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Abstract 

Humans display a set of perceptual biases to social stimuli that are apparent early 

in life and set the stage for subsequent social-cognitive development. However, the degree 

to which different individuals show these perceptual biases and are ultimately successful 

at advanced social-cognitive processes varies, and in extreme cases may be indicative of 

disorders like autism. Successful social functioning has strong links to health outcomes; 

therefore, discovering the neurobiological factors that contribute to optimal social 

development is an important goal of widespread multidisciplinary interest. Using an 

individual-differences approach, this dissertation links social-behavioral outcomes to 

epigenetic differences within the oxytocinergic system and complexity and variability in 

neural signals, or “neural noise.”  

It has been hypothesized that oxytocin exerts its effects on social behavior by 

increasing the salience of social information. This dissertation examines a neural 

mechanism for this hypothesis – that oxytocin increases the salience of social information 

by enhancing neural noise in response to social stimuli. In addition to its traditionally 

understood role regulating social behavior, oxytocin also acts as a neuromodulator that 

balances neural inhibition and excitation and regulates the signal-to-noise ratio in the brain. 

Therefore, early-life differences in the oxytocinergic system may trigger variable levels of 

neural noise during social perception and ultimately set differential developmental 

trajectories.  

Measures of neural noise capitalize upon the inherently fluctuating nature of the 

brain to quantify moment-to-moment variability and complexity in neural signals. This 
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work has revealed that neural noise increases during development, is positively associated 

with behavioral performance, and presents in aberrant levels in neurodevelopmental 

disorders like autism.  

This dissertation encompasses three studies that test the hypothesis that neural noise 

plays a predominant role in establishing the salience of social information early in life 

through a process governed by the endogenous oxytocinergic system. Study 1 identifies 

for the first time that brain signal entropy during social perception is associated with 

oxytocinergic system function and social-behavioral outcomes during the first year of life. 

Study 2 establishes that stimuli within the auditory domain, specifically, drive these 

oxytocinergic-entropy-behavior associations in infancy, and replicates work of others 

showing an increase in brain signal entropy cooccurs with development. Study 3 

demonstrates age-related changes in brain signal entropy across modalities – adults show 

associations between brain signal entropy and social behavior in both the visual and 

auditory domains.  

These neurobiological markers of normative social development may be used to 

identify individuals at risk for atypical development before overt clinical behaviors 

manifest. The results of these studies provide insight into the infant’s developing brain and 

identify molecular and neural signatures reflective of differential developmental 

trajectories that persist into adulthood.   
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1      Introduction 

1.1 Background 

1.1.1 The continuum of human sociality 

Successful organisms must be able to detect and appropriately utilize important 

environmental cues. For humans, social cues are often particularly relevant and 

informative, and are typically considered a highly salient class of stimuli1. The ability to 

perceive, interpret, and respond to complex and dynamic social information is critical for 

the development of adaptive learning and behavior, and ultimately facilitates the formation 

of important social relationships. 

The first year of life constitutes a time of rapid and sweeping changes in behavioral 

repertoire, cognitive ability, and neural architecture. During this time, developing infants 

are confronted with the daunting task of making sense of the world as they are bombarded 

with competing, fluctuating, and often ambiguous external stimuli. Understanding how the 

brain comes to form accurate models of the external world and generate appropriate 

behavioral responses is a significant and critical question of widespread multidisciplinary 

interest.  

Infants, and their brains, enter the world primed to take in social information –

within the first few hours of life, and potentially even in utero2, the developing human 

already displays an attentional bias to socially-relevant cues such as faces3–5and voices6,7. 

This attentional bias is posited to reflect a broadly-tuned biological predisposition that sets 

the stage for subsequent experience-dependent perceptual and neural specialization8,9.  
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However, the extent to which social stimuli automatically capture attention varies 

across individuals. For example, individuals diagnosed with autism spectrum disorder 

(ASD) often show reduced attention to social stimuli10–12. This diminished social attention 

is apparent very early in life; infants that will go on to receive an autism diagnosis can 

already be distinguished from typically developing infants by 6 months of age based only 

on their fixation patterns to social stimuli13.  

While social dysfunction is a hallmark of several disorders including autism, it is 

increasingly understood that human social behavior is not limited to diagnostic categories, 

but rather exists on a continuum that is normally distributed14 and heritable15 in the general 

population. For example, in a mixed sample of autistic and typically developing children, 

it was the amount of time looking at faces that predicted a child’s face recognition ability 

in a separate task, not their diagnostic status16. This continuum not only manifests as 

individual differences in social behavior, but is also reflected in individual differences in 

the brain’s response to social stimuli. For example, we find in a neurotypical, healthy young 

adult population, that their neural response to biological motion – an important social cue17 

– is explained by the degree to which they display autistic-like traits18. 

Identifying the developmental, neural, and molecular mechanisms that account for 

individual differences in specific behaviors, such as perceptual bias to social stimuli, across 

the full range of the social-behavioral continuum will better inform our understanding of 

the etiology of complex neurodevelopmental disorders8 and the ontogeny of social 

behavior.  

1.1.2 Oxytocin, social behavior, and neuromodulation 
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One particularly relevant molecule for regulating social behavior is oxytocin19,20. 

A peripheral hormone and central neuromodulator, oxytocin influences a variety of social 

and affective processes including affiliative behaviors21, care-giving22, and attention to 

faces23. It has been proposed that oxytocin exerts its effects on social behavior via a general 

effect on basic biological systems that facilitate the detection of and orientation to social 

information24,25, thereby increasing the salience of social information.  

The actions of oxytocin are dependent upon the expression of its receptor, which is 

encoded by the oxytocin receptor gene (OXTR, hg38_chr3:8,750,409-8,769,614)26. 

Differences in OXTR expression likely play a major role in the function of the endogenous 

oxytocinergic system. Methylation of 5′-Cytosine-phosphate-Guanine-3′ (CpG) 

dinucleotide pairs in DNA is a highly investigated epigenetic modification that may 

influence behavioral phenotypes. DNA methylation within the promoter region of OXTR 

is variable within the population27,28, and methylation of specific OXTR CpG sites reduces 

transcription of the gene27,29. Therefore, individuals with lower levels of OXTR methylation 

at these sites are presumed to have an increased ability to use endogenous oxytocin.  

Our previous work with this epigenetic modification has provided support that the 

oxytocinergic system is involved in ascribing salience to social information. We were the 

first to establish that OXTR methylation is associated with differential neural response and 

functional coupling within regions supporting social perception and emotion processing28. 

We subsequently showed that neurotypical individuals with increased OXTR methylation 

require the recruitment of additional attentional resources to attend to social information 
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embedded within a complex display30, suggesting those with presumed diminished ability 

to use endogenous oxytocin fail to ascribe salience to social information. 

Here, we consider a mechanism by which oxytocin might increase the salience of 

social information. Oxytocin has been shown to directly regulate brain signal variability in 

rodents31–34. We hypothesize that oxytocin increases the salience of social information by 

increasing neural noise in response to social stimuli.  

1.1.3 Neural “noise” is more than just noise  

Noise is a fundamental property of neural systems at multiple hierarchical levels, 

from the dynamics of ion channels to the convergence of multiple independent synaptic 

inputs35,36. Recent work has capitalized on this inherently fluctuating nature of the brain to 

understand how variability in neural signal, which is often modeled out of analyses as mere 

“noise,” may serve a valuable functional role35–39.  

Neural variability measured via electroencephalography (EEG) and functional 

magnetic resonance imaging (fMRI) shows significant differences across age groups40–46, 

which may reflect changes in synaptic pruning, myelination, and the formation of 

functional networks that occur during development41. Moment-to-moment measures of 

brain activity have also shown strong associations with behavioral outcomes, such that 

individuals with increased neural variability produce more consistent and accurate 

responses42,47,48. 

Stochastic resonance describes the phenomenon in which the addition of a moderate 

amount of random noise can counterintuitively enhance signal detection by improving the 

fidelity of an underlying signal (Figure 1-1)36. Such variability in brain activity also 
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facilitates the exchange of information between neurons49, enhancing neural synchrony and 

promoting the formation of robust, adaptable networks that are not overly reliant on any 

particular node and display a greater dynamic range36,50,51. Together, these functions 

suggest that neural variability may act to appropriately weight incoming information such 

that important stimuli are maximally salient and enable the most flexible behavioral 

response.  

However, inadequate or excessive neural variability provides inconsistent 

representations of the external world (Figure 1-1), which might result in poorly integrated 

neural networks and detrimental behavioral outcomes. Indeed, neural variability levels are 

abnormal in a range of developmental disorders52 including autism51,53–58. Furthermore, 

infant siblings who are at high risk for developing autism can be distinguished from infants 

who do not have a sibling diagnosed with autism based on neural variability levels alone, 

suggesting a genetic predisposition may contribute to both autism and aberrant levels of 

brain signal variability59.  

Oxytocin has been shown to directly regulate the firing rate of neurons in rodents, 

enhancing the signal-to-noise ratio, balancing neural inhibition and excitation, and 

improving information transfer31–34. Indeed, when synaptic excitation and inhibition are 

properly balanced, signal variability is optimal and the neural system displays maximum 

information capacity, information transmission, and dynamic range37,49. 

1.2 Approach 

1.2.1 Quantification of neural noise 
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Across three studies, we employed two methods for quantifying brain signal 

variability: standard deviation (SD) to measure overall distributional width (variance) of 

the signal, and multiscale entropy (MSE) to measure temporal irregularity across time 

scales in the signal.  

Standard Deviation Analysis. Quantifying the variance of a time series simply 

involves calculating SD either across the time series as a measure of distributional width60, 

or across trials as a measure of the reliability of the evoked response54. 

Multiscale Entropy. MSE computation involves 1) coarse graining the time series 

to scale s by averaging together s successive, non-overlapping data points, and 2) 

computing sample entropy61. Sample entropy is a measure of signal irregularity which 

determines how frequently a pattern of length m repeats relative to a pattern of length m+1. 

A similarity criterion, r, is set as a proportion of the standard deviation of the time series 

to determine what points are considered indistinguishable. For any data point u, all points 

within u ± r are considered indistinguishable. Then, the natural log of the ratio of the count 

of m patterns to the count of m+1 patterns is computed. Higher sample entropy values 

therefore indicate higher irregularity in the data because patterns of length m+1 reoccur 

less often than patterns of length m (Figure 1-2).  

In Costa’s original MSE algorithm61, r is calculated as a percentage of SD of the 

original time series and remains constant across all scales. However, this method conflates 

entropy with variance (Figure 1-3)62,63. We therefore used a modified algorithm62 that 

recalculates r at each scale as a percentage of SD of the coarse-grained time series. While 

many studies consider entropy at a single time scale (typically the native sampling rate), 
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computing entropy over multiple time scales distinguishes truly complex signals, such as 

those found in biological systems, from completely random or completely deterministic 

signals (Figure 1-4) because complexity in biological systems is characterized by 

variability over many time scales64.  Computing the area under the MSE curve (MSEAUC) 

provides a comprehensive picture of the temperodynamic structure of a time series. 

Both SD47,54,55,65 and MSE41,42,45,59,66,67 have been positively associated with 

developmental and behavioral outcomes. MSE and SD are considered independent but 

complementary functions of neural variability. Although it remains unclear exactly how 

these measures relate37, MSE and SD typically result in anticorrelated values. Because 

entropy explicitly incorporates signal SD when defining the similarity criterion r, r is larger 

for a signal with greater SD, meaning the entropy algorithm is more likely to identify 

matches resulting in a lower entropy value68. However, only MSE is sensitive to temporal 

dependencies in a time series (Figure 1-5). 

No study to date has directly compared the explanatory power of these two 

variability measures in a single model, nor considered a role for oxytocinergic system 

function as an underlying molecular mechanism capable of driving brain signal variability 

during social perception in humans.  

1.2.2 Assay of individual differences in oxytocinergic system function 

We used OXTR methylation as a measure of individual differences in oxytocinergic 

system function at CpG site -934 (hg38_chr3:8,769,121-8,769,122). We have previously 

assayed methylation levels from all CpG sites within two OXTR CpG islands and shown 

that the level of DNA methylation specifically at site -934 is (1) significantly negatively 



INTRODUCTION 
 

8 

associated with gene expression in human cortex27, suggesting a regulatory role in gene 

transcription, (2) highly variable in the general population and associated with neural 

response during social-perceptual tasks in neurotypical adults28,30,69, suggesting it is a 

viable marker of individual differences in (endo)phenotypes, and (3) elevated in the brain 

and blood of both individuals with autism27 and vole pups who experienced lower parental 

care early in life70, suggesting this marker is indicative of individual developmental 

differences that are reflected in both causative (brain) and peripheral (blood) tissue.  

1.2.3 Statistical modeling  

We employed a multivariate, exploratory approach to develop models of our 

hypothesized epigene-brain-behavior associations with partial least squares path modeling 

(PLS-PM). PLS-PM is a prediction-based multivariate method for modeling theorized 

complex relationships among observed and latent variables71. Particularly given the 

novelty of the present research, PLS is better suited than other multivariate techniques like 

covariance-based structural equation modeling (CBSEM) because PLS is considered 

optimal for exploratory, prediction-based research where theory is less developed71,72. 

Complex models with many observed variables and relationships can be estimated with 

smaller sample sizes with PLS than required by CBSEM72. Unlike CBSEM, PLS is a 

nonparametric technique which makes no assumptions about the normality of the 

distribution of the data. Furthermore, PLS is well suited to the highly dimensional, highly 

correlated nature of neuroimaging data (i.e. among many electrodes, voxels)73. For these 

reasons, PLS has become a popular and commonly used modelling technique within 

neuroimaging37,41,42,47,48,60,66,74.  
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1.2.4 Specific aims 

This dissertation encompasses three studies that test the hypothesis that neural noise 

plays a predominant role in establishing the salience of social information early in life 

through a process governed by the endogenous oxytocinergic system. We aim to identify 

what metrics of brain signal variability offer the greatest explanatory power for 

associations between individual differences in the oxytocinergic system and human social 

behavior, and under what conditions brain signal variability is exploited to benefit social 

behavior. Finally, this dissertation aims to establish the developmental trajectory of brain 

signal variability on social behavioral outcomes during the first year of life and into 

adulthood.  
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1.3 Figures 

 

 

Figure 1-1. Adding random noise to a signal enhances signal detection. A signal that is 
below the threshold for detection (panel 1) can be enhanced and more accurately 
represented by the addition of a moderate amount of random noise (panel 2). However, 
inadequate (panel 3) or excessive (panel 4) noise provides inconsistent representations of 
the signal.  
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A 

 
B  

 
Figure 1-2. The multiscale entropy algorithm illustrated. (A) A coarse-grained time 
series is first computed for scale s by averaging together s consecutive, non-overlapping 
data points of the original time series (Scale 1). Entropy is then calculated on the coarse-
grained time series. (B) Entropy measures the irregularity in a time series by determining 
how frequently a pattern of length m repeats relative to a pattern of length m+1. A similarity 
criterion, r, is set as a proportion of the standard deviation of the time series to determine 
what points are considered indistinguishable. For any data point u, all points within u ± r 
(illustrated with dashed lines) are considered indistinguishable. In this example, if m = 2, 
the first pattern of length m (points 1 and 2: red, green) repeats 4 times, whereas the first 
pattern of length m+1 (points 1, 2, 3: red, green, blue) repeats 2 times. The pattern template 
is then shifted forward 1 point such that matches of pattern m consisting of points 2 and 3, 
and pattern m+1 consisting of points 2, 3, and 4, are counted, and so on. Entropy is then 
calculated as the natural log of the ratio of the count of all pattern-length m repeats to the 
count of all pattern-length m+1 repeats: 𝑙𝑛 # $

$%&
' . Consequently, low entropy values 

indicate regularity in a time series; if pattern length m+1 occurs as often as pattern length 
m, e.g.: 𝑙𝑛 #(

(
' = 	𝑙𝑛(1) = 0.	Conversely, high entropy values indicate high irregularity 

because patterns of length m+1 occur less often than patterns of length m, e.g.: 𝑙𝑛 #(
0
' =

	𝑙𝑛(2) = 0.69.  
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Figure 1-3. Coarse graining differentially impacts standard deviation across signal 
types. The original multiscale entropy curve involves setting the similarity criterion, r, as 
a proportion of the standard deviation (SD) of the native time series (Scale 1) and 
applying the parameter to all subsequent time scales. However, SD will decrease as the 
scaling factor increases according to the statistical properties of the original time series. 
Here we plot a time series and its SD for simulated white noise (left), a sinusoidal wave 
(middle), and EEG signal (right) over scales 1, 10, 20, 30, 40, and 50. SD decreases most 
for white noise and least for the sine wave.   
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Figure 1-4. Multiscale entropy distinguishes signal types. Multiscale entropy assesses 
the irregularity of a time series across multiple time scales. (Top) White noise displays a 
highly irregular pattern across time scales; entropy is therefore high and remains high 
across the coarse graining procedure. (Middle) A sinusoidal wave is completely regular 
and deterministic; entropy is therefore low and remains low across the coarse graining 
procedure. (Bottom) A biological signal, here EEG, contains both random and 
deterministic properties. Entropy therefore increases across the coarse graining procedure 
because new information is revealed at all scales. 
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A. 

 
B. 

 
 
Figure 1-5. Multiscale entropy is sensitive to temporal dependencies in a time series. 
(A) We created a surrogate time series (red) by randomly shuffling segments of the original 
time series (black) consisting of actual EEG data from one trial. The standard deviation of 
the original and surrogate time series are equivalent, 22.63. (B) We find higher entropy for 
the surrogate time series (red) than the original time series (black) across time scales 
because the scrambling procedure introduced greater irregularity into the surrogate time 
series. 
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2      Study 1: Associations between oxytocinergic system 
function, neural noise, and infant behavior 

2.1 Methods 

2.1.1 Participants 

We report on a previously-acquired longitudinal dataset in which 96 Caucasian 

infants (49 female) provided a saliva sample at 5 months of age (M = 147.71 ± 14.75 days) 

which we subjected to OXTR methylation analysis. At 8 months of age (M = 247.85 ± 6.00 

days), infants returned to participate in an EEG paradigm in which they were presented 

with auditory clips of human vocalizations75 which we subjected to brain signal variability 

analysis. Infant behavior was assessed using the Revised Infant Behavior Questionnaire 

(IBQ-R), a widely used and validated measure of infant behavior and temperament across 

14 domains based on parental report76. Ethical approval was obtained from the University 

of Leipzig Ethics Committee.  

2.1.2 DNA collection and isolation 

Infant Samples. Passive drool was collected from infants at five months of age using 

CS-2 sponges and OG-250 kits (DNA Genotek, Ottawa, Canada), and was stored at room 

temperature until DNA isolation. Collection kits were incubated at 50°C for 1 hour, then 

centrifuged for 10 minutes at 200 rcf to release all liquid from sponges. 500 µL of saliva 

was used to isolate DNA using the manual purification protocol from DNA Genotek. DNA 

was stored in Hydration Solution (10 mM Tris, 1 mM EDTA, pH 7-8, Qiagen, Hilden, 

Germany) and quantitated using nanodrop. Insufficient DNA was available from the 

samples provided by 2 infants. These infants were excluded from the analysis. 
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Tissue Comparison Study. To determine the reliability of OXTR methylation values 

obtained from saliva, we performed a tissue comparison study in which 207 healthy 

Caucasian adults (114 females) aged 16 to 81 (M = 37.74 ± 22.95) provided 5 mL passive 

drool in a Falcon 50mL Conical Centrifuge Tube (Fisher Scientific, Hampton, NH) for 

assessment of saliva methylation and 8 mL blood in either mononuclear cell preparation 

tubes (BD Biosciences, Franklin Lanes, NJ) for assessment of mononuclear cell 

methylation (n = 142), or PAXGene Blood DNA Tubes (Qiagen, Valencia, CA) for 

assessment of whole blood methylation (n = 182). One hundred seventeen participants 

provided all three sample types. Saliva cells were pelleted in 20 mL 1x phosphate-buffered 

saline (Life Technologies, Carlsbad, CA) by centrifuging at 1800 rcf for 5 mins. Pellets 

were then transferred into a microcentrifuge tube and frozen at -20°C prior to DNA 

extraction. We isolated DNA from saliva cells using reagents supplied in the QIAamp 

DNA Blood Mini Kit (Qiagen, Valencia, CA) following Qiagen’s Supplemental Protocol 

for Isolation of Genomic DNA from Saliva. We isolated DNA from peripheral blood 

mononuclear cells using reagents and protocol supplied in the Gentra Puregene Blood Kit 

(Qiagen, Valencia, CA). We isolated DNA from whole blood using reagents and protocol 

supplied in the PAXgene Blood DNA Kit (Qiagen, Valencia, CA). 

2.1.3 Epigenetic analysis 

We subjected two hundred nanograms of DNA to bisulfite treatment (Kit 

MECOV50, Invitrogen, Carlsbad, CA), which converts non-methylated cytosines to uracil 

for downstream detection of methylated cytosines by sequencing. We amplified a 116-base 

pair region of OXTR containing CpG Site -934 via polymerase chain reaction (PCR) using 
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12 nanograms of bisulfite-converted DNA, 0.2 µM primers TSL101F (5′-

TTGAGTTTTGGATTTAGATAATTAAGGATT-3′) and TSL101R (5′-biotin-

AATAAAATACCTCCCACTCCTTATTCCTAA-3′), and reagents supplied in the 

Pyromark PCR kit (Qiagen, Valencia, CA). Underlined nucleotides in primer set indicate 

the insertion of an A or C nucleotide at a variable position (C/T) due to a CpG site within 

the primer. Samples were amplified in triplicate on three identical PCR machines (S1000 

Thermal Cycler, Biorad, Hercules, CA) with the following cycling conditions [Step 1: 

(95°C/15 min)/1 cycle, Step 2: (94°C/30 s, 56°C/30 s, 72°C/30 s)/50 cycles, Step 3: 

(72°C/10 min)/1 cycle, Step 4: 4°C hold]. Pyrosequencing was performed using primer 

TSL101S (5′- AGAAGTTATTTTATAATTTTT-3′) on a Pyromark Q24 using PyroMark 

Gold Q24 Reagents (Qiagen, Valencia, CA).  

On average, replicates deviated from the mean ± 1.66% for the tissue comparison 

study, and ± 1.83% for infant samples. Adult PBMC methylation levels averaged 47.39 ± 

6.42%, adult whole blood methylation values averaged 46.61 ± 8.11%, adult saliva 

methylation values averaged 45.33 ± 6.46%, and infant saliva methylation levels averaged 

40.34 ± 4.69%. 

2.1.4 EEG acquisition and preprocessing 

EEG acquisition information is detailed in Missana et al. (2017)75. In brief, EEG 

was recorded from 27 Ag/AgCl electrodes affixed to an elastic cap (EasyCap GmbH, 

Germany) using the 10–20 electrode placement system. The horizontal electrooculogram 

(EOG) was recorded from two electrodes (F9, F10), which are part of the cap located at 

the outer canthi of both eyes. The vertical EOG was recorded from an electrode on the 
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supraorbital ridge (FP2), which is part of the cap and an additional single electrode on the 

infraorbital ridge of the right eye. The data were sampled at a rate of 500 Hz, amplified 

using a Porti-32/M-REFA amplifier (Twente Medical Systems International), and online 

referenced to Cz.  

EEG preprocessing was completed using EEGLab, v14.1.177. Data were bandpass 

filtered (0.3 to 20 Hz), re-referenced to the average of all scalp electrodes, and segmented 

into stimulus-evoked epochs 100 ms before stimulus onset to 1000 ms post stimulus onset 

with pre-baseline correction. To assess ongoing variability, we also randomly extracted 

1100 ms epochs that were not time-locked to the onset of a stimulus and did not overlap 

with stimulus-evoked epochs (i.e. from within the inter-stimulus interval). Epochs 

contaminated with excessive amplitude standard deviations (> 100 µV in ocular electrodes, 

> 80 µV in scalp electrodes) within a sliding window of width 200 ms and step 100 ms 

were discarded as artifacts. Participants with at least 30 artifact-free auditory-evoked trials 

(10 from each social-auditory condition) and 30 artifact-free ongoing trials (n = 70) were 

retained in the analysis. This rejection rate (27.1%) can be compared to that reported in a 

meta-analysis of 149 infant EEG studies that found an average rejection rate of 49.2%78. 

As an additional artifact rejection step, we then completed an Independent Component 

Analysis to remove components with clear ocular, muscular or electrical artifacts. On 

average 4.43 (range 2 to 10) components were removed. The number of components 

removed did not correlate with MSE (r = .17, p = .171) or SD (r = -.08, p = .519) metrics, 

and removed components did not show significant event-related potential (ERP) effects 

(Figure 2-1, Table 2-1), indicating that removed components were correctly identified as 
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artifacts. Because the number of data points included in MSE calculation can influence 

reliability of the estimates63, we selected the 30 auditory-evoked (10 from each social-

auditory condition) and 30 ongoing trials with total global field power (GFP)42 closest to 

the median GFP for each participant for inclusion in downstream analyses (16470 data 

points per condition). To ensure that these preprocessing procedures did not obscure or 

eliminate relevant evoked response, we reproduced all results from Missana et al. (2017)75 

using these data re-referenced to the average of the mastoids (Figure 2-1, Table 2-1). 

2.1.5 Quantification of brain signal variability  

Brain signal variability can be quantified in many ways37. Here we consider two of 

the most commonly applied measures of brain signal variability – SD, a measure of the 

distributional width of a signal, and MSE, a measure of temporal irregularity.  

Multiscale Entropy. We computed MSE on the residuals of the EEG signal (i.e. 

after subtracting the within-person average ERP) for scales 1 to 100 (500 to 5 Hz) for the 

30 auditory-evoked and 30 ongoing trials for each scalp electrode using the algorithm 

described in Grandy et al. (2016)63 for estimating MSE across discontinuous segments, 

modified to recalculate r for each scale. Parameter values were set to pattern length m = 2 

and similarity criterion r = .5.  

Here, we consider the area under the MSE curve (MSEAUC) for each electrode for 

scales 1 to 100 (corresponding to 500 to 5 Hz) to obtain a comprehensive picture of the 

temperodynamic structure of our data. Average MSE curves are plotted in Figure 2-2 and 

average MSEAUC values are listed in Table 2-2. We also consider entropy at scales 1 (MSE1, 

500 Hz), 50 (MSE50, 10 Hz), and 100 (MSE100, 5 Hz) to assess the impact of specific time 
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scales on our models. We find across all electrodes, scales 37 to 60 (8 to 13 Hz) show the 

highest correlation with MSEAUC, suggesting these scales, in particular, may drive our 

results with MSEACU. 

Standard Deviation Analysis. To quantify variance in the EEG signal, we calculated 

SD on the residuals of the EEG signal (i.e. after subtracting the within-person average ERP) 

for the 30 auditory-evoked and 30 ongoing trials for each scalp electrode using two 

methods commonly reported in the literature. Specifically, SD can be calculated across the 

time series as a measure of distributional width (SDCONT)60, or across trials as a measure of 

the trial-by-trial reliability of the evoked response (SDTXT)54. These computation methods 

yield highly correlated SD values (all rs ≥ .99). To equalize data volume and computation 

across our brain signal variability metrics, we also consider the area under the course-

grained SD curve (SDAUC), and SD at scales 1 (SD1, equivalent to SDCONT), 50 (SD50), and 

100 (SD100).  

Finally, as we are particularly interested in understanding the unique contribution 

of entropy and variance of a signal on behavioral effects, we residualized SD from MSE68 

(MSESDRes). However, this computation yielded highly uncorrelated values across 

electrodes (Figure 2-3) such that including this measure for each electrode failed to load 

on to a single construct (mean loading = .01), regardless of whether considering the area 

under the MSESDRes curve, or MSESDRes at scales 1, 50 or 100. Attempts to identify patterns 

of correlation among electrodes to model separate constructs of this measure (e.g. frontal, 

central, posterior) failed to improve construct loadings. We therefore could not consider 

MSESDRes further in our current PLS-PM framework. 
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2.1.6 Infant behavior 

Infant behavior was assessed via parental report with the IBQ-R76, a widely used 

measure of infant behavior and temperament across 14 domains. Questionnaire data for 12 

infants was not available. To separately consider social and non-social aspects of infant 

behavior, we created new Social and Non-Social IBQ-R constructs. We first identified 

unambiguously social and non-social items by subscore. Then, we conducted an item 

analysis using the psych package in R79,80 and removed items until Cronbach’s a > .70 for 

all Social and Non-Social subscores or until the removal of additional items did not 

improve a. Subscores that did not achieve a > .60 were not considered. Models 2 and 3 

were run with Social and Non-Social Constructs both before and after item removal. 

Results did not appreciably change after item removal; results are presented after item 

removal. Individual items included in the Social and Non-Social IBQ-R constructs are 

listed in Table 2-3. 

2.1.7 Experimental design and statistical analysis 

To identify causative associations among our epigene-brain-behavior variables, we 

analyzed data using PLS-PM, a prediction-based multivariate method for simultaneously 

analyzing associations among multiple blocks of variables in which each block plays the 

role of a latent variable71. Traditionally, it is assumed that there is a system of linear 

associations between blocks. However, to account for potentially curvilinear associations 

among our biological and behavioral variables, we estimated all models using WarpPLS 

v6.0, the only software currently available to explicitly identify nonlinear functions 

connecting pairs of latent variables by performing nonlinear transformations on the 
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predictor latent variable scores prior to the calculation of path coefficients81. For all models, 

we estimated a reflexive outer model for all constructs using the PLS regression algorithm 

with WarpPLS v6.081. Inner model path coefficients were estimated using the Warp2 

algorithm, which tests for second-order polynomial associations among latent variables. If 

curvilinear associations are not found by best-fitting nonlinear functions that minimize 

sums of squared residuals on a bivariate basis81, the algorithm defaults to identifying linear 

associations. 

Outliers. After initial model fitting, values were considered outliers if the factor 

score fell more than 3 median absolute deviations from the median. We selected this 

relatively conservative criterion to balance outlier detection with subject retention. We first 

determined whether these outliers were driven by a single indicator within blocks. 

Methylation values for two subjects were identified as outliers in single replicates. These 

outlier replicates were removed and imputed with the mean of the other replicate values 

for these subjects. One subject was identified as an outlier across all three replicates; one 

subject was identified as an outlier in both MSE and SD factor scores; one subject was 

identified as an outlier in the behavioral factor scores but was not an outlier in any single 

behavioral indicator. These three subjects were removed and models were re-estimated. 

Results did not appreciably change with or without outliers; we therefore conservatively 

report on models excluding outliers (n = 55, 29 female).  

Model Assessment. After removal of outliers, we identified indicators with negative 

loadings and reverse-coded these items. These items included Activity Level, Distress to 

Limitations, Fear, Perceptual Sensitivity, Sadness, Social Fear and Non-Social Fear.  
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Next, we checked for discriminant validity by identifying and removing any items 

that loaded higher onto another construct or did not significantly load onto its construct for 

each model. These included Duration of Orientation, Perceptual Sensitivity, Vocal 

Reactivity, Social Duration of Orientation, Non-Social Fear, Non-Social Duration of 

Orientation, and Non-Social High Pleasure. Removing these items did not appreciably 

change results; results are presented with these items removed. 

Finally, we determined that the square root of the average variance extracted (AVE) 

was greater than the correlations between constructs. We report construct internal 

consistency and reliability as indexed through the composite reliability coefficient 

(recommended value > .6082), and explanatory power through R2 values in for each model 

in Table 2-4. We report path coefficients (b), standard errors for path coefficients (SE), and 

p-values (p) estimated with delete-1 jackknifing for all significant effects. The 

oxytocinergic system, social behavior, and their related brain systems have all been shown 

to be sexually dimorphic83. We therefore tested for sex effects in our models by examining 

differences in path coefficients across males and females using multi-group analysis with 

pooled standard error.  

Sample Size. After preprocessing and outlier removal, the final sample consisted of 

55 participants with complete epigenetic, neural and behavioral data. To determine that we 

had sufficient power for our models with this sample size, we followed the 

recommendation of Chin & Newsted84 to compute a power analysis based on the portion 

of the model with the largest number of predictors. In our models, IBQ-R constructs have 

the largest number of predictors – up to 3. An extensive literature review suggests a 
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moderate association (r = .3 to .5) between measures of neural variability and behavioral 

outcomes42,47,48. A two-tailed multiple regression power analysis85 determined that 56 

participants are needed to detect an effect size of 0.3 with 3 predictors, 95% power, and α 

= .05. 

2.2 Results 

2.2.1 Saliva is a reliable tissue for assaying OXTR methylation 

Previous work has shown that OXTR methylation assayed from peripheral blood at 

CpG site -934 reflects  the level of DNA methylation at this site in the brain27,70 – the causal 

tissue for behavior. To expand this marker for use with infants, we first established that 

OXTR methylation levels in saliva, a peripheral tissue more appropriate for vulnerable 

populations, correspond to OXTR methylation levels in blood. Healthy adults provided 

both passive drool and intravenous blood samples for assessment of whole blood (n = 182) 

and/or peripheral blood mononuclear cells (PBMC, n = 142). Epigenetic analyses revealed 

significant correlations between OXTR methylation derived from saliva and whole blood 

(r(180) = .75 [95% CI: .68, .81], p < .001), and saliva and PBMC (r(140) = .78, [.70, .83], 

p < .001) at site -934 (Figure 2-4). 

2.2.2 OXTR methylation is associated with brain signal entropy to influence infant 

behavior 

This study is the first to directly compare the explanatory power of two commonly 

used measures of neural variability – MSE and SD – within one model. We hypothesized 

that infants with lower OXTR methylation (presumed increased sensitivity to endogenous 

oxytocin) would show increased brain signal variability during social perception, and 
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would also receive more positive social behavioral ratings. To test this hypothesis, we used 

a multivariate approach to simultaneously model the entire data structure including our 

epigene (OXTR methylation), brain (MSE, SD), and behavior (IBQ-R) measures using 

PLS-PM. The results of this model can be seen in Figure 2-5 and Table 2-4 (Model 1). 

First, we ensured that MSEAUC and SDCONT were identified as unique, distinguishable 

constructs in the model by confirming that the loadings for each electrode exceeded .571 

for its own construct (average loading: MSEAUC M = .70; SDCONT M = .67), and that the 

cross-loadings for each electrode did not exceed .5 onto the other construct (average cross-

loading: MSEAUC M < .01; SDCONT M < .01). We found a significant negative curvilinear 

association between OXTR methylation and MSEAUC (b = -0.26, SE = 0.12, p = .014) such 

that infants with low OXTR methylation showed increased brain signal entropy. We 

simultaneously found a significant positive curvilinear association between MSEAUC and 

IBQ-R (b = 0.35, SE = 0.19, p = .035) such that infants that showed greater entropy during 

social perception received more positive behavioral ratings. However, we did not find any 

significant associations between signal SDCONT and OXTR methylation (b = 0.10, SE = 

0.12, p = .197) or IBQ-R (b = -.07, SE = 0.17, p = .346). While all electrodes loaded 

significantly onto the MSEAUC construct in our model, we obtained significantly higher 

loading coefficients (t = 3.12, p = .006) – indicating strongest associations in the model – 

for frontal and temporal electrodes (M = .74) compared to all other scalp electrodes (M = 

.65). A multi-group analysis revealed no significant differences in path coefficients across 

male and female participants (all two-tailed p values ≥ .753). Table 2-5 contains results for 

Model 1 using alternate MSE and SD calculation methods. 
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2.2.3 Evoked entropy during social perception is associated with infant social but not 

non-social behavior 

Next, we tested the hypothesis that brain signal variability evoked during social 

perception would specifically account for individual differences in social, but not non-

social, behaviors. To test this hypothesis, we classified items in the IBQ-R subscores into 

Social and Non-Social constructs (Table 2-3). The results of this model can be seen in 

Figure 2-6 and Table 2-4 (Model 2). We found the significant negative curvilinear 

association between OXTR methylation and MSEAUC persisted (b = -0.27, SE = 0.17, p = 

.012), and no significant associations emerged for SDCONT (ps ≥ .196). As hypothesized, 

we found that the significant positive curvilinear association between MSEACU and 

behavior persisted only for the Social IBQ-R construct (b = 0.27, SE = 0.13, p = .025). The 

association between MSEAUC and the Non-Social IBQ-R construct was not significant (b = 

0.19, SE = 0.18, p=.152). Significant social-behavioral indicators suggest that infants with 

lower OXTR methylation and higher MSEAUC evoked during social perception vocalize, 

enjoy cuddling, and approach social situations more, show less fear in social situations, 

and soothe easier through social interaction. A multi-group analysis revealed no significant 

differences in path coefficients across male and female participants (all two-tailed p values 

≥ .320). Table 2-6 contains results for Model 2 using alternate MSE and SD calculation 

methods. 

2.2.4 Ongoing entropy does not show social-behavioral specificity 

Finally, we examined whether these associations between OXTR methylation, brain 

signal variability, and infant social behavior occurred specifically due to the fact that 
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infants were engaged in social perception during brain signal measurement, or if general 

(ongoing) brain signal variability is associated with infant behavior regardless of perceptual 

context. To assess ongoing neural variability, we randomly extracted segments of brain 

signal from the inter-stimulus interval that were not time-locked to and did not overlap 

with stimulus presentation and re-ran the previous model with brain signal variability 

calculated on this ongoing signal. We found evoked and ongoing MSEAUC are significantly 

correlated across all electrodes (rs range from .57 to .84, all ps < .001). We again found 

that the significant negative curvilinear association between OXTR methylation and 

MSEAUC persisted (b = -0.33, SE = 0.13, p = .007), whereas no significant associations 

emerged for SDCONT (ps ≥ .174). Interestingly, this analysis revealed a significant positive 

curvilinear association between MSEAUC and both Social (b = 0.25, SE = 0.16, p = .014) 

and Non-Social (b = 0.36, SE = 0.19, p = .032) IBQ-R constructs, suggesting ongoing 

entropy, outside of a perceptual context, may reflect trait-level variability that is associated 

with general, non-context-specific infant behavior. Significant behavioral indicators 

demonstrate that infants who showed greater ongoing brain signal entropy soothe easier 

through both social and non-social means, are more likely to approach and show 

excitement for both social and non-social activities, show greater perceptual sensitivity to 

non-social stimuli, enjoy cuddling more, and show less fear in social situations. The results 

of this model can be seen in Figure 2-7 and Table 2-4 (Model 3). A multi-group analysis 

revealed no significant differences in path coefficients across male and female participants 

(all two-tailed p values ≥ .316). Table 2-7 contains results for Model 3 using alternate MSE 

and SD calculation methods.  
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2.3 Discussion 

Using a multivariate, prediction-based model in a sample of infants, we show for 

the first time associations between early-life OXTR methylation, brain signal entropy, and 

parent-reported behavior. Specifically, infants with lower levels of OXTR methylation (and 

likely increased sensitivity to endogenous oxytocin) show increased brain signal entropy 

during social perception, which is associated with more positive ratings specific to social 

behaviors. Our results demonstrate that these associations are (1) measure-specific – 

entropy, but not signal variance, links OXTR methylation and infant behavior; and (2) 

context-sensitive – entropy evoked during social perception specifically explains social 

behavior only.   
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2.4 Figures 

 
Figure 2-1. Replication of the original study results. To confirm that the preprocessing 
procedures used in our secondary data analysis (n = 55) did not obscure or eliminate 
relevant evoked response, we replicate results (left) of the original study, Missana et. al. 
(2017). We replicate the cry-sensitive ERP response (N2) at temporal electrodes, the 
laughter-sensitive ERP response (P3) at central electrodes, and the emotion-sensitive ERP 
response (LP) at central and parietal electrodes. We find no ERP in the rejected components 
(right). 
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Figure 2-2. Group average multiscale entropy curves. The average multiscale entropy 
curves for scales 1 to 100 (500 to 5 Hz) are plotted for the social evoked (left) and ongoing 
(right) EEG signal for each electrode (n = 55). 
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Figure 2-3. Correlations among electrodes across alternative brain signal variability 
computation methods. Correlation matrices showing the correlations among electrodes 
for each multiscale entropy (MSE) and standard deviation (SD) calculation method. In each 
correlation matrix, the electrodes from left to right and top to bottom are FP1, FP2, F9, F7, 
F3, FZ, F4, F8, F10, FC5, FC6, T7, C3, CZ, C4, T8, TP9, CP5, CP6, TP10, P7, P3, PZ, P4, 
P8, O1, and O2. MSEAUC, area under the multiscale entropy curve; SDAUC, area under the 
coarse-grained standard deviation curve; MSESDRes, standard deviation residualized from 
multiscale entropy; MSE1, multiscale entropy of scale 1; MSE50, multiscale entropy of 
scale 50; MSE100, multiscale entropy of scale 100; SDCONT/SD1, standard deviation of the 
continuous time series, equivalent to standard deviation of scale 1; SD50, standard deviation 
of scale 50; SD100, standard deviation of scale 100; r, correlation coefficient.  
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Figure 2-4. Saliva is a reliable tissue for assaying OXTR methylation. DNA methylation 
values at OXTR cytosine-phosphate-guanine (CpG) site -934 are significantly correlated 
between (A) saliva and peripheral blood mononuclear cells (PBMC) (n = 142, r(140) = .78, 
p < .001), and (B) saliva and whole blood (n = 182, r(180) = .75, p < .001).  
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Figure 2-5. OXTR methylation is associated with brain signal entropy to influence 
infant behavior. (A) Results from the partial least squares path model (Model 1, n = 55) 
showing associations between OXTR methylation (OXTRm), area under the multiscale 
entropy curve (MSEAUC) evoked during social perception, standard deviation of the 
continuous time series (SDCONT) evoked during social perception, and ratings on the 
Revised Infant Behavioral Questionnaire (IBQ-R). β, path model coefficient; p, jackknifed 
p-value for coefficient. (B) Topographical map showing loadings of each electrode on the 
MSEAUC construct. (C) Plot of the significant association between MSEAUC and OXTRm 
standardized factor scores. (D) Plot of the significant association between MSEAUC and 
IBQ-R standardized factor scores.   
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Figure 2-6. Evoked entropy during social perception is associated with infant social 
but not non-social behavior. (A) Results from the partial least squares path model (Model 
2, n = 55) showing associations between OXTR methylation (OXTRm), area under the 
multiscale entropy curve (MSEAUC) evoked during social perception, standard deviation of 
the continuous time series (SDCONT) evoked during social perception, and ratings on the 
Social and Non-Social constructs of the Revised Infant Behavioral Questionnaire (IBQ-R). 
β, path model coefficient; p, jackknifed p-value for coefficient. (B) Topographical map 
showing loadings of each electrode on the MSEAUC construct. (C) Plot of the significant 
association between MSEAUC and OXTRm standardized factor scores. (D) Plot of the 
significant association between MSEAUC and Social IBQ-R standardized factor scores.  
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Figure 2-7. Ongoing entropy does not show social-behavioral specificity. (A) Results 
from the partial least squares path model (Model 3, n = 55) showing associations between 
OXTR methylation (OXTRm), ongoing area under the multiscale entropy curve (MSEAUC), 
signal standard deviation of the continuous ongoing time series (SDCONT), and ratings on 
the Social and Non-Social constructs of the Revised Infant Behavioral Questionnaire (IBQ-
R). β, path model coefficient; p, jackknifed p-value for coefficient. (B) Topographical map 
showing loadings of each electrode on the MSEAUC construct. (C) Plot of the significant 
association between MSEAUC and OXTRm standardized factor scores. (D) Plot of the 
significant association between MSEAUC and Social IBQ-R standardized factor scores. (E) 
Plot of the significant association between MSEAUC and Non-Social IBQ-R standardized 
factor scores.  
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2.5 Tables 

 

 
 
Table 2-1. Replication results. Analysis of variance (ANOVA) results replicating ERP 
N2, P3, and LP effects reported in the original study by Missana et al. (2017) using the 
novel preprocessing steps taken in this secondary data analysis. We find no significant 
differences across conditions in the ICA components rejected as artifacts during 
preprocessing. 

 

 

    ANOVA 
Crying vs.  

Neutral 
Crying vs. 
 Laughing 

Laughing vs.  
Neutral 

Processed Data 

N2 F(2,138) = 4.43,  
p = .014 

t(69) = -2.74,  
p = .008 

t(69) = -2.72,  
p = .008 

t(69) = 0.05,  
p = .960 

P3 F(2,138) = 16.14,  
p < .001 

t(69) = 0.85,  
p = .396 

t(69) = -4.93,  
p < .001 

t(69) = 4.66,  
p < .001 

LP F(2,138) = 4.55,  
p = .012 

t(69) = 2.13,  
p = .037 

t(69) = -0.95,  
p = .346 

t(69) = 2.88,  
p = .005 

Rejected 
Components 

N2 F(2,138) = 0.91,  
p = .406 

t(69) = 1.28,  
p = .206 

t(69) = 0.7,  
p = .485 

t(69) = 0.69,  
p = .495 

P3 F(2,138) = 2.21,  
p = .113 

t(69) = 1.9,  
p = .062 

t(69) = 0.98,  
p = .329 

t(69) = 1.3,  
p = .197 

LP F(2,138) = 0.72,  
p = .489 

t(69) = 0.92,  
p = .360 

t(69) = 1.02,  
p = .310 

t(69) = 0.22,  
p = .826 
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Table 2-2. Average area under the multiscale entropy curve values. Mean and 
(standard error of the mean) area under the multiscale entropy curve values for each 
electrode and condition. 

 

Electrode Social Evoked Ongoing 
FP1 89.61 (1.58) 89.20 (1.59) 
FP2 89.46 (1.56) 89.92 (1.46) 
F9 85.26 (1.55) 84.71 (1.69) 
F7 89.04 (1.66) 89.49 (1.59) 
F3 89.27 (1.72) 89.43 (1.70) 
FZ 90.62 (1.38) 90.22 (1.48) 
F4 91.43 (1.51) 92.38 (1.66) 
F8 89.71 (1.55) 89.63 (1.53) 
F10 86.56 (1.45) 84.51 (1.51) 
FC5 91.11 (1.51) 92.11 (1.75) 
FC6 92.39 (1.83) 91.82 (1.73) 
T7 87.66 (1.83) 88.25 (1.85) 
C3 86.21 (1.66) 86.31 (1.68) 
CZ 89.00 (1.54) 88.87 (1.64) 
C4 88.88 (1.79) 89.02 (1.70) 
T8 91.71 (1.87) 89.52 (1.91) 
TP9 90.44 (1.56) 93.29 (1.57) 
CP5 94.04 (1.24) 93.00 (1.28) 
CP6 93.38 (1.41) 93.48 (1.37) 
TP10 88.46 (1.63) 92.67 (1.45) 

P7 94.45 (1.51) 95.20 (1.50) 
P3 90.18 (1.52) 87.76 (1.44) 
PZ 88.10 (1.59) 87.66 (1.74) 
P4 90.47 (1.50) 88.41 (1.65) 
P8 95.20 (1.26) 95.77 (1.22) 
O1 91.69 (1.27) 92.36 (0.99) 
O2 92.23 (1.14) 92.14 (1.15) 
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Table 2-3. Items included in the Social and Non-Social behavioral constructs. 
Individual items included in the Social and Non-Social Revised Infant Behavior 
Questionnaire (IBQ-R) constructs after item analysis. α, Cronbach’s alpha. 
  

Construct Subscore a  Items 

Social  
IBQ-R 

Cuddliness 0.88 5, 6, 7, 105, 106, 107, 108, 123, 124, 125, 126, 127, 128, 
129, 130, 131, 132 

Duration of 
Orientation 0.68 55, 101 
Fear 0.90 90, 150, 151, 152, 153, 154, 155, 156, 161, 162, 163, 164 
High 
Pleasure 0.72 58, 59, 60, 61, 65, 66, 67, 77, 78, 79, 80, 81, 165 
Soothability 0.71 174, 176, 177, 178, 179, 189, 190, 191 
Vocalization 0.73 8, 9, 10, 35, 42, 45, 52, 102, 103, 146, 147, 148 

Non-Social 
IBQ-R 

Approach 0.70 85, 86, 87, 88, 97, 98, 160 
Duration of 
Orientation 0.70 46, 47, 48, 49, 50, 51, 54, 91, 92 
Fear 0.78 157, 158 
Perceptual 
Sensitivity 0.78 4, 83, 95, 96, 133, 134, 135, 136, 137, 138, 139 
High 
Pleasure 0.78 82, 62, 63, 64, 68, 69, 70, 71, 72, 73, 74 
Soothability 0.68 183, 184, 186, 187 
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Table 2-4. Model fit statistics. Composite reliability coefficients reflecting internal 
consistency and reliability and R2 coefficients reflecting explanatory power for each 
construct and model. OXTRm, OXTR DNA methylation; MSEAUC, area under the 
multiscale entropy curve; SDCONT, standard deviation of the continuous time series; IBQ-
R, Revised Infant Behavioral Questionnaire. 

 

  

Composite reliability coefficients 
Model OXTRm MSEAUC SDCONT IBQ-R Social IBQ-R Non-Social IBQ-R 

1 0.87 0.96 0.96 0.82 - - 
2 0.87 0.96 0.96 - 0.73 0.78 
3 0.87 0.97 0.95 - 0.73 0.74 

R2 coefficients 
Model OXTRm MSEAUC SDCONT IBQ-R Social IBQ-R Non-Social IBQ-R 

1 - 0.07 0.01 0.11 - - 
2 - 0.07 0.01 - 0.10 0.07 
3 - 0.11 0.02 - 0.11 0.11 
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Table 2-5. Model 1 results using alternative brain signal variability computation 
methods. Path coefficients and (standard errors) are reported for iterations of Model 1 
using alternative computation methods for multiscale entropy and standard deviation of the 
time series. P-values are estimated with delete-1 jackknifing. Boldfaced* effects are 
significant at the p ≤ .05 level; Italicized+ effects approach significance at the p < .10 level. 
MSEAUC, area under the multiscale entropy curve; SDCONT, standard deviation of the 
continuous time series; SDTXT, standard deviation across trials; SDAUC, area under the 
coarse-grained standard deviation curve; MSE1, multiscale entropy of scale 1; SD1, 
standard deviation of scale 1; MSE50, multiscale entropy of scale 50; SD50, standard 
deviation of scale 50; MSE100, multiscale entropy of scale 100; SD100, standard deviation 
of scale 100. 
 
  

Model 1: Path Coefficients and Standard Errors 

  From: 

 To: OXTRm MSE SD 

MSEAUC & SDCONT 
MSE -0.26 (0.12)* - - 

SD 0.10 (0.12) - - 
IBQ-R 0.12 (0.34) 0.35 (0.19)* -0.07 (0.17) 

MSEAUC & SDTXT 
MSE -0.26 (0.12)* - - 

SD 0.10 (0.12) - - 
IBQ-R 0.12 (0.34) 0.35 (0.20)* -0.06 (0.17) 

MSEAUC & SDAUC 
MSE -0.26 (0.12)* - - 

SD 0.15 (0.12) - - 
IBQ-R 0.12 (0.35) 0.37 (0.21)* -0.08 (0.22) 

MSE1 & SD1 
MSE -0.28 (0.13)* - - 

SD 0.10 (0.12) - - 
IBQ-R 0.09 (0.27) 0.13 (0.59) -0.03 (0.17) 

MSE50 & SD50 
MSE -0.24 (0.12)* - - 

SD 0.15 (0.12)+ - - 
IBQ-R 0.12 (0.36) 0.36 (0.18)* -0.02 (0.18) 

MSE100 & SD100 
MSE -0.20 (0.13)+ - - 

SD 0.19 (0.11)+ - - 
IBQ-R 0.09 (0.26) 0.18 (0.22) 0.07 (0.37) 
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Table 2-6. Model 2 results using alternative brain signal variability computation 
methods. Path coefficients and (standard errors) are reported for iterations of Model 2 
using alternative computation methods for multiscale entropy and standard deviation of the 
time series. P-values are estimated with delete-1 jackknifing. Boldfaced* effects are 
significant at the p ≤ .05 level; Italicized+ effects approach significance at the p < .10 level. 
MSEAUC, area under the multiscale entropy curve; SDCONT, standard deviation of the 
continuous time series; SDTXT, standard deviation across trials; SDAUC, area under the 
coarse-grained standard deviation curve; MSE1, multiscale entropy of scale 1; SD1, 
standard deviation of scale 1; MSE50, multiscale entropy of scale 50; SD50, standard 
deviation of scale 50; MSE100, multiscale entropy of scale 100; SD100, standard deviation 
of scale 100.  

Model 2: Path Coefficients and Standard Errors 

  From: 

 To: OXTRm MSE SD 

MSEAUC & SDCONT 

MSE -0.27 (0.12)* - - 
SD 0.10 (0.12) - - 

Social IBQ-R -0.11 (0.14) 0.27 (0.13)* 0.05 (0.27) 
Non-social IBQ-R 0.14 (0.27) 0.19 (0.18) -0.12 (0.20) 

MSEAUC & SDTXT 

MSE -0.27 (0.12)* - - 
SD 0.10 (0.12) - - 

Social IBQ-R -0.04 (0.17) 0.23 (0.11)* 0.10 (0.16) 
Non-social IBQ-R 0.04 (0.49) 0.22 (0.24) 0.03 (0.29) 

MSEAUC & SDAUC 

MSE -0.27 (0.12)* - - 
SD 0.15 (0.12)+ - - 

Social IBQ-R -0.11 (0.14) 0.29 (0.14)* 0.00 (0.13) 
Non-social IBQ-R 0.14 (0.27) 0.13 (0.20) -0.19 (0.21) 

MSE1 & SD1 

MSE -0.28 (0.13)* - - 
SD 0.10 (0.12) - - 

Social IBQ-R -0.20 (0.17) 0.11 (0.34) -0.21 (0.26) 
Non-social IBQ-R 0.14 (0.36) 0.10 (0.13) -0.22 (0.15) 

MSE50 & SD50 

MSE -0.25 (0.12)* - - 
SD 0.15 (0.12)+ - - 

Social IBQ-R -0.10 (0.15) 0.31 (0.13)* 0.03 (0.14) 
Non-social IBQ-R 0.15 (0.38) 0.08 (0.23) -0.23 (0.22) 

MSE100 & SD100 

MSE -0.20 (0.13)+ - - 
SD 0.19 (0.12)+ - - 

Social IBQ-R -0.12 (0.17) 0.21 (0.20) -0.04 (0.30) 
Non-social IBQ-R 0.14 (0.38) -0.08 (0.32) -0.25 (0.17) 
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Table 2-7. Model 3 results using alternative brain signal variability computation 
methods. Path coefficients and (standard errors) are reported for iterations of Model 3 
using alternative computation methods for multiscale entropy and standard deviation of the 
time series. P-values are estimated with delete-1 jackknifing. Boldfaced* effects are 
significant at the p ≤ .05 level; Italicized+ effects approach significance at the p < .10 level. 
MSEAUC, area under the multiscale entropy curve; SDCONT, standard deviation of the 
continuous time series; SDTXT, standard deviation across trials; SDAUC, area under the 
coarse-grained standard deviation curve; MSE1, multiscale entropy of scale 1; SD1, 
standard deviation of scale 1; MSE50, multiscale entropy of scale 50; SD50, standard 
deviation of scale 50; MSE100, multiscale entropy of scale 100; SD100, standard deviation 
of scale 100.

Model 3: Path Coefficients and Standard Errors 

  From: 

 To: OXTRm MSE SD 

MSEAUC & SDCONT 

MSE -0.33 (0.13)* - - 
SD 0.14 (0.15) - - 

Social IBQ-R -0.12 (0.15) 0.26 (0.12)* -0.09 (0.31) 
Non-social IBQ-R 0.13 (0.12) 0.36 (0.19)* -0.10 (0.37) 

MSEAUC & SDTXT 

MSE -0.33 (0.13)* - - 
SD 0.14 (0.15) - - 

Social IBQ-R -0.04 (0.16) 0.25 (0.13)* 0.12 (0.14) 
Non-social IBQ-R -0.02 (0.14) 0.45 (0.25)* -0.16 (0.80) 

MSEAUC & SDAUC 

MSE -0.33 (0.13)* - - 
SD 0.19 (0.15)+ - - 

Social IBQ-R -0.12 (0.15) 0.26 (0.13)* 0.03 (0.29) 
Non-social IBQ-R 0.13 (0.12) 0.35 (0.23) -0.09 (0.55) 

MSE1 & SD1 

MSE -0.27 (0.14)* - - 
SD 0.14 (0.15) - - 

Social IBQ-R -0.21 (0.18) -0.17 (0.68) -0.22 (0.36) 
Non-social IBQ-R 0.12 (0.31) 0.11 (0.15) -0.15 (0.16) 

MSE50 & SD50 

MSE -0.33 (0.13)* - - 
SD 0.19 (0.15) - - 

Social IBQ-R -0.13 (0.15) 0.24 (0.13)* -0.08 (0.26) 
Non-social IBQ-R 0.10 (0.14) 0.27 (0.21) -0.01 (0.23) 

MSE100 & SD100 

MSE -0.23 (0.14)+ - - 
SD 0.24 (0.14)+ - - 

Social IBQ-R -0.13 (0.16) 0.40 (0.14)* -0.07 (0.12) 
Non-social IBQ-R 0.11 (0.22) 0.20 (0.22) -0.10 (0.20) 
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3      Study 2: Context- and modality-specific associations 
between oxytocinergic system function, neural noise, and 
infant social behavior  

3.1 Methods 

3.1.1 Participants 

Sixty-five infants (31 female) were recruited from the greater Charlottesville area 

to participate in Study 2 at 4 months of age (M = 131.92 ± 11.59 days). The racial 

breakdown of infants was as follows: 77% Caucasian (n = 50), 20% mixed race (n = 13), 

and 3% Black (n = 2). Four infants were born pre-term (prior to 37 weeks gestation). The 

average birth weight was 3439.19 ± 525.73 grams. The average maternal age at birth was 

31.68 ± 4.82 years. Forty-nine infants were delivered vaginally, 15 via elective cesarean, 

and 1 via emergency cesarean. Labor was induced via Pitocin in 23.08% (n = 15) births.  

Eleven infants (4 female; 9 Caucasian, 2 mixed race, 1 Black; 0 pre-term) returned 

within 1 week (M = 5.23 ± 2.00 days) to assess the test-retest reliability of our measures. 

Thirty-seven infants (18 female; 29 Caucasian, 8 mixed race; 4 pre-term) returned at 8 

months of age (M = 241.70 ± 15.13) to assess the developmental trajectory of our measures. 

On average, 111.92 ± 10.23 days passed between the 4- and 8-month visits.  

The primary caregiver accompanied the infant to all appointments and provided 

written informed consent for a protocol approved by the University of Virginia Health and 

Human Sciences Institutional Review Board. At each visit, infants provided a DNA 

sample, participated in an eye-tracking paradigm, were video-recorded during a free-play 

interaction with their caregiver, and underwent EEG. Caregivers completed the Short 

Revised Infant Behavior Questionnaire (IBQ-RS) at each visit, and provided a DNA 
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sample at the 4-month visit. Visits lasted no longer than two hours and families were paid 

$50 for each visit.  

3.1.2 DNA sample collection and epigenetic analysis 

All infants (with the exception of one 8-month-old) provided a saliva sample at 

each visit for the assessment of OXTR methylation. Saliva was collected with CS-2 sponges 

(DNA Genotek, Ottawa) at least 30 minutes after the last feeding and stored in OG-250 

kits (DNA Genotek, Ottawa) at room temperature until DNA isolation. The primary 

caregiver provided a saliva sample at the first visit at least 30 minutes after the last meal. 

Saliva was collected using OG-500 kits (DNA Genotek, Ottawa) and stored at room 

temperature until DNA isolation.  

DNA isolation and downstream epigenetic analysis proceeded exactly as described 

in Study 1. Technical replicates deviated an average of ± 2.10% from the mean. 

3.1.3 Eye-tracking paradigm 

To assess the extent to which social stimuli captured attention, infants participated 

in an eye-tracking paradigm in which they viewed videos of children playing in a 

naturalistic environment86. Stimuli were provided courtesy of researchers at the Center for 

Autism Research at the Children’s Hospital of Philadelphia and included 16 silent video 

clips of 8 sibling pairs of school-aged, Caucasian children playing with various toys (e.g. 

cards, Jenga) at a table or on the floor. Filming took place in naturalistic playroom settings 

were background objects (e.g. paintings, light switches, toys) were visible. Each sibling 

pair was filmed once engaging in joint play and once engaging in parallel play. Videos 

lasted 16 s and were presented to the infants in a randomized order. Between each video, 
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infants’ attention was re-oriented to the center of the screen with a colorful, dynamically 

spinning object (soccer ball, stars, sun, acorn, painter’s pallet) and was paired with an 

attention-getting sound (bells, beeps, boings). The order and pairing of these attention-

getters was randomized. Once the infant fixated on the attention-getter for 500 ms, the next 

video began. If the infant failed to fixate after 5000 ms, the next video began. If the infant 

failed to fixate for 6 attention-getters in a row, the paradigm automatically stopped to avoid 

losing infant attention and compliance for the remaining visit tasks.  

Stimuli were presented using PsychToolBox87 v3.0.14 for MATLAB. Eye-tracking 

was recorded with Tobii Pro SDK v1.6 for MATLAB and a Tobii X60 eye tracker mounted 

to a 43 cm computer screen. The infant was seated on the caregiver’s lap throughout the 

protocol. The caregiver wore darkened glasses to ensure the eye tracker registered only the 

infant’s pupils and was instructed not to talk or interact with the infant so as to not interfere 

with data acquisition. The infant was first adjusted to be positioned 60 cm from the eye-

tracker and screen. Then the infant underwent a 5-point calibration procedure in which a 

colorful, dynamic animation (flower, beachball, or ladybug) expanded and contracted and 

was paired with an attention-getting sound. If any points failed to calibrate, the calibration 

procedure was repeated up to two times for those points at which point the eye-tracking 

paradigm commenced. 

Gaze data preprocessing was carried out using custom MATLAB scripts following 

Tobii recommendations88, including gap fill-in using linear interpolation for gaps up to 75 

ms, average eye computation from binocular data, and median filtering with a length of 7 

points (100 ms)89. Areas of interest (AOIs) were drawn around faces within the videos in 
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Tobii Pro Studio and provided by researchers at the Center for Autism Research at the 

Children’s Hospital of Philadelphia. We converted AOIs to frame-wise x and y coordinates 

corresponding to the display area for eye gaze analysis with custom MATLAB scripts. 

Attention to social stimuli was defined as the Proportion of Total Fixation Duration 

to Faces relative to Total Fixation Time to the entire screen. Calculating a proportional 

fixation duration in this manner accounts for individual differences in overall looking 

behavior and does not require the implementation of an exclusionary gaze time threshold 

that would reduce sample size and may produce selection biases86. We also calculated 

Average Time to First Fixation to Faces to assess how quickly social information captured 

infant’s attention, and Total Fixation Count to Faces to assess the extent of visual 

exploration of social information. 

Eye-tracking data was not available for eight 4-month-olds and seven 8-month-olds 

either due to a failure of the eye-tracker to register the infant’s eyes or technical error. On 

average, 4-month-olds viewed 8.06 ± 4.12 videos and their looking behavior was 

accurately recorded for 56.37% of the total duration that videos were presented. On 

average, 8-month-olds viewed 9.71 ± 4.64 videos and their looking behavior was 

accurately recorded for 40.87% of the total duration that the videos were presented. 

3.1.4 EEG paradigm 

Infants participated in an EEG paradigm (Figure 3-1) consisting of four conditions, 

resulting in a 2 x 2 design with the factors context (social or non-social) and modality 

(visual or auditory).  
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Visual stimuli. Visual social stimuli consisted of dynamic color videos of women 

rotating their heads and smiling. Stimuli were obtained from the Amsterdam Dynamic 

Facial Expression Set (http://aice.uva.nl/research-tools/adfes-stimulus-set/adfes-stimulus-

set.html) and consisted of six Caucasian actors each turning towards or away from the 

camera to the left or right and then smiling for a total of 24 videos. 

Visual non-social stimuli consisted of dynamic color videos of common objects 

(e.g. cups, vegetables, ribbon) rotating. Stimuli were obtained from the Amsterdam Library 

of Object Images (http://aloi.science.uva.nl/), a database of objects photographed in 

multiple viewing directions. Objects were first cropped and placed on a background 

matching the social stimuli, then selected such that the non-social stimulus set were 

matched to the social stimulus set on luminance (Msocial = 177.16, Mnon-social = 178.24, t = 

0.13, p = 0.898, contrast (Msocial = 52.95, Mnon-social = 53.73, t = 0.16, p = 0.875), and spatial 

frequency (Msocial = 13743.58, Mnon-social = 12067.46, t = -1.92, p = 0.068) using custom 

MATLAB scripts adopted from the SHINE90 toolbox. The final set consisted of 12 unique 

objects, each rotating to the left and to the right for a total of 24 videos. 

Each visual block had a total duration of 18 s and consisted of six unique 2400-ms 

videos presented at a visual angle of 8° in a randomized order and with a randomized inter-

stimulus interval ranging from 500 to 1000 ms. White noise generated in MATLAB was 

presented as auditory stimuli during visual blocks.  

Auditory stimuli. Auditory non-social stimuli consisted of sounds of water from 

nature (e.g. rain, surf) and household products (e.g. bubbling, splashing) downloaded from 

http://www.findsounds.com. Auditory social stimuli consisted of naturalistic infant-
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directed speech, recorded from seven English-speaking mothers as they spoke to their 

preverbal children in their homes91, downloaded from the Child Language Data Exchange 

System (https://childes.talkbank.org/access/Eng-NA/Brent.html). Clips containing single-

word utterances (e.g. “shoes,” “open,” “hot”) or short phrases (e.g. “oh my goodness,” “uh 

oh,” “bye-bye”) were extracted from the recordings. Clips containing incoherent speech or 

background noises were discarded and stimuli were selected such that the social stimulus 

set matched the non-social stimulus set on mean fundamental frequency (Msocial = 311.16, 

Mnon-social = 335.29, t = -1.29, p = .200), standard deviation of fundamental frequency 

(Msocial = 66.85, Mnon-social = 57.82, t = 0.95, p = .343), and duration (Msocial = 0.87, Mnon-

social = 0.97, t = -1.35, p = .179) using Praat v6.0.3692 and custom MATLAB scripts.  

The final auditory stimulus set consisted of 60 unique social and 60 unique non-

social auditory clips. Clips were grouped by condition into six 10-clip, 18 s blocks such 

that no word or water-sound type repeated within a block. The inter-stimulus interval 

between clips ranged from 500 to 10000 ms, randomized across participants. The order of 

clips within a block and the presentation order of blocks was randomized across 

participants. Static videos generated in MATLAB were presented as visual stimuli during 

auditory blocks.    

Paradigm. Stimuli were presented with PsychToolBox87 v3.0.14 in MATLAB. 

Blocks were pseudo-randomized such that visual and auditory blocks alternated. An 

attention-getting stimulus was presented within the inter-block interval to regain the 

infant’s attention to the computer screen, at which point the experimenter initiated the 

beginning of the next block. Infants were seated on their caregiver’s lap approximately 100 
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cm from a computer monitor throughout the experiment. Caregivers were instructed not to 

talk or interact with the infant so as to not interfere with data acquisition. The experimenter 

viewed the infant via live stream from the control area and could pause the experiment 

between blocks to regain the infant’s attention or compliance if necessary. The EEG 

session ended when the infant became fussy or inattentive or after 24 blocks. On average, 

infants completed 7.30 blocks of the paradigm. 

3.1.5 EEG acquisition and preprocessing 

EEG was recorded from 32 Ag/AgCl active actiCAP slim electrodes (Brain 

Products GmbH, Germany) affixed to an elastic cap using the 10-20 electrode placement 

system. The horizontal electrooculogram (EOG) was recorded from two electrodes (F7, 

F8), which are part of the cap located at the outer canthi of both eyes. The vertical EOG 

was recorded from two electrodes (FP1, FP2), which are part of the cap on the supraorbital 

ridge of both eyes. The infant’s head circumference was first obtained to determine the 

correct cap size. Capping and gel application took place in a child-friendly waiting room 

so that the infant would not acclimate to the testing area prior to recording. Impedances 

were assessed via the actiCAP Control Box (Brain Products GmbH, Germany) prior to 

recording.  

EEG was amplified with a BrainAmp DC Amplifier (Brain Products GmbH, 

Germany) and recorded using BrainVision Recorder software with a sampling rate of 5000 

Hz, online referenced to FCz, and online band-pass filtered between 0.1 to 1000 Hz. Data 

were analyzed offline using EEGLab v14.1.193, ERPLab v7.0.093 and custom MATLAB 

scripts. Data were resampled at 500 Hz, band-pass filtered between 0.3 to 20 Hz, and re-



STUDY 2 
 

50 

referenced to the average of all scalp electrodes. Visual stimuli were segmented into 

stimulus-evoked epochs 100 ms pre-stimulus onset to 1000 ms post-stimulus onset with 

pre-baseline correction. Auditory stimuli were segmented into stimulus-evoked epochs 100 

ms pre-stimulus onset to 500 ms post-stimulus onset with pre-baseline correction. Epochs 

contaminated with excessive amplitude standard deviations (> 100 µV in ocular channels, 

> 80 µV in scalp electrodes) within a sliding window of width 200 ms and step 100 ms 

were discarded as artifacts. Participants with at least 20 artifact-free visual segments and 

40 artifact-free auditory segments were retained in the analyses. Four 4-month-olds and 

one 8-month-old were excluded for an insufficient number of artifact-free segments. EEG 

data failed to save due to a technical error for an additional 4-month-old. EEG data for 

sixty (92.3%) 4-month-olds and thirty-six (97.3%) 8-month-olds was retained.  

We then used an Independent Component Analysis (ICA) to remove components 

with ocular, muscular or electrical artifacts. On average, 3.48 (range 2 to 8) components 

were removed. The number of components removed did not correlate with MSE within the 

visual (r = .13, p = .330) or auditory (r = -.15, p = .249) domain and did not show significant 

ERP effects (Figure 3-2), indicating that the components identified as artifacts did not 

contain relevant brain activity.  

To include an equivalent number of data points for each condition in the MSE 

computation63, we selected the 20 visual segments (10 social) and the 40 auditory segments 

(20 social) with a total global field power (GFP)42 closest to the median GFP for each 

participant for inclusion in downstream analyses (5000 data points per condition). To 

ensure that these preprocessing procedures did not obscure or eliminate relevant brain 
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activity, we examined the ERP (Figure 3-2) using these data re-referenced to Cz (visual) 

or the average of the mastoids (auditory).  

3.1.6 Quantification of brain signal variability 

We computed MSE on the residuals of the average-referenced post-stimulus onset 

EEG signal (i.e. after subtracting the within-person average ERP) using pattern length m = 

2 and similarity criterion r = .5 (recalculated at each scale) across segments63. We then 

calculated the area under the MSE curve (MSEAUC) for each electrode for scales 1 to 50 

(corresponding to 500 to 10 Hz). Average MSE curves are plotted in Figure 3-3 and average 

area under the curve values are listed in Table 3-1. 

3.1.7 Statistical analysis 

To identify causative associations among our epigene-brain-behavior variables, we 

analyzed data in the partial least squares path modeling (PLS-PM) framework using 

WarpPLS v6.081 to model curvilinear associations between our latent constructs. The aim 

of the present study was to identify whether there are context- and modality- specific 

associations between OXTR methylation, brain signal entropy evoked during perception, 

and infant behavior. Specifically, we hypothesized that infants that show greater entropy 

to social relative to non-social stimuli in both modalities would show enhanced social 

behavior. We therefore included Social – Non-social MSE-AUC differences scores for 

each electrode across visual and auditory modalities separately in the model. To assess 

modality-specific behavioral associations in our model, we included three metrics of social 

attention from the eye-tracking paradigm as a Visual Behavior construct: Average Time to 

First Fixation to Faces, Total Fixation Count to Faces, and Proportion of Total Fixation 
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Duration to Faces. We included the seven items that constitute the Vocalization subscore 

of the IBQ-RS (Table 3-2) as a Vocal Behavior construct. IBQ-RS data was unavailable 

for four 4-month-old infants. These missing data were imputed via arithmetic mean 

imputation. Each technical replicate (3) of the OXTR methylation analysis was included in 

the OXTR methylation construct.  

Sample size. The target sample size for the test-retest reliability analysis was 

determined via power analysis tables provided by Bujang and Baharum94 which specify 

that 10 subjects are sufficient to detect an interclass correlation coefficient (ICC) of .70 

based on two observations with 80% power.  

The target sample size for the PLS-PM analysis assessing associations between our 

genetic, neural, and behavioral measures was determined via a power analysis using effect 

sizes established in Study 1 and following recommendations of Chin & Newsted84. In our 

models, behavioral constructs have the largest number of predictors – 3. A two-tailed 

multiple regression power analysis85 determined that 58 participants are needed to detect 

an effect size of 0.29 with 3 predictors, 95% power, and α = .05. We therefore include data 

for the 4-month-olds (n = 60) in our epigene-brain-behavior association models. Data for 

the 8-month-olds (n = 35) was included in analyses assessing the developmental trajectory 

of MSE.  

3.2 Results 

3.2.1 Methylation values do not vary by age, race, or delivery method 

Methylation levels at 4 months averaged 42.02 ± 4.53%. Methylation levels at 8 

months averaged 41.61 ± 4.71%. There was no significant difference in methylation across 
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age groups t(35) = -0.21, p = .831. There was no significant difference in the variance of 

methylation values across age groups (F(64,35) = 0.92, two-tailed p-value = .772).  

Parental methylation levels averaged 47.08 ± 7.19%. Although parental 

methylation levels were not significantly correlated with infant methylation values at 4 

months (r = .18, p = .146) or at 8 months (r = -.27, p = .104), there was a significant change 

in parent-infant correlation with development. Infant and parent methylation values were 

significantly more correlated at 4 than at 8 months (Fisher r-to-z = 2.12, two-tailed p-value 

= .030). 

Methylation levels may vary by race95. However, we find no differences in OXTR 

methylation levels (t(63) = -0.59, p = . 557) among Caucasian infants (M = 41.84) and non-

Caucasian infants (M = 42.63). OXTR methylation levels may also be impacted by labor 

and delivery factors96. However, we find no differences in OXTR methylation levels (t(63) 

= 1.32, p = .192) among infants who were delivered vaginally (M = 42.45) or via cesarean 

(M = 40.73), or among infants who did (M = 42.91) or did not (M = 41.76) receive Pitocin 

during delivery (t(63) = 0.86, p = .391).  

3.2.2 Multiscale entropy is a reliable measure in infancy 

A subset of 4-month-old infants returned within one week of their first appointment 

to determine the test-retest reliability of brain signal entropy. EEG data for one 4-month-

old at retest was excluded for an insufficient number of artifact-free segments. Test-retest 

reliability was assessed for average MSEAUC across all conditions via interclass correlation 

coefficient (ICC). ICC estimates and their 95% confident intervals were calculated using 

the irr v0.84.197 statistical package in R v3.4.480 based on a single rating (k = 1), absolute-
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agreement, 2-way mixed-effects model. MSE was found to show good reliability within 

one week (ICC = .73, p = .004). MSE test-retest reliability curves for each condition are 

plotted in Figure 3-4. 

3.2.3 Entropy shows modality-specific associations with infant behavior within the 

auditory domain 

We modeled context- and modality-specific associations between OXTR 

methylation, brain signal evoked by social relative to non-social stimuli, and infant visual 

(attention to faces) and verbal (vocalization) social behavior in 4-month-old infants. We 

find, as in Study 1, a negative association between OXTR methylation and auditory-evoked 

MSE (b = -0.25, p = .026) such that 4-month-olds that have lower levels of OXTR 

methylation (i.e. presumed increased ability to use endogenous oxytocin) show increased 

brain signal entropy to social relative to non-social auditory stimuli. Brain signal entropy 

to social auditory stimuli is positively associated with infant verbal behavior (b = 0.19, p 

= .031), but is not associated with infant visual behavior (b = -0.09, p = .349). There is no 

association between OXTR methylation and visually-evoked MSE (b = 0.14, p = .182), nor 

between visually-evoked MSE and visual (b = 0.07, p = .311) or verbal (b = 0.14, p = .408) 

behavior at 4 months of age. Topographical loadings for auditory-evoked MSE load 

strongest onto left temporal electrodes. The results of this model can be seen in Figure 3-5 

and Table 3-3.  

3.2.4 Multiscale entropy increases across development 

Previous work has suggested that MSE increases with development41,42. To assess 

whether MSE shows a developmental trajectory in our sample, we computed a paired-
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sample t-test using the infants that participated in both the 4- and 8-month visits. We find 

overall MSE is significantly higher (t(32) = 3.47, p = .002) at 8-months (M = 32.25) than 

at 4-months (M = 29.91). We also computed ICC estimates to assess absolute agreement 

in MSE estimates across 4- and 8-month visits. We find, contrary to comparisons within 1 

week, there is no longer absolute agreement among MSE measures after 4 months (ICC = 

-.18, p = .889). There was no significant difference in the variance of MSE values across 

age groups (F(59,35) = 1.48, two-tailed p-value = .218). MSE curves showing this age-

related change across all conditions are plotted in Figure 3-6. 

3.3 Discussion 

Results of this novel, longitudinal dataset replicate and extend upon the work 

presented in Study 1. We find infants with lower levels of OXTR methylation (and likely 

increased sensitivity to endogenous oxytocin) show increased brain signal entropy during 

social perception, corroborating results from Study 1. We also show that brain signal 

entropy increases from 4 to 8 months of age, suggesting a brain signal entropy reports upon 

neurodevelopmental processes early in life. However, results of the present study suggest 

a modality-specific association between brain signal variability and infant social behavior. 

Specifically, we find 4-month-old infants that show increased entropy to social, relative to 

non-social stimuli within the auditory domain vocalize more frequently. However, the 

extent to which brain signal entropy distinguished between social and non-social visual 

perception was not associated with their verbal behavior. Neither entropy within visual nor 

auditory modalities was associated with the infant’s visual attention to social stimuli at 4 

months of age. These results replicate Study 1, which consisted solely of social auditory 
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stimuli. Together, these studies highlight the importance of social auditory perception for 

the developing infant.  
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3.4 Figures 

 

 

Figure 3-1. Example stimuli from the EEG paradigm. The EEG paradigm had a 2 x 2 
design with the factors context (social or non-social) and modality (visual or auditory). 
Visual social stimuli consisted of videos of women smiling. Visual non-social stimuli 
consisted of videos of common objects rotating. During visual perception, white noise was 
played in the auditory domain. Auditory social stimuli consisted of infant-directed speech. 
Auditory non-social stimuli consisted of recordings of water sounds. During auditory 
perception, a video of static noise was played in the visual domain.   
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Figure 3-2. Auditory and visual event-related potentials. Auditory event-related 
potentials (ERPs) were examined at electrodes F7, F3, F4, and F8, which show a positive-
going component at approximately 300 ms (top left). Visual ERPs were examined at 
electrodes P7 and P8, which show a negative-going component at approximately 290 ms 
(bottom left). These ERPs indicate that infants attended to and processed the stimuli. We 
find no ERPs in the rejected components (right), indicating that the preprocessing 
procedures did not obscure or eliminate relevant evoked response. Solid lines, ERPs for 
social stimuli. Dashed lines, ERPs for non-social stimuli. Red, ERPs at 4-months (n = 60). 
Blue, ERPs at 8-months (n = 36).  
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A 

 

B 

 

Figure 3-3 Average and individual difference multiscale entropy curves for each 
condition. (A) At the group level, multiscale entropy does not differ across social (pink) 
and non-social (blue) conditions in either auditory (left) or visual (right) modality (n = 60 
4-month-olds). (B) However, individual infants show different levels of entropy across 
social and non-social conditions. Here, the multiscale entropy curves for three infants are 
depicted. One infant (left) shows greater brain signal entropy to social relative to non-social 
stimuli; one infant (middle) does not show differences in brain signal entropy across social 
and non-social conditions; one infant (right) shows greater brain signal entropy to non-
social relative to social stimuli. These individual differences may be accounted for by 
differences in the endogenous oxytocinergic system, and may account for differences in 
infant social behavior.  
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Figure 3-4. Multiscale entropy is a reliable measure in infancy. Average multiscale 
entropy curves for scales 1 to 50 (500 to 10 Hz) are plotted for each condition for ten infants 
who underwent EEG at 4 months of age (test visit, red), and repeated the procedure within 
1 week (retest visit, black). We find good reliability across visits. 
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Figure 3-5. Entropy shows modality-specific associations with infant behavior within 
the auditory domain. (A) Results from the partial least squares path model (n = 60) 
showing associations between OXTR methylation (OXTRm), multiscale entropy evoked 
during social relative to non-social auditory perception (Auditory MSE), multiscale 
entropy evoked during social relative to non-social visual perception (Visual MSE), infant 
verbal behavior and infant visual behavior. β, path model coefficient; p, jackknifed p-value 
for coefficient. (B) Topographical map showing loadings of each electrode on the MSE 
Auditory construct. (C) Plot of the significant association between Auditory MSE and 
OXTRm standardized factor scores. (D) Plot of the significant association between 
Auditory MSE and infant verbal behavior standardized factor scores. 
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Figure 3-6. Entropy significantly increases from 4 to 8 months of age. Average 
multiscale entropy curves for scales 1 to 50 (500 to 10 Hz) are plotted for each condition 
and visit. Entropy is significantly higher at 8 months of age (n = 36, blue) than at 4 months 
of age (n = 60, red).   
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3.5 Tables 

 

 
Table 3-1. Average multiscale entropy values. Mean (and standard error) area under the 
multiscale entropy curve values for each electrode and condition. 

 

  Auditory Visual 
Electrode Social Non-Social Social Non-Social 

FP1 30.38 (0.68) 29.83 (0.67) 29.32 (0.73) 27.89 (0.78) 
FP2 30.72 (0.81) 30.84 (0.90) 29.71 (0.95) 28.76 (0.80) 
F7 31.71 (0.88) 32.25 (0.65) 29.56 (0.69) 30.46 (0.82) 
F3 32.69 (0.74) 31.74 (0.87) 30.30 (0.72) 29.83 (0.87) 
Fz 30.42 (0.67) 29.75 (0.76) 29.21 (0.74) 28.83 (0.77) 
F4 32.12 (0.74) 31.00 (0.76) 29.88 (0.85) 29.32 (0.83) 
F8 30.74 (0.74) 31.15 (0.72) 29.98 (0.71) 30.43 (0.87) 

FC5 33.09 (0.80) 32.39 (0.72) 30.29 (0.80) 30.26 (0.90) 
FC1 30.57 (0.71) 30.91 (0.68) 29.96 (0.71) 28.84 (0.87) 
FC2 30.20 (0.66) 30.14 (0.60) 28.16 (0.78) 28.44 (0.80) 
FC6 32.40 (0.80) 32.09 (0.72) 30.07 (0.94) 29.65 (0.73) 
T7 31.69 (0.77) 31.73 (0.80) 30.15 (0.82) 31.10 (0.82) 
C3 32.78 (0.73) 31.20 (0.65) 28.95 (0.80) 29.08 (0.88) 
Cz 30.01 (0.64) 30.53 (0.71) 28.59 (0.68) 28.50 (0.71) 
C4 33.18 (0.74) 31.63 (0.65) 29.71 (0.73) 29.18 (0.78) 
T8 33.00 (0.68) 33.18 (0.71) 31.08 (0.87) 30.70 (0.79) 
TP9 30.64 (0.76) 30.11 (0.68) 29.26 (0.91) 27.46 (0.88) 
CP5 33.33 (0.70) 33.77 (0.76) 30.31 (0.72) 31.51 (0.72) 
CP1 30.16 (0.76) 29.81 (0.68) 27.82 (0.92) 27.53 (0.93) 
CP2 29.20 (0.70) 28.20 (0.74) 27.11 (0.79) 26.12 (1.01) 
CP6 34.24 (0.80) 33.78 (0.66) 32.10 (0.73) 31.99 (0.73) 
TP10 29.97 (0.75) 31.95 (0.83) 28.63 (0.84) 28.47 (0.87) 

P7 33.70 (0.79) 33.59 (0.78) 31.05 (0.73) 30.37 (0.72) 
P3 32.56 (0.73) 31.70 (0.63) 29.56 (0.68) 30.59 (0.81) 
Pz 29.34 (0.69) 28.87 (0.72) 26.40 (0.88) 26.55 (0.86) 
P4 31.59 (0.79) 31.03 (0.67) 29.30 (0.64) 30.11 (0.81) 
P8 33.52 (0.71) 33.55 (0.65) 31.21 (0.89) 30.51 (0.70) 

PO9 31.03 (0.73) 30.37 (0.75) 29.19 (0.85) 28.01 (0.81) 
PO10 30.04 (0.83) 31.02 (0.76) 28.04 (0.87) 27.10 (0.78) 

O1 31.90 (0.66) 31.73 (0.73) 29.79 (0.62) 29.78 (0.62) 
Oz 31.38 (0.68) 31.71 (0.79) 28.72 (0.55) 29.37 (0.70) 
O2 30.59 (0.62) 32.04 (0.79) 28.93 (0.59) 29.06 (0.71) 
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Table 3-2. Vocalization items from the Short Revised Infant Behavior Questionnaire. 
Individual items from the vocalization subscale of the Short Revised Infant Behavior 
Questionnaire were included in the infant verbal behavior construct. 

 

 

  

How often did your baby make talking sounds when s/he was ready for more food? 
How often did your baby squeal or shout when excited? 
When being dressed or undressed, how often did the baby coo or vocalize? 
How often did your baby make talking sounds when riding in a car? 
How often did your baby make talking sounds when riding in a shopping cart? 
When hair was washed how often did the baby vocalize? 
How often did your baby make talking sounds when you talked to her/him? 
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Table 3-3. Model fit statistics. Composite reliability coefficients reflecting internal 
consistency and reliability and R2 coefficients reflecting explanatory power for each 
construct and model. OXTRm, OXTR DNA methylation; MSE, multiscale entropy Social 
– Non-Social difference score; Verbal Behav, Vocalization subscore of the Short  Revised 
Infant Behavioral Questionnaire (IBQ-RS); Visual Behav, visual attention to faces during 
the eye-tracking paradigm. 
 

 

 

Composite reliability coefficients 
OXTRm Auditory MSE Visual MSE Verbal Behav Visual Behav 

0.82 0.75 0.79 0.84 0.9 
R2 coefficients 

OXTRm Auditory MSE Visual MSE Verbal Behav Visual Behav 
- .06 .02 .06 .03 
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4     Study 3: Age-related changes in the context-specific 
associations between oxytocinergic system function, 
neural variability, and social signal detection in 
adulthood 

4.1 Methods 

4.1.1 Participants 

One hundred four Caucasian young adults (60 female) aged 17 to 28 (M = 18.91 ± 

1.34) years recruited from the University of Virginia’s Psychology Department Participant 

Pool participated in Study 3 for partial course credit.  

4.1.2 DNA sample collection and epigenetic analysis 

Eight ml of blood was collected in a Mononuclear Cell Preparation Tube (BD 

Biosciences, San Jose, CA) by a professional phlebotomist. Peripheral blood mononuclear 

cells (PBMC) were immediately isolated from blood and stored at room temperature until 

downstream DNA isolation and epigenetic analysis. DNA isolation was carried out using 

reagents and protocol supplied in the Gentra Puregene Blood Kit (Qiagen, Valencia, CA). 

Samples from Study 2 and Study 3 were subjected to bisulfite treatment, PCR, and 

pyrosequencing together as a batch so that methylation levels could be compared across 

our infant and adult samples. Samples were processed in a randomized order. Adult 

methylation values averaged 49.77 ± 6.13%.    

4.1.3 Social signal detection paradigms 

Participants completed two measures assessing social signal detection abilities 

within the visual domain. The first is a biological motion perceptual threshold task in which 

participants were asked to discriminate point-light displays of biological motion embedded 
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within a noisy display (Figure 4-1). The second is the Reading the Mind in the Eyes Test 

(RMET) in which participants were asked to discriminate subtle emotions from 

photographs depicting only the eye region of the face. 

Biological Motion Perceptual Threshold Task. Participants first completed a 

familiarization procedure in which they were shown five 1000-ms point-light displays of 

biological motion presented without noise (climbing, skipping rope, drop-kicking, 

overhand throwing, underhand throwing) and five 1000-ms point-light displays of 

scrambled versions of the biological motion presented without noise98. Participants were 

asked to verbalize if the display depicted a person, and if so, what the person was doing. If 

an incorrect response was given, the researcher corrected the participant. Plausible 

alternatives to the biological motion displays (e.g. “bowling” instead of “underhand 

throwing”) were accepted as correct responses.  

Then, participants were familiarized to the two-alternative, forced-choice 

perceptual threshold detection task. Participants were shown two displays back-to-back, 

one containing a display of biological motion embedded among additional noise points, 

and one containing a display of scrambled motion embedded among additional noise 

points, and asked to identify which display contained the biological motion via 1/2 key 

press. The point-light displays were identical to those used in the familiarization procedure. 

Which display contained the biological motion, the action presented, and the position of 

the point-light display within the noise display was randomized across trials. During this 

familiarization phase, the point-light displays were colored blue and the noise points were 

colored black (Figure 4-1). Each display was presented for 1000 ms and displays within a 
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trial were separated by a 500 ms interval. Stimuli were presented with PsychToolBox87 

v3.0.14 for MATLAB. Participants were given an unlimited amount of time to enter their 

response, and then initiated the next trial via key press. Participants completed 5 trials of 

the familiarization phase.  

Participants then completed 2 blocks of 50 trials in the test phase in which all 

parameters were identical to the familiarization phase except both the point-light displays 

and the noise points were colored black. The level of noise was varied over trials according 

to an adaptive procedure (QUEST99) to derive 75% correct threshold estimates100. 

The Reading the Mind in the Eyes Test. In this task101, participants were shown 40 

greyscale photographs of the eye-region of the face of different actors and actresses, and 

asked to discern which of four words best described what the person in the photograph is 

thinking or feeling. Performance on this task has been shown to discriminate adults with 

high functioning autism from neurotypical controls101, is inversely associated with the 

degree to which neurotypical controls display autistic-like traits101, and improves after the 

administration of exogenous oxytocin102. 

4.1.4 Social communication measures 

Participants completed two measures designed to assess autistic-like traits in 

neurotypical adults, the Autism Spectrum Quotient Questionnaire (AQ)14 and the Broad 

Autism Phenotype Questionnaire (BAPQ)103. The AQ is a 50-item self-report measure in 

which participants are asked to rate the degree to which they agree or disagree with 

statements regarding behaviors and preferences across 5 domains associated with autism: 

social skill, communication, attention switching, attention to detail, and imagination. The 
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BAPQ is a 36-item self-report measure in which participants are asked to rate how 

frequently statements of personality and behavioral traits apply to them across 3 domains 

associated with autism: aloof personality, rigid personality, and pragmatic language skills. 

To assess verbal behavior association with social communication abilities, we include the 

AQ Communication subscale and the BAPQ Pragmatic Language Skills subscale. 

Individual items included in each of these subscales are listed in Table 4-1. Traditionally, 

a higher score on these measures indicates the endorsement of a greater number of traits 

associated with autism. In our analyses, these subscores were reverse-coded so that a higher 

number indicated enhanced social-communication abilities. 

4.1.5 EEG paradigm 

Adults in Study 3 completed 24 blocks of the same EEG paradigm described in 

Study 2, except the social auditory stimuli were replaced with naturalistic adult-directed 

speech, recorded from eleven English-speaking females as they engaged in an unscripted 

telephone conversation with another native English speaker, downloaded from 

http://talkbank.org/access/CABank/CallHome/eng.html. Clips containing single-word 

utterances (e.g. “wow,” “fourteen,” “listen”) or short phrases (e.g. “I don’t know,” “that’s 

right,” “no way”) were extracted from the recordings. Clips containing incoherent speech 

or background noises were discarded and stimuli were selected such that the social stimulus 

set matched the non-social stimulus set on mean fundamental frequency (Msocial = 305.62, 

Mnon-social = 335.29, t = -1.60, p = .113), standard deviation of fundamental frequency 

(Msocial = 73.29, Mnon-social = 57.82, t = 1.64, p = .103), and duration (Msocial = 0.88, Mnon-

social = 0.97, t = -1.48, p = .142) using Praat92 and custom MATLAB scripts.  
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4.1.6 EEG acquisition and preprocessing 

EEG was recorded from 32 Ag/AgCl active BioSemi electrodes affixed to an elastic 

cap (BioSemi, Wilmington, NC) using the 10-20 electrode placement system. The 

horizontal electrooculogram (EOG) was recorded from an electrode placed at the outer 

canthus of the right eye. The vertical EOG was recorded from an electrode placed on the 

supraorbital ridge of the right eye. The participant’s head circumference was first obtained 

to determine the correct cap size. Electrode offsets were maintained within ± 20 µV. 

EEG was amplified with an ActiveTwo AD-box (BioSemi, Wilmington, NC) and 

recorded using ActiView605-Hires software with a sampling rate of 1025 Hz and online 

band-pass filtered between 0.1-100 Hz. Participants were seated approximately 100 cm 

from a computer monitor and instructed to remain still and keep their eyes on the screen. 

Participants were given the opportunity to pause and rest their eyes between trials. The 

participant initiated the start of the next trial via key press.  

Data were analyzed offline using EEGLab v14.1.193, ERPLab v7.0.093 and custom 

MATLAB scripts. Data were resampled at 500 Hz, band-pass filtered between 0.3-20 Hz, 

and re-referenced to the average of all scalp electrodes. Visual stimuli were segmented into 

stimulus-evoked epochs 100 ms pre-stimulus onset to 1000 ms post-stimulus onset with 

pre-baseline correction. Auditory stimuli were segmented into stimulus-evoked epochs 100 

ms pre-stimulus onset to 500 ms post-stimulus onset with pre-baseline correction. Epochs 

contaminated with excessive amplitude standard deviations (> 40 µV in ocular channels, > 

20 µV in scalp electrodes) within a sliding window of width 200 ms and step 100 ms were 

discarded as artifacts. Participants with at least 20 artifact-free visual segments and 40 



STUDY 3 
 

71 

artifact-free auditory segments were retained in the analysis. Seven participants were 

excluded for an insufficient number of artifact-free segments.  

We then used Independent Component Analysis (ICA) to remove components with 

ocular, muscular or electrical artifacts. On average, 3.35 (range 1 to 7) components were 

removed. The number of components removed did not correlate with MSE within the 

visual (r = .02, p = .828) or auditory (r = -.08, p = .455) domain and did not show significant 

ERP effects (Figure 4-2), indicating that the components identified as artifacts did not 

contain relevant brain activity.  

To include an equivalent number of data points for each condition in the MSE 

computation63, we selected the 20 visual segments (10 social) and the 40 auditory segments 

(20 social) with a total global field power (GFP)42 closest to the median GFP for each 

participant for inclusion in downstream analyses (5000 data points per condition). These 

numbers were selected so that the results of the present adult study would be directly 

comparable to the infant data in Study 2. To ensure that these preprocessing procedures did 

not obscure or eliminate relevant brain activity, we examined the ERP (Figure 4-2) using 

these data re-referenced to Cz (visual) or the average of the mastoids (auditory).  

To assess the reliability of brain signal entropy in adults, we repeated the GFP 

selection step to select 40 visual segments (20 social) and 80 auditory segments (40 social). 

We then examined the split-half reliability by comparing MSE from the first half (10 visual 

and 20 auditory per context) and the second half (10 visual and 20 auditory per context) of 

the experiment.  

4.1.7 Quantification of brain signal variability 
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We computed MSE on the residuals of the average-referenced post-stimulus onset 

EEG signal (i.e. after subtracting the within-person average ERP) using pattern length m = 

2 and similarity criterion r = .5 (recalculated at each scale) across segments63. We then 

calculated the area under the MSE curve for each electrode for scales 1 to 50 

(corresponding to 500 to 10 Hz). Group-average MSE curves are plotted in Figure 4-3 and 

average area under the curve values are listed in Table 4-2.  

4.1.8 Statistical analysis 

To identify causative associations among our epigene-brain-behavior variables, we 

analyzed data in the partial least squares path modeling (PLS-PM) framework using 

WarpPLS v6.081 to model curvilinear associations between our latent constructs. The aim 

of the study was to identify whether there are age-related changes in the context- and 

modality-specific associations between OXTR methylation, brain signal entropy evoked 

during perception, and behavior seen in infancy. We included Social – Non-social MSEAUC 

differences scores for each electrode across visual and auditory modalities separately in the 

model. We included the AQ Communication and BAPQ Pragmatic Language Skills 

subscores in the Verbal Behavior construct. These subscores were reverse-coded so that a 

higher number indicated enhanced social-communication abilities. The Total Items Correct 

on the RMET, and the mean and quantile estimates from each of two blocks of the 

Biological Motion Perceptual Threshold Task were included in the Visual Behavior 

construct. Each technical replicate (3) of the OXTR methylation analysis was included in 

the OXTR methylation construct.  
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Outliers. After initial model fitting, values were considered outliers if the factor 

score residuals fell more than 3 median absolute deviations from the median. We selected 

this relatively conservative criterion to balance outlier detection with subject retention. One 

subject was identified as an outlier for the Visual Behavior construct, and one subject was 

identified as an outlier for the Verbal Behavior construct. These two subjects were removed 

and models were re-estimated. Results did not appreciably change with or without outliers; 

we therefore conservatively report on models excluding outliers (n = 95, 32 female).  

Model Assessment. After removal of outliers, we checked for discriminant validity 

by identifying and removing any items that loaded higher onto another construct or did not 

significantly load onto its construct for each model. These included T8 for both Auditory 

and Visual MSE constructs and RMET for the Visual Behavior construct. Removing these 

items did not appreciably change results; results are presented with these items removed. 

Sample size. The target sample size for the PLS-PM analysis assessing associations 

between our epigenetic, neural, and behavioral measures was determined via a power 

analysis using effect sizes established in Study 2 and following recommendations of Chin 

& Newsted84. In our models, behavioral constructs have the largest number of predictors – 

3. A two-tailed multiple regression power analysis85 determined that 94 participants are 

needed to detect an effect size of 0.19 with 3 predictors, 95% power, and α = .05.  

4.2 Results 

4.2.1 Entropy is reliable in adulthood 

ICC estimates and their 95% confident intervals were calculated using the irr 

v0.84.197 statistical package in R v3.4.480 based on a single rating (k = 1), absolute-
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agreement, 2-way mixed-effects model. MSE was found to show good reliability (ICC = 

.84, p < .001) across the first and second halves of the experiment. See Figure 4-4 for first 

and second split-half reliability MSE curves.  

4.2.2 Entropy during social perception is significantly higher in adulthood than 

infancy 

We then compared MSE across age groups using a one-way between-subjects 

ANOVA. We find a significant main effect of age group F(2,190) = 308.40, p < .001. Post 

hoc comparisons using the Tukey HSD test in R80 indicated that MSE is significantly 

higher for 8- than 4-month-olds, and that the adults have significantly higher MSE than 

both 4- and 8-month-olds (Figure 4-5). There was no significant difference in the variance 

of MSE values between adults and 4-month-olds (F(96,59) = 0.74, two-tailed p-value = 

.189), or between adults and 8-month-olds (F(96,35) = 1.09, two-tailed p-value = .790), 

indicating that, although MSE is higher in adulthood, we do not find a ceiling effect; there 

are significant individual differences in brain signal entropy within an adult sample that 

may be accounted for by individual differences in molecular makeup, or that may account 

for individual differences in behavioral phenotype. 

4.2.3 Entropy shows modality-specific associations with adult behavior in both the 

auditory and visual domains 

We modeled context- and modality-specific associations between OXTR 

methylation, brain signal evoked by social relative to non-social stimuli, and visual (social 

signal detection) and verbal (social communication abilities) social behavior in young 

adults. Unlike in Studies 1 and 2, we failed to find an association between OXTR 
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methylation and MSE in either the auditory (b = 0.13, p = .133) or the visual (b = 0.06, p 

= .260) modalities. However, we did find significant negative associations between OXTR 

methylation and both verbal (b = -0.17, p = .049) and visual (b = -0.18, p = .031) social 

behavior such that participants with lower levels of OXTR methylation (i.e. presumed 

increased sensitivity to endogenous oxytocin) performed better on the social signal 

detection tasks and reported enhanced social communication abilities.  

We found modality-specific associations between Social – Non-social MSE. 

Greater entropy during social auditory relative to non-social auditory perception was 

significantly associated with improved social-communication skills (b = 0.32, p = .001), 

but auditory-evoked MSE was unrelated to visual social behavior (b = 0.02, p = .447). 

Conversely, greater entropy during social visual relative to non-social visual perception 

was positively associated with visual social signal detection abilities (b = 0.14, p = .039), 

but visual-evoked MSE was unrelated to verbal behavior (b = -0.10, p = .13). Auditory 

MSE loadings were highest for bilateral frontal and parietal electrodes. Visual MSE 

loadings were highest for frontal and occipital electrodes. The results of this model can be 

seen in Figure 4-6 and Table 4-3. 

4.3 Discussion 

Expanding our work into a healthy young adult sample, we found continued support 

for modality- and context-specific associations between brain signal entropy during social 

perception and social behavioral outcomes. As in our infant samples, adults that showed 

increased brain signal entropy during auditory social perception reported enhanced verbal 

abilities. However, an association between brain signal entropy during visual social 
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perception and visual sensitivity to social cues also emerged in our adult sample only, 

suggesting a developmental trajectory for the differential reliance on modality-specific 

social cues. These data also provide the first evidence that individuals who display a more 

entropic brain response during social perception find social information more salient – we 

find a positive association between social visual brain signal entropy and biological motion 

perceptual threshold such that those who displayed a more entropic response were able to 

detect a point-light walker among a greater number of noise points. 

Unlike in our infant samples, we failed to find direct associations between OXTR 

methylation and brain signal entropy. However, we replicated results of Study 2 and 

others41,42 showing a developmental trajectory for brain signal entropy. Our adult sample 

displayed significantly higher levels of brain signal entropy than our infant samples across 

all conditions and modalities. Together, these results highlight a role for brain signal 

entropy as a marker of differential social-developmental processes that persist into 

adulthood and may be involved with ascribing salience to social information. 
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4.4 Figures 

 

 
 
 
Figure 4-1. Biological motion perceptual threshold task. (A) A point-light display of 
biological motion (blue, jumping rope) is masked among additional noise points. (B) A 
point-light display of scrambled motion (blue) is masked among additional noise points. 
Participants were shown two displays back-to-back and asked to indicate which display 
contained the biological motion. During the familiarization stage, point-light displays were 
colored blue, as above. During the test phase, all points were colored black. The number 
of additional noise points varied over trials according to an adaptive procedure to derive 
75% correct threshold estimates.  
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Figure 4-2. Auditory and visual event-related potentials. Auditory event-related 
potentials (ERPs) were examined at electrodes F7, F3, F4, and F8, which show a positive-
going component at approximately 150 ms (top left). Visual ERPs were examined at 
electrodes P7 and P8, which show a negative-going component at approximately 170 ms 
(bottom left). These ERPs indicate that participants (n = 95) attended to and processed the 
stimuli. We find no ERPs in the rejected components (right), indicating that the 
preprocessing procedures did not obscure or eliminate relevant evoked response. Solid 
lines, ERPs for social stimuli. Dashed lines, ERPs for non-social stimuli.  
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Figure 4-3. Group average multiscale entropy curves. The average multiscale entropy 
curves for scales 1 to 50 (500 to 10 Hz) are plotted for each condition and electrode (n = 
95). 
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Figure 4-4. Multiscale entropy is a reliable measure in adulthood. Average multiscale 
entropy curves for scales 1 to 50 (500 to 10 Hz) are plotted for each split-half of the 
experiment (n = 95) We find good reliability across split-halves. 
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Figure 4-5. Entropy is significantly higher in adulthood than in infancy. Average 
multiscale entropy curves for scales 1 to 50 (500 to 10 Hz) are plotted for each condition 
and age group. Entropy is significantly higher in adulthood (n = 95, black), than at 8 months 
of age (n = 36, blue) or at 4 months of age (n = 60, red).   
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Figure 4-6. Entropy shows modality-specific associations with adult behavior in both 
the auditory and visual domains. (D) Results from the partial least squares path model 
(n = 95) showing modality-specific associations between multiscale entropy (MSE) evoked 
during social relative to non-social auditory perception. β, path model coefficient; p, 
jackknifed p-value for coefficient. (B) Topographical map showing loadings of each 
electrode on the MSE Auditory construct. (F) Topographical map showing loadings of each 
electrode on the MSE Visual construct. (A,E) Plots of the significant association between 
OXTR methylation (OXTRm) and social behavior standardized factor scores. (C,G) Plots 
of the significant, modality-specific associations between MSE and social behavior 
standardized factor scores. 
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4.5 Tables     

 

Table 4-1. Social communication items. Individual items included in the Autism 
Spectrum Quotient Questionnaire (AQ) Communication subscale, and the Broad Autism 
Phenotype Questionnaire (BAPQ) Pragmatic Language Skills subscale.  

AQ 

Other people frequently tell me that what I’ve said is impolite, even though I think it is polite. 
I enjoy social chit-chat. *** 
When I talk, it isn’t always easy for others to get a word in edgeways. 
I frequently find that I don’t know how to keep a conversation going. 
I find it easy to “read between the lines” when someone is talking to me. *** 
I know how to tell if someone listening to me is getting bored. *** 
When I talk on the phone, I’m not sure when it’s my turn to speak. 
I am often the last to understand the point of a joke. 
I am good at social chit-chat. *** 
People often tell me that I keep going on and on about the same thing. 

BAPQ 

I find it hard to get my words out smoothly. 
It’s hard for me to avoid getting sidetracked in conversation. 
I am “in-tune” with the other person during conversation. *** 
My voice has a flat or monotone sound to it. 
I feel disconnected or “out of sync” in conversations with others. *** 
People ask me to repeat things I’ve said because they don’t understand. 
I have been told that I talk too much about certain topics. 
I speak too loudly or softly 
I can tell when someone is not interested in what I am saying. *** 
I leave long pauses in conversation. 
I lose track of my original point when talking to people. 
I can tell when it is time to change topics in conversation. *** 
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 Table 4-2. Average multiscale entropy values. Mean (and standard error) area under the 
multiscale entropy curve values for each electrode and condition. 
 
  

  Auditory Visual 
Electrode Social Non-social Social Non-social 

FP1 38.20 (0.71) 38.55 (0.60) 34.96 (0.61) 34.81 (0.63) 
FP2 39.41 (0.64) 39.10 (0.64) 34.57 (0.58) 34.30 (0.66) 
AF3 41.60 (0.57) 41.31 (0.55) 37.80 (0.51) 38.78 (0.51) 
AF4 42.48 (0.50) 42.63 (0.49) 38.52 (0.56) 38.13 (0.58) 
F7 39.26 (0.55) 39.60 (0.51) 36.59 (0.56) 35.59 (0.61) 
F3 41.64 (0.55) 43.08 (0.51) 39.08 (0.58) 39.69 (0.55) 
Fz 43.59 (0.47) 43.18 (0.47) 39.87 (0.49) 39.94 (0.60) 
F4 43.42 (0.56) 42.78 (0.48) 39.74 (0.57) 39.15 (0.54) 
F8 39.92 (0.63) 39.88 (0.65) 35.94 (0.65) 35.56 (0.57) 

FC5 40.85 (0.54) 41.54 (0.51) 39.10 (0.59) 39.09 (0.58) 
FC1 43.17 (0.48) 44.02 (0.48) 40.05 (0.62) 40.26 (0.51) 
FC2 44.29 (0.46) 43.58 (0.51) 39.78 (0.57) 40.27 (0.55) 
FC6 42.38 (0.50) 41.76 (0.52) 38.45 (0.61) 37.87 (0.65) 
T7 40.68 (0.48) 40.95 (0.52) 37.42 (0.63) 38.46 (0.54) 
C3 41.62 (0.60) 43.26 (0.51) 38.70 (0.67) 39.44 (0.61) 
Cz 42.96 (0.51) 43.61 (0.45) 38.52 (0.52) 39.32 (0.47) 
C4 42.92 (0.51) 42.55 (0.54) 38.74 (0.61) 38.86 (0.64) 
T8 41.55 (0.52) 42.07 (0.46) 38.62 (0.62) 38.66 (0.55) 

CP5 42.86 (0.47) 41.74 (0.52) 38.63 (0.62) 40.18 (0.63) 
CP1 41.89 (0.53) 41.73 (0.51) 38.40 (0.57) 38.53 (0.61) 
CP2 41.69 (0.52) 41.92 (0.48) 37.42 (0.54) 38.97 (0.51) 
CP6 42.32 (0.61) 42.16 (0.48) 38.80 (0.65) 38.83 (0.58) 
P7 43.61 (0.51) 43.40 (0.46) 38.74 (0.61) 39.31 (0.57) 
P3 42.80 (0.59) 43.06 (0.56) 39.11 (0.61) 38.00 (0.67) 
Pz 41.39 (0.54) 41.57 (0.55) 37.98 (0.54) 37.59 (0.56) 
P4 42.49 (0.48) 41.90 (0.51) 38.43 (0.60) 39.38 (0.53) 
P8 42.75 (0.54) 43.00 (0.51) 38.25 (0.57) 37.88 (0.57) 

PO3 43.79 (0.50) 43.04 (0.52) 38.55 (0.63) 38.56 (0.58) 
PO4 42.32 (0.52) 42.91 (0.51) 38.75 (0.56) 38.37 (0.53) 
O1 45.42 (0.48) 44.72 (0.51) 40.14 (0.58) 38.83 (0.60) 
Oz 45.40 (0.56) 44.39 (0.55) 40.13 (0.59) 39.53 (0.53) 
O2 44.70 (0.52) 44.21 (0.48) 40.45 (0.52) 39.92 (0.56) 
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Table 4-3. Model fit statistics. Composite reliability coefficients reflecting internal 
consistency and reliability and R2 coefficients reflecting explanatory power for each 
construct and model. OXTRm, OXTR DNA methylation; MSE, multiscale entropy Social 
– Non-Social difference score; Verbal Behav, social communication abilities; Visual 
Behav, social signal detection abilities. 

Composite reliability coefficients 
OXTRm Auditory MSE Visual MSE Verbal Behav Visual Behav 

0.98 0.86 0.87 0.89 0.85 
R2 coefficients 

OXTRm Auditory MSE Visual MSE Verbal Behav Visual Behav 

- .02 .00 .13 .05 
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5     General Discussion 

5.1 Brain signal entropy is a powerful indicator of behavioral and developmental 

outcomes 

Across three studies, we provide evidence that brain signal entropy during social 

perception links early-life individual differences in the endogenous oxytocinergic system 

and social behavioral outcomes. The current findings critically extend a growing body of 

research highlighting brain signal entropy as a powerful indicator of behavioral and 

developmental outcomes when compared to other measures of neural variability53,67,68,104. 

In our analyses, we compared the explanatory power of two measures of brain signal 

variability – standard deviation (SD) and multiscale entropy (MSE) in Study 1 – and find 

that only MSE shows significant links between OXTR methylation and infant behavior. 

SD, a measure of overall distributional width, has been an effective measure for identifying 

group-level differences between healthy and clinical populations54,55,65 or young and old 

adults60,74. However, we may have found significant results with MSE and not SD in our 

sample of healthy infants because MSE is sensitive to temporal dependencies in a time 

series (Figure 1-5) and is measured across multiple time scales. These distinctions may 

enable MSE to index neurodevelopmental changes that occur very early in life or are 

indicative of individual differences within even the healthy range of the continuum of 

human social behavior. Investigations of individual time scales (Study 1) reveal a particular 

importance for entropy at time scales within the alpha band (8 to 13 Hz) impacting 

behavioral outcomes. Prior research suggests that entropy in these coarser time scales is 
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driven by long-range integration between distributed neuronal populations and associated 

with early life development46. 

In addition to understanding what measures of neural variability are capable of 

explaining developmental or behavioral differences, it is also important to understand when 

neural variability is exploited to benefit perception or behavior. Neural activity can be 

categorized into two primary states: spontaneous ongoing brain activity, considered the 

default state of the brain, and evoked brain activity that occurs in response to specific 

stimulation. It is thought that ongoing variability predominates in the brain, and evoked 

variability represents a relatively small proportion of overall variability that operates on 

top of ongoing variability to enable relevant behaviors37, perhaps by optimizing sensory 

encoding and enhancing subsequent representations105. Our MSE results are in line with 

this understanding of neural variability. Infants that show greater ongoing MSE (Study 1) 

receive more positive behavioral ratings across social and non-social contexts, perhaps 

reflecting a more dynamic, flexible neural system in general (trait) among these infants. 

However, infants that show higher MSE during social perception, specifically, (state) 

might show enhanced social behaviors (Studies 1 and 2) because they are able to build 

better perceptual and cognitive representations of complex social stimuli, enabling 

particular sensitivity and flexibility to social stimuli. Results from our adults in Study 3 

also support a role for brain signal entropy in increasing sensitivity to social information. 

We found a positive association between signal entropy and biological motion perceptual 

threshold such that those who displayed a more entropic response specifically during visual 

social perception were more sensitive to these visual social cues. 
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Ongoing and evoked activity are understood to be intricately linked49, and indeed 

we find evoked and ongoing MSE are significantly correlated across all electrodes (Study 

1). These findings corroborate other research105 showing that brain signal entropy reflects 

both trait-like differences across individuals and state-like variability within an individual.  

5.2 The relative importance of auditory and visual social information across 

development 

In Study 2, we find a modality-specific effect at 4 months of age such that only 

social auditory, and not visual, perception is associated with OXTR methylation and infant 

verbal behavior. However, in our adult sample, while behavioral associations still showed 

modality specificity, brain signal entropy in both the visual and auditory modalities 

emerged as significant paths. Greater entropy during social auditory perception in adults 

was associated with enhanced social communication abilities, and greater entropy during 

social visual perception in adults was associated with increased ability to discriminate 

point-light displays of biological motion. 

Converging lines of research suggest that infants initially rely primarily on auditory 

cues for social perception106. For example, 5-month-old infants consistently respond 

differentially to positive and negative voices but not faces107, suggesting infants are more 

sensitive to voices than faces in early infancy. In a social referencing paradigm in which 

infants use the emotional expression of their mother to regulate their own behavior, 

mother’s vocalized fear alone, but not fearful face alone, towards an object was sufficient 

for 12-month-old infants to avoid the object108.  
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This auditory dominance in infancy is unsurprising. As with many mammals, the 

auditory system develops much earlier than the visual system109, and in humans visual 

acuity does not reach adult levels until the third year of life110. Conversely, by adulthood, 

both visual and auditory stimuli act as important social cues. For example, visual 

information, whether facial movements111 or gestures112, enhances the audibility of speech, 

and adults use information in both faces and voices to make reliable judgments about 

conspecifics113.  

Our context-specific results support the hypothesis that neural variability is 

exploited to benefit perception or behavior in a developmentally-appropriate manner. 

Perhaps infants show higher brain signal entropy during social auditory perception because 

their perceptual experience with that stimulus class enables better cognitive 

representations, which positively impacts their own vocalization behaviors. 

5.3 Tissue considerations for epigenetic associations with measures of moment-to-

moment brain signal variability 

It is notable that only our adult data failed to show direct paths between OXTR 

methylation and brain signal entropy. These results are contrary to data from our two infant 

studies, which demonstrated that infants with lower levels of OXTR methylation (presumed 

increased access to endogenous oxytocin) showed enhanced brain signal entropy during 

social perception. These results are also contrary to our prior adult work, which found 

individual differences in OXTR methylation were associated with differential blood oxygen 

level dependent (BOLD) neural response within networks involved in social 

perception28,30. 
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A potential explanation for this discrepancy lies within the tissue assayed across 

samples; we assayed OXTR methylation for our infant samples from saliva, whereas we 

assayed OXTR methylation for our adult sample from peripheral blood mononuclear cells. 

Although we established a significant correlation in OXTR methylation levels across these 

tissue types in a large adult sample in Study 1 (Figure 2-4), there may be divergent 

developmental and/or temporodynamical differences in these tissues that were not captured 

by our correlational assay in adults. For example, a study of salivary cellular content across 

age groups found that children’s saliva contained a significantly higher proportion of 

buccal epithelial cells than adults’ saliva114. This difference may be significant for using 

saliva as a proxy for brain (the causal tissue for behavior) in epigenetic research because 

both buccal epithelial cells and neurons are derived from the ectodermal layer during 

development115.  

Emerging evidence from our labs suggest that OXTR methylation derived from 

saliva, but not blood, shows significant cyclical variation in menstruating and pregnant 

women (data unpublished). Therefore, salivary OXTR methylation levels may report on 

dynamic changes within the oxytocinergic system that occur with early-life development 

or that are capable of accounting for variance in moment-to-moment brain signal 

fluctuations during social perception. Conversely, blood OXTR methylation levels may 

reflect more systemic, trait levels that can account for individual differences in established 

brain network patterns in adulthood. Future longitudinal work that tracks associations 

between OXTR methylation and brain signal entropy from infancy to adulthood in the same 
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tissue is necessary to distinguish whether developmental or methodological factors account 

for this discrepancy.  

5.4 Implications 

Our results have important implications for our understanding of 

neurodevelopmental disorders such as autism. Across all three studies, we find the highest 

loadings for socially-evoked MSE over frontal and temporal electrodes, indicating 

variability in these regions most accounts for our epigene-brain-behavior associations. 

These regions are directly implicated in the oxytocinergic signaling pathway116 and are 

critical for supporting social-cognitive processes117 that emerge early in infancy8. 

Individuals with autism – a neurodevelopmental disorder marked by social impairment – 

show atypical neural development, particularly in frontal and temporal lobes118. These 

differences are thought to be reflected in altered brain signal entropy that occurs in 

autism53,119 even before diagnostic behaviors emerge59,104. Differences within the 

oxytocinergic system are also implicated in autism, including increased OXTR methylation 

in both the brain and blood at site -93427. Results of the present studies may provide the 

foundation for a unifying, mechanistic account of social neurodevelopment. Optimal levels 

of brain signal entropy are linked to enhanced social-behavioral outcomes – an association 

that persists from infancy to adulthood and may be driven by early-life epigenetic 

differences within the oxytocinergic system.  

5.5 Conclusions 

Understanding how the brain develops to form accurate models of the external 

world and generate appropriate behavioral responses is a significant and critical question 

of widespread multidisciplinary interest. Social information is particularly complex and 
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dynamic, and the ability to perceive, interpret, elicit, and respond to social information is 

critical for an infant’s ability to survive, learn, and form critical social relationships120. The 

failure to form adequate social relationships is one of the greatest risk factors for mortality, 

akin to smoking fifteen cigarettes a day121. Therefore understanding the neurobiological 

factors that support successful social functioning across the lifespan is an important goal 

with widespread multidisciplinary interest122. 

Our results suggest a mechanism by which early-life individual differences in the 

endogenous oxytocinergic system may drive unique neurodevelopmental trajectories 

affecting social abilities throughout the lifespan. These results hold implications for 

identifying individuals at risk for atypical development before behavioral manifestations 

of disorder occur and suggest potential biomarkers with probable diagnostic, therapeutic, 

and prognostic value. 
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