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Abstract

The interplay of symmetry and many-body interactions in electronic states can lead

to the emergence of fractional point-like and loop-like excitations. These excitations

have fractional charge and spin degrees of freedom and are known as topological order.

In this work, we present a study of realizing three-dimensional topological order in

condensed matter systems. We study symmetries and many-body interactions in three

models, (1) Dirac (semi)metal, (2) Dirac nodal superconductor and (3) anomalous

interacting Weyl (semi)metal, which is otherwise forbidden in the single-body setting.

Weyl and Dirac (semi)metals in three dimensions have robust gapless electronic

band structures. Their massless single-body energy spectra are protected by symme-

tries such as lattice translation, (screw) rotation, and time reversal. In this thesis,

I will discuss many-body interactions in these systems. I will focus on strong inter-

actions that preserve symmetries and are outside the single-body mean-field regime.

By mapping a Dirac (semi)metal to a model based on a three-dimensional array of

coupled Dirac wires, I will show that the Dirac (semi)metal can acquire a many-body

excitation energy gap without breaking the relevant symmetries, and interaction can

enable an anomalous Weyl (semi)metallic phase that is otherwise forbidden by sym-

metries in the single-body setting.

I will then extend this model to the superconducting analog of Dirac (semi)metals.

These topological nodal superconductors possess gapless low energy excitations that

are characterized by a point or line nodal Fermi surfaces. Using a coupled wire con-

struction, I will study topological nodal superconductors that have protected Dirac

nodal points. Within this model, we demonstrate many-body interactions that pre-

serve the underlying symmetries and introduce a finite excitation energy gap. These

gapping interactions support fractionalization and generically lead to nontrivial topo-

logical order. All of these topological states support fractional gapped (gapless) bulk

(respectively, boundary) quasiparticle excitations.
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Chapter 1

Introduction

Emergent behavior is a common theme in nature. For example, flocks of birds and

swarms of fish display complex behavior in their collective movement. The collective

system behaves as if it is more than the sum of its parts due to interactions between

the parts. Similarly in 2D materials, emergent phenomena can arise when electrons

interact with each other. Unlike the case where birds interact only with their near-

est neighbors, electrons interact with all the other electrons in the system and are

quantum mechanically entangled with each other. This leads to even more exotic

emergent phenomena and complexity.

This collective behavior of interacting electrons can effectively split them into

fractional particles known as quasiparticles, which have a fraction of the charge of an

electron and other exotic properties. These quasiparticles are useful for applications

such as quantum computing. Some 2D examples are fractional-charge quasiparticles

in fractional quantum Hall effect and Majorana quasiparticles in superconductors.

Unlike the 2D case, there are no materials at all that exhibit such behavior in 3D.

Our work proposes how these emergent quasiparticles can be realized in 3D materials

such as Dirac semimetals (3D analogs of graphene with massless electronic states),

Dirac nodal superconductors (superconducting analogs of Dirac semimetals), and
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anomalous interaction-enabled Weyl semimetals.

In our framework, interactions among electrons are introduced to make these

electronic states massive without breaking any symmetries of the system. This leads

to the emergence of quasiparticles in the 3D bulk, which are different from those

found in 2D materials. 3D materials can also have loop-like quasiparticles beyond the

point-like quasiparticles found in 2D materials. Studying electron interactions can be

a daunting task in 3D, but in this work we develop a new framework that models the

3D system as an array of 1D interacting wires, which are much better understood,

allowing us to study the interactions problem exactly. Interacting 1D wires can be

understood using relations from Conformal field theory, making them a very useful

building block to model higher dimensional interacting topological phases.

We also propose a new many-body interaction-enabled state that is otherwise for-

bidden in the single-body setting. In the single-body setting, time-reversal symmetric

Weyl semimetals have atleast four Weyl nodes. In this work, we show that in the

presence of many-body interactions a new time-reversal symmetric state can arise

with only two Weyl nodes.

The theoretical framework developed in this work will be useful for studying in-

teractions and realizing quasiparticle excitations in a number of 3D materials. We

will now give some brief background that may be useful for the reader. A summary

of results and outline of the dissertation is given in chapter 2. The broad impact of

this work is discussed in th conclusion chapter 6.

1.1 Background

1.1.1 Topological band theory

In topology, two objects are considered equivalent if they can be continuously trans-

formed into each other, a famous example is that of a coffee mug and a donut. In
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condensed matter systems, we can ask a similar question if the Hamiltonians of two

quantum systems are topologically equivalent. Two gapped quantum systems are

topologically equivalent if they can be continuously deformed into each other without

closing the energy gap. Topologically distinct Hamiltonians have a different topologi-

cal invariant. The closing of the energy gap is known as a topological phase transition

and it changes the topological invariant.

A simple 1D example that displays topological behavior is the Su-Schrieffer-Heeger

(SSH) model. It consists of a finite 1D chain with staggered hoppings. This model

has sub-lattice labels A and B. A unit cell consists of two atoms A and B, the intra-

cell hopping is denoted by v and inter-cell hopping by w. The Hamiltonian can be

written as

HSSH =
N∑
i=1

vc†A,icB,i + wc†B,icA,i+1 + h.c . (1.1)

The Bloch Hamiltonian, after a Fourier transform is given by

h(k) = σx(v + w cos(k)) + σy(w sin(k)) (1.2)

= σxdx + σydy . (1.3)

By diagonalizing the Bloch Hamiltonian, the energy spectrum of the model can

be obtained E±(k) = ±
√
v2 + w2 + 2vw cos(k). For v=w, the bang gap vanishes

at k = ±π. The spectrum is gapped for v < w and v > w, corresponding to two

distinct topological states which can be distinguished by a topological invariant. In

this case, the topological invariant is the bulk winding number ν. d(k) represents the

internal structure of the eigenstates and as k goes from 0 to 2π, it traces a circular

path in the dx − dy plane. The winding number ν is defined as the number of times

this path goes around the origin. The invariant ν = 0 for v > w and ν = 1 for
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v < w. Similarly, for other topological states various topological invariants can be

defined to distinguish between topological states. Elaborate tables have been built

for classifying topological band theories with various combinations of symmetries and

dimensionality.

1.1.2 2D Topological Order

In two-dimensions, interactions and quantum entanglement can effectively split the

particles such as electrons to fractional excitations. These fractional excitations or

anyons are of interest because of their potential applications for topological quantum

computation. Anyons can be used to make quantum memories that are protected from

decoherence and quantum gates can be constructed out of the braiding operations of

these anyons. Certain non-Abelian anyons can also be braided to perform universal

quantum computation. These fractional excitations are known as topological order

and we would discuss one of the simplest examples known as the Kitaev model [1].

On a square lattice, localized spin-1/2 electrons can be placed on the bonds con-

necting the lattice sites. The Hamiltonian can be written as

H = −Je
∑

vertices

As − Jm
∑

plaquettes

Bp , (1.4)

where

As =
∏
star(s)

σxj , Bp =
∏

boundary(p)

σzj .

The boundary p refers to the spins on the bonds that surround a plaquette, the

star s refers to bonds that surround a vertex. All the terns commute with each other,

including the plaquette and vertex terms as they share an even number of spins.

This model has four excitations which are robust to small perturbations and belong

to distinct superselection sectors. A superselection sector is defined as a class of states



6

that can be transformed from one state to the other by local operators. This model

has a vacuum 1, charge e, vortex m and charge-vortex ε sectors/states. Particle types

e and m are bosons, whereas ε is a fermion. The particles describe a Z2 gauge theory

and this model represents one class of topological order. Wilson line/path operators

can also be defined as

We =
∏
le

σz, Wm =
∏
lm

σx . (1.5)

The operator We is a product of the vertex terms inside the loop le and measures

the parity of e excitations. Similarly, Wm counts parity of the number of m excita-

tions. These Wilson loops can characterize the degenerate ground states of the toric

code on a torus. The Wilson line operators can have e and m excitations at the

ends of the loops, they can also be used for moving excitations from point a to point

b. The exchange and braiding statistics can also be determined by using Wilson

line operators to move excitations around and getting a fractional braiding phase.

These braiding operations of point-like excitations in two-dimensions can be used for

topological quantum computing.

We will now discuss one of the oldest known examples of interacting topological

phases with fractional excitations, the fractional quantum Hall effect. For integer

Quantum Hall effect, the conductance is given by G = νe2/h, where ν is an integer.

However, for strongly interacting cases, this ν can take fractional values implying

local excitations which have fractional electron charge. These fractional particles

are local particles like electrons and pick up a fractional exchange phase when the

excitations are interchanged. During the exchange, the many-body wave function of

the system returns to itself but it picks up a Berry phase. For fermions the phase

is π, for bosons it is zero, and for fractional excitations in the fractional quantum
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hall effect it is φexchange = πν. This exchange phase can be easily understood by

a composite fermions type argument. The fractional excitations can be thought of

as a fractional charge with a flux quantum tied to it. A more formal description

of composite fermions can be understood in terms of topological field theories and

will be discussed later. If we forget about the attached flux and just consider the

Aharanov-Bohm phase when a charged particle goes around a flux ν, it picks up a

phase of 2πν. In the composite-fermion picture, both excitations have a flux attached

to them and pick up a phase when one of them moves around the other, which is equal

to a double exchange. Hence the exchange phase of these anyons would be half of the

double exchange and picks up an exchange phase of πν.

Similarly to the Wilson operators in the Kitaev model, we can also define Wilson

loops for the fractional quantum Hall effect with periodic boundary conditions on a

torus. We can define two Wilson operators W1,2 for each cycle of the torus. These

Wilson operators move vortex around the non-trivial cycles of the Torus and rep-

resent braiding between the two vortices. The braiding phase is given by W1W2 =

ei2πνW2W1. A lattice model is not essential for defining braiding operations and

Wilson loops, they can also be constructed in a coupled-wire description. A nice

exposition of Wilson algebra for a coupled-wire description of various fractional Hall

effect states can be found in [2].

The low-energy effective theories of fractional quantum Hall effect and other topo-

logical phases can be described using a Topological Quantum Field Theory (TQFT),

like Chern-Simons theory for 2D cases. The Chern-Simons TQFT is topological in

the sense that it does not depend on the metric and does not know about clocks and

rulers of the system. The integral is evaluated on a closed manifold and depends only

on the topology of the manifold and not on the metric that is put on the manifold.

A clear and pedagogical explanation of Chern-Simons theory description of fractional

quantum Hall effects can be found in notes by Gerald Dunne [3]. The complete
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topological order, braiding and exchange statistics of these topological phases can be

described using these TQFTs.

1.1.3 3D Topological order

Previously we have discussed point-like fractional excitations in two-dimensions, which

can give non-trivial braiding statistics. These anyon or quasiparticle braiding statis-

tics is a powerful way to characterize the topological properties of two-dimensional

gapped quantum many-body systems. In this section, we will discuss the analo-

gous quantities in three dimensions. Braiding between point-like excitations is not

possible in three-dimensions as the world-line of the quasiparticle does not form a

non-contractible loop around the other quasiparticle like in two-dimensions.

In 3D, a much richer structure is obtained with braiding between point-like and

loop-like excitations and between loop-like excitations. However, these braidings do

not fully capture the topological structure of 3D many-body systems and more com-

plete information can be captured by the three-loop braiding process [4]. The loop

braiding statistics and the low-energy effective theory can be described by topological

quantum field theories like the BF theory which are the 3D analogs of Chern-Simons

theory. Although, there are numerous field-theoretic descriptions of 3D topological

order there are no microscopic models. In 2D, topological order has been realized in

interacting topological phases like the fractional quantum Hall effect but there have

been no material realization for 3D topological order. In this work, we build the first

microscopic models for 3D topological order in interacting topological phases, this

may also lead to their material realization in the future.

1.1.4 Symmetry Protected Topological (SPT) phases

Symmetry Protected Topological (SPT) phases are the generalizations of band insu-

lators to interacting many-particle systems. Similar to topological band insulators,
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SPT states have gapped bulk and no exotic bulk excitations but have non-trivial

surface states that are protected by symmetry. Similar to topological band theory,

distinct SPT states cannot be smoothly deformed into each other without a phase

transition if the symmetry is preserved. If the symmetry is broken, then the SPT

state can be smoothly deformed to a trivial product state. In SPT phases, the de-

grees of freedom in one part of the sample is only entangled quantum mechanically

with neighboring regions, this is known as Short Range Entanglement (SRE). One

example of SPT states are Haldane spin chain in 1D [5, 6], where the bulk is gapped

and has no exotic excitations, there are dangling edge states which are protected by

a symmetry like time reversal. Another example is the topological insulator which is

protected by U(1) and time-reversal symmetry.

Unlike SPT states, topologically ordered states are Long Range Entangled (LRE)

and can have exotic excitations in the bulk. Both LRE states with topological order

and SPT states can have protected gapless boundary states. The difference is that

for the topologically ordered state, the gapless boundary state can be robust against

any local perturbation but for SPT, the boundary state is only robust against per-

turbations that preserve the symmetry. The boundary states of topologically ordered

states are topologically protected, while for SPT states they are symmetry protected.

1.1.5 Symmetry Enriched Topological (SET) phases

Gapped phases with Long Range Entanglement (LRE) can be fully characterized by

topological order if there is no symmetry imposed on the state. Two Hamiltonians in

parameter space correspond to the same phase if they can be continuously deformed

into one another without closing the gap. However, when symmetry is imposed, there

is a finer scale of classification and these subset of states can be characterized by SET

order. Now, the Hamiltonians in parameter space realize the same SET phase if

they can be continuously deformed in to one another, while preserving the symmetry,
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without closing the gap.

In this work, we have shown how symmetry-preserving gapping of a SPT state with

many body interactions can lead to an SET state. This is one of the first examples

of establishing a duality between SPT states and SET states in three-dimensions.
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Chapter 2

Summary of Results

This dissertation is based on research conducted at the University of Virginia during

the period from 2014 to 2019. The bulk of the ideas have already appeared in the

following two journal articles,

1. ‘From Dirac semimetals to topological phases in three dimensions: A coupled-

wire construction’, Syed Raza, Alexander Sirota, and Jeffrey C.Y. Teo - Phys.

Rev. X 9, 011039. [7]

2. ‘Coupled wire models of interacting Dirac nodal superconductors’ - Moon Jip

Park, Syed Raza, Matthew J. Gilbert, and Jeffrey C. Y. Teo - Phys. Rev. B

98, 184514. [8]

Most of the passages that appear in this dissertation have been quoted verbatim

from the above papers. Both of these papers were collaborative projects, my personal

contributions include building the coupled-wire models for realizing Weyl and Dirac

semimetals, writing symmetries that preserve the Hamiltonians, and coming up with

interaction terms that satisfy the Haldane nullity conditions. For the second paper,

I contributed to finding the symmetries of the coupled wire model, the symmetry-

preserving relations of the Hamiltonian, and symmetry-relations for the bosonized

variables and interaction terms.
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We now highlight and summarize the results presented in this dissertation. This

section can also serve as a roadmap and outline for the dissertation. By mapping a

Dirac (semi)metal to a model based on a three-dimensional array of wires, we show

that the Dirac semimetal can acquire a many-body excitation energy gap without

breaking any relevant symmetries and leads to a three-dimensional topological order.

We also construct a new interaction-enabled Dirac semimetallic state which only has

a single pair of Weyl nodes and preserves time-reversal symmetry. Such a state is

forbidden in a single-body setting. A general outline of the construction of both these

states is given in Fig. 2.1 and also summarized below.

The starting point of our model is a minimal Dirac fermion model (3.1 and

Fig. 3.2) equipped with time-reversal and (screw) C2 rotation symmetries. The model

is anomaly-free and so can be realized in a 3D lattice model. The first part of

this article addresses a mapping between the isotropic massless Dirac fermion in the

continuum limit and an anisotropic coupled wire model where the effective low-energy

degrees of freedom are confined along a discrete array of 1D continuous wires. The

mapping to a coupled wire model is achieved by first introducing vortices (adding

mass terms) that break the symmetries microscopically (3.2). These vortices are

topological line defects that involve spatial winding of symmetry-breaking Dirac mass

parameters. Consequently, these vortices host chiral Dirac electronic channels, each

of which corresponds to a gapless quasi-1D system where electronic quasiparticles

can only propagate in a single direction along the channel and are localized along the

perpendiculars (3.5).

When assembled together onto a vortex lattice, the system recovers the screw C2

rotation symmetry as well as a set of emergent antiferromagnetic symmetries, which

are combinations of the broken time-reversal and half-translations (Fig. 3.4). Upon

nearest-wire single-body electron backscatterings, the electronic band structure in

low-energies disperses linearly and mirrors that of the continuous isotropic Dirac par-
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ent state. A symmetry-protected massless Dirac fermion (equivalently a pair of Weyl

fermions with opposite chiralities) emerges and captures the low-energy long length

scale electronic properties (Figs. 3.5 and 3.6). The coupled wire Dirac model and its

massless energy spectrum are anomalous with respect to the AFTR and C2 symmetry.

The three possible resolutions of the anomaly are disussed in Sec. 3.2.1. The model

with an enlarged unit cell which leads to the two momentum-separated Weyl points

to collapse to a single Dirac point is also discussed (Fig. 3.8). The corresponding

Fermi arc surface states are discussed in Sec. 3.2.2 and shown in Figs. 3.11 and 3.12.

We then address non-trivial symmetry-preserving many-body interacting effects

beyond the single-body mean-field paradigm. We begin with the anisotropic array of

chiral Dirac wires that constitutes a Dirac (semi)metal protected by antiferromagnetic

time-reversal (AFTR) and (screw) C2 rotation symmetries (Fig. 3.5). We consider an

exactly-solvable model of symmetry-preserving inter-wire many-body backscattering

interactions. This model is inspired by and can be regarded as a layered version

of the symmetric massive interacting surface state of a topological insulator. It is

based on a fractionalization scheme that divides a single chiral Dirac channel into

a decoupled pair of identical chiral “Pfaffian” channels (Fig. 3.14). Each of these

fractional channels carries half of the degrees of freedom of the original Dirac wire.

For instance, the fractionalization splits the electric and thermal currents exactly in

half. It leads to the appearance of fractional quasiparticle excitations. For example,

a chiral Pfaffian channel also runs along the 1D edge of the particle-hole symmetric

Pfaffian fractional quantum Hall state [9, 10, 11], and supports charge e/4 Ising and

e/2 semionic primary fields.

We consider an explicit combination of many-body interwire backscattering inter-

actions that stabilize the fractionalization. Similar coupled wire constructions were

applied in the literature to describe topological insulator’s surface state [12] and

ν = 1/2 fractional quantum Hall states [2, 13]. They are higher dimensional ana-
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Dirac fermion model
respects C2 and TR, no anomalies

3D array of chiral Dirac strings
violates TR, emergent AFTRs and C2

Coupled wire model 

Dirac semimetal
preserves C2 and AFTRs

sym-preserving
many-body 
interactions

single-body
backscattering

vortices of Dirac
masses mx(r) + imy(r)

Gapped topological state
with 3D topological order

Surface states
AFTR breaking/preserving

Fractional 
surface states

bulk
many-body 
interactions

Pfaffian decomposition
of chiral Dirac strings

Interaction-enabled anomalous
Dirac/Weyl semimetal

Single-body mass

Pfaffian decomposition
of non-chiral Dirac strings

Figure 2.1: Logical outline of Model 1 and Model 3. It shows the procedure of
going from a Dirac fermion model to an interaction-enabled gapped state with three-
dimensional topological order. Here, C2 is the two-fold (screw) rotation symmetry, TR
is time-reversal symmetry and AFTR is the antiferromagnetic time-reversal symmetry
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logues of the Affleck-Kennedy-Lieb-Tasaki (AKLT) spin chain model [14, 15]. The

pair of chiral Pfaffian channels along each wire is backscattered in opposite directions

to neighboring wires by the interaction (Fig. 3.16). As a result of this dimerization of

fractional degrees of freedom, the model acquires a finite excitation energy gap and

at the same time preserves the relevant symmetries.

We speculate that such a symmetry preserving-gapping by many-body interac-

tions leads to a three-dimensional topological order supporting exotic point-like and

line-like quasiparticle excitations with fractional charge and statistics. The complete

characterization of the topological order will be part of a future work [16]. Although

there have been numerous field-theoretic discussions on possible properties of topo-

logically ordered phases in 3D, this is the first work with a microscopic model that

could possibly lead to its material realization.

In the single-body regime, an (antiferromagnetic) time-reversal symmetric Weyl

(semi)metal realizable on a three dimensional lattice has a minimum of four momentum-

space-separated Weyl nodes. For a single pair of Weyl nodes with opposite chirality,

time-reversal symmetry must be broken. However, a key result of this dissertation

is the realization of a single pair of momentum-space-separated Weyl nodes in the

presence of AFTR symmetry as enabled by many-body interactions. The coupled

wire construction suggests a new interaction-enabled topological (semi)metal in which

these Weyl nodes can be realized (Fig. 5.1).

The many-body interacting coupled-wire model can be turned into a gapless sys-

tem, where 1) all low-energy degrees of freedom are electronic and freely described in

the single-body non-interacting setting by two and only two separated Weyl nodes,

2) the high-energy gapped sector supports fractionalization. Although the model is

antiferromagnetic, we conjecture that similar anomalous Weyl (semi)metal can be

enabled by interaction while preserving local time-reversal.

The dissertation is organized as follows. In Sec. 3.2, we construct a single-body
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coupled wire model of a Dirac/Weyl (semi)metal equipped with two emergent an-

tiferromagnetic time-reversal (AFTR ) axes and a (screw) C2 rotation symmetry.

In Sec. 3.2.1, we establish the equivalence between the isotropic continuum limit

and the anisotropic coupled wire limit by a coarse-graining mapping. We also dis-

cuss the anomalous aspects of the pair of Weyl fermions and different resolutions

to the anomaly. In Sec. 3.2.2, we describe the gapless surface states of the coupled

wire model. AFTR breaking and preserving surfaces are considered separately in

Sec. 3.2.2.1 and 3.2.2.2 respectively.

In Sec. 3.3, we move on to the effect of symmetry-preserving many-body inter-

actions. The fractionalization of a chiral Dirac channel is explained in Sec. 3.3.1,

where we establish the Pfaffian decomposition through bosonization techniques. The

splitting of a Dirac channel is summarized in Fig. 3.15. In Sec. 3.3.2, we explicitly

construct an exactly-solvable interacting coupled wire model that introduces a finite

excitation energy gap to the Dirac system while preserving relevant symmetries. The

many-body interwire backscattering interactions are summarized in Fig. 3.16. In

Sec. 3.3.3, we discuss a plausible stabilization mechanism of the desired interactions

through an antiferromagnetic order.

In Sec. 3.3, we discuss the other key result of the dissertation, a variation of the

model that enables an anomalous topological (semi)metal. We show how a single

pair of Weyl nodes in the presence of time-reversal symmetry can be realized through

many-body interactions. Such a state is forbidden in the single-body setting. In

Sec. 5.1, we elaborate on the gapless surface states of both new interacting phases

discussed in sections 3.3.2 and 3.3.

We then apply similar techniques to the superconducting analogs of the Dirac

semimetals known as the Dirac nodal superconductors in 5. We repeat a similar

procedure of building a wire-model and then introduce many-body interactions to

gap out the system. We construct the many-body gapping potentials that generate a
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finite energy gap while preserving the underlying symmetries. In the presence of the

many-body interactions, we find the emergence of the non-trivial topological orders.

We begin our discussion in Section 4.2 where we detail our construction the coupled

wire model of a Dirac nodal superconductor in three spatial dimensions by assembling

a vortex array in a microscopic superconductor within the continuum limit. In the

continuum model, the massless Dirac fermions are protected by the combination of:

local time-reversal symmetry, particle-hole symmetry and glide mirror symmetry. By

introducing the array of superconducting pairing vortices, the low-energy electronic

degrees of freedom manifest as (1+1)-D chiral Dirac fermions that are localized along

vortex lines (also referred to as Dirac strings). Each Dirac string is coupled via single-

body tunneling with the adjacent strings, and the couplings reconstruct the Dirac

nodal superconductor within the context of the coupled wire model. This anisotropic

Dirac nodal superconducting model is protected by the same set of symmetries except

time-reversal now becomes non-local and antiferromagnetic. This re-construction

enables us to study many-body interactions in three dimensions using bosonization

techniques.

With our introduction to the single body physics of the coupled wire methodology

complete, in Section 4.3 we introduce the many-body interactions that preserve all the

underlying symmetries. The basic strategy that we follow in this work is based on the

bi-partitioning the SO(2N) Kac-Moody current consisting of N chiral Dirac fermions

along a vortex. For even N , the symmetric gapping interaction can be facilitated by

a simple separation SO(2N)1 ∼ SO(N)1 × SO(N)1 of Dirac channels. The model

admits a single-body mean-field mass gap, which reflects its trivial topology under

the Z2 classification. On the other hand, due to the presence of the aforementioned

symmetries, the odd N case requires a non-trivial string decomposition that involves

the level-rank duality SO(9)1 ∼ SO(3)3 × SO(3)3. Consequently, the gapping in-

teractions in the case of odd N lead to fractionalization and non-trivial topological
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order. In both situations, the gapping potentials are constructed by backscattering

the divided Kac-Moody currents to opposite directions between adjacent strings. This

results in a finite energy gap while preserving all the underlying symmetries of our

model.

Interestingly, when N = 16, we find a special form of the decomposition, SO(32) ∼

E8 × E8, that utilizes the E8 unimodular lattice. We find that this decomposition

results in the many-body interaction that has trivial topological order.
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Chapter 3

Model 1: Dirac and Weyl

Semimetals

3.1 Introduction

Dirac and Weyl semimetals are nodal electronic phases of matter in three spatial di-

mensions. Their low-energy emergent quasiparticle excitations are electronic Dirac [17]

and Weyl [18] fermions. (Contemporary reviews in condensed electronic matter can

be found in Ref. [19, 20, 21, 22, 23, 24, 25, 26].) They are three dimensional gen-

eralizations of the Dirac fermions that appear in two dimensional graphene [27] and

the surface boundary of a topological insulator [28, 29, 30, 22]. They follow massless

quasi-relativistic linear dispersions near nodal points in the energy-momentum space

close to the Fermi level. Contrary to accidental degeneracies which can be lifted by

generic perturbations, these nodal points are protected by topologies or symmetries.

A Weyl fermion is chiral and has a non-trivial winding of a pseudo-spin texture

near the singular nodal point in energy-momentum space. This would associate to

a non-conservative charge current under a parallel electric and magnetic field and

is known as the Adler-Bell-Jackiw (ABJ) anomaly [31, 32]. Thus, in a true three
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dimensional lattice system, Weyl fermions must come in pairs [33, 34, 35] so that

the net chirality, and consequently the anomaly, cancels. Or otherwise, a three di-

mensional system of a single Weyl fermion must be holographically supported as the

boundary of a topological insulator in four dimensions [36, 37, 38]. On the other

hand, a Dirac fermion in three dimensions consists of a pair of Weyl fermions with

opposite chiralities. Without symmetries, it is not stable and can turn massive upon

inter-Weyl-species coupling. With symmetries, a band crossing can be protected by

the distinct symmetry quantum numbers the bands carry along a high symmetry axis.

In this article, we focus on the fourfold degenerate Dirac nodal point protected by

time-reversal (TR) and (screw) rotation symmetry.

In electronic systems, massless Dirac and Weyl fermions appear in gap-closing

phase transitions between spin-orbit coupled topological insulators and normal insu-

lators [39]. When inversion or time-reversal symmetry is broken, nodal Weyl points

can be separated in energy-momentum space. Such gapless electronic phases are

contemporarily referred to as Weyl (semi)metals [40, 41, 42, 43]. Their boundary

surfaces support open Fermi arcs [40] that connect surface-projected Weyl nodes.

Weyl (semi)metals also exhibit exotic transport properties, such as negative magneto-

resistance, non-local transport, chiral magnetic effect, and chiral vortical effect [44,

45, 46, 47, 48, 49]. There have been numerous first principle calculations [50] on

proposed materials such as the non-centrosymmetric (La/Lu)Bi1−xSbxTe3 [51], the

TlBiSe2 family [52], the TaAs family [53, 54], trigonal Se/Te [55] and the HgTe

class [56], as well as the time-reversal breaking pyrochlore iridates [40, 57, 58], mag-

netically doped topological and trivial insulator multilayers [42], HgCr2Se4 [59] and

Hg1−x−yCdxMnyTe [60]. At the same time, there have also been abundant experi-

mental observations in bulk and surface energy spectra [61] as well as transport [62].

Angle-resolved photoemission spectroscopy (ARPES) showed bulk Weyl spectra and

surface Fermi arcs in TaAs [63, 64, 65, 66, 67] as well as similar materials such as NbAs,
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NbP and TaP [68, 69]. Other materials such as Ag3BO3, TlTe2O6 and Ag2Se [70] were

observed to host pinned Weyl nodes at high symmetry points. Negative magneto-

resistance was reported in TaAs [71, 72] as a suggestive signature of the ABJ anomaly.

Similar properties were also observed in TaP [73], NbP and NbAs [74, 75, 76], although

not without controversies [77].

Weyl points with opposite chiralities cannot be separated in energy-momentum

space when both inversion and time reversal symmetries are present. Massless Dirac

fermions appear between gap-closing phase transitions between topological and triv-

ial (crystalline) insulators, such as Bi1−xSbx [78] and Pb1−xSnxTe [79]. Critical Dirac

(semi)metals were investigated for example in the tunable TlBiSe2−xSx [80, 81, 82],

Bi2xInxSe3 [83, 84] and Hg1−xCdxTe [85], as well as the charge balanced BaAgBi [86],

PtBi2, SrSn2As2 [87] and ZrTe5 [88] whose natural states are believed to be close

to a topological critical transition. A Dirac (semi)metallic phase can be stabilized

when the Dirac band crossing is secured along a high symmetry axis and the two

crossing bands carry distinct irreducible representations. Theoretical studies include

the diamond-structured β-crystobalite BiO2 family [89] (space group (SG) No. 227,

Fd3m), the orthorhombic body-centered BiZnSiO4 family [90] (SG No. 74, Imma), the

tetragonal Cd3As2 [91] (SG No. 142, I41/acd), the hexagonal Na3Bi family [92], as well

as the filling-enforced non-symmorphic Dirac semimetals [93, 94, 95, 96, 97, 98] such as

the hexagonal TlMo3Te3 family [87] (SG No. 176, P63/m), the monoclinic Ca2Pt2Ga

(SG No. 15, C2/c), AgF2, Ca2InOsO6 (SG No. 14, P21/n), and the orthorhombic

CsHg2 (SG No. 74, Imma) [99]. At the same time, there are numerous experimen-

tal confirmations. They include ARPES observations on Cd2As3 [100, 101, 102],

Na3Bi [103, 104] and ZrTe5 [88]; scanning tunneling microscopy in Cd2As3 [105];

magneto-transport in Bi1−xSbx [106], Cd2As3 [107, 108, 109, 110, 111, 112, 113, 114],

Na3Bi [104, 115], ZrTe5 [116, 88, 117, 118], HfTe5 [119] and PtBi2 [120]; magneto-

optics [121] and anomalous Nernst effect [122] in Cd2As3, and many more. However,
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there are also contradicting pieces of evidence, especially in ZrTe5 and HfTe5 that

suggest a bulk band gap [123, 124, 125, 126, 127, 128, 129].

Dirac/Weyl 
(semi)metal

Topological
insulator

Topological
superconductor

spatial symmetry 
breaking

charge U(1) 
preserving

spatial symmetry 
preserving

charge U(1) 
breaking

Topological
phase

charge U(1) and
spatial symmetry 

preserving

many-body
interaction

Figure 3.1: Symmetry breaking single-body gapping versus symmetry preserving
many-body gapping of a Dirac/Weyl (semi)metal.

Dirac/Weyl (semi)metals are the origins of a wide variety of topological phases in

three dimensions (see Fig. 3.1). By introducing a spatial or charge U(1) symmetry-

breaking single-body mass, they can be turned into a topological insulator or su-

perconductor. The focus of this manuscript is on symmetry-preserving many-body

gapping interactions. The resulting insulating topological phase can carry long-range

entanglement and a non-trivial topological order. Similar phenomena were theoreti-

cally studied on the Dirac surface state of a topological insulator [130, 131, 132, 133]

and the Majorana surface state of a topological superconductor [134, 135], where

symmetry-preserving many-body gapping interactions are possible and lead to non-

trivial surface topological orders that support anyonic quasiparticle excitations.

Symmetry-preserving gapping interactions cannot be studied using a single-body

mean-field theory. This is because the Dirac/Weyl (semi)metallic phase is protected

by symmetries in the single-body setting and any mean-field model with an excitation
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energy gap must therefore break the symmetry either explicitly or spontaneously. The

coupled wire construction can serve as a powerful tool in building an exactly-solvable

interacting model and understanding many-body topological phases of this sort. The

construction involves a highly anisotropic approximation where the electronic degrees

of freedom are confined along an array of continuous one-dimensional wires. Inspired

by sliding Luttinger liquids [136, 137, 138, 139, 140], the coupled wire construction

was pioneered by Kane, Mukhopadhyay and Lubensky [141] in the study of Laugh-

lin [142] and Haldane-Halperin hierarchy [143, 144] fractional quantum Hall states.

Later, this theoretical technique was applied in more general fractional quantum Hall

states [2, 145, 146, 147, 13], anyon models [148, 149], spin liquids [150, 151], (frac-

tional) topological insulators [152, 153, 154, 155, 156] and superconductors [157, 158],

as well as the exploration of symmetries and dualities [159, 160]. Moreover, coupled

wire construction has already been used to investigate three dimensional fractional

topological phases [161, 162, 163] and Weyl (semi)metal [164] even in the strongly-

correlated fractional setting [165].

The microscopic symmetry-preserving many-body interactions in the Dirac surface

state on a topological insulator was discussed by Mross, Essin and Alicea in Ref.[12].

They mimicked the surface Dirac modes using a coupled wire model and proposed

explicit symmetric many-body interactions that lead to a variation of gapped and

gapless surface states. Motivated by this and also using a coupled wire construction,

the microscopic symmetry-preserving many-body gapping of the Majorana topologi-

cal superconducting surface state was studied by one of us in Ref.[166].

In this article, we focus on (i) a coupled wire realization of a Dirac/Weyl (semi)metallic

phase protected by antiferromagnetic time-reversal (AFTR) and screw twofold rota-

tion symmetries, (ii) a set of exactly-solvable inter-wire many-body interactions that

introduces a finite excitation energy gap while preserving the symmetries, and (iii)

an interaction-enabled (semi)metallic electronic phase which is otherwise forbidden
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by symmetries in the single-body setting.

3.2 Coupled Wire model of Dirac Semimetals

We begin with a Dirac semimetal in three dimensions. It consists of a pair of massless

Weyl fermions with opposite chiralities. In this article we do not distinguish between a

Dirac and a Weyl semimetal. This is because the fermion doubling theorem [33, 34, 35]

and the absence of the Adler-Bell-Jackiw anomaly [31, 32] require Weyl fermions

to always come in pairs in a three dimensional lattice system. A Weyl semimetal

therefore carries the same low energy degrees of freedom as a Dirac semimetal. We

refer to the case when the pair of Weyl fermions are separated in momentum space

as a translation symmetry protected Dirac semimetal. Here, we assume the simplest

case where the two Weyl fermions overlap in energy-momentum space. Its low-energy

band Hamiltonian takes the spin-orbit coupled form

H0
Dirac(k) = ~vk · ~sµz , (3.1)

where ~s = (sx, sy, sz) are the spin-1/2 Pauli matrices, and µz = ±1 indexes the two

Weyl fermions.

kz

E
+i−i

+i−i

Figure 3.2: The two pairs of counter-propagating Dirac bands along the kz-axis dis-
tinguished by eigenvalues of C2 = ±i.
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Normally the masslessness of the Dirac system is protected by a set of symmetries.

Here, we assume the time reversal (TR) T , which is represented in the single-body

picture by the spinful operator T̂ = isyK where K is the complex conjugation opera-

tor, and a twofold rotation C2 about the z-axis. In the case when µz has a non-local

origin such as sublattice or orbital, it can enter the rotation operator. We assume C2

is represented in the single-body picture by Ĉ2 = iszµz. It squares to minus one in

agreement with the fermionic statistics, and commutes with the local TR operator.

In momentum space, T flips k → −k while C2 rotates (kx, ky, kz) → (−kx,−ky, kz).

The band Hamiltonian (3.1) shares simultaneous eigenstates with C2 along the kz-

axis. The two forward moving bands have C2 eigenvalues +i while the two backward

moving ones have C2 eigenvalues −i (see Fig. 3.2). Therefore the band crossing is C2-

protected while the fourfold degeneracy is pinned at k = 0 because of TR symmetry.

Noticing that each of the C2 = ±i sector along the kz-axis is chiral (i.e. consisting

of a single propagating direction), it violates the fermion doubling theorem [33, 34]

and is anomalous. This can be resolved by assuming the C2 symmetry is actually

a non-symmorphic screw rotation in the microscopic lattice limit and squares to a

primitive lattice translation in z. kz is now periodically defined (up to 2π/a) and

the two C2 eigen-sectors wraps onto each other after each period. Focusing on the

continuum limit where kz is small (when compared with 2π/a), C2
2 = −eikza ≈ −1

and the C2 symmetry behaves asymptotically as a proper rotation.

The primary focus of this article is to explore symmetry preserving/enabled in-

teracting topological states that originate from the massless Dirac system. Contrary

to its robustness in the single-body non-interacting picture, we show that the 3D

Dirac fermion can acquire a many-body mass gap without violating the set of sym-

metries. To illustrate this, we first make use of the fact that the Dirac system can be

turned massive by breaking symmetries. Symmetry breaking inter-valley scatterings
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introduce two coexisting mass terms

HDirac(k, r) = H0
Dirac(k) +mx(r)µx +my(r)µy , (3.2)

where mx (or my) preserves (resp. breaks) TR , and both of them violate C2. We

allow slow spatial modulation of the mass parameters, which can be grouped into

a single complex parameter m(r) = mx(r) + imy(r), and to be precise, momentum

k should be taken as a differential operator −i∇r when translation symmetry is

broken. Non-trivial spatial windings of the symmetry breaking mass parameters give

rise to topological line defects or vortices that host protected low-energy electronic

degrees of freedom. Proliferation of interacting vortices then provides a theoretical

path to multiple massive/massless topological phases while restoring and modifying

the original symmetries as they emerge in the low-energy long-length scale effective

theory.

kz

E

x

y

Figure 3.3: Dirac string. (Left) Spatial winding of mass parameters around a Dirac
string going out of the paper represented by the center red dot. Stream lines represent
the vector field m(r) = (mx(r),my(r)). (Right) Energy spectrum of chiral Dirac
fermions. Blue bands represent bulk continuum. Red bands correspond to chiral
Dirac fermions localized along the string.

A topological line defect is a vortex string of the mass parameter in three dimen-

sions where the complex phase of m(r) = |m(r)|eiϕ(r) winds non-trivially around the

string. The left diagram in Fig. 3.3 shows the spatial modulation of ϕ(r) along the
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xy cross-sectional plane normal to a topological line defect, which runs along the z

axis. In this example, the complex phase ϕ(r) winds by 6π around the line defect

(represented by the red dot at the origin). The winding number of the complex phase

in general can be evaluated by the line integral

c =
1

2π

∮
C
dϕ(r) =

1

2πi

∮
C

∇rm(r)

m(r)
· dr , (3.3)

where C is a (righthanded) closed path that runs once around the (oriented) line

defect. Eq.(3.3) is always an integer given that the mass parameter m(r) is non-

vanishing along C.

Massless chiral Dirac fermions run along these topological line defects [167]. When

focusing at kz = 0, the differential operator (3.2) with a vortex along the z-axis is

identical to the 2D Jackiw-Rossi model [168] with chiral symmetry γ5 = szµz. Each

zero energy mode corresponds to a massless chiral Dirac fermion with positive or

negative group velocity in z depending on the sign of its γ5 eigenvalue. (For a concrete

example, see appendix A) These quasi-one dimensional low-energy electronic modes

are similar to those that run along the edge of 2D Landau levels and Chern insulators,

except they are now embedded in three dimensions. Their wave functions extend

along the defect string direction but are localized and exponentially decay away from

the defect line. Moreover, such an electronic channel is chiral in the sense that there

is only a single propagating direction. The energy spectrum of the topological line

defect (for the example with winding number c = 3) is shown in the right diagram

of Fig. 3.3, in which, there are three chiral bands (red curves) inside the bulk energy

gap representing the 3 chiral Dirac electrons. As a consequence of the chirality, the

transport of charge and energy must also be uni-directional. The chiral electric and



28

energy-thermal responses are respectively captured by the two conductances

σ =
δIelectric

δV
= ν

e2

h
, κ =

δIenergy

δT
= c

π2k2
B

3h
T , (3.4)

where ν is the filling fraction if the chiral channel is supported by a 2D insulating

bulk, and c is called the chiral central charge. For the Dirac case, c = ν is the number

of chiral Dirac channels. Here c can be negative when the Dirac fermions oppose the

preferred orientation of the topological line defect. In a more general situation, c =

cR−cL counts the difference between the number of forward propagating and backward

propagating Dirac fermions. There is a mathematical index theorem [167, 169, 170]

that identifies the topological winding number in (3.3) and the analytic number of

chiral Dirac fermions in (3.4). Hence, there is no need to distinguish the two c’s.

The massless chiral Dirac channels, described by the low-energy effective theory

LDirac = i

cR∑
a=1

ψ†a(∂t + ṽ∂x)ψa + i

cR+cL∑
b=cR+1

ψ†b(∂t − ṽ∂x)ψb (3.5)

have an emergent conformal symmetry and the index c = cR − cL is also the chiral

central charge of the effective conformal field theory (CFT). We refer to the primitive

topological line defect with c = ±1 that hosts one and only chiral Dirac fermion ψ as

a Dirac string. (It should not be confused with the Dirac magnetic flux string that

connects monopoles.)

A three-dimensional array of Dirac strings (wires) can be realized as a vortex

lattice of the mass parameter m = mx + imy in a Dirac semimetal. For example,

Fig. 3.4 shows a vortex lattice generated by the spatially-varying Dirac mass

m(r) = m0
sd(x+ iy)

|sd(x+ iy)| , (3.6)

where sd is the (rescaled) Jacobian elliptic function [171] with simple zeros at p+ iq
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Figure 3.4: (Left) A 3D array of Dirac strings. (Right) Cross section of the array. ×
associates into-the-plane Dirac channel, • represents out-of-plane ones. Stream lines
represent the configuration of the mass parameter vector field m(r) = (mx(r),my(r))
of the vortex lattice.
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t2

t1 T11T1̄1

π

−π

t1
t2

C2

ex
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p+1,q

p,q+1

p,q

Figure 3.5: Coupled Dirac wire model with tunneling amplitudes t1, t2. Each unit cell
(dashed box) consists a pair of counter-propagating Dirac strings, × and •. T11, T1̄1

are the two anti-ferromagnetic directions.
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and poles at (p + 1/2) + i(q + 1/2) for p, q integers. It consists of vortices with

alternating winding number c = ±1 at the zeros and poles in a checkered board

lattice configuration. On the cross section plot on the right side of Fig. 3.4, there is

a Dirac string with positive (or negative) winding at each • (resp. ×). Each vortex

string has a chiral Dirac fermion running through it. Figure 3.5 shows the same

two-dimensional slice of the array, except suppressing the mass parameters which

correspond to irrelevant microscopic high-energy degrees of freedom. We choose a

unit cell labeled by (p, q), its x, y coordinates. Each has both a forward moving Dirac

fermion ψ�p,q (shown as •) and a backward moving one ψ⊗p,q (shown as ×).

This array configuration breaks TR as the symmetry would have reversed the chi-

rality (i.e. propagating direction) of each Dirac fermion. Instead, it has an emergent

anti-ferromagnetic time reversal (AFTR) symmetry, which is generated by the oper-

ators T11 and T1̄1 in the diagonal and off-diagonal directions. Each is composed of a

time reversal operation and a half-translation by (ex + ey)/2 or (−ex + ey)/2.

T11ψ
⊗
p,qT −1

11 = ψ�p,q, T11ψ
�
p,qT −1

11 = −ψ⊗p+1,q+1

T1̄1ψ
⊗
p,qT −1

1̄1
= ψ�p−1,q, T1̄1ψ

�
p,qT −1

1̄1
= −ψ⊗p,q+1 . (3.7)

These AFTR operators are non-local as they come with lattice translation parts.

They are anti-unitary in the sense that T αψT −1 = α∗T ψT −1 and 〈T u|T v〉 = 〈u|v〉∗

because the local time reversal symmetry is anti-unitary. Similar to a spatial non-

symmorphic symmetry, the AFTR symmetries square to the primitive translation

operators

T11T1̄1 = (−1)F translation(ey),

T11T −1
1̄1

= translation(ex), (3.8)

where (−1)F is the fermion parity operator. Moreover they mutually commute
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[T11, T1̄1] = 0. We notice in passing that the AFTR symmetry is only an emergent

symmetry in the low-energy effective theory. It is not preserved in the microscopic

Dirac model (3.2) and is broken by the mass parameter, m(r) 6= m(r+ (ex± ey)/2)∗.

For instance, the Jacobian elliptic Dirac mass function (3.6) actually has a periodic

unit cell twice the size of that of the effective wire model in Fig. 3.5. On the other

hand, the Dirac mass (3.6) is odd under C2, m(C2r) = −m(r). This sign is canceled

by the C2 rotations of the Dirac matrices, Ĉ2µx,yĈ
−1
2 = −µx,y, that couple with the

Dirac mass in the Hamiltonian (3.2). Therefore the Dirac wire model in Fig. 3.5 has

a twofold axis along one of the Dirac string, say ψ�0,0. The Dirac channel fermions

transform unitarily according to

C2ψ
�
p,qC−1

2 = iψ�−p,−q, C2ψ
⊗
p,qC−1

2 = −iψ⊗−p+1,−q+1, (3.9)

where the factor of i ensures the fermionic −1 twist phase for a 2π rotation, and the

second eqaulity in (3.9) is determined by the first one together with (3.7) and the

symmetry relations

C2T11 = (−1)FT −1
11 C2, C2T1̄1 = (−1)FT −1

1̄1
C2. (3.10)

Again, in order for the rotation symmetric wire model to be free of anomalies, C2

should really be a screw rotation with respect to some microscopic lattice that has

become irrelevant in the low-energy continuum picture.

C2
2 = (−1)F translation(aez) ≈ (−1)F . (3.11)

When adjacent vortex strings are near each other, their Dirac fermion wave func-

tions overlap and there are finite amplitudes of electron tunneling. We construct a

coupled Dirac wire model of nearest-wire single-body backscattering processes with
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±π fluxes across each diamond square (Fig. 3.5), where the tunneling amplitude t1

(or t2) in the (11) (resp.(1̄1)) direction is imaginary (resp. real).

H =
∑
p,q

~ṽ
(
ψ�p,q

†
kzψ

�
p,q − ψ⊗p,q

†
kzψ

⊗
p,q

)
+ it1

(
ψ�p,q

†
ψ⊗p,q − ψ�p−1,q−1

†
ψ⊗p,q

)
+ h.c. (3.12)

+ t2

(
ψ�p−1,q

†
ψ⊗p,q − ψ�p,q−1

†
ψ⊗p,q

)
+ h.c. ,

where the first line is the kinetic Hamiltonian of individual Dirac channels under

the Fourier transformation −i∂z ↔ kz along the wire direction. This tight-binding

Hamiltonian preserves the AFTR symmetry (3.7), T HT −1 = H. Fourier transfor-

mation of the square lattice ~ψp,q =
∫ dkxdky

(2π)2 e
−i(kxp+kyq) ~ψk, ~ψ = (ψ�, ψ⊗) turns (3.12)

into H =
∫ dkxdky

(2π)2
~ψ†kH(k)~ψk, where

H(k) =

 ~ṽkz g(kx, ky)

g∗(kx, ky) −~ṽkz

 (3.13)

is the Bloch band Hamiltonian, for g(kx, ky) = it1(1− e−i(ky+kx)) + t2(e−ikx − e−iky).

Here momentum k lives in the “liquid crystal” Brillouin zone (BZ) where −π ≤

kx, ky ≤ π and −∞ < kz <∞ (in the continuum limit a→ 0 and π/a→∞).

The energy spectrum of the two-band model is given by E±(k) = ±
√
|g(kx, ky)|2 + ~2ṽ2k2

z

(see Fig. 3.6). It gives two linearly dispersing Weyl cones of opposite chiralities in

the BZ centered at K+
0 = Γ = (0, 0, 0) and K−0 = M = (π, π, 0). Near these points,

the Hamiltonians are of the linear form H(K±0 + δk) = ~δkTV ±~σ + O(δk2), where

~σ = (σx, σy, σz) are Pauli matrices acting on the (ψ�, ψ⊗) degrees of freedom. The
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Figure 3.6: Energy spectrum of the coupled Dirac wire model (3.12).

velocity matrices are

~V ± =


−t1 ±t2 0

−t1 ∓t2 0

0 0 ~ṽ

 , (3.14)

whose determinant’s sign decides the ± chirality of the Weyl fermion at Γ and M ,

i.e. the ±1 Fermi surface Chern invariants [40, 19, 22]. The AFTR symmetries (3.7)

in the single-body picture are expressed under Fourier transformation as

T11
~ψkT −1

11 = T11(k)~ψ−k, T1̄1
~ψkT −1

1̄1
= T1̄1(k)~ψ−k,

T11(k) =

 0 −ei(kx+ky)

1 0

K,
T1̄1(k) =

 0 −eiky

e−ikx 0

K, (3.15)

where K is the complex conjugation operator. They satisfy the appropriate algebraic
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relations (3.8) in momentum space

T11(−k)T1̄1(k) = T1̄1(−k)T11(k) = −e−iky

T11(−k)T1̄1(k)−1 = T1̄1(−k)−1T11(k) = e−ikx (3.16)

and the coupled wire model (3.13) is AFTR symmetric

T11(k)H(k) = H(−k)T11(k),

T1̄1(k)H(k) = H(−k)T1̄1(k). (3.17)

The Weyl points are at time reversal invariant momenta (TRIM) K±0 ≡ −K±0 (mod-

ulo the reciprocal lattice 2πZ2), and the AFTR operators T11(K±0 ) = −iσyK and

T1̄1(K±0 ) = ∓iσyK square to minus one. Hence the Weyl points are not only pro-

tected by the non-vanishing Fermi surface Chern invariant but also the Kramers’

theorem. In addition, the model is also C2 symmetric

C2(k)H(k) = H(C2k)C2(k) , (3.18)

where the twofold symmetry (3.9) is represented in the single-body picture by a

diagonal matrix

C2
~ψkC−1

2 = C2(k)~ψC2k, C2(k) =

 i 0

0 −ie−i(kx+ky)

 (3.19)

(suppressing the screw phase e−ikza/2 in the continuum limit a → 0). It agrees with

the fermion statistics (3.11) C2(−kx,−ky, kz)C2(kx, ky, kz) = −1, and the algebraic



35

relations (3.10) with the AFTR operators

C2(−k)T11(k) = −T11(C2k)−1C2(k)

C2(−k)T1̄1(k) = −T1̄1(C2k)−1C2(k) (3.20)

for C2k = (−kx,−ky, kz).

3.2.1 The anomalous Dirac semimetal

We notice that the coupled wire Dirac model (3.12) and its massless energy spectrum

in Fig. 3.6 are anomalous with respect to the AFTR symmetries T11 and T1̄1 as well as

the C2 symmetry if it is proper symmorphic and not a screw rotation. This means that

it cannot be realized in a single-body three dimensional lattice system with the AFTR

or C2 symmetries. In a sense, it is not surprising at all since the chiral Dirac strings

that constitute (3.12) are themselves violating fermion doubling [33, 34]. Here we

further elaborate on the anomalous Dirac spectrum (Fig. 3.6) where the pair of Weyl

points are separately located at two TRIM K±0 . We also comment on the non-trivial

consequence of the anomaly and pave the path for later discussion on many-body

interactions.

We begin with two 2D planes in momentum space parallel to kykz located at

kx = ±π/2. They are represented by the two blue planes in Fig. 3.6. The AFTR or

C2 symmetries require the Chern invariants

Ch1 =
i

2π

∫
Tr(P∂kyP∂kzP )dkydkz (3.21)

at kx = ±π/2 to be opposite, where P (k) = (1 − H(k)/|E(k)|)/2 is the projection

operator onto the negative energy band. This is because the AFTR symmetry is

anti-unitary and preserves the orientation of the kykz plane, whereas C2 is unitary
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but reverses the orientation of the kykz plane. (See appendix B for a detailed proof.)

On the other hand, the two Chern invariants along the two planes must differ by 1

because they sandwich a single Weyl point at Γ. This forces the Chern invariants to

be a half integer Ch1 = ±1/2, which is anomalous.

While the C2 anomaly can be resolved simply by doubling the unit cell and assum-

ing it originates from a microscopic non-symmorphic screw axis, the AFTR anomaly

is stronger because the two antiferromagnetic combinations (3.8) generate lattice

translations and fix the unit cell size. There are three resolutions.

1. The AFTR symmetries are broken by high energy degrees of freedom when kz

is large.

2. The spectrum in Fig. 3.6 is the holographic 3D boundary spectrum of an AFTR

symmetric weak topological insulator in 4D.

3. The spectrum is generated by strong many-body interaction non-holographically

in 3D.

Below we discuss the first two resolutions, and we leave the many-body interaction-

enabled situation to Sec. 3.3.

3.2.1.1 Broken symmetries and coarse-graining

The mapping between the original Dirac fermion model and the emergent Dirac

fermion model from a coupled-wire construction can be qualitatively understood as

a coarse-graining procedure. Here, the high-energy microscopic electronic degrees of

freedom are integrated out. The procedure can be repeated indefinitely and resembles

a real-space renormalization. For example, the gapless Dirac electronic structure of

the coupled wire model can acquire a finite mass by symmetry-breaking dimeriza-

tions. These dimerizations can be arranged in a topological manner that spatially
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wind non-trivially around a collective vortex. These second-stage vortices can subse-

quently be assembled into an array similar to the previous construction except now

with a longer lattice constant. The system again recovers a massless Dirac spectrum

under inter-vortex electron tunneling in low-energy and long length scale. The map-

ping therefore establishes an equivalence between the continuous isotropic massless

Dirac fermion and the semi-discrete anisotropic coupled Dirac wire model.

In the present case when the chiral Dirac channels originate from vortex strings in

an underlying microscopic Dirac insulator, the spatial modulation of mass parameters

m(r) actually violate one of the AFTR symmetries, m(r)∗ 6= m(r + (ex ± ey)/2),

where ∗ stands for complex conjugation. For instance, since all elliptic functions

must contain at least two zeros and two poles in its periodic cell, the Jacobian elliptic

mass function (3.6) has longer periods than ex and ey in Fig. 3.5, and thus must

break T11 or T1̄1. The symmetry is broken only in the ultra-violet limit at large kz

where the chiral Dirac line nodes meet the microscopic bulk band (see Fig. 3.3) at

high energy ∼ |m(r)|. In fact, the above anomalous argument shows that all mass

parameter configurations that produce the 3D vortex lattice array (Fig. 3.4) must

either (a) break both the AFTR symmetries T11 and T1̄1, or (b) preserve one but

violate translation so that the unit cell is enlarged and the two Weyl points collapse

onto each other in momentum space. (See Figs. 3.7 and 3.8.)

For instance, the microscopic system can be connected to a stack of Chern insu-

lating ribbons (or lowest Landau levels) with alternating chiralities shown in Fig. 3.7.

Instead of being supported by vortices of Dirac mass, the chiral Dirac wires are now

realized as edge modes of Chern insulating strips. Each 2D ribbon (represented by

thick dashed dark blue lines) is elongated in the out-of-paper z-direction but is fi-

nite along the (110) direction and holds counter-propagating boundary chiral Dirac

channels. The dark blue arrows represent the orientations of the Chern ribbons that

accommodate the boundary Dirac channels with the appropriate propagating direc-
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tions. Here the Chern ribbon pattern in Fig. 3.7(a) breaks both AFTR axes. The

pattern in Fig. 3.7(b) preserves T1̄1. However, translation symmetry is also broken

and the coupled Dirac wire model now has an enlarged unit cell (light blue dashed

boxes) that consists of two pairs of counter-propagating chiral Dirac channels. All

Chern ribbon patterns must break the C2 symmetry about a Dirac wire because each

wire is connected to one and only one Chern ribbon in a particular direction.

x

y

z Cher
n r

ibb
on

s
Cher

n r
ibb

on
s

x

y

z

(a) (b)

T1̄1

Figure 3.7: Chiral Dirac channels (× and •) realized on the edge of Chern insulating
ribbons (dark blue directed lines) stacked along the (1̄10) normal direction.

Now we go back to the vortex lattice generated by the Jacobian elliptic Dirac

mass function m(r) in (3.6) and consider its symmetries. For this purpose, we use

the symmetry properties of the (rescaled) Jacobian elliptic function [171]

sd(x+ iy) = −sd(x+ 1 + iy) = −sd(x+ iy + i) ,

sd

(
x+ iy +

1 + i

2

)
= −i C

sd(x+ iy)
, (3.22)

sd(−x− iy) = −sd(x+ iy) ,

where C is some unimportant real constant that depends on the modulus of sd and

will never appear in the mass function m(r) = m0sd(x + iy)/|sd(x + iy)|. We see

from the minus sign in the first equation that the Jacobian elliptic function, and
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consequently the mass function, have primitive periods ex ± ey and therefore have a

unit cell of size 2 (see Fig. 3.8(a)). Choosing m0 = |m0|eiπ/4, we see from the second

equation that T11 (or T1̄1) is preserved (resp. broken)

m

(
r +

ex ± ey
2

)
= ±m(r)∗, (3.23)

and thus the parent Dirac Hamiltonian (3.2) is T11-symmetric

T̂HDirac

(
−k, r +

ex + ey
2

)
T̂−1 = HDirac(k, r), (3.24)

for T̂ = isyK. Lastly, the third property of (3.22) entails the mass function m(r) =

−m(C2r) is odd under C2, and consequently the parent Dirac Hamiltonian is (screw)

rotation symmetric

Ĉ2HDirac(C2k, C2r)Ĉ
−1
2 = HDirac(k, r), (3.25)

where Ĉ2 = iszµz (or microscopically e−ikza/2iszµz) anticommuting with the mass

terms m1µx+m2µy in HDirac (see (3.2)), and C2k = (−kx,−ky, kz), C2r = (−x,−y, z).

Remembering that the coupled wire model (3.12) (Fig. 3.5) descended from a

vortex lattice of the microscopic parent Dirac Hamiltonian (3.2), the Dirac mass m(r)

actually allows the model to carry fewer symmetries than the low-energy effective

Hamiltonian (3.12) suggests. Now that the translation symmetry is lowered, the BZ

is reduced (see Fig. 3.8(b)) so that the two Weyl points now coincide at the origin

Γ. This recovers an unanomalous Dirac semimetallic model (3.1) around (kx′ , ky′) =

(0, 0). The fourfold degenerate Dirac point is protected and pinned at Γ due to

the remaining AFTR symmetry T11 – which takes the role of a spinful time reversal

(T̂ 2 = −1) in the continuum limit – and the C2 (screw) symmetry about the z-

axis. However, if any of these symmetries is further broken, the fourfold degeneracy
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Figure 3.8: (a) The massive AFTR and C2 breaking coupled Dirac wire model. (b)
The reduced Brillouin zone (BZ) after translation symmetry breaking where the two
Weyl points collapse to a single Dirac point at M .

Figure 3.9: Dirac mass gap 2|∆| introduced by AFTR and C2 symmetry breaking
dimerization ∆ = ∆1 + i∆2.
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of the Dirac point is not protected (c.f. the original continuum Dirac model (3.2)).

Figure 3.8(a) shows a dimerized coupled Dirac wire model that introduces a finite mass

for the Dirac fermion. We label the Dirac fermion operators as ψµ,σr,s , for σ = �,⊗

the chirality, µ = A,B the new sublattice label, and (r, s) label the coordinates of

the unit cell according to the 45◦-rotated x′, y′-axes.

H′ =
∑
r,s

∑
µ=A,B

~ṽ
(
ψµ,�r,s

†
kzψ

µ,�
r,s − ψµ,⊗r,s

†
kzψ

µ,⊗
r,s

)
+ iu1ψ

A,�
r,s

†
ψA,⊗r,s − iu′1ψB,�r,s

†
ψB,⊗r,s + h.c.

− u2ψ
B,�
r,s

†
ψA,⊗r,s + u′2ψ

A,�
r,s

†
ψB,⊗r,s + h.c. (3.26)

− it1ψA,�r−1,s

†
ψA,⊗r,s + it′1ψ

B,�
r+1,s

†
ψB,⊗r,s + h.c.

+ t2ψ
B,�
r,s+1

†
ψA,⊗r,s − t′2ψA,�r,s−1

†
ψB,⊗r,s + h.c. .

For instance, the model is identical to the AFTR and C2 symmetric one in (3.12)

when tj = t′j = uj = u′j for j = 1, 2. However, when the symmetries are broken, these

hopping parameters do not have to agree.

The Bloch band Hamiltonian after Fourier transformation is

H(k) =

 ~ṽkz h(kx′ , ky′)

h(kx′ , ky′)
† −~ṽkz

 , (3.27)

h(kx′ , ky′) =

 iu1 − it1e−ikx′ u′2 − t′2e−iky′

−u2 + t2e
iky′ −iu′1 + it′1e

ikx′

 ,

where the 2×2 identity matrix and h(kx′ , ky′) acts on the sublattice µ = A,B degrees

of freedom, and −π ≤ kx′ , ky′ ≤ π are the rotated momenta. We perturb about the

Dirac fixed point by introducing the dimerizations ∆j

tj = t′j = uj −∆j = u′j −∆j (3.28)
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for j = 1, 2. About the Γ = (0, 0, 0) point,

H(Γ + δk) =~ṽδkzσz − t1δkx′σx − t2δky′σyµx

−∆1σyµz + ∆2σyµy +O(δk2). (3.29)

See Fig. 3.9 for its massive spectrum.

(a) (b)

Figure 3.10: (a) Dimerized model of a massive Dirac fermion. (b) Vortex of dimer-
izations ∆ = ∆1 + i∆2 that leaves behind a massless localized chiral Dirac channel
(blue dot).

Here the AFTR symmetry T11 and the twofold rotation C2 are represented in the

single-body picture by

T11(k) =

(
0 0 −eikx 0
0 0 0 −1
1 0 0 0
0 eikx 0 0

)
K,

C2(k) =

(
i 0 0 0
0 ie−i(kx+ky) 0 0
0 0 −ie−ikx 0
0 0 0 −ie−iky

)
(3.30)

(again suppressing the C2 screw phase e−ikza/2 in the continuum limit a→ 0). In the

small kx, ky-limit, T11(0) = −iσyK and C2(0) = iσz. It is straightforward to check

that the dimerization ∆2 preserves T11 while both ∆1,∆2 breaks C2.

Since the coupled wire model (3.29) and the parent continuum Dirac model (3.2)

have the same matrix and symmetry structure, we can apply the same construc-

tion we discussed before to the new coarse-grained model (3.29). For instance, the
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non-competing dimerizations ∆(r) = ∆1(r) + i∆2(r) can spatially modulate and

form vortices in a longer length scale. Figure 3.10(b) shows a dimerization pattern

that corresponds to a single vortex in ∆. The solid (dashed) lines represent strong

(resp. weak) backscattering amplitudes. In the fully dimerized limit where the dashed

bonds vanish, all Dirac channels are gapped except the one at the center (showed as

a blue dot). In the weakly dimerized case, there is a collective chiral Dirac channel

whose wave function is a superposition of the original channels and is exponentially

localized at the ∆-vortex core, but now with a length scale longer than that of the

original m-vortex lattice. These collective chiral Dirac ∆-vortices can themselves form

a coupled array, like (3.12), and give a Dirac semimetal of even longer length scale.

The single-body coupled vortex construction is therefore a coarse-graining procedure

that recovers equivalent emergent symmetries at each step.

Dirac semimetal
mass vortices

-�
coupled wire model

chiral Dirac strings . (3.31)

3.2.1.2 Holographic projection from 4D

The coupled wire model (3.12) with two AFTR axes can be supported by a weak

topological insulator (WTI) in four dimensions. Instead of realizing the chiral Dirac

channels using mass vortices of a 3D Dirac semimetal, they can be generated as edge

modes along the boundaries of 2D Chern insulators (or lowest Landau levels). The

4D WTI is constructed by stacking layers of Chern insulators parallel to the zw-

plane along the x and y directions. The Chern layers Lr, labeled by the checkerboard

lattice vector r = rxex + ryey on the xy-plane, have alternating orientations so that

Ch[Lr] = 1 if rx, ry are integers and Ch[Lr] = −1 if rx, ry are half-integers. The model

therefore carries both AFTR symmetries T11 and T1̄1 as well as the C2 rotation about

zw, and when cleaved along a 3D hyper-surface normal to w, it generates the array

of alternating chiral Dirac channels in Fig. 3.5.
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The 4D WTI model can also be regarded as a stack of 3D antiferromagnetic

topological insulators (AFTI) [172]. Restricting to the 3D hyperplane normal to

−ex + ey, this model consists of alternating Chern insulating layers parallel to the

wz-plane stacked along the ex + ey direction. This 3D model describes an AFTI

with a non-trivial Z2 index. For instance along the boundary surfaces normal to w

or z that preserve the antiferromagnetic symmetry T11, the model leaves behind a

2D array of alternating chiral Dirac wires. The uniform nearest wire backscattering

term t1 (see (3.12)) introduces a linear dispersion along the 11-direction and gives

rise to a single massless surface Dirac cone spectrum at a TRIM on the boundary of

the surface BZ where T 2
11 = −1. The 4D WTI model is identical to stacking these 3D

AFTI along the 1̄1-off-diagonal direction −ex + ey.

3.2.2 Surface Fermi arcs

3.2.2.1 AFTR breaking surfaces

ky

kz
Γ = (0, 0) M= (π, 0)

kx

ky

(a) (b)

Γ = (0, 0)

M= (π, π)

Figure 3.11: Fermi arcs (blue lines) joining projected Weyl points on the surface
Brillouin zones along (a) the (100) surface and (b) the (001) surface.

We discuss the surface states of the coupled Dirac wire model (3.12). Similar to

the boundary surface of a translation symmetry protected Dirac semimetal (or more

commonly called a Weyl semimetal), there are Fermi arcs connecting the surface-
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projected Weyl points [40, 19, 22]. First we consider the (100) surface normal to

x-axis (see Fig. 3.5). We assume the boundary cuts between unit cells and set the

Fermi energy at εf = 0. At kz = 0 and given a fixed ky ∈ (−π, π), the tight-binding

model (3.13) is equivalent to the Su-Schriffer-Heeger model [173] or a 1D class AIII

topological insulator [174, 175] along the x-direction protected by the chiral symmetry

σzH(kx) = −H(kx)σz. It is characterized by the winding number

w(ky) =
i

2π

∫ π

−π

1

g(kx, ky)

∂g(kx, ky)

∂kx
dkx , (3.32)

= (1 + sgn(kyt1/t2)) /2.

When t1, t2 have the same (or opposite) sign, the quasi-1D model is topological along

the positive (resp. negative) ky-axis and thus carries a boundary zero mode. This

corresponds to the Fermi line joining the two surface projected Weyl points at Γ

and M (see Fig. 3.11(a)). As the zero modes have a fixed chirality according to σz,

they propagate uni-directionally with the dispersion E(kz) = ~ṽkzσz. The cleaving

surface breaks AFTR and C2 symmetries, and so does the Fermi arc in Fig. 3.11(a).

For instance, any one of the AFTR symmetries maps the boundary surface to an

inequivalent one that cuts through unit cells instead of between them. As a result,

the Fermi arc will connect the Weyl points along the opposite side of the ky-axis for

this surface.

The (010) surface Fermi arc structure is qualitatively equivalent to that of the

(100) surface. The (110) and (11̄0) surfaces that cleave along the diagonal and off-

diagonal axes (see Fig. 3.5) respectively preserve the AFTR symmetries T11 and T1̄1.

There are no protected surface Fermi arcs because the two bulk Weyl points project

onto the same point on the surface Brillouin zone. Lastly, we consider the (001) surface

normal to the z-axis, which is the direction of the chiral Dirac strings that constitute

the coupled wire model. A chiral Dirac channel cannot terminate on the boundary
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surface. In a single-body theory, it must bend and connect with an adjacent counter-

propagating one. Although the (001) plane is closed under the C2 as well as both the

AFTR symmetries, the surface bending of Dirac channels must violate at least one

of them. Here we consider the simplest case where the counter-propagating pair of

Dirac channels within a unit cell re-connects on the boundary surface. This boundary

is equivalent to a domain wall interface separating the Dirac semimetal (3.12) from

an insulator where Dirac channels backscatters to their counter-propagating partner

within the same unit cell.

The domain wall Hamiltonian takes the form of a differential operator

Ĥ =
∑
m,j

−i~ṽ
(
ψ�m,j

†
∂zψ

�
m,j − ψ⊗m,j

†
∂zψ

⊗
m,j

)
(3.33)

+ it1

(
ψ�m,j

†
ψ⊗m,j + θ(z)ψ�m−1,j−1

†
ψ⊗m,j

)
+ h.c.

+ t2θ(z)
(
ψ�m−1,j

†
ψ⊗m,j + ψ�m,j−1

†
ψ⊗m,j

)
+ h.c.

by replacing kz ↔ −i∂z in (3.12). Here θ(z) can be the unit step function or any

function that asymptotically approaches 1 for z →∞ or 0 for z → −∞. The model

therefore describes the Dirac semimetal (3.12) for positive z, and an insulator for

negative z where Dirac channels are pair annihilated within a unit-cell by t1. After

a Fourier transformation, the Bloch Hamiltonian Ĥ(kx, ky) is identical to (3.13) by

replacing kz ↔ −i∂z and g(kx, ky, z) = it1(1 + θ(z)e−i(ky+kx)) + t2θ(z)(e−ikx + e−iky).

Given any fixed kx, ky, the differential operator Ĥ(kx, ky) is identical to the Jackiw-

Rebbi model [176]. Deep in the insulator, g(kx, ky, z → −∞) = it1. There is an

interface zero mode at the surface domain wall if g changes sign, i.e. if g(kx, ky, z →

∞) = |g|eiϕ has argument ϕ = −sign(t1)π/2. When εf = 0, the zero modes trace out

a Fermi arc that connects the two surface projected Weyl points (see Fig. 3.11(b)).

We notice that in the insulating phase (or on the boundary surface), Dirac wires

can be backscattered with a different phase and dimerized out of the unit cell. These



47

(a) (b)

Γ = (0, 0)
Γ = (0, 0)

M= (π, π) M= (π, π)

kx

ky

kx

ky

Figure 3.12: Fermi arcs (blue lines) on the (001) surface with alternative boundary
conditions (a) g(kx, ky) = −it1 and (b) g(kx, ky) = −t2e−iky in the insulating domain,
for t2/t1 = 2.

different boundary conditions correspond to distinct surface Fermi arc patterns. Fig-

ure 3.12 shows two alternatives. (a) shows the zero energy arcs when intra-cell

backscattering reverses sign t1 → −t1 in the insulating domain. (b) shows a case

when the dimerization is taken along the off-diagonal axis. These inequivalent bound-

ary conditions differ by some three dimensional integer quantum Hall states, which

correspond to additional chiral Fermi arcs that wrap non-trivial cycles around the 2D

toric surface Brillouin zone.

3.2.2.2 AFTR preserving surfaces

We also notice that the Fermi arc structures in Figs. 3.11(b) and 3.12 are allowed

because both the AFTR symmetries T11, T1̄1 and the C2 symmetry are broken by the

insulating domain. Any dimerization that preserves only one of T11 and T1̄1 necessarily

breaks translation symmetry, and corresponds to an enlarged unit cell and a reduced

Brillouin zone (c.f. Fig. 3.7 and 3.8). As a result, the two Weyl points would now

collapse onto the same Γ point. Any momentum plane that contains the kz-direction

and avoids the Γ point must have trivial Chern invariant, because it could always be

deformed (while containing the kz-direction and avoiding the Γ point) to the reduced

Brillouin zone boundary, where its Chern invariant would be killed by the AFTR
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symmetry.

However, the trivial bulk Chern invariant does not imply the absence of surface

state. This can be understood by looking at the surface boundary in real space.

Here, we assume the Dirac strings that constitute the coupled wire model (3.12)

are supported by vortices of an underlying Dirac mass (see Fig. 3.4 and eq.(3.2)).

The semimetallic coupled wire model terminates along the xy-plane against vacuum,

which is modeled by the Dirac insulator Hvacuum = ~vk ·~sµz+m0µx, say with m0 > 0.

Recall from (3.23) that the Dirac mass vortex configuration (3.6) is AFTR symmetric

along the T11-directions. The Dirac insulating vacuum is symmetric under local TR

as well as continuous translation. It however breaks the screw rotation symmetry

Ĉ2 = iszµz, but we here only focus on the AFTR symmetry.

x

y

z

T11

Figure 3.13: Surface chiral Dirac channels of the coupled wire model (3.12) terminated
along the xy plane.

The surface boundary supports chiral Dirac channels that connect the chiral Dirac

strings in the semimetallic bulk that are normal to the surface. The surface channels

are shown in Fig. 3.13. The × (•) represent chiral vortices in the bulk that direct
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electrons away from (resp. onto) the surface. The vector field represents the Dirac

mass m(r) = mx(r) + imy(r) modulation in the semimetallic bulk near the surface.

The surface Dirac line channels [167] – shown by directed lines connecting the bulk

Dirac strings ×, • – are located where the TR symmetric Dirac mass mx changes

sign across the surface boundary and the TR breaking Dirac mass my flips sign

across the line channels along the surface. In other words, they are traced out of

points on the surface where mx < 0 and my = 0. Each of these surface channels

carries a chiral Dirac electronic mode that connects the bulk chiral Dirac vortices.

They can couple through inter-channel electron tunneling, but the collective gapless

surface state cannot be removed from low-energy by dimerization without breaking

the AFTR symmetry T11.

3.3 Many-body interacting variations

We discuss the effect of strong many-body interactions in a Dirac semimetal in three

dimensions. Before we do so, it is worth stepping back and reviewing the two di-

mensional case in order to illustrate the issue and idea that will be considered and

generalized in three dimensions. The massless Dirac fermion with H = ~v(kxsy−kysx)

that appears on the surface of a topological insulator [28, 29, 30, 22] is protected by

time reversal (TR) and charge U(1) symmetries and is anomalous. This means that

there is no single-body energy gap opening mass term that preserves the symmetries,

and there is no single-body fermionic lattice model in two dimensions that supports

a massless Dirac fermion without breaking the symmetries. Neither of these state-

ments hold true in the many-body setting. The surface Dirac fermion can acquire a

TR and charge U(1) preserving many-body interacting mass. [130, 132, 131, 133] Con-

sequently, this also enables a massless symmetry preserving Dirac fermion in a pure

2D system without holographically relying on a semi-infinite 3D topological bulk. For



50

instance, one can take a quasi-2D topological insulator slab with finite thickness and

remove the Dirac fermion on one of the two surfaces by introducing an interacting

mass gap. This leaves a single massless Dirac fermion on the opposite surface without

breaking symmetries.

A massless Dirac fermion in three dimensional semimetallic materials can be pro-

tected in the single-body picture by screw rotation, time reversal and charge U(1)

symmetries (see reviews Ref. [19, 22, 25] and Sec. 3.2). From a theory point of view,

it can be supported on the 3D boundary of a 4D weak topological insulator, where

the two Weyl fermions are located at distinct time reversal invariant momenta (recall

Fig. 3.6 and Sec. 3.2.1.2 for the antiferromagnetic case). In this case, the massless

fermions are protected by translation, time reversal and charge U(1) symmetries. In

this section, we address the following issues. (1) We show by explicitly construct-

ing an exactly solvable coupled wire model that the 3D Dirac fermion can acquire a

many-body interacting mass while preserving all symmetries. (2) We show in principle

that an antiferromagnetic time reversal (AFTR) symmetric massless 3D Dirac system

with two Weyl fermions separated in momentum space can be enabled by many-body

interactions without holographically relying on a higher dimensional topological bulk.

We begin with the Dirac semimetallic coupled wire model in Fig. 3.6 and (3.12).

In particular, we focus on many-body interactions that facilitate the fractionalization

of a (1 + 1)D chiral Dirac channel

Dirac = Pfaffian⊗ Pfaffian (3.34)

(see also Fig. 3.14). In a sense, each chiral Pfaffian channel carries half of the degrees of

freedom of the Dirac. For instance, it has half the electric and thermal conductances,

which are characterized by the filling fraction ν = 1/2 and the chiral central charge

c = 1/2 in (3.4). Throughout this dissertation, we refer to the low-energy effective
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CFT – that consists of an electrically charged U(1)4 bosonic component, say moving

in the R direction, and a neutral Majorana fermion component moving in the opposite

L direction – simply as a Pfaffian CFT

Pfaffian = U(1)4 ⊗ Ising. (3.35)

(In this article, we follow the level convention for U(1) in the CFT community [177].

The same theory may be more commonly referred to as U(1)8 in the fractional quan-

tum Hall community. For clarification, see Lagrangian (3.36) and (3.37).)

While this is not the focus of this article, here we clarify and disambiguate the

three “Pfaffian” fractional quantum Hall (FQH) states that commonly appear in

the literature. All these (2 + 1)D states are theorized at filling fraction ν = 1/2,

although being applied to ν = 5/2 in materials, and have identical electric transport

properties. However, they have distinct thermal Hall transport behaviors. They

all have very similar anyonic quasiparticle (QP) structures. For instance, they all

have four Abelian and two non-Abelian QP (up to the electron). On the other

hand, the charge e/4 non-Abelian Ising anyons of the three states have different spin-

exchange statistics. First, the gapless boundary of the Moore-Read Pfaffian FQH

state [178, 179, 180, 181] can be described by the (1 + 1)D chiral CFT U(1)4 ⊗ Ising

where the charged boson and neutral fermion sectors are co-propagating. It therefore

carries the chiral central charge c = 1 + 1/2 = 3/2, which dictates the thermal Hall

response (3.4). Second, the “anti-Pfaffian” FQH state [182, 183] is the particle-hole

conjugate of the Moore-Read Pfaffian state. Instead of half-filling the lowest Landau

level by electrons, one can begin with the completely filled lowest Landau level, and

half-fill it with holes. In a sense the anti-Pfaffian state is obtained by subtracting

the completely filled lowest Landau level by a Moore-Read Pfaffian state. Along

the boundary, the (1 + 1)D CFT U(1)1/2 ⊗ U(1)4 ⊗ Ising consists of the forward
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propagating chiral Dirac U(1)1/2 sector that corresponds to the lowest Landau level,

and the backward propagating Moore-Read Pfaffian U(1)4 ⊗ Ising. Here C can be

interpreted as the time-reversal conjugate of the chiral CFT C. The thermal transport

is governed by the edge chiral central charge c = 1 − 3/2 = −1/2, which has an

opposite sign from the filling fraction. Thus, unlike the Moore-Read Pfaffian state,

the net electric and thermal currents now travel in opposite directions along the edge.

Lastly, the recently proposed particle-hole symmetric (PHS) Pfaffian state [9, 10, 11],

which is going to be the only Pfaffian FQH state considered in this article (see Ref. [13]

for a coupled wire construction), has the chiral edge CFT (3.35). As the electrically

charged boson and neutral fermion sectors are counter-propagating, the net thermal

edge transport is governed by the chiral central charge c = 1− 1/2 = 1/2. The chiral

(1 + 1)D PHS Pfaffian CFT (3.35) is also present along the line interface separating

a TR symmetric T -Pfaffian [132] domain and a TR breaking magnetic domain on

the surface of a 3D topological insulator. (Similar constructions can be applied to

alternative TR symmetric topological insulator surface states [130, 131, 133], but they

will not be considered in this article.) Other than their thermal transport properties,

the three Pfaffian FQH state can also be distinguished by the charge e/4 Ising anyon,

which has spin h = 1/8, −1/8 or 0 for the Moore-Read Pfaffian, anti-Pfaffian or PHS

Pfaffian states respectively.

Since we will not be considering the Moore-Read Pfaffian or its particle-hole con-

jugate anti-Pfaffian state, we will simply refer to the PHS Pfaffian state as the Pfaffian

state. The low-energy effective chiral (1+1)D CFT takes the decoupled form between

the boson and fermion

LPfaffian = Lcharged + Lneutral , (3.36)

=
8

2π
∂tφR∂xφR + v(∂xφR)2

+ iγL(∂t − ṽ∂x)γL ,
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where we have set ~ = 1. Here φR is the free chiral U(1)4 boson. It generates the

(1+1)D theory Lcharged, which is identical to the boundary edge theory of the (2+1)D

bosonic Laughlin ν = 1/8 fractional quantum Hall state described by the topological

Chern-Simon theory [184, 185]

L2+1 =
K

4π
α ∧ dα + etα ∧ dA , (3.37)

with K = 8 and t = 2. The U(1)4 CFT carries the electric conductance σ = tK−1t =

1/2 in units of 2πe2 = e2/h and a thermal conductance characterized by the chiral

central charge c = cR = 1. Primary fields are of the form of (normal ordered) chiral

vertex operators : eimφR :, for m an integer, and carries charge q = m/4 in units

of e and conformal scaling dimension (i.e. conformal spin) h = hR = m2/16. We

summarize and abbreviate the operator product expansion

eim1φR(z)eim2φR(w) = ei(m1+m2)φR(w)(z − w)m1m2/8 + . . . (3.38)

by the Abelian fusion rule

eim1φR × eim2φR = ei(m1+m2)φR , (3.39)

where z ∼ τ+ix is the complex space-time parameter and τ = iπvt/2 is the Euclidean

time.

γ†L = γL is the free Majorana fermion. It generates the (1 + 1)D theory Lneutral,

which is equivalent to a chiral component of the critical Ising CFT or the boundary

edge theory of the (2 + 1)D Kitaev honeycomb model [1] in its B-phase with TR

breaking (i.e. a chiral px + ipy superconductor coupled with a Z2 gauge theory). It

carries trivial electric conductance but contributes to a finite thermal conductance

characterized by the chiral central charge c = −cL = −1/2. The Ising CFT has
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primary fields 1, γL and σL, where the twist field (or Ising anyon) σL carries the

conformal spin h = −hL = −1/16. Again, we abbreviate the operator product

expansions

γL(z̄)γL(w̄) =
1

z̄ − w̄ + . . . ,

σL(z̄)γL(w̄) =
σL(w̄)

(z̄ − w̄)1/2
+ . . . ,

σL(z̄)σL(w̄) =
1

(z̄ − w̄)1/8
+ (z̄ − w̄)3/8γL(w̄)

by the fusion rule

γL × γL = 1, σL × γL = σL ,

σL × σL = 1 + γL, (3.40)

where z̄ ∼ τ − ix is the complex space-time parameter and τ = iṽt is the Euclidean

time.

General primary fields of the Pfaffian CFT decompose into the U(1)4 part and

the Ising part. They take the form

1m = eimφR , ψm = eimφRγL, σm = eimφRσL. (3.41)

The conformal spins and fusion rules also decompose so that

h1m =
m2

16
, hψm =

m2

16
+

1

2
, hσm =

m2 − 1

16
(3.42)
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modulo 1, qm = m/4 in units of e, and

1m1 × 1m2 = ψm1 × ψm2 = 1m1+m2 ,

1m1 × ψm2 = ψm1+m2 ,

1m1 × σm2 = ψm1 × σm2 = σm1+m2 ,

σm1 × σm2 = 1m1+m2 + ψm1+m2 . (3.43)

The 2π monodromy phase MXY
Z = RXY

Z RY X
Z between primary fields X and Y with

a fixed overall fusion channel Z can be deduced by the ribbon identity [1]

e2πihZ =

X Y

Z

=

X Y

Z

=MXY
Z e2πi(hX+hY ) (3.44)

for hX,Y,Z the conformal spins for primary fields X, Y, Z. Unlike the gauge dependent

π-exchange phase RXY
Z , the 2π-monodromy phase MXY

Z = e2πi(hZ−hX−hY ) is gauge

independent and physical.

The electronic quasiparticle is the composition ψel = e−i4φRγL so that it is fermionic

and has electric charge −1 in units of e. Since electron is the fundamental building

block of the system, locality of ψel only allows primary fields X that have trivial mon-

odromy MX,ψel = 1 with the electron. As a result, this restricts 1m, ψm to even m

and σm to odd m. Lastly, the coupled wire models constructed later will involve the

Pfaffian channels that propagate in both forward and backward directions. We will

denote the backward case by Pfaffian, whose Lagrangian density is the time reversal

of (3.36), i.e. replacing R↔ L, i↔ −i and ∂t ↔ −∂t.
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Dirac
Pfaffian

Pfaffianc = 1
σ = e2/h c = 1/2 σ = e2/2h

Dirac

Figure 3.14: Gluing and splitting a pair of chiral Pfaffian 1D channels into and from
a chiral Dirac channel.

3.3.1 Gluing and splitting

A pair of co-propagating Pfaffian CFT can be “glued” together into a single chiral

Dirac electronic channel. We first consider the decoupled pair L0 = LAPfaffian +LBPfaffian,

where LA/BPfaffian is the Lagrangian density of one of the two Pfaffian CFT labeled

by A,B. The pair of Majorana fermions can compose an electrically neutral Dirac

fermion dL = (γAL +iγBL )/
√

2, which can then be bosonized dL ∼ eiφ
σ
L , for φσL the chiral

U(1)1/2 boson. The bare Lagrangian now becomes the multi-component U(1)A4 ⊗

U(1)B4 ⊗ U(1)1/2 boson CFT

L0 =
1

2π
∂tφ

TK∂xφ+ ∂xφ
TV ∂xφ, (3.45)

where φ = (φAR, φ
B
R, φ

σ
L), K is the 3× 3 diagonal matrix K = diag(8, 8,−1), and V is

some non-universal velocity matrix. A primary field is a vertex operator eim·φ labeled

by an integral vector m = (mA,mB, m̃). It carries conformal spin hm = mTK−1m/2

and electric charge qm = tTK−1m in units of e, where t = (2, 2, 0) is the charge

vector. As n = (1,−1, 4) is an electrically neutral null vector (i.e. nTKn = 0 and

t · n = 0), it corresponds to the charge U(1) preserving backscattering coupling

δH = −u cos
(
nTKφ

)
= −u cos

(
8φAR − 8φBR − 4φσL

)
(3.46)
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that gaps [186] and annihilates a pair of counter-propagating boson modes. The

interacting Hamiltonian can also be expressed in terms of many-body backscattering

of the Pfaffians’ primary fields

δH = −u :
(
d†LdR

)4

: +h.c. , (3.47)

where dR = 1A2 1B−2 is the electrically neutral Dirac fermion composed of the pair of

oppositely charged semions in the two Pfaffian sectors.

In strong coupling, the gapping Hamiltonian introduces an interacting mass and

the ground state expectation value 〈Φ〉 = nπ/2, for n an integer and Φ = 2φAR−2φBR−

φσL. In low energy, it leaves behind the chiral boson combination φ̃R = 2φAR + 2φBR,

which has trivial operator product (i.e. commutes at equal time) with the order

parameter Φ. The low-energy theory after projecting out the gapped sectors becomes

L0 − δH −→ LDirac =
1

2π
∂tφ̃R∂xφ̃R + v(∂xφ̃R)2 , (3.48)

which is identical to the bosonized Lagrangian density of a chiral Dirac fermion. For

instance, the vertex operator ψel
R ∼ eiφ̃R ∼ 1A2 1B2 has the appropriate spin and electric

charge of an electronic Dirac fermion operator (h = 1/2 and q = 1 in units of e).

Notice that the vertex operator eiφ̃R/2 has −1 monodromy with the local electronic

ψel
R and therefore is not an allowed excitation in the fermionic theory.

We notice in passing that the gluing potential (3.46) facilitates an anyon conden-

sation process [187], where the maximal set of mutually local neutral bosonic anyon

pairs

1A4m1B−4m, ψ
A
4mψ

B
−4m,

ψA4m+21B−4m−2, 1
A
4m+2ψ

B
−4m−2, σ

A
4m+1σ

B
−4m−1

(3.49)

is condensed, where m is an arbitrary integer. All primary fields that are non-local
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(i.e. with non-trivial monodromy) with any of the condensed bosons in (3.49) are

confined. Any two primary fields that differ from each other by a condensed boson

in (3.49) are now equivalent. The condensation therefore leaves behind the electronic

Dirac fermion

ψel
R = ψA4 ≡ ψB4 ≡ 1A2 1B2 (3.50)

and its combinations.

charged 
Dirac

ψ1
R ∼ eiφ̃

1
R

ψ2
R ∼ eiφ̃

2
R

ψL ∼ eiφ̃L

ψρ
R ∼ eiφ

ρ
R

dR ∼ eiφ
σ
R

neutral 
Dirac

fractional basis
transformation

co
m

bi
na

tio
n

dL ∼ eiφL

∼ γA
L + iγB

L

J±
SU(2)A1

∼ e±i4φA

= e±i(φρ
R+φσ

R)

J±
SU(2)B1

∼ e±i4φB

= e±i(φρ
R−φσ

R)

U(1)4 = SU(2)1/Z2 γA
L

γB
L

Pfaffian

Pfaffian

Figure 3.15: Schematics of splitting a chiral Dirac channel into a pair of Pfaffian
channels.

On the other hand, a chiral Dirac channel can be decomposed into a pair of chiral

Pfaffian channels (see Fig. 3.15 for a summary). First, perhaps from some channel

re-construction, we append to the chiral Dirac channel an additional pair of counter-

propagating Dirac modes. This can be realized by pulling a parabolic electronic/hole

band from the conduction/valence band to the Fermi level, or introducing non-linear

dispersion to the original chiral channel. In low-energy, the three Dirac fermion

modes can be bosonized ψ1,2
R ∼ eiφ̃

1,2
R , ψL ∼ e−iφ̃L and they are described by the

multicomponent boson Lagrangian

L̃Dirac =
1

2π
∂tφ̃

T
K̃∂xφ̃+ ∂xφ̃

T
Ṽ ∂xφ̃ (3.51)
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for φ̃ = (φ̃1
R, φ̃

2
R, φ̃L), K̃ is the diagonal matrix K̃ = diag(1, 1,−1), and Ṽ is some

non-universal velocity matrix. A general composite excitation can be expressed by a

vertex operator eim·φ̃, for m an integral 3-vector, with spin hm = |m|2/2 and electric

charge qm = mT K̃ t̃ in units of e, where t̃ = (1, 1, 1) is the charge vector.

Next we perform a fractional basis transformation

φρR = φ̃1
R + φ̃2

R + φ̃L ,

φσR = φ̃1
R − 1

2
φ̃2
R + 1

2
φ̃L ,

φσL = φ̃1
R + 1

2
φ̃2
R + 3

2
φ̃L .

(3.52)

While the K̃ matrix is invariant under the transformation, the charge vector changes

to t̃→ (1, 0, 0). ψρR ∼ eiφ
ρ
R is the local electronic Dirac fermion that carries spin 1/2

and electric charge e, and dR/L ∼ eiφ
σ
R/L are counter-propagating electrically neutral

Dirac fermions. As the K̃ matrix is still diagonal, these fermions have trivial mutual

2π-monodromy and are local with respect to each other. However, it is important to

notice that the neutral Dirac fermions dR/L actually consist of fractional electronic

components.

Now we focus on the two R-moving Dirac channels. By pairing the Dirac fermions,

they form two independent SU(2)1 Kac-Moody current operators [177]

J
A/B
3 (z) = i2

√
2∂zφ

A/B
R (z) , (3.53)

J
A/B
± (z) =

J
A/B
1 (z)± iJA/B2 (z)√

2
= e±i4φ

A/B
R (z) ,

where 4φAR = φρR + φσR and 4φBR = φρR − φσR. Both SU(2)1 sectors are electrically

charged so that the bosonic vertex operators J
A/B
± carries charge ±e. They obey the
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SU(2) current algebra at level 1

Jλi (z)Jλ
′

j (w) =
δλλ

′
δij

(z − w)2
+

3∑
k=1

i
√

2δλλ
′
εijk

z − w Jλk (w) + . . . (3.54)

for λ, λ′ = A,B. It is crucial to remember that JA± ∼ ψρRdR and JB± ∼ ψρRd
†
R contains

the fractional Dirac components dR. Thus, the primitive local bosons are actually

pairs of the current operators, i.e. ei8φ
A/B
R . Equivalently, this renormalizes the com-

pactification radius of the boson 4φ
A/B
R so that in a closed periodic space-time geom-

etry, we only require electronic Cooper pair combinations such as the charge 2e local

operators

ei8φ
A
R = ei(4φ̃

1
R+φ̃2

R+3φ̃L) ∼ (ψ1
R)4ψ2

R(ψ†L)3 ,

ei8φ
B
R = ei(3φ̃

2
R+φ̃L) ∼ (ψ2

R)3ψ†L (3.55)

to be periodic. The incorporation of anti-periodic boundary condition for J
A/B
± =

e±i4φ
A/B
R results in the Z2-orbifold theory [188, 189] U(1)4 = SU(2)1/Z2 for both A

and B sectors. For instance, the primitive twist fields are given by e±iφ
A/B
R , which

have −1 monodromy phase with J
A/B
± .

At this point, including the L-moving neutral Dirac sector, we have recovered the

muticomponent boson φ = (φAR, φ
B
R, φ

σ
L) described by the Lagrangian (3.45). Lastly,

we simply have to decompose the remaining neutral Dirac into Majorana components,

dL = (γAL + iγBL )/
√

2. The A and B Pfaffian sectors can then be independently

generated by the charged U(1)4 boson φ
A/B
R and the neutral Majorana fermion γ

A/B
L .

As a consistency check, the charge e fermionic (normal ordered) combinations defined
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in (3.41)

ψA4 ∼ ei4φ
A
RγAL ∼ eiφ̃

1
R + ei(3φ̃

1
R+φ̃2

R+3φ̃L) , (3.56)

ψB4 ∼ ei4φ
B
RγBL ∼ ei(−φ̃

1
R+φ̃2

R−φ̃L) − ei(φ̃1
R+2φ̃2

R+2φ̃L)

are in fact local quasi-electronic.

Unlike in the gluing case where there is a gapping Hamiltonian (3.46) that pastes

a pair of Pfaffians into a Dirac, here in the splitting case we have simply performed

some kind of fractional basis transformation that allows us to express Dirac as a pair

of Pfaffians. In fact, one can check that the energy-momentum tensor of the Dirac

theory (3.51) is identical to that of a pair of Pfaffians (3.36). However, this does

not mean the Pfaffian primary fields are natural stable excitations. In fact, as long

as there is a pair of co-propagating Pfaffian channels, all primary fields except the

non-fractionalized electronic ones are unstable against the gluing Hamiltonian δH in

(3.46) and are generically gapped. In order for the Pfaffian CFT to be stabilized, one

has to suppress δH. A possible way is to somehow spatially separate the pair. This

issue is addressed in the subsection below using many-body interaction in the coupled

wire model of a Dirac semimetal (or the PHS Pfaffian FQH state in Ref. [13]).

3.3.2 Symmetry preserving massive interacting model

We begin with the 3D array of chiral Dirac strings in Fig. 3.4. In Sec. 3.2, we

showed that the single-body coupled wire model (3.12) described a Dirac semimetal

with two Weyl fermions (see Fig. 3.6). The system had emergent antiferromagnetic

time reversal (AFTR) symmetries T11 and T1̄1 along the diagonal and off-diagonal

axes (see (3.17)). Together they generate an emergent lattice translation symmetry

with a 2-wire unit cell, and separate the two Weyl points in the Brillouin zone. The

symmetries are lowered beyond the effective model when the microscopic high-energy
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degrees of freedom are included. For example, the mass function (3.6) that supports

the Dirac vortex string lattice has a 4-wire periodic unit cell and only preserves one

of the AFTR symmetries T11 (see (3.23)). With the lowered translation symmetry,

the two Weyl points now coincide at the same momentum. Inter-species (or inter-

valley) mixing is forbidden by the remaining AFTR symmetry and a (screw) twofold

rotation symmetry C2 about z (see (3.18) and (3.25)). Previously in Sec. 3.2.1.1,

we introduced symmetry breaking wire dimerizations in (3.26) that led to a massive

Dirac insulator. In this section, we construct many-body gapping interactions that

preserves the two AFTR symmetries T11 and T1̄1, the C2 symmetry, as well as charge

U(1) conservation.

The many-body gapping scheme is summarized in Fig. 3.16. From the previous

subsection, we saw that each chiral Dirac channel can be decomposed into a pair of

independent Pfaffian channels. They can then be backscattered in opposite direc-

tions to neighboring wires. Figure 3.16(a) shows a particular dimerization pattern

of the Pfaffian channels that preserves the symmetries. In this case, the many-body

backscattering interaction U is directed along the diagonal axis. In the limit when U

is much stronger than the single-body electron tunneling in the previous semimetallic

model (3.12), the system decomposes into decoupled diagonal layers and it suffices

to consider the interaction on a single layer. For convenience, we here change our

spatial coordinates so that the diagonal axis is now labeled by y and the wires now

propagate along x.

Focusing on a single diagonal layer, the system in the non-interacting limit first

consists of a 2D array of chiral Dirac strings with alternating propagating directions

(see the left side of Fig. 3.16(b)). We notice that this is identical to the starting

point of the coupled wire construction of the topological insulator Dirac surface state

considered by Mross, Essin and Alicea in Ref. [12]. For instance, the alternating

Dirac channels there were supported between magnetic strips with alternating orien-
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Figure 3.16: Symmetry preserving many-body gapping interaction. (a) Each ×/•
represents a chiral Pfaffian channel into/out-of paper. Purple dashed line represents
many-body gapping interaction U in (3.80). (b) Coupled wire model on a single layer
along the diagonal axis.
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tations on the topological insulator surface, and an uniform nearest-channel electron

tunneling recovered the massless 2D Dirac spectrum protected by the AFTR sym-

metry. They then proceeded to propose symmetry preserving many-body gapping

interactions facilitated by adding 2D FQH strips between the channels. While this

reconstruction trick can be applied on the 2D surface of a topological insulator, it is

not feasible in our 3D situation and would require drastic modification of the bulk

semimetal. Instead, here we propose an alternative gapping scheme that does not

involve additional topological phases. In other words, we are going to construct a 3D

gapped and layered topological phase solely from interacting electronic Dirac wires.

First, in order to implement the splitting described in the previous subsection, we

assume each Dirac string consists of two Dirac channels going in one direction and

a third Dirac channel going the opposite direction (see the left side of Fig. 3.16(b)).

We denote the electronic Dirac fermions on the yth wire by ψy = (ψ1
y, ψ

2
y, ψ

3
y) and

bosonize

ψ1,2
y (x) ∼ eiφ̃

1,2
y (x), ψ3

y(x) ∼ e−iφ̃
3
y(x). (3.57)

The sliding Luttinger liquid[136, 137, 138, 139, 140] Lagrangian density is

Llayer =
∞∑

y=−∞

(−1)yK̃jk

2π
∂tφ̃

j
y∂xφ̃

k
y + Ṽjk∂xφ̃

j
y∂xφ̃

k
y , (3.58)

where K̃ = (K̃jk)3×3 = diag(1, 1,−1), Ṽ is some non-universal velocity matrix, and

repeating species indices j, k are summed over. The boson operators obey the equal-
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time commutation relation (ETCR)

[
φ̃jy(x), φ̃j

′

y′(x
′)
]

= cjj
′

yy′(x− x′) ,

=iπ(−1)yδyy′K̃
jj′sgn(x′ − x) (3.59)

+ iπ(−1)yδyy′S
jj′

+ iπ(−1)max{y,y′}sgn(y − y′)Σjj′σy−y
′+1

z ,

where sgn(s) = s/|s| = ±1 for s 6= 0 and sgn(0) = 0,

S =
(

0 1 −1
−1 0 1
1 −1 0

)
, Σ =

(
1 1 −1
1 1 −1
−1 −1 1

)
, (3.60)

and σz = ±1. The introduction of the specific Klein factors Sjj
′
, Σjj′ and the un-

determined sign σz are necessary for the correct representations of the T11 and C2

symmetries in the bosonization setting, and these choices will be justified below. The

first line of (3.59) is equivalent to the commutation relation between conjugate fields

[
φ̃jy(x), ∂x′φ̃

j′

y′(x
′)
]

= 2πi(−1)yδyy′K̃
jj′δ(x− x′) , (3.61)

which is set by the “pq̇” term in Llayer. The alternating signs (−1)y in (3.61) and

(3.58) changes the propagating directions from wire to wire. The second and third line

of (3.59) guarantee the correct anticommutation relations {e±iφ̃jy , e±iφ̃
j′
y′} = 0 between

Dirac fermions along distinct channels j 6= j′ or distinct wires y 6= y′. The reason the

C̃2 matrix is defined in this form will become clear in the fractional basis discussed

later in (3.76).

The anti-unitary AFTR symmetry along the diagonal T11 direction transforms the

bosons according to

T11φ̃
j
yT −1

11 = −φ̃jy+1 +
1 + (−1)y

2
K̃jjπ. (3.62)
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The unitary C2 rotation takes

C2φ̃
j
yC−1

2 =
(
C̃2

)j
j′
φ̃j
′

−y + (−1)yvj
π

2
, (3.63)

C̃2 =
(

1 2 2
2 1 2
−2 −2 −3

)
, v =

(
v1

v2

v3

)
=
(

3
−3
1

)
.

Moreover, we choose the representation so that the sign σz in the ETCR (3.59) is

preserved by the AFTR operator but is flipped by the C2 symmetry,

T11σzT −1
11 = σz, C2σzC−1

2 = −σz. (3.64)

The ETCR (3.59) is consistent with the AFTR symmetry. This means that eval-

uating T11

[
φ̃jy(x), φ̃j

′

y′(x
′)
]
T −1

11 by taking the AFTR operator inside the commutator

[
T11φ̃

j
y(x)T −1

11 , T11φ̃
j′

y′(x
′)T −1

11

]
=
[
φ̃jy+1(x), φ̃j

′

y′+1(x′)
]

= cjj
′

y+1,y′+1(x− x′) (3.65)

yields the same outcome as taking the TR of the purely imaginary scalar

T11c
jj′

yy′(x− x′)T −1
11 = −cjj′yy′(x− x′). (3.66)

The ETCR (3.59) is also consistent with the C2 symmetry

(C̃2)j1j′1
c
j′1j
′
2

−y1,−y2
(x1 − x2)(C̃2)j2j′2

= C2c
j1j2
y1y2

(x1 − x2)C−1
2 . (3.67)

This is because the Klein factors (3.60) are C2 symmetric

C̃2SC̃
T
2 = S, C̃2ΣC̃T

2 = Σ. (3.68)

Notice that the undetermined sign σz, which is odd under C2, in (3.59) is essential for
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the ETCR to be consistent with C2.

The last term in the AFTR operation (3.62) makes sure

T 2
11φ̃

j
y(x)T −2

11 = φ̃jy+2 + (−1)yK̃jjπ, (3.69)

which is necessary for T 2
11 = (−1)F translation(2ey). Here the fermion parity operator

is (−1)F = eiπ
∑
yj N

j
y , where

N j
y =

∫
dx

2π
∂xφ̃

j
y(x) (3.70)

is the number operator. The vector v in the C2 operation (3.63) satisfies (δjj′ +

(C̃2)jj′)v
j′/2 = K̃jj, and consequently

C2
2 φ̃

j
y(x)C−2

2 = φ̃jy + (−1)yK̃jjπ, (3.71)

which is consistent with C2
2 = (−1)F . Lastly, it is straightforward to check that the

symmetry representations (3.62) and (3.63) are compatible with the algebraic relation

(3.10), i.e.

C2T11φ̃
j
yT −1

11 C−1
2 (3.72)

= (−1)FT −1
11 C2φ̃

j
yC−1

2 T11(−1)−F .

Following the splitting scheme summarized in Fig. 3.15, we again define a frac-

tional basis transformation (c.f. (3.52))


φρy

φσ1
y

φσ2
y

 =


1 1 1

1 −1/2 1/2

1 1/2 3/2




φ̃1
y

φ̃2
y

φ̃3
y

 (3.73)
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for each wire, so that ψρy ∼ eiφ
ρ
y is a Dirac fermion carrying electric charge e, dσ1

y ∼

eiφ
σ1
y (dσ2

y ∼ eiφ
σ2
y ) is an electrically neutral Dirac fermion propagating in the same

(resp. opposite) direction as ψρy .

For convenience, sometimes we combine the transformed bosonized variables into

φy = (φ1
y, φ

2
y, φ

3
y) = (φAy , φ

B
y , φ

σ2
y ), which is related to the original local ones in (3.58)

by φJy = GJ
j φ̃

j
y where

G =


1/2 1/8 3/8

0 3/8 1/8

1 1/2 3/2

 . (3.74)

The AFTR symmetry operation (3.62) becomes

T11φ
I
yT −1

11 = −φIy+1 +
1 + (−1)y

2
πκI (3.75)

where κI = GI
jK̃

jj which is 1/4 for I = 1, 2 and 0 for I = 3. The C2 transformation

(3.63) becomes

C2φ
I
yC−1

2 = (C2)IJ φ
J
−y + (−1)yGI

jv
j π

2
, (3.76)

C2 = GC̃2G
−1 =

(
0 1 0
1 0 0
0 0 −1

)
, Gv =

(
3/2
−1
3

)
.

The 3× 3 C2 matrix takes a much simpler form here using the fractional basis than

in (3.63). In fact, the original C̃2 matrix in the local basis in (3.63) was defined so

that C2 = GC̃2G
−1 would act according to (3.76). Roughly speaking, ignoring the

constant phases Gv, the C2 symmetry switches φAy ↔ φB−y and sends φσ2
y → −φσ2

−y.

Next, we combine these co-propagating pair of fermions to form two SU(2)1 cur-
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rent algebras (c.f. (3.53) and (3.54))

J
A/B
3 (y, w) = i2

√
2∂wφ

A/B
y (w) ,

J
A/B
± (y, w) = e±i4φ

A/B
y (w) , (3.77)

where w ∼ τ + (−1)yx is the complex spacetime parameter. As a reminder, the

charge ±e bosons J
A/B
± are non-electronic fractional operators, although they carry

non-fractional statistics.

The remaining counter-propagating neutral Dirac fermion can be decomposed into

real and imaginary components

dσy (w) ∼ cosφσ2
y (w) + i sinφσ2

y (w). (3.78)

Majorana fermions can be constructed by multiplying these components with “Jordan-

Wigner” string

γAy ∼ cosφσ2
y

∏
y′>y

(−1)
N2
y′+N

3
y′ ,

γBy ∼ sinφσ2
y

∏
y′>y

(−1)
N2
y′+N

3
y′ , (3.79)

where N j
y are the number operators defined in (3.70), so that they obey mutual

fermionic statistics {γλy (x), γλ
′

y′ (x
′)} = δλλ

′
δyy′δ(x − x′), for λ, λ′ = A,B. Similar to

the charge ±e bosons J
A/B
± , the electrically neutral Dirac fermion dσy and consequently

the Majorana fermions γ
A/B
y are also non-electronic fractional operators. This AB-

decomposition splits each Dirac wire into a pair of decoupled Pfaffian sectors (see

Fig. 3.16(b)).

Before we move on to the symmetric interaction, some further elaborations are

needed for the number operators N j
y and their corresponding fermion parity operators
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eiπN
j
y . In our construction, the counter-propagating pair of channels with j = 2, 3

are appended to the original one with j = 1 to make the Pfaffian fractionalization

feasible. We choose the Hilbert space so that the two additional fermion parity

operators agree, eiπN
2
y = eiπN

3
y . However, we allow fluctuations to the combined

parity eiπ(N2
y+N3

y ) and only require it squares to the identity, e2πi(N2
y+N3

y ) = 1. In

other words, eiπ(N2
y+N3

y ) = e−iπ(N2
y+N3

y ) and it does not matter which one we take

as (−1)N
2
y+N3

y in the “Jordan-Wigner” string in (3.79). This convention will also be

useful later in seeing that the many-body interaction is exactly solvable and symmetry

preserving. Extra care is sometimes required. For example, unlike the original Dirac

channel where the parity is simply (−1)N
1
y = e±iπN

1
y because e2πiN1

y = 1, the individual

parity operators (−1)N
2,3
y of these additional channels are not well-defined because

e2πiN2,3
y 6= 1, i.e. eiπN

2,3
y 6= e−iπN

2,3
y . Also, although e2πi(N2

y+N3
y ) = 1, one cannot in

general modify a boson angle parameter simply by Θ → Θ + 2πi(N2
y + N3

y ) because

Θ and the number operators may not commute. For instance, using the Baker-

Campbell-Hausdorff formula and the ETCR (3.59), ei4φ
A/B

and ei4φ
A/B+2πi(N2

y+N3
y ) are

off by a minus sign.

The Pfaffian fractionalization is stabilized by the inter-wire many-body backscat-

tering interaction (see Fig. 3.16(b))

U = −u
∞∑

y=−∞

cosφσ2
y+1 sinφσ2

y cos
(
4φAy+1 − 4φBy

)
,

= −u
∞∑

y=−∞

(−1)yiγAy+1γ
B
y cos

(
Θy+1/2

)
, (3.80)

for Θy+1/2(x) = 4φAy+1(x)−4φBy (x)+π(N2
y+1+N3

y+1). Previously in (3.56), we saw that

the combinations ψA4 ∼ ei4φ
A
γA and ψB4 ∼ ei4φ

B
γB can be decomposed into products

of electron operators. Similarly, each interaction in the first line of (3.80) can be

decomposed into products in the form of e±i(φ
σ2
y+1±4φAy+1)e±i(φ

σ2
y ±4φBy ) (with some scalar

U(1) coefficient), where the exponents φσ2 ± 4φA/B are linear integral combinations
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of φ̃j. Thus, the interaction can be re-written in terms of backscatterings of local

electronic operators. However, we will omit the electronic expression as (3.80) is

more useful in discussing ground state and symmetries.

U describes a symmetry-preserving exactly solvable model. Using the ETCR

(3.59) it is straightforward to check that the (normal ordered) order parameters

OFy+1/2(x) = iγAy+1(x)γBy (x), OΘ
y+1/2(x) = eiΘy+1/2(x) (3.81)

mutually commute, i.e.
[
OF/Θy+1/2(x),OF/Θy′+1/2(x′)

]
= 0. Therefore, the model is exactly

solvable, and its ground states are characterized by the ground state expectation

values (GEV) of the order parameters

l0〈OFy+1/2〉 = (−1)y〈OΘ
y+1/2〉 = ±1 , (3.82)

so that the interacting energy 〈U〉 is minimized, where l0 is some non-universal mi-

croscopic length scale. Pinning the GEV 〈Θy+1/2〉 = ny+1/2π, for ny+1/2 ∈ Z, gaps

all degrees of freedom in the charged U(1)
A/B
4 = SU(2)

A/B
1 sector. The remaining

neutral fermions are gapped by the decoupled Majorana backscattering

δHMajorana = u
∞∑

y=−∞

(−1)yi〈OΘ
y+1/2〉γAy+1γ

B
y . (3.83)

It is worth noting that a π-kink excitation of 〈Θy+1/2〉 flips the Majorana mass in

(3.83) and therefore bounds a zero energy Majorana bound state [190]. A π-kink at

x0 can be created by the vertex operators e±iφ
A
y+1(x0) or e±iφ

B
y (x0) which carry ±1/4

of an electric charge. (Recall the bosonic vertices ei4φ
A/B
y carry charge e.) This e/4

excitation therefore corresponds to the Ising anyon in the Pfaffian FQH state.

From the AFTR symmetry action (3.75), one can show that the Majorana fermions
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(3.79) transform according to

T11γ
A
y T −1

11 = γAy+1, T11γ
B
y T −1

11 = −γBy+1. (3.84)

Therefore the fermion order parameter OFy+1/2 = iγAy+1γ
B
y (3.81) is translated under

the antiunitary symmetry

T11OFy+1/2T −1
11 = OFy+3/2. (3.85)

The boson angle parameter Θy+1/2 defined below (3.80) changes to −Θy+3/2− (−1)yπ

under AFTR , and therefore the boson order parameter OΘ
y+1/2 = eiΘy+1/2 is flipped

and translated

T11OΘ
y+1/2T −1

11 = −OΘ
y+3/2. (3.86)

Together, (3.85) and (3.86) show that the many-body interaction U in (3.80) is AFTR

symmetric.

The C2 action (3.63) flips the number operator C2(N2
y + N3

y )C−1
2 = −N2

−y −N3
−y,

and therefore the parity operators appear in the “Jordan-Wigner” string (3.79) are C2

symmetric, C2(−1)N
2
y+N3

yC−1
2 = (−1)N

2
−y+N3

−y . With the help of the C2 action (3.76) in

the fractional basis, one sees that C2 cosφσyC−1
2 = (−1)y+1 sinφσ−y and C2 sinφσyC−1

2 =

(−1)y+1 cosφσ−y and thus the Majorana fermions (3.79) transform according to

C2γ
A
y C−1

2 = (−1)y+1γB−y(−1)F2+3 , (3.87)

C2γ
B
y C−1

2 = (−1)y+1γA−y(−1)F2+3 ,

where (−1)F2+3 =
∏∞

y=−∞(−1)N
2
y+N3

y is the total fermion parity of channel 2 and 3.
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This shows the fermion order parameter is odd under C2

C2OFy+1/2C−1
2

= i(−1)y+2γB−y−1(−1)F2+3(−1)y+1γA−y(−1)F2+3

= −iγA−yγB−y−1 = −OF−y−1/2. (3.88)

On the other hand, one can also show from the C2 action (3.76) that the boson angle

parameter changes as C2Θy+1/2C−1
2 = −Θ−y−1/2 − (−1)yπ and therefore the boson

order parameter OΘ
y+1/2 = eiΘy+1/2 is conjugated and flipped under C2

C2OΘ
y+1/2C−1

2 = −OΘ
−y−1/2

†
. (3.89)

When combined together, the minus signs in (3.88) and (3.89) cancel and they show

that the many-body interaction U in (3.80) preserves C2.

Now that we have introduced symmetry preserving gapping interactions on a single

diagonal layer, we can extend it to the entire 3D structure by transferring (3.80) to

all layers using the off-diagonal AFTR operator T1̄1 (see Fig. 3.16(a)). The resulting

state belongs to a topological phase in three dimensions with an excitation energy gap.

It preserves both AFTR symmetries T11 and T1̄1 as well as the (screw) C2 symmetry.

The choice of writing this dissertation with a specific model with these symmetries

was intentional, we wanted to work out the simplest example with specific symmetries

explicitly for illustrative reasons instead of doing a more general classification type

argument. We leave the SPT-SET correspondences for general symmetries as an

open question, but we expect that the methods presented in this work can be useful

in exploring them.
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3.3.3 Antiferromagnetic stabilization

The exactly-solvable many-body interacting model (3.80) (see also Fig. 3.16) shows

that the Dirac semimetal (3.12) can acquire a many-body mass gap without breaking

symmetries. However, it is not clear how dominant or stable the topological phase

described by (3.80) is. There are alternative interactions that lead to other metallic

or insulating phases that preserve or break symmetries. The scaling dimensions and

the relevance of the interaction terms [191, 192] can be tuned by the velocity matrix

Vjk in (3.58) that is affected by forward scattering interactions among co-propagating

channels. Instead of considering energetics, we focus on a topological deliberation –

inspired by the coupled wire construction of quantum Hall states [141, 2] – that can

drastically reduce the number of possible interactions and may stabilize the desired

interactions when applied to materials.

The coupled wire model considered so far assumes all electronic Dirac modes at

the Fermi level have zero momentum kx = 0. This is convenient for the purpose of

constructing an exactly solvable model because momentum is automatically conserved

by the backscattering interactions. However, this also allows a huge collection of

competing interactions. We propose the application of a commensurate modulation

of magnetic field to restrict interactions that conserve momentum. There are multiple

variations to the application, which depend on the details of the Dirac material and

the Dirac vortices. To illustrate the idea, we present one possible simple scenario.

First we go back to a single Dirac wire and consider a non-linear dispersion

E0
y=2l(kx) =

~v
b2

(kx − k1
F )(kx − k2

F )(kx − k3
F ),

E0
y=2l+1(kx) = −~v

b2
(kx + k1

F )(kx + k2
F )(kx + k3

F ), (3.90)

where v and b are some non-universal velocity and wave number parameters. We

assume k2
F < k3

F < k1
F so that when the Fermi energy is at εF = 0, there are two
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Figure 3.17: (a) The energy dispersion Ey=2l(kx) with (solid curve) or without (dashed
curve) the alternating magnetic field. (b) The alternating magnetic field configuration
that preserves the AFTR and C2 symmetries. (c) The alternating magnetic field
across a single layer along the xy plane.
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right (left) moving modes at kx = k1
F , k

2
F and one left (resp. right) moving one at

kX = k3
F along an even (resp. odd) wire. This matches the three-channel Dirac wire

(3.51) used in the splitting scheme in Sec. 3.3.1. We assume the three Fermi wave

numbers satisfy a commensurate condition

2k1
F + k2

F − 3k3
F = 0, (3.91)

and we set

b = 2(k3
F − k1

F − k2
F ). (3.92)

The dashed band in Fig. 3.17(a) shows one commensurate energy dispersion along an

even wire.

Next, we consider a spatially modulating magnetic field B(r) = B(r)e11, where

B(r) =
∞∑

m=−∞

Bm sin

[
π

√
2(2m+ 1)

a
e1̄1 · r

]
, (3.93)

e11 = (ey + ez)/
√

2 and e1̄1 = (−ey + ez)/
√

2, that preserves both the AFTR and C2

symmetries,

B(r + aey) = B(r + aez) = B(C2r) = −B(r) (3.94)

(see Fig. 3.17(b) for the 3D field configuration). Moreover, we assume the field is

commensurate with the Fermi wave numbers so that the magnetic flux per unit length

across the xy layer between adjacent wires (see Fig. 3.17(c)) is

ΦB

L
=
φ0

2π
b , (3.95)

where L is the wire length, φ0 = hc/e is the magnetic flux quantum. Equivalently,
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the average magnetic field strength in the normal z-direction between adjacent wires

is |Bz| = |B|/
√

2 = (~c/ea)b, where a is the displacement between adjacent counter-

propagating wires. We choose the vector potential Ax(y, z) = [(−1)y + (−1)z −

1]|Bz|a/2 and Ay = Az = 0 along the (y, z)th wire.

Along a wire on the xy plane where z = 0, the three electronic Dirac channels are

now bosonized by

ψ1,2
y (x) ∼ ei[(−1)y(k1,2

F x+bx/2)+φ̃1,2
y (x)], (3.96)

ψ3
y(x) ∼ ei[(−1)y(k3

F x+bx/2)−φ̃3
y(x)],

where the momenta are shifted by kjF → kjF + (e/~c)Ax. The phase oscillation eikx

is canceled in an interaction term only when momentum is conserved, or otherwise

the interaction would drop out after the integration over x. It is straightforward to

check that the Majorana fermions (3.79), which contain the operators e±iφ
σ
, have zero

momentum because of the Fermi wave number commensurate condition (3.91). In

addition, the boson backscattering cos(4φAy+1 − 4φBy ) in (3.80) preserves momentum

because the magnetic field is also commensurate (see (3.92) and (3.95)).
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Chapter 4

Model 2: Dirac Nodal

Superconductor

4.1 Introduction

Soon after the discovery of the topological band insulators[193, 194], generalizing the

topological phases to various materials has been one of the most popular themes in

condensed matter physics[195, 196, 197, 198]. One intensively considered path of ex-

tending the topological phases is to consider the topological properties of semimetal-

lic phases. Topological semimetallic phases possess a bulk degeneracy that is pro-

tected by the presence of an underlying topology. Up to now, the 3D topological

semimetals are largely classified into the two classes: Weyl semimetals and Dirac

semimetals. Weyl semimetals have two-fold linear band crossings and generally come

in two interconnected varieties, namely type-1 and type-2. Type-1 Weyl semimet-

als have either broken time-reversal or inversion symmetry and have been found in

non-centrosymmetric materials such as: TaAs[199], TaP, NbP, and NbAs[200, 201].

Type-2 Weyl semimetals possess an additional broken Lorentz invariance and both

MoTe2[202, 203] and WTe2[204, 205] are observed to be the type-2 Weyl semimetals[206].
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Weyl semimetals have been predicted to have numerous distinguishing physical re-

sponses related to the presence of the chiral anomaly[207, 208, 209]. Examples of

anomalous behavior in Weyl semimetals include: nonlocal quasiparticle transport[210],

chiral magnetic effect[211, 212, 213], chiral vortical effect[214], angular dependence of

the magenetoresistence[215, 216].

Unlike the Weyl semimetals, the Dirac semimetals have four-fold degeneracy and

require additional symmetries for the topological protection of the gapless bulk Dirac

point. Most Dirac semimetals are found in non-magnetic materials such as Na3Bi[217,

218, 217, 219, 220] and Cd3As2[221, 222, 223, 224, 225, 226, 227, 228, 229, 230,

211, 231, 232], that preserve both time-reversal symmetry and inversion symmetry.

Recently, the discovery of the Dirac semimetals has been extended to include the

antiferromagnetic material CuMnAs that breaks both inversion and time-reversal

symmetries yet preserves the product of the two[233]. As is the case with Weyl

semimetals, Dirac semimetals are predicted to possess physical manifestations that are

separate and distinct from those found in Weyl semimetals or a Z2 anomaly[234, 220].

The study of the gapless topological phases can be further generalized into the class

of superconducting states, often referred to as topological nodal superconductors[235,

236, 237, 238]. The topological nodal superconductors are the superconducting ana-

logue of the topological semimetals. The topological nodal superconductors pos-

sess nodal points or lines in the Brillouin zone(BZ), which has the vanishing su-

perconducting gap. There has been numerous experimental and theoretical studies

of the line nodal superconductors such as noncentrosymmetric superconductors in-

cluding: CePt3Si[239, 240], Li2Pt3B[241], and CeIrSi3[242], and the heavy fermion

compounds, UBe13[243]. Point nodal superconductors, often referred to as Weyl su-

perconductors, are also proposed to exist in a veritable plethora of materials and sys-

tems including: A phase of 3He[244, 245, 246], topological insulator-superconductor

multilayers[247], doped Weyl semimetals[248, 249, 250, 251, 252], the B phase of
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UPt3[253], the pnictide material SrPtAs [254], ferromagnetic superconductors[255],

the superfluidity of Fermi gases[256, 257], mirror symmetric superconductors[258], the

half-metal/d-wave superconductor heterostructure[259], Nb-doped Bi2Se3[260, 261,

262], the Cu-doped Bi2Se3[263, 264, 265], PrOs4Sb12[266, 267, 268]. CuxBi2Se3 has

been predicted to have the four-fold degenerate Dirac points, which is known as the

Dirac superconductor[265]. As is evidenced in the above listed examples, topologi-

cal nodal superconductors are often found in the strongly-correlated materials since

the anisotropic pairing symmetries in the unconventional superconductors naturally

introduces the nodal structures of the superconducting gap[238]. Therefore, it is cru-

cial to study the strongly correlated phases of the nodal superconductors to fully

understand the physical behavior of these materials.

In this regard, we study the superconductor analogue of the Dirac semimetals,

namely Dirac nodal superconductors, in the presence of many-body interactions. To

do so, we utilize the coupled wire construction method. In the coupled wire con-

struction, the two and three dimensional phases of matter can be constructed by

assembling an array of one dimensional wires. In this method, the many-body in-

teractions are treated between neighboring wires, thereby it enables us to use the

theoretical techniques that are only available in one dimension. This method has

successfully reproduced and identified elementary excitations and behaviors of the

numerous topological phases. In the two dimensional materials, the examples in-

clude the Laughlin states[269] and the hierarchy states[270] of the fractional quan-

tum Hall phases[271], general Abelian and non-Abelian fractional quantum Hall

phases[272, 273, 274, 275], fractional helical liquid[276], 2D fractional topological

insulators[277, 278, 279, 280, 281], topological superconductors[282, 283] the surface

of fractional topological insulator[279, 281], and the spin-liquids[284, 285, 286]. The

studies of the coupled wire construction even extend to the three-dimensional ma-

terials including 3D fractional topological phases[287, 288, 289], interacting Weyl
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semimetals[290, 291, 292, 293], the surface of 3D topological superconductor[294],

and interacting Dirac semimetals[295].

4.2 Coupled Wire Models of Dirac Nodal Super-

conductor

In this section, we describe the single-body aspects of the Dirac nodal superconductor

in terms of a coupled wire model. This mirrors the discussions of the non-interacting

model in ref. [296]. The major difference between our work and previous implemen-

tations of the coupled wire constructions of topological phenomena is that in this

work we focus on superconducting media that break charge U(1) conservation. The

basic building blocks of the coupled wire model are chiral Dirac wires. These are

(1 + 1)-D Dirac fermion channels where quasiparticles can only propagate in a single

direction. They can be supported by an array of vortices in a degenerate point nodal

superconductor in the continuum model. In our model, the nodal superconducting

state has a normal metallic parent state that is quasi-one-dimensional with dispersion

predominantly in the y-direction and pairing order that is p-wave directed along the

normal xz-plane. The Hamiltonian of the nodal superconductor in the continuum

limit is given as,

HSC−nodal(k) = (~vkysyµz − εf )τz

+ ∆l(k̃xsz − k̃zsx)µxτx, (4.1)

and is acting on the Nambu vector ξ = (c, isyc
†)T , where c = (csµ) are the (complex)

Dirac fermion annihilation operators, and s =↑, ↓ and µ = ± are the Pauli matrices for

the spin and Weyl-species degrees of freedom respectively. In addition, ~τ = (τx, τy, τz)

are Pauli matrices acting on the Nambu (c, c†) degree of freedom.



82

The model in Eq. (4.1) can be further simplified by the unitary basis transforma-

tion, U = (τz + syµyτx)/
√

2 when the momenta are rescaled so that ∆lk̃ = ~vk, and

the Fermi energy is set at εf = 0. Under these aforementioned conditions, we define

a new, simplified superconducting Hamiltonian HSC−Dirac = UHSC−nodalU
−1, written

explicitly as,

HSC−Dirac(k) = ~vk · ~sµzτz, (4.2)

where ~s = (sx, sy, sz) are Pauli spin matrices and µz = ±1 indexes the two Weyl

species with opposite Chern numbers.

The BdG Hamiltonian in Eq. (4.2) has the time-reversal symmetry,

syHSC−Dirac(k)∗sy = HSC−Dirac(−k), (4.3)

and the particle-hole symmetry syτyH(k)∗syτy = −H(−k) due to the Nambu dou-

bling. In addition, we consider the effective mirror glide symmetry,

szτyHSC−Dirac(k)szτy = HSC−Dirac(Mk), (4.4)

where M : (kx, ky, kz) → (kx, ky,−kz). The mirror-glide G = szτy is consistent with

the Nambu doubling as it commutes with the particle-hole operator Ξ = syτyK,

where K is the complex conjugation operator. The mirror glide G and time-reversal

T = isyK also mutually commute. While a symmorphic mirror operator squares to

−1 in a spinful system, a nonsymmorphic glide operator squares to −eiK·a, where

a is a microscopic in-plane lattice translation. In our model, we assume the Dirac

degeneracy sits at the microscopic lattice momentum K so that eiK·a = −1, and the

Hamiltonian (4.1) describes the small momentum deviation k away from K in the long

length-scale limit a → 0. The time-reversal and particle-hole operator are unaltered
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by the basis transformation, U , but the glide symmetry changes from G = −sxµy to

G = −szτy. For mathematical convenience, we will utilize the non-electronic basis

where the BdG Hamiltonian is Eq. (4.2) and G = szτy.

The time-reversal and particle-hole symmetry allow the gap-opening mass terms

∆µzτx +m1τx +m2µxτz but neither of these terms preserves the glide symmetry. We

notice in passing that these glide breaking mass terms can lead to a set of interesting

topological superconducting states in the Altland-Zirnbauer DIII class [297]. A non-

vanishing energy gap arises when |∆| 6=
√
m2

1 +m2
2 and there are three disconnected

regions separated by the condition where |∆| =
√
m2

1 +m2
2. The two disconnected re-

gions defined by ∆ >
√
m2

1 +m2
2 and ∆ < −

√
m2

1 +m2
2 are occupied by time-reversal

symmetric topological superconductors [298, 175] with topological indices N = 1 and

−1 respectively. The remaining region |∆| <
√
m2

1 +m2
2 is path-connected and is oc-

cupied by trivial superconductors with topological index N = 0. However, the region

|∆| <
√
m2

1 +m2
2 is not simply-connected. There is a fundamental homotopy group

π1 = Z, which classifies vortices of m(r) = m1(r)+im2(r) = |m|eiϕ(r) where the phase

ϕ(r) spatially modulates and winds 2πn around a vortex. A vortex line hosts n pairs

of helical Majorana fermions modes, which are protected by time-reversal symmetry

when n is odd.

We now restrict our model to be the mirror glide symmetric. The nodal supercon-

ducting Dirac state in Eq. (4.2) is stable in the single-body setting and is protected

by time-reversal symmetry, T , and mirror-glide symmetry, G. This can be verified by

explicitly checking that there are no symmetry-preserving gap-opening mass terms.

Alternatively, this can also be explained using topological reasoning that does not

require the specific form of the Hamiltonian. Let us begin by focusing on the mirror-

glide symmetric kx− ky plane where kz = 0. Along this plane, the BdG Hamiltonian

commutes with the mirror-glide operator G = szτy and, thus, can be block diag-

onalized according to the corresponding mirror-glide eigenvalues g = ±1. Since G
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commutes with both time-reversal symmetry and particle-hole symmetry, each mirror

sector also carries the same symmetries. Each sector consists of a protected pair of

massless Majorana fermions in two dimensions – equivalent to those living on the

surface of a class DIII topological superconductor [298, 175] with topological index

N = ±2(See Fig. 4.1 (a))., where the sign depends on the mirror-glide eigenvalue, g.

Unlike the topological surface state which is anomalous, the nodal superconducting

state here does not require a higher dimensional bulk. This is because of the following

two reasons: First, the winding numbers of the two mirror-glide sectors are opposite

to one another and cancel. Second, the mirror-glide symmetry, G, is nonsymmorphic

and as such squares to the translation phase eik·a, where a is the microscopic in-plane

lattice vector that has been taken to zero as a continuum limit. Consequently, the

spectrum of G is ±eik·a/2 instead of ±1. The two eigenvalue branches connect and

switch in momentum space across the microscopic Brillouin zone when k → k + G,

where G is the reciprocal lattice vector dual to a (i.e. G ·a = 2π). As a result, the two

mirror-glide sectors are not decoupled as they also connect and switch at large mo-

mentum and small length-scale (See Fig. 4.1 (b)). We notice the resemblance to the

charge conserving Dirac (semi)metal, which is protected by time-reversal and screw

rotation symmetries [296]. We refer to the current case as a Dirac nodal supercon-

ductor in three dimensions.

As the nodal points in the 3D Dirac topological superconductor are topologically

protected, we now define and evaluate a topological mirror-glide winding invariant.

Since both the time-reversal and particle-hole operators commute with the mirror-

glide matrix G, so does the chiral operator, which is the product S = −iTΞ = τy.

Let v1
sg and v2

sg be two orthonormal simultaneous eigenvectors of S and G with

eigenvalues s = ±1 and g = ±1 respectively. Then, we can define the projection

operator, P †sg = (v1
sg,v

2
sg)
†, that maps onto the two-dimensional fixed eigenvalue

subspace. Since the BdG Hamiltonian HSC−Dirac in Eq. (4.2) commutes with G on
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Figure 4.1: (a) The energy spectrum of Dirac nodal superconductor along the mirror
symmetric plane(kz = 0). The Dirac nodal superconductor is protected by non-trivial
mirror winding (blue curve) around the nodal point. (b) The same dispersion as (a)
but now labeled with the mirror-glide eigenvalue(red and blue), g. Each mirror branch
now connects at higher momentum, and they switch each other.

the kx − ky plane and anticommutes with S, it can be summarized by the two 2× 2

matrices

h(+)(k‖) = P †−+HSC−Dirac(k‖)P++,

h(−)(k‖) = P †−−HSC−Dirac(k‖)P+− (4.5)

associated with the two distinct mirror sectors, where k‖ is the in-plane momentum.

As the Hamiltonian is nodal only at the Γ point, h(±)(k‖) is non-singular as long as

k‖ 6= 0. Therefore, the winding number of each sector is defined to be the integral

N (±) =
1

2πi

∮
C

Tr
[
h(±)(k‖)

−1∇k‖h
(±)(k‖)

]
· dk‖ , (4.6)

where C can be taken to be any (anti-clockwise) loop around the origin on the mo-

mentum plane. This integral represents the same winding invariant that charac-

terizes the surface Majorana cone of a time-reversal invariant topological supercon-
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ductor. This analysis confirms that along the mirror symmetric plane, the gapless

Majorana fermions corresponding to each mirror-glide sector are equivalent to those

on the surface of a time-reversal invariant topological superconductor with index

N = ±2[298]. For the Dirac nodal superconductor in Eq. (4.2), these winding num-

bers are N (+) = −N (−) = 2. The two sectors must have opposite invariants as the

overall system is anomalous-free. In general, we define the mirror winding number

to be N = N (+) = −N (−). Since the winding number in Eq. (4.6) must be an inte-

ger and cannot change continuously, a nodal superconductor with non-trivial mirror

winding is topological protected as long as the symmetries are preserved. It is im-

portant to note that the glide mirror symmetry in our model squares to 1, which is

different from the conventional mirror symmetry in a spinful system. If G2 = −1 (up

to a translation), the eigenvalues of G are ±i. In this case, we can define the mirror

wining number of G = +i and G = −i sectors respectively. However T flips between

the two sectors of G. Therefore the winding number of the G = +i branch must be

equal to that of the G = −i branch. So the net winding number is now non-zero. As

a result, the Dirac nodal superconductor must be anomalous, and as such it can only

appear at the boundary of a 4D bulk.

We now consider the presence of chiral Dirac vortices in the 3D Dirac nodal

superconductor that break both the time-reversal and mirror-glide symmetries. Each

of these vortices host a single chiral (complex) Dirac fermion. They constitute a three

dimensional array of coupled vortices that restores the symmetries in low-energy long

length-scale. The BdG defect Hamiltonian of the vortex array consists of the nodal

Hamiltonian in Eq. (4.2) together with the symmetry breaking terms

HSC−Dirac(k, r) = ~vk · ~σµzτz

+ ∆1(r)τx + ∆2(r)µzτy. (4.7)
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∆(r) = ∆1(r)+i∆2(r) is the order parameter that acts independently on the two Weyl

species labeled by µz = ±1 and slowly modulates in space. When ∆(r) = |∆|eiϕ(r)

forms a vortex configuration in that its phase ϕ spatially winds by 2π around the

defect line. Each Weyl sector in the Hamiltonian supports a chiral (real) Majorana

channel along the vortex lines. These are quasi-one-dimensional structures that host

gapless Majorana fermion excitations. The Majorana fermions are localized on the

vortex line and they are chiral in the sense that they can only propagate along a

single direction. The superconducting pairing potentials in Eq. (4.7) are chosen so

that the phases of the order parameter are conjugated between the two Weyl species.

Together with the fact that the two Weyl species have the opposite Chern numbers,

the pair of chiral Majorana channels supported by them are propagating in the same

direction and are protected. For instance, electron tunnelings between the pair are

forward scattering processes that only renormalize the velocity and cannot introduce

a mass. The pair of co-propagating Majorana fermions can be combined into a single

chiral Dirac fermion d ∼ γ+ + iγ−.

A periodic array of chiral Dirac vortices can be realized by the pairing configura-

tion

∆(r) = ∆0
sd(x+ iy)

|sd(x+ iy)|/, , (4.8)

where sd is the (rescaled) Jacobian elliptic function [171] with simple zeros and poles

at p+ iq and (p+ 1/2) + i(q + 1/2) respectively, p, q are integers. Fig. 4.2 shows the

checker board lattice, and ex and ey form a lattice translational vector. We find that

the phase ϕ of ∆ = |∆|eiϕ winds by 2π around each integral lattice point and −2π

around a half-integral one. The vortex lines are directed along z and form a checker-

board lattice along x and y. Nearest neighbor vortices host counter-propagating Dirac

modes so that a right-moving chiral Dirac channel appears at (p, q) and a left-moving
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Figure 4.2: Arrays of chiral Dirac channels that we use as a basis for constructing the
3D nodal Dirac superconductor in this work. The vortex array is symmetric under
antiferromagnetic time-reversal TA and mirror-glide G. The vector field represents the
pairing phase of the host superconducting state. Each • and × represents a neutral
Dirac fermion channel parallel and opposite to the z-axis.
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one appears at (p+ 1/2, q+ 1/2). We choose ∆0 = |∆0|eiπ/4 so that the pairing order

parameter transforms under

∆(r) = −∆(r + ex) = −∆(r + ey),

∆

(
r +

ex ± ey
2

)
= ±∆(r)∗. (4.9)

Although the pairing order parameter has periods (1, 1) and (1,−1), the Bogoliubov-

de Gennes (BdG) Hamiltonian in Eq. (4.7) has finer artificial lattice translation

symmetries tx, ty. The Hamiltonian symmetric under tx, ty satisfies,

µyτyHSC−Dirac(k, r)µyτy = HSC−Dirac(k, r + ex)

= HSC−Dirac(k, r + ey). (4.10)

The Hamiltonian is symmetric under particle-hole operator, Ξ, and it follows the

condition given as,

syτyHSC−Dirac(k, r)
∗syτy = −HSC−Dirac(−k, r). (4.11)

Furthermore, our particular vortex geometry possesses an antiferromagnetic time-

reversal TA, which is a combination of the time reversal T and a half-translation by

(ex + ey)/2.

syHSC−Dirac(k, r)
∗sy = HSC−Dirac

(
−k, r +

ex + ey
2

)
. (4.12)

The vortex array also possesses the mirror-glide symmetry G, which combines mirror
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along the x− y plane with a half-translation by (ex − ey)/2,

szτyHSC−Dirac(k, r)szτy

= HSC−Dirac

(
Mk,Mr +

ex − ey
2

)
, (4.13)

where we define the mirror symmetry operator as, M : (x, y, z)→ (x, y,−z).

We now focus on the low-energy chiral Dirac modes in the vortex array. Let dx,y,k

be the chiral Dirac mode at (x, y) with momentum kz = k. When x ≡ y modulo

2, dx,y,k = Rx,y,k propagates in the +z direction, and when x ≡ y + 1 modulo 2,

dx,y,k = Lx,y,k propagates in the −z direction. R and L are respectively represented

by crosses and dots in Fig. 4.2. Each is a combination of a pair of chiral Majorana

modes that are originated from the two opposite Weyl species. R ∼ γ
(+)
R + iγ

(−)
R ,

where the sign refers to chirality of the original Weyl species µz = ±1, and similar

definitions extend to the −z directed modes as L ∼ γ
(+)
L + iγ

(−)
L . Due to the presence

of the underlying symmetries in the system, the Dirac fermions transform according

to

t11Rx,y,kt
−1
11 = Rx+1,y+1,k, t1̄1Rx,y,kt

−1
1̄1

= Rx−1,y+1,k,

t11Lx,y,kt
−1
11 = Lx+1,y+1,k, t1̄1Lx,y,kt

−1
1̄1

= Lx−1,y+1,k,

TARx,y,kT
−1
A = Lx,y+1,−k, TALx,y,kT

−1
A = −Rx,y+1,−k,

GRx,y,kG
−1 = iL†x+1,y,−k, GLx,y,kG

−1 = iR†x+1,y,−k, (4.14)

They form a representation that is consistent with the symmetry algebra [O,O′] = 0

for O,O′ = TA, G, t11, t1̄1, T 2
A = (−1)F t11t1̄1 and G2 = t11t

−1
1̄1

, where (−1)F is the

fermion parity operator and TA is antiunitary.

Integrating out the gapped bulk modes far away from the Fermi energy, the low-
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Figure 4.3: (a) Schematic figure of the coupled wire model that we use in this work.
Each unit cell (as denoted by the dashed black boxes) consists of a pair of counter-
propagating Dirac modes, labeled by red cross and purple dot. The black arrows
indicate tunneling amplitudes t1 and t2 between different Dirac modes. (b) Energy
spectrum of the BdG model (4.20) of the coupled wire model. We find the two nodal
points, K1 and K2, showing the massless Dirac dispersions.

energy effective Hamiltonian can be written as

H||(k) = ~vfk
∑
x≡y

(
R†x,y,kRx,y,k − L†x+1,y,kLx+1,y,k

)
, (4.15)

where vf is the Fermi velocity of the Dirac fermions. When the wires are close to

each other, there are finite hybridizations between the Dirac modes. We add interwire

fermion quasiparticle tunneling terms in the [110] and [11̄0] directions. The presence

of these terms in our model introduces an energy dispersion in the perpendicular

directions. The symmetry-preserving interwire hopping terms can be written as,

H⊥,1(k) =
∑
x≡y

it1

(
L†x,y+1,k − L†x,y−1,k

)
Rx,y,k + h.c., (4.16)

H⊥,2(k) =
∑
x≡y

t2

(
L†x−1,y,k − L†x+1,y,k

)
Rx,y,k + h.c. , (4.17)

where the tunneling strengths t1 and t2 are real numbers. In Fig. 4.3(a), we schemat-
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ically represent the physical picture of the counter-propagating modes with the corre-

sponding interwire hopping terms, t1 and t2 that account for the interwire tunneling

resulting from the spatial proximity between Dirac wires. By collecting the interwire

hopping terms in both directions, the Hamiltonian of the coupled wire model is

H =
∑
k

H||(k) +H⊥,1(k) +H⊥,2(k). (4.18)

The model is symmetric under lattice translations, antiferromagnetic time-reversal,

and mirror-glide symmetries as:

t−1
11,1̄1
Ht11,1̄1 = T−1

A HTA = G−1HG = H. (4.19)

After Fourier transform, the single-body system can be captured by the BdG Hamil-

tonian in the momentum space,

H =
1

2

∑
k1,k2,kz

ξ†kHBdG(k)ξk,

HBdG(k) =

H(k) 0

0 −σyH(−k)Tσy

 , (4.20)

H(k) =

 ~vfkz q(k1, k2)

q(k1, k2)∗ −~vfkz

 ,

where ξk = (Rk, Lk, L
†
−k,−R†−k)T is the Nambu vector, H(k) is the Hamiltonian

defined in Eq. (4.18), and q(k1, k2) = it1(1− e−i(k1+k2)) + t2(e−ik1 − e−ik2). Here, k1 is

directed along the (11)-direction and k2 is along the (1̄1)-direction. From this point

forward, we set ~vf = t1 = t2 = 1 (in units of eV ) for simplicity but without loss of

generality. In analyzing our model, we find that q(0, 0) = q(π, π) vanishes, therefore

the Hamiltonian in Eq. (4.18) possesses the two Weyl nodes at K1 = (0, 0, 0) and
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K2 = (π, π, 0). We may write the low-energy expansion of the Hamiltonian near each

of the Weyl points as,

H(K1,2 + k) ≈ kz −t1(k1 + k2)∓ it2(k1 − k2)

−t1(k1 + k2)± it2(k1 − k2) −kz

 (4.21)

for small |k| � 1. From Eq. (4.21), we find that the Hamiltonian is comprised of

a pair of Weyl fermions with opposite chiralities and we plot the resulting energy

spectra in the low-energy limit in Fig. 4.3(b).

Unlike the Weyl semimetals that has the charge conservation, our model is based

on a charge breaking superconducting medium. The Weyl fermions here are not

protected by the Chern number. This is because the BdG Hamiltonian in Eq. (4.20)

has two opposing diagonal blocks. At each of the corresponding gap closing points

K1,2, there are two coinciding massless nodes in the BdG description and they have

opposite Chern numbers. In fact, as the nodal points are inversion symmetric, where

K1,2 = −K1,2 (modulo reciprocal vectors), the particle-hole symmetry forbids a non-

vanishing net Chern number. As a result, the Weyl fermions, in the absence of the

symmetries, can acquire finite masses by the addition of off-diagonal terms in the BdG

Hamiltonian of Eq. (4.20). However, these terms are absent in our model because of

the particle-hole, antiferromagnetic, and mirror-glide symmetries:

ΞHBdG(k)∗ = −HBdG(−k)Ξ,

TA(k)HBdG(k)∗ = HBdG(−k)TA(k), (4.22)

G(k)HBdG(k) = HBdG(Mk)G(k),
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where the Nambu vector transforms according to

ξ†k = Ξξ−k,

TAξkT
−1
A = TA(k)ξ−k, (4.23)

GξkG
−1 = G(k)ξMk,

where M is defined as M : (k1, k2, kz) → (k1, k2,−kz), and the symmetry matrices

are given by

Ξ = σyτy

TA(k) =

( 0 1 0 0
−e−i(k1+k2) 0 0 0

0 0 0 e−i(k1+k2)

0 0 −1 0

)
(4.24)

G(k) =

(
0 0 ie−ik2 0
0 0 0 −ieik1

−ieik1 0 0 0
0 ie−ik2 0 0

)
.

The gapless nodes at K1,2 are protected by the non-trivial mirror winding number

N(K1,2) = N (+)(K1,2) = 1 defined in Eq. (4.6). The winding numbers are equal at the

two nodal momenta and, therefore, they add up to the net non-trivial mirror winding

number N = N(K1) + N(K2) = 2, which is identical to that of the homogeneous

superconducting Dirac parent state in Eq. (4.2). In other words, the coupled wire

model recovers the Dirac nodal superconductor in low-energy limit.

Dirac nodal
superconductor

chiral vortices
-

�
coupled wire model

chiral Dirac strings (4.25)

We conclude this section by commenting the stability of Dirac nodal superconduc-

tors in the single-body setting. We first notice that the continuum model Hamiltonian,

HSC−Dirac in Eq. (4.2), can be broken down into two pieces according to the Weyl
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species µz. Each piece corresponds to a Weyl nodal superconductor

HSC−Dirac = ±~vk · ~sτz, (4.26)

which is protected by time-reversal and glide symmetries and has the non-trivial

mirror winding number N = N (+) = −N (−) = 1. We are referring to Eq. (4.26) as

a “Weyl” nodal superconductor because the BdG nodal point is fourfold degenerate,

which is equivalent to two distinct physical fermion degrees of freedom when the

artificial Nambu doubling is taken away. This should not be confused with a Weyl

(semi)metal for the following reasons: First, the nodal point is at k = 0, which is

a time-reversal invariant momentum, and the particle-hole symmetry requires the

Chern number of the BdG bands around the nodal point to vanish. Second, the BdG

Hamiltonian cannot simply be a Nambu doubling of a Weyl (semi)metal because there

is no regularizable charge preserving model with only one Weyl species.

kx
ky

E

kz

0

Figure 4.4: The splitting of the two nodal Weyl points of a Dirac nodal superconductor
by the symmetry preserving perturbation in Eq. (4.27).

A Weyl nodal superconductor is stable to all perturbations because there is no

symmetry preserving gapping potentials and the nodal point is pinned by time-

reversal. On the other hand, a Dirac nodal superconductor is only stable up to

weak perturbation. While it is true that there is no symmetry preserving potentials
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that can immediately introduce an excitation energy gap, the two nodal Weyl species

can be split in momentum space. For example, the following perturbation introduces

the split.

HSC−Dirac = ~vk · ~sµzτz + usxµyτx, (4.27)

where the two nodal Weyl points split along the x-axis (See Fig. 4.4). Each nodal

Weyl point is fourfold degenerate. The net Chern number of the BdG bands around

each nodal point is still trivial due to the glide symmetry. Instead, it is protected

by the mirror winding number N = 1, which is well defined as long as one stay in

one of the two glide eigenspaces. However, if the perturbation is big enough, the

two nodal Weyl points can be pushed to the boundary of the Brillouin zone, where

the glide eigenvalues switch. The two nodal Weyl points will now have opposite

mirror windings and can pair annihilate. A Dirac nodal superconductor is therefore

stable against symmetry-preserving perturbations up to u . hv/a, where a is the

microscopic length scale of the glide translation.

In a similar way as the continuum model, the coupled wire model in Eq. (4.18)

has two separated Weyl nodes at K1 and K2 (see Fig. 4.3(b)). They are pinned by

the (anti-ferromagnetic) time-reversal symmetry and therefore the model is stable to

single-body symmetry-preserving perturbations to arbitrary strength. If we dress the

model with additional Dirac fermion flavors d1, . . . , dN , there will be N nodal Weyl

points at each of the two high symmetry momenta K1 and K2. However, similar

to the continuous case in Eq. (4.27), they can now split in pairs. For example, We

here illustrate the case when there are N = 2 fermion flavors. The unperturbed

Hamiltonian H = H(1) + H(2) is two decoupled copies of the primitive one, where

H(a) is identical to Eq. (4.18) by substituting the fermions R,L with Ra, La. We

decompose the Dirac fermions d = R,L into Majorana components da = (γa+iδa)/
√

2
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and introduce the symmetry-preserving dimerization

Hdimer = iu
∑
xy

γ1
x,yγ

2
x,y+1 + δ1

x,yδ
2
x,y+1. (4.28)

Then, the full BdG Hamiltonian can be written as,

HN=2
BdG (k) =

 HBdG(k) Hdimer(k)

Hdimer(k)† HBdG(k)

 , (4.29)

where HBdG(k) is the original N = 1 Hamiltonian given in Eq. (4.20) and the off-

diagonal term

Hdimer(k) =
iu

2



0 1 0 0

ei(k1+k2) 0 0 0

0 0 0 −ei(k1+k2)

0 0 −1 0


(4.30)

dimerizes between the two flavors.

Figure 4.5 and 4.6 shows the dimerized energy spectrum. For small u, the nodal

Weyl points pairwise split along the diagonal ky-axis where k1 = k2. The sys-

tem remains gapless until the Weyl points originated from opposite momenta K1,2

meet. This happens in a system with u = 4t1 = 4t2 at (k1, k2) = (π/2, π/2)

and (−π/2,−π/2), where Weyl points with opposite mirror windings pair up into

quadratic band touching. A finite excitation energy gap opens when u > 4t1 = 4t2.

In the general situation, the coupled wire model with N flavors is stable against any

perturbation with strength u . t1, t2. If N is odd, there is always an odd number of

nodal Weyl points at each of the high symmetry momenta K1,2 due to time reversal.

They are robust against all single-body perturbations with arbitrary strength. As a

result, the nodal coupled wire models are therefore Z classified for weak perturbation
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Figure 4.5: The BdG energy spectrum of the dimerized system in Eq. (4.29) along the
ky-direction (i.e. k1 = k2) for dimerization strength u = 0, 2.5, 4, 5 and t1 = t2 = 1.

Figure 4.6: The BdG energy spectrum of the dimerized system in Eq. (4.29) over the
entire Brillouin zone. As the two nodal Weyl points split in the momentum space,
they meet with the other Weyl nodes with the opposite chirality and pair-annihilate
each other. This insulator transition confirms the Z2 classification of our model.
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and Z2 classified for strong ones.

4.3 Symmetry preserving many-body gapping in-

teractions

In the previous section, we discussed the Dirac nodal superconductor under the single-

body BCS mean-field description. In the low-energy limit, the nodal system was

captured by the coupled-wire model in Eq. (4.18), which exhibited a pair of massless

Weyl fermions located at two time reversal invariant momenta K1,2. The massless

Weyl fermions are protected by the antiferromagnetic time-reversal TA, mirror-glide

G as well as lattice translation t11, t1̄1 symmetries in Eq. (4.14). In general, a nodal

point is Z-classified by the mirror-glide winding number in Eq. (4.6), which counts

the number (or net handedness) of massless Weyl fermions. This may be constructed

by stacking N copies of the fundamental model in Eq. (4.18). This means that each

vortex line now hosts, in general, a number of co-propagating chiral Dirac fermions

da = Ra or La, where a is the flavor index that runs from 1 to N . The massless Weyl

fermions are stable against the single-body symmetry preserving perturbations until

they pair annihilate. If N is odd, the anitferromagnetic time-reversal symmetry pins

at least one massless Weyl node at each of the two high symmetry K points in the

Brillouin zone. As the Weyl node cannot move, they are robust even against pair

annihilation. Under this non-interacting setup, in this section, we are interested in

finding many-body interactions that introduces a finite excitation energy gap, for both

even and odd flavor number N , while preserving the antiferromagnetic time-reversal,

mirror-glide and lattice translation symmetries.

Our strategy is based on the coupled-wire construction presented in ref. [294].

It relies on a bipartition of degrees of freedom on each vortex line. The degrees of

freedom of the 2N chiral Majorana fermions γa, δa, which pair into the Dirac fermions
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x

y
z

GB

GA

GA

GB

SO(2N)1

c = N
c = N/2

z

y

...

...

JA
x,y · JB

x,y+1

(a)

(b)

Figure 4.7: Schematic representation of the many-body gapping interactions by inter-
wire current backscatterings. The N Dirac fermions per wire are divided into a pair
of G affine Kac-Moody current algebras. (a) shows the current backscatterings in the
3D system viewed along the wire z-direction. (b) shows the current backscatterings
on a single yz layer.
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da = (γa + iδa)/
√

2 for a = 1, . . . , N , are summarized by the SO(2N) Kac-Moody

current algebra at level 1 (also referred to as affine Lie algebra or Wess-Zumino-Witten

theory). The strategy is to decompose the current algebra into a pair of identical and

decoupled components

SO(2N)1 ∼ GA × GB, (4.31)

where GA,B are also affine Kac-Moody algebras and they act on decoupled Hilbert

spaces HA,B. The decomposition in Eq. (4.31) is also known as conformal embedding

in the conformal field theory context [177]. The current operators JA,B in GA,B can

be expressed as combinations of products of the chiral fermions. For the most part

in this dissertation, except for the E8 algebra that we introduce in chapter 4.3.3, the

current operators are fermion bilinears. For example, the SO(N )1 current operators

for a (1 + 1)D system of N chiral Majorana fermions ψ1, . . . , ψN are

Jab = iψaψb (4.32)

for 1 ≤ a < b ≤ N . Therefore, the many-body interactions, being two-body for the

most part in this dissertation, are constructed by backscattering the A and B currents

to neighboring vortex lines that counter-propagate in opposite directions, for example

in the y and −y directions.

Hint = u
∑
xy

JAx,y · JBx,y+1, (4.33)

where u is the interaction strength. Figure 4.7 shows the schematic representation of

the decomposition and the interwire backscattering terms. As the A and B sectors

are decoupled, the backscattering terms do not compete and, in strong-coupling, they

introduce a finite many-body energy gap. Moreover, the decomposition in Eq. (4.31)
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will be designed explicitly in a way so that the current backscattering interactions in

Eq. (4.33) preserve all of the symmetries present in the non-interacting construction.

The partition scheme in Eq. (4.31) is separated into two cases depending on

whether the number N of chiral Dirac fermions per line is even or odd. When N = 2r

is even, the current algebra can be split in a pair of Dirac bundles

SO(2N)1 ∼ SO(2r)A1 × SO(2r)B1 (4.34)

that split the Dirac fermions into two groups d1, . . . , dr and dr+1, . . . , d2r. When

N = 2r + 1, it may be tempting to decompose the chiral Majorana, γa and δa into

two groups. However, as the γs and δs transform differently under the aforementioned

symmetries, there is no bipartition such that SO(2N)1 ∼ SO(2r+ 1)A1 ×SO(2r−1)B1

that leads to symmetry-preserving backscattering interactions. We will focus on the

special case when N = 9 = 3 × 3. Here, there is an alternative way of decomposing

the current algebra

SO(18)1 ∼ SO(9)γ1 × SO(9)δ1

∼
[
SO(3)γ,A3 × SO(3)δ,A3

]
×
[
SO(3)γ,B3 × SO(3)δ,B3

]
, (4.35)

using the level-rank duality [177] that in general relates SO(nk)1 ∼ SO(n)k×SO(k)n.

In the general odd case, one can always write N = 9+2r and decompose SO(2N)1 ∼

SO(18)1 × SO(4r)1 first. The bipartition can then be performed individually for

SO(18)1 and SO(4r)1.

The decompositions in Eq. (4.34) and (4.35) lead to gapping interactions in Eq.

(4.33) that support fractional quasiparticle excitations. These are non-local excita-

tions that are not integral combinations of local electronic BdG quasiparticles. Since
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the many-body interactions in Eq. (4.33) have a layered structure and act within

y − z planes, these non-local quasiparticles are confined in two dimensions and can

exhibit anyonic statistics. Additional interlayer condensation couplings may promote

the layered systems into three dimensional topological phases that support quasi-

string excitations and topological ground state degeneracies although the discussion

of topological orders in three dimensions is out of the scope of this article. In addition,

we will address an alternative set of many-body gapping interactions, when N is a

integer multiple of 16, that only allows local electronic BdG excitations. This stems

from the decomposition

SO(32)1 ∼ (E8)1 × (E8)1 (4.36)

using the exceptional affine Lie algebra E8 at level 1. The non-topologically ordered

many-body gapping at N = 16 reduces the Z classification of Dirac nodal supercon-

ductors to Z16, which resembles the cyclic classification of topological superconduc-

tors [134, 135].

4.3.1 The N = 2r - Even Case

We begin our discussion of the N = 2r by expressing the Dirac fermion dax,y(z) =

(γax,y(z) + iδax,y(z))/
√

2 ∼ eiφ
a
x,y(z) as a vertex operator of the bosonized variable φax,y.

The kinetic Lagrangian density is

L =
1

2π

∑
xy

(−1)x+yδab∂tφ
a
x,y∂zφ

b
x,y − Vab∂zφa∂zφb, (4.37)
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where Vab is a non-universal velocity matrix. The bosonized variables obey the equal-

time commutation relation

[
φax,y(z), φa

′

x′,y′(z
′)
]

= iπ(−1)min{x,x′}+min{y,y′}[δxx′δyy′δaa′sgn(z′ − z)

+ σzδaa′δyy′sgn(x− x′)

+ σzδyy′sgn(a− a′)− σzsgn(y − y′)
]
. (4.38)

where sgn(s) = s/|s| if s 6= 0 or 0 if s = 0. Here σz is an auxiliary factor that anticom-

mutes with the non-local mirror-glide operator, GσzG
−1 = −σz. The bosonized vari-

ables transform under the lattice translations t11, t1̄1, antiferromagnetic time-reversal

TA and mirror-glide G symmetries according to

t11φ
a
x,y(z)t−1

11 = φax+1,y+1(z),

t1̄1φ
a
x,y(z)t−1

1̄1
= φax−1,y+1(z),

TAφ
a
x,y(z)T−1

A = −φax,y+1(z) +
1− (−1)x+y

2
π,

Gφax,y(z)G−1 = −φax+1,y(−z) +
π

2
. (4.39)

These transformations are based on the symmetry operations performed on the chiral

Dirac fermions in Eq. (4.14). They are consistent with the equal-time commutation

relation in Eq. (4.38) and the algebraic relations T 2
A = (−1)F t11t1̄1, G2 = t11t

−1
1̄1

and

[O,O′] = 0 for O,O′ = TA, G, t11, t1̄1, where (−1)F is the fermion parity operator and

TA is antiunitary.

We split the 2r Dirac fermions per wire into two groups d1, . . . , dr and dr+1, . . . , d2r.

Each group generates a SO(2r)1 affine Kac-Moody algebra. We label the first by

SO(2r)A1 and the second by SO(2r)B1 . We now review and illustrate the (complexified)

current operators. Using the bosonized variables, each of the two current algebras
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consists of r Cartan generators HA,a = i∂φa and HB,a = i∂φr+a, for a = 1, . . . , r.

There are 2r(r − 1) roots for each sector,

EA,α = eiα·φ
A

, EB,α = eiα·φ
B

, (4.40)

where φA = (φ1, . . . , φr) amd φB = (φr+1, . . . , φ2r). α is a r-dimensional vector with

integral entries and length |α| =
√

2. In other words, each root vector has two and

only two non-zero entries, each being ±1. The interwire current backscattering in

Eq. (4.33) becomes

Hint = −u
∑
xy

∑
α

EA,α
x,y E

B,α
x,y+1 ,

= −u
∑
xy

∑
α

cos
[
α · (φAx,y + φBx,y+1)

]
, (4.41)

where we have suppressed the terms involving the Cartan generators

−u
∑
xy

r∑
a=1

HA,a
x,y H

B,a
x,y+1 = u

∑
xy

∂xφ
A
x,y · ∂xφBx,y+1 , (4.42)

which only renormalizes the velocities in Eq. (4.37).

The sine-Gordon angle parameters

Θα
x,y+1/2 = α · (φAx,y + φBx,y+1) (4.43)

satisfy the “Haldane’s nullity condition [299]”

[
Θα
x,y+1/2(z),Θα′

x′,y′+1/2(z′)
]

= 0. (4.44)

Since all root vectors α are integral combinations of the r simple roots, which is
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explicitly given as,


| . . . |

α1 . . . αr

| . . . |

 =



1 0 . . . 0 0

−1 1 . . . 0 0

0 −1 . . . 0 0

...
...

. . .
...

...

0 0 . . . 1 1

0 0 . . . −1 1


r×r

, (4.45)

there are only r linearly independent angle variables Θα
x,y+1/2 given a fixed x, y. In

a periodic geometry y = y + L for L even, there are rL independent sine-Gordon

angle variables and the same number of counter-propagating pairs of neutral Dirac

modes in a fixed layer, x. Moreover, assuming u > 0, the sine-Gordon potential in Eq.

(4.41) pins the uniform (z-independent) ground state expectation values 〈Θα
x,y+1/2(z)〉

to be integer multiples of 2π for all α. This means the order parameters 〈Θα
x,y+1/2(z)〉,

although being linearly dependent, are not competing because an integral combination

of integers is still an integer. We can therefore conclude that Eq. (4.41) introduces a

finite excitation energy gap in the bulk.

It is straightforward to check that the gapping potential in Eq. (4.41) is symmetric

under all the symmetries in defined in Eq. (4.39). As the model in Eq. (4.41) is

exactly solvable, the ground state must also preserve all symmetries. In fact, the

symmetries in Eq. (4.39) require the angle order parameters to obey the following:

〈
Θα
x,y+1/2(z)

〉
= −

〈
Θα
x,y+3/2(z)

〉
+ πα · t

= −
〈
Θα
x+1,y+1/2(−z)

〉
+ πα · t (4.46)

=
〈
Θα
x+1,y+3/2(z)

〉
=
〈
Θα
x−1,y+3/2(z)

〉
,

where t = (1, 1, . . . , 1)T and α · t =
∑r

a=1 α
a = 2, 0,−2. We notice in passing that
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these are not the most primitive angle order parameters. For example, the vector and

spinor fields of SO(2r)1 correspond to smaller angle order parameters [294]

Θa
x,y+1/2 = φax,y + φr+ax,y+1

Θε
x,y+1/2 = ε ·

(
φAx,y + φBx,y+1

)
/2

(4.47)

respectively, where ε = (ε1, . . . , εr)T for εa = ±1. However, since these terms are not

necessary in the discussion of the gapping potential, we will omit them.

Lastly, we express the gapping potential in Eq. (4.41), including forward scattering

terms expressed in Eq. (4.42), in terms of the Majorana fermions

Hint = 2u
∑

1≤a1<a2≤r

(
γa1
x,yγ

a2
x,yγ

r+a1
x,y+1γ

r+a2
x,y+1

+δa1
x,yδ

a2
x,yδ

r+a1
x,y+1δ

r+a2
x,y+1

)
− 2u

∑
1≤a1<a2≤r

(
γa1
x,yδ

a2
x,yγ

r+a1
x,y+1δ

r+a2
x,y+1

+δa1
x,yγ

a2
x,yδ

r+a1
x,y+1γ

r+a2
x,y+1

)
, (4.48)

where daxy = (γaxy + iδaxy)/
√

2 ∼ eiφ
a
xy , for a = 1, . . . , N = 2r. The Majorana fermions

transform under the given symmetries (4.14) according to the following:

TAγ
a
x,y(z)T−1

A = (−1)x+yγax,y+1(z)

TAδ
a
x,y(z)T−1

A = (−1)x+y+1δax,y+1(z)

, (4.49)

Gγax,y(z)G−1 = δax+1,y(−z)

Gδax,y(z)G−1 = γax+1,y(−z)

, (4.50)

t11ψ
a
x,y(z)t−1

11 = ψax+1,y+1(z)

t1̄1ψ
a
x,y(z)t−1

1̄1
= ψax−1,y+1(z)

, (4.51)

where ψ = γ or δ. The two-body Hamiltonian in Eq. (4.48), therefore, preserves
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all symmetries present in our construction. In fact, the symmetries are preserved

individually for each of the two lines in Eq. (4.48), and any of the two lines alone can

already introduce a finite energy gap. We consider both so that the Hamiltonian takes

the full Kac-Moody current backscattering form in Eq. (4.33). The relative minus

sign between the two lines comes from Eq. (4.41), where the current backscatterings

are designed to be EA,α
x,y E

A,α
x,y+1 rather than EA,α

x,y E
A,−α
x,y+1. This is to ensure the ground

state expectation values i〈γax,yγr+ax,y+1〉 and i〈δax,yδr+ax,y+1〉 to have the same sign so that

the mirror-glide symmetry is not spontaneously broken. In retrospect, this is not

surprising because the number of fermion flavors here is even, and the nodal model

can acquire a single-body energy gap if the single-body potential is strong enough

to pull the massless Weyl nodes together. The single-body potential that achieves

this has already been given by the dimerization term Hdimer in Eq. (4.28) when

N = 2, however, this splitting term can also be generalized for an arbitrary even

N . It is not a coincidence that Hdimer also pins the same ground state expectation

values i〈γax,yγr+ax,y+1〉 and i〈δax,yδr+ax,y+1〉. This is because we can view the single-body

Hamiltonian Hdimer as the mean-field approximation of the two-body Hamiltonian in

Eq. (4.48).

4.3.2 The N = 2r + 1 odd case

From the previous discussion in Sec. 4.2, we have seen that the nodal coupled wire

model is stable to all single-body symmetry-preserving perturbations to arbitrary

strength when the number of fermion flavors is odd. The focus of this section is to

design exactly solvable two-body interactions that introduce a symmetry-preserving

energy gap in the coupled wire construction when the number of fermion flavors is odd.

We begin again by decomposing each Dirac fermion into a pair of Majorana modes

daxy(z) = (γaxy(z) + iδaxy(z))/
√

2, where a = 1, . . . , N = 2r + 1 is the fermion flavor

label. Additionally, we assume that the Majorana operators transform identically as



109

defined in Eq. (4.49), (4.50) and (4.51).

At this point, it may be tempting to group the 2N Majoranas per wire into two

collections, namely ψ1, . . . , ψN and ψN+1, . . . , ψ2N , and consider the SO(N) current

backscatterings such as

H =
∑
xy

∑
1≤a<b≤N

uabψ
a
x,yψ

b
x,yψ

N+a
x,y+1ψ

N+b
x,y+1. (4.52)

However, because the numbers of γ’s and δ’s are odd, there must be an imbalance

in the number of γ and δ in each of the two collections. Consequently, there is no

biparition of Majorana fermions that is compatible with the symmetries. This is

because the antiferromagnetic time-reversal action in Eq. (4.49) on both γ and δ

are different by a sign, while the mirror-glide action in Eq. (4.50) switches between

γ and δ. In other words, there is no orthogonal basis transformation of fermions

(γ1, . . . , γN , δ1, . . . , δN) ↔ (ψ1, . . . , ψ2N) that achieves a symmetry-invariant biparti-

tion SO(N)A1 = 〈ψ1, . . . , ψN〉 and SO(N)B1 = 〈ψN+1, . . . , ψ2N〉 so that the symmetries

are closed within each of the two sectors. Moreover, as seen in the previous section,

there is no single-body symmetric gapping, nor any many-body Hamiltonian, such as

Eq. (4.52), that admits a single-body mean-field solution must fail.

The construction of the two-body interactions that can accomplish a symmetric

energy gap relies on another type of bipartition. First, we separate the Majorana

fermions into

SO(N)γ,δ1 ∼ SO(9)γ,δ1 × SO(2n)γ,δ1 (4.53)

for both the γ and δ ones, where N = 9 + 2n. This can clearly be done when N

is not less than 9. The SO(9)γ1 sector is generated by γ1, . . . , γ9 and the SO(2n)γ1

sector is generated by γ10, . . . , γN . A similar decomposition applies to the δ’s as

well. If N is smaller than 9, we extend the number of Dirac channels per wire
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by counter-propagating ones. This can be done by wire reconstruction that pulls

2n′ = 9 − N counter-propagating pairs of Dirac modes to zero energy while keeping

the net chirality N = (N+2n′)−2n′, which is the difference of numbers of forward and

backward moving Dirac fermions. The separation can now be done the same as before

except the Majorana’s in SO(9)1 are forward propagating and the ones in SO(2n′)1

are backward propagating. We also denote the counter-propagating SO(2n′)1 sector

by SO(−2n′)1.

The SO(2n)γ1 and SO(2n)δ1 sectors can be gapped by either using the single-body

dimerization in Eq. (4.28) or the two-body interaction in Eq. (4.41) described in

the previous subsection. We now focus on the SO(9)1 sectors, and without loss of

generality, we now take N = 9. Similar gapping potentials were presented in Ref.[294]

in the context of topological superconducting surface states. This gapping potential

relies on the splitting (also known as conformal embedding or level rank duality in

the CFT context)

SO(9)1 ⊇ SO(3)A3 × SO(3)B3 (4.54)

for both the γ and δ. We now apply this splitting to our case here by noting that for

both the 9 γ’s and 9 δ’s, we define two SO(3)3 Kac-Moody current algebras

Jψ,Ax = i(ψ2ψ3 + ψ5ψ6 + ψ8ψ9)

Jψ,Ay = i(ψ3ψ1 + ψ6ψ4 + ψ9ψ7)

Jψ,Az = i(ψ1ψ2 + ψ4ψ5 + ψ7ψ8)

Jψ,Bx = i(ψ4ψ7 + ψ5ψ8 + ψ6ψ9)

Jψ,By = i(ψ7ψ1 + ψ8ψ2 + ψ9ψ3)

Jψ,Bz = i(ψ1ψ4 + ψ2ψ5 + ψ3ψ6)

, (4.55)

where ψ = γ or δ.
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We now briefly summarize the conformal structures of the Kac-Moody current

algebras. The details associated with these can be found in Ref. [294] and will not be

repeated here. The current operators obey the product expansion

Jψ,Cj (w)Jψ
′,C′

j′ (w′) (4.56)

= δψψ
′
δCC

′
[

3δjj′

(w − w′)2
+

iεjj′j′′

w − w′J
ψ
j′′(w

′)

]
+ . . . ,

where w,w′ ∼ τ+(−1)x+yiz is the holomorphic/anti-holomorphic parameter, C,C ′ =

A,B and j, j′, j′′ = x, x, z. Here, εjj′j′′ is the structure factor of SO(3), which is also

the antisymmetric Levi-Civita tensor. The factor of 3 in the most singular piece

sets the level of the Kac-Moody algebras. The four sectors (γ,A), (γ,B), (δ, A)

and (δ, B) are completely decoupled from one another as mutual products are non-

singular. This means that they act independently on orthogonal many-body Hilbert

spaces. This is a non-trivial result because for each type of fermions ψ = γ or δ, both

the A and B currents exhaust all 9 Majorana fermions. The separation of Hilbert

spaces is, therefore, a non-trivial fractionalization beyond any fermionic mean-field

approximation.

The embedding in Eq. (4.54) is maximal in the sense that there are no degrees of

freedom that remain unaccounted. This can be verified by the identification of the

energy-momentum tensors

TSO(3)ψ,A3
+ TSO(3)ψ,B3

= TSO(9)ψ1
(4.57)

for ψ = γ, δ, where each tensor takes the Suguwara (normal ordered) representa-
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tion [177]

TSO(9)ψ1
=

1

16

∑
a<b

JψabJ
ψ
ab = −1

2

9∑
a=1

ψa∂ψa, (4.58)

TSO(3)ψ,C3
=

1

8

∑
j=x,y,z

Jψ,Cj Jψ,Cj = −1

4

9∑
a=1

ψa∂ψa − Ĉ, (4.59)

Ĉ = ±1

4
(ψ2356 + ψ2389 + ψ5689 + ψ1245

+ψ1278 + ψ4578 + ψ7182 + ψ7193 + ψ8293) ,

where the current operators Jab for SO(9)1 was defined in Eq. (4.32), the sign of Ĉ

is positive when C = A or negative when C = B, and ψabcd is the 4-fermion product

ψaψbψcψd. Each of the energy-momentum tensors satisfies the self-operator product

expansion

T (w)T (w′) =
c/2

(w − w′)4
+

2T (w′)

(w − w)2
+
∂T (w′)

w − w′ + . . . , (4.60)

where the chiral central charge c is 9/2 for SO(9)1 or 9/4 for SO(3)3. In particular,

the identification in Eq. (4.57) makes sure the chiral central charge is divided in equal

parts through the conformal embedding in Eq. (4.54), i.e. 9/2 = 9/4+9/4. Moreover,

mutual products between distinct SO(3)ψ,C3 sectors are non-singular due to the fact

that the current algebras decouple.

We now define the two-body potential using SO(3)3 current backscatterings

Hint = u
∑
xy

Jγ,Ax,y · Jγ,Bx,y+1 + Jδ,Ax,y · Jδ,Bx,y+1, (4.61)

where J = (Jx, Jy, Jz) are the SO(3)3 current operators defined in Eq. (4.55). Figure

4.8 shows the schematic figure of the gapping potential. From Eq. (4.49), (4.50)

and (4.51), we see that the potential preserves the antiferromagnetic time-reversal,
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Figure 4.8: (a) Schematic representations of the SO(9)1 ⊇ SO(3)3 × SO(3)3 decom-
position. When N = 9, we decompose each Dirac string into two Majorana fermions,
γ and δ. Then each set of 9 Majorana fermions is decomposed into SO(3)3×SO(3)3.
(b) Schematic figure of the SO(3)3×SO(3)3 many-body gapping potential. The boxes
represent the current backscattering term between SO(3)A,ψ and SOB,ψ of adjacent
wire in y direction, for ψ = γ, δ.
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glide and lattice translation symmetry. The gapping potential does not admit a

mean-field solution with fermion bilinear order parameters i〈ψaψb〉 like those in Eq.

(4.48). Therefore, to present the order parameters of the interaction in Eq. (4.61),

we introduce a further fractionalization (also known as coset construction [177] in the

CFT context) for each of the four sectors C = A,B and ψ = γ, δ

SO(3)3 ∼ SO(2)3 × Z6, (4.62)

where Z6 represents the parafermion coset CFT [300, 301] SO(3)3/SO(2)3 = SU(2)6/U(1)6.

The decomposition is done by first grouping three pairs of Majorana fermions into

three neutral Dirac fermions in each sector

fA,ψ1 =
ψ1 + iψ2

√
2

, fB,ψ1 =
ψ1 + iψ4

√
2

fA,ψ2 =
ψ4 + iψ5

√
2

, fB,ψ2 =
ψ2 + iψ5

√
2

fA,ψ3 =
ψ7 + iψ8

√
2

, fB,ψ3 =
ψ3 + iψ6

√
2

and bosonize

fC,ψj ∼ exp
(
iφ̃C,ψj

)
(4.63)

for j = 1, 2, 3, C = A,B and ψ = γ, δ. The bosonic SO(2)3 = U(1)6 sector is

generated by the diagonal combination

ΦC,ψ =
φ̃C,ψ1 + φ̃C,ψ2 + φ̃C,ψ3

3
. (4.64)

This leaves behind the orthogonal compliment φC,ψσ,j = φ̃C,ψj −ΦC,ψ and the Majorana

fermions ψ3, ψ6, ψ9 for the A sector or ψ7, ψ8, ψ9 for the B sector. They combine into
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the parafermions

ΨA,ψ =
1√
3

(
eiφ

A,ψ
σ,1 ψ3 + eiφ

A,ψ
σ,2 ψ6 + eiφ

A,ψ
σ,3 ψ9

)
ΨB,ψ =

1√
3

(
eiφ

B,ψ
σ,1 ψ7 + eiφ

B,ψ
σ,2 ψ8 + eiφ

B,ψ
σ,3 ψ9

), (4.65)

which generate the Z6 sector. The conformal field theory structures of the SO(2)3

and Z6 are discussed in Ref. [294] and will not be repeated here.

The coset construction in Eq. (4.62) allows the decomposition of the SO(3)3

Kac-Moody current operators and consequently the potential in Eq. (4.61)

Hint = 3u
∑
xy

∑
ψ=γ,δ

ei(Φ
A,ψ
x,y +ΦB,ψx,y+1)ΨA,ψ

x,y+1ΨB,ψ
x,y+2 + h.c., (4.66)

where we have dropped the forward scatterings

9u
∑
xy

∑
C=A,B

ψ=γ,δ

∂zΦ
C,ψ
x,y ∂zΦ

C,ψ
x,y+1 (4.67)

from Eq. (4.61) that only renormalize the velocity for the boson in SO(2)3. Order

parameters are given by the ground state expectation values
〈

ΦA,ψ
x,y + ΦB,ψ

x,y+1

〉
and〈

ΨA,ψ
x,y ΨB,ψ

x,y+1

〉
, for ψ = γ, δ. The symmetries defined in Eq. (4.49), (4.50) and (4.51)
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require

〈
ΨA,ψ
x,y ΨB,ψ

x,y+1

〉
= −

〈
ΨA,ψ
x,y+1ΨB,ψ

x,y+2

〉
= −

〈
ΨA,ψ
x+1,yΨ

B,ψ
x+1,y+1

〉
〈

ΨA,γ
x,y ΨB,γ

x,y+1

〉
= −

〈
ΨA,δ
x,yΨB,δ

x,y+1

〉
〈

ΨA,ψ
x,y ΨB,ψ

x,y+1

〉
= −

〈
ΨA,ψ
x,y+1ΨB,ψ

x,y+2

〉
= −

〈
ΨA,ψ
x+1,yΨ

B,ψ
x+1,y+1

〉
〈

ΨA,γ
x,y ΨB,γ

x,y+1

〉
= −

〈
ΨA,δ
x,yΨB,δ

x,y+1

〉
. (4.68)

Similar to Eq. (4.46) in the even case, the order parameters defined in Eq. (4.68)

are not unique choices. For example, there are order parameters that correspond to

non-Abelian twist fields in the Z6 sector that have quantum dimension greater than 1.

However, they are not essential in the discussion of the symmetry-preserving gapping

potential and are omitted.

4.3.3 E8 unimodular gapping potential

In the previous section, we found that even and odd copies of the 3D Dirac nodal

superconductor can be gapped out by many-body gapping potentials, which support

non-trivial topological order. In this section, we now focus on the special case when

there are N = 16 copies of the Dirac nodal superconductor exists. In this case,

we can construct a many-body gapping potential by utilizing SO(32) ∼ E8 × E8

decomposition, where E8 is the largest exceptional simple Lie algebra. The E8 × E8

decomposition is atypical from the previous decompositions since the roots of the E8

Lie algebra form an even unimodular lattice. Here, we show that this property of

the E8 algebra allows us to construct many-body gapping potential in the 3D Dirac

nodal superconductor that does not possess topological order.
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Before going into the details on the construction of the gapping term, we briefly

explain the E8 Kac-Moody algebra at level one using bosonized variables. In addition

to 8 Cartan generators ∂φI , I = 1, . . . , 8, the (E8)1 algebra is generated by the vertex

operators Eα = eiα·φ, where α is a root vector of the E8 lattice. The E8 lattice LE8 is

an 8 dimensional lattice generated by 8 simple root vectors. It is an even unimodular

lattice in the sense that the norm square |v|2 of a lattice vector is even, and the dual

lattice L∗E8
, which consists of dual vectors v∗ whose scalar product with any E8 lattice

vector v is integral, is the E8 lattice itself. In particular, there are 240 root vectors

α with norm square |α|2 = 2 so that the vertex operators Eα have unit spin and

represent the E8 Kac-Moody current.

The total 240 roots separate into two distinct sets. The first set consists of 112 =

C8
2×4 roots of SO(16) and the second set consists of 128 = 27 even spinors of SO(16).

The conventional choice of roots embeds them in the 8 dimensional Euclidean space.

The SO(16) roots are taken to be integral vectors with two and only two non-zero

components, each being ±1. The corresponding vertex operators Eα are fermion

bilinears dadb, dad
†
b, d
†
adb and d†ad

†
b, for 1 ≤ a < b ≤ 8. The even spinors are represented

by half-integral vectors ε/2 = (ε1/2, . . . , ε8/2), where εa = ±1, with overall positive

sign ε1 . . . ε8 = 1. They corresponds to spinor vertex operators eiε·φ/2, which are

products of half fermions. Within the 240 roots, one can pick a set of 8 linearly

independent simple roots that generate the entire set.


| . . . |

α1 . . . α8

| . . . |

 =



1 0 0 0 0 0 0 − 1
2

−1 1 0 0 0 0 0 − 1
2

0 −1 1 0 0 0 0 − 1
2

0 0 −1 1 0 0 0 − 1
2

0 0 0 −1 1 0 0 − 1
2

0 0 0 0 1 −1 0 − 1
2

0 0 0 0 0 1 −1 − 1
2

0 0 0 0 0 0 1 − 1
2


. (4.69)
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Their scalar products αI ·αJ = (KE8)IJ recover by the Cartan matrix of E8

KE8 =


2 −1
−1 2 −1
−1 2 −1
−1 2 −1
−1 2 −1 −1
−1 2 −1
−1 2

−1 2

 . (4.70)

Unfortunately, the above conventional choice of roots involves spinors that are

combinations of half fermions, which are non-local. In order to realize the E8 algebra

as integral combination of local fermions, we first extend the 8 chiral Dirac fermions

by an additional counter-propagating pair of non-chiral Dirac fermions. This can

be achieved by using the vortex reconstruction whereby we pull the addition non-

chiral pair from high-energy to low-energy. The reconstruction does not alter the

chirality c = 8 = 9 − 1 of a vortex, which now consists of 9 forward propagating

Dirac fermions and 1 backward propagating one. The E8 lattice is now embedded

in a 10 = 1 + 9 dimensional “Minkowski” space with metric η = diag(−1, 1, . . . , 1).

The E8 roots consists of a subset of integral vectors v with norm square vTηv =

−v2
0 + v2

1 + . . . + v2
9 = 2. We begin with the roots of SU(8), αSU(8) = ea − eb,

where 1 ≤ a, b ≤ 8 and a 6= b. These roots correspond to the fermion bilinear vertex

operators EαSU(8) ∼ dad
†
b and they obey the operator product expansion that defines

the SU(8) Kac-Moody algebra at level 1,

EαSU(8)(w)E−αSU(8)(w′) = 1/(w − w′)2 + . . . ,

EαSU(8)(w)Eα
′
SU(8)(w′) = cαα′E

α′′
SU(8)(w′)/(w − w′)

+ . . . , (4.71)

if α′′SU(8) = α′SU(8) + α′SU(8), or non-singular if otherwise, where w ∼ τ + iz is the

complex space-time parameter and the cocycle factor cαα′ is a scalar phase.

These 56 roots can be extended to SO(16) by including two 28-dimensional irre-

ducible representations of SU(8). The first corresponds to 28 positive root vectors
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α(+28) = 2e0 + n1e1 + . . .+ n8e8, where two of n1, . . . , n8 are 0’s and the rest are 1’s.

The second corresponds to 28 negative roots α(−28) = −2e0−n1e1− . . .−n8e8. Each

forms a super-selection sector that is closed under the SU(8) Kac-Moody algebra

EαSU(8)(w)Eα
′
(±28)(w′) = cαα′E

α′′
(±28)(w′)/(w − w′) + . . . (4.72)

if α′′(±28) = αSU(8) +α′(±28), or non-singular if otherwise. The root vectors are chosen

so that αT(±28)ηα(±28) = 2 so that the vertices Eα(±28) have spin 1. We label αSO(16)

to be the 112 roots for SO(16), and they consists of αSO(16) and α(±28).

Next, the 112 SO(16) roots can be extended to the full E8 by including two 56-

dimensional irreducible representations of SU(8) and the two 8-dimensional vector

representations of SU(8). The first irreducible representation that we include is asso-

ciated with the 56 positive root vectors α(+56) = e0 +m1e1 + . . .+m8e8, where three

of n1, . . . , n8 are 1’s and the rest are 0’s. The conjugate representation is associated

with the 56 negative roots α(−56) = −e0 −m1e1 − . . .−m8e8. The 8 positive SU(8)

vectors are α(+8) = 3e0 +v1e1 + . . .+v8e8, where all but one va = 1 and the remaining

is 2. The 8 negative SU(8) vectors are the conjugate α(−8) = −3e0−v1e1− . . .−v8e8.

We label αspinor to be the 128 = 56 + 56 + 8 + 8 additional vectors α(±56) and α(±8)

that constitute the even spinor representation for the SO(16) algebra.

EαSO(16)(w)Eα
′
spinor(w′) = cαα′E

α′′spinor(w′)/(w − w′)

+ . . . (4.73)

if α′′spinor = αSO(16) + α′spinor, or non-singular if otherwise. The E8 root vectors αE8

now consists of the 112 αSO(16)’s and 128 αspinor’s.
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The 240 = 112 + 128 E8 roots can be generated by the 8 simple roots


| . . . |

α1 . . . α8

| . . . |

 =


0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
0 −1 1 0 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 0 −1 1 0 0 0
0 0 0 0 −1 1 0 1
0 0 0 0 0 −1 1 1
0 0 0 0 0 0 −1 1
0 0 0 0 0 0 0 0

 . (4.74)

Their scalar products αI · ηαJ = (KE8)IJ recover the Cartan matrix of E8 defined in

Eq. (4.70).

The embedding into the Minkowski space R1,9 guarantees a counter-propagating

pair of redundant modes. They are the Dirac fermions fR ∼ eiα
R
f ·φ and fL ∼ eiα

L
f ·φ,

where αRf = e9 and αLf = 3e0 + e1 + . . . + e8. They are fermionic because of the

unit norm squares αRf · ηαRf = 1 and αLf · ηαLf = −1. They decoupled from each

other as well as the E8 roots since αE8 · ηαR/Lf = αRf · ηαLf = 0. Grouping α
R/L
f with

the E8 simple roots in Eq. (4.74), the 10 × 10 matrix A = (α1, . . . ,α8,α
R
f ,α

L
f ) is

unimodular (i.e. | det(A)| = 1), and may be decomposed into block diagonal form as

ATηA =

KE8

σz

 , (4.75)

where σz = diag(1,−1).

Having completing the formal definition of the E8 algebra, we now construct the

gapping potential, which consists of inter-vortex E8 current backscattering and intra-

vortex fermion backscattering fRf
†
L. Each vortex has chirality c = 16 and carries 16

chiral Dirac fermions. We extend by vortex reconstruction to 18 forward moving Dirac

fermions plus 2 backward moving ones. They can be bipartitioned into two groups

of 9 + 1, each of which can be transformed unimodularly into E8 × U(1)R × U(1)L,

as has been explained above. In a similar fashion to our the previous discussions, we
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label the two groups by A and B. The gapping potential is

H = −uinter

2

∑
xy

∑
αE8

E
A,αE8
x,y E

B,αE8
x,y+1

− uintra

2

∑
xy

∑
C=A,B

(fCR f
C
L + h.c.)

= −uinter

∑
xy

∑
αE8

cos
[
αE8 · (φAx,y + φBx,y+1)

]
− uintra

∑
xy

∑
C=A,B

cos
(
αRf · φCxy +αLf · φCxy

)
(4.76)

where the first sum runs over all 240 E8 roots αE8 .

All terms preserve the symmetries that we have defined in Eq. (4.39). The angle

order parameters Θ
αE8

x,y+1/2 = αE8 · (φAx,y +φBx,y+1) that appear in the inter-vortex term

obey the symmetry relations

TAΘ
αE8

x,y+1/2(z)T−1
A = −Θ

αE8

x,y+3/2(z) + παE8 · t

GΘ
αE8

x,y+1/2(z)G−1 = −Θ
αE8

x+1,y+1/2(−z) + παE8 · t

t11Θ
αE8

x,y+1/2(z)t−1
11 = Θ

αE8

x+1,y+3/2(z)

t1̄1Θ
αE8

x,y+1/2(z)t−1
1̄1

= Θ
αE8

x−1,y+3/2(z), (4.77)

where t = (1, 1, . . . , 1)T . The intra-vortex ones ΘC
x,y = (αRf +αLf ) ·φCxy, for C = A,B,

obey

TAΘC
x,y(z)T−1

A = −ΘC
x,y+1(z) +

1− (−1)x+y

2
π(αRf +αLf ) · t

GΘC
x,y(z)G−1 = −ΘC

x+1,y(−z) +
π

2
(αRf +αLf ) · t

t11ΘC
x,y(z)t−1

11 = ΘC
x+1,y+1(z)

t1̄1ΘC
x,y(z)t−1

1̄1
= ΘC

x−1,y+1(z). (4.78)
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For the E8 order parameters, αE8 · t = 0,±4,±8,±12 and, therefore, the inter-vortex

sine-Gordon terms in Eq. (4.39) are symmetric, since cos(−Θ + 2mπ) = cos Θ. The

intra-vortex terms in Eq. (4.39) are also symmetric because (π/2)(αRf +αLf ) · t = 6π.

The ground state expectation values
〈

Θ
αE8

x,y+1/2

〉
transform consistently according to

the symmetries (c.f. Eq.(4.46) for the even N case). The fermionic order parameters〈
ΘC
x,y

〉
transform consistently up to large gauge transformation

〈
ΘC
x,y

〉
≡
〈
ΘC
x,y

〉
+ 2π

originated from the gauge redundancy da ∼ eiφ
a

= ei(φ
a+2π).

The angle variables in Eq. (4.76) satisfy the Haldane nullity condition, and the

sine-Gordon interaction generates a symmetry preserving gap in the energy spectrum.

In Eq. (4.76), we considered the E8 backscattering term, coupling with adjacent wires

in ŷ-direction. In the absence of the single-body hopping but Eq. (4.76), the arrays

of the Dirac strings form a coupled 2D layer in yz plane, possessing a finite bulk

gap. We now consider open boundary condition in y direction as shown in Fig. 4.9.

Along the boundary of the 2D layer, a chiral E8 edge state is left uncoupled and

remains gapless, since there is no counter-propagating adjacent Dirac string to pair

with. Therefore, each 2D layer resembles a quantum Hall state carrying a E8 CFT

as its edge theory in low-energy. As a result, the 2D bulk topological order and the

bulk excitations of the layers can be inferred from the E8 edge state.

The low energy effective theory for the E8 quantum Hall states are described by

Chern-Simons theory with KE8 matrix whose action is given as,

Scs =
1

4π

∑
I,J

∫
dx2(KE8)IJε

µνλaI,µ∂νaJ,λ −
∑
I

aµ,Ijµ,I (4.79)

and KE8 is the Cartan matrix of E8 defined in Eq. (4.70). Here, aI is Ith Abelian

gauge field whose classical equation of the motion yields the Hall effect. KE8 matrix

contains the information of the bulk quasi-particle excitations and the corresponding

edge theory. To be specific, the topological order or the ground state degeneracy of



123

y+1

y−1

y

y−2

N = 9 (R)

N = 1 (L)
Hintra

E   chiral edge8

N = 9 (R)

N = 1 (L)
Hintra

N = 18 (R)

N = 2 (L)

N = 9 (L)

N = 1 (R)
Hintra

N = 9 (L)

N = 1 (R)
Hintra

N = 18 (L)

N = 2 (R)

Hinter

Hinter
N = 9 (R)

N = 1 (L)
Hintra

N = 9 (R)

N = 1 (L)
Hintra

N = 18 (R)

N = 2 (L)

N = 9 (R)

N = 1 (L)
Hintra

N = 9 (R)

N = 1 (L)
Hintra

N = 18 (R)

N = 2 (L)

Hinter

E   backscattering8

Figure 4.9: Schematic figure of E8 decomposition and gapping interaction. Dirac
modes (black lines) along each vortex y are decomposed into two sets of E8 chiral
CFT (red lines) and two counter-propagating pairs of Dirac fermions (blue lines) by
the basis transformation A in Eq. (4.75) (yellow boxes). The E8 backscattering terms
Hinter and the fermion backscattering Hintra are defined in Eq. (4.76). Uncoupled E8

chiral CFTs are left along the boundaries of an open system, while the bulk mimics
the E8 quantum Hall state.
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the corresponding bulk theory is identified as the determinant of K matrix. It can

be seen that the bulk topological order of E8 state is trivial (det(E8) = 1), since it

is unimodular. Consequently, the system only supports local exitations with non-

fractional statistics.

We have constructed the symmetry preserving many-body gapped phase with

no topological order. It is important to note that the presence of such a phase is

intimately related to the properties of even unimodular lattice. The E8 lattice is

the minimal even unimodular lattice, that appears in 8 dimensions. Other even

unimodular lattices, such as the Leech lattice in dimension 24, that appear in higher

dimensions can be similarly utilized to construct the topologically trivial gapping

potential.
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Chapter 5

Model 3: Interacting Weyl

Semimetal with two Weyl nodes

So far, we have been discussing the gapping of the Dirac semimetal while preserving

the AFTR and C2 symmetries. In this subsection, we focus on an opposite aspect

of the symmetric many-body interaction – the enabling of a (semi)metallic phase

that is otherwise forbidden by symmetries in the single-body setting. We noticed

in Subsec. 3.2.1 that the pair of momentum-separated Weyl points in Fig. 3.6 is

anomalous. In fact, it is well-known already that Weyl nodes [39, 40, 41, 42, 19], if

separated in momentum space, must come in multiples of four in a lattice translation

and time reversal symmetric three dimensional non-interacting system.

This no go theorem can be rephrased into a feature.

1. If the low energy excitations of a TR symmetric lattice (semi)metal in three

dimensions consists of one pair of momentum-separated Weyl nodes, then the

system must involve many-body interaction.

We refer to this TR and lattice translation symmetric strongly-correlated system as

an interaction-enabled topological Dirac (semi)metal. We assume the Weyl nodes are

fixed at two TR invariant momenta, and therefore they are stable against symmetry-
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preserving deformations. Otherwise, if the Weyl nodes are not located at high sym-

metry points, they can be moved and pair annihilated. Also, as explained in the

beginning of Sec. 3.2 and contrary to the more common contemporary terminology,

we prefer to call the (semi)metal “Dirac” rather than “Weyl” because of the doubling.

Perhaps more importantly, we propose the following conjecture.

2. Beginning with the interaction-enabled Dirac (semi)metal, any single-body symmetry-

breaking mass must lead to a 3D gapped topological phase that cannot be

adiabatically connected to a band insulator.

We suspect this statement can be proven by a filling argument similar to that of

Hasting-Oshikawa-Lieb-Schultz-Mattis [302, 303, 304], and may already be available

in Ref. [305] by Watanabe, Po and Vishwanath. This conjecture applies to the cou-

pled wire situation where the gapped phase is long-range entangled and supports

fractional excitations. Its topological order is out of the scope of this article, but will

be presented in a future work [16]. In a broader perspective, this type of statements

may provide connections between strongly-interacting and non-interacting phases and

help understanding quantum phase transitions of long-range entangled 3D phases

from that of single-body band insulating ones.

Before discussing the three dimensional case, we make the connection to a few

known interaction-enabled topological phases with or without an energy gap in low

dimensions. First, zero energy Majorana fermions γj = γ†j in a true zero dimensional

non-interacting (spinless) TR symmetric system must bipartite into an equal num-

ber of positive chiral ones T γjT −1 = +γj and negative chiral ones T γlT −1 = −γl.

Fidkowski and Kitaev showed in Ref. [306] that under a combination of two-body

interactions, eight Majoranas with the same chirality can acquire a TR preserving

mass and be removed from low energy. This leaves behind a collection of zero energy

Majoranas that have a non-trivial net chirality of eight. Second, all (1 + 1)D TR

symmetric topological BDI superconductors [174, 175, 307, 28, 29, 22] must break
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inversion because the zero energy Majorana boundary modes must have opposite chi-

ralities at opposite ends. The Fidkowski-Kitaev interaction however allows one to

construct a non-trivial (1 + 1)D topological model that preserves both TR and in-

version but at the same time supports four protected Majorana zero modes at each

end [308]. Third, a single massless Dirac fermion in (2+1)D is anomalous in a (spinful)

TR and charge U(1) preserving non-interacting lattice system. On the other hand,

it can be enabled by many-body interactions. For instance, when one of the two

opposing surfaces of a topological insulator slab is gapped by symmetry-preserving

interactions [130, 131, 132, 133], a single massless Dirac fermion is left behind on

the opposite surface as the only gapless low energy degrees of freedom of the quasi-

(2 + 1)D system. Similar slab construction can be applied to the superconducting

case, and interactions can allow any copies of massless Majorana fermions to manifest

in (2 + 1)D with the presence of (spinful) TR symmetry.

On the contrary, there are anomalous gapless fermionic states that cannot be

enabled even by strong interactions. Chiral fermions that only propagate in a sin-

gle direction cannot be realized in a true (1 + 1)D lattice system. They can only

be supported as edge modes of (2 + 1)D topological phases such as quantum Hall

states [185] or chiral px + ipy superconductors [309, 310]. Otherwise, they would al-

low heat transfer [311, 312, 1] from a low temperature reservoir to a high temperature

one, thereby violating the second law of thermodynamics. Similarly, a single massless

Weyl fermion can only be present as the (3+1)D boundary state of a (4+1)D topolog-

ical bulk [36, 37, 38, 174, 175]. It cannot exist in a true (3+1)D lattice system [33, 34],

or otherwise under a magnetic field there would be unbalanced chiral fermions prop-

agating along the field direction that constitute the ABJ-anomaly [31, 32, 35].

In this section, we focus on the simplest anomalous gapless fermionic states in

(3 + 1)D that can be enabled by interactions. As eluded in Sec. 3.2.1.2, a weak

topological insulator in (4 + 1)D can support the anomalous energy spectrum in
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Figure 5.1: (a) A quasi-(3 + 1)D interaction-enabled Dirac (semi)metal constructed
by a 4D slab of WTI. (b) Coupled wire model of an anomalous Dirac (semi)metal
enabled by interaction with C2 rotation and both AFTR T11, T1̄1 symmetries.
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Fig. 3.6 on its boundary so that a pair of opposite Weyl points sit at two distinct

TRIM on the boundary Brillouin zone. A 4D WTI slab, where the fourth spatial

dimension is open and the other three are periodic, has two (3 + 1)D boundaries

and each carries a pair of Weyl fermions. The coupling between the two pairs of

Weyl fermions are suppressed by the system thickness and bulk energy gap. By

introducing symmetry-preserving gapping interactions on the bottom surface, the

anomalous gapless fermionic state is left behind on the top surface and is enabled in

this quasi-(3 + 1)D setting (see Fig. 5.1(a)).

Inspired by this construction, we propose a true (3+1)D coupled wire model which

has the anomalous energy spectrum in Fig. 3.6 and preserves the AFTR symmetries

in both T11 and T1̄1 directions as well as the C2 (screw) rotation symmetry. The model

is summarized in Fig. 5.1(b). It consists of a checkerboard array of electronic wires,

where each wire has two chiral Dirac channels propagating into-paper and another two

propagating out-of-paper. Contrary to the model considered in Sec. 3.2, here the net

chirality on each wire cancels and therefore the wires are true (1+1)D systems without

being supported by a higher dimensional bulk. Using the splitting scheme described

in Sec. 3.3.1, along each wire, one can fractionalize a group of three Dirac channels

• • × (× × •) into a pair of co-propagating chiral Pfaffian channels �� (resp. ++).

The two Pfaffian channels then can be backscattered in opposite directions using

the many-body interaction U (dashed purple lines) described in Sec. 3.3.2. This

introduces an excitation energy gap that removes three Dirac channels per wire from

low energy. Lastly, single-body backscatterings t1, t2 (solid directed blue lines) among

the remaining Dirac channels •× described in (3.12) and Fig. 3.5 give rise to the low-

energy Weyl spectrum in Fig. 3.6. Since the many-body interaction U and the single-

body backscatterings t1, t2 preserve the C2 rotation and both AFTR symmetries T11

and T1̄1, the model describes an interaction-enabled anomalous (semi)metal that is

otherwise forbidden in a non-interacting non-holographic setting.
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The non-local anti-ferromagnetic nature of the time reversal symmetry is built-in

in the present coupled wire model. We speculate in passing that a local conventional

TR symmetric Dirac (semi)metallic phase consisting of a single pair of momentum-

space-separated Weyl nodes may also be enabled by interaction. On one hand, the

AFTR symmetry could be restored to a local TR symmetry by “melting” the checker-

board wire array. On the other hand, there could also be an alternative wire configu-

ration that facilitates a coupled wire model with a local conventional TR symmetry.

Lastly, we gap the interaction-enabled Dirac semimetallic model (Fig. 5.1) by

a symmetry-breaking single-body mass. This can be achieved by introducing elec-

tronic backscattering terms that dimerize the remaining Dirac channels •×, and were

described by (3.26) in Sec. 3.2.1.1. The resulting state is an insulating (3 + 1)D topo-

logical phase with long-range entanglement. For instance, each diagonal layer gapped

by the many-body interaction U has the identical topological order of the T -Pfaffian

surface state of a topological insulator.

5.1 Fractional Surface States

In Sec. 3.2.2, we discussed the surface states of the single-body coupled Dirac wire

model (3.12) (see also Fig. 3.5). In particular, we showed in Fig. 3.13 that an AFTR

symmetry preserving surface hosts open chiral Dirac channels, which connect and leak

into the 3D (semi)metallic bulk. Earlier in this section, we discussed the effects of

many-body interaction, which leads to two possible phases: (a) a gapped topological

phase (see Sec. 3.3.2) that preserves one of the two AFTR symmetries, say T11, and

(b) a gapless interaction-enabled Dirac semimetal (see Sec. 3.3) that preserves the C2

rotation and both AFTR symmetries T11 and T1̄1. Here, we describe the boundary

states of the two interacting phases on a surface closed under the symmetries.

First, we consider the coupled wire model with the many-body interaction (3.80)
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Figure 5.2: Fractional surface states of (a) a 3D Dirac insulator gapped by many-
body interaction that preserves T11, and (b) a 3D gapless interaction-enabled Dirac
semimetal that preserves T11, T1̄1 and C2.

(see also Fig. 3.16) and a boundary surface along the yz-plane perpendicular to the

wires. The surface network of fractional channels is shown in Fig. 5.2(a). We assume

the bulk chiral Dirac wires (×•) are supported as vortices of Dirac mass in the bulk

(recall (3.2)), where the texture of the mass parameters is represented by the under-

lying vector field. The model is juxtaposed along the yz- boundary plane against the

trivial Dirac insulating state Hvacuum = ~vk · ~sµz +m0µx, which models the vacuum.

The line segments on the surface plane where the Dirac mass m0µx changes sign host

chiral Dirac channels (c.f. Subsec. 3.2.2.2).

Unlike the single-body (semi)metallic case in Fig. 3.13 where the surface Dirac

channels connects with the bulk ones, now the many-body interacting bulk is insu-

lating and does not carry low-energy gapless excitations. Thus, the surface Dirac

channels here cannot leak into the bulk and must dissipate to other low-energy de-

grees of freedom on the surface. The many-body interwire backscattering interaction

in (3.80) (and Fig. 3.16) leaves behind chiral Pfaffian channels on the surface. These
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fractional channels connect back to the surface Dirac channels in pairs. The surface

network of chiral channels preserves the AFTR T11 symmetry. However, the low-

energy surface state is not protected. Electronic states can be localized by dimerizing

the Pfaffian channels in the z (or 1̄1) direction.

Second, we consider the interaction-enabled Dirac semimetallic model summa-

rized in Fig. 5.1(b) in Sec. 3.3 and again let it terminate along the symmetry pre-

serving yz-plane perpendicular to the wires. The surface gapless channels are shown

in Fig. 5.2(b). Here, the semimetallic bulk preserves C2 as well as the two AFTR

symmetries T11 and T1̄1. The bulk array of wires are true (1 + 1)D systems and are

not supported as edge modes or vortices of a higher dimensional bulk. The pair of

into-paper Dirac modes are bent into the pair of out-of-paper ones along each wire at

the terminal. Similar to the previous case, the many-body bulk interwire backscat-

tering interaction leaves behind surface chiral Pfaffian channels. Through the mode

bending at the wire terminal, these Pfaffian channels join in pairs and connect to the

chiral Dirac channels in the bulk that constitute the Dirac semimetal. In this case,

the surface state is protected by C2, T11 and T1̄1, and is forced to carry fractional

gapless excitations as a consequence and signature of the anomalous symmetries. For

instance, the charge e/4 Ising-like quasiparticle and the charge e/2 semion can in

principle be detected by shot noise tunneling experiments. These gapless fractional

excitations however are localized on the surface because the Dirac (semi)metallic bulk

only supports gapless electronic quasiparticles.
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Chapter 6

Conclusion

Dirac and Weyl (semi)metals have generated immense theoretical and experimental

interest. On the experimental front, this is fueled by an abundant variety of material

classes and their detectable ARPES and transport signatures. On the theoretical

front, Dirac/Weyl (semi)metal is the parent state that, under appropriate pertur-

bations, can give birth to a wide range of topological phases, such as topological

(crystalline) insulators and superconductors. In this work, we explored the conse-

quences of a specific type of strong many-body interaction based on a coupled-wire

description. In particular, we showed that (i) a 3D Dirac fermion can acquire a fi-

nite excitation energy gap in the many-body setting while preserving the symmetries

that forbid a single-body Dirac mass, and (ii) interaction can enable an anomalous

antiferromagnetic time-reversal symmetric topological (semi)metal whose low-energy

gapless degrees of freedom are entirely described by a pair of non-interacting elec-

tronic Weyl nodes separated in momentum space. We also extended this model to

the superconducting analogs of the Dirac Weyl semimetals. In 5, we have explicitly

constructed various forms of many body interactions that open gaps in the energy

spectrum while preserving the underlying symmetries present in coupled wire con-

structions of 3D Dirac nodal superconductors. In Sec. 4.3, we found that the gapped
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bulk of the two-dimensional y − z plane supports non-local fractional quasi-particles

that develop the non-trivial topological orders. When the system is extended into the

full three-dimensions, the fractional excitations can be still maintained to generate

the topological degeneracy. In this work, we indicate that the many-body interac-

tions generate non-trivial topological orders in three dimensions. However, it still

remains unresolved that how these non-local excitations behave in three dimensions.

The detailed physical behavior of these fractional particles can be studied in future

works.

Furthermore, we constructed a unimodular E8 gapping potential when there are

N = 16 Dirac channels along a vortex line. To build the E8 gapping potential,

we utilized SO(32) ∼ E8 × E8 decomposition. The resulting gapped phase did not

support the topological order due to the unimodular property of the E8 lattice. In

general, even unimodular lattices exist in every dimensions multiples of 8.

A brief conceptual summary was presented in Sec. 2. We include a short discussion

on what are the broad implications of this work and then discuss possible future

directions:

Theoretical impact: We believe this work is a first step towards a duality

between quantum critical transitions of short-range entangled symmetry-protected

topological phases and long-range entangled symmetry-enriched topological phases.

The 3D topological order in these phases is completely different from 2D topological

order as it can have both point and line-like excitations and a much richer structure

[16]. There have been field-theoretical descriptions, along the lines of BF and Chern-

Simons theories, of 3D topological phases that support these richer structures, such

as loop braiding. However, there have been only very few exact solvable examples

and none of them patch the field-theoretical descriptions and microscopic electronic

systems. The construction presented in this work opens a new direction towards

making such a connection. The models are exactly solvable, and they originate from
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a microscopic Dirac electronic system with local 2-body interactions. They also have

potential impact on numerical modelling. For example, the interacting coupled wire

model can be approached by a lattice electronic model, which forgoes exact solvability

but potentially leads to new critical transitions between topological phases in 3D.

High-energy impact: For a single pair of Weyl nodes with opposite chirality,

time-reversal symmetry (TRS) must be broken. Hence, for time-reversal symmetric

systems, at least 4 Weyl nodes are required. In this dissertation, we have shown that,

as enabled by many-body interactions, an electronic system can support a single

pair of Weyl nodes in low-energy without violating TRS (c.f. Subsec. 3.3). Such

a material, if it exists, can be verified experimentally by ARPES , and as a non-

trivial consequence, our results assert that such a material must encode long-range

entanglement. The existence of a single pair of massless Weyl fermions without TRS

breaking in 3+1D can potentially provide new theories beyond the standard model.

Experimental realization: There have been numerous field-theoretical discus-

sions on possible properties of topologically ordered phases in 3D [313, 314, 4, 315,

316, 317, 318, 319]. However, unlike the 2D case there are no materials that exhibit

topological order (quasiparticle excitations) in 3D. In this work, we show that an

interacting Weyl or Dirac semimetal is a good place to start for the following reasons.

A symmetry preserving gap must result in topological order and fractionalization

(c.f. Subsec. 3.3). While it is entirely likely that interactions leads to a spontaneous

symmetry breaking phase, we show that there is no obstruction to realizing an in-

teracting phase that preserves symmetries. Such a gapping must support fractional-

ization, such as the e/4 charged Ising-like and e/2 charged semion-like quasiparticles

in the bulk, as predicted by our work. These charged particles can in principle be

measured using a shot noise experiment across a point contact. Moreover, the gap-

ping procedure involves Pfaffian channels so there should be excitations that mirror

those in a Pfaffian state. There would also be line-like excitations in 3D for which the
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experimental signature is not yet clear. Therefore, we believe an interaction-enabled,

symmetry-preserving gapped Weyl/Dirac semimetal is a good candidate for realizing

topologically ordered phases in 3D. As for the experimental verification of the anoma-

lous interaction-enabled Dirac semimetal, the electronic energy spectrum of a single

pair of momentum-separated Weyl nodes in the presence of time-reversal symmetry

can be measured using ARPES, assuming spontaneous symmetry-breaking is absent.

Although the proposed experimental signatures, if measured, will strongly point to-

wards the existence of such states, we cannot claim that such signatures provide a

smoking gun evidence yet. More work needs to be done for the complete characteri-

zation of the point-like and line-like topological order of these states and will be part

of a future work.

Apart from the 3D topological order having a much richer structure than 2D topo-

logical order, the 3D case presented in this work is qualitatively different from the

well-studied 2D case. In the 2D case, the massless Dirac surface state is anomalous

and lives on the boundary of a higher dimensional bulk. This is qualitatively distinct

from the 3D Dirac/Weyl (semi)metal, which does not require holographic projection

from a 4D bulk. In fact, a single 3D Weyl fermion, which is supported on the bound-

ary of a 4D topological insulator, cannot be gapped while preserving charge U(1)

conservation even with many-body interaction due to chiral anomaly. This serves

as a counter-example which distinguishes the gappability of 2D versus 3D boundary

state. Thus, it is not a priori an expected result that a Dirac/Weyl (semi)metal

can be gapped without breaking symmetries. Moreover, the topological origin of 3D

Dirac/Weyl (semi)metals relies on the addition of non-local spatial symmetry, in the

current 3D case, the C2 screw rotation. This is distinct from the 2D Dirac surface

case, where all symmetries are local.
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Chapter 7

Future Directions

Dirac/Weyl (semi)metals are a specific type of nodal electronic matter. For example,

nodal superconductors were studied in states with dx2-y2 pairing [320], He3 in its

superfluid A-phase [321, 322], and non-centrosymmetric states [323, 324]. Weyl and

Dirac fermions were generalized in TR and mirror symmetric systems to carry Z2

topological charge [325]. General classification and characterization of gapless nodal

semimetals and superconductors were proposed [326, 327, 328, 329, 330, 322, 22, 331].

It would be interesting to investigate the effect of strong many-body interactions in

general nodal systems.

In Sec. 3.2, we described a coarse-graining procedure of the coupled wire model

that resembles a real-space renormalization and allows one to integrate out high en-

ergy degrees of freedom. While this procedure was not required in the discussions that

follow because the many-body interacting model we considered was exactly solvable,

it may be useful in the analysis of generic interactions and disorder. The coarse-

graining procedure relied on the formation of vortices, which were introduced ex-

trinsically. Like superconducting vortices, it would be interesting as a theory and

essential in application to study the mechanism where the vortices of Dirac mass can

be generated dynamically. To this end, it may be helpful to explore the interplay
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between possible (anti)ferromagnetic orders and the spin-momentum locked Dirac

fermion through antisymmetric exchange interactions like the Dzyaloshinskii-Moriya

interaction [332, 333].

The symmetry-preserving many-body gapping interactions considered in Sec. 3.3

have a ground state that exhibits long-range entanglement. This entails degenerate

ground states when the system is compactified on a closed three dimensional manifold,

and fractional quasi-particle and quasi-string excitations or defects. These topolog-

ical order properties were not elaborated in our current work but will be crucial in

understanding the topological phase [16] as well as the future designs of detection and

observation. It would also be interesting to explore possible relationships between the

coupled wire construction and alternative exotic states in three dimensions, such as

the Haah’s code [334, 335].

The many-body inter-wire backscatterings proposed in Sec. 3.3.2 were based on

a fractionalization scheme described in 3.3.1 that decomposes a chiral Dirac channel

with (c, ν) = (1, 1) into a decoupled pair of Pfaffian ones each with (c, ν) = (1/2, 1/2).

In theory, there are more exotic alternative partitions. For instance, if a Dirac chan-

nel can be split into three equal parts instead of two, an alternative coupled wire

model that put Dirac channels on a honeycomb vortex lattice could be constructed

by backscattering these fractionalized channels between adjacent pairs of wires. Such

higher order decompositions may already be available as conformal embeddings in the

CFT context. For example, the affine SU(2) Kac-Moody theory at level k = 16 has

the central charge c = 8/3, and its variation may serve as the basis of a “ternionic”

model.

In this work, we considered two models but the procedure and theoretical frame-

work can be extended to a number of other interacting three-dimensional models

with different sets of symmetries. We expect them to give a whole range of new

three-dimensional topological orders. It would be interesting to have a general classi-
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fication procedure of these SET states, but it remains unclear for now how to combine

crystal symmetries and conformal field theories in this description.

In the current models, the many-body interaction is between wires in a planar

direction which effectively leads to stacked gapped layers of topological order cou-

pled together. It would be interesting to see if the many-body interactions can be

introduced in both planar and inter-layer directions to get a topologically ordered

phase.

We discussed the fractional excitations as part of the topological order that can

arise in these gapped states. However, work on the complete characterization and

braiding statistics of these excitations is in progress and will appear soon. One of the

goals is to build a non-Abelian three-dimensional topological order beyond what is

presented in [289]. We believe this can be built out of the N=odd case in the gapped

interacting Dirac nodal superconductor.

Recently, there has been work on topological phase transitions between different

topologically ordered states in the Kitaev model [336]. One possible direction is to

study if there can be phase transitions between the various topologically ordered

phases of the Dirac nodal superconductor.

The current work relies on a coupled-wire description of obtaining three-dimensional

topological order. A future direction would be to come up with a fermion-fermion

interaction description to realize 3D topological order, which may be more useful for

realizing materials. We gave some antiferromagnetic stabilization arguments for the

topologically ordered phases in the gapped states. In the future, a more rigorous

stability analysis can be done using traditional RG flow methods.

Another avenue to explore is extending the coupled wire description to time-

dependent Floquet systems. Although non-interacting topological phases have been

well-studied, interacting Floquet systems are still an area of intense interest and

coupled-wire models might be useful in them.
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Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla. Chiral magnetic effect in

ZrTe5. Nature Physics, 12:550–554, June 2016.



151

[89] S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe.

Dirac semimetal in three dimensions. Phys. Rev. Lett., 108:140405, Apr 2012.

[90] Julia A. Steinberg, Steve M. Young, Saad Zaheer, C. L. Kane, E. J. Mele, and

Andrew M. Rappe. Bulk dirac points in distorted spinels. Phys. Rev. Lett.,

112:036403, Jan 2014.

[91] Zhijun Wang, Hongming Weng, Quansheng Wu, Xi Dai, and Zhong Fang.

Three-dimensional dirac semimetal and quantum transport in cd3as2. Phys.

Rev. B, 88:125427, Sep 2013.

[92] Zhijun Wang, Yan Sun, Xing-Qiu Chen, Cesare Franchini, Gang Xu, Hong-

ming Weng, Xi Dai, and Zhong Fang. Dirac semimetal and topological phase

transitions in A3bi (a = Na, k, rb). Phys. Rev. B, 85:195320, May 2012.

[93] Anja König and N. David Mermin. Electronic level degeneracy in nonsymmor-

phic periodic or aperiodic crystals. Phys. Rev. B, 56:13607–13610, Dec 1997.

[94] S. A. Parameswaran, A. M. Turner, D. P. Arovas, and A. Vishwanath. Topolog-

ical order and absence of band insulators at integer filling in non-symmorphic

crystals. Nature Physics, 9:299–303, May 2013.

[95] Haruki Watanabe, Hoi Chun Po, Ashvin Vishwanath, and Michael Zaletel. Fill-

ing constraints for spin-orbit coupled insulators in symmorphic and nonsymmor-

phic crystals. Proceedings of the National Academy of Sciences, 112(47):14551–

14556, 2015.

[96] Yige Chen, Heung-Sik Kim, and Hae-Young Kee. Topological crystalline

semimetals in nonsymmorphic lattices. Phys. Rev. B, 93:155140, Apr 2016.



152

[97] Haruki Watanabe, Hoi Chun Po, Michael P. Zaletel, and Ashvin Vishwanath.

Filling-enforced gaplessness in band structures of the 230 space groups. Phys.

Rev. Lett., 117:096404, Aug 2016.

[98] B. Bradlyn, L. Elcoro, J. Cano, M. G. Vergniory, Z. Wang, C. Felser, M. I.

Aroyo, and B. A. Bernevig. Topological quantum chemistry. Nature, 547:298–

305, July 2017.

[99] R. Chen, H. C. Po, J. B. Neaton, and A. Vishwanath. Topological materials

discovery using electron filling constraints. Nature Physics, 14:55, Oct 2017.

Article.

[100] Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prab-

hakaran, S-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai,

Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen. A stable three-dimensional

topological dirac semimetal cd3as2. Nat. Mater., 13:677, 07 2014.

[101] Madhab Neupane, Su-Yang Xu, Raman Sankar, Nasser Alidoust, Guang Bian,

Chang Liu, Ilya Belopolski, Tay-Rong Chang, Horng-Tay Jeng, Hsin Lin,

Arun Bansil, Fangcheng Chou, and M. Zahid Hasan. Observation of a three-

dimensional topological dirac semimetal phase in high-mobility cd3as2. Nat.

Commun., 5:3786, 05 2014.

[102] Sergey Borisenko, Quinn Gibson, Danil Evtushinsky, Volodymyr Zabolotnyy,
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Appendix A

Chiral modes along topological

defects

In Sec. 3.2, we begin with the Dirac Hamiltonian (3.2) where the mass term winds

around a vortex and as a consequence, it hosts a chiral Dirac channel along the vortex

(also see Fig. 3.3). Here we will demonstrate an example of a simple vortex, and show

that there is a chiral Dirac zero mode. In general, the correspondence between the

number of protected chiral Dirac channels and the vortex winding is a special case

of the Atiyah-Singer Index theorem [169] and falls in the physical classification of

topological defects [167].

First, say we start with the Hamiltonian from (3.2). Then for simplicity we

consider the particular Dirac mass m(r) = mx(r) + imy(r) = |m|eiθ that constitute

a vortex along the z-axis, where θ is the polar angle on the xy-plane. By replacing

kx,y ↔ −i∂x,y, (3.2) becomes

H(r) =~v(−i∂xsx − i∂ysy + kzsz)µz

+ |m| cos θµx + |m| sin θµy (A.1)

where kz is still a good quantum number because translation in z is still preserved.
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The Hamiltonian can be transformed under a new basis into

H ′ = UHU−1 =
(
−~vkz D
D† ~vkz

)
, U =

(
0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

)
(A.2)

where the Dirac operator occupying the off-diagonal blocks is

D† =
(
−2i~v∂w |m|e−iθ
|m|eiθ 2i~v∂w̄

)
= e−iθσz

(
−i~v(∂r−i∂θ/r) |m|

|m| i~v(∂r+i∂θ/r)

)
(A.3)

where w = x+ iy = reiθ and σz = diag(1,−1).

Now we separate the Hamiltonian

H ′(kz) = ~vkzΓ5 +
(

0 D
D† 0

)
. (A.4)

where Γ5 = diag(−12, 12). We note that the zero momentum sector H ′(kz = 0) has

a chiral symmetry since it anticommutes with with Γ5, and it reduces to the Jackiw-

Rossi vortex problem in two-dimensions [168]. The Dirac operator D† has only one

normalizable zero mode u0(r) ∝ e−|m|r/~v(eiπ/4, e−iπ/4)T , while its conjugate D has

none. H ′(kz = 0) therefore has a zero eigenvector of ψ0(r) = (u0(r), 0)T , which is also

an eigenvector of Γ5. In the full Hamiltonian, the zero mode ψ0(r) has energy −~vkz
and corresponds a single mid-gap chiral Dirac channel.
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Appendix B

Symmetry transformations of

Chern invariants

In Sec. 3.2.1, we discussed the Chern numbers on two-dimensional momentum planes

of the anomalous Dirac (semi)metal. It was claimed that the Chern numbers (3.21)

on the two planes at kx = ±π/2 (see Fig. 3.6) are of opposite signs because of the

AFTR and twofold C2 (screw) rotation symmetries. In this appendix we will derive

the symmetry flipping operations on the Chern invariants.

We begin with a Bloch Hamiltonian H(k) that is symmetric under the operation

G(k),

H(k) = G(gk)H(gk)G(gk)−1 (B.1)

if G is unitary, or

H(k) = G(gk)H(gk)∗G(gk)−1 (B.2)

if it is antiunitary. Let |um(k)〉 be the occupied states of H(k). We define |u′m(k)〉 =

|Gum(k)〉 = G(gk)|um(gk)〉 (or |u′m(k)〉 = |Gum(k)〉 = G(gk)|um(gk)∗〉), which is
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also an occupied state of H(k), for unitary (resp. antiunitary) symmetry.

The Chern number (3.21) can equivalently be defined as

Ch1(kx) =
i

2π

∫
Nkx

Tr (Fk) (B.3)

where Tr (Fk) = dTr (Ak), Nkx is the oriented kykz-plane with fixed kx, and Ak
is the Berry connection of the occupied states Amnk = 〈um(k)|dun(k)〉. The Berry

connection transforms according to

A′mnk ≡ 〈u′m(k)|du′n(k)〉 (B.4)

= 〈um(gk)|G(gk)†d [G(gk)|un(gk)〉]

= Amngk + 〈um(gk)|
[
G(gk)†dG(gk)

]
|un(gk)〉

for unitary G, or

A′mnk =
(
Amngk

)∗
+ 〈um(gk)∗|

[
G(gk)†dG(gk)

]
|un(gk)∗〉

= −Anmgk + 〈um(gk)∗|
[
G(gk)†dG(gk)

]
|un(gk)∗〉

if G is antiunitary, because the connection is skew-hermitian A = −A†. Therefore

F ′k = Fgk + dTr
{
Pgk ∧

(
G(gk)†dG(gk)

]}
(B.5)

for an unitary symmetry, or

F ′k = −Fgk + dTr
{
P ∗gk ∧

(
G(gk)†dG(gk)

]}
(B.6)

for an antiunitary one. Here P (k) =
∑

n |un(k)〉〈un(k)| is the projection operator on

to the occupied energy states at momentum k. Since the trace of Berry curvature
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Tr(F) does not depend on the gauge choice of occupied states, Tr(Fk) = Tr(F ′k).

We notice the final terms in both (B.5) and (B.6) integrate to zero over the closed

periodic momentum plane Nkx . This is because they are total derivatives, and unlike

Ak, Pk and G(k) are defined non-singularly on the entire Brillouin zone (see (3.15)

and (3.19)).

Now we derive the relation between the Chern number (B.3) between kx and −kx
using the antiunitary AFTR and the unitary C2 symmetries. The AFTR symmetries

flip all momentum axes T11, T1̄1 : (kx, ky, kz) 7→ (−kx,−ky,−kz), while the C2 symme-

try flips only two C2 : (kx, ky, kz) 7→ (−kx,−ky, kz). Thus, T11, T1̄1 : Nkx → N−kx maps

between opposite planes while preserving their orientations, but C2 : Nkx → −N−kx
is orientation reversing. Lastly, we substitute (B.5) and (B.6) into (B.3), and apply a

change of integration variable k↔ gk. The AFTR and C2 requires the Chern number

to flip under kx ↔ −kx

Ch1(kx) = −Ch1(−kx). (B.7)
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