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Abstract

Today’s applications, such as social networks, data analytics, and retrieval search, rely on collaboration

between devices at the user’s end (edge devices) and powerful cloud systems. However, optimizing

these systems remains a challenge. First, these cloud-scale systems comprise multiple large-scale

distributed services whose communication characteristics are not yet well understood. Secondly, most

datacenter traffic involves interactions with storage services, where remote data access includes not

only storage device access and data processing, but also RPC stack and queuing latencies. Third,

these applications must serve end users on edge devices such as mobile phones. The network latency

between edge and cloud and the processing latency within the cloud could be unpredictable. Although

local processing does not suffer from this variation, it suffers from limited computing resources such

as memory capacity.

This work addresses these three critical challenges in edge-cloud systems. First, we study the

overhead of communication within real-world cloud systems to understand and pinpoint potential

performance bottlenecks. Secondly, we mitigate the latency of the RPC stack in remote data access

in the datacenter by storing persistent data on network devices, effectively moving the latency of

the server out of the critical path. Finally, we address the problem of limited resource on edge

devices for running data-intensive applications by introducing a memory efficient Retrieval Augmented

Generation (RAG) system that allows retrieval search of large database locally on resource-constrained

edge devices.
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Chapter 1

Introduction

Modern distributed applications span an unprecedented scale and diversity – from hyperscale cloud

services serving billions of users to machine learning applications running on resource-constrained edge

devices. Optimizing these systems is critical directly impacts user experience through lower latency

and reducing operational costs for cloud providers. Effective optimization requires a comprehensive,

end-to-end understanding of these systems. However, gaining such insights poses several challenges.

First, the sheer scale and diversity of these systems necessitate collecting vast amounts of data.

Second, accurately capturing end-to-end system behaviors involves aggregating and integrating

data from various sources, including servers running distinct services and networking components,

into a cohesive, relatable data. A thorough understanding of how distributed applications interact

and communicate is therefore essential for identifying optimization opportunities and enhancing

overall system performance. In this study, we characterize RPCs within Google’s internal cloud-scale

production environment, spanning over 100 production clusters. This characterization enables us

to identify critical attributes, including the number of RPCs and their growth patterns, detailed

breakdowns of RPC latency components, and the structural aspects of RPC calls. By analyzing RPC

behaviors in global-scale applications at one of the world’s largest hyperscalers, we can precisely

pinpoint application-specific bottlenecks.

One of our key findings is that most datacenter traffic involves communication with storage services.

Figure 1.1 shows the fraction of storage RPC by number of invocation in one of the major cloud

system. The majority of RPC (over 60 percent) are to storage service. This identifies remote data
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access and storage operations as critical performance bottlenecks. Optimizing these storage operations

is critical since it could significantly enhance the performance of a wide range of applications. Despite

recent advancements in storage technologies such as phase-change memory (PCM) [3] that greatly

reduces the latency of local data accesses. Remote data accesses continue to introduce substantial

overhead due to network communication latency. Consequently, the second challenge addressed

by this work is effectively utilizing these advanced storage devices while minimizing the overhead

associated with remote data retrieval across networks.

Another significant finding is that applications utilizing user data, such as Retrieval-Augmented

Generation (RAG) [4], inherently require accessing user-specific information. This data may reside

either locally on user devices or remotely within cloud-based services. However, users mainly

interact with these applications via edge devices, such as smartphones. This reliance on cloud-

based processing requires transferring user data to remote servers or retrieving it from distant data

stores, introducing significant network latency that adversely impacts user experience. Furthermore,

transmitting user data to servers for processing can risk exposing sensitive information, raising privacy

concerns. Alternatively, local processing on edge devices eliminates this network overhead but faces

the limitation of restricted computational capabilities and memory resources. Figure 1.2 shows the

latency breakdown of Edge and Cloud based RAG systems. Although the Cloud-based RAG system

incurs network latency, it benefits from abundant cloud resources that accelerate request processing.

In contrast, the Edge-based RAG system faces resource constraints, resulting in higher request

processing latency. Thus, the third challenge identified in this work is how to effectively enable

responsive and confidential processing of data-intensive RAG applications on resource-constrained

edge devices.

Thesis statement: Optimizing modern distributed systems requires a comprehensive understanding

of end-to-end performance, enabling targeted optimizations at critical bottlenecks.

Figure 1.1: Fraction of Storage RPC in a major cloud system.
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Figure 1.2: Latency breakdown of edge and cloud based RAG systems.

1.1 Theme 1: Characterization of Communication within

Datacenter

Cloud computing has become the backbone of modern web services such as data storage, analytics

and ML. Cloud services are typically broken down into smaller, independent services that talk to

each other [5]. This communication usually happens through a method called Remote Procedure Call

(RPC). RPC essentially allows these separate parts of a larger application to work together seamlessly,

similar to a regular function call [6] within a single program while hiding additional complexities

such as network stack processing, serialization/deserialization, encryption/decryption and connection

management within an RPC stack. Since RPCs are the backbone of communication within cloud

applications, understanding them is crucial for analyzing the behavior and performance of these

large-scale distributed systems. Prior research has focused on data center network behavior [7–9]

and CPU behaviour [10] within data centers, but there’s a critical gap in understanding RPCs at

cloud scale. This is a major limitation because RPCs essentially dictate the workload for networks,

CPUs, and storage systems within the cloud.

1.2 Theme 2: Accelerating data durability of remote storage

systems

Traditional remote storage performance suffers not only from limitations of storage devices and

network hardware, but also from other factors such as wire latency and network stack latency. While

traditional read caching helps with read access by storing data closer to applications (on the host

or in network) [11], it doesn’t improve the latency of write requests. This is because write requests

require the data to be durably stored and visible to all users before the application can continue.

This lock-step approach forces applications to wait through end-to-end delays, including network

stack on the host, wire and switch latencies, and finally the storage system itself. To address this
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bottleneck, we propose PMNet which integrates Persistent Memory, a fast and durable storage type,

directly into network devices. This allows PMNet to temporarily store incoming write requests and

unblocking the application immediately. The data is then durably written to the storage server in the

background. PMNet’s durability ensures recovery of in-flight requests caused by temporary hardware

or network failures. Additionally, PMNet leverages data center network design to tolerate hardware

issues by storing data across multiple network devices. PMNet can also be combined with existing

in-network read caching solutions for further read access acceleration.

1.3 Theme 3: Optimizing Data-Intensive ML for edge sys-

tems

A recent rise of applications such Image Generators [12] and Smart Assistance [13] requires vast

amount of data and processing power. Currently, these applications are limited on local devices by

factors like memory, processing power, and battery life. This often forces a trade-off: simplified, less

accurate models run locally, while complex tasks are offloaded to the cloud. However, these solution

cannot exploit user’s data in edge device without sending confidential data to the cloud to retrain

the model at the cost of latency due to network limitations, precious energy and bandwidth for data

transfer, and potential privacy concerns. While advancements like Retrieval Augmented Generation

(RAG) allow large language models to process user data without constant training updates, the

overhead of indexing data locally can still be significant. Our research explores this trade-off between

local and cloud processing, focusing on ways to leverage user data on edge devices and avoid sending

sensitive data to the cloud.

1.4 Summary

The organization of this work is as follows. Chapter 2 discusses the first theme of this work, RPC

characterization, aimed at systematically analyzing and understanding the performance of remote

procedure calls within large-scale distributed environments. Chapter 3 presents the second theme

is optimizing network storage systems which is the most dominant application in Datacenter RPC

in terms of both number and traffic volume. In Chapter 4, we introduce enabling memory efficient

RAG on edge devices that mitigates the security issue of processing sensitive data on the cloud and

long local processing latency. We discuss related works in Chapter 5. Finally, Chapter 6 concludes

this work and its contribution.



Chapter 2

Characterization of Communication

within Datacenter

2.1 Introduction

Modern cloud computing plays an increasingly critical role in today’s Web services, data storage,

analytics, and emerging applications like AI/ML and AR/VR. A key advantage of the cloud is the

ability for applications to dynamically scale out to meet changing workloads. Cloud applications can

achieve high availability, fault isolation, and easier maintenance, in part, through deployment and

replication of computation and data across datacenters and geographical regions.

To scale out, a single application is divided into multiple distributed communicating services.

Currently, the standard inter-communication layer for cloud services is Remote Procedure Call

(RPC) [5, 14–18]. RPC greatly simplifies application development in a distributed system. In

particular, a function call to a remote machine looks similar to a function call within the same

application [6], and complexities such as connection management, network protocols, parameter

marshalling/demarshalling, encryption/decryption, and thread scheduling are handled by the RPC

stack, which is typically implemented as a userspace library [19–21].

In effect, RPC is the fundamental control structure that defines the flow of both computation and

data in a distributed system.1 For this reason, RPC is a valuable lens for viewing the behavior and

1RDMA [22–26] systems are increasingly used along with RPC for data movement, but we focus here on RPC.

5
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performance of modern cloud-based widely-distributed applications. While prior work has analyzed

the behavior of datacenter networks [7–9] and the microarchitectural CPU behavior of datacenter

applications [10], there is little analysis and understanding of RPCs at cloud scale. This is a significant

limitation, because RPCs generate the work performed by the network, the CPUs, and the storage

systems. For example, it is necessary to consider the RPC communication graphs to understand the

dependencies across network flows, e.g., co-flows [27].

This work presents, to our knowledge, the first analysis of RPCs from geo-distributed applications

running across a fleet of datacenters. Our study is unique in its massive scale: we evaluate RPC calls

in Google’s internal-application environment collected over a period of 23 months, using multiple

tools and data sources describing RPC characteristics and behavior. For example, we examine

counters collected every 30 minutes from over 10,000 different unique RPC methods (procedures)

running in 100s of different clusters, and we analyze over 722 billion RPC samples collected from

a single day. This data, which we describe more in following sections, allows us to discover key

properties such as the volume of RPCs and its growth over time, the contributions of different RPC

components to latency, and the depth and structure of RPC call trees. Together, these different

analysis methodologies allow us to conduct a thorough and in-depth analysis of the behavior of RPCs

and global-scale applications in one of the world’s largest hyperscalers.

In more detail, the contributions of this work include the following:

• We show that the use of RPC is increasing rapidly, indicating the importance of RPC optimization.

• We characterize the latency, frequency, size, and nested hierarchy of over 10,000 distinct RPC

methods, showing that their characteristics differ significantly from those assumed by prior work.

For example, on average, RPCs in our environment operate at millisecond timescales and kilobyte

sizes with relatively deep nested hierarchies.

• We analyze the latency components in RPC completion time and find that the RPC latency

bottleneck differs from prior assumptions. On average, the majority of this time is spent on

application processing, but tail latency is dominated by the RPC latency tax, i.e., the time spent

on queues, RPC processing, and network transfers.

• We characterize the latency components in eight top services and show the latency variation

within and across physically co-located clusters of servers distributed across datacenters. We find

that high server and memory utilization leads to high variation within clusters, while network
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latency dominates the variation across clusters.

• Finally, we analyze the CPU cycle variation in processing RPCs across the fleet and find that

there is a significant variance in CPU cycles used for RPCs, indicating the opportunity for better

load-balancing.

Overall, our characterization of RPCs provides a perspective on the scope, complexity, and variance

of the cloud services that implement some of the world’s largest-scale web applications. We also hope

to motivate future research on designing effective optimizations of applications and RPCs.

This chapter is organized as follows. Section 2.3 explores the scope and complexity of RPCs in

Google’s hyperscale environment. In Section 2.4, we examine the RPC latency and its major

components that affect RPC completion time and variance. Section 2.5 considers resource utilization

in RPC services across the datacenter, focusing on the opportunity for load-balancing. We discuss

implications of our research in Section 2.6.

2.2 Motivation

2.2.1 Goals

To help better shape the direction of future research on optimizations and accelerators for RPCs,

we answer the following questions in the rest of the paper:

• Section 2.3 explores the scope and complexity of RPCs at one of the world’s largest hyperscaler

infrastructure companies. Many prior works on RPC optimizations assume specific characteristics,

such a micro-second level latency or small RPC sizes or few nested RPC hierarchies. We analyze

these characteristics to uncover the true scope of the hyperscalar RPCs.

• Section 2.4 examines the RPC latency tax that hyperscalars pay to execute a service, broken down

into the major component that affectse RPC completion time and its variance. How does this

bottleneck vary across services and across datacenter? What optimizations will help to improve

tail latency?

• Section 2.5 considers resource utilization in RPC services across the datacenter, focusing on the

tradeoff between resource utilization and latency, and the impact of tail tax – hedging of RPCs

to avoid errors or long tails. How can we design an efficient, fast, and balanced system?
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2.3 Characteristics of RPCs at Hyperscale

This section analyzes the properties of the RPCs used to implement Google’s external services

and internal data processing systems in aggregate across its datacenters. For each RPC that we

analyze, we measure the behavior of the RPC stack and the RPC handler (i.e., the invoked method).

Specifically, we measure RPCs from Google’s first-party commercial products, including both user-

facing web services (e.g., Google Search, Google Maps, Gmail, and YouTube), as well as the massive

internal services and data processing systems that support these web services (e.g., Spanner [28],

BigQuery [29], Bigtable [30], F1 [31], GFS [32], and Chubby [33]). Our study does not include

Google’s external Cloud product (GCP) or RPCs issued by its customers.

These Google internal services are all built with similar design patterns. In particular, they are widely

distributed, e.g., they consist of many replicated parallel tasks running in multiple geo-distributed

datacenters to ensure high availability. Nearly all of the services we study are built with the Stubby

RPC stack [18], a Google-internal RPC library that provides features similar to gRPC. To operate at

a massive scale, many of these services utilize a partition/aggregate design pattern [31, 34]. Data

for these services is stored remotely in a network filesystem that replicates blocks across multiple

machines in different datacenters for fault tolerance [32]. In these applications, computation flows

from front-end applications to back-end services and then to the network filesystem. The individual

RPCs that compose these applications can handle large amounts of data and are often computationally

intensive. As such, these applications are based on a service-oriented architecture rather than a

microservice architecture in that they are not decomposed into the smallest possible functional units.

While we expect to see an increase in microservices in the future, the rapid growth in data collection

and processing may well offset that trend.

Because this is the first study of its kind, it is difficult to know the extent to which the behavior of

Google’s internal applications generalizes to the behavior of the distributed systems used in other

hyperscalars. Different cloud and communications architectures can lead to different design decisions,

and it would be interesting to understanding other designs and their implications. However, this study

is an important first step toward understanding RPC in the context of massive scale applications

and their supporting services.
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2.3.1 Methodology

In our analysis, we primarily focus on the most common RPC stacks at Google: Stubby [18]

and gRPC [19]. Our analysis is performed using three different Google-internal monitoring tools,

Monarch [35], Dapper [36], and GWP [37]. We particularly focus on the distribution of RPC

completion time, size, and depth, as prior works propose optimizations based on these RPC proper-

ties [38–46].

Monarch is a monitoring database that performs periodic sampling of various metrics exported by

individual application instances (tasks). These samples provide distributions of RPC behavior across

various levels and dimensions of aggregation, e.g., per-cluster or network-traffic class.2 Not all metrics

in this database have the same retention policies. Some metrics are retained for 700 days with metric

samples every 30 minutes. Over shorter time scales like the past 30 days, it is possible to get samples

with shorter windows, e.g., one every minute. Our results are based on metrics from a 700-day period

between December 2020 and November 2022. We use this timescale of 700 days primarily to observe

changes in RPCs over time.

Aggregate time-series data does not provide complete information about the behavior of individual

RPCs, so we employ Dapper to conduct some aspects of our analysis. Dapper is an internal service

that collects samples of entire RPC trees (traces), where each node in the tree represents an individual

child RPC call [36]. For each RPC call, the service collects information about the latency of various

components, including the time spent in the client, server, and network. For RPCs that make nested

RPC calls, the time of the nested calls is included in the application processing time of the parent

RPC. From the RPC handler’s perspective, waiting for application processing and waiting for the

responses from nested RPCs are the same, as the nesting is invisible to the caller. Similarly, we

exclude the latency of error RPCs from the measurement. However, the caller of erroneous RPCs

needs to handle errors (unless canceled by the caller), and the latency of these callers is included in

the latency measurement. Note that TCP retransmissions are not counted as errors.

Our analysis that utilizes the Dapper tracing service focuses on RPCs from a single day. When we

use tracing to look at different RPC methods, we only consider methods with at least 100 samples so

that the 99th percentile is well defined.

2The sampling omits some RPC classes, such as streaming RPCs that are used for some bulk-data transfers.
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Figure 2.1: Normalized RPS per CPU cycles consumed over time.

We use GWP (Google-Wide Profiling) [37] to study the number of CPU cycles spent processing

RPCs in our fleet. GWP collects daily CPU profiles of sampled application execution, and these

profiles can be used to identify RPC cycles.

2.3.2 Why is RPC Evaluation Important?

We evaluate the growth rate of RPCs to demonstrate the importance of RPC and its efficiency in

the cloud. Equally important, RPC gives us insight into the organization of a widely distributed

system and its dynamic functioning. Figure 2.1 shows the number of RPCs per second (RPS) in our

fleet divided by the number of CPU cycles consumed over the 700-day period. The daily RPS/CPU

value in this figure is normalized to the first day of our observation, which shows the growth rate of

the ratio.

From Figure 2.1, RPC throughput relative to CPU cycle utilization is increasing at an annual rate of

approximately 30%, for a total increase of 64% over the measurement interval. That is, RPC usage

is growing faster than compute in our cloud. This change is the result of two trends. The first is

that increasing the hardware optimization of the RPC stack over time has reduced the CPU cycle

cost of each RPC invocation. The second is that the growth of microservice-based design [47–49] is

reducing the number of CPU cycles consumed per RPC, and this is likely to accelerate this trend

even more in the future.

This growth rate puts a tremendous demand on network and compute resources, creating major

challenges to sustaining this growth.

In the rest of this section we analyze high-level RPC characteristics to understand the basic properties

of RPCs and RPC-based services. The deeper analysis in future sections will help to expose potential

optimization and acceleration opportunities for cloud-based RPC systems.
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(a) RPC Latency Distribution Heatmap (b) RPC Latency CDF
Figure 2.2: Per-Method RPC latency, sorted by median latency.

(a) RPC method frequency (b) CDF of method frequencies
Figure 2.3: Per-Method RPC frequency, sorted by median latency.

2.3.3 Not all RPCs are the same.

We analyze the distribution of completion times and the popularity of common RPC methods in

order to understand the variance in the timescale on which they operate. Figure 2.2a shows, for our

10K methods, the RPC completion time (RCT) per method, sorted by the median latency. The RPC

completion time includes all latency from the client’s RPC invocation until the client receives the

response; this includes execution of the method on the server. We show the latency distributions

of each method as a heatmap, where brighter colors (e.g., red) indicate P90+ tail latencies, and

cooler colors (e.g., blue) indicate P10- latencies of each method. Figure 2.2b shows a CDF of the tail

latencies of different methods.

These figures show that there is significant variance in the amount of time taken to process RPCs across

different methods. Most methods are capable of completing RPCs within hundreds of microseconds.

For 90% of the methods, the 1st percentile latency is 657 µs or less. However, services often operate

at the millisecond scale in our fleet. 90% of the services have a median latency that is 10.7 ms or
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greater.

At the tail, almost all methods have slow RPCs that operate on the scale of milliseconds. Over 99.5%

of methods have a P99 latency of 1 ms or greater; 50% of methods have a P99 latency of 225 ms or

greater. Further, the slowest methods are even slower. Of the slowest 5% of methods, the P1 and

P99 latencies are 166 ms and 5 s or greater, respectively. We conclude that there is a major variation

in the latency of hyperscale RPCs, and it ranges from hundreds of microseconds to seconds.

The latencies of hyperscale RPCs are significantly higher than what has been assumed in recent

RPC benchmarks [50] and RPC optimization [38–40,51,52] works. Most of these studies assumed

micro-second level RPCs and optimized the RPC stack for better performance. It is clear that we

need to better understand the latency bottlenecks in hyperscalar RPCs; we dive deeper into latency

components and variation of RPCs in Section 2.4.

Given the large variation in method latency, we also investigate the popularity of RPC methods.

Knowing the popularity distribution tells us the expected benefit of optimizing a small number of

methods. Figure 2.3a shows the popularity (relative frequency) of all 10K methods, and Figure 2.3b

shows the popularity CDF; both graphs are again sorted in latency order.

From Figure 2.3a we see that not all RPC methods are equally popular, but in particular, many of

the low-latency methods (on the left) are extremely popular. In fact, the 100 lowest latency RPC

methods account for 40% of all RPC calls. As an extreme point, the “Write” RPC for the Network

Disk alone accounts for 28% of all RPC calls.

Sorting by popularity rather than latency (not shown) gives another view of the skew. The 10 most

popular methods account for 58% of all calls, and the top-100 account for 91% of all calls. While

many long-latency methods may be less frequent, collectively they consume more resources than

shorter, more popular methods. The slowest 1000 RPC methods account for only 1.1% of all calls,

but they take 89% of the total RPC time. Clearly not all RPCs are the same, and we should target

different services and methods for optimization depending on our goals.

2.3.4 Nested RPCs are Wider than Deep

The distributed nature of service-oriented applications in the fleet results in nested RPC call graphs,

where each RPC can fan out to multiple child RPCs. To better understand the shape of nested RPC

calls, we analyze the number of descendants and ancestors of different RPC methods. Looking at the
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(a) Descendants sorted in increasing order (b) CDF
Figure 2.4: Per-Method Number of Descendants

number of descendants shows the scale of distributed computation performed by an RPC, and the

number of ancestors provides insights into how the properties of RPCs change as they get deeper

into the call graph of a root RPC.

Figure 2.4 plots the number of descendants for different RPC methods. Half of RPC methods have a

median of 13 or fewer descendants. On the other hand, the descendant tail can be quite large: 90%

of RPC methods have P90 and P99 descendant counts of over 105 and 1155, respectively.

Figure 2.5 shows the number of ancestors for each invoked method, i.e., the return distance from a

called method to the root RPC in the tree. Compared to the number of descendants, the number of

ancestors for a given invocation is much smaller, implying that the typical RPC call tree is wider than

it is deep. For example, half of the methods have fewer than 10 ancestors at 99th percentile.

In early RPC systems, calls typically went to simple, discrete services. However, from our measure-

ments, RPCs in the cloud environment may invoke general computations that include complex call

trees and nested RPCs. Understanding this call structure has important implications, e.g., in creating

benchmarks for hyperscale services that can accurately represent the shape of complex, nested RPC

call graphs.

As a point of comparison, Luo et al. [17] performed an analysis of RPC call graphs from more than

20,000 microservices at Alibaba (Figure 3). In both this study and the Alibaba study, the call graphs

are wider than they are deep. There is a heavy tail many times larger than the median, and the call

tree depths are also similar at both the median and the tail. The biggest difference is that the RPC

methods that we study have a larger number of descendants, especially at the tail.
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(a) Per-method number of ancestors sorted by median
in increasing order

(b) CDF of ancestor count
Figure 2.5: Per-Method RPC Ancestors.

Huye et al. [53] report properties about the number of service blocks in the request workflows for

a few of Meta’s internal applications, and they similarly find that these service graphs are much

wider than they are deep. Their P99 depth ranges from 5–6 and their maximum depth ranges from

9–19, and this is similar to our findings. Their median total number of blocks per trace ranges from

2–498, and the P99 ranges from ∼1K–10K, and there are RPC methods that we study that also have

similarly sized RPC trees.

Gan et al. [50] report the depth and size of the service graphs used by the applications in the

DeathStarBench (DSB) benchmark. The applications service graph depths range from 3–9, and

the total number of services in an application ranges from 21–41. These service graphs are similar

in depth to those of the methods that we studied, but the total size of these graphs are smaller,

especially at the tail.
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(a) Request Sizes. (b) Request Sizes (CDF)
Figure 2.6: Per-Method Request Size

(a) Response/Request Size Ratio (b) Response/Request Size Ratio (CDF)
Figure 2.7: Per-Method Response/Request Size Ratio

2.3.5 RPC Size Matters

Characterizing flow sizes and their heavy tail in datacenter workloads has been important in shaping

the design of traffic engineering in datacenter networks. At the RPC layer, the individual RPC is the

smallest unit that can be load balanced. As such, it is also important to understand the distribution

of RPC sizes. For example, knowledge of the RPC size distribution is needed to evaluate changes to

how RPCs are mapped onto network flows.

Figure 2.6 plots the RPC request size distribution in bytes for the 10K methods. The figure shows

that most RPCs are small — with the smallest a single cache line (64 B). The smallest 10% have

median requests and responses under 2030 B and 188-B, respectively. Half of the methods have

median requests under 1530 B, with responses under 315 B.

Although most RPCs are small, most methods have a large heavy tail. For example, P90 request
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and response sizes are 11.8 KB and 10 KB, respectively; P99 requests and responses are 196 KB and

563 KB — an order-of-magnitude increase over the median. This finding can predict the effectiveness

of accelerators that have a maximum message size. For example, an on-NIC deserialization offload

such as Zerializer [44], which can only process messages contained in a single MTU, would be able to

accelerate the majority of RPCs but would miss the tail.

Although there is no previous study that characterizes the sizes of RPCs in general, our findings can

be compared against other more directed studies of KV-Stores and datacenter networks. The RPC

sizes in Figure 2.6 are similar to the distributions reported by prior studies. For example there are

two studies of KV-Stores from Meta [54,55]. Both of these studies show similar trends, where most

of the transfers range from 100 B to 100 KB. There is wide range of median values across methods in

Figure 2.6, and the Meta distributions for KV-Stores show median values that are on the smaller

side of median values shown in Figure 2.6. This is to be expected given that KV-Stores typically

persist small amounts of state for otherwise stateless applications [18,56].

When compared against studies of network flows that identify elephants and mice [7, 9, 57], we

similarly find that there are a few RPC elephants and many mice, although the RPC and flow sizes

are much different. This has implications for the mappings of RPCs to flows and the scheduling of

RPCs inside the network. A mouse RPC that is queued behind an elephant RPC will experience a

significant increase in latency. As such, avoiding elephant head-of-line (HOL) blocking is an important

component of reducing tail RPC network latency.

To understand the relationship between requests and responses, Figure 2.7 plots the distribution

of RPC response/request ratio for each of the 10K methods. A ratio of greater than 1 indicates

that an RPC was read-dominant, e.g., an RPC that reads data or performs a computation that

expands data. Write-dominant RPCs have a ratio lower than 1, and this includes RPCs that write

or aggregate data. This figure shows that most RPC methods service both write- and read-dominant

RPCs with there being a heavy tail of both large responses and large requests for all RPC methods.

However, the majority of RPCs for most methods are writes because the median ratio for most

methods is below 1. This finding implies that most RPC methods should expect both ingress and

egress dataflow. Interference between write- and read-dominant RPCs could potentially be a problem,

and this motivates future work on providing knowledge about expected request and response sizes to

an RPC scheduler.
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(a) By number of RPC
invocations.

(b) By bytes transferred. (c) By CPU cycles used

Figure 2.8: Fraction of top RPC services.

2.3.6 Storage RPCs are Important

Here we categorize the fleet-wide RPCs into application services. This categorization provides insights

into services that consume the most resources. Figure 2.8 shows the fraction of RPC services by the

number of RPC invocations, number of bytes transferred, and number of CPU cycles consumed by

each service. As this figure shows, the top 8 applications in terms of method popularity account

for 60% of total invocations. The single most popular application is Network Disk, which receives

both the most RPCs and transfers the most bytes. The next most popular are Spanner, KV-Store,

and F1. In addition, Figure 2.8b shows that the distribution of bytes transferred differs significantly

from the number of RPC calls. The Network Disk sends and receives proportionally more bytes

than other applications, while the analytics services transfer fewer bytes than the other most popular

services.

On the other hand, while those storage services consume a significant number of fleet CPU cycles,

they proportionally use fewer cycles per RPC call compared to other applications. For example,

Network Disk, which is the most popular low-latency RPC service (35% of RPCs), disproportionately

utilizes less than 2% of the fleetwide CPU cycles. Longer-latency RPCs, e.g., ML Inference and F1

in our study, consume 0.89% and 1.8% CPU cycles but contribute to only 0.17% and 1.8% of RPC

invocations, respectively.

These findings motivate application-specific optimizations, especially on storage systems, as storage

is by far the largest distributed application in the fleet.
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Figure 2.9: Components in RPC latency breakdown.

2.4 RPC Latency

The previous section showed that the RPC completion time varies significantly, ranging from

hundreds of microseconds to hundreds of milliseconds. Therefore, optimizing an RPC requires an

understanding of the RPC’s components and their latencies. This section provides a fleet-wide

breakdown of RPC component latencies and then analyzes individual RPC bottlenecks in eight

popular cloud services.

2.4.1 RPC Components

We measured the latencies of different RPC components with Dapper. Although different RPC stacks

may have different structures, Figure 2.9 illustrates the major components of the RPC stack that we

measured, which are described in more detail below.

• Client Send Queue: Client-side RPC code places requests in a queue where they wait for

transmission when local CPU and network resources are available.

• Request RPC Processing and Network Stack: This includes the processing and serialization

latency for the RPC packets, i.e., the latency taken for marshalling and sending multiple packets,

as well as the time needed for message encryption and compression.

• Request Network Wire: RPC request propagation latency, including wire and queuing delay

in the network.

• Server Receive Queue: When the server receives an RPC request, it places it in a request

queue, where a server thread eventually removes and processes it. Latency for this stage includes

the costs of decrypting and parsing the request message.

• Server Application: The server thread dequeues an RPC from the request queue and executes

the handler for the appropriate method. If an RPC method calls another method, this latency

includes the time for the subsequent calls to complete.
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(a) Fleet-wide Latency spent by RPC Tax. (b) Fleet-wide RPC Tax Latency breakdown.

(c) Latency spent by RPC Tax in P95 tail
(d) RPC Latency Tax breakdown of RPC with

P95 tail latency.
Figure 2.10: RPC Latency Tax

• Server Send Queue: When the application completes, the RPC system places its response in a

send queue, where it waits until the network is available for transmission.

• Response Network Wire: Response propagation latency, which includes wire and queuing

delay in the network.

• Response RPC Processing and Network Stack: This step includes the processing and

serialization latency for the RPC responses.

• Client Receive Queue: When the response arrives back at the client it is placed in a response

queue for processing, where it may wait if the client is busy.

With the exception of the application processing time, all other components are a result of using

RPCs to access a remote service. We therefore describe these non-application latencies as the RPC

latency tax (or more simply, the RPC tax).

2.4.2 Fleet-Wide Latency Variation

We describe how the major components contribute to the RPC completion time. In particular, we

show the fraction of RPC time spent on the latency tax, and then break down the tax into RPC

processing and network stack, network wire, and queuing components.
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(a) Distribution Heatmap (b) CDF
Figure 2.11: Per-Method Ratio of the RPC Latency Tax (RLT) to RPC Completion Time (RCT).

Application-processing time dominates but RPC tax can be significant. Figure 2.10a

gives an overview of the average RPC latency tax across all RPCs. Overall, the average tax is only

2.0% of the total completion time. Of that 2.0%, Figure 2.10b shows that the network accounts for

roughly half (1.1% of total time), while the RPC processing and network stack component and the

queuing component each contribute nearly one quarter (0.49%, and 0.43% of total time, respectively).

However, for RPCs with P95-tail latency, the tax component is significant, as shown in Figures 2.10c

and 2.10d. Here the distribution skews toward network-induced delay, suggesting that network

congestion and/or global distribution (i.e., speed-of-light propagation delays) may be limiting tail

performance.

To better understand how much of completion time is due to the RPC latency tax, Figure 2.11 plots

the RPC latency tax ratio distributions for all RPC methods; the tax ratio is the fraction of RPC

service time for which the tax is responsible. Most RPCs are bottlenecked by application-processing

time; for the RPC method with the median ratio, the tax makes up only 8.6% of the total completion

time. As noted before, though, the RPC tax is more significant at the tail. For the 10% of methods

with the highest overheads, the median RPC tax is 38%, while the 90th-percentile RPC tax is 96%.

The 99th-percentile RPC tax ratio for the top and bottom 1% of methods ranges from 0.5% to 99.99%

with a median of 66%. We conclude that optimizing RPC latency requires a two-pronged approach.

Optimizing server processing time is extremely important to reduce the completion time of most

RPCs. At the tail, however, most method types have RPC invocations where latency comes almost

entirely from the RPC tax.



2.4. RPC LATENCY 21

(a) Distribution Heatmap (b) CDF
Figure 2.12: Per-Method RPC Latency Distribution for Network Wire (RW) and RPC

Processing and Network Stack (RN).

(a) Distribution Heatmap (b) CDF
Figure 2.13: Per-Method Queuing Latency.

RPC tax breakdown. To quantify the relative contributions of the different RPC tax components,

Figure 2.12 shows a per-method breakdown of the latency distribution for combined Network Wire

(RW) and RPC Processing and Network Stack (RN). Figure 2.13 shows the per-method queuing

latencies. We expect tail network latencies near the longest round-trip time across the WAN between

datacenters, which is about 200 ms in our fleet. As Figure 2.12 shows, tail network latencies can be

around this expected latency for many methods. The P99 latency for the fastest 50% of methods in

network latency is 115 ms or less. There are some methods that have much lower tail latencies, with

the fastest 1% and 10% of methods having a P99 latency of 6 and 19 ms, respectively; this implies

that some methods avoid the cost of geographic distribution in most cases. However, at the tail,

combined RPC processing and networking stack latencies are high. The slowest 10% of methods

have a P99 latency of at least 271 ms. Finally, the slowest 1% have a P99 latency of 826 ms, which is

significantly higher than the longest network propagation delays, suggesting that there is room for

improvement in RPC processing and network performance.
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Category Server Client RPC Size Method Description

Storage

Bigtable KV-Store 1 kB Search value
Network Disk Bigtable 32 kB Read from SSD
SSD cache BigQuery 400 B Look up streaming data
Video Metadata Video Search 32 kB Get metadata
Spanner Network information service 800 B Read rows

Compute-intensive
F1 F1 75 B Process data packet
ML Inference ML Client 512 B Perform inference

Latency-sensitive KV-Store Recommendation service 128 B Search value

Table 2.1: RPC services in this study

Queuing latency is also a significant contributor to the RPC tax. Figure 2.13 shows that queuing

latency is high at the tail, although on the whole it is comparable to the combined RPC processing

and network latency. Half of the methods have median and P99 queuing latencies under 360 µs and

102 ms, respectively, compared to median and P99 latencies under 398 µs and 115 ms for combined

RPC processing and network stack. However, for the 10% of methods that experience the highest

queuing latency, median and P99 latencies are 1.1 ms and 611 ms, respectively. Thus, for many

methods, tail queuing latency is much worse than median queuing latency. This implies that it may

be possible to reduce tail latency for many methods by improving tail queuing with better scheduling

and load balancing.

2.4.3 Service-Specific Latency Variation

Our fleet-wide analysis finds that there can be significant variance across different RPC services (i.e.,

methods); here we perform an in-depth analysis of some important RPC services, most of which are

leaf RPCs. In particular, we select representative RPC methods from eight production systems, listed

in Table 2.1. These services can be categorized into three types: storage applications, which include

Bigtable, Network Disk, SSD cache, Video Metadata and Spanner; compute-intensive applications,

which include F1 and ML inference; and a latency-sensitive in-memory cache KV-Store. We evaluate

the distribution of latency breakdowns for each RPC across several dimensions.

Latency Variation Within a Cluster

We first study the latency variation of intra-cluster RPC calls to our 8 services. For each service, we

included only RPC calls (1) to the method shown for that service in Table 2.1, and (2) from clients

located in the same cluster and datacenter as the server. Figure 2.14 shows the CDF of RPC latency

for the selected service methods. The colors in the graphs show the breakdown of the RPC latencies

into the nine latency components described in Section 2.4.1.
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Figure 2.14: CDF of RPC completion time breakdown.

C
lie

nt
 S

en
d 

Q
ue

ue

R
eq

ue
st

 N
et

w
or

k

R
eq

ue
st

 R
PC

 
+

 N
et

w
or

k 
st

ac
k 

Se
rv

er
 S

en
d 

Q
ue

ue

Se
rv

er
 A

pp
lic

at
io

n

Se
rv

er
 S

en
d 

Q
ue

ue

R
es

p 
R

PC
+

 N
et

w
or

k 
St

ac
k

R
es

p 
N

et
w

or
k

C
lie

nt
 R

ec
v 

Q
ue

ue

Network Disk 0.65 0.35 1.90 4.13 22.43 0.11 0.89 0.57 5.02

SSD cache 0.78 0.18 11.30 33.58 1.64 1.98 4.13 0.00 1.59

F1 0.01 0.00 1.18 13.98 21.33 0.01 1.81 0.29 28.56

BigQuery 0.13 0.48 0.02 3.34 36.34 0.13 2.87 0.48 0.17

KV-Store 1.06 1.67 0.04 2.18 4.55 0.11 15.47 0.95 2.96

ML Interference 0.09 0.02 0.25 0.43 67.97 1.08 0.46 0.00 0.33

Spanner 0.03 0.63 1.61 2.95 26.56 0.41 3.51 0.35 0.84

Video Metadata 0.86 2.23 0.97 17.35 2.73 0.22 5.56 2.63 18.01

Figure 2.15: Percent improvement of tail latency (P95) with a what-if analysis.

As the graphs show, not all RPCs with the same total latency have the same per-component latencies.

Overall, most workloads have one dominant latency component. Based on the dominant component,

we categorize the eight RPCs as application-processing-heavy (Bigtable, Network Disk, F1, ML

Inference, and Spanner), queuing-heavy (SSD cache and Video Metadata), and RPC-stack-heavy
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(KV-Store). The dominant latency components take 25–66% of the total latency at the median but

increase to 30–83% at P95. However, tail latencies are significantly higher than the median: the P95

latency is 1.86–10.6× higher than the median. F1 has the largest difference, primarily because the

database executes queries of varying complexity using the same RPC method.

Component Impact on Tail Latency

To better understand how each component impacts tail latency, we perform a “what-if” analysis by

replacing each latency component of (P95) tail RPCs with its median value, one-by-one. Figure 2.15

shows the percentage of tail RPCs that become non-tail (i.e., move below the prior P95 latency) when

the corresponding latency component is reduced to its median. We find that the impact is largely

consistent with the categorization, i.e., the latency component that dominates the RPC latency in

general is also the main cause of tail latency.

The key findings of this experiment are that, not surprisingly, the major cause of tail RPC latency in

the datacenter differs among RPCs and types of applications. Prior work has focused on reducing

the latency of the computation of the RPC stack [38] or the network [58] to improve RPC times.

In contrast, these measurements demonstrate the importance of other RPC components, such as

application service time and client/server queuing. As a result, reducing RPC latency will likely

require an application-specific approach, both to choose the component to optimize and often to

reduce execution time of the application methods, which dominate RPC tax mechanisms for some

important applications.

Service Latency of Different Clusters

We now show how the latencies for each service can vary within different clusters in the cloud. To do

this, for each service, we examine RPC data from dozens of different clusters and datacenters. As in

Section 2.4.3, in all cases the client and server are within the same cluster, and we ensure that all

RPCs are based on the same underlying hardware/software system platform.

Figure 2.16 shows the latency breakdown of P95-tail latencies for RPCs for each of the 8 services

across different clusters. The x axis represents unique clusters in which the selected RPCs execute;

different services run on different numbers of clusters, and in these figures the results are sorted by

median latency for between 5 and 44 clusters.

The dominant component of RPC latency remains largely the same across different clusters,
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Figure 2.16: Distribution of latency components across clusters.

yet the latency varies significantly among different clusters, with the difference ranging from 1.24

to 10×. As the system platform, RPC methods, and RPC sizes are all the same, this experiment

indicates that the state of the cluster is the major cause of the differences. We refer to the system-level

variables that capture this cluster state as exogenous variables.

Exogenous Variables Affecting Latency Variation

Figure 2.17 demonstrates the relationship between the value of these exogenous variables (x axis)

and RPC latency breakdown (y axis). We pick three applications (one from each category) and four

exogenous variables that have the highest variations (Table 2.2). Because network latency is fairly

stable across different clusters, we focus on exogenous variables that capture server state.

Similar to before, RPCs with the same exogenous variable may have different component latencies,

so this figure shows the average of all of the RPCs with equal exogenous variable values. Specifically,

we collected samples of exogenous variables and RPC latency and aggregated them over 30 minutes.

Then we bucket RPC latency samples according to the exogenous variables (x axis). For each bucket,

we select RPC latency samples with total latency near P95 (+/-1%) and plot the per-component

average (y axis).
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Figure 2.17: Relation between exogenous variable and latency components.

Each application category reacts differently towards these exogenous variables. Bigtable is a server-

processing-heavy workload, and its performance is highly dependent on CPU utilization, memory

bandwidth, wake-up time, and cycles per instruction. Video Metadata is queuing heavy, which

follows a similar trend. In comparison, KV-Store, an RPC-stack-heavy workload, is most impacted

by variation in cycles per instruction. We note, however, that KV-Store runs on reserved cores in

our fleet, which may partially explain the lack of correlation with overall server CPU and memory

bandwidth utilization. Additionally, among the applications we studied, branch misprediction and

LLC miss rates are not correlated with RPC latency and their result are not shown here.

To confirm our hypothesis that exogenous variables correlate with RPC latency, we further monitor

the (P95) tail RPC latency together with the value of exogenous variables of Bigtable over a 24-hour

period. Figure 2.18 plots these values in representative fast and slow clusters. RPC latency fluctuates

following the same trend as most exogenous variables, which confirms our previous findings. For

example, in both the fast and slow clusters, CPU and memory bandwidth utilization both show

similar trends as RPC latency. We conclude that system-level optimizations, including both the

hardware platform and low-level OS details like scheduling, may benefit from application specificity.

We expect future work to explore cross-layer designs that are specialized for not only different



2.5. RESOURCE UTILIZATION OF RPCS 27

Variable Description

CPU util % CPU utilized
Memory BW Total memory bandwidth utilized (GB/s)

Long wakeup rate
Fraction of scheduling events
longer than 50 µs

Cycles per Inst. CPU’s cycles per instruction

Table 2.2: Exogenous variables

applications but for different RPCs.

Latency of Cross-Cluster RPCs

For some RPCs, the client and server are frequently located in different clusters. To study the

impact of traversing the WAN, Figure 2.19 shows the median latency of an RPC to Spanner servers

located in 21 different clusters. This demonstrates that when the client and server are within the

same cluster or are in clusters that are close geographically, the latency is low and follow the same

trend as same-cluster breakdowns. As the distance between client and server increases, the network

component begins to dominate the RPC latency.

Unfortunately, most of this latency is unavoidable as the network latency is bounded by the speed of

light. We cross-validated the cross-cluster latency in Figure 2.19 and found that the latency closely

matches the actual wire latency. Therefore wire latency, not congestion, contributes to the majority

of the network latency of the average RPC.

We conclude that, on average, the room for network latency optimization in a global cloud environment

is limited as some communication latency is unavoidable. However, one of the main reasons for

cross-cluster RPC is a lack of data locality, i.e., RPC servers are not located close to the data

being processed. As such, it is critical to optimize data locality in large-scale distributed RPC

systems.

2.5 Resource Utilization of RPCs

This section studies the CPU costs of RPCs, which we refer to as the RPC cycle tax. We also examine

the effectiveness of RPC load balancing. Understanding these costs can help future research make

RPCs more efficient.
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Figure 2.18: Comparison of exogenous variable and latency between different clusters (Bigtable)

2.5.1 CPU Cycle Breakdown

Figure 2.20 shows the RPC cycle tax across the entire fleet with respect to CPU cycles consumed:

roughly 7.1% of all cycles. Further, the right-hand pie chart shows that there are many different

components that contribute a significant fraction of the cycles. The single biggest consumer of CPU

cycles is compression, at 3.1% of all cycles. The next-most-significant consumers of CPU cycles are
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Figure 2.19: Spanner Cross-cluster latency breakdown.

(a) Total cycles consumed by the RPC cycle tax. (b) RPC cycle tax breakdown.
Figure 2.20: RPC Cycle Tax.

(a) Per-Method CPU Usage Distribution. (b) CDF
Figure 2.21: Per-Method RPC CPU Cycles.

networking and serialization, at 1.7% and 1.2% of all total cycles, motivating research on serialization

offload [44,45].

2.5.2 Fleet-Wide CPU Cycle Variation

Figure 2.21 shows a per-method breakdown of RPC costs. In this figure, costs are measured in

terms of normalized CPU cycles, a unit that reflects the varying performance across different CPU

architectures and generations present in our fleet. Not all RPC samples collected by our tracing
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service are annotated with CPU cost information, so this figure has fewer methods than our previous

analyses.

Similar to our previous per-method analysis, this figure shows that RPC CPU utilization is heavy

tailed, with less difference between the minimum and maximum values on a per-method basis.

For example, the cheapest 10% of RPC calls only change from 0.017 normalized cycles or less to

0.02 normalized cycles or less when moving from the cheapest-10% to cheapest-90% of methods.

However, in contrast, the most-expensive 10% of calls span 0.02–0.16 normalized cycles or more

between the cheapest 10% and 90% of methods.

When RPC calls are cheap, there tends to be low variance: the difference between the P1 and P99

throughput for the cheapest 1% of methods is within a factor of two. In contrast, almost all other

methods have a heavy tail where the P99 RPC costs are one-to-two orders of magnitude more than the

median; there are no methods that have high CPU overheads with low variance. This high variation

has significant consequences for RPC scheduling, load-balancing, and queuing [41,42,59]. If RPC

processing times are not known in advance — which is not always possible because processing-time

prediction is a hard problem in general [60] — then this heavy-tailed cost distribution is likely to

lead to significant HOL-blocking latency. If an RPC with low CPU cost unluckily ends up queued at

a server that is currently processing an expensive query, then it could see significant latency inflation.

This spread also implies that any load balancing algorithm that treats different RPCs as being equal is

likely going to lead to significant CPU imbalance. Further, improving load balancing is a challenging

problem because it is difficult to know in advance which RPCs will be expensive. For example, we

found that neither RPC size nor RPC latency is correlated with RPC CPU utilization.

2.5.3 Load-Balancing Resources

RPC load balancing determines how load is distributed across servers. Figure 2.22 shows a CDF

of the ratio between used CPU resources and the allocated CPU resource limit across all clusters

(solid lines) and across different machines in the same cluster (dashed lines) for each application. We

observe that load is significantly imbalanced across clusters. Our load balancer considers network

latency when distributing RPCs among remote clusters, and balancing server CPU load across

clusters is not an explicit goal. That said, avoiding overload at any particular cluster is, and we find

that, for some services, tail utilization can approach the limit. This motivates finding new ways to

better balance load across cells while still ensuring network latency is low.
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Figure 2.22: Distribution of CPU usage across different clusters and different machines in the

same cluster.

Conversely, the dashed line in Figure 2.22 shows the CDF of the same ratio but across different

servers in the same cluster. Overall, the load among servers has a much smaller variation, except for

Spanner, F1, and ML Inference. These applications have some servers that are nearly fully utilized,

suggesting improvements are needed in intra-cluster load balancing as well. However, this is a hard

problem because load balancing in some of the applications are data dependent and may suffer from

limited parallelism.

2.5.4 RPC Cancellations and Errors

RPCs are not guaranteed to complete. We find that 1.9% of all of the RPCs issued during our period

of study resulted in errors. There are a large variety of reasons that RPCs may experience an error,

but all RPC errors waste resources.

To better understand the sources and costs of RPC errors, Figure 2.23 plots the contribution of

different error types to the total in terms of both percentage of errors and wasted CPU cycles.

“Cancelled” is the most-common type of error, which constitutes 45% in number and 55% of CPU

cycles. We suspect request hedging [61] is responsible for most cancellations in a deliberate attempt

to reduce tail latency. Moreover, we observe that while many error types have relatively similar

contributions to frequency and CPU cost, cancellations consume an out-sized fraction of CPU cycles,
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Figure 2.23: The relative percentage of different RPC error types.

making them more expensive than most. Although it is unclear exactly what fraction of RPCs are

canceled due to other reasons like a user cancelling a job or query, this finding suggests there is value

in further understanding the overheads and trade-offs associated with request hedging.

Unlike cancellations, which may be side effects of a tail-latency-reduction strategy, other classes

of errors are expected to increase tail latency. As such, we believe that there is a need for future

research on the topic of reducing the relative number of RPCs that experience errors in large-scale

distributed systems. The second-most common source of error is “entity not found”, which comprises

20% of total RPC errors and consumes 21% of wasted CPU cycles due to RPC errors. It is one of

the error types that can possibly be eliminated or significantly reduced by preventing requests to

unavailable entities. Other errors such as “no resource” and “no permission” can also be possibly

mitigated.

2.6 Implications

This section briefly highlights the implications of our results based on the data we presented. It

presents our key insights about RPC behavior and problems with today’s RPC stacks, and it

highlights potential opportunities for improvements and optimizations at the software and hardware

layers.
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2.6.1 RPC Behavior and Problems

This work provides a comprehensive study of the fleet-wide RPC characteristics and behaviors

of Google’s internal applications. Our findings have important implications with regards to RPC

behavior and problems that can be addressed.

Millisecond, not just microsecond timescales. Many of the RPCs in our cloud are on the scale

of milliseconds, not microseconds. Reducing CPU utilization is in many cases more critical than

saving tens of microseconds of latency. Yet many prior proposals focused only on microsecond-scale

latency improvements [38,41,51,62].

Queuing matters. Our study (Fig. 11 and 12) shows that queuing is a major contributor to tail

latency. Prior work has focused on reducing network tail latency [58,63,64], which only solves part

of the latency problem in RPC systems.

Congestion still impacts the WAN. We find that tail RPC network latencies are much larger than

the maximum median inter-datacenter latency. Although prior work on private WANs suggests that

congestion is a solved issue [65–68], we show that network latency from congestion has a significant

impact on the tail network throughput of RPCs.

Tail latency is a bigger problem than average latency. While the RPC latency tax is only

2% on average, it can climb to 96% at 90th-percentile. Therefore, there is still a need to reduce the

RPC latency tax at the tail. New RPC optimizations could provide predictable performance and

potentially have a significant impact.

RPC errors. Our report of real-world errors and their distributions shows that (a) RPC hedging is

costly (55% of wasted CPU cycles), and (b) unavailability of RPCs and other resource and permission

issues account for 20% of wasted RPCs. This suggests future research on mitigations, e.g., service

availability prediction.

2.6.2 Software Optimizations

There are different software components that impact RPC processing. Our findings have implications

on how these software components could be changed to reduce latency or CPU cycles utilization.

Improved scheduling and placement. Queuing latency consumes 21% of the RPC latency tax,

so better scheduling is likely to reduce RPC completion times. Latency suffers when clients and
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servers are not co-located. As a result, adding support to a cluster manager for co-locating RPCs

from the same RPC tree could significantly reduce latency.

Load balancing. One of the major sources of latency variation comes from system balance and

congestion issues. For example, if the system exhibits high server and memory bandwidth utilization

or saturation, then tail latency can increase significantly, particularly for RPCs that are bottlenecked

by server processing and queueing latency. We expect that a cross-layer load-balancing mechanism

that takes into account both RPC type information and system resource states will greatly reduce

the latency variation.

Method-specific software optimizations. As previously noted, the 10 most popular RPC

methods account for 58% of all calls and the top-100 account for 91% of all calls. Therefore, a

small number of targeted method-specific optimizations could potentially have a significant impact

on a large fraction of RPCs. Our service-based latency analysis shows that these optimizations

must address the main bottlenecks in each service. For example, compute intensive services are

bottlenecked by their processing time (e.g, ML inference), while light-load services are limited by

queuing delay (e.g., video metadata indexing). Prior work mostly focused on optimizing light-load

services [38,69], but in reality, future research in service-specific optimizations targeting each of their

main bottlenecks will be crucial as well.

2.6.3 Hardware Optimizations

Hardware accelerators have emerged as a promising approach to scaling the performance of datacenter

applications in the face of Dennard scaling limitations. This is because hardware acceleration can

potentially reduce latency, energy consumption, and total costs.

Optimizing common operations. A number of common compute or data-intensive operations,

such as compression, encryption and serialization, are used in RPC as well as in the network stack.

Prior work [38,41, 51, 62] has evaluated optimizations, but without including these operations, which

are required in the cloud environment. On the other hand, hardware accelerators for these operations

are common on many systems or NICs and could be included in RPC processing.

RPC Library acceleration. Figure 2.20a shows that the RPC Library only takes a small fraction

of total CPU cycles (1.1%). Therefore, accelerating the RPC Library using a SmartNIC/xPU may
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not provide the highest value when compared to other common data center tax operations (e.g.,

serialization/deserialization and compression).

Storage dataflow accelerators. The majority of our RPC invocations and data transferred are

from two applications (Figure 2.8) — Network Disk and Spanner — which are data intensive. This

demonstrates the potential for accelerating data movement [70,71].

Method-specific hardware optimizations. Accelerators must cover a significant fraction of

the CPU cycles consumed by the fleet to provide cost-efficiency benefits [70–72]. As most CPU

cycles are consumed by a few services (the top 8 services account for 60% of all RPC calls), a few

method-specific accelerators could potentially have a significant impact on the fleet.

2.6.4 Limitations

We briefly note two limitations to this study. First, it analyzes RPCs from a single hyperscaler.

Others may have different structures that might lead to different results. However, we believe that it

is likely that many of our findings generalize, and that RPCs in cloud applications at other companies

are likely to share similar properties and behavior, given the similarity of services that clouds

provide. Our study provides a basis for understanding this workload and comparing with later studies.

Conducting a cross-cloud study at this level and magnitude would obviously be challenging.

Second, this study focuses primarily on RPCs sent over TCP. RDMA has become increasingly

important recently as an alternative transport to TCP for RPCs [22–24,38,73,74]. However, we have

focused on RPC over TCP and leave the study of RDMA to future work.



Chapter 3

Accelerating data durability of

remote storage systems

3.1 Introduction

The benefits of economy of scale and the emergence of cloud computing have caused an increasing

number of enterprises to move their workloads to hyper-scale cloud data centers, with an estimated

annual growth of about 14.6% during the period 2017–2022 [75]. Today, most of the computation

takes place in these hyper-scale cloud data centers—performing more than 89% of the computation

world-wide in 2018 [76].

These data centers host workloads ranging from time-critical, interactive jobs (e.g., online data-

intensive (OLDI) workloads [14], RAMCloud [77, 78], and financial analysis [79]) to long-running,

batch jobs (e.g., MapReduce [80] and machine-learning training [81]) with large memory footprints. In

most of these workloads, data is typically managed and maintained in a persistent way across multiple

servers, with clients accessing and updating this data remotely over a network of interconnected

switches, using remote procedure calls (RPCs). During each invocation of an RPC, the request is

processed by the client’s IO stack, the network of intermediate switches, the server’s IO stack as

well as the request handler on the server. Thus, the latency of an RPC is significantly affected by

the processing time of each of these stages. As the computation performed by modern workloads is

36
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dominated by these RPCs, i.e., read and update requests, the time it takes to access remote data is

of major consideration when deploying workloads on modern data centers [82–86].

These RPCs can be either synchronous or asynchronous. Though, asynchronous RPCs can enable

clients to continue execution while updates are being processed at the remote server; yet, building such

applications is quite challenging, especially “at scale, when a typical end-to-end application can span

multiple small closely interacting systems” [83]. In contrast, applications using synchronous RPCs

are easy to write, tune, and debug—Google is known to strongly prefer a synchronous programming

model [87, 88]. Therefore, in this paper, our aim is to improve the performance (specifically the tail

latency) for synchronous RPCs by minimizing the access time to remote persistent data.

Recently, as programmable network devices become available [89], a trend is to offload application

logic to those devices. This way, a large fraction of the procedure, including server’s network stack

and processing time, is no longer handled by the server but accelerated by those network devices. This

newer computation scheme is known as in-network compute, spanning a wide range of applications,

such as query processing [90, 91], key-value stores [11, 92–94], data aggregation [95–97], and even

computational-intensive machine-learning tasks [98–100].

Though promising, in-network computing mainly mitigates the latency of computational tasks and

requests that do not change the server state (such as read queries); the data persistence is still

maintained by the servers, and update requests still need to traverse the entire network and server’s

IO stack to complete the update. Therefore, as in the original case, the client needs to wait for an

entire round-trip time (RTT)—for an acknowledgement from the server—before it can proceed to

the next step.

To minimize the request processing time on the servers, data centers [101,102] are deploying new

persistent memory (PM) technologies, such as Intel’s Optane [3] and NVDIMM [103]. Compared to

traditional storage devices (e.g., SSD and HDD), PM provides high-speed and direct, byte-addressable

access to persistent data, while bypassing OS indirections (e.g., file systems). PM reduces the server’s

storage latency by 10∼50× [104–106], thereby enabling software systems (such as databases [107–110]

and key-value stores [111–113]) to perform at much faster speeds. Even though the integration of PM

significantly reduces the request processing time at individual servers, the network is still a dominant

factor when processing these requests in a data center—causing clients to stall for a complete RTT.

Moreover, as the network is a shared resource, the contention for bandwidth, switch queues, and links

can lead to variable delays and long tail latencies [61, 62, 114–120]. We identify that the fundamental
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cause of the limitations of in-network computing is that operations are stateless, being unable to

accelerate a stateful, persistent operation on the server. On the other hand, persistent memory in

the server improves the performance of persistent updates but still puts the network and server

network-stack latency on the critical path.

We found that it is possible to expose the persistent state to the network and persist update requests

in-network. Therefore, we introduce the notion of in-network data persistence, which enables a

sub-RTT latency when processing update requests. To expose data-persistence domain to the network,

we log updates in the network using persistent memory and send acknowledgements to clients as soon

as a request enters the persistent domain. The update requests are then forwarded to the server,

but this way, the server processing happens off the critical path. As the requests have entered a

persistent state before being processed by the server, the client can now proceed before the server

acknowledges.

In this work, we design and implement PMNet, a mechanism necessary to provide persistent logging

support in programmable network devices. However, designing PMNet has many challenges. First,

how can a network device track requests and persistently maintain their state? Second, given the

requests have been persisted in the network, how can the system recover after a failure? Third, how

can PMNet maintain the same application-level ordering guarantees with in-network persistence?

Next, we describe our key insights.

Persistent logging PMNet uses a simple protocol to ensure that updates are logged persistently

in the network device with sub-RTT latency. First, PMNet mirrors the incoming update requests

while they are traversing the network device. It logs the update requests in its PM. Second, as the

requests have already entered a persistent domain of the network device, PMNet immediately sends

an acknowledgement to clients, allowing them to move forward. Therefore, compared to the original

scenario, the latency is significantly reduced as the client no longer needs to wait for the whole RTT.

Third, PMNet invalidates the logged entry upon reception of an acknowledgement from the server,

which indicates that the server has completed the request.

System recovery In case a failure happens in the persistence domain (i.e., the network device

and/or server), PMNet needs to ensure that logged entries are reflected on the server. When the

system is up again, PMNet resends the logged requests so that servers can redo them in the same
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order as they were sent. As such, the server can recover to a consistent state with the logged

requests.

In-order delivery PMNet always maintains the ordering of the original system. As the logged

updates are reflected later on the server, one may think that a client will read a stale value from the

server. However, we observe that oftentimes large-scale workloads optimize for independent clients.

For example, in a Twitter workload using Redis as the backend [1], the clients update tweets and

followers without maintaining any order. Still, PMNet provides ordering guarantees when there

is a strict ordering requirement within multiple clients. These workloads enforce application-level

ordering using synchronization primitives to ensure that only one client can update a critical value.

For example, a TPCC workload [2] puts the modification of the stock price in a critical section using

locking primitives. PMNet treats the lock operations in a critical section as regular read requests and

forwards them to the server. Therefore, the ordering is enforced on the server and subsequent lock

requests from other clients fail on the server, but subsequent update requests from the same client

operate with sub-RTT latency by persisting these update requests in the network device.

We implemented PMNet in an FPGA-based programmable switch (PMNet-Switch) and a NIC

(PMNet-NIC). Our evaluation shows that both designs provide a significant benefit over the baseline

system. However, the latency difference between PMNet-Switch and PMNet-NIC is negligible as

the round-trip time is dominated by the server network stack and the server processing time. On

top of PMNet, we further integrate additional functionalities. (1) PMNet-Switch with caching: We

demonstrate that our logging mechanism for update requests works coherently with a prior work that

proposed to cache read requests in a switch [11]. (2) PMNet-Switch with replication: We develop an

in-switch replication mechanism that builds upon PMNet’s logging protocol. In summary, we make

the following contributions:

• We expose data persistence to the network to improve the performance of update requests. We

implement PMNet using a programmable data-plane device, integrated with a persistent memory

that logs incomplete update requests.

• We adapt common PM workloads, including Intel’s PMDK-based key-value stores [121], a PM-

optimized Redis database [110], Twitter [1], and TPCC [2] to PMNet. Our evaluation shows that

PMNet improves the throughput of update requests by 4.31× and the 99th-percentile tail latency

by 3.23× in these workloads.
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• We also demonstrate that PMNet improves read-caching and state-replication latency by 3.36×

and 5.88× respectively, over traditional, baseline systems.

3.2 Background and Motivation

In this section, we first discuss the performance bottlenecks in performing update requests in persistent

applications and then describe our proposed solution.

3.2.1 Synchronous Programming Model

Data centers host a wide range of workloads, such as online data-intensive (OLDI) workloads,

RAMCloud, and financial analytics [14, 77–81], where data is typically managed in a persistent way

through multiple servers, and accessed via queries. If we categorize these requests, there are mainly

two types: synchronous and asynchronous. A synchronous request guarantees its completion at the

server by blocking the client until the server responds. In comparison, an asynchronous request

lets the client proceed immediately while the request is being delivered and processed at the server.

However, the client risks losing data in the face of common failures, such as network packet loss.

When such failure happens, the application needs to ensure that the clients and the servers remain

in-sync—complicating the design and development of the application. Therefore, programmers

usually prefer the synchronous programming model [83,87,88,122].

3.2.2 Mitigation of the Synchronous Overhead

Although the synchronous model alleviates the programming burdens, it places the entire query

RTT on the critical path of the application, as future requests are blocked until the in-flight request

has been processed by the server. Figure 3.1 demonstrates the steps involved in query processing,

including the client’s network stack, the network latency, the server’s network stack, and the server’s

request processing. The dashed arrows demonstrate the RTT of processing a single request. Further

breakdown in Figure 3.2 shows that server-side latency, including the server’s network stack (in the

kernel) and request processing time (in the user-space), makes up the majority of the overhead (70% on

average). To mitigate the synchronous overhead, one of the promising solutions in the literature is to

offload tasks to the network. By placing computational devices—such as programmable switches [123]

and SmartNICs [124]—on the network path, a large portion of the server’s processing and network

stack latency can be eliminated. Examples of in-network computing include load balancing [125,126],
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Figure 3.1: Round-trip time (RTT) of a single request.
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Figure 3.2: Latency breakdown of an update request.

congestion control [127, 128] and packet scheduling [129, 130], query processing [90, 91], key-value

stores [11,92–94], and machine-learning acceleration [98–100].

However, in-network compute only handles stateless requests that do not change the persistent state.

In case of an update request, the communication and processing overhead remains. Fortunately,

recent advancement in memory technology provides an alternative, high-performance storage system,

persistent memory (PM) [3]. By managing persistent data on PM, the server can perform update

requests more efficiently and reduce the server-processing latency. For example, databases and

key-value stores [107–113], and PM-optimized file systems [131–138] optimize their data management

to take advantage of PM’s high performance. Despite these improvements, the network stack and the

processing time remain on the critical path. Even with an optimized network stack, such as using

libVMA [139] that enables applications to bypass the server’s network stack, the server-processing

time is still a major overhead (we evaluate an optimized network stack in Section 3.6.2).

In this work, we ask the following question: how can we move the server’s network stack and processing

time off the critical path and process the client requests in sub-RTT? A promising solution is to log

and persist the update requests ahead of time before they enter the server stack and processing

time. A dedicated logging module can bypass the majority of system overhead. Unfortunately, a

dedicated software module can introduce additional CPU and memory utilization (evaluated in

Section 3.6.2), and a dedicated hardware module needs a redesign of the CPU architecture, making
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fast deployment challenging. The trend in data centers is to move dedicated logic into NICs and

switches [11,90–100]. This method is effective in handling network traffic, without putting extra load

on the server. Following this trend, our goal is to design and prototype an efficient logging mechanism

using programmable network devices.

3.2.3 In-Network Data Persistence

For data to become persistent in the network, we need to extend the data-persistence domain from

within servers to the network. By maintaining the persistent state of on-going requests in the network,

an update request can become equivalently persistent before having been processed by the server. In

case of a failure on the server, the already persisted requests can be resent from network devices

and re-applied to the server for recovery. As the solid arrows in Figure 3.1 demonstrate, clients no

longer need to wait for the entire RTT for servers to process the requests and reach a persistent state.

Instead, they can proceed once the requests have entered the persistence domain of the network.

Consequently, the entire server-side latency (as pointed out in Figure 3.2), including the request

handler’s processing time and the network stack latency, can be placed off the critical path. Therefore,

persisting these requests in the network can significantly improve performance by taking the server

off the critical path.

3.3 High-level Ideas

We present PMNet, a PM-integrated programmable network device that realizes in-network data

persistence. By keeping a persistent copy of in-flight requests on the network device, the update will

end up in a persistent state before having been received and processed by the server. In case a server

fails (e.g., due to a power outage or kernel crash), the persistent copy of the request can act as a redo

log for the in-flight requests when the server recovers from failure. At a high level, the design and

implementation of PMNet have three major challenges: (1) How can PMNet move the network and

server processing time off the critical path by logging the requests? (2) How can the system recover

using the logged requests? (3) How can the existing client and server applications maintain ordering

after having PMNet integrated? Next, we describe the high-level ideas of PMNet that address these

challenges.
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Figure 3.3: Request logging and system recovery in PMNet.

3.3.1 Persistent Logging

With the integration of PM, PMNet can maintain a copy of in-the-flight update requests in PM, to

serve as a redo log for the server. This way, the request reaches a persistent state before it has been

processed by the server (Figure 3.1). PMNet then sends the acknowledgement of the request to the

client once it has been persisted in the network device’s PM, rather than waiting for the server’s

acknowledgement. Figure 3.3 shows the workflow of the request logging procedure: Upon receiving an

update request, PMNet writes it to the integrated PM (step ➊-➋). While the request is being written

to PM, PMNet forwards it to the destination server (step ➌). After the request becomes persistent,

PMNet sends an acknowledgement (PMNet-ACK) to the client, indicating that this request has entered

a persistent state (step ➍). When the server has actually processed the request, it acknowledges

(server-ACK) PMNet to invalidate its copy and reclaim the log entry for future use (step ➎). On the

client-side, upon receiving an acknowledgement from PMNet, the client proceeds without waiting for

the completion of the request at the server (details in Section 3.4.2). PMNet can work as a switch as

well as a NIC, which we refer to as PMNet-Switch and PMNet-NIC, respectively.

3.3.2 System Recovery

The next challenge is to recover the server after a failure. Figure 3.3 shows the recovery procedure.

Upon detection of a server failure (e.g., through heartbeat signals), PMNet reads the logged requests

from the device’s PM (step ➏) and resends them to the server (step ➐). PMNet ensures that the

server commits the resend requests in the original order by adding an extra sequence number in the

header (details in Section 3.4.5). Once the server has committed a request, it notifies PMNet to

invalidate the log entry (step ➑). Besides this sequence number, the update requests need additional

information to ensure correct in-network logging and recovery. PMNet encodes this information as a

new PMNet header (details in Section 3.4.1) to existing network protocols (e.g., IP or VXLAN), and

provides software support for the client and server to process this encoding with minimum changes

to the source code.
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3.3.3 In-order Delivery

PMNet guarantees the same ordering as the traditional, baseline systems. We already discussed that

PMNet maintains ordering within a client by keeping additional sequence information in the header

of the packets from each client. However, one may wonder how PMNet ensures the ordering between

multiple clients. Can another client read the up-to-date state from the server, while the update is

being logged in PMNet and not yet committed to the server?

PMNet targets the common cases, where the majority of client-server connections are independent.

This is unsurprising because the RTT between a client and server is as high as tens of µs—having

dependencies (and synchronization) with other clients can inflate the end-to-end latency of requests

even further. Therefore, large-scale workloads typically mitigate dependencies and optimize for

independent clients. For example, different tasks in a microservice use separate storage backends

without dependencies with others [114,115], worker nodes in distributed machine-learning systems

send new weights to a parameter server without synchronizing with other workers [81,140], and client-

independent databases, such as Memcached and Redis, are commonly used as service backends [141,

142]. Figure 3.4 demonstrates two update requests to a shared variable lastUID in the Twitter

workload [1]. There is no ordering constraint among clients, and each client independently executes

the getUID function (line 1) and uses that UID for consecutive requests.

However, in rare cases where ordering must be enforced among multiple clients—i.e., one client cannot

update the server until another completes—the client needs to make sure the request has actually
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been processed by the server before making any forward progress. These workloads typically use

synchronization primitives to ensure the ordering at the application level. The client uses an update

request to access the synchronization primitive on the server and acquire the lock on the critical

section; other clients are blocked from entering the critical section, thus enforcing an ordering among

clients. Figure 3.5 shows this synchronization scheme in the TPCC workload [2], where PMNet

directly forwards the locking requests to the server and only client 1 can access the critical section.

And, subsequent update requests from client 1 can still benefit from PMNet. As lock requests are

forwarded to the server, the ordering of lock-acquire/release is enforced. Because lock requests are

infrequent, the majority of requests can be logged by PMNet. In our experiment, most workloads

are lock-free. Only 13.7% of the requests in the TPCC workload access the locking primitive (i.e.,

bypass PMNet).

3.4 PMNet Design

So far, we have introduced the high-level ideas of PMNet, that extend the persistence domain from

servers to the network by logging in-flight update queries in the network devices’ PMs, and redo

them in the event of failures. This way, PMNet effectively moves server-stack overhead off the critical

path of request processing.

PMNet realizes in-network data persistence by augmenting programmable network devices (e.g.,

switches and NICs) with PM, as the architecture overview in Figure 3.6 shows. To have PMNet

fully functioning end-to-end, from the client-server application to the hardware implementation, we

introduce four major aspects in this section. First, we introduce PMNet protocol for update requests

that can benefit from in-network data persistence, which encodes metadata that is necessary for

logging and recovery into a PMNet header (Section 3.4.1). Second, we describe the request processing

procedure of PMNet, according to the PMNet protocol (Section 3.4.2). Third, based on the design

of PMNet, we further introduce two use-cases of PMNet. One case that integrates PMNet into a

replication system (Section 3.4.3), and another case that implements a read cache on top of PMNet’s

logs (Section 3.4.4). Finally, having with all the details described, we illustrate the recoverability of a

PMNet-based system (Section 3.4.5).
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3.4.1 PMNet Protocol

We now describe the PMNet protocol, including its packet header, delivery method, and ordering

guarantees for queries.

Header format

The PMNet header is placed in the application layer of each network packet (i.e., L4) (Figure 3.8).

A PMNet header consists of the following fields:

• Type (8 bits) differentiates the type of PMNet’s requests (details in 3.4.2).

• SessionID (16 bits) keeps track of sessions a client sends requests from and differentiates

connections among clients.

• SeqNum (32 bits) tracks the order of packets sent over a given session, such that the server can

process the queries in the original order. Furthermore, the latest SeqNum informs PMNet to avoid

redoing already completed queries during the recovery (Section 3.4.5).

• HashVal (32 bits) is a CRC-32 hash of the entire header that is computed by the sender’s network

stack. The PMNet uses this hash value to index a packet in the PM of PMNet.

Delivery method

The PMNet protocol is built upon UDP, similar to other in-network compute works [93, 98, 143,144].

To differentiate from other network traffic, PMNet reserves specific UDP ports (range: 51000–52000)

and encodes PMNet header into the UDP packet. In case an application originally uses TCP, PMNet’s

software library converts TCP packets to UDP packets while maintaining a reliable delivery guarantee

of TCP (similar to [128]). We present how PMNet protocol ensures the packet ordering and integrity

guarantees in Section 3.4.1.
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MTU-sized packets

PMNet obtains the packet size from the UDP header. Though a UDP packet typically has a maximum

transmission unit (MTU) of 1.5 kB, a query can be larger than this limit. PMNet’s software library

transparently divides the queries larger than MTU into smaller packets and uses a sequence number

(SeqNum) to maintain packet order. PMNet handles MTU-sized packets by sending a per-packet

PMNet-ACK to the client once each packet has been logged in PMNet. And, the client needs to collect

all PMNet-ACK’s to make sure the corresponding update request has been completely logged in PMNet.

The PMNet’s software library also tracks the number of PMNet-ACK’s in a similar way.

Ordering guarantees

As UDP does not guarantee packet ordering, PMNet protocol implements such ordering for servers

to execute queries from the same client in the original order. We discuss the ordering guarantee in

three scenarios. (1) During normal execution: Figure 3.7a demonstrates a scenario where the client

first sends packets in the original order (step ➊), and during network transmission, some packets

are reordered (step ➋). On detection of out-of-order packets, the server’s PMNet library corrects

the order based on SeqNum of each packet (step ➌). (2) On detection of a packet loss: Figure 3.7b

demonstrates a scenario where the client sends a series of packets (step ➊), but some packets are

lost (packet-#2 in this example) during network transmission (step ➋). The server’s PMNet library

detects nonconsecutive SeqNum (step ➌) and requests for retransmission (step ➍). Section 3.4.2

describes more details about retransmission. (3) During failure recovery: Figure 3.7c demonstrates
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Figure 3.8: The data-plane MAT pipeline in PMNet.

a scenario where the server fails (step ➊) and PMNet retransmits the logged packets to the server

for recovery (step ➋). Similar to scenario (1), the server reorders the packets on reception (step ➌).

In conclusion, although the network may reorder or lose packets, PMNet protocol guarantees their

ordering and delivery.1

Multi-client ordering PMNet enforces multi-client ordering at the application level by forwarding

synchronization requests directly to the server (described in Section 3.3.3). Doing so allows the server

to enforce ordering across critical sections of the application code, while the code within the critical

sections can still benefit from PMNet’s logging.

3.4.2 PMNet Request Processing and Log Management

Packet handling

In PMNet, a match-action table (MAT) pipeline (Figure 3.6) handles the following types of PMNet

packets, distinguished via the “Type” field, along with other non-PMNet packets.

• Update requests from the clients (update-req). PMNet needs to maintain the persistent

state of these queries in order to recover. Therefore, upon reception of a packet that belongs to

an update request, PMNet immediately forwards the packet to the destination server, and in the

meantime, logs the packet in the persistent memory. The HashVal in the PMNet header serves

as the index to the log entry. Once the whole packet has been persisted to the network device’s

PM, PMNet sends a PMNet-ACK back to the client, as the packet has reached a persistent state.

Note that in cases where the device PM is full or the HashVal of the packet collides with an

1Note that handling reordering at the network level is rare as datacenter networks typically use flow-consistent load
balancing (e.g., ECMP [38]).
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existing entry, PMNet directly forwards the packet to the destination server without logging it (or

acknowledging the client).

• Bypass request from the client (bypass-req). For purposes such as read request and

synchronization, where the client does not need to receive an early acknowledgement from PMNet,

the client sets the packet type to bypass-req. PMNet directly forwards it to the destination

without logging. As a result, these packets do not enter a persistent state until processed by the

server.

• ACK from another PMNet (PMNet-ACK). In a system with multiple PMNets, a PMNet may

receive a PMNet-ACK from another PMNet. In this case, PMNet directly forwards the packet

along its path to the destination.

• ACK from a server (server-ACK). Upon reception of a server-ACK, PMNet looks up the request

log with the HashVal in the packet. If the request log hits, PMNet forwards this server-ACK to

the destination (the next PMNet in this route may log the request).

• Retransmission request from a server (Retrans). In case the server detects any packet loss,

it sends a Retrans request to the client, going through PMNet. If PMNet has the requested packet

logged, PMNet directly sends it to the server and drops this Retrans request. Otherwise, PMNet

forwards this Retrans request directly to the target client.

• Non-PMNet packets. As PMNet also serves as a regular network device, it also handles

non-PMNet packets by directly forwarding them to the destination.

MAT pipeline workflow

PMNet implements the MAT pipeline for packet processing, as shown in Figure 3.8. The pipeline

contains three stages: ingress, PM-access, and egress. The ingress pipeline first checks whether

this packet is a PMNet packet based on its port number in the UDP header (step ➊); non-PMNet

packets are directly forwarded to the destination port. Second, for the remaining PMNet packets, it

checks the type of the packet based on the Type field in the header (step ➋), and forwards PMNet-ACK

packets to the destination. The PM-access stage operates on the request logs. It creates a log upon

receiving an update-req packet (step ➌), removes it upon a server-ACK packet (step ➍), and looks

up a log upon a Retrans packet (step ➎), by using HashAddr as the index. The egress stage processes

the outgoing packets based on the outcome of the (log) lookup. For update-req packets, it first



3.4. PMNET DESIGN 50

forwards all of them to the destination server (step ➐); and for those that can be logged in its PM,

it additionally generates and sends a PMNet-ACK to the client (step ➏). For Retrans packets, if the

log entry is present, the egress pipeline generates and resends the requested packet to the server;

otherwise, it forwards this Retrans to the destination client.

During the PM-access stage, PMNet manages log entries in its PM through a DMA engine (i.e., to

add/remove/read a log entry). Different from the rest of the MAT pipeline, the PM access stage

can suffer from the longer PM access latencies. To prevent blocking incoming packets, PMNet

maintains log queues (separate queues for reads and writes) that buffer PM access requests (as shown

in Figure 3.6). This way, PMNet can handle all incoming packets at line-rate (Section 3.6.2).

3.4.3 PMNet Replication

Replication is a common fault-tolerance mechanism that maintains multiple copies of the same data

block across various storage servers in a distributed system [145–148]. In case one server fails, the

other can be used to recover the corrupted data. To enable fault-tolerance, an update request must

commit to all the replication servers. PMNet can accelerate these fault-tolerance systems, further, by

replicating data using in-network PMs. Figure 3.9a demonstrates a scheme where the server replicates

data. Accordingly, we place two switches in series to maintain two copies of logs as well.

An update request is processed in the following steps: The client sends an update request (step ➊),

and the first PMNet switch (#1) logs the request (step ➋) and sends a PMNet-ACK (#1) (step ➌).

Then, the second PMNet switch (#2) receives the forwarded request, performs logging (step ➍), and

sends a second PMNet-ACK (#2) (step ➎). On the client side, it continues processing only after it has

received both PMNet-ACK (#1) and (#2). On the server side, the primary server receives the update

request and process it (step ➏). Afterward, it sends the updated data to the replication server. Only

after replication completes (step ➐), the primary server sends a server-ACK to invalidate both logs

in the two PMNet switches (step ➑). Even though such in-network replication requires all switches to

persist the log prior to sending an acknowledgement, the latencies for persisting data at each switch

are overlapped. Figure 3.9b shows the latency benefits of this overlap in the replication procedure

for two switches (evaluation in Section 3.6.2).
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Figure 3.9: (a) A replication scheme with two PMNet switches.
(b) Timeline of in-network replication.
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3.4.4 PMNet Read Caching

Prior works have used programmable switches as a cache for key-value stores [11, 92, 93] but they do

not maintain a persistent state of the data cache and cannot mitigate RTT for update requests. To

serve both read and update requests, we add a read cache on top of PMNet’s persistent log. With

read caching enabled, PMNet is implemented as the server’s ToR switch, similar to the prior works

on in-network read cache, to simplify consistency issues [11]. It maintains a persistent key-value

cache that logs update requests and responses to read requests. Figure 3.10 shows this procedure.

When a read request arrives at PMNet (step ➊), it looks up the cache. If the request is a hit in the

cache (step ➋), PMNet sends a cache-response to serve the read (step ➌). In case of a miss, the read

request is forwarded to the server as normal (step ➍), and the response is cached in PMNet when

the server replies (step ➎). On the other hand, an update request is first logged in PMNet (step ➐)

to move server processing off the critical path (step ➑). In case the key in the update request is a

hit to the cache (i.e., has been cached already), it updates the cache to maintain consistency (step

➐).

Figure 3.11 describes a state diagram, where each entry in PMNet has four states: (1) Invalid: the

entry is empty (initial). (2) Stale: the entry is not up-to-date when there is an in-the-flight update

to the same key (3) Persisted: the request logged by this entry has been persisted on the server,

and (4) Pending: the request has been logged by PMNet but not persisted by the server. When the

state is Pending or Persisted, the entry can serve for read cache. Here are the state transitions.
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Figure 3.11: A state diagram for PMNet with integrated read cache.
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Figure 3.12: Intermittent failure scenarios.

T1: Upon receiving an update-req from the client, PMNet logs the request. As the server has

not persisted it, the state is now Pending. T2: After receiving a server-ack, PMNet is notified

that the server has persisted the request. Thus, the status becomes Persisted. T3: If the same

entry (indexed by the key) is updated again (via an update-req), PMNet directly bypasses this

request and the state goes back to Pending. T4: When an entry is Pending but receives another

update-req, the state becomes Stale as the server will be updated with a new value. T5: A

Stale entry remains Stale, after getting another update-req. T6: Once a Stale entry receives a

server-ACK, it becomes Invalid as its prior update-req has been persisted.

3.4.5 PMNet Failure Recovery

Our work focuses on a system with client-server architecture located in a modern data center. Here,

we consider both intermittent failures (such as power outage, software bug and other hardware

failures that cause the system to temporarily become unavailable) and permanent hardware failures

that are handled via replication (details in Section 3.4.3).

Intermittent failures

In this case, all hardware regains their functionality after the failure ends. However, data that is

outside the persistent domain is lost. To ensure data integrity, PMNet ensures that accepted requests

are safely stored in the persistent domain. We categorize such failures into three cases.
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Figure 3.13: Failure-recovery in a PMNet system with replication.

• PMNet fails before receiving the request from the client (during step ➊ in Figure 3.12).

In this case, as the packet has not been accepted by either PMNet or the server, the client is not

acknowledged. Therefore, the client will continue to be stalled by the in-flight request and simply

needs to resend the request after timeout (or during recovery).

• PMNet fails after accepting a request but before a server receives the forwarded

request (during step ➌ in Figure 3.12). We discuss two cases. (1) The PMNet-ACK was sent to

the client before failure (step ➋ is complete). In this scenario, the client has assumed the packet

has been processed but the server has not processed it, in fact. During recovery, the server polls

PMNet for logged requests with the sequence number starting from the last packet it receives.

Then, the server applies logged requests in the same order as they were sent by the client. Note,

PMNet itself is agnostic of the packet ordering for better performance, but the server uses SeqNum

to maintain the order of requests. (2) The PMNet-ACK was not sent to the client before the failure

(step ➋ is incomplete). In this scenario, the client has not received the acknowledgement and,

therefore, it will be stalling on the current request. After the client times out, it will resend the

request again.

• PMNet fails before receiving the server-ACK (during step ➍ in Figure 3.12). PMNet first

resends the logged requests to the server. Upon reception of the resent request packets, the server

checks the SeqNum of each packet. As the server has processed the request, the latest SeqNum is

greater than that in the resent request and, therefore, the server drops these requests and sends a

make-up server-ACK to invalidate the log entries in PMNet.

Permanent failures

In this type of failure, the hardware that stores persistent data (PMNet or server) cannot be recovered.

Such failures are handled by replicating data in the persistent domain across multiple devices. We

further categorized permanent failures into three cases.
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• A PMNet fails permanently after accepting a request but before the server receives

the forwarded request. For PMNet to handle permanent failure, the update request must

persist in all PMNet all the way to the server before it is accepted (as in Section 3.4.3). We

discuss two cases. (1) PMNet #2 fails before both PMNet devices have accepted the

request (step ➊ in Figure 3.13). Because the client has not received both PMNet-ACK’s to satisfy

the replication requirement, it will be stalling on the current request until it times out2 and resends

the request (step ➋ in Figure 3.13). (2) PMNet #2 fails after both PMNet devices have

accepted the request and send PMNet-ACK (step ➌ in Figure 3.13). During recovery, the server

polls PMNet for the logged requests. Because all PMNet devices have logged the request, any

surviving PMNet can retransmit the request to the server.

• Server replication system fails before sending server-ACK. In a replication system, the

primary server sends Server-ACK only after it has committed the update in all replicas. Thus,

when a replication server fails (step ➍ in Figure 3.13), the server will not send server-ACK to

invalidate the logged requests in PMNet. Eventually, when PMNet’s log entries are full, PMNet

forwards newer requests directly to the server. However, those requests will not be processed

by the failing replica and the client will eventually timeout2 (step ➎ in Figure 3.13). All the

in-flight requests are now logged in PMNet with equivalent replication strength (the same number

of PMNet devices as the replicas). Once the replication system is up, the primary server sends

Retrans (step ➏ in Figure 3.13) to get the logged requests from PMNet. And, the retransmitted

requests will be processed by the server in-order based on the sequence number. Note that these

systems typically monitor servers’ status using heartbeats. Therefore, the client will be notified as

soon as a replica fails—the client would not need to wait until it times out.

Failure of other components

When components outside of the persistence domain fail, such as the client or other non-persistent

network devices, the system follows the original procedure for recovery. The recovery procedure does

not change as the persistence guarantee of those devices remains the same.
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Figure 3.14: FPGA platform for PMNet implementation.

3.5 PMNet Implementation

3.5.1 Hardware Implementation

We express PMNet’s processing pipeline in the P4 language [149]. We choose Xilinx UltraScale+

VCU118 platform (Figure 3.14) as the hardware for the programmable network device and maintain

the request logs in its 2GB on-board DRAM (labeled as component ➊). The DRAM write latency

in the FPGA is 273 ns (due the slow DMA engine on the FPGA) which is close to Optane PM’s

write latency [150]. We adapt the open-source code from NetFPGA-SUME (with 10G Ethernet

MAC) [151] to our UltraScale+ platform and integrate PMNet into it. The network interface is

labeled as component ➋. The whole design uses 13% of LUT, 19% of BRAM, and 31% of IO resources

of the FPGA. The FPGA chip is labeled as component ➌. We use a Li-ion battery module to back

the device during power failure.

Design choices The in-network PM needs to log all the in-flight update requests. In our evaluation,

the 99th-percentile RTT of update requests is 350 µs. If we conservatively take 500 µs as the maximum

RTT and 10 Gbps as the bandwidth, the bandwidth-delay product (BDP) is:

BDPNet = RTT × BW = 500 · 10−6 × 10 · 109 ≈ 5Mbits. (3.1)

2The timeout value is 2× 99th-percentile RTT, which is 700 µs.
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Table 3.1: PMNet software interface.

Client Software Interface
PMNet send update() Send an update-req to server
PMNet bypass() Send a bypass-req to server
PMNet start session() Start a session
PMNet end session() End a session

Server Software Interface
PMNet recv() Receive requests from client
PMNet ack() Send ACK to PMNet

Table 3.2: System configuration.

Server Configuration
CPU Intel Cascade Lake, 2.1GHz, 20 cores
DRAM 6×32GB DDR4, 2666MT/s

PM
2×128GB Intel DCPMM, Interleaved, 2-1-1 Config,
App Direct Mode, Mounted as EXT4-DAX

NIC Mellanox ConnectX-3 MCX314A

Client Configuration
CPU Intel Haswell, 3.6GHz, 6 cores
DRAM 4×16GB DDR4, 2133MT/s
NIC Mellanox ConnectX-3 MCX314A

Software System
OS Ubuntu 19.10, Linux kernel v5.3.0
Tools & Libs gcc/g++-9.2, PMDK-1.8, daxctl/ndctl-65 (server only)

Our FPGA board has sufficient memory capacity to log all these on-going update requests. Because

of the slower PM access latency, we buffer the accesses to the in-network PM on the PMNet device

(switch or NIC) to process packets at a line rate. The required buffer size also follows a BDP

calculation where the delay equals to the memory-access latency.

BDPPM = PMLatency × BW = 100 · 10−9 × 10 · 109 ≈ 1kbits. (3.2)

We conservatively use 4 KB of SRAM as the queue size for logging both reads and writes to PM.

Section 3.7 discusses support for even higher network bandwidth with PMNet.

3.5.2 Software Implementation

We develop an easy-to-use software interface that allows programmers to adapt existing workloads

to a PMNet system (PMNet interface.h). Table 3.1 lists the interface functions. Programmers

need to overwrite the existing send and receive functions of the system’s socket interface with the

PMNet version. Then, the PMNet library operates on these functions and encapsulates payload

in PMNet-compatible formats. In addition, PMNet library serves two major purposes. First, it

accepts incoming packets from PMNet to mitigate the RTT for the client (Section 3.4.2). Second, it

maintains the ordering and integrity of PMNet packets for the server (Section 3.4.1).
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3.6 Evaluation

3.6.1 Methodology

System setup

We evaluate PMNet using a testbed, described in Table 3.2. The server is equipped with Intel’s DC

Persistent Memory [3] that are mounted in DAX-FS mode for workloads to directly manage PM. The

clients contain normal DRAMs on the machines and send requests to the server for persistent data

access. Both the server and clients use Mellanox NICs for network connection. In total, we have 4

client machines, each running up to 16 client instances (64 in total), and 3 Xilinx UltraScale+ FPGAs

that are programmed as PMNet-NICs/Switches. In the PMNet-Switch configuration, the client

machines are connected to a top-of-the-rack PMNet switch (Section 3.5.1). Due to the limited number

of Ethernet ports on the FPGA board, we place a regular switch (with sub-microsecond latency)

in the middle of clients and the FPGA to merge their traffic. In the PMNet-NIC configuration,

the client machines are connected to a regular switch directly; for the server, the FPGA is placed

as a bump-in-the-wire between the server’s NIC and the ToR switch, similar to recent Microsoft’s

SmartNIC setup [99,152].

Evaluated workloads

We evaluate workloads from Intel’s PMDK library [121] and a PM-optimized version of Redis from

Intel [110]. We use a YCSB-like client [153] to generate and send read/update requests to the server.

We also evaluate the performance of PMNet with two real workloads: a Twitter workload based

on the Twitter Clone tutorial [1] and the online transaction processing benchmark, TPCC [2]. All

server workloads manage persistent data in PM directly through the DAX-FS support. To support

these workloads, we modified 11 and 7 lines of code in Redis and PMDK workloads, respectively.

The payload of each read/update request is 100 Bytes, by default, unless specified otherwise. During

evaluation, we skip the first 10k (warm-up) requests for more precise results.

Baseline protocol

We implement the driver program for PMDK workloads (B-Tree, C-Tree, RB-Tree, Hashmap, and

Skip List) using UDP. Therefore, both the baseline and PMNet of these workloads use UDP. Redis,

Twitter, and TPCC are originally based on TCP. Although UDP is faster, adapting them to UDP

introduces a 9% slowdown due to the conversion overhead. Thus, we keep the original TCP-based
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Figure 3.15: Update latency of an ideal request handler with variable request sizes.

communication as the baseline. This way, all the baselines are evaluated with their best-performing

protocols.

Design points

We test PMNet under three system configurations for comparison.

• PMNet-Switch: A system with PMNet in the ToR switch of the server rack.

• PMNet-NIC: A system with PMNet as server’s NIC.

• Client-Server: A baseline system which forwards all network packets to the destination.

3.6.2 Evaluation Results

Latency of microbenchmarks

We start with evaluating the raw latency and bandwidth of PMNet. In a practical system, the

server-processing time can be the bottleneck. Therefore, we implement a microbenchmark with an

ideal request handler on the server-side that acknowledges the client upon reception of the request,

without processing it. Hence, the network latency becomes the primary bottleneck.

We first evaluate the latency benefit of PMNet. Figure 3.15 shows the round-trip time latency of

PMNet-Switch and PMNet-NIC as we vary the payload size from 50B to 1000B, using a single client.

We make two observations from this figure. First, PMNet-Switch and PMNet-NIC provide 2.83×

and 2.90× speedup, respectively, over the Client-Server with a payload size of 50B. However, the

benefit decreases with larger payloads as the payload processing time goes up in the network device.

For example, both PMNet-Switch and PMNet-NIC provide around 2.19× speedup compared to

the Client-Server with 1000B payloads. Second, we observe that the difference in absolute latency
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Figure 3.16: Bandwidth vs. latency under stress test.
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Figure 3.17: Alternative designs: (a) client-side logging with replication and (b) server-side logging with replication.

between PMNet-Switch and PMNet-NIC is almost negligible (under 1 µs) as wire latency is low

and the most benefit comes from moving the server processing and network latency off the critical

path.

Next, we stress test the bandwidth using an ideal server-side request handler. On the client-side, we

scale the number of client instances and keep sending 1000B requests to the server to saturate the

bandwidth. Figure 3.16 displays stress testing results. First, both PMNet configurations and the

Client-Server follow a similar trend where the latency remains the same when the total bandwidth

is low, and there is a spike in latency when the bandwidth reaches the physical limit at 10 Gbps.

Second, when the bandwidth is less than 10 Gbps, both PMNet-Switch and PMNet-NIC consistently

have better latency than the Client-Server as they move the server off the critical path. As both

PMNet configurations are equally effective in terms of update request response time and maximum

bandwidth, in the next sections, we discuss PMNet performance using switches only.
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Comparison with alternative designs

We compare PMNet with two alternative designs (request payload is 100B). To maximize the

performance difference due to communication, we use the aforementioned microbenchmark (Sec-

tion 3.6.2).

Client-side logging (Figure 3.17a) locally logs the request and then lets the client proceeds (step

a1 ). The client then forwards the request (step a2 ), such that the server’s network stack and

processing time are off the critical path. We implement client-side logging in a separate, dedicated

software process, following a client-side persistent logging (caching) design [154]. The application

directly overwrites the original socket interface to send logs to the client-side logger.

Server-side logging (Figure 3.17b) logs the request on the server upon reception (step b1 ) and

immediately notifies the client (step b2 ), in order to move the server’s processing time off the

critical path. We implement the server-side logging following a persistent write logging (caching)

design [155].

Figure 3.18 compares the latencies in these two designs. First, without replication, client-side logging

is faster than PMNet as it does not go through the client’s network stack (10.4 µs compared to

PMNet’s 21.5 µs). Whereas, server-side logging is much slower than PMNet because a large fraction

of the server network latency remains on the critical path (47.97 µs). Second, with 3-way replication

enabled, client-side logging becomes inefficient (41.61 µs) because it needs to communicate with other

clients to replicate the logs. Similarly, server-side logging latency also increases significantly due to

communication (94.02 µs). In comparison, PMNet consistently performs well even with replication

(22.8 µs and 21.5 µs with and without replication), as the communication latency among replicas is

off the critical path.
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Figure 3.19: Throughput normalized to Client-Server with variable update/read ratio.

Application performance

Prior works have shown that the update/read ratio varies [142,156]. Figure 3.19 shows the normalized

throughput in real-world applications with PMNet, when we vary the update ratio from 100% to

25%. We make two observations: First, PMNet provides, on average, 4.31× speedup over the Client-

Server with 100% update requests. Second, as the ratio of read requests increases, the throughput

improvements from PMNet decrease. This trend is expected as PMNet focuses on update requests.

We show the performance benefit of PMNet with read caching in the next section.

PMNet with read caching

Our read-cache implementation is based on “key” lookups using the GET/SET interface in the

key-value store workloads. As a result, this experiment only includes the key-value store based

workloads from PMDK [121] and Redis [110], and excludes workloads with complex queries, such as

Twitter [1] and TPCC [2]. Figure 3.20a and 3.20b show the cumulative distribution function (CDF)

of the latency with 100% and 50% update requests, respectively. We make three observations from

this figure. First, the average latency of PMNet with caching is 3.36× lower than the Client-Server

system. Second, when 50% of requests are updates, the latency of PMNet without caching has

a noticeable transition point at the 50th-percentile (blue lines in Figure 3.20b), where latencies

become close to the Client-Server system afterward. This happens because only half of the requests

are updates and have been optimized by PMNet. In comparison, when 100% of the requests are

updates (Figure 3.20a), the latency does not drop and provides 3.23× better tail latency than the

Client-Server design. On the other hand, when caching is integrated into PMNet, the latency benefit

does not stop at 50th-percentile but keeps continuing (green lines in Figure 3.20b)—as it serves all

update requests and most read requests (cache hits) with a sub-RTT latency. Third, workloads with
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Figure 3.20: CDF of request latency with (a) 100% and (b) 50% update request.

a higher hit rate (e.g., Redis) significantly benefit from the 99th-percentile latency with caching. We

conclude that, with the integration of read caching, PMNet effectively reduces the latency of both

update and read requests.

PMNet with replication

The replication scheme connects three PMNet switches in series to implement a 3-way replication in

the network. Figure 3.21 shows the benefit of in-network replication compared to a Client-Server
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Figure 3.22: Update throughput with optimized network stack.

system that performs replication on the server-side. We make two observations. First, PMNet with

replication provides 5.88× better performance than server-side replication on average. Second, the

overhead due to in-switch replication is low, as the latency of persisting logs is overlapped in our

mechanism. The 3-way replication introduces 16% overhead over a PMNet system that only logs the

updates once.

Recovering from server failures

We evaluate how a PMNet system recovers from server failures. To mimic failure, we manually cut

off the power of the server and let PMNet resend logged requests after power has been restored. For

each workload, we saturate the network bandwidth to create the worst-case scenario where PMNet

has the maximum number of requests logged. On average, it takes 67 µs to resend a single request

and 4.4 seconds to resend all pending requests in the log. Even in the worst case, the entire recovery

procedure (resend + application recovery) only takes 9.3 seconds which is a small fraction of the

server’s 2∼3-minute boot-up time [157].
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PMNet with an optimized network stack

The latency breakdown in Figure 3.2 (Section 3.2.3) shows the client- and server-side latency consists

of both network stack and processing time. With an optimized network stack, the network stack

overhead can be significantly reduced. In this experiment, we use libVMA [139] to reduce the network

stack time by moving network procedures into the user-space and avoiding the expensive context

switching from the kernel. To evaluate an ideal scenario where the server-side overhead is minimal,

we use the microbenchmark introduced in Section 3.6.2. And, both the client and the server are

running optimized network stacks. Figure 3.22 compares the update-throughput among four designs:

Client-Server, PMNet, Client-Server + libVMA, and PMNet + libVMA. The result shows that,

without libVMA, PMNet provides 3.08× better throughput. After applying libVMA, the server

network stack overhead is significantly reduced. Nonetheless, the integration of PMNet still provides

3.56× better throughput. Although the speedup is lower—part of the server-side overhead has been

reduced by libVMA—the benefit from PMNet is still significant as PMNet moves the remaining

server processing time off the critical path.

3.7 Discussion

In this section, we discuss the network bandwidth and PM performance, and alternatives to PM-

Net.

Reaching Higher Network Bandwidths Fundamentally, PMNet supports higher bandwidths.

First, the relatively slower PM access is decoupled from the network traffic by queuing the PM

access in log queues. By increasing the log queue size according to the bandwidth-delay product

(BDP) (Equation 3.1) of a high-bandwidth network, PMNet can buffer incomplete accesses to PM.

To support a 100 Gbps network, only a 10 kbit (or 1.25 kB) log queue buffer would suffice. Second,

the PMNet only needs to buffer ongoing update requests that have not been committed to the server.

Only 500 Mbit (or 62.5 MB) of PM is needed to buffer the in-flight update requests in a 100 Gbps

network (Equation 3.2).

PM Write Bandwidth In our implementation, we use battery-backed DRAM on the FPGA board,

that has a bandwidth of 2.5 GB/s, similar to the per-DIMM bandwidth of Intel’s Optane PM. We

expect that future PM technologies will enable much higher bandwidth, such as the higher-bandwidth

battery-backed NVDIMMs [103], the emerging persistent cache [158], and alternative PM media (e.g.,
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STT-RAM [159], ReRAM [160]). With a higher PM bandwidth, PMNet can handle higher update

request bandwidth.

External Persistent Storage We integrated PM into a network device. Alternatively, other types

of storage can also maintain persistent data. For example, switches can access a network-attached

PM device [161] (or SSD [162]) instead of keeping persistent data on-board. However, such designs

add additional network latency to persist data in the network device, eventually inflating the critical

path of client execution. Further, as our BDP calculations have shown (Section 3.5.1), the PM

capacity requirement is relatively small, and therefore, it is unnecessary to use an external device for

persisting requests.



Chapter 4

Optimizing Data-Intensive ML for

edge systems

4.1 Introduction

Large Language Models (LLMs) enable new applications such as smart assistants [163, 164]. The

processing of these powerful LLMs is usually offloaded to the datacenter due to the enormous

resources required. However, the latest mobile platforms enable smaller LLM to run locally. These

lightweight models cannot directly compare with the state-of-the-art hundred-billion parameter

LLMs. A promising solution is to build a compounding system–by integrating LLMs with Retrieval

Augmented Generation (RAG) [4], allowing these smaller models to leverage local personal data,

thereby enhancing their ability to generate high-quality responses.

Even though RAG removes the requirement for a heavy-weight LLM for generation, retrieval still

has a high overhead. The core of a RAG system is a vector embedding database that enables vector

similarity search. Unlike LLMs, the overhead of RAG mainly comes from its memory footprint. For

example, a Flat Index stores and sequentially searches every vector representation of the data chunks

to identify the closest match to the query. For example, in the fever [165] dataset, a vector database

that holds 5.23 million records has an index size of 18.5 GB. In comparison, mobile devices usually

have around 4–16 GB of main memory [166]. Table 4.1 shows examples of mobile devices. Thus,

even the whole memory on a mobile platform is not sufficient to run a large vector database. On

66
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Table 4.1: Edge system comparison

System Memory Compute Units

iPhone 16 Pro [167] 8 GB CPU+GPU+NPU
Galaxy S24 [168] 8 GB CPU+GPU+NPU
Jetson Orin Nano [169] 8 GB CPU+GPU+TensorCore

L40 [170] (Server) 48 GB GPU

the other hand, storing the vector database on disk introduces substantial access latency, impacting

performance.

This work focuses on the challenges of implementing Retrieval Augmented Generation (RAG) on

edge systems. We find that naively keeping the entire index in the main memory would not fit into

the memory of mobile platforms. A Flat index that performs a sequential search of all embeddings is

not only expensive in terms of computation but also trashes memory leading to poor performance. In

contrast, Two-level Inverted File (IVF) index clusters embeddings of data chunks into clusters. The

retrieval process first searches for the closest centroid and then performs a second search within the

cluster, avoiding an expensive sequential search of all embeddings. However, keeping all embeddings

in memory still leads to excessive memory thrashing and increased latency. Our solution is to keep

the first-level centroid in memory and generate the second level online. Through profiling the RAG

on mobile edge platforms using widely-used RAG benchmarks [171], we find that both the data

access pattern and the access latency are highly skewed. First, most of the embeddings are not

searched during the retrieval process. Second, the cost of generating the embedding is not the

same for all clusters and has an extreme tail distribution. These skewness leave space for further

optimizations.

In this work, we develop a system that enables RAG for edge platforms, by fitting the vector database

in the limited edge memory while ensuring that the response time meets the service level objectives

(SLOs) of mobile AI assistant applications. Based on these observations, our key ideas are the

following: First, we prune the vector embedding of the data embeddings within centroid clusters

which are only used for second-level search to save the memory capacity. EdgeRAG then generates

the embedding online during the retrieval process. However, due to limited computing on edge

systems, generating embedding online could suffer from long embedding generation latency from

large tail clusters. To overcome this challenge, our second solution is to pre-compute and store the

embeddings of large tail clusters to avoid long tail latency of generating embeddings of data within

those tail clusters. Then, EdgeRAG can adaptively cache the remaining embeddings to minimize
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redundant computation and improve overall latency, based on the spare memory capacity and SLO

requirements.

We evaluate EdgeRAG on an edge platform based on NVIDIA Jetson Orin Nano equipped with 8 GB

of shared main memory, similar to a mobile platform with neural processing capabilities [168]. We

use 6 workloads from the BEIR benchmark suite [171]. Because EdgeRAG is based on the IVF index

which trades off accuracy for performance compared to the Flat index baseline, we tune the retrieval

hyperparameters to normalize the recall to maintain the same generation quality. We also evaluate

the generation quality using GPT-4o [172] as an LLM evaluator [173]. We use the time-to-first-token

(TTFT) latency as the main metric. The result shows that EdgeRAG offers 1.8 × faster TTFT over

the baseline IVF index on average and 3.82 × for larger datasets. At the same time, EdgeRAG

maintains a similar generation quality with recall and generation scores within 5 percent of the

Flat Index baseline while allowing all of our evaluated datasets to fit into the memory and avoid

memory thrashing. We also show that with a relaxed latency SLO, EdgeRAG can handle embedding

databases up to 1.5 TB in size with 8 GB of memory.

In summary, the contributions of this work are the following:

• We identify two key challenges of implementing RAG on edge devices: First, limited memory

capacity does not allow loading of large vector embedding database in the memory leading to

memory thrashing and poor performance. Second, limited computing power of edge devices which

slows down online embedding generation, especially on few large tail and repeatedly used clusters.

• To enable scalable and memory-efficient RAG on edge systems, we develop EdgeRAG which

improves upon the IVF index by pruning second-level embeddings to reduce memory footprint

and generate the embedding online during retrieval time. EdgeRAG mitigates long tail latency

from generating the embeddings of tail cluster by pre-computing and storing those tails. To

further optimize latency, EdgeRAG selectively caches generated embeddings to reduce redundant

computation while minimizing memory overhead.

• We implement EdgeRAG on the Jetson Orin edge platform and evaluate our system with 6 datasets

from the BEIR benchmark. The results show that EdgeRAG significantly improves the retrieval

latency of large datasets with embedding sizes 2.31× the memory capacity with only a slight

reduction in retrieval and generation quality.
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4.2 Background

4.2.1 Retrieval Augmented Generation

Retrieval Augmented Generation (RAG) [4] is a technique used to improve the accuracy of the

Large Language Model (LLM) by integrating an external knowledge base with the LLM. Instead of

retraining the entire LLM with new information, RAG adds new data to the knowledge base. The

RAG consists of two parts: Indexing and Lookup.

Indexing: Adding new data to the database involves a process called indexing, shown in Figure 4.1a.

This step involves dividing the data into smaller, overlapping chunks represented by Nodes (step 1 ).

Each chunk of data is then fed into an embedding model, which generates a unique high-dimension

vector representation for that particular piece of data (step 2 ). Finally, these embedded vectors,

which act as compressed representations of the data, are stored in a separate database for efficient

retrieval later (step 3 ).

Lookup: When a user submits a request, the system performs a lookup process as shown in Figure

4.1b. First, the user’s request goes through the same embedding model as the data in an indexing

phase (step 1 ). This creates a vector representing the user’s query. Then, this embedding of the

query is compared to the embedded vectors stored in the dedicated database. This is also known

as vector similarity search (step 2 ). The system returns the closest matches among these stored

indexes (step 3 ). Finally, the data nodes associated with the closest matching indexes are retrieved

and fed to the large language model (LLM) to generate a response (step 4 ). Essentially, the lookup

process helps retrieve data in the database related to the user’s query, which LLM then uses to

generate a response.

Document Nodes Index❶ Preprocess ❷ Generate
Embedding

❸ Insert

Vector 
Embeddings

(a) Indexing

Query
Vector 

Embedding
❷ Look Up

Nearest Vectors
❸ Retrieve

Nodes

Response

❶ Generate 
Embedding

Index Nodes
❹ Generate 

Response (LLM)

(b) Lookup

Figure 4.1: RAG Pipelines.
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4.2.2 Vector Similarity Search

As mentioned in the previous section, RAG searches for the embedding representation of the data

chunk in the database with the closest distance to the query embeddings. However, embeddings often

reside in high-dimensional spaces. Techniques like sorting, which are efficient in low-dimensional spaces,

become less effective or even infeasible in high-dimensional spaces. Consequently, finding similar

embeddings in high-dimensional spaces requires computationally expensive operations. Distance

metrics such as Euclidean distance or cosine similarity involve calculations across all dimensions of

the vectors, making the process time-consuming.

4.2.3 RAG Indexing Methods

We previously discussed the challenges of vector similarity search. Now, we’ll explore indexing

techniques that can significantly improve search latency.

Flat Index compares a query embedding to every embedding in the index. While this method can

achieve a high accuracy, it can be computationally expensive, especially for large datasets.

Inverted File (IVF) Index [174] employs clustering algorithms to group similar documents into

clusters. Figure 4.2 illustrates IVF’s retrieval procedure. During query processing, the system first

compares the query to the centroids of these clusters in the first level index (step 1 ). This initial

comparison significantly reduces the number of documents to be examined, leading to faster search

times. Then the system searches the second level index for the most similar embedding (step 2 ,

3 ). Finally, the system retrieves data associated with the embedding (step 4 ). However, this

approach can potentially miss relevant documents that don’t align perfectly with cluster boundaries.

To mitigate this, the system may also need to search adjacent clusters, which can slightly increase

search time but improve accuracy.

4.3 Motivation

4.3.1 Memory Limitation on Edge Platforms

Figure 4.3 presents the latency breakdown of the RAG system on an edge platform. End-to-end

latency is categorized into three phases: 1) Retrieval latency, the duration of vector similarity search

to identify relevant text chunks; 2) First Token Latency or Prefill, the time from model input (query

and retrieved chunks) to the generation of the first output token; and 3) Generation latency, the
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Figure 4.2: Retrieval process of Inverted File Index

Figure 4.3: RAG latency breakdown and embedded database size

time from the first to the last generated token. The combined Retrieval and First Token latency,

or Time-to-First-Token (TTFT), directly affects user-perceived latency, as it represents the delay

between query submission and the display of the initial response. While IVF index exhibits slower

latency growth compared to Flat index, both configurations are susceptible to memory thrashing

for datasets exceeding available memory (nq, hotpotqa, fever). This results in significant latency

penalties as the system is forced to repeatedly load and unload the embedding database and the

model from the storage. Thus, efficient memory utilization is critical to mitigate this issue.

4.3.2 Compute vs. Data Movement trade-offs

One way to reduce the memory footprint of embeddings is to generate them only when needed for

incoming queries. Because the two-level IVF index primarily searches embeddings linked to a small

subset of first-level centroids, most of these embeddings can be generated during the retrieval process

itself. This strategy avoids the significant memory overhead of storing all embeddings. As shown in



4.4. HIGH-LEVEL IDEAS 72

Figure 4.4: Embedding Generation Rate of different cluster size

Figure 4.4, generating embeddings for clusters smaller than 24000 characters or approximately 8000

tokens is faster than loading them from the storage. This indicates that online embeddings generation

can not only save memory but also potentially improve retrieval latency. However, generating

embedding for large cluster could also cause long tail latency.

4.4 High-level Ideas

We present EdgeRAG, a memory-efficient RAG system by selectively pruning second-level embeddings.

Upon receiving an incoming query, EdgeRAG generates related second-level embeddings during

runtime. However, online embedding generation presents several key challenges: (1) High Latency

Variability: Embedding generation time is influenced by data chunk size, leading to unpredictable

latency. (2) High Computational Cost: Generating embeddings is computationally expensive. Next,

we describe the high-level ideas of EdgeRAG in this section.

4.4.1 Selective Index Storage

Pruning second-level embeddings reduces memory footprint, but shifts embedding generation from

indexing to retrieval. This can increase retrieval latency if generating embeddings takes longer than

accessing pre-computed ones. We make a key observation about embedding generation.

Figure 4.5 presents the distribution of embedding generation times for various clusters within the nq

datasets. The majority of clusters exhibit generation latencies under 500 milliseconds. Nevertheless,

a subset of clusters, albeit infrequent, may experience generation times exceeding 2 seconds. This

distribution highlights a “tail-heavy” characteristic, where a small proportion of clusters significantly

impact the overall retrieval time.
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Figure 4.5: Cluster Embedding Generation Cost of nq dataset
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Figure 4.6: Time-to-First-Token (TTFT) breakdown of EdgeRAG Retrieval Process.

To mitigate long-tail latency in large clusters, EdgeRAG employs a hybrid approach. During the

initial indexing phase, clusters are profiled to estimate embedding generation latency. Clusters

exceeding the latency threshold are identified and their embeddings are precomputed and stored. At

query time, embeddings are retrieved from storage if available ( 3 in Figure 4.6), bypassing the long

latency of online embeddings generation phase ( 2 in Figure 4.6). For clusters not precomputed,

embeddings are generated in flight. Algorithm 1 illustrates our Selective Index Storage.

4.4.2 Adaptive Cost-Aware Caching

Beyond the latency challenges presented by generating embeddings for large clusters, we observed

frequent reuse of embeddings for smaller, more common clusters. An analysis of queries across

various datasets revealed a substantial degree of overlap in the accessed clusters. This overlap is

quantified in Table 4.2 through the chunk reuse ratio. The significant reuse observed across all

datasets implies that embeddings for clusters associated with these frequently accessed data chunks

must be repeatedly generated. Therefore, EdgeRAG also caches generated embeddings to avoid
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Algorithm 1 Selective Index Storage

DataEmbeddings = embed(Datachunks)
Centroids = cluster(Embeddings)
for DataEmbedding in DataEmbeddings do

Centroid = Centroids.search(DataEmbedding)
Centroid.add(DataEmbedding)

end for
for Centroid in Centroids do

// Compute Cluster’s Embedding Gen. Latency
Centroid.GenLatency
=SUM(len(Centroid.Datachunks))/GenRate
if Centroid.GenLatency > SLO then

Centroid.saveEmbeddings()
end if

end for

Table 4.2: Evaluated datasets.

Dataset Corpus # Records Embeddings Unique Access Total Access Reuse Ratio Fit in Dev. Mem

scidocs [175] 86 MB 3.6 k 113 MB 1157 2000 1.73 ✓

fiqa [176] 130 MB 25 k 217 MB 2974 13286 4.47 ✓

quora [177] 641 MB 523 k 1.5 GB 15672 30000 1.91 ✓

nq [178] 4.6 GB 2.68 M 8.3 GB 8186 10235 1.25 ✗

hotpotqa [165] 11 GB 5.42 M 15.4 GB 15519 22098 1.42 ✗

fever [179] 7.5 GB 5.23 M 18.5 GB 5783 13922 2.41 ✗

redundant computation. Figure 4.6 shows the process of cluster embedding cache hit ( 4 ).

To optimize cache utilization, EdgeRAG strategically avoids caching embeddings from smaller clusters

with lower generation latencies. This approach balances cache hit rates and overall latency. Caching

all embeddings can lead to low hit rates and high latency, while exclusively caching expensive

embeddings can improve hit rates but increase overall latency. An optimal threshold prevents caching

of low-cost embeddings, striking a balance between the two.

To achieve this, EdgeRAG evicts and prevents caching of cluster embeddings whose generation latency

falls below a dynamically adjusted Minimum Latency Caching Threshold. Algorithm 3 details how

this threshold is adjusted. Initially, the threshold is set to 0, effectively caching all cluster embeddings.

Subsequently, EdgeRAG gradually increases the threshold while continuously monitoring cache hit

rates and the moving average of retrieval latency. If a cache miss occurs, and the current retrieval

latency is lower than the moving average, the threshold is further increased. Conversely, if a cache

miss does not occur, the threshold is decreased. This adaptive mechanism ensures that the cache

prioritizes embeddings from clusters with significant generation costs to improve overall performance

gains.
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Algorithm 2 Cost-aware Least-Frequently Used Replacement Policy

Incoming cache access with cluster index i
cluster = Cache.search(i)
if exist(cluster) then

cluster.counter + +
else

// Get Weighted Least Frequently Used Cluster
minCost = MAXVALUE, evictClusterIndex = −1
for cluster in Cache do

if cluster.genLatency × cluster.counter < maxCost then
minCost = cluster.genLatency × cluster.counter
evictClusterIndex = cluster.index

end if
end for
cache.delete(evictClusterIndex)
// Get data chunks and generate embeddings
dataChunks = getDataChunks(i)
embeddings = embed(dataChunks)
cache.insert(index = i, embeddings)

end if
// Update Counters
for cluster in Cache do

cluster.counter = cluster.counter× decayFactor
end for

Algorithm 3 Minimum Latency Caching Threshold

MinimumLatencyCachingThreshold = 0 // Initialize
for each Query do

if embedCacheMiss = True then
if movAvgLatency < lastLatency then

MinimumLatencyCachingThreshold + +
end if

else
MinimumLatencyCachingThreshold−−

end if
movAvgLatency = (1− α)×movAvgLatency + α× lastLatency

end for

Figure 4.7: Retrieval Latency and Cache Hit rate with different Minimum Caching Threshold of fever dataset.
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4.5 EdgeRAG System

4.5.1 Overview

EdgeRAG index is a two-level indexing system based on the traditional two-level Inverted File (IVF)

Index. The first level, always residing in memory, stores cluster centroids and references to the

second level index. The second level stores the references to the text chunks, and the embedding

generation latency of all data chunks. However, instead of storing all text chunk embeddings, the

embeddings are pruned and EdgeRAG generates them online during the retrieval process, only

indexes of costly clusters are stored (see Section 4.4.1). To optimize performance and reduce latency,

EdgeRAG employs a selective caching strategy for embeddings generated during the retrieval process

(see Section 4.4.2). The system prioritizes caching expensive embeddings, where cache hits yield

significant performance gains. Embeddings that can be regenerated quickly without compromising

service-level objectives (SLOs) are avoided to make room for those more expensive embeddings.

4.5.2 EdgeRAG Indexing

EdgeRAG employs an indexing process similar to the Inverted File Index (IVF). Figure 4.8 illustrates

the EdgeRAG indexing process. Initially, the text corpus is segmented into smaller data chunks

(step 1 ), and embeddings are generated for each chunk (step 2 ). These embeddings are then

clustered (step 3 ), and the cluster centroids are stored in the first-level index (step 4 ). Then the

embeddings of the associated data chunks are assigned to their respective clusters (step 5 ) and

references to the corresponding data chunks are stored (step 6 ). Unlike traditional IVF, where all

data embeddings are retained, EdgeRAG calculates the computational cost of generating embeddings

for each data chunk within a cluster. If this cost exceeds a predefined threshold (the Service Level

Objective, or SLO), the embeddings of the whole data chunk are stored (step 7 ). Otherwise, the

embeddings are discarded to optimize storage.

4.5.3 EdgeRAG Retrieval

As mentioned in Section 4.4, EdgeRAG incorporates both heavy cluster embedding loading and

embedding caching. Figure 4.9 shows the retrieval process EdgeRAG. EdgeRAG first identifies the

centroid cluster most similar to the query embedding (Step 1 ). It then checks if precomputed

embeddings exist for this cluster (Step 2 ). If so, EdgeRAG searches for stored embeddings (Step

3 ) and these embeddings are loaded (Step 5 ). If precomputed embeddings are unavailable,



4.5. EDGERAG SYSTEM 77

Document Nodes

First-level 
Index

❶ Preprocess ❷ Generate
Embedding

Vector 
Embeddings

Cluster
Centroids

❸ Clustering

➍ Insert 
Centroids

➎ Look up 
Centroids

Second-level 
Index❻ 

Create
Index

Second-level 
Embeddings

➐ Store 
Embedding

Figure 4.8: EdgeRAG Indexing Process

First-level 
Index

➊Search

Stored
Second-level 

Index

Query 
Embedding

❺ Load 
Embeddings

Centroid
Embeddings 

Index

❷Lookup

Nodes

➍ Lookup Cache
Embedding 

Cache

Vector 
Embeddings

4c Miss, Gen. 
Embedding
4b

➌Search Stored 
Embeddings

Text 
Corpus

❺ Load 
Embeddings

➏Retrieve

Figure 4.9: EdgeRAG Retrieval Process

EdgeRAG looks up the embedding cache (Step 4 ). If the cache hits, EdgeRAG loads the embedding

from the cache and retrieves related data chunks (Step 5 ). If the cache misses, EdgeRAG retrieves

all associated data chunks in the cluster, regenerates the embeddings, and updates the cache (Step

4b ) before loading the embedding (Step 5 ). EdgeRAG then looks up for the closest matching

embedding and retrieves associated data chunks (Step 6 ).

4.5.4 EdgeRAG Insertion and Removal

The EdgeRAG insertion process mirrors the initial indexing process. However, instead of clustering

newly added embeddings, EdgeRAG identifies the existing cluster with the nearest centroid embedding.

The index associated with this cluster is then updated. If the computational cost of the updated

cluster’s embeddings exceeds the SLO, EdgeRAG regenerates and stores its embeddings. In extreme

cases where a cluster becomes excessively large, it is split into smaller clusters, and the newly

created cluster is added to the first-level index. To remove data chunks, EdgeRAG first locates the

corresponding cluster, then removes the associated embeddings, and the cluster index is subsequently

updated. If the computational latency of generating the embedding of the cluster falls below the

Service Level Objective (SLO), the entire cluster’s embedding can be eliminated or merged with a

neighboring cluster. This removal process can be performed asynchronously, as leaving the cluster
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Table 4.3: Evaluation Platform.

Hardware System

CPU Cortex A78AE, 1.2 GHz, 6-core
GPU Ampere, 1024 CUDA cores,

32 Tensor cores, 625 MHz
Power Limit 15 W
DRAM 8 GB LPDDR5-4250
Storage 512 GB SD Card, UHS-I

Software Configuration

RAG Framework LlamaIndex v0.11.18
Vector Store Engine FAISS 1.7.4
LLM Engine NanoLLM 24.6
Embedding Model gte-base-en-v1.5 (Dim=768)
Generation Model Sheared-LLaMA-2.7B
System Software Jetpack 6.0

Table 4.4: Evaluated Index Configurations.

Index configuration
Embeddings location

Level 1 Level 2

Flat Memory -
IVF Memory Memory
IVF+Embed. Gen. Memory -
IVF+Embed. Gen.+Load Memory Storage (Partial)
EdgeRAG (this work) Memory Storage + Memory

small has no immediate adverse impact on retrieval latency.

4.6 Evaluation

4.6.1 System Setup

We evaluate EdgeRAG on an Nvidia Jetson Orin Nano evaluation kit. We leverage Llamaindex [180]

as our RAG framework and FAISS [181] as our vector store. NanoLLM [182] powers our LLM

engine, utilizing Sheared LLaMA-2.7B [183] for generation. We employ gte-base-en-v1.5 [184] as our

embedding model. Table 4.3 provides an overview of our evaluation setup and associated software

environment.

4.6.2 Methodology

We evaluate EdgeRAG against five distinct configurations: a linear-search-based flat index (Flat),

a two-level IVF index with precomputed cluster embeddings, a two-level index with online cluster

embedding generation, a two-level index with online cluster embedding generation and large cluster

loading from storage, and a two-level index with online cluster embedding generation, large cluster
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loading from disk, and caching (EdgeRAG). Table 4.4 shows different evaluated Index configurations.

For configurations utilizing the two-level IVF index, the embedding clustering process, performed using

FAISS K-means with 20 iterations, is pre-computed and shared across all four configurations.

To address the known precision and recall trade-offs inherent to IVF-based indexing methods [174],

we optimize the retrieval hyperparameters, specifically the number of cluster probes and retrieved

data chunks. This optimization is aimed at normalizing the recall metric to match that of the flat

index baseline [185]. We evaluate EdgeRAG on six datasets from the BEIR benchmark suite [171].

Table 4.2 provides a breakdown of the corpus size, number of data records, and total embedding size

for each dataset. Note that three of the workloads: nq, hotpotqa, and fever have embedding footprints

larger than the 8 GB memory capacity of our platform – impossible for the whole embedding database

to fit into the memory. We set the retrieval SLO similar to those in LLM serving systems [186,187]:

1 second for smaller scidocs, fiqa and quora datasets and 1.5 seconds for larger nq, hotpotqa and fever

datasets.

4.6.3 Results

Retrieval Quality Evaluation

First, we evaluate the retrieval quality using the BEIR benchmark. We focus on Flat and two-level

IVF indexes, as EdgeRAG, which optimizes the IVF index, produces identical retrieval results to

the two-level IVF index. Figure 4.10 presents the precision and recall of different workloads. The

results demonstrate a trade-off between accuracy and recall in two-level indexing schemes. While

increasing the number of retrieved data chunks improves recall by including more relevant data, it

also introduces more irrelevant data chunks, leading to a decrease in precision.

Generation Quality Evaluation

As mentioned in the previous section, IVF-based EdgeRAG exploits a precision-latency trade-off,

prioritizing recall over precision. To investigate the potential benefits of prioritizing recall, we compare

IVF-based EdgeRAG to a Flat index baseline. We employ a GPT-4o LLM [172] as an evaluator

to assess generation quality across various datasets. As shown in Figure 4.11, while two-level IVF

indexing schemes may exhibit lower precision, they can still achieve high-quality generation. This

suggests that the generation model is capable of filtering out irrelevant information and leveraging

only the most pertinent details for output generation.
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Figure 4.10: BEIR Evaluation Scores

Figure 4.11: LLM Generation Evaluation Scores.

Figure 4.12: Retrieval Latency distribution with different optimizations.

Retrieval Tail Latency Analysis

In this section, we evaluate the tail latency of different optimizations in EdgeRAG. Figure 4.12

illustrates the latency distribution of these optimizations for the nq dataset. The baseline IVF index,
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Figure 4.13: Retrieval and First Token Latency.
Figure 4.14: Retrieval Latency with

different total embedding database sizes.

while achieving low latency for most queries, exhibits an extremely long tail latency, with the 95th

percentile exceeding the median by over 64×. This behavior stems from memory thrashing when

accessing paged-out cluster embeddings.

The IVF+Embed. Gen. optimization significantly improves latency by eliminating memory thrashing

through embedding pruning. This results in a more than 4.22× reduction in 95th percentile latency

compared to the IVF baseline. IVF+Embed. Gen. further optimizes with large cluster loading

from storage yields another 1.218× tail latency reduction. Finally, caching eliminates redundant

embedding computation, leading to significant overall latency reduction. While EdgeRAG prioritizes

resource efficiency to meet retrieval SLOs, allocating more resources such as allocating more cache

capacity could unlock even greater latency improvement.

End-to-End Latency

In this section, we evaluate the end-to-end latency of a query. We use Time-to-First-Token (TTFT)

as an evaluation metric. The TTFT consists of retrieval latency which includes vector similarity

search, and prefill which is the time LLM takes to generate the first output token after it receives

the prompt. We exclude Total Generation Time and Time-Per-Output-Token metrics as they are

determined by the LLM’s decoding rate, which is not optimized by EdgeRAG.

We then compare the latency of all five configurations (Table 4.4), as shown in Figure 4.13. For the

two smallest datasets: scidocs and fiqa, where the entire embedding dataset can fit into memory, the

online embedding generation scheme without caching exhibits higher retrieval latency compared to

both Flat and baseline pre-generated Two-level indexes. This is because in-memory operations, even

linear searches, can be executed very efficiently. For the Quora dataset, where the total embedding size

nearly exceeds memory capacity, we observe that increasing the number of embeddings significantly

degrades the performance of the Flat Index due to the overhead of linear search operations. For

large datasets like nq, hotpotqa, and fever, where the total embedding size significantly exceeds the
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memory capacity (8 GB in our platform), the baseline two-level IVF index suffers from increased

retrieval latency and first token generation latency. This is due to the combined effects of memory

thrashing during large index access and the eviction of the generation model from memory, leading

to slower search and longer generation times.

In contrast, the EdgeRAG index, with and without heavy cluster loading and caching, does not thrash

the memory and maintains low first token generation latency. However, for datasets with imbalanced,

tail-heavy, and large clusters like Fever, the online cluster embedding generation process can introduce

significant latency. Persisting heavy-tail cluster embeddings and employing caching can mitigate

this issue by reducing tail latency and avoiding redundant embedding generation. This significantly

improves overall retrieval latency 1.8 × on average while caching only utilizes an additional 7 % of

system memory on top of a two-level online embedding generation scheme.

Maximum Embedding Database Support

In this experiment, we want to determine the maximum embedding database size that EdgeRAG can

handle on our evaluation system (Table 4.3). We create a synthetic dataset by extracting text from

the Quora dataset’s text corpus and employ the same embedding model used in previous experiments.

We choose EdgeRAG first-level index size to fully utilize our evaluation platform memory capacity

and scale up the size of the dataset. We only evaluate IVF+Embed. Gen configuration (Table 4.4)

in this experiment. Figure 4.14 shows that EdgeRAG supports embeddings database size up to 1.5

TB with only 8 GB of memory. By pruning all second-level embeddings, EdgeRAG achieves this

remarkable scalability while consuming only 4.8 GB of memory for storing the embeddings. However,

this optimization comes at a cost, resulting in a retrieval latency of 4.5 seconds. This experiment

demonstrates EdgeRAG’s ability to flexibly trade off latency for the capacity to handle massive

embedding databases.

4.7 Discussion

Limited Memory Capacity of Edge Systems While some modern edge devices, such as

upcoming mobile devices [188], boast substantial memory capacity, memory capacity still remains

a major bottleneck for supporting large-scale datasets. EdgeRAG efficiently prunes the majority

of second-level embeddings, enabling effective utilization of large memory capacities to support
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larger datasets with more embedding footprints or more powerful LLMs for enhanced response

quality.

Integration with other RAG systems In this work, we demonstrate EdgeRAG’s effectiveness

on a basic RAG system using text corpus data. While more advanced RAG systems may employ more

sophisticated retrieval techniques or support diverse data types (multimodal), those techniques still

rely on vector similarity search [189,190]. As such, these systems can also benefit from EdgeRAG’s

optimizations.

Exploiting Hardware Accelerator Modern edge devices commonly integrate multiple hardware

accelerators within their System on Chip [191,192]. One of those is the Neural Processing Unit (NPU)

which enables efficient processing of deep learning tasks. EdgeRAG can leverage these NPUs in several

ways: 1. Enhance embedding generation throughput by harnessing the NPU’s high throughput.

2. Offloading the embedding model’s processing to the NPU—frees up the GPU or CPU for other

tasks. This enables pipelining or parallelization of operations such as embedding generation, vector

similarity search, and LLM prefill.



Chapter 5

Related Works

In this chapter, we present a survey of related works on RPC optimization, in-network compute and

edge ML.

5.1 Datacenter Studies and RPC Optimizations

There are two general classes of related work: previous studies of datacenters and research on

improving RPCs.

Generally, this paper is complementary to previous datacenter studies because it adds detailed data

and analysis of RPCs in the modern cloud environment, which was not previously available. This

includes prior studies of the characteristics of network traffic in datacenters by Roy et al. [8], Alizadeh

et al. [9], and Benson et al. [7]. In this prior work, the TCP flow is the base unit. This paper providers

further insight into the behavior of these TCP flows in datacenters that are sending and receiving

RPCs. For example, these prior studies have found that TCP flows exhibit on/off traffic patterns,

and this can be in part caused by the heavy tailed RPC size distributions that we observed.

In addition to network studies, there are also datacenter studies. Kanev et al. [10] perform CPU

profiling of Google’s datacenters, and Gonzalez et al. [193] studied hyperscale big data processing at

Google. These studies look deeper into the CPU behavior of Google’s internal applications, while

this paper looks into the RPC behavior that is generating the CPU load for these applications.

84
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Further, these other datacenter studies reach similar conclusions about the potential benefits of using

accelerators for important applications.

Sriraman et al. [194] profile Meta’s microservices for acceleration opportunities. Our RPC analysis

complements these studies by focusing on RPC services within the workloads and providing a

detailed analysis of non-application overheads from the RPC latency tax. Luo et al. [17] characterize

microservice dependencies and performance. They similarly find that microservice call graphs are

heavy tailed. ServiceRouter is a global service mesh used to route RPCs at Meta [195], and Saokar

et al. [195] found that the cloud-scale applications that use ServiceRouter show similar trends to

those used at Google. Huye et al. [53] study the microservice topologies and workflows of a few of

Meta’s internal applications. Our study builds upon this study by analyzing more RPC methods and

by performing a more in-depth latency analysis.

Our study is also closely related to efforts to improve RPC performance. For example, Chen et al.

argue that RPCs should be an OS-managed service [196]. This paper provides insights into the

expected benefits of such an approach.

Wang et al. argue that it is time to add distributed memory to RPCs [15]. The RPC Chain is a new

abstraction that can reduce network latency by chaining multiple RPC invocations [197]. This paper

helps further motivate these research directions by showing that nested RPC call trees can be deep.

This is because the potential benefits of both of these systems increase with the depth of the RPC

call tree.

Next, there is related work on reducing the latency and CPU overheads of RPCs. Erms is an

efficient resource management system for microservices that is intended to guarantee SLAs in shared

microservice environments [198]. CRISP is a tool for analyzing RPC critical paths that was used at

Uber to reduce tail latency [16]. This paper motivates the need for these systems and others that

can reduce tail latencies by showing that RPC latencies are high at the tail.

eRPC is a system that onloads transport protocol processing to reduce latency [38]. Our findings rebut

some of the previous understanding of eRPC. As we find that most of our RPCs are millisecond-scale,

this design choice seems worse in practice than using existing RDMA for transport, which can reduce

the CPU overheads of messaging.

There have been many accelerators for transport and RPC stacks. For example, Zerializer [44],

Raghavan et al. [45] and Karandikar et al. [72] introduce accelerators for marshalling/demarshalling
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RPCs. Chiosa et al. [70] demonstrates an accelerator for offloading compression and encryption

in SAP HANA database. Tonic [43] and AccelTCP [199] are hardware accelerators for the TCP

transport protocol. Dagger offloads the entire RPC stack to an FPGA-based NIC [39]. NeBuLa

is a CPU architecture optimized for accelerating microsecond-scale RPCs [40]. nanoPU creates

faster paths from the network to CPU [51]. We provide insight into the expected benefits of these

accelerators by showing the expected percentage of CPU cycles that could be saved across the

fleet.

nanoPU also discusses different application classes that could benefit from a CPU fastpath for

messaging, and this includes µs-scale services. Although we found that most services at Google at

not µs-scale, this does not mean that it is not possible to use µs-scale services at Google. However,

decomposing existing applications into smaller services to better utilize new hardware like nanoPU

is a challenging problem, and this helps motivate systems that aim to do this, like Nu [200] and

ServiceWeaver [201].

Shenango is a centralized software RPC load balancer, and RingLeader [46] and Turbo [202] are

hardware accelerators for RPC load balancing. Shinjuku [42] and Caladan [59] are CPU schedulers

that aim to isolate short- and long-running applications. Our work motivates systems like these that

can reduce RPC queuing latency, as we show that queuing latency contributes a significant fraction

of the RPC latency tax.

Reducing the Latency and CPU Overheads of RPCs: Erms is an efficient resource management

system for microservices that is intended to guarantee SLAs in shared microservice environments [198].

CRISP is a tool for analyzing RPC critical paths that was used at Uber to reduce tail latency [16].

eRPC is a system that onloads transport protocol processing to reduce latency [38].

Accelerators for Transport and RPC stacks: There have been many accelerators for transport

and RPC stacks. For example, Zerializer [44], Raghavan et al. [45] and Karandikar et al. [72] introduce

accelerators for marshalling/demarshalling RPCs. Chiosa et al. [70] demonstrates an accelerator for

offloading compression and encryption in SAP HANA database. Tonic [43] and AccelTCP [199] are

hardware accelerators for the TCP transport protocol. Dagger offloads the entire RPC stack to an

FPGA-based NIC [39]. NeBuLa is a CPU architecture optimized for accelerating microsecond-scale

RPCs [40]. nanoPU creates faster paths from the network to CPU to accelerate µs-scale services. [51].

Shenango is a centralized software RPC load balancer, and RingLeader [46] and Turbo [202] are

hardware accelerators for RPC load balancing. Shinjuku [42] and Caladan [59] are CPU schedulers
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that aim to isolate short- and long-running applications by reducing queuing delay for prioritized

applications.

5.2 Optimization in Storage Systems and In-network Com-

pute

Today, most of the computation takes place in these hyper-scale cloud data centers—performing

more than 89% of the computation world-wide in 2018 [76].

These data centers host workloads ranging from time-critical, interactive jobs (e.g., online data-

intensive (OLDI) workloads [14], RAMCloud [77, 78], and financial analysis [79]) to long-running,

batch jobs (e.g., MapReduce [80] and machine-learning training [81]) with large memory footprints. In

most of these workloads, data is typically managed and maintained in a persistent way across multiple

servers, with clients accessing and updating this data remotely over a network of interconnected

switches, using remote procedure calls (RPCs). During each invocation of an RPC, the request is

processed by the client’s IO stack, the network of intermediate switches, the server’s IO stack as

well as the request handler on the server. Thus, the latency of an RPC is significantly affected by

the processing time of each of these stages. As the computation performed by modern workloads is

dominated by these RPCs, i.e., read and update requests, the time it takes to access remote data is

of major consideration when deploying workloads on modern data centers [82–86].

These RPCs can be either synchronous or asynchronous. Though, asynchronous RPCs can enable

clients to continue execution while updates are being processed at the remote server; yet, building such

applications is quite challenging, especially “at scale, when a typical end-to-end application can span

multiple small closely interacting systems” [83]. In contrast, applications using synchronous RPCs

are easy to write, tune, and debug—Google is known to strongly prefer a synchronous programming

model [87,88]. Therefore, in this work, our aim is to improve the performance (specifically the tail

latency) for synchronous RPCs by minimizing the access time to remote persistent data.

Recently, as programmable network devices become available [89], a trend is to offload application

logic to those devices. This way, a large fraction of the procedure, including server’s network stack

and processing time, is no longer handled by the server but accelerated by those network devices. This

newer computation scheme is known as in-network compute, spanning a wide range of applications,
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such as query processing [90, 91], key-value stores [11, 92–94], data aggregation [95–97], and even

computational-intensive machine-learning tasks [98–100].

5.3 Persistent memory systems

The integration of PM improves the performance of managing persistent data over conventional

storage devices, such as SSD and HDD. Various software systems take advantage of PM for better

storage performance. PM-optimized file systems allow existing programs to manage data efficiently

on PM [131,134,203]. Distributed, PM-based file systems allow clients to access PM remotely while

benefiting from PM’s high performance [135,204,205]. There are also PM-optimized databases and

key-value store applications that accepts requests from clients [109–111,206–208]. Applications can

also choose to manage data on PM without software indirections, by maintaining their own PM data

structures [209–215]. However, even with a faster storage backend, the client still needs to go through

the network and wait for the entire RTT to update persistent data on the servers. In comparison, the

integration of PMNet can improve the performance by moving both network stack and processing

time off the critical path.

Performance of the PM system is one of the major aspects, and correctness is another, as ensuring

a consistent recovery in PM systems is hard and error-prone. Recent works have provided tools

that ensure PM-based applications recover to a consistent state in event of a failure [216–221].

These testing methods can be adapted to in-network data persistence systems, to validate not only

the ordering in one application but also the persist ordering among clients and servers. Further,

verification tools for programmable data plane [222,223] can work in cooperation with PM testing

tools and guarantee end-to-end correctness of a system with in-network data persistence. We leave

this direction as a future work.

5.4 In-network compute

In-network compute reduces latency for a variety of tasks by moving computation off the server

and into the network. Prior works proposed programmable switches for network functions such

as load balancing [125,126] and packet scheduling [129,130]. In addition, programmable switches

can also offload part of application’s logic into the network such as data aggregation [95–97], and

machine learning [96,99, 100]. In-network compute can also accelerate storage workloads through

caching [11,94,224]. However, the persistence domain in these workloads is still limited to the server.
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A recent work NetChain [225] utilizes the storage capability of programmable switches; however, it

only stores the coordination information rather than persisting data in the network. To maintain

data persistence in the network, this work introduces PMNet that places PM on network devices,

such as NICs and switches. We expect future works to further integrate other acceleration logic into

PMNet to accelerate a wider range of applications.

5.5 Inference on edge devices

To handle limited resources on edge devices, several techniques have been proposed for on-device

inference. Model compression simplifies models by either pruning parameters [226] or unnecessary

connections in the model [227] or changing the structure of the model [228], leading to lower processing

power and memory demands. Quantization reduces the precision of the model’s values, primarily

saving memory by using smaller data types [229]. Some specialized hardware even benefits from faster

processing with these smaller data types [230]. Dynamic model execution adapts to the input. Early

Exiting [231,232] stops processing in Transformer models [233] once confidence reaches a threshold.

OpenELM [234] adjusts the number of attention heads within a Transformer layer. As a last resort,

highly demanding tasks can be partially offloaded to the cloud [235] to exploit the computing power

of the cloud, albeit with network latency drawbacks. Finally, Retrieval Augmented Generation

(RAG) [4] leverages external knowledge to assist LLM inference without constant retraining, but

requires balancing the cost of generating and storage of a local index (embedding database) with

search accuracy and response generation latency.
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Conclusions

Modern distribution applications, such as social networks, data analytics, and retrieval search, rely on

both edge devices for low-latency processing and cloud systems for scalable performance. Optimizing

these applications requires a comprehensive understanding of both edge and cloud components to

effectively identify bottlenecks and direct optimization efforts. The first key challenge is that the

performance characteristics of distributed cloud services are not yet well-understood. Second, storage

services which underlie most services dominates datacenter RPC and are critical to cloud service

performance. Techniques like caching and in-network computation can enhance performance for read

requests. However, optimizing update requests remains challenging due to the risk of potential data

loss. Third, edge applications, such as personal assistants that access locally stored data, require

substantial data processing to retrieve information and generate responses. Although offloading this

processing to the cloud is feasible, it introduces risks related to personal data leakage. Conversely,

performing this computation locally on edge devices presents significant challenges due to resource

constraints, particularly limited memory capacity.

In order to overcome these challenges, we hypothesize that comprehensive understanding of end-to-

end performance in modern distributed systems could enable targeted optimization at the critical

bottlenecks.

In order to understand the characteristics of cloud based services, we perform the first analysis of

RPCs from geo-distributed applications running across a fleet of datacenters. We evaluate RPC

invocations within Google’s internal production system. Our study analyzes over 700 billion RPC

90
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traces from over 10000 different RPC functions running on over 100 production clusters. This data

allows us to unveil RPC’s key properties such as latency, volume and call structures. Our findings

provide new insights into the characteristics and behavior of RPCs that have the potential to help

shape the direction of future datacenter systems. For example, we find that RPCs operate on different

timescales than assumed by prior work, and that latency overheads of RPCs are different from those

assumed by prior work. We also show that RPCs are increasingly important and their growth is

outpacing the growth in compute cycles in our fleet. This motivates research on reducing both the

RPC latency tax and RPC cycle tax, and we present breakdowns of the components of both to light

a path toward reducing them. Overall, RPC is the fundamental building block for widely distributed

applications in modern computing environments.

For storage systems, we propose in-network data persistence that exposes the persistence domain

to the network to persist update requests with sub-RTT latency. We design a PM-integrated

programmable network device, PMNet, that logs in-flight update requests, and moves the server

network stack and processing time off the critical path. We implement PMNet in an FPGA-based

programmable switch and NIC and evaluate them in a real system with a variety of workloads.

Compared to the existing system, PMNet can improve the throughput of update requests by 4.31×

on average, and the 99th-percentile tail latency by 3.23×. PMNet could also synergistically integrate

with read-caching mechanisms to accelerate read requests and provide in-network replication of data

to protect again possible hardware and network failures.

For edge systems, we propose EdgeRAG, a novel RAG system designed to address the memory

limitations of edge platforms. EdgeRAG optimizes the two-level IVF index by pruning unnecessary

second-level embeddings, selectively storing or regenerating them during execution, and caching

generated embeddings to minimize redundant computations. This approach enables efficient RAG

applications on datasets that exceed available memory, while preserving low retrieval latency and

without compromising generation quality. Our evaluation results show that EdgeRAG improves

retrieval latency by 1.22× on average and by a substantial 3.69× for large datasets that cannot fit in

the memory. With relaxed latency SLO, EdgeRAG can support up to 1.5 TB of embedding database

on system with 8GB memory.

The findings in this work also inspire new research directions.

• RPC improvement: Our measurements of the largest-scale cloud applications could set

the direction of RPC systems development in the future. Particularly, our RPC latency
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measurement shows that most RPC functions operate in millisecond timescale, the RPC

optimization should balance between latency and RPC resource efficiency. Queuing and

scheduling latency are significant for some types of applications, improved scheduling and load

balancing have significant potential to improve these applications.

• In-network storage acceleration: Our work, PMNet, demonstrates a systematic approach

enabling network devices to durably store data despite potential failures. This durability

ensures that in-network computation can handle not only stateless requests but also longer,

stateful computing tasks that might otherwise be disrupted by failures.

• ML inference on Edge Devices: EdgeRAG overcomes the memory limitation of traditional

RAG techniques and enables the edge-local integration of large databases with large language

models previously only available in the cloud.
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