 ∈ H1.
Let {ej}1≤j≤r be a basis of PH1. Then

E|α(ΦP
t,k)|2 = E

∣∣∣∣ ∫ t

0

α
(
ΦP

sk,k−1 ⊗ dPBsk

)∣∣∣∣2
=

∫ t

0

d∑
j=1

E

[∣∣∣∣α(ΦP
sk,k−1 ⊗

1√
2
ej

)∣∣∣∣2 + ∣∣∣∣α(ΦP
sk,k−1 ⊗

i√
2
ej

)∣∣∣∣2
]
dsk

=

∫ t

0

d∑
j=1

E|α(ΦP
sk,k−1 ⊗ ej)|2dsk

=
d∑

j=1

∫ t

0

sk−1
k

(k − 1)!
‖α(· ⊗ ej)‖2PH∗⊗k−1

1
dsk

=
tk

k!
‖α‖2

PH∗⊗k
1

.

Theorem 10.16. For every k, p ∈ [1,∞), α ∈ H∗⊗k
1 , and (Pm)m∈N ∈ Proj(W1)

↑,
α(ΦPm

t,k ) converges in Lp as m→ ∞. The limit is independent of the choice of (Pm)m∈N,
and we denote the limit as α(Φt,k) =

∫
∆k

t
α(dBt1 ⊗ . . . ⊗ dBtk). And E|α(Φt,k)|2 =

tk

k!
‖α‖2

H∗⊗k
1

.

Proof. We begin by first showing convergence in L2. If α ∈ H∗⊗k
1 , {ej}1≤j≤rm a basis

of PmH1 for every m ∈ N, and m < n, then by Theorem 10.15,
E|α(ΦPn

t,k)− α(ΦPm
t,k )|

2

= E|α ◦ P⊗k
n (ΦPn

t,k)− α ◦ P⊗k
m (ΦPm

t,k )|
2

= E|α ◦ (P⊗k
n − P⊗k

m )(ΦPn
t,k)|

2

=
tk

k!
‖α ◦ (P⊗k

n − P⊗k
m )‖2

H∗⊗k
1

=
tk

k!

(
rn∑

j1,...,jk=1

|α(ej1 ⊗ . . .⊗ ejk)|2 −
rm∑

j1,...,jk=1

|α(ej1 ⊗ . . .⊗ ejk)|2
)
,

which is small for sufficiently large n,m. So α(ΦPm
t,k ) is Cauchy in L2, and hence must

converge to some α(Φt,k). It is also here that we remark that this limit is independent
of the sequence (Pm)m chosen. Indeed, if (P ′

m)m ∈ Proj(W1)
↑ is another sequence,

then choose (P ′′
m)m ∈ Proj(W1)

↑ such that PmH1 + P ′
mH1 ⊆ P ′′

mH1. Then

E
∣∣α(ΦPm

t,k )− α(Φ
P ′
m

t,k )
∣∣2 = E

∣∣α ◦ (P⊗k
m − P ′⊗k

m )(Φ
P ′′
m

t,k )
∣∣2

=
tk

k!
‖α ◦ (P⊗k

m − P ′⊗k
m )‖2

H∗⊗k
1

,
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which necessarily goes to 0 as m → ∞, which implies α(ΦP ′
m

t,k ) has the same limit as
α(ΦPm

t,k ).

For general Lp convergence, it can be seen that α(ΦP
t,k) necessarily has a finite-

degree chaos expansion. It is a theorem of Nelson ([Nel73, Lemma 2] that, for every
j ∈ N, there exists a constant cj such that E[|α(ΦP

t,k)||2j] ≤ cj(E[|α(ΦP
t,k)|2])j. Then

we may deduce that, for any p ∈ [1,∞),

E
∣∣α(ΦPn

t,k)− α(ΦPm
t,k )
∣∣p ≤ E

∣∣α(ΦPn
t,k)− α(ΦPm

t,k )
∣∣⌈p⌉

= E
∣∣α ◦ (P⊗k

n − P⊗k
m )(ΦPn

t,k)
∣∣⌈p⌉

≤ c⌈p⌉

(
E
∣∣α ◦ (P⊗k

n − P⊗k
m )(ΦPn

t,k)
∣∣2)⌈p⌉ ,

so that the series must converge in Lp.

Lastly,
∣∣E|α(Φt,k)|2 − E|α(ΦPm

t,k )|2
∣∣ ≤ E|α(Φt,k) − α(ΦPm

t,k )|2, which justifies that
E|α(Φt,k)|2 = limm→∞ E|α(ΦPm

t,k )|2 = tk

k!
‖α‖2

H∗⊗k
1

.

Lemma 10.17. For all f ∈ G∗, p ∈ [1,∞), and all (Pm)m ∈ Proj(W1)
↑, f(gPm

t )
converges in Lp to f(gt).

Proof. Choose (Pm)m∈N ∈ Proj(W1)
↑ such that gPm

t → gt in probability. Then

f(gPm
t ) =

N∑
n=1

∑
σ∈Sn

cσ

∫
∆n

t

f([. . . [dPmBsσ(1)
, dPmBsσ(2)

], . . . , dPmBsσ(n)
])

=
N∑

n=1

∑
σ∈Sn

cσ f ◦ [. . . [·, ·]1,1, . . . , ]n−1,1 ◦ σ̃(ΦPm
t,n ) ,

where for any permutation σ ∈ Sn, we let σ̃ be the natural action on H⊗k
1 that satis-

fies σ̃(h1 ⊗ . . .⊗ hn) = hσ(1) ⊗ . . .⊗ hσ(n). Then, for each n, f ◦ [. . . [·, ·]1,1, . . . , ]n−1,1 ◦
σ̃ : H⊗n

1 → C is in H∗⊗n
1 . On the one hand, Theorem 10.16 implies that for

each n, 〈f ◦ [. . . [·, ·]1,1, . . . , ]n−1,1 ◦ σ̃,ΦPm
t,n 〉 converges to the random variable 〈f ◦

[. . . [·, ·]1,1, . . . , ]n−1,1 ◦ σ̃,Φt,n〉 in Lp for all p ∈ [1,∞), so as a finite sum of such
random variables, f(gPm

t ) must also converge in Lp. On the other hand, since f
is continuous on G, f(gPm

t ) converges to f(gt) in probability, and therefore must
converge to f(gt) in Lp.

We remark that the convergence will hold for an arbitrary choice of (Pm)m∈N ∈
Proj(W1)

↑ because the convergence in Theorem 10.16 allowed for this.
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10.4 Examples

We begin with Section 10.4.1, which provides examples of the “skeleton structure”
gCM that satisfy the weakly and surjectivity assumptions. Then in Section 10.4.2,
we will provide example structures on G that guarantee the existence of the random
variable gt and its limiting properties.

10.4.1 Examples of gCM

Example 10.18 (Step-2 graded complex). Suppose H1×H2 is a step-2 graded com-
plex nilpotent Lie group. Then the bracket structure is completely determined by an
antisymmetric complex-multilinear weakly Hilbert-Schmidt map ω : H1 × H1 → H2

defined as ω(h1, h2) = [h1, h2]. As long as ω̃ : H1⊗H1 → H2 is surjective (or replacing
H2 with imω̃ if not), we have gCM = H1 × H2. This is the (complex equivalent of
the) topic of study in Chapter 2.

It is worth pointing out that, while the assumptions of Chapter 2 actually contra-
dicted the step-2 path space construction (‖ω‖H⊗Z is not satisfied: see Example 5.11),
it does satisfy the assumptions in Chapter 3 for the Taylor isomorphism (see Exam-
ple 10.21).

Example 10.19 (Infinite product). This example can be compared to Example 5.7.
Here, we consider the infinite product of step N Lie groups. We suppose that we have
an infinite sequence of finite-dimensional simply connected graded complex nilpotent
Lie groups G(m) = G

(m)
1 ⊕ . . . ⊕ G

(m)
N where each G

(m)
n has as orthonormal basis

{e(m)
n,j }j∈Λ(m)

n
⊆ G

(m)
n , so that each G(m) has as orthonormal basis

⋃
1≤n≤N{e

(m)
n,j }j∈Λ(m)

n
,

and each G(m) is considered equal to its Lie algebra g(m), equipped with a bracket
[·, ·](m). Note that the “step” of each G(m) is uniformly bounded by N . Then their infi-
nite orthogonal product gCM =

⊕∞
m=1G

(m) can be considered an infinite-dimensional
Lie algebra with bracket [a, b] =

∑∞
m=1[a

(m), b(m)](m).

In addition to requesting that each G(m) satisfies the Hörmander condition, we
must request that it is done uniformly. More precisely, we require that, for every
m ∈ N, 1 ≤ n ≤ N , there exist constants c(m)

n , C
(m)
n such that, for all h ∈ G

(m)
n ,

c(m)
n ‖h‖2

G
(m)
n

≤
∑

i∈Λ(m)
1 ,j∈Λ(m)

n−1

∣∣〈[e(m)
1,i , e

(m)
n−1,j]

(m)
1,n−1, h〉G(m)

n

∣∣2 ≤ C(m)
m ‖h‖2

G
(m)
n

,

in which, for all n, cn := infm∈N c
(m)
n > 0 and Cn := supm∈NC

(m)
n <∞. Indeed, if this

is satisfied, then for any h = (h(m))m∈N ∈
⊕∞

m=1G
(m)
n , the nth step of gCM , using the
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orthogonality of the G(m)s, we can calculate
∞∑

m1,m2=1

∑
i∈Λ(m1)

1 ,j∈Λ(m2)
n−1

∣∣〈[e(m1)
1,i , e

(m2)
n−1,i]1,n−1 , h〉gCM

∣∣2
=

∞∑
m=1

∑
i∈Λ(m)

1 ,j∈Λ(m)
n−1

∣∣〈[e(m)
1,i , e

(m)
n−1,i]1,n−1 , h

(m)〉G(m)

∣∣2
≤

∞∑
m=1

C(m)
n ‖h(m)‖2G(m) = Cn‖h‖2gCM

,

and similarly
∞∑

m1,m2=1

∑
i∈Λ(m1)

1 ,j∈Λ(m2)
n−1

∣∣〈[e(m1)
1,i , e

(m2)
n−1,i]1,n−1 , h〉gCM

∣∣2 ≥ cn‖h‖2gCM
.

It is also not impossible to define and discuss infinite-dimensional semi-direct
products.

10.4.2 Examples of G

Example 10.20 (Complex Hilbert Space). This example can be compared to Exam-
ple 3.4, though with formulae and criteria made easier due to the complex assumption
(which gives, in particular, the equivalence of the Stratonovich and Itô integrals). As-
sume that G is a Hilbert space with orthogonal decomposition G = W1 × . . . ×Wn,
and suppose further that each Hn ↪→ Wn is Hilbert-Schmidt. As a consequence, every
composition [. . . [·, ·]1,1, . . . , ·]1,n−1 : H

⊗k
1 → Wn is (in fact, considering our Hörmander

condition, these criteria are equivalent).

For any orthonormal basis {wn,j}j∈Λn of Wn, Theorem 10.15 gives that

E‖gt‖2G =
N∑

n=1

E
∥∥(gt)n‖2Wn

=
N∑

n=1

∑
j∈Λn

E
∣∣〈wn,j, [. . . [·, ·]1,1, . . . , ·]1,n−1〉Wn(Φt,k)

∣∣2
=

N∑
n=1

∑
j∈Λn

tn

n!

∥∥〈wn,j, [. . . [·, ·]1,1, . . . , ·]1,n−1〉Wn

∥∥2
H∗⊗n

1

=
N∑

n=1

tn

n!

∥∥[. . . [·, ·]1,1, . . . , ·]1,n−1

∥∥2
HS(H1,Wn)

.
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From this estimate, it can be easily argued that gPm
t converges to gt in L2 with

respect to ‖ · ‖G. In fact, as remarked in [Mel21], Doob’s maximal inequality implies

E max
0≤t≤T

‖gPm
t ‖2G ≤ 4E‖gPm

T ‖2G ,

so the L2 martingales (gPm
t )0≤t≤T converge to an L2 G-valued martingale (gt)0≤t≤T .

Example 10.21 (Hypoelliptic path space). This example can be compared to Ex-
ample 3.5, again being simpler due to the complex assumption of this chapter. Let
V = V1 × . . . × VN be a finite-dimensional graded nilpotent complex Lie group. Let
W0([0, 1], V ) = {f : [0, 1] → V | f continuous, f(0) = 0}, and H0([0, 1], Vn) the usual
set of based finite-energy paths in Vn, as defined in Section 2.1.4. For now, we will
set

G = g = W0([0, 1], V )

H = H0([0, 1], V ) = H0([0, 1], V1)⊕ . . .⊕H0([0, 1], VN)

H1 = H0([0, 1], V1)

(one may expect that gCM = H, but we will refrain from discussing this for now).
From here, we may define brackets on G via [f, g](t) = [f(t), g(t)], which is consistent
with the multiplication f · g(t) = f(t) · g(t).

Let (bt)t≥0 denote W0([0, 1], V1)-valued Brownian motion corresponding to the
inner product 〈·, ·〉H0([0,1],V1) by way of the classical Wiener space definition. Then
there exists a group-valued heat kernel distributed element gT ∈ W0([0, 1], V ). The
existence of the path space process has been worked out in much greater generality
in [CD08]. There, it is shown that (gt)t≥0 can be realized as an L2 martingale.

We have that gT satisfies, for all τ ∈ [0, 1],

gT (τ) =
N∑

n=1

∑
σ∈Sn

cσ

∫
∆n

T

[. . . [δbsσ(1)
(τ), δbsσ(2)

(τ)], . . . , δbsσ(n)
(τ)]

=
N∑

n=1

∑
σ∈Sn

cσ

∫
∆n

T

[. . . [dbsσ(1)
(τ), dbsσ(2)

(τ)], . . . , dbsσ(n)
(τ)] ,

where the Stratonovich and Itô differentials are taken with respect to s 7→ bs(τ).

This also satisfies our assumption for being a nilpotent abstract Wiener Lie group,
as it follows from Theorem 3.6. Note that a shorter proof could be provided, since
the “real traces” of complex multilinear functionals are 0 (this is the key property
applied in the proof of Lemma 10.14). Then for f ∈ H0([0, 1], V )∗, we would only
have to show the bound

max
1≤n≤N

max
σ∈Sn

∥∥∥f ◦ [. . . [·, ·], . . . , ·] ◦ σ̃
∥∥∥
H0([0,1],V1)∗

≤ C‖f‖H0([0,1],V1)
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(from opposed to using the “tracial norm”).

We now turn to defining gCM , which will not be as straightforward as one might
hope, as we require our Hörmander condition to hold. Recall from Section 2.1.4 that
H0([0, 1], Vn) ∼= H0([0, 1],C)⊗ Vn, so that if {ek}k∈Z = { 1

2πik
(e2πikt − 1)}k ̸=0 ∪ {t} is a

basis of H0([0, 1],C) and {vn,k}1≤k≤dim(Vn) is a basis of Vn, then {ekvn,j}1≤j≤dim(V ),k∈Z
constitutes a basis of H0([0, 1], Vn). If we define mn : H0([0, 1],C)n → H0([0, 1],C) as
n-fold multiplication, then for f ∈ H0([0, 1],C) and v ∈ Vn,

∑
k1,...,kn∈Z

dim(Vn)∑
j1,...,jn=1

∣∣∣〈fv, [. . . [ek1v1,j1 , ek2vj2 ], . . . , eknvjn ]〉H0([0,1],Vn)

∣∣∣2
=

∑
k1,...,kn∈Z

∣∣∣〈f,mn(ek1 , . . . , ekn)
〉
H0([0,1],C)

∣∣∣2 dim(Vn)∑
j1,...,jn=1

∣∣∣〈v, [vj1 , vj2 ], . . . , vjn ]〉Vn

∣∣∣2 . (3.8)

By its finite-dimensional nature, the latter sum will be bounded above and below by
a constant times ‖v‖2V . The former, however, will fail to have such a lower bound,
and will pose issues for satisfying the Hörmander condition.
Proposition 10.22. The multiplication map m2 : H0([0, 1],C) × H0([0, 1],C) →
H0([0, 1],C) is weakly Hilbert-Schmidt, but its extension is not surjective.

Proof. For this proof, we will abbreviate H0 := H0([0, 1],C). For h ∈ H0,∣∣∣〈m2(t, t), h
〉
H0

∣∣∣2 =

∣∣∣∣2 ∫ 1

0

th′(t)dt

∣∣∣∣2 ≤ 4

∫ 1

0

|th′(t)|2dt ≤ 4‖h‖2H0

and ∑
k ̸=0

∣∣∣∣〈m2(t, ek), h
〉
H0

∣∣∣2 =
∑
k ̸=0

∣∣∣∣ ∫ 1

0

te′k(t)h
′(t)dt+

∫ 1

0

ek(t)h′(t)dt
∣∣∣2

≤ 2

∫ 1

0

|th′(t)|2dt+ 1

2π2k2

∫ 1

0

|e2πikt − 1|2|h′(t)|2dt

≤ 2‖h‖2H0
+

1

3
‖h‖2H0

,

and∑
k,ℓ ̸=0

∣∣∣〈m2(ek, eℓ), h
〉
H0

∣∣∣2 =
∑
k,ℓ ̸=0

∣∣∣ −1

4π2k`

〈
e2πi(k+ℓ)t − e2πikt − e2πiℓt + 1, h

〉
H0

∣∣∣2
≤
∑
k,ℓ ̸=0

1

4π2

∣∣∣∣k + `

k`
〈ek+ℓ, h〉H0 −

1

`
〈ek, h〉H0 −

1

k
〈eℓ, h〉H0

∣∣∣∣2
≤ 1

π2

∑
k,ℓ ̸=0

1

k2
|〈ek+ℓ, h〉H0 |2 +

1

`2
|〈ek+ℓ, h〉H0 |2 +

1

`2
|〈ek, h〉H0 |2 +

1

k2
|〈eℓ, h〉H0 |2 .
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We note that
∑

ℓ ̸=0 |〈h, ek+ℓ〉H0 |2 ≤
∑

ℓ∈Z |〈h, ek+ℓ〉|2 = ‖h‖2H0
and

∑
k≥1

1
k2

= π2

6
,

which justifies the sum above to be bounded by a constant times ‖h‖2H0
. Hence, m is

weakly Hilbert-Schmidt.

However, we must now show that the extension is not surjective. To show this, we
will show that the image is contained in a dense proper subspace K. Define a norm
‖f‖2K := ‖f‖2H0

+
(

lim
t→0

|f(t)|
t

)2
, and set K = {f ∈ H0 : ‖f‖K <∞}, on which we may

define the inner product 〈f, g〉K = 〈f, g〉H0 +
(

lim
t→0

f(t)
t

)(
lim
t→0

g(t)
t

)
.

Then consider that, for any f ∈ H0, similar to the calculation in (1.1),

|f(t)| =
∣∣∣ ∫ 1

0

f ′(t)dt
∣∣∣ ≤

(∫ t

0

|f ′(t)|2dt
) 1

2
(∫ t

0

12dt
) 1

2
= ‖f ′1[0,t]‖L2

√
t ,

which is not only bounded by
√
t‖f‖H0 , but we also see |f(t)|√

t
is converging to 0 as

t → 0. Then for any f, g ∈ H0, limt→0
|f(t)g(t)|

t
= 0. And for h ∈ K, 〈m2(f, g), h〉K =

〈m2(f, g), h〉H0 + (0). Then m2 : H0 × H0 → K is also weakly , meaning that the
image of the extension is contained in (a closed subspace of) K, which is the dense
proper subset of H0 of functions with finite Lipschitz constant at t = 0.

The key problem lies in the fact that multiplying finite-energy paths with the
condition f(0) = 0 results in a function with improved regularity at t = 0. Indeed,
{ek}k ̸=0 ∪ {t, 1} is a basis for

H([0, 1],C) = H0([0, 1],C)⊕ C =

{
f : [0, 1] → C :

∫ 1

0

|f ′(t)|2dt <∞
}

with
〈f, g, 〉H([0,1],C) :=

∫ 1

0

f ′(t)g′(t)dt+ f(0)g(0) ,

and |〈m(1, 1), h〉H|2 + |〈m2(1, t), h〉H|2 +
∑

k ̸=0 |〈m2(1, ek), h〉|2 = ‖h‖2H Therefore the
proof above can be adjusted to show that m2 : H([0, 1],C)×H([0, 1],C) → H([0, 1],C)
is both weakly Hilbert-Schmidt and has surjective extension. This suggests that we
could instead use the set of unbased finite-energy paths H([0, 1], V1) ∼= H([0, 1],C)⊗
V1 ∼= H0([0, 1],C) ⊗ C ⊗ V1 as our generator for path space diffusion. However, this
would change the process and dynamics, as it would correspond to a path space
diffusion in which the starting point of a path is randomly chosen.

Now we describe another remedy that preserves the diffusion. Define M1([0, 1],C) =
H0([0, 1],C) and Mn([0, 1],C) := im(m̃n) for 2 ≤ n ≤ N , and give it an inner prod-
uct such that m̃n : H0([0, 1],C)⊗n/ ker(m̃n) → Mn([0, 1],C) is unitary. Then define
Mn([0, 1], Vn) = Mn([0, 1],C)⊗ Vn ⊆ H0([0, 1], Vn).
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Using (3.8), it will be the case that [·, ·]1,n : M1([0, 1], V1) × Mn([0, 1], Vn) →
Mn+1([0, 1], Vn+1) is weakly Hilbert-Schmidt and surjective. So we define

gCM = M1([0, 1], V1)× . . .×MN([0, 1], VN) .

Thus, in one sense, rather than changing the diffusion, we have modified our analysis
of the diffusion to fit the assumptions.
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11 The Taylor Isomorphism

11.1 Setup

11.1.1 HL2
t (G)

Let P denote the set of continuous holomorphic cylinder polynomials f : G → C,
which are finite sums of monomials of the form f1 · . . . · fk where each fk ∈ G∗.
Consider the following.

Corollary 11.1. For any f ∈ P, (Pm)m ∈ Proj(W1)
↑, and p ∈ [1,∞), f(gPm

t )
converges in Lp to f(gt). In particular, we may say P ⊆ L2(G, νt).

Proof. If f is of degree 1, then the conclusion follows by Theorem 10.15. Now suppose
that f1, f2 : G → C are holomorphic polynomials such that, for j ∈ {1, 2}, fj(gPm

t )
converges to fj(gt) in Lp for p ∈ [1,∞). Then(

E|f1(gt)f2(gt)|p
)1/p

≤
(
E|f1(gt)|2p

)1/2p(
E|f2(gt)|2p

)1/2p
,

so the product f1(gt)f2(gt) is in Lp for all p ∈ [1,∞) as well, and(
E|f1(gt) · f2(gt)− f1(g

Pm
t ) · f2(gPm

t )|p
)1/p

≤
(
E|(f1(gt)− f1(g

Pm
t ))f2(gt)|p

)1/p
+
(
E|f1(gPm

t )(f2(gt)− f2(g
Pm
t ))|p

)1/p
≤
(
E|f1(gt)− f1(g

Pm
t )|2p

)1/2p(
E|f2(gt)|2p

)1/2p
+
(
E|f1(gPm

t )|2p
)1/2p(

E|f2(gt)− f2(g
Pm
t )|2p

)1/2p
,

from which it is seen that f1(gPm
t )·f2(gPm

t ) converges to f1(gt)·f2(gt) in Lp. Iteratively
applying this tells us that, for any monomial f : G → C defined as f =

∏k
j=1 fj for

fj ∈ G∗, f(gPm
t ) converges in Lp to f(gt). Then the same must be true of finite sums,

which concludes the proof.

We may now define HL2
t (G) as the L2-closure of P . As G is a complex Banach

space, there is a notion of holomorphic functions f : G→ C. The definition in [HP74,
Definition 3.17.2] is that a function f : G→ C is holomorphic if f is locally bounded,
meaning that for all x ∈ G, there exists r > 0 such that sup{|f(y)| : ‖x−y‖ < r} <∞,
and if f is complex Gâteaux differentiable on G, meaning that for every x ∈ G and
v ∈ G, the map C 3 h 7→ f(x + hv) ∈ C is complex differentiable at λ = 0.
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However, it should be noted that functions in HL2
t (G) do not, strictly speaking,

satisfy these criteria, in particular the locally bounded condition. Indeed, even in the
commutative case, we can consider the measurable-linear extension of 〈·, h〉H , where
h ∈ H1 \ W ∗

1 , which will not be continuous. Instead, the elements could perhaps
be called “measurable holomorphic,” and should be compared to the holomorphic
Wiener functions of an abstract Wiener space, as described in [Sug97].

In [DG10] and [GM13], it is mentioned that it is not known if one may take
the L2-closure of holomorphic cylinder functions and arrive at the same set. This
continues to be unanswered, but Corollary 11.1 suggests that we may regard HL2

t (G)
as the L2-closure of the set of holomorphic functions f : G → C such that f(gPm

t )
converges in L2 to a random variable. As noted in [DG10], after proving the Taylor
isomorphism, we will be able to say something more general: HL2

t (G) is equal to
the L2-closure of holomorphic functions for which supm∈N E|f(gPm

t )|2 < ∞. It could
perhaps be said that such a holomorphic function is in L2(G) “for the right reasons.”

11.1.2 Noncommutative Fock space: defining J0
t (gCM)

For any Hilbert space H, let T (H) = H ⊕ H⊗2 ⊕ . . . be the tensor algebra of H,
by which we mean the set of finite sums of elements of the Hilbert space tensor
powers of H. Given a basis {ej}j∈Λ of H, elements of T (H) can be expressed as∑K

k=0

∑
j1,...,jk∈Λ αk,j1,...,jkej1 ⊗ . . .⊗ ejk , in which the sum is finite over k, and for each

k the coefficients (αk,j1,...,jk)j1,...,jk∈Λ are square-sumamble. For such an element, we
may refer to K as its rank.

Let J(H) be the 2-sided ideal of T (H) generated by v⊗w−w⊗v−[v, w]. Then let
T (H)′ denote the algebraic dual of T (H), and let J0(H) be the backwards anihilator
of J(H), that is,

J0(H) = {α ∈ T (H)′ : 〈α, v〉 = 0 ∀v ∈ J(H)} .

Then, for α, β ∈ J0(gCM), and a basis {ej}j∈N ⊆ H1, define the complex inner product

〈α, β〉J0
t (gCM ) :=

∞∑
k=0

tk

k!
〈α, β〉g∗⊗k

CM

=
∞∑
k=0

tk

k!

∞∑
i1,...,ik=1

α(ei1 ⊗ . . .⊗ eik)β(ei1 ⊗ . . .⊗ eik) ,

with an associated norm ‖ · ‖J0
t (gCM ). We now define J0

t (gCM) = {α ∈ J0(gCM) :

‖α‖J0
t (gCM ) < ∞}. If P ∈ Proj(W1) with basis {ej}1≤j≤r, and if α ∈ J0(gP ), we will

similarly define

‖α‖2J0
t (g

P ) =
∞∑
k=0

tk

k!

r∑
j1,...,jk=1

|α(ej1 ⊗ . . .⊗ ejk)|2
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and set J0
t (g

P ) = {α ∈ J0(gP ) : ‖α‖J0
t (g

P ) <∞}.

We remark that we may view J(gP ) ⊆ J(gCM), and in turn a natural inclusion
J0(gCM) ↪→ J0(gP ) defined via restriction. In fact, by noting ‖α‖J0

t (g
P ) ≤ ‖α‖J0

t (gCM ),
we can conclude that we have the continuous inclusion J0

t (gCM) ↪→ J0
t (g

P ).

Theorem 11.2, stated and proven below, is a direct consequence of our Hörmander
condition. This is directly analogous to [DGS09a, Lemma 2.12] and [GM13, Lemma
3.4]. Similarly to both of these works, we will prove the existence of a homomorphism
Ψ : T (gCM) → T (H1) with nice properties. We define

(J0)0 := {b ∈ T (gCM) : 〈α, b〉 = 0 for all α ∈ J0(gCM} .

Importantly, (J0)0 remains a 2-sided ideal, (J0)0 ⊇ J(gCM), and (J0)0 will corre-
spond to a certain type of closure of J(gCM) that includes “finite-rank infinite sums”
of elements in T (gCM), as demonstrated in the proof below.

The proof of Theorem 11.8 uses the “lower constants” to compare ‖α‖J0
t (gCM )

with quantities testing α in non-H1 directions, as in (3.12), and it is possible to prove
this theorem with this estimate as well. Still, we will prove Theorem 11.2 using Ψ to
show, after appropriate modification, methods used in previous contexts will continue
to work in this one.

Theorem 11.2. ‖ · ‖J0
t (gCM ) is a norm, so that J0

t (gCM) is a Hilbert space.

Proof. For 2 ≤ n ≤ N , we assume that [·]1,n−1 : H1 ⊗Hn−1 → Hn is surjective. Then
let φn : Hn → H1 ⊗ Hn−1 be the a right-inverse of [·]1,n−1, for example the inverse
of the bijection [·] : ker([·]1,n−1)

⊥ → Hn. Then let s̃n be the cannonical “swap”
H1⊗Hn → Hn⊗H1 that satisfies, for h1 ∈ H1, hn ∈ Hn, s̃n(h1⊗hn) = hn⊗h1. Then
we define ψn : Hn → H1 ⊗Hn−1 +Hn−1 ⊗Hn as ψn = φn − s̃n ◦ φn. Then consider
that, for h ∈ Hn,

1

2
[·] ◦ ψn(h) =

1

2

(
[·]1,n−1 ◦ φn

)
(h)− 1

2

(
[·]n−1,1 ◦ s̃n ◦ φn

)
(h) = h .

It can be seen that im(ψn) ⊆ H1 ⊗Hn−1 +Hn−1 ⊗H1 ⊆ g⊗2
CM are all alternating

tensors, and as such can be written as (potentially infinite) sums of elements of the
form a⊗ b− b⊗ a.

Next, I claim that, for any h ∈ Hn, ψn(h) − h ∈ (J0)0. To show this, if ψn(h) =∑∞
k=1(ak ⊗ bk − bk ⊗ ak), which converges in g⊗2

CM , then

h =
1

2
[·] ◦ ψn(h) =

1

2

∞∑
k=1

(
[ak, bk] − [bk, ak]

)
=

∞∑
k=1

[ak, bk] ,
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from which it can be seen that

ψn(hn)− hn =
∞∑
k=1

(
ak ⊗ bk − bk ⊗ ak − [ak, bk]

)
.

Then we know that, for any α ∈ J0(gCM), the partial sums of this expression will
evaluate to 0, or more precisely, for K ∈ N,

α

(
K∑
k=1

(
ak ⊗ bk − bk ⊗ ak − [ak, bk]

))
= 0

and α ∈ T (gCM)′ means in particular that α is continuous on the Hilbert space
gCM ⊕ g⊗2

CM . This, along with the assumed continuity of [·]1,n−1 : H1 ⊗Hn−1 → Hn,
proves the claim.

Define Sn :=
⊕n

k=1Hk ⊆ gCM . For each n, we will apply 2 extensions to ψn :
Hn → S⊗2

n−1. The first is by extending to ψn : Sn → Sn−1 ⊕ S⊗2
n−1 by declaring

ψn(h) = h for all h ∈ Sn−1. We remark that, by iteratively tensoring the map ψn

with itself, we also have continuous maps ψ⊗k
n : S⊗k

n → (Sn−1⊕S⊗2
n−1)

⊗k for all k ∈ N.
Then the second extension is to an algebra homomorphism Ψn : T (Sn) → T (Sn−1) by
declaring, for α =

∑K
k=0(α)k ∈ T (Sn), Ψn(α) =

∑K
k=0 ψ

⊗k
n

(
(α)k

)
(where ψ⊗0

n : C → C
is merely the identity).

Now define Ψ = Ψ2 ◦ . . . ◦ΨN : T (gCM) → T (H1). Using the fact that (J0)0 is an
ideal, we still have that, for all a ∈ T (Sn), Ψn(a)− a ∈ (J0)0. As a consequence, for
all a ∈ T (gCM), Ψ(a)− a ∈ (J0)0. In particular, we have that kerΨ ⊆ (J0)0.

Finally, for any α ∈ J0(gCM), if ‖α‖J0
t (gCM ) = 0, then α|T (H1) ≡ 0. We then have

that, for all a ∈ T (gCM), 〈α, a − Ψ(a)〉 = 0, so that α = α ◦ Ψ. Since Ψ maps into
H1, α ◦Ψ = α|T (H1) ◦Ψ = 0. Thus, ‖ · ‖J0

t (gCM ) is a norm.

Remark 11.3. With a bit more effort, one can prove a theorem analogous to Theorem
2.7 and Corollary 2.14 of [DGS09a], which states that the following are equivalent: (1)
our Hörmander condition holds, (2) ‖·‖J0

t (gCM ) is a norm, (3) T (gCM) = T (H1)⊕(J0)0.

11.1.3 The finite-dimensional Taylor isomorphism theorems

As defined in Section 10.2, every GP is a finite-dimensional complex graded nilpo-
tent Lie group that satisfies the Hörmander condition. We have that HL2

t (G
P ) :=

L2(GP , νPt ,C)∩H(GP ) is a closed subset of L2
t (G

P ) (see, for example, [Dri15, Corol-
lary 3.3]).

Given holomorphic f : GP → C, we define the derivative f̂(e) ∈ T (gP )∗ as
f̂(e)(h1 ⊗ . . . ⊗ hk) = h̃1 . . . h̃kf(e). Then we have the finite-dimensional Taylor
isomorphism below.

115



Theorem 11.4 ([DGS09a, Theorem 6.1]). The map HL2
t (G

P ) → J0
t (g

P ) defined as
f 7→ f̂(e) is unitary.

And the theorem below is a result that is shown in [DGS09a] along the way.

Theorem 11.5 ([DGS09a, Corollary 5.15]). For all g ∈ GP , the map HL2
t (G) → C

defined by point evaluation f 7→ f(g) is continuous, and

|f(g)| ≤ ‖f̂(e)‖J0
t (G

P )e
dP (e,g)2/2t .

11.2 The restriction map

We will now begin defining the first of the 2 maps that make up the Taylor iso-
morphism, namely the restriction map R. Any continuous holomorphic cylinder
polynomial f ∈ P has a natural restriction, namely f |GCM

, and the goal of this sec-
tion is to prove that we may naturally associate any f ∈ HL2

t (G) with a function
Rf : GCM → C with holomorphic properties. This is in the spirit of the “skeleton
map” as in abstract Wiener space, as discussed in [Sug94a; Sug94b].

As discussed in Section 9.2, we define HL2
t (
⋃

P∈Proj(W1)
GP ) as the set of functions

f :
⋃

P∈Proj(W1)
GP → C such that, for all P ∈ Proj(W1), f ◦ ιP ∈ HL2

t (G
P ) and

supP∈Proj(W1) ‖f◦ι
P‖HL2

t (G
P ) <∞ (recall that ιP : GP → G is the canonical inclusion).

We will henceforth abbreviate this notation as HL2
t (
⋃

P G
P ) and supP ‖f ◦ιP‖HL2

t (G
P ).

We begin with a lemma.

Lemma 11.6. For f ∈ P, f ◦ ιP is always in HL2
t (G

P ), and ‖f ◦ ιPm‖HL2
t (G

Pm )

increases to supP ‖f ◦ ιP‖HL2
t (G

P ), which equals ‖f‖H2
t (G).

Proof. We see that, if f ∈ P , then f ◦ ιP is a holomorphic polynomial on GP .
Moreover, by Corollary 11.1, f ∈ L2(GP ), and E|f(gPm

t )|2 → E|f(gt)|2, so that
supP ‖f ◦ ιP‖HL2

t (G
P ) ≥ limm→∞ ‖f ◦ ιPm‖HL2

t (G
P ) = ‖f‖HL2

t (G).

Next, say {ej}1≤j≤rm is a basis of PmH1 for all m. Consider that, by the finite-
dimensional Taylor isometry, Theorem 11.4,

‖f ◦ ιPm‖2HL2
t (G

Pm ) = ‖f̂ ◦ ιPm(e)‖2
J0
t (g

Pm
CM )

=
∞∑
k=0

rm∑
j1,...,jk=1

tk

k!
|ẽj1 . . . ẽjkf(e)|2 .
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Then

‖f ◦ ιPm‖2HL2
t (G

Pm ) =
∞∑
k=0

rm∑
j1,...,jk=1

tk

k!
|ẽj1 . . . ẽjkf(e)|2

≤
∞∑
k=0

rm+1∑
j1,...,jk=1

tk

k!
|ẽj1 . . . ẽjkf(e)|2

= ‖f ◦ ιPm+1‖2HL2
t (G

Pm+1 )
.

Thus, ‖f ◦ ιPm‖HL2
t (G

Pm ) is increasing. It can be concluded that, for any P ∈
Proj(W1), and for any sequence (Pm) where P ∈ {Pm}m ∈ Proj(W1)

↑, we have
‖f ◦ ιP‖HL2

t (G
P ) ≤ limm→∞ ‖f ◦ ιPm‖HL2

t (G
Pm ) = ‖f‖HL2

t (G) for all P , which implies
that supP ‖f ◦ ιP‖HL2

t (G
P ) ≤ ‖f‖HL2

t (G). Therefore, supP ‖f ◦ ιP‖HL2
t (G

P ) = ‖f‖HL2
t (G).

The next theorem proves the existence of the restriction map.

Theorem 11.7. To every f ∈ HL2
t (G), we may associate a function Rf : GCM → C

such that

• for all f ∈ P, Rf = f |GCM
.

• for f ∈ HL2
t (G) and g ∈ GCM , |Rf(g)| ≤ ‖f‖L2(νt)e

d(e,g)2/2t.

• for every P ∈ Proj(W1), Rf ◦ ιP ∈ HL2
t (G

P ), and supP ‖Rf ◦ ιP‖HL2
t (G

P ) =

‖f‖HL2
t (G). In other words, Rf |⋃

P GP ∈ HL2
t (
⋃

P G
P ).

Proof. Let f ∈ P . By Theorem 11.5, for all P ∈ Proj(W1), for all g ∈ GP , |f(g)| ≤
‖f ◦ ιP‖HL2

t (G
P )e

dP (e,g)2/2t. Now take any g ∈ GCM . By Theorem 10.11, there exists a
sequence Pm ∈ Proj(W1)

↑ and gm ∈ GPm such that gm → g in ‖ · ‖gCM
(and hence in

‖·‖G), and dPm(e, gm) → d(e, g). Then, by the continuity of f , we may take the limit of
the inequality |f(gm)| ≤ ‖f‖HL2

t (G
Pm )e

dPm (e,gm)2/2t to get |f(g)| ≤ ‖f‖HL2
t (G)e

d(e,g)2/2t.
Then for g ∈ GCM , the evaluation map Rg : P → C defined as Rgf = f(g) satisfies
|Rgf | ≤ ‖f‖HL2

t (G)e
d(e,g)2/2t. Then we conclude that there is a continuous linear

extension Rg : HL2
t (G) → C, for which the same bound applies.

Now for any f ∈ HL2
t (G), we define Rf : GCM → C as Rf(g) = Rgf . This

definition will immediately satisfy the first 2 points. For the third, we must show that,
for arbitrary f ∈ HL2

t (G), the map Rf has holomorphic properties. To do this, we
will construct an alternate restriction map that factors through HL2

t (G
P ). Consider

that we may apply the restriction P 3 f 7→ f ◦ ιP ∈ HL2
t (G

P ) and use the bound
from Lemma 11.6, ‖f ◦ ιP‖HL2

t (G
P ) ≤ ‖f‖HL2

t (G), and extend to get a continuous map
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RP : HL2
t (G) 7→ HL2

t (G
P ) with the bound ‖RPf‖HL2

t (G
P ) ≤ ‖f‖HL2

t (G). Furthermore,
by Theorem 11.5, for any f ∈ HL2

t (G), and g ∈ GP ,

|RPf(g)| ≤ ‖RPf‖HL2
t (G

P )e
dP (e,g)2/2t ≤ ‖f‖HL2

t (G)e
dP (e,g)2/2t . (3.9)

Then for P ∈ Proj(W1) and g ∈ GP , we define (RP )g : HL2
t (G) → C as the

composition f 7→ RPf 7→ RPf(g), where (3.9) above justifies continuity.

Consider that, for any g ∈ GP , Rg and (RP )g coincide on P . Indeed, if f ∈ P ,
(RP )gf = f |GP (g) = f(g) = Rgf . This implies that (RP )gf = Rgf for f ∈ HL2

t (G),
so that Rf ◦ ιP = RPf for all P ∈ Proj(W1), so we must have Rf ◦ ιP ∈ HL2

t (G
P ).

Moreover, supP ‖Rf ◦ ιP‖HL2
t (G

P ) = supP∈Proj(W1) ‖R
Pf‖HL2

t (G
P ) ≤ ‖f‖HL2

t (G).

Lastly, for f ∈ HL2
t (G), let (fm)m∈N be a sequence in P be such that fm → f in

HL2
t (G). Then∣∣∣∣ sup

P
‖Rf ◦ ιP‖HL2

t (G
P ) − sup

P
‖Rfm ◦ ιP‖HL2

t (G
P )

∣∣∣∣
≤ sup

P
‖Rf ◦ ιP −Rfm ◦ ιP‖HL2

t (G
P )

≤ ‖f − fm‖HL2
t (G) → 0

and thus, since ‖fm‖HL2
t (G) = supP ‖Rfm ◦ ιP‖HL2

t (G
P ) for all m, we must have

‖f‖HL2
t (G) = supP ‖Rf ◦ ιP‖HL2

t (G
P ), which proves the final claim.

We now remind the reader that, as noted in the introduction, while we know
that

⋃
P G

P ⊆ GCM , it cannot be deduced whether
⋃

P G
P = GCM in every case.

However, Section 11.5.3, we will show that every function F ∈ HL2
t (
⋃

P G
P ) has a

natural extension to GCM , which will correspond to the GCM -wide definition that R
provides.

11.3 The Taylor map

Recall that, for f : GP → C, we define f̂(e) : T (gP ) → C as f̂(e)(h1 ⊗ . . . ⊗ hn) :=

h̃1 . . . h̃nf(e). By [DGS09a], we know f̂(e) ∈ J0
t (g

P ). In the following proof, we will
first show that if f ∈ HL2

t (
⋃

P G
P ), then f̂(e) is defined on T (H1), then show that

it has an extension to T (gCM). In doing so, we will demonstrate that, in a certain
sense, we can take derivatives of functions in HL2

t (
⋃

P G
P ) in directions that do not

even exist in GCM . This is can done by realizing that, for example, a first order
derivative in HN is equivalent to a (potentially infinite) sum of Nth-order derivatives
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in H1 (such an operator should perhaps be merely thought of as a “derivation2” for
functions defined on

⋃
P G

P ). The convergence of this expression will come from the
assumption supP ‖f ◦ ιP‖HL2

t (G
P ) <∞, while the existence of such an expression will

be achieved by using the Hörmander condition. Equivalently, one could easily extend
f̂(e) to T (gCM) by merely defining f̂(e)(hn) := f̂(e)(Ψ(hn)), where Ψ is defined in
the proof of Theorem 11.2, but this would still leave the task of proving that this is
an honest extension of f ◦ιP ∈ T (gP ), as well as that this lies in J0(gCM). Instead, we
will more carefully define the extension, denoted T f , and these facts will be proven.
In particular it will be a consequence (instead of an assumption) that T f ◦Ψ = T f .

Theorem 11.8. Let F ∈ HL2
t (
⋃

P G
P ). The multilinear map T (k)F : Hk

1 → C de-
fined as T (k)F (h1, . . . , hk) = h̃1 . . . h̃k(F ◦ιP )(e) where PH1 = span(h1, . . . , hk) makes
sense and uniquely determines a map T F ∈ T (gCM)′ satisfying, for h1, . . . , hk ∈ H1,
T F (h1⊗ . . .⊗hk) = T (k)F (h1, . . . , hk). Additionally, T F is an extension of F̂ ◦ ιP (e)
for all P ∈ Proj(W1). In other words, F̂ ◦ ιP (e) = T F |T (gP ).

And lastly, for every F , T F ∈ J0
t (gCM), and the map T : HL2

t (
⋃

P G
P ) →

J0
t (gCM) is isometric, so that ‖T F‖J0

t (gCM ) = supP ‖F ◦ ιP‖HL2
t (G

P ).

Proof. For any set h1, . . . , hk, let P : H1 → H1 be the finite-rank projection onto
span(h1, . . . , hk). Then for h ∈ PH1, g ∈ GP , since GP is a subgroup of G, we have

h̃(F ◦ ιP )(g) =
d

dt

∣∣∣
t=0
F (ιP (g · (th))) =

d

dt

∣∣∣
t=0
F (g · (th)) = ((h̃F ) ◦ ιP )(g) .

(3.10)

Hence, h̃(F ◦ ιP ) = (h̃F )◦ ιP . We may deduce that h̃1 . . . h̃kF (e) exists and equals
h̃1 . . . h̃k(F ◦ ιP )(e). So we may indeed define the multilinear map T (k)F : Hk

1 → C.

Recall that, by the finite-dimensional isometry, Theorem 11.4, ‖F ◦ ιP‖HL2
t (G

P ) =

‖F̂ ◦ ιP (e)‖J0
t (g

P ). Then observe that, for any P ∈ Proj(W1), with basis {ej}1≤j≤r of
PH1, and for any ` ∈ N,

r∑
j1,...,jℓ=1

|T (ℓ)F (ej1 , . . . , ejℓ)|2 =
r∑

j1,...,jℓ=1

|ẽj1 . . . ẽjℓF (e)|2

≤ `!

tℓ

∞∑
k=0

tk

k!

r∑
j1,...,jk=1

|ẽj1 . . . ẽjkF (e)|2

=
`!

tℓ
‖F ◦ ιP‖HL2

t (G
P ) ≤ `!

tℓ
sup
P

‖F ◦ ιP‖HL2
t (G

P ) .

2Moreover, the proof of Theorem 11.8 may provide justification that gCM could be considered the
“set of left-invariant vector fields” of GCM , making it fitting of being considered its corresponding
Lie algebra; see Section 9.4.2 for more discussion.
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Then for every ` ∈ N, F̂ (ℓ)(e) is Hilbert-Schmidt and extends to H⊗ℓ
1 . Thus, we may

regard T F = (T (ℓ)F )ℓ∈N ∈ T (H1)
′.

We must show that T F has an extension to T (gCM). Firstly, note that each
iterated 1-bracket [·, . . . , [·, ·]1,1, . . .]1,n−1 : H

⊗n
1 → Hn is surjective. Then if (Pm)m∈N ∈

Proj(W1)
↑, it follows that

⋃
m∈N[. . . [PmH1, PmH1]1,1, . . . , PmH1]1,n−1 is dense in Hn,

which implies that
⋃

m∈N g
Pm is dense in gCM . Thus, for each Hn, we may choose

a basis {en,j}j∈Λn such that {e1,j}1≤j≤rm = {ej}1≤j≤rm is a basis of PmH1, and each
en,j ∈ gPm for some m ∈ N.

Then recall that, by our Hörmander condition and Proposition 2.4, there exists a
constant cn such that, for all v ∈ Hn,

∞∑
j1,...,jn=1

∣∣〈[ej1 , . . . , [ejn−1 , ejn ] . . .] , v〉Hn

∣∣2 ≥ cn‖v‖2Hn
.

Then consider the following calculation3.
∞∑
r=1

|ẽn,rF (e)|2 =

∥∥∥∥ ∞∑
r=1

(
ẽn,rF (e)

)
en,r

∥∥∥∥2
Hn

≤ 1

cn

∞∑
j1,...,jn=1

∣∣∣∣∣
〈
[ej1 , . . . , [ejn−1 , ejn ] . . .] ,

∞∑
r=1

(
ẽn,rF (e)

)
en,r

〉
Hn

∣∣∣∣∣
2

=
1

cn

∞∑
j1,...,jn=1

∣∣∣∣∣
∞∑
r=1

〈
[ej1 , . . . , [ejn−1 , ejn ] . . .], en,r

〉
Hn

(
ẽn,rF (e)

)∣∣∣∣∣
2

=
1

cn

∞∑
j1,...,jn=1

∣∣ ˜[ej1 , . . . , [ejn−1 , ejn ] . . .]F (e)
∣∣2

≤ K

cn

∞∑
j1,...,jn=1

|ẽj1 . . . ẽjnF (e)|2 (3.11)

for some K ∈ R, where we remark that the final inequality follows from the fact
that ˜[ej1 , . . . , [ejn−1 , ejn ] . . .]F (e) is a sum of 2n terms of the form ẽjσ(1)

. . . ẽjσ(n)
F (e)

over permutations σ ∈ Sn. This shows that the map Hn 3 h 7→ h̃F (e) ∈ C is
Hilbert-Schmidt.

Moreover, for surjective continuous maps M1 : H
⊗n1
1 → K1 and M2 : H

⊗n2
1 → K2,

the tensor product M1 ⊗ M2 : H
⊗(n1+n2)
1 → K1 ⊗ K2 is also surjective, and by

3Note that, by the choice of the bases {en,r}j∈Λn , the expression in the third line is a finite sum
in r (for each choice of j1, . . . , jk), and importantly that there is no question of its convergence in r.
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Proposition 2.4 will have a constant c such that, for all z ∈ K1 ⊗K2,
∞∑

j1,...,jn1+n2=1

∣∣∣〈M1(ej1 , . . . , ejn1
)⊗M2(ejn1+1 , . . . , ejn1+n2

, z
〉
K1⊗K2

∣∣∣2 ≥ c‖z‖2K1⊗K2

Then applying this to iterated brackets, we’ll have that such a lower constant c
exists for arbitrary tensor products of iterated brackets of the form(

[·, . . . , [·, ·]1,1 . . .]1,n1−1

)
⊗ . . .⊗

(
[·, . . . , [·, ·]1,1 . . .]1,nk−1

)
:

H⊗n1
1 ⊗ . . .⊗H⊗nk

1 → Hn1 ⊗ . . .⊗Hnk
,

and in fact c = cn1 · . . . cnk
. Then, using similar techniques to (3.11), we have

∞∑
r1,...,rk=1

|ẽn1,r1 . . . ẽnk,rkF (e)|2

=

∥∥∥∥∥
∞∑

r1,...,rk=1

(
ẽn1,r1 . . . ẽnk,rkF (e)

)
en1,r1 ⊗ . . .⊗ enk,rk

∥∥∥∥∥
2

Hn1⊗...⊗Hnk

≤ 1

c

∞∑
j1,1,...,j1,n1=1...
jk,1,...,jk,nk

=1

∣∣∣∣∣
〈
[ej1,1 , . . . , [ej1,n1−1 , ej1,n1

] . . .]⊗ . . .⊗ [ejk,1 , . . . , [ejk,nk−1
, ejk,nk

] . . .] ,

∞∑
r1,...,rk=1

(
ẽn1,r1 . . . ẽnk,rkF (e)

)
en1,r1 ⊗ . . .⊗ enk,rk

〉
Hn1⊗...⊗Hnk

∣∣∣∣∣
2

=
1

c

∞∑
j1,1,...,j1,n1=1...
jk,1,...,jk,nk

=1

∣∣∣∣∣
∞∑

r1,...,rk=1

〈
[ej1,1 , . . . , [ej1,n1−1 , ej1,n1

] . . .], en1,r1

〉
Hn1

. . .

〈
[ejk,1 , . . . , [ejk,nk−1

, ejk,nk
] . . .], enk,rk〉Hnk

(
ẽn1,r1 . . . ẽnk,rkF (e)

)∣∣∣∣∣
2

≤ K

c

∞∑
j1,1,...,j1,n1=1...
jk,1,...,jk,nk

=1

∣∣(ẽj1,1 . . . ẽj1,n1

)
. . .
(
ẽjk,1 . . . ẽjk,nk

)
F (e)

∣∣2
(3.12)

for someK. This proves that the mapHn1×. . .×Hnk
3 (h1, . . . , hn) 7→ h̃1 . . . h̃nF (e) ∈

C is weakly Hilbert-Schmidt, and thus has a unique extension to Hn1 ⊗ . . . ⊗ Hnk
.
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In this way, since gCM = H1 ⊕ . . . ⊕ HN , we may conclude that we have an exten-
sion of T F to g⊗k

CM for all k, and thus to T (gCM). We will denote this extension as
T F ∈ T (gCM)′.

We now justify that T F ∈ J0(gCM). We know that if a, b ∈ gP for some P ∈
Proj(W1), then T F is an extension of F̂ ◦ ιP (e) ∈ J0(gP ), so we know T F (a⊗b−b⊗
a− [a, b]) = 0. Now let a, b ∈ gCM be arbitrary. Since {gP}P∈Proj(W1) is dense in gCM ,
we may choose sequences am, bm ∈

⋃
P∈Proj(W1)

gP such that am → a and bm → b in
‖ · ‖gCM

. By the continuity of T F on T (gCM), knowing that T F (am⊗ bm− bm⊗am−
[am, bm]) = 0 for all m allows us to conclude T F (a⊗ b− b⊗ a− [a, b]) = 0. Using a
similar limiting technique, we may tensor an element of the form a⊗ b− b⊗ a− [a, b]
with any other element in T (gCM) (on the left or the right) and still conclude that
T F would evaluate to be 0. We would also get the same result for sums of such
elements. This suffices to prove T F (J(gCM)) = 0, so that T F ∈ J0(gCM).

The proof will be complete if we show that ‖T F‖J0
t (gCM ) is finite and equals

supP ‖F ◦ ιP‖HL2
t (G

P ). Again let {ej}j∈N be a basis of H1 such that {ej}1≤j≤r is a
basis of PH1. Then

‖F̂ ◦ ιP (e)‖2J0
t (g

P ) =
∞∑
k=0

tk

k!

r∑
j1,...,jk=1

|T F (ej1 ⊗ . . .⊗ ejk)|2

≤
∞∑
k=0

tk

k!

∞∑
j1,...,jk=1

|T F (ej1 ⊗ . . .⊗ ejk)|2 = ‖T F‖2J0
t (gCM ) , (3.13)

so supP ‖F̂ ◦ ιP‖J0
t (g

P ) ≤ ‖T F‖J0
t (gCM ). And for any sequence (Pm)m∈N ∈ Proj(W1)

↑,
and corresponding bases {ej}1≤j≤rm ,

sup
P

‖F̂ ◦ ιP (e)‖J0
t (g

P ) ≥ lim
m→∞

‖F̂ ◦ ιPm(e)‖J0
t (g

Pm )

= lim
m→∞

∞∑
k=0

tk

k!

rm∑
j1,...,jk=1

|T F (ej1 ⊗ . . .⊗ ejk)|2

= ‖T F‖J0
t (gCM ) . (3.14)

Hence, supP ‖F ◦ ιP‖HL2
t (G

P ) = ‖T F‖J0
t (gCM ). This completes the proof.
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11.4 Surjectivity

At this point, we will begin to make substantial use of the graded structure, more so
than previous results presented. We will first work to show Lemma 11.10, which states
that, for a certain dense collection of α ∈ J0

t (gCM), there exists an Fα ∈ HL2
t (
⋃

P G
P )

such that T Fα(e) = α.

The next theorem, Theorem 11.9, originally appeared in [DGS09b, Lemma 3-5]
for (finite-dimensional) graded nilpotent Lie groups, and has been applied to other
infinite-dimensional settings in [GM13, Lemma 3.17] and [Cec08, Theorem 41]. As
remarked in these papers, this proof does not rely on any finite-dimensional aspects;
it is more a matter of “rank.” It has been included for the sake of completion, and
with a few details added for the sake of clarity.

We say that an element α ∈ T (gCM)′ is of finite rank if there exists a K ∈ N such
that, for all k ≥ K, and collections h1, . . . , hk ∈ gCM , α(h1⊗ . . .⊗hk) = 0. While one
may tell that the elements of J0

t (gCM) can be approximated by finite-rank elements
in T (gCM)′, it’s far less obvious that the finite-rank approximations lie in J0(gCM)
themselves.

Theorem 11.9. The finite-rank elements of J0
t (gCM) are dense in J0

t (gCM).

Proof. For θ ∈ [0, 2π), let δθ : gCM → gCM be the natural dilation on gCM by eiθ,
meaning that, for h = (h1, . . . , hN) ∈ gCM , δθ(h1, . . . , hN) = (eiθh1, . . . , e

iNθhN).
Then define Γθ : T (gCM) → T (gCM) to be the unique extension to an algebra homo-
morphism satisfying Γθ(h1 ⊗ . . .⊗ hN) = δθ(h1)⊗ . . .⊗ δθ(hN).

Consider that, for any a ∈ Hm, b ∈ Hn, we have

Γθ(a⊗ b− b⊗ a− [a, b]) = ei(n+m)θ(a⊗ b− b⊗ a− [a, b])

= (eimθa)⊗ (einθb)− (einθb)⊗ (eimθa)− [eimθa, einθb]

= (Γθa)⊗ (Γθb)− (Γθb)⊗ (Γθa)− [Γθa,Γθb]

which means Γθ(J(gCM)) ⊆ J(gCM). Then for α ∈ J0(gCM), we see that α ◦ Γθ ∈
J0(gCM). Furthermore, for any h1, . . . , hk ∈ gCM , |α ◦ Γθ(h1 ⊗ . . . ⊗ hk)| = |α(h1 ⊗
. . .⊗hk)|, which implies that ‖α ◦Γθ‖J0

t (gCM ) = ‖α‖J0
t (gCM ). Hence, α ◦Γθ ∈ J0

t (gCM).

123



Now4 consider that, for θ, θ′ ∈ [0, 2π),

‖α ◦ Γθ−α ◦ Γθ′‖2J0
t (gCM )

=
∞∑
k=0

tk

k!

∞∑
j1,...,jk=1

|α(Γθ(ej1 ⊗ . . .⊗ ejk))− α(Γθ′(ej1 ⊗ . . .⊗ ejk))|2

=
∞∑
k=0

tk

k!
|eikθ − eikθ

′ |2
∞∑

j1,...,jk=1

|α(ej1 ⊗ . . .⊗ ejk)|2 .

Knowing that |eikθ − eikθ
′ |2 is bounded by 4 for all k and → 0 as θ′ → θ for each

k is sufficient to deduce ‖α ◦ Γθ − α ◦ Γθ′‖J0
t (gCM ) → 0 as θ′ → θ, which means that

the map θ 7→ α ◦ Γθ ∈ J0
t (gCM) is continuous.

Now let Fn(θ) = 1
2πn

∑n−1
k=0

∑k
ℓ=−k e

iℓθ, known as the Fejer kernel, which has
the properties that Fn(θ) ≥ 0 for all θ,

∫ π

−π
Fn(θ)dθ = 1, and for any continuous

f : [−π, π] → C,
∫ π

−π
Fn(θ)f(θ)dθ → f(0).

Knowing that each Fn is bounded allows us to define αn :=
∫ π

−π
Fn(θ)(α◦Γθ)dθ ∈

J0
t (gCM) as a Bochner integral. Then we claim that each αn is finite-rank and con-

verges to α in ‖ · ‖J0
t (gCM ).

Observe that, for any simple tensor β ∈ Hr1 ⊗ . . . ⊗ Hrk , Γθβ = eirθβ, where
r =

∑k
j=1 rj. Then for any n,

αn(β) =

∫ π

−π

Fn(θ) (α ◦ Γθ)(β) dθ =

(∫ π

−π

Fn(θ)e
irθdθ

)
α(β) .

Since each Fn is a finite trigonometric polynomial, we know that for sufficiently large
r, αn(β) = 0, so for such large r, αn(g

⊗r
CM) = 0, meaning αn is of finite rank.

Lastly, observe that

‖α− αn‖J0
t (gCM ) =

∥∥∥∥ ∫ π

−π

Fn(θ)αdθ −
∫ π

−π

Fn(θ)(α ◦ Γθ)dθ

∥∥∥∥
J0
t (gCM )

≤
∫ π

−π

Fn(θ)‖α− α ◦ Γθ‖J0
t (gCM )dθ

n→∞−−−→ α .

4We remark that, in [DGS09b], there is a statement about α ◦ Γθ being “clearly” continuous in
θ with respect to ‖ · ‖J0

t (gCM ), which also appeared in [GM13]. However, it’s easy to make such a
statement by relying on incorrect reasoning. Just because every α|g∗⊗k

CM
◦ δ⊗k

θ has this continuity
does not mean that one has continuity in J0

t (gCM ). The argument below provides more details, and
resembles the argument in [Cec08].
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The following lemma statement and proof closely resemble those of [Cec08, The-
orem 44], and some similar reasoning can also be found in [DGS09b, Lemma 3-6],
[GM13, Lemma 3.19], [DG10, Theorem 6.10].

Lemma 11.10. For α ∈ J0
t (gCM) of finite rank K, the function Fα : gCM → C

defined as

Fα(g) :=
K∑
k=1

1

k!
〈α, g⊗k〉

satisfies Fα ◦ ιP ∈ HL2
t (G

P ) for all P ∈ Proj(W1), and supP ‖Fα ◦ ιP‖HL2
t (G

P ) =

‖α‖J0
t (gCM ). Thus, we may regard Fα ∈ HL2

t (
⋃

P G
P ). Furthermore, all left-invariant

derivatives h̃1 . . . h̃ℓFα(e) exist, and F̂α(e) = T Fα = α.

Proof. We know that α : g⊗k
CM → C is continuous, so by the continuity of g 7→ g⊗k, we

have that α(·⊗k) : gCM → C is continuous as well. Furthermore, for P ∈ Proj(W1),
each α(·⊗k)|GP : GP → C is a holomorphic polynomial on GP . To show this explicitly,
if {bj}j∈N is any basis for gCM where {bj}1≤j≤r is a basis for GP , then

α(g⊗k) =
∞∑

j1,...,jk=1

αj1,...,jk〈g⊗k, bj1 ⊗ . . .⊗ bjk〉g⊗k
CM

=
∞∑

j1,...,jk=1

αj1,...,jk〈g, bj1〉gCM
. . . 〈g, bjk〉gCM

for some constants (αj1,...,jk)k∈N∪0,j1,...,jk∈N. Then, for g ∈ GP ,

α(g⊗k) =
r∑

j1,...,jk=1

αj1,...,jk〈g, bj1〉gCM
. . . 〈g, bjk〉gCM

We may then conclude Fα|GP is a holomorphic polynomial onGP . Now fix h1, . . . , hℓ ∈
gCM , and let G0 be any finite-dimensional Lie subgroup containing every hj, and
choose the basis {bj}j∈N such that {bj}1≤j≤r is a basis for G0. Then, in the likeness of
(3.10), all holomorphic functions F : gCM → C and h ∈ G0 satisfy h̃(F |G0) = (h̃F )|G0 .
Thus, we may deduce h̃1 . . . h̃kFα(e) exisis, since it equals h̃1 . . . h̃k(Fα|G0)(e).

Next, consider that, for h ∈ gCM ,

〈F̂α(e), h
⊗k〉 =

dk

dtk

∣∣∣
t=0
Fα(th) =

dk

dtk

∣∣∣
t=0

1

k!
α(tkh⊗k) = α(h⊗k) .

Then for h ∈ gP , F̂α ◦ ιP (e)(h⊗k) = α(h⊗k). Note that span{h⊗k}h∈gP ,k∈N = S(gP ),
the set of symmetric tensors in T (gP ), by the Poincare-Birkoff-Witt theorem ([Var84,
Lemma 3.3.3] or [Hum78, Corollary E]), T (gP ) = S(gP ) ⊕ J(gP ). Knowing that
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F̂α ◦ ιP (e) and α coincide on S(gP ) and vanish on J(gP ) allows us to conclude
F̂α ◦ ιP (e) = α|T (gP ). Also, we see that, arguing similarly to the proof in Theo-
rem 11.8, in particular (3.13) and (3.14),

sup
P

‖Fα ◦ ιP‖HL2
t (G

P ) = sup
P

‖α|gP ‖J0
t (g

P ) = lim
m→∞

‖α|gPm‖J0
t (g

Pm ) = ‖α‖J0
t (gCM ) .

So Fα ∈ HL2
t (
⋃

P G
P ). Then for all k ∈ N, F̂α(e) and T Fα agree on all simple

tensors in (
⋃

P gP )⊗k. This suffices to say F̂α(e) has an extension to T (gCM), which
must agree with T Fα. The same can be said of F̂α(e) and α, which completes the
proof.

In order to complete the proof, we will show that any F ∈ HL2
t (
⋃

P G
P ) for which

T F ∈ J0
t (gCM) is of finite rank can be approximated by elements of P . To do this,

we will now define a new type of projection.

Recall that, for 1 ≤ n ≤ N , we define Wn := Hn
∥·∥G . Then for each n, we have a

dense inclusion W ∗
n ⊆ H∗

n
∼= Hn, so we may choose an orthonormal basis {en,j}j∈Λn

of Hn that lies in W ∗
n . Then we let (Q

(m)
n )m∈N be the corresponding sequence of

finite-rank projections Hn → span{en,1, . . . , en,m}, so that Q(m) = Q
(m)
1 ⊕ . . .⊕Q

(m)
N :

gCM → gCM is a sequence of finite rank projections that converges to IgCM
in the

strong operator topology. Then, by choice of basis, each Q(m)
n extends to a continuous

linear finite-rank map Q
(m)
n : Wn → span{en,1, . . . , en,m}, so that Q(m) itself extends

to a continuous linear finite-rank map defined on G. We will use Proj(G) to denote
the set of finite-rank projections of the form Q(m), and Proj(G)↑ to denote the set of
sequences (Q(m))m∈N constructed in this way.

We will complete our proof of surjectivity through comparisons between left-
invariant derivatives and linear derivatives, in a similar fashion to [DG10; Cec08;
GM13]. However, these previous works have followed this line of reasoning: for
any Q ∈ Proj(G), h̃1 . . . h̃k(f − f ◦ Q)(e) =

∑k
j=⌊k/N⌋ f

(j)(e)(MQ
k,j(h1, . . . , hk)) for

some MQ
k,j : Hk

1 → T (gCM) (see V k
P (h1, . . . , hk, g) in [Cec08, Proposition 53], or

(h1, . . . , hk)
θ
P in [GM13, Proposition 4.4]). The challenge is to then argue that

this expression converges to 0 in the appropriate manner as Q → IG. This has
shown to be messy even for step 2 examples, and requires substantial notation
and calculation for higher step cases5. Here, we will apply a different philosophy:
h̃1 . . . h̃kf(e) =

∑k
j=⌊k/N⌋ f

(j)(e)(Mk,j(h1, . . . , hk)), where the Mk,j do not depend on
the function f and are weakly maps. This, combined with control on the linear
derivatives, will suffice to carry out our convergence calculations.

5We remark that the argument for the corresponding result in [Cec08] constituted 25 pages, which
is approximately half of the publication.
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As a remark, one can deduce the existence of these expressions by using proposi-
tions 53 and 56 of [Cec08] (treating P = I and using the provided recursive formula),
but we derive them here for the sake of completion, to be clear that they exist out-
side of the context of path space, and most importantly to emphasize that these
expressions are weakly Hilbert-Schmidt under our assumptions.

To justify the next 2 theorems, let us work out the calculation for the first few
derivatives, assuming that G is of step N = 3. Let h ∈ gCM , g ∈ gCM , and say
φ : gCM → V is smooth for any Hilbert space V . Then

h̃gφ = h̃φ(g) = φ′(g)(Lg∗h) = φ′(g)

(
h+

1

2
[g, h] +

1

12
[g, [g, h]]

)
.

For f : gCM → C, we wish to derive a similar expression for h̃1 . . . h̃kf(g). To do
so, we will regard h̃· : gCM → gCM by writing

h̃g = h+
1

2
[g, h] +

1

12
[g, [g, h]] .

So

h̃1h̃2g := h̃1g
(
h̃2·
)
= h̃1g

(
h2 +

1

2
[·, h2] +

1

12
[·, [·, h2]]

)
=

1

2
[h̃1g, h2] +

1

12
[h̃1g, [g, h2]] +

1

12
[g, [h̃1g, h2]]

=
1

2

[
h1 +

1

2
[g, h1] +

1

12
[g, [g, h1]] , h2

]
+

1

12

[
h1 +

1

2
[g, h1] +

1

12
[g, [g, h1]],

[
g, h2

]]
+

1

12

[
g,

[
h1 +

1

2
[g, h1] +

1

12
[g, [g, h1]], h2

]]
.

Using this and going further, we may derive

h̃1f(g) = f ′(g)(h̃g) = f ′(g)

(
h1 +

1

2
[g, h1] +

1

12
[g, [g, h1]]

)
h̃1h̃2f(g) = f ′′(g)(h̃1g, h̃2g) + f ′(g)(h̃1g(h̃2·))

= f ′′(g)(h1 + c2[g, h1] + c3[g, [g, h1]] , h2 + c2[g, h2] + c3[g, [g, h2]])

+ f ′(g)(c2[h̃1g, h2] + c3[h̃1g, [g, h2]] + c3[g, [h̃1g, h2]])

h̃1h̃2h̃3f(g) = f ′′′(g)(h̃1g, h̃2g, h̃3g) + f ′′(g)(h̃1g(h̃2·), h̃3g) + f ′′(g)(h̃2g , h̃1g(h̃3·))

+ f ′′(g)(h̃1g, h̃2g(h̃3·)) + f ′(g)(h̃1g(h̃2h̃3·)) .

127



Easier to digest is rewriting these expressions into tensor notation and evaluating
them at the identity. This produces

h̃1f(e) = f ′(g)(h1)

h̃1h̃2f(e) = f ′′(e)(h1 ⊗ h2) + f ′(g)(
1

2
[h1, h2])

h̃1h̃2h̃3f(e) = f ′′′(e)(h1 ⊗ h2 ⊗ h3)

+ f ′′(e)(
1

2
[h1, h2]⊗ h3) + f ′′(e)(h2 ⊗

1

2
[h1, h3]) + f ′′(e)(h1 ⊗

1

2
[h2, h3])

+ f ′(e)(
1

4
[[h1, h2], h3] +

1

12
[h2, [h1, h3]] +

1

12
[h1, [h2, h3]]) .

Observe that every expression is in terms of brackets, tensors, and sums of g, h1,
and h2. Importantly, this expression is a sum of derivatives composed with weakly
Hilbert-Schmidt maps. I claim that all expressions of the form h̃1 . . . h̃kf(e) take on
such a form, and this is argued precisely in the next 2 lemmas.

We use the phrase iteration of brackets and tensors to mean compositions and
tensors of maps of the form σ̃⊗a : g⊗a

CM → g⊗a
CM where σ ∈ Sa is some permutation

that acts naturally on g⊗a
CM , and I⊗a

gCM
⊗ [·]⊗ I⊗b

gCM
: g⊗a+b+2

CM → g⊗a+b+1
CM . In the spirit

of Proposition 2.4, we may apply this term to a multilinear map M : gkCM → g⊗j
CM

by considering its extension to g⊗k. In particular, iterated brackets [·, . . . , [·, ·], . . .],
other compositions like [[·, ·], [·, ·]], and extensions and tensor products thereof are
all examples. By applying the Jacobi identity, one can see that every iteration of
brackets and tensors mapping gnCM → g⊗j

CM can be rewritten as a finite sum of maps
(composed with permutations σ̃ : g⊗n

CM → g⊗n
CM) of the form

(h1, . . . , hn) 7→ [h1, . . . , [hn1−1, hn1 ] . . .]⊗ . . .⊗ [hn−nj+1, . . . , [hn−1, hn] . . .] (3.15)

where
∑j

i=1 ni = n.

Lemma 11.11. Let f : gCM → C be smooth. Then there exist multilinear functions
M

(ℓ)
k,j : H

k
1 × gℓCM → g⊗j

CM such that, for any finite collection h1, . . . , hk ∈ H1,

(h̃1 . . . h̃kf)(g) =
k∑

j=1

N∑
ℓ=0

f (j)(M
(ℓ)
k,j (h1, . . . , hk, g, . . . , g︸ ︷︷ ︸

ℓ times

)) (3.16)

where, in fact, each M (ℓ)
k,j is a sum of iterations of brakets and tensors. In particular,

we have that each M
(ℓ)
k,j extends to a continuous linear map H⊗k

1 ⊗ g⊗ℓ
CM → g⊗j

CM .
Moreover, for j < bk/Nc, M (ℓ)

k,j ≡ 0 (so the sum above can be assumed to start at
j = bk/Nc).
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Proof. We begin by defining

M
(0)
1,1 (h) := h M

(1)
1,1 (h, g1) :=

1

2
[g1, h] M

(2)
1,1 (h, g1, g2) :=

1

12
[g1, [g2, h]] . . .

such that

h̃g = h+
1

2
[g, h] +

1

12
[g, [g, h]] + . . . = M

(0)
1,1 (h) +M

(1)
1,1 (h, g) +M

(2)
1,1 (h, g, g) + . . .

(3.17)
which implies

h̃f(g) =
N∑
ℓ=0

f (1)(g)
(
M

(ℓ)
1,1(h, g, . . . , g)

)
so the statement holds for k = 1.

We will now inductively define the M (ℓ)
k,j terms. For now, let M : Hk

1 ×gℓCM → g⊗j
CM

be an arbitrary multilinear continuous function. To make the notation clear, for the
rest of this proof, we will use the notation M(h1, . . . , hk, ·, . . . , ·) to refer to the map

gCM 3 g 7→ M(h1, . . . , hk, g, . . . , g) ∈ g⊗j
CM

(that is, every instance of the symbol “·” is equal to one another). For such an M ,

h̃g(M(h1, . . . , hk, ·, . . . , ·)) =
ℓ∑

m=1

M(h1, . . . , hk, g, . . . , g︸ ︷︷ ︸
m−1

, h̃g, g, . . . , g︸ ︷︷ ︸
ℓ−m

) . (3.18)

Substituting (3.17) into (3.18) and applying multilinearity, we see that if the multi-
linear map M can be expressed as a sum of iterations of tensors and brackets, then
the map

Hk+1
1 × gℓ+1

CM 3 (h1, . . . , hk, h, g1, . . . , gℓ, g)

7→ h̃g(M(h1, . . . , hk, ·, . . . , ·))(g1, . . . , gℓ)

can also be expressed as a sum of iterations of tensors and brackets.

Now observe that6

h̃g

( k∑
j=1

N∑
ℓ=0

f (j)(·)
(
M

(ℓ)
k,j (h1, . . . , hk, ·, . . . , ·)

))

=
k∑

j=1

N∑
ℓ=0

f (j+1)(g)
(
h̃g ⊗M

(ℓ)
k,j (h1, . . . , hk, g, . . . , g)

)
+

k∑
j=1

N∑
ℓ=1

ℓ∑
m=1

f (j)(g)
(
M

(ℓ)
k,j (h1, . . . , hk, g, . . .︸ ︷︷ ︸

m−1

, h̃g, . . . , g︸ ︷︷ ︸
ℓ−m

)
)

(3.19)

6Note that the ℓ index on the final sum starts at 1 now, because the derivative of a constant is 0
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which is comprised of sums of iterations of tensors and brackets h1, . . . , hk, h, g that
are substituted into linear derivatives of f at g. It can then be deduced that there
exists an inductive definition of M (ℓ)

k,j such that (3.19) is satisfied, and each is sum of
iterations of tensors and brackets, and therefore weakly Hilbert-Schmidt.

For a concrete definition, we wish to satisfy the inductive relation
k+1∑
j=1

N∑
ℓ=0

f (j)(g)
(
M

(ℓ)
k+1,j(h1, . . . , hk, h, g, . . . , g)

)
= h̃g

(
k∑

j=1

N∑
ℓ=0

f (j)(·)
(
M

(ℓ)
k,j (h1, . . . , hk, ·, . . . , ·)

))
. (3.20)

Then (3.19) and (3.20) will both be true if the following is satisfied, for every fixed
1 ≤ j ≤ k + 1.

N∑
ℓ=0

M
(ℓ)
k+1,j(h1, . . . , hk, h, g, . . . , g)

= 1j ̸=1

N∑
ℓ=0

h̃g ⊗M
(ℓ)
k,j−1(h1, . . . , hk, g, . . . , g)

+ 1j ̸=k+1

N∑
ℓ=1

ℓ∑
m=1

M
(ℓ)
k,j (h1, . . . , hk, g, . . .︸ ︷︷ ︸

m−1

, h̃g, . . . , g︸ ︷︷ ︸
ℓ−m

)

To satisfy this, we need only set, for 1 ≤ j ≤ k + 1 and 0 ≤ ` ≤ N ,

M
(ℓ)
k+1,j(h1, . . . , hk, h, g1, . . . , gℓ)

= 1j ̸=1

∑
ℓ1+ℓ2=ℓ
ℓ1≥0,ℓ2≥0

M
(ℓ1)
1,1 (h, g1, . . . , gℓ1)⊗M

(ℓ2)
k,j−1(h1, . . . , hk, gℓ1+1, . . . , gℓ)

+ 1j ̸=k+1

∑
ℓ1+ℓ2=ℓ+1
ℓ1≥1,ℓ2≥0

ℓ1∑
m=1

M
(ℓ1)
k,j

(
h1, . . . , hk, g1, . . . , gm−1,

M
(ℓ2)
1,1 (h, gm, . . . , gm+ℓ2), gm+ℓ2+1, . . . , gℓ

)
which will ensure each M (ℓ)

k,j : H
k
1 ×gℓCM → g⊗j

CM is again a sum of iterations of brackets
and tensors, and in particular weakly Hilbert-Schmidt, and (3.16) will hold.

For the final statement, suppose that M : g⊗η
CM → gCM is an iteration of brackets

and tensors. Then, considering (3.15) with j = 1, M can be rewritten as a sum of
permutations of the extension of the η-fold iterated bracket

(g1, . . . , gη) 7→ [g1, . . . , [gη−1, gη] . . .] .
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Since gCM is assumed nilpotent of step N , then if η > N , then M ≡ 0. Similarly,
suppose M : g⊗η

CM → g⊗j
CM is an iteration of brackets and tensors. Then once again M

can be rewritten as a finite sum of maps of the form in (3.15), a j-fold tensor product
of iterations of brackets. Suppose η > Nj. By the pigeon-hole principle, for each
summand, one factor in the tensor product must consist of an (at least) (N +1)-fold
composition of brackets, which as argued above must be identically 0, which forces
M ≡ 0. Therefore, since M (ℓ)

k,j : g
⊗(k+ℓ)
CM → g⊗j

CM , if bk/Nc > j, then k > Nj, and for
all 0 ≤ ` ≤ N , k + ` > Nj, so that M (ℓ)

k,j ≡ 0.

The following lemma can be deduced from Lemma 11.11.

Lemma 11.12. There exist multilinear functions Mk,j : H
k
1 → g⊗j

CM such that

(h̃1 . . . h̃kf)(e) =
k∑

j=⌊k/N⌋

f (j)(Mk,j(h1, . . . , hk))

where, in fact, each Mk,j is a sum of iterations of tensors and brakets in H1. In
particular, we have that each Mk,j extends to a continuous map H⊗k

1 → g⊗j
CM .

Proof. We evaluate the derivatives at g = e to get the expressions in this theorem.
In particular, we have that for all k ∈ N, 1 ≤ j ≤ k, Mk,j :=M

(0)
k,j .

We are now able to prove our surjectivity theorem.

Theorem 11.13. For F : gCM → C for which F̂ (e) = α ∈ J0
t (gCM) is of finite

rank, there exists a sequence Fm ∈ P such that ‖F̂m(e) − F̂ (e)‖J0
t (gCM ) → 0. As a

consequence, T ◦ R : HL2
t (G) → J0

t (gCM) is surjective.

Proof. Let α ∈ J0
t (gCM) be of finite rank. By Lemma 11.10, we may choose Fα :

gCM → C such that F̂α(e) = T Fα = α.

Before going further, we prove the following claim: the linear derivatives at e,
F

(k)
α (e) : gkCM → C, all exist, and in fact ‖F (k)

α (e)‖HS(gkCM ,C) < ∞ for all k, and
for k ≥ K, F (k)

α ≡ 0. To argue this, first note that F ′
α(e)(v) = α(v), and that

‖F ′
α(e)‖HS(gCM ,C) =

∑∞
j=1 |α(bj)|2 = ‖α|gCM

‖2g∗CM
<∞.

More generally, if f : g⊗ℓ
CM → C is defined as f(g) = 〈β, g⊗ℓ〉, then the product

rule yields that f ′(g)(v) =
∑ℓ

j=1〈β, g⊗j−1⊗v⊗g⊗ℓ−j〉. One can repeatedly apply this
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formula and see, for all g ∈ gCM ,

F (k)
α (g)(v1, . . . , vk) =

1

k!

∑
σ∈Sk

α(vσ(1) ⊗ . . .⊗ vσ(k)) . (3.21)

Or alternatively, one may observe that the expressions in (3.21) are symmetric and
agree when v1 = . . . = vk because, arguing as in the proof of Lemma 11.10,

F (k)
α (e)(v⊗k) =

dk

dtk

∣∣∣∣
t=0

Fα(tv) =
dk

dtk

∣∣∣∣
t=0

1

k!
α(tkv⊗k) = α(v⊗k) .

Then ‖F (k)
α (e)‖2

HS(gkCM ,C) = ‖α|g⊗k
CM

‖2
g∗⊗k
CM

< ∞. Also, we should see that for k > K,

F
(k)
α ≡ 0.

Let (Qm)m∈N ∈ Proj(G)↑ be a sequence of finite-rank projections Qm that each
map onto span{en,j}1≤n≤N,1≤j≤m, where each {en,j}1≤j≤Λn is a basis of Hn. Then we
may write

Fα(g) =
K∑
k=0

N∑
n1,...,nk=1

∞∑
j1,...,jk=1

α(n1,j1),...,(nk,jk)〈g
⊗k, en1,j1 ⊗ . . .⊗ enk,jk〉g⊗k

CM

for some square-summable coefficients α(n1,j1),...,(nk,jk) (where the limit is legitimate
pointwise for g ∈ gCM), so that we may define

Fα,m(g) = Fα ◦Qm(g)

=
K∑
k=0

N∑
n1,...,nk=1

m∑
j1,...,jk=1

α(n1,j1),...,(nk,jk)〈g
⊗k, en1,j1 ⊗ . . .⊗ enk,jk〉g⊗k

CM
.

Then by the choice of the bases, each 〈·, en,j〉Hn : gCM → C can be extended to a
continuous complex linear map on G, or equivalently, is an element of G∗ restricted to
gCM . In the same way, any 〈·⊗ken1,j1 ⊗ . . .⊗ enk,jk〉g⊗k

CM
= 〈·, en1,j1〉Hn1

. . . 〈·, enk,jk〉Hnk

can be realized as a continuous holomorphic cylinder polynomial on G, so we can say
the same of Fα,m ∈ P .

We now must show that ‖F̂α(e)−F̂α,m(e)‖J0
t (gCM )

m−→ 0. To show this, consider the
following estimate on an arbitrary holomorphic f : gCM → C, where we set ej := e1,j
and use the expressions in Lemma 11.12.
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∞∑
j1,...,jk=1

|ẽj1 . . . ẽjkf(e)|2 =
∞∑

j1,...,jk=1

∣∣∣∣ k∑
ℓ=⌊k/N⌋

f (ℓ)(Mk,ℓ(ej1 , . . . , ejk))

∣∣∣∣2

≤ C

∞∑
j1,...,jk=1

k∑
ℓ=⌊k/N⌋

∣∣∣f (ℓ)(Mk,ℓ(ej1 ⊗ . . .⊗ ejk))
∣∣∣2

= C
k∑

ℓ=⌊k/N⌋

‖f (ℓ) ◦Mk,ℓ‖2HS(H⊗k
1 ,C)

≤ C

k∑
ℓ=⌊k/N⌋

‖Mk,ℓ‖2H⊗k
1 ,g⊗ℓ

CM

‖f (ℓ)‖2
HS(g⊗ℓ

CM ,C) ,

where the final inequality comes from the fact that the composition of a Hilbert-
Schmidt operator with a linear operator is again Hilbert-Schmidt (Proposition 2.3).
Then, applying this estimate to Fα − Fα,m = Fα − Fα ◦ Qm and setting C ′ :=
C max1≤ℓ≤k ‖Mk,ℓ‖2H⊗k

1 ,g⊗ℓ
CM

, we get

∞∑
ji=1

|ẽj1 . . . ẽjk(Fα − Fα ◦Qm)(e)|2 ≤ C ′
k∑

ℓ=1

‖F (ℓ)
α (e)− (Fα ◦Qm)

(ℓ)(e)‖HS(H⊗ℓ
1 ,C)

= C ′
k∑

ℓ=1

‖F (ℓ)
α (e) ◦ (I⊗ℓ −Q⊗ℓ

m )‖HS(H⊗ℓ
1 ,C) ,

where, for each `, ‖f (ℓ)(e) ◦ (I⊗ℓ −Q⊗ℓ
m )‖HS(H⊗ℓ

1 ,C) → 0 as m→ ∞.

Also, consider that each Fα,m is a polynomial of degree at most K. Then if
k > NK and ` ≥ bk/Nc, then ` ≥ k/N > K, so that (Fα − Fα,m)

(ℓ) ≡ 0. Then, for
such k, we have

∞∑
j1,...,jk=1

|ẽj1 . . . ẽjk(Fα − Fα,m)(e)|2

=
∞∑

j1,...,jk=1

∣∣∣∣ k∑
ℓ=⌊k/N⌋

(Fα − Fα,m)
(ℓ)(Mk,ℓ(ej1 , . . . , ejk))

∣∣∣∣2 = 0 .
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Then, at last, we have

‖F̂α(e)− F̂α,m(e)‖J0
t (gCM ) =

∞∑
k=0

tk

k!

∞∑
j1,...,jk=1

∣∣∣ẽj1 . . . ẽjk(Fα − Fα,m)(e)
∣∣∣2

=
K∑
k=0

tk

k!

∞∑
j1,...,jk=1

∣∣∣ẽj1 . . . ẽjk(Fα − Fα,m)(e)
∣∣∣2

m→∞−−−→ 0 .

By Theorem 11.9, the set of finite rank α is dense in J0
t (gCM), so the argument

above shows the image of T ◦R is dense in J0
t (gCM). Since T ◦R is an isometry, we

can conclude that T ◦ R is surjective.
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11.5 Inverse formulae and closing gaps

In this section, we will prove further results regarding Taylor expansions of functions
in HL2

t (G).

The following is a result that appears in [DGS09a, Proposition 5.13]. A briefer
outline of the proof is available in [Dri15, Proposition 6.13]. Though we remark that
the notation in [DGS09a; Dri15] starts with a horizontal path g : [0, 1] → gCM with
g(0) = e, and then defines A(t) =

∫ t

0
Lg(s)−1∗g

′(s)ds. For such an A, we must have
Lg(t)∗A

′(t) = g′(t), so by Theorem 2.6, we may conclude g(t) = νA(t). Thus, we may
state Theorem 11.14 in terms of our notation.

Theorem 11.14 (Finite-dimensional Taylor expansion along a horizontal curve). For
any holomorphic function f : GP → C, and any path A ∈ H0([0, 1], PH1),

f(νA(1)) =
∞∑
k=0

∫
∆k

t

f̂(e)(A′(s1)⊗ . . .⊗ A′(sk))ds

which converges absolutely.

We also have the stochastic version, [Dri15, Theorem 6.24].

Theorem 11.15 (Finite-dimensional stochastic Taylor expansion). For any holomor-
phic f : GP → C,

f(gPt ) =
∞∑
k=0

∫
∆k

t

f̂(e)(dPBs1 ⊗ . . .⊗ dPBsk)

which converges almost-surely.

As noted in [DGS09a, Remark 5.14] and [Dri15, Remarks 6.14 and 6.27], the
convergence in Theorem 11.14 and Theorem 11.15 does not require f to be in L2(GP ).
Indeed, f is merely assumed holomorphic, and it is with holomorphic properties alone
that these theorems are proved. On the other hand, it is possible to produce natural
proofs of these theorems when f ∈ HL2

t (G
P ), which use the L2 properties of f ,

and such proofs readily extend to infinite dimensions. It is entirely reasonable to
resort to these methods, as we are, in part, making statements about “measurable
holomorphic” functions on G. Of these 2 theorems, only the second has made an
appearance in infinite dimensions, as [DG10, Theorem 1.9].

We will prove analogues of these 2 theorems for our case, as a Taylor expansion
theorem, Theorem 11.17, and a stochastic Taylor expansion theorem, Theorem 11.20.
Our proofs will very closely resemble the methods in [DG10], and in fact the proof of
Theorem 11.20 is nearly identical.
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While not necessary for the Taylor isomorphism, these results are not without
their uses. Theorem 11.17 will allow us to make a proper formulation of HL2

t (GCM).
Theorem 11.20 will allow us to describe an inverse of R. Both theorems will allow us
to write the inverses of T and T ◦R, after their surjectivity is proven. We caution the
reader that these Taylor expansion theorems on their own do not prove surjectivity, as
they at best describe an inverse on a subset of J0

t (gCM), namely the image of HL2
t (G).

Only after proving surjectivity will we know that they are everywhere defined.

The final subsection, Section 11.5.3 will be devoted to discussing the restriction
map R, namely its inverse, and at last defining HL2

t (GCM), providing multiple de-
scriptions and using it to state the final version of the Taylor isomorphism result.

11.5.1 Taylor expansion along a curve

For any F = Rf : GCM → C, we wish to have a series expansion for F that can be
described in terms of T F . If the step of G is 1, meaning that G ∼= CN is commutative,
then an F ∈ HL2

t (GCM) = HL2
t (H1) would have a Taylor series of the form

F (g) =
∞∑
k=0

T F (g⊗k) .

However, given the noncommutative structure of G, we must instead develop an
infinite-dimensional version of Theorem 11.14 and prove that we have a “Taylor ex-
pansion along a curve.”

Given k ∈ N, A ∈ H0([0, 1], H1), we define Ψt,k(A) =
∫
∆k

t
A′(s1)⊗ . . .⊗A′(sk)ds ∈

H⊗k
1 , and say Ψt,0(A) = 1. We can immediately see that this is well-defined via

Bochner integrals, by the estimate∫
∆n

t

‖A′(s1)‖H0([0,1],H1) . . . ‖A′(sn)‖H0([0,1],H1)ds ≤ 1

k!

(∫ 1

0

‖A(s)‖H0([0,1],H1)

)k

,

though in Lemma 10.7, we show that the assignment H0([0, 1], H1)
k 3 (A, . . . , A) 7→

ΨP
t,k(A) ∈ (H1)

⊗k is weakly Hilbert-Schmidt.

Lemma 11.16. Given A ∈ H0([0, 1], H1), α ∈ J0
t (gCM), and τ ∈ [0, 1],

∑∞
k=0 α(Ψτ,k(A))

converges absolutely. Furthermore, the map J0
t (gCM) 3 α 7→

∑∞
k=0 α(Ψτ,k(A)) ∈ C is

continuous.

Proof. For any K ∈ N, we may write
∑K

k=0 Ψτ,k(A) ∈ T (gCM). Then via the assign-
ment α 7→ α

(∑K
k=0 Ψτ,k(A)

)
,
∑K

k=0 Ψτ,k(A) is a linear map on J0
t (gCM), and we claim
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it is continuous (so an element of J0
t (gCM)∗), because∣∣∣∣∣α

( K2∑
k=K1

Ψτ,k(A)

)∣∣∣∣∣
2

≤

(
K2∑

k=K1

∣∣α(Ψτ,k(A))
∣∣)2

≤

(
K2∑

k=K1

∞∑
j1,...,jk=1

√
tk

k!

√
k!

tk
∣∣α(ej1 ⊗ . . .⊗ ejk)〈Ψτ,k(A), ej1 ⊗ . . .⊗ ejk〉H⊗k

1

∣∣)2

≤ ‖α‖2J0
t (gCM )

K2∑
k=K1

k!

tk

∞∑
j1,...,jk=1

∣∣〈Ψτ,k(A), ej1 ⊗ . . .⊗ ejk〉H⊗k
1

∣∣2
= ‖α‖2J0

t (gCM )

K2∑
k=K1

k!

tk

∞∑
j1,...,jk=1

∣∣∣∣∣
〈 ∫

∆k
τ

A′(s1)⊗ . . .⊗ A′(sk)ds , ej1 ⊗ . . .⊗ ejk

〉
H⊗k

1

∣∣∣∣∣
2

≤ ‖α‖2J0
t (gCM )

K2∑
k=K1

k!

tk

∞∑
j1,...,jk=1

∫
∆k

1

|〈A′(s1), ej1〉H1 |2 . . . |〈A′(sk), ejk〉H1 |2

= ‖α‖2J0
t (gCM )

K2∑
k=K1

1

tk

(∫ 1

0

‖A′(s)‖2H1
ds

)k

= ‖α‖2J0
t (gCM )

K2∑
k=K1

1

tk
‖A‖2kH([0,1],H1)

.

Knowing that
∑∞

k=0
1
tk
‖A‖2kH([0,1],H1)

= e
∥A∥2H([0,1],H1)

/t, this calculation simultane-
ously shows that

∑∞
k=0 α(Ψτ,k) converges absolutely for any given α ∈ J0

t (gCM),
and that

∑K
k=0 Ψτ,k(A) is a Cauchy sequence in J0

t (gCM)∗, and thus converges to an
element in J0

t (gCM)∗, which is the map determined by α 7→
∑∞

k=0〈α,Ψτ,k〉. This
completes the proof.

Theorem 11.17. For f ∈ HL2
t (G), A ∈ H0([0, 1], H1), and t ∈ [0, 1],

Rf(νA(t)) =
∞∑
k=0

T Rf(Ψt,k(A)) =
∞∑
k=0

T Rf
(∫

∆k
t

A′(s1)⊗ . . .⊗ A′(sk)ds

)
which converges absolutely.

Proof. Let f ∈ P . Recall from Theorem 10.8 that νPA(t) satisfies the differential
equation (νPA)′(t) = LνPA(t)∗PA

′(t), so that

d

ds

(
f(νPA(s))

)∣∣∣
s=t

= f ′(νPA(t))(LνPA(t)∗PA
′(t)
)
=

(
P̃A′(t)f

)
(νPA(t)) .
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Then, by the (finite-dimensional) fundamental theorem of calculus,

f(νPA(t)) = f(e)+

∫ t

0

(
P̃A′(s)f

)
(νPA(s))ds = f(e)+

∫ t

0

〈
f̂(νPA(s)), PA′(s)

〉
ds .

Then consider that, by applying the fundamental theorem of calculus again,(
P̃A′(s)f

)
(νPA(s)) =

(
P̃A′(s)f

)
(e) +

∫ s

0

P̃A′(r)P̃A′(s)f(νPA(r))dr

=
〈
f̂(e), PA′(s)

〉
+

∫ s

0

〈
f̂(νPA(r)), PA′(r)⊗ PA′(s)

〉
dr ,

from which we may write

f(νPA(t)) = f(e) +

∫ t

0

〈f̂(e), PA′(s)〉ds+
∫ t

0

∫ s

0

〈f̂(νA(r)), PA′(r)⊗ PA′(s)〉drds .

Then consider that f ∈ P implies that f̂(e)(H⊗k
1 ) = 0 for k ≥ K for some K, as

argued in the proof of Theorem 11.13. Then we may iteratively repeat this application
of the fundamental theorem of calculus, which will terminate at the series

f(νPA(t)) = f(e) +
K∑
k=1

∫
∆k

t

f̂(e)
(
PA′(s1)⊗ . . .⊗ PA′(sk)

)
ds =

K∑
k=0

f̂(e)(ΨP
t,k(A))

Now consider that, by Lemma 10.10, νPmA(1) → νA(1) in ‖ · ‖gCM
(and hence in

‖·‖G), so that f(νPmA(1)) → f(νA(1)). On the other hand, by Lemma 10.7, we know
that A1⊗. . .⊗Ak 7→

∫
∆k

·
A′

1(s1)⊗. . .⊗A′
k(sk)ds ∈ H0([0, 1], H

⊗k
1 ) is continuous, so that

Ψ·,k : H0([0, 1], H1) → H0([0, 1], H
⊗k
1 ) is continuous, so that Ψt,k(PmA) → Ψt,k(A) in

H⊗k
1 . Then, by taking the limit of both sides, we have that for any f ∈ P and

A ∈ H0([0, 1], H1),

f(νA(t)) =
∞∑
k=0

f̂(e)
(
Ψt,k(A)

)
.

Now let f ∈ HL2
t (G) be arbitrary. Choose fm ∈ P such that fm → f in HL2

t (G).
Then by the isometry properties of Theorem 11.7 and Theorem 11.8,
‖T Rf − T Rfm‖J0

t (gCM ) = sup
P

‖R(f − fm) ◦ ιP‖HL2
t (G

P ) = ‖f − fm‖HL2
t (G) → 0 .

Then Lemma 11.16 tells us α 7→
∑∞

k=0 α(Ψt,k(A)) is continuous, which allows us to
write

Rf(νA(t)) = lim
m→∞

Rfm(νA(t)) = lim
m→∞

∞∑
k=0

f̂m(e)
(
Ψt,k(A)

)
= lim

m→∞

∞∑
k=0

T Rfm
(
Ψt,k(A)

)
=

∞∑
k=0

T Rf
(
Ψt,k(A)

)
.
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11.5.2 The stochastic Taylor expansion

Here, we will prove an infinite-dimensional version of Theorem 11.15. We will almost
exactly imitate the proof of [DG10, Theorem 1.9] with no special considerations.
This is because, despite assuming G is step 2 nilpotent with an elliptic diffusion,
much of the analysis only needs to occur on H1, like computing J0

t (gCM)-norms. This
calculation will also bear some resemblance to the proof of Theorem 11.17.

Recall from section Section 10.3 that we define ΦP
t,k =

∫
∆k

t
dPBt1 ⊗ . . .⊗ dPBtk .

Let α ∈ T (H1)
′. Then by Theorem 10.16, we know that, for each k, α(ΦPm

t,k ) converges
in L2 to a random variable, which we denote as α(Φt,k), and E|α(Φt,k)|2 = tk

k!
‖α‖2

H∗⊗k
1

.
We now generalize these results. We begin with a generalization of Theorem 10.15.

Lemma 11.18. Suppose α ∈ H∗⊗k, β ∈ H∗⊗ℓ. Then

E
[
〈α,Φt,k〉〈β,Φt,ℓ〉

]
=

{
tk

k!
〈α, β〉H∗⊗k

1
if k = `

0 if k 6= `
.

Proof. Let P ∈ Proj(W1). Theorem 10.15 tells us that if k = `, then E|α(ΦP
t,k)|2 =

tk

k!
‖α‖PH⊗k

1
. By polarization, we may deduce that if k = `, then E

[
α(ΦP

t,k)β(Φ
P
t,k)
]
=

tk

k!
〈α, β〉PH∗⊗k

1
.

Now suppose that k 6= `. Then E[α(ΦP
t,k)β(Φ

P
t,ℓ)] = 0 comes from the orthogo-

nality of iterated Itô integrals. This can be deduced by considering the iterated Itô
integral approach to chaos, which was first introduced in [Itô51]. Alternatively, this
orthogonality is directly stated in [DØP09, Proposition 1.4].

We may now set P = Pm for some (Pm)m∈N ∈ Proj(W1)
↑ and take the limit in m

to reach the desired conclusion.

Lemma 11.19. Let α ∈ J0
t (gCM). Then the sum

∑∞
k=0 α(Φt,k) converges in L2. And

the assignment J0
t (gCM) 3 α 7→

∑∞
k=0 α(Φt,k) ∈ L2 is continuous.

Proof. Using the formula from Lemma 11.18,

E
∣∣∣∣ K2∑
k=K1

α(Φt,k)

∣∣∣∣2 =

K2∑
k=K1

E|α(Φt,k)|2 =

K2∑
k=K1

tk

k!
‖α‖2

H∗⊗k
1

.
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Knowing that
∑∞

k=0
tk

k!
‖α‖2

H∗⊗k
1

= ‖α‖2
J0
t (gCM )

<∞, we see that the sequence
∑K

k=0 α(Φt,k)

is Cauchy in L2, and hence converges to a random variable, and that this must satisfy
E
∣∣∑∞

k=0 α(Φt,k)
∣∣2 = ‖α‖2

J0
t (gCM )

.

Theorem 11.20. For any f ∈ HL2
t (G), we have

f(gt) =
∞∑
k=0

T Rf
(
Φt,k

)
=

∞∑
k=0

∫
∆k

t

T Rf
(
dBt1 ⊗ . . .⊗ dBtk

)
Proof. We show this in nearly an identical fashion to Theorem 11.17, but using
stochastic calculus. First suppose that f ∈ P . Then, by applying Itô’s formula,
noting that the Itô and Stratonovich integrals coincide here,

f(gPt ) = f(e) +

∫ t

0

f̂(gPs )(dPBs)

and, in general, using the same methods as in the proof of Theorem 11.17 and stochas-
tic calculus, we may iteratively apply Itô’s formula to get

f(gPt ) =
K∑
k=0

∫
∆k

t

f̂(e)(dPBs1 ⊗ . . .⊗ dPBsk) =
K∑
k=0

f̂(e)(ΦP
t,k) ,

where K is chosen such that f̂(e)|H⊗k
1

= 0 for all k ≥ K.

Now consider that, by Corollary 11.1, f(gPm
t ) → f(gt) in L2. On the other hand,

by Theorem 10.16, we see that
∑K

k=0 f̂(e)(Φ
Pm
t,k ) →

∑K
k=0 f̂(e)(Φt,k) in L2. Thus,

almost surely, we may write

f(gt) =
K∑
k=0

f̂(e)(Φt,k) =
∞∑
k=0

f̂(e)(Φt,k) .

Now let f ∈ HL2
t (G) be arbitrary. Then choose fm ∈ P such that fm → f in

HL2
t (G). Then fm(gt) converges to f(gt) in L2. But by the isometric properties in

Theorem 11.7 and Theorem 11.8, ‖T Rf −T Rfm‖J0
t (gCM ) = ‖f − fm‖HL2

t (G) → 0. So
using the continuity described in Lemma 11.19, we see that

f(gt) = lim
m→∞

fm(gt) = lim
m→∞

∞∑
k=0

T Rfm(Φt,k) =
∞∑
k=0

T Rf(Φt,k) .
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11.5.3 On the restriction map and the restricted functions

We will first describe the inverse of the restriction map, just as Theorem 11.17 and
Theorem 11.20 describe inverses of T and T ◦ R. Then we will explicitly write the
statement to the Taylor isomorphism on G, which will also explain how to define
HL2

t (GCM) when
⋃

P G
P 6= GCM .

Theorem 11.21. For any f ∈ HL2
t (G),

(
Rf(gPm)

)
m∈N converges in L2, and f(gt) =

limm→∞ Rf(gPm).

Proof. By Theorem 11.20, we have that

f(gt) =
∞∑
k=0

T Rf(Φt,k) =
∞∑
k=0

∫
∆k

t

T Rf
(
dBs1 ⊗ . . .⊗ dBsk

)
.

On the other hand, for any P ∈ Proj(W1), our methods suffice to prove the finite-
dimensional counterpart (or one may directly use the formula in Theorem 11.15):

Rf(gPt ) =
∞∑
k=0

T Rf(ΦP
t,k) =

∞∑
k=0

∫
∆k

t

T Rf
(
dPBs1 ⊗ . . .⊗ dPBsk

)
.

Then, by once again applying the exhibited orthogonality from Lemma 11.18, and
otherwise using methods similar to those in the proof of Theorem 10.16, if {ej}1≤j≤rm

is a basis of PmH1, then

E
∣∣∣f(gt)−Rf(gPm

t )
∣∣∣2

=
∞∑
k=0

E
∣∣∣T Rf(Φt,k)− T Rf(ΦPm

t,k )
∣∣∣2

=
∞∑
k=0

E
∣∣T Rf ◦ (I⊗k

H − P⊗k
m )(Φt,k)

∣∣2
=

∞∑
k=0

tk

k!

(
∞∑

j1,...,jk=1

∣∣T Rf(ej1 ⊗ . . .⊗ ejk)
∣∣2 −

rm∑
j1,...,jk=1

∣∣T Rf(ej1 ⊗ . . .⊗ ejk)
∣∣2)

then ‖T Rf‖J0
t (gCM ) <∞ implies that the expression above converges to 0 in m, which

proves the claim.

Theorem 11.22. For every F ∈ HL2
t (
⋃

P G
P ), there exists an extension F̃ : GCM →

C that satisfies the following.
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• If Rf(g) = F (g) for all g ∈
⋃

P G
P , then Rf(g) = F̃ (g) for all g ∈ GCM .

• If A ∈ H0([0, 1], H1), then

F̃ (νA(1)) =
∞∑
k=0

∫
∆k

1

T F (A′(s1)⊗ . . .⊗ A′(sk))ds .

In particular, F̃ can be calculated from the pullback R−1F or from the push forward
T F .

Proof. Let F ∈ HL2
t (
⋃

P G
P ). Then by Theorem 11.7 and Theorem 11.13, R :

HL2
t (G) → HL2

t (
⋃

P G
P ) is a bijection, so there exists a unique f = R−1F ∈ HL2

t (G)
such that Rf = F on

⋃
P G

P . But recall from Theorem 11.7 that Rf (or more
precisely g 7→ Rgf) is actually defined on GCM . Hence, by defining F̃ = Rf =
RR−1F , the first point is satisfied.

The second bullet is a consequence of applying Theorem 11.17 to F̃ = Rf .

Theorem 11.23. We define HL2
t (GCM) in the following way.

• If
⋃

P G
P = GCM , then we define HL2

t (GCM) to be HL2
t (
⋃

P G
P ).

• In the event that
⋃

P G
P 6= GCM , we let HL2

t (GCM) to be the set of extensions
of elements in HL2

t (
⋃

P G
P ) to GCM , as described in Theorem 11.22.

In any case, HL2
t (GCM) is a Banach space identical to HL2

t (
⋃

P G
P ) when equipped

with the norm ‖f‖HL2
t (GCM ) := supP ‖f ◦ ιP‖HL2

t (G
P ). For this set, we have the restric-

tion map R : HL2
t (G) → HL2

t (GCM) and Taylor map T : HL2
t (GCM) → J0

t (gCM),
both of which are isometric isomorphisms, and for which the composition T ◦ R is
unitary.
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