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GEOMETRICAL PECULIARITIES.

1. In this section we shall find the finite transformations and the path-

curves of the group ' ,

9f
where p :: g,—,

 

. . 1 . 2 2 2,

1), Y» 7, M), W: 21: “’27, 3/9, 27

 
  

if F9)”
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We shall also briefly discuss some of the geomet1ical peculiarities of the

Group.

2. The most general infinitesimal transformation of the Group is

UfE (a, ’1‘ 2611’ ’1‘ 013113)]? + (a2 + 2[’23/ “1‘ 023/2) 9 + (a3 + 25:13 + 0332) 7' 1

wheie (1,, 1),, c, (i = 1,2,3) am certain undetermined constants.

The finite transformations are given, in the usual manne1, by the integia-

tion of the following simultaneous system:

(Z1121 = (23/, _ = i (2.2, = dt

“1 ’i‘ 261% 'l‘ 01%;) a2 '1‘ 2523/1 ’1‘ 023/12 “3 + 20:131 ’l‘ 03312 ,

with the condition that m, = m, 3/, = 3/, a, = .2, when t = 0.

Now, since the variables have already been separated in these equations,

it is easily seen that whether (1,0, < = > 5,? ('1' = 1, 2, 3) the finite transfor-

mations have the form

m1=a3m+1’ J“/3,w+1’ ‘

raw—tag 7 __/31-’13+flz 2 _T13+7’2

where 01,, [9,, 7,- are certain constants.



 

2 - ROBERTS. ON THE TRANSFORMATION GROUP, ETC.

3. It is evident that these transformations will transform the equations

:11 = const., 3/ =_: const., 2 = const. '

into ' '

a1, = const., 3Jl = const., 2, = const.

Hence, we observe that all the planes parallel to the Q's-plane are moved

parallel to themselves by the transformations of the Go. In this case, we say

theseoo parallel planes form an invariant familJ of planes; that is, the

family is invariant as a whole, while the planes of the familJ are interchanged

among each other 113/ 111eans of the transfin'mations of the 0.

Similarly the planes paiallel to the res—plane and aJ-plane form two other

invariant families of planes, and we have,‘in all, three invariant families of

parallel planes, each family consisting of co 1 planes.

The intersections of the planes parallel to the 3/z-plane and ate-plane are

straight lines perpendicular to the wy-plane, and it is obvious, since the (02

lines perpendicular to the .vy-plane are the intersections of the planes of

invariant fcmtilies of planes, that these co 2 lines themselves form an invariant

family of parallel lines. This fmm'ly of lines is invariant as a whole, while

the lines of the family are interchanged among each other 63/ means oft/1e

transformations of the 0-,.

Similarly the lines perpendicular to the 3/2-plane and wee-plane form two

other invariant families of parallel lines, each family consisting of a line con—

gruence.

Since the planes of each invariant family of“ planes are parallel, the inter-

sections of the parallel planes of each family will be a straight line at infinity ;

and, as we have three invariant families of parallel planes, we shall have three

such lines. It is clear, then, that these three straight lines at infinity are abso-

lutely invariant.

4. To find what absolutelyinvariant loci exist within a finale dastance of

the origin, we equate to zero the coefficients of 3), J, and r in the general

transformation; for they are the increments given to re, 3/, and a, respectively,

by the infinitesimal transformation

Uf'1 (a1 + 251'” ‘l‘ 01‘1’2)J2 ‘i‘ (“a ‘i‘ 262.7/ ‘l‘ 623/2) 9 + (a3 +2 1H”l‘c:132)7

Thus we have the equations

a1 + 261.7: —l— 0,21

“2 ”i‘ 2Z’zl/ 'l‘ 023/2 '—

"3 "i‘ 36:13 “l‘ 033’2 =

l
.

o
o
o

which give the absolutely invariant planes

13:41: w=fi11 3/:“21 y=fiZ1z=a312=1832
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where the as and B’s are the roots of the above equations, and have the values

__ — bi + l/lb-rz — “101' ‘3 _ —‘ be ‘1'”)? — (4101_—_____, ,____.____.
at

(1'1; (1",:

The intersections of these planes are, of course, invariant; hence the

following points :

(“11 “21 as) a (”-11 fie: “3) 1 (181: ”—1: “3) a (/91: 1321 ’13)

((1,, a21fi3) 1 _(al, 1821fi3) : ([311 0'21 [33) 2 ((31: £2! [33) I

are absolutely invariant points; and are the vertices of a parallelepipedon,

which must also be absolutely invariant.

If 11,2 < m, the roots of the equations become imaginary, and our abso-

lutely invariant planes, points, and parallelepipedon, likewise, become imagi-

nary ; for the imaginary planes do not intersect in any real points or point.

If [1,.2 = (1,0,, the roots of the equations are equal, and our planes now

reduce to three and our parallelepipedon to an absolutely invariant point.

If h, = c, = 0, a1 = 1, a2 = a3, = 0, the transformation becomes

Uf :19 .

In this case, the roots of the equation

a1 + 2h1a' + 0le = O

are infinite, and the planes to = const. are now at infinity, while the planes

y = const. and a = const. are still invariant. A similar discussion holds

when the transformation reduces to

07— q, Uf::£ r,

or to any mere translation.

5. The points in space are moved by the general transformation of the

0-, along a) 3 curves, which we shall call the. Path- Curves of the Group. We

Shall now find these curves, and see whether any of the absolutely invariant

points just found lie on this curve congruence.

These curves, as usual, are found by integrating, in the most general

manner, the equations

(1a: __ (ly . __ . ole

a1 + 2/1111; + else“ a2 + 2623/ —|— e,y2 _‘ a3 —|— 2113.2 + e32z '

We shall find them for the three principal cases only; that is, according as

did; < = > 5‘2 (7: = 1, 2, 3).



‘
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If aie, < ()3, the co 2 path-curves, as is readily seen, are given by the equa-

tions 4

{I} — “1 UL l-y _ “2] k,

L3/ "‘ [32

where

fit E — bi —“_L/6132 —‘ (1,0,,

01

 

2
7,2 E 51 "' “101

’ b3” — (1303 ’(122 —- age2

and 01 and 0.3 are constants of integration. Evidently the absolutely invariant

points

1’: 511:0.“ 3/:(12, 2:11,,

9‘ w=f312 9:192: 3:133:

lie on these curves, so that each curve of the congruence of path-curves passes

through the points 1’ and Q.

If (1,0, > hf, the a: 2 path-curves are given by the equations

tan“ (/1131,- + u,) — h tan~l (,1in + 11,) = const.,

tan‘1 (,qu + 1),) — h tan“ (/1321 + 113,) = const.,

4—: and V, 3;:-
51

l '. . -—__=-_—__—.__——:'

i/aie, —— h,“ ' I/ (1,0,- — (1.; ’

where

01 __
 [A

and h and 11 have the same values as above.

In this case, the absolutely invariant points become imaginary, since the

imaginary planes do not intersect in any real points or point.

Finally, if ate, = [1,2, the co 2 path-curves are given by the equations

“—1.... __ ___1- = const.

0137 ‘l‘ 61 627/ “l“ [)2 ’

1 1
= const.,

else + 0, * 03,3 + 63.,

or '

{133/ + 77211.11} + ”13/ 'l" 6|. = 0 1

we +1112a' +1122 + h, = O.

In this case, the absolutely invariant points reduce to one point, the coordi-

nates of which are
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This point lies on the curves just found, so, that now each curve of‘the con-

gruence of path-curves passes through one point. .

In the first case the path-curves are usually algebraic ,' in the second,

transcendental; and in the third, they are given as. the intersections of hyper-

bolic cylinders.

Of course, other cases may arise, but they need not be further discussed.

6. We have already found the points that are absolutely invariant under

the transformations of the G9. We shall now find what “Invariants,” or

invariant relations exist between n points, three points, and two points ,' that

is, what functions f(ae,, y,, 2,, . . . , an, y,,, 2") are invariant, or what equations

f(96,, y,, 2,, . . . , 113,, y,,, 2,,) = O, are invariant antler the 09.

We shall first define what is meant by an invariant function, and an

invariant equation.

A function f(111,, y,, 2,, . . . , a,,, y,,, e,,) is said to be invariant under a

group of transformations in the same variables, if each increment given to the

function by each transformation of the group is identically zero.

An equation f(a',, y,, 2,, . . . , a,,, y,,, 2”) = O is said to be invariant, when

the increments are either identically zero, or are zero by means of f = O. The

analytical condition, then, is that the expression

’1

3f=§£8m1+g§lay1 +952631 "l“ +§giazn

shall be zero identically in case of an invariant function; and shall be zero

identically or by means of f = 0 in case of an invariant equation f = 0,—

where the 6.71,, 5y” he, must be obtained from the transformations of the Group.

7. We can now find the Invariants and invariant relations of n points,

three points, and two points.

Let the coordinates of the points he (a, y,, z, (i = 1, 2, . . . , 71.). Here we

wish, first, to find what functions f (111,, y,, 2,, . . . , 111,, y,,, e") are invariant.

In accordance with the above, we have the following conditions, which /

must satisfy simultaneously :

[[1.f:])1 ‘l‘ 272 ’l“ - - - +1711. 2 0,

01].”:(11—l‘g2’i' +Q1L=O1

Tf3’f'IT7’1-I—7'2+
"' +7In=01

Ulft‘ $1291 + ”2P2 'l" ' ' ' + {13112711 = 0:

05ng .7/191 'l“ .7292 ‘i’ - - ' ‘l‘ l/nqn = O a

U,f :: 2,1', + 2,11, + . . . + e.,,r,, = 0 ,

Diff-7‘: $12291 + $22222 + ' ' ' + $11.22)”: = O 1

U11” 2 size. + etc. + --~ + ate» = 0,

Usz 2,27', —|- 2227', + . .. 452,311,, = 0.
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The above complete system consists of nine equations in 3n.variables;

and, since all the n-row determinants of the matrix of the coefiicients Of 12,-, 9,, r,-

do not become zero identically, there are 3 (n —— 3) solutions of the system. From

equations U,f, 03f, and U7f we find (n —— 3) functions f(33,, 3a,, . . . , at”), which

are solutions of the system, as none of the other equations contain m. In

order to find these (n -— 3) solutions, we proceed as follows (see § 13) :

The solutions of equation U,j are .

902--“ £63..“ $07.1.”.____ ___.: __ ___ _,
(I), l, .7}, H , £0, w

If we introduce the quantities a,, as new variables, into the equations

[hf and Ugf,—since

U'a.=—1_(1—a) Ua=l(1—a.,) 270. =l(1_t)
1 1 W1 1 3 1 _ 911 - : 1 1 ”—1 W1 n—l 1

Uial = —-€Z!,(£l (1 _... “1)1 Z7702: —-a3,a2 (1 —a2)7 ' ' ' : Utah—1 = '— “Wu—[(1 _ all—1))

we have the following equations:

E) 9

19f’~£(1_(’-1))9Ji+(1—%)gf_2 -‘l'--+(1—’/-n—1)é)ai'=70:

n—l

 

 quElia—“O limo—a2);7,:+ +a..-.<1— aj=..-1),f
‘71—1

The solutions of equation U10f are

1~¢2_—_~ ’81, 1;“;L—!—.[3 ,,

-— ' —-—- 71—..'

1—a,”’ l—a,

If we introduce the quantities 19,, as new variables, into the equation

UH f,——-since

Ullfil = (1 _ (1,) fil (/91 "' 1): ' - °: . Elfin—2 = (1 _ a1) flit—2 (fin—2 _ 1) 5

we have the equation

 

. é)

Dig/231(191—1)§;+. .. + as (a... — 1) 9%; = 0-

.The solutions of this equation are

31—1 [92 :waw,_m3ml_m4

{91 fi2 —’ 1: ‘— {82 {U2 — a}, i

[91—1 fi,,_2 :32 —-$3 (la—$1,.
 

fil /3n-2 "‘ 1 fl _ $3 252 —" {1:7,
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We can now, on account of the symmetry Of the equations, write down the

remaining 2(n -— 3) solutions. They are

?/2__"‘_?/3 ./__1“‘./2'

fE ./1 “J2 J2“— 3/2'

f_32—33 31‘37:

31—22 '22—"2i

 

9

' where (i = 4, 5, . . . , n).

Hence, if four points, whose :e’s, y’s, or 2’s form an anharmonic ratio, are

transformed by means of the transformations of the Group, the 02’s, y’s, or 2’s

of the new positions of the four points will form the same anharmOnic ratio.

Evidently, this is equivalent to saying that the anharmonic ratio of four

planes parallel to one of the coordinate planes is invariant.

‘ For the invariant relations of two points, we have to find what equations

f(m,-, y,,2,, 2,, y,, 2,)——.. 0 satisfy all the partial differential equations, either

identically or by means Ofj—.— 0. '

It1s readily seen that the equations

wai—mj=0, ny2—3/1=0,szt—Zj=0

satisfy all the partial differential equations by means of f = 0 ; hence f = 0,

in any of the above forms, is an invariant equation. This means,——when,'for

example, a, —— at, = 0 is the invariant relation of two points,—that, if the two

points lie in a plane parallel to the ye-plane, when they are transformed by

the transformations of the Group they will still lie in a plane parallel to the

eye-plane.

It may be shown that all the invariant relations of two points-are of the

above forms.

Similarly, for three points, we have the equations

wt—{ejr—O, m,——a:,,=0, rc,-—~.2:,,=O,

3/1“?/J=Oa 3/2‘“?/I:=01 91—.7/12=0,

2,—2j=0, 2,—42k=0,2,—2,,=0.

These results are interpreted just as in the case of two points.

8. In like manner we can find the Invariants and invariant relations of a

point and a plane, two points and a plane, a plane and two points, etc.

\Vriting the equation to the plane in the form

uw+vy+w2=1,

1,

i2

 



8 ROBERTS. ON THE TRANSFORMATION GROUP, ETC.

and writing the transformations of the Group in the variables it, v, and w, the

problem becomes to find what functions

fl<wli y“ 312 u, 7): w) 2 fl, (“’1’ yl) 21: £112, 3/2: 2’2: 2t, 7’: w);

f1; (£13,, .7/1: 3v ”I: '01: 20,, “'2: '02: W2): etc-2

and what equations

7”,:0, f2=0, f,=0,etc.,

are invariant under the Group.

The invariant functions, and invariant equations, are found in a manner

entirely analogous to that of the preceding paragraph; and it will not be

necessary to go through with the work here.

9. It will be interesting to know what will happen, if we make some point

absolutely invariant; that is, holtl some point of general position as fired.

The plane'passing through the fixed point parallel to one of the coordi-

nate planes is invariant, since the transformations of the Group move all such

planes parallel to themselves (§ 3). Two of the invariant planes of §4 are

parallel to it. Suppose these three planes are given by the equations ,

{13:71, 23:0!“ (I):/3,.

The plane which forms an anharmonic ratio with these three planes is

absolutely invariant (§ 7). Let this plans be given by the equation

a) = s, . l

The plane which forms an anharmonic ratio with the planes

:3:le w=rls w=al2

is also absolutely invariant ; thus there is found another absolutely invariant

plane ; and by this method there can be found 00 I absolutely invariant planes

parallel to the ye-plane ; oo ', parallel to the axe-plane ; and co 1, parallel to the

ay~plane. These three families of‘absolutely invariant planes intersect in 00 3

points, which, of course, are absolutely invariant. [fence every point in space

becomes absolutely invariant, if a point of general position is helclfia'etl.

10. The results of the last paragraph may be shown analytically.

Let the coordinates of the fixed point, which does not lie on any of the

absolutely invariant planes, be

”i=7“ ?/=7’2: 2:73'

These values of a, y, and 2, by hypothesis, reduce the transformation

Ufa (“1 'l' 2511’” 'l' 013:2) 2’ + (“2 + 26211/ ‘l‘ 023/2) Q "l‘ (a3 + 253 'l‘ 0332) 7'
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ROBERTS. ON THE TRANSFORMATION GROUP, ETC. 9

L to the identical transformation ; therefOre, these values must satisfy the equa-

tions . .

a, + 26,11: -|— 0,22 = O,

“2 “l“ 2629 + ”2.7/2 = 0:

a3 —|— 2632 + 0322 = 0 .

We, consequently, have the three following conditions, from which a,, 6,, and

0,- may be determined

at ‘l‘ 26222- + 0m” = 0.

at 'l' 26202 “l“ Craig 2 0 2

at ‘l' 2M; 'l‘ 02/312 = 0 2

where a,- and [3, are the roots of the equations (§ 4).

Eliminating a,, we have

‘ 01(“2 + Ti) + 21h: 2-”: O ,

”1041+ fit) ‘l' 262' = O -

Eliminating 6,, we have

‘ 02(7'2-fi1)=0;

but since 7,- cannot equal [9,, we must have s,- = O, and, consequently, a, = 6,

== 0. Now; if a, = 6, = c, = O, the coefficients of p, q, and r are zero. Since

these coefficients are the increments given to a; y, and 2, respectively, by means

of the transformation, and since they are zero, the transforimttion reduces to

the identical transformation.

11. The invariant families, so far found, have been either planes or straight

,lines. We shall now show that the Group may be put into such a form that

it will leave the families of all surfaces of rotation

2=¢(:e+r+aw+by+c)
invariant. . ,

We only need show, to this end, that the Sub-Group

 

p, 9. can or]. 213229, 229

 
 

can be put into such form that it leaves the w 3 circles in the coy-plane invariant

as a family; for the transformation er and 227' do not transform this plane at

all, while the transformation r merely translates it.
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Introduce into the Sub-Group the functions a, and y,, as new variables,

by means of

w = w: + in,

29:331‘7'3/15

then Egand q:—— J: become, in these variables,

19f

9—33, i 33/,

and

8f 162]"

5w? 3 57] ’

or ip, + g, and ip, — q, ; and the transformations, as is readily seen, may be

written in the forms

 

, 232,429,, tin-21,

“'19 — ’3/1271 + '5 (”1271 + 11/191), ””191 "' 3/1271 “ i(701.291 + 3/191) ,

(”4'12 — .912) 91 — 2%919’1 + ”(3,12 _ 21/12)}?1 + 2"”13/191}, .

(2313/1271 — (9112 * 21/12) 91 + Zi022 — 912)]?1 + 25319191}

  
Hence the G6 may be put in the form

 

r. a yr — we. we + w. (962 —.3/2)r + 2mm. 29W — (~762 — 22) 9

   

The finite transformations of this G6 are (§ 2)

,=atwwm+e_,ac—2Ht
2ae+m++1) 2ne— m+n’

1|:(l-1(m "l" W) 'l’ ’12 __ [31(3" — 729) ‘l‘ [92

=aac+w+1 ae~w+1

Let the equation to the circlesin the age/--plane be

(1)2212 +212 + aw1+ 621+ 0: 0.

Substituting in this equation the above values of a, and y,, we get

{M(n+ir)+ayl§/31(m—i2/)+2} yearn/Ha.+19.(w—i2/)+tt;

taste + iy) + 11% ate—tr) + l} 2 la3(w+ir).+1 fi3(w—iy)+l

_Eme+w+t_au—w+a _
+2'ia.(w+z'y>+1 193(w—iy)+1i+c_0’
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which may be reduced to

, m2+y2‘+Gw+Hy+F=O.

Hence the circles (fl = 0 are invariant, as a family.

In the form

 

n q, yp—wq, wo+zlrh

(mg—ye)p+2wz/5z, Zwyp—(wf—z/ZM,

7', 27', 227'

   
the G9 always transforms a circle in the any-plane into a circle, since 27' and 221'

do not transform that plane at all, while 7’ translates it merely. Hence a sur-

face which cnts that plane in a circle must be transformed into a surface which

also cuts it in a circle, or the surfaces of rotation

z=gp(w2+y2+aw+ly+e)

are an invariant family under the Group as written above.

This is readily verified from the form of the equation of surfaces of rota—

tion

z=5o(m2+y2+aw+l)y+e).

II.

DIFFERENTIAL INVARIANTS.

INVARIANT DIFFERENTIAL EQUATIONS.

12. In this section we shall assume y and z to he functions of a: ; and shall

proceed to find the Diferential Invariants of the lowest order of the G9, and

then show how the Differential Invariants of higher orders may be found.

We shall also find what ordinary difl’erential equations are invariant under

I the G9.

13. We shall make frequent use of the following theorem from the theory

of the complete system :

[fAlf = 0, . . . , A,.f= Oform a complete system in m,, . . ., (1),, (r < n),

tlie solutions of the same can be obtained in the following manner. We find

the solutions 39,, . . . , 99,,_1 ofA1f= 0 ; and t/zen write Azf = O in the form

9

AZfEA2¢lflé+-"+A2%I—1£L=O-

n—l
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[ft/16 ratios of Me 11299,, are not functions of gel, . . . , go,,_1 alone, the equa-

tion A._,f = O breaks up into several equations. We integrate one of these and

introduce the corresponding solutions $0,, . . . , ¢,,_2 into A3f = 0. The resulting

equation

a
A3¢‘5§b]i ...=o

we liandle in an analogous manner, etc. Titus we find ultimately the (n —-— r)

solutions of the complete system.

14. To Find the Diferential Invariantoft/te Lowest Order.

Here we have to find what functions f (ac, y, z, 7 ,, 2,, . . . , y,,, a") are invariant

under the transformations of the Group,—-where

, 4W e 2 <5
Jiz‘c‘l’a‘gi‘: ”i—dw—i'

Now

afax 9/” 52f « 97‘ r
5f=9—: +§3W+a0yl+m+aa°r (.1)

and we must obtain the increments 33/1, 62, for each transformation of'the

Group.

If we have given any transformation

Uf=E 131%ng

we find O‘yl, 6‘31, . . . , 63/,” 83,, as follows :

yield = dy ,

so that

O‘yldn: + yldda' = (Edy ,

or ‘

o‘yldre + yldilw = ddy,

(My daw‘

75 7/1 a; '
I:s

2

Since 800 = Edt and 8y 2: 'qo‘t, we have

6y,_ dq __ d5 = , .

7‘)?— dm “/1 da' _ 41 (say) '

Similarly, 8 Z: d F

21 _ C _ s

W—fi‘91%561(saw'
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In an analogous manner, we find

— _ dvz_1 _ d5

m"“a; was,

_ (la—1 - d5

G‘EE‘ra-

We may now write the transformation in the form

_ af .59.?” 62f . $27” 97‘.
Umf=szfi+qgaj+C§E+"'+qn§;§;+Cn’ég;s

and we then say that the transformation has been ewtended n times.

We obtain a complete system of nine equations in nine variables, if we

find the‘increments fig, and 32,- (i = 1, 2, 3) for each transformation of the '

Group, substitute them in equation (1), and put I),f = 0 (j = 1, 2, . . . , 9) ;

or, what amounts to the same thing, if we extend each transformation three

times, and then put each extended transformation equal to zero.

Extending each transformation of the G9 three times, and putting each

extended transformation equal to zero, we Obtain the following complete sys—

. . _ 8f
tem,—-—-1n whlch q, = 9?]! , etc.

p=0, q=0, 7'=0,'

“’17 '_ 9191 — 3171 "‘ 23/292 _ 22272 _ 33/393 "‘ 3337's = O ,

as + an + an + 2/393 = 0

37' "l‘ 317'1 + 327’2 ”l" 337's = 0:

$217 '_ 2m1919.1 —‘ 2w21rl "‘ 2(Cl/1 + 22’.3/2) 92 ‘— 2 (31 + 2w32) 7'2 "‘ 6 (3/2 + “3/3) 93

“ 6 (22 + 1:2,) 4713 = 01

929 + 2mm + 2 (of + W2) 92 + 2 (3mm + ?/."/3) 93 = 0,

227' + 222,7'1 + 2 (2,2 + 22,) r2 + 2 (3.21.22 + 223) 73,: O .

From the first three equations, we see that the solutions, if any exist, will

be free of a, y, and e ; hence, we may neglect those terms containing 1), q, and

r. Doing this, and reducing algebraically, the system becomes

UlfE 3/191 ‘l‘ 3171 + 23/292 + 23272 "l" 33/393 + 3337's = O 1

02]” E m + 2/292 + ma = 0,

U3fE 217-, + 227', + 237', = O ,

[fr/E 9192 + an + 3mg + 32273 = 0,

Ust 3/192 ‘l‘ 3?/293 = 0 2

UfifE 217', + 3227’, = 0 .



 

. 14 ROBERTS. ON THE TRANSFORMATION GROUP, ETC.

Since UfIs the sum of U,f and Uf the system reduces to one of five

equations in six variables, hence there exists at least one solution.

The matrix of the coefficients of(q,- and r, is

3/1 31 23/2 .292 3.7/3 333

0'210 32 0

910e20y333/2:1

003/10 (Z;1

0002,0

All the determinants of this matrix do not vanish identically; hence there is

one and only one solution of the complete system.

In order to find the solution we proceed as follows : (Cf. § 13)

The solutions common to U] and U6f are

. 3 F , 2
314 __ _ 71.1 a, 2:1:1 E16

11/1 2 13/1} = 31—-

which are also solutions of U2f and Us)”.

Introducing these solutions, as new variables, in U1 f,—since

Ula=2ay 0113:2/3:

M
1
Q
!

we have the equation

the solution of which is

E: 1/12M221 '_ 3222)

a _21(291913—392)

Thus we have found the solution of the complete system : which is the

Differential Invariant of the G9 of the t/tird order.

15. To Find the Diferential Invariants of IIig/zer 0rders.*

Suppose 9(a), y, 2, y,,el, . . . , go, 90,, (y,, .. .) to be such a function that,

when a) is any Differential Invariant of the Group, .9Is also a Differential

Invariant,-——to find the function .0.

We have '

cala- = dgo ,

so that

6912,1191: + goldda‘ = 03650 ,

* Sophus Lie, Vorlesungen ueber Co ntinuierliche Gruppen, page 670.
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or ..

6 _ (logo dam

‘01 _ (190— (p1 dw’

but, since go is an invariant, do = 0, and we have

(i “ '
3g01 = _ $01 220%, -

Now*

9!? c9.

812=——é>‘ww.+ +9531 891+ +9§oo+§¢Am;

and since 8!? must be zero for every transformation of the Group, we have

the following complete system, from which .9 may be determined :

19:0, q=O,' 9"=O,

' 9.0

“'17 _' 9191 — 217'1 _ 23/292 ‘_ 2327's "‘ 33/393 — S01 9701 = 0 :

w + m + me + was = 0.

27' -|— 217'1 -|- 227', = 0 ,

map —— filmy/lg, —-— 2:17:21?1 — 2 (3/1 + 2503/2) q, -— 2 (z, -|— 2:02,) 7:, — 6 (y, + (cg/3) q,

— 2w .93—_ 0
1 9591;

W + 2mm + 2 (of + on) 92 + 2 (33/13/2 + .7/3/3) 93 = 0,

227’ + 222,7' + 2 (212+ 22,.) 7'..—— 0,

where

-
Q
>

9.0_ .2 so
29 = 9:7; , 9.- --— 7" :

The first three equations show that the solutions will be independent of w, y,

and z ; hence, we neglect those terms containing’p, q, and 7'.

By algebraic reduction these equations become

a.

Z719:_ Jo: + 217‘ + 2y92 + 22:72. -I- 3mg + 90191:;

0'29:m + on. + m; = 0

U39 2 217', + 227'2 = 0 ,

U19 2 m.» + an + 39293 = 0,

05-9 —=— mg + 39293 = 0,

Us!) = 217', = O .

=0,
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We see from (75!? and 06!) that the solution will be free of 2,, 22, and :43.

The solutions common to 17252 and U5!) are

%—§ 22 2=la rind

3/1 film] P— , .591

Introduce these, as new variables, into U1!) ; hence, as

U1“=2”v: 0:601:99”

we have the equation

9.0 8.0 _
MQEZaD—a— +_ga,a—$o—l—O.

The‘solution of this equation is

.4199 E 5.7; .

do is called a “Défibrential Parameter " and has the general form

‘9 (.27, .7/5 .2, :l/l: 31: ' ' ' : SD: 4’69) '

Since Ag) is an Invariant,

dd
A250 _=_ Awe) 2.53

is also a Difi'erential Parameter, and likewise (13¢, etc., hence the most general

Difierential Parameter is

{2(33, y: 2’: 717 31! " - a $92 A?“ A2509 ' ..) '

16. We shall now make use of the Differential Parameter to find one of

the Differential Invariants Of the fourth order.

Let

90 E {—3,

where

Takers 443%”
[3’21 2L21]’ ”'71 2U,

Now

_ £9? _ fila _‘ (11/3

901 — dzv a”

where

_ dfi _ (la

#1: Ww’ “1 = a)? -

Hence

41,; = _99_I={3_____1a”‘ “'3
fl (1.” —- «5/2

is a Differential Invariant of the fourth order.
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ROBERTS. ON THE TRANSFORMATION GROUP, ETC. 17

- 17. To Find the Ot/ter Dtfl'erential‘ Invariants oft/w Fonrt/z. Order.

By extending each transformation of the G9 four times, and by reducing

the equation algebraically, remembering that the solutions will be free of at, 7 ,

and s, we get following complete system :

, ”If; 3/1‘11 + 3m _+ 23/292 + 29275 ‘l" 33/373 + 33373 + 494174 + 49471 = 0 ,

Urfi 3/191 ’l‘ .7/2Y2 "l‘ 3/393 ’l‘ 3/494 = 0; ‘

0';st 3171 ’l‘ 32"} ’i‘ 337's ‘l’ 34?} = O 7

Ule ylgz "l' 31"2 ‘1‘ 33/213 ’l‘ 3327's ‘l‘ 63/3114 ‘l‘ 6337} = O :

[15.765 .7/12’12 ‘l‘ 33/13/293 ”l‘ (33/22 ‘i‘ 4913/994 = 0:

quE slur, + 32132713 + (32.,2 + 42,23) r, = 0 .

This is a complete system of six equations in eight variables, and has at

least two solutions.

The matrix of the coefficients of (1,, r, is

l y, 2, 23/2 2.22 33/3 323 43/4 43,

y, 0 y, 0 y, 0 y, 0

0 21 O 3,, O a, O 24

0 O y, «4 3y, 3.22 63/d 6.23

l 0 0 yr 0 33/192 0 (32/22 +4y13/3) 0

i 0 O 0 2,3 0 33132 O t (321,,2 + 42,23)

All the determinants of this matrix do not vanish identically ; hence there

are only two independent solutions of the complete system.

In order to find the solutions of the complete system, we proceed as

follows (see § 13) :

The solutions common to Ulf and U3f are

7-.,,. , _. 2/1
5133:5112, [5/3 -2153, —‘——-(14,

3’1 3/1 .7/1

a 7 z .. ,
£503, 53263, 17.-,6“
z, e, 2,

Introduce these solutions, as new variables, into U,f and U6f,—-—since

Usa2 = .7/1: [fads = 3423/1 : . [75% = (3(‘22 ‘l‘ 4‘13) 3/1:

U562 = 3|. ) Ulsba = 36221: [[664 = (3622 + 463) 31':
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we have the equations

UTj'E%+3a, af—l—(3a, -,+4a3);%=
9%

f_af+3b 9—1: +(36.‘+463)§—7:=0
2 953

The solutions of these equations are

a3~ga22= ¥f_g[¥f]2:0’

r_gazg_ggyEA

a,1 — 4a,a_, + 3a,“ Eg-I —- 4% + 3 [37—2] 352—: = (1,,

I), _. 45,5, + 352322—441—"iw 3 EllEgg:3..

Introduce these solutions, as new vai'iables, into Ulf and UM”; since

Ula = 2a, Ula, = 3a,, U”? :- 23, U131: 33, ,

U;0.=0, U#122“: (743:0: “31:23,

we have the equations

(Io/=29f+239§+319f +311{,1 =0,

0,9,7” 9,7”
010.2” a,—,, W9 = 0.

The solutions of Ulof are

a, fl, afll — a”? E g0.

Finally, introduce these solutions, as new variables, into Ugf ; since

119e=5sleaa=2m (619:2 ,

we have the equation . ’

UlleZag—l:=2,39/age—+59a: :0,

the solutions of which are

(49, -— (ll/'2 £20.19-— am

“5/2 2 [95’9“ film

Two, and only two, of these solutions are independent; for, it is clear that

the first is a function of the ratio of the last two.
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18. Having found the two Differential Invariants of the fourth order, we

shall now, by means of the Differential Parameter, find the Differential Inva-

riants of the fifth, sixth, seventh, and eighth orders.

 

 

Let

_

a -a

TrtZ—[l-
l7m—fi,

¢4
5W
a

then

5
5 n

A — 1 (1%..a2fi2 —
““23 _§’”‘1/31 ‘i‘ Eal'fi

¢4=
W27

:

([4

' 9

“/33 — m2 — 5092 + § «139

m=iaij
fl= 2 ~ 2'11 2m

.| — alr: (IIL‘ __
“IR/37,12

,

are independent Differential Invariants of the fifth order.

“[9712

" IIf we multiply the first by I: and the second by if; , the results will still

be independent Differential Invariants of the fifth order, since ‘5, and every

function of I; , is an Invariant.

Adding together these results, we have

2/93, — gfif {r [2a, _ ‘5): (112]

0.3 a5

. . . 2a3

Multiplymg thls by “-9., , we get
1.

43/92 — 5/912 _ a are: 54.5..
,3“ [a 0.1+ ’

hence the Differential Invariants of the fifth order may be written

/ E 4/9/32 _ 5/9124am, — 5a,2
:: __~._,____ ’ $15 ’3 ,

. If
"y "" (fl

the first of which, 59,, contains y, only, and the second, 90,, contains 2, only.

12

If we multiply the Differential Parameter, do E Ell—2% by [is] I we get
. I I l

, E 5T2 EZZEL’ which is also a Differential Parameter, since it is a function of

gand Ag: (§ 15).
a



 

 

 

5
:
1
5
7
:
9
3
?

—
,

»
-

..
'

«
E
b
;
‘
a
z
i
-
R

V
‘
fi
f
—
j
‘
r
r
t
‘
u
n
“

'
“
a
n
;

.

    

20 ROBERTS. ON' THE TRANSFORMATION GROUP, ETC.

We can now Write down the Difi'erential Invariants of the sixth order ;

1 (lg, _-_ 4a2a3 —, 1811/40., —|— 15a,3

9% E 317“) (5—56 —‘ ”~— 0.9” :

| _ L at, = 4a. — lama + 15/93
9:. ~,31,2 d3, . __?7__.___,

1 do (Z,

i97zz1l72—'wfi=%g§::

1 d/, (at,

finally, of the eighth order ;

 —. 1 %_i%éa+i (Pam.
‘3 = 5:172 da: — a]’2 (la: (to, a"2 99,, do,“ (ta;

_ 01% 2_ (La
:996 [(7%] i- 606619052:

1 (M ((45.12 ($259.-
/ = __ _7. = / __". / 2 __l’

98 WW .1. oral + a

The (p, contain 7 ,-, only, and are, therefore, invariant under the Sub-Group

 

p, a we, as}. $21,, 3/29 ;

   

and the (/1, contain 2,- only, and are, consequently, invariant under the Sub-

Group '
 

p, 7‘, mp, 2r, map, 322'

   

19. To Find wlmt Déferentz‘al Equations are Invariant under the 09.

In order to find the invariant differential equations of the nth order, which

are independent of the Differential Invariants, we have to form the matrix, or

determinant, of the coefficients of p, g, r, 1),, g, (i = 1, 2, . . . , n) occurring in

the simultaneous system obtained by equating to zero each transformation

extended n times. Having formed the matrix, or determinant, we have to

find what equations f(a', y, a, y,, 2,.) = 0 make all the determinants of the

matrix, or all the minors of the determinant, zero simultaneously.

By examining the matrices, or determinant, it may readily be shown that

‘
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there are no diflerential equations, of an order lower than the third, invariant

under the G9, except those obtained from the Differential Invariant of the

third order. i

q (a). Since the Differential Invariant of the third order does not contain

ac, y, or 2, there are no diderential equations of the new order invariant under

the 0,. _

(b). If we put the Differential Invariant of the third order, '

l9 _ .7/12 (22:23 "" 3322)

”- M 312 (Zyifla _ 33/22) ’

first equalto zero, and then equal to infinity, we obtain the following invariant

differential equations of the first order

a=0,1—=0. 21:0,
21 ‘

S
l
H

I! 0

These together with the equation at, = 0 (which, of course, is invariant) are

the only diflerem‘icrl equations of the first order invariant under Me 0,. ,

(c). It is clear that there are no diferential equations of the second order

invariant under the G9.

The two equations, of the second order,

y,=0, e.,=0,

are invariant under the G9, only when they are considered in connection wit/1.

and as a consequence of y1 = O, and z, = 0. Hence they are excluded in this

discussion.

(d). If we put the Differential Invariant of the third order,

[2 = .7/12 (23133 "' 3322)

a — 312 (2913/3 “ 3.7/22)

7

first equal to zero and then equal to infinity, we obtain the following invariant

differential equations, of the third order, ‘

2,2,2, — 33,2 = 0 ,

23/13/3 — 3.7/22 = O -

These are the only two independent differential equations of the third order

invariant under the 0,. i

(e). The invariant differential equations of higher orders are obtained by

putting some arbitrary function of the Differential invariants equal to zero.
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III.

EQUIVALENOE 0F CURVES.

20. In this section we shall make use of the Differential Invariants and

invariant differential equations found in the last section, in order to determine

the nature of the curve-families which are composed of those curves which are

“ equivalent ”I by means of the Group. , ,

21. Two curves are said to be “ equivalent” by means of a Group, if, by

means ‘of the transformations of the Group, the one curve can be carried over

into the other.

Suppose a curve is subjected to the transformations of a Group of r

parameters; it will then assume oo 1‘ different positions, provided that it is not

invariant under (or, as we sometimes say, does not “ admit of ”) any one of

the r transformations of the Group. In this case, there is generated a family

consisting of co 7' curves; and it is clearthat curves, which admit of no trans-

formation of the G, and which are equivalent, must belong to such a family.

If the original curve admits of q independent infinitesimal transformations of

the 0,, it is readily seen that the resulting family will consist of co ""1 curves ;

and these 00 ""1 curves are, eo ipso, equivalent among each other by means of

the 6’,"

It is evident that such a curve-family is invariant, where invariant is taken

in the sense that the curves of the family are interchanged among each other,

while the family as a whole is unchanged.

This family is defined by two independent diferential equations, one of the

with order and one oft/te nt/i order, where m -|— n = r —- q, w/tic/t as a system

is invariant under the G9.

22. Since the curve-family, to which the equivalent curves belong, is

defined by an invariant system of differential equations, we shall, as a matter

of convenience, put here those invariant systems of differential equations,

which we shall need in the discussion of this subject. :

The most general invariant differential equations are (see § 19) :

O. 0. None,

1.0. y,:=-.O,z,=0,w,=0, (see§19,b)

II. 0. None,

III 0. d3 = const., 22,2, —— 32,2 = O, 2y,y3 32/12 = 0, (see 19, (1)

IV' 0' "Q ($53: T4: for) = 0 :
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V- 0' git/’3: $.04: $05; 9’4: 905) = O 2 I.

VI. 0. .0 (9/13, . . . , $110,, $94, so,” 596) = O ,

 

( /, / fl 1% =VII. 0- .2 [5.4" - . . , V6, ([6115, so.“ 0 - -: (ispfijl )

r do die dis? 7fr. . . . . " — . . . f' = -VIII 0- _Q ILSrs, : Cit/’5 : (15952 2 9947 : dQ‘fi‘lJ 0

We can now write down the invariant systems of differential equations,

which must consist of one differential equation of the mth order and one of

the nth order, where m + n = 9 ~— q, and where q is the number of incle—

pendent infinitesimal transformations of which the curve admits.

There are three invariant differential equations of the first order ; but, on

account of the symmetry of the Group, we may clearly choose 3, = 0 as the

typical invariant differential equation of the first order. Now when 2, = 0, it

(lg/{9 dad,
is readily seen-that 903, 90,, $05, 90,, dd , W5, and go, become zero, so that the

invariant systems containing a, = O are :

I. and O. 0. None,

(21:0:

Land I. 0. 4

Lyl:0:

I. and II. 0. None,

{5, = 0, , ,

I. and III. 0. 4 (See 3‘ 19, d)

lQ‘f/lf/s —‘ 3.7/12 = O:

I. and IV. 0. None,

{2, = 0 ,

I. and V. 0.

Lo, = const.,

e,=0,

Les=f(sa).

I. and VI. 0.

'«m-_ .



2&1: ROBERTS. ON THE TRANSFORMATION GROUP, ETC.

2, = 0,

I. and VII. 0. <

L .9 {199—6 = 0

[$952 $961 dSD—s] :

{'31 = 0 a

I. and VIII. 0. < '

dial; 622iii]

L‘Q[505:996a—3 (1905;.J=O

As there ’is no invariant differential equation of the second order, there

are, evidently, no invariant systems containing a differential equation of the

second order.

If 5&3 = const., it is evident that $9,, 59,, 9/16, and S94 are identically zero, so

that the invariant systems containing a differential equation of the third order

are 2

[ 22,33 —— 32,2 = 0 ,

III. and III. 0. < (See 19, d)

Lgf/xf/s "‘ 33/22: 0:

III. and IV. 0. None,

{9/1, = const.,

III. and V. 0. 4

UL, = const.,

{ 903 = const.,

III. and VI. 0. <

L996: .(fi/s')

The invariant systems containing an invariant difierential equation of the

fourth order are

i "Q! (‘rl'aa if“ 594). = O :

IV. and IV. 0. {

L92 (903: if“: 991) = 0 2

i “Q (9’63) ¢~12 59-1) = O :

IV. and V. 0.

LQ(¢3, $04: fljm $94: 995) = O '

23. We shall now show how to find the curve-families to which those

curves belong that are equivalent by means of the Group of nine parameters

 

2

I” 9, 7', 962), 2/9, 27‘. we. do. an.
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I. If the curve admits of no infinitesimal transformation of the 09, it

will generate a family ofw 9 curves, when subjected to all the transformations

Q)" the 0-9.
_

(a). This family might be defined by an invariant system consisting of one

differential equation of the zero order and one of the ninth order; but, as there

is no invariant system containing a differential equation of the zero order, this

case is excluded. .

(b). This family may be defined by the invariant system

3, = 0

r dw- (l2 .1
f r_ r, . If! ....lfl’ —
.. {fl/U; 9w (1595 7 (16952} 0 a

which consists of one differential equation of the first order and one of the

eighth order.

Evidently the curves Of this invariant family are plane curves in the

planes 2 = const. Since er and ear change nothing in the aJy-plane, these as 5

plane curves are the same in each plane .2 = const.; hence, in the wy-plane

they are defined by the invariant differential equation

.(2 to 55,, gla- {tjgn = 0.

L dig-G , ([5952 l

which is of the eighth order, and is given in terms of y,, . . . , y,,. ,

(c). This family might be defined by an invariant system containing one

differential equation of the second order and one of the seventh order ,' but, as

there is no invariant system containing a differential equation of the second

order, this case is excluded.

(d). The family may be defined by the invariant system

90,, = const.,

(FIB =f (555) a

which consists of one differential equation of the third orde ' and One of the

sia'th order.

It 593 = 0, the family will be defined by the invariant system

22,23 — 32,3 == 0,

S96 =f<ifsl -

The integral of the first of these equations is

mz+albc+hlz+c,=0,
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and the curves of the family will then be the intersections of the hyperbolic

cylinders represented by this equation, and theqcylinders given by the equation

9% =1” (a)-

. . 3 I . 2
It /. = 00, then a Eifi—~ 33 = O; and, conse uentl , er. and ,

V3 ' :I/i 2 L91] _ q y (ft) 90"

become identically zero ; hence this case is excluded.

(e). This family may be defined by the invariant system

12(51’3’ 90-1! 994) = 0 i

"Q (5'03! 9/14: 505, 9’74; 595) = 0 ,

Which consists of ,oneldifi'erential equation of the fourth order and one of the

fifth order.

II. If the curve admits of‘one of the infinitesimal trmzsfimmttions of the

0,” it will generate a family of w 3 curves, when .s-zdg'eeted to the transforma-

. tions of the 619.

(a). The first possible case is that this family may be defined by the

invariant system

2'1 = 0)

which consists of one difl'erential equation of the first order and one of the

seventh order. As in I, (b), the curves are plane curves in the planes 3 =

const.

(b). The next possible case is that this family may be defined by the

invariant system

903 = const.,

e5 = const.,

which consists of one differential equation of the third order and one of: the

fifth order.

The same reasoning holds here, as in I, ((1), when 503 becomes either zero

or infinity.

(0). This family may be defined by the invariant system

"Q! (9,13, 9-6-1: 694) = 0 ,

"Q: (903: 51'4: 99-1) = 0:

which consists of two differential equations of thefonrth order.
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ROBERTS. ON THE TRANSFORMATION GROUP, ETC. 27

III. If the'euree admits of two of the infinitesimal transfbmnations of

the G9, it will generate afiimily of co 7 curves when subjected to the ti'etiisfbi'iiza-

tions of the G9.

The only system invariant under the G9, which will define this curve-

family is

h
)

[:01

$96=f(%):

which consists of one differential equation of the first order and one of the

sixth order. As in I, (b), the curves are plane curves in the planes .2 = const.

IV. If the curve admits of three of the infinitesimal transformations of

the 09, it will generate a fitmily of ca 6 curves when subjected to the transfor-

mations of the 09.

(a). This family may be defined by the invariant system

31 = 0 ,

(,0, = const.,

which consists of one differential equation of the first order and one of the

fifth order. As in I, (b), the curves are plane curves in the plane 2 = const.

(b). This family may be defined by the invariant system

23,23 — 3222 = 0 ,

2mg — 33/2“ = 0 ,

which consists of two differential equations of the third order.

The integrals of these equations are

we —— an: + blz + 61 = 0,

my + age: + bzy + 62 == 0;

hence the co 6 curves are, in this case the intersections of the two families of

hyperbolic cylinders, given by the above equations.

V. If the curve admits offour of the infinitesimal trrtnsf'ormations of the

6%,, it will generate a family of co 5 curves when subjected to the transforma-

tions of the 619.

There is no system invariant under the (7’9, that will define this family of

co 5 curves. Hence no such invariant family exists.

VI. If the curve admits offine of' the infinitesimal transformations of the

09, it will generate a family ofco " curves when subjected to the transforma-

tions of the Go.
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28 ROBERTS. ON THE TRANSFORMATION GROUP, ETC.

The only system invariant" under the G9, which will define this family is

:0,i
n

.
—

2913/3 _ 3.7/22 = O:

which consists of one differential equation of the first order and one of the

third order. As in I, (b), the curves will be plane curves in the planes 2 =

const.

The integral of the equation, 2y,y3 — 3y,2 = O is

wi/‘i‘aew ‘l‘ 52? +cz=0i

hence the curves are hyper-bolas in the planes 3 = const.

VII. If the curve admits of size of the i7’lflllll08i7nal transformations of the

0,, it will generate a. family of'co 3 curves when subjected to the transforma-

tions of the 6,.

There is no system invariant under the G”, which will define this family

of a: 3 curves. Hence no such invariant family exists.

VIII. If the curve admits of seven of the infinitesimal transfbrmations of

the G9, it will generate a family ofco "’ curves when subjected to the transfer-

mations of the 62,. ~

The typical system invariant under the 0,, which will define this family is

21:0:

91:0:

which consists of two differential equations of the first order.

In this case, it is evident that the curve—family consists of the co 2 straight

lines perpendicular to the ate-plane.

IX. If the curve admits of eight of the infinitesimal transfbrmations of

the (7’9, it will generate a family of'co‘ curves when subjected to the transfor-

mations of the G”. ‘

There is no system invariant under the 0,, that will define this family of

co‘ curves; consequently, no such invariant family exist.

Hence, if the two curves are equivalent by means of the transformations

of the G9, they must both belong to some of the families defined above. When

the equations to the two curves are given, we can substitute in the types of

differential equations defining the above invariant families, and if such differ-

ential equations are satisfied by the equations of both curves, the curves belong

to that family and are equivalent.
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24. Lie has developed a theory of integration, which may be applied to

the integration of some of the above differential equations. We shall, the1e-

fore, give here two of his tl1eo1ems.*

I.“ If a diffe1ential equation of the mth order admits of the G1011p

 

a, 3/91 2/291 291 9629. w'iv 1'

   

it is reducible to the form

.Q[g0,.,, gem-..., 6%]20,

where

41m, — 5012
$95 = ... .33“... ,.,

Ito-a2 —- 18ml a, -l— 15a,3

(fat): "——'"—”7)IT'————
7

and

a: 13—13(1212, o,=C—§E,...

3/1 2 L./1_J d5”

By integmting the equation of the (n) — 6)th order ...—O, we get a

relation

sa- =f(s91)1

which1s a differential equation of the thi1d 01der in a: and a. This equation

admits of the tines known infinitesimal transfonnations 29, $112,612, which, in

the variables a: and a, have the fo11ns

e" ,QL 9]" 9f 52,7"
Ed’a’ 9a: 2a 911’ L 9—51.; + 4mm 9}}.

In order to integrate the above differential equation of the third order, we

introduce as new variables the quantities

 

u = (11/20., , g9” = 4073a,, —- 5a":‘alg;

then

d'a _ go, — 1t2

(Va/’5 991;

If WM, go,)—_ const., is an integral of this Riccatian equation of the first

ordei, we find, in the following manne1, by 1ne1e differentiation, the othe1 two

integial equations of the differential equation 501.:_f(gofi).

._ *Math 1111111111111, 1311 ixxn pp 262260 H I. I
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30 ROBERTS. ON THE TRANSFORMATION GROUP, ETC.

If we put
. ,

U]:~ a122f_4wa§§
—

(631a, + 4a)?1 — (8m -|- 10a1)397%;,

then

U901 = O

UW—
= 3%:17-

—4:
fl

(1‘)":-

9a ’

UUW: 16?.VZII{,-1_8m_/eE
;-l

<90.

and since the quantities W, U W, and UU-W are independent as regards u,

go,” a, and a, by eliminating the quantities in a, and go, between the three

equations

W: const., UW: const., UUW = const.

we find the quantity a determined as a function of a’ in the form

a. = F06): I

This equation is a differential equation of the third order in ac and y.”

II. “If a differential equation of the mth order admits of the Group. 9,

yg, 3f1, it can be reduced to the form

I do . d’"‘“al
.Qre — ..

w 111m’(lii’ =0’

where

2

a=%—?Wl=m
1, 21 L71 J

lf we integrate this equation of the (m — 3)th order, we get a differential

equation of the third order of the form

%— 3Wl =Fm,
7J1 2 M J _

wnich can be reduced to a Rieeatian equation of the first order.

If we put

31% = 3,

3/1

we get

@=a_fifl2
(la- y, lg, J ’

or

d2 _ 1 ,2 _ ,1

If 0 (2151:) = const. is an integral of this Riccatian equation, we find, in
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the following manner, the other two integral-equations. of a = F(w), by mere

differentiation. ~

When. we put .

. 19

. (If: 3/3'1 + 2/919,6270++(2ya + 21/1055,

then U0 = const., and UUO: const. am known integrals of the equation

0—-— 17(3))

ItIS necessary to show that 0, U0, and U[f0 are independent functions

Of a} 2/, '3/1 and?J2-

Wehave

oe_§’.‘.’Ue_2§QJ

UU0=4%Qi/{ + 499—0on;

so that 0, UG, UU6 are independent as riegardsy, (1.33/1 ande Hence the

integ1ation of a = F(:e)IS made to depend upon that of the Riccatian equa-

tion (1).”

25. The equations

clgo,’ ctgo:,"J=

 

, =f<ipfi> = O 1

all admit of the Group

 

u
.

9, ya age, 2), we, $22}

   

hence the two theorems above may be applied to the integration of these

equations as soon as we know the functions‘..and 7‘.

26. Theorem II may be applied to the integration of the equation

go5 = const.,

which may be written in the form

4am, $2 — 514,2 —— [ell/.3 = O .
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32 V , '110131111'1's. ON THE TRANSFORMATION GROUP, ETC.

To integrate this equation, we put 2 = 0112, so that

and, hence, '

2 = (1,2 = 7610." -|— kart”???

Solving this equation, we find

”1 :-.= Il.|/7c,”+7‘12“”,-

the integral of which is

4: kl-al/L+ /c_,.

"‘7‘; \i;(/1/5— = 37 ’i‘ £33 1

which may be put in the form

a = (012 '2 + 26:13 + 6)"2,

or

31"!— 93 ~— 113.70" 27m: —« c ‘2

3/1 /2[J1J‘2———( + I )

Now by w1iting 2— JT,,we find

d2__1,_._, 2‘ 9,_ _2
(Tm—Q2 +(aa + 26.1 to).

Suppose 0(2, 31) = const., is an integral of this Riccatian equation of the '1‘

first order. If we put

. . .11" 375' . 9f
0,7 ‘fJ 2././1 53/ “l‘ (2.7/3/2 + 23/! ) 9.5/2:

then

U0 2 const., UUO = const.,

are two known integrals of the equation

13—?r7-i._—-(a.2:'-’ + 26.1: —I— or”;

3/1 3 LJIJ

and by means of these three integral equations, we can eliminate y, and 3/2, and

thus determine the complete integral sought.

27. By means of Theorem II the equation

23/19:; '" 3.7/22 = 0

may be integrated.

Let 2 = '— ;then

7 1

(1212
:2

2111 a

*Page’s Ordinary Diff. Eq. § 68.
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Integrating this equation, we find

(4) (2,111) = 27; + he ~|~ 2 = 0 ;

so that ,

UH = 2mm + 2km = 1:3

UUO z: 2w1/3/1 + Wag/y, = #3

are two integral equations of the equation

2913/3 " 3.7/22 = 0-

Eliminating 11/, from the above equations we find

“733/ ‘i‘ “23" 'l‘ 523/ + 02 = 0-

Similarly the integral of the equation.

22123 —- 322” = 0

is

we + 1an + 5,2 —i~ cl = O.

'28. In case I, (d), §23, we have the invariant system

9’13 = const.,

996 ‘= f(%) -

Suppose we have integrated the second of these equations and found

a = F (1’12) .

If we substitute this value of a in the equation (/1, = const., we have

We may now apply Theorem II in order to integrate this equation.

The same reasoning applies to the integration of the invariant system of

Case II, (b,) § 23. . , '

IV.

INVARIAN’I‘ PARTIAL DIFFERENTIAL EQUATIONS.

29. In this section we shall assume 2 to be a function of a; and y, and

proceed to find what functions f(w, y, 2, j), q, 7-, ..v, t, 7:, p, a, r, . . .i) and what

equations/'61:, . . . , 1', . . .) = O are invariant under the G9,~—\v11e1'e

 

92 6‘2 7 932 322 z 922
: _ I ~— .. I '2 *7 S "K-""' ~—- A“:

19 1903’ 1 8y' 990‘ ’ 90:33/ ’ c'jlj' ’

3‘2 ”‘2 832 832
71 2 —~. — — - _. . .__ 1; . ...—'— 41.. ._____ ‘ ...

are ’ ‘ 9.76393/ ’ away“ ’ 9y"
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30. To Find when: Functionsf(m, . . . , 7,) are invariant under Me 05,.

If we extend each transformation of the Group in terms of the increments

()1), rig, . . . , (3‘7, and then put each extended transformation equal to zero, we

shall have a complete system consisting of nine equations in twelve variables,

from whichthe invariant functions f may. be found.

We must first, then, determine the increments (3‘2), (39, . . . , 8r.

Since 2 is a function of a; and '1, we have the following identities, which

must hold for all values of a: and y :

. ([2 —: Na: + qdy ,

c1782 : (ignite + (ngy + pdda’ —l~ gddy,

d1!) 4, Ma- —|— 8d? , clq f chm + id? ,

2. 3 (282) —- drclw + dsdg/ + 7'6de ~l— sdo‘y,

~ (My , (lsda' + only + 8128:): + tdily ,

(Zr T 71th + {)(ly, (ZS E pdw + och, d»: E ado: +' rcly ,

(Mr E 3717,2511 + 13,0689 + adds —1— ptldy ,

3. J‘ (:st :—: dado: + (lady + pdda: + «My , 
L (Mt 3‘ dado: —]— duly + ado‘a’ + rdrig/ ,

. . a 9 a ’ .
where (32, 83/, and 02 are the coefliments of 1, I, 1‘, respectively, in each

92 83/ 5’2 -

transformation.

. , - 9f a 5‘ a

In the transformation Ufa: 5;. wehave 11.2: = 1, 03/ = 02 = 0, so that

d])=r)‘g=... =87=0_

. 7 ’1

Similarly the transformations [0" . ' CW; and (if: of give

0/ 2

r)‘p=dq=... :31:

- 3f 1 1 .
In the transformation 05 m 1.3;, we- have 0.73 = :12, 03/ = O, 02 = 0. Sub-

. c.’ ’

stituting these values of 811;, 83/, 02 in equations 1, we have

0 =5: (‘72de + (lgdg/ + 19173:,

so that 0‘}; = —-p, 89 = 0.
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ROBERTS. ON THE TRANSFORMATION GROUP, ETC. 35

If we put these values of Bjjand (M in equations (2), we get

— d]; E — 7-2290 — 8623/ : 8771.7; + (lady -|- wlw ,

O E (3.962112 + (Edy + 31.7.1: ;

so that 87‘ = — 27', 88 = '-—- s, (‘71: = 0. '

Putting these values of (31', (is, 625 in equations (3), we get

— 9617' E —- 2(71da2 + (1623/) E 871122 + aptly -|~ ado},

—- (Z3 E — odor — acly__= 6,0612 + (lady + ,uda' ,

0200172 + 871J -1- adm,

therefore, 57: = — 37:, 3,0 = —— 2,0, ()0 = —— 0', Or = 0.

Hence, the transformation, Uf—E a135, extended becomes

Uf:a’af— pigl— 27‘§—§——sg{—— Egg—gng—g—agg.

If, in a similar manne1, we extend the othe1 t1ansf01mations and put each

extended t1ansf01mation equal to zero, we get the following complete system.

91:0, 97”:o, 9.2”:
826‘12: .

€[_ . £1" 9.7" - of 93)” 9f __

m Ow p91)2 9r 8 be ,1 97 2‘“ 5,7: . a 5‘}; _ 0 ’

73f— q :f—Qaf _ 25 94]." ~— 0 .612? _. 20' :91. ....— .‘f a]: :2 O

03/ 11398 at ’ 9,0 917 8:

9f 9f 931” 62/ 9/ 9f 9f 8/ 9f
34.-.]

_ ..’.- L 5.1.. ' 73¢ - ' _'_ ---1_=0

9.2”) 912+ ‘[ 51891-1 91* aziaar‘ a: ’

"1 ' 9 E’

a" ' 8f — 2 (p + 2007') :1 — 21's 4—7: —— 6 (7' —[— 71m) 7‘25

cl‘ ‘ of?

92‘29’7’9};
as

i" 2(3 "i" 2,0173) all: ~— 20.1; §£=0,

29f if if 3f 9 9f _. 0 9f
7/ Eli—qu

gi—QJS
Z/Z‘: '-‘..I(f[- -I- 21209tWA‘

UZ/E—WFI 20 +J0_:/:
§;

,.

529. 2. 9.70 . 9f , _ 9f” 9 9‘" 3f

..§;+2..j)
éi—)+22g 5—12

0»-{2)‘-";;) 14(w512fl
1)?

. a
a.

97"

09 a; 13.: 32,4,_,_éj
f'__0

_l—.(nsq+
0 4-2))5‘; —|— ((1.1-m)z)._r_
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Since the first three equations shew that the solutions will be independent

91 8.1. . é) ‘

of .71, y, and 2, we neglect those terms contannng E , — :77 and then, by .

aw 91/’ 92’

algebraic reduction, we obtain

1' .1' 1' .1' .1' 9'
01211771— 27.41.1331; "" 31419-7790

:1 '3' 3' Q"

U.,,1'_=_.q§§-‘1-s57+ 2137-1-5—, +2a§§+31§7=0:

1' 1 .11 .1' 1.' .1' .1' .1'
01,1751)13117934377 :47.“- 5317577 +7:'Z+"’E'T,+ ”é3'l'7§§=0’

377 c'

.. (1.1.11}, 131''113:0,

11:71:11371-5 27+ 3127;: ,

_,.~1 ' .1 9
1U..,'11-..1;.«'7 | 1111':3:9:1; t 3’73,—‘”" (“I " “‘1’7'7'772'71 +1771;

—|— 391 51—7—7: 0
L

This is a complete system of six equations in nine variables.

The matrix formed with the coefficients of 317:, . . . , :2; is

)1) 21' s 0 3:: 2,11 7 a 0 ll

:0 g 0 6‘ 2t 0 ‘11 217 3: i!

J j) 11 1' .9 15 2: ‘11 . a 7 ii

i O 0 .2) O O 37' s 0 0 it 7

l00 0 0 0 g o 0 s 31 i'

0 112 pg g” 3172 (1'11 + 2.91)) (281/ —l— pt) 391 ii

the determinants of which do not vanish identically, so that there are three,

(1111'! only three, independent solutions of the complete system.

In order to find these three solutions, we proceed as follows : (See § 13.)

The solutions common to 0,1 and UM” are

31'2 —-— 22171 ’ 11., , .s'r — 19,11 (1,, 81" — 297 2': 11., , st — ya E 11.4 , 1), 1], s.
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If we introduce these solutions; a“ 1), q, s, as new variables into the equa-

tions UL)“, Uf, Us)", and Ubf,—since ‘

[flal = 4a, , [flag = 3a2 , (fl/13 = 0 , Um = 0.4 ,

02“! = 0 > Uzaz = “2 a @1021 = 4%: U201 ”'5 3'14 :

Us“! '7: 2‘11 2 [73/12 = 2“: : U343 = 2’13: Us“: = 2’11:

06a, = O , Us“: = —— 8p", [ffia3 = O , (/60.4 = —— sr",

we have the following equations:

337" 92" _.
' a

[fa-f:.4I/1"7-,: ’l‘ 3”: :17+ ”21’4- ‘l‘ 27 'w ' Cf _—
'— .s ..--- — 0

(1.2 ca, ‘2) I“ c's ’

U ‘ . 4 . 3 .3 . 9 . 1 .

' :: I/ —— - r/ —— r/ —'—- 1— -'— - l 2- = ,
sf ’ a 1’ l‘ J “is + 31/4 ' 9 91 l" 3

37" 3. 3. 1‘7" 9f 37‘. 97

U —— 20 -'-— - 9a. ‘1'— 91/ 51—— I/ J— ~l— ) — ( 4— - S 4— = 0

"f ‘30.]‘4-‘1901+d33a:,+d‘ 19124199 ‘. 3s

0;: 9f. i 9f.

Umf': 82'' + 8f :'— 7217 5—: 0
911.4 g.)

The solutions of U7f are

a a. a .9
~16” 4:9. 4:9. —_= I1. .I.
Z}! 181’ I).s—-/2: p—lJ: 1) ~34: .n 1

If we introduce these solutions, 3,, (13, g, asnew variables, into the equa-

tions Us]; [79]”, and [fluff-since

U531 : 0 : ”55/32 = fiz: _ Usfla = 333: Us]?! = :84 ’

Z7919: = — 231: Ullfl'l ‘= "‘ 192 2 Uufla : {9:} : Unfit = O ,

”10/91 = 0 : Ulofi: = fl: , ‘ Umfls—— {3:72 : UNI/34 = —‘ 9 ,

we have the following equations :

01.3739“’f —r 31% f lfi1'7’i‘4v'52/ +q——= , 

 

22‘” 'cu,

o“ 3' n I" 9

Uiiza— '57—'a5L 9':---2J —- 5”-7030,
12f Its/7,] [*3/72 l‘lsgfig l OWL-((73 [Q 99

0‘ a ' a'

U. '3». a, 9 2:.__ 5.7: :0

”f fll 31,2+ “I! 9);; 99%

fl: _— fis _ I31 - r “:2 -
Q ‘“;15;j7 9219" 9’53 9712904: fil-
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If we introduce these solutions, fil, gal, as new variables, into the equa-

tions U127" and U13fl—sinpe

 

i2§91 = ‘— 29.“ 5 E2392: 7 29927 (712993 = 7‘ 93:1: “2% = ‘— 291 7

Uinfigi = $937 U135”: = 99:17 Uiasl’a = 7‘ 1 : Um“: = O 1

we have the following equations.-

" ° ’l " ’7 '

Umf: 2791qg: + 29913l ’l‘ 29023;: '|‘ $915“; + 221% = 0:

9 .

Ul7jflsadfif+
——,_9£=0.

The solutions of U,,/ are

(‘01 _9’——V1! 2591 ”l— ‘7032 9-02: fil)

If, finally, we introduce these solutions, 9/5., I917 59,, as new variables, into

the equation U,.,f,—since

0145!)! = 29/}! 7 Ul‘ls'l": = 29/12 7

we have the equation '

Qfl 9f)
9f) 9 I

Umf: 231 ' 'l‘ 251’1 397} ‘l‘ 251‘2 '1?" + 2991 '3"— : 0:
U I L ,2 L'

 

the solutions of which are

1.9.1 g“ (37'? — 2777:)

90., ,7)“ (31" — 277:) ’

2773 (87‘ —— 770) —— 77:(7(.s-t -— 977)

Z“ 7/<31- — 27-7

_r329(37' — _7__70)+_779‘19"

94 2)(37——7 21—)

These are, therefore, the three independent solutions of the complete system.

Il
l

 

31. We shall now Find 7/76 Diflerentiul 13177677776707, 10/7377, 2 is a Function.

V ofmandy.

Suppose .‘2 (a, 7/, e, 2) 17,7 ', ,99, L0,” 90,) to be such a function that, when

99 is an invariant function of the G1oup, 5.)is also an invariant function, ——to

find the function .9.3‘

. 90 97‘

When we wr1te 7.0,, : .3'7- . and 59,, = 7% , we have
I . I ' -

Va, 02/

(ng :— gpmda: + 9743/:

or, since 99 is an invariant function

(1090—: O:—- 77¢,dw + 090,,(ZJ + 594277.77 ~{— 1,7,,(20J

 

* Sophus Lie, Vorlcsungen ueberCo'ntihuie11iche G1uppen page670
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From these identities we can deteimine the inc1ements 0%, and(my f01

each t1ansfo1mation of the GO.

If we extend each t1ans101m'1t1on of the Cheap1n teims of the inclements ‘

1777, . . . , 1771, 17% 17177J, and then put each extended transformation equal to zero

we Obtain the following complete system, from which .9 may be detelmined:

  

9.7 917 1917

“95—01 97*”: 97—07

9.17 917 917 917 _ 9.7 .917 __

"9.; P977 2"9‘77—691"3‘7*%9,7,—01

917 ~17 917 7 9.1. 917 0

/ 93/ Q c2. '5 9.57 96 2% 9%, _ ’

917 ~ 7 917 917 o.

”9‘+ 7+977“”"_ ,,+ 917+‘97+‘”97~'=01

917917 917
12??“274) ——2(77 + haw—211879? -— (7’—,L 7:17)???

917

917 917 ‘ 917 917 917
2 .-. _ 2 _ —- -.. —- __ ——- —— = .

77 ay 77 a? 278 98 2 (7 + 217) 97 23/907 9% 0

., 917 917 917 9.9
-._-_ '1-— 2:79 - ,1 -_ z w.
232|22773p+7 :7 (7Tp)8r+2(1+t)9

917 9.

+2(=s+2777%—++2(3777+ an)§;=0-

By algebraic reduction this complete system may be brought to the form

90 31 3 :11) 91)

092-)»: 27'»: -s—'—'- ‘z——' 9.41:
1 j a!) + 0'7 i 98 l— 371‘ + (fa, I190“: :

917 917 917 9g( __ __ . .. _

U;__2-— 19?|8—- Qt—et-l-wyg—wy—O,

. __ 9!.) 9.2 9.9 8! 9.2 3.9

U-”=1’9,7+-’197 “’“7'97- + ‘9” + ‘97 ' ”9;=0’

"2 ,. 9!.)
’71-}? so: -,’ 37' 5-: = 0,

7.. 912
UV! :2 q '9? = O,

’N

U012 "5—: pg 5375 = 0 .
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Equations ([12 and U612 show that the solutions will be independent of .9

”11'

and 03%, and the complete 

‘ . . 912
and 2; hence we neglect those terms containing q

as

system reduces then to one consisting Of four equations in six variables.

912 912 912 912 912 912
The matrix formed with the coefficients —— , - —-- -—-- - -— -— ls

’l ’ ’7. 1 ' ’3— ’ 3 ’ Q ’
C1) C9 CI 1,71, 1.90:” s90?!

77 O 27' 37: 19, 0 ll

0 y 0 0 0 19,, i,

1! 77 q 7' 7-: 0 0 :5,

ll 0 0 7) 37 0 0 i

all the determinants of which do not vanish identically, so that there are two,

and only two, independent solutions of this complete system.

In order to find these solutions we proceed as follows :

The solutions common to U112 and U212 are

7' “ 7r 99-” I igy.1201, ([2, _.,._,(£3, "—-—-([4.

77 77“ 7)

If we introduce these solutions, 17,-, as new variables, into U,f and (Rf;—

since

Uaal = — 171, UTA; = — 21/.2 , (73173 = —— a3 , (/4171, 2 —~ 11,,

. 1 (1.1

010-1 2 “‘ 7 [Zia-7 = ‘— a 020-3 = O : [flu-l = 0 7

Z2 ' I)

we have the following equations :

’11) '1 7 a 17 a g '
C 1.. C -u G. C .

0.12 _- 7 »—— omp— —— (1. --~ —— 17. -— = O
’ "T [9171-1—“9172 I “9173 I. l191/I ’

Z _31. -l 31/ 912_0

5 —' 817., '1 917.3 '

The solutions of U 12 are

31112 -— 2612 E [1, 173, 17,.

If we introduce these solutions, 79, a3, a,” as new variables, into the equa-

tion U712,—since

[[713 7:” 2/9 7

we have the equation

7,17 ’17 11;)
(1.14 O. C.

2fi93+¢392+019z—- 1
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the solutions of which are

/ A,

.4119 and 41299 are called DifferentialParameters and have the general form

'9 (:12, 3/1 2': P, -- - 2 $9; JI‘P: J29”):

Since J11; and J29; are invariant functions, the expressions

0 -.., __ 3;] I" , ' 2

41'9” = ~41 (J1?) 7-“ "5;: i 3',‘,'-.i'£“.)fii :

3415 a 7)"
,, . 3,-.. .3

J“(J‘w)“ 9y 93(39‘“—2p35’

5U n ‘9‘-

_11 (J2?) : ”pig" {sill—724791

, l

S

11" (37'2 --~~ 2p: 3

. 9.1, n

.1319 -:-; 45’— : ,

are also Differential Parameters; and, likewise, .1319, etc.; so that the most

general Differential Parameter is

L) (w: .7/, 2:2); ' ' '3 ‘rra J19: J2?) Jle‘rna J2 (JI‘P)7 ’ ' ') '

By operating with the l')ifl'erential Parameters on the invariant functions

already found, we can find the invariant functions of higher orders.

32. We shall now show how the five invariant functions of the fourth

order may be obtained by means of the Differential Parameter.

Let

 

a ..- 9“ (87' — M!) ~ 111)“ («st — .110)

. 2 "‘ 2):; (3Z2 __ 2Q?) 7

= 21/38" - a”) infer:
993 “ ”‘40“ (312 ~ 29:)
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Hence 0 ‘

1,59, 3 -2 —7:2pr [git-l] 23 9"“

J”: * 37" £2 2297: [2:] 2E 9”“

1993 3712 i 2px [ii—$3] 2E 5””

Ji’ ' M 92 (373}: 229.7) [%%] 25 9,)" ’

43% E 93(37'27: 2 a) {2%)} “E 595 ’

are five independent functions of the fourth order invariant under the Group.

33. To Find w/zaz Eguations f(a:, 2 , z, p, .. .) = O are [mariant under

t/ze (7’9.
, .

As in § 19, it may be shown that, by examining the matrices, or determi-

nant, of the coefficients of p, g, r, etc., there are no partial differential equations

of an order lower than the third invariant under the G9, accept those obtained

from Me invariantflmclioas 13;" the third order.

(a). Since noneof the invariant functions, 90,, 1,02, 90,, contain 2, there are

no partial differential equations of the zero order invariant under the 09.

(b). If we put the invariant function of the third order,

___ :1“ (37'2 -— 2293)

first equal to zero and then equal to infinity, we obtain the following invariant

partial differential equation of the first order :

$01

1 ,

=0, #:0, =0, _=0.
9 .22 I) 11

These are the only partial differential equations of the first order invariant

under the 09.

(c). It is clear that there are no partial differential equations of the second

order invariant under the GE, ; for the equations of the second order, .

7' = 8 = l = 0 ,

are invariant under the 0,, only when they are considered in connection with

and as a consequence ofp = 0 and g = 0. ‘

(d). The invariant partial differential equations of higher orders are

obtained by putting arbitrary functions of the invariant functions equal to
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zero. Thus the most general invariant partial differential equation of the third

order is .

' _Q ($91: {92: (P3) = O - _

(e). The most general partial differential equation of the fourth order

invariant under the 6%., is
-

9 (5-0“ 902: $93: 9”]: 61’2, 553: 9,51: 901.) = O .

V.

EQUIVALENCE or SURFACES.

' 34. In this section we shall show how we may determine the nature of

the families of surfaces which are composed of those surfaces which are

“ equivalent ” by means Of the transformations of the Group.

35. Two surfaces are said to be equivalent by means of a Group, if by

means of the transformations of the Group, the one surface can be carried

over into the other. As in the case of equivalent curves, equivalent surfaces

belong to invariant families Of surfaces, which families are defined by invariant

systems of partial differential equations. ‘

If a surface admits of no transformation of a G", it will generate an

invariant family of co " surfaces, when subjected to all the transformations of

the G”. If this family of co "' surfaces is given by the equation

z=faw. m

where f is an analytical function, we can always write this equation in the

form

37— 30 =2)0(J’_ (to) + g! ('7’ " way + 8007; ~%)(7J _3/0)

t 0

‘l' gQ(?/”‘?/o)'+ ~~a (2)

where 20, p0, . . ., lo, are the values of .2, 2), . . ., t, .. ., when we assign to :1:

and 3/ their initial values are and 1“. '

Since the family consists of co ” surfaces, 72 of the arbitrary constants 20’

p0, . . ., to, . . . must be connected by no relations, while the remaining arbitrary

constants must be so connected by relations that they can be expressed in

terms of the 71. arbitrary constants which are connected by no relations ; that

is, 71. and only 71 of the partial differential coefficients are connected by no

relations.

Now suppose that we have an invariant system of partial differential equa-
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tions, and that by means of these equations we, can express all, except n Of

the partial differential coefficients of z with respect to .7: and 3/ in terms of the

remaining 71 partial differential coefficients; it is clear that such a system of

partial differential equations will define an invariant family of exactly co 7‘ sur-

faces, since, in this case, 71 of the arbitrary constants of equation (2) will be

connected by no relation. '

The system must consist of an infinite number of partial differential equa-

tions and it must be complclelg/ integral/left, For equation (2) contains an

infinite number of arbitrary constants, 30, p0, .. ., to, . . . and all of these con-

stants, except n, are determined by means of the partial differential equations

in terms of the remaining a arbitrary constants.

Since the system must contain an infinite number of equations, we can

suppose the system has been so arranged that by differentiating one of the

partial differential equations of the system, we only obtain another partial

differential equation of the system already given.

We can also suppose that the equations of the system are so arranged

that beginning with the lowest order they proceed to those of higher orders ;

and, finally, that from the equations of the 12th order we cannot eliminate all

the partial differential coefficients of the 22th order. It is evident, then, that

such a system of partial differential equations as we have defined above will

determine, from a certain point on, all the partial differential coefficients of .2

with respect to :L'and 7/ in terms Of those of lower orders.

If the surface admits of m of the independent infinitesimal transforma—

tions of the 6‘", where m. < u, it will generate a family of co“’“ surfaces.

What we have said above in regard to the family of co ” surfaces is equally

'true Of this family of co ”""; that is, it will be defined by a completely inte-

grable invariant system consisting of an infinite number of partial differential

equations, by means of which we can determine all the higher partial differen-

tial coefficients of.- with respect toe.'7andy in terms of (n — m) of the lower

partial differential coefficients of .2 with respect to .0 and y.

36. We shall now show what invariant systems of partial differential

equations are necessary to define the invariant families of surfaces, which are

composed of those surfaces that are equivalent by means of the transforma-

tions of the Group

 

3 . . a . a . 3 . 3 . 3 ,, 3 .. 3 .

2.1 .91 :1 . . .1 2.2.“ . ~.z .2 :Z . :._Z ,. :1
1 I ’\ J '7 ‘\ :I/ fl 3 ' '\ 9 ' \ J :I/ ’\ j ‘4 fl

ca) 3y :3 .1; 03/ »6 ca) cy c2

  
 

* Goursat, p. 41, Vol. fl.
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I. The invariant systems t/Ldt contain no partial (lffl'erential equation of

an order lower than the third.

a. Suppose the invariant system contains one partial differential equation

of the third order of the form (of. § 33, d)

~91 ($91: 992: $93) = 0 ° (3)

By means of this equation we can determine one of the partial differen-

tial coefficients of the third order in terms of the three remaining partial

differential coefficients of the third order and those ’of lower orders ; that is,

in terms of nine of the partial differential coefficients. Now, since the greatest

family of surfaces invariant under the 6’, consists of a: “ surfaces, it is evident

that the greatest number of partial diflerential coefficients, that: can be con-

nected by no relations, is nine; so that we must have, in connection with

equation (3), other equations by means of which we can determine all the

higher partial differential coefficients from the fourth Oider on in terms of the

nine pa1tial diffe1ential coefficients of lowe1 01"deis (cf. p 68). If we differ-

entiate equation (3) partially with 1espect to. (I: and 7/, we have the two equa-

' tions of the fourth order

ac, _ 0 a...)
_ 3

l

1 "'1“-

C .1} C II/

 =0, - (1)

which must evidently form a system which is invariant under the 02,. These

two equations will determine two of the partial differential coefficients of the

fourth order in terms of the nine of lower orders. In order to determine the

three remaining partial differential coefficients of the fourth order, we must

have three invariant equations of the fourth order (cf. 33 e)

"(220.51: "'1 fl)” "'1 ¢5l=oal

23(¢l:"'2¢11”'1 91”»):07f (5)

.Q(¢,, ..., ¢,, ..., ¢5)=O,J

no one of which can be a consequence of equation (3). By means of equations

(3), (4), and (5), we can express one partial differential coefficient of the third

order and the five pa1tial diffeiential coefficients of the fourth o1de1' in terms

of the three 1emaining partial differential coefficients of the thi1d o1de1 and

the partial differential coefficients of lower orders.

Now by repeated pa1tial diffe1entiation Of the above equations we obtain

an infinite number of equations, belonging to a system which is invariant under

the 09. It is clear that by means of this system of equations we can deter-

mine all, except nine, of the partial differential coefficients of 2 with respect

to a: and 3/ in terms of nine of the partial differential coefficients; hence, in
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thisv‘case, nine and only nine of the arbitrary constants of equation (2) are

connected by no relations, and we see, then, that the invariant system eontain- f

iny one partial dijlzrential equation oft/1e third order and three of t/ae fourth

order will define an invariant fiunily of'ewaetly oo ‘3 8m; 21038.

As a similar discussion holds for all the other cases, we need only write

down the remaining invariant systems.

b. If the invariant system contains two independent partial differential

equations of the third order,

91 ($91; $52: $93) = 0‘1

. ‘92 (S91: 9922 $93) = O .-

it will define an invariant family of exactly co 9 surfaces.

. c. If the invariant system contains two partial differential equations of

the third order, - -

~01 (9% $92: 903).: 0 ,

92(5911 59:1: .03) = O ,

and one partial differential equation of the fourth order,

. Qaf§91:---;S!’1a---’/’5)=O:

which is not a consequence of those of the third order, it will define an invari—

ant family of exactly co 5 surfaces.

d. If the invariant system contains three independent partial differential

equations of the third order, '

‘ 91cm. 903) = 0.

92891, 90-2: ‘93) = 0 a

. %%wmm=m

it will define an invariant family of exactly 00 7 surfaces.

6. If the invariant system contains four independent partial differential

equations of the third order,

if "(21(901: 9921 $93) = O a

'02 (951: $52: 59:1) = 0 1

Q3 (9911 $92: (:73) = O a

_ $Mam=m

it will define an invariant family of exactly 00 5 surfaces.

II. T/ie invariant systems ionic/1. contain partial differential equations of

the second order and none of the first order.
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Since there are no partial, differential equations of the second order invari—l

ant under the 69, except the system r: s = t = 0,1which is a consequence of

the invariant system of the first Order 1) = q = 0, there is no invariant system

containing a partial differential equation of the second order and none of the i

first order. (Of. 33, c.)

III. T/teinvar[ant systems w/tic/a contain partial difierential equations of

the first order.

a. If the invariant system contains the two partial differential equations

of the first order, of the typical forms

29 = 0,

:1 = 0,

it will define an invariant family of col surfaces. Evidently, in this case, the

invariant family consists of the planes

2 = const. ‘

b. If the invariant system contains onepartial differential equation of the

first order and one of the third order, it will define an invariant family of

exactly as 3 surfaces.

On account of the symmetry of the 09, we may choose

2) = O

as the typical partial differential equation of the first order ; and, then, it is

clear that the partial difl'erential equation of the third order cannot be a con-

sequence of p = 0.

If we put _ q“ (3r2 —- 2px) '

. lp‘ 22m;

equal to infinity, we obtain the partial differential equation of the third order

3t2 — 2qr = O ._

This is the only invariant partial difi'erential equation of the third order that

is not a consequence of p = 0, so that the invariant system is

10 = 0

3t" -— 2qr—_. 0.

When 39—_ 0, 2—__F(y), and the equation 1%" —2qr =i 0 may be written .

3913]; (132333:
Ldyzj dy dy"

The integral of this equation is (of. § 27)

e2+a2+fiy+r=0

Hence, in this case, the invariant family consists of the co ’ hyperbolic cylin-

ders given by the above equation.
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There are no. other systems containing. a partial differential of the first ’

order invariant under the Go, for there are no invariant partial differential

equations of‘the fourth or higher orders that are not a consequence of p = O._

37. We may now collect our results as follOws :

A. If the invariant family consists of co 9 surfaces, it will be defined by

1. An invariant system containing one partial differential equation of the

third order and three of the fourth order, or

2. An invariant system containing two partial differential equations of

the third order. I

- B. If the invariant family consists of co3 surfaces, it will be defined by

an invariant system containing two partial differential equations of the third

order and one of the fourth order.

0. If the invariant family consists of co 7 surfaces, it will be defined by an

invariant system containing three partial differential equations of the third

order.

D. If the invariantfamily consists of 00“ surfaces, it will be defined by

an invariant system containing four partial differential equations of the third

order.

E. There are no invariant systems that will define invariant families, con-

sisting of to“, co“, or 032 surfaces; hence no surface admits of exactly four,

five, or seven independent infinitesimal transformations of the 0,.

F., If the invariant family consists of w 3 surfaces, it will be defined by an

invariant system containing one partial differential of the first order and one

of the third. '

G. If the invariant family consists of 001 surfaces, it will be defined by an

invariant system containing two partial differential equations of the first order.

In this, the last section of this paper, we have shown how we may deter—

mine the nature of the invariant families of surfaces, which are composed of

those surfaces that are equivalent by means of the transformations of the G, ;

and if we have two surfaces that are equivalent by means of the transforma-

tions of the Group, their equations must satisfy the partial differential equa-

tions of some one of the invariant systems enumerated in cases I to III.

In the discussion of the above group I have followed the method of Sophus :

Lie, which can be found in his Vorlesungen ueber Continuierliche Gruppen,

Where it has been deemed advisable I have given special references.
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