

Truth Bounties: Combating Misinformation Through Economic Incentives

Technical Research Paper

Presented to the Faculty of the

School of Engineering and Applied Science

University of Virginia

By

Jianming Li, Christopher Cicero, Sankalpa Banjade

April 25, 2025

On my honor as a University student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

ADVISOR

Jack W. Davidson, Professor, Department of Computer Science

1

Introduction:

 The proliferation of misinformation in digital spaces represents one of the most pressing

challenges of our time. In response, the Truth Bounties platform emerged from a collaboration

between the University of Virginia School of Law and Computer Science Department as an

innovative solution that harnesses economic incentives to promote content verification. This

web-based application enables content authors to place monetary bounties on their claims,

effectively transforming traditional content verification into a market-driven process.

Truth Bounties operates through a workflow where content authors can place financial

stakes on their published content's accuracy, creating tangible incentives for potential challengers

to scrutinize content and identify false or misleading information. The platform manages the

entire process from initial content submission through final arbitration and payment processing,

creating a self-sustaining ecosystem for content verification.

The development demanded careful consideration of several critical technical objectives:

content integrity, system security, scalability, and user experience. These objectives presented

significant challenges, from creating reliable mechanisms for content verification to

implementing secure payment processing and managing complex system integrations. To

address these challenges, Truth Bounties was built on a modern technology stack including

Django, PostgreSQL, Heroku, and various other services, chosen for reliability, scalability, and

maintainability.

This technical documentation provides comprehensive guidance for developers working

with the Truth Bounties platform, detailing system architecture, core functionalities,

development workflows, and security implementations. Through careful architecture decisions

2

and robust implementation practices, we have created a system that not only serves its immediate

purpose but also provides a foundation for future innovation in content verification technologies.

System Architecture:

 The Truth Bounties platform employs a three-tier architecture that balances scalability,

maintainability, and security. Each tier serves a specific purpose while maintaining clear

interfaces with other components. At the presentation tier, users interact with a responsive web

interface built using Bootstrap and custom JavaScript. The frontend implements a dynamic status

system that provides real-time updates on bounties and challenges.

The application tier, powered by Django 5.1.6, forms the core of our system. It consists

of several key services:

These services communicate through well-defined interfaces, using Django's signal system for

event handling. When a new challenge is submitted, the system triggers a series of coordinated

actions. The data tier utilizes PostgreSQL 16 as the primary database. Content artifacts and

metadata are stored directly in PostgreSQL, ensuring data consistency and simplifying the

architecture. Payment processing is implemented through direct integration with the Stripe API.

3

The entire system runs on Heroku's platform, utilizing a multi-environment setup. This

architecture has proven effective during initial testing, with the modular design allowing for

independent scaling of components as needed, while maintaining clear separation of concerns for

simplified maintenance and updates.

Core Components:

 The Truth Bounties platform is built around several key components that work together

to manage the content verification process. Each component is designed with modularity and

maintainability in mind, while ensuring seamless integration with other parts of the system. At

the heart of the platform lies the Authentication component, which manages user identity and

access control. Built upon Django's robust authentication system, we extended it to support

different user roles including Authors, Challengers, and Arbitrators. Each role carries specific

permissions and capabilities within the system:

4

 For instance, Authors can create bounties and respond to challenges, while Challengers can

dispute content and provide evidence. The authentication system also tracks user reputation

scores, which influence their ability to participate in various platform activities.

The Content Management component serves as the backbone of our bounty system. It

handles the creation, storage, and tracking of bounties placed on content. When an Author

creates a bounty, the system captures essential information including the content itself, source

URL, bounty amount, and current status. This component maintains the complete lifecycle of a

bounty, from its initial active state through potential challenges and ultimate resolution. A

sophisticated status tracking system ensures that all participants can monitor the current state of

any bounty in the system.

Challenge Processing forms another crucial component of the platform. When a

Challenger disputes content, this component manages the entire workflow from submission

through resolution. It stores the Challenger's explanation and evidence, handles the notification

system for all involved parties, and maintains the challenge status throughout the process. The

component includes validation mechanisms to ensure challenges meet platform requirements and

are submitted within the designated timeframe for each bounty.

Payment Integration represents a critical component that handles all financial transactions

within the platform. Through direct integration with the Stripe API, we implement secure

payment processing for bounty creation and distribution. When an Author creates a bounty, the

system securely processes their payment and holds the funds until the challenge period expires or

a challenge is resolved. Similarly, when challenges are successful, this component manages the

distribution of funds to the appropriate parties.

5

The User Interface components tie these core functionalities together through a series of

intuitive views and templates. We've implemented a clean, responsive design that guides users

through complex processes like bounty creation and challenge submission. The interface

provides real-time feedback on actions and maintains consistent status information across all

platform features.

These components are orchestrated through a well-defined event system that ensures

proper coordination of activities across the platform. For example, when a challenge is

submitted, the system automatically updates the bounty status, notifies relevant parties, and

prepares for potential arbitration. This tight integration between components, while maintaining

clear boundaries, allows the platform to handle complex workflows while remaining

maintainable and extensible.

The design of these core components reflects our commitment to creating a robust

platform that can evolve with changing requirements while maintaining high standards of

security and usability. Each component's clear responsibilities and well-defined interfaces make

it possible to modify or enhance functionality without disrupting the overall system operation.

Development Workflow:

 The development workflow for Truth Bounties follows modern software development

practices, emphasizing code quality, collaboration, and maintainability. Our workflow is

designed to support multiple developers working concurrently while maintaining system stability

and reliability. Development begins with local environment setup:

6

 Each developer clones the repository from GitHub and creates a virtual environment using

Python's venv module. The project dependencies are managed through requirements.txt, ensuring

consistency across development environments.

For local development, developers first clone the repository, create a virtual environment,

and install dependencies. The project includes a detailed setup guide in the README.md file

that walks through the process of configuring environment variables, particularly for sensitive

information like Stripe API keys and database credentials. We maintain separate settings files for

development and production environments, allowing developers to work with local databases

and test API keys without affecting the production system.

Feature development follows a branch-based workflow. When starting work on a new

feature or bug fix, developers create a new branch from the main development branch. We

7

follow a naming convention that clearly identifies the type of change and the feature being

implemented (e.g., ‘sprint6-payment-integration’ or ‘sprint4-s3-Challenger’). This branching

strategy helps maintain clean version control and facilitates code review.

Testing is conducted locally using Django's development server (localhost:8000).

Developers manually test new features and changes through the browser, paying particular

attention to: User authentication and authorization, Bounty creation and management, Challenge

submission and processing, Payment integration, API endpoints. Code reviews are conducted

through GitHub's pull request system. Each pull request must be reviewed by at least one other

team member before merging. Reviewers check for code quality and adherence to project

standards, testing the changes locally to verify functionality.

For deployment, we use Heroku's platform, which provides a straightforward way to

move from development to production. The transition from local development to production is

managed through Heroku's deployment pipeline, with environment variables configured

appropriately for the production environment. This streamlined workflow has proven effective

for our team, allowing us to maintain steady development progress while ensuring functionality

through direct testing. The simple structure and documented processes make it straightforward

for new developers to join the project and begin contributing effectively.

Adding New Features:

 The Truth Bounties platform was designed with extensibility in mind, making the process

of adding new features straightforward and systematic. To illustrate how developers can expand

the platform's functionality, let's explore the implementation of a hypothetical feature: a

notification system for bounties approaching expiration. Adding a new feature begins with

understanding how it fits into the existing architecture. In our platform, most features interact

8

with the core bounty system and user management components. For our expiration notification

example, we would build upon these existing foundations rather than creating entirely separate

systems. This approach maintains the platform's cohesive design while expanding its capabilities.

The implementation process starts with creating a new feature branch in Git, following

our naming conventions to clearly identify the feature's purpose. This branching strategy allows

developers to work independently without affecting the main codebase. For the notification

system, we would extend the existing User model to include notification preferences and create

appropriate database fields to track notification status and user preferences.

Our straightforward architecture means that most new features can be implemented by

modifying existing components rather than creating entirely new services. The notification

system, for instance, would integrate directly with our existing views and templates. We would

add notification display elements to the user dashboard and create preference settings in the user

profile section, maintaining consistency with our Bootstrap-based design.

Local development and testing play a crucial role in feature implementation. Using

Django's development server, developers can immediately see how their changes affect the

system. For the notification feature, this would involve testing the timing of notifications,

verifying the display in the user interface, and ensuring proper integration with existing bounty

functionality. This direct testing approach allows for rapid iteration and immediate feedback.

The final steps involve code review through GitHub's pull request system and

deployment through Heroku. We emphasize clean, maintainable code that follows the project's

existing patterns. Once approved, new features are merged into the main branch and deployed,

making them available to all users. This process demonstrates how Truth Bounties can evolve

while maintaining its core simplicity and reliability. By following these patterns, developers can

9

confidently add new features that enhance the platform's functionality while preserving its

architectural integrity.

Database Schema:

 The Truth Bounties platform utilizes a PostgreSQL database with a schema designed for

clarity and efficiency. Our database structure reflects the core relationships between users,

bounties, and challenges while maintaining data integrity and supporting the platform's key

features. At the foundation of our schema is the User table, which extends Django's built-in

authentication system. This table stores essential user information including usernames, email

addresses, and hashed passwords.

We extended the default user model to include additional fields specific to our platform.

The Bounty table serves as the central element of our database, storing information about content

submissions and their associated bounties. Challenges are tracked in their own table, maintaining

relationships with both bounties and users.

The relationships between these tables enable efficient querying for common operations

like displaying active bounties, tracking challenge status, and managing user interactions. We

utilize foreign key constraints to maintain referential integrity and ensure that related records are

handled appropriately when updates or deletions occur.

This straightforward schema design supports all of our core functionality while remaining

simple enough to maintain and modify as needed. The structure allows for easy querying of

common scenarios, such as finding all challenges for a particular bounty or listing all bounties

created by a specific user. Future enhancements to the platform, such as adding user reputation

systems or expanding the challenge verification process, can be accommodated through simple

additions to the existing schema without requiring significant restructuring of the database.

10

Security Implementation:

 The Truth Bounties platform implements several layers of security measures, leveraging

both Django's built-in security features and additional custom protections to safeguard user data

and financial transactions. Authentication and authorization form the first line of defense. We

utilize Django's authentication system, which provides secure password hashing, session

management, and protection against common vulnerabilities like session hijacking. User

passwords are never stored in plaintext but are instead hashed using Django's password hashers.

The system enforces role-based access control, ensuring users can only access and modify

resources appropriate to their role.

For financial transactions, we integrate with Stripe's secure payment processing system.

All payment information is handled directly by Stripe through their JavaScript library, meaning

sensitive credit card data never touches our servers. The integration uses Stripe's client-side

tokenization, where payment details are sent directly to Stripe's servers, and our system only

receives a secure token to process the transaction:

Cross-Site Request Forgery (CSRF) protection is enabled globally across the platform

through Django's middleware. Every form submission includes a CSRF token, and the system

validates these tokens on all POST requests. Form validation and input sanitization are handled

at both the frontend and backend levels. All user inputs are validated and sanitized before being

stored in the database, protecting against SQL injection and cross-site scripting (XSS) attacks.

Django's template system automatically escapes HTML in user-submitted content when

rendering pages. These security measures create a robust foundation for protecting user data and

financial transactions while maintaining a smooth user experience. We prioritized implementing

11

essential security features that directly protect our users' data and financial transactions, laying

the groundwork for additional security enhancements as the platform grows.

Deployment Process:

 The Truth Bounties platform employs a streamlined deployment process utilizing

Heroku's cloud platform, chosen for its reliability and straightforward implementation. This

approach allows our team to focus on development while maintaining confident and consistent

deployments to the production environment. Our deployment workflow centers around the

GitHub repository, where the main branch serves as the source of production-ready code. Critical

to our deployment strategy is the management of configuration information through Heroku's

environment variables system. This approach keeps sensitive data, such as database credentials,

Stripe API keys, and Django's secret key, secure and separate from the codebase. We maintain

distinct configurations for development and production environments, with development using

local environment variables for testing and production utilizing secure Heroku config vars for

live operation.

The database management strategy relies on Heroku's PostgreSQL add-on, providing a

robust and scalable solution for our data storage needs. Database migrations are handled

automatically during the deployment process through Heroku's release phase, ensuring that the

database schema stays in sync with application code. This automation reduces the risk of

deployment failures due to missed or incorrect database updates.

When deploying updates to the platform, the process follows a consistent pattern:

12

Code pushed to the main branch on GitHub triggers Heroku's automated build process. During

this build, the system installs necessary dependencies from our requirements.txt file, applies any

pending database migrations, and starts the application using gunicorn as our production server.

Static file handling is managed through Heroku's built-in systems, with Django's collectstatic

command gathering all static assets for efficient serving in the production environment.

This deployment approach has proven both reliable and maintainable for our current

needs. Its simplicity helps minimize deployment-related issues while providing the flexibility to

roll back changes if necessary. The straightforward nature of the process makes it accessible to

all team members, ensuring that deployments can be managed effectively without requiring

specialized expertise.

13

Personal Reflection and Future Considerations:

Working on the Truth Bounties platform has been an invaluable learning experience,

particularly in understanding the challenges of building a web application that handles financial

transactions and content verification. As a key contributor to this project, I've gained significant

insights into both technical implementation and project management aspects of web

development.

One of the most significant learnings came from implementing the Stripe payment

integration. While I had previous experience with Django, integrating a third-party payment

processor revealed the complexities of handling financial transactions securely. The importance

of proper error handling and transaction validation became particularly apparent when dealing

with real monetary values. This experience has given me a deeper appreciation for the intricacies

of financial technology implementations.

The project also highlighted the importance of user experience design. Initially, we

focused primarily on functionality, but as the project progressed, we realized that the success of

the platform heavily depends on making complex processes, like creating bounties and

submitting challenges, intuitive for users. If I were to start over, I would advocate for more

upfront investment in user interface design and user testing before implementing features.

Looking forward, several areas of the platform could benefit from further development.

First, the notification system needs expansion to keep users better informed about bounty and

challenge status changes. Currently, users must actively check for updates, which could limit

engagement. Implementing real-time notifications through WebSockets or a similar technology

would significantly improve the user experience. Another area for improvement is the content

verification system. While our current implementation captures and stores content effectively,

14

we could enhance it by adding automated screening tools to detect potential manipulation or

duplicative content. This enhancement would help maintain the integrity of the bounty system

and reduce the burden on human arbitrators. The challenge review process could also be refined.

Currently, it's relatively straightforward, but adding features like structured evidence submission

forms and standardized evaluation criteria would make the process more consistent and

transparent. Additionally, implementing a reputation system for both authors and challengers

would help build trust within the platform community.

One aspect I would approach differently is our testing strategy. While we relied primarily

on manual testing through localhost, implementing automated tests from the start would have

saved time in the long run and provided better confidence in our code changes. This became

particularly apparent as the codebase grew and manual testing became more time-consuming.

The deployment process, while functional, could be enhanced with automated staging

environments and more comprehensive pre-deployment checks. This would provide an

additional layer of quality assurance before changes reach production.

Working with Professor Gilbert and Mr. Chau provided valuable insights into how legal

and technical requirements intersect in real-world applications. Their expertise helped shape the

platform's features to serve practical needs while maintaining technical feasibility. This

collaboration demonstrated the importance of cross-disciplinary communication in building

successful applications.

Despite these areas for improvement, I'm proud of what we accomplished. The Truth

Bounties platform represents a novel approach to content verification, and building it has been

both challenging and rewarding. The experience has strengthened my full-stack development

skills and given me practical experience in building mission-critical features like payment

15

processing and user authentication. The project has also reinforced the importance of starting

with a minimum viable product and iterating based on feedback. While there are many features

we could add, focusing on core functionality first allowed us to create a working platform that

can be enhanced over time. This approach proved especially valuable given the project's

academic timeline and resource constraints. Moving forward, I believe Truth Bounties has the

potential to make a significant impact in the fight against misinformation. The technical

foundation we've built is solid, and with continued development focusing on user experience,

automated testing, and enhanced features, the platform could become an important tool for

content verification across the internet.

