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I 
 

 

Abstract 
 

The following three chapters are a collection of studies aimed to better understand 

individual differences in various cognitive and biological processes. The first chapter 

focuses on face recognition ability and the cortical structures/ representations that give 

rise to neurotypical heterogeneity in this behavior. The second chapter focuses on the 

aging process at the epigenetic and cognitive level, linking these two levels and 

explaining these relationships through functional connectivity of the human brain. 

Finally, the third chapter focuses on algorithmic modifications that incorporate individual 

difference information when training machine learning systems suitable for brain-

computer interface systems. The substantive domains across the three chapters differ 

drastically, but the general analytical framework for approaching these diverse problems 

is shared across the three chapters. The common thread linking these interdisciplinary 

efforts is 1) the committed focus to understanding why people’s minds and brains operate 

differently from one another, and 2) the successful application of modern machine 

learning tools to function as a mechanism for uncovering new insights about the brain 

and behavior. In summary, this collection of work leverages the application of modern 

measurement and analytic tools to design models of behavior that incorporate critical 

idiosyncrasies between people. These papers add novel research contributions to three 

different domains relevant to modern psychology and neuroscience: 1) face recognition 

ability, 2) aging, and 3) brain-computer interfaces.   
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Introduction 

 
The following sections summarize the three chapters in abstract format to briefly 

motivate the problem and describe the approach for the targeted research questions: 

 

Chapter 1: Accuracy of fMRI decoding maps for faces in domain-specific 

brain regions relate to individual differences in face recognition ability 
 

Submitted for peer review at Proceedings of the National Academy of Sciences (PNAS) as 

of July 7th, 2023. 

 

Face recognition ability lies on a wide spectrum. Neuroimaging has richly 

characterized neural systems involved in face perception, but there are mixed findings in 

the literature associating brain activity with this heterogeneity. The notion that there 

exists modularity in precisely localized cortical structures that preferentially respond to 

faces has been criticized due to overlapping representations, expertise, and the need for 

whole-brain approaches to investigate complex cognitive processes. Here, we leverage 

populations of voxels using multivariate pattern analysis (MVPA) as a brain decoding 

approach for understanding individual differences in face recognition ability. We 

developed an old/new recognition paradigm comparing faces to flowers that satisfies 

domain-specific criteria and incorporates optimized stimulus-sequences for fMRI. 

Outside the scanner, participants completed the Cambridge Face Memory Test (CFMT) 

to quantify individual differences in face recognition ability. Applying MVPA on our 

targeted region of interest (Neurosynth mask, keyword: “ffa”), we found that face 

recognition ability was positively associated with decoding accuracy for stimulus 

differentiation between faces and flowers controlling for in-scanner performance. Follow-

up analysis indicated that the information driving decoding for face recognition included 

regions of the core face processing system, including typical coordinates for face-

sensitive Fusiform Gyrus and Posterior Superior Temporal Sulcus. Visualizations of 

brain representations for stronger versus weaker face recognizers suggest a structure that 

is less overlapping, more modular, and better respects the preference for faces in the 

lateral Fusiform Gyrus. We also find that taking a whole brain approach using 

connectome-based models cannot successfully predict face recognition ability. This work 

contributes to a better understanding of how domain-specific neural systems support 

behavioral heterogeneity in face recognition, and suggests that higher-order visual 

cortices that process face information may be more important than whole-brain 

connectivity for understanding this specific behavior.  

 

Chapter 2: Accelerated epigenetic aging associates with whole-brain 

functional connectivity and impaired cognitive performance in older adults 
 

Submitted for peer review at Science Advances as of July 7th, 2023. 

 

While chronological age is a strong predictor for health-related risk factors, it is 

an incomplete metric that fails to fully characterize the unique aging process of 

1



 

individuals with different genetic makeup, neurodevelopment, and environmental 

experiences. Recent advances in epigenomic array technologies have made it possible to 

generate DNA methylation-based biomarkers of biological aging, which may be useful in 

predicting a myriad of cognitive abilities and functional brain network organization 

across older individuals. As hypothesized, individuals with faster epigenetic age 

acceleration performed worse on tasks that spanned a wide variety of cognitive faculties 

including both fluid and crystallized intelligence. Additionally, fMRI connectome-based 

predictive models suggested a mediating mechanism of memory on epigenetic age 

acceleration/ functional connectivity associations primarily in medial temporal lobe and 

limbic structures. This research highlights the important role of epigenetic aging 

processes on the development and maintenance of healthy cognitive capacities and 

function of the aging brain. Specifically, individuals with more epigenetic age 

acceleration tended to perform worse on tasks that spanned a wide variety of cognitive 

faculties, and brain regions crucial for successful memory formation were most important 

for predicting AgeAccelGrim in the aging brain. These differences cannot be explained 

by chronological age alone, in that AgeAccelGrim and chronological age are orthogonal 

variables, and both were included/ controlled for in each statistical model. This suggests 

that epigenetic age explains a unique portion of variance of cognitive ability that 

chronological age does not capture, and this relationship may be explained by 

connectivity of memory brain structures primarily within the limbic system.  

 

Chapter 3: Extensions and application of the robust shared response model 

to electroencephalography data for enhancing brain-computer interface 

systems 
 

Published in IEEE Systems and Information Engineering Design Symposium (SIEDS).  

 

*Because this paper was written in LaTeX and involves a substantial number of 

mathematical equations, the final published .pdf was appended to this dissertation rather 

than converting to the same Microsoft Word format applied to Chapters 1 and 2 

 

Brain Computer Interfaces (BCI) decode electroencephalography (EEG) data 

collected from the human brain to predict subsequent behavior. While this technology has 

promising applications, successfully implementing a model is challenging. The typical 

BCI control application requires many hours of training data from each individual to 

make predictions of intended activity specific to that individual. Moreover, there are 

individual differences in the organization of brain activity and low signal-to-noise ratios 

in noninvasive measurement techniques such as EEG. There is a fundamental bias-

variance trade-off between developing a single model for all human brains vs. an 

individual model for each specific human brain. The Robust Shared Response Model 

(RSRM) attempts to resolve this tradeoff by leveraging both the homogeneity and 

heterogeneity of brain signals across people. RSRM extracts components that are 

common and shared across individual brains, while simultaneously learning unique 

representations between individual brains. By learning a latent shared space in 

conjunction with subject-specific representations, RSRM tends to result in better 

predictive performance on fMRI data relative to other common dimension reduction 
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techniques. To our knowledge, we are the first research team attempting to expand the 

domain of RSRM by applying this technique to controlled experimental EEG data in a 

BCI setting. Using the openly available Motor Movement/ Imagery dataset, the decoding 

accuracy of RSRM exceeded models whose input was reduced by Principal Component 

Analysis (PCA), Independent Component Analysis (ICA), and subject-specific PCA. The 

results of our experiments suggest that RSRM can recover distributed latent brain signals 

and improve decoding accuracy of BCI tasks when dimension reduction is implemented 

as a feature engineering step. Future directions of this work include augmenting state-of-

the art BCI with efficient reduced representations extracted by RSRM. This could 

enhance the utility of BCI technology in the real world. Furthermore, RSRM could have 

wide-ranging applications across other machine-learning applications that require 

classification of naturalistic data using reduced representations.  
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Chapter 1: Accuracy of fMRI decoding maps for faces in domain-specific 

brain regions relate to individual differences in face recognition ability 

 
Full author list: Andrew J. Graves, Jesse H. Grabman, Chad S. Dodson, and James P. 

Morris 

Submitted for peer review at Proceedings of the National Academy of Sciences (PNAS) as 

of July 7th, 2023. 

 

Introduction 

 

There is a long history of mapping specific neural processes with face detection 

and recognition. Early studies focused on the specialization of portions of ventral 

occipital temporal cortex, specifically the fusiform gyrus, for the detection and perception 

of faces. Both subdural electrophysiological studies (1, 2) and neuroimaging work (3–6), 

established that a region of lateral fusiform cortex preferentially responds to faces relative 

to other categories of stimuli. While this region is somewhat anatomically variable 

between subjects, it may be reliably identified on an individual subject basis (6), and is 

functionally defined as the fusiform face area (FFA). In parallel to localizationist 

accounts, a distributed network response to the perception of faces suggests that face 

perception is not processed in a single brain region, but rather is distributed across the 

temporal lobes (7, 8). Though most of the field would generally agree that faces represent 

a unique class of visual information with dedicated neural systems, we know much less 

about how these systems contribute to the spectrum of behavioral differences in face 

recognition. To date, the evidence that these specialized neural systems explain 

phenotypic neurotypical heterogeneity in face recognition ability has been mixed (9–11). 

 

Individual differences in face recognition ability 

 

The notion that faces represent a specialized class of visual stimulus predates the 

technology to measure neural systems associated with these skills. Classic 

neuropsychological studies documented special cases of acquired prosopagnosia – in 

which damage along the temporal lobes caused deficits in recognizing familiar faces, but 

was distinct from general forms of agnosia (12). Though long considered to be acquired 

through damage, modern studies of prosopagnosia have demonstrated that face 

recognition lies on a spectrum, with a small percentage of people showing developmental 

prosopagnosia with no apparent brain damage. Conversely, there are individuals 

characterized as super-recognizers due to their extraordinary face recognition ability (13). 

Despite the common assumption that all neurotypical people are ‘”face experts”, a 

growing body of research suggests that there is considerable heterogeneity in the ability 

to accurately remember novel faces (14, 15). 

 

Starting at one extreme of ability, developmental (or congenital) prosopagnosia 

(DP) refers to lifelong difficulty with learning to recognize faces (16). Diagnosis requires 

relatively intact visual and memory capabilities, exclusion of other diagnoses known to 

impact face recognition (e.g., Autism), and no evidence of brain damage (17). Numerous 
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neurobiological studies of prosopagnosia over the past two decades show results that are 

both inconsistent and incongruous with models of face recognition. For example, 

multiple imaging studies find that people with DP show normal face-selective activation 

in regions of the core face processing network, including fusiform gyrus and inferior 

occipital gyrus (18–20). However, broad structural differences are noted between DP and 

matched controls, including volumetric reductions in gray matter in the middle and 

anterior temporal lobe (21, 22). Additionally, DP shows altered patterns of structural 

connectivity, with studies finding reduced volume, density, and coherence of long-range 

tracts from the fusiform gyrus to the anterior temporal lobes (ATL) (23, 24), though more 

recent research suggests that these white matter abnormalities are locally restricted to 

areas abutting face-selective regions (25, 26). Moreover, inter-subject functional 

connectivity analysis finds that individuals with DP have weaker core-face network 

connections to ATL/frontal regions, but hyper-connectivity in more generalized visual 

areas, with these amplified connections predictive of face recognition performance (27).  

 

Generalizing results from studies of DP to the wider population is complicated by 

multiple factors. First, it is not clear whether DP represents only the lower-tail of a 

normative distribution of ability, or should be considered a pathological disorder rooted 

in underdevelopment of the face system (17). Second (and relatedly), the criteria used by 

studies to define the DP sample can vary substantially in terms of screening measures 

(e.g., self-report; face recognition measures) and statistical cutoffs (28). Finally, it is 

likely that DP is comprised of various sub-populations. For example, one proposed 

distinction is between an apperceptive variant that causes difficulties with creating face 

percepts, and an associative variant which is not accompanied by perceptual deficits (29–

31). On the other extreme of ability are super-recognizers (SRs), or individuals who are 

exceptionally skilled at face recognition (32). Relatively few studies have examined the 

neural correlates of super recognition. In the only fMRI study (to our knowledge), SRs 

exhibited increased fusiform gyrus size, face selectivity, and response, as compared to 

DPs (33). While research in this sub-population more clearly conforms to normative 

standards than the case of DP (i.e., most studies define the group as the upper-tail of the 

population), there are similar difficulties in generalizing results. SRs may display above-

average ability on only some tests of face perception/recognition, but not others (34–38). 

Moreover, there are questions about face specificity, given that SRs are often more 

skilled than average in multiple visual and non-visual domains (39).  

 

Between the extremes of DP and SR, exists a wide range of facial recognition 

capabilities (40). Wilmer and colleagues have established that these differences are 

heritable, showing remarkable similarity in Monozygotic twin pairs, and specific to facial 

recognition relative to recognition processes in general (41, 42). These differences in face 

recognition appear to be stable and are not influenced either positively through training 

(43) or negatively through adverse life experiences (44), and only weakly correlate with 

general intelligence (41, 45–49). Face recognition fMRI studies in healthy populations 

generally focus on group activation maps, while varying particular experimental 

parameters such as facial familiarity, emotion, or race. Studies explicitly addressing 

individual differences in recognition as a function of brain activation have typically used 

ROI based approaches (9, 50). Some studies find that the magnitude of the face-selective 
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response in the FFA is related to recognition ability (51–53) whereas others do not (54). 

Huang and colleagues related face recognition capabilities with greater activity in the 

individually defined FFA (9). Elbich and Scherf incorporated more ROIs into their 

analyses, and found significant relationships between behavioral performance and the 

magnitude of response and the spatial extent of response (50). However, these effects 

were significantly reduced when controlling for overall recognition capabilities. Beyond 

the FFA, the volume of grey matter in the ATL in one study corresponded to scores on 

the Cambridge Face Memory Test (CFMT, the most used measure of face recognition 

ability) (55) -- a finding that is closely related to increased size of the ATL face-selective 

response in another study (56).  

 

Finally, there have been recent suggestions that the assumptions of functional 

localization is an inadequate approach for understanding brain-behavior relationships 

(57). The theoretical claim that challenges localization of function emphasizes neuronal 

populations distributed across the entire brain rather than local neuronal populations, and 

that these weak interacting signals across the entire brain (as well as other contextual 

factors) are what give rise to mental events (57). Some recent studies hint to broader 

patterns of activation outside of the canonical face network, including connectivity to 

hubs implicated in memory (e.g., medial temporal lobe, hippocampus) (53), social 

processing (e.g., amygdala, somatosensory cortex) (53, 56), and audition (53). Given that 

face recognition is a more complex and involved cognitive process than simple face 

detection, face recognition ability may rely on whole-brain connectivity above and 

beyond the core and extended face network. This is in contrast to a more modular 

account, which would suggest that the individual differences observed would be 

constrained to the core and extended face network. 

 

In summary, there is growing literature on individual differences in face 

recognition. However, knowledge in this area has significant room for further inquiry. 

First, the vast majority of the results are derived from studies of DP, which debatably 

represents a different sub-population of wider face recognition ability. Second, sample 

sizes are generally small and results can be misinterpreted due to the statistical constraint 

of collapsing across heterogeneous populations. Third, many studies derive conclusions 

from use of functional localizers, which may instantiate different processes than are 

typical of face recognition, or use control stimuli that differ substantially from face tests. 

Finally, using traditional univariate methods to find reliable associations between 

specialized brain activity and behavioral variance in face recognition ability has been 

historically inconsistent. 

 

Using fMRI decoding and connectivity for investigating face recognition ability 

 

One potential methodological improvement for determining face-specific 

processing is to leverage populations of voxels within the face network using multivariate 

pattern analysis (MVPA). Univariate analysis typically focuses on individual voxels and 

examines their activity independently (58). In contrast, MVPA considers patterns of 

activity across multiple voxels simultaneously which provides information into the spatial 

distribution of neural activity patterns as well as unique information not captured by 
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univariate methods (59). MVPA may be particularly useful for studying individual 

differences in brain activity patterns when fitting participant-level decoding models. This 

personalized approach can highlight idiosyncrasies and individual variations in brain 

activity not captured by general population-level models (60). By examining the unique 

spatial patterns of brain activity within and across individuals, this provides information 

into how neural representations vary between people, potentially uncovering important 

insights into individual variation in face recognition ability. In fact, research on DPs in 

relation to controls suggest that MVPA using fMRI can detect functional brain 

differences in the absence of univariate differences (61). There has also been work using 

electroencephalography (EEG) to successfully decode face recognition ability directly at 

a group-level by classifying SRs from neurotypicals while viewing face-stimuli (but also 

non-face stimuli) (62, 63). Thus, there is evidence that MVPA is a useful tool in addition 

to traditional univariate analysis for better understanding face recognition individual 

differences. 

 

Additionally, methods now exist that move beyond the localization assumption, 

one of the primary alternatives being functional connectivity analysis (14). Functional 

connectivity is quantified through spatially distributed collections of voxels with blood 

oxygen level dependent (BOLD) signal correlates over time (64). A high degree of shared 

variance between two regions across time implies coordination between those brain 

regions and may reflect large-scale brain network structure (65). While there inarguably 

exists some degree of specialization and modularity in human cortex, functionality of a 

specific cognitive process is often distributed across brain networks (66). This makes 

distilling an experimental result down to a small handful of cortical regions challenging, 

and potentially misleading (67). In order to model distributed representations across 

cortex, one particularly influential functional connectivity analysis approach is the 

connectome-based predictive model (CPM) (68). The simple application of ridge 

regression to connectivity vectors is known as ridge regression connectome-based 

predictive modeling (rCPM), and is considered the state-of-the-art CPM tool for detecting 

phenotypic differences in behavior (69). CPM is particularly suited for individual 

differences research, as it is highly predictive of an individual’s identity irrespective of 

nuisance artifacts such as head motion or anatomical differences (70). An individual’s 

functional connectome is one of the most powerful tools in fMRI for explaining 

individual differences in age, attention, general intelligence, and other complex cognitive 

skills (71–74). 

 

Engaging domain-specific processes with task-based fMRI 

 

For the current research, we will examine a pre-specified ROI known to be 

sensitive to face and object perception, and directly compare results to a whole-brain 

connectivity analysis to determine which approach better characterizes individual 

differences in face recognition ability. When investigating face recognition, it is 

important to consider factors of the experimental paradigm that will maximize the 

capacity to make claims about face recognition memory, rather than general recognition 

or visual memory. However, these concerns are balanced with the need to optimize 

stimulus sequences for event-related designs in fMRI. Dennett et al. outlined five criteria 
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for developing control stimuli in experiments investigating face recognition (75). The 

criteria specify that the control task matches the face task (1) in structure and 

performance, (2) on as many low-level visual features as possible, (3) in split-half 

reliability and that both have high reliability, and (4) in duration of the task such that both 

are relatively short and easy to administer. Finally, the fifth criterion requires the control 

task to measure a process dissociable from the face recognition task of interest. Thus, we 

set out to design an old/new recognition task with these five criteria in mind to allow for 

experimental control over stimulus features to make specific inferences regarding 

recognition of faces relative to other visual objects. 

 

We developed a behavioral task in order to engage domain-specific cognitive 

processes and brain regions using an old/ new recognition memory paradigm made with 

Psychtoolbox (see Figure 1) (76). The task consisted of three encoding-recognition 

blocks divided across three functional runs. For each run, participants studied 10 faces 

and 10 flowers followed by a 96 second task-irrelevant delay (60 encoding trials total). 

We chose flowers as an appropriate control task, as recent evidence points to this 

stimulus class falling under a more general recognition component shared across 

numerous real-world objects (see (77) for details). During the task-irrelevant delay, 

participants viewed alternating videos of biological and scrambled dot motion (78). At 

test, different photos of the encoded stimuli were mixed with an equal number of new 

faces and flowers, resulting in 40 recognition trials for each block (120 recognition trials 

total). Participants were asked to distinguish the old items from the new items by making 

an old/ new judgment during stimulus presentation by pressing a button. Between each 

stimulus presentation, a white cross hair was presented as a jittered inter-stimulus interval 

(ISI) ranging from 0-12 s to allow for optimized separation of hemodynamic response 

function (HRF) modeling, as well as keep participants attentionally engaged by making 

the stimulus presentation time uncertain. The stimulus sequence in terms of timing and 

presentation order were optimized for event-related neuroimaging analysis for face – 

flower contrasts using the shell tool optseq2 (https://surfer.nmr.mgh.harvard.edu/optseq/). 

 

We set out to test two hypotheses for capturing individual differences in face 

recognition ability, as measured by the CFMT which participants completed outside of 

the scanner. The first focuses on canonical regions sensitive to face perception, and the 

second focuses on whole-brain connectivity to capture distributed representations. We 

hypothesize that more discriminative multivariate cortical representations (fit via MVPA) 

within regions important for face perception will positively correlate with face 

recognition ability. We also hypothesize that whole-brain connectivity, in addition to 

taking an ROI approach, will explain unique individual difference variance in face 

recognition ability.  

 

Answers to both of the questions will be fruitful additions to the literature which 

has been historically mixed with respect to the first and understudied in the second – and 

speaks to the ongoing debate regarding the local vs. global nature of brain organization as 

it pertains to the neural mechanisms supporting face recognition ability. To our 

knowledge, there is no work in the literature using state-of-the-art individual difference 

fMRI techniques such as rCPM (or other related CPM approaches) to directly predict 

8



 

 

 

CFMT, nor is there work analyzing the relationship between decoding rates and CFMT 

performance within the neurotypical population. It is entirely possible that using the 

functional architecture of individual-specific connectomes across disparate brain regions 

will predict more variance in face recognition ability than previously defined regions 

sensitive to face perception.  

 

Results 

 

Event-related fMRI face recognition memory task sufficiently meets domain-specific 

criteria 

 

The experimental structure of our task was equivalent across face trials and flower 

trials, with the same stimulus duration (3 s during encoding; 4 s during recognition), 

number of targets (30 for each class), and number of lures (30 for each class). 

Furthermore, we selected and pre-processed task stimuli to minimize featural differences 

across the two stimulus classes. The stimuli for this task were real-world three-

dimensional objects hand-picked from the noncommercial Meissner face database and 

Nilsback flower database (79, 80), and were matched on luminance using the Shine 

MATLAB toolbox (81). The use of different images of the same object at encoding and 

test mitigated the potential confound of a simple picture matching strategy for both 

stimulus categories. Both stimulus classes have similar and high internal consistency 

(82): Cronbach’s α for face trials was .76 and for flower trials was .81. The task is 

relatively short, requiring 24 minutes to complete, and group-average accuracy did not 

appreciably vary across the three blocks (block 1 = .70; block 2 = .70; block 3 = .69). 

 

To demonstrate similar performance across the face and flower stimulus classes, 

we separately hierarchically modelled response time (RT), accuracy, hit rate, false alarm 

rate, d’, and C with stimulus class (face vs. flower) as the predictor of interest, controlling 

for age and sex. We define task accuracy as (# hits + # correct rejections) / (# of trials) 

and we define hit rate as (# “old” responses / # old items) and false alarm rate as (# “old” 

responses / # new items). Figure 1 shows that the RT, task accuracy, hit rate, and false 

alarm rate across face and flower trials are similar. Table S1 shows that the hit rates were 

well-matched across the face and flower trials, while the false alarm rates were slightly 

higher for face trials relative to flower trials (i.e., the 95% posterior distribution for that 

fixed-effects parameter does not overlap with 0). However, the difference in the widely 

applicable information criterion (WAIC) between the false alarm rates including stimulus 

class as a predictor vs. a null model suggests that the null model fits better (WAIC 

difference of 3.4 in favor of null model). This suggests that the difference detected 

between the false alarm rates of the two stimulus classes is not substantial.  

 

Additionally, we investigated whether the control stimulus (i.e., flowers) 

measures a process dissociable from the face memory stimulus of interest. To 

demonstrate this aim, we modelled signal detection metrics (grouped by stimulus class) 

to calculate sensitivity (d’) and bias (C) (see (83) for calculation of each metric), using 

the dprime function from the psycho package in R (84) . In terms of d’, nearly all 

participants performed better than chance (2 participants had negative d’, Min. = -0.07, 
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Mean = 1.09, Max = 2.56) on both the face and flower trials, and d’ was similar across 

the two tasks (face d’ = 1.03, flower d’ = 1.15). The only metric significantly and 

positively associated with CFMT scores, both in a joint model and in simple bivariate 

correlations, was face d’ (see Fig. S1 and Table S2). This provides evidence that our face 

recognition task is sufficiently dissociable from our flower recognition task, despite 

overlapping perceptual and cognitive components and positive correlation between the 

face and flower d’ scores. 

  

To sum up, our task satisfies the five criteria for successfully modelling domain-

specific face recognition capabilities, which include: a) matching the face task to a 

control task in structure and performance, b) matching the face task to the control task on 

as many low-level features as possible, c) computing similar and high metrics of internal 

consistency for the face task and control task, d) making the test relatively short and easy 

to administer, and e) measuring a control process dissociable from the face memory task 

of interest. These results increase confidence that experimental contrasts and MVPA 

decoding tasks using imaging data capture true differences between the encoding and 

recognition of faces and flowers, rather than differences in task demands attributed to 

other cognitive systems.  

 

Univariate contrasts activate the canonical regions involved in face perception and 

positively correlate with multivariate pattern representations 

 

Consistent with previous literature, the face – flower contrasts in this experiment 

produce canonical activation maps of fusiform gyrus, superior temporal sulcus, lateral 

occipital cortex, amygdala, para-hippocampal cortices, and other nearby higher order 

visual cortical structures contained within the “ffa” mask (see Fig. S2, Table S3 and 

Table S4). Fig. S3 demonstrates that both stimulus classes highly activate the majority of 

voxels within this region when computing face – fixation and flower – fixation contrasts, 

which suggests that this mask casts a wide-net along these brain areas that are not strictly 

face-specific but also includes voxels that show preference for other object classes. 

Lateral regions of the fusiform gyrus were much more active during face trials relative to 

flower trials, while medial regions were much less active, which is the typical result for 

these paradigms. Importantly, these univariate activation maps are strongly positively 

correlated with the MVPA decoding coefficients (see Figure 2), which suggests that this 

method largely captures interpretable cortical representations in terms of localized and 

unique activations relative to other voxels within the mask. 

 

Multivariate pattern analysis can reliably decode stimulus states with high accuracy and 

individual differences in decoding accuracy positively correlates with CFMT 

 

We successfully decoded stimulus states from one another within higher-order 

visual cortex well above theoretical levels of chance performance which is 50% for 

balanced stimulus class labels (median decoding accuracy: encode phase = 86%, 

recognition phase = 89%). Consistent with our hypothesis, we found that individual 

differences in decoding accuracy was positively associated with CFMT scores during 

both the encoding and recognition phase of the experiment (see Table 1). In other words, 
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decoding face stimuli from flower stimuli on average was easier for the classifier when 

participants were stronger recognizers (i.e., higher CFMT score), and more difficult for 

weaker face recognizers. Importantly, neither face d’ nor flower d’ could uniquely predict 

variance in individual level decoding accuracies for either the decoding phase or 

recognition phase. However, the bivariate correlations between face/ flower d’ and 

decoding accuracies for both the encoding and recognition phase were positive and 

significant: face d’-encode (r = .224, p = .031), face d'-recognition (r = .355, p < .001), 

flower d’-encode (r = .217, p = .037), flower d'-recognition (r = .216, p = .038), with df = 

90 for each. This pattern of results suggests that it is an individuals’ face recognition 

ability specifically that is important for decoding these two stimulus-states during a task 

that engages domain-specific brain regions, rather than their general recognition 

capacities. 

 

The relationship between decoding accuracy and CFMT is driven both by unique 

information in the hubs of the face network and typical cortical topological structure for 

face perception during encoding 

 

To further probe and interpret the association between CFMT performance and 

stimulus-state decoding accuracy, we fit second-level GLMs directly to the decoding 

coefficient maps to ascertain which clusters covary with CFMT. The hypothesis is that 

stronger face recognizers will have larger coefficients in face-specific regions and smaller 

coefficients in regions that are not face-specific. Figure 3 shows that the decoding 

coefficients were larger (classifier gives high-probability that participant is a viewing a 

face) in the right posterior superior temporal sulcus (r pSTS) for stronger face recognizers 

during encoding, and in typical coordinates for the right fusiform face area (r FFA) 

during recognition. The remaining clusters are included in Table 2 and all follow the 

predicted directionality with respect to their functional role. For face d’, clusters within 

left lateral occipital cortex, often dubbed the left occipital face area (l OFA), were 

identified and are also reported in Table 2. No clusters that covary with the decoding 

maps were identified with flower d’. In order to further unpack the relationship between 

CFMT and decoding accuracy, we plotted MVPA representations of the top 4 performers 

in our sample (who scored a perfect 72) and the bottom 4 performers (range from 40-47). 

Figure 4 shows that stronger face recognizers tend to have a structure that is less 

overlapping, more modular, and better respects the preference for faces in the lateral 

Fusiform Gyrus. Conversely, weaker face recognizers seem to have less-defined decision 

boundaries that tend to be overlapping and diffuse across these cortical regions 

 

Connectome-based predictive models both at rest and during task cannot predict CFMT 

 

Independently fitting rCPM on resting-state scans, concatenated task-based scans, 

and face-specific beta-series correlations from least-squares-all (LSA) maps prepped for 

decoding, we were unable to successfully predict CFMT from functional connectivity 

data across the entire brain (see Figure 5). As a validation control, we demonstrated that 

we can replicate previous research by successfully predicting age (an example continuous 

phenotype) using the same analysis pipeline and input data. The inability to predict 

CFMT from connectivity data is striking, given that rCPM is an excellent tool for 
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capturing individual differences for a myriad of demographics, personality, and cognitive 

abilities. This finding was inconsistent with our hypothesis, and suggests that a whole-

brain perspective may be too coarse for capturing behavioral differences in face 

recognition ability. 

 

Discussion  

 

Neuroimaging has given us rich descriptions and characterizations of neural 

systems involved in the perception and recognition of faces, but empirical efforts to 

associate activity in these systems with face recognition capabilities has been 

inconsistent. There are at least two critical reasons for this gap in the literature. First, 

creating a task that allows for accurate differentiation of face-specific recognition/ 

memory processes from domain-general memory mechanisms is challenging and often 

not a core focus of fMRI studies. Second, while traditional univariate fMRI analysis has 

given us invaluable maps of neural activation associated with complex cognitive 

processes, these same analyses have been criticized as being limited with regards to 

assessing individual differences (85). Here, we analyze a task specifically constructed to 

dissociate face recognition from a more general recognition component using two 

contemporary multivariate approaches for characterizing face recognition ability. 

 

This study is the first to demonstrate using fMRI showing that decoding rates of 

stimulus states for faces is significantly related to face recognition ability in 

neurotypicals, suggesting that the spatial patterns underlying stimulus encoding and 

processing are more discriminative as face recognition ability increases. While this 

relationship is not strictly due to regions within the core face network, we do find that the 

right p STS and FFA are important mechanisms for supporting successful face 

recognition. Well-defined cortical representations that respect the medial-to-lateral 

functional subdivision of fusiform cortex are characteristic of stronger face recognizers, 

while poorly-defined and highly distributed representations are more characteristic of 

weaker face recognizers. Additionally, for the first time, we find that state-of-the-art 

CPM-based techniques fail to capture these individual differences in face recognition 

ability. These patterns of results point toward face recognition ability being a unique 

cognitive process that may be less globally distributed with respect to neural mechanisms 

in contrast to other complex cognitive processes such as attention or decision-making. 

 

Some work has raised concern about the use of task-based fMRI for biomarker 

discovery or individual differences research (59). Specifically, test-retest reliability of 

these task-based activations were generally poor, thus lowering confidence in the 

adoption of such tasks and analysis procedures for examining individual differences. 

There are at least two compelling reasons for this. First, many fMRI-based tasks were 

designed to elicit group-based activations, while minimizing within-subject variance. 

And second, many of these tasks show poor internal reliability, which would significantly 

contribute to the failure to find reliable activations in the brain. Thus, establishing high 

internal reliability in task performance is important for making inference in the imaging 

contrasts. We have provided evidence that our old/ new recognition paradigm does just 

this, mitigating the above concerns. 
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However, there are several limitations to this study. First, we employed a simple 

design to maximize power to differentiate the two stimulus classes, because using more 

classes would require longer scans and more cognitive resources due to the increase in 

trial count. However, it is important to replicate these results using more classes to be 

more confident that these findings are in fact truly domain-specific. Second, our 

measured range of face recognition performance in our sample does not include all levels 

of ability in this domain. Specifically, the lowest CFMT score in this sample is 40, and 

four participants performed at ceiling with a score of 72. That being said, because a score 

of 42 is often used as a threshold for mild DP (more than two standard deviations below 

the mean), and is thought to be present in approximately 2% of the population, this 

suggests that the current sample is reflective of the typical lower tail of this distribution 

(86, 87). A potential improvement for future studies could incorporate the CFMT+, 

which has been shown to provide more fine-grained information differentiating 

individuals with strong face recognition ability, and additionally recruiting more 

participants to acquire a wider range of individual differences (32). Last, it has been 

argued that the interpretation of MVPA coefficients must be done with caution, because 

decoding models might select one but not the other of two informative voxels when the 

two have high covariance (88, 89). While this is certainly the case, we show in Figure 2 

that the MVPA coefficients are highly correlated with univariate activations, and are 

filtered by redundant activity generated by other voxels within the mask.  

 

Since the advent of fMRI, face perception and recognition have been a central 

theme and heated topic for debate in cognitive neuroscience. Faces have also been central 

to the debate concerning the local vs. distributed theoretical accounts for what gives rise 

to complex cognitive processes. While acknowledging its limitations, this study’s results 

suggest that individual differences in face recognition ability may be largely constrained 

to canonical cortical regions sensitive to faces, in line with a local rather than distributed 

account. This work contributes to a better understanding of how domain-specific neural 

systems support behavioral heterogeneity in face recognition, and suggests that 

specialized preferential higher-order visual cortices may be more important than whole-

brain connectivity for understanding this specific behavior.  

 

Materials and Methods 

 

Participants 

 

92 healthy adults with normal or corrected-to-normal vision were recruited for the 

current study. This data collection was a subset of a larger project examining (epi)-

genetic differences in adults, thus self-identified Caucasians of European descent were 

included to avoid population stratification artifacts. All individuals gave written informed 

consent for a protocol approved by the University of Virginia (UVA) Institutional 

Review Board (Protocol 15051) and were paid $50 for participation. All participants, 

consisting of 62 females and 30 males aged 18–30 y (M = 22.50 years, SD = 3.32), were 

included in the analysis. 
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Cambridge Face Memory Test 

 

We used the CFMT to assess individual differences in face recognition outside of 

the scanner as our primary index for face recognition ability (90) The CFMT is the most 

widely used test of face recognition ability (91). In this task, participants attempt to 

memorize six faces in three separate orientations. For each trial, previously viewed faces 

must be selected from an array of the target face and two foils. The test phase proceeds 

across 72 trials in three increasingly difficult blocks. In the first block, faces are presented 

individually in all three orientations for 3-seconds, followed by an immediate recognition 

trial of the same images. In the second block, participants study all six faces 

simultaneously for 20 seconds, and are then tested on novel images. Finally, in the third 

block, participants must recognize novel images distorted by Gaussian noise. Past 

research shows that a simple sum of correct responses is a reliable indicator of poor to 

above average recognition ability, with performance ranging from 0-72 correct responses 

(92). 

 

Behavioral statistical models 

 

Please see supporting information for specific modeling details, inference 

procedures, and motivations for using Bayesian estimation.  

 

fMRI preprocessing for decoding and connectivity  

 

Please see supporting information for details on fMRI acquisition and 

preprocessing. 

 

fMRI first and second-level model GLMs for decoding  

 

Fitting fMRI-specific general linear models was conducted using the glm module 

contained within nilearn, version 0.9.2 (93). For the first-level models, voxel-wise 

autoregression [AR(1)] models were fit in standardized space, with no smoothing at the 

first level. Condition onsets were convolved with the canonical Glover hemodynamic 

response function (HRF) (94). All three task-runs for each subject were fit, and subject-

specific first-level parameters were aggregated across the three runs as implemented in 

nilearn.  

 

Single-trial beta-series were also fit for the purposes of trial-level brain decoding 

using multivariate pattern analysis (MVPA) and task-based functional connectivity. The 

same steps were performed at fitting as described above for the traditional first-level 

models, with the one exception that single trials were separately convolved with an HRF 

and received their own column in the voxel-wise AR(1) design matrix, as is typical in 

MVPA analysis using LSA single-trial beta-series. The individual trial maps were 

concatenated together to form a 4-D structure, with each trial containing a 3-D brain 

volume of main-effect parameter estimates. The decoding MVPA input (single-trial beta-

series first-level model images) were masked using a targeted functional region-of-

interest (ROI) analysis as defined by a meta-analytic approach using Neurosynth.org 
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(keyword: “ffa”), which was derived from 99 studies and contains 6238 voxels at our 

measured resolution (95). Importantly, this mask contains regions that are canonically 

activated both by face and other visual non-face stimuli (see Fig. S4). Before model 

fitting, beta-series images were smoothed using a Gaussian kernel of 4 mm full-width at 

half-maximum. For brain decoding using MVPA, participant-specific penalized L2-norm 

logistic regression classifiers were fit using leave-one-run-out cross-validation with the 

following label classification tasks (encode face vs. encode flower, recognize face vs. 

recognize flower). Each participant received the same regularization parameter (λ = 1 as 

implemented in sklearn (96)). Participant-specific decoding was fit and accuracy was 

computed separately for each of these label classification tasks with a decision threshold 

of .5. Accuracy is a reasonable performance metric, since the classification labels are 

fully balanced and theoretical chance performance is 50%.  

 

All second-level modelling approaches included age, sex, handedness, CMFT, d’ 

and C for both stimuli, as potential covariates of interest as well as nuisance variables. 

For exploratory covariate-based analysis on the participant-specific decoding images, we 

used a statistical threshold of two-tailed p < .005 and cluster extent of 10 voxels, as this 

threshold has been championed as being both sensitive and conservative for new 

discoveries (97). Anatomical labels for all results were identified from clear agreement 

across the default anatomical atlases implemented in the AtlasReader package in python 

(98), and this software was also used for cluster analysis. For modelling decoding 

accuracies, we used multivariate Bayesian beta regressions fit to the outcome variables of 

encoding and recognition decoding accuracies, from participants’ CFMT, face/ flower d’ 

and C, age, and sex. 

 

Parcellation and image preparation for connectivity 

 

We applied rCPM to three different inputs, a single resting-state scan (660 

volumes), the three concatenated functional runs (1845 volumes), and the single-trial 

task-based beta-series for face trials (90 volumes). For all input scans, parcellation was 

performed by taking the framewise average of the voxel-wise signals in each of the 268 

nodes from the Shen atlas (99). The Shen atlas is a functionally defined parcellation that 

covers the whole brain, including cortex, subcortex, and cerebellum. The three task-based 

scans were concatenated along the time dimension before calculating connectivity, as this 

can improve reliability of estimates (100). We calculated Fisher Z transformed Pearson 

correlation coefficients between the activity time courses of all possible pairs of nodes to 

construct 268 x 268 symmetric functional connectivity matrices. Only the lower triangle 

of each functional connectivity matrix was vectorized, discarding the constant diagonal, 

resulting in 35778 unique connections/ edges, which served as input features (i.e., 

columns in the design matrix) to rCPM.  

 

Ridge regression connectome-based predictive modeling 

 

It has been empirically demonstrated that applying an L2-norm ridge regression 

penalty to this connectivity vector is a simple and effective way to generate generalizable 

predictions from neuroimaging data, and tends to outperform other popular connectome-
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based modeling approaches (69). Ridge regression is a linear supervised learning 

technique that regularizes model coefficients toward 0 with the canonical L2 norm. The 

regularization degree is governed by a single parameter, λ, where large values perform 

more shrinkage and small values perform less shrinkage. The lower triangle of the 

connectivity matrix can be cast as a vector to function as the feature space during model 

fitting. 

 

We performed rCPM using a repeated (N = 100) outer K-fold (K = 10) cross-

validation procedure where individuals were split into 10 folds, models were trained 

using 9 of the folds, and then evaluated on the held-out fold (73). Within each cross-

validation split, we tuned λ with an inner 2-fold cross-validation loop to conservatively 

estimate optimal regularization strength and overall prediction fit. The phenotypic 

outcomes were residualized with respect to confound/ nuisance variables, which included 

CFMT, d’ and C for both stimuli, age, and sex. Prediction performance for the rCPM 

models were evaluated using Spearman’s correlation between observed and predicted 

behavior, since successful rank prediction across participants was considered most 

important. To assess the statistical significance of prediction performance, we generated 

null distributions of expected performance metrics due to chance by permuting 

behavioral scores with respect to individuals and ran the rCPM pipeline for 1000 

iterations. Then, we calculated a non-parametric p-value, which tallies the number of 

times the performance metric for each of the 1000 iterations of the null distribution 

exceeds the median performance metric of the 100 true iterations. 
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Figures and Tables 

 
Figure 1. Experimental design and task performance is well-balanced across the two 

stimulus classes (faces and flowers). Panel A shows stimulus presentation times and 

overall paradigm structure for both the encoding (60 trials) and recognition phase (120 

trials). The violin plots display the density of marginal participant averages for each 

respective outcome variable overlaid with the posterior parameter estimates. Panel B 

shows that RTs are well matched across the two stimulus classes. Panels C, D, and E 

show that recognition rates are similar across the two classes, with a slightly higher level 

of false alarms for faces. However, the WAIC difference of 3.4 in favor of the null model 

indicates that there is no substantial difference in false alarms across faces and flowers. 

This suggests that the structure and performance is well-matched across both stimulus 

classes, affording the possibility of making domain-specific claims on imaging contrasts 

between faces and flowers. 
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Figure 2. Visualization and replication of previous work showing canonical activation 

patterns for faces relative to non-face stimuli. Here, we are showing the MVPA decoding 

coefficients of the classification model (standardized penalized logistic regression) during 

the encoding phase (recognition phase shows similar pattern structure), as well as the 

univariate activations of the face – flower contrast. There is significantly more lateral and 

less medial fusiform gyrus activation for faces and flowers, as well as significant 

differences in other cortical (e.g., lateral occipital cortex) and subcortical (e.g., amygdala) 

structures reported in Table S3 and Table S4. There is a high correlation between MVPA 

decoding coefficients, suggesting that MVPA both represents and filters cortical 

activation for this specific model. This penalization filter is important, because it 

downweighs redundant information from voxels within this ROI, highlighting the voxels 

that are uniquely important. While it is important to be careful when interpreting 

decoding coefficients, this demonstrates that for this specific application decoding 

coefficients may be more informative than traditional univariate activations because of its 

filtered representation of information. 
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Figure 3. Cluster analysis suggests that the regions driving the relationship between 

decoding performance and CFMT are voxels within the core face network. Specifically, 

right pSTS was important for distinguishing the two stimulus classes for stronger face 

recognizers at encoding, and r FFA at recognition. All clusters are reported in Table 2, 

including the correlates with Face d’ (no correlates detected with Flower d’). 
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Figure 4. Exploratory visualization of stronger and weaker face recognizers suggests 

different cortical representations in our tested ROI. Each brain panel is a different 

individual with their decoding coefficients during the encoding phase overlaid. Stronger 

face recognizers seem to have more well-defined and modular FFAs, as well as better 

respect for the medial-to-lateral functional subdivision of fusiform cortex with respect to 

objects vs. face processing. Weaker face recognizers seem to have less-defined decision 

boundaries that tend to be overlapping and diffuse across these cortical regions. Signal 

detection summary statistics of performance indicate that all participants were paying 

attention in the scanner, such that lack of attention cannot explain the fuzzy and coarse 

MVPA representations of weaker face recognizers. 
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Figure 5. rCPM cannot predict face recognition behavior at rest, during task, or with 

face-specific activations. As a validation control, we demonstrate that age can be 

predicted from the resting-state run and the functional task runs separately. The vertical 

dashed lines indicate the point estimate of the 97.5% quantile for the null distribution. If 

the median of an outcome variable distribution exceeds this value, the model is 

considered “significant” and able to predict the phenotype of interest. For visual 

simplicity, the null distribution is generated from only a permuted CFMT score, rather 

than plotting an individual null distribution for each outcome variable. CFMT, Face d’, 

and Flower d’ are not predicted by any of the three functional imaging inputs. 
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Table 1. Decoding rates within ROI for faces relative to flowers is uniquely associated 

with face recognition ability (CFMT), controlling for signal detection metrics and 

demographics. 

  Decode: Encoding Decode: Recognition 

Predictors Estimates CI (95%) Estimates CI (95%) 

Intercept 1.51 1.37 – 1.66 1.84 1.70 – 1.97 

CFMT 0.21 0.08 – 0.34 0.14 0.02 – 0.26 

Face d' 0.05 -0.11 – 0.21 0.12 -0.02 – 0.27 

Flower d' 0.09 -0.06 – 0.24 0.07 -0.06 – 0.21 

Face C 0.07 -0.06 – 0.20 0.18 0.06 – 0.30 

Flower C -0.00 -0.14 – 0.14 -0.05 -0.18 – 0.08 

Age 0.03 -0.10 – 0.16 0.16 0.03 – 0.28 

Sex (Female) -0.04 -0.18 – 0.09 -0.06 -0.19 – 0.06 

Hand -0.05 -0.40 – 0.33 0.11 -0.23 – 0.48 
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Table 2. Identified clusters with face recognition metrics reveal positive relationships 

within core face network regions (R pSTS, R FFA, L OFA; bolded in table) and negative 

relationships with object-sensitive medial fusiform cortex. 

X Y Z 

Mean (Z) Volume 

(mm) 

Anatomical 

Label 

Top 

Neurosynth 

Terms 

CMFT: Encode      

58 -48 12 3.17 112 

R Superior 

Temporal 

Sulcus 

temporal 

sulcus, 

posterior 

superior, 

psts 

-30 -48 -16 -3.30 96 

L Fusiform 

Gyrus 

fusiform, 

fusiform 

gyrus, 

objects  

CFMT: Recog.      

40 -44 -28 2.91 80 

R Fusiform 

Gyrus 

face, ffa, 

fusiform 

Face d’: Encode      

-40 -88 -8 3.38 272 

L Lateral 

Occipital 

Cortex 

fusiform 

face, face 

ffa, ffa 

26 -80 -12 -3.01 88 

R Fusiform 

Gyrus 

visual, 

occipital, 

occipito 

Face d’: Recog.      

-38 -92 -10 2.99 80 

L Lateral 

Occipital 

Cortex 

faces, face, 

inferior 

occipital 
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Supporting Information for Chapter 1: Accuracy of fMRI decoding maps for faces in 

domain-specific brain regions relate to individual differences in face recognition ability 

Methods 

Bayesian generalized linear models for statistical inference on behavior 

 

We used the brms software package in R and the state-of-the-art Hamiltonian 

Monte-Carlo No-U-Turn sampler (NUTS) for Bayesian computation and inference on 

behavior (1, 2). Default priors on all the likelihood family-specific parameters were used, 

and soft regularization priors were used, generated by β ~ N(μ = 0, σ = 10) on the 

population-level regression coefficients. We ran 5 independent Markov chains each with 

10,000 total iterations, including 5,000 warm-up iterations, resulting in 25,000 posterior 

samples total for each model. We fixed the target average proposal acceptance 

probability to 99% to improve the quality of sampling and thus the resulting posterior 

distributions. Convergence of the posteriors were confirmed with all R̂ ≈ 1.0, which 

assesses agreement across the Markov chains. Posterior predictive checks were used to 

assess model adequacy (see Fig. S4) (3).  

 

There were several motivating factors for using Bayesian techniques for the 

current research. First, we applied regularization priors to the regression coefficients as a 

way to employ shrinkage and mitigate potential for over-fitting. Second, we modelled 

hierarchy through probability distributions which allows for accurate estimation of 

subject-specific and item-specific parameters, which we used to estimate intercepts and 

repeated-measurements slopes for each participant, as well as intercepts for items, when 

applicable. Third, we had explicit control over the probability distribution of the 

likelihood. This allowed us to use more robust techniques for capturing a better fit to the 

outcomes variables of interest including Bernoulli (trial-level accuracy, hits, and false-

alarms; i.e., logistic regression), Shifted Lognormal (reaction time), Truncated Normal 

(CFMT: 0-72 bound), Skew Normal (d’ and C), and Multivariate Beta (subject-level 

MVPA decoding rates for encoding and recognition phase). Overall, these three factors 

generally lead to more conservative and robust inference relative to the Frequentist 

approach (4). Importantly, some of these exact model specifications require Bayesian 

sampling-based approaches rather than optimization-based techniques given there is 

scarce software support or implementation applying some of these specific Frequentist 

optimization problems. 

 

For each behavioral model, posterior distributions on the stimulus class 

parameters were inspected. Statistical inference for no difference between faces and 

flowers was a two-step process. First, we tested if the 95% credible interval (the Bayesian 

alternative to Frequentist confidence intervals) did not overlap with 0, which would 

suggest a potential difference between the two stimulus classes with that particular 

outcome variable. If there was no overlap with 0, we fit a model without the stimulus 

class term and used the Widely Applicable Information Criterion to determine which 

model fit the data better (5). We report the difference in fit between these models by 

examining the log pointwise-predictive density to determine if there was a substantial 
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difference in that variable across the two stimulus classes. Ultimately, the model with the 

lower WAIC was considered better for the balance between the tradeoff of fit and 

parsimony. In all Bayesian behavioral models, we controlled for potential age and sex 

differences by fitting age as an additive term and sex as a multiplicative term with 

stimulus class. This multiplicative term allows for overall differences in performance 

between men and women, as well as potential sex differences in performance between the 

two stimulus classes. This is important, because the recognition task for faces only 

included male faces, and the selection of flowers could result in plausible differences in 

task performance across sex, as could be expected for other stimulus classes (e.g., cars). 

Imaging parameters and acquisition.  

 

MRI scanning was performed at the University of Virginia Fontaine Research 

Park on a Siemens 3 Tesla MAGNETOM Prisma Fit high-speed imaging device 

equipped with a 32-channel head-coil. First, high-resolution T1-weighted anatomical 

images were acquired using Siemens’ magnetization-prepared rapid-acquired gradient 

echo (MPRAGE) pulse sequence with the following specifications: echo time (TE) = 

2.98 ms; repetition time (TR) = 2300 ms; flip angle (FA) = 9°; image matrix = 240 mm × 

256 mm; slice thickness = 1 mm; 208 slices. Then, whole-brain functional images were 

acquired using a T2*-weighted echo planar imaging (EPI) sequence sensitive to BOLD 

contrast with the following specifications: TE = 30 ms; TR = 800 ms; FA = 52°; image 

matrix = 90 mm x 90 mm; slice thickness = 2.4 mm; slice gap = 2.4 mm; 660 slices. 

Stimuli were presented using an LCD AVOTEC projector onto a screen located behind 

the participant’s head and viewed through an integrated head-coil mirror. 

 

Imaging preprocessing with fMRIPrep 

 

Results included in this chapter come from preprocessing performed using 

fMRIPrep 21.0.0rc1 (6) which is based on Nipype 1.6.1 (RRID:SCR_002502) (7). Many 

internal operations of fMRIPrep use Nilearn 0.8.1 (8), mostly within the functional 

processing workflow. For each participant, the T1-weighted (T1w) image was corrected 

for intensity non-uniformity (INU) with N4BiasFieldCorrection (9), distributed with 

ANTs 2.3.3 (RRID:SCR_004757) (10), and used as T1w-reference throughout the 

workflow. The T1w-reference was then skull-stripped with a Nipype implementation of 

the antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as target 

template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and 

gray-matter (GM) was performed on the brain-extracted T1w using fast (FSL 5.0.11, 

RRID:SCR_002823) (11). Volume-based spatial normalization to one standard space 

(MNI152NLin2009cAsym) was performed through nonlinear registration with 

antsRegistration (ANTs 2.3.3), using brain-extracted versions of both T1w reference and 

the T1w template. The following template was selected for spatial normalization: ICBM 

152 Nonlinear Asymmetrical template version 2009c [RRID:SCR_008796; 

TemplateFlow ID: MNI152Nlin2009cAsym] (12). 

 

For each of the BOLD runs per subject, the following preprocessing was 

performed. First, a reference volume and its skull-stripped version were generated using a 
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custom methodology of fMRIPrep. BOLD runs were slice-time corrected to 0.351s (0.5 

of slice acquisition range 0s-0.703s) using 3dTshift from AFNI (RRID:SCR_005927) 

(13). Head-motion parameters with respect to the BOLD reference (transformation 

matrices, and six corresponding rotation and translation parameters) were estimated 

before any spatiotemporal filtering using mcflirt (FSL 5.0.11) (14). The BOLD reference 

was then co-registered to the T1w reference using flirt (FSL 5.0.11) (15) with the 

boundary-based registration (16) cost-function. Co-registration was configured with nine 

degrees of freedom to account for distortions remaining in the BOLD reference. The 

BOLD time-series (including slice-timing correction when applied) were resampled onto 

their original, native space by applying the transforms to correct for head-motion. These 

resampled BOLD time-series will be referred to as preprocessed BOLD in original space, 

or just preprocessed BOLD. The BOLD time-series were resampled into standard space, 

generating a preprocessed BOLD run in MNI152Nlin2009cAsym space. Several 

confounding time-series were calculated based on the preprocessed BOLD: framewise 

displacement (FD), DVARS and three region-wise global signals. FD was computed 

using two formulations following Power (absolute sum of relative motions (17)) and 

Jenkinson (relative root mean square displacement between affines (14)). FD and 

DVARS are calculated for each functional run, both using their implementations in 

Nipype (17). The three global signals are extracted within the CSF, the WM, and the 

whole-brain masks. Additionally, a set of physiological regressors were extracted to 

allow for component-based noise correction (CompCor) (18). Principal components are 

estimated after high-pass filtering the preprocessed BOLD time-series (using a discrete 

cosine filter with 128s cut-off) for the two CompCor variants: temporal (tCompCor) and 

anatomical (aCompCor). tCompCor components are then calculated from the top 2% 

variable voxels within the brain mask. For aCompCor, three probabilistic masks (CSF, 

WM and combined CSF+WM) are generated in anatomical space. The implementation 

differs (18) in that instead of eroding the masks by 2 pixels on BOLD space, the 

aCompCor masks are subtracted a mask of pixels that likely contain a volume fraction of 

GM. This mask is obtained by thresholding the corresponding partial volume map at 

0.05, and it ensures components are not extracted from voxels containing a minimal 

fraction of GM. Finally, these masks are resampled into BOLD space and binarized by 

thresholding at 0.99 (as in the original implementation). Components are also calculated 

separately within the WM and CSF masks. For each CompCor decomposition, the k 

components with the largest singular values are retained, such that the retained 

components’ time series are sufficient to explain 50 percent of variance across the 

nuisance mask (CSF, WM, combined, or temporal). The remaining components are 

dropped from consideration. The head-motion estimates calculated in the correction step 

were also placed within the corresponding confounds file. The confound time series 

derived from head motion estimates and global signals were expanded with the inclusion 

of temporal derivatives and quadratic terms for each (19). Frames that exceeded a 

threshold of 0.5 mm FD or 1.5 standardized DVARS were annotated as motion outliers. 

All resamplings can be performed with a single interpolation step by composing all the 

pertinent transformations (i.e., head-motion transform matrices, susceptibility distortion 

correction when available, and co-registrations to anatomical and output spaces). Gridded 

(volumetric) resamplings were performed using antsApplyTransforms (ANTs), 

configured with Lanczos interpolation to minimize the smoothing effects of other kernels 
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(20). For GLM-based and connectivity-based analysis, functional images were high-pass 

filtered at .008 Hz using 3 drift components with polynomial bases and cleaned with the 

following fMRIPrep confound derivatives to account for global BOLD signal outside of 

gray matter (csf, white_matter), primary data-driven estimated noise components 

(tcompcor, a_comp_cor_00, a_comp_cor_01) and motion-related parameters (trans_x, 

trans_x_power2, trans_y, trans_y_power2, trans_z, trans_z_power2, rot_x, 

rot_x_power2, rot_y, rot_y_power2, rot_z, rot_z_power2). 
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Fig. S1. Distributions and correlations between CFMT and in-scanner signal detection 

metrics. Across the two stimulus classes, d’ and C are both positively correlated. Only 

Face d’ is positively correlated with CFMT. The model from Table S2 suggests that this 

relationship is unique variance not attributable to other signal detection metrics or 

demographics. 
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Fig. S2. Visualization of ROI mask derived from Neurosynth (keyword: “ffa”). Contrary 

with the suggestion of the keyword name, this mask contains voxels that are preferential 

for both faces and non-face stimuli (see Fig. S3). 
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Fig. S3. Evidence that the “ffa” ROI mask includes many voxels that are not face-

specific. This ROI mask casts a wide net across higher-order visual cortex and relevant 

sub-cortical structures that are important both for face and “object” processing. The 

number of significant voxels for faces and for flowers is relatively balanced within this 

voxel mask.  
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Fig. S4. Posterior predictive distribution checks of all continuous outcome variables 

indicate sufficient model specification for Bayesian inference. Appropriate likelihood 

functions were used to fit CFMT (truncated Gaussian w/ upper bound of 72), d’/ C (skew 

normal), RT (shifted lognormal), and decoding accuracy for both task phases 

(multivariate beta). The posterior stimulus class parameters for the discrete outcomes 

(task accuracy, hits, false alarms) are shown in Figure 1 in the main manuscript. 
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Table S1. Hierarchical Bayesian logistic regression fits suggest that recognition rates are 

similar across the two classes, with a slightly higher level of false alarms for faces 

(WAIC difference of 3.4 in favor null model), indicating that there is no substantial 

difference in false alarms across faces and flowers.  

  Hits False Alarms 

Predictors Log-Odds CI (95%) Log-Odds CI (95%) 

Intercept 0.57 -0.38 – 1.54 -0.41 -1.42 – 0.58 

Stimulus Class (Face) 0.05 -0.09 – 0.19 0.18 0.02 – 0.35 

Sex (Female) 0.14 -0.01 – 0.28 -0.03 -0.18 – 0.12 

Age 0.00 -0.04 – 0.05 -0.04 -0.08 – 0.01 

Random Effects 

σ2 3.29 3.29 

τ00 0.33 Stimulus ID 0.53 Stimulus ID 

 
0.35 Participant 0.38 Participant 

τ11 0.08 Stimulus class slope 0.13 Stimulus class slope 

ρ01     

ρ01     

ICC 0.19 0.24 

N 92 Participants 
 

 
120 Unique stimuli 

 

Observations 5427 5399 

Marginal R2 / Conditional R2 0.007 / 0.128 0.147 / 0.147 
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Table S2. Face d’ is the only signal detection metric calculated from in-scanner 

performance that positively associates with CFMT, suggesting that the face trials engage 

a cognitive process dissociable from general recognition capacities. 

  CFMT | truncated(upper bound=72) 

Predictors Estimates CI (95%) 

Intercept 68.69 63.16 – 84.27 

Face d' 5.47 1.14 – 11.82 

Flower d' -1.12 -5.90 – 3.54 

Face C -2.81 -7.81 – 1.33 

Flower C 0.24 -4.32 – 4.91 

Age -0.65 -5.15 – 3.71 

Sex (Female) 1.79 -2.32 – 6.47 

R2 Bayes 0.162 
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Table S3. Significant univariate activation for face > flower contrast includes regions 

canonically involved in the core face-processing network in the lateral areas of the 

fusiform gyrus and lateral occipital cortex, superior temporal sulcus, and amygdala. 

X Y Z Mean (Z) Volume (mm) Anatomical Label 

44 -46 -24 4.36 8624 R Fusiform Gyrus 

-40 -46 -20 3.73 3256 L Fusiform Gyrus 

60 -62 14 5.47 2616 R Middle Temporal Gyrus, 

Superior Temporal Sulcus 

-54 -46 2 4.65 584 L Middle Temporal Gyrus, 

Superior Temporal Sulcus 

36 -2 -40 2.98 480 R Inferior Temporal Gyrus 

20 -4 -14 6.17 464 R Amygdala, (Para)-hippocampal 

Cortex 

-34 -56 6 3.05 192 L Cerebral White Matter 

-20 -92 -30 7.24 168 L Cerebellum 

44 18 22 5.18 168 R Inferior Frontal Gyrus 

-18 -8 -16 6.46 112 L Amygdala, (Para)-hippocampal 

Cortex 

-38 -92 -14 2.51 96 L Lateral Occipital Cortex 
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Table S4. Significant univariate activation for flower > face contrast includes regions 

canonically involved in object recognition in the medial areas of the fusiform gyrus and 

lateral occipital cortex. 

X Y Z Mean (Z) Volume (mm) Anatomical Label 

 24 -78 -12 -6.52 6936 R Fusiform Gyrus 

-28 -64 -12 -7.18 3560 L Fusiform Gyrus 

-30 -80 -8 -4.92 3456 L Lateral Occipital Cortex 

-10 -104 -2 -3.92 360 L Occipital Pole 

-34 -88 10 -11.4 136 L Middle Occipital Gyrus 

-34 -70 -18 -3.77 128 L Fusiform Gyrus 

48 -82 2 -2.96 96 R Lateral Occipital Cortex 
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Introduction 

 

The body and mind undergo significant changes as we age through the lifespan (1, 

2). These developmental trajectories are critical for healthy development, reducing risk of 

mortality, and overall well-being (3–5). While chronological age is a strong predictor for 

health-related risk factors, it is an incomplete metric that fails to fully characterize the 

unique aging process of individuals with different genetic makeup, neurodevelopment, 

and environmental experiences (6, 7). One of the most striking changes humans undergo 

as we age is general decline across a wide variety of cognitive faculties, including 

memory, reasoning, spatial visualization, and processing speed (8). The current research 

is focused on taking an interdisciplinary approach for understanding cognitive aging 

through an epigenetic and neuroimaging framework. 

 

Recent advances in epigenomic array technologies have made it possible to 

generate DNA methylation-based biomarkers of biological aging (9). These biomarkers, 

called epigenetic clocks, use DNA methylation values from CpG sites across the genome 

to estimate the biological age of a person or tissue. One major advantage of epigenetic 

clocks is that they can be measured from all sources of DNA, including peripheral 

tissues, and can be applied throughout the lifespan (10). The first epigenetic clock, 

Horvath’s multi-tissue age estimator, yields epigenetic age estimates highly correlated 

with chronological age (10).  Biological aging can be differentiated from chronological 

age by taking the residuals leftover from the linear relationship between epigenetic age 

and chronological age, which captures the information embedded in the biomarker 

unexplained by chronological age. A higher epigenetic age compared to an individual’s 

chronological age would indicate they are aging faster than expected. This epigenetic age 

acceleration is associated with risk of mortality and various age-related diseases 

including cancer, cardiovascular diseases, and dementia (11). Additionally, it is possible 

to assess these biomarkers of aging prior to the onset of disease (12, 13). After the 

publication of Horvath’s original multi-tissue age estimator, many other epigenetic clocks 

have been developed that capture different aspects of aging and are sensitive to external 

environmental factors (7). The current research is utilizing DNAmGrimAge, an 

epigenetic clock that was developed to reflect physiological changes associated with 

aging, including known plasma protein biomarkers of aging (14). DNAmGrimAge age 

acceleration (denoted as AgeAccelGrim) stands out among epigenetic clocks in its 

capacity to predict mortality risk and clinically-relevant measures of aging (14, 15). 
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Arguments have been made that general epigenetic processes are crucial for 

healthy cognitive aging (16). While most research has focused on medical and physical 

outcomes related to epigenetic age, several studies have investigated the link between 

epigenetic aging processes and cognition (17–20). One study found that age-adjusted 

Horvath’s clock values negatively correlated with a single g-factor derived from 

cognitive items using principal components analysis in the Lothian Birth cohort (21). A 

similar finding was reported in another sample, and found that digit symbol substitution, 

symbol search 4-choice reaction time, and matrix reasoning survived inference criterion 

after mass-univariate hypothesis testing from a collection of cognitive items (22). A 

longitudinal twin-study found that twins with higher epigenetic age acceleration relative 

to their twin sibling experienced more cognitive decline, which directly points to a role of 

epigenetic modification in cognitive aging (23). However, a different twin-study using 

the original Horvath and Hannum methods did not find evidence for a link between 

epigenetic age acceleration and cognition (24).  

 

A qualitative meta-analysis of the current literature, which includes a 

heterogenous collection of epigenetic clock and cognitive measurements, suggests that 

the link between epigenetic age acceleration and cognition is potentially promising but 

currently unclear and inconsistent (25). The pattern of results in the literature is heavily 

dependent upon the epigenetic clock chosen as well as the investigated cognitive domain, 

with modern epigenetic clocks typically outperforming first-generation epigenetic clocks 

for detecting associations (26). And while studies exist that have looked at structural 

brain changes such as BrainAge estimators, there is a dearth of research examining 

functional brain changes with functional magnetic resonance imaging (fMRI) for age 

accelerated individuals (27). This is important because differences in functional brain 

organization is a putative mechanism for explaining the potential link between epigenetic 

age and cognition (28). 

 

With respect to individual differences in human brain activity, the aging process 

has been examined with resting-state functional connectivity (rsFC) in fMRI. Resting-

state functional networks measure the temporal co-activation of low frequency blood-

oxygen-level-dependent (BOLD) signals when individuals are “at rest” and have shown 

to be stable across timepoints (29, 30). Studies on healthy adults have consistently 

documented aging-related decreases in long-range connectivity within the Default Mode 

Network (DMN), comprised of the medial prefrontal cortex, the posterior cingulate 

cortices, hippocampus and the inferior parietal lobules (31–35). These declines in 

connectivity were preserved after controlling for structural gray matter volume (33, 36). 

In addition, aging has been associated with decreased connectivity in rsFC networks 

associated with attention, salience and/or motor regions (36–38) and increased 

connectivity in networks related to sensorimotor and subcortical structures (38).  

 

Variability in rsFC has also been found to map onto individual differences in 

cognitive abilities (39, 40). In aging individuals, increased connectivity in the DMN have 

been related to better scores on a memory task (41), a cognitive control task (42), a motor 

speed task (43), and an executive functioning and processing speed task (33). However 

increased connectivity has not always been shown to be linked with better cognitive 

47



performance in this age group: Decreased interhemispheric coupling of language 

processing areas were found to be positively correlated with grammar learning (44) and 

decreased connectivity between the thalamus and basal ganglia were positively related 

with verbal episodic memory (45). Newer studies have cited interhemispheric 

connectivity and connectivity within the cingulo-opercular network as important neural 

correlates of cognitive skills in aging adults (46, 47). In summary, rsFC has utility in 

helping us understand age-related changes and variability in cognitive aging.  

 

One particularly influential analysis approach for understanding individual 

differences in resting-state brain networks is the connectome-based predictive model 

(CPM) (48). CPM leverages robust idiosyncrasies of functional connectivity across 

individuals to make phenotypic predictions. CPM is particularly suited for individual 

differences research, as the networks are highly predictive of an individual’s identity 

irrespective of nuisance artifacts such as head motion or anatomical differences (49). 

Successful analysis frameworks using CPM include predicting an individual’s ID, age, 

attention, and general intelligence, among other phenotypes (48, 50, 51). Because 

epigenetic age acceleration and chronological age capture unique components of the 

aging process, it is currently unclear due to the dearth of research whether or not 

epigenetic age acceleration is related to individual differences in functional brain 

connectivity. To our knowledge, no research group has published work on using rsFC to 

examine changes in AgeAccelGrim. 

 

The approach for the current research is unique because we are investigating an 

entire cognitive battery and decomposing those items into interpretable latent factors 

using a network model, and then using neuroimaging as a tool to understand how these 

relationships may be represented in the brain. This is in contrast to the previous studies 

investigating the relationship between epigenetic age and cognition, which have either 1) 

performed principal components analysis to estimate a single g-factor based on only one 

principal component, 2) only analyzed statistical relationships at the item-level which 

may be limited by the idiosyncratic properties of the task relevant to that item, and 3) 

importantly, did not use fMRI to build connectome-based predictive models to 

characterize these relationships in the brain. In other words, it is unclear which cognitive 

domains are consistently impacted by epigenetic age acceleration, and it is unknown if 

functional brain organization is an important mechanism for explaining these 

associations. We are also including measures of crystallized intelligence (e.g., vocabulary 

assessments), in order to disambiguate if the relationship between epigenetic age 

processes and cognition is driven solely by fluid intelligence constructs (i.e., processing 

speed, spatial reasoning, etc.) or not (52). This is an important distinction, given that 

crystallized intelligence typically does not decline with age and may not be as sensitive to 

the aging brain to the same degree as fluid intelligence, which will inform the scope of 

the effect of epigenetic processes on healthy cognition and brain function (53). 

 

The first goal of the current research is to test whether epigenetic aging processes 

(as indexed by AgeAccelGrim) predict individual differences between people across 

multiple cognitive ability domains. Specifically, we hypothesize that individuals who are 

more age accelerated with respect to their epigenome will perform worse on a wide 
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variety of cognitive assessments that measure various facets of both fluid and crystallized 

intelligence. To answer this question, we used a subset of the Virginia Cognitive Aging 

Project (VCAP) cohort who provided samples for epigenetic analysis and underwent 

fMRI. VCAP is one of the world’s largest longitudinal studies of cognitive change in 

normal aging, and has recently been enriched by data collection protocols incorporating 

epigenomic and neuroimaging data (54). This subset of VCAP participants includes 

individuals with scores showing signs of cognitive decline and individuals with scores 

showing signs of cognitive improvement (estimated by their previous visits). To index 

cognitive performance across a wide variety of domains, we used the VCAP cognitive 

battery, which includes 15 scales that map onto the latent domains of processing speed, 

memory, spatial visualization, reasoning, and vocabulary (three scales for each domain). 

This will help clarify whether or not second-generation epigenetic clocks, such as 

AgeAccelGrim, do in fact negatively impact cognition. 

 

The second goal of the current research is to test whether AgeAccelGrim can be 

predicted from an individual’s rsFC fMRI profile using ridge regression connectome-

based predictive models (rCPM). We are specifically interested in whether or not 

individual differences in cognition account for the potential relationship between rsFC 

and AgeAccelGrim. If functional networks were identified as being predictive, we used 

graph-theoretic tools to estimate which brain regions are important for contributing to 

overall model performance. We hypothesize that functional connectivity of brain 

structures that can predict AgeAccelGrim are important functional hubs for higher-order 

cognitive abilities such as those measured by the VCAP cognitive battery. We aimed to 

determine whether the functional connectivity profiles are reflective of general cognitive 

abilities (i.e., g-factor), or a more specific process such as processing speed or memory. 

Answering these questions will enrich our understanding of if and how epigenetic age 

acceleration impacts functional brain network connectivity in the context of cognitive 

differences across individuals. Furthermore, finding evidence in functional brain 

networks may help explain why there is a link between epigenetic aging and cognitive 

aging processes. 

 

Results  

 

Four latent cognitive domains were estimated from the VCAP cognitive battery 

 

Before further modeling, we reduced the dimensionality of the VCAP cognitive 

battery into latent components. The results from Bootstrap Exploratory Graph Analysis 

(bootEGA) suggest four distinct communities, which roughly map to the cognitive 

domains of processing speed, memory, reasoning/ spatial visualization, and vocabulary 

(see Fig. 1). These latent variable communities were stably estimated, such that items 

consistently loaded into the same factor across repeated iterations (for stability metrics, 

please see Fig. S1). The dimensionality assessment of four communities from bootEGA 

corroborates with the Scree plot in Fig. 1 using eigenvalue-eigenvector decomposition. 

The number of eigenvalues greater than 1 is a rough heuristic estimate of the number of 

distinct communities contained in a collection of variables (in this case, 4). The likely 

reason for the reasoning and spatial visualization factors to be collapsed into the same 
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community is the inclusion of the matrix reasoning item, which loads most strongly onto 

this latent variable and requires spatial abilities to solve appropriately. It is also common 

to find that reasoning and spatial visualization abilities are highly positively correlated 

with each other (55). It is important to note that the four derived latent factors are not 

orthogonal, and items from different communities can have non-zero weights onto other 

communities. This makes sense to allow from a cognitive perspective, as we do not 

expect any of these domains to be fully independent of each other.  

 

Marginal correlations between AgeAccelGrim and all measured cognitive items are 

negative 

 

In order to directly compare results from the item-level cognitive data to the 

latent-level cognitive data, we computed a simple Pearson’s correlation matrix between 

all cognitive items, latent variables, AgeAccelGrim, and chronological age (see Fig. 2). 

Participant level summary statistics for cognitive performance and demographics are 

included in Table 1. For this analysis, we are not making any conclusions based on 

significance testing, but rather describing the pattern of marginal associations between all 

of these variables before fitting statistical models. For this specific analysis, data are 

aggregated over session by taking the mean cognitive score across sessions. There are 

several important pieces of information to glean from this analysis. First, by design, there 

is no linear relationship between AgeAccelGrim and chronological age; these two 

random variables are orthogonal with each other. Second, the sign of the marginal 

correlation between AgeAccelGrim and all cognitive items are negative. As expected, the 

same is true for chronological age. Third, the correlation between all cognitive items are 

positive, exhibiting the classical pattern of a positive manifold in cognitive testing (56). 

Fourth, the latent variables estimated from bootEGA (denoted as Proc. Speed, Memory, 

Spatial/ Reasoning, and Vocabulary) capture the unique contributions of the items that 

belong in their respective communities, by exhibiting larger positive correlations within-

community relative to between-community. Finally, because the latent variables 

themselves exhibit a degree of positive correlation, this motivates the use of a 

multivariate statistical model to account for the linear relationships between the response 

variables. 

 

AgeAccelGrim negatively associates with cognitive performance conditioning on 

chronological age and relevant covariates 

 

Results from the multivariate hierarchical Bayesian model indicate that 

AgeAccelGrim does in fact negatively correlate with cognitive performance across all 

four empirically derived latent domains (see Fig. 3 and Table 2). This finding suggests 

that faster epigenetic age acceleration is associated with between-person differences in 

worse cognitive performance across tasks that measure both fluid and crystallized 

intelligence. Using the analogous Bayesian procedure for computing adjusted probability 

values directly from the posterior distributions, processing speed (p = .007), memory (p = 

.004), reasoning/ spatial visualization (p = .009), and vocabulary (p = .009) all survive 

our inference threshold of α = 0.05 using the False Discovery Rate (FDR) procedure for 

multiple comparisons (see Fig. S2 for posterior fits) (57). This further corroborates with 
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the evidence from Fig. 2 that demonstrates the marginal correlation between 

AgeAccelGrim and every single cognitive survey administered has a negative sign. 

Results from the model provide further evidence for a direct relationship between 

AgeAccelGrim and cognitive performance by conditioning on chronological age, sex, 

time factors, and blood cell count indices. By design, AgeAccelGrim and chronological 

age are fully orthogonal to each other, which suggests that AgeAccelGrim explains a 

unique portion of the variance in the response variable not captured by chronological age, 

because both covariates are included in the model estimation. As expected, chronological 

age was also negatively related to all four cognitive domains. The standardized 

AgeAccelGrim β coefficient maximum a-posterior (MAP) estimates for all four cognitive 

variables fall between -0.25 and -0.35. This suggests that a one standard deviation 

increase in AgeAccelGrim results in approximately one-fourth / one-third of a standard 

deviation decrease across all measured cognitive faculties.  

 

Both AgeAccelGrim and Age can be predicted from functional connectomes, and these 

results are accounted for via individual differences in cognition 

 

Using rCPM, we are able to significantly predict AgeAccelGrim (median 

Spearman’s r = .313, non-parametric p = .021) and chronological age (median 

Spearman’s r = .364, non-parametric p = .012) from resting-state functional connectivity. 

Fig. 4 shows the distributions of model performance, and suggests that controlling for 

cognition mitigates the ability to predict AgeAccelGrim and age, suggesting that 

functional connectivity in the brain is a potential mediating mechanism that explains the 

relationship between AgeAccelGrim and cognition. In particular, it seems to be the case 

that memory (median Spearman’s r = .391, non-parametric p = .005) and spatial 

visualization/ reasoning (median Spearman’s r = .316, non-parametric p = .012) are able 

to be predicted from functional connectomes and share the most information with 

epigenetic age and chronological age-functional connectivity associations. In contrast, 

processing speed (median Spearman’s r = .194, non-parametric p = .101) and vocabulary 

abilities (median Spearman’s r = .138, non-parametric p = .183) were not able to be 

predicted from resting-state functional connectomes. Fig. S3 shows example 

representations computed when fitting rCPM models, which are highly correlated with 

simple bivariate correlations between pairwise connectivity and AgeAccelGrim, and 

suggest interpretability of the resulting coefficients. 

 

The most important brain regions within the connectome for predicting AgeAccelGrim 

and Age support memory processes 

 

Using eigenvector centrality to estimate which brain regions are important within 

the rCPM model, we found that the top five brain regions used to predict AgeAccelGrim 

and memory are similar, and that these structures largely support memory processes. 

Table 3 shows the most important brain regions in terms of functional connectivity that 

support a healthy aging process indexed by less epigenetic age acceleration and better 

memory performance. These brain regions include medial temporal lobe structures such 

as the hippocampus, parahippocampal cortex, anterior temporal lobe, orbitofrontal cortex, 

and retrosplenial cortex. Table 4 shows the most important brain regions that indicate a 
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more at-risk aging process indexed by more epigenetic age acceleration and worse 

memory performance. Interestingly, this model returned some similar nearby patches of 

subcortex including hippocampal regions within the medial temporal lobe, as well as the 

caudate nucleus and amygdala. Because of the similarity of results across both the 

positive and negative weight models, particularly for the medial temporal lobes, it 

appears that more functional connectivity in some medial temporal lobe structures is 

indicative of healthy aging while in others less functional connectivity. Fig. 5 and Fig. 6 

show that networks for more epigenetic age acceleration and worse memory (and vice 

versa) have similar structure, as indexed by opposing color patterns particularly in the 

limbic system, but also in cerebellum, brainstem, and subcortical connections to proximal 

lobes. Fig. S4 shows that this structure is specific to AgeAccelGrim, by demonstrating 

that chronological age does not show the same opposing color pattern in the Hinton 

diagrams with respect to the memory networks. Table S1 includes the most important 

regions for predicting older age and younger age, which also include hippocampus, 

parahippocampus, and orbitofrontal cortex, as well as the caudate. Importantly, the 

important brain regions detected with AgeAccelGrim and age are different nodes in the 

network, thus adding unique information and complementary information when 

considered together. 

 

Discussion  

 

This research provides evidence that epigenetic age acceleration relates to 

between-person differences in cognitive abilities of both fluid and crystallized 

intelligence, and that functional connectivity profiles that predict AgeAccelGrim are 

similar to functional connectivity profiles that predict memory abilities. Specifically, 

individuals with more epigenetic age acceleration tended to perform worse on tasks that 

spanned a wide variety of cognitive faculties, and brain regions crucial for successful 

memory formation were most important for predicting AgeAccelGrim in the aging brain. 

These differences cannot be explained by chronological age alone, in that AgeAccelGrim 

and chronological age are orthogonal variables, and both were included/ controlled for in 

each statistical model. This suggests that epigenetic age explains a unique portion of 

variance of cognitive ability that chronological age does not capture, and this relationship 

may be explained by connectivity of memory brain structures primarily within the limbic 

system. Furthermore, at the behavioral level the effect of epigenetic age on cognition 

seems to negatively impact multiple domains and is not limited to fluid intelligence 

metrics. Interestingly the estimated slope values for AgeAccelGrim and chronological 

age were relatively close in standardized value across the domains, which may suggest 

that both factors are similarly important for predicting cognitive performance.  

 

In terms of the brain, however, this relationship does seem to be specific to 

memory and/or spatial visualization and reasoning processes in this cohort. This was 

reflected in the brain systems identified as important using rCPM, which largely 

implicated sub-cortical structures in the medial temporal lobe and limbic system. 

Connectivity within these nearby structures has been previously shown to change through 

aging and relates to cognitive outcomes (58–60). Furthermore, the direction of 

connectivity (positive vs. negative) depends on the exact structures measured in these 
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systems, such as the head, tail, or body of the hippocampus (61). Model systems work 

corroborates with human studies, such that differential connectivity in CA1 and CA3 

regions of the hippocampus in rats undergoing resting-state fMRI is associated with age-

related memory deficits (62). Taken together, these brain structures are known to be 

important for aging and cognitive change, and here we demonstrate that epigenetic age 

acceleration captures a unique portion of this functional brain organization as it pertains 

to these differences. 

 

There are several limitations to the current research. Ideally, epigenetic age 

indices are tracked longitudinally in temporal synchrony with cognitive measurements 

and fMRI to assess within-person dynamics of these three factors through time. Access to 

this data could facilitate answering the question if epigenetic age acceleration precedes or 

follows cognitive decline within an individual as they age. While this would not be a 

fully causal explanation, it would provide insight into understanding which of these 

factors is first impacted by the aging process. We hypothesize that epigenetic age 

acceleration does in fact precede deficits in cognitive performance and differential 

functional connectivity, but more studies would need to be designed to provide evidence 

for an answer to that question. Another limitation of this study is the participant sample, 

which consists of relatively healthy older adults. Estimating the average association 

between epigenetic age acceleration, cognition, and functional brain connectivity would 

require sampling from across the lifespan as well as across the entire spectrum of general 

health. It is difficult to say if the relationship between epigenetic age acceleration, 

cognition, and functional brain connectivity would be heightened or diminished if a 

sample fully representative of the population were assessed.  

 

The VCAP cohort is in a unique position to contribute to our understanding of 

when and how pathological aging diverges from normal cognitive aging. This could 

manifest as Mild Cognitive Impairment (MCI) or more severe cases such as Alzheimer’s 

disease and Alzheimer’s disease related dementias (AD/ADRD). A future goal is to be 

able to estimate the likelihood of healthy and pathological development using epigenetic 

age, so that we can build better systems for predictive diagnostics and early intervention 

for specific persons. This could be accomplished through a rich and interdisciplinary 

individual differences approach to studying cognitive aging, by tracking epigenomic, 

phenotypic, and neuroimaging data together through time longitudinally. While further 

research is necessary for direct applications of these findings, epigenetic age acceleration 

together with neuroimaging in the future could be used as an important factor to consider 

for assessing risk of cognitive decline for individuals. The current research provides 

evidence that this could be a promising future approach for prospectively predicting 

cognitive decline risk, as the collection of epigenetic age and brain data becomes less 

expensive, and the quantification of this specific risk is analyzed with a sample 

representative of the general population. In summary, this research provides further 

evidence for the important role of epigenetic aging processes on the development and 

maintenance of healthy cognitive capacities, and suggests that functional connectivity 

within relevant brain structures for these capacities is differentially modulated through 

epigenetic age. 
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Materials and Methods 

  

Experimental Design 

 

The VCAP cognitive battery was measured longitudinally, across short and long 

time-scales using a variable retest interval and measurement burst design. For each 

occasion, participants’ cognitive abilities were surveyed three times in two-hour sessions, 

with each session being separated by two weeks. For the current research, we are only 

examining the occasion (three sessions per participant, N = 103) that is closest in time to 

the provided epigenetic sample. Only 98 out of the 103 participants underwent fMRI, 

thus the neuroimaging analysis and results are based on the 98 participants who 

completed our fMRI protocol, while the behavioral results include all 103 participants. 

 

Cognitive Measurements 

 

Each cognitive scale name has an associated abbreviation in parentheses for its 

name which is used in all figures and tables in order to conserve space. Descriptions of 

these tasks were abbreviated from descriptions previously published (8). Sum scores of 

each cognitive task were computed as the basis for the bootEGA model. 

 

Processing Speed 

 

The three instruments used to assess processing speed were Digit Symbol 

Substitution (DigSym), Pattern Comparison (PatCom), and Letter Comparison (LetCom). 

DigSym involves referencing a code table to write symbols arbitrarily paired with digits 

as quickly as possible (63). PatCom involves determining if two line patterns are the 

same or different as quickly as possible (64). LetCom involves determining if two letter 

strings are the same or different as quickly as possible (65). 

 

Memory 

 

The three instruments used to assess memory were Word Recall (Recall), Logical 

Memory (LogMem), and Paired Associates (PAssoc). Recall requires listening to a list of 

12 unrelated words and then immediately recalling as many as possible (66). LogMem 

requires listening to a story and then immediately recalling as many details of that story 

as possible (66). PAssoc requires listening to six pairs of unrelated words, and then 

recalling the second member of the pair after being cued by the first member (67).  

 

Spatial Visualization 

 

The three instruments used to assess spatial visualization were Spatial Relations 

(SpaRel), Paper Folding (PapFld), and Form Boards (FrmBrd). SpaRel involves 

identifying which three-dimensional figures corresponds to which two-dimensional figure 

if it were assembled (68). PapFld involves selecting the pattern of holes that would result 

if a piece of paper were to be folded and a hole were punched in the specified location 
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(69). FrmBrd involves selecting pieces that could be constructed to fill a designated form 

(69). 

 

Reasoning 

 

The three instruments used to assess reasoning were Matrix Reasoning (MatRea), 

Shipley Abstraction (Ship), and Letter Sets (LetSet). MatRea requires choosing a solution 

from alternatives to complete the missing cell in a matrix of geometric patterns (70). Ship 

requires determining the best option for completing a pattern from a series of elements 

(71). LetSet requires identifying the outlier among sets of letters that does not follow the 

same pattern/ rule as the others (69).  

 

Vocabulary 

 

The three instruments used to assess vocabulary were WAIS Vocabulary (Vocab), 

Synonym Vocabulary (SynVoc), and Antonym Vocabulary (AntVoc). Vocab asks 

participants to provide a definition for each word where scores are either incorrect, 

incomplete, partially correct, or correct (63). SynVoc asks participants to identify which 

of five words is the synonym to the target word (72). AntVoc asks participants to identify 

which of five words is the antonym to the target word (72). 

 

Epigenetic Age 

 

Eight and a half milliliters of whole blood were drawn into a PAXgene Blood 

DNA Tube (PreAnalytiX, Hombrechtikon, Switzerland). Samples were stored at 20°C for 

short-term storage (up to 3 months) then transferred to -80°C for long-term storage. DNA 

was extracted using the PAXgene Blood DNA kit (PreAnalytiX, Hombrechtikon, 

Switzerland) according to manufacturer instructions. DNA concentration was determined 

by Quant-iT™ PicoGreen® dsDNA reagent (Thermofisher Scientific, Waltham, MA, 

USA) per manufacturers instruction. Florescence was detected using a Tecan Infinite 

M200 Pro microplate reader (Tecan, Switzerland). 500 ng of DNA was bisulfite treated 

using a Zymo EZ DNA Methylation kit (Zymo Research, Irvine, CA) using PCR 

conditions for Illumina's Infinium Methylation assay (95°C for 30 seconds, 50°C for 60 

minutes×16 cycles). DNA methylation was assayed using the Illumina Infinium 

MethylationEPIC BeadChips. Briefly, a total of 4μL of bisulfite converted DNA was 

hybridized to Illumina BeadChips using the manufacturer's protocols. Samples were 

denatured and amplified overnight for 20 to 24 hours. Fragmentation, precipitation, and 

resuspension of the samples followed overnight incubation, before hybridization to EPIC 

BeadChips for 16 to 24 hours. BeadChips were then washed to remove any unhybridized 

DNA and labeled with nucleotides to extend the primers to the DNA sample. Following 

the Infinium HD Methylation protocol, the BeadChips were imaged using the Illumina 

iScan system (Illumina). 

 

Raw .idat files were read and preprocessed using the minfi package in R (73, 74). 

The data set was preprocessed using noob for background subtraction and dye-bias 

normalization. All methylation values with detection P > 0.01 were set to missing 
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(median sample: 765 probes, range: 319 to 4453), and probes with >1% missing values (n 

= 6,663) were removed from further analysis. All samples were checked and confirmed 

to ensure that predicted sex matched reported sex. Additionally, samples were checked 

for excessive missing data (>5%) and unusual cell mixture estimates, which was 

estimated using the Houseman method as implemented in minfi (75, 76). All samples 

passed these quality controls. Principal components analysis, as implemented in the 

shinyMethyl package in R, was used to examine batch effects (77). The first seven 

principal components were examined using plots and potential batch effects were tested 

using linear models. Principal components 3 and 6, which accounted for 2.38% and 

1.65% of total variance respectively, were associated with position on the array (PC3: F(7, 

100) = 6.668, p = 1.77e-6, adjusted R2 = 0.271; PC6: F(7, 100) = 2.328, p = 0.030, adjusted 

R2 = 0.080). Principal components 1, 4, and 5, which accounted for 3.63%, 1.89%, and 

1.77% of the total variance were associated with bisulfite conversion plate (PC1: F(1, 106) 

= 9.918, p = 0.002, adjusted R2 = 0.077; PC4: F(1, 100) = 34.04, p = 5.932e-8, adjusted R2 = 

0.236; PC5: F(1, 100) = 31.07, p = 1.91e-7, adjusted R2 = 0.219). Principal components 4 

and 5 were associated with array (PC4: F(13, 94) = 4.332, p = 1.14e-5, adjusted R2 = 0.288; 

PC5: F(13, 94) = 4.229, p = 1.06e-5, adjusted R2 = 0.282). Bisulfite conversion plate and 

array number were associated with each other, as samples on the same array originated 

from the same bisulfite conversion plate. Because samples were randomized across plates 

and arrays, and proportions of variance explained by associated principal components 

were low, no batch correction method was used. The ewastools package in R was used to 

assess Illumina quality control metrics and call genotypes and donor IDs to ensure the 

identity of repeated samples from the same individual (78). All samples passed Illumina 

quality controls. 

 

To determine assay variability, we included one set of five technical replicates 

and an additional three sets of two technical replicates. After quality control filters and 

normalization procedures were applied, the 5,000 CpGs with the most variable M values 

were used as input for calculating Pearson’s correlation coefficients among all pairwise 

combinations of samples. Pearson’s correlation of unrelated samples (different 

individuals) were below 0.8, while correlations of technical replicates ranged from 0.988-

0.994, indicating high agreement between technical replicates. 

 

Unnormalized betas were filtered to include CpGs specified by Horvath as 

necessary for calculation of various clocks. The betas were uploaded to Horvath’s online 

DNA methylation age calculator (htpps://dnamage.genetics.ucla.edu), which provides 

measures of Horvath’s multi-tissue age estimator, DNA methylation GrimAge, and cell 

type abundance (10, 79). A sample annotation file was included. The options to 

normalize data and apply advanced analysis were selected. Technical replicates were 

used to determine measurement error of DNAmAge, the output of Horvath’s multi-tissue 

age estimator. The absolute difference of DNAmAge between technical replicate pairs 

was taken, as was the highest absolute difference in the set of five technical replicates. 

The median of the absolute difference was 2.02 years (range: 0.44-5.73 years), 

comparable to previous reports of measurement error being approximately 2.41 years 

(80).  
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Functional Magnetic Resonance Imaging 

 

Imaging Parameters and Acquisition 

 

MRI scanning was performed at the University of Virginia Fontaine Research 

Park on a Siemens 3 Tesla MAGNETOM Prisma Fit high-speed imaging device 

equipped with a 32-channel head-coil. First, high-resolution T1-weighted anatomical 

images were acquired using Siemens' magnetization-prepared rapid-acquired gradient 

echo (MPRAGE) pulse sequence with the following specifications: echo time (TE) = 

2.98 ms; repetition time (TR) = 2300 ms; flip angle (FA) = 9°; image matrix = 240 mm × 

256 mm; slice thickness = 1 mm; 208 slices. Then, whole-brain functional images were 

acquired using a T2*-weighted echo planar imaging (EPI) sequence sensitive to BOLD 

contrast with the following specifications: TE = 30 ms; TR = 800 ms; FA = 52°; image 

matrix = 90 mm x 90 mm; slice thickness = 2.4 mm; slice gap = 2.4 mm; 660 slices. We 

collected two 610 volume resting-state functional runs, totaling 976 seconds of resting-

state functional imaging data for each participant. A black crosshair on a gray 

background was presented using an LCD AVOTEC projector onto a screen located 

behind the participant’s head and viewed through an integrated head-coil mirror. 

 

Pre-processing with fMRIPrep 

 

Results included in this chapter come from preprocessing performed using 

fMRIPrep 21.0.2 (RRID:SCR_016216) (81), which is based on Nipype 1.6.1 

(RRID:SCR_002502) (82). Many internal operations of fMRIPrep use Nilearn 0.8.1 (83), 

mostly within the functional processing workflow. For more details of the pipeline, 

see the section corresponding to workflows in fMRIPrep’s documentation. For each 

participant, the T1-weighted (T1w) image was corrected for intensity non-uniformity 

(INU) with N4BiasFieldCorrection (84), distributed with ANTs 2.3.3 

(RRID:SCR_004757) (85), and used as T1w-reference throughout the workflow. The 

T1w-reference was then skull-stripped with a Nipype implementation of the 

antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as target template. 

Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-

matter (GM) was performed on the brain-extracted T1w using fast (FSL 

6.0.5.1:57b01774, RRID:SCR_002823) (86). Volume-based spatial normalization to one 

standard space (MNI152NLin2009cAsym) was performed through nonlinear registration 

with antsRegistration (ANTs 2.3.3), using brain-extracted versions of both T1w reference 

and the T1w template. The following template was selected for spatial normalization: 

ICBM 152 Nonlinear Asymmetrical template version 2009c (RRID:SCR_008796; 

TemplateFlow ID: MNI152NLin2009cAsym) (87). A deformation field to correct for 

susceptibility distortions was estimated based on fMRIPrep’s fieldmap-less approach. The 

deformation field is that resulting from co-registering the EPI reference to the same-

subject T1w-reference with its intensity inverted (88, 89). Registration is performed with 

antsRegistration (ANTs 2.3.3), and the process regularized by constraining deformation 

to be nonzero only along the phase-encoding direction, and modulated with an average 

fieldmap template (90). 
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For each of the two BOLD resting-state runs per subject, the following 

preprocessing was performed. First, a reference volume and its skull-stripped version 

were generated using a custom methodology of fMRIPrep. Head-motion parameters with 

respect to the BOLD reference (transformation matrices, and six corresponding rotation 

and translation parameters) were estimated before any spatiotemporal filtering 

using mcflirt (FSL 6.0.5.1:57b01774) (91). The estimated fieldmap was then aligned with 

rigid-registration to the target EPI (echo-planar imaging) reference run. The field 

coefficients were mapped on to the reference EPI using the transform. BOLD runs were 

slice-time corrected to 0.351s (0.5 of slice acquisition range 0s-0.703s) using 3dTshift 

from AFNI (RRID:SCR_005927) (92). The BOLD reference was then co-registered to 

the T1w reference using mri_coreg (FreeSurfer) followed by flirt (FSL 6.0.5.1:57b01774) 

(93) with the boundary-based registration cost-function (94). Co-registration was 

configured with six degrees of freedom. 

 

Several confounding time-series were calculated based on the preprocessed 

BOLD: framewise displacement (FD), DVARS and three region-wise global signals. FD 

was computed using two formulations following Power (absolute sum of relative motions 

(95)) and Jenkinson (relative root mean square displacement between affines (91)). FD 

and DVARS were calculated for each functional run, both using their implementations 

in Nipype (95). The three global signals were extracted within the CSF, the WM, and the 

whole-brain masks. Additionally, a set of physiological regressors were extracted to 

allow for component-based noise correction (CompCor) (96). Principal components were 

estimated after high-pass filtering the preprocessed BOLD time-series (using a discrete 

cosine filter with 128s cut-off) for the two CompCor variants: temporal (tCompCor) and 

anatomical (aCompCor). tCompCor components were then calculated from the top 2% 

variable voxels within the brain mask. For aCompCor, three probabilistic masks (CSF, 

WM and combined CSF+WM) were generated in anatomical space. The implementation 

differs (96) in that instead of eroding the masks by 2 pixels on BOLD space, the 

aCompCor masks are subtracted a mask of pixels that likely contain a volume fraction of 

GM. This mask is obtained by thresholding the corresponding partial volume map at 

0.05, and it ensures components are not extracted from voxels containing a minimal 

fraction of GM. Finally, these masks are resampled into BOLD space and binarized by 

thresholding at 0.99 (as in the original implementation). Components are also calculated 

separately within the WM and CSF masks. For each CompCor decomposition, the k 

components with the largest singular values are retained, such that the retained 

components’ time series are sufficient to explain 50 percent of variance across the 

nuisance mask (CSF, WM, combined, or temporal). The remaining components are 

dropped from consideration. The head-motion estimates calculated in the correction step 

were also placed within the corresponding confounds file. The confound time series 

derived from head motion estimates and global signals were expanded with the inclusion 

of temporal derivatives and quadratic terms for each (97). Frames that exceeded a 

threshold of 0.5 mm FD or 1.5 standardized DVARS were annotated as motion outliers.  

 

The BOLD time-series were resampled into standard space, generating a 

preprocessed BOLD run in MNI152NLin2009cAsym space. All resamplings can be 

performed with a single interpolation step by composing all the pertinent transformations 
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(i.e., head-motion transform matrices, susceptibility distortion correction when available, 

and co-registrations to anatomical and output spaces). Gridded (volumetric) resamplings 

were performed using antsApplyTransforms (ANTs), configured with Lanczos 

interpolation to minimize the smoothing effects of other kernels (98).  

 

Parcellation and Image Preparation 

 

At the parcellation step, functional images were high-pass filtered at .008 Hz and 

cleaned with the following fMRIPrep confound derivatives to account for global BOLD 

signal outside of gray matter (csf, white_matter), primary data-driven estimated noise 

components (tcompcor, a_comp_cor_00, a_comp_cor_01) and motion-related parameters 

(trans_x, trans_x_power2, trans_y, trans_y_power2, trans_z, trans_z_power2, rot_x, 

rot_x_power2, rot_y, rot_y_power2, rot_z, rot_z_power2). For both resting-state 

functional scans, parcellation was performed by taking the framewise average of the 

voxel-wise signals in each of the 268 nodes from the Shen atlas (99). The Shen atlas is a 

functionally defined parcellation that covers the whole brain, including cortex, subcortex, 

and cerebellum. The two resting-state scans were concatenated along the time dimension 

before calculating connectivity, as this can improve reliability of estimates (100). We 

calculated Fisher Z transformed Pearson correlation coefficients between the activity time 

courses of all possible pairs of nodes to construct 268 x 268 symmetric functional 

connectivity matrices. Only the lower triangle of each functional connectivity matrix was 

extracted and vectorized, discarding the constant diagonal, resulting in 35778 unique 

connections/ edges, which served as input features (i.e., columns in the design matrix) to 

rCPM. 

 

Statistical Analysis 

 

Bootstrap Exploratory Graph Analysis 

 

In order to reduce the dimensionality of the cognitive measurements into a latent 

space, we applied bootEGA using the EGAnet package in R (101). bootEGA is a 

community detection and network analysis method to evaluate the dimensional structure 

estimated using Exploratory Graph Analysis (EGA) (102, 103). The general approach of 

bootEGA is to generate bootstrap samples and apply EGA to each replicate sample, 

forming a sampling distribution of EGA results. EGA models a collection of variables 

through estimation of a sparse regularized partial correlation matrix using the graphical 

LASSO (GLASSO) procedure (104). 

 

The parametric bootstrap procedure begins by estimating a network using EGA 

and then generating new replicate data from a multivariate normal distribution (with the 

same number of cases as the original data). EGA is then applied to the replicate data, 

continuing iteratively until the desired number of samples is achieved (1000 iterations 

used). The result is a sampling distribution of EGA networks. From this sampling 

distribution, a median (or typical) network structure was estimated by computing the 

median value of each edge across the replicate networks, resulting in a single network. 

Such a network represents the “typical” network structure of the sampling distribution. 
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The Louvain community detection algorithm was then applied, resulting in dimensions 

that would be expected for a typical network from the EGA sampling distribution 

(identical community membership estimated by the Walktrap algorithm for comparison) 

(105). One metric for structural consistency is item stability or the robustness of each 

item's placement within each empirically derived dimension. Item stability is estimated 

by computing the proportion of times each item is placed in each dimension. This metric 

provides information about which items are leading to structural consistency (replicating 

often in their empirically derived dimension) or inconsistency (replicating often in other 

dimensions). 

 

 We computed standardized network community scores for each community from 

the model-implied graph from EGA. The standardized network community scores are 

linear combinations of the original measurements within the cognitive battery. These 

network scores are compressed representations of the original data and are analogous to 

component vectors from principal components analysis or factor scores from factor 

analysis (106). Each cognitive dimension derived from EGA (four, in this case) has its 

own network score vector. This means each participant has four network scores for each 

session, and each network score is computed as a linear combination of the weighted 

items that load onto each community. 

 

Hierarchical Bayesian Model Approach 

 

In order to model cognitive performance as a function of AgeAccelGrim, 

chronological age, sex, and blood cell count covariates (abbreviated as NK, Mono, Gran, 

PlasmaBlast, CD8pCD28nCD45Ran, CD8.naive, CD4.naive), we fit a multivariate 

hierarchical Bayesian generalized linear model with a Student-T likelihood. Because 

blood cell counts are known to influence DNAmGrimAge, we account for these age-

related changes in immune cell populations to ensure the epigenetic age acceleration 

parameters are not merely indicative of blood cell counts (107). We used the Student-T 

likelihood as an alternative to the traditional Gaussian likelihood, because the Student-T 

alternative is more robust to outliers and converges to the Gaussian solution when 

Gaussian assumptions are in fact met (108). Interpreting the coefficients of Student-T 

regression (also known as robust regression in a Bayesian framework) is similar to 

traditional regression with a Gaussian likelihood. Each latent cognitive domain response 

variable was jointly estimated in a multivariate model to account for correlation across 

each domain.  

 

We used the brms software package in R and the state-of-the-art Hamiltonian 

Monte-Carlo No-U-Turn sampler (NUTS) for Bayesian computation and inference (109, 

110). Default priors on the intercepts were generated by Student-T(ν = 3, μ = 0.2, σ = 

2.5), and the σ scale parameters were generated by Student-T(ν = 3, μ = 0, σ = 2.5). 

Priors for the ν degrees of freedom parameter were generated by γ(α = 2, β = 0.1), with 

special treatment of the vocabulary prior γ(α = 12, β = 0.1), due to its consistent 

underestimation of ν which would lead to unstable posteriors without being addressed. 

Priors for the correlation matrices between fixed and random effects were generated by 

LKJ-Cholesky(η = 1). We ran 7 independent Markov chains each with 20,000 total 
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iterations, including 10,000 warm-up iterations. We fixed the target average proposal 

acceptance probability to 99% to improve the quality of sampling and thus the resulting 

posterior distributions. Convergence of the posteriors were confirmed with all R̂ ≈ 1.0, 

which assesses agreement across the Markov chains. Posterior predictive checks were 

used to assess model adequacy (111). 

 

Posterior distributions on the parameters can be inspected and inference can be 

employed using credible intervals (the Bayesian alternative to Frequentist confidence 

intervals). Additionally, we can simply look at the ratio of posterior density on respective 

sides of 0. Counting the number of observations in the sampled posterior distribution for 

a given parameter on the side of 0 that has the minority, and then multiplying that count 

by 2, results in a Bayesian analogue to a two-tailed Frequentist p-value. The hypothesis 

function in brms returns these posterior probabilities for inference (112). This procedure 

is not directly sensitive to the prior relative to alternative procedures such as bayes 

factors, making it a more attractive option when the priors are used simply for 

regularization and are not informed by domain knowledge (113). 

 

There are several motivating factors for using Bayesian techniques for the current 

research. First, we can apply regularization priors to the regression coefficients as a way 

to employ shrinkage and mitigate potential for over-fitting, generated by β ~ N(μ = 0, σ 

= 10). Second, we can easily model hierarchy through probability distributions which 

allows for accurate estimation of subject-specific parameters, which we used to estimate 

intercepts and slopes through session to account for potential practice-effect noise. Third, 

we have explicit control over the probability distribution of the likelihood. This allows us 

to use more robust techniques such as Student-T regression. Overall, these three factors 

generally lead to more conservative and robust inference relative to the Frequentist 

approach (114). Last, we can fit this hierarchical model in a multivariate context, which 

typically requires Bayesian sampling-based approaches rather than optimization-based 

techniques given there is scarce software support or implementation applying this 

specific Frequentist optimization problem.  

 

Ridge Regression Connectome-based Predictive Modeling 

 

It has been shown that treating connectivity vectors as columns for predicting 

behavior using ridge regression tends to perform better than other popular connectome-

based modeling approaches (115). Ridge regression is a linear supervised learning 

technique that regularizes model coefficients toward 0 with the canonical L2 norm. The 

regularization degree is governed by a single parameter, λ, where large values perform 

more shrinkage and small values perform less shrinkage. We performed rCPM using a 

repeated (N = 100) outer K-fold (K = 10) cross-validation procedure where individuals 

were split into 10 folds, models were trained using 9 of the folds, and then evaluated on 

the held-out fold. Within each cross-validation split, we tuned λ with an inner 2-fold 

cross-validation loop to conservatively estimate optimal regularization strength and 

overall prediction fit. The phenotypic outcomes were residualized with respect to 

confound/ nuisance variables specific for each analysis.  
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Prediction performance for the rCPM models were evaluated using the Spearman 

correlation, since successful rank prediction across participants was considered most 

important. To assess the statistical significance of prediction performance, we generated 

null distributions of expected performance metrics due to chance by permuting 

behavioral scores with respect to individuals and ran the rCPM pipeline for 1000 

iterations. Then, we calculated a non-parametric p-value, which tallies the number of 

times the performance metric for each of the 1000 iterations of the null distribution 

exceeds the median performance metric of the 100 true iterations. The coefficient 

matrices were treated as networks to estimate importance of specific brain regions by 

calculating eigenvector centrality on the ridge regression coefficient matrix averaged 

across cross-validation iterations and separated by positive and negative sign. The top 2% 

of coefficients for both the positive and negative sign were used for the network 

visualizations. 
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Figures and Tables 

Fig. 1. Four latent domains estimated from the cognitive battery using bootEGA. Panel A 

shows the estimated graph of the cognitive battery, where distinct colors reflect distinct 

communities and the size of the edges between nodes reflects the strength of the connection. 

Panel B shows the regularized partial correlation matrix that is a numeric representation of the 

graph, where white space indicates no connection between those nodes, and the cell entries 

represent edge strength between each node. This is the adjacency matrix for the graph and was 

estimated using GLASSO. Panel C shows the eigenvalue-eigenvector decomposition of the 

cognitive battery, providing additional supporting evidence that there are approximately 4 latent 

variables among the original set of items.   
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Fig. 2. AgeAccelGrim negatively correlates with all cognitive items measured.  

Shown is the raw correlation matrix between AgeAccelGrim, chronological age, the original 

cognitive items, and the 4 latent cognitive domains. Data is aggregated over the three sessions by 

taking the mean for this visualization. There is no linear relationship between AgeAccelGrim and 

chronological age. At the marginal level, both AgeAccelGrim and chronological age negatively 

associate to some degree with all of the cognitive items surveyed, as well as the 4 latent domains. 

As expected, the cognitive items and latent cognitive domains are positively correlated with each 

other.   
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Fig. 3. AgeAccelGrim negatively associates with all 4 latent cognitive domains after 

adjusting for chronological age and all covariates. Panel A shows the posterior estimates for 

the AgeAccelGrim regression coefficients for each response variable as black lines with 

uncertainty bands showing the uncertainty. Overlaid are the raw data used to fit the model, which 

includes session-level information. Panel B shows the density plots on the bottom of the entire 

posterior distribution of parameter values, with 95% credible intervals indicated by the lines 

underneath the density. There is very little overlap with 0, suggesting that the relationship 

between AgeAccelGrim, conditional on chronological age and all other covariates, is reliably 

negative. The actual posterior probability values are included in the main text.

76



 
Fig. 4. rCPM significantly predicts AgeAccelGrim, Age, and Memory/ Spatial Reasoning. 

Using both fMRI resting state input scans, rCPM can predict epigenetic age and chronological 

age, as well as memory and spatial reasoning (which are highly positively correlated). The 

phenotype (blue) distributions for the AgeAccelGrim analysis controlled for age, sex and the 

time difference between blood draw/ brain scan and cognitive assessment, and conversely the 

age analysis controlled for AgeAccelGrim, sex, and the time difference. The control-adjusted 

(orange) distributions for AgeAccelGrim and Age additionally controlled for all four cognitive 

factors. The phenotype (blue) distributions of the cognitive factors controlled for sex and time 

difference. The control-adjusted (orange) distributions for all four cognitive factors additionally 

controlled for Age and AgeAccelGrim. These results show that the functional connectome 

contains information uniquely relevant for both epigenetic age and chronological age, and that 

information is shared with individual differences in cognition, particularly memory.  
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Fig. 5. Networks reflective of memory performance and AgeAccelGrim show largely 

opposite patterns at the lobe-level. Hinton plot visualizations show that memory and 

AgeAccelGrim have opposing network structure patterns, suggesting that better memory and 

slower epigenetic age acceleration (and vice versa) are captured through similar lobe-level 

connections through the functional connectome. Size corresponds to the sum of edges in the 

“high”- and “low” networks standardized by the number of possible edges between each pair of 

regions. Color corresponds to the difference between edges in the high- and low-phenotype 

networks, such that red corresponds to edges mostly in the better memory/ more epigenetic age 

accelerated network and blue corresponds to edges mostly in the worse memory/ less epigenetic 

age accelerated network. In particular, the limbic, cerebellar, and brainstem networks, as well as 

the subcortical connections to those three networks, have opposing strength. These results are in 

line with the hypothesis that epigenetic age acceleration and memory performance are negatively 

correlated at least in part due to functional brain activity differences.  
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Fig. 6. Networks reflective of memory performance and AgeAccelGrim show largely 

opposite patterns at the edge-level. Circle plot diagrams show that memory and AgeAccelGrim 

have opposing network structure patterns, suggesting that better memory and slower epigenetic 

age acceleration (and vice versa) are captured through similar edge-level connections through the 

functional connectome. Edges in the positive networks are visualized in red, and edges in the 

negative network are visualized in blue. Darker lines correspond to edges with higher strength 

(absolute value).  
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Trait Minimum Mean Maximum SD 

Age-related variables 
Age 59 68.98 81 5.68 

AgeAccelGrim -6.46 -0.16 9.88 3.49 

DNAmGrimAge 54.77 64.95 79.84 5.52 

Time Difference (Days) 21 331.54 1288 124.13 

Cognitive measurements 
DigSym 35 72.24 107.67 12.61 

PatCom 6.5 14.78 25.5 3.2 

LetCom 4.5 9.71 17.17 2.05 

Recall 17.33 34.32 46.67 6.2 

LogMem 21.67 48.33 64 8.32 

PAssoc 0.33 2.79 5.83 1.51 

MatRea 2 7.26 13.33 2.81 

Ship 4 12.86 18.67 2.91 

LetSet 3.33 11.36 14 1.87 

SpaRel 3.33 9.49 16.67 3.43 

PapFld 2 6.16 11 2.44 

FrmBrd 1 6.43 13 2.8 

Vocab 17.67 53.59 62.67 6.87 

SynVoc 3.33 7.82 9.67 1.47 

AntVoc 2.67 7.35 10 1.65 

Table 1. VCAP Participant Summary Statistics. Cognitive measurements were averaged 

across the three sessions here for computing participant-level summary statistics.   
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Table 2. Bayesian Multivariate Population Parameter Estimates and Associated 

Uncertainty. Bold cell entries indicate 95% credible intervals that do not overlap with 0.  

β coefficient Proc. Speed Memory 

Spatial/ 

Reasoning Vocabulary 

Parameters of Interest 
Intercept 0.15 [-0.19, 0.49] -0.13 [-0.46, 0.20] 0.05 [-0.28, 0.39] 0.00 [-0.31, 0.31] 

AgeAccelGrim -0.31 [-0.51, -0.11] -0.33 [-0.52, -0.13] -0.26 [-0.45, -0.06] -0.24 [-0.43, -0.06] 

Age -0.39 [-0.58, -0.21] -0.45 [-0.62, -0.27] -0.33 [-0.51, -0.15] -0.20 [-0.37, -0.04] 

Covariates 
Time Difference 0.03 [-0.14, 0.20] 0.10 [-0.06, 0.27] 0.14 [-0.03, 0.30] 0.01 [-0.14, 0.17] 

Session 0.06 [ 0.02, 0.10] 0.01 [-0.03, 0.04] 0.02 [-0.02, 0.07] -0.18 [-0.23, -0.12] 

Sex (Female) -0.21 [-0.63, 0.21] 0.18 [-0.22, 0.58] -0.06 [-0.47, 0.35] 0.09 [-0.28, 0.47] 

NK 0.05 [-0.22, 0.32] 0.18 [-0.08, 0.43] 0.17 [-0.09, 0.43] 0.07 [-0.17, 0.30] 

Mono -0.11 [-0.30, 0.07] -0.10 [-0.28, 0.08] -0.11 [-0.29, 0.07] -0.06 [-0.22, 0.11] 

Gran -0.05 [-0.41, 0.30] 0.03 [-0.31, 0.36] 0.04 [-0.31, 0.38] 0.14 [-0.18, 0.45] 

PlasmaBlast 0.19 [-0.07, 0.44] 0.11 [-0.13, 0.35] 0.06 [-0.19, 0.30] 0.01 [-0.21, 0.24] 

CD8pCD28nCD45RAn -0.02 [-0.24, 0.21] 0.02 [-0.19, 0.23] 0.09 [-0.12, 0.31] 0.06 [-0.13, 0.27] 

CD8.naive 0.11 [-0.14, 0.35] 0.03 [-0.21, 0.26] 0.02 [-0.22, 0.25] 0.09 [-0.14, 0.31] 

CD4.naive -0.12 [-0.38, 0.14] -0.10 [-0.35, 0.15] -0.04 [-0.29, 0.22] -0.17 [-0.40, 0.06] 

81



Node # 
X Y Z 

Region Lobe Centrality Top Neurosynth 

Terms 

Better 

Memory       

 

94 35.6 -14.7 -18.4 Hippocampus Limbic 0.17 

hippocampus, 

hippocampal, memory 

136 -5.8 18.2 -21.6 Orbitofrontal Prefrontal 0.16 

subgenual, major 

depression, depression 

195 -37.8 -13.2 -29.3 

Inferior Temporal 

Gyrus  Motor 0.14 

anterior temporal, 

temporal, medial 

temporal 

18 26.6 19.6 -21.3 Pars Orbitalis Prefrontal 0.13 

cortex ofc, ofc, 

orbitofrontal 

3 5.1 34.9 -17.4 Orbitofrontal Prefrontal 0.12 

orbitofrontal, 

orbitofrontal cortex, 

medial orbitofrontal 

125 14 8.3 -9.5 Putamen Prefrontal 0.12 

reward, ventral striatum, 

striatum 

Less Age 

Accelerated       

 

94 35.6 -14.7 -18.4 Hippocampus Limbic 0.20 

hippocampus, 

hippocampal, memory 

136 -5.8 18.2 -21.6 Orbitofrontal Prefrontal 0.15 

subgenual, major 

depression, depression 

268 -6.1 -18.9 -36.8 Brainstem Brainstem 0.14 N/A 

227 -7.5 -42.1 13.3 

Agranular 

Retrolimbic Limbic 0.13 

retrosplenial cortex, 

retrosplenial, posterior 

cingulate 

229 -21.5 -36.9 5.7 Hippocampus Limbic 0.13 

hippocampus, 

hippocampal, learning 

task 

96 29.3 -19.6 -26.3 Parahippocampal Limbic 0.12 

medial temporal, 

hippocampus, 

parahippocampal 

Table 3. Most important functional connectivity regions for better memory and slower 

epigenetic age acceleration. The top two nodes are shared across these phenotypes and the 

remaining structures are largely implicated in learning and memory processes.  
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Node #  
X Y Z 

Region Lobe Centrality Top Neurosynth 

Terms 

 

Worse Memory          

59 43.4 -26.5 -24.6 InfTempGyrus Temporal 0.19 

photographs, temporal 

lobe, medial temporal 
 

234 -30.5 -23.9 -26.6 Parahipp Limbic 0.19 

lobe mtl, hippocampal, 

mtl 
 

122 13.7 -4.2 20.9 Caudate Subcortical 0.14 

caudate, caudate nucleus, 

nucleus 
 

58 40.3 -11.3 -35.8 InfTempGyrus Motor 0.13 

face recognition, medial 

temporal, temporal lobe 
 

217 -23.6 -41.3 19.9 NA Limbic 0.13 N/A  

230 -32.1 -40.2 -4 Hippocampus Limbic 0.13 

hippocampal, medial 

temporal, hippocampus 
 

More Age 

Accelerated       

  

59 43.4 -26.5 -24.6 InfTempGyrus Temporal 0.21 

photographs, temporal 

lobe, medial temporal 

 

2 9.6 17.8 -19.5 OrbFrontal Prefrontal 0.15 

interpersonal, 

frontotemporal, cognitive 

emotional 

 

120 21.2 -36.4 22.6 NA Subcortical 0.15 N/A  

92 31.2 3.7 -21.6 Amygdala Limbic 0.14 

amygdala, amygdala 

insula, fear 

 

234 -30.5 -23.9 -26.6 Parahipp Limbic 0.14 

lobe mtl, hippocampal, 

mtl 

 

127 12.3 -27.7 13.5 Thalamus Subcortical 0.13 

caudate nucleus, thalamic, 

insula inferior 

 

Table 4. Most important functional connectivity regions for worse memory and faster 

epigenetic age acceleration. The top node (as well as 2nd memory node and 4th AgeAccelGrim 

node) are shared across these phenotypes and the remaining cortical structures are largely 

implicated in learning and memory processes.  
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whole-brain functional connectivity and impaired cognitive performance in older adults 

 

 

Fig. S1. All cognitive items were stably estimated into discrete communities from bootEGA. 

Stability was assessed via generation of 1000 multivariate normal replicates of the original data. 

Higher item percentages are roughly analogous to higher loadings in traditional factor analysis. 

The replications provide insight into the uncertainty of the community structure. Heuristically, 

items that demonstrate greater than 80% replication percentage are considered relatively stable, 

and each item exceeds that threshold. This suggests that this identical structure would likely 

replicate upon collection of a new sample. 
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Fig. S2. Posterior predictive distribution check shows good overlap with model simulations 

and observed data. This provides visual diagnostic information that the Bayesian model is 

adequately specified, and that the mathematical assumptions appear sufficient for representing 

the data generation process. Each of these posterior distribution panels represent Student-T 

likelihoods jointly estimated from the four response variables in the multivariate hierarchical 

model. The Vocabulary response variable exhibits wider tails because the posterior estimation of 

the degrees of freedom was lower than the other three response variables, which motivated the 

use of a stronger prior specifically on the degrees of freedom parameter, υ, for Vocabulary. This 

improved model stability without sacrificing the capacity to do inference for this response 

variable.  
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Fig. S3. rCPM captures and filters functional connectivity-phenotype relationships. Using 

AgeAccelGrim as a demonstrative example, the correlation between rCPM coefficients and 

simple bivariate correlations with phenotype is strong and positive. This is indicated both by the 

scatterplot in Panel A and the similarity between important nodes in the two matrix heatmaps in 

Panels B and C. Each row/column in the heatmap matrices corresponds to a unique brain region, 

and each cell entry represents the correlation between pairwise connectivity of those two regions 

and phenotype (i.e., AgeAccelGrim). This suggests that analyzing the degree network statistic of 

the rCPM coefficient matrix will recover which brain regions are uniquely important for 

predicting AgeAccelGrim, and can be interpreted in a similar fashion to summing the bivariate 

correlation values of a specific brain region to determine importance.  
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Fig. S4. Networks reflective of age do not show opposite patterns in limbic system to 

memory networks. Hinton plot visualizations show that memory (see Figure 5 in main 

manuscript) and age, in contrast to AgeAccelGrim, do not have opposing network structure 

patterns in the limbic system. Size corresponds to the sum of edges in the “high”- and “low” 

networks standardized by the number of possible edges between each pair of regions. Color 

corresponds to the difference between edges in the high- and low-phenotype networks, such that 

red corresponds to edges mostly in the older age network and blue corresponds to edges mostly 

in the younger age network.   
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Table S1. Most important functional connectivity regions for predicting older age and 

younger age. 

Node # 
X Y Z 

Region Lobe Centrality Top Neurosynth 

Terms 

Older Age        

121 12.7 12.9 11.5 Caudate Subcortical 0.14 

social, imagine, 

construction 

185 -38 6.1 -37.9 Temporal Pole Temporal 0.14 

semantic memory, social 

interactions, default 

network 

194 -49.3 -4.7 -37.4 

Inferior Temporal 

Gyrus Temporal 0.14 

caudate, caudate 

nucleus, nucleus 

87 28.4 -53.8 7.1 

Ventral Posterior 

Cingulate Limbic 0.13 N/A 

94 35.6 -14.7 -18.4 Hippocampus Limbic 0.13 

hippocampus, 

hippocampal, memory 

202 -30 -5.8 -40.9 Parahippocampal Temporal 0.13 

progressive, aphasia, 

dementia 

Younger 

Age       

 

132 6.3 -24.9 -17.5 Brainstem Brainstem 0.17 

ventral tegmental, 

tegmental, midbrain 

195 -37.8 -13.2 -29.3 

Inferior Temporal 

Gyrus Temporal 0.15 

hippocampus, medial 

temporal, hippocampal 

232 -35.7 -24.8 -14.9 Hippocampus Limbic 0.15 

anterior temporal, 

temporal, medial 

temporal 

135 -18.2 19 -21 Orbitofrontal Prefrontal 0.14 

paralimbic, orbitofrontal, 

cortex amygdala 

136 -5.8 18.2 -21.6 Orbitofrontal Prefrontal 0.14 

subgenual, major 

depression, depression 

120 21.2 -36.4 22.6 NA Subcortical 0.13 N/A 
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Abstract—Brain Computer Interfaces (BCI) decode electroen-
cephalography (EEG) data collected from the human brain to
predict subsequent behavior. While this technology has promising
applications, successfully implementing a model is challenging.
The typical BCI control application requires many hours of
training data from each individual to make predictions of
intended activity specific to that individual. Moreover, there are
individual differences in the organization of brain activity and
low signal-to-noise ratios in noninvasive measurement techniques
such as EEG. There is a fundamental bias-variance trade-off
between developing a single model for all human brains vs. an
individual model for each specific human brain. The Robust
Shared Response Model (RSRM) attempts to resolve this trade-
off by leveraging both the homogeneity and heterogeneity of
brain signals across people. RSRM extracts components that are
common and shared across individual brains, while simultane-
ously learning unique representations between individual brains.
By learning a latent shared space in conjunction with subject-
specific representations, RSRM tends to result in better predictive
performance on functional magnetic resonance imaging (fMRI)
data relative to other common dimension reduction techniques.
To our knowledge, we are the first research team attempting
to expand the domain of RSRM by applying this technique to
controlled experimental EEG data in a BCI setting. Using the
openly available Motor Movement/ Imagery dataset, the decoding
accuracy of RSRM exceeded models whose input was reduced by
Principal Component Analysis (PCA), Independent Component
Analysis (ICA), and subject-specific PCA. The results of our
experiments suggest that RSRM can recover distributed latent
brain signals and improve decoding accuracy of BCI tasks when
dimension reduction is implemented as a feature engineering step.
Future directions of this work include augmenting state-of-the art
BCI with efficient reduced representations extracted by RSRM.
This could enhance the utility of BCI technology in the real world.
Furthermore, RSRM could have wide-ranging applications across
other machine-learning applications that require classification of
naturalistic data using reduced representations.

Index Terms—Brain-computer interface, Electroencephalogra-
phy, Machine learning

I. INTRODUCTION

Brain Computer Interfaces (BCI) have garnered a lot of
attention in the worlds of technology, data science, medicine,
and neuroscience [14, 15]. Many recent strides in BCI technol-
ogy have led to astonishing new possibilities in brain research

and development [10]. A critical function of any BCI system
is the ability to decode data collected from the human brain to
predict subsequent behavior, which can be used for prosthetics
and epilepsy research [5, 1]. Successfully deploying a model
that predicts human behavior from data generated by the brain
is difficult to do well, given it requires both computational
speed and high accuracy. The typical BCI application requires
many hours of training data from each individual to make
accurate predictions specific to that individual. Moreover, there
are individual differences in the organization of brain activity
and low signal-to-noise ratios in noninvasive measurement
techniques such as EEG.

Even though individuals have different spatial topographies
with respect to brain activation, a common analytical assump-
tion in neuroscience research is that all spatial features are
anatomically aligned. This assumption imposes a structure
such that all brain activation across individuals operates in a
similar location in space [4]. This assumption extends beyond
anatomical alignment into temporal dynamics and syntheti-
cally engineered features. However, averaging topographies
across subjects has not shown much promise in accuracy for
training individual models [13]. To account for this limitation,
a different approach is to align features based on “function”
rather than space [8]. We would like to have a method that can
map different functional topographies from individuals into a
common shared latent space. The shared response modeling
framework was designed to accomplish this task of achieving
proper functional alignment across individuals [3].

A. Prior work on shared response modeling

The Robust Shared Response Model (RSRM) is a latent
variable model that projects a collection of time series into a
compressed feature space [13]. In order to learn representa-
tions common between brains under a specific task protocol,
RSRM extracts components that are shared across individuals.
RSRM and its close variants [Shared Response Model (SRM)]
were initially developed for applications with functional mag-
netic resonance imaging (fMRI) data under tasks that involve
temporally synchronized naturalistic stimuli [3, 11]. SRM
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demonstrated superior performance on applications to fMRI
data over other common dimension-reduction methods such as
Principal Component Analysis (PCA) and Independent Com-
ponent Analysis (ICA). RSRM was able to successfully extract
both common features between subjects and unique features
within subjects despite different functional topographies in the
raw data space [13]. The key difference between RSRM and
SRM is that SRM only maps to a shared feature space, and
does not directly model individual differences. Experimental
results for RSRM in comparison to the SRM showed that
the RSRM performed slightly better than the SRM as well
as trained faster in time segment matching and classification
[13].

Notably, there does not seem to be any prior work applying
the shared response modeling framework to domains outside
of fMRI. This paper presents new experiments that suggest
RSRM is a useful dimension reduction technique in the context
of decoding brain signals using EEG. We have reason to
hypothesize that directly modeling individual differences using
RSRM instead of SRM could lead to better performance in
EEG environments. The aim of this paper is to investigate the
utility of RSRM for EEG interfaced movement control appli-
cations. We will begin with a brief mathematical description
of RSRM. Then we will describe simulations to demonstrate
recovery of latent time-series signals using RSRM. Finally,
we will discuss our empirical application of RSRM to model
EEG data.

II. METHODS

A. RSRM notation and formulation

Let N be the number of subjects, v the number of features,
k the number of latent components, and t the number of
events. The following expression is the primary equation for
the RSRM [13] (see Figure 1 for the model design as applied
to EEG).

X(i) = W(i)R + S(i) + E(i), i = 1 . . . N (1)

where (i) is the indexer for each individual subject and
• X(i) ∈ Rvi×t is the data matrix.
• W(i) ∈ Rvi×k is the matrix mapping from the observed

subject space to the shared latent space.
• R ∈ Rk×t is the shared-response matrix.
• S(i) ∈ Rvi×t is the non-shared matrix unique to each

individual subject.
• E(i) ∈ Rvi×t is an additive noise matrix specific for each

subject.
Equation (1) is then estimated by solving the following opti-
mization problem:

min
S(i),W(i),R

N∑
i=1

1

2
||X(i) −W(i)R− S(i)||2F + λi||S(i)||1 (2)

s.t.
W(i)T W(i) = I, ∀ i = 1 . . . N.

Equation (2) is a non-convex optimization problem, but we
can estimate subsets of the model using convex optimization
techniques and then combine the results at the end. Using
Block Coordinate Descent, we can partition the variables
into blocks and optimize each block while fixing the other
blocks constant. In RSRM, each individual mapping from the
latent space W(i), each individual non-shared/unique matrix
S(i), and the shared response model R is a block. Because
optimizing each of these blocks while keeping the other
blocks constant is a convex problem, we can approximate the
global optimum with a greedy solution. This is an iterative
optimization procedure by which we apply the three following
routines defining the block coordinate descent.

First, we solve for W(i) by using the Procrustes method [6]

W(i) = U(i)V(i)T (3)

where U(i)V(i)T is achieved through singular value decom-
position (SVD)

U(i)Σ(i)V(i) = (X(i) − S(i))RT . (4)

Second, we solve for S(i) using a soft shrinkage penalty

S(i) = Shrink(X(i) −W(i)R, λ) (5)

where the amount of shrinkage is determined by λ. More
specifically, soft shrinkage is applied to D(i) ∈ Rvi×t

s = Sλi
(d) =

{
(|d| − λi)sign(d), if |d| > λi

0 otherwise,
(6)

where the individual residual D(i) is

D(i) = X(i) −W(i)R. (7)

In other words, soft shrinkage of D(i) is equal to S(i). Last,
we solve for R with

R =
1

N

N∑
i=1

W(i)T (X(i) − S(i)). (8)

We can specify the shrinkage parameter λ to balance how
much is shared (R) by all subjects and how much is unique to
each subject (S(i)). As λ→∞, the model is equivalent to the
deterministic solution where S(i) → 0. As λ → 0, there will

Fig. 1. Visual depiction of the matrices that represent the RSRM. For this EEG
application, features are an array of time-frequency values over each channel.
Components (k) are the latent vectors extracted by RSRM. The translation
of this model from fMRI to EEG data was not trivial, given their respective
temporal and spatial resolution limitations. Note that dropping the additive
noise matrix E(i) makes this an approximate solution.
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be no shared response between individuals and all portions
are unique to each individual (S(i) → X(i)). Additionally, we
can specify the number of components we want our model
to compute. This is analogous to selecting the number of
components in PCA.

B. Experiment 1: Simulation methods

In order to get an intuitive sense that RSRM works for EEG-
like time series, we simulated data with known parameters and
attempted to recover them through visualization of the latent
shared space. For this simulation, we translated the extant
Python RSRM code [9] into the R programming language,
both for other R programmers to use and to check the robust-
ness of implementations using different numerical libraries.
Sine-waves with specific frequencies f are a simple surrogate
for simulating EEG time-series signals. Given RSRM is greedy
and there are no guarantees that it will return the globally
optimal solution, we predicted output that visually matches
our prior expectation, rather than searching for a specific point
estimate for f . This is because multiple signals will likely be
embedded into the same latent space and will not be perfectly
separated. Alternatively, one could compute a Fast Fourier
transformation of the latent vector to estimate its power at
specific frequencies.

The simulation incorporated signals from 32 electrodes and
100 different individuals. We randomly sampled two different
deterministic sine-wave signals [10 Hz, 25 Hz] across elec-
trodes. Different individuals had randomly sampled locations
of the signals across the scalp to test if RSRM could effectively
recover signals that were not spatially aligned. We perturbed
these sine-wave signals by adding Gaussian noise generated
by N ∼ (µ = 0, σ = 4). Let A be amplitude, θ phase angle
offset, and t ∈ RN represent time. Sine-waves were generated
with the following expression

A sin(2πft + θ) (9)

fixing A = 1, θ = 0, and N = 1000. We attempted to
recover all instances of f in the latent shared response space.
We fit exactly two components to test if the two recovered
latent vectors resembled the two true signal distributions. We
experimentally manipulated λ values [0, 100000] to test its
role in modeling shared latent spaces.

C. Experiment 2: Empirical application methods

1) Dataset description: In order to test the application
of RSRM on our EEG data, we used the openly available
EEG Motor Movement/Imagery Dataset [12]. We chose this
dataset as a benchmark because it includes data from a large
number of individuals (relative to other openly available EEG
datasets), and the specific tasks are directly related to solving
motor movement problems using BCI. This dataset contains
12 two-minute task-related runs (i.e., recordings) for each
individual. Each person performed four different tasks under
three separate runs. The four tasks are:

1) Open and close left vs. right fist

2) Imagine opening and closing left vs. right fist
3) Open and close both fists vs. both feet
4) Imagine opening and closing both fists vs. both feet

Each task includes two motor movements of interest with
at least 21 trials for each motor movement (see Figure 2).
Thus, each task allows us to make 42 predictions for each
individual subject, which results in 4410 classification labels
for each task.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

−6

−4

−2

0

2

4

µV

EEG (64 channels)

Fig. 2. Example evoked difference waveform of one of the motor movement
tasks: imagining closing fists vs. imagining closing feet. The majority of the
visually distinguishable signals in the time domain occur in the 200-1000 ms
range and are spatially distributed across the brain.

2) EEG Pre-processing Workflow: The Raw EEG Motor
Movement/Imagery Dataset was pre-processed using the MNE
and pyprep Python software libraries [7, 2]. First, we loaded
the data and added channel location coordinates. Next, we
applied a band-pass filter [infinite impulse response (IIR)
Butterworth model; high-pass cutoff: 1 Hz, low-pass cutoff:
50 Hz] to smooth the brain signals. Bad channels were
automatically identified by low signal-to-noise ratios, near
zero-variance recordings, and large deviations from nearby
spatial regions. Then an average reference was applied to
the data, which subtracts the average signal across the brain
to improve signal-to-noise ratios across electrodes. Then we
spatially interpolated all identified bad channels to preserve the
dimensionality of the dataset across individuals. We segmented
the data into 3 second trials with a 200 ms baseline relative to
stimulus onset, which cued the individual to perform the task
of interest. We then realigned the task events such that each
individual had the same sequence of trial type for each task.
This was necessary because fitting RSRM requires a temporal
synchronization with respect to classification labels, while
EEG experiments typically randomize the onset of specific
events. For the final feature engineering step, we decomposed
the signals into a time-frequency representation using Morlet
wavelets. From this decomposition, we generated 12 families
of frequencies logarithmically spaced between 3 Hz and 45
Hz. We averaged these time-frequency representations across
400 ms time-windows strictly to keep the data input at a man-
ageable size for our unsupervised learning experiments. We
reshaped the data such that the time-frequency representations
for each channel were encoded as rows of the data matrix,
and the specific events were encoded as the columns of the
matrix.
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3) Experimental Design: In order to test the capacity of
RSRM to effectively represent relevant brain signals in a
reduced space, we systematically varied the dimensionality of
the reduced space and compared decoding performance with
other traditional dimension-reduction techniques. We used the
BrainIAK software library in Python for fitting RSRM [9].
The unsupervised learning techniques employed were RSRM,
PCA, ICA, and within-subject PCA. For RSRM, each indi-
vidual had its own matrix X(i) ∈ R6144×42, later transposed
and concatenated after applying RSRM fit and transformation
methods. For within-subject PCA, each individual matrix was
the transpose of the initial RSRM matrices and were trained
independently for each subject. For PCA and ICA, each of
these individual matrices were concatenated into one single
matrix X ∈ R4410×6144. For each model, we reduced the
original feature representation into a specified number of
components k. Then we trained a support vector machine
classifier with a radial basis function kernel to decode one
class from the other for each task. We chose not to tune
the hyper-parameters C and γ because our primary research
question concerned the relative accuracy of each dimension-
reduction technique, rather than optimizing performance for
each model configuration. We estimated model performance
by using leave-one-run-out cross-validation. For each task,
there were three runs which resulted in three folds. Thus, we
trained each model on 28 events from each subject and then
tested them on the remaining 14 subject events until we had
predictions for all 42 events for each subject. Because of this
validation scheme, we were constrained by RSRM to fit at
most 28 latent components (k << v given that v = 6144).
For RSRM, λ was held constant at 2.5 and the model was run
with 2 iterations. We chose a low number of iterations such
that the model training time would be as short as possible.

III. RESULTS

A. Experiment 1: Simulation results

Using 10 Hz and 25 Hz sine-wave signals perturbed by a
stochastic distribution N ∼ (µ = 0, σ = 4), we generated a
raw collection of time-series signals. We fit RSRM to these
raw signals to test its ability to recover the deterministic sig-
nals. We were able to capture the majority of the deterministic
sine-wave distribution, which represents the true signal without
noise, within two components of the RSRM given a high value
of λ (Figure 3). This gives us confidence that this modeling
procedure may prove to be useful for application in EEG.

B. Experiment 2: Empirical application results

After validating the potential utility of RSRM for EEG-
like data structures, we compared the performance of RSRM
to PCA, ICA, and within-subject PCA for classification tasks
within the Motor Movement/ Imagery Dataset. We observed
that RSRM demonstrated superior performance for all 4 tasks,
yielding significantly higher decoding accuracy (see Figure
4 and Table I). Statistical comparisons only include RSRM
in relation to within-subject PCA, because PCA and ICA
performed much worse than RSRM given most values of
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Fig. 3. First two RSRM components captured from noisy sine-wave signals.
As predicted, When λ was very low, the model learned almost no shared
information across individuals. Thus, the left side of the figure is only
capturing an idiosyncratic and stochastic distribution across subjects. When
λ is very high, the model prioritizes shared information across individuals
over unique information. This is why the first two components are primarily
capturing the deterministic signal in the distribution, namely 10 Hz (top-
right) and 25 Hz (bottom-right). For non-simulated applications, λ is a
hyperparameter that can be tuned to balance this trade-off.

k. This pattern of results is consistent with the previous
literature in fMRI [3]. This suggests that RSRM is a useful
feature engineering step for EEG processing pipelines, when
the dimensionality of the input space needs to be reduced.

IV. DISCUSSION

A. Summary

The primary purpose of this research was to investigate
whether a robust shared response model can effectively factor
common and unique EEG signals between the brains of differ-
ent individuals into a reduced feature space. When applied to
a relatively simple machine learning classification model, the
data pre-processed by RSRM was able to predict significantly
above chance and was able to outperform all other dimension
reduction techniques that we tested. The results suggest that
RSRM captured aspects of the shared feature space above
and beyond standard dimension reduction techniques typically
used in neuroscience.

B. Limitations and Future Directions

The primary limitation of this experiment was the relatively
low values of accuracy on each of the four tasks. We believe
this is due to our leave-one-run-out cross-validation scheme,
which constrained us to training the RSRM on only 28
events for each subject. Based on the patterns in Figure 4,
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Fig. 4. Primary results from Experiment 2. RSRM outperforms on all four tasks relative to other standard dimension reduction techniques that were tested
(chance decoding performance = 0.50). Here, we are analyzing relative accuracy between these methods, rather than trying to maximize accuracy with one
single model configuration. The crucial accuracy difference is when the number of components is 28. Additionally, the RSRM latent representation improves
performance at lower values of k. Importantly, it appears that increasing k would likely increase the differences in performance between RSRM and the other
three techniques. Note that PCA and ICA require k >> 28 to reach the current performance level of RSRM from this experiment (fixing k = 28 for RSRM).

TABLE I
PAIRED t-TESTS COMPARING RSRM TO WITHIN-SUBJECT PCA ACROSS ALL NUMBER OF COMPONENTS

Task t df p
Open and close left vs. right fist 6.73 27 < .001

Imagine opening and closing left vs. right fist 6.78 27 < .001
Open and close both fists vs. both feet 6.15 27 < .001

Imagine opening and closing both fists vs. both feet 4.05 27 < .001

the accuracy looks as though it would likely increase as
additional components computed by RSRM are added. We
also did not fine-tune any specific classifier for any given
model configuration, as we wanted to be able to make direct
comparisons across each model instance. Finally, there are
likely more principled ways to feature engineer the data before
fitting RSRM to EEG. For example, we averaged the Morlet
wavelet decomposition time-frequency representations over
400 ms time-windows, which only provides a crude estimate
and may in fact conflate multiple independent processes into
one single vector.

We plan on running future experiments on different datasets
with enough components for the accuracy to stabilize, in
conjunction with more sophisticated feature engineering and

supervised learning. In fact, RSRM could be particularly
beneficial to deep learning frameworks whose training requires
large amounts of data. Applying RSRM to artificial neural
networks would allow combining datasets across individuals
for training. Future work will expand these experiments to
predicting more than two classes, as well as attempting to
decode brain signals in a streaming real-time application.
Despite these stated limitations, we argue that this work
contributes toward the cumulative science of designing better
BCI systems.

C. Conclusions

Training BCIs on EEG data is challenging due its rela-
tively low signal-to-noise ratio. The typical BCI application
requires building a new decoding model for each patient
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due to the unique anatomical and functional topographies
between patients’ EEG signals. This research attempted to
tackle these problems by applying RSRM, which is known
to work well with fMRI data, and adapt it to function with
scalp EEG data. We found that RSRM as a feature engineering
step outperformed PCA, ICA, and within-subject PCA across
four different motor movement tasks. A key attribute of
RSRM is its ability to reduce dimensionality in the data,
which leads to a significant reduction in model training time
as well as a reduction in training data needed to build a
sufficient model. This has the ability to have a meaningful
impact on patients’ lives who require a BCI for performing
specific tasks. Furthermore, RSRM could have wide-ranging
applications across other machine-learning applications that
require decoding/classification of naturalistic data using re-
duced representations.
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Conclusions 
 

All three chapters within this dissertation contain novel contributions to the 

literature and span a wide variety of important contemporary problems in psychology and 

neuroscience. The common thread linking these interdisciplinary efforts is 1) the 

committed focus to understanding why people’s minds and brains operate differently 

from one another, and 2) the successful application of modern machine learning tools to 

function as a mechanism for uncovering new insights about the brain and behavior. More 

broadly, all three chapters have potential to contribute to applications in order to better 

understand brain mechanisms underlying specific neuropsychological conditions 

(Chapter 1: Prosopagnosia, Chapter 2: Alzheimer’s disease related dementias., Chapter 3: 

Parkinson’s). The remaining paragraphs recapitulate the main findings from each chapter, 

highlighting the significance and novelty within each respective domain of study.  

 

In Chapter 1, we were the first to demonstrate using fMRI that decoding rates of 

stimulus states for faces is significantly related to face recognition ability in 

neurotypicals, suggesting that the spatial patterns underlying stimulus encoding and 

processing are more discriminative as face recognition ability increases. While this 

relationship is not strictly due to regions within the core face network, we do find that the 

right p STS and FFA are important mechanisms for supporting successful face 

recognition. Additionally, for the first time, we find that state-of-the-art CPM-based 

techniques fail to capture these individual differences in face recognition ability. These 

patterns of results point toward face recognition ability being a unique cognitive process 

that may be less globally distributed with respect to neural mechanisms in contrast to 

other complex cognitive processes such as attention or decision-making. This chapter’s 

results suggest that individual differences in face recognition ability may be largely 

constrained to canonical cortical regions sensitive to faces, in line with a local rather than 

distributed account. This work contributes to a better understanding of how domain-

specific neural systems support behavioral heterogeneity in face recognition, and 

suggests that specialized preferential higher-order visual cortices may be more important 

than whole-brain connectivity for understanding this specific behavior.  

 

In Chapter 2, we provide confirmatory evidence that epigenetic age acceleration 

relates to between-person differences in cognitive abilities of both fluid and crystallized 

intelligence, and we were the first to demonstrate that functional connectivity profiles 

that predict AgeAccelGrim are similar to functional connectivity profiles that predict 

memory abilities. Specifically, individuals with more epigenetic age acceleration tended 

to perform worse on tasks that spanned a wide variety of cognitive faculties, and brain 

regions crucial for successful memory formation were most important for predicting 

AgeAccelGrim in the aging brain. These differences cannot be explained by 

chronological age alone, in that AgeAccelGrim and chronological age are orthogonal 

variables, and both were included/ controlled for in each statistical model. This suggests 

that epigenetic age explains a unique portion of variance of cognitive ability that 

chronological age does not capture, and this relationship may be explained by 

connectivity of memory brain structures primarily within the limbic system. These brain 

structures are known to be important for aging and cognitive change, and here we 
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demonstrate that epigenetic age acceleration captures a unique portion of this functional 

brain organization as it pertains to these differences. 

 

In Chapter 3, we were the first to demonstrate that RSRM can effectively factor 

common and unique EEG signals between the brains of different individuals into a 

reduced feature space to improve the quality of brain-computer interfaces. The results 

suggest that RSRM captured aspects of the shared feature space above and beyond 

standard dimension reduction techniques typically used in neuroscience, pointing to a 

benefit of mathematical considerations with respect to individual differences in the 

topography of brain signals. We found that RSRM as a feature engineering step 

outperformed PCA, ICA, and within-subject PCA across four different motor movement 

tasks. This has the ability to have a meaningful impact on patients' lives who require a 

BCI for performing specific tasks. Furthermore, RSRM could have wide-ranging 

applications across other machine-learning applications that require 

decoding/classification of naturalistic data using reduced representations.  
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