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GEOMETRICAL PECULIARITIES.

1. In this section we shall find the finite transformations and the path-
curves of the group -

. " ) ’ 2 2 203
P roxp, Yg, @ ®p, Y, 27

where p = ,af q= g{/ gf
0 o

We shall also briefly discuss some of the geometrical peculiarities of the
Group.

9. The most general infinitesimal transformation of the Group is
Uf= (¢, + 20z + c2) p + (@ -+ 2.y + &y) ¢ + (a5 + 2z + &)

where a;, b, ¢, (i = 1, 2, 3) are certain undetermined constants.
The finite tmnstmmmhons are given, in the usual manner, by the 1ntegm-

tion of the following simultaneous system :

da, _ dy, L dz, —
a, + 20z ez’ ay + 20y, + ey’ 4+ 20 + o’ ’

with the condition that @, = 2, y, = ¥, 2, = 2, when ¢ = 0.

Now, since the variables have already been separated in these equations,
it is easily seen that whether a¢;c; < = > b} (E =1, 2, 8) the finite transfor-
mations have the form

e __ P+ Ba 2+t
ml___a3w+1’ ?/1——_/33%,_'_1’ 2

where a;, B, 1; are certain constants.
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3. It is evident that these transformations will transtorm the equations
@ == const., ¥y = const., 2z = const. '
into " '
@, == consh., %, = const., 2z = const.

Hence, we observe that all the planes parallel to the gz-plane are moved
parallel to themselves by the transformations of the &, In this case, we say
these oo ! parallel planes form an invariant family of planes; that is, Zhe
Family is invariant as a whole, while the planes of the family are in terclmnged
among each other by means of the transformations of the G,

Similarly the planes parallel to the xz-plane and ay-plane form two other
invariant families of planes, and we have, in all, three invariant families of
parallel planes, each family consisting of w! planes.

The intersections of the plunes parallel to the yz-plane and zz-plane are
straight lines perpendicular to the a2y-plane, and it is obvious, since the o ?
lines perpendicular to the zy-plane are the intersections of the planes of
invariant families of planes, that these o * lines themselves form an invariant
fumily of parallel lines.  This fumily of lines is invarviant as a whole, while
the lines of the fumiily are interchanged among each other by meuns of the
transformations of the G,

Similarly the lines perpendicular to the yz-plane and xz-plane form two
other invariant families of parallel lines, each family consisting of a line con-
gruence.

Since the planes of each invariant family of planes ave parallel, the inter-
sections of the parallel planes of each family will be a straight line at infinity ;
and, as we have three invariant families of parallel planes, we shall have three
such lines. Tt is clear, then, that these three straight lines at infinity are abso-
lutely invariant.

4. To find what absolutely inv: umnt loci exist within a Jinite distance of
the origin, we equate to zero the coefficients of p, ¢, and #» in the general
transformation ; for they are the increments given to », y, and 2, respectively,
by the infinitesimal transformation

Uf = (&, + 25_135' + ¢@®) p + (@ + 26y + ¢yf) q + (a5 - 20 - @) 7
Thus we have the equations

a + 22 + e
@+ 2y + eyt =
y, -+ Bbz + ¢f =

| .
o oo

which give the absolutely invariant planes

T = 4, w=ﬂl’ Yy =, ?/=ﬁz: 2 = Uy, 2=ﬂ3:
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where the «’s and @'s are the roots of the above equations, and have the values

_—b + VO —ag ‘g _ — b —b — ag
- 3 [ .

a4
C; (293

The intersections of these planes ave, of course, invariant; hence the
following points :

(s Gy ), (s By )5 (Br @y 55 (By By %)
((lx; a:z’ ﬂ.‘i) H .(al) :82’ ﬁ.&) : (/31’ ”'2’ ﬂs) 1 (191: ﬂz: /93) .

are absolutely invariant points; and are the vertices of a parallelepipedon,
which must also be absolutely invariant.

If b < ag;, the roots of the equations become imaginary, and our abso-
lutely invariant planes, points, and parallelepipedon, likewise, become imagi-
nary ; for the imaginary planes do not intersect in any real points or point.

If b7 = a,;, the roots of the equations are equal, and our planes now
reduce to three and our parallelepipedon to an absolutely invariant point.

It = ¢, =0, e, =1, ¢, = a, = 0, the transformation becomes

Uf=p.
In this case, the roots of the equation
@, + 20z + e =0

ave infinite, and the planes # = const. are now at infinity, while the planes
y = const. and z = const. are still invariant. A similar discussion holds
when the transformation reduces to

Uf=q, Uf=r,

or to any mere translation.

5. The points in space are moved by the general transformation of the
@, along »* curves, which we shall call the. Puth-Curves of the Group. We
shall now find these curves, and see whether any of the absolutely invariant
points just found lie on this curve congruence.

These curves, as usual, are found by integrating, in the most general
manner, the equations

de . dy - . dz
a4 + 2@ + e a, + 20y + e ay + 202 + ¢

‘We shall find them for the three principal cases only ; that is, according as
aiC.l < = > btﬁ (?: —_ 1, 2’ 3).



-

4 ROBERTS. ON THE TRANSFORMATION GROUP, EIC.

If ac; < b2, the o ? path-curves, as is readily seen, are given by the equa-
tions '

z— % Ul lr?/ - aﬁJ k’
ly — P

where

ﬁtE—Z)t — /b — ai(}i’
¢

2
B2 = b — ae
=L ,
b — ase,

H

b — ac,

and C, and O, are constants of integration. Evidently the absolutely invariant

points
Poeo=0, y=u, z2=uq,

Q: a=p, y=7p5, z2=75,
lie on these curves, so that each curve of the congruence of path-curves passes

through the points £ and ¢.
If @, > b7, the o ? path-curves are given by the equations

tan™! (uaz -F v) — & tan™* (my + v,) = const.,
tan~* (s + v) — A tan™ (pz -+ ;) = const.,
—t and vy, =

by

g T e
Ve, — b Vage; — 07

where

¢ —

y22

and % and 4 have the same values as above.

In this case, the absolutely invariant points become imaginary, since the
imaginary planes do not intersect in any real points or point.

Tinally, if a,c; = b7, the oo ? path-curves are given by the equations

1 — 1 = const.

e® + 0, oy + b, ’
1 1

= const.,

e + b, ez + by
or '
wy + maz +ny + 6 =0,
¥z + e + nz + 0, =0.

Tn this case, the absolutely invariant points reduce to one point, the coordi-
nates of which are




A e A 2 Sk e

S b & A B AR S Wb

e L T e e b A b 5 P e AN i o PO

ROBERTS. ON THE TRANSPORMATION GROUP, ETC. ' 5

This point lies on the curves just found, so that now each curve of the con-
gruence of path-curves passes through one point. :

Tn the first case the path-curves are usually algebraic ; in the second,
transcendental ; and in the third, they are given as the intersections of hyper-
bolic cylinders.

Of course, other cases may arise, but they need not be further discussed.

6. We have already found the points that are absolutely invariant under
the transformations of the @, We shall now find what “ [nvariants,” or
snvariant relations exist between n points, three points, and two points ; that
is, what functions f (2, s 21y« + 5 T Yoo z,) are invariant, or what equations
F @1 Y1y 21y v o v s Cny Yy Z0) = 0, are invariant under the Gy

We shall first define what is meant by an invariant function, and an
nvariant equation.

A function f (@, Yo 21 -+ -5 Tus Yoo z,) is said to be invariant under a
group of transformations in the same variables, if each increment given to the

function by each transformation of the group is identically zero.
An equation (@, Y1y 26« -+ 5 Tny Yo z,) = 0 is said to be invariant, when

the increments are either identically zero, ox are zero by means of F=0. The
analytical condition, then, is that the expression
5 f o f o A o f o
=™ O LA TR LA .o —_— 2.
of o, % + a7, 0y, + 22, 0z, + -+ 2, 02,
shall be zero identically in case of an invariant function; and shall be zero
identically or by means of f == 0 in case of an invariant equation f = 0,—
where the dz;, 0y, 0z; must be obtained from the transformations of the Group.
7. Weo can now find the Invariants and invariant relations of 2 points,

three points, and two points.

Lt the coordinates of the points be @, ¥ 2, 6 =1,2, ..., n). Here we
wish, first, to find what functions f(z, %1, 21 - - «» Tus Yo z,) are invariant.

In accordance with the above, we have the following conditions, which 7

must satisfy simultaneously :
OFf=p+p+ ... +p.=0,
U:-'j.;YI + Qz+ e +gn=07
[/3,]“—”-'—'7’1 +7'2+ LA + 7'11—'—'—0’
Ulf—'“' 2 + Ly s + .. + ZpPn = 03
J’if.:——-. Nt + Yo + cen Ynldn = 0 )
Z](:f: 2" + e + oo F = 0 )

U&fz 3/1291 + ?/2292 + cee + ?/1L2Qn = O ,
Uf=a -+ ar+ ... +22=0.
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The above complete system consists of nine equations in 3n. variables ;
and, since all the n-row determinants of the matrix of the coeflicients of p;, ¢;, 7;
do not become zero identically, theve are 3 (n — 3) solutions of the system. From
equations U, f, U,f, and T,f we find (n — 8) functions f(z, 2y, . . . , ), which
are solutions of the system, as none of the other equations contain z;. In
order to find these (n — 8) solutions, we proceed as follows (see § 13) :

The solutions of equation U,/ are

Zy . a Ty a wn —=u
2= =2 == g, = L
T ) = 2 3 » z <l

It we introduce the quantities «; as new variables, into the equations
U, f and U, f,—since
Ua:—:—l—(l—a) Lra,=l(l—m,) very, Ua =l(1——-a )
11 , 1/ 12 2, 2/ H -1 ®, n—1/1
Zf7al = — 0, (1 - (/'1)1 U;(/.2= — &0y (1 _az)r ey U;an—-l _ = wl“n-—l(l - an—l):
we have the following equations:
3 J
Upf =1 — ) f+(1_“’) f "'+(1_’(/'n—1)aai'=07

n—1

Ouf=ut—a) T +a0-uf ’” bt (L — ) gL =

Ap—1
The solutions of equation U, f are

1——{/’—- 1817 1—a)l_! /3 N
- . e Pn=l e

1—q Tl —
If we introduce the quantities 3, as new variables, into the equation
U, f,—since
Uih=0—a) BB —1), oy U= —)fus(Bro— 1),
we have the equation

Unf=pE—1) ; 2t e (e = 1) ;9-2{:3 =0

The solutions of this equation are

B—1 8 =% —Q"i'ml_m‘!
(91 ﬁ—'l ““mo 'L’g—c’lzﬂl’

ﬂl—l ﬁn—-z _'l' — &3 ml_wn.

ﬂl /3n-a —17 — & £L'2 — &y
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We can now, on account of the symmetry of the equations, write down the
remaining 2(n — 3) solutions. They are

f= Yo — Y W — ./i

Y—"Y2 Yo — Y’
f— 5 — 2 B — 7
L — B By — 2

“where (2 =4, 5, ..., n).

Hence, if four points, whose #’s, ¥’s, or #’'s form an anharmonic ratio, are
transformed by means of the transformations of the Group, the as, ¥/’s, or &'s
of the new positions of the four points will form the same anharmonie ratio.

Evidently, this is equivalent to saying that the anharmonic ratio of four
planes parallel to one of the coordinate planes is invariant.

For the invariant relations of fwo points, we have to find what equations
F (@ Yy 2, Ty Yy, 2) = 0 satisfy all the partial differential equatlons either
identically or by means of f = 0. '

It is readily seen that the equations

f=w,—o=0, f=y—y=0, f=25—z=

satisfy all the partial differential equations by means of /= 0; hence /' =0,
in any of the above forms, is an invariant equation. This means,—when, for
example, 2, — , = 0 is the invariant relation of two points,—that, if the two
points lie in a plane parallel to the yz-plane, when they ave transformed by
the transformations of the Group they will still lie in a plane parallel to the
yz-plane.

It may be shown that all the invariant relations of two points.are of the
above forms.

Similarly, for ¢three points, we have the equations

=0

&

o —w =0, o,—x=0, o —2=0,
v—1=0, v,—y=0, y—yu=20,

z—z=0, 2 —2=0, z,— 2z =0.

These results are interpreted just as in the case of two points.

8. In like manner we can find the Invariants and invariant relations of a
point and @ plane, two points and a plane, a plane und two points, ele.
Writing the equation to the plane in the form

ux 4+ vy +wz =1,

&
t
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and writing the transformations of the Group in the variables %, v, and w, the
problem becomes to find what functions

.fl(wh Y 21, ¥, W, w), ,f; (1, Y1y 215 By Yoy By %, O, w),
S (), Y15 21y Uyy Vyy Wy, Uy, Vyy W), olC.,

and what equations

fi=0, fo=0, J: =0, ete.,

are invariant under the Group.

The invariant functions, and invariant equations, are found in a manner
entirely analogous to that of the preceding paragraph ; and it will not be
necessary to go through with the work here.

9. It will be interesting to know what will happen, if we make some point
absolutely invariant ; that is, hold somne point of general position as fized.

The plaune passing through the fixed point parallel to one of the coordi-
nate planes is invariant, since the transformations of the Group move all such
planes parallel to themselves (§ 3). Two of the invariant planes of § 4 are
parallel to it. Suppose these three planes are given by the equations

=7, L=, (I):ﬂl.
The plane which forms an anharmonic ratio with these three planes is
absolutely invariant (§ 7). Let this plane be given by the equation
z =g . ‘
The plane which forms an anharmonic ratio with the planes
w=51’ w=7’1, w=al:
is also absolutely invariant ; thus there is found another absolutely invariant
plane ; and by this method there can be found o ' absolutely invariant planes
parallel to the yz-plane ; o !, parallel to the 2z-plane ; and «w ', parallel to the
zy-plane. These three families of absolutely invariant planes intersect in oo

points, which, of course, are absolutely invariant. flence every point in space
becomes absolutely invariant, if’ a point of general position is held fized.

10. The results of the last paragraph may be shown analytically.
Let the coordinates of the fixed point, which does not lie on any of the
absolutely invariant planes, be

T=T71, Y=T2 =713
These values of z, ¥, and 2z, by hypothesis, reduce the transformation

Uf = (@ + 2b@ + ¢@®) p + (@ + 2by + &9°) ¢ + (@ + 2b2 + ) »
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- to the identical transformation ; therefbre, these values must satisfy the equa-

tions : .
a, + 22 + ¢t =0,

ay + 2y + ¢y* =0,
ay + 22 + ¢ = 0.
We, consequently, have the three following cohditions, from which a,, b, and

¢; may be determined
a, + 2bgs + erf =0,

a; + 200; + e =0,
a; + 20,8, + P =0,
wlﬁere a; and f3; are the roots of the equations (§ 4).
Eliminating «;, we have
| e (a + 1) + 2?)1: =0,
¢ (4 -+ B;) + 20, =0.

Eliminating b, we have
" &(n—P) =0,

but since y; cannot equal j3;, we must have ¢; = 0, and, consequently, ¢, = 4,
= 0. Now;if @, = b, = ¢, = 0, the coeflicients of p, ¢, and » are zero. Since
these coefficients are the increments given to z, y, and z, respectively, by means
of the transformation, and since they arve zero, the transformation reduces to
the identical transformation.

11. The invariant families, so far found, have been either planes or straight

.. lines. We shall now show that the Group may be put into such a form that

it will leave the families of all sunfuces of rotation

=g+ o +axt by + o)

invariant. S
‘We only need show, to this end, that the Sub-Group

» ¢ @, yg, =, Yq

can be put into such form that it leaves the o * circles in the zy-plane invariant
as a family ; for the transformation zr and 2*» do not transform this plane at
all, while the transformation » merely translates it.
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Introduce into the Sub-Group the functions #; and ¥, as new variables,
by means of )
® =2 + W,

Y=o —W;

then p = f and ¢ = f become, in these variables,

1 9f
9331 3 9y,
and
af 1df
dw, 13y’

or ip; + ¢, and ip; — ¢, ; and the transformations, as is readily seen, may be

written in the forms

, Pt pi—

29 — 9o+ i@p + ng), Ty — Yy — @y + 99
(@ — ) — 2”1%2’1 + i@’ —y') o + 22l
Cayp — @° —y®) g + i {(2° — y°) oo + 22001}

Hence the ¢; may be put in the form

» ¢ yp—2g, wp+yg, @ —y)p -+ 2yg, 2wyp — (3 —yd)¢

The finite transformations of this @; are (§ 2)

=l | fe—i)th
W@t ) +1 2@ —a) T 1)

1 I:’/l ( +7y) + a, . B (@ —1iy) + B
R ACE 7 o i e

Let the equation to the cireles in the ay-plane be
V=a'+y’+am + by, +¢c=0.
Substituting in this equation the above values of #, and y,, we get

{n (@ +7y) + o} (2 — y) + P} gsan(w%’i?/)—kag+/9|(w—iz/)+ﬂ2§
i@+ + 1@ —a)+ 11 " 2lg@Fa)+1 ' fl@—iy) 1

bt ba_ fe—i)+h) L
+2’{a3(w+z'y>+1 ,93<w—z'g/)+1}+”“°’

[ %)
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which may be reduced to
, 24y Qe+ Hy+F=0.
Hence the circles @ = 0 are invariant, as a family.
In the form

? ¢ yp—g, ap+Yq,
@ — ) p + 2xyq, 2zyp — (& —y) g,

», zr, 2

the @, always transforms a cirele in the zy-plane into a circle, since zr and 2%
do not transform that plane at all, while » translates it merely. Hence a sur-
face which cuts that plane in a circle must be transformed into a surface which
also cuts it in a circle, or the surfaces of rotation

z=¢ @ + ¥ + az + by + ¢

are an invarant family under the Group as written above.
This is readily verified from the form of the equation of surfaces of rota-

tion

2= @ 4+ ¥ + ax + by + ¢) .

1I.
DIFFERENTIAL INVARIANTS.
INVARIANT DIFFERENTIAL HQUATIONS.

192. In this section we shall assume y and z to be functions of 2 ; and shall
proceed to find the Differential Invariants of the lowest order of the &, and
then show how the Differential Invariants of higher orders may be found.

‘We shall also find what ordinary differential equations are invariant under

' the .

13. We shall make frequent use of the following theorem from the theory
of the complete system :

IfFAf=0,..., 4,f =0 form a complete system inm,, ..., #, (r < n),
the solutions of the same can be obtained in the following manner. We find
the solutions ¢y, ..., ¢y 0f A, f =0, and then write A,f = 0 in the form

)
-AZfE'AﬁDl@]";’i_-"—i'-Aﬁpn—l%L:O-

n—1
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I the ratios of the Ay, are not functions of ¢y, ..., ¢, alone, the equa-
tion A,f = 0 breaks up into several equations. We integrate one of these und
introduce the corresponding solutions &y, . .., Puninto Ay f = 0. The resulting

equation

9
A3¢1.9_~£ =0

we handle in an analogous manner, ete.  Thus we find wltimately the (n — 7)
solutions of the complete system.

14. To Find the Differential Invariant of the Lowest Order.
Here we have to find what functions £ (2, ¥, 2, ¥1, 21, - - + » ¥, 2,) are invariant
under the transformations of the Group,—where

=0y 0%
._/i = '("{‘a":i": == dw—i °
Now
Foow Lo s % 5
O =508 & 5y % + gy, O oo T O @

and we must obtain the increments dy,, 0z, for each transformation of the
Group.
If we have given any transformation

Uf~c"+a L+t =

we find dy,, 02, . . ., 0y., 02, as follows :

yde = dy ,
so that
dyda + y,0de = ddy ,
or ‘
dyde + ydoz = doy ,

doy dox
R

1 =

&

Since 0z = £0¢ and dy = 70t, we have

oy, _dg _ dE_ . :

W ode N (say)-
Similarly, 5 2 g

2, dL §

—O‘—t--—-zl—m———zlzl-xzcl (Sa:y).
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In an analogous manner, we find

h . d?l—l _ dé:
"= g T e
At as

‘We may now write the transformation in the form

e, Y . .
UJ=S%+0@+C§5+"'+0n§§;+¢‘n§;;s

and we then say that the transformation has been extended n times.

We obtain a complete system of nine equations in nine variables, if we
find the increments dy; and dz; (¢ = 1, 2, 3) for each transformation of the -
Group, substitute them in equation (1), and put af=00U{=12...,9);
or, what amounts to the same thing, if we extend each transformation three
times, and then put each extended transformation equal to zero.

Extending each transformation of the &, three times, and putting each
extended transformation equal to zero, we obtain the following complete sys-

. . _of
tem,—in which ¢, = TR ete.
p=0, ¢=0, p=20,"
@p — gy — w1 — 2ugs — 2273 — BYugs — Bzyry = 0,
¥q + 9+ %ods + Yis =0
ar + 2y + 2y + 29, =0,
a'p — 2myy — 2wz — Ay + 22y) o — 2 (2 + Qz,) 1y — 6 (Yo + %) s
— 6 (2 + wzg) 1y =0,
v'q + 2y:q + 2@+ ) e + 26y + v =10,
&y + Qeap - 2(2° + 22) vy + 2 (322, + 22) 1, = 0.

From the first three equations, we see that the solutions, if any exist, will
be free of z, ¥, and 2 ; hence, we may neglect those terms containing p, ¢, and
7. Doing this, and reducing algebraically, the system becomes

UF =g + 2 + 29 + 220, + 8yt + 327y =0,
Of=yq + %02 + 98 =0,

Uf=ar +ar+2r=0,

Uf=pg. + a7 + 8%y + 327 =0,

UJf = + 8y:0s=0,

Uf=ar+ 32pm=0.
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Since U, f is the sum of U,f and U,f, the system reduces to one of five
equations in six variables ; hence there exists at least one solution.
The matrix of the coefficients of ¢; and 7; is

ho & 2 ;‘Zz, 3y, 3z,
w 0 v, 0 gy O
0 2 0 =z 0 2z
0 0 vy 0 3y, O

0 0 0 =z 0 3z

All the determinants of this matrix do 7ot vanish identically ; hence there is

one and only one solution of the complete system.
In order to find the solution we proceed as follows: (CE § 13)

The solutions common to U,f and U, f are

B _3(1) g, a3 '2];,3
oo 2 L'."/x J a2z ’
which are also solutions of U,f and U, f.
Introducing these solutions, as new variables, in U, f,—since

Uia=2(4, UHB=2ﬂ’

L&

S

we have the equation

vf=ed+8%=0,

the solution of which is
By’ (222 — 32,7

« = 22y, — 3y
Thus we have found the solution of the complete system : which is the
Differential Invariant of the &, of the third order.

15. To Find the Differential Invariants of Higher Orders.®

Suppose £ (z, ¥, 2, Yu, 21y« + o3 @5 P1y s - - .) to be such a function that,
when ¢ is any Differential Invariant of the Group, £ is also a Differential
Invariant,—to find the function £.

We have '
pdz = dy ,

so that
dpyde + ¢\dox = dog,

* Sophus Lie, Vorlesungen ueber Continuierliche Gruppen, page 670,
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or .
So. — ddp dox |
1= dm P
but, since ¢ is an invariant, dp = 0, and we have
doz
8501 _ - 501 —d%l .

Now:
20 K
08 =32 00 + . +9 oy + - +-A§o¢+ o g3

and since 5Q must be zero for every transformation of the Group, we have
the following complete system, from which £ may be determined :

p=0, ¢g=0, =0,

' 9L

zp — Yy — & — 20 — 2270 — 3Ys0s — @1 —9?0‘1 =0,

ye + 90+ vt + 98 =0,

zr 4z A+ 2, =0,

Bp — 2yg, — 2wz, — 2 (9 + 22y.) g — 2 (21 -+ 222,) 1, — 6. (3 + @Ys) s
— 20, 9% =0

1 959 ]
¥oq + 2+ 2 (YC + v ¢+ 2B%y: + Y9 =0,
2 + 22z + 2% + 22,)r, =0,

where

P

2L

_ Q 20
P=xs =

a— 7=

The first three equations show that the solutions will be independent of z, ¥,
and z ; hence, we neglect those terms containing p, ¢, and 7.
By algebraic reduction these equations become

K
U2 =yq + 2 + 2Yu72 + 2z,7, - By,q5 + @1 - g

U2 =y + 9 + 4u1s =0,
Ul=zr +2,=0,

U2 =yg +ar+3ysu=20,
U2 =yq. + 3pgs =0,

Ul =2r=0.

=0,



16 ROBERTS. ON THE TRANSFORMATION GROUP, ETC.

We see from 7,2 and U2 that the solution will be free of 2, 2,, and 2,
The solutions common to U,2 and U ¥ are

3—/§—§ Y 2='a and
y1 zlyl} -—— ] ‘¢1

Introduce these, as new variables, into U, £ ; hence, as

Vo =20, Uy = ¢,

we have the equation
iy 28

U,.QEQaD—a— —}—_50]9—50—1_0.
The solution of this equation is
do = 5,7; .

dg is called a “Differential Parameter” and has the general form
"Q (w’ .?/, 2, :I/ly 21y veey SD: dﬁo) .
Since 4y is an Invariant,

a4
Fp = 4 (dy) o

is also a Differential Parameter, and likewise 4%, etc., hence the most general
Differential Parameter is
"Q(w’ Y, 2y Yy e, ﬁpg ‘jsal’ 42509 . ") :
16. We shall now make use of the Differential Parameter to find one of
the Differential Invariants of the fourth order.

Let
o=t
where
% _3(a) ' _w_ 3]’
ﬁ—z1 thl}’ — 2|L?/1
Now
_@_ﬂla—‘“lﬂ
%= T P
where
_dp _ da
ﬂl——“%» “1=@'
Hence

do = o P — wmp

T o

is a Differential Invariant of the fourth order.
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17, To Find the Other Differential Invariants of the Fourth Order.

By extending each transformation of the &, four times, and by reducing
the equation algebraically, remembering that the solutions will be free of z, ¥,
and 2z, we get following complete system :

C Of =y + an + 29, + 220 + Byugy + B2y + 4y + 420 =0,

Of=yq + e+ 0 + 9. =0, :

U f =2r + 20y + 2475 + = 0,

UJ=yq: + & + 8ugs + B2y + 6yyyy + 62, =0,

Uf=yle + 3uyugs + By + 4y ¢, =0,

U.f = 2tr, + B2z + (32° + 422) 7, = 0.

This is a complete system of six equations in eight variables, and has at

least two solutions.
The matrix of the coeflicients of ¢,, 7, is

v, % 2y, 2, 3y, 3z 4y, 4z,
2w 0 v, O y, O Yy 0
0 2 0 & 0 2, 0 2,
0 0 vy =z 3y, 3z 6y, 6z,
0 0 g 0 3yy. 0 (3p°+ 4y 0
!‘, 0 0 0 =2z 0 3zz 0 | (32 + 42,2,)

All the determinants of this matrix do no¢ vanish identically ; hence there
ave only two independent solutions of the complete system.
In order to find the solutions of the complete system, we proceed as

follows (see § 13) :
The solutions common to U,/ and U,f are

Ys . Ys _ Ys .o
‘-—/—gi,,:az, Z/—Q =y, = =,

n % %

2 z 2, ..
2=, B=0b, H=b.
P 2, Z,

Introduce these solutions, as new variables, into U,/ and U, f,—since
U, =y, Uy =3ay,,. Ug, = (8a® + 4as) 1,
Ub, =2, Uby= 302, U, = (88 + 4by) 2 2
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we have the equations

U,.f_:—:%—l—3 7 4 (34, +4c¢3)_ﬁ_ ,

9
Of = g + 8 o + (B0 + 4 =0,

2 by
The solutions of these equations are
_3 s Yy 3 %)
a3 Q 662 - :’-; —2- ’E-IJ -,
8.2 8(a)*_
L UEE é[z—lj_ﬁ,
0y — by + Sap T — ¥ g g (1] =
4 243 2 _—,?/[ ?/12 ?/IJ (ifl;' I
; 2 1 ap __
bo— 4, + 3B =2 —4 2 4B =t
1 W03 + 00, 2, + L 2 | an B

Iutroduce these solutions, as new varmbles, into O f and 7, f; since
Uo=2a, U =30, UB=28, U =33,
Uo=0, Uaq=2, Uf=0, Up =28,
we have the equations

Of =23 + 98 3+ 80 L + 95, ¥ -0,

S/ 97”
Uof=ad+ 83, =0.

The solutions of U, f are
ay B, afy —uf=0.
Finally, introduce these solutions, as new variables, into T, J; since
U =50, U= 2u, U3 =28,
we have the equation | ’

a,f-zagf_z,a AN S” —o0,

the solutions of which are

aB — af @ __ offy — a
A R T R

Two, and only two, of these solutions are independent; for, it is clear that
the first is a function of the ratio of the last two.
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18. Having found the two Differential Invariants of the fourth order, we
shall now, by means of the Differential Parameter, find the Differential Inva-
riants of the fifth, sixth, seventh, and eighth orders.

Let |
aps, — a
¢»l = _/3'17’)/T'£ 3
S—/’4 = (fﬁl_ﬂ%ﬁ )
then
2 5 5
4 1 do, afy — wiff — g omfy + 5wl
Y=y = - ,
2 5 o 5
4d 1 d¢4 4By — wfft — 9 ap® -+ 3 o35,
N u P ;
are independent Differential Invariants of the fifth order.

0,97/2
"o

If we multiply the first by 5 and the second by T the results will still
be independent Differential Invariants of the fifth order, since ‘g, and every

. 3 . .
funetion of ‘7/ , is an lovariant.

Adding together these results, we have

5 44 2 b
25, — 300 B2 — g |

(/.3 af)
e . 248
Multiplying this by o s We get
‘.
4B, — 5B} __ o duny — Sa’,

ﬂ" ﬁ (/.-d ’
hence the Differential Invariants of the fifth order may be written
_ damy, — Ba? 4B — 5B :
o=, =

the first of which, ¢;, contains y; only, and the second, ¢;, contains 2, only.
12
If we multiply the Differential Parameter, do = Z[}/_?% by [%] I we get
/ oyt l
o = 1;'_2 E—Zlfb, which is also a Differential Parameter, since it is a function of

B and do (§ 15).

72
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20 ROBERTS. ON THE TRANSFORMATION GROUD, ETC,
We can now write down the Differential Invariants of the sixth order ;

1 do, - 4d’a, — 18anya, -+ 154

P = gy = i )
g, = ﬁ%% — 4/;% b__ ISgﬁﬂg + 1582 :
of the seventh order ; :
O = ;}72 d—‘:‘ﬁ =@ %‘gf )
1 a4, ag,

finally, of the eighth order ;

= 1dg_ 1dade, | 1 dgdy,
BE T B de do, T @R Y Jp?
=g, [ %) 1 g T
:996 [(_];0;} l- 606 dsosg’
1 dy (dy)* Ay
ho= = W1y 1 Cs 52 C
=g =Gt 00

The ¢; contain y;, only, and ave, therefore, invariant under the Sub-Group

Doowp yg, @p, Yol

and the ¢; contain z; only, and are, consequently, invariant under the Sub-
Group '

P v, wp, e, @'p, 2

19. 7o Find what Differential Eguations are Invariant under the G,
In order to find the invariant differential equations of thé nth order, which
are independent of the Differential Invariants, we have to form the matrix, or

-determinant, of the coeflicients of p, ¢, 7, p, ¢; ( = 1, 2, ..., n) occurring in

the simultaneous system obtained by equating to zero each transformation
extended n times. Having formed the matrix, or determinant, we have to
find what equations f(=, v, 2, ¥, 2;) = 0 make all the determinants of the
matrix, or all the minors of the determinant, zero simultaneously.

By examining the matrices, or determinant, it may readily be shown that

“t
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there are no differential equations, of an order lower than the third, invariant
under the G, except those obtained from the Differential Invariant of the
third order. '

~ (a). Since the Differential Invariant of the third order does not contain
z, v, or z, there are no differential equations of the zero order invariant under
the &,. ‘

(b). If we put the Differential Invariant of the third order, -
B _y’ (222 — 32)

e 27 (2yys — 3y)

first equal to zero, and then equal o infinity, we obtain the following invariant
differential equations of the first order

g =0, L=0, 5=0,

g

Ry
|
[am)

These together with the equation @, = 0 (which, of course, is invariant) are
the ondy differesiicl equations of the first order invariant under the Gy..

(c). It is cloar that there ave no differentinl equations of the second order
nvariant under the G,.

The two equations, of the second order,

v, =0, =0,

are invariant under the @, only when they are considered in connection with
and as a consequence of y, = 0, and 2z, = 0. Hence they are excluded in this
discussion.

(d). If we put the Differential Invariant of the third order,

B_ y.* (22,2, — 32y)
a” 2" (2yys— 31’

H

first equal to zero and then equal to infinity, we obtain the following invariant
differential equations, of the third order, ‘

222, — 32 =0,
29y, — 8y," = 0.

These are the only two independent differential equations of the third order

invariant under the @, '
(e). The invariant differentinl equations of higher orders are obtained by

putting some arbitrary function of the Differential invariants equal to zero.
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III.
EQUIVALENCE OF CURVES.

920. In this section we shall make use of the Differential Invariants and
invariant differential equations found in the last section, in order to determine
the nature of the curve-families which are composed of those curves which are
“equivalent” by means of the Group.

921. Two curves are said to be “equivalent” by means of a Group, if, by
means of the transformations of the Group, the one curve can be carried over
into the other.

Suppose a curve is subjected to the transformations of a Group of »
parameters ; it will then assume oo " different positions, provided that it is not
invariant under (or, as we sometimes say, does not “ admit of ) any one of
the » transformations of the Group. In this case, there is generated a family
consisting of oo " curves; and it is clear.that curves, which admit of no trans-
formation of the &, and which arve equivalent, must belong to such a family.
If the original curve admits of ¢ independent infinitesimal transformations of
the G, it is readily seen that the resulting family will consist of @ "7 curves;
and these o ™= curves ave, eo ipsn, equivalent among each other by means of
the &,.

Tt is evident that such a curve-family is invariant, where invariant is taken
in the sense that the curves of the family arve interchanged among each other,
while the family ws ¢ whole is unchanged.

This family is defined by two independent differential equations, one o 1 the
mth ovder and one of the nih ovder, where m + n == v — q, which as « systom

is tnvariant under the G,

99. Since the curve-family, to which the equivalent curves belong, is
defined by an invariant system of differential equations, we shall, as a matter
of convenience, put here those invariant systems of differential equations,
which we shall need in the discussion of this subject. :

The most general invariant differential equations are (see § 19):

0. 0. None,
1.0, y=0,2=0,2=0, (see § 19, b)
I1. 0. None,

III O. &, = const., 22,2, — 327 =0, 2yy, — 3y° =0, (see 19, d)
IV. 0. 2(¢y du 594) =0,
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V. 0. 2(dy, 9_04: Go 06 05) =0,

VL. O. 2(dy, ..., 9/’0:’ O 05 ;) = 0,

0. /) %’ —C{(ﬁ" =
VII. 0. & [S’}J’ ooy Ygy d¢l5’ (ORI ‘isp{jJI )
( Ao, d¥d ae, )
by vuey S8 T ee i1=0.
VIII. 0. 2 |L$r 35 ; d‘rl'a ’ (-19952 s Pas ) d?"ﬁljl 0

We can now write down the invariant systems of differential equations,
which must consist of one differential equation of the mth order and one of
the nth order, where m + n = 9 — ¢, and where ¢ is the number of inde-
pendent infinitesimal transformations of which the curve admits.

There are three invariant differential equations of the first order ; but, on
account of the symmetry of the Group, we may clearly choose 2z, = 0 as the
typical invariant differential equation of the first order. Now when 2, = 0, it
Ay AP,

is readily seen that ¢y, ¢&,, &, &y, dg,’ T and ¢, become zero, so that the
invariant systems containing z, = 0 are:

I. and 0. 0. None,

r.’a'l:O,
L. and 1. 0. <
L?/lzo:

Land II O. None,

(¢, =0, o

I and III. O. ({ (See § 19, d)
29y — 3y =0,

Land IV. O. None,

(2, =0,
ILand V. 0. K
¢ = const.,

g =0,

Los = 7(gs),

I.and VI O.

e
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2, =0,
L and VIL O. {
l. Q (’lqgh — O
[%, 99(:’ d%] )
(sl =0 ’
I. and VIIL 0. < :
dspb CZ Sah

L‘Q[S‘osiﬁpm'—s dqﬂ J—

As there is no invariant differential equation of the second order, there
are, evidently, no invariant systems containing a differential equation of the
second order.

If ¢, = const., it is evident that ¢, &, ¢J;, and ¢, ave identically zero, so
that the invariant systems containing a differential equation of the third order

are :
(222, — 32 =0,
IIL. and ITL. 0. < (See 19, d)
29y, — 8y’ =0,

IIL. and IV. 0. None,

( ¢y = const.,
IIl.and V. 0. <
[ &5 = const,,

(¢, = const.,
III. and VI. O. <

Los = 1 (¢)-

The invariant systems containing an invariant differential equation of the

fourth order are

( 2, O 0,
IV.and IV. 0. <

L"Q-: ($o ¢ 95) = 0,

f 2 (5!’3’ ¢-1, 594) =0 s
IV.and V. O.

L'Q(¢3’ ¢4: S'/Jm Po 99'3) =0.

93. We shall now show how to find the curve-families to which those
curves belong that ave equivalent by means of the Group of nine parameters

2

o9 v @, yg, e @p, Y Er
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1. If the cwrve admits of no infinitesimal trangformation of the G, it
will generate @ fumily of w® curves, when subjected to all the transformations
of the G, _

(a). This family might be defined by an invariant system consisting of one
differential equation of the zero order and one of the ninth order ; but, as there
is no invariant system containing a differential equation of the zero order, this
case is excluded. :

(b). This family may be defined by the invaviant system

31 = 0
( de, d*o;)
{ o (L. TN ____Sﬁ» —
2 {-‘f’ﬂ’ M ([(‘ﬂ.' 3 (l(lp-,JJI 0 3

which consists of one differential equation of the jirst order and one of the

eighth order.
Evidently the curves of this invariant family ave plane curves in the

planes z = const. Since z» and 2% change nothing in the 2y-plane, these ®
plane curves are the same in each plane z = const.; hence, in the ay-plane
they are defined by the invariant differential equation

(¢, ¢ 200, Tl =0,
L do,’ lo; J
which is of the eighth order, and is given in terms of y, .. ., ¥s ,
(¢). This family might be defined by an invariant system containing one
differential equation of the second order and oue of the scventh order ; but, as
there is no invariant system containing a differential equation of the second

order, this case is excluded.
(d). The family may be defined by the invariant system

¢, = const.,
‘,ﬂni = f.((’ps) ’

which consists of one differential equation of the third order and one of the

sizth order.
It ¢, = 0, the family will be defined by the invariant system

222, — 32" =0,
o = J(¢s) -
The integral of the first of these equations is

vz + ap + bz + =0,
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and the curves of the family will then be the intersections of the hyperbolic
eylinders represented by this equation, and the cylinders given by the equation

@5 = J (@)

, s S (y,)?
If ¢, = o, then « =%_ o8B = 0; and, consequently, ¢, and ¢,
yd ' :I/l 2 L?/l} ‘ q y ‘;’h SD.»
become identically zero ; hence this case is excluded.
(e). This family may be defined by the invariant system

2 (5!’3’ ¢4’ 994) =0,
2 (5'/}3’ 9/’4’ Sljrn Dy 595) =0 ,

which consists of one differential equation of the fourth order and one of the

Jifth order.

II. If the curve admits of one of the infinitesimal transformations of the

G, it will generate a family of w® curves, when subjected to the transforma-
“tions of the G,

(). The first possible case is that this family may be defined by the

invariant system
2’1 = 0’

which consists of one differential equation of the first order and one of the
seventh order. As in I, (b), the curves are plane curves in the planes z =

coust.
(b). The next possible case is that this family may be defined by the

invariant system
¢, = const.,

¢, = const.,

which consists of one differential equation of the third order and one of the

fifth order.

The same reasoning holds here, as in I, (d), when ¢, becomes either zero
or infinity.
(¢). This family may be defined by the invariant system
2, (3 s 594) =0,
£, (s iy 0) = 0,

which consists of two differential equations of thefourt/& order.
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IIL. If the curve admits of twn of the infinitesimal transformations of
the Gy, it will generate u fumily of w7 curves when subjected to the transforma-
tions of the G,

The only system invariant under the &,, which will define this curve-
family is

w

l=01
o5 =) (¢s)

which consists of one differential equation of the jfirst order and one of the
sixzth order. As in I, (b), the curves are plane curves in the planes z = const.

IV. If the curve admits of three of the infinitesimal transformations of
the Gy, it will generate a fumily of o curves when subjected to the transfor-
mations of the G,.

(a). This family may be defined by the invariant system

2, =0,
¢; = const,,
which consists of one differential equation of the first order and one of the
fifth order. As in I, (b), the curves are plane curves in the plane z = const.
(b). This family may be defined by the invariant system
222, — 32 =0,
29y, —3y,' =0,
which consists of two differential equations of the third order.
The integrals of these equations are

wz —ax +bz+¢ =0,
ry - a + by + ¢, = 0;

hence the o ¢ curves are, in this case the intersections of the two families of
hyperbolic cylinders, given by the above equations.

V. If the curve admits of four of the infinitesimal transformations of the
Gy, it will generate a family of w® curves when subjected to the transforma-
tions of the G,

There is no system invariant under the @, that will define this family of
o ® curves. Hence no such invariant family exists.

VI. If the curve admits of five of the infinitesimal transformations of the
Gy, 1t will generate a fumily of w* curves when subjected to the transforma-
tions of the G,
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The only system invariant under the &, which will define this family is

=0,

o

-

29y, — 3y, =0,

which consists of one differential equation of the first order and one of the
third order. As in I, (b), the curves will be plane curves in the planes z =
const.

The integral of the equation, 2y, — 3y,* = 0 is

2y + aw + by + ¢ =0;

hence the curves are hyperbolas in the planes z = coust.

VIL. If the curve admits of siz of the infinitesimal transformations of the
Gy, it will generale « family of w?® curves when subjected to the transforma-
tions of the (1.

There is no system invariant under the &, which will define this family
of w® curves. Ience no such invariant family exists.

VIIL. If the curve admits of seven of the infinitesimal transformations of
the Gy, it will generate a faumily of w* curves when subjected to the transfor-
mations of the G,. :

The typical system invariant under the &, which will define this family is

2,:0,
=20,

which consists of two differential equations of the first order.
In this case, it is evident that the curve-family consists of the oo ? straight
lines perpendicular to the zz-plane.

IX. If the curve admits of eight of the infinitesimal transformations of
the G, it will generate a fumily of w' curves when subjected lo the transfor-
mations of the G,. ’

There is no system invariant under the &, that will define this family of
o ! curves; consequently, no such invariant family exist.

Hence, if the two curves are equivalent by means of the transtormations
of the &, they must both belong to some of the families defined above. When
the equations to the two curves ave given, we can substitute in the types of
differential equations defining the above invariant families, and if such differ-
ential equations are satisfied by the equations of both curves, the curves belong
to that family and are equivalent.
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94. Lie has developed a theory of integration, which may be applied to
the integration of some of the above differential equations. 'We shall, there-

fore, give here two of his theorems.*
I « If o differential equation of the mth order rLc’lmlts of the Group

o Yo Yo P o, TP |

it is reducible to the form

!2[(,05, gy v+ Z{%_—S}:O,

where
_ 4douy, — bo?
g == g
4ata, — 18amu, + 15a
Yo = o? ’
and
“ = hy 8 r? 21 o = C’é{f )
y 2 l_./l J da
By integrating the equation of the (m — 6)th order, £ = 0, we get a
relation
@5 =1 ()

which is a differential equation of the third order in 2 and . This equation

admits of the three known infinitesimal transformations p, mp, @*p, which, in
the variables @ and a, have the forms

F T 0% Tt a
% Yom 20 20’ ¥ g + dae 2"

Tn order to integrate the above differential equation of the third order, we
introduce as new variables the quantities

u = aPo, o, =400, — 5¢~%,";
then
duw _ @, — W
s Py

If W (v, ¢;) = const., is an integral of this Riccatian equation of the first
order, we find, in the following manner, by mere differentiation, the other two
mteﬂml equﬂ,tmns of the dlffelentml equatlon 9 = f (gor,)

' Matb, Anmalon, Bd. XXXIL pp. 262,260,
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If we put o
Uf=2 9f 4x(/ f— (62, + 4a) % —L - (Sa,a -+ 10a1) 9]‘
then
Ugﬁl = O
UW = ::]j 4: _a_ﬂ a—}‘.’-
du ’
TUW =16 0t — 8uu o

Ju

and since the quantities W, U W, and UU W are independent as regards w,
@5, @, and a, by eliminating the quantities in w, and ¢, between the three
equations
W = const., TW = const., UUW = const.
we find the quantity « determined as a function of 2 in the form
o= Hz)- ‘

This equation is a differential equation of the third order in 2 and 3.”

II. «If a differential equation of the mth order admits of the Group.gq,
yq, ¥, it can be reduced to the form

[ de ansy)

Qi = ..
[ 4 e G

T dx’ =0,

where
2
=% _3{)—9.
Yoo 2 (%)
1f we integrate this equation of the (m — 8)th order, we get a ditferential
equation of the third order of the form

b 3% = F,
N2 _
which can be reduced to a Riccatian equation of the first order.
If we put

2 — 5
4
we get
dz _yy _ (1)
dz Lg/, j’
or
dz _1 5, | p»

If O (2,2) = const. is an integral of this Riccatian equation, we find, in
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the following manner, the other two integral:equatious. of « = F'(x), by mere
differentiation. ~

When we put .

5 9

U=y 1 + 2y % f + (29, + 21/12)@'-5,
then 0 = const., and U U@ const. are known integrals of the equation
v = Il'(z).

It is necessary to show that 0, U0, and U0 are independent functions
of 2, y, y, and y,.

‘We have
(f@_f’_‘.’m_Qi’?J
vve =159y + 159 yy,;

so that 0, U, UUO are independent as regards y, z, y, and z. Hence the
integration of « = Z'(z) is made to depend upon that of the Rlccatlan equa-
tion (1).”

25. The equations

do;’ clgaJ

. = flg:) =0,
all admit of the Group

-

7 Yo Y9, po @, @p

hence the two theorems above may be applied to the integration of these
equations as soon as we know the functions £ and f.
26. Theorem II may be applied to the integration of the equation
¢; = const.,

which may be written in the form

4oy %%‘ — by — =10,
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To inbegmté this equation, we put 2 = «? so that

and, hence, '
2= o = b + k¥

Solving this ethon we find

@ == u) /c(/ + /coa'/~
the integral of which is
4 (hd® 1 F,
]"z \/ ar - =T + &y,

which may be i)ut in the form

o= (a’z* + 20n + )%
or

Io 210" = (atat £ e + o)
” Z[Ju' = (@'%" + <)

Now by writing 2 = ./ , we find

dz 1 , o L R L =2
=7 + (a2 + 202 + ).
Suppose 0 (z, ) = const., is an integral of this Riccatian equation of the s
first order. If we put

=+ O
vy Y 2yy, ay + Qyys + 297°) .’
then
U0 = const.,, U UO = const.,
are two known integrals of the equation

¥s ‘3 “-} = (a2 + Wz + ),

Yoo 2
and by means of these three integral equations, we can eliminate y, and ,, and
thus determine the complete integral sought.

27. By means of Theorem II the equation

2y, — 3y’ =0
may be integrated

Let z = &2 ; then
i 1

dz 1 ,
=%

=3
* Page's Ordinary Diff, Eq. § 68.
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Integrating this equation, we find

O(zm) =22 4 kz + 2=0;
so that :
U0 = %y, - 2hky, = &,

U0 = 2ayy, + 2kyy, = ky
are two integral equations of the equation
] 2yrys — 3y = 0.
Eliminating y, from the above equations we find
2y + a4 by + ¢, =0.
Similarly the integral of the equation

222, — 32, = 0

is
2z 4+ a@ 4 bz 4 ¢ =0.
28. In case I, (d), § 23, we have the invariant system
¢y == const.,
0= f(¢5) -
Suppose we have integrated the second of these equations and found
w=F ({L’) .

It we substitute this value of « in the equation ¢, = const., we have

We may now apply Theorem II in order to integrate this equation.
The same reasoning applies to the integration of the invariant system of

Case II, (b,) § 28. .
Iv.
INVARIANT PaARTIAL DIFFERENTIAL EQUATIONS.

29. In this section we shall assume 2z to be a function of x and y, and
proceed to find what functions f(x, ¥, 2, p, ¢, 7, 8, ¢, 7, p, 6, 7, .. .) and what
equations f(z, ..., 7, ...) = 0 are invariant under the ¢),—where

dz dz , e >z ;= &%
: . ’ N L) ':: _— S TRTTTT — ;‘—“5
P =gy 1 ay’ oz’ ey’ sy’
&z P & P
T= - T

= 0 - ..__'_ T ol
o’ U ardy’ dndy*’ &y’
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80. Zo Find whut Functions f(x, ..., t,) are invariant under the @,

It we extend each transformation of the Group in terms of the increments
6p, 0q, . .., 07, and then put each extended transformation equal to zero, we
shall have a complete system consisting of nine equations in twelve variables,
from which the invariant functions # may be found.

We must first, then, determine the increments dp, dg, .. ., or.

Since z is a function of 2 and g, we have the following identities, which
must hold for all values of 2 and ¥ :

. dz = pdz + qdy

o doz == dpde 4 dgdy + pddz - qddy ,

dp — rdz + sdy, dq — sdz -+ tdy ,
2.4 . dip — orde + dsdy + rddw - sdoy ,
| ddg  dsdw - dtdy 4 sdow + tddy ,
dr — ndz -+ ody, ds = pde + ody, dt = eda -]; tdy
oo dor = drdz -+ Opdy -+ wdox + pdoy
>3 dds = dpdx 4 dody + pdox + edoy ,

| ot = oade + dvdy + oddz + =doy,

. Af af af .
where dz, dy, and dz are the coefficients of 4 , j , A , respectively, in each
dx’ dy’ oz -
transformation.
_of

In the transformation Uf = -2, we have dz = 1, 0y = 6z = 0, so that

o
p=60g=...=0dt =0,
.. . . d . 3F .
Similarly the transtormations IfF - j and Uf = f oive
K 9!/ 33 o]
p=00=...=0r=0.
M af o N )Y
In the transformation I/ =z %o We have 6z =2, 0y = 0, 62 = 0. Sub-
. e

stituting these values of dz, 0y, dz in equations 1, we have
0 = dpda + dydy + pdz ,
so that dp = — p, dg = 0.

=
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1t we put these values of BZJL,ancl dq in equations (2), we get
—dp = — rde — sdy = Ordz + dsdy - rdz
0 = Osdz 4 Otdy + sdz;
so that 0r = — 2r, 08 = — &, 0t = 0. '
Putting these values of dr, ds, 0¢ in equations (3), we get
— 2dr = — 2 (ndz + pdy) = dndz + Spdy - wdw ,
— ds = — pdx — ody = opdx + dody -+ pdx,
0 = dodz -+ Ocdy -+ odz;
therefore, ox = — 87, dp = — 20, b6 = — 0, iz = 0.
Hence, the transformation, f = g{, extended becomes
Uf—-a}af ])9}]: 97‘%—;——3?{—— z‘%f'_?‘:”:%‘—”%"

Tf, in a similar manner, we extend the other transformations and put each
extended transformation equal to zero, we get the following complete system :

af — o, 97”_0, /.
oz

du ‘
of _ of o g OO
{Euu 91) 2 5;-. 8;98 IL'@:- 2‘05"—’ ' ”9(;_0’
S U s g o A o A 5 O
;9./ Ty ey 90‘ “552 ! 9‘;' a7 3 bt = 0
o U S
f}’] q}{ f—[ cf—l“S—ééj-tZ'{-rﬁg'z—}-agg_[_ ,9];20’
'2 g'/l—. ; 'f e bt ? é:f' — ‘)’l é}f’ J—— 3 g | e af
® 52 2%[7 9_}) 2(]) }—2%7)9_}‘ Qs 35 ()(/ |- ) =
Af 5. &
C— 2 (s 4+ 2px) 5; — Q0 55_——_0 ,
0 f o f‘ 9 ot o of
Y 52/——%’_7@—2@@—& ——._.(j + 215_/) ——‘J‘”Z/?‘—l;v 2 (s -}I-_J(;‘;/) -
N
— 6 —FJ)Z,];:O,
PP VP YRR Y
.J§E+2..])é;)-+24g qg+2(7 (2)) I 9 (25 - pg) 7
. 0 9,. o
+ 2+ #) 3{ + 2 (3rp + z7) 977_; 2(ry -+ 20 + 25p) Z\_";
2(2 & L s@p+ )L =0
+ 2(2sg + o2 + pt) 5= + 8 (2¢t 4 m)Z)_T_
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Since the first three equati‘ons show that the solutions will be independent

.. Af &f oF
of z, ¥, and 2, we neglect those terms containing <, =L 2 and then, by .

du’ dy’ 9z’

algebraic reduction, we obtain

e L 0p o 8 O of L G
a'f::ppz) ’{" 27?7"*"6?—& "!‘ 3/ ::i;+2‘”§7;_%_0?—(}—0,
2 A SF A
vr=od+ed+ud oL rwLinL=o,
o L GSF LGSR
U= f+qo§ e SR S S SVE SRS R it
- U A 3.‘27‘ . i,_'=0
W ]7 1_ = -8 o ’
U f=q: U— ‘f+ 3t =0,
. OF ©,0 g
IR e o f b :w? + 3’1’ i ”" (rg - ‘WI + (23 +J")?§

+ 3¢t f:—Z 0.

v

This is a complete system of six equations in nine variables,

The matrix formed with the coefficients of 37-; cen ;é, is
lp 0 2rs 0 3= 20 a 0
0 ¢ 0 & 2 O Iz 2 3c
| » g r s i e 1 : o T
| 0 0p 0 0 3 § 0 0 ’
0000 ¢ 0 0 8 3¢
0 0 2° pg ¢ Bwp (rq + 2sp) (2s¢ -+ pt) 3Byt i

the determinants of which do no¢ vanish identically, so that there are three,
and only three, independent solutions of the complete system.
In order to find these three solutions, we proceed as follows: (See § 13.)
The solutions common to I,/ and U, # are

8 —2pm - wy, s —pp oy, B —r=a, t—qgo=a, p, q, s

LA
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If we introduce these solutions, a, p, ¢, $, as new variables into the equa-
tions U1, U,f, U,f, and U, f,—since ,
Ua = 4o,, Ua, = 3u,, Uoay=0 , UOu =u ,
Un =0, Upy=u, , Oy = 4oy, Uypsy = 3Buy,
Uy = 20, Uy, = 20, Uyy = 20y, Uyoy = 20,
O, =0 , Uu= —sp* UOu,=0 , Uy = — s,

we have the following equations :

o

g A
U.f = 4u % —Z- -+ 3a, ;Z‘ + o= P A

4o 8 2L =10
Uy c'y ) r &'y ’
_ . ) . . o o A
F= a, 2 - day L 0y s =0,
s) e b day S0 + Sy 73 t8 3
v A N 2y of o7 of
U == Qu S Qu. S u. M 7/ P A, Y _ g L 8 e = 0
uf '3//.,*4""91/,_,4——13914,-{—“' Zc’/)_i]é‘g P
/.‘\ 3 I‘)f‘ » 97_’!
U f=spr il L sl —pg i = 0.
w! =87 u, q 20, 7 %
The solutions of U, f are
“ a “ 8
Lo 2=pf,, 2=, == Uy .
Z)-l ﬁl’ ).;—-/z, ])-—I.H ]) ———ﬂ»ls 4 -

If we introduce these solutions, j3;, @, ¢, as new variables, into the equa-

tions U, f, U,f, and U, f,—since

Usﬂl =0, Usﬂz ant ﬂz: 3 Usﬂﬂ = 3f93: Usﬁl = ﬁl s
Uo/?i = — 24, U;ﬂz = f, U«J/?J = fl, Uoﬂx =0,
U =0, U = P, ) Uy =P, U= —7q,

we have the following equations :

U=/ zbf 13/%-\1" ﬂl"——{— oy / +Y'“— K

’ Z"_, ) *
05 LA Y e Y
Upt'= — 28 ?E — Dﬁ.’ + 3 ?F% -t -"/; 7 ‘l“ 3 0,
U.f of \ o oF 9]" 0
wf = e + g :’TZ - glﬁﬂn -
The solutions of U, f are
By — By Bo—
Q‘“;l’ T (2P g" @y -(l”.i:S'DJy ﬂl'




A A e S

NP

O PP

o E h aB R A S e e g

38 ROBERTS. ON THE TRANSFORMATION GROUP, ETC.

It we introduce these solutions, A, ¢, as new variables, into the equa-

tions Uy, fand Uy, f,—singe

;2% = - 29_91 ’ U12S92‘= - 299:“ Um% = — ¢, Urz% = — 29?4 ’
Um% = ¥y, Um% = @y, Um% =—1, Um% =0,
we have the following equations :
QF Af aF
Umf- 28 qg + 2¢, 5 "i + 2¢, ;‘2 -+ ‘f”a'c:“‘f,,f‘; + 2‘,91;'%‘ =0,
Ly
U;)j—sﬂ‘;,.’f—}— ——)—9£=0.

The solutions of U [ are
O — o= SJI: 2‘,91 + ‘,‘032 S-/’:!: ﬂl )

If, finally, we introduce these solutions, ¢, B;, s, us new variables, into

the equation U, f,—since
ULXS—IJI = 2’7/}1 ’ U-HS-/".’, = 2¢3 H
we have the equation '
é‘fl Qf) Sf) 9 cl
Uof — 28, 47 + 2y —597/ -+ 24, «z" + 20, - = 0,
“ ] - ,2 [

the solutions of which are
By —q' (3 — 2prx)

90‘, PR = 27)’

_ ¢ (sr — pn) — q(at — go‘)
o = 27 BE = 2g7)
= _ 2 (57' — pp) + pgns

‘/4 P (38 — 2q7)
These are, therefore, the three independent solutions of the complete system.

If

81. We shall now Find the Differentinl Purameter, when z is a Function

of @ and y.

Suppose 2 (2,9, 2, p, 7, 7 , 0, 0, ©,) to be such a function that, when
¢ is an invariant function of the G1011p, £ is also an invariant function,—2o
Jind the function 2%

. Qv oF
When we write ¢, = ", and ¢, = %~ , We have
i a 3’ »
v A 0‘7/

de = o dn + o,y ,
or, since ¢ is an invariant function
ddg = 0 = do,dz -+ 0¢7,cl Y -+ gpmdn.z -{- @y Y-

* Sophus Lie, Vorlesungen ueber Coutluulenlmhe Gr uppel, page 640
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From these identities we can determine the increments d¢, and dg, for
each transformation of the G,.

If we extend each transformation of the Gloup in terms of the increments -
Opy -« ., 07, 0p, dp,, and then pub each extended transformation equal to zero
we obtain the following complete system, from which 2 may be determined :

20 20 20
%= =0 =%
20 0 .80 0 . e on
vy TPy TV iy T ey, =0
20 20 00, 84 22 _ 4
/9_1/ 47 5oy T do,
20 -V B BT
e 7”4“‘"" o tey Tigtrg =0
20 20 20
'2-9;——274) ——2(2) + 2%))»——2@’—% — 6 (r +4 rw)z\;
8
— 20, o = 0
29 20 08 20 29
267 Qe S ¢ i =0,
Yy T W 5y 2ys - —2(¢ + 2@ 5 W g 0
, 90 20 90 50
2 -k 222)»95—#23 gy 2(er + Py + 2000+ 2) 57

29 EX
+2(~s+z)q)~—- + 2(3rp + 2m) 5 =0.

By algebraic reduction this complete system may be brought to the form

A0 2L R 20 a0
U8 =p.= + 2 22 —s-'—'- 3= = Dy e B
1 j 92) + p l C\é I" DTE + ‘f:, '190“: y
PARE 20 20 0
0 — n 2 H .
U0 = 1»? Ié—- 2t,,t+w1,qw_~0,
oy Q8 28 I R oL a0
U—’3=2’9,7+-’197 trg tey Tl tre =0
20 L 20
lj—l Y4 S: - 3 “= = 0,
b 20
U','-J == g —-9? == 0,

AL
U2 = pq %’5 =0.
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and £; hence we neglect those terms containing
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system reduces then to one consisting of four equations in six variables.

L 2 2L AN
T T By

The matrix formed with the coefficients

all the determinants of which do no0f vanish identically, so that there are two,

»
0
P
0

0 2

g 7

0 »

%

8 99
P’

37 o, 0 f
5 0 0 |

AV )
CPu <y

and only two, independent solutions of this complete system.
In order to find these solutions we proceed as follows :

The solutions common to U2 and U, % are

p

If we introduce these solutions, u;, as new variables, into U, f and U, f,—

P =u Tou
=0 ; 2
A
since
[]3(11 = — 0, Zfal/«_, = — 2(/.2 s
. 1 o
U = =, Uy = —,
2 '

we have the following equations :

U2 =

7,

I

>

@

(

-

[«]

*

The solutions of U, ¥

If we introduce these

tion U,£,—since

we have the equation

are

30 — 2a,

solutions, 3, o, «;, as new variables, into the equa-

U =98,

U:’.":s = — Uy,
Ug, =0,
Lo o Lo &
 uy . o
0.

(/2

Py

3 2

=f, ay o

oy

Uy = — a,,

U-la'l = O )

(
and 5 7 and the complete

, is
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the solutions of which are

’ o

4,0 and dyp are called Differential Parameters and have the general form
9 (%, ¥, 2,0, «++s O Jl‘,ﬂ, J‘_’Sﬁ) :
Since ;¢ and Jyp are invariant functions, the expressions

o — 9_} 2 . 2%
dfp = 4y (dyg) = "ﬂ‘;j‘: { Pre '"_l{’")'p%% )

ddye % P!

I () = e 2
L (he) = =37 3t — oS

B0t Opm

)
7 {
P ?
: yi

e e
1) =T
L

are also Ditferential Parameters; and, likewise, Jio, ete.; so that the most
general Differential Parameter is

B (w: 3/) 2:])7 te ‘,’r’ Jl?: J,_!(’;, Jle‘fna J'.Z (Jlt,g)? v ) :
By operating with the Differential Parameters on the invariant - functions

already found, we can find the invariant tunctions of higher orders.

39. We shall now show how the five invariant tunctions of the fourth
order may be obtained by means of the Differential Parameter.

Let

o = P87 — pp) — gp* (st — 40)
gt R Z}:s (3;2 . 2Q7) H

_ 24 (sr — pp) + £pg’
BETTIEE - 97
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Hence . ‘
hor s gt Opr ﬁ%l} =0,
= g Opa [;ﬁ] =,
0= gl I [%J =
gy 7 a (37-221 Ap) [%?J = P
L= (37""714- 2pr) {';S:?] =n

are five independent functions of the fourth order invariant under the Group.

33. 7v Find what Equations JS@ y 2 p, ...) =0are lwariant under
the G, o

As in § 19, it may be shown that, by examining the matrices, or determi-
nant, of the coefficients of p, ¢, », ete., there are no partial differential equations
of an order lower than the third invariant under the Gy, except those obiained
Srome the invariant functions of the third order.

(a). Since nome.of the invariant funetions, ¢,, ¢,, @,, contain z, there are
no partial differential equations of the zero order invariant under the G,

(b). If we put the invariant function of the third order,
- — 7' (32" — 2px)
first equal to zero and then equal to infinity, we obtain the following invariant
partial differential equation of the first order :

(A

1 ,
=O, _-:O, =O’ —:O,
? P Z q

These are the only partial differential equations of the first order invariant
under the @,

(c). It is clear that there are no partial differential equations of the second
order invariant under the @, ; for the equations of the second order,

re=g=1¢{=20,

are invariant under the @, only when they are considered in connection with
and as a consequence of » = 0 and ¢ = 0. -

(d). The invariant partial differential equations of higher orders are
obtained by putting arbitrary functions of the invariant functions equal to
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zero. Thus the most general in variant partial diffevential equation of the third
order is .
' L2 (g 00 05) =0.

(e). The most general partial differential equation of the fourth order
invariant under the G, is :

2(01, 0oy P s Py Dy s ¢s) = 0.

Y.
EQUIVALENCE OF SURTACES.

"84, In this section we shall show how we may determine the nature of
the families of surfaces which are composed of those surfaces which ave
“ equivalent ” by means of the transformations of the Group.

85. Two surfaces are said to be equivalent by means of a Group, if by
means of the transformations of the Group, the one surface can be carried
over into the other. As in the case of equivalent curves, equivalent surfaces
belong to invariant families of suxfaces, which families are defined by invariant
systems of partial differential equations. '

If a surface admits of no transformation of a &,, it will generate an
invariant family of o ” surfaces, when subjected to all the transformations of
the @,. If this family of o™ surfaces is given by the equation

o= flo ), &
where f is an analytical function, we can always write this equation in the
form

c—m=ple—o) + 2@ —a) + @ =)@ —n
t o
+ QQ(:I/——?/O)--{” vy (2)

where 2, g -+ -, by - - - ave the values of 2, p, ..., ¢, ..., when we assign to @
and y their initial values a, and y,. :

Since the family consists of w * surfaces, n of the arbitrary constants z,
Doy -« 5 by - - must be connected by no relations, while the remaining arbitrary
constants must be so connected by relations that they can be expressed in
terms of the n arbitrary constants which are connected by no relations ; that
is, n and only n of the partial differential coefficients are connected by no
relations.

Now suppose that we have an invariant system of partial differential equa-
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tions, and that by means of these equations we can express all, except n of
the partial differential coefficients of z with respect to 2 and y in terms of the
remaining n partial differential coefficients ; it is clear that such a system of
partial differential equations will define an invariant fanily of exactly o™ sur-
faces, since, in this case, 2 of the arbitrary constants of equation (2) will be
connected by no relation. '

The system must consist of an infinite number of partial differential equa-
tions and it must be completely integrable®. TFor equation (2) contains an
intinite number of arbitvary constants, z, p,, ..., ¢, ... and all of these con-
stants, except », are determined by means of the partial differential equations
in terms of the remaining n arbitrary constants.

Since the system must contain an infinite number of equations, we can
suppose the system has been so arranged that by differentiating one of the
partial differential equations of the system, we only obtain another partial
differential equation of the system already given.

We can also suppose that the equations of the system are so arranged
that beginning with the lowest order they proceed to those of higher orders ;
and, finally, that from the equations of the pth order we cannot eliminate all
the partial differential coefficients of the pth order. It is evident, then, that
such a system of partial differential equations as we have defined above will
determine, from a certain point on, all the partial differential coefficients of z
with respect to @ and y in terms of those of lower orders.

If the surface admits of m of the independent infinitesimal tr ansforma-
tions of the &,, where m < n, it will generate n family of o ™ surfaces.
What we have said above in regard to the family of w * surfaces is equally

- true of this family of w "™ ; that is, it will be defined by a completely inte-

grable invariant system consisting of an infinite number of partial differential
equations, by means of which we can determine all the higher partial differen-
tial coefficients of z with respect to » and ¥ in terms of (n — m) of the lower
partial differential coefficients of z with respect to xz and y.

36. We shall now show what invariant systems of partial differential
equations are necessary to define the invariant families of surfaces, which are
composed of those surfaces that are equivalent by means of the transforma-
tions of the Group

34 ' AP A A A A 8 30
‘:'_7._ a'f ZZ 2 '_Z 2 L'ZL z A )? "'/‘ 2 f'Z 22 f'.]_‘
R A PSR ./ Av oy A, Xy YWow, 7 B
o uJ oz o cy oz L cy oz

* Goursat, p. 41, Vol. II.
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1. The tnvariant systems that coritain no pm’tial differential equation of
an order lower than the third.

a. Suppose the invariant system contains one partial differential equation
of the third order of the form (cf. § 33, d)

2 (g1, 00 03) = 0. (3)

By means of this equation we can determine one of the partial differen-
tial coeflicients of the third order in terms of the three remaining partial
differential coeflicients of the third order and those “of lower orders ; that is,
in terms of nine of the partial differential coefficients. Now, since the greatest
family of surfaces invariant under the G, consists of w ¥ surfaces, it is evident
that the greatest number of partial differential coeflicients, that can be con-
nected by no velations, is nine,; so that we must have, in connection with
equation (3), other equations by means of which we can determine all the
higher partial differential coefficients from the fourth order on in terms of the
nine partial differential coefficients of lower orders (cf. p. 68). If we differ-
entinte equation (3) partially with respect to @ and v, we have the two equa-

" tions of the fourth order

o

Pi=o, ..7*=0, @
which must evidently form a system which is invariant under the ¢7,. These
two equations will determine two of the partial differential coefficients of the
fourth order in terms of the nine of lower orders. In order to determine the
three remaining partial differential coefficients of the fourth order, we must
have three invariant equations of the fourth order (cf. 33 e)

(01 ovs i ey ) =0,
'(!3(¢l:"':¢l:"" 9!’5):0’} (5)

2o(@ry ooy Py oons Py =0,
no one of which can be a consequence of equation (3). By means of equations
(3), (4), and (5), we can express one partial differential coefficient of the third
order and the five partial differential coeflicients of the fourth order in terms
of the three remaining partial differential coeflicients of the third 01de1 and
the partial differential coeflicients of lower orders.

Now by repeated partial differentiation of the above equations we obtain
an infinite number of equations, belonging to a system which is invariant under
the G, It is clear that by means of this system of equations we can deter-
mine all, except nine, of the partial differential coefficients of 2z with respect
to z and y in terms of nine of the partial differential coeflicients ; hence, in
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this' case, nine and only nine of the arbitrary constants of equation (2) are
connected by no relations, and we see, then, that the invariant system conlain-
ing one partial differential equation of the third order and three of the fourth
order will define an invariant fumily of exactly w® surfaces.

As a similar discussion holds for all the other cases, we need only write
down the remaining invariant systems.

b. If the invariant system contains two independent partial differential
equations of the third order,
21 (¢, 92 0) = 05
. 2,(01, ¢ ) = 0,
it will define an invariant family of exactly o’ surfaces.

~c. If the invariant system contains two partinl diffevential equations of
the third order, : :
2i(en ¢ 0) =0,
2,(e1, ¢ 05) =0,
and one partial differential equation of the fourth order,

. (@ ooy iy ooey ) =0,

which is not a consequence of those of the third order, it will define an invari-
ant family of exactly o ® surfaces.

d. If the invariant system contains three independent partial differential
equations of the third order, '
‘ (g oo 99) =0,
(o 90 0) =0,
. (g ¢ 9a) =0,
it will define an invariant family of exactly o 7 surfaces.

e. If the invariant system contains four independent partial differential
equations of the third order,
) 2i(n g 0) =0,
2y(¢1, 0 04 =0,
'93 (591’ Doy ‘,2:&) =0 ’
_ )¢ 00 ) =0,
it will define an invariant family of exactly oo ® surfaces.

II. The invariant systems which contain partial differential equations of
the second order and none of the first order.
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Since there are no partial differential equations of the second order invari-
ant under the G, except the system » = s = ¢ == 0, which is a consequence of
the invariant system of the first drder p = ¢ = 0, there is no invariant system
containing a partial differential equation of the second order and none of the
first order. (Cf. 383, ¢.)

IIL. The invariant s JSlGI)ZS which contain partial differential equations of
the first order.

a. If the invariant system contains the two partial differential equations
of the first order, of the typical forms

p=0,
q=0,
it will define an invariant family of o' surfaces. Evidently, in this case, the
invariant family consists of the planes
2 = const.

b. If the invariant system contains one partial differential equation of the
first order and one of the third order, it will define an invariant family of
exactly o ® surfaces.

On account of the symmetry of the &, we may choose

p=0
as the typical partial differential equation of the first order ; and, then, it is
clear that the partial differential equation of the third order cannot be a con-
sequence of p = 0.
If we put — ¢ (3" — 2pm)
, YT BE — 20)
equal to infinity, we obtain the partial differential equation of the third order
3 — 2t =20.
This is the only invariant partial differential equation of the third order that
is not a consequence of p = 0, so that the invariant system is
p=0
38 — 2t =0.
When p = 0, 2 = F(y), and the equation 3 — ‘)g- =0 may be written .
g{d2) _gdzdis
L2y dy dy*
The integral of this equation is (cf. § 27)
yz+oz+ By +7r=0.
Hence, in this case, the invariant family consists of the w? hypelbohc cylin-
ders given by the above equation.
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There are no. other systems containing a partial differential of the first

order invariant under the (%, for there are no invariant partial differential
equations of the fourth or higher orders that are not a consequence of p = 0.

37. We may now collect our results as follows:

A. If the invariant family consists of w? surfaces, it will be defined by

1. An invariant system containing one partial differential equation of the
third order and three of the fourth order, or

2. An invariant system containing two partial differential equations of
the third order. '

- B. If the invariant family consists of o ?® surfaces, it will be defined by
an invariant system containing two partial differential equations of the third
order and one of the fourth order.

C. If the invariant family consists of o’ surfaces, it will be defined by an
invariant system containing three partial differential equations of the third
order.

D. If the invariant.family consists of o ¢ surfaces, it will be defined by
an invariant system containing four partial differential equations of the third
order.

E. There ave no invariant systems that will define invariant families, con-
sisting of w0 ®, w?, or «® surfaces; hence no surface admits of exactly four,
five, or seven independent infinitesimal transformations of the &,.

F.. If the invariant family consists of w ® surfaces, it will be defined by an
invariant system containing one partial differential of the first order and one

of the third.

G. If theinvariant faniily consists of oo ! surfaces, it will be defined by an
invariant system containing two partial differential equations of the first order.

In this, the last section of this paper, we have shown how we may deter-
mine the nature of the invariant families of surfaces, which are composed of
those surfaces that are equivalent by means of the transformations of the &, ;
and if we have two surfaces that are equivalent by means of the transforma-
tions of the Group, their equations must satisfy the partial differential equa-
tions of some one of the invariant systems enumerated in cases I to III.

In the discussion of the above group I have followed the method of Sophus
Lie, which can be found in his Vorlesungen ueber Continuierliche Gruppen.
‘Where it has been deemed advisable I have given special references.
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