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Abstract
Focused ultrasound can treat a variety of diseases through targeted, nonsurgical tissue destruction.

For brain diseases, focused ultrasound treatment aims to thermally ablate an area of the brain by raising
target tissue temperature above 55℃. Successful ablation is not guaranteed, as individual patient skull
parameters and transducer settings affect the ability of the ultrasound beams to ablate. To predict ablation
success before treatment, a skull density ratio is currently used, despite historical inaccuracies in
predicting treatment success. The ability to directly predict the temperature a target can reach prior to a
focused ultrasound treatment is vital to save time in the procedure, ensuring eligible patients benefit and
reducing the discomfort of ineligible patients. Current methods do not accurately or simply predict the
target temperature that will be reached during treatment. To predict the target temperature, a
machine-learning model was built and trained using patient data. The model is a boosted tree regressor,
called XGBoost using individual patient and transducer parameters. The final model has an R2 value of
0.89 and an RMSE of 1.34℃. Part of the performance evaluation includes a decision tree for visualization
and an analysis of the variance, both vital for future work on this model. To increase accessibility, a GUI
is built using the model so researchers and physicians can input values and receive a prediction. The
model can be improved in the future using more data and higher-resolution biological data, such as
vasculature imaging of the brain. The final model’s ability to make accurate pre-treatment predictions
accelerates the adoption of, allowing more patients to to benefit from, this incisionless treatment option
for brain diseases.

Keywords: high-intensity focused ultrasound, temperature prediction, machine learning, gradient-boosted
random forest, precision medicine

Introduction

Focused Ultrasound Technology
Focused Ultrasound (FUS) is a noninvasive

treatment method that allows targeted tissue destruction, or
ablation. FUS tissue ablation in the brain is achieved by
the combined heating effect of hundreds of individual
high-intensity ultrasound beams generated from a
helmet-shaped transducer and focused toward a common
target. Applications of FUS to brain diseases are
wide-ranging, spanning from neurological diseases such as
Alzheimer's and Parkinson's to physical brain diseases
such as brain tumors [1]. Besides pharmacological
treatments, which are hindered by the blood-brain barrier,
these disorders are often treated with radiotherapy,

electroconvulsive therapy, or deep-brain stimulation.
Compared to these alternatives, FUS is incisionless and
extracorporeal, conferring rapid recovery time with
minimal complications. 

The US Food and Drug Administration first
approved FUS for Essential Tremor in 2016, and more
recently for advanced Parkinson’s [2]. It is now actively
being investigated for other disorders such as
obsessive-compulsive disorder, chronic pain, epilepsy, and
dystonia [3]. In contrast to the previously used surgical
methods, the outcomes of FUS ablation are immediate and
permanent. Therefore, it is imperative to select patients
well, measure the precise location of targets, and carefully
monitor patients throughout and after the treatments.
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Current Pre-FUS-Treatment Metrics
Prior to a FUS treatment, computed tomography

(CT) and magnetic resonance imaging (MRI) of the
patient’s head are collected and used for software-based
simulations and calculations.  The CT image is used to
assess variation in the skull, the most significant attenuator
of the ultrasound beams [4].  The MRI image is used to
resolve the brain tissue structure [4].

After image collection, visualization softwares are
used to plan the treatment and extract image-based
calculations. One FUS visualization software is Kranion .
This software is an open-source environment that allows
users to simulate the FUS treatment as well as replay
previous treatments [5,6]. When a treatment is loaded into
the Kranion environment, the ray paths of the ultrasound
can be viewed, illustrating how the transducer and the
skull orientations impact the number of penetrating rays.
Simulation and anatomical metrics can be exported from
Kranion such as: the incident angle of the beam, the path
length of refracted beams in the skull, skull thickness, and
the skull density ratio. This list is not exhaustive but
represents the skull metrics relevant to this project. 

The skull density ratio (SDR) can be calculated in
Kranion, which is especially useful for physicians since it
is the primary metric with which physicians currently
predict whether or not a focused ultrasound treatment will
be successful for the patient [6]. The SDR represents the
global averaged ratio between the mean Hounsfield unit
values, a measurement of radio density usually used in the
interpretation of CT images, between the skull’s cancellous
and cortical bones [7]. Values greater than 0.4 are
considered more suitable for treatment [8]. Values less than
0.4 typically reflect a denser skull, meaning that due to
greater attenuation and reflection of the ultrasound beams,
more energy would be required to reach a therapeutic
threshold temperature of 55℃ [4]. The SDR is limited by a
high margin of error, where patient SDR scores do not
historically accurately predict patient treatment success,
excluding patients who could benefit from treatment and
including patients who cannot be fully treated [7].

Temperature in Focused Ultrasound
The goal of a FUS treatment is to achieve thermal

ablation of target tissue. Thermal ablation is heating
sufficient to cause protein denaturation, and thus tissue
death, in the target region. In a FUS treatment, because the
combined heating effect of many ultrasound beams at the
focus is required to cause ablation, tissues surrounding the
target region are not ablated.

Thermal ablation is achievable through FUS
because ultrasound beams are mechanical compressional
waves. When a high-intensity ultrasound beam enters
tissue, the tissue compresses and stretches with the beam. 
The friction of the relative movement of tissues converts
the mechanical movement energy to heat energy. The
combined heat energy generated at the target point by
many high-intensity beams is sufficient to raise tissue
temperature to the therapeutic threshold for FUS ablation,
widely considered 55℃ [9]. The true temperature required
to cause FUS ablation varies with exposure and is more
accurately described using a cumulative exposure metric of
cumulative equivalent minutes at 55℃, CEM55.  CEM55
is modified from the CEM43 relationship for ablative
radiofrequency exposure, which accounts for both time at a
tissue temperature and the difference between the current
temperature and the threshold [9].

Thermal ablation is distinct from hyperthermia, the
result of achieving a tissue target temperature lower than
55℃. Hyperthermia increases cell permeability, allowing
for greater blood flow and drug absorption without
permanent damage [4]. Hyperthermia has been studied
extensively and can increase the efficacy of chemotherapy
and radiation therapy in solid tumors. FUS systems have
both thermal ablation and hyperthermia properties.
However, for localized neurological disorders like
essential tremor, large lesions are necessary for treatment,
which can only be created through thermal ablation. 

After a target region is ablated, destroyed tissue is
ultimately naturally removed by the body, making the FUS
procedure wholly incisionless.  The ability to remove
diseased brain tissue without surgery, especially for target
regions deep in the brain, makes research into methods for
best achieving ablation temperatures through FUS
extremely attractive.

Current Temperature Prediction Methods
Current FUS treatments require significant

on-the-fly adjustments during treatment before
successfully achieving thermal ablation temperatures. This
is due to the fact that while pre-treatment planning data is
collected, and methods exist to predict the temperature
reached during a FUS treatment, these temperature
prediction methods have not been sufficiently developed or
clinically utilized to accurately predict a patient’s treatment
temperatures. Some temperature prediction methods use
statistical methods to categorize patients into prediction
groups. Others use physics-based methods to model the
temperature deposition through bioheat equations and
visualization softwares. Still others implement machine
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learning on existing or simulated data to predict the
temperature reached during treatment.

One statistical method to predict the temperature
reached during a FUS treatment is the Beam index [6].
This article uses the Kranion visualizer to develop and use
the model. The Beam index was created to capture the
energy penetration of the focused ultrasound treatment. To
do so, it calculates the ratio of energy transmitted through
different parts of the skull and brain. These ratios are
multiplied together and scaled to output the Beam index.
This index can then be used in a temperature prediction
model. This model developed is a linear-mixed-effects
model. This article uses 22 patients and 163 sonications.
The Beam index predicts a temperature within 3.8℃ of the
true temperature 75% of the time. 

Other temperature prediction models are
simulation-based, used to model the physics of
temperature deposition during treatment. These model
types often utilize the Pennes Bio-Heat Transfer Equation.
One model of this type develops a computational model
and compares it to an in vitro experiment, using a
simulated power field [10]. Another model is also a
computational model that aims to mimic the temperature
spread of the focused ultrasound treatment, using the
bioheat equation, but improving on it in MATLAB [11].
Both models are examples of predicting the temperature
but are simulation-based and do not rely on recorded
patient data. 

Lastly, a machine-learning temperature prediction
method analyzes different approaches to estimate
maximum pressure, power deposition, and temperature rise
[12]. One model of this type tests on 19000 simulated data
points, not human patient data. Overall, the random forest
regression model was the most accurate. Random forest
models can have their performance parameters tuned,
which increases their performance. The simulation data is
specific to a transducer, and the authors suggest that their
model does not perform well outside of this dataset. 

These existing statistical, physical, and machine
learning models represent valuable work done to predict
temperature in focused ultrasound treatment, a definitive
measure of the treatment's success. However, these current
methods lack accuracy, are too complex for daily clinical
use, or lack human testing data. This project aims to use
human patient data to build a machine-learning model,
building on the previous model methods, to increase the
accuracy and simplification of temperature prediction for
FUS treatments.

Results

Temperature Predictive Model
Six models, trained on three feature subsets, were

tested to determine an optimal model for temperature
prediction. The models tested were: linear regression,
support vector regression (SVR), random forest regression
(RF), and gradient-boosted random forest (XGBoost). For
the SVR and the RF models, two versions were tested. The
first version used default hyperparameters, chosen from
the scikit-learn function documentation, and the adjusted
version used optimized hyperparameters. Three subsets of
features were tested, ranging from 9-18 features. The 9
feature group resulted from the empirical feature selection.
The 11 feature group was based on intuitive biological
relevance. The 18 feature group contains all features, a test
to ensure that removing features would not compromise
accuracy. For each model, the R2 and maximum error were
reported, shown in Figure 1.

The XGBoost model type performs best. This
model is similar to the random forest regressor, which is
composed of decision trees. XGBoost is a machine
learning method that trains multiple gradient-boosted
decision trees, weights most important trees, and combines
the tree predictions to minimize final prediction error [13].
The use of the 9 empirically selected feature subset in the
XGBoost model also minimized the lowest error. The 9
features required as model input are: sum of input energy
for the treatment, focal RAS-R, focal RAS-A, focal
RAS-S, mean incident beam angle, dose area, mean SDR,
mean skull thickness, and number of ablative sonications.

Model Hyperparameter Tuning
The quantification of the performance in Figure 1

was performed on a 90-10% testing/training data split.
This training-favored split is necessary for machine
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learning on small datasets. However, it reduced the test
data to fewer than 10 patients, limiting result confidence.
To increase the model confidence, leave-one-out
cross-validation was used. Leave-one-out cross validation
trains a model on all but one patient and then creates a
prediction for the left-out one patient. The process is
repeated until each patient has been tested, creating 75
temperature predictions. 

The baseline model of XGBoost is often viable,
but tuning its hyperparameters can improve its
performance [14]. These hyperparameters control the loss
function of the model, as well as the depth and size of the
trees. The model hyperparameters were tuned with two
steps: random search cross-validation and intuition of
hyperparameter meaning. First, random search
cross-validation was used to iterate through a range of
hyperparameters and output the most
performance-optimizing set. Because the leave-one-out
cross-validation involves creating a new model for each
prediction, the hyperparameter tuning must be redone for
each prediction, increasing the computational cost of the
model. To reduce the computational cost, for each fold, the
best hyperparameters were recorded. The hyperparameters
that were most often identified and intuitively appropriate
were selected to be used to create one final model for all
future predictions.

Model Performance and Interpretability
A direct measure to understand the performance of

the model is a representative decision tree from the
XGBoost forest, as shown in Figure 2. Decision trees
display the model decision-making, especially useful for
explaining the model to non-technical audiences. A
decision tree showcases model decision-making through
leaf values, which represent the prediction of that tree for
that data point. The values of all the leaf nodes are used to
form the final model prediction in conjunction with the
leaf node values from the other trees in the forest.

To holistically assess the model’s performance, the
temperature predictions of the model were plotted against
the true achieved temperatures, as seen in Figure 3. For
reference, two lines were added to the figure within 2℃±
of the true temperature. 66 predictions (88%) fall within ±
2℃ of the true temperature. 55 predictions (73%) fall
within 1℃ of the true temperature. The model had a root±
mean squared error of 1.34℃. 

An ideal model has low bias and low variance,
predicting accurate and consistent values. Low bias can be
detected if a histogram of residuals is centered and
maximal at zero, indicating it is likely to minimally predict
below and above the true values. A model has low
variance if the spread of residuals is narrow, indicating a
consistent prediction. Our model, as seen in Figure 4, has
a shift in residual values to the right of zero. While the
peak at zero shows that our model can often accurately
predict the temperatures, the shift of the curve to the right
indicates there is a systemic bias in our model in which the
predictions are underestimating the true values. In
addition, the presence of positive residuals indicates there
is variance in our model. However, the lack of large
residuals outside of zero suggests that the variance is low
compared to the bias.
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Bias and variance can be altered through
hyperparameter tuning, and one common method is to
increase the number of trees. Figure 5 shows that
increasing the number of estimators or trees in our
XGBoost model decreases the bias and variance. This is
because each additional tree attempts to model and correct
the errors made by the previous trees. However, the model
reaches a stable point at around 70 estimators where
additional trees do not result in decreased bias or variance
and instead add computational complexity. This is the
lower limit of bias and variance within the limitations of
our model.

Graphical User Interface
A Graphical User Interface (GUI) was developed

for users to interact with the temperature predictive
model.  Users can input numerical values for the 9 patient
and transducer features used in the model and receive the
model’s prediction for the maximum temperature the
individual patient’s target region will reach.

The brain picture shows a rudimentary focused
ultrasound patient setup to make the use of the GUI clear. 

While making the temperature prediction, the green
progress bar mimics the downward progression of a
focused ultrasound beam to make interacting with the GUI
engaging and easily show the GUI is working.

Discussion

Our model provides a much-needed ability to
accurately predict the temperature a target region will
reach before FUS brain treatments. The model improves
upon previous work as it provides the ability to make
predictions rather than rely on statistical categorizations, it
is more accurate than previous methods such as SDR and
the Beam Index, it is trained on real patient data, and it is
simple and accessible for further research and clinical use.

The accuracy of the model is a critical goal. As a
RF model that has previously been found to perform well
for FUS temperature prediction, and XGBoost is a boosted
version of a RF, XGBoost inherently increases previous
performance. As demonstrated through its high R2, the
final model captures important sources of variance that
influence measured temperatures in this dataset. The
model also demonstrates a high accuracy between
predicted and true temperatures through low root mean
squared error and residuals. 

The accuracy of the temperature prediction shown
in the GUI for future inputs relies on good faith input
parameters within a reasonable biological range. For
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example, an input involving the parameters of 4 ablative
sonications but only 1000 J of summed energy, which does
not reflect a reasonable amount of energy to achieve 4
ablative sonications, may produce a misleadingly
high-temperature prediction result. To allow the most
flexibility for researchers in this development stage, the
model does have biological common sense input
rejections. Adding warnings or rejections of biologically
impossible inputs can be added in future GUI development
to guide the user in providing valid inputs, especially in a
clinical setting. For reference, realistic input biological
values we found in the patients are shown in
Supplementary Table 1.

In the research stage, the XGBoost model is
especially useful for its flexibility. It has many
hyperparameters that can be adapted, and is very suitable
for large datasets, offering flexibility for future dataset
expansion. The current model averages or sums certain
parameters to collapse into an accessible by-patient
dataset. However, there is more granular data, such as
Kranion’s rich by-channel estimates of mean skull
thickness and SDR, available that could be used for a
future model iteration. Collecting the transducer
information by channel could allow more analysis of
variation in skull density and skull thickness as well as
energies emitted in each beam, possibly further increasing
temperature prediction accuracy. Additionally, systemic
model changes such as additional training and testing data
could reduce bias and variance in the current model.

Though FUS confers high therapeutic value via its
incisionless approach and has been FDA-approved for
brain diseases like essential tremor for 8 years, the
adoption of the technology has been slowed. One cause of
slowed FUS adoption is economic barriers such as low
reimbursement rates for patients [15]. The development of
our model in Python, a free-to-use language, was a
conscious choice to reduce economic barriers in the
research stage of focused ultrasound. The packages used
within Python, especially the GUI package, were chosen to
be hardware lightweight and cross-platform. Additionally,
input features were selected to be few and clinically
reasonable to obtain. For example, the RAS inputs are
target position inputs in 3 dimensions, already obtained
from the MRI pre-treatment. Similarly, the desired dose
area can be obtained from the MRI pre-treatment.
Parameters like the mean incident angle, mean SDR, and
mean skull thickness can be exported from Kranion. Only
the sum of input energy and and number of ablative
sonications require intuitive input and experimentation.
The development of a graphical interface is crucial to
producing user-accessible research, allowing focused

ultrasound technology to be used clinically despite high
levels of complexity. The decision tree and the GUI allow
physicians to explain and interact with the machine
learning model, bridging the gap between developers and
clinicians. The prediction accuracy and accessibility
advances of our model are designed to remove technical
and economic barriers for FUS technology, allowing more
patients to benefit from an incisionless brain treatment.

Materials and Methods

Patient Data Processing
94 anonymized treatments performed from 2011 to

2019 were provided by the UVA Focused Ultrasound
Center. These treatments were loaded into the Kranion
visualization software and patient anatomical calculations
were exported [6]. Of the 94 treatments, 75 contained both
a usable transducer and anatomical export file and were
used for the model. Transducer and anatomical files were
combined as shown in Figure 7. The transducer files were
given by-sonication and the anatomical files were given
by-beam-channel, so collapses of the sonications and
channels were performed to produce by-patient input for
the model. 

For these collapses, we identified the maximum
average temperature as the goal for prediction and held the
transducer features of the dose area constant at that
temperature. Other transducer features, such as the input
energy and the number of ablative sonications, were
summed from all previous sonications to represent the
treatment progression before that goal temperature was
reached. By-channel anatomical features, such as the skull
density ratio and the skull thickness, were filtered to
remove channels with missing data and then averaged
across all remaining channels to produce a by-patient
value.
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Patient and Transducer Feature Selection
From the processed data, certain anatomical and
mechanical features of the treatment were selected, and the
model was trained on this subset. The feature subset was
chosen using the intersection of features identified as
optimal by two methods: SHapley Additive exPlanations
(SHAP) value calculations for each feature and feature
correlations.  

SHAP values, based on game theory, predict the
probability of the feature contributing to the model’s
output [16]. We utilized the SHAP package in Python to
calculate these values. A SHAP value is calculated for
each feature for each datapoint, and features are ranked in
order of mean absolute SHAP value to form a feature
importance plot, as in Figure 8a.

Features with a high numerical value are colored
orange and features with a low numerical value are colored
blue, adding additional context to the feature importance
rankings. A positive SHAP value means the feature
datapoint raises the model’s final temperature prediction,
while a negative SHAP value means the feature datapoint
lowers the model’s final temperature prediction.

The correlations for all features were utilized by
plotting each feature against all other features using the
seaborn package in Python, as in Figure 8b. Features that
were observed to exhibit a correlated relationship with
another feature were removed. When two features were
correlated, the feature with the lower SHAP value was
removed; hence, the SHAP value calculations and feature
correlations were used iteratively.

Finally, any remaining features with low SHAP
values were removed.  The final features were 9
high-SHAP, low-correlation features.  The number of
features was minimized as much as possible without
compromising model accuracy to reduce user burden.

Model Selection
To select the best models, six different models

were trained from Python’s scikit-learn package [17]. For
this model selection, the data is split in a 90/10 split using
train_test_split() in Python. The first one is linear
regression, using the LinearRegression() function. The
second one, SVR, uses the sklearn.svm package. Two of
the parameters are changed for the second test of the SVR,
gamma and C. Gamma is set to ‘auto’, which sets the
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coefficient for the function used to train the model. C is the
regularization parameter, which we set to 10. The next
model is the random forest regressor, which is trained
using the RandomForestRegressor() function in Python.
Some of the changes to the hyperparameters include:
changing the depth of the trees, changing the tree splits,
and changing the number of estimators. The last model is
the XGBoost model, it uses a similar method as the
random forest and uses the XGBoostRegressor() function. 

The results were plotted in R, using the ggplot2
package [18]. The R2 and error are on the axis and using
scale_size_manual(), the sizes of the data points were
changed based on the feature number. The opacity was
also adjusted with the smaller feature numbers being more
opaque, to make them stand out more. 

At this point the model is not tuned. For the final
version of the model, leave one out cross-validation and
hyperparameter tuning was used. This was done using the
LeaveOneOut package in Python which allows for a new
train_test_split to be created for every fold. This means
that a loop is created with one test data point taken out
each time, for each iteration, the prediction is outputted.
The output is then used to test the performance, as seen in
the Results section. 

Model Hyperparameter Tuning
Hyperparameter tuning was first done using the

RandomSearchCV function from the scikit-learn package
in python. Hyperparameter tuning was run for each fold,
and for each fold, the optimal set of hyperparameters are
returned. The ranges tested for the hyperparameter were
chosen from the documentation. After using the most
commonly outputted ones, the final parameters are shown
in Supplementary Table 2.

Model Performance Evaluation
To output the decision tree the best iteration from

the XGBoost model is outputted and plotted with
plot_tree. The model retains the information of each tree,
and the best iteration is outputted (using
xgb_model.get_booster().best_iteration()), to show a more
comprehensive tree. Some trees are very small with just
one or two decisions, which is not intuitive for physicians,
this is why the best iteration tree is outputted. 

To visualize the predictions of the model and get
the R2 outputted, the predictions and real values are plotted
using the matplotlib package [19]. After each iteration, the
test values extracted from the leave-one-out method are
used to predict the temperature. For each fold, a new
prediction is stored in a list. Using the r2_score function

from the scikit-learn package, the R2 is calculated between
the real and predicted values. On the plot, a y=x line is
plotted to visualize the perfect predictions, which helps
visualize how far from the real values the predictions are. 

To plot the residuals to visualize the variance, the
real and predicted values were extracted from python and
imported into R. First, the predicted values were subtracted
from the real values in Excel and uploaded into R using the
read_excel function, native to R. Then, using ggplot2, a
histogram was created to help the visualization. The x-axis
was adjusted to demonstrate more values. To visualize the
bias and variance decomposition, the
bias_variance_decomp() function was used, outputting the
bias and variance with varying values of estimators. The
results are aggregated and imported into R. 

GUI Development
The GUI was developed in Python using the

preloaded tkinter package. The tkinter package is designed
to be lightweight and cross-platform, facilitating
compatibility with many computer systems [20]. The GUI
imports the trained model within the same script that
creates the interface, creating ease of use by not requiring
users to first run any other files to train the model. The
brain picture was created by saving a transparent png.  The
brain beam was created using a progressbar widget from
the ttk package within tkinter.  The progressbar was turned
vertically and the direction reversed by starting the bar at
full and decreasing the bar value using the time package
within Python. 

End Matter
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Supplementary Information

Table 1.  Biological Common Sense Parameter Ranges from Model Dataset

Input Parameter Units Minimum Maximum

Sum of Input Energy J 500 263535

Focal RAS-R mm -24.04 13.3

Focal RAS-A mm 32.06 48.2

Focal RAS-S mm -20 33.6

Mean Incident Angle ° 12.49 22.46

Dose Area mm2 0 56.23

Mean SDR – 0.36 0.84

Mean Skull Thickness mm 4.44 9.79

Number of Ablative Sonications – 0 7

Table 2. Hyperparameters for Final XGBoost Model

Parameter Value

Objective Squared Error

Column Sample by Tree 0.8

Learning Rate 0.1

Maximum Depth 3

Minimum Child Weight 3

Number of estimators 500

Subsample 0.8

Early Stopping Rounds 5
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