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Abstract

This thesis is about combinatorics and number theory. More precisely, the content

of our thesis is on Higer Turán inequalities for plane partitions, introduction of a

generalization of spherical t-designs, which we call ellipsoidal t-design [Pan22b], and

providing inversion formulae for j-function around elliptic points [DLPCP22], out of

which the later work is a joint work with, my fellow PhD student at University of

Virginia, Alejandro De Las Penas Castano.

Plane partition function is a 2-dimensional analog of partition function, where

you study the number of ways a number can be written (in a nice order) in an

array. Here we study the roots of the doubly in�nite family of Jensen polynomials

Jd,n
PL (x) associated to MacMahon's plane partition function PL(n). Recently, Ono,

Pujahari, and Rolen [OPR22] proved that PL(n) is log-concave for all n ≥ 12, which

is equivalent to the polynomials J2,n
PL (x) having real roots. Moreover, they proved, for

each d ≥ 2, that the Jd,n
PL (x) have all real roots for su�ciently large n. Here we make

their result e�ective. Namely, if NPL(d) is the minimal integer such that Jd,n
PL (x) has
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all real roots for all n ≥ NPL(d), then we show that

NPL(d) ≤ 279928 · d(d− 1) ·
(
6d3 · (22.2)

3(d−1)
2

)2d
e

Γ(2d2)

(2π)2d+2 .

Moreover, using the ideas that led to the above inequality, we explicitly prove that

NPL(3) = 26, NPL(4) = 46, NPL(5) = 73, NPL(6) = 102 and NPL(7) = 136.

A spherical t-design is is a �nite set of points on a sphere such that integration of

a polynomial of degree less than or equal to t is same as averaging over this set. In

recent work, Miezaki introduced the notion of a spherical T -design in R2, where T is

a potentially in�nite set. As an example, he o�ered the Z2-lattice points with �xed

integer norm (a.k.a. shells). These shells are maximal spherical T -designs, where

T = Z+ \ 4Z+. We generalize the notion of a spherical T -design to special ellipses,

and extend Miezaki's work to the norm form shells for rings of integers of imaginary

quadratic �elds with class number 1.

One of the most fundamental results in the theory of elliptic functions is the

inversion formulas for j-function around in�nity. Recently, Hong, Mertens, Ono,

and Zhang [HMOZar] proved a conjecture of C ld raru, He, and Huang [CHH21]

that expresses the Taylor series of the modular j-function around the elliptic points

i and ρ = eπi/3 as rational functions arising from the signature 2 and 3 cases of

Ramanujan's theory of elliptic functions to alternative bases. We extend these results

and give inversion formulas for the j-function around i and ρ arising from Gauss'

hypergeometric functions and Ramanujan's theory in signatures 4 and 6.
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Chapter 1

Introduction

In this thesis, I present original results on higher Turán inequalities for plane patition

function, an application of the modular forms in the study of a combinatorial object

called ellipsoidal T -designs, and the classical problem of inverting the modular j-

function.

1.1 Plane partitions and Turán inequalities

The theory of partitions is ubiquitous not only in Mathematics but in the nature itself.

It is one of the very few branches of mathematics that can be appreciated by anyone

who has little more than a lively interest in the subject. Its applications can be found

wherever discrete objects are to be counted or classi�ed, whether in the molecular and

the atomic study of matter, study of small black holes in String theory, in the theory

of numbers, representation theory or in the combinatorial problems of all sort. The
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theory of partitions has brought interest of many great mathematicians in the past-

Cayley, Euler, Gauss, Hardy, Jacobi, Littlewood, Rademacher, Ramanujan, Schur,

Sylvester- to name a few.

Our interest is in the study of a very special type of partition function called plane

patitions. Plane partition function is 2-dimensional analog of partitions function, and

hence a natural starting point for our discussion is the partition function itself.

A partition of a positive integer n is a non-increasing �nite sequence λ = (λ1 ≥

λ2 ≥ · · ·λk > 0) such that
∑k

i=1 λi = n. The partition function p(n) counts the

number of such partitions of n. As an obligatory example, we have p(4) = 5 since

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.

We have a generating function for p(n) due to Euler [Eul97] given by

∞∑
n=0

p(n)qn :=
∞∏
n=1

(1− qn)−1 = 1 + q + 2q2 + 3q3 + 5q4 + 7q5 + 11q6 · · · . (1.1.1)

Euler proved a recurrence relation among many other beautiful results using this

generating function and Euler's pentagonal number theorem. One can program a

computer to calculate partition numbers using this recurrence relation but almost

nothing can be inferred about its analytic properties. A natural question is if one can

get a closed formula for p(n)?

In the words of George Andrews [And84], one of the crowning achievements not

only in the theory of partitions but in all of mathematics is the an exact formula

for p(n), an achievement undertaken and mostly completed by G. H. Hardy and S.
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Ramanujan1 [HR18] and perfected by H. Rademacher [Rad38]. This unbelievable

formula for p(n) is given by an in�nite series involving π, square roots, complex roots

of unity, and derivatives of hyperbolic functions. Here we present an asymptotic

formula, which is coming from the �rst term of this in�nite series,

p(n) ∼ 1

4n
√
3
eπ
√

2n
3

as n → ∞. Not only is the formula remarkable, but the tools developed during

this proof is equally remarkable. The circle method was one key tool that since its

introduction has played an instrumental role in many other �elds. We will talk about

a modi�cation of this method called Wright's circle method in Section 2.1.1.

Even though plane partitions are not as well studied as partitions, quite a bit

is known. A plane partition of size n is a 2-dimensional array of positive integers

π := (πi,j) such that
∑

i,j πi,j = n, in which the rows and columns are non-increasing.

Below is a 3-d rendering of a plane partition for n = 30.

3
4
5

1
3
5

2
4 3

Figure 1.1: A plane partition for n = 30

1The story of the Hardy and Ramanujan collaboration on this formula is an amazing read.
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The plane partition function PL(n) counts the number of plane partitions of size

n. The generating function for PL(n) is due to MacMahon [Mac04] who proved that

f(x) =
∞∑
n=0

PL(n)xn :=
∞∏
n=1

1

(1− xn)n
= 1+x+3x2+6x3+13x4+24x5+48x6+ · · · .

(1.1.2)

This function is of great importance in physics. It appears prominently in connection

with the enumeration of small black holes in string theory, as f(x) is the generating

function (for example, see Appendix E of [DDMP05]) for the number of BPS bound

states between a D6 brane and D0 branes on C3.

In 1930, Wright [Wri31] adapted the �circle method� of Hardy and Ramanujan to

prove an amazing asymptotic formulae for PL(n). His asymptotic formula is rather

remarkable because unlike partitions, the plane partition generating function is not

�modular� and so it becomes quite complex when you apply circle method. His

theorem gives the following asymptotics:

PL(n) ∼ (225ζ(3)7)
1
36 eζ

′(−1)

√
12πn

25
36

exp

(
3

√
27ζ(3)n2

4

)
.

In a recent work, Ono, Pujahari and Rolen [OPR22] made his formulae e�ective.

They showed that there are in�nitely many formulae, one for each non-negative r,

where for large n, the implied error terms are smaller with larger choice of r. We

di�er these formulae to Chapter 2. Although bigger choice of r makes approximation

better but there is a dependence of error part on r, so we will have good approximation

only if n is big enough. In our work, we specialize these asymptotic formulae in a
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di�erent form, make results e�ective in this form and then make the right choice of

the parameter r.

1.1.1 Turán inequalities and Jensen polynomials

The Turán inequalities and the higher order Turán inequalities arise in the study

of the Maclaurin coe�cients of real entire functions in the Laguerre-Pólya class. A

sequence α : N → R is said to satisfy Turán inequality or to be log concave at n if

α(n)2 ≥ α(n− 1)α(n+ 1).

It is said to satisfy higher order Turán inequality at n if

4(α(n)2−α(n−1)α(n+1))(α(n+1)2−α(n)α(n+2))−(a(n)a(n+1)−a(n−1)a(n+2))2 ≥ 0.

DeSalvo and Pak [DP15] considered p(n) and showed that this sequence satisfy Turán

inequality for all n ≥ 25. Chen, Jia and Wang [CJW19] proved that p(n) also satisfy

higher Turán inequalities for all n ≥ 95. There are many more higher order Turán

inequalities for a sequence that are encapsulated by Jensen polynomials associated to

it.

Given a sequence α : N → R and positive integers d and n, the associated Jensen

polynomial of degree d and shift n is de�ned as

Jd,n
α (x) :=

d∑
j=0

(
d

j

)
α(n+ j)xj. (1.1.3)

Notice that in the case of degree d = 2, we have that

J2,n−1
α (x) = α(n− 1) + 2α(n)x+ α(n+ 1)x2,
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whose roots are

−α(n)±
√
α(n)2 − α(n− 1)α(n+ 1)

α(n+ 1)
.

In particular, α is log-concave or satisfy Turán inequality at n if and only if the roots

of J2,n−1
α (x) are real. Similarly it can be shown that α satisfy higher order Turán

inequality at n if J3,n
α (x) has real distinct roots. In general a real sequence is said to

satisfy the degree d Turán inequality at n if Jd,n
α (x) is hyperbolic, where a polynomial

with real coe�cients is called hyperbolic if all of its zeros are real.

The signi�cance of hyperbolicity for higher degrees was recognized by the works

of Jensen and Pólya in connection to Riemann hypothesis. Building on some un-

published works of Jensen, Pólya [P�27] proved that the Riemann hypothesis (RH) is

equivalent to the hyperbolicity of all Jensen polynomials for the Taylor coe�cients

of the Riemann Xi-function at s = 1/2. More precisely, he showed that the RH is

equivalent to the hyperbolicity of all Jensen polynomials associated with the sequence

of Taylor coe�cients γ = {γn} de�ned by

(−1 + 4z2)Λ

(
1

2
+ z

)
=:

∞∑
n=0

γn
n!

z2n,

where Λ(s) = π−s/2Γ(s/2)ζ(s).

Recently, Gri�n, Ono, Rolen, and Zagier [GORZ19] established the hyperbolicity

of this sequence for all but �nitely many of the Jensen polynomials of each degree.

In a subsequent paper, Gri�n, Ono, Rolen, Thorner, Tripp, and Wagner [GOR+22]

made this result e�ective. Namely, they showed that there exists a constant c such

that Jd,n
γ (n) is hyperbolic whenever we have n ≥ ced. It is widely believed that RH is
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true which in turn implies that all Jd,n
γ (x) should be hyperbolic for all d and n. They

also established that this is the case for atleast d ≤ 9 × 1024. These recent results

have reignited mathematician's interest in the study of Jensen polynomials of other

sequences.

From our previous discussion, an obvious such sequence is {p(n)}. Inspired by

the results on Turán and higher Turán inequalities for p(n), Chen, Jia and Wang

[CJW19] conjectured, for every degree d ≥ 1, that there is a minimal integer Np(d)

such that Jd,n
p (x) is hyperbolic for all n ≥ Np(d). Gri�n et. al. [GORZ19] proved

their conjecture by showing that Jensen polynomials associated to partition function

of each degree are hyperbolic for all su�ciently large shift n. Larson and Wagner

[LW19] proved an e�ective form of this theorem by giving a upper bound for Np(d).

Namely, they showed that Np(d) ≤ (3d)24d(50d)3d
2
. Extending beyond the work of

Chen et. al., they also proved that Np(4) = 206 and Np(5) = 381.

1.1.2 Main results

Our sequence of interest is {PL(n)}. Heim, Neuhauser and Tröger [HNT21] undertook

the study of the plane partitions in analogy with the hyperbolicity results of p(n).

They proved many inequalities satis�ed by PL(n) including proving that PL(n) is

log-concave for su�ciently large n. They also conjectured the bound to be 12. Ono,

Pujahari and Rolen [OPR22] proved this conjecture. In addition, they also proved

that for each degree d, the Jensen polynomials are hyperbolic for su�ciently large
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shift n. To prove this, they perfected the strong asymptotic formulae for the plane

partition function proved by Wright. These asymptotic formulae satis�es conditions

required by Theorems 3 and 6 of [GORZ19], which implies that the limiting behavior

of Jd,n
PL (x) as n → ∞ can be modeled by Hermite polynomials which are known to be

hyperbolic. This proves their theorem (for details see Chapter 2).

In our work, we make their result e�ective. More precisely, for any d, suppose

that NPL(d) is the minimal integer for which every Jensen polynomials of degree d

are hyperbolic for all shifts n ≥ NPL(d). Then we give an upper bound on NPL(d).

Theorem 1.1. For a positive integer d ≥ 4, we have

NPL(d) ≤ 279928 · d(d− 1) ·
(
6d3 · (22.2)

3(d−1)
2

)2d
e

Γ(2d2)

(2π)2d+2 .

Moreover, by working explicitly with the expression that arises in the proof of

Theorem 1.1, we are able to compute NPL(d) for the cases d = 3, 4, 5, 6 and 7.

Theorem 1.2. We have that NPL(3) = 26, NPL(4) = 46, NPL(5) = 73, NPL(6) = 102

and NPL(7) = 136.

d 8 9 10 11 12 13 14 15 16 17 18 19 20

NPL(d) 173 215 260 307 359 414 472 533 596 662 731 803 873

Table:Conjectural value for NPL(d) for small d.

Remark 1.3. (1) It is quite surprising that NPL(d) for smaller values of d is smaller

than corresponding values of Np(d) since plane partition function has much more
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complex asymptotic formula than partition function.

1.2 Modular forms and Ellipsoidal T -designs

Our goal for this section is to introduce the concept of Ellipsoidal T -design and its

connection with classical spherical t-designs and �nally state our result on it.

1.2.1 Spherical t-design

Spherical t-designs were introduced in 1977 by Delsarte, Goethals and Seidel [DGS77],

and they have played an important role in algebra, combinatorics, number theory

and quantum mechanics (for background see [Ban84], [BOT15], [CFL11], [HTH05],

[Sek92], [Mie13]). A spherical t-design is a nonempty �nite set of points on the unit

sphere with the property that the average value of any real polynomial of degree ≤ t

over this set equals the average value over the sphere. Namely, if Sn−1 denotes the

unit sphere in Rn centered at the origin, then a �nite nonempty subset X ⊂ Sn−1 is

a spherical t-design if

1

|X|
∑
x∈X

P (x) =
1

Vol(Sn−1)

∫
Sn−1

P (x)dσ(x) (1.2.1)

for all polynomials P (x) of degree ≤ t. The right-hand side of (1.2.1) is the usual

surface integral over Sn−1. In general, a �nite nonempty subset X of Sn−1(r), the

sphere of radius r centered at the origin, is a spherical t-design if 1
r
X satis�es (1.2.1).

Since a spherical t-design is also a spherical t′-design for all t′ ≤ t, we say that X has
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strength t if it is the maximum of all such numbers.

Examples 1.4. Any subset of a sphere with antipodal points (i.e. x ∈ X =⇒ −x ∈

X) is spherical 1-design.

Delsarte, Goethals and Seidel developed a very simple criterion for determining

spherical t-designs. This criterion involves homogeneous harmonic polynomials of

bounded degree. A polynomial in n variables is harmonic if it is annihilated by the

Laplacian operator ∆ :=
∑n

i=1 ∂
2/∂x2

i , and they showed [DGS77] that X ⊂ Sn−1 is a

spherical t-design if ∑
x∈X

P (x) = 0 (1.2.2)

for all homogeneous harmonic polynomials P (x) of nonzero degree ≤ t. This criterion

is a consequence of two results from harmonic analysis. The �rst result is the mean

value property for harmonic functions [ABR92, p. 5], which implies that the integral

of a harmonic polynomial over a sphere centered at the origin vanishes, combined

with the fact that homogeneous polynomials of �xed degree are spanned by certain

harmonic polynomials [ABR92, Th. 5.7].

1.2.2 Ellipsoidal t-designs

In view of this framework, it is natural to ask whether there are generalizations of

spherical t-designs to other curves, surfaces and varieties. Here we consider certain
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ellipsoids2 in dimension two. To be precise, for square-free D ≥ 1 we de�ne the norm

r ellipses

CD(r) :=


{(x, y) ∈ R2 : x2 +Dy2 = r} if D ≡ 1, 2 (mod 4),

{
(x, y) ∈ R2 : x2 + xy + 1+D

4
y2 = r

}
if D ≡ 3 (mod 4).

(1.2.3)

Remark 1.5. These ellipses arise from certain imaginary quadratic orders.

For D ≡ 1, 2 (mod 4), we say that a �nite nonempty subset X ⊂ CD(r) is an

ellipsoidal t-design if

1

|X|
∑

(x,y)∈X

P (x, y) =

√
D

2π

∫
CD(r)

P (x, y)√
x2 + y2D2

dσ(x, y) (1.2.4)

for all polynomials P (x, y) of degree ≤ t over R. For D ≡ 3 (mod 4), instead we

require

1

|X|
∑

(x,y)∈X

P (x, y) =

√
D

π

∫
CD(r)

P (x, y)√
20x2 + (D2 + 2D + 5)y2 + (20 + 4D)xy

dσ(x, y).

(1.2.5)

Here the right-hand sides are line integrals. As in the case of spherical t-designs, every

ellipsoidal t-design is also an ellipsoidal t′-design for all t′ ≤ t, and the maximum of

all such t's is called the strength of X. These de�nitions coincide with the notion of

a spherical t-design when D = 1.

Example 1.6. Any subset of an ellipse with antipodal points is ellipsodal 1-design.
2We do not use the term ellipse to avoid possible confusion that might arise with the term

elliptical.
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In analogy to Delsarte, Goethals and Seidel, we have a natural criterion for con-

�rming ellipsoidal t-designs. To this end, we consider the 2-dimensional real vector

space

HR
D,j[x, y] :=


〈
Re
(
x+

√
−Dy

)j
, Im

(
x+

√
−Dy

)j〉
if D ≡ 1, 2 (mod 4),〈

Re
(
x+ 1+

√
−D

2
y
)j

, Im
(
x+ 1+

√
−D

2
y
)j〉

if D ≡ 3 (mod 4).

(1.2.6)

In terms of these vector spaces of polynomials, we have the following ellipsoidal t-

design criterion.

Theorem 1.7. A �nite nonempty set X ⊂ CD(r) is an ellipsoidal t-design if

∑
x∈X

P (x, y) = 0

for all P (x, y) ∈ HR
D,j[x, y] for all 0 < j ≤ t.

Remark 1.8. 1) Observe that if X ⊂ S1 is a spherical t-design, then

Y =
{
(x, y/

√
D)|(x, y) ∈ X

}
⊂ CD (resp. Y =

{
(x+ y/

√
D, 2y/

√
D|(x, y) ∈ X

}
⊂

CD) is an ellipsoidal t-design forD ≡ 1, 2 (mod 4) (resp. D ≡ 3 (mod 4)). Therefore,

the existence of a spherical t-design implies the existence of a corresponding ellipsoidal

t-design. In fact, there is a one-to-one correspondence between spherical t-designs and

ellipsoidal t-designs. However, the proof of Theorem 1.7 is not a direct consequence

because care is required for justifying the role of the vector spaces HR
D,j[x, y].

2)Since there is one-to-one correspondence between spherical and ellipsoidal t-designs,
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we get a lower bound [DGS77, pg 2] on the size of ellipsoidal t-design X,

|X| ≥ t+ 1.

1.2.3 Ellipsoidal T -design

Recently, Miezaki in [Mie13] introduced a generalization of the notion of spherical

t-designs. Instead of restricting to polynomials of degree ≤ t, he considered harmonic

polynomials of degree j ∈ T ⊂ N, where T is a potentially in�nite set. The main

theorem from [Mie13] gives in�nitely many spherical T -designs for T := Z+ \ 4Z+ in

dimension two. Namely, he considered norm r shells, integer points on x2 + y2 = r

for �xed r ∈ Z+. He showed that these r-shells are spherical T -designs. Moreover,

these sets have strength T , meaning that (1.2.2) fails if any multiple of 4 is added

to T . His proof makes use of theta functions arising from complex multiplication by

Z[i].

We generalize Miezaki's work to ellipsoidal T -designs. We call X ⊂ CD an

ellipsoidal T -design if the condition in Theorem 1.7 is satis�ed for all polynomials

in HR
D,j[x, y] with j ∈ T . We say X has strength T if it is maximal among such sets.

For each square-free positive integer D, let OD be the ring of integers of Q(
√
−D).

In particular, this means that

OD =


Z
[√

−D
]

if D ≡ 1, 2 (mod 4),

Z
[
1+

√
−D

2

]
if D ≡ 3 (mod 4).

(1.2.7)
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We consider D ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163}, the square-free positive integers for

which OD has class number 1. To make this precise, we de�ne the norm r shells in

CD(r) by

Λr
D := OD ∩ CD(r). (1.2.8)

Generalizing Miezaki's work for D = 1, we obtain the following theorem.

Theorem 1.9. If D ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163}, then every non-empty shell Λr
D

is an ellipsoidal TD design with strength TD, where

TD :=



Z+ \ 4Z+ if D = 1,

Z+ \ 6Z+ if D = 3,

Z+ \ 2Z+ otherwise.

Remark 1.10. The method used here seems to be well-poised only for the dimension

2 cases. It would be interesting to obtain higher dimensional analogues.

Example 1.11. We consider D = 3, and r = 691. Then we have

Λ691
3 ={(11, 19), (−11,−19), (19, 11), (−19,−11), (11,−30), (−11, 30), (30,−19),

(−30, 19), (30,−11), (−30, 11), (19,−30), (−19, 30)}.

We consider the polynomial P (x, y) = 2x2 + 3462xy + 1729y2 ∈ HR
3,2[x, y], and

we �nd that
∑

(x,y)∈Λ691
3

P (x, y) = 0 which shows that Λ691
3 is an elliptical 2-design

and 2 ∈ T3. On the other hand, Theorem 1.9 implies that Λ691
3 is not an ellipsoidal

6-design.To see this we choose Q(x, y) = 2x2 + 6x5y − 15x4y2 − 40x3y3 − 15x2y4 +

6xy5 + 2y6 ∈ HR
3,6(x, y), and we �nd that

∑
(x,y)∈Λ691

3
Q(x, y) = −4818834696 ̸= 0.
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1.3 Inversion of j-function around elliptic points

Recently, Hong, Mertens, Ono, and Zhang [HMOZar] proved a conjecture of C ld raru,

He, and Huang [CHH21] that expresses the Taylor series of the modular j-function

around the elliptic points i and ρ = eπi/3 as rational functions arising from the sig-

nature 2 and 3 cases of Ramanujan's theory of elliptic functions to alternative bases.

We extend these results and give inversion formulas for the j-function around i and ρ

arising from Gauss' hypergeometric functions and Ramanujan's theory in signatures

4 and 6.

1.3.1 Klein j-function

The Klein j-function

j(τ) :=
1

q
+ 744 + 196884q + 21493760q2 + · · · (q = e2πiτ , τ ∈ H)

is a modular function on the full modular group SL2(Z). It is of great importance to

number theory. In the theory of elliptic curves, the j-function parametrizes isomor-

phism classes of elliptic curves over C. In Class Field Theory, its values at CM points,

the so called singular moduli, generate Hilbert Class Fields of imaginary quadratic

extensions. Another famous example of its importance is the observation that the

Fourier coe�cients of the j-function encode the graded dimensions of the in�nite

dimensional graded algebra of the Monster group. This observation led to the Mon-

strous Moonshine conjecture and its eventual proof by Borcherds [Bor92].
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The j-function de�nes a bijective holomorphic function from SL2(Z)\H to C.

In particular, the j-function has an inverse function. Due to its central role in the

theories stated above, among many others, it is natural to seek explicit formulas for its

inverse map. Work in this direction began with Ramanujan giving striking formulas

for 1/π which gave rise to Ramanujan's theory of elliptic functions to alternative

basis (cf. [Ram14], [BBG95], and [BC99]). This theory produced several explicit

formulas which express j(τ) as a rational function in t, where the parameters τ and

t are related via Gauss' hypergeometric functions (see Section 2.4).

1.3.2 Main results

More recently, a conjecture of C ld raru, He, and Huang [CHH21] cast new light on

the problem of inverting the j-function. In contrast to Ramanujan's Theory which

uses the Fourier expansion of the j-function around the cusp i∞ [BC99], their conjec-

ture is about the Taylor series expansion around the elliptic points i and ρ := eπi/3.

They conjecture that these Taylor series, when specialized at the normalized �at coor-

dinate of the corresponding moduli space of versal deformations of elliptic curves, are

the rational functions that appear in the classical hypergeometric inversion formulae

for the j-function. Shortly after, Hong, Mertens, Ono, and Zhang [HMOZar] proved

their conjecture.

To state their results more precisely, let H be upper half plane, and D be the unit

disc. For τ∗ ∈ {i, ρ}, we have the uniformizing map Sτ∗ : H → D and its inverse
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S−1
τ∗ : D → H de�ned by

Sτ∗(τ) =
τ − τ∗
τ − τ∗

and S−1
τ∗ (w) =

τ∗ − τ∗w

1− w
. (1.3.1)

Next, we renormalize the conformal map

s−1
τ∗ (w) := S−1

τ∗

(
w

2πΩ2
ρ

)
, (1.3.2)

where Ωτ∗ is the standard Chowla-Selberg periods (for example, see (96) of Section

6.3 of [Zag08]) de�ned by

Ωi :=
1√
8π

Γ(1/4)

Γ(3/4)
and Ωρ :=

1√
6π

(
Γ(1/3)

Γ(2/3)

)3/2

. (1.3.3)

With these uniformizing maps, the Taylor series of the j-function around i and ρ are

de�ned as:

j(s−1
i (w)) = 1728 + 20736w2 + 105984w4 +

1594112

5
w6 + · · ·

j(s−1
ρ (w)) = 13824w3 − 39744w6 +

1920024

35
w9 − 1736613

35
w12 + · · · .

These formulas follow from the theory of Taylor coe�cients of modular forms (see for

example Section 5.4 of [CS17]).

Hong, Mertens, Ono, and Zhang considered the two distinguished power series

ci(t) and cρ(t) of C ld raru, He, and Huang (see Section 2.1 of [HMOZar]) whose

�rst few terms are

ci(t) = t+ t3 +
32

15
t5 +

17

3
t7 +

1054

63
t9 +

368

7
t11 +

4652300

27027
t13 + · · · (|t| < 1/2)

cρ(t) = t− 1

3
t4 +

103

315
t7 − 169

405
t10 +

522169

868725
t13 − 186119

200475
t16 + · · · (|t| < 1).
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They proved that surprisingly the Taylor series of the j-function around i and ρ

evaluated at ci(t) and cρ(t) respectively, turn out to be rational functions in t. Namely,

they proved that

j(s−1
i (ci(t)) = 64

(3 + 4t)3

(1− 4t2)2
and j

(
s−1
ρ (cρ(t)) + 1

3

)
= 27t3

(
8− t3

1 + t3

)3

.

Their proof used the theory of hypergeometric functions of signatures 2 and 3. Namely,

they realized ci and cρ as quotients of hypergeoemetric functions.

In view of this, it is natural to ask whether there are other examples of this

phenomenon. More precisely, does the theory of hypergeometric functions in signature

4 and 6 yield other inversion formulas for the j-function around the elliptic points i

and ρ? We answer this here in joint work with Castano.

Let us de�ne

Ci(t) := t · 2F1

(
3
4
, 3
4
; 3
2
; 4t2

)
2F1

(
1
4
, 1
4
; 1
2
; 4t2

) and Cρ(t) :=
t2

2

2F1

(
5
6
, 5
6
; 5
3
;−2t3

)
2F1

(
1
6
, 1
6
; 1
3
;−2t3

) , (1.3.4)

where 2F1 is Gauss' hypergeometric function (see Section 2.4). Then we have the

following theorems:

Theorem 1.12. If |t| < 1/2, then we have

j

(
s−1
i (Ci(t)) + 1

2

)
= 64

(16t2 − 3)3

4t2 − 1
.

Theorem 1.13. If |t| < 1/ 3
√
2, then we have

j
(
s−1
ρ (Cρ(t))

)
= − 1728t6

2t3 + 1
.
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Remarks 1.14. (1) The above formulas can be thought of as inversion formulas of

the j-function around i and ρ because when specialized to t = 0, the above formulas

reduce to the classic identities

j(i) = 1728 and j(ρ) = 0.

(2) By analytic continuation, we can extend the domain where the formulas in

Theorems 1.12 and 1.13 are valid to wherever Ci(t) and Cρ(t) are de�ned, see the

comments at the end of section 5.2. However, for explicit computations, we require

|t| < 1/2 and |t| < 1/ 3
√
2 in order to compute the power series expansions of Ci and

Cρ respectively.

(3) These results tell us that �nding an approximate solution to j(τ) = α boils

down to solving a degree six polynomial equation, see Section 5.3 for examples.



28

Chapter 2

Background

In this chapter we record all the necessary background needed for the results ob-

tained in this thesis. Namely, we write down asymptotic formulae for plane partition

function and recall Hankel determinants and their relation with hyperbolicity of a

polynomial. In the theory of modular forms, we recall besic de�nitions, Hecke op-

erators, Hecke characters, theta series and necessary result regarding them. Finally,

we recall modular j-function, hypergeometric function and some classical inversion

formulas for j-function around in�nity which is derived by the Ramanujan's theory

of elliptic functions to alternate bases.

2.1 Plane partition function

2.1.1 Asymptotic formula of PL(n)

In [OPR22], Ono, Pujahari and Rolen obtained very strong asymptotic formulas for

PL(n). In fact, there are in�nitely many formulas, one for each positive integer r,

where for large n, the implied error terms are smaller with larger choice of r. To make
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this precise, we need two constants

A := ζ(3) ≈ 1.20206..., and c := 2

∫ ∞

0

y log y

e2πy − 1
dy = ζ ′(−1) ≈ −0.16542....

(2.1.1)

Furthermore, for non-negative integers s and m, de�ne coe�cients cs,m(n) by

∞∑
n=0

cs,m(n)y
n :=

(1 + y)2s+2m+ 13
12

(3 + 2y)m+ 1
2

. (2.1.2)

We de�ne an important parameter using these coe�cients,

bs,m := cs,m(2m). (2.1.3)

The asymptotic formulas are given in terms of special numbers β0, β1, ... de�ned by

∞∑
n=0

βsy
s := exp

(
−

∞∑
i=1

αiy
i

)
, (2.1.4)

where

αs :=
2Γ(2s+ 2)ζ(2s)ζ(2s+ 2)

s(2π)4s+2
. (2.1.5)

Also, to reduce the complexity of error terms, for non-negative r, Ono et. al. de�ned

nr := min

n ≥ 1 : 0.056 ·
r+1∑
s=1

(
s · A 1

3

2
7
6n

1
3

)2s(
π2n

1
3

(2A)
1
3 s

+ 2

)
< 1

 , (2.1.6)

and

lr := min

{
n ≥ 1 : 2r+4π3αr+2

(
2A

n

) 2r+4
3

+ 5e−4.7( n
2A

)1/3 <
1

2

}
. (2.1.7)

The explicit bounds on the error terms are given in terms of Xr(n),Yr(n),Zr(n). To

de�ne Xr(n), and Yr(n), we let

Cr := 2max
|z|=1

{∣∣∣e−∑r+1
s=1 αszs

∣∣∣} . (2.1.8)
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We require one additional parameter to de�ne Zr. First, we de�ne

χs(t) :=
v2s+

25
12

√
2v + 1

2π(v2 + v + 1)
, (2.1.9)

where t2 = 3− 2v − v−2. Using this we de�ne the parameter

Dr :=
1

(2r + 4)!
max

{
max

{∣∣χ(2r+4)
s (t)

∣∣}
t∈R

}r+1

s=0
. (2.1.10)

Now we de�ne Xr(n),Yr(n), and Zr(n) by

Xr(n) := ec+AN2
n2r+

49
24CrN

−2r− 49
12

n , (2.1.11)

Yr(n) :=

∣∣∣∣∣ec+AN2
n
(
2r+5π3αr+2N

−2r−4
n + 10e−4.7Nn

)
(2.1.12)

×

(
2r+

49
24CrN

−2r− 49
12

n +
r+1∑
s=0

2s+
1
24βsN

−2s− 1
12

n

)∣∣∣∣∣,
and

Zr(n) := ec
(
Dr · Γ

(
r +

5

2

)
(AN2

n)
−r− 5

2 e3AN2
n + 0.64 · 2r+1e2AN2

n

) r+1∑
s=0

βsN
−2s− 13

12
n .

(2.1.13)

where Nn :=
(

n
2A

)1/3. With the notation above, Ono et. al. proved the following

theorem.

Theorem 2.1 ([OPR22], Theorem 1.3). If r ∈ Z+, then for every integer n ≥

max(nr, lr, 87), then we have that

PL(n) =
ec+3AN2

n

2π

r+1∑
s=0

r+1∑
m=0

(−1)mβsbs,mΓ(m+ 1
2
)

Am+ 1
2N

2s+2m+ 25
12

n

+ Emaj
r (n) + Emin(n), (2.1.14)
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where

|Emin(n)| ≤ exp

((
3A− 2

5

)
N2

n

)
, (2.1.15)

and

|Emaj
r (n)| ≤ (Xr(n) + Yr(n))e

2AN2
n

Nnπ
+ |Zr(n)|. (2.1.16)

Remark 2.2. The proof presented here is due to Ono, Pujahari, Rolen [OPR22] who

made Wright's [Wri31] proof for asymptotic for PL(n) e�ective. Wright's strategy

for obtaining asymptotics for PL(n) is a modi�cation of the classical �circle method�.

The quantity Emin(n) arises from minor arc integrals, and Emaj
r (n) arises from major

arc integrals.

Proof. Consider the circle

CNn :=
{
x ∈ C : |x| = e−

1
Nn

}
. (2.1.17)

Throughout, we let θx denote the principal branch of Arg(x), we divide CNn into two

arcs: �major arc� C ′
Nn
, consisting of x such that |θx| < 1

Nn
, and �minor arc� C ′′

Nn
, its

compliment.

Using the generating function (1.1.2), Cauchy's integral formula gives us that

PL(n) = J(n) + Emin(n), (2.1.18)

where

J(n) =
1

2πi

∫
C′

Nn

f(x)

xn+1
dx and Emin(n) =

1

2πi

∫
C′′

Nn

f(x)

xn+1
dx (2.1.19)
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with the usual counter-clockwise orientation for integration. Now we analyze both

integrals separately. The asymptotic arises from J(n), and Emin(n) gives us a small

error term. This justi�es the nomenclature �major� and �minor�.

Explicit bounds over the minor arcs

To bound Emin(n), Ono et. al. used a di�erent method from that of Wright. In-

stead of working directly with f(x), they used its logarithmic derivative, which is the

generating function of the sum of square of divisors. Using this interpretation, they

make connection with work of Zagier [Zag06], and then e�ectively bounded Emin(n)

using Euler-Maclaurin summation and calculus.

Proposition 2.3. For all n ≥ 87, we have
∣∣Emin(n)

∣∣ ≤ e(3A− 2
5)N2

n.

The idea is to give a bound on f(x) when x ∈ C ′′
Nn

which just depends on n.

Lemmata for Proposition 2.3

Lemma 2.4. If x ∈ C ′′
Nn
, then we have log f(|x|) ≤ AN2

n + 033Nn − 0.5.

Proof of Lemma 2.4. We start by noticing that when you take a log of (1.1.2), the

product becomes summation, then using expansion of log(1 − x) gives us a double

summation which one can interchange since the series is absolutely convergent, and

summing over inner parameter gives an arithmetico-geometric series which in turn
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gives

log f(|x|) =
∞∑

m=1

|x|m

m(1− |x|m)2
.

For simplicity we let t = 1/Nn and q := |x| = e−t. Di�erentiating above gives us the

Lambert series

L(q) := q
d

dq

∞∑
m=1

qm

m(1− qm)2
=

∞∑
m=1

qm(1 + qm)

(1− qm)3
. (2.1.20)

Using elementary calculus we have X(1 +X)/(1 +X)3 =
∑∞

k=1 k
2Xk, so we get

L(q) = g3(q) :=
∞∑

m=1

m2qm

1− qm
,

where g3(q) is the same as in Zagier's work [Zag06]. Notice that q d
dq

= − d
dt
, so we

have d
dt
log f(e−t) = −g3(e

−t). Integrating this relation gives us

log f(|x|) = log f(e−t) =

∫ 1

t

g3(e
−z)dz + log f(e−1) (2.1.21)

≤
∣∣∣∣∫ 1

t

g3(e
−z)dz

∣∣∣∣+ 1.04,

since log f(e−1) ≈ 1.036. To estimate integral we make use of Zagier's work [Zag06]

on generating functions of arbitrary divisor power sums. He considers (see p. 15 of

[Zag06]) the function g3(e
−z) as z ↘ 0. In the k = 3 case he applies Proposition

3 of [Zag06] with F (t) := t2

et−1
to obtain an asymptotic expansion for g3(e

−t) =

1
t2

∑
m≥1 F (mt).

To obtain an estimate with explicitly bounded error, we analyze the proof of

Proposition 3 of [Zag06]. Euler-Maclaurin summation formula gives, for each k ≥ 1,
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an exact formula for g3(e−t) where k controls the number of terms in the asymptotic

expansion, with an integral. We consider k = 1 case, in which case we have

∑
m≥1

F (mt) =
1

t

∫ ∞

0

F (z)dz +
(−1)0B1F (0)t0

1!
+ (−t)0

∫ ∞

0

F ′(z)B̄1(z)

1!
dz,

where B1 = −1/2 is the �rst Bernoulli number, and B̄1(x) = x − ⌊x⌋ − 1
2
is a

periodization of the �rst Bernoulli polynomial B1(x) = x − 1
2
. Notice that F (t) has

a removable singularity at t = 0 with limiting value F (0) = 0. Moreover, Zagier

computed that

∫ ∞

0

F (z)dz =

∫ ∞

0

tk−1
(
e−t + e−2t ++ · · ·

)
dt = (3− 1)!ζ(3) = 2A.

Combining everything we get

g3(e
−t) =

2A

t3
− 1

t2

∫ ∞

0

F ′(z)(z − ⌊z⌋ − 1/2)dz.

≤ 2A

t3
+

1

2t2

∫ ∞

0

F ′(z)dz =
2A

t3
+

1

2t2

∫ ∞

0

∣∣∣∣(zez − 2ez + 2)z

(ez − 1)2

∣∣∣∣ dz
≤ 2A

t3
+

0.33

t2
,

where last inequality is due to the fact that
∫∞
0

F ′(z)dz ≈ 0.6471. Therefore, (2.1.21)

gives

log f(|x|) ≤
∫ 1

t

(
2A

z3
+

0.33

z2

)
dz + 1.04 ≤ A

z2
+

0.33

t
− 0.5.

We are done since t = 1/Nn.
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We remind the reader that our goal is to get a bound on | log f(x)|. Note that

| log f(x)| =
∞∑

m=1

xm

m(1− xm)2
≤ |x|

|1− x|2
+

∞∑
m=2

|x|m

m(1− |x|m)2
(2.1.22)

≤
∞∑

m=1

|x|m

m(1− |x|m)2
−
(

|x|
(1− |x|)2

− |x|
|1− x|2

)

= log f(|x|)−
(

|x|
(1− |x|)2

− |x|
|1− x|2

)
.

We give an upper bound on the expression in brackets on the right hand-side.

Lemma 2.5. If x ∈ C ′′
Nn
, then we have

|x|
(1− |x|)2

− |x|
|1− x|2

≥ N2
n

2
− 1

12
.

Proof of Lemma 2.5. Note that

|x|
(1− |x|)2

− |x|
|1− x|2

=
|x|

(1− |x|)2

(
1−

(
1− |x|
|1− x|

)2
)

(2.1.23)

≤ |x|
(1− |x|)2

(
1−

(
1− e−1/Nn

|1− e−1/Nnei/Nn|

)2
)
.

For last inequality, we note that every point in C ′′
Nn

has argument in the interval

[ 1
Nn

, 2π− 1
Nn

]. Geometrically, we have that the closest a point x on this arc can get to

the point (1, 0) in the plane is when the argument of x is one of the extreme points.
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Figure 2.1: Triangle used to evaluate |1− x|.

We �nd an upper bound on right hand side of (2.1.23). From the diagram we

have

∣∣1− e−1/Nnei/Nn
∣∣ =√1 + e−2/Nn − 2e−1/Nn cos(1/Nn) =

√
1 + e−2t − 2e−t cos(t).

Thus, we get

h(t) :=
1− e−1/Nn

|1− e−1/Nnei/Nn|
=

1− e−t√
1 + e−2t − 2e−t cos(t)

=
1√
2
+

√
2

48
t2 + · · · .

We have t = 1/Nn = (2A/n)
1
3 ≤ (2A)

1
3 ≤ 1.34. On the interval [0, 1.34], the maxi-

mum absolute value of h′′(t) is
√
2/24. Hence, by Taylor's theorem, we get

h(t) =
1√
2
+O≤

(√
2

48
t2

)
,

where O≤(·) means that the expression is bounded by · in absolute value (i.e. we can

choose the constant associated to O(·) equal to 1). Hence, for x ∈ C ′′
Nn
, we have

1− |x|
|1− x|

=
1√
2
+O≤

( √
2

48N2
n

)
. (2.1.24)
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We also have that

|x|
(1− |x|)2

=
e−t

(1− e−t)2
= t−2 − 1

12
+

1

240
t2 + · · · > N2

n − 1

12

Combining everything gives

|x|
(1− |x|)2

− |x|
|1− x|2

≥
(
N2

n − 1

12

)1−

(
1√
2
+O≤

( √
2

48N2
n

))2
 ≥ N2

n − 1

12
.

Proof of Proposition 2.3. From (2.1.22), we have

| log f(x)| ≤ AN2
n + 033Nn − 0.5−N2

n − 1

12
≤
(
A− 1

2

)
N2

n + 0.33Nn.

Hence we have∣∣∣∣f(x)xn+1

∣∣∣∣ ≤ e(A− 1
2)N2

n+0.33Nn+(n+1)Nn = e(3A− 1
2)N2

n+0.33Nn+
1

Nn .

Combining above with the de�nition of Emin(n) (2.1.19) we get

∣∣Emin(n)
∣∣ ≤ 1

2πi

∫
C′′

Nn

∣∣∣∣f(x)xn+1

∣∣∣∣ dx ≤ e(3A− 1
2)N2

n+0.33Nn+
1

Nn

2π

∫
C′′

Nn

1 · dx

≤ e(3A− 1
2)N2

n+0.33Nn .

The claimed inequality for n ≥ 87 follows by analyzing this last expression.

Explicit major arc formulas

The size of PL(n) is given by the major arc integral J(n). We get a formula for each

positive integer r, which holds for su�ciently large n. As we increase r, the estimates

become better.
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Proposition 2.6. If r ∈ Z+, then for every n ≥ max(lr, nr, 55) we have

J(n) =
ec+3AN2

n

2π

r+1∑
s=0

r+1∑
m=0

(−1)mβsbs,mΓ(m+ 1
2
)

Am+ 1
2N

2s+2m+ 25
12

n

+ Emaj
r (n),

where

|Emax
r (n)| ≤ (Xr(n) + Yr(n))e

2AN2
n

Nnπ
+ |Zr(n)| (see (2.1.16)).

Lemmata for Proposition 2.6

The idea is to use Cauchy's integral formula to get an asymptotic formula for the

generating function for PL(n) and use that to obtain the eventual formula for J(n).

We start with some basic setup. For x ∈ C ′
Nn
, we de�ne

z = log

(
1

x

)
=

1

Nn

− iν =: ρeiϕ, (2.1.25)

and

w := ℜ
( π

2z

)
=

π cos(ϕ)

2ρ
. (2.1.26)

Note that v < 1
Nn

, and hence

ρ =
√

N−2
n + ν2 ∈

[
1

Nn

,

√
2

Nn

]
. (2.1.27)

Furthermore, we have

|ϕ| = |arctan (νNn)| ≤ arctan(1) =
π

4
. (2.1.28)

Using the identity ∫ ∞

0

t log
(
1− e−tz

)
dt = −A

z2
,
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Figure 2.2: The path of integration Γ.

we get

− log f(x) +
A

z2
= − log f(x)−

∫ ∞

0

t log
(
1− e−tz

)
dt

=
∞∑

m=1

m log
(
1− e−mz

)
−
∫ ∞

0

t log
(
1− e−tz

)
dt

=
∞∑

m=1

m log
(
1− e−mz

)
+

∫
Γ

(
t log (1− e−tz)

e2πit − 1
− t log (1− e−tz)

1− e−2πit

)
dt,

where Γ is the path from 0 to ∞ which travels along the real axis, apart from su�-

ciently small semicircles at the positive integers above the real axis to avoid the poles

of the integrand (see Fig. 2.2). ( Here one has to be careful near 0 but it is easy to

check that it is a removable singularity with value 0.) Let Γ′ be the re�ection of Γ

about x-axis. Then using the Residue Theorem (note that the residue of
t log(1−e−tz)

e2πit−1
)

at t = m ∈ Z is m log (1− e−mz) /(2πi) we get

− log f(x) +
A

z2
=

∫
Γ′

t log (1− e−tz)

e2πit − 1
dt−

∫
Γ

t log (1− e−tz)

1− e−2πit
dt. (2.1.29)

We study the above two integrals separately.
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Lemma 2.7. Assuming the notation and hypotheses above, we have∫
Γ

t log (1− e−tz)

1− e−2πit
dt =

∫ iw

0

t log (1− e−tz)

1− e−2πit
dt+O≤

(
35N2

ne
−π2Nn

)
,∫

Γ′

t log (1− e−tz)

e2πit − 1
dt =

∫ −iw

0

t log (1− e−tz)

e2πit − 1
dt+O≤

(
N2

ne
−π2Nn

)
.

Proof of Lemma 2.7. Start by noticing that the integrands above have simple poles

at integer points and when 1− e−tz = 0 i.e. t = 2πik/z for all k ∈ Z+. In particular,

there is no pole in the region between Γ, imaginary axis, and the line parallel to

real-axis from the point iw. So we get∫
Γ

t log (1− e−tz)

1− e−2πit
dt =

∫ iw

0

t log (1− e−tz)

1− e−2πit
dt+

∫ iw+∞

iw

t log (1− e−tz)

1− e−2πit
dt, (2.1.30)

where second integral is along the horizontal line (i.e. parallel to real-axis) starting

at iw. Note that∣∣∣∣ 1

1− e−2πi(iw+x)

∣∣∣∣ ≤ ∣∣∣∣ 1

1− |e−2πi(iw+x)|

∣∣∣∣ = ∣∣∣∣ 1

1− eπ2 cosϕ/ρ

∣∣∣∣ .
Using (2.1.27), this is bounded by∣∣∣∣ 1

(1− eπ2Nn)

∣∣∣∣ =
∣∣∣∣∣ e−π2Nn

(e−π2Nn − 1)

∣∣∣∣∣ ≤
∣∣∣∣∣ e−π2Nn

(e−π2N1 − 1)

∣∣∣∣∣ ≤ 1.007e−π2Nn .

Therefore, we have∣∣∣∣∫ iw+∞

iw

t log (1− e−tz)

1− e−2πit
dt

∣∣∣∣ ≤ 1.007e−π2Nn

∫ iw+∞

iw

∣∣t log (1− e−tz
)∣∣ dt (2.1.31)

= 1.007e−π2Nn

∫
L

∣∣v log (1− e−v
)∣∣ dv =: U(n),

where we made the change of variable v = tz and L is an array from πi
2
eiϕ cosϕ at an

angle ϕ.
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We split the integral in (2.1.31) into two pieces. This is one of the places where

proof in [OPR22] di�ers from [Wri31] to obtain e�ective estimates. Throughout, we

let vt := iwz + teiϕ, so that L = {vt : t ∈ [0,∞)}. Note that

wz =
π cosϕ

2ρ
· ρeiϕ =

π cosϕeiϕ

2
. (2.1.32)

Using this we estimate the piece |log (1− evt)| in the integrand of (2.1.31). We need

following inequality which can be easily checked:

|log (1 + y)| ≤ − log (1− |y|) , for all |y| < 1. (2.1.33)

We will break up the line L into a compact piece L1 and a remaining piece L2, where

we can utilize this bound. To see where it applies, we compute

∣∣e−vt
∣∣ = e−ℜ(vt) = ewℑ(z)−ℜ(teiϕ) = e−wν−t cosϕ = e− cosϕ(πν

2ρ
+t),

which is less than or equal to one if and only if cosϕ
(

πν
2ρ

+ t
)
≥ 0. Using (2.1.27)

and (2.1.28), and the fact that ν ≥ 1/Nn, we have

cosϕ

(
πν

2ρ
+ t

)
>

√
2

2

(
π

2
√
2
+ t

)
= −π

4
+

t√
2
,

which gives us ∣∣e−vt
∣∣ ≤ e

π
4
− t√

2 . (2.1.34)

Hence, we let

L1 :=
{
vt : t ∈ [0, π/2

√
2 + 1)

}
, L2 :=

{
vt : t ∈ [π/2

√
2 + 1,∞)

}
,
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then we can use (2.1.33) to estimate the integrand on L2. For vt ∈ L2, we have

∣∣vt log (1− e−vt
)∣∣ ≤ −|vt| · log

(
1−

∣∣e−vt
∣∣) ≤ |vt| log

(
1− e

π
4
− t√

2

)
.

Note that |vt| ≤ |cosϕ| π
2
+ t ≤ π

2
+ t, so using the fact that − log(1− x) < x/(1− x)

for real 0 ̸= x < 1, we �nd that

∣∣vt log (1− e−vt
)∣∣ ≤ (

π
2
+ t
)
e

π
4
− t√

2

1− e
π
4
− t√

2

.

Since L1 is compact, we then �nd the following estimate for (2.1.31) (note that when

we integrate on L2, since we are integrating absolute values, the change of variables

in the di�erential goes away as it has absolute value 1):

U(n) = 1.007N2
ne

−πN
n

(∫
L1

∣∣v log (1− e−v
)∣∣ dv + ∫

L2

∣∣v log (1− e−v
)∣∣ dv)

≤ 1.007N2
ne

−πN
n

(
π

2
√
2
+ 1

)
·max

{
|vt| ·

∣∣log (1− e−v
)∣∣ : t ∈ [0, π/2

√
2 + 1)

}
+ 1.007N2

ne
−πN

n

∫ ∞

π
2
√
2

(
π
2
+ t
)
e

π
4
− t√

2

1− e
π
4
− t√

2

dv

≤ 1.007N2
ne

−πN
n

(
π

2
√
2
+ 1

)
·max

{
|vt| ·

∣∣log (1− e−v
)∣∣ : t ∈ [0, π/2

√
2 + 1)

}
+ 4.8N2

ne
−π2Nn .

Now we estimate �rst part above. We start with log (1− e−vt). We begin by recalling

that for complex y, the principal branch of the logarithm is given by log y = log(|y|)+

iArg(y). Thus we have

∣∣log (1− e−vt
)∣∣ ≤ ∣∣log ∣∣1− e−vt

∣∣∣∣+ π. (2.1.35)
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To bound the logarithm, we �nd the maximum and minimum on the interval t ∈

[0, π/2
√
2 + 1). The only critical point of |1− e−vt | is at cosh(iϕ), thus the potential

extrema of |1− e−vt| are at t = 0, π/2
√
2, and cosh(iϕ). That is, the maximum of

log |1− e−vt | is bounded by

max
{∣∣1− e−v0

∣∣ , ∣∣1− e−vπ/2
√

2
∣∣ , ∣∣1− e−vcosh(iϕ)

∣∣}
Using the fact that ϕ ∈ [−π/4, π/4], one gets

0.75 ≤
∣∣1− e−v0

∣∣ ≤ 1.85, 0.9 ≤
∣∣1− e−vπ/2

√
2
∣∣ ≤ 1.4, 0.7 ≤

∣∣1− e−vcosh(iϕ)
∣∣ ≤ 1.45.

So (2.1.35) implies that |log (1− e−vt)| ≤ 3.76. To bound vt on this interval, using

(2.1.32) and the triangle inequality, we �nd that |vt| ≤ π cosϕ
2

+ t ≤ π
2
+ π

2
√
2
= 3.68....

Therefore, we conclude that

1.007N2
ne

−πN
n

(
π

2
√
2
+ 1

)
·max

{
|vt| ·

∣∣log (1− e−v
)∣∣ : t ∈ [0, π/2

√
2 + 1)

}
≤ 30N2

ne
−π2Nn .

As a consequence, we obtain

U(n) ≤ 35N2
ne

−π2Nn .

Combining everything we have proved the �rst part of the lemma which is that∫
Γ

t log (1− e−tz)

1− e−2πit
dt =

∫ iw

0

t log (1− e−tz)

1− e−2πit
dt+O≤

(
35N2

ne
−π2Nn

)
. (2.1.36)

The second claim in the lemma follows by arguing as above (after suitable sign changes

in the integrand) using the path of integration along Γ′. Namely, we get∫
Γ′

t log (1− e−tz)

e2πit − 1
dt =

∫ −iw

0

t log (1− e−tz)

e2πit − 1
dt+O≤

(
N2

ne
−π2Nn

)
. (2.1.37)
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So far we have proved that

− log f(x)+
A

z2
=

∫ iw

0

t log (1− e−tz)

e2πit − 1
dt−

∫ −iw

0

t log (1− e−tz)

1− e−2πit
dt+O≤

(
36N2

ne
−π2Nn

)
.

(2.1.38)

Now we need to evaluate �rst two integrals. For that we need the following lemma:

Lemma 2.8. Assuming the notation and hypotheses above, the following are true:

(1) If n is a positive integer, then we have

I1 := 2

∫ w

0

y log(yz)

e2πy − 1
dy = c+

log y

12
+O≤

(
3e−4.7Nn

)
.

(2) If n ≥ nr is an integer, then we have

I2 := −2
r+1∑
s=1

ζ(2s)z2s

s(2π)2s

∫ w

0

y2s+1

e2πy − 1
dy = −

r+1∑
s=1

αsz
2s +O≤

(
e−

π2Nn
2

)
,

where αs is de�ned by (2.1.5).

(3) If n is a positive integer, then we have

I3 := −2
∑

s≥r+2

ζ(2s)z2s

s(2π)2s

∫ w

0

y2s+1

e2πy − 1
dy ≤ 2r+4π3αr+2N

−2r−4
n .

Proof of Lemma 2.8. We estimate these three quantities one-by-one. For I1, we have

I1 = 2

∫ ∞

0

y log(yz)

e2πy − 1
dy − 2

∫ ∞

w

y log(yz)

e2πy − 1
dy

= 2

∫ ∞

0

y log y

e2πy − 1
dy + 2 log z

∫ ∞

0

y

e2πy − 1
dy − 2

∫ ∞

w

y log(yz)

e2πy − 1
dy

= c+
1

12
log z − 2

∫ ∞

w

y log(yz)

e2πy − 1
dy,
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since ∫ ∞

0

y

e2πy − 1
dy =

1

4
B2 =

1

24
,

where B2 is the second Bernoulli number also remember the de�nition of c (2.1.1).

To evaluate the last integral above, we �rst note that w = π cosϕ
2ρ

≥ π
√
2

4ρ
≥ πNn

4
≥ 0.58,

where we used (2.1.28) and (2.1.27) and that n ≥ 1. By direct manipulation, for

y ≥ 0.58, we have

1

e2πy − 1
≤ 1.1e−2πy. (2.1.39)

Then on the interval w ≥ 0.58, we �nd that

∣∣∣∣−2

∫ ∞

w

y log(yz)

e2πy − 1
dy

∣∣∣∣ ≤ 2.2

∣∣∣∣−2

∫ ∞

w

y log(yz)e−2πydy

∣∣∣∣
≤ 2.2

4π2
e−2πw

∣∣1− e2πwEi(−2πw) + (1 + 2πw) log(wz)
∣∣ ,

where Ei(x) := −
∫∞
−x

e−t

t
dt. Straightforward manipulation then gives

∣∣∣∣−2

∫ ∞

w

y log(yz)

e2πy − 1
dy

∣∣∣∣ ≤ e−2πw (1 + 0.056(1 + 2πw)(| log ρ|+ π)) .

If n ≥ 7 then
√
2/Nn < 1, and so w ≥ πNn/4. Therefore, we have∣∣∣∣−2

∫ ∞

w

y log(yz)

e2πy − 1
dy

∣∣∣∣ ≤ e−
π2Nn

2

(
1 + 0.056

(
1 +

π2Nn

2

)
(| logNn|+ π)

)
≤ 3e−4.7Nn .

(2.1.40)

By direct computation for 1 ≤ n ≤ 6 we �nd that this holds in general, and hence we

have

I1 = c+
1

12
log z +O≤

(
3e−4.7Nn

)
(2.1.41)
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Now we look at I2. Using (2.1.39) and the integral representation, we get

I2 = −2
r+1∑
s=1

ζ(2s)z2s

s(2π)2s

∫ ∞

0

y2s+1

e2πy − 1dy
+ 2

r+1∑
s=1

ζ(2s)z2s

s(2π)2s

∫ ∞

w

y2s+1

e2πy − 1
dy

= −2
r+1∑
s=1

ζ(2s)z2s

s(2π)2s

∫ ∞

0

y2s+1

e2πy − 1
dy +O≤

(
2.2 ·

r+1∑
s=1

ζ(2s)z2s

s(2π)2s

∫ ∞

w

y2s+1e−2πy

)

= −2
r+1∑
s=1

ζ(2s)z2s

s(2π)2s

(
Γ(2 + 2s)ζ(2 + 2s)

(2π)2+2s

)

O≤

(
2.2 ·

r+1∑
s=1

ζ(2s)z2s

s(2π)2s

(
Γ(2 + 2s; 2πw)

(2π)2+2s

))
,

where Γ(a;x) :=
∫∞
x

ta−1e−tdt is the incomplete Gamma function. Using (2.1.5), this

becomes

I2 = −
r+1∑
s=1

αsz
2s +O≤

(
2.2 ·

r+1∑
s=1

ζ(2s)z2s

s(2π)2s

(
Γ(2 + 2s; 2πw)

(2π)2+2s

))
.

To estimate this, we use Theorem 1.1 of [Pin20] and Lemma 2.2 of [BKRT21] which

shows, for a > 2, that

Γ(a;x) ≤ (x− ba)
a − xa

a · ba
e−x ≤ (x− ba)

a−1,

where ba := Γ(a + 1)
1

a−1 . Combined with the Bernoulli number formula for ζ(s) at

positive even integers, this gives∣∣∣∣∣2.2 ·
r+1∑
s=1

ζ(2s)z2s

s(2π)2s

(
Γ(2 + 2s; 2πw)

(2π)2+2s

)∣∣∣∣∣
≤ 1.1e−2πw

4π2

r+1∑
s=1

ρ2sB2s

s(2π)2s(2s)!

(
2πw + ((2s+ 1)!)

1
2s+1

)2s+1

≤ 1.1e−2πw

4π2

r+1∑
s=1

ρ2sB2s

s(2π)2s(2s)!
(2πw + 2s)2s+1 .
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Using the Bernoulli number upper bound from (24.9.8) of [DLMF], recalling that

w ≥ πNn/4, and noting that w = π cosϕ
2ρ

≤ π
2ρ

< πNn

2
, this is bounded by

0.056e−2πw

r+1∑
s=1

ρ2s

s(2π)4s
(2πw + 2s)2s+1

= 0.056e−2πw

r+1∑
s=1

ρ2s
(

1

2π
+

s

2π2

)2s(
2πw

s
+ 2

)

≤ 0.056e−
π2Nn

2

r+1∑
s=1

(
s
√
2

4Nn

)2s(
π2Nn

s
+ 2

)
= nr · e−

π2Nn
2 .

Therefore, if n ≥ nr, then we obtain the claimed inequality for I2.

Finally, we turn to the bound for I3, which we recall is

I3 := −2
∑

s≥r+2

ζ(2s)z2s

s(2π)2s

∫ w

0

y2s+1

e2πy − 1
dy.

As ζ(2r + 4) ≥ ζ(2s) for all s ≥ r + 4, we have

|I3| ≤
ζ(2r + 4)

r + 2

ρ2r+4

(2π)2r+4

∫ w

0

y2r+5

e2πy − 1

∞∑
m=0

(yρ
2π

)2s
dy.

Therefore, using (2.1.5) we �nd that

|I3| ≤
ζ(2r + 4)

r + 2

ρ2r+4

(2π)2r+4

∫ w

0

y2r+5

(e2πy − 1)
(
1−

(
yρ
2π

)2)dy
<

ζ(2r + 4)

r + 2

ρ2r+4

(2π)2r+4

∫ w

0

y2r+5

e2πy − 1
dy

<
Γ(2r + 6)ζ(2r + 4)ζ(2r + 6)ρ2r+4

(r + 2)(2π)2r+7
= 4π3αr+2ρ

2r+4.

Since we have ρ ≤
√
2

Nn
, this proves the inequality for I3.

Proof of Proposition 2.6. We begin by combining two integrals in (2.1.38) to get

log (f(x)) =
A

z2
+

∫ w

0

y log
(
2 sin

(
yz
2

))
e2πy − 1

dy +O≤

(
36N2

ne
−π2Nn

)
.
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For calculating the integral and use the Lemma 2.8, we employ the identity

sin(τ) = τ ·
∏
n≥1

(
1− τ 2

n2π2

)
.

This implies that

log(sin(τ)) = log(τ) +
∞∑
s=1

∞∑
m=1

τ 2s

s ·m2sπ2s
= log(τ)−

∞∑
s=1

ζ(2s)τ 2s

sπ2s
.

Hence, for r ≥ 1, the integral above transforms into

∫ w

0

y log
(
2 sin

(
yz
2

))
e2πy − 1

dy

= 2

∫ w

0

y log(yz)

e2πy − 1
dy − 2

r+1∑
s=1

ζ(2s)z2s

s(2π)2s

∫ w

0

y2s+1

e2πy − 1
dy − 2

∑
s≥r+2

ζ(2s)z2s

s(2π)2s

∫ w

0

y2s+1

e2πy − 1
dy

= I1 + I2 + I3.

This combined with Lemma 2.8 gives us

log (f(x)) =
A

z2
+c+

log(z)

12
−

r+1∑
s=1

αsz
2s+O≤

(
2r+4π3αr+2N

−2r−4
n + 5e−4.7Nn

)
. (2.1.42)

To get f(x) from this, we make use of a complex-analytic version for the remainder

terms of the Taylor series of f(x), which is required as our estimates make use of

the expressions involving βs which is de�ned, at (2.1.4), to be the r + 2-th Taylor

coe�cient of

gr(z) := e−
∑r+1

s=1 αszs =
r+1∑
s=0

βsz
s +Rr(z),

where Rr(z) is the tail of the Taylor series. For convenience, we assume that n ≥ 55,

which guarantees that |z| = ρ ≤
√
2/Nn ≤ 1

2
. The standard complex Taylor series
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remainder estimate (for example, see Theorem B.21 of [Kna16] with R = 1) gives

|Rr(z)| ≤
max|z|=1 {|gr(z)|} |z|r+2

1− |z|
≤ Cr|z|r+2,

where

Cr := 2max
|z|=1

(∣∣∣e−∑r+1
s=1 αszs

∣∣∣) . (2.1.43)

By replacing z with z2 (this is allowed since we demanded that |z| < 1, and so |z2| < 1

is still in the range of validity for the remainder estimate), we obtain

gr(z
2) := e−

∑r+1
s=1 αsz2s =

r+1∑
s=0

βsz
s +O≤

(
Cr|z|2r+4

)
.

Therefore, by exponentiating (2.1.42), for n ≥ 55 we obtain

f(x) = ecz
1
12 e

A
z2 ·

(
r+1∑
s=0

βsz
2s +O≤

(
Cr|z|2r+4

))

×O≤
(
exp

(
2r+4π3αr+2N

−2r−4
n + 5e−4.7Nn

))
.

To address the error term on the far right above, we assume that n ≥ lr, which by

(2.1.7) gives

2r+4π3αr+2N
−2r−4
n + 5e−4.7Nn ≤ 1

2
< 1 and

1

1− (2r+4π3αr+2N−2r−4
n + 5e−4.7Nn)

≤ 2.

Thanks to (4.5.11) of [DLMF], which states that ex < 1 + x/(1 − x) for x < 1, this

gives

f(x) = ecz
1
12 e

A
z2 ·

(
r+1∑
s=0

βsz
2s +O≤

(
Cr|z|2r+4

))

×O≤
(
1 + 2r+5π3αr+2N

−2r−4
n + 10e−4.7Nn

)
= M(x) + Xr(n) + Yr(n),
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where we let M(x) := ec+
A
z2
∑r+1

s=0 βsz
2s+ 1

12 , and Xr(n) and Yr(n) are de�ned by

(2.1.11) and (2.1.12) respectively. This encodes the compilation of error on C ′
Nn

using

the facts that
∣∣∣e A

z2

∣∣∣ ≤ e

∣∣∣ A
ρ2

∣∣∣ ≤ eAN2
n and |z| = ρ ≤

√
2N−1

n . Now, recalling that

n = 2AN3
n, we obtain

J(n) =
1

2πi

∫ 1+i
Nn

1−i
Nn

f(e−z)e2AN3
nzdz =

1

2πi

∫ 1+i
Nn

1−i
Nn

(M(x) + Xr(n) + Yr(n))dz

=
ec

2πi

∫ 1+i
Nn

1−i
Nn

(
r+1∑
s=0

βsz
2s+ 1

12

)
e

A
z2

+2AN3
nzdz +O≤

(
(Xr(n) + Yr(n)) · e2AN3

n

Nnπ

)
,

where we used that on the path of integration,
∣∣∣e2AN3

nz
∣∣∣ = e2AN3

n , and that the length

is 2N−1
n . We now let v = Nnz, and de�ne

Ps :=
1

2πi

∫ 1+i

1−i

v2s+
1
12 exp

(
AN2

n

(
2v +

1

v2

))
dv,

which give us

J(n) = ec
r+1∑
s=0

βsPs

N
2s+ 13

12
n

+O≤

(
(Xr(n) + Yr(n)) · e2AN3

n

Nnπ

)
. (2.1.44)

To complete the proof we require an explicit version of Wright's expansion of Ps,

that he obtained via the method of steepest descent. Here we explain that in detail.

We �rst let C be the plane curve de�ned by the equation (x2 + y2)
2
= x, together

with the labeled points E = (2−2/3, 2−2/3), D = (2−2/3,−2−2/3) on C and the point

O = (0, 0), G = (1, 1) and F = (1,−1) in the plane. This is illustrated in Fig. 2.3.

Note that if ξs(v) := (2πi)−1v2v+1/12 exp(AN2
n(2v + 1/v2)), the since |v| ≤

√
2, x ≤ 1

on OG and OF , then we have

|ξs(v)| =
|v|2s+ 1

2

2π
e2AN2

nx ≤ 2s+
1
4 e2AN2

n

2π
, (v ∈ OF ∪OG).
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Figure 2.3: The curve C and points E,D,O,G,F.

One can show that

Ps =

∫
C
ξs(v)dv +O≤

(∣∣∣∣∫ F

D

ξs(v)dv

∣∣∣∣+ ∣∣∣∣∫ E

G

ξs(v)dv

∣∣∣∣+ ∣∣∣∣∫ O

E

ξs(v)dv

∣∣∣∣+ ∣∣∣∣∫ D

O

ξs(v)dv

∣∣∣∣)
(2.1.45)

=

∫
C
ξs(v)dv +O≤

(
2s+

1
4 e2AN2

n

2π
(|DF |+ |GE|+ |EO|+ |OD|)

)

=

∫
C
ξs(v)dv +O≤

(
0.64 · 2se2AN2

n

)
.

Making the change of variables t2 = 3−2v−v−2 2 to estimate the integral
∫
C ξs(v)dv,

we have ∫
C
ξs(v)vd = e3AN2

n

∫
R
χs(t)e

−AN2
nt

2

dt,

where we recall that χs(t) is de�ned at (2.1.9) by

χs(t) :=
v2s+

37
12 · t

2πi(1− v3)
=

v2s+
24
12

√
2v + 1

2π(v2 + v + 1)
,
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which is a smooth function on C. We can write its complex Taylor polynomial as

χs(t) =
2r+3∑
m=0

as,mt
m +O≤

(
Dr|t|2r+4

)
,

where

Dr :=
1

(2r + 4)!
max

{
max

{∣∣χ(2r+4)
s (t)

∣∣}
t∈R

}r+1

s=0
, (2.1.46)

and

a2m =
1

2πi

∫
0+

χs(t)
dt

t2m+1
,

the integral being taken along a small loop around t = 0. Then we have

a2m = − 1

4π2

∫
1+

v2s+
1
12

t2m+1
dv

= −(−1)m

4π2i

∫
1+

v2s+
1
12

+2m+1

(v − 1)2m+1(2v + 1)m+ 1
2

dv.

Putting v = 1 + y, we have

a2m = −(−1)m

4π2i

∫
1+

(1 + y)2s+
1
12

+2m+1

y2m+1(3 + 2y)m+ 1
2

dv

=
(−1)mbs,m

2π
,

where bs,m is de�ned at (2.1.4). It should be noted that Dr is explicitly computable,

as χs(t) is a smooth function on the compact curve C. Thus, we �nd that

∫
C
ξs(v)dv = e3AN2

n

2r+3∑
m=0

∫
R
as,mt

me−AN2
nt

2

dt+O≤

(
Dr · e3AN2

n

∫
R
|t|2r+4e−AN2

nt
2

dt

)

= e3AN2
n

2r+3∑
m=0

∫
R
as,mt

me−AN2
nt

2

dt+O≤

(
Dr · Γ

(
r +

5

2

)
(AN2

n)
−r− 5

2 e3AN2
n

)
.



53

Putting this in (2.1.45) gives

Ps = e3AN2
n

r+1∑
m=0

as,2mΓ
(
m+ 1

2

)
(AN2

n)
m+ 1

2

+O≤

(
Dr · Γ

(
r +

5

2

)
(AN2

n)
−r− 5

2 e3AN2
n + 0.64 · 2se2AN2

n

)
= e3AN2

n

r+1∑
m=0

(−1)mbs,mΓ
(
m+ 1

2

)
(2πAN2

n)
m+ 1

2

+O≤

(
Dr · Γ

(
r +

5

2

)
(AN2

n)
−r− 5

2 e3AN2
n + 0.64 · 2se2AN2

n

)
.

Plugging this into (2.1.44) gives

J(n) =
ec+3AN2

n

2π

r+1∑
s=0

r+1∑
m=0

(−1)mβsbs,mΓ(m+ 1
2
)

Am+ 1
2N

2s+2m+ 25
12

n

+O≤

(
(Xr(n) + Yr(n)) · e2AN3

n

Nnπ

(2.1.47)

+

∣∣∣∣∣ec
(
Dr · Γ

(
r +

5

2

)
(AN2

n)
−r− 5

2 e3AN2
n + 0.64 · 2se2AN2

n

) r+1∑
s=0

βsN
−2s− 13

12
n

∣∣∣∣∣
)
.

Therefore, the proof is complete by letting

|Emaj
r (n)| ≤ (Xr(n) + Yr(n))e

2AN2
n

Nnπ
+ |Zr(n)|,

where Zr(n) is de�ned by (2.1.13).

Putting everything into (2.1.18) gives us the asymptotic formula as mentioned in

Theorem 2.1.
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2.2 Hankel Determinant

For a given real polynomial P (x) = adx
d+ad−1x

d−1+ · · ·+a1x+a0, let Sk :=
∑d

i=1 λ
k
i

be the kth power sum of real roots. Then take

∆m(P (x)) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S0 S1 · · · Sm−1

S1 S2 · · · Sm

S2 S3 · · · Sm+1

...
...

...
...

Sm−1 Sm · · · S2m−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
∑

i1<i2<···<im

∏
a<b

(λia − λib)
2. (2.2.1)

For convenience, we de�ne

Dd,m(P (x)) = Dd,m(a0, a1, · · · , ad) := a2m−2
d ·∆m(P (x)), (2.2.2)

so that Dd,d(a0, a1, · · · , ad) is the discriminant of P (x), and Dd,m(a0, a1, · · · , ad) is

a homogeneous polynomial of degree 2m − 2 in the coe�cients ai. A theorem of

Hermite [Obr03] says the hyperbolicity of P (x) is implied by the positivity of the

so-called �Hankel determinants� Dd,m(a0, a1, · · · , ad) for all 2 ≤ m ≤ d.

We will prove Theorems 1.1 and 1.2 by showing that

Dd,PL,m(n) := Dd,m

(
Jd,n
PL (x)

PL(n)

)
(2.2.3)

= Dd,m

(
1,

(
d

1

)
PL(n+ 1)

PL(n)
,

(
d

2

)
PL(n+ 2)

PL(n)
, · · · ,

(
d

d

)
PL(n+ d)

PL(n)

)
> 0,

for each m = 2, · · · , d and all n greater than NPL(d) mentioned in the theorem. Note

that the limit limn→∞
PL(n+j)
PL(n)

= 1 for a �xed j, which implies that limn→∞ Jd,n
PL (x)/PL(n) =
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(x + 1)d. This implies that Dd,PL,m approaches 0 in the limit as n → ∞, which a

priori, makes the sign of Dd,PL,m(n) di�cult to determine.

However, we can determined the rate at which Dd,PL,m(n) approaches 0 and the

coe�cient of the leading term using the results in [OPR22] and [GORZ19]. More

precisely, we have that

lim
n→∞

1

δ(n)m(m−1)
∆m

(
Jd,n
PL (x)

PL(n)

)
(2.2.4)

= lim
n→∞

∆m

Jd,m
PL

(
δ(n)x− e−

√
3Aw(n)

)
PL(n)

 = ∆m(Hd(x)).

If we do a change of variable using (3.1.1) and use Dd,PL,m notation, then this trans-

lates to

lim
w→0

1

w2m(m−1)
Dd,PL,m(n) =

(√
3A

2

)m(m−1)

∆m(Hd(x)). (2.2.5)

Since Hermite polynomials have distinct real roots, the right hand side is a positive

constant. We will exploit this fact by using (2m(m − 1) + 1)-Taylor polynomial of

Dd,PL,m(n) around 0. The constant term in the left hand side will be a constant

multiple of ∆m(Hd(x)). We will then �nd explicit bounds for the remaining terms

that are tending to zero.

2.3 Classical Modular forms

Modular forms are ubiquitous in mathematics. It plays an important role in number

theory, representation theory, combinatorics, and mathematical physics to name a
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few. A recent example of their relevance in mathematics is Maryna Viazovska's

Fields medal winning solution to the sphere packing problem in dimension 8 and 24.

We will only recall facts about integer weight modular forms since they are enough

for our work. (For background, please see [CS17], [Kob12], [Miy06])

2.3.1 Modular group

Let H denote the upper half complex plane and let Γ := SL2(Z) denote the full

modular group, the set of 2× 2 integer matrices with determinant 1. Γ acts on H by

linear fractional transformations, given g =

a b

c d

 ∈ Γ acts on z as

gz :=
az + b

cz + d
,

since we have

ℑ(gz) = ℑaz + b

cz + d
= ℑaz + b)(cz̄ + d

|cz + d|2
=

ℑ(adz + bcz̄)

|cz + d|2
=

ℑ(z)
|cz + d|2

.

Γ is generated by

T :=

1 1

0 1

 and S :=

0 −1

1 0

 ,
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and they act on H by z → z + 1 and z → −1/z respectively. We also need to de�ne

the congruence subgroups of Γ :

Γ0(N) :=


a b

c d

 ∈ Γ : c ≡ 0 (mod N)

 , (2.3.1)

Γ1(N) :=


a b

c d

 ∈ Γ0(N) : a ≡ d ≡ 1 (mod N)

 , (2.3.2)

for every N ∈ N. Any subgroup of Γ containing one of these subgroups is called

congruence subgroup of level N .

Whenever a group acts on a set, it divides it into equivalence classes, where two

points are said to be in same equivalence class if there is an element in the group that

takes one point to the other. For the action of Γ on H, we get a fundamental domain,

a set of points all Γ non-equivalent points,

F :=

{
z ∈ H : −1

2
≤ ℜ(z) < 1

2
and |z| ≥ 1

}
. (2.3.3)

1
2

−1
2
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The action of a congruent subgroup naturally extends to Q ∪ i∞. A cusp of a

congruent subgroup Γ′ is an equivalent class of Q ∪ i∞ under its action.

2.3.2 Modular forms

We start with Dirichlet characters.

De�nition 2.9 (Dirichlet character). A complex-valued arithmetic function χ : Z →

C is called a Dirichlet character modulo a positive integer N if for all a, b ∈ Z the

following are true :

� χ(ab) = χ(a)χ(b),

� χ(a) = 0 ⇐⇒ gcd(a,N) ̸= 0,

� χ(a+N) = χ(a).

Now we de�ne modular form.

De�nition 2.10 (Modular form). Let f(z) be a holomorphic function on H, χ a

Dirichlet character modulo N and let k a positive integer. We say that f(z) is a

modular form of weight k on a congruent subgroup Γ′ of level N if

� f(gz) = χ(d)(cz + d)kf(z) for all g =

a b

c d

 ∈ Γ′,

� f(z) grows at most polynomially as ℑ(z) → ∞, and analogues condition holds

at other cusp of Γ′.
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The set of all such modular forms is denoted by Mk(Γ
′, χ).

Since

1 N

0 1

 ∈ Γ′, �rst condition implies that it has a Fourier expansion of the

form f(z) =
∑∞

n=0 af (n)q
n
N ; qN := e2πiz/N . In particular, modular forms over Γ1(N)

have a Fourier expansion of the form f(z) =
∑∞

n=0 af (n)q
n; q := e2πiz. A modular

form that vanishes at cusps is called cusp form. Set of all such forms on Γ′ of level

N and character χ is denoted by Sk(Γ
′, χ)

Remark 2.11. (1) Our de�nition of a modular form is the same as holomorphic mod-

ular form in most text books. In general one can relax the holomorphicity condition

to meromorphicity condition.

(2) Both Mk(Γ
′, χ) and Sk(Γ

′, χ) are �nite dimensional spaces.

Examples 2.12. (1) Modular forms can often be constructed by averaging some

function over the action of modular group. The simplest examples arise from

Ek(z) :=
1

2ζ(k)

∑
(m,n)∈Z2\(0,0)

1

(mz + n)k
,

the Eisenstein series. For even k > 2, this is a modular form of weight k with respect

to the full modular group. Its Fourier series is given as follows:

Ek(z) = 1− 2k

Bk

∞∑
n=1

σk−1(n)q
n,

where Bk is the k-th Bernoulli number and σk−1(n) is the (k − 1)th divisor sum of n

given by :

σk−1(n) :=
∑
d|n

dk−1.
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(2) It turns out that E4 and E6 generate all modular forms on full modular group

as an isobaric polynomial ring over C. This means that any weight k modular form

can be written as a polynomial in E4 and E6 such that each monomial ai,jEi
4E

j
6 has

weight k i.e. 4i+ 6j = k. One of the most fundamental and maybe the prototypical

example of a cusp form is the ∆ function de�ned as:

∆(z) := E4(z)
3 − E6(z)

2.

As one can easily see from the q-expansion of Ek that there is constant term in the

Fourier expansion of ∆. It has an Euler product form given by:

∆(z) =
∞∑
n=1

τ(n)qn := q
∏
n≥1

(1− qn)24,

where τ(n) is the well known Ramanujan τ -function.

2.3.3 Hecke operators

Mk(Γ
′, χ) and Sk(Γ

′, χ) form vector spaces over C and one can de�ne many types of

linear operators on them. For our work we need the Hecke operators which are an

in�nite family of operators, one for each positive integer n coprime to the level of Γ′.

They are the most important operators when studying modular forms.

There are many ways to de�ne Hecke operators. Here we de�ne it by direct

formulas, for its action on a modular form, which is best for our purposes.

De�nition 2.13. Suppose that f(z) =
∑∞

m=0 af (n)q
n ∈ Mk(Γ0(N), χ). For each

positive integer n coprime to N , the n-th Hecke operator, denoted as Tn, acts on f(z)
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by :

Tnf :=
∞∑

m=0

b(m)qn, (2.3.4)

where

b(m) :=
∑

d| gcd(m,n),d>0

χ(d)dk−1a
(mn

d2

)
. (2.3.5)

We de�ne a(m/n) = 0 when m/n ̸∈ Z.

It should be noted that these operators commute with each other i.e. TnTm =

TmTn.

For a congruence subgroup Γ′, one can de�ne an inner product on Sk(Γ
′, χ). For

f, g ∈ Sk(Γ
′, χ), we de�ne the inner product as

⟨f, g⟩Γ′ =
1

[Γ : Γ′]

∫
Γ′\H

f(τ)g(τ)yk
dxdy

y2
, (2.3.6)

where x and y are real and imaginary parts of τ . The normalizing factor ensures

that this inner product is independent of Γ′. It turns out that T (n) are χ-Hermitian

i.e. ⟨T (n)f, g⟩ = χ(n)⟨f, T (n)g⟩. Because of this we can obtain simultaneous eigen-

vectors called Hecke eigenforms or simply eigenform. The coe�cients of these Hecke

eigenforms act multiplicatively when normalized (re-scaling a1 = 1 which can be done

since it turns out that a1 ̸= 0). We summarize these facts in the following proposition.

Proposition 2.14. Suppose that f(z) =
∑∞

m=0 af (n)q
n ∈ Mk(Γ0(N), χ) is a normal-

ized Hecke eigenform. Then the following is true:

(1) If gcd (n,m) = 1 then

af (nm) = af (n)af (m)
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(2) For primes p ∤ N and α > 0, we have

af (p
α) = af (p)af (p

α−1)− χ(p)pjaf (p
α−2)

(3) For p prime and α > 0, we have

af (p
α) = af (p)

α (mod p).

Remark 2.15. All the coe�cients af (p) are algebraic integers in a �xed number �eld

so (3) makes sense.

Next we consider a very special type of modular forms which arise from orders of

imaginary quadratic extensions.

2.3.4 Hecke Grössencharacters and Hecke L-functions

Hecke Grössencharacters are a natural generalization of Dirichlet characters to other

number �elds in the sense that one can think of Dirichlet characters as homomor-

phisms de�ned over Z which is the ring of integer of Q. This was introduced by Erich

Hecke to construct a class of L-functions larger than Dirichlet L-functions, and a nat-

ural setting for the Dedekind zeta-functions and certain others which have functional

equations analogous to that of the Riemann zeta-function.

Let K be a number �eld of degree n over Q with k1, k2, · · · kn embeddings in C, r1

real and 2r2 imaginary ones. Let OK be its ring of integer. We have that n = r1+2r2

and we assume that �rst r1 embeddings are real and next r2 are imaginary with
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following next being conjugates of these r2 (for r1 + 1 ≤ i ≤ r2, ki+r2 = ki). For a

non-zero integral ideal f of OK , we put

I(f) := {a integral ideal : (a, f) = 1}

P (f) := {(a) : a ∈ OK and a ≡ 1(mod∗f)},

where α ≡ 1 (mod∗f) means νp(α− 1) ≥ νp(f) for all p|f.

De�nition 2.16. Let ξ : I(f) → C× be a group homomorphism. We say that ξ is a

Hecke Character (or a Grösencharacter) modulo f if there exists a group homomor-

phism ξ∞ : K×/Q× → C× such that we have

ξ(αOD) = ξ∞(α) :=

r1+r2∏
v=1

(
kv(a)

|kv(a)|

)uv

|kv(a)|iνv for all α ∈ K× such that α ≡ 1 (mod∗f),

with real numbers uv, νv(1 ≤ v ≤ r1 + r2) such that

(i) uv ∈


{0, 1} if v ≤ r1,

Z if v ≥ r1,

(ii)
∑r1+r2

v=1 νv = 0,

where α ≡ 1 (mod∗f) means νp(α− 1) ≥ νp(f) for all p|f.

We have the following immediate lemma about Hecke characters.

Lemma 2.17. Let ξ be a Hecke character modulo f, and for any α ∈ K× coprime

to f set ξf (α) = ξ(αOD)/ξ∞(α). Then ξf induces an ordinary character on the �nite

abelian group (OD/f)
×, so that ξ(αOD) = ξf (α)ξ∞(α).
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Remark 2.18. (1) The above de�nition is true for any general number �eld.

(2) As usual we will set ξ(a) = 0 if a ̸∈ I(f) and likewise ξf (α) = 0 if α is not coprime

to f. The charcters ξf and ξ∞ are called the �nite and in�nite parts of ξ, respectively.

We de�ne Hecke L-function for ξ by

L(s, ξ) :=
∑

0̸=a integral ideal

ξ(a)N (a)−s =
∏

p prime ideal

(1− ξ(p)N−s)−1, (2.3.7)

where the Euler product formula is valid for ℜ(s) > 1. Hecke obtained the functional

equation for any Heeke L-function by generalizing the proof for the Riemann zeta-

function. We can get a functional equation for Hecke L-functions similar to Riemann

zeta function. To write that we de�ne Gauss sum of a Hecke character as

W (ξ) :=
ξ∞(b)

ξ(c)

∑
a∈c/fc

ξf (a)e
2πi tr(a/(b)), (2.3.8)

where c is any integral ideal such that Dfc = (b) is principle where D is the di�erent

ideal. The value W (ξ) is independent of the choice of c, b and set of representatives

of c/fc.

To state the functional equation for Hecke L-function L(s, ξ),we put

Λ(s, ξ) :=

(
2r1|∆K |N (f)

(2π)n

)s/2 r1+r2∏
v=1

Γ

(
nvs+ |uv|+ iνv

2

)
L(s, ξ), (2.3.9)

where nv = 1 or 2 depending on v ≤ r1 or v > r1 respectively. Now the functional

equation for a Hecke L-function is as follows.

Theorem 2.19. With notations as above, we have the following:

(1) Λ(s, ξ) is analytically continued to a meromorphic function on the whole s-plane,
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and satis�es the functional equation

Λ(1− s, ξ) = T (ξ)Λ(s, ξ),

where

T (ξ) = 2ivi−uW (ξ)/N (f)1/2,

u =

r1+r2∑
v=1

uv, v =

r1+r2∑
v=1

νv.

(2) If ξ is trivial then Λ(s, ξ) is holomorphic except for simple poles at s = 0, 1;

otherwise Λ(s, ξ) is entire. The function Λ(s, ξ) is bounded on any set of the form

{s ∈ C : a ≤ ℜ(s) ≤ b, ℑ(s) ≥ c} (a < b, c > 0).

(3) L(s, ξ) is entire if ξ is non-trivial. If ξ is trivial, then L(s, ξ) is holomorphic

except for a simple pole at s = 1 with residue

2r1+r2πr2R · h(K)

w
√

|∆K |
,

where w is the number of roots of unity contained in K and R is the regulator of K.

Given a formal q-series f =
∑∞

n=0 af (n)q
n, one can attach an L-function to it

de�ned by

L(s, f) :=
∞∑
n=1

af (n)

ns
,

and for each positive integer N ,

ΛN(s, f) :=

(
2π√
N

)−s

Γ(s)L(s, f).
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Thses L-function have nice analytic properties and a lot about the cusp form can be

deduced using this.

Next we present a theorem due to Weil which tells us when a q series is modular

form by looking at its L-function.

Theorem 2.20 (Weil). Let k and N be positive integers, and χ a Dirichlet character

modulo N such that χ(−1) = (−1)k. For two sequences {an}∞0 and {bn}∞0 of complex

numbers such that an = O(nv), bn = O(nv) (v > 0), put

f(z) :=
∞∑
n=0

ane
2πiz,

and

g(z) :=
∞∑
n=0

bne
2πiz (z ∈ H).

Then f(z) ∈ Mk(N,χ) and g(z) ∈ Mk(N,χ) if the following two conditions are

satis�ed:

(1) Both ΛN(s, f) and ΛN(s, g) can be analytically continued to the whole s-plane,

satisfy the functional equation

ΛN(s, f) = ikΛ(k − s, g),

and the function

ΛN(s, f) +
a0
s

+
a1

k − s

is holomorphic on the whole s-plane and bounded on any vertical strip.

(2) For any primitive dirichlet character χ with conductor prime mχ coprime to N ,
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and ΛN(s, fχ) and ΛN(s, gχ) (fχ is the twist of f by χ meaning n-th Fourier coe�cient

of fχ is anχ(n)) can be holomorphically continued to the whole s-plane, bounded on

any vertical strip, and satis�es the functional equation:

ΛN(s, fχ) = ikCχΛN(k − s, gχ)

for some constant Cχ. Moreover, if L(s, f) is absolutely convergent at s = k − δ for

δ > 0, then f(z) and g(z) are cusp forms.

We also need the following lemma.

Lemma 2.21. Let χd(∗) =
(
d
∗

)
be the Kronecker symbol. We have the following:

(1) W (χd) =


√
d if d > 0,

i
√

|d| if d < 0

,

(2) If (d, p) = 1, then we have W (χ ◦ NK) = χd(p)χ(|d|)W (χ)2, for any primitive

Dirichlet character χ modulo p.

Proof. Using Theorem 2.19 for K = Q(
√
d) and character χd, since we have

ζK(s) = ζ(s)L(s, χd),

where ζ is the Riemann zeta function and ζK is the Dedekind zeta function of K, we

get T (χd) = 1 by comparing the functional equations of both sides. Since χd(−1) = 1

or −1 depending on K is real or imaginary extension respectively, this implies (1).

Since

L(s, χ ◦ NK) = L(s, χ)L(s, χχd),
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we obtain

T (χ ◦ NK) = T (χ)T (χχd).

This together with the property of Gauss sum thatW (χχ′) = χ(mχ′)χ′(mχ)W (χ)W (χ′),

for Dirichlet characters χ and χ′ with conductor mχ and mχ′ respectively, and (1)

gives us (2).

Assume K = Q(
√
−D) be an imaginary quadratic extension with discriminant

∆D, OD its ring of integers de�ned by (1.2.7) and f an integral ideal of K. We let

I(f) denote the group of all fractional ideals coprime to f.

For imaginary quadratic extensions, ξ∞(α) = (α/|α|)u for some integer u. Since

αOD = βOD if and only if αβ−1 is a unit of K, a necessary (and su�cient) condition

for this de�nition to make sense is that ξ∞(ε) = 1 for all units ε ≡ 1 (mod∗f). For

example, when ∆D > 4 the only units are ε = ±1, so if f|2OD, the condition is that

u must be even, and otherwise there is no condition.

Now we de�ne a family of q series which are essential for our purposes. We will

show that these series are modular forms.

De�nition 2.22. If K be as above and ξ ia Hecke character modulo f of trivial �nite

type and in�nite type ξ∞(α) = (α/|α|)k−1, we set

Θξ,k(z) :=
∑

a integral

ξ(a)N (a)(k−1)/2qN (a).

In the case of the above theta function, the attached L-functios is called a Hecke

L-function which is de�ned as:
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De�nition 2.23. The Hecke L-function attached to Θξ is de�ned as

Lξ,k(s) := L(s,Θξ) =
∑

a integral

ξ(a)N (a)(k−1)/2 1

N (a)s
=
∏
p

1

1− ξ(p)N (p)−s+(k−1)/2
.

Theorem 2.24. If k ≥ 1 and ξ be primitive with conductor OD, then the function

Θξ(z) ∈ Mk(Γ0(|D|), χD), where χD(·) =
(−D

·

)
. In addition, if k ≥ 2, then Θξ(z) is

a cusp form.

Proof. We will employ Theorem 2.20 to prove this. By de�nition, we have Lξ,k(s) =

L(s − (k − 1)/2, χ). Let χ be a primitive Dirichlet character of prime conductor

p coprime to N . Then since LΘχ,k(s) = L(s − (k − 1)/2, ξ(χ ◦ NK)), we see from

Theorem 2.19 and Lemma 2.21 that

ΛN(s,Θχ) =

(
p
√
N

2π

)s

Γ(s)L (s− (k − 1)/2, ξ(χ ◦ NK))

=

(
p
√
N

2π

) k−1
2

Λ (s− (k − 1)/2, ξ(χ ◦ NK))

=

(
p
√
N

2π

) k−1
2

ik−1 ξ((p))χD(p)χ(N)W (ξ)W (χ)2

pNK(f)1/2

× Λ
(
(k + 1)/2− s, ξ(χ ◦ NK)

)
= ikCχΛN (k − s, gχ) ,

where

Cχ =
χD(p)χ(N)W (χ)2

p
= χD(p)χ(−N)

W (χ)

W (χ)
,

g(z) = i−2k+1 W (χ)

NK(f)1/2

∑
a integral

ξ(a)NK(a)
k−1
2 e2πiNK(a)z.



70

Therefore, Theorem 2.20 tells us that Θξ ∈ Mk(N,χD) and it's a cusp form if k ≥ 2,

since Lξ,k(s) is convergent for ℜ(s) > (k + 1)/2.

We have the following amazing theorem to tell when a modular form is a Hecke

eigenform by looking at its L-function.

Theorem 2.25. Let 0 ̸= f(z) =
∑∞

n=0 af (n)q
n ∈ Mk(Γ0(N), χ) with af (1) ̸= 0. Then

if the L-function of f has an Euler product then f(n) is an eigenform.

Proof. Assume that

L(s, f) = af (1)
∏

p prime

(1− t(p)p−s + χ(p)pk−1−2s)−1,

is the Euler product. Put t(n) = af (n)/af (1) for positive integers n. Then we see

∞∑
n=1

t(n)n−s =
∏

p prime

(1− t(p)p−s + χ(p)pk−1−2s)−1.

One easily gets that

t(m)t(n) =
∑

0<d|(m,n)

dk−1χ(d)t
(mn

d2

)
.

Multiplying both sides by af (l), we get

t(m)af (n) =
∑

0<d|(m,n)

dk−1χ(d)af

(mn

d2

)
.

The right-hand side is equal to the n-th Fourier coe�cient of f |T (m). Let b(0) be

the constant term of f |T (m) then

(f |T (m))(z)− t(m)f(z) = b(0)− c(0).
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Since f |T (m)− t(m)f is an element of Sk(Γ0(N), χ), we get b(0) = c(0). Thus

f |T (m) = t(m)f.

Due to above theorem and De�nition 2.23 we have the following.

Theorem 2.26. Θξ is a Hecke eigenform.

2.4 Gaussian Hypergeometric functions

Here we recall the necessary facts about hypergeometric functions. Hypergeometric

functions have been studied from very long time. The term �hypergeometric series�

was �rst used by John Wallis in his 1655 book Arithmetica In�nitorum. They were

also studied by Leonhard Euler, but the �rst full systematic treatment was given by

Carl Friedrich Gauss (1813). In nineteenth century, they were studied by Kummer

and Riemann as well.

De�nition 2.27. Let a, b ∈ R and c ∈ R\Z−. The Gaussian hypergeometric function

is de�ned as:

2F1 (a, b; c; z) :=
∞∑
n=0

(a)n(b)n
(c)nn!

zn,

for |z| < 1, where (s)n is the Pochhammer symbol de�ned as

(s)n = s(s+ 1) · · · (s+ n− 1).
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Examples 2.28.

(1)

2F1(1, 1; 2;−z) =
∞∑
n=0

(1)n(1)n
(2)n

(−z)n

n!
=

∞∑
n=0

n!n!

(n+ 1)!

(−z)n

n!

=
∞∑
n=0

1

(n+ 1)
(−z)n =

log(1 + z)

z
.

(2)

2F1(a, b; b; z) =
∞∑
n=0

(a)n(b)n
(b)n

zn

n!
=

∞∑
n=0

(a)n
zn

n!

= (1− z)−a.

Notation. For a positive integer r, we de�ne the following special hypergeometric

function

λr(z) := 2F1

(
1

r
, 1− 1

r
; 1, z

)
. (2.4.1)

Remarks 2.29. (1) The hypergeometric function 2F1 (a, b; c; z) is a solution of Euler's

hypergeometric di�erential equation

z(1− z)
d2w

dz2
+ [c− (a+ b+ 1)z]

dw

dz
− abw = 0, (2.4.2)

which has three regular singular points: 0, 1 and ∞.

(2) The above series converges absolutely and uniformly on compact sets in the unit

disk |z| < 1 and using its integral representation it can be extended analytically to

the region C \ [1,∞), i.e., for |Arg(1− z)| < π (see for example [EMOT55]). On the

line [1,∞), we extend the de�nition as:

2F1 (a, b; c;x) := lim
ε→0+

2F1 (a, b; c;x+ iε) .
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Note that this makes 2F1 well-de�ned on the whole complex plane, analytic on the

region |Arg(1 − z)| < π but discontinuous on the line [1,∞). Furthermore, the

di�erence between the principal branches on the two sides of the branch cut is:

lim
ε→0+

2F1 (a, b; c;x+ iε)− lim
δ→0+

2F1 (a, b; c;x− iδ)

=
2πiΓ(c)

Γ(a)Γ(b)Γ(c− a− b+ 1)
(1− x)c−a−b

2F1 (c− a, c− b; c− a− b+ 1; 1− x)

(see Section 15.2 of [DLMF])

(3) Note that in the de�nition of 2F1, the arguments a and b are symmetric so we will

swap them as the situation requires without additional comments.

We require the following classical hypergeometric transformation law which gives

the solution of a hypergeometric function around ∞ in terms of solutions of hyper-

geometric functions around other two singularities, namely 0 and 1.

Proposition 2.30. (Equation 15.10.33 of [DLMF])For 0 < |Arg(1 − z)| < π, we

have

2F1 (a, b; c; z) =
Γ(1− b)Γ(c)

Γ(a− b+ 1)Γ(c− a)

(
1

z

)a

2F1

(
a− c+ 1, a; a− b+ 1;

1

z

)
+

Γ(1− b)Γ(c)

Γ(a)Γ(c− a− b+ 1)

(
1− 1

z

)c−a−b(
−1

z

)b

2F1

(
c− a, 1− a; c− a− b+ 1; 1− 1

z

)
.

Remark 2.31. In view of Remark 2.29, the above proposition can be extended to

x > 1 in the following manner:

2F1 (a, b; c;x) =
Γ(1− b)Γ(c)

Γ(a− b+ 1)Γ(c− a)

(
1

x

)a

lim
δ→0+

2F1

(
a− c+ 1, a; a− b+ 1;

1

x
− iδ

)
+

Γ(1− b)Γ(c)

Γ(a)Γ(c− a− b+ 1)

(
1− 1

x

)c−a−b(
−1

x

)b

2F1

(
c− a, 1− a; c− a− b+ 1; 1− 1

x

)
.
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2.5 Ramanujan's theory of elliptic functions to al-

ternate bases

In his famous paper [Ram14], Ramanujan o�ered several beautiful series representa-

tions for 1/π. He �rst stated three formulas, one of which is

1

π
=

1

4

∞∑
n=0

(6n+ 1)
(
1
2

)3
n

(n!)34n
.

He then remarked that �There are corresponding theories in which q is replaced by

one or other of the functions

q1 := e−πK′
1/K1 , q2 := e−2πK′

2/K2

√
3, q3 := e−2πK′

3/K3 ,

where

K1 = 2F1

(
1

4
,
3

4
; 1; k2

)
, K2 = 2F1

(
1

3
,
2

3
; 1; k2

)
, K3 = 2F1

(
1

6
,
5

6
; 1; k2

)
.”

Here K ′
j = Kj(k

′), where k′ =
√
1− k2, and 0 ≤ k ≤ 1. In the classical theory, the

hypergeometric functions above are replaced by 2F1

(
1
2
, 1
2
; 1; k2

)
. 2). Ramanujan then

o�ered 16 further formulas for 1/π that arise from these alternative theories, but he

provides no details for his proofs. Ramanujan's formulas for 1/π were established in

1987 by J.M. and P.B. Borwein [BB87] and they also made remarkable advances to-

wards Ramanujan's Theories. This alternate theory was further developed by Berndt,

Bhargava and Garvan [BBG95]. Here we present some important results needed for

our work.
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Proposition 2.32. (Theorem 9.5-6 of [BBG95]) If τ ∈ H and γ satis�es

τ4 =
i√
2

2F1

(
1
4
, 3
4
; 1; 1− γ

)
2F1

(
1
4
, 3
4
; 1; γ

) ,

then we have

j(τ4) =
64(1 + 3γ)3

γ(γ − 1)2
. (2.5.1)

Remark 2.33. In [BBG95], j(τ) is not explicitly calculated, but Theorems 9.5 and

9.6 of [BBG95] give formulas for E4(τ) and E6(τ), respectively, from which the formula

for j(τ) is immediately deduced.

Proposition 2.34. (Theorem 11.4-5 of [BBG95]) Let γ ∈ C and β = −γ3/2. If we

de�ne

τ6 = i · 2F1

(
1
6
, 5
6
; 1; 1− β

)
2F1

(
1
6
, 5
6
; 1, β

) ,

then we have

j(τ6) =
1728

1− (1− 2β)2
=

−1728

γ3(2 + γ3)
. (2.5.2)

The idea of the proof is to get a relation with classical setting when

τ2(β) :=
i

2

2F1

(
1
2
, 1
2
; 1; 1− β

)
2F1

(
1
2
, 1
2
; 1, β

) =
i

2

λ2(1− β)

λ2(β)
.

If we let q = e2πiτ2 , in which case Ramanujan gave [AB12, p. 126]

E4(2τ2) = λ2(β)
4(1− β + β2) (2.5.3)

E6(2τ2) = λ2(β)
6(1 + β)

(
1− 1

2
β

)
(1− 2β).

Using these results we prove Proposition 2.32. Proof of Proposition 2.34 is similar.
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Proof of Proposition 2.32. We start with two identities from Ramanujan's second

notebook [AB09, p. 94-95]

2F1

(
1

2
,
1

2
; 1;

2β

1 + β

)
=
√
1 + β2F1

(
1

4
,
3

4
; 1; β2

)
2F1

(
1

2
,
1

2
; 1;

1− β

1 + β

)
=

√
1

2
(1 + β)2F1

(
1

4
,
3

4
; 1; 1− β2

)
.

Replacing x by
√
x above gives us that

τ4 =
i√
2

2F1

(
1
4
, 3
4
; 1; 1− β

)
2F1

(
1
4
, 3
4
; 1; β

) =
2F1

(
1
2
, 1
2
; 1; 1−

√
β

1+
√
β

)
2F1

(
1
2
, 1
2
; 1; 2

√
β

1+
√
β

) = 2τ2

(
2
√
β

1 +
√
β

)
.

Using (2.5.3), we get that

E4(τ4) = E4

(
2τ2

(
2
√
β

1 +
√
β

))
(2.5.4)

= λ2

(
2
√
β

1 +
√
β

)4
(
1− 2

√
β

1 +
√
β
+

(
2
√
β

1 +
√
β

)2
)

=
1

(1 +
√
β)2

λ2

(
2
√
β

1 +
√
β

)4

(1 + 3β),

and

E6(τ4) = E6

(
2τ2

(
2
√
β

1 +
√
β

))
(2.5.5)

= λ2

(
2
√
β

1 +
√
β

)6(
1 +

2
√
β

1 +
√
β

)(
1− 1

2

2
√
β

1 +
√
β

)
×
(
1− 2

2
√
β

1 +
√
β

)
=

1

(1 +
√
β)3

λ2

(
2
√
β

1 +
√
β

)6

(1− 9β).
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Combining above two gives us

j(τ) = 1728
E4(τ)

3

E4(τ)3 − E6(τ)2

=
64(1 + 3β)3

β(β − 1)2
,

which proves the proposition.
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Chapter 3

Higher Turán Inequalities for plane

partitions

This chapter is dedicated towards proving Theorem 1.1 and Theorem 1.2 about higher

Turán inequlities for plane partition. We start with giving a form of asymptotic

formula for PL(n) which is useful for our purposes.

3.1 Asymptotic formula for PL(n)

To obtain our results, we must make asymptotic formula for PL(n) explicit, and then

make good choices of the parameters for our application. To this end, we make the

following change of variables:

w(n) :=
21/3√

3A1/6n1/3
and δ(n) :=

√
3A

2
w(n)2. (3.1.1)

For our purpose, we restrict to the case when w ∈ [0, εr,d], where

εr,d := d−2d2−d(d−1) ·
(

4e√
3A

)−d(d−1)
(
e

Γ(2d2)

(2π)2d
2+2 62d−2(6A)r(r + 1)

)− 1
3

(3.1.2)

×
(
0.1485 · 214(3A)3π3

)− 1
3 ,
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corresponding to our eventual bound on NPL(d) for right choice of r (depending on

d), since we also want to give an upper bound on errors for w ∈ [0, εr,d].

Theorem 3.1. If r ∈ Z+ and w := w(n), then for every w ∈ [0, εr,d] we have

PL(n) = P̂Lr(w) + Er(w),

where

P̂Lr(w) :=
ec+

1
w2w

25
12

2π

r+1∑
s=0

r+1∑
m=0

fs,mw
2s+2m (3.1.3)

:=
ec+

1
w2w

25
12

2π

r+1∑
s=0

r+1∑
m=0

(−1)mβsbs,mΓ

(
m+

1

2

)
3s+m+ 25

24As+ 13
24w2s+2m,

and

|Er(w)| ≤ ec+
1

w2 · Cr · 2r+8+ 1
24π2(3A)r+

61
24 (r + 2) · w2r+5+ 1

12 . (3.1.4)

Remark 3.2. We stress that P̂Lr(w(n)) ∼ PL(n) as n → ∞.

Proof. First let's convert Xr,Yr and Zr from n to w using (3.1.1).

X̂r(w) := Xr

(
2

33/2
√
Aw3

)
= ec+

1
3w2 2r+

49
24Cr(3A)

r+ 49
24w2r+4+ 1

12 (3.1.5)

≤ ec+
1

3w2 · Cr · 2r+6+ 1
24π3(3A)r+

49
24 (r + 2) · w2r+4+ 1

12 .

where by (2.1.8), we have

Cr ≤ 2 · emax{0.02, (r+1)
2

αr+1} =


2 · e

(r+1)
2

αr+1 if r ≥ 22

2e0.02 otherwise,

(3.1.6)
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since αr+1 ≥ αr for all r > 21 and 10−3 < αr < 10−17 for r ≤ 21. We also have

Ŷr(w) := Yr

(
2

33/2
√
Aw3

)
(3.1.7)

=

∣∣∣∣∣ec+ 1
3w2

(
2r+5π3αr+2(3A)

r+2w2r+4 + 10e
−4.7 1√

3Aw

)
×

(
2r+

49
24Cr(3A)

r+ 49
24w2r+ 49

12 +
r+1∑
s=0

2s+
1
24βs(3A)

s+ 1
24w2s+ 1

12

)∣∣∣∣∣
≤ 2 · 2 · ec+

1
3w2 2r+5+ 1

24π3(3A)r+
49
24αr+2(r + 2)w2r+4+ 1

12

≤ ec+
1

3w2 · Cr · 2r+6+ 1
24π3(3A)r+

49
24 (r + 2) · w2r+4+ 1

12 ,

and

Ẑr(w) := Zr

(
2

33/2
√
Aw3

)
(3.1.8)

= ec
(
Dr · Γ

(
r +

5

2

)
(3w2)r+

5
2 e

1
w2 + 0.64 · 2r+1e

2
3w2

) r+1∑
s=0

βs(3A)
s+ 13

24w2s+ 13
12

≤ ec+
1

w2 · 2 ·DrΓ

(
r +

5

2

)
3r+

5
2
+ 13

24A
13
24 (r + 2)w2r+5+ 13

12 .

We investigate Dr. To this end we recall that

χs(t) =
v2s+

25
12

√
2v + 1

2π(v2 + v + 1)
,

where t2 = 3− 2v − v−2. First, since we have that

dv

dt
=

tv3

1− v3
= i

v2
√
2v + 1

v2 + v + 1
, (3.1.9)
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we get

d

dt
vk =i

kvk+1
√
2v + 1

v2 + v + 1
; (3.1.10)

d

dt
(2v + 1)k =i

(2k)(2v + 1)k−1/2v2

v2 + v + 1
; (3.1.11)

d

dt
(v2 + v + 1)−k =i

(−k)v2(2v + 1)3/2

(v2 + v + 1)k+2
. (3.1.12)

The parameterization of the curve traced by v is given by x ±
√√

x− x2, x ∈ [0, 1]

(see the proof of asymptotic formula for PL(n)). Using Mathematica, one checks that

|v| ≤ 1; 1 ≤ |2v + 1| ≤ 3; 0.9621 ≤
∣∣v2 + v + 1

∣∣ ≤ 3.

One can di�erentiate χs(t) = fgh with respect to t using the product rule (where

f = vk1 , g = (2v + 1)k2 and h = (v2 + v + 1)k3) and the composition rule and using

(3.1.9)-(3.1.12), a simple induction shows that the n-th derivative of χs(t) has 3n

terms of the form ck1,k2,k3 ·
vk1 (2v+1)k2

(v2+v+1)k3
. The values of ck1,k2,k3 are bounded above by∏n

k=0

(
2s+ 2 + 25

12
+ k
)
, and maximizing the possible powers of each of the v, 2v +

1, v2 + v + 1, one gets that

∣∣∣∣ dndtnχs(t)

∣∣∣∣ ≤ 3n3
3n
2
+ 1

2

2π(0.9621)2n

n∏
k=0

(
2s+ 2 +

25

12
+ k

)
.

Hence, by the de�nition of Dr, we have that

Dr ≤
35r+10+ 1

2

2π(2r + 4)!(0.9621)4r+8

2r+4∏
k=0

(
2r + 2 +

25

12
+ k

)
. (3.1.13)
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So we get that

Ẑr(w) ≤ ec+
1

w2 · 2 · 2
2r+435r+10+ 1

2

(0.9621)4r+8
Γ

(
r +

5

2

)
3r+

5
2
+ 13

24A
13
24 (r + 2)w2r+5+ 13

12 (3.1.14)

≤ ec+
1

w2 · 2 · 2
2r+435r+10+ 1

2

(0.9621)4r+8
Γ

(
r +

5

2

)
3r+

5
2
+ 13

24A
13
24 (r + 2) · εr,d · w2r+5+ 1

12

≤ ec+
1

w2 · Cr · 2r+6+ 1
24π2(3A)r+

61
24 (r + 2) · w2r+5+ 1

12 ,

where the last inequality comes after substituting the value εr,d and comparing with

X̂r. We also have

∣∣Emin(n)
∣∣ ≤ec+

1
w2 · Cr · 2r+6+ 1

24π2(3A)r+
61
24 (r + 2) · w2r+5+ 1

12 .

Everywhere above we are using the fact that w is small enough so that the dominant

term is the term with the smallest power of w. This gives us

|Er(w)| ≤
∣∣Emaj

r (n) + Emin(n)
∣∣

≤

∣∣∣∣∣(X̂r(w) + Ŷr(w))e
2AN2

n

Nnπ

∣∣∣∣∣+ ∣∣∣Ẑr(w)
∣∣∣+ exp

((
3A− 2

5

)
1

3Aw2

)

≤ 4 · ec+
1

w2 · Cr · 2r+6+ 1
24π2(3A)r+

61
24 (r + 2) · w2r+5+ 1

12 .

3.1.1 Approximation of ratios of plane partition

In this subsection, we give approximations for the ratios of the plane partitions with

the error function. For each non-negative integers r and j, we de�ne approximation
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function for PL(n+j)
PL(n)

by

Rr(j, w) :=

P̂Lr

(
w(

1+ 33/2
√
A

2
jw3

) 1
3

)
P̂Lr(w)

∼ PL(n+ j)

PL(n)
. (3.1.15)

In order to state precisely how well Rr(j, w) approximates PL(n + j)/PL(n), let's

de�ne

Lr(w) :=
Er(w)

P̂Lr(w)
≤

√
3A

0.1485
· Cr · 2r+9+ 1

24π3(3A)r+1(r + 2) · w2r+3. (3.1.16)

Then we have the following lemma.

Lemma 3.3. For all n ≥ 1, we have∣∣∣∣PL(n+ j)

PL(n)
−Rr(j, w)

∣∣∣∣ ≤ Rr(j, w)

∣∣∣∣ 2Lr(w)

1− Lr(w)

∣∣∣∣ .
Proof. We have that Êr(w) = PL(n) − P̂Lr(w) = Emaj

r (n) + Emin(n). By direct

calculations, we have∣∣∣∣PL(n+ j)

PL(n)
−Rr(j, w)

∣∣∣∣ =
∣∣∣∣∣PL(n+ j)

PL(n)
− P̂Lr (w(n+ j))

P̂Lr(w(n))

∣∣∣∣∣
=

P̂Lr (w(n+ j))

P̂Lr(w(n))

∣∣∣∣∣∣
1 + Êr(w(n+j))

P̂Lr(w(n+j))

1 + Êr(w(n))

P̂Lr(w(n))

− 1

∣∣∣∣∣∣
= Rr(j, w)

∣∣∣∣∣∣
Êr(w+j)

P̂Lr(w(n+j))
− Êr(w(n))

P̂Lr(w(n))

1 + Êr(w(n))

P̂Lr(w(n))

∣∣∣∣∣∣ ≤ Rr(j, w)

∣∣∣∣ 2Lr(w)

1− Lr(w)

∣∣∣∣ .

To study the behavior of PL(n+ j)/PL(n) for large n, we want to study Rr(j, w)

near w = 0. To this end, let Ar,s(j, w) be a degree s−1 Taylor polynomial of Rr(j, w).

Applying Lemma 3.3 and Taylor's Theorem, we immediately obtain the following.



84

Lemma 3.4. Let n ≥ 1 and w ∈ [0, ε] for some 0 < ε ≤ 21/3√
3A1/6 . Then we have that

PL(n+ j)

PL(n)
= Ar,s(j, w) + Er,s(j, w)w

s,

where

|Er,s(j, w)| ≤
1

s!
· sup
x∈[0,ε]

∣∣R(s)
r (j, x)

∣∣+ sup
x∈[0,ε]

∣∣∣∣Rr(j, x)
2Lr(x)

xs(1− Lr(x))

∣∣∣∣ . (3.1.17)

In view of (3.1.17), for each choice of s, and 2r + 3 ≥ s we have that Er,s(j, w) is

bounded. From here onward we make the choice of

s = 2d(d− 1) + 1 and r = d(d− 1). (3.1.18)

We also denote

ε := εd(d−1). (3.1.19)

It is easy to see that

0 ≤ |Lr(w)| <
1

2
, w ∈ [0, ε], (3.1.20)

and so we get ∣∣∣∣PL(n+ j)

PL(n)
−Rr(j, w)

∣∣∣∣ ≤ Rr(j, w) |4Lr(w)| . (3.1.21)

To use Lemma 3.4 e�ectively, we need to obtain a bound on derivatives of Rr(j, w).

3.1.2 Bound on nth derivative of Rr(j, w)

The polynomial Dd,PL,m(n) is homogeneous of degree 2m − 2 in the coe�cients of

Jd,n
PL (X)/PL(n) and homogeneous of degree m(m− 1) in its roots. So, it has the form

Dd,PL,m(n) =
∑

i1+i2+···+i2m−2=m(m−1)

Ai1,i2,··· ,i2m−2 ·
2m−2∏
k=1

(
d

ik

)
PL(n+ d− ik)

PL(n)
(3.1.22)
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for some constants Ai1,i2,··· ,i2m−2 . To bound the errors when we expand in terms

of w, we �nd bounds on the derivatives R
(s)
r (j, w) for w in the interval [0, ε]. For

convenience, let t = t(j) := 33/2
√
A

2
j.

Lemma 3.5. Assume that w ∈ [0, ε] with ε as above. Then for each n ≥ 1, we have

that

∣∣R(n)
r (j, w)

∣∣ ≤ n!

(
n+ 3

3

)
eg(w)e(3tw

2+3tw)n · t
7n
3 ·
(
(r + 1)2 · 6213 · αn

2
Γ

(
n+

13

12
+ 1

))n

,

where g(w) = (1+tw3)2/3−1
w2 .

Proof. The idea of the proof is to use the product rule to split up Rr(j, w) into four

more manageable parts and use Faà di Bruno's formula for iterated applications of the

chain rule to evaluate each part as needed. This formula says that for di�erentiable

functions f(x) and g(x), we have

dn

dxn
f(g(x)) =

∑
m1+2m2+···+nmn=n

n!

m1!m2! · · ·mn!
f (m1+m2+···+mn)(g(x))

n∏
j=1

(
g(j)(x)

j!

)mj

.

(3.1.23)

First we de�ne

A :=A(t, w) = e

t2w4+2tw

((1+tw3)2/3+1
2)

2
+3

4 ,

B :=B(t, w) =
1

(1 + tw3)25/36
,

C :=C̃r(t, w) =
r+1∑
s=0

r+1∑
m=0

fs,m

(
w

(1 + tw3)1/3

)2s+2m

,

D :=D(t, w) =
1∑r+1

s=0

∑r+1
m=0 fs,mw

2s+2m
.
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Then we have that

R(m)
r (j, w) =

∑
m1+m2+m3+m4=m

m!

m1!m2!m3!m4!

(
dm1A

dwm1

)(
dm2B

dwm2

)(
dm3C

dwm3

)(
dm4D

dwm4

)
.

(3.1.24)

We will prove the bound on n-th derivative of A in full detail, and others will follow

similarly. We use (3.1.23) with f(x) = ex and g(w) = t2w4+2tw

((1+tw3)2/3+ 1
2)

2
+ 3

4

, and �nd that

dnA

dwn
=

dn

dwn
f(g(w)) =

∑
m1+2m2+···+nmn=n

n!

m1!m2! · · ·mn!
eg(w)

n∏
k=1

(
g(k)(w)

k!

)mk

.

(3.1.25)

We write g(w) = g1(w)·g2(w), where g1(w) = t2w4+2tw, and g2(w) =
1

((1+tw3)2/3+ 1
2)

2
+ 3

4

.

We �nd that ∣∣∣g(n)1 (w)
∣∣∣ ≤ 4!t2, (3.1.26)
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and again using (3.1.23), we obtain

∣∣∣g(n)2 (w)
∣∣∣ ≤ ∑

m1+2m2+···+nmn=n

n!

m1!m2! · · ·mn!

(
∑

mi)!((
(1 + tw3)2/3 + 1

2

)2
+ 3

4

)∑
mi

(3.1.27)

×
n∏

k=1

(
2k+1

((
1 + tw3

) 2
3 +

1

2

)
e(3tw

2+3tw)kt
k
3

)mk

≤
∑

m1+2m2+···+nmn=n

n!

m1!m2! · · ·mn!

(
∑

mi)!((
(1 + tw3)2/3 + 1

2

)2
+ 3

4

)∑
mi

× 2
∑

imi+mi

((
1 + tw3

) 2
3 +

1

2

)∑
mi

e(3tw
2+3tw)

∑
imi · t

∑
imi
3

≤n!22ne(3tw
2+3tw)nt

n
3 ·

∑
m1+2m2+···+nmn=n

(
∑

mi)

m1!m2! · · ·mn!

≤n!23ne(3tw
2+3tw)nt

n
3 ,

where we use the fact that the sum
∑

m1+2m2+···+nmn=n 1 is counting the number of

ordered partitions of n. This gives us that

∣∣g(n)(w)∣∣ ≤ ∑
m1+m2=n

n!

m1!m2!
· d

m1g1
dwm1

· d
m2g2
dwm2

(3.1.28)

≤
∑

m1+m2=n

n!

m1!m2!
(4!t2)m2!2

3m2e(3tw
2+3tw)m2t

m2
3

≤4!n!23mt2+
n
3 e(3tw

2+3tw)n
∑

m1+m2=n
m1≤4

1

m1!

≤n!23n41 · t2+
n
3 e(3tw

2+3tw)n.
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So, combining (3.1.25)−(3.1.28), we obtain

∣∣∣∣dnAdwn

∣∣∣∣ ≤n!23n(41)neg(w) · t2n+
n
3 e(3tw

2+3tw)n
∑

m1+2m2+···+nmn=n

(m1 +m2 · · ·mn)!

m1!m2! · · ·mn

(3.1.29)

≤eg(w)n!e(3tw
2+3tw)n24n(41)nt

7
3
n.

Next, it can be shown that

∣∣∣∣dnBdwn

∣∣∣∣ ≤ n!e(3tw
2+3tw)nt

n
3 . (3.1.30)

Now, we give bounds on C and D. First, we let W (w) = w
(1+tw3)1/3

, then we have

∣∣W (n)(w)
∣∣ ≤w

dn

dwn

(
1

(1 + tw3)1/3

)
+ n

dn−1

dwn−1

(
1

(1 + tw3)1/3

)
. (3.1.31)

Direct calculation gives

∣∣∣∣ dndwn

(
1

(1 + tw3)1/3

)∣∣∣∣ ≤
∣∣∣∣∣ ∑
m1+2m2+3m3=n

n!

m1!m2!m3!

(
−1/3

m1 +m2 +m3

)

× (3tw2)m2(3tw)m2(t)m3

(1 + tw3)
1
3
+m1+m2+m3

∣∣∣∣∣
≤n!e3tw

2+3twt
n
3 .

Since |w| < 1, this implies that

∣∣W (n)(w)
∣∣ ≤ 2n!e3tw

2+3twt
n
3 . (3.1.32)
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The de�nition of C gives∣∣∣∣dnCdwn

∣∣∣∣ ≤
∣∣∣∣∣

r+1∑
s=0

2s+2m≥n

r+1∑
m=0

fs,m
(2s+ 2m)!

n!
(3.1.33)

×
∑

m1+2m2+···+nmn=n

n!

m1!m2! · · ·mn!
W 2s+2m−n

n∏
k=1

(
2e3tw

2+3twt
k
3

)mk

∣∣∣∣∣
≤22nn!e(3tw

2+3tw)nt
n
3 (r + 1)2

∑
2s+2m=n

|fs,m| .

Here in the second inequality, we use that for w ∈ [0, ε], the sum on right hand side

is dominated by constant term. Now we look into C and D, which we need to bound

fs,m. First notice that |βs| ≤ 1 for s ≤ 54, and for s ≥ 55, we have

|βs| =

∣∣∣∣∣ 1s! ∑
m1+2m2+···sms=s

s!

m1!m2! · · ·ms!

s∏
k=1

(−αk)
mk

∣∣∣∣∣ (3.1.34)

=

∣∣∣∣∣∣−αs +
∑

m1+2m2+···(s−1)ms−1=s

s!

m1!m2! · · ·ms!

s−1∏
k=1

(−αk)
mk

∣∣∣∣∣∣ ≤ αs,

since there is an alternating signs in each terms and αs dominates. Also, we have

|bs,m| =

∣∣∣∣∣∣ 1

(2m)!

d2m

dy2m

(
(1 + y)2s+2m+ 13

12

(3 + 2y)
1
2

)∣∣∣∣∣
y=0

∣∣∣∣∣∣ (3.1.35)

≤ 1

(2m)!

∑
m1+m2=2m

(m1 +m2)!

m1!m2!
Γ

(
2s+ 2m−m1 +

13

12
+ 1

)
Γ

(
−1

2
−m2 + 1

)

×
(
3

2

)m2 √
3

≤ 1

(2m)!
Γ

(
2s+ 2m+

13

12
+ 1

)
Γ

(
1

2

)√
3

∑
m1+m2=2m

(2m)!

m1!m2!

(
3

2

)m2

≤ 1

(2m)!

√
3 · Γ

(
2s+ 2m+

13

12
+ 1

)
· Γ
(
1

2

)
·
(
1 +

3

2

)2m

≤ 1

(2m)!

√
3 · 5

2m

22m
· Γ
(
2s+ 2m+

13

12
+ 1

)
· Γ
(
1

2

)
.
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So, we get that

∑
2s+2m=n

|fs,m| ≤ 5 · 3
n
2
+ 25

24
+ 1

2 · Γ
(
n+

13

12
+ 1

)√
πA

13
24αn

n
2

(
25

4

)n/2

. (3.1.36)

Combining these facts we obtain

∣∣∣∣dnCdwn

∣∣∣∣ ≤ 22nn!e(3tw
2+3tw)nt

n
3 (r + 1)2

(
75

A

)n
2

3
37
245Γ

(
n+

13

12
+ 1

)√
πA

13
12αn

n
2
.

(3.1.37)

Using a similar argument and the fact that |D| ≤ 1
0.1485

when w ∈ [0, ε] using Math-

ematica , we get that

∣∣∣∣dnDdwn

∣∣∣∣ ≤ n!

0.1485

(
(r + 1)2 ·

√
75 ·

√
π3

37
24 · 5 · A 13

24 · 2αn
2

0.1485

)n

Γ

(
n+

13

12
+ 1

)n

.

(3.1.38)
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Therefore, thanks to (3.1.24) we obtain

∣∣R(n)
r (j, w)

∣∣ ≤ ∑
m1+···+m4=n

m!

m1! · · ·m4!
eg(w)m1!e

(3tw2+3tw)m124m1(41)m1t
7
3
m1 ·m2!

(3.1.39)

× e(3tw
2+3tw)m2t

m2
3 22m3m3!e

(3tw2+3tw)m3t
m3
3 (r + 1)2

(
75

A

)m3
2

3
37
24

× 5 · Γ
(
m3 +

13

12
+ 1

)√
πA

13
12αm3

m3
2

m4!

0.1485
· Γ
(
m4 +

13

12
+ 1

)m4

×

(
(r + 1)2 ·

√
75 ·

√
π3

37
24 · 5 · A 13

24 · 2αm4
2

0.1485

)m4

≤n!eg(w)e(3tw
2+3tw)n · t

7n
3 ·

(
(r + 1)2 ·

√
75 ·

√
π3

37
24 · 5 · A 13

24 · 2αn
2

0.1485

)n

× Γ

(
n+

13

12
+ 1

)n

·
∑

m1+···+m4=n

1

≤ n!

(
n+ 3

3

)
eg(w)e(3tw

2+3tw)n · t
7n
3 ·

(
(r + 1)2 ·

√
75 ·

√
π3

37
24 · 5 · A 13

24 · 2αn
2

0.1485

Γ

(
n+

13

12
+ 1

))n

≤ n!

(
n+ 3

3

)
eg(w)e(3tw

2+3tw)n · t
7n
3 ·
(
(r + 1)2 · 6213 · αn

2
· Γ
(
n+

13

12
+ 1

))n

.

Thanks to (3.1.22), we want to estimate products of ratios of plane partition

function values. Given i = (i1, i2, · · · , i2m−2) with i1 + i2 + · · · + i2m−2 = m(m − 1),

let Td,PL,m(i;w) be the degree 2m(m− 1) Taylor polynomial of
∏2m−2

k=1 Rr(d− ik, w).

Lemma 3.6. If w ∈ [0, ε], then we have that

2m−2∏
k=1

PL(n+ d− ik)

PL(n)
= Td,PL,m(i;w) + Ed,PL,m(i;w)w

2m(m−1)+1,
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where

|Ed,PL,m(i;w)| ≤ 2 ·

(
e

Γ(2d2)

(2π)2d
2+2 62d−2(6A)r(r + 1)(2d− 2)

) 12
13 (

0.1485 · 212(3A)3π3
) 12

13 .

Proof. By Lemma 3.4, we can write that

2m−2∏
k=1

PL(n+ d− ik)

PL(n)
=

2m−2∏
k=1

Rr(d− ik, w)(1 + Ur,k(w)) =
2m−2∏
k=1

Rr(d− ik, w) + Ur(w),

where

|Ur(w)| ≤
2m−2∏
k=1

Rr(d− ik, w)

((
1 +

2Lr(w)

1− Lr(w)

)2m−2

− 1

)

≤22m−2 · (2m− 2) · 32m−2 ·
∣∣∣∣ 2Lr(w)

1− Lr(w)

∣∣∣∣ ≤ 22m−2 · (2m− 2) · 32m−2 |4 · Lr(w)|

≤22m−2 · (2m− 2) · 32m−216

√
3A

0.1485
· Cr · 2r+7+ 1

24π3(3A)r+
49
24 (r + 2)w2r+3.

Here we use that |Rr(d− ik, w)| ≤ 2 throughout and (3.1.16) in the last inequality.

If we choose s = 2m(m− 1) + 1, then we have that

∣∣∣∣Ur(w)

ws

∣∣∣∣ ≤ 22m−2 · (2m− 2) · 32m−216

√
3A

0.1485
· Cr · 2r+7+ 1

24π3(3A)r+
49
24 (r + 2) · ε2

(3.1.40)

≤ 62d−2 · (2d− 2) ·
√
3A

0.1485
· Cr · 2r+11+ 1

24π3(3A)r+
49
24 (r + 2)

×

(
e

Γ(2d2)

(2π)2d
2+2 62d−2(6A)r(r + 1)

)− 2
3 (

7212(3A)3
)− 2

3

≤

(
e

Γ(2d2)

(2π)2d
2+2 62d−2(6A)r(r + 1)(2d− 2)

) 1
3 (

0.1485 · 212(3A)3π3
) 1

3 ,

where we get the last inequality from (2.1.8). On the other hand, using the product
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rule and Lemma 3.5 we obtain

1

s!

∣∣∣∣∣ dsdws

2m−2∏
k=1

Rr(d− ik, w)

∣∣∣∣∣ (3.1.41)

≤ e(2m−2)g(ε)

(
e3tε+3tε2t

7
3 (r + 1)2 · 6213 · α s

2
Γ

(
s+

13

12
+ 1

))s

×
∑

n1+n2+···+n2m−2=m(m−1)

(
n1 + 3

3

)(
n2 + 3

3

)
· · ·
(
n2m−2 + 3

3

)
.

The largest term in the sum on the right hand side occurs if each ni is equal, which

in turn is bounded by replacing each ni with m ≥ m(m−1)
2m−2

. Counting the number of

terms, we see that the sum is bounded above by

∑
n1+n2+···+n2m−2=2m(m−1)

(
n1 + 3

3

)(
n2 + 3

3

)
· · ·
(
n2m−2 + 3

3

)

≤
(
m+ 4

3

)2m−2(
2(m− 1)(m+ 1)

2m− 3

)
≤
(
5

2
m3

)2m−2

(2m2)2m−2 = (5m5)2m−2.

This shows that∣∣∣∣∣ dsdws

2m−2∏
k=1

Rr(d− ik, w)− Td,PL,m(i;w)

∣∣∣∣∣
≤ e(2m−2)g(ε)

(
e3tε+3tε2t

7
3 (r + 1)2 · 6213 · α s

2

)s
× Γ

(
s+

13

12
+ 1

)s

· (5m5)2m−2 · ws+

+

(
e

Γ(2d2)

(2π)2d
2+2 62d−2(6A)r(r + 1)(2d− 2)

) 1
3 (

0.1485 · 212(3A)3π3
) 1

3 ws

≤ 2 ·

(
e

Γ(2d2)

(2π)2d
2+2 62d−2(6A)r(r + 1)(2d− 2)

) 1
3 (

0.1485 · 212(3A)3π3
) 1

3 ws,
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where the above inequality follows by noticing that the second part of the sum is

larger of the two. This is true since the second function has exponential growth rate

and the �rst one has polynomial growth in the factorial, so we just need to check

when second part becomes bigger than �rst one, which happens when d ≥ 4.

In order to �nish bounding the monomials in (3.1.22), we need the following result

proved in a similar way as [LW19, Lemma 4.3].

Lemma 3.7. Suppose 0 ≤ m ≤ d and i1 + i2 + · · · + i2m−2 = m(m − 1) for positive

integers ik. Then we have that∣∣∣∣∣
(

2√
3A

)m(m−1) 2m−2∏
k=1

(
d

ik

)∣∣∣∣∣ ≤
(

4e√
3A

)d(d−1)

.

Proof. The product
∏2m−2

k=1

(
d
ik

)
is maximized when all of ik are equal and equal to m

2
.

Using standard bounds on binomial coe�cients, we therefore have that

(
2√
3A

)m(m−1) 2m−2∏
k=1

(
d

ik

)
≤
(

4ed√
3Am

)m(m−1)

≤
(

4e√
3A

)d(d−1)

,

since the right hand side is maximized when m = d.

We need one more lemma which gives the necessary bounds on the coe�cients

Ai1,i2,··· ,i2m−2 to achieve the required bound on Dd,PL,m(n).

Lemma 3.8 ([LW19], Lemma 4.4). If n > 2√
3Aε3

and Ai1,i2,··· ,i2m−2 is as in (3.1.22),

then we have ∑
i1,i2,··· ,i2m−2

|Ai1,i2,··· ,i2m−2| ≤ d2d · 2d(d−1).
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Proof. By the Newton-Girard identities, the power sums Sk in the matrix in (2.2.1)

can be written as a sum of at most

Sk := k
∑

r1+2r2+···+krk=k

(r1 + r2 + · · ·+ rk − 1)!

r1! · r2! · · · rk!
≤ k2k−1

monomials in the coe�cients of our polynomial. The determinant of the matrix in

(2.2.1) is made up of a sum of at most m! monomials of the form

m∏
l=1

Sil where i1 + i2 + · · ·+ im = m(m− 1).

Plugging in the elementary symmetric functions for each Sil in this product and

expanding will express each of these �S-monomial� as a sum of at most

m∏
l=1

il2
il−1 ≤ (m− 1)m2m(m−1)

monomials in the coe�cients. To obtain Dd,PL,m(n) from this, we must multiply by(
PL(n+d)
PL(n)

)2m−2

. Since n is so large, we easily have PL(n+d)
PL(n)

< 2. Multiplying together

the factors discussed above gives the result.

Because the limiting behavior of Jd,n
PL (x) is modeled by Hermite polynomials, we

need the following lemma.

Lemma 3.9 ([LW19], Lemma 4.5). For each m ≤ d, we have that ∆m(Hd(x)) ≥ 1.

Proof. We have that

∆m(Hd(x)) =
∑

i1<i2<···<ßm

∏
a<b

(λa − λb)
2,
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so by the inequality of the arithmetic and geometric mean

∆m(Hd(x)) ≥
(
d

m

) ∏
i1<i2<···<ßm

(∏
a<b

(λa − λb)
2

) 1

( d
m)

=

(
d

m

)(∏
j<k

(λj − λk)
2 d−2
m−2

) 1

( d
m)

=

(
d

m

)
∆d(Hd(x))

m(m−1)
d(d−1) .

By Theorem 6.71 of [C.40], and the fact that ad(Hd(x)) = 2d, we have

∆d(Hd(x)) =
Disc(Hd(x))

2d(d−1)
= 2−

d(d−1)
2

d∏
v=1

vv ≥ 1,

so the result follows.

Now, proving Theorem 1.1 is just a matter of collecting and bounding all of the

higher order terms from expanding Dd,PL,m(n) in terms of w. .

3.1.3 Proof of Theorem 1.1

Suppose that n ≥ 2
ε
√
27A

so that w ∈ [0, ε]. By (3.1.22), we have that

Dd,PL,m(n)

w2m(m−1)
=

∑
i1+···+i2m−2=2m(m−1)

Ai1,··· ,i2m−2

w2m(m−1)
·
2m−2∏
k=1

(
d

ik

)(
Td,PL,m(i;w)

+ Ed,PL,m(i;w)w
2m(m−1)+1

)
=

(√
3A

2

)m(m−1)

∆m(Hd(x)) + w · Ed,PL,m(w),

where by Lemmas 3.6, 3.7, and 3.8 and the choice of ε, we have that(
2√
3A

)m(m−1)

· |Ed,PL,m(w)| · w ≤ d2d2d(d−1) ·
(

4e√
3A

)d(d−1)

·

2 ·

(
e

Γ(2d2)

(2π)2d
2+2 62d−2(6A)r(r + 1)(2d− 2)

) 1
3 (

0.1485 · 212(3A)3π3
) 1

3 · ε ≤ 1.
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Since ∆m(Hd(x)) ≥ 1, it follows that Dd,PL,m(n) > 0 and therefore Jd,m
PL (x) is hyper-

bolic. We use (3.1.1) to get the upper bound on NPL(d). □

3.1.4 Proof of Theorem 1.2

We now prove Theorem 1.2 by bounding the error terms that accumulate from ap-

proximating PL(n+j)/PL(n) by the (s−1)th Taylor polynomial Ar,s(j, w) of Rr(j, w)

using Lemma 3.4, in the polynomial expression for Dd,PL,m(n(w)). This gives us that

there exists an ε such that Dd,PL,m(n(w)) ≥ 0 for all w ∈ [0, ε] (i.e. n ≥ nε) which in

turn allows us to reduce to checking �nitely many cases.

Using the Newton-Girard identities to write the power sum of the roots in terms

of elementary symmetric function, one can generate symbolic expressions for the

polynomials Dd,m(a0, a1, · · · , ad) in terms of a0, a1, · · · , ad. To obtain Dd,PL,m(n), we

substitute (
d

j

)
(Ar,s(j, w) + Ejw

s)

in for aj in these polynomials, introducing Ej as a variable. For example, when

d = 3, r = 5 and s = 10, we have that

D3,2(a0, a1, a2, a3) = 2a22 − 6a1a3.

So we get that

D3,PL,2(n) = 18
(
A5,10(w) + E2w

10
)2 − 18

(
A5,10(w) + E1w

10
) (

A5,10(w) + E3w
10
)
.
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This gives rise to a polynomial expression in w whose coe�cients are polynomials

in Ej. It turns out that all the coe�cients less than k = 2m(m − 1) vanish in the

expression. So diving by wk, gives an expression of the form

Dd,PL,m(w) = c0+c1w+c2(E1, E2, · · · , Ed)w
2+· · ·+c(2m−2)s−k(E1, E2, · · · , Ed)w

(2m−2)s−k,

(3.1.42)

for each 2 ≤ m ≤ d, where c0 and c1 are positive constants.

We use Mathematica [Inc] to calculate the upper bound on Ej = Er,s(j, w) for

w ∈ [0, ε] using Lemma 3.4, where we choose

r = 5, 7, 10, 10, 10, s = 10, 12, 18, 18, 20 and ε = 0.051, 0.032, 0.06, 0.03, 0.02

for d = 3, 4, 5, 6, 7 respectively.

With the help of Mathematica again, we minimize (3.1.42) using these bounds and it

turns out that in each case the minimum is positive for all 2 ≤ m ≤ d, which proves

the hyperbolicity of Jd,n
PL (x) for d = 3, 4, 5, 6, and 7 for all n ≥ nε.

To get this nε, we use the condition that w ≤ ε and the relation between w and

n given by (3.1.1). This gives us that NPL(3) ≤ 2647, NPL(4) ≤ 10714, NPL(5) ≤

1626, NPL(6) ≤ 13003 and NPL(7) ≤ 43883. Checking the �nite number of remaining

possible counter examples directly now proves the theorem. Annotated Mathematica

code to implement the full procedure described above is at [Pan22a].
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Chapter 4

Ellipsoidal T -designs

This chapter is dedicated towards developing the theory of ellipsoidal designs and

proving Theorem 1.9.

4.1 Criterion for ellipsoidal t-Design

In this section we prove Theorem 1.7, criterion for con�rming ellipsoidal t-designs.

Throughout this section we assume that D ≥ 1 is square-free and j ≥ 1.

To prove that Theorem 1.7 is indeed a criterion for con�rming ellipsoidal t-designs,

we �rst need to show that the spaces HR
D,k[x, y], for 0 < k ≤ j, generate all the

polynomials of degree ≤ j when restricted to CD(r). It su�ces to show this for

PR
j [x, y], the set of homogeneous polynomials of degree j.

Lemma 4.1. If D ≥ 1 is square-free and j ≥ 1, then the following are true:

1) If D ≡ 1, 2 mod 4, then we have

PR
j [x, y] =

⌊j/2⌋⊕
k=0

(
x2 +Dy2

)k
HR

D,j−2k[x, y].
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2) If D ≡ 3 mod 4, then we have

PR
j [x, y] =

⌊j/2⌋⊕
k=0

(
x2 + xy +

1 +D

4
y2
)k

HR
D,j−2k[x, y].

Proof. The lemma is well known for homogeneous harmonic polynomials (for example,

see [ABR92, Thm 5.7]). Namely, if HR
k [x, y] is the set of homogeneous harmonic

polynomials of degree k then

PR
j (x, y) =

⌊j/2⌋⊕
k=0

(
x2 + y2

)k
HR

j−2k[x, y].

We extend it to general D. It is well known that HR
j [x, y] = ⟨Re(x+ iy)j, Im(x+

iy)j⟩, and so if we do the change of variable for D ≡ 1, 2 mod 4 (resp. D ≡ 3

mod 4), x′ = x,y′ =
√
Dy (resp. x′ = x + y/2,y′ = 2y/

√
D), then HR

j−2(x
′, y′) =

⟨Re(x′ + iy′)j, Im(x′ + iy′)j⟩ gives

PR
j [x

′, y′] =

⌊j/2⌋⊕
k=0

(
x′2 + y′2

)k
HR

j−2k[x
′, y′].

Therefore, if D ≡ 1, 2 mod 4, then we have

PR
j (x, y) =

⌊j/2⌋⊕
k=0

(
x2 +Dy2

)k
HR

D,j−2k[x, y].

If D ≡ 3 mod 4, then we have

PR
j (x, y) =

⌊j/2⌋⊕
k=0

(
x2 + xy +

1 +D

4
y2
)k

HR
D,j−2k[x, y].

We now prove Theorem 1.7.
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Proof of Theorem 1.7. Lemma 4.1 shows that the set of polynomials when restricted

to CD are generated by the spaces HR
D,j[x, y] since x2 + Dy2 = r

(
resp., x2 + xy +

1+D
4

y2 = r
)
on CD(r). Therefore, it su�ces to show that if P (x, y) ∈ HR

D,j[x, y], then

the following are true:

1) If D ≡ 1, 2 mod 4, then we have∫
CD(r)

P (x, y)√
x2/D2 + y2

dσ(x, y) = 0.

2) If D ≡ 3 mod 4, then we have∫
CD(r)

P (x, y)√
20x2 + (D2 + 2D + 5)y2 + (20 + 4D)xy

dσ(x, y) = 0.

As HR
D,j[x, y] is a vector space, it is enough to show these claims for basis vectors.

Since X ⊂ CD(r) is an ellipsoidal t-design if and only if 1
r
⊂ CD(1) is an ellipsoidal

t-design, it's enough to consider r = 1. For D ≡ 1, 2 (mod 4), HR
D,j[x, y] = ⟨Re(x +

√
−Dy)j, Im(x +

√
−Dy)j⟩. By the parametrization of CD(1) : x2 + Dy2 = 1 as

γ := {(cos θ, sin θ/
√
D)|0 ≤ θ ≤ 2π}, we have∫

CD(1)

Re(x+
√
−Dy)j√

x2/D2 + y2
dσ(x, y)

=

∫ 2π

0

Re(cos θ +
√
−D(sin θ/

√
D))j√

cos θ2/D2 + sin θ2/D

√
sin θ2 + cos θ2/Ddθ

=
√
D

∫ 2π

0

Re(cos θ + i sin θ)jdθ =
√
D

∫
S1

Re(x+ iy)jdz = 0.

Since Re(x+ iy)j is harmonic, the last integral over S1 is 0.

A similar argument shows that∫
CD(1)

Im(x+
√
−Dy)j√

x2/D2 + y2
dσ(x, y) = 0.
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If D ≡ 3 (mod 4), HR
D,j[x, y] = ⟨Re(x + 1+

√
−D

2
y)j, Im(x + 1+

√
−D

2
y)j⟩. By the

parametrization of CD(1) : x
2+xy+1+D

4
y2 = 1 as γ := {(cos θ−sin θ/

√
D, 2 sin θ/

√
D) :

0 ≤ θ ≤ 2π}, we have

∫
CD(1)

Re(x+ (1 +
√
−D)y/2)j√

20x2 + (D2 + 2D + 5)y2 + (20 + 4D)xy
dσ(x, y)

=

∫ 2π

0

Re(cos θ − sin θ/
√
D + (1 +

√
−D sin θ/

√
D)j√

4D sin θ2 + 20 cos θ2 + 8
√
D sin θ cos θ

×
√

sin θ2 + 5 cos θ2/D + 2 sin θ cos θ/
√
Ddθ

=
1

2
√
D

∫ 2π

0

Re(cos θ + i sin θ)jdθ =
1

2
√
D

∫
S1

Re(x+ iy)jdz = 0.

A similar argument shows that

∫
CD(1)

P (x)√
20x2 + (D2 + 2D + 5)y2 + (20 + 4D)xy

dσ(x, y) = 0.

4.2 Ellipsoidal T-Designs

Here we prove Theorem 1.9, the construction of ellipsoidal T -designs arising from the

ring of integers of imaginary quadratic �elds with class number 1. We use the theory

of theta functions with complex multiplication. Throughout, we shall assume that

D ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163}.
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4.2.1 Theta functions

Given an n-dimensional lattice Λ and a polynomial P (x) of degree j in n variables,

the theta function of P (x) over the lattice Λ is de�ned by the Fourier series (note

q := e2πiz)

Θ(Λ, P ; z) :=
∑
x∈Λ

P (x)qN(x) = Θ(Λ, P ; z) =
∞∑
n=0

a(Λ, P, n)qn, (4.2.1)

where N(x) is the standard norm in Rn. The theta functions for ΛD = OD play

an important role in the study of ellipsoidal T -designs. Namely, if Θ(ΛD, P ; z) =∑∞
r=0 a(ΛD, P, r)q

r, then

a(ΛD, P, r) =
∑

(x,y)∈Λr
D

P (x, y). (4.2.2)

The theta function Θ(ΛD, P ; z) ∈ Mk(Γ0(4D), χ), the space of holomorphic modular

forms with weight k = j + 1 and nebentypus χ(A) = (−D
d
), where A =

 a b

c d


[Iwa97, Thm 10.8]. Moreover, Θ(ΛD, P ; z) is a cusp form when j > 0.

To ease the study of these theta function, it is convenient to introduce the following

the polynomials for each j ≥ 1:

RD,j(x, y) :=


Re
(
x+

√
−Dy

)j
if D ≡ 1, 2 (mod 4),

Re
(
x+ 1+

√
−D

2
y
)j

if D ≡ 3 (mod 4),

(4.2.3)

and

ID,j(x, y) :=


Im
(
x+

√
−Dy

)j
if D ≡ 1, 2 (mod 4),

Im
(
x+ 1+

√
−D

2
y
)j

if D ≡ 3 (mod 4).

(4.2.4)
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By de�nition, we have thatHR
D,j[x, y] = ⟨RD,j(x, y), ID,j(x, y)⟩. MoreoverΘ(ΛD, RD,j; z)

and Θ(ΛD, ID,j; z) are cusp forms. Theorem 1.7 together with the discussion above

gives the following lemma which transforms the problem of determining ellipsoidal

T -designs into the vanishing of certain coe�cients of special theta functions.

Lemma 4.2. The norm r shell Λr
D = ΛD ∩ CD(r) is an ellipsoidal T -design if and

only if a(ΛD, RD,j, r) = 0 and a(ΛD, ID,j, r) = 0 for all j ∈ T .

We require some standard facts from the theory of newforms. Since OD has class

number 1, each Hecke character mod OD is de�ned by its values on principal ideals.

Let (α) ⊂ OD be a principal ideal. Let uD be the number of units in OD, namely

uD :=



4 if D = 1,

6 if D = 3,

2 otherwise.

(4.2.5)

For each positive jD ≡ 0 (mod uD), de�ne Hecke characters mod OD by:

ζjD((α)) =

(
α

|α|

)jD

Then by Theorem 2.24, we have the following well known lemma about the modular

form

fjD(ζjD ; z) :=


Θ
(
ΛD,

(
x+

√
−Dy

)j
; z
)

if D ≡ 1, 2 (mod 4),

Θ

(
ΛD,

(
x+ 1+

√
−D

2
y
)j
; z

)
if D ≡ 3 (mod 4).

Thanks to Theorem 2.24 and 2.26, we have the following lemma.
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Lemma 4.3. Assuming the notations above, we have

fjD(ζjD ; z) =
∑

(α)⊂OD

ζjD((α))N(α)j/2qN(α) ∈ SkD(Γ0(N), χ),

the space of cusp forms of weight kD = jD + 1 with nebentypus χ (mod N). Here

N := |∆OD
|, the absolute value of the discriminant of OD. Moreover, fjD(ζjD ; z) is a

newform.

4.2.2 Other Propositions and Lemmas

Recall that Λr
D = CD(r) ∩ OD. Using well known facts about the positive de�nite

binary quadratic forms corresponding to class number 1 norm forms, we have the

following lemma.

Lemma 4.4. Suppose r is a positive integer. Then Λr
D is nonempty if and only if

ordp(r) is even for every prime p ∤ r for which Λp
D is nonempty.

Rewriting (4.2.2), we have

a(ΛD, P, r) =
∑

(x,y)∈Λr
D

P (x, y). (4.2.6)

Lemma 4.2 implies that Λr
D is an ellipsoidal T -design if and only if a(ΛD, RD,j, r) and

a(ΛD, ID,j, r) vanish for all j ∈ T . Since Λr
D is antipodal (i.e. −Λr

D = Λr
D for all r),

a(ΛD, RD,j, r) and a(ΛD, ID,j, r) are 0 for all j ∈ Z+ \ 2Z+. Therefore, we have that

following proposition.

Proposition 4.5. Suppose r ∈ Z+ such that Λr
D is nonempty. Then Λr

D is an ellip-

soidal Z+ \ 2Z+-design.
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Our objective is to �nd maximal set TD for which Λr
D is ellipsoidal T -design. By

proposition above we have that Z+ \ 2Z+ ⊂ TD. So we only look for all even j which

can be in TD.

Proposition 4.6. Suppose j ≡ 0 (mod 2), and r ∈ Z+. Then the following are true:

1) We have that a(ΛD, ID,j, r) = 0.

2) We have that a(ΛD, RD,j, r) =



∑
(x0,y0)∈Λr

D

(
x+

√
−Dy

)j
if D ≡ 1, 2 (mod 4),

∑
(x0,y0)∈Λr

D

(
x+ 1+

√
−D

2
y
)j

if D ≡ 3 (mod 4).

Proof. Part(2) is an obvious consequence of part(1). So it is enough to prove part(1).

The idea is to show that points in Λr
D occur in pairs on which value of ID,j cancel. If

D ≡ 1, 2 (mod 4), then ID,j = Im(x+
√
−Dy)j. In this case (a, b), (a,−b) ∈ Λr

D such

that ID,j(a, b) + ID,j(a,−b) = 0. This is true because each term of ID,j(x, y) has odd

power in both the variables x, y. If D ≡ 3 (mod 4), then ID,j = Im((x+ 1
2
y)+

√
−D
2

y)j.

In this case (a, b), (a+ b,−b) ∈ Λj
D such that ID,j(a, b) + ID,j(a+ b,−b) = 0. This is

because each term of ID,j(x, y) has odd power in x+ y/2, y.

We notice that if (x0, y0) ∈ OD, then we have

∑
αD∈OD:|αD|=1

RD,j(αD(x0, y0)) = RD,j(x0, y0)
∑

αD∈OD:|αD|=1

αj
D. (4.2.7)

Proposition 4.7. If r ≥ 1, 1 ≤ j ̸≡ 0 (mod uD), and Λ
r
D nonempty, then a(Λr

D, RD,j, r) =

0

Proof. The idea is that if (x0, y0) ∈ Λr
D then αD(x0, y0) ∈ Λr

D where αD is a unit in

OD. Therefore enough to show that the sum in RHS of (4.2.7) is 0. ForD = 1, number
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of units in OD, uD = 4 which are {1,−1, i,−i}. We have 1j + (−1)j + ij + (−i)j = 0.

For D = 3, number of units in OD, uD = 6 which are {±1, ±1±
√
−3

2
}. A brute force

calculation shows the result. For other D, the number of units in OD, uD = 2 which

are {1,−1}. For all j odd, (1)j + (−1)j = 0

From here on we will only consider the theta function Θ
(
ΛD,

1
uD

RD,j; z
)
so let's

give its coe�cients a shorthand.

Θ

(
ΛD,

1

uD

RD,j; z

)
=

∞∑
r=0

a(D, j, r)qr. (4.2.8)

Proposition 4.6, together with Lemma 4.3, gives us that if j ≡ 0 (mod uD), then

the theta function Θ
(
ΛD,

1
uD

RD,j; z
)

∈ Sj+1(Γ0(N), χ) is a Hecke eigenform. So

Proposition 2.14 gives us the following lemma.

Lemma 4.8. Suppose j ∈ uDZ+. Then the following is true:

1) If gcd (r1, r2) = 1 then

a(D, j, r1r2) = a(D, j, r1)a(D, j, r2).

2) For p prime and α > 0, we have

a (D, j, pα) = a (D, j, p) a
(
D, j, pα−1

)
− χ(p)pja

(
D, j, pα−2

)
.

3) For p prime and α > 0, we have

a(D, j, pα) = a(D, j, p)α (mod p).
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Suppose p be a prime such that Λp
D be nonempty. Let (xp, yp) ∈ Λp

D and j ≡ 0

(mod uD). When p = D then it rami�es in OD and there are exactly uD points in

Λp
D. From (4.2.7) we have a(D, j, p) = RD,j(xp, yp). If p ̸= D then it's unrami�ed and

we get exactly 2uD solutions. In this case a(D, j, p) = 2RD,j(xp, yp).

Lemma 4.9. Suppose j ∈ uDZ+ and p be an odd prime such that Λp
D is nonempty.

Let (xp, yp) ∈ Λp
D then RD,j(xp, yp) ̸≡ 0 (mod p). In particular, a(D, j, p) is non-zero.

Proof. We will consider two cases, D ≡ 1, 2 (mod 4) and D ≡ 3 (mod 4). Proof is

essentially same in both the cases.

If D ≡ 1, 2 (mod 4) then p = x2
p + Dy2p, in particular xp ̸≡ 0 (mod p). we consider

the binomial expansion

RD,j(xp, yp) = Re
(
xp +

√
−Dyp

)j
=

1

2

j/2∑
n=0

(
j

2n

)
xj−2n
p (−1)n

(
Dy2p

)n
=

1

2

j/2∑
n=0

(
j

2n

)
xj−2n
p (−1)n

(
p− x2

p

)n
≡ 1

2
xj
p

j/2∑
n=0

(
j

2n

)
≡ 2j−2xj

p ̸≡ 0 (mod p).

If D ≡ 1, 2 (mod 4) then p = (xp + yp/2)
2 + Dy2p/4, in particular xp + yp/2 ̸≡ 0

(mod p). we consider the binomial expansion

RD,j(xp, yp) = Re
(
xp + yp/2 +

√
−Dyp/2

)j
=

1

2

j/2∑
n=0

(
j

2n

)(
xp +

yp
2

)j−2n

(−1)n
(
Dy2p
4

)n

=
1

2

j/2∑
n=0

(
j

2n

)(
xp +

yp
2

)j−2n

(−1)n
(
p−

(
xp +

yp
2

)2)n

≡ 1

2

(
xp +

yp
2

)j j/2∑
n=0

(
j

2n

)
≡ 2j−2

(
xp +

yp
2

)j
̸≡ 0 (mod p).
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Proposition 4.10. For prime 2, Λ2
D is nonempty only for D = 1, 2, 7. In this case

a(D, j, 2) does not vanish for all j ∈ 2Z+. Moreover, we have that a(7, j, 2) ≡ 1

(mod 2).

Proof. For D = 1, 2, 2|∆OD
(= −4D) so the ideal (2) is rami�ed in OD, in particular

there are elements of norm 2. For D ∈ {3, 7, 11, 19, 43, 67, 163}, 2 ∤ ∆OD
(= −D). So

the ideal (2) is unrami�ed in OD. Here we need to check whether 2 splits or not. We

have the condition that 2 splits if and only if −D ≡ 1 (mod 8). Only D = 7 satis�es

the condition.

A brute force calculation shows that a(1, j, 2) = (1+i)j ̸= 0, a(2, j, 2) = ij2j+1 ̸= 0,

and a(7, j, 2) = 4Re
(

1+
√
−7

2

)j
̸= 0.

We prove that a(7, j, 2) ≡ 1 (mod 2) using induction on even j. First, note that

a(7, 2, 2) = −3 ≡ 1 (mod 2). Now we assume that a(7, j, 2) ≡ 1 (mod 2), which

implies that Re
(

1+
√
−7

2

)j
= (2k + 1)/2 for some k. The norm of

(
1+

√
−7

2

)j
is even,

so we get that Im
(

1+
√
−7

2

)j
=

√
7(2k′ + 1)/2 for some k′. An easy calculation shows

that a(7, j + 2, 2) = −3Re
(

1+
√
−7

2

)j
−
√
7Im

(
1+

√
−7

2

)j
≡ 1 (mod 2).

4.2.3 Proof of Theorem 1.9

Proposition 4.5, 4.6 and 4.7 together imply that a(ΛD, RD,j, r) and a(ΛD, ID,j, r)

vanish for all j ̸≡ 0 (mod uD), which implies that every nonempty shell Λr
D is an

ellipsoidal TD-design (remember that TD = Z+ \ uDZ+).
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Now we prove the maximality of TD. We show that a(D, j, r) ̸= 0 (note that

a(D, j, r) = 1
uD

a(ΛD, RD,j, r)) for all j ̸∈ TD and Λr
D nonempty. By Lemma 4.8, it

is enough to take r to be a prime power. Suppose p be a prime and α ≥ 1 be such

that Λpa

D ̸= ϕ. There are two cases possible, either Λp
D is empty, or it is not. First

suppose Λp
D is nonempty. If p is 2 then a(D, j, 2) ̸= 0 by Proposition 4.10. By part(2)

of Lemma 4.8, we have that a(D, j, 2α) = a(D, j, 2)α ̸= 0 for D = 1, 2 since χ(2) = 0.

When D = 7 then part(3) of Lemma 4.8, we have a(7, j, 2α) ̸= 0. If p is an odd

prime, then Lemma 4.9 implies that a(D, j, p) ̸= 0. Now using part(3) of Lemma 4.8

again, we have a(D, j, pα) ̸= 0. Suppose Λp
D is empty then a(D, j, p) = 0 and Lemma

4.4 implies α is even. Now by part(2) of Lemma 4.9, we get a(D, j, pα) = pjα/2 ̸= 0

(note that this case includes 2 too). So we get that a(D, j, pα) ̸= 0 whenever Λpα

D is

nonempty.



111

Chapter 5

Inversion of j-function around elliptic

points

In this chapter we prove Theorems 1.12 and 1.13 which give inversion formulae for

j-function around elliptic points.

5.1 Proof of Theorem 1.12

The following calculations depend on the argument of t. For the moment, we assume

that 0 < Arg(t) < π
2
. Apply Proposition 2.30 to a = b = 3

4
, c = 3

2
and z = 4t2

to 2F1

(
3
4
, 3
4
; 3
2
; 4t2

)
, using the functional equation sΓ(s) = Γ(s + 1), and the lambda

notation in (2.4.1) we get

2F1

(
3

4
,
3

4
;
3

2
; 4t2

)
(5.1.1)

=
Γ
(
1
4

)
Γ
(
3
2

)
Γ
(
3
4

) (
1

4t2

)3/4 [
2F1

(
1

4
,
3

4
; 1;

1

4t2

)
+ e3πi/42F1

(
1

4
,
3

4
; 1; 1− 1

4t2

)]
=

1
2
Γ
(
1
4

)
Γ
(
1
2

)
Γ
(
3
4

) (
1

4t2

)3/4 [
λ4

(
1

4t2

)
+ e3πi/4λ4

(
1− 1

4t2

)]
. (5.1.2)
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Similarly, we obtain

2F1

(
1

4
,
1

4
;
1

2
; 4t2

)
=

Γ
(
3
4

)
Γ
(
1
2

)
Γ
(
1
4

) (
1

4t2

)1/4 [
λ4

(
1

4t2

)
+ eπi/4λ4

(
1− 1

4t2

)]
.

(5.1.3)

Next, we divide (5.1.2) by (5.1.3) and use the formula for Ωi to get

t

2πΩ2
i

2F1

(
3
4
, 3
4
; 3
2
; 4t2

)
2F1

(
1
4
, 1
4
; 1
2
; 4t2

) =
λ4

(
1
4t2

)
+ e3πi/4λ4

(
1− 1

4t2

)
λ4

(
1
4t2

)
+ eπi/4λ4

(
1− 1

4t2

) .
Therefore we have

Ci(t)

2πΩ2
i

=
λ4

(
1
4t2

)
+ e3πi/4λ4

(
1− 1

4t2

)
λ4

(
1
4t2

)
+ eπi/4λ4

(
1− 1

4t2

) .
Taking γ = 1− 1/4t2 and τ as in Proposition ?? we get

Ci(t)

2πΩ2
i

=
−i

√
2τ + e3πi/4

−i
√
2τ + eπi/4

=
(2τ − 1)− i

(2τ − 1)− i
= Si(2τ − 1). (5.1.4)

Therefore, we obtain

s−1
i (Ci(t)) + 1

2
= τ,

and the inversion formula in Proposition 2.32 gives us

j

(
s−1
i (Ci(t)) + 1

2

)
= j(τ) =

64
(
1 + 3

(
1− 1

4t2

))3(
1− 1

4t2

) ((
1− 1

4t2

)
− 1
)2 =

64(16t2 − 3)3

4t2 − 1
.

For the case when Arg(t) ̸∈ [0, π/2), then equation (5.1.4) has the form

Ci(t)

2πΩ2
i

= (−1)a
(2τ + (−1)b)− i

(2τ + (−1)b)− i
.

The values of a and b as a function of the argument of t are given by the following
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table:

Arg(t) [0, π/2) [π/2, π) [−π/2, 0) [−π, π/2)

a 0 1 1 0

b 1 0 1 0

Ci(t)

2πΩ2
i

(2τ−1)−i

(2τ−1)−i

− 1
2τ+1

−i

− 1
2τ+1

−i

− 1
2τ−1

−i

− 1
2τ−1

−i

(2τ+1)−i

(2τ+1)−i

s−1
i (Ci(t))+1

2
τ τ−1

2τ−1
τ

2τ+1
τ + 1

Clearly, all possible values of
s−1
i (Ci(t)) + 1

2
are SL2(Z)-equivalent and thus their

j-values are invariant.

5.2 Proof of Theorem 1.13

The following calculations depend on the argument of t. For the moment, we assume

that 0 < Arg(t) < π
3
. If we apply Proposition 2.30 to 2F1

(
5
6
, 5
6
; 5
3
;−2t3

)
, using the

functional equation sΓ(s) = Γ(s+ 1) and the lambda notation in (2.4.1) we get

2F1

(
5

6
,
5

6
;
5

3
;−2t3

)
=

2
3
Γ
(
1
6

)
Γ
(
2
3

)
Γ
(
5
6

) (
1

2t3

)5/6 [
e5πi/6λ6(1/2t

3) + λ6(1 + 1/2t3)
]

(5.2.1)

Similarly, if we apply Proposition 2.30 to 2F1

(
1
6
, 1
6
; 1
3
;−2t3

)
to get

2F1

(
1

6
,
1

6
;
1

3
;−2t3

)
=

Γ
(
5
6

)
Γ
(
1
3

)
Γ
(
1
6

) (
1

2t3

)1/6 [
eπi/6λ4(−1/2t3) + λ6(1 + 1/2t3)

]
(5.2.2)
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We divide (5.2.1) by (5.2.2), use Legendre's Duplication formula

√
πΓ(2s) = 22s−1Γ(s)Γ

(
s+ 1

2

)
,

and the de�nition of Ωρ, to obtain

Cρ(t)

2πΩ2
ρ

=
e5πi/6λ6(−1/2t3) + λ6(1 + 1/2t3)

eπi/6λ6(−1/2t3) + λ6(1 + 1/2t3)

Taking γ = 1/t and τ as in Proposition ?? we get

Cρ(t)

2πΩ2
ρ

=
e5πi/6 − iτ

eπi/6 − iτ
=

τ − ρ

τ − ρ
= Sρ(τ). (5.2.3)

Therefore we obtain

s−1
ρ (Cρ(t)) = τ,

and the inversion formula in Proposition 2.34 gives

j
(
s−1
ρ (Cρ(t))

)
= j(τ) = − 1728t6

(2t3 + 1)
.

For arbitrary arguments of t, (5.2.3) has the following three forms:

Arg(t) (−2π
3
,−π

3
) ∪ (0, π/3) ∪ (2π

3
, π) (−π,−2π

3
] ∪ (−π

3
, 0] ∪ (π

3
, 2π

3
] {−π

3
, π
3
, π}

Cρ(t)

2πΩ2
ρ

τ−ρ
τ−ρ

τ+1−ρ
τ+1−ρ

− 1
τ−1

−ρ

− 1
τ−1

−ρ

s−1
ρ (Cρ(t)) τ τ + 1 − 1

τ−1

Recall that for the case Arg(t) = π/3, π,−π/3, we have to use Remark 2.31. Clearly,

all possible values of s−1
ρ (Cρ(t) are SL2(Z)-equivalent and thus their j-values are

invariant.



115

Some comments

Notice that in both the proofs above we did not require any conditions on |t|. However,

we do require two conditions on t, namely tmust be in the domains where the inversion

formulas in Propositions 2.32 and 2.34 are valid, and whenever Ci(t) and Cρ(t) are

well de�ned. The latter happens for t ̸= ±1/2, and t ̸= (1/ 3
√
2)ρa for a = 1, 3, 5,

respectively. The former happens when τ = τ(t) ∈ H which, by equations (5.1.4) and

(5.2.3), is equivalent to Ci(t)/2πΩ
2
i ∈ D and Cρ(t)/2πΩ

2
ρ ∈ D for Theorems 1.12 and

1.13 respectively. This can be veri�ed easily using the Maximum Modulus Principle

on |t| < 1/2 and |t| < 1/ 3
√
2 respectively.

Furthermore, from the de�nition of 2F1, Ci(t) and Cρ(t) are discontinuous on the

rays

{u(−1)a | u ≥ 1/2, a = 0, 1} and {uρa | u ≥ 1/
3
√
2, a = 1, 3, 5}

respectively, but, as apparent from the Tables above j((s−1
i Ci(t)+1)/2) and j(s−1

ρ Cρ(t))

become continuous (and thus analytic) functions of t which can be proved using Re-

mark 2.31. Therefore, Theorems 1.12 and 1.13 are valid for all t except for two and

three points respectively.

5.3 Examples

Here we o�er some examples.

Example 5.1. It is well known that j(
√
−2) = 8000. We verify this using Theorem
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1.12. First we solve the degree six equation in t

64
(16t2 − 3)3

4t2 − 1
= 8000.

One solution is

t0 =
i

4
√
2

√
5
√
2− 1 = i · 0.4355695915...,

so that |t0| < 1/2. We approximate Ci(t0) using the �rst 3000 terms of its power

series expansion to get:

Ci(t0) = i · 0.375476877103748...

Thus

τ0 :=
s−1
i (Ci(t0)) + 1

2
= 0.333333333333333...+ i · 0.471404520791031...

Notice that τ0 ̸=
√
−2, but they are SL2(Z)-equivalent. Indeed, we have

− 1

τ0
+ 1 = i · 1.414213562373095... ≈

√
−2.

In fact, the above approximation is correct up to 364 decimal places.

Example 5.2. Now we use Theorem 1.13 to verify j((1 +
√
−7)/2) = −3375. We

solve the degree 6 equation

− 1728t6

2t3 + 1
= −3375.

The solutions satisfy

t3 =
5

64
(25± 3

√
105),
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so we take the real cubic root of 5
64
(25− 3

√
105), which is

t0 =
3

√
5

64
(25− 3

√
105) = −0.765459354046599...

Since |t0| < 1/ 3
√
2 ≈ 0.793700..., we can approximate Cρ(t0) using the �rst 3000 terms

of the power series expansion :

Cρ(t0) = 0.538697866211295...

Thus

τ0 := s−1
ρ (Cρ(t0)) = 0.500000000000000...+ i · 1.322875655532295... ≈ 1 +

√
−7

2
.

In fact, the above approximation is correct up to 145 decimal places.

Example 5.3. To illustrate the general inversion process, we try to �nd τ0 such that

j(τ0) = −50, 000. We solve the degree 6 equation

− 1728t6

2t3 + 1
= −50, 000.

The solutions satisfy

t3 =
25

108
(125−

√
16165),

so we take the real cubic root of 25
108

(125−
√
16165), which is

t0 =
3

√
25

108
(125−

√
16165) = −0.791446942386710....

Notice that |t0| < 1/ 3
√
2 ≈ 0.793700..., but it is very close to the upper bound, which

means that we have to use more terms in the power series of Cρ(t) to get a reasonable
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approximation. Using the �rst 5000 terms yields

Cρ(t0) = 0.855243324301038...

and

τ0 = 0.500000000000000...+ i · 1.724359831532281....

We �nd that

j(τ0) = −49, 999.9999999999999996....

In fact, the above approximation is correct up to 16 decimal places when we just use

the �rst 5000 terms of power series.
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