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1 Introduction

Autonomous driving systems have machine learning components, such as
deep neural networks, for which formal properties are difficult to charac-
terize. It is difficult, and maybe even impossible, to characterize all of the
behaviors of these components under all circumstances.

Due to the rarity of failure events, real-world test driving alone cannot
provide high confidence in the safety of automated driving systems with
respect to injuries and fatalities [1, 2] This leads to a challenging issue today
for automated vehicle manufacturers and suppliers who are determined to
incorporate machine learning for automated driving. While the principle of
safety by design (verification) is useful, it remains insufficient for automated
driving systems, because of the existence of unknown scenarios that cannot
be directly designed for, or verified. The aim of this research thrust is
to propose a new innovative certification scheme allowing to demonstrate
the level of safety and reliability which allows for safe market introduction
of automated/autonomous vehicles. Our goal is to answer the following
questions:
Q1: How can we fairly compare two different AV software stacks on a given
safety metric?
Q2: How can we leverage simulation to find edge cases and failures for a
given AV system?

The kind of closed-loop verification, likely to be required for AV com-
ponent testing, is beyond the reach of traditional test methodologies and
discrete verification. There will remain some small risk of crashes. The con-
cept of residual risk has already been accepted for a long time now (see the
rollout of airbags or new medicines). Validation puts the verified system to
the test in scenarios or situations that the system would likely encounter in
everyday driving after its release. These scenarios can either be controlled
directly in a physical (closed-course proving ground) or virtual (simulation
of pre-defined scenarios) environment, or they can arise spontaneously dur-
ing operation in the real world (open-road testing or simulation of randomly
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generated scenarios).

1.1 Current safety standards for AVs

The meaning of safety in regard to AVs is surprisingly unclear—and no
standard definition exists. The regulators rely on automotive companies
to present a view of safety, while the companies themselves, each having a
different interpretation of what constitutes as safe driving behavior, in turn
seek input from the regulators. The majority of safety assessment today is
self-reported by the testing companies, in good faith [3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16]. These companies develop different interpretations
of what constitutes safe driving behavior. Autonomous miles driven and
miles per disengagements/intervention are two metrics closely watched by
industry observers to provide a high-level view of AV safety. Interventions
happen when either a safety operator detects bad behavior and takes control
of an automated vehicle, or the vehicle itself detects something wrong and
calls for a human to take over. Low rates of intervention do not necessarily
indicate higher safety, they indicate only high agreement between drivers
and automated systems. Humans can sometime fail to detect hazards and if
the automated vehicle fails too, they will agree without being safe. There-
fore, disengagement is only an appropriate safety metric if the goal is to
make AVs as safe (but not safer) than human drivers. It is no secret that
safety assessments for automated vehicles need to evolve beyond the exist-
ing voluntary self-reporting. The hurdle is that no comprehensive common
measuring stick to compare how far along each AV developer is in terms of
safety exists today.

2 Problem Statement

The first step in designing a unified safety certification scheme is to develop
a unified representation of a traffic scenario. A standard dictionary to define
a traffic scenario will provide a high-level representation of the multi-agent
interaction in a given video. This description would serve as a label for a
video that captures information about the scenario. Compared to a low level
vector embedding, a high level scenario description for a video preserves
human readable information about a traffic scenario. These descriptions
will be used as labels for video clips to train a network that can generate a
scenario descriptor for an unseen video. The ability to automatically label
a traffic scenario using a standardized language can help identify whether
or not a vehicle is complying by road safety standards. For example, if a
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pedestrian is crossing the street, it will be important for the AV to capture
this information in a standardized way and take the appropriate course of
action to ensure the safety of the pedestrian. This action will require quick
labeling of the traffic scenario provided by the scenario descriptor. Another
important end goal of this research will be the task of similar video retrieval
using a reference video.

AV manufacturers have big datasets of videos with traffic scenarios mak-
ing it difficult to find similar scenarios in two different datasets. In order to
provide a fair, and equitable comparison of two AV designs, it will be neces-
sary to use a reference traffic scenario to query datasets for similar scenarios.
Similar traffic situations can then be compared on the basis of a standardized
certification scheme to identify where one AV design outperforms another.
In order to accomplish these goals, this paper will focus on developing a
scenario description language that extracts a high level description from a
captioned dataset with traffic scenarios.

3 Related Work

Prior research has focused on generating a video embedding that is composed
by extracting features of videos from successive frames with the ultimate goal
of being able to compare two videos based on temporal information. Each
frame is represented as a matrix embedding containing spatial information
about the scene. These frames are stacked on top of each other to form a
video matrix that is transformed into a vector. As a result, the video vector
represents information about the video restricted to a frame level analysis.
A convolutional neural network is trained using video clips to generate these
video vectors. The video vectors can then be used for tasks such as video
classification. The code that performs this tasks is in the following github
repository. https://github.com/fengyoung/video_embedding. One of
the biggest limitations of this approach is its inability to encode temporal
information about the video. This limits the network’s ability to differentiate
between similar traffic scenarios. For example, videos that contained similar
temporal content but were different spatially were still recognized by the
network as different.

This method of generating video embeddings was further investigated by
generating video vectors for a small subset of the moments in time dataset.
[17]. The goal of the experiment was to investigate whether the video em-
beddings can be used to query an unseen database of videos to find a similar
video based on a reference video. The moments in time dataset is very di-
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verse and for some videos that are classified in a certain category, it would
be difficult, even for a human, to recognize that it belonged to that category.
Since the vector embedding only encodes pixel wise information, two videos
that are similar temporally but different spatially would still be classified as
different. The goal of the experiment was to test and verify this hypothesis.
There were four categories: Driving, Bowling, Handwriting, and Walking.
There were 24 videos in each category for the train set, and 10 videos from
each category in the test set. The videos were each 3 seconds long, and
for each video, a vector embedding was generated and a norm value was
extracted. As a result, each vector was represented as a single number. The
norms from each category of videos in the train set were averaged to get
one number representative of the entire category. For each video in the test
set, a vector was generated along with a norm value. This number was then
used to predict which category the video belonged; the video was placed in
the category that was closest to its norm value. As predicted, this approach
failed in instances where the videos were different spatially. It also failed to
predict two temporally similar videos in the same category. The results are
shown in Figure INSERT FIGURE where the train set column represents
the vector norm values that were used to represent each category. The cate-
gories from the test set were initially unlabeled and were assigned to one of
the 4 categories based soley on their video embedding vector norm. A video
was placed in a category if it was within +/- 0.01 of the category norm.
The test set column shows how many videos were correctly identified. Fur-
thermore, the norms generated for each category were a very small distance
apart from each other making it difficult to differentiate between categories.
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Figure 1: Results from the moment in time experiment. The train set col-
umn shows the vector embedding norms for each category. These numbers
were used as identifiers for each category. For each of the 10 videos in the
test set, a vector norm was extracted and used to place a video in a cate-
gory closest to its norm. However, this experiment showed that temporally
different videos could not be classified properly

As shown in the experiment, encoding only spatial information in an em-
bedding does not serve as a powerful representation of the contents of the
video. As a result, a higher level embedding would be required to capture
both spatial and temporal aspects of a scenario. These descriptions would
need to account for multi-agent interaction in the video and extract infor-
mation from a scenario that would be useful in differentiating two traffic
scenarios. For example, Open Autonomous Safety outlines scenarios that
an AV could encounter and defines a detailed scenario description language
to capture the behavioral requirements that must be followed by an AV in
order to maintain the highest standard of safety at all times [18]. This
scenario description language outlines road segments, number of lanes, stop
signs, ego actions, other actors, and start and end positions along with scene
elements such as intersections, pedestrians, and speed limits. The definition
of an SDL enables the development of a comprehensive list of different sce-
narios to define the various situations an AV might encounter. This language
can be used to quickly parametrize a traffic scenario an AV might encounter
and evaluate whether the AV is following safety standards. Similarly, M-
SDL is an open source, human readable high level language that captures
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information about a scenario [19]. This allows for easy reuse and sharing of
scenarios between companies to compare two AVs on similar, standardized
data. However, both Open Autonomous Safety and M-SDL require manual
labeling which can be a time consuming, error prone process.

4 Methodology

The primary motivation of this research project is to develop a scenario
description language that can be parsed using textual caption data. Using
the Berkeley Deep Drive-X Dataset which contains textual descriptions and
explanations for dashboard camera videos, a standardized scenario descrip-
tor was parsed and extracted from the accompanying textual description.
However, the first step in extracting the scenario descriptor was developing
a set of descriptors that could be extracted from the given dataset. After
performing data analysis, it was found that the most reasonable information
to encode were the actors, their associated actions, and scene elements. Fig-
ure 2 provides a detailed overview of the actors, actions and scenes present
in the BDDX data.

Figure 2: Characterization of scenario description language with the specific
actors, actions and scenes that were extracted from the BDDX data.

Given this dictionary of descriptors, the following step used the cap-
tions to parse an SDL string for each video. This string encoded high-level
information about the actors and their associated actions as well as scene
elements. To provide a more robust representation that could be used for
further evaluation and comparison, the string structure was converted to an
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actor-action matrix and a scene matrix. The actor-action matrix is a [2 x
n] matrix where n represents the number of actor-action pairs in each SDL
object. A single SDL object has at least one or more actor-action pairs given
that each video has an ego actor. The scene elements are encoded in a list
where each number is mapped to a scene object. These matrices are illus-
trated in Figure 3. Before training a network with SDLs as labels for videos
to automatically tag unseen traffic scenarios with an SDL, it is imperative to
show similarity in the SDL space. To illustrate similarity in the SDL space,
a similarity metric was constructed to compare two SDLs. The similarity
metric was developed on the assumption that the scenario follows a hierarchy
with actors being the most important measure of similarity, then actions,
followed by the scene. More specifically, given a reference SDL, similar SDLs
are found by first comparing actors to ensure all actors are present in a given
SDL, then actions, and then the scene elements. Sent2Vec was used as the
baseline approach for comparing how well similarity can be characterized in
the SDL space.

Figure 3: SDL matrix embedding. The first matrix is the actor-action matrix
where each column represents an actor-action pair. The second vector is a
list of scene elements. Each number is mapped to a specfic SDL element as
detailed in Figure 2.

7



5 Preliminary Results

To evaluate how well similarity can be classified in the SDL space, a similar-
ity metric was used to extract similar SDLs given a reference caption from
the BDDX data. The same reference caption was put through a Sent2Vec
model to extract similar sentences. The results from both the SDL model
and the Sent2Vec model were compared for similarities and differences to
investigate which one performed better in capturing similar videos. Both
the Sent2Vec and the SDL Methods have the pairwise distance computed
between all samples. For the Sent2Vec method, the Euclidean distance be-
tween the vectors was used as the distance metric. For the SDL method, a
hierarchical method was used, wherein the samples that contained the most-
similar actors were found. These results were then further narrowed down to
the samples containing the most-similar actions, and then only the samples
containing the most-similar scene elements. Using this hierarchical method,
the nearest neighbor was found for each sample in the SDL. If there were
multiple samples that were equally close, all such samples were returned as
being nearest. For each sample in the Sent2Vec, the nearest neighbors were
found until the number of neighbors matched that of SDL. If there were mul-
tiple samples that were equally close such that adding them all would cause
Sent2Vec to have more samples than SDL, those samples were ignored and
Sent2Vec simply had fewer samples than SDL. Once the n nearest neighbors
for both of our methods had been computed, the f1 score was computed, any
sample that was in both datasets was considered true positive, any sample
that was in SDL but not Sent2Vec was considered false positive, any sam-
ple that was in Sent2Vec but not SDL was considered false negative. The
average f1 score (used to measure a test’s accuracy) across all samples was
0.246.
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Figure 4: F1 score from Sent2Vec and SDL experiment. The F1 score is
0.246.

For a given caption: ”The car slows slightly because cars ahead are
making a turn”, the SDL parser returned: ”ego-brake, light vehicle-turn, no
scene element”. The video frames are shown in Figure 5.

Figure 5: Frames for a reference video.

The SDL similarity metric and Sent2Vec each returned a list of ”similar”
objects. These lists were compared for similarities and differences and are
shown in Figure 6.
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Figure 6: Results from SDL and Sent2Vec similarity experiment. Each
method returned a list of most ”similar” captions based on its similarity
metric.

The Sent2Vec results all involve a car making a turn. The SDL results
all involve a car other than the ego a turn. The Sent2Vec results all contain
the same clause, “The car slows”. The SDL results ignore having the same
exact phrasing in favor of having the same actor/action pairs. Overall, both
are returning results that are similar to the base sentence. However, since
the F1 score is .268, this indicates that further research will need to be done
in investigating where Sent2Vec and the SDL method fail. Furthermore,
this F1 score shows that Sent2Vec may not be the best baseline score to
compare to and measure the validity of the SDL.
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6 Conclusions and Future Work

Future research will involve further investigation into designing a similarity
metric to compare similarity in the SDL space. This will also involve inves-
tigating and comparing how well the current similarity scheme compares to
Sent2Vec. Further investigation into where one method fails over another
will also be required to evaluate the validity of the SDL similarity scheme.
More specifically, future efforts will focus on capturing the temporal struc-
tures of traffic scenarios to form fixed-length vector representation. Using
the SDLs as labels for these video vector representations, a network will be
trained to automatically tag a traffic scenario based on its spatial and tem-
poral features. The testing phase will test the certification scheme’s ability
to compare two AV designs based on the level of safety they provide.
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