
  

Hydrologic Modeling and System Optimization for IoT Flood Management 

 

 

A Technical Report submitted to the Department of Systems Engineering 

 

 

Presented to the Faculty of the School of Engineering and Applied Science 

University of Virginia • Charlottesville, Virginia 

 

In Partial Fulfillment of the Requirements for the Degree 

Bachelor of Science, School of Engineering 

 

 

Arnold Mai 

Spring, 2022 

Technical Project Team Members 

Andrew Bowman 

Nicholas Khattar 

Lily Malinowski 

Khwanjira Phumphid 

Taja Washington 

On my honor as a University Student, I have neither given nor received unauthorized aid on this 

assignment as defined by the Honor Guidelines for Thesis-Related Assignments 

 

Jonathan L. Goodall, Department of Civil Engineering 

 

 

 

 



  

 
Abstract— The increasing frequency and severity of storms 

due to climate change is magnifying flooding impacts. The 

Internet of Things (IoT) revolution promises more ubiquitous 

sensing capabilities. When applied to water systems, IoT has 

the potential to increase insights into how hydrologic systems 

respond to extreme rainfall events, aiding in emergency 

management efforts before and during extreme weather events. 

In this paper, we provide a way to translate forecasted extreme 

rainfall events into flood impacts and optimize an IoT sensor 

network for real-time flood monitoring. First, we created a 

hydrologic model for a study area: the Dell Pond watershed in 

Charlottesville, Virginia. We used ArcGIS to obtain 

parameters for the model from geospatial datasets such as 

elevation, soils, land use, and land cover. The parameters 

obtained from ArcGIS, alongside the National Oceanic and 

Atmospheric Administration (NOAA) rainfall precipitation 

data, and readings from the IoT water sensors were combined 

to create a hydrologic model in HEC-HMS. To optimize the IoT 

sensor monitoring network and explore systems integration of 

the model and sensors, we first created models to determine the 

battery life of a sensor in the network, since the IoT sensors are 

battery powered with no additional power harvesting 

capability. We also deployed a new water level and a soil 

moisture sensor using the IoT network for the study watershed. 

The methods for estimating the battery life of the IoT sensor 

and the prototype deployment can be built on in future 

research to advance next-generation flood management systems 

that integrate computational models and IoT monitoring 

networks.  

I. INTRODUCTION 

Climate change is projected to cause temperature and 
rainfall changes in coming years. The frequency and severity 
of storms is already showing evidence of increasing trends, 
magnifying flooding risk. From 1995 to 2015, Charlottesville 
and Albemarle County, the study area for this research, 
experienced around one hundred floods that created more 
than a million dollars in damage [1]. Even minor flooding 
can lead to devasting results for the community, such as 
school and road closures. More significant flooding can 
create safety hazards, as floods can cause power outages and 
damage infrastructure and assets which halts economic 
activity. Floods can also be lethal to the lives of every person 
living in damp building conditions, due to the development of 
mold, diminishing indoor air quality, which could lead to 
respiratory tract irritation and infections, including 
pneumonia.  

 Climate change effects, including flooding impacts, are a 
worldwide concern. According to data from the World 

Resources Institute, by 2030, the number of people affected 
by floods in the world will double and triple by 2050. In the 
United States, climate change will cause flooding losses to 
jump more than 26 percent over the next three decades, with 
disadvantaged communities shouldering an outsize share of 

the economic burden [2]. Steps need to be taken to prevent 
disastrous losses from further escalating.  

Without proper monitoring systems, flooding will cause 
economic loss, social disruptions, and damage to the urban 
environment. In response to flooding, cities and towns around 
the world are currently looking for a precautionary measure 
to minimize the adverse effects. In view of the frequency and 
severity of floods, many technological companies are using 
the Internet of Things (IoT) and flood forecasting models to 
propose flood monitoring and early detection systems that 
allow administrations to prepare for floods in advance. IoT is 
a crucial part in the development of smart cities because it 
promises improved environmental sensing capabilities. 
Among them flood monitoring systems with sensors are 
widely used.  

Although IoT solutions and advanced modeling cannot 
prevent flooding, real-time monitoring and modeling can help 
minimize potential damage by building initiative-taking 
solutions for the community. When applied to water systems, 
IoT coupled with models has the potential to increase insights 
into how hydrologic systems respond to extreme rainfall 
events, aiding in emergency management efforts before and 
during extreme weather events. 

II. METHODS 

A. System Architecture 

The flood monitoring system uses an IoT network which 
includes water level, soil moisture, and weather sensors from 
Decentlab. They communicate via LoRaWAN, a Low Power, 
Wide Area networking protocol. LoRaWAN Cisco gateways 
are used to connect the sensors to a LoRaWAN network 
server, The Things Network (TTN). The data generated from 
the sensors is stored in Google BigQuery, a data warehouse 
and finally, it is visualized using Grafana, an open-source 
data visualization platform. The sensor data will be used 
along with a hydrologic model to forecast water levels for 
flood management decision-makers. The envisioned flood 
warning system is depicted in the following block diagram 
(Fig. 1). Green blocks represent the real-time IoT network, 
data storage and visualization. Blue blocks represent the 
hydrologic system model and forecast. Red block represents 
the alerting tools integration with stakeholders. 
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Fig. 1. The envisioned flood warning system block diagram. 

B. Hydrologic Model Development  

We used ArcGIS to replicate the Dell Pond watershed 

(referred to as the Dell watershed henceforth) and obtain 

parameters needed for the hydrological model in HEC-HMS. 

First, a digital elevation model was obtained from the United 

States Geological Survey [3] and used to create the stream 

network of the watershed, utilizing tools such as Flow 

Direction and Flow Accumulation, then translating the 

resultant raster into a network of polylines. The watershed, 

as seen in Fig. 2, was created through snapping a pour point 

onto the streamline near the outlet. 

 

 
Fig. 2. Watershed of the Dell in ArcGIS 

 

The parameters needed for the hydrological model in 

HEC-HMS included curve number, longest stream length, 

and average slope. Land cover data was obtained from the 

Chesapeake Bay Program Land Use/Land Cover Data 

Project [4]. Soil data was obtained from the Soil Survey 

Geographic Database [5]. To create the most accurate 

model, the watershed was split into five subwatersheds 

based on similar land cover, as seen in Fig. 3.  

 

Fig. 3. Land Cover of the Dell Watershed 
 

Curve numbers for each subwatershed were calculated by 

combining land cover and soil data through the Union tool, 

exporting the resultant table to Excel, sorting areas by land 

cover, and summing land cover areas based on hydrologic 

soil group. The HEC-HMS Technical Reference Manual [6] 

was used to assign curve numbers based on hydrologic soil 

group. The following equation was used to calculate the 

composite curve number of each subwatershed, 

 

  (1) 

          

where Ai represents the individual areas and CNi refers to the 

individual curve number associated with the area. The 

longest stream length for each subwatershed was found by 

using the measure tool in ArcGIS. The average slope for 

each subwatershed was calculated using the Slope tool. The 

Dell watershed was then modeled in HEC-HMS with the 

pre-existing parameters found in ArcGIS, as seen in Fig. 4. 

The five subbasins were inputted into the model and 

connected by a singular junction. To account for an overflow 

structure located in the stream network, a diversion was 

placed in the model, which diverts 10 cfs of water to the 

sink. This number can be changed based on the storm, but 

we did not change it for these simulations. For the model, 

the runoff from Subbasin 5 and Reach 5 are directed towards 

the diversion which then releases a small amount to the sink, 

so that it does not overflow. This was based on information 

given by the University’s Facilities Management. The 

frequency storm simulated was a 10 year, 24-hour storm 

with a 15-minute intensity, and the data points were 

collected using local data provided by NOAA.  

 

Fig. 4. HEC-HMS Model of the Dell Watershed 

C. IoT Device Management 

To explore IoT and systems integration, we determine the 
battery life of the IoT sensor devices by analyzing the battery 
voltage over time. The batteries studied are from the weather 
station (Model DL-ATM41) because it had a complete 
battery drawdown record. Two alkaline type C batteries are 
used in the sensor (Model LR14). An important variable to 
consider that affects the battery life is the spreading factor, 
which is the speed at which the signal frequency changes 
across the bandwidth of a channel. The estimation for the 
weather station battery life given from Dencentlab for a 
spreading factor of seven with a 10-minute interval between 
messages is 10.2 months. [7] Our weather station’s spreading 
factor is automatically set by TTN using the Adaptive Data 
Rate (ADR), which is a mechanism that controls the data 
rate. Since our sensor is close to the gateway (~15 meters 
away), 95.4 % of the recorded messages had a spreading 
factor of 7, except for short periods where it was 8 (4.1%) 
and 9 (0.5%) due to atypical events such as intense rain. We 
used two methods to evaluate battery life using models with 
varying levels of complexity. Starting with the simpler 
approach, we fitted the data using linear and polynomial 



  

regression models using Python, then we created a time series 
model using RStudio.  

The regression model is based on a first and third order 
polynomial fit. The data of the weather station was 
aggregated and downloaded from Grafana, then imported to 
Python as a CSV file. Since we did not have a continuous 
battery voltage record from full to depleted battery, we 
combined the readings of the end part of a previous discharge 
curve with more recent battery voltage readings in such a 
way that we could emulate a full discharge cycle. The date 
format was normalized and converted from DD/MM/YYYY 
HH:MM to hours using Excel by taking the difference 
between the current time and the first reading and 
multiplying by twenty-four. The following libraries were 
imported: Matplotlib was used to graph the data and predict 
the values, NumPy was used to convert the CSV data to 
arrays, and Scikit-learn was used to generate the regression 
models. Several polynomial models were created using the 
“LinearRegression” function and the curve fit was evaluated 
using the Mean Absolute Error (MAE). To get the equation 
for predicting the battery voltage at any given time, we 
printed the model coefficients of the best order polynomial fit 
and filled it manually in a cubic function of time.  

To better model variation in the battery data over shorter 
time periods, time series analysis was used. The time series 
analysis used data collected starting when the battery was at 
full charge and contained 674 data points across 170 days. 
The time series data points were obtained by averaging 
battery voltage readings from the weather station, resulting in 
a rate of four data points per day. The battery voltage 
readings were aggregated, downloaded from Grafana, and 
then imported into RStudio. The data across each day was 
averaged to create a resampled time series object with 
consistent intervals. From the full data, 160 days' worth of 
data were used to build the model, with the remaining 10 
days of data being used to compare to the model’s forecasted 
values. Using the “forecast” package in RStudio, an ARIMA 
(0,2,1) model was created with the objective of minimizing 
the Akaike Information Criterion (AIC). This model uses the 
second difference of the non-stationary time series data, to 
create a stationary time series. This was necessary due to the 
downward trend inherent in the battery data. The model 
yielded by our time series analysis contains one moving 
average component. Then, the model was used to predict the 
next 10 days of voltage values, and then compared to the 
actual data for assessment, and the mean squared error (MSE) 
was calculated.  

D. IoT Device Deployment 

To prototype an IoT sensor deployment, we deployed a 
pressure sensor (model DL-PR26) and soil moisture sensor 
(model DL-SMTP). We also installed a LoRa gateway within 
range of the Dell Pond in Charlottesville and connected the 
sensors to TTN and Grafana. The unit of the pressure sensor 
is Bar. The unit of the soil moisture data is Scaled Frequency 
Units (SFu). Its subsurface probe measures soil moisture and 
temperature at eight distinct levels of depth.  

III. RESULTS 

A.  Hydrologic Model Simulations 

As mentioned, the HEC-HMS model has five subbasins 
and five reaches with a junction point and a diversion to 
represent the overflow structure. The parameters for each 
subbasin are area, curve number, imperviousness, and lag 
time (Table I).  

TABLE I.  SUBBASIN PARAMETER INPUTS  

Subbasi

n 

Area 

(mi2) 

Curve 

number 

% 

impervious 

Lag time 

(min) 

1 0.0514 53 6.49 22.3 

2 0.0595 52 11.1 29.4 

3 0.0283 72 14.7 37.8 

4 0.0438 70 47.8 24.6 

5 0.0870 78 42.0 21.6 

 

The five reaches represent the longest time traveled 
within the Dell watershed, and the lag time for each are listed 
in Table II below.  

TABLE II.  REACH LAG TIMES 

Reaches  Lag time (min) 

1 27.1 

2 29.4 

3 53.1 

4 30.7 

5 31.9 

 
A simulation of the model was produced with a five year 

24-hour storm with 15-minute intensity, and overall, there 
were 69.2 cubic feet per second (cfs) diverted from the 
watershed into the outlet structure leaving 10 cfs to flow into 
Dell Pond, the sink. Runoff from the subbasins 1-3 were all 
similar being 9.1, 12.0, and 13.3 cfs, respectively. The peak 
discharge from subbasins 4 and 5 were 29.1 and 63.1 cfs 
respectively (Table III). The increase of runoff in subbasins 3 
and 5 may be due to several factors including the increased 
curve number and % impervious. The volume of the runoff 
seems to correspond with the peak discharge except for 
subbasin 3. This may be due to the basin’s curve number and 
lag time.  

TABLE III.  FIVE YEARS STORM SUBBASIN RESULTS  

Subbasins Peak Discharge 

(CFS) 

Volume (in) 

1 9.1 0.98 

2 12.0 1.11 

3 13.3 2.36 

4 29.1 3.19 

5 63.1 3.39 

Diversion 69.2 1.23 



  

 
A simulation of the model was produced with a 10-year 

24-hour storm with 15-minute intensity, and overall, there 
were 78 cfs diverted from the watershed into the outlet 
structure leaving 10 cfs to flow into Dell Pond, the sink. 
Runoff from the subbasins 1-3 were all similar being 14.3, 
17.9, and 17.2 cfs, respectively. The peak discharge from 
subbasins 4 and 5 were 35.7 and 77.0 cfs respectively (Table 
IV).  

TABLE IV.  TEN YEARS STORM SUBBASIN RESULTS  

Subbasins Peak Discharge 

(CFS) 

Volume (in) 

1 14.3 1.41 

2 17.9 1.55 

3 17.2 3.04 

4 35.7 3.92 

5 77.0 4.16 

Diversion  88.1 1.77 

 
A simulation of the model was produced with a 25-yearr 

24-hour storm with 15-minute intensity, and overall, there 
were 114.3 cfs diverted from the watershed into the outlet 
structure leaving 10 cfs to flow into Dell Pond, the sink. 
Runoff from the subbasins 1-3 were all similar being 22.6, 
27.3, and 22.6 cfs, respectively. The peak discharge from 
subbasins 4 and 5 were 44.7 and 95.2 cfs respectively (Table 
V).  

TABLE V.  25 YEAR STORM SUBBASIN RESULTS  

Subbasins Peak Discharge 

(CFS) 

Volume (in) 

1 22.6 2.11 

2 27.3 2.26 

3 22.6 4.07 

4 44.7 5.01 

5 95.2 5.30 

Diversion  114.3 2.65 

 

Looking across all three storms, the peak discharge 
increased 27.3% from the 5-year to the 10-year storm, 29.7% 
from the 10-year to the 25-year storm, and 65.2% from the 5-
year to the 25-year storm. While all the diversions only 
allowed 10 cfs to go to the sink, they all occurred at different 
times. In Fig. 5, the peak diversion occurred at the 11th hour 
of the storm. In Fig. 6, the peak diversion occurred at the 10th 
hour of the storm, and in Fig. 7, it is shown that the peak 
diversion occurred at the ninth hour of the storm. Because of 
this outlet structure, the Dell Pond should not overflow, and 
this is what these simulations illustrated.  

 

Fig. 5. Five Years Storm Diversion Hydrograph 

 

Fig. 6. Ten Years Storm Diversion Hydrograph 

 

Fig. 7. Twenty-Five Years Storm Diversion Hydrograph 



  

B. IoT Energy Model  

After acquiring voltage data from the weather sensor via 

Grafana, two models were created to predict the voltage as a 

function of time to better estimate when a given sensor’s 

battery would need to be replaced. This would allow better 

understanding of how the battery discharges and the 

behavior of the battery when it discharges. Although, the 

recommended time to replace the battery is 2.0V, the last 

message sent from the weather station was at 2.1V, thus we 

assume the battery should be replaced at the latest at 2.1V. 

In Python, regression models of first and third orders (Fig. 

8) were applied to the voltage data to foresee when the 

voltage reaches 2.1V and the best time to replace the battery. 

It was more appropriate to use the third order because it has 

the lowest MAE value of 0.0126 compared to the MAE of 

the first order which has a value of 0.0313. We did not 

choose to keep increasing the order of regression because 

after the third order, the MAE does not substantially 

decrease, for example, the MAE of the fourth order is 

0.0115. Thus, we adopt a third order polynomial model as a 

reasonable tradeoff between complexity and precision. 

 
 
Fig. 8. Battery Voltage as a Function of Time with a 1st and 3 rd. Order 

Regression 

                                           (2) 

 
             (3) 

  

It was determined that the third order equation was the 

best fit of the voltage. Based off this model, we calculate the 

amount of time taken for the battery to deplete using (3). 

Expected Battery Depletion Time = Y(T) = 2.1V is 

subtracted from Current Time of the New Battey = Y(T) = 

2.9 V. The estimate of the time it takes to reach 2.1V from a 

new battery is 15.9 months. 

The time series analysis resulted in the following ARIMA 

(p=0, d= 2, q= 1) model (4), which can also be described as 

a MA (1) model on the second differences. As mentioned in 

the methods section, this model uses the second difference 

of the time series data to transform it into a stationary time 

series. It contains one moving average component. ∇2xt 

refers to the second difference, wt refers to an independent, 

identically distributed normal random variable with 

parameters N (0, 4.26×10-5). 

 

                             (4) 

 

Assessing the time series model, we find its AIC value to 

be –1136.08. Fig. 9 shows that the QQ plot of the fitted 

values against the residuals is Gaussian for our model, 

making it valid to use for forecasting. 

 

 
Fig. 9. Diagnostic plot of the “Voltage.auto” ARIMA model 

 

 
Fig. 10. Plot of Ljung-box Test 

 

The plot of the Ljung-box test in Fig. 10 shows that the 

model is adequate for more than twenty lags, which also 

increased our confidence in the model.  

Using our time series model, we forecasted the values for 

the next 10 days, and compared them to actual data. 

 
Fig. 11. Predicted vs Actual Voltage 

 

The predicted voltage trend shown in red in Fig. 11 

closely follows the actual values shown in black. The MSE 

of the set of predicted and actual values was extremely low, 

at 1.29×10-5. This, along with the diagnostics performed 

indicate that the model we created can give reliable 

predictions of future battery data.  



  

C. Deployment of IoT Sensors 

Our team deployed near the Dell Pond in Charlottesville 
one pressure sensor (model DL-PR26) and one soil moisture 
sensor (model DL-SMTP) on March 21, 2023. The levels of 
soils moistures represented in Fig.12 are: 100, 200, 300, 400, 
500 mm which respectively correspond to levels 0,1,2,3,4,5. 

 

Fig. 12. Moisture Levels from Five Depths at the Dell Pond 

As seen in Fig. 13, we have an average of 55mBar. The spike 
shows an increase in water pressure, evidence of a storm. It 
infers how pressure is related to how deep the water is. As 
the pressure increases, the water depth also increases; this can 
be used for notifications for flood alerts. 

 

 Fig. 13. Water Pressure Levels at the Dell Pond 

IV. DISCUSSION 

A. Limitations of the Hydrologic Model 

Our model is now only considering subbasins around the 

Dell watershed. There are some flood control structures 

along the pond that have not yet been added to the model. 

There are also some limitations to the HEC-HMS software. 

The simplified HEC-HMS model cannot model loop stream 

networks or backwater. The model can be improved by 

adding more parameters such as soil moisture. Since the 

sensor is deployed, we can add the soil moisture and 

precipitation data derived from sensor. However, the time 

required to run the model is also worth considering. If there 

is an excessive number of parameters presence in the 

model, the software will take a longer time to simulate. 

B. Limitations of the IoT energy model 

The analysis of the battery level was based on only one 
sensor, the weather station sensor, which is the only one for 
which we have a full battery discharge cycle. For future 
studies, more data used from the other sensors as well as 
more iterations of the same sensor going through multiple 
discharge cycles would more accurately depict the lifespan of 
a given sensor. Although preliminary results of individual 
models were acceptable, more investigation is needed on how 

to achieve an integrated approach to battery voltage modeling 
using principles from both methods demonstrated in this 
paper to capitalize on the different strengths that each can 
offer and provide a real-time display of remaining battery 
time. Additionally, to improve the battery prediction models, 
regression models should include other additional variables 
such as spreading factor, which can provide insights on their 
significance to battery life. 

V. CONCLUSION 

Charlottesville, like many cities and communities 
worldwide, is expected to experience a greater frequency and 
intensity of storms due to changing weather patterns resulting 
from climate change. This paper holistically incorporates 
components important to IoT functionality to create a basic 
understanding of one of many watersheds in the 
Charlottesville area. It provides a step towards accurately 
predicting and warning the local community about floods in 
real-time. 

This work contributes a simple model of applying IoT in 
flood management. It delivers general guidance on how to 
create flood modeling using geographic data in ArcGIS and 
precipitation data added in HEC-HMS. Then, simulation 
hydrographs for 5-, 10- and 25-years storm can be generated.  

Our preliminary investigation of battery life contributes to 
the ongoing discussion of IoT system management, as it can 
support managers in efficiently allocating resources for IoT 
battery replacement tasks, especially when dealing with many 
IoT devices and hard-to-reach deployment locations. 
Furthermore, the sensors deployed near the Dell Pond will 
help to create a small-scale testbed which can be scaled up 
for creeks, rivers, and ponds in Charlottesville going forward. 
With more IoT deployments, more battery discharge data will 
be collected, allowing for more complex battery life 
estimation models. 

To further develop this flood management system, the 
next steps would involve creating code to automate the 
process of incorporating precipitation data into the HMS 
model and the predicted water levels into the database. The 
precipitation data would come from the sensors. Ideally, a 
complete dashboard would consist of an interface which 
displays the current water levels as well as simulated water 
levels and alerts when the actual water levels are reaching a 
threshold point. The interface would allow flood response 
teams to compare the actual water levels to the potential 
flooding water levels and enact their flood warning response 
sooner and more accurately. It would also include the ability 
to predict the battery level to enable proactive maintenance of 
the IoT system. 
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