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Abstract 

Aquatic ecosystems are subject to many stressors including eutrophication, hydrologic 

alteration, invasive species, and climate change. These stressors alter ecosystems and their 

resilience – how an ecosystem responds to disturbances like storms, droughts, and other discrete 

events. Disturbance impacts can vary widely in magnitude, duration, and the changes they induce 

on ecosystem structure, function, and services. Understanding and predicting change has 

motivated development of theories and frameworks for several resilience concepts. However, 

applying resilience methods in practice is often challenged by data limitations and the inherent 

complexity of ecosystems. 

The goal of this dissertation was to advance the application of resilience concepts to real 

world ecosystems using data intensive methods. I focused specifically on two ecosystem changes 

and resilience concepts: the prediction of algal blooms in lakes and understanding patterns and 

controls of disturbance in estuaries following tropical cyclones. I first evaluated if spatial early 

warning statistics (EWS), based on theory that generic changes in system dynamics are reflected 

in statistical properties, are expected to change prior to algal blooms. Using a spatial model 

incorporating physical forces that control transport in aquatic systems, I found that spatial 

standard deviation and autocorrelation distinguished between bloom states and changed 

predictably near thresholds. I then tested those findings and compared spatial EWS to previously 

studied EWS in time series data using a whole-lake nutrient addition experiment. Spatial EWS 

did not change consistently before the bloom, while temporal standard deviation did for 3 out of 

4 variables. I then utilized high frequency time series from 18 lake-years of both experimental 

and non-experimental conditions to quantify temporal EWS performance at separating low from 

high resilience states, a necessary step for the method’s potential use for bloom management. 
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Using high frequency data from the same lake fertilization experiments, I also explored the 

ability of near-term forecasting to accurately predict bloom initiation timing, a short but critical 

period for taking management action. Accurately forecasting bloom timing was difficult but 

possible and depended on both model initial conditions and flexibly adjusting parameters as new 

observations were collected. Finally, I used a new algorithm for detecting disturbance and 

recovery in high frequency data to quantify disturbance occurrence, timing, length, and severity 

in salinity and dissolved oxygen across 19 estuaries and 59 tropical cyclones in the eastern 

United States. Most estuaries recovered from hurricane-initiated disturbances within days, but 

some lasted weeks or months, and properties of both storms and the sites they impacted were 

related to disturbance characteristics. 

This dissertation shows that resilience concepts can be operationalized to measurable 

properties, which can be used to understand and predict change with possibilities for application 

to ecosystem management. Operationalizing resilience is crucial to maintaining ecosystem 

services such as clean water, fisheries, and carbon sequestration into a future where stresses on 

aquatic systems are projected to intensify. My findings also demonstrate the power of ecosystem 

scale experiments as well as high-frequency and long-term data to test and advance 

understanding and management. 
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Chapter 1 

Introduction 

 
Aquatic ecosystems are subject to numerous stressors and disturbances from local to 

global scales, with important consequences for these ecosystems and the services they provide. 

For example: land use change and agricultural intensification cause eutrophication and alter 

hydrological processes (Bennett et al. 2001, Gordon et al. 2008); humans facilitate the spread of 

non-native species (Lovell et al. 2006); climate change alters atmospheric temperature and 

precipitation, which in turn impacts water temperature, ice and stratification regimes, and water 

clarity (Adrian et al. 2009). These and other stressors affect the multitude of ecosystem services 

including water for drinking and irrigation, recreational and commercial fisheries, and carbon 

sequestration (Postal and Carpenter 1997, Mendonça et al. 2017). 

An ecosystem’s response to stress and disturbance depends in part on its resilience – a 

term that has many definitions, here I use it to broadly describe how a system responds to 

perturbations or shocks: the degree to which it changes from a given magnitude shock (also 

referred to as resistance; Pimm 1984), the size of shock it can absorb and remain in the same 

state (Carpenter et al. 2001) and how quickly it recovers (also referred to as return time or 

engineering resilience; Gunderson 2000). More comprehensive frameworks have included 

resilience as one component determining the dynamics of combined social-ecological systems 

(SES), along with adaptability (the capacity of actors to influence SES resilience) and 

transformability (the capacity to create a new system; Walker et al. 2004). Resilience has 

received considerable attention across the field of ecology, frequently with the goal of 

understanding what determines if an ecosystem is resilient or if resilience is changing. Doing so 
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offers insights into when and where changes are likely to occur, and potentially allows for 

actions to be taken to increase resilience and avoid unwanted changes (Folke et al. 2004). 

Multiple approaches have been taken to understand resilience and predict change in 

ecosystems. Over approximately the past 15 years, the concept of early warning statistics (EWS; 

also referred to as early warning indictors or resilience indicators) of regime shifts has been 

developed, which predicts that ecosystem statistical properties change in specific ways before 

rapid transitions (Scheffer et al. 2015). Mechanistically, EWS often arise from critical slowing 

down – when a system’s return rate to equilibrium decreases as a system approaches a critical 

transition (Scheffer et al. 2009), resulting in increasing variance and autocorrelation (Carpenter 

and Brock 2006, Van Nes and Scheffer 2007) as well as changes in other statistics (Guttal and 

Jayaprakash 2008).  

EWS have been studied in both spatial and temporal data across different ecosystems 

(Scheffer et al. 2015). The EWS concept has been extensively developed using data from model 

simulations, with a more limited number of empirical tests in laboratory experiments (e.g. Drake 

and Griffen 2010, Dai et al. 2012, Dai et al. 2013) and observational and experimental field 

studies (e.g. Litzow et al. 2008, Litzow et al. 2013, Eby et al. 2017, Ratajczak et al. 2017, Rindi 

et al. 2017, Rindi et al. 2018). At the ecosystem scale, some of the most powerful tests of EWS 

have been carried out using whole-lake manipulations to show that expected changes in EWS 

occur prior to known regime shifts (Carpenter et al. 2011, Seekell et al. 2012, Batt et al. 2013, 

Pace et al. 2013, Cline et al. 2014, Butitta et al. 2017, Pace et al. 2017, Wilkinson et al. 2018). 

However, even in these studies, questions important to potential application of EWS remain 

unanswered, including: 1) whether spatial or temporal EWS perform better and 2) if EWS can 

accurately differentiate between low and high resilience states. 
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Interest in predicting change and providing useful information for management has also 

stimulated research on direct, near-term forecasting of ecosystem properties including phenology 

(Taylor and White 2020), pest and disease outbreak (Jones et al. 2021), and biogeochemical 

cycling (Gao et al. 2011). In aquatic systems, forecasting of water temperatures (Thomas et al. 

2020), dissolved oxygen (Carey et al. 2021), and algal blooms (Recknagel et al. 2017, Xiao et al. 

2017, Page et al. 2018) is motivated by impacts on aquatic organisms and water quality. Algal 

bloom forecasting in particular has received considerable attention due to potential human health 

impacts of algal toxins in harvested shellfish (Trainer et al. 2007) and drinking water 

(Carmichael 2001). However, adoption of bloom forecasting by managers has been limited, 

likely due to the need for system-specific forecast model development (Rousso et al. 2020) 

arising from the wide diversity in aquatic ecosystem properties and mechanisms controlling 

bloom development (Paerl et al. 2001, Isles and Pomati 2021). Management-relevant model 

performance is also a concern and may not be captured by widely used evaluation metrics. 

More generally, resilience to shocks or perturbations is a central component of 

disturbance ecology, which focuses on discrete events that disrupt “ecosystem, community, or 

population structure and changes resources, substrate, availability or the physical environment” 

(White and Pickett 1985). Quantifying resilience is easy when events initiating disturbances are 

discrete and recovery is obvious (e.g., regrowth of vegetation after fire; Goetz et al. 2006), but in 

many cases shocks can cause qualitatively different types of disturbances and recovery may be 

difficult to identify due to natural variability. The response of estuaries to tropical cyclones is 

one example: storm characteristics vary along several axes (e.g., precipitation, storm surge, 

winds and waves), causing different types of disturbances (increases or decreases in salinity and 

oxygen, changes in vegetation or other populations), and recovery determination is complicated 
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by the highly dynamic nature of these systems (daily, tidal, and seasonal cycles). These 

challenges have largely limited studies of tropical cyclone-caused disturbances to either one or a 

few locations or one or a few storms (Pruitt et al. 2019). 

The goal of this dissertation was to advance understanding of resilience in aquatic 

ecosystems by bridging gaps between theory and application. Many of the concepts and 

frameworks of resilience have been developed from conceptual or relatively simple 

mathematical models, which are critical for formalizing assumptions and generating expectations 

and hypotheses that can be tested. However, doing so empirically is often not straightforward: it 

can be difficult or impossible to measure key variables precisely, forcing a reliance on more 

easily measured proxies; time and funding constraints may limit the frequency and extent at 

which data can be collected; and the inherent complexity of ecosystems may generate 

stochasticity that obscures expected relationships or patterns. Nonetheless, technological 

advances have made it possible to collect measurements on an increasing number of ecosystem 

variables at high frequencies and spatial extents, presenting the opportunity to advance our 

understanding of resilience and use it to improve ecosystem management. This dissertation 

addresses application of resilience concepts to real-world ecosystems using data-intensive 

methods, focused specifically on predicting algal blooms and understanding disturbances in 

estuaries caused by tropical cyclones. 

Chapter 2 evaluates whether spatial EWS should be expected before algal bloom regime 

shifts. Temporal EWS have been well studied in aquatic ecosystems using both models and 

whole-lake experiments, including several experimentally induced algal blooms. In contrast, 

spatial EWS have been most well developed for terrestrial ecosystems, and studies in aquatic 

ecosystems have mostly been on species that have more control over their movement in the 
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environment than algae. Using a 2D algal bloom model with different dynamic states as well as 

realistic physical forcing (advection and diffusion), I test several statistics for spatial EWS using 

model simulations at a range of nutrient loading rates. Spatial standard deviation and spatial 

autocorrelation had distinct values in different bloom states and changed predictably near bloom 

thresholds, suggesting these statistics are good candidates for spatial EWS in field tests. 

Chapter 3 tests the findings of Chapter 2 using a whole-lake experiment and directly 

compares temporal EWS to spatial EWS prior to algal blooms for the first time. Nutrients were 

added to Peter Lake while collecting high-frequency temporal and spatial measurements of key 

bloom variables; adjacent Paul Lake was a non-manipulated reference system. Analogous 

temporal and spatial EWS (standard deviation and autocorrelation) were computed and 

compared. Both spatial EWS performed poorly, with high sample-to-sample variability 

obscuring trends that would provide early warning of the bloom. Temporal standard deviation 

provided early warning for 3 out 4 variables, while temporal autocorrelation did not provide 

warning in any variable. Analyzing temporal EWS across all past lake-years with high-frequency 

data (both with and without fertilizations) demonstrated that temporal EWS can provide 

performance potentially useful in management scenarios. 

Chapter 4 approaches algal blooms from an ecological forecasting approach, using high 

frequency data from the above fertilization experiments and data assimilation to explore the 

dependence of bloom initiation forecast accuracy on model initial conditions and flexibility. 

Bloom initiation is a short time period but is critical for potential management actions. Model 

flexibility to learn parameters from observations can correct for inaccurate initial conditions but 

can also fit incorrect parameters from short-term trends, leading to inaccurate forecasts. 

Conclusions based on bloom timing forecast error contradicted those based on overall forecast 
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error, highlighting that commonly used model performance metrics underweight this crucial time 

period. 

Chapter 5 uses a new algorithm for detecting disturbance and recovery with high-

frequency and long-term dissolved oxygen and salinity data from estuaries across the eastern US 

and dozens of tropical cyclones. The algorithm detects diverse disturbances and characterizes 

their timing, length, and severity. Salinity disturbances generally started earlier and lasted longer 

than dissolved oxygen disturbances, suggesting different physical and biological mechanisms 

controlling disturbance in these variables. Most disturbances where less than 7 days long though 

some extremely long disturbances over 50 days long were observed. Disturbance severity was 

positively related to disturbance length (measures of ecosystem resistance and recovery time, 

respectively) for both variables. Site and storm properties associated with changes in disturbance 

characteristics demonstrate the ability of this approach to quantify disturbance and identify 

potential drivers across different variables, systems, and initiating events. 

The final chapter summarizes the main findings of this dissertation and provides 

directions for future research. I conclude that resilience concepts can be operationalized to 

measurable properties. This quantification of features of resilience can be used to understand, 

predict, and in the future aid ecosystem management. Specifically, 1) early warning statistics and 

forecasting can be used to predict algal blooms in advance, and 2) robust and flexible methods 

for detecting disturbance and recovery can offer insights into patterns and controls of estuarine 

response to tropical cyclones, and likely other disturbances and ecosystems. Harnessing these 

approaches requires high frequency data coupled to real-time analysis and translation to useable 

outputs for managers.  This dissertation also illustrates the importance of ecosystem-scale 



14 
 

experiments as well as the opportunity that long-term data provide to advance both 

understanding and management. 
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Chapter 2 

A modeling analysis of spatial statistical indicators of thresholds for 

algal blooms 
Published in Limnology and Oceanography Letters https://doi.org/10.1002/lol2.10091  

 

Abstract 

Predicting algal blooms both within and among aquatic ecosystems is important yet difficult 

because multiple factors promote and suppress blooms. Statistical indicators (e.g. variance and 

autocorrelation) based on time series can provide warning of transitions in diverse complex 

systems, including shifts from clear water to algal blooms. Analogous spatial indicators have 

been demonstrated with models and empirical data from vegetated terrestrial ecosystems. Here, 

we test the applicability of spatial indicators to algal blooms using a nutrient-phytoplankton 

spatial model. We found that standard deviation and autocorrelation successfully distinguished 

bloom state and proximity to transitions, while skewness and kurtosis were more ambiguous. 

Our findings suggest certain spatial indicators are applicable to aquatic ecosystems despite 

dynamic physical-biological interactions that could reduce detectable signals. The growing 

capacity to collect spatial data on algal biomass presents an exciting opportunity for application 

and testing of spatial indicators to the study and management of blooms. 

 

Introduction  

Algal blooms have large impacts on aquatic ecosystems. In oceans, the spring bloom 

supports growth of zooplankton and eventual fish production (Mann 1993). In more nutrient-rich 

lakes and coastal oceans, blooms leading to very high concentrations of algae have adverse 

effects including accelerated nutrient cycling, depletion of hypolimnetic dissolved oxygen that 

causes fish kills (Swingle 1968), and toxin release that harms grazers and higher consumers 

https://doi.org/10.1002/lol2.10091
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(Christoffersen 1996, Ibelings & Chorus 2007). Blooms may also disrupt aquaculture, recreation, 

and drinking water supplies (Dodds et al. 2009) and blooms with negative impacts are designated 

harmful algal blooms, or HABs.  High-profile blooms, e.g. in Lake Erie, underscore the scientific 

consensus that HAB occurrence is increasing worldwide (Ho & Michalek 2017; Heisler et al. 

2008). 

Understanding algal bloom drivers and dynamics is critical to mitigating their negative 

impacts. Excess nutrient loading, especially phosphorus in inland waters (Schindler et al. 2016), 

has been widely studied as a main driver of algal blooms. Grazing, temperature, physical mixing, 

and other factors promote or suppress phytoplankton and thereby affect blooms (Paerl et al. 

2001).  The varied drivers of algal blooms complicate predictions of the timing and location of 

blooms. Reliably predicting blooms can improve prevention strategies (e.g. decreasing nutrient 

loading) and provide time to minimize bloom impacts (e.g. using algicides). 

Algae blooms in eutrophic waters are examples of critical transitions (i.e. abrupt shifts in 

response to small changes in a forcing) in ecosystems (Batt et al. 2013, Carpenter et al. 1999, 

Cottingham et al. 2015). An emerging body of literature from fields as diverse as financial 

markets and human physiology has found that generic “early warning indicators” can provide 

information on system state and proximity to thresholds (reviewed in Scheffer et al. 2015). Early 

warning indicators are statistics that change in predictable ways as transitions are approached 

due to critical slowing down – slowed recovery from perturbations as a system approaches a 

transition (Scheffer et al. 2009). Variance and standard deviation of ecosystem state variables 

have been widely used as early warning indicators (e.g. Carpenter and Brock 2006, Pace et al. 

2013) and are expected to increase as a critical transition is approached (Biggs et al. 2009). 

Decreasing return rates near critical transitions due to critical slowing down also lead to 
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increasing autocorrelation (Dakos et al. 2012). Changes in skewness, another early warning 

indicator, can capture the dependence of return rate on perturbation direction as well as response 

to large external fluctuations as thresholds are approached (Guttal & Jayaprakash 2008). 

In ecology, early warning indicators have been studied in a variety of ecosystems using 

modeling, laboratory, and field experiments as well as historical observations and a few whole-

ecosystem manipulations (Scheffer et al. 2015). Most studies, especially in aquatic ecosystems, 

have focused on temporal statistics as early warning indicators (Carpenter et al. 2011, Pace et al. 

2017, Wilkinson et al. 2018). Analogous changes in spatial statistics are also expected from 

critical slowing down near transitions and can potentially provide information on ecosystem state 

and proximity to thresholds without extensive prior data (Dai et al. 2013). In terrestrial 

ecosystems including grasslands and shrubland, spatial statistics of vegetation coverage change 

near critical transitions driven by precipitation and fire frequency (Kéfi et al. 2014, Ratajczak et 

al. 2016). Spatial early warning indicators have not been studied as widely in aquatic 

ecosystems, but there are a few examples where changes in spatial statistics are associated with 

transitions. Donangelo et al. (2010) extended a simple eutrophication model to a spatial grid and 

found pattern formation near the transition to a degraded state, as well as an increase in spatial 

variance before temporal variance. Litzow et al. (2008) and Cline et al. (2014) observed changes 

in fish distribution and spatial variance during regime shifts in the fish community. Rindi et al. 

(2017) found that the spatial recovery length from perturbations, another indicator of critical 

slowing down, increased in the rocky intertidal near a transition from canopy to turf dominated 

benthic algae. A recent study used spatial mapping of phytoplankton pigments to test for 

indicators of transitions during a whole-lake nutrient manipulation (Butitta et al. 2017). The 

utility of spatial early warning indicators in these studies is promising, but additional modeling 
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tests with precisely known system dynamics and transitions can provide understanding of when 

spatial indicators are expected to give reliable information on ecosystem state and threshold 

proximity and guide future research. 

The spatially patchy distributions observed in algal blooms and captured by spatial 

models (e.g. Franks 1997) suggest that spatial early warnings may also be useful for analyzing 

and managing aquatic ecosystems. It is unknown if the highly dynamic (time-varying) spatial 

distribution of algal blooms could limit the possibility that spatial patterns and statistics provide 

early warning of critical transitions. Here, we ask: 1) can spatial indicators be used to distinguish 

between states (e.g. bloom vs. non-bloom) in aquatic ecosystems that undergo critical 

transitions? and 2) do spatial indicators provide reliable warning of approaching algal bloom 

critical transitions?  

To answer these questions, we applied a published spatial model of algal blooms with 

known critical transitions (Serizawa et al. 2008). We evaluated the ability of spatial early 

warning indicators to distinguish algal bloom states and transition proximity in aquatic 

ecosystems by simulating the model through time for a range of nutrient input levels and then 

calculating spatial early warning statistics. 

Methods 

We use a model created by Serizawa et al. (2008) (see Supplemental Information 

Appendix A for full description). The model is defined on a two dimensional spatial grid 

(180x180 cells) and represents dynamics of phosphorus and phytoplankton in pelagic systems, 

which interact nonlinearly via Holling type-II responses. Neighboring grid cells exchange 

components physically via diffusion and advection, the latter generated by randomly-seeded 

eddies. Like Serizawa et al. (2008), we use the nondimensional version of the model. This 
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transformation reduces the number of parameters and does not affect the relative magnitude of 

the resilience indicators (see equations 3 and 4 in Appendix 1 for transformation between 

nondimenional and dimensional values). Because this model is dimensionless, the spatial 

components (extent, resolution, diffusion, and advection) of the grid are defined relative to each 

other. We’ve chosen this framework as a basis for exploring spatial indicators conceptually with 

a model that is reasonably complex but also tractable. The model framework creates patterns that 

are highly dynamic both spatially and temporally and includes advection and diffusion. 

Advection is an important spatial flux in pelagic ecosystems and has not been considered in 

previous studies of spatial resilience indicators in terrestrial ecosystems. The original model was 

modified to include stochasticity in the phytoplankton dynamics to represent processes not 

explicitly included in the model and environmental noise, e.g. local variations in nutrient inputs 

or weather (equation 1, Appendix 1). Critical slowing down and resilience indicators are based 

on a system’s response to such perturbations changing as a transition is approached. Simulations 

and calculations were carried out in R 3.4.1 (R Core Team 2017); code is available on GitHub at 

https://github.com/cbuelo/SpatialBloomIndicators.  

The model exhibits critical transitions (Hopf bifurcations, where stable fixed points 

transition to limit cycles or vice versa) in phosphorus-phytoplankton dynamics as the phosphorus 

input rate, i, is varied. These critical transitions are functions of the model parameter values and 

define the bloom states, which Serizawa et al. (2008) identify using stability analysis. All 

analyses use the parameter values from Serizawa et al. (2008, Table 2, set I), and included in 

Table A1.1. At low i (0.3 ≤ i < 0.5), the system is in a constant, low-phytoplankton, non-bloom 

stable state. As i increases, the system enters a stable limit cycle at the low-input transition (i ≈ 

0.5); this cycling bloom state is characterized by repeating cycles in phosphorus and 

https://github.com/cbuelo/SpatialBloomIndicators
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phytoplankton concentrations. At i above the high-input transition (i ≈ 1.25) the system returns to 

a constant-bloom stable state with high phytoplankton concentrations (see Serizawa et al. 2008, 

Figure 4b). 

Integration was done using the Euler-Maruyama method with a small time step (0.025) to 

approximate continuous development of the model (Higham 2001). The phosphorus input rate 

was constant for each simulation. Separate simulations, each with a fixed and distinct 

phosphorus input rate, were compared to assess the ability of spatial indicators to distinguish 

different states or indicate proximity to thresholds. We define “reliable warning” as an indicator 

for which neighboring bloom states have distinct indicator values and, within a given state, the 

indicator changes unambiguously as a transition is approached. For each phosphorus input rate 

simulation, the model was first run deterministically as in Serizawa et al. (2008; and see 

Supplemental Information). The long-run (t = 1000) deterministic state was used as the starting 

state for stochastic simulations. Stochastic simulations were run for 500 time units, with system 

state and spatial statistics retained every 1 time unit after a spin-up period of 100 time units. For 

each of the 400 “snapshots” at a given phosphorus input rate, the following spatial statistics were 

calculated from each grid’s phytoplankton concentrations: mean, standard deviation (SD), 

skewness, kurtosis, Moran’s I, and autocorrelation range (AC range). We tested kurtosis as a 

potential spatial indicator, expecting that there may be a changing proportion of extreme values 

as the transitions approached. Moran’s I measures the degree of correlation between neighboring 

grid cells (analogous to lag-1 temporal autocorrelation) while AC range is the maximal distance 

over which grid concentrations are correlated; these autocorrelation measures explicitly depend 

on the spatial distribution of phytoplankton concentrations. The other measures are sample 

statistics of the 180x180 values in each “snapshot” and do not depend on the specific spatial 
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distribution of the values on the grid. Skewness and kurtosis were calculated using the moments 

package in R. AC range was computed from the semivariogram using the gstat package function 

fit.variogram() and exponential fit. 

We evaluated the robustness of our findings by varying the physical forcing. In extreme 

cases, high diffusion and low advection would eliminate spatial patterns and simulate 180x180 

synchronous cells. Relative to the base case from Serizawa et al. (2008), we repeated the 

simulations for two additional cases: a high diffusion case (double the base case diffusivity) and 

low advection case (half of the base case advection velocity).  Increased diffusivity decreased 

local concentration gradients and decreased advection slowed patch formation. 

Results  

Model simulations generated the expected spatial distributions: spatially uniform low and 

high phytoplankton concentrations in the low and high phosphorus input stable states, 

respectively, and patchy patterns of high and low concentrations in the intermediate-input 

cycling state (Figure 2.1). The spatial patterns in the cycling state changed and repeated through 

time, as in Serizawa et al. (2008).  

For the stable states at both low and high phosphorus input rates, spatially uniform 

phytoplankton concentrations were maintained through time and had relatively constant mean 

grid phytoplankton concentration and spatial indicators at a given input rate (Figure 2.2).  In the 

intermediate-input rate cycling bloom state, temporally cycling spatial patterns in phytoplankton 

concentration resulted in cycling spatial statistics. Both the grid mean and spatial indicators 

exhibited repeating cycles in time for a given phosphorus input level. 

All spatial indicators, except for Moran’s I, were highly variable in the intermediate-input 

cycling bloom state and more constrained in both the non-bloom and constant-bloom stable 
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states (Figure 2.3). Mean phytoplankton concentration increased across the range of phosphorus 

input rates, however within the cycling bloom state there was significant overlap in the 

distributions of grid mean phytoplankton concentration between adjacent input rates (Figure 

2.3A). Both standard deviation (SD) and skewness had “humped” patterns within the cycling 

state where indicator values peaked in the middle of the phosphorus input range and declined 

near the transitions (Figures 2.3B and 2.3E). In the cycling state, SD values had less overlap 

between adjacent input rates near the transitions and no overlap with the stable states, whereas 

skewness had a large degree of overlap especially at the high input transition. Autocorrelation 

range (AC range) had the opposite pattern within the cycling state; values were highest and 

variable near the transitions and decreased at phosphorus input rates in the middle of the cycling 

state (Figure 2.3C). Moran’s I was the only indicator that was highly constrained (near 1) in the 

cycling bloom state and was also the only indicator to decrease steadily within increasing input 

rates in the constant-bloom stable state (Figure 2.3D). Kurtosis, while constrained in the stable 

states, was highly variable in the cycling bloom state with a high degree of overlap and no trends 

near the transitions (Figure 2.3F). 

Increasing diffusion or decreasing advection did not have a strong effect on the statistical 

moment spatial indicators (mean, standard deviation, skewness, and kurtosis) in any of the bloom 

states (Figure 2.3A, 2.3B, 2.3E, and 2.3F, respectively). Increasing diffusion increased both 

autocorrelation indicators relative to the base case. AC range was most strongly effected in the 

cycling bloom state (Figure 2.3C) while the increase in Moran’s I was stronger in the non-bloom 

and constant-bloom stable states (Figure 2.3D). Decreased advection had minimal impact on all 

statistics. 
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To determine if spatial indicators can reliably distinguish proximity to thresholds, we 

selected the spatial indicators from Figure 2.3 that were best at distinguishing between bloom 

states and studied them at a higher resolution of phosphorus input rate near the transitions. 

Bloom state could be unambiguously inferred from SD, AC range, and Moran’s I at phosphorus 

input rates near the critical transitions (Figure 2.4). Standard deviation increased steadily with 

phosphorus input rate through the transition from the low-input stable state to intermediate-input 

cycling state, with little or no overlap between distributions of SD at adjacent input rates (Figure 

2.4A). At the transition from the cycling bloom state to constant-bloom stable state, standard 

deviation decreased and was relatively constant at phosphorus input rates above the transition 

(Figure 2.4B). Autocorrelation range was low and overlapped at input rates from 0.3 – 0.4, 

increased sharply at i = 0.45 before the low-input transition occurred, then gradually declined 

from i = 0.5 to i = 0.7 (Figure 2.4C). AC range increased gradually with overlapping 

distributions as the high-input transition was approached at i = 1.25, then fell sharply and 

overlapped from i = 1.3 – 1.45 (Figure 2.4D). Moran’s I also increased sharply at i = 0.45 below 

the low-input transition and was high (near 1) in the cycling bloom state (Figure 2.4E). Moran’s I 

remained near 1 as the high-input transition was approached in the cycling bloom state and 

declined slightly at i = 1.25 before falling sharply at i = 1.3 (Figure 2.4F). From i = 1.3 to i =1.45 

in the high-input stable bloom state, Moran’s I declined steadily with relatively little overlap 

among adjacent input values.  

Discussion  

Spatial indicators can discern ecosystem state and proximity to thresholds, even in a 

model of a highly dynamic pelagic system with interacting physical and biological components. 

SD, AC range, and Moran’s I differed between the cycling and stable states, allowing for 
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classification of bloom state (non-bloom stable, cycling bloom, or constant-bloom stable) from a 

single spatial snapshot. At phosphorus input rates near both transitions in bloom state, trends in 

these indicators provided a reliable warning of approaching transition, indicating that changes in 

spatial indicators calculated from repeated sampling in time would occur prior to crossing 

thresholds. Skewness and kurtosis had somewhat distinct distributions between states but 

significant overlap within states, suggesting that these indicators would be unreliable for 

determining threshold proximity.  

Spatial standard deviation was one of the most robust indicators of both ecosystem state 

and threshold proximity. An approximately order of magnitude difference in SD on either side of 

the transitions clearly indicated the state of the system. Additionally, the monotonically 

increasing and non-overlapping distributions prior to the low-input transition provide a relative 

measure of proximity to the approaching threshold. At the high-input transition from the cycling 

bloom state to the constant-bloom stable state there was a slightly less than order of magnitude 

difference in SD. The decline in SD as this transition was approached from lower phosphorus 

input levels may provide an indication of the approaching threshold, although there was some 

overlap between adjacent phosphorus input levels. The observed increases in SD as transitions 

were approached from the stable states match with findings of temporal early warning indicator 

studies (Carpenter and Brock 2006, Carpenter et al. 2012, Pace et al. 2013). The maximal values 

of SD occurred at intermediate input levels within the cycling state, corresponding to the 

maximum cycle amplitude in phytoplankton concentration (Figure 2.3 this study, Figure 4b from 

Serizawa et al. 2008). 

Both measures of autocorrelation were indicative of bloom state and threshold proximity. 

AC range and Moran’s I provided warning of the low input transition from the stable non-bloom 
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state to the cycling bloom state, increasing sharply from i = 0.4 to i = 0.45 prior to the transition 

at i = 0.5. The steady decrease in Moran’s I at input rates above the high-input transition 

combined with a fairly small degree of overlap in this statistic between adjacent input rates could 

provide early warning of transition from the stable, constant-bloom state bloom state to the 

cycling bloom state (i.e. if input rates were high but decreasing, Figure 2.4F). Moran’s I provides 

clearer warning of proximity to transition to the cycling state (from either low or high input 

rates) than AC range. In contrast, AC range provides more information than Moran’s I on 

proximity to transitions from within the cycling state but is more ambiguous in the high-input 

stable state. The differences between AC range and Moran’s I are perhaps not surprising as the 

interactions between physical processes, biological processes, and return rate from perturbations 

have different effects on correlation between neighboring cells (Moran’s I) and those further 

apart (AC range). The minimum in AC range within the cycling state likely corresponds to a 

maximum in return rate at the phytoplankton cycle amplitude maximum.  The increase in AC 

range in the high diffusion case may be the result of decreased local gradients in phytoplankton 

concentration near patch edges. 

While SD and Moran’s I changed unambiguously as at least one transition was 

approached from at least one direction, they also displayed statistic-dependent differences in 

sensitivity to the low- and high-input transitions, depending on the direction from which the 

transition is approached (SD, Figure 2.4B; Moran’s I, Figures 2.4E and 2.4F). While critical 

transitions are most frequently studied in the context of ecosystem degradation (e.g., increased 

nutrient inputs), we also observed early warnings in the opposite scenario which may be useful in 

systems undergoing remediation (e.g. Lake Washington, Hampton et al. 2006). Asymmetric 

warnings prior to transitions (i.e. whether approached from lower or higher input rates) have also 
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been observed in studies of temporal resilience indicators using models with Hopf bifurcations 

(Batt et al. 2013). In our study, warning asymmetry may result from an interaction between the 

deterministic dynamics of the model and the structure of the stochasticity (Horsthemke and 

Lefever 1984, Benincà et al. 2011). These results reinforce previous suggestions that a resilience 

indicator approach should only be used when there is reason to suspect a critical transition and 

data on appropriate state variables are collected (Wilkinson et al. 2018, Gsell et al. 2016).  

In this study, both skewness and kurtosis were highly constrained in the stable states and 

much more variable in the cycling states. Despite these differences between bloom states, the 

lack of trends near transitions and overlap of the indicator distributions in different states limit 

the applicability of skewness and kurtosis as spatial indicators for this model. Contrasting with 

our results, Guttal and Jayaprakash (2009) found spatial skewness an unambiguous indicator of 

an impending regime shift using a two dimensional model of terrestrial vegetation collapse. We 

suspect these differences arise from the different model types used in each study; their model 

includes a single fold-bifurcation separating two spatially homogenous states while the model 

used in this study has a spatially-patterned intermediate state separated from stable states by 

Hopf bifurcations. Overall, studies of spatial resilience are less numerous than studies of 

temporal resilience and more work is needed to understand differences among types of 

ecosystems. 

This work demonstrates the potential applicability of spatial resilience indicators to 

pelagic aquatic systems. Spatial statistics have been successfully tested as resilience indicators in 

arid terrestrial ecosystem models containing critical transitions in vegetation state (Reitkerk et al. 

2004, Kéfi et al. 2007, Guttal & Jayaprakash 2009, Dakos et al. 2011). Recent empirical tests in 

terrestrial ecosystems including experimental grassland manipulations (Ratajczak et al. 2017) 
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and applications of remote sensing (Eby et al. 2017) have supported model findings. Many of 

these terrestrial vegetation models include diffusive exchange between neighboring grid cells. 

Compared to rooted and relatively stationary vegetation on land, the physical forcing of pelagic 

environments (e.g. both diffusion and advective currents) plays a more immediate role in 

determining the movement of free-floating phytoplankton and nutrients. These forces could 

“wash out” signals of aquatic ecosystem state and transitions. However, a few empirical studies 

have shown promising results in the application of spatial resilience indicators to aquatic 

ecosystems with organisms that have more control over their spatial pattern than phytoplankton, 

including fish (Litzow et al. 2008, Cline et al. 2014) and intertidal benthic algae (Rindi et al. 

2017).  

It is also possible that the rapid time scales on which algal blooms develop and spatial 

patterns form and change could limit the use of spatial resilience indicators. However, a recent 

empirical study applied several of the indicators used here to spatial data from an experimentally 

fertilized lake (Butitta et al. 2017). Butitta et al. (2017) found that SD was highest prior to and 

during an induced algal bloom and declined after fertilization ended and the bloom abated. AC 

range was highest prior to and after the bloom peak, but declined for a short period coincident 

with peak bloom conditions. Both the SD and AC range observations of Butitta et al. (2017) are 

consistent with the findings in this study of a shift from the non-bloom stable state past the low-

input transition into the cycling bloom state, and then a return to the stable non-bloom state when 

fertilization ceased. Contrasting with our findings, Butitta et al. found that skewness was 

elevated prior to and during the bloom and maximal just after the bloom peak. It is not possible 

to compare spatial statistics in the constant-bloom stable state as Butitta et al. (2017) stopped 

nutrient additions after temporal early warning signs were observed.  
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While our findings suggest that spatial indicators can differentiate bloom state and 

threshold proximity using a model that creates dynamic patches, evaluation and application of 

spatial indicators requires further research. The model could be expanded to include the vertical 

dimension of the water column and more ecological and physical detail (e.g. additional nutrients, 

light limitation, spatially and temporally varying zooplankton density). Most importantly, the 

model could be used in tandem with field experiments to improve understanding of spatial 

dynamics of blooms under diverse conditions. Empirical studies could also address questions 

related to the spatial and temporal scales at which spatial indicators occur, e.g. do spatial 

indicators change prior to blooms and early enough to be useful for management? What spatial 

resolution and temporal sampling frequency is required? How do temporal and spatial indicators 

compare? 

The increasing ease and cost-efficiency of collecting spatial data on phytoplankton 

biomass provides the opportunity to test and improve the predictions in this study. Technological 

advances have made it possible to spatially map photosynthetic pigments both in-situ (Crawford 

et al. 2014) and via remote sensing (Tyler et al. 2016). We advocate additional work using 

modeling, empirical, and combined studies to further develop and test the applicability of these 

methods. Successful use of spatial indicators could allow the classification of the current state of 

individual aquatic systems as well as their proximity to thresholds. These goals are particularly 

important as continued nutrient inputs to inland waters and coastal marine systems increase the 

potential for eutrophication and harmful algal blooms (Sinha et al. 2017). 
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Figure 2.1. Example grids showing the spatial distribution of phytoplankton concentrations for 

the (A) non-bloom stable state (i = 0.35), (B) cycling bloom state (i = 0.9), and (C) constant-

bloom stable state (i = 1.6) at t = 100 of the stochastic simulations. 
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Figure 2.2. Spatial indicators (A) mean, (B) spatial standard deviation, (C) autocorrelation range 

vs. time (dimensionless) for the nonbloom stable state (blue, i = 0.35), cycling bloom state (gold, 

i = 0.9), and constant-bloom stable state (green, i = 1.6). 
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Figure 2.3. Spatial indicators calculated from 400 snapshots of grid phytoplankton concentration 

for a range of phosphorus concentrations including spatial mean (A), SD (B), autocorrelation 

range (C), Moran's I (D), skewness (E), and kurtosis (F). Physical forcing was varied from the 

base case (green) by increasing diffusion (gold; 2× base case) and decreasing advection (blue; 

0.5× base case). Vertical dashed lines represent the phosphorus concentrations at which 

transitions in bloom state occur. Note different vertical axis scales for each indicator. 
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Figure 2.4. Spatial indicators (A and B: standard deviation, C and D: autocorrelation range, E 

and F. Moran's I) near critical transitions from the nonbloom stable state to the cycling bloom 

state (A, C, E) and from the cycling bloom state to constant-bloom stable state (B, D, F). Vertical 

dashed lines represent the phosphorus concentrations at which transitions in bloom state occur. 

Note independently scaled and log-transformed vertical axes used to highlight trends across 

transitions. 
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Chapter 3 

Evaluating the performance of temporal and spatial early warning 

statistics of algal blooms 
In Review at Ecological Applications 

 

Abstract 

Regime shifts have large consequences for ecosystems and the services they provide. 

However, understanding the potential for, causes of, proximity to, and thresholds for regimes 

shifts in nearly all settings is difficult. Generic statistical indicators of resilience have been 

proposed and studied in a wide range of ecosystems as a method to detect when regime shifts 

are becoming more likely without direct knowledge of underlying system dynamics or 

thresholds. These early warning statistics (EWS) have been studied separately but there have 

been few examples that directly compare temporal and spatial EWS in ecosystem-scale empirical 

data. To test these methods, we collected high-frequency time series and high-resolution spatial 

data during a whole-lake fertilization experiment while also monitoring an adjacent reference 

lake. We calculated two common EWS, standard deviation and autocorrelation, in both time 

series and spatial data to evaluate their performance prior to the resulting algal bloom. We also 

applied the quickest detection method to generate binary alarms of resilience change from 

temporal EWS. One temporal EWS, rolling window standard deviation, provided advanced 

warning in most variables prior to the bloom, showing trends and between-lake patterns 

consistent with theory. In contrast, temporal autocorrelation and both measures of spatial 

EWS (spatial SD, Moran’s I) provided little or no warning. By compiling time series data from 

this and past experiments with and without nutrient additions, we were able to evaluate temporal 

EWS performance for both constant and changing resilience conditions. True positive alarm 

rates were 2.5 – 8.3 times higher for rolling window standard deviation when a lake was being 
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pushed towards a bloom than the rate of false positives when it was not. For rolling window 

autocorrelation, alarm rates were much lower and no variable had a higher true positive than 

false positive alarm rate. Our findings suggest temporal EWS provide advanced warning of algal 

blooms and that this approach could help managers prepare for and/or minimize negative 

bloom impacts. 

 

Introduction 

 Large changes in ecosystems often reveal important aspects of dynamics and have 

significant consequences. Changes can be abrupt and have obvious exogenous causes, like 

wildfires or introductions of exotic species, or have more subtle causes, such as gradual changes 

of internal regulation, that push drivers past thresholds (Scheffer et al. 2001, Ratajczak et al. 

2018). Research on ecosystems, financial markets, and the human body have identified generic 

statistics that indicate relative resilience and proximity to regime shifts without knowing precise 

thresholds at which changes will occur (Scheffer et al. 2009). Statistics such as variance and 

autocorrelation of measurements of ecosystem state have been proposed as a potential 

management tool for predicting regime shifts (Biggs et al. 2009). However, early warning 

statistic (EWS) methods are not yet used in management due to performance questions arising 

from data requirements and ambiguity in the precise mechanisms driving ecosystem dynamics 

(Boettiger et al. 2013). 

 Despite these challenges, research using models, experiments, and historical data has 

used EWS successfully to detect coming transitions in complex systems.  Ecosystem models 

have been used to explore how several time series statistics (e.g. variance, autocorrelation, 

skewness) change near thresholds (Carpenter and Brock 2006, Dakos et al. 2012, Guttal and 
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Jayaprakash 2008). These predictions have also been tested using lab and field experiments 

(Drake and Griffin 2010, Dai et al. 2012, Carpenter et al. 2011). Analogous spatial statistics have 

been proposed and tested (Dakos et al. 2011, Ratajczak et al. 2017). While these examples and 

others identified potential transitions in advance, other studies have failed to identify the 

hypothesized changes in EWS before regime shifts and question the generality of these methods 

(Hastings and Wysham 2010, Bestelmeyer et al. 2011, Sommer et al. 2017, Spears et al. 2017). 

Changes in resilience of real-world ecosystems may not be readily differentiated from other 

sources of variability (Perretti and Munch 2012). EWS across different statistics and ecosystem 

state variables can have variable reliability and low agreement, and are dependent on ecosystem-

specific knowledge (Gsell et al. 2016). Others have suggested that studying EWS using historical 

observations only in systems that have undergone regime shifts inflates the rate of false positives 

(Boettiger and Hastings 2012). 

Given limitations and uncertainties, applying EWS requires understanding key 

mechanisms underlying ecosystem dynamics well enough to know the potential for a critical 

transition, the capacity to collect high resolution data on relevant ecosystem state variables to 

detect changes in resilience, and the ability to distinguish changes in EWS due to resilience loss 

from other causes (e.g. by using concomitant measurements in an unmanipulated reference 

ecosystem). Additionally, evaluating EWS performance requires observations at different levels 

of resilience that are either known from direct manipulation of drivers or measurements of them. 

However, examples from many ecosystems have demonstrated that regime shifts occur and data 

appropriate for EWS analysis are becoming available (Scheffer et al. 2015, Dakos et al. 2015). 

Thus, there is increasing potential to test EWS by experimentally manipulating ecosystem 
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drivers (Carpenter et al. 2011, Rindi et al. 2017) or by evaluating observations over space or time 

where drivers controlling resilience vary naturally (Litzow et al 2008, Eby et al. 2017).  

Algal blooms are a phenomenon where EWS could benefit managers and the public. 

Algal blooms are a shift from a clear-water to an algae-dominated state involving a critical 

transition to runaway algal growth driven mainly by changing controls on nutrient availability 

(Carpenter et al. 1999, Serizawa et al. 2008, Cottingham et al. 2015). Blooms can comprise 

toxin-producing algae species, requiring treatment of surface water supplies at the source or in 

water treatment facilities. Bloom die-offs and subsequent decomposition can also harm species 

by depleting oxygen (Swingle 1968). In many aquatic ecosystems, blooms occur frequently but 

not predictably, with intermittent periods of relatively clear water. In these cases of recurring 

blooms, advanced warning could allow managers to take steps to avoid or minimize impacts. For 

example, managers could decrease point or nonpoint nutrient sources or apply alum or algicides 

(Welch and Cooke 1999). In other systems where blooms can’t be avoided, advanced warning 

provided by EWS could still give managers time to alter public use (e.g. beach closings, 

fish\shellfish harvest advisory) or to switch water supply sources. 

Prior studies of algal blooms provide evidence for early warnings. Models of algal 

dynamics approaching critical transition find both temporal (Batt et al. 2019) and spatial EWS 

(Donangelo et al. 2010; Buelo et al. 2018).  These findings have also been tested in field studies. 

Pace et al. (2017) used temporal EWS to reverse a bloom by halting nutrient additions when 

EWS alarms were detected; in the same experiment spatial EWS were significantly different 

before, during, and after the bloom (Butitta et al. 2017). Wilkinson et al. (2018) found that 

temporal EWS were often consistent with predictions from theory, but that performance of 

different state variable-statistic combinations varied among experiments. Finally, Ortiz et al. 
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2020 demonstrated that temporal EWS increase prior to non-experimental algal blooms in 3 out 

of 4 lake-years. 

While the studies above demonstrate the promise of EWS for algal blooms, several 

questions remain to be answered prior to applying EWS for bloom management:  

● Are temporal or spatial EWS better predictors of algal blooms? 

● How do temporal EWS perform under an approaching bloom (near threshold of 

change) and when a bloom is not imminent? 

● Do spatial EWS change prior to bloom onset, and if so how reliable are those 

changes? 

To answer these questions, we did a whole-lake fertilization experiment designed to 

promote an algal bloom while conducting high-resolution spatial and temporal data collection. 

We monitored both an experimental and unmanipulated lake during pre-manipulation and 

manipulation years to assess EWS performance for the spectrum of bloom and non-bloom 

conditions identified above. We also analyzed temporal data from other years (both fertilized and 

not) and an additional experimental lake to evaluate consistency of temporal EWS performance. 

Methods 

Experimental Design 

Our experiment was carried out at the University of Notre Dame Environmental Research 

Center in the Upper Peninsula of Michigan, United States. Peter and Paul Lakes were the 

experimental and reference lakes, respectively. These lakes are immediately adjacent to one 

another and were a single lake before being divided by an earthen dam in 1951 (Leavitt et al. 

1989). They have previously been used in whole-lake manipulation experiments (Carpenter and 

Pace 2018). Both are relatively small (2.6 ha for Peter Lake and 1.7 ha for Paul Lake) and deep 
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(mean depth 5.7 and 3.7 meters, max depth approximately 18 and 12 meters) with bowl-shaped 

basins and food webs dominated by largemouth bass (Micropterus salmoides). The lakes are 

oligo- to mesotrophic and algal blooms do not occur naturally without experimental fertilization. 

There are no major inflows or outflows with the exception of a small culvert that drains from 

Paul Lake to Peter Lake during high water conditions. This combined with their undisturbed, 

forested watersheds, make the lakes ideal systems in which to conduct experimental nutrient 

addition (hereafter fertilization) experiments. More detailed description of these lakes is 

available in Carpenter and Kitchell (1993). 

During the first year of the experiment, 2018, data were collected without experimental 

fertilization to establish baseline conditions and typical values of early warning statistics when 

the lake is not being pushed towards a critical transition. In the second year, 2019, nutrients were 

added to Peter Lake daily starting on day of year 161 and ending on day of year 237. Solutions of 

phosphoric acid and ammonium nitrate were prepared and distributed by pumping them into the 

prop-wash of a boat propelled by an electric motor. Nutrients were added at a fixed 15:1 molar 

ratio of N:P, with the loading rate starting at 0.5 mg P / m2 / day for the first week. Every 7 days, 

the nutrient loading rate was increased by 0.5 mg P / m2 / day until reaching a rate of 5 mg P / m2 

/ day in week 10, which was then maintained for 7 additional days before stopping nutrient 

additions. Figure A2.1 in the Appendix 2 shows the daily and cumulative P added to Peter Lake 

in 2019. 

The date of bloom onset was determined using a lake-specific threshold of 14 ug/L 

chlorophyll for Peter Lake derived from historical data (Wilkinson et al. 2018). For evaluation of 

early warning statistic performance, the experiment was divided into pre-manipulation (all of 
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2018 and 2019 before nutrient additions began) and pre-bloom fertilization (from the start of 

nutrient additions in 2019 to bloom onset) periods. 

In addition to data from this experiment, data from previous nutrient addition studies 

were also used to assess the consistency of temporal EWS across multiple experiments. These 

include three additional years (2013 - 2015) of data in Peter and Paul lakes as well as nearby 

Tuesday Lake; both Peter and Tuesday lakes were experimentally fertilized in these years and 

Paul Lake serving as a reference system (see Wilkinson et al. 2018 for full description). 

Additional lake-years with daily data and no fertilization experiments were also analyzed: 2011 

in Peter and Paul lakes (variables include chlorophyll-a, dissolved oxygen saturation, and pH; 

but not phycocyanin fluorescence), and 2016 in Peter, Paul, and Tuesday Lakes (phycocyanin 

fluorescence, dissolved oxygen, and pH; but not chlorophyll-a). 

Data Collection 

Time series data were collected from a raft at the center of each lake. Two automated, 

multi-parameter water quality sensors (hereafter sondes) were deployed at each raft at a depth of 

0.75 meters, one EXO 3 manufactured by YSI, Inc. and one Hydrolab DS5X manufactured by 

OTT Hydromet. The sondes measured phycocyanin fluorescence (phyco; a cyanobacteria 

pigment), dissolved oxygen saturation (D.O. sat.), and pH every 5 minutes. Sondes were 

calibrated monthly. Phycocyanin sensors used the manufacturer-provided calibration curves to 

convert fluorescence to physical units (ug/L of phycocyanin for the YSI EXO 3, cells/mL for the 

Hydrolab DS5X); Hydrolab DS5X phycocyanin fluorescence time series were used to allow 

direct comparison to prior experiments. These measurements should be interpreted as relative 

measures of cyanobacteria abundance as we did not calibrate them to extracted phycocyanin 

concentrations or microscopy cell counts. In previous studies, we found a strong relationship 
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between sonde fluorescence measurements and extracted phycocyanin concentrations (Pace et al. 

2017). Outlier and instrument error values were removed from sonde time series data, as were 

data from periods when the sonde was out of the water for cleaning or recalibration. These gaps 

in the high frequency data were filled by fitting a multivariate autoregressive state space model 

(R package MARSS version 3.10.10, Holmes et al. 2010, 2018) to the two simultaneously 

collected time series (each variable measured by each sonde), and then averaged to daily values. 

Chlorophyll-a (chl-a) was also measured daily by manually collecting water samples 

which were then filtered, frozen, methanol extracted, and measured in the laboratory using a 

Turner Trilogy benchtop fluorometer (Holm-Hansen 1978). A single outlier chl-a value of 13.1 

ug/L in the reference lake on day of year 180 of 2019 was removed and filled by linear 

interpolation. 

Spatial data were collected using the FLAMe system (Fast Limnological Automated 

Measurements, Crawford et al. 2015). The FLAMe uses a flow-through design to collect spatial 

measures of water quality parameters, pumping water from an intake through a sensor array 

while the boat is underway, and simultaneously recording GPS position. Spatial variables 

included phycocyanin fluorescence (ug/L), D.O. saturation (%), and pH measured with a YSI, 

Inc. EXO 2 sonde. The FLAMe system was mounted to a flat bottom boat powered by an electric 

motor and driven at a speed of approximately 1.5 m/s in a grid pattern. Lakes were surveyed with 

adjacent tracks in the grid approximately 15 meters apart. Data and GPS coordinates were 

collected at a frequency of 1 Hz. Spatial sampling was conducted weekly during the non-

fertilization year (2018) and 3 times per week (Monday, Wednesday, Friday) during the 

fertilization year (2019). Spatial data were processed and corrected for the hydrologic residence 

of the system as well as sensor-specific response times (Crawford et al. 2015). 
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Analysis 

 Temporal early warning statistics - Rolling window standard deviations (SD) and lag-1 

autocorrelation (AR(1)) were calculated for each lake for all variables (chl-a, phyco, DO sat, and 

pH). We use a window width of 21 days as has been used in prior studies (Wilkinson et al. 2018, 

Ortiz et al. 2020) and shown to balance accuracy and speed in detecting changes in EWS. To test 

if changes in rolling window EWS were consistent with predictions from theory, that SD and 

AR(1) increase as a critical transition is approached, we calculated Kendall’s tau on the 

difference between rolling window EWS (experimental lake - reference lake) during the pre-

bloom fertilization period. 

 We also applied the quickest detection method to the calculated rolling window EWS to 

evaluate for evidence that the experimental lake had switched from a baseline, or high resilience, 

state to an alarm, or low resilience, state (Carpenter et al. 2014). The quickest detection method 

is an online method, updating with each data point to give a binary “alarm” or “no alarm” status 

(Polunchenko and Tartakovsky 2012). It is based on the Shiryaev-Roberts statistic, which 

accumulates evidence from the likelihood ratio that the experimental lake is in the alarm vs. 

baseline states. When the S-R statistic gets large enough, it generates an alarm, suggesting the 

experimental lake is in a low resilience state, and then resets and can be triggered again; see 

Appendix A2 for full description and equations for the method. 

The baseline and alarm states are characterized by distributions of the rolling window 

statistics: f(x) for the baseline state and g(x) for the alarm state. Consistent with theory, the alarm 

state for both SD and AR(1) is higher relative to the baseline state. For rolling window SD, f(x) ~ 

N(µbaseline, σpool) and g(x) ~ N(µalarm, σpool) where µbaseline is the observed rolling window standard 

deviation in the reference lake, µalarm = µbaseline + 2* σpool, and σpool is the pooled standard 
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deviation of the reference and experimental lake (Wilkinson et al. 2018). For rolling window 

autocorrelation, f(x) and g(x) are given by the exact distribution for Pearson correlation 

coefficient; with ρ equal to the observed lag-1 correlation in the reference lake for the baseline 

distribution, and ρ equal to 0.95 for the alarm distribution. This formulation for QD of rolling 

window AR(1) is an update to that used in previous studies (e.g. Pace et al. 2017, Wilkinson et 

al. 2018) which was based on a first-order error propagation approximation; the new “exact” 

method avoids erroneous alarms that occur when experimental lake AR(1) is less than reference 

lake AR(1) (see SI of Wilkinson et al. 2018). 

 Quickest detection (QD) alarms were classified as either “true alarms” if they occurred 

during the pre-bloom fertilization period, or “false alarms” if they occurred when the 

experimental lake was not being fertilized, either in 2018 or 2019 prior to the start of nutrient 

additions. Alarms occurring after bloom onset were designated “late alarms” and were not 

included in any analyses. True and False Positive Rates (TPR and FPR) for each variable were 

calculated by dividing the total number of alarms observed during a period (pre-manipulation or 

pre-bloom fertilization) by the total number of days in that period. These analyses were also 

carried out for all lake-years and variables with daily data available as described in Experimental 

Design above. 

 Spatial early warning statistics - Analogous spatial early warning statistics were 

calculated for data collected by the FLAMe system. Standard deviation of all spatial points 

collected from each lake on a sampling date was calculated for all variables. Spatial 

autocorrelation was quantified using Moran’s I with inverse distance weighting using the ape 

and geosphere R packages (Paradis and Schlief 2019, Hijmans 2019). For each variable and 

statistic, a paired t test was performed to test if the spatial statistics were significantly different 
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between the experimental and reference lakes during the pre-bloom fertilization period, based on 

expectations that spatial EWS would be higher in the experimental than the reference lake. 

Changes in spatial statistics through time during the pre-bloom fertilization period were also 

tested for as described for temporal EWS above, by calculating Kendall’s tau on the difference in 

the statistics between lakes (experimental - reference). 

Results 

 Nutrient additions in 2019 created a large algal bloom in the experimental lake, with 

chlorophyll-a crossing the 14 ug/L bloom threshold on day of year (DOY) 201 after 41 days of 

fertilization (Figure 3.1). Chlorophyll-a (chl-a) and phycocyanin fluorescence (phyco) peaked 8 

days after the bloom threshold was crossed, at a chl-a concentration of 49 ug/L, and then 

declined and rebounded over the next 13 days. A secondary peak in pigment concentrations was 

followed by a 12-day crash, and then by an increase that crossed the bloom threshold for a 

second time on DOY 240. These bloom dynamics in the experimental lake were also reflected in 

D.O. saturation and pH, daily averages of which peaked at greater than 130% and 9.5, 

respectively (Figure 3.1). Reference lake dynamics closely tracked the experimental lake prior to 

nutrient additions, except for higher dissolved oxygen and less acidic pH in the experimental 

lake. These offsets are likely largely due to past liming experiments in the experimental lake 

(Leavitt et al. 1989). 

 Bloom dynamics were also reflected in spatial observations from the FLAMe system. 

Representative spatial data from before the bloom, near its peak, and after the bloom decline for 

phycocyanin, D.O. saturation, and pH indicate the large bloom in the experimental lake and little 

change in the reference lake (Figure 3.2). Overall, spatial variability at any sampling event was 

modest; 94% of lake-date-variable combinations had a coefficient of variation < 0.03 and a 
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maximum value of 0.058 in experimental lake phycocyanin fluorescence during the bloom. In 

the non-fertilization year, spatial DO and pH were similar to the reference and experimental 

lakes (excepting the offset mentioned above) and no large increases in primary producers were 

observed. Weekly maps of spatial data are included in Appendix 2 (Figures A2.2 – A2.4), and a 

web app (R Shiny application) for visualizing any sampling event(s) is available in the tvsews 

package (https://github.com/cbuelo/tvsews) using the plot_FLAMe_maps() function.  

 Temporal early warning statistics largely matched expectations from theory for rolling 

window standard deviation (SD). For all variables, rolling window SD was much higher during 

the bloom relative to non-bloom periods in the experimental lake and relative to the reference 

lake (Figure 3.3). For three of the four temporal data variables (chl-a, phyco, and pH) rolling 

window SD was higher in the experimental lake than the reference lake during the pre-bloom 

fertilization period, generating “true” quickest detection (QD) alarms. There was little difference 

in rolling window SD of D.O. saturation during the entire pre-bloom period (both before and 

during nutrient additions), and no QD alarms were generated. Both chl-a and phyco during the 

pre-manipulation period had times when rolling window SD was higher in the experimental lake 

than the reference lake, resulting in “false” QD alarms. In total for rolling window SD, there 

were four false QD alarms and three true QD for chl-a, one false alarm and seven true alarms for 

phyco, zero false and zero true alarms for D.O. saturation., and zero false and two true alarms for 

pH (Figure 3.3, Table 3.1). The difference between experimental lake and reference lake rolling 

window SD increased significantly over the pre-manipulation period (Kendall’s tau positive, p < 

0.05) for both phyco and pH consistent with theory, while there was no significant change for 

chl-a or D.O. sat. (p > 0.05). 

https://github.com/cbuelo/tvsews
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 Rolling window lag-1 autocorrelation (AR(1)) largely did not show expected differences 

between lakes and changes through time during the pre-bloom fertilization period. The only 

exceptions were two periods for chl-a (approximately DOY 161 - 188 and after 187 of 2019) and 

one period for phyco (after DOY 188) when AR(1) was higher in the experimental lake than in 

the reference lake (Figure 3.3). However, the differences between lakes were not large enough, 

and AR(1) in the experimental lake not high enough, during these periods to generate QD 

alarms. The only time that AR(1) generated QD alarms in the manipulation year occurred after 

the start of the bloom: five late Chl-a alarms occurred between DOY 204 and 215 of 2019, when 

rolling window AR(1) was approximately 0.9 in the experimental lake and less than 0.25 in the 

reference lake. While there were no true alarms for rolling window AR(1) of phyco during the 

pre-bloom fertilization period, there was one false alarm on DOY 192 of 2018 and one late alarm 

on DOY 236 of 2019. For D.O. sat. and pH, rolling window AR(1) did steadily increase during 

much of the pre-bloom fertilization period in the experimental lake, but those increases were 

mirrored by increases in reference lake AR(1) (Figure 3.3). While rolling window AR(1) was not 

high enough in the experimental lake relative to the reference lake to generate true QD alarms, 

the difference between experimental lake and reference lake AR(1) did increase for phyco and 

D.O. sat (Kendall’s tau positive, p < 0.05) over the pre-bloom fertilization period (Table 3.1). 

There also was a significant decrease in the difference for pH (Kendall’s tau negative, p < 0.05). 

 There was significant sample-to-sample variability in both spatial statistics of all 

variables (Figure 3.4). For all three primary producer indicator variables measured by the 

FLAMe, spatial standard deviation (SD) in the experimental lake peaked and was markedly 

elevated at times during the bloom relative to the non-bloom period. During the pre-bloom 

fertilization period, only D.O. sat. had higher mean spatial variability in the experimental lake 
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than the reference lake (paired t test, p < 0.05). Also during this period, temporal trends in the 

difference between experimental lake and reference lake SD were not significant for any variable 

(Kendall’s tau, all p > 0.05), though spatial SD of pH increased steadily in the experimental lake 

over the four spatial sampling dates just prior to bloom onset (Figure 3.4). 

 There was significant overlap in spatial autocorrelation (Moran’s I) across all lakes, 

variables, and time periods (Figure 3.4). Unlike for spatial SD, Moran’s I was largely similar 

between the bloom and non-bloom periods, with the exception of Moran’s I in phyco being 

consistently elevated in the experimental lake relative to the reference lake from DOY 205 to 

217 after the start of the bloom. During the pre-bloom fertilization period, no variable had 

significantly different Moran’s I between the lakes (paired t test, p > 0.05), and only pH had a 

significantly increasing difference through time (Kendall’s tau positive, p < 0.05; Table 3.1). 

 For the 2018 – 2019 experiment, all variables with QD alarms in rolling window SD (i.e. 

excluding D.O. sat.) had a higher true positive rate (TPR) during the pre-bloom fertilization 

period than false positive rate (FPR) during the pre-manipulation period. Phyco and chl-a had the 

highest true positive rates, at 0.175 and 0.075 alarms per day respectively, pH had a slightly 

lower TPR (0.05), and D.O. sat. had a TPR of 0 as there were no alarms during pre-bloom 

fertilization period. D.O. sat. and pH had the lowest false positive rates (FPR = 0), followed by 

phyco (0.011), and then chl-a (0.056). Based on the difference between TPR and FPR, phyco 

was the best performing variable in 2018 – 2019 followed by pH, chl-a, and lastly D.O. sat. 

Including all lakes and years of data from prior experiments, the relative performance of 

the pigment or biomass variables (chl-a and phyco) was better than the process (i.e., affected by 

primary production) variables (D.O. sat and pH). For rolling window SD, chl-a and phyco had 

TPR near 0.15 and FPR < 0.05 alarms per day (Figure 3.5). pH had the third highest TPR (0.089) 



54 
 

followed by D.O. sat. (0.055). The FPR of SD for pH (0.035) was slightly lower than for Chl-a 

and phyco, while D.O. sat had the lowest FPR at 0.007 (Figure 3.5). 

 With no rolling window autocorrelation (AR(1)) alarms in any variable during the pre-

bloom fertilization period of the 2019 manipulation year, TPR was 0 for AR(1) across all 

variables for this 2018 – 2019 experiment (Figure 3.3). The single observed false alarm in the 

2018 – 2019 experiment in phyco AR(1) yields a FPR rate of 0.011 alarms per day for phyco and 

0 for all other variables. Including data from all lake-years, the AR(1)alarm rate was positive but 

low for both TPR and FPR of chl-a and phyco as well as FPR of D.O. sat, and zero for TRP of 

D.O. sat and TPR and FPR of pH (Figure 3.5). No variable had TPR > FPR for AR(1)alarms 

whether looking at data from all lake-years or just the 2018 – 2019 experiment. 

Discussion 

 We found that temporal EWS performed better than spatial EWS for predicting algal 

blooms and quantified the performance of temporal EWS in a realistic management scenario. 

Temporal EWS agreed with predictions from theory for more variable-statistic combinations 

than for analogous spatial EWS prior to an experimental bloom, with spatial EWS having 

significant variability between sampling events. Further, the rate of true positive alarms of 

resilience loss was higher than the rate of false positives in all variables across multiple lakes and 

experiments for rolling window standard deviation. In contrast, rolling window autocorrelation 

had much worse performance across all variables. 

 For temporal EWS, 50% of variable-statistic combinations showed the expected increase 

in the difference between the manipulated reference lake over the pre-bloom fertilization period 

(Table 3.1). As in previous studies of temporal EWS of experimental algal blooms (Pace et al. 

2017, Wilkinson et al. 2018), we found that the quickest detection method generated “true” 
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alarms during the pre-bloom fertilization period. Also in agreement with those studies, rolling 

window standard deviation performed better (true alarms in 3 out of 4 variables and 12 total true 

alarms in our study) than rolling window autocorrelation (0 out of 4 variables and 0 total true 

alarms). The low number of pre-bloom alarms in autocorrelation in this experiment was 

surprising, though AR(1) alarms were observed when analyzing prior data from experiments 

(Figure 3.5). Notably, the updated “exact” quickest detection method for rolling window 

autocorrelation used here (Appendix 2) did not produce any alarms when AR(1) in the 

experimental lake was less than in the reference lake (see Appendix S1 of Wilkinson et al. 2018). 

We recommend the current implementation be used in future work to minimize misleading 

alarms. 

 The relatively poor performance of spatial EWS ran counter to expectations from 

previous studies. Donangelo et al. 2010 and Buelo et al. 2018 found that spatial variability and 

autocorrelation increased near critical transitions in models of eutrophication and algal blooms, 

respectively. But in our experiment, only pH had an increase in the difference between lakes for 

Moran’s I, and that difference was driven by low Moran’s I values in the experimental and 

reference lakes at the beginning and end of the pre-bloom fertilization period, respectively. 

Besides spatial SD of DO sat. being consistently higher in the experimental lake, the most 

conspicuous patterns in spatial EWS during the pre-bloom fertilization period was high sample-

to-sample variability and a large degree of overlap between lakes. The lack of change in spatial 

EWS was likely caused by limited spatial heterogeneity throughout the pre-bloom period. 

However, as was found by prior study of spatial EWS (Butitta et al. 2017), we did observe large 

changes in spatial EWS when comparing bloom and non-bloom states; all variables had large 

spikes in spatial SD at the peak of the bloom, as did Moran’s I for phyco. 
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 Our study design, a whole-lake manipulation including a reference system and non-

manipulation year, avoids many of the limitations of EWS studies based on post-hoc analysis of 

historical data. Studying EWS in historical data can help develop intuition on EWS 

methodology, e.g. which variables, statistics, data resolutions, and rolling window widths are 

likely to be successful (Dakos et al. 2008, Lenton et al. 2012, Bell et al. 2017). However, studies 

based on existing data can also bias findings towards positive performance of EWS due to the 

selection of cases observed to have undergone large changes, whether or not the underlying 

driver was a loss of resilience (Boettiger et al. 2012). One way to minimize bias is by using 

historical data from an ideally random and representative set of systems with and without regime 

shifts, as was done in a recent study of temporal EWS in tree growth using dendrochronology 

(Cailleret et al. 2019). The growing proliferation of ecological data available from research and 

monitoring programs as well as earth observing systems, including for aquatic ecosystems and 

algal blooms, opens the possibility of applying these types of analyses more broadly (Hampton et 

al. 2013, Meinson et al. 2016, Eby et al. 2017). Properly designed experimental studies, while 

difficult to perform at the ecosystem scale, can provide powerful tests of findings from historical 

EWS studies and establish expectations for performance in applied management scenarios. 

Control of nutrient inputs in this experiment and the availability of an immediately 

adjacent reference system allowed us to connect changes in EWS to changes in resilience with a 

high degree of confidence. This along with extensive historical data when these lakes both were 

and were not fertilized provided a priori knowledge of the regime shift and its underlying causes 

to robustly test EWS. Prior data and studies provided a bloom threshold that allowed us to 

classify QD alarms as true, false, or late. However, there is no widely accepted universal 

definition of a bloom (Isles and Pomati 2021) and a lower threshold could have resulted in some 
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true alarms being classified as late alarms, decreasing the true positive rate (TPR) of alarms, 

though in the current experiment only one or two SD phyco alarms would likely be affected. 

Conversely, a slightly higher bloom threshold could have reclassified late alarms in SD of chl-a, 

phyco, and pH as true alarms, raising the TPRs. In most systems, the drivers of regime shifts and 

their values are not likely to be known, and indeed a primary motivation for EWS methods is to 

derive insight on relative system resilience without complete knowledge of underlying dynamics 

(Scheffer et al. 2015). The success of EWS in this study (i.e. temporal EWS changes agreeing 

with theoretical predictions, and higher TPR than FPR) suggests that these methods may have 

utility to managers in predicting algal blooms when they have adequate reason to suspect a 

regime shift (Spears et al. 2017).  

However, caution is also warranted. In the current experiment and across all lake-years, 

rolling window SD performed much better than rolling window autocorrelation, contradicting 

results from modeling studies that both standard deviation and autocorrelation should increase as 

critical transitions are approached (Batt et al. 2013a) or that increases in autocorrelation are more 

consistent than increases in variance before regime shifts (Carpenter et al. 2009; Dakos et al. 

2012). The low number of quickest detection alarms in AR(1) is not surprising given the 

similarity in AR(1) between the experimental and reference lakes (Figure 3.3). Non-co-

occurrence of EWS in different statistics has been noted in other EWS studies using data from 

long-term studies (Gsell et al. 2016, Burthe et al. 2016). The dependence of autocorrelation on 

time scale and sampling frequency is one possible explanation, though a recent study found that 

changes in temporal autocorrelation before a bloom were largely similar from time scales of 

minutes to days (Batt et al. 2019). The constrained range (-1 to 1) and expected value at the 
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critical point of a transition (1) of AR(1) likely also plays a role in its decreased sensitivity 

relative to SD, which can vary from 0 to infinity. 

In addition to differences in temporal EWS performance between statistics, we also found 

significant performance differences across variables and between the current experiment and all 

lake-years. Across all lake-years, the two algal pigment variables (chl-a and phyco) had the 

highest TPR and difference between TPR and FPR for rolling window SD (Figure 3.5), while pH 

and DO sat. had lower TPR and FPR. This is consistent with previous studies that documented 

contrasting EWS performance depending on which ecosystem state variable is considered 

(Carpenter et al. 2008, Batt et al. 2013b, Cailleret et al. 2019). In comparison, rolling window SD 

performance for Chl-a was much worse for the current experiment (TPR more than 50% lower 

and FPR slightly higher), while phyco performed much better (higher TPR, FPR more than 50% 

lower). DO sat. and pH also had significant differences in performance comparing all lake-years 

vs. just the current experiment. These differences demonstrate that while intuition or best 

practices maybe emerge from prior studies (e.g. “algal pigments are the most reliable variables'' 

or “rolling window SD alarms perform better than AR(1)”), such generalizations should not be 

taken as hard-and-fast rules. In practice, managers should consider the number of alarms, the 

variables, and statistics in which they occur in to determine the likelihood of a regime shift; but 

more and likely system-specific examples are needed to explicitly quantify that likelihood. 

In conclusion, this study offers the first direct comparison we are aware of between 

temporal and spatial EWS at the ecosystem scale for an experimentally-induced regime shift. 

Spatial EWS did not perform well due to high sample-to-sample variability, suggesting that 

relatively frequent spatial sampling may be required to discern changes in spatial EWS caused by 

resilience loss. Sampling at a lower frequency than done in this study could have increased the 
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chances of observing a misleading trend due to limited sample size. However, these methods 

should be tested further in different systems where spatial patterns may be more likely due to 

wind, currents, and heterogeneity in drivers of algal growth. Increasing ability to collect spatial 

data on lake characteristics using autonomous gliders and remote sensing (Austin 2013, Kislik et 

al. 2018) will continue to lower the difficulty of conducting such studies. We also demonstrate 

and quantify for the first time that temporal EWS, and the quickest detection method specifically, 

provide higher true positive alarm rates when an ecosystem is being pushed towards a critical 

transition than false positive rates when it is not. While we have applied this method as was done 

in past studies, further work should evaluate which parameters (rolling window size, alarm 

threshold, offset between the baseline and alarm states, etc.) optimize alarm performance 

including cases without contemporaneous data from a reference lake. Quickest detection 

performance should also be compared to other methods for predicting algal blooms, both EWS 

based (Ortiz et al. 2020) and near-term forecasting methods (Carey et al. 2021) for bloom state 

variables. Ultimately, prediction performance and uncertainty (EWS based or otherwise) will 

have to be incorporated into a framework that includes the costs and benefits of different 

interventions. For example, prediction reliability may be less critical if prevention or mitigation 

strategies are relatively inexpensive, easy, or quick to implement (e.g. issuing public warnings at 

beaches, stopping point sources of nutrients) vs. expensive, difficult, or slow (e.g. treating an 

entire water body with alum or algicides, shutting down or switching water supplies, reducing 

non-point or internal nutrient loading). Managers will inevitably have to balance the reliability of 

any prediction with the costs of taking action. 
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Table 3.1. Summary of temporal and spatial EWS during the pre-bloom fertilization period.   

 Temporal Spatial 

SD AR(1) SD Moran’s I 

Variable 

True 

alarms 

False 

alarms Slope 

True 

alarms 

False 

alarms Slope 

Exp. 

vs. 

Ref. Slope 

Exp. 

vs. 

Ref. Slope 

Chl-a 3 4 0 0 0 0     

Phyco 7 1 + 0 1 + ≈ 0 ≈ 0 

DO sat. 0 0 0 0 0 + > 0 ≈ 0 

pH 2 0 + 0 0 - ≈ 0 ≈ + 

 Slope denotes if the difference between lakes (experimental lake – reference lake) 

increased significantly through time (+, p < 0.05), decreased (–, p < 0.05), or was not 

significant (0, p > 0.05). 

 “Exp. vs. Ref.” denotes if the mean spatial statistic was significantly higher (>, p < 0.05), 

lower (<, p < 0.05), or not significantly different (≈, p > 0.05) in the experimental lake 

relative to the reference lake. 
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Figure 3.1. Daily time series of ecosystems state variables (chlorophyll, blue-green algae, 

dissolved oxygen saturation, and pH) measured from a single point at the center of each lake in 

the non-manipulation (2018) and manipulation (2019) years. Vertical lines represent the start of 

nutrient additions (dashed line) and bloom onset (solid line) in the experimental lake. 
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Figure 3.2. Maps showing the spatial distribution of phycocyanin, dissolved oxygen saturation, 

and pH on three representative dates: before the bloom in the experimental lake (DOY 165), near 

bloom peak (DOY 210), and after bloom crash (DOY 228). The top (northern) basin is the 

experimental lake, Peter Lake, and the bottom (southern) basin is the reference lake, Paul Lake. 
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Figure 3.3. Temporal early warning statistics: rolling window standard deviation (SD) and lag-1 

autocorrelation (AR(1)) with a 21-day window width. Points represent quickest detection alarms 

in the experimental lake; false alarms (yellow) before the start of nutrient additions (dashed 

vertical line), true alarms (green) after the start of nutrient additions and before bloom onset 

(solid vertical line), and late alarms (grey) occurred after bloom onset. 
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Figure 3.4. Spatial early warning statistics: spatial standard deviation (SD) and autocorrelation 

(Moran’s I) for phycocyanin, dissolved oxygen saturation, and pH for all spatial sampling dates 

in the experimental (red) and reference (blue) lakes. Vertical lines represent the start of nutrient 

additions (dashed) and bloom onset (solid). Missing blue-green algae data from 2018 are due to a 

calibration error. 
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Figure 3.5. Rates of true (green) and false (yellow) quickest detection alarms for rolling window 

standard deviation (SD) and autocorrelation (AR(1)) across all lake and years for chlorophyll, 

phycocyanin, dissolved oxygen saturation, and pH.  
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Chapter 4 

Anticipating blooms: exploring the accuracy of algal bloom 

initiation forecasts 
Will be submitted to Water Resources Research 

 
Abstract 

In many aquatic ecosystems, eutrophication causes algal blooms that have negative 

effects on ecosystems and the services they provide. The desire to maintain water quality has 

driven increasing interest in near-term forecasting of algal blooms to enable proactive 

management. However, adoption of bloom forecasting systems has been limited due largely to 

the need for system-specific models to accurately forecast blooms. Another important but 

understudied hurdle to successful adoption is the performance of forecast models to predict 

bloom initiation timing, which is critical for informing management actions. This period is short 

and tends to be underweighted in traditional forecast evaluation metrics. In this study, we use 

high-frequency data from whole-lake fertilization experiments to explore bloom initiation 

forecast accuracy. A data assimilation model based on the relationship between cumulative 

nutrient loading and algal biomass was used to assess forecast accuracy, focused specifically on 

bloom timing. Both initial conditions for model parameters and model flexibility to iteratively 

adjust parameters based on observations were important to the accurate prediction of bloom 

initiation. Inaccurate initial conditions, which could arise from unreliable prior estimates or 

changes in the bloom-driver response relationship, can be compensated for by increased model 

flexibility. However, too much flexibility can also result in fitted parameters from short-term 

trends that lead to inaccurate forecasts. The importance of bloom initiation to proactive 

management and potentially conflicting conclusions when model evaluation is based on 
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forecasting overall accuracy vs. bloom timing points to the need to explicitly consider this metric 

in model development and application. 

 

Introduction 

Algal blooms are both a natural phenomenon and a consequence of eutrophication 

(Heisler et al. 2008). Some algal blooms, particularly those related to eutrophication, have 

negative consequences and are designated Harmful Algal Blooms, or HABs. Because of needs to 

manage water supplies, protect aquatic resources like fish stocks (Swingle 1968), and assure 

human health (Carmichael 2001), there is increasing interest in forecasting HABs. Accurate 

forecasts allow management actions such as beach and shellfish bed closures (Trainer et al 

2007), application of algicides (McKnight et al. 1983), alternate uses of water bodies, and 

changes in water treatment. 

In a systematic literature review of bloom forecasting models that focused on 

cyanobacteria, Rousso et al. (2020) found a wide range of model types, inputs, and outputs. 

Models tend to be either “process based” (explicitly quantifying known relationships in 

mathematical equations) or “data-driven” (algorithms and statistics that use observed patterns to 

create anticipating rules). The heterogeneity and site-specificity of bloom forecasting models has 

likely limited adoption by water resource managers. Additionally, the multitude of factors that 

play a role and interact to either promote or suppress individual blooms (Paerl et al. 2001) 

complicates model application. 

Performance is another component of bloom forecasting models that is important to their 

potential adoption and application for management. Models are most often evaluated based on 

comparisons of predicted vs. observed values, for example with statistics such as correlation r, 
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coefficient of determination R2, or root mean square error, RMSE (Rousso et al. 2020). The 

timing of blooms relative to forecasts, especially during the early stages of bloom growth, is a 

critical component of forecasting model performance, because management interventions are 

most effective prior to or early in blooms. While some studies qualitatively examine the timing 

of blooms in model forecasts relative to observations (e.g. Coad et al. 2014, Recknagel et al. 

2017), and metrics like r, R2 or RMSE also capture errors in bloom timing, quantitative 

assessment of bloom initiation is often underweighted in model performance evaluation. 

Accurately forecasting bloom initiation is an inherently difficult task. It requires models 

that incorporate the response of algae to drivers, adapt to changing conditions that alter those 

responses, and have capability to know or predict drivers over relevant time scales. High 

frequency measurements of both algal abundance and driver variables are helpful to accurately 

capture the early stages of blooms and aid in evaluating this aspect of bloom forecasting. In this 

study, we use high-frequency data from a set of whole-lake fertilization experiments to identify 

key driver(s) of bloom initiation, which are then used in a forecasting model to explore the 

dependence of forecast accuracy of bloom initiation on parameter knowledge and model 

flexibility. 

Methods 

 Field Experiments – Data from a series of whole-lake fertilization experiments were used 

to develop a model for forecasting phytoplankton biomass and test its performance. The 

manipulations were carried out at the University of Notre Dame Environmental Research Center 

in the upper peninsula of Michigan, USA. Two lakes were fertilized: Peter Lake and Tuesday 

Lake from 2013 to 2015, and Peter Lake in 2019. Ammonium nitrate and phosphoric acid were 

added to each lake daily during the summer while the lakes were stratified by pumping stock 
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solution from a carboy into the propwash of a small boat propelled by an electric motor. Full 

description of the experiments including nutrient loading regimes are available in Pace et al. 

2017, Wilkinson et al. 2018, and Buelo et al. (In Review). Briefly, N:P ratios of nutrient 

additions were relatively low (5:1 – 15:1 molar ratio) to encourage cyanobacterial blooms; in 

2013 and 2019 nutrient addition loading rates were started at low levels and increased weekly 

while in 2014 and 2015 constant moderate loading rates were used. 

 The lakes are small (Peter Lake 2.4 ha, Tuesday Lake 0.9 ha), oligo- to meso- trophic, 

and located in relatively undisturbed watersheds. They have been extensively studied and do not 

undergo large algal blooms in the absence of nutrient additions (Pace et al. 2019). Tuesday Lake 

is a bog lake with darker water (mean color based on light absorbance at 440 nm = 5.2 m-1) due 

to high dissolved organic matter inputs from surrounding peatlands, while Peter Lake’s 

watershed is more forested and its water more clear (mean color = 2.1 m-1). Neither lake has 

significant inflow or outflows, though Peter Lake receives water from immediately adjacent Paul 

Lake via a culvert during high water conditions. 

 Measured Variables – Water samples for chlorophyll-a were collected daily at the center 

of the lake at a depth of 0.5m. Samples were filtered onto Whatman 47mm GF/F filters, 

extracted in methanol, and analyzed on a Turner Trilogy benchtop fluorometer (Holm-Hansen 

1978). Additional water quality parameters (phycocyanin, dissolved oxygen, pH) and 

temperature were measured in-situ at 0.75m every 5 minutes using automated sensors. Water 

temperature was also measured every 5 minutes with a string of thermistors every 0.5m from 0.5 

to 5 meters below the surface; these profiles were used to calculate mixed layer depth (Pace et al. 

2021). Meteorological conditions (air temperature, wind speed, photosynthetically active 

radiation [PAR]) were measured every 5 minutes from a raft on Peter Lake. Additional potential 
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bloom drivers and other limnological variables including light extinction profiles, water color 

(g440), nutrient concentrations (TN and TP), dissolved oxygen profiles, zooplankton abundance 

were measured weekly as described in Wilkinson et al. (2018).  

Forecast Model – To develop the forecasting model, exploratory data analysis was done 

graphically to identify driver(s) related to bloom timing. Cumulative phosphorus loading 

normalized by mean annual water color was closely related to chlorophyll during large blooms 

(see Results below) and this relationship was implemented in an Ensemble Kalman Filter (EnKF) 

model to predict chlorophyll concentrations and the bloom timing. EnKF is a data assimilation 

technique that uses a predictive model and observations to iteratively estimate system state, 

which can be used with forecasted (or in our case, known) future model driver values to predict 

future states. We use a variant of EnKF that employs parameter augmentation to also fit 

unobserved parameters of the predictive model to best match the observations (Zhang et al. 

2017). Full model description is provided in Supporting Information Appendix 3, we focus here 

on the most relevant EnKF details. The predictive model F() is a logistic growth type model 

where the carrying capacity is dynamic and changes through time based on the color-normalized 

cumulative phosphorus (CNCP) loading and three parameters that are also fit iteratively as 

observations are assimilated: 

𝐶ℎ𝑙𝑖,𝑡+1 = 𝐹(𝐶ℎ𝑙𝑖,𝑡, 𝐿𝑡+1) =  𝐶ℎ𝑙𝑖,𝑡 ∗ [1 + (1 −
𝐶ℎ𝑙𝑖,𝑡

𝐾𝑖,𝑡+1
)]  (1) 

𝐾𝑖,𝑡+1 = 𝐵𝑖,𝑡 +  𝐴𝑖,𝑡 ∗
𝐿𝑡+1

𝑘

𝐿ℎ𝑖,𝑡
𝑘 +𝐿𝑡+1

𝑘             (2) 

Where i denotes a single ensemble member, Chlt is chlorophyll at time t, Kt is the carrying 

capacity, At determines the asymptotic chlorophyll concentration at high loading values, Lt is the 

CNCP loading, Lht is the half-loading constant, Bt is the baseline chlorophyll concentration at 

low loading values, and k is a fixed, lake-specific constant determining how steep the increase in 
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Chl is at intermediate L (Table 4.1). Chli,t is the EnKF state variable corresponding to the 

observed chlorophyll measurements, while At, Lht, and Bt are parameters augmented to the EnKF 

state matrix. State and parameters were initialized using draws from uniform distributions, see 

Appendix S1 for details. 

Kalman filters assimilate data in two steps: first the forecast step, which uses the previous 

state of the system and the predictive model to forecast the state of the system at the current time 

step. In the update step, the difference between the predicted and observed state of the system is 

used to adjust the system state (including parameters) to better match the observations. To 

prevent filter divergence, when small parameter variance causes the ensemble to be 

overconfident in its forecasts and ignore observations, ensemble parameter inflation is applied 

using an inflation factor (IF) during the forecast step: 

𝛼𝑗,𝑡
𝑖− =  𝑎𝑗,𝑡−1̅̅ ̅̅ ̅̅ ̅ + 𝐼𝐹(𝛼𝑗,𝑡−1

𝑖 − 𝑎𝑗,𝑡−1̅̅ ̅̅ ̅̅ ̅)   (3) 

where 𝑎𝑗,𝑡 is the value of parameter j at time t, i- denotes ensemble member i at the forecast step, 

i denotes ensemble member i at the update step, and 𝑎𝑗,𝑡−1̅̅ ̅̅ ̅̅ ̅ is the mean of parameter j across 

ensemble members after the update step at time t – 1. There are several methods for setting IF 

(Anderson 2007, Whitaker & Hamill 2012), we use a common one of setting IF to a constant 

value slightly larger than 1 (Evensen 2009).  

Forecast Experiments – The ability of the model to accurately predict bloom timing was 

tested by varying both the initial values of the predictive model parameters and also the EnKF 

inflation factor IF. While all three parameters (A, Lh, B) of the predictive model F() that 

determine the carrying capacity K contribute to the shape of the chlorophyll vs loading curve 

(Figure 4.1), we focus on Lh due to its importance in determining the cumulative loading values 

at which a rapid increase in chlorophyll occurs. Forecasting experiments with initial Lh values 
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(Lht0) starting at a range of values centered at the “correct” (fit) value were conducted to assess 

how the model might perform under more realistic scenarios, where Lh estimates from prior 

blooms are either inaccurate or not constant from bloom to bloom. 

Forecast experiments were also carried out at across range of inflation factors IF from 

1.001 to 1.025. Low values of IF lead to slow changes to parameter values as model predictions 

are compared to observations. Larger values of IF create more spread in parameter values across 

ensemble members, which in practice allows parameter values to change more quickly as 

observations are assimilated. 

One hundred replicates for each combination of Lht0 and IF of the EnKF model were 

carried out at a daily time step: for day t, first predictions were made for each ensemble member 

using the updated states and parameters from day t-1 and equations (1) and (2) with the 

cumulative loading on day t. Then the update step adjusted the state and parameters based on the 

difference between the predictions and the observed chlorophyll on day t. Finally, the updated 

states and parameters were used to iteratively forecast future states for days t+1 to t+7 using the 

known future CNCP loading; in non-experimental settings future loading would also need to be 

forecast. This process was repeated for each day to the end of the time series for each lake-year. 

Seven-day forecasts were analyzed for errors in bloom timing; three and five day forecast 

horizon results are presented in Appendix 3 (Figures A3.1, A3.2). Bloom forecast timing error 

for each replicate was determined by calculating the difference between when the ensemble 

mean 7-day forecast and when the observed chlorophyll concentration first crossed a lake-

specific bloom threshold determined from historical data (Wilkinson et al. 2018). A timing error 

of 0 means the 7-day forecast correctly predicted the day of bloom initiation; negative errors 

indicate the bloom prediction was too early while positive errors indicate the bloom prediction 
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was too late (though errors up to +6 days could still provide some warning depending on how 

quickly management action is taken). The 100 replicates for each Lht0, IF combination were 

averaged to determine the mean bloom timing error. 

Results 

 Large blooms (> 40 ug/L chl-a) occurred in 3 out of 7 lake-years: Peter Lake in 2015 and 

2019 and Tuesday Lake in 2015. For these years, chlorophyll concentrations up until the bloom 

peak displayed a threshold relationship with cumulative phosphorus loading, with the increase in 

chlorophyll in Tuesday Lake occurring at much higher cumulative P loading values (Figure 

4.1a). Normalizing cumulative P loading by water color (g440) brought the responses of the 

lakes much closer together (Figure 4.1b), though there were still lake-specific differences in the 

sigmoid constant k (approximately 14 for Tuesday Lake and 7 for Peter Lake) as well as the 

loading half constant (approximately 60 for Tuesday Lake and 50 for Peter Lake) and asymptotic 

and baseline chlorophyll concentrations. Analysis of additional bloom drivers suggested other 

mechanisms that may have played a role limiting bloom development (Appendix 3, Figure 

A3.3), though the limited number of lake-years available precluded development of more 

complex predictive models with mechanisms explaining bloom occurrence and bloom die offs 

across all years. As our interest is in exploring limits to forecasting bloom timing, we limit our 

model analyses to the years with the largest bloom in each lake. These years were Peter Lake 

2019 and Tuesday Lake 2015 when in both cases nutrients were applied continuously over the 

summer and large sustained blooms developed (Wilkinson et al 2018; Buelo et al. In Review). 

The EnKF model successfully captured observed system dynamics. Figure 4.2 shows the 

evolution of model state and parameters for the 2015 Tuesday Lake bloom (Lh started at the 

“best estimate” value from Figure 4.1b and IF set to 1.02). The mean ensemble state estimate of 
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chlorophyll closely follows observations; the predictive model’s instantaneous estimate of the 

carrying capacity (Kt) from the fit parameters At, Lht, and Bt generally does too although was not 

as variable from day-to-day (Figure 4.2a). The asymptotic chlorophyll parameter At remains 

steady for most of the time series before oscillating as the bloom approaches its peak (Figure 

4.2b). The loading half constant Lht increases from day 55 to 70 before quickly declining around 

day 75 when chlorophyll starts to climb consistently (Figure 4.2c). The baseline chlorophyll-a 

constant Bt increases slightly and remains elevated from approximately day 10 to day 50 (Figure 

4.2d). 

Forecasts were generally accurate up until bloom peak, as expected based on the design 

of the model.  Figure 4.3 shows 7-day forecasts for both Tuesday Lake 2015 and Peter Lake 

2019 as well as model error (root mean square error, RMSE) for all forecasts for horizons from 1 

to 7 days, with IF = 1.02 and parameters started at the lake-specific fit values from Figure 4.1. In 

Tuesday Lake, the initial ramp of the bloom before day 80 is missed by the 7-day forecast due to 

the higher value of Lht up until approximately day 75, but the forecasts generally match 

observations for the remainder of the bloom (Figure 4.3a). The 7-day forecasts in Peter Lake 

closely track observations up until the bloom peak, but then severely overestimate chlorophyll 

concentrations after the bloom collapses (Figure 4.3b). Overall, EnKF forecast error is lower in 

Tuesday than a persistence null model (future forecasts are the same as the last observation) for 

all forecast horizons, especially for 5- to 7-day forecasts (Figure 4.3c). The EnKF forecast error 

is higher than the null model for all horizons in Peter Lake (Figure 4.3d) due to poor forecasts 

after the bloom peaked and subsequently declined. This is due the strictly increasing relationship 

between CNCP loading and chlorophyll concentrations (Figure 4.1) used for forecasting, which 
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did not match the bloom collapse dynamics observed in the latter part the summer in Peter Lake 

but did agree with the late-occurring bloom in Tuesday Lake. 

Varying the parameter inflation factor IF had an impact on parameter evolution and 

resulting forecasts, even for identical values of Lht0. Figure 4.4 illustrates Lht0 initialized at the 

“best” value (~58 mg/m2/g440) and also for a low value (47.5 mg/m 2/g440), for inflation factors 

of both 1.001 and 1.02. Prior to bloom initiation around day 70, observed chlorophyll declines 

slightly for most of the prior 25 days despite cumulative loading increasing. Ensemble members 

with higher Lht values better match these observations, so Lht increases over this period. 

However, the larger IF value (1.02) generates more variation in the ensemble, and Lht increases 

faster than for IF = 1.001 (Figure 4.4a,b) up to maximum values around day 70. The increases 

for both starting IF values overshoot the “best” Lht value (Figure 4.4a), as does the higher IF 

value for the low Lht0 case (Figure 4.4b). As a result, forecasts for these cases miss the early 

stage of bloom initiation from day 75 – 80 (Figure 4.4c,d). The slower increase in Lht for the low 

Lht0 case with IF = 1.001 overestimates chlorophyll for forecasts from day 60 – 75 but better 

captures the bloom ramp up from day 75 – 80 (Figure 4.4d). After day 80, forecasts for all cases 

largely converge as Lh ensemble variability decreases sharply. 

 Analysis of 100 replicate simulations for each combination of initial loading half constant 

Lht0 and parameter inflation factor IF reveal large variations in the error of 7-day forecast bloom 

timing predictions. The range of these forecasts is from 22 days too early to over 13 days too late 

(Figure 4.5). For Tuesday Lake, low inflation factors very close to 1 have a very small range of 

Lht0 values that lead to bloom timing errors close to zero; for example for IF = 1.002, an increase 

in Lht0 from 45 to 55 changes the mean forecasting error from approximately 9 days too early to 

approximately 4 days too late. More moderate IF values (~ 1.01 to 1.025) generally have positive 
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but small bloom timing error over a wide range of Lht0 values. Peter Lake has larger ranges of 

Lht0 values with bloom timing errors near zero for a given IF value, and smaller errors overall 

(Figure 4.5b). 

Discussion 

Our findings suggest that bloom timing can be forecast relatively accurately at horizons 

potentially useful for management, but that the consistency of bloom response to drivers and 

model flexibility is critical. Increasing the ensemble Kalman filter’s parameter inflation factor 

increases the model’s ability to correct from inaccurate starting parameters, but also can lead to 

the model fitting parameters from short-term trends that cause inaccurate predictions of bloom 

timing. Additionally, the more strongly nonlinear bloom initiation in Tuesday Lake was more 

difficult to forecast. 

The steady increase in chlorophyll past thresholds in cumulative loading (Figure 4.1a) 

across the large blooms suggests total (as opposed to instantaneous) loading and is a crucial 

determinant of bloom timing for these lakes. The relationship could arise from several possible 

mechanisms of bloom initiation: saturating benthic and other non-phytoplankton nutrient sinks 

(Vadeboncoeur & Steinman 2002), overcoming grazing pressure (Carpenter et al. 2001), and 

shifting the phytoplankton community to bloom dominating taxa (Brauer et al 2012) prior to 

rapid bloom growth. In non-experimental systems where nutrient loading is more sporadic, 

cumulative loading over a set time period (as opposed to total annual loading) may perform 

better. That normalizing cumulative P load by water color increased response similarity between 

lakes (Figure 4.1b) suggests that nutrient interactions with light availability and possibly 

dissolved organic matter uptake/release are important, consistent with other studies (Olson et al. 
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2020), but additional experiments would be needed to definitively identify the mechanism(s) 

involved. 

While our study does not represent a true forecasting scenario because it applied the 

forecasting model to the same data it was developed from, it illustrates both the challenge of 

accurately forecasting bloom timing and the potential of data assimilation methods like the 

ensemble Kalman filter. Identifying which drivers control bloom initiation is critical but difficult. 

Even in these relatively simple lakes where the key bloom driver was experimentally controlled, 

we were unable to identify other variable(s) that concretely separated years with large blooms 

from years with similar nutrient loads that had only moderate increases in phytoplankton 

(Wilkinson et al. 2018; Appendix 3 Figure A3.3). Doing so in larger and more complex systems 

is likely to be even more challenging, though machine learning methods have shown promise for 

identifying bloom drivers and thresholds in complex datasets (Isles et al 2017). A recently 

proposed framework by Isles and Pomati (2021) defines a bloom classification system based on 

bloom dynamics and causes and suggests modeling approaches for forecasting each type; such 

classifications will likely also be helpful for identifying which drivers are important and useful 

methods when focused specifically on bloom timing. Our model performs poorly at predicting 

chlorophyll concentrations after the bloom peak (Figure 4.3); similar findings have sometimes 

been observed in more complex forecasting models as well (Page et al. 2017). Models that 

include more drivers will be more flexible in the predicted driver(s)-bloom response relationship, 

but also will require more data to fit parameters and can lead to less accurate forecasts due to 

overfitting (Cawley and Talbot 2010). 

In addition to identifying important drivers and how they relate to bloom development, 

forecasting models need to correctly parameterize the bloom-driver relationship either a priori or 
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dynamically. If controls of bloom initiation are constant from bloom-to-bloom, it may be 

possible to establish fixed model parameters for forecasting. More often, bloom responses are 

likely to vary due to stochasticity and interactions between the many drivers not included in 

forecasting models. Data assimilation methods like the ensemble Kalman filter with parameter 

augmentation can iteratively fit parameter values that best match the data, potentially leading to 

more accurate forecasts. We evaluated our model’s ability to correctly fit parameters 

qualitatively by comparing fit carrying capacity to chlorophyll values. The calculated Kt values 

generally tracked chlorophyll observations up until bloom peak (Figure 4.2a), though with 

periods of consistent under- and over-estimation. Process error (reflecting error in the model’s 

predictions of chlorophyll in the forecast EnKF step) limited more dynamic updates to parameter 

values that would have led to Kt more closely tracking observations. Changes in individual 

model parameter values occurred during the expected time periods based on cumulative loading. 

Bt is the main determinant of carrying capacity Kt at low nutrient loading; consequently, Bt 

increased early in the experiment when observed chlorophyll is consistently higher than the 

calculated carrying capacity (Figure 4.2a). Lht has a strong control on Kt at moderate cumulative 

loads, and differences between the observed chlorophyll and Kt just before and after the start of 

bloom initiation drive directional changes in Lht (Figure 4.2c). Parameter variability of the 

ensemble around mean values was generally maintained throughout the experiment except for a 

sharp decrease in ensemble variability of Lht during the bloom initiation period, underscoring the 

importance of this parameter to bloom initiation.  

Another option for assessing model ability to correctly fit parameters is using model 

simulations where “true” parameter values are known and running the data assimilation model 

on synthetic time series generated from simulation outputs (Zwart et al. 2019). Where parameters 



84 
 

represent physical characteristics (e.g. sediment temperature in a water temperature forecasting 

model, Thomas et al. 2020), measurements could be used to confirm model fits, though this 

becomes more challenging when parameters represent more complex processes (e.g. hypo- and 

epi-limnetic oxygen demand, Carey et al 2021; DOC turnover rate or partitioning between 

different pools, Zwart et al. 2019). In the case of algal blooms, some parameters maybe difficult 

or impossible to measure in ways that realistically match field conditions (e.g., parameters that 

make up carrying capacity in this study), while checking other possible parameters may be 

feasible (e.g., the partitioning of total chlorophyll by different phytoplankton species or 

functional groups). 

The degree of model flexibility to fit dynamic model parameters interacted with 

parameter initial condition values and observed chlorophyll dynamics to determine bloom timing 

forecasts. In Tuesday Lake 2015, IF values greater than ~ 1.01 led to similar forecast errors for a 

wide range of Lht0 values, reflecting model flexibility to learn from assimilated data when started 

at non-optimal parameter values (Figure 4.5). Flexibility can also cause the model to fit “wrong” 

parameter values, for example elevated Lht values just prior to bloom initiation resulting from 

steady declines in chlorophyll (Figure 4.4) and led to late predictions of bloom timing for most 

Lht0, IF parameter combinations. Bloom timing errors near 0 for the Tuesday Lake 2015 bloom 

only occurred at low inflation factors for a narrow band of Lht0 values less than the optimal value 

fit from all the data (Figure 4.1), which we interpret as coincidental matching of Lht0 values and 

the IF-determined rate at which Lht changes.  

Despite the relatively narrow ranges of parameters that led to forecast timing errors near 

0, there was a much wider range of Lht and IF values that produced forecasts that would produce 

some warning for Tuesday in 2015. For example, a 7-day forecast with a bloom timing error of 
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+4 days would still provide three days for action to be taken prior to chlorophyll crossing the 

bloom threshold. Negative timing errors could also still be useful, though at some point raise the 

question of false positives as opposed to true prediction of an impending bloom. Peter Lake in 

2019 had a wider range of Lht0 values that lead to bloom timing errors near 0 for a given IF 

value, reflecting the less severe nonlinearity of the chl-CNCP loading response in this lake. The 

dependence of bloom timing error on IF suggests this EnKF model parameter can be an 

important determinant of model performance that should be evaluated. Some forecasting studies 

using EnKF have fit IF dynamically (Zwart et al. 2019) or consider a few different values (Page 

et al. 2018), but often only a single value is typically considered or presented.  

The specification of a bloom threshold is necessary to determine bloom timing forecast 

error. There is no universal definition of bloom (Isles and Pomati 2021), and while extensive 

historical and prior studies allowed us to define a threshold for these lakes (Wilkinson et al. 

2018), doing so in most systems will be challenging. Lower thresholds closer to baseline chl-a 

concentrations would provide less time for model parameters (especially Lht) to be adjusted as 

observations are assimilated, leading to more positive bloom timing forecast errors. Conversely, 

higher thresholds would provide more time for parameter adjustment and move forecast timing 

errors closer to zero.  

While we found that parameter initial conditions and IF contributed strongly to bloom 

forecasts and forecast error, this may not be the case for all forecasting models and scenarios. 

Uncertainty partitioning can be used to quantify the relative importance of parameter values to 

forecast uncertainty (Dietze et al. 2017). For example, Thomas et al. (2020) found that parameter 

and initial condition uncertainty were much less important than process and driver uncertainty 

for forecasting reservoir water temperatures. Similar analyses could be carried out on bloom 
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forecasts, though several bloom instances would be needed to robustly partition uncertainty 

specifically during bloom initiation periods.  

Focusing on bloom timing as opposed to overall forecast accuracy is an important 

distinction. Our findings demonstrate that which metric is being used to evaluate forecasts can 

lead to conflicting conclusions. Comparing RMSE of all forecasts would suggest our model 

performs worse for Peter Lake than for Tuesday Lake due to inaccurate forecasts after the bloom 

collapsed, whereas Peter Lake had smaller errors in bloom timing forecasts. The period when 

algal biomass is increasing presents the best opportunity to control blooms and minimize or 

avoid negative consequences. Bloom suppression methods like treatment with algicides are most 

effective when applied during the early stages of blooms (Burch et al. 2021), which can also 

minimize the release of toxins when algal cells are lysed (Tsai 2015). Overall, where bloom 

management is a primary goal for forecasting systems, bloom timing should be a central 

consideration in forecast model development and evaluation. 

Acknowledgements 

This work was supported by a Presidential Fellowship from the University of Virginia School of 

Data Science and the National Science Foundation under grants DGE 1315231, DEB 1754712, 

DEB 1753854 and DEB 1440297. Any opinions, findings, and conclusions or recommendations 

expressed in this material are those of the authors and do not necessarily reflect the views of the 

National Science Foundation. 

References 

Anderson, JL. 2007. An adaptive covariance inflation error correction algorithm for ensemble 

filters. Tellus A: Dynamic Meteorology and Oceanography. 59(2): 210-224. 

Brauer, VS, M Stomp, J Huisman. 2012. The Nutrient-Load Hypothesis: Patterns of Resource 

Limitation and Community Structure Driven by Competition for Nutrients and Light. 

American Naturalist. 179(6): 721-740. 



87 
 

Burch, M, J Brookes, I Chorus. 2021. Assessing and controlling the risk of cyanobacterial 

blooms. In: Toxic cyanobacteria in water - Second edition, World Health Organization, 

ISBN: 978-1-003-08144-9. 

Buelo, CD, ML Pace, SR Carpenter, EH Stanley, DA Ortiz, DT Ha. In Review at Ecological 

Applications. Evaluating the performance of temporal and spatial early warning statistics 

of algal blooms. 

Carey, CC, WM Woelmer, ME Lofton, RJ Figueiredo, BJ Bookout, RS Corrigan, W 

Daneshmand, AG Hounshell, DW Howard, ASL Lewis, RP McClure, HL Wander, NK 

Ward, RQ Thomas. 2021. Advancing lake and reservoir water quality management with 

near-term, iterative ecological forecasting. Inland Waters. doi: 

10.1080/20442041.2020.1816421. 

Carmichael, WW. 2001. Health Effects of Toxin-Producing Cyanobacteria: “The CyanoHABs”, 

Human and Ecological Risk Assessment: An International Journal, 7(5): 1393-1407. 

Carpenter, SR, JJ Cole, JR Hodgson, JF Kitchell, ML Pace, D Bade, KL Cottingham, TE 

Essington, JN Houser, DE Schindler. 2001. Trophic cascades, nutrients, and lake 

productivity: whole-lake experiments. Ecological Monographs: 71(2): 163-186. 

Cawley, GC, NLC Talbot. 2010. On Over-fitting in Model Selection and Subsequent Selection 

Bias in Performance Evaluation. Journal of Machine Learning Research. 11: 2079-2107 

Coad, P, B Cathers, JE Ball, R Kadluczka. 2014. Proactive management of estuarine algal 

blooms using an automated monitoring buoy coupled with an artificial network. 

Environmental Modeling and Software. 61: 393-409. 

Dietze, MC. 2017. Prediction in ecology: a first-principles framework. Ecological Applications. 

27(7): 2048-2060. 

Evensen, G. 2009. The ensemble Kalman filter for combined state and parameter estimation. 

IEEE Control Systems Magazine. 29,(3): 83-104. 

Heisler, J, P Glibert, J Burkholder, D Anderson, W Cochlan, W Dennison, C Gobler, Q Dortch, 

C Heil, E Humphries, A Lewitus, R Magnien, H Marshall, K Sellner, D Stockwell, D 

Stoecker, M Suddleson. 2008. Eutrophication and harmful algal blooms: a scientific 

consensus. Harmful Algae. 8:3–13. 

Holm-Hansen, O. 1978. Chlorophyll a determination: improvements in methodology. Oikos 30: 

438-447. 

Isles, PDF, F Pomati. 2021. An operational framework for defining and forecasting 

phytoplankton blooms. Front. Ecol. Environ. doi:10.1002/fee.2376. 

Isles, PDF, DM Rizzo, Y Xu, AW Schroth. 2017. Modeling the drivers of interannual variability 

in cyanobacterial bloom severity using self-organizing maps and high-frequency data. 

Inland Water. DOI: 10.1080/20442041.2017.1318640. 



88 
 

McKnight, DM, SW Chisholm, DRF Harleman. 1983. CuSO4 treatment of nuisance algal 

blooms in drinking water reservoirs. Environmental Management. 7:311-320. 

Olson, CR, CT Solomon, SE Jones. 2020. Shifting limitation of primary production: 

experimental support for a new model in lake ecosystems. Ecology Letters. 23(12): 

1800-1808. 

Pace, ML, RD Batt, CD Buelo, SR Carpenter, JJ Cole, JT Kurtzweil, and GM Wilkinson. 2017. 

Reversal of a cyanobacterial bloom in response to early warnings. Proc. Nat. Acad. Sci. 

U.S.A. 114(2): 352-357. 

Pace, ML, SR Carpenter, GM Wilkinson. 2019. Long-term studies and reproducibility: Lessons 

from whole-lake experiments. Limnology and Oceanography. 64(S1): S22-S33.  

Pace, ML, CD Buelo, SR Carpenter. 2021. Phytoplankton biomass, dissolved organic matter, and 

temperature drive respiration in whole lake nutrient additions. Limnology and 

Oceanography. 66(6): 2174-2186. 

Paerl, HW, RS Fulton, PH Moisander, and J Dyble. 2001. Harmful freshwater algal blooms, with 

an emphasis on cyanobacteria. Sci. World. 1:76–113. 

Page, T, PJ Smith, KJ Beven, ID Jones, JA Elliott, SC Maberly, EB Mackay, M De Ville, H. 

Feuchtmayr. 2017. Constraining uncertainty and process-representation in an algal 

community lake model using high frequency in-lake observations. Ecological 

Modelling. 357: 1-13. 

Page, T, PJ Smith, KJ Beven, ID Jones, JA Elliott, SC Maberly, EB Mackay, M De Ville, H. 

Feuchtmayr. 2018. Adaptive forecasting of phytoplankton communities. Water 

Research. 134: 74-85. 

Recknagel, F, PT Orr, M Bartkow, A Swanepoel, H Cao. 2017. Early warning of limit-exceeding 

concentrations of cyanobacteria and cyanotoxins in drinking water reservoirs by 

inferential modelling. Harmful Algae. 69: 18-27. 

Rousso, BZ, E Bertone, R Stewart, DP Hamiltion. 2020. A systematic literature review of 

forecasting and predictive models for cyanobacteria blooms in freshwater lakes. Water 

Research. 182: 115959. 

Swingle, HS. 1968. Fish kills caused by phytoplankton blooms and their prevention. FAO 

(F.A.O.U.N.) Fish. LA Rep. 44(5): 407–411. 

Thomas, RQ, RJ Figueiredo, V Daneshmand, BJ Bookout, LK Puckett, CC Carey. 2020. A near‐

term iterative forecasting system successfully predicts reservoir hydrodynamics and 

partitions uncertainty in real time. Water Resources Research, 56, e2019WR026138. 

Trainer, VL, WP Cochlan, A Erickson, BD Bill, FH Cox, JA Borchert, KA Lefebvre. 2007. 

Recent domoic acid closures of shellfish harvest areas in Washington State inland 

waterways. Harmful Algae. 6(3): 449-459. 



89 
 

Tsai, KP. 2015. Effects of two copper compounds on Microcystis aeruginosa cell density, 

membrane integrity, and microcystin release. Ecotoxicology and Environmental Safety. 

120: 428-435. 

Vadeboncoeur, Y, AD Steinman. 2002. Periphyton function in lake ecosystems. 

TheScientificWorld. 2: 1449-1468. 

Whitaker, JS, TM Hamill. 2012. Evaluating Methods to Account for System Errors in Ensemble 

Data Assimilation. Monthly Weather Review. 140: 3078-3089. 

Wilkinson, GM, SR Carpenter, JJ Cole, ML Pace, RD Batt, CD Buelo, and JT Kurtzweil. 2018. 

Early warning signals precede cyanobacterial blooms in multiple whole-lake 

experiments. Ecol. Monogr. 88(2): 188–203. 

Zhang, H, HJH Franssen, X Han, JA Vrugt, H Vereecken. 2017. State and parameter estimation 

of two land surface models using the ensemble Kalman filter and the particle filter. 

Hydrol. Earth Syst. Sci. 21: 4927–4958. 

Zwart, JA, O Hararuk, YT Prairie, SE Jones, CT Solomon. 2019. Improving estimates and 

forecasts of lake carbon dynamics using data assimilation. Limnology and 

Oceanography: Methods. 17: 97-111. 

  



90 
 

Table 4.1. Model parameters. 

Variable / Parameter Description 

Chli,t Chlorophyll concentration, state variable 

Ki,t Carrying capacity, parameter (eqn 2) 

Lt Color-normalized cumulative P loading, driver variable 

Ai,t Asympote chlorophyll parameter, fit by EnKF 

Lhi,t Loading half-constant parameter, fit by EnKF 

Bi,t Baseline chlorophyll parameter, fit by EnKF 
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Figure 4.1. Chlorophyll-a concentration up to bloom peak vs. a)  cumulative P loading and b) 

cumulative P-loading normalized by color. Points are daily measured values. Lines are fits to 

threshold response for each lake. Time series of chlorophyll for all years are in Appendix 3 

Figure A3.4. 
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Figure 4.2. Evolution of ensemble state and parameters. A) Observed chlorophyll-a 

concentrations (black line), individual ensemble state fits of chlorophyll (grey lines), ensemble 

mean (blue line), and estimate of carrying capacity (red line). B) Individual ensemble parameter 

fits (grey lines) and ensemble mean for asymptotic chlorophyll concentration At. C) Individual 

ensemble parameter fits (grey lines) and ensemble mean for loading half constant Lht. D) 

Individual ensemble parameter fits (grey lines) and ensemble mean for baseline chlorophyll 

concentration Bt. 
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Figure 4.3. Seven day forecasted and observed chlorophyll concentrations (A and B) and overall 

model error for 1 to 7 day forecast horizons (C and D) in Tuesday Lake 2015 (A, C) and Peter 

Lake 2019 (B, D). 
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Figure 4.4. Lht parameter fits (A, B) and 7-day forecasts (C,D) for different parameter inflation 

factors (1.001 = red, 1.02 = blue). A and C start Lh at the “best” value fit from all data (Figure 

4.1); B and D start Lh at a lower initial value. Thin, transparent lines in A and B represent 

individual ensemble member, thick lines are the ensemble mean. 
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Figure 4.1. Average error in bloom timing for 7-day forecast across 100 replicate simulations for 

each combination of starting loading half-constant parameter (Lht) and parameter inflation factor 

(IF) for A) Tuesday Lake 2015 and B) Peter Lake 2019. The color scalebar was truncated at +/- 8 

days to allow for visualization of smaller errors; Lh, IF combinations with < -7 or > +7 day 

errors are printed on the grid, rounded to the nearest whole number. 
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Chapter 5 

Quantifying disturbance and recovery in estuaries: tropical cyclones 

and high frequency measures of oxygen and salinity 
Will be submitted to a journal to be determined 

 

Abstract 

Tropical cyclones are important drivers of disturbances in coastal ecosystems. These 

storms can impact estuaries via a variety of mechanisms including storm surge, flooding from 

precipitation, and direct damage from high winds and wave action. Prior studies have 

documented and described disturbances caused by tropical cyclones, including prolonged periods 

of depressed salinity from high freshwater discharge as well as both increased and decreased 

dissolved oxygen concentrations from increased loading of organic matter and/or nutrients. 

However, most studies of disturbance and recovery in these highly diverse and dynamic 

ecosystems have been limited to one or a few locations or storm events. Thus, there are limited 

generalizations about storms impacts and whether there are general patterns associated with 

ecosystem response and recovery. In this study, we apply a new method for detecting disturbance 

and recovery to long-term and high-frequency measurements of salinity and dissolved oxygen 

from NOAA’s National Estuarine Research Reserve System. By analyzing the impacts of 59 

tropical cyclones at 19 estuaries throughout the eastern United States, we were able quantify 

disturbance occurrence, timing, recovery time, and severity and ask what storm and location 

properties are associated with changes in disturbance characteristics. Salinity disturbances 

generally started earlier than dissolved oxygen disturbances and lasted longer. In most cases 

recovery time was within days, though some disturbances lasted weeks or months. Recovery 

time was positively correlated with disturbance severity for both variables. Both storm 

(especially precipitation) and location properties were related to disturbance characteristics. Our 
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findings demonstrate the power of high-frequency, long-term, and cross-system data, when 

combined with appropriate statistical methods, to provide insights that improve understanding 

and potentially management of estuarine resilience to disturbances. 

 

Introduction 

Tropical cyclones are large and severe events that can have substantial impacts on coastal 

ecosystems including estuaries. Storm surge causes flooding and pushes saltwater inland, while 

high winds and wave action can damage terrestrial (Danielson et al. 2017) and aquatic vegetation 

(Congdon et al. 2019). Intense precipitation increases freshwater discharge to estuaries with high 

inputs of nutrients (Angels et al. 2015), dissolved organic carbon (Crosswell et al 2014), and 

suspended solids (Bukaveckas et al. 2020). These disturbances impact ecosystem function and 

the ecosystem services estuaries provide including, for example, declines in species and habitats 

that provide protection from storm surge (Armitage al. 2020), die-offs of recreationally and 

commercially important fish and shellfish populations (Parker et al. 2013), and increases in 

carbon emissions to the atmosphere (Crosswell et al. 2014).  

Given the impacts of tropical cyclones and their global occurrence and projected increase 

in severity and geographic distribution due to climate change (Knutson et al. 2010, Sobel et al. 

2016), understanding the drivers of estuary disturbance and recovery from storms is crucial to 

managing these critical ecosystems. Knowing what event and ecosystem characteristics 

determine if a disturbance occurs, the disturbance effects, and how systems respond can help 

build resilience (Grimm et al 2017). Additionally, disturbances may have differing effects on 

different ecosystems, variables, processes, and services that create tradeoffs for management. For 

example, release of water from upstream impoundments may be necessary to restore ecosystems 
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and protect infrastructure and property, while negatively impacting downstream estuaries via 

depressed salinity and increase nutrient loading (Steinman et al. 2002, Rogers and Allen 2008). 

Identifying disturbances requires separating event-driven changes in ecosystem 

parameters from natural variability. However, doing so for tropical cyclone impacts on estuaries 

is difficult because they are inherently dynamic through time and spatially heterogeneous. At a 

given location within an estuary, what constitutes “normal” values of a parameter is determined 

by interacting processes (e.g., tidal, diel, and seasonal cycles, weather) and characteristics (e.g., 

hydrologic position, depth, bottom substrate). The influence that these and other factors play 

changes within and between estuaries and depending on what variable or parameter is being 

considered. As such, establishing baseline conditions requires either a strong understanding of 

what processes dominate at a given location or extensive prior data. 

Despite the many difficulties that have limited cross-system and cross-storm examination 

of disturbances, the data to do so is increasingly available for a number of ecosystem parameters 

(Gaiser et al 2020). Developments in sensor technology and remote sensing platforms have made 

it possible to measure key physical, chemical, and biological variables at higher and higher 

frequency. In aquatic ecosystems, in-situ sensors can measure water quality parameters like 

temperature, salinity, turbidity, pH, dissolved oxygen, phytoplankton pigment fluorescence, and 

nutrient concentrations on the scale of seconds to minutes (Glasgow et al. 2004, Fries et al. 

2008). Satellite remote sensing can be used to infer shellfish and submerged aquatic vegetation 

coverage (Niewhof et al. 2015, Wang et al. 2007), as well as the distribution of turbid waters 

(Doxaran et al 2006) and phytoplankton (Jiang et al 2020). For some locations, high-frequency 

measurements have been collected for decades by monitoring programs like NOAA’s National 

Estuarine Research Reserve System (NERRS; https://coast.noaa.gov/nerrs/). 

https://coast.noaa.gov/nerrs/
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While having high frequency and long-term data is a helpful first step to understanding 

patterns and controls of disturbances, statistical methods and algorithms are required for 

assessing impacts. However, the different mechanisms by which tropical cyclones can cause 

disturbances and their potentially contrasting effects make comparison across different variables, 

storms, and sites using simple metrics difficult. For example, storm surge may increase salinity 

of a given site during one storm, whereas river discharge may decrease it following another 

storm that lacks significant storm surge but has much higher precipitation (Davis et al. 2004). 

Dissolved oxygen concentrations may crash in response to increased bacterial respiration of 

terrestrial carbon, increase sharply if algal blooms develop from nutrient spikes, or stay about the 

same but with decreased amplitude of daily cycles if flushing limits primary producer growth 

and ecosystem respiration.  

The combined effects of inherent spatial and temporal variability and heterogenous 

potential responses have limited comprehensive study of the patterns and controls of post-

hurricane disturbance and recovery. Most studies of estuarine response to tropical cyclones cover 

one or a few storms in one or a few locations, and often use experimental designs based on 

opportunistic sampling due to the unpredictability in when and where storms will occur (Pruitt et 

al. 2019). Such studies have provided important insights on the impacts that tropical cyclones 

can have on estuaries, including the importance of storm and site characteristics in determining 

storm impact (Wetz and Paerl 2008), cascading effects of multiple hurricanes hitting a single 

location over a short time period (Paerl et al. 2001), and relationships between system resistance 

and resilience to disturbance (Patrick et al 2020). Paerl at al. (2018) used long-term monitoring 

to distinguish how differing storm types cause different responses for several tropical cyclones 

that struck a large estuary-sound complex over more than 20 years. Increasingly available data 
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for numerous estuaries (Mills et al. 2008) provides the opportunity to assess hurricane impacts 

across many different storms, locations, and variables. Here, we present a synthesis of 

disturbance and recovery for estuaries monitored by the National Estuarine Reserve System 

(NERRS) of the U.S. National Oceanographic and Atmospheric Administration (NOAA).  We 

apply a new disturbance detection method designed to robustly identify disturbance and recovery 

in high frequency data to water quality measurements from the NERRS monitoring program. 

Based on hundreds of storm-station time series, we ask: 1) Can the method quantitatively 

distinguish disturbances for a variety of estuaries and tropical cyclones? 2) What are the 

occurrence, timing, length, and severity characteristics of tropical cyclone disturbances in 

estuaries? And 3) What storm and site properties are associated with changes in disturbance 

characteristics?  

Methods 

Study Sites and Data – High frequency time series of water quality parameters from the 

National Oceanic and Atmospheric Administration’s National Estuarine Research Reserve 

System (NERRS) were analyzed for disturbance events associated with tropical storms. NERRS 

is composed of 29 U.S. estuaries, with each site containing several monitoring stations that 

collect water quality, meteorological, nutrient, and pigment data at various sampling frequencies. 

For this study, we focus on the water quality measurements collected by automated sensors at 

high frequency (15 minutes since 2007, 30 minutes prior) at 19 Atlantic NERRS sites from 2000 

to 2018 (Appendix 4 Table A4.1). The stations measure several water quality parameters: 

temperature, specific conductivity, salinity, dissolved oxygen (in percent saturation and mg L-1), 

depth, pH, turbidity, and optionally chlorophyll fluorescence. Here we focus on two variables, 

salinity and dissolved oxygen percent saturation (DO % sat). Salinity was chosen as it is critical 
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determinant of habitat suitability for aquatic organisms, varies across most NERRS sites from 

coastal to inland stations, and is controlled largely by physical processes. DO % saturation was 

chosen also as a critical determinant of habitat suitability. DO percent saturation (as opposed to 

concentration) controls for the effect of temperature and is driven by biological processes (i.e., 

primary production and respiration) and physical processes (e.g., atmospheric exchange). Data 

were obtained from the NERRS Central Data Management Office’s Advanced Query System 

and all measurements with data quality flags were removed prior to analysis. 

Storm identification – Tropical storms that potentially impacted water quality at each 

NERRS site were identified using a two-step process. First, storms that passed within 250 km of 

each NERSS site were ascertained using the hurricaneexposure and hurricaneexposuredata R 

packages (Anderson et al. 2020a, Anderson et al. 2020b). Second, for each identified storm, 

potential impacts were determined by plotting salinity and DO % saturation from 30 days prior 

to 60 days after the date the storm passed closest to the NERRS site. If any variable at any station 

within a NERRS site appeared to be affected by the storm (defined as an increase or decrease in 

the mean or variability), all stations and parameters for that site and storm were classified as 

“potentially impacted” and included in further analyses. While the second step is subjective, 

including some storms with minor impacts and possibly missing storms with subtle impacts, we 

aimed to be inclusive in classifying potentially impacted sites/storms to allow the disturbance 

detection algorithm to quantitatively distinguish events that fell outside the range of historic 

variability (see below). Alternative methods for identifying storms that potentially impacted 

water quality at sites were explored, such as thresholds in meteorological variables (high wind 

speed, heavy precipitation, drops in barometric pressure). However, the many potential 

mechanisms by which estuarine water quality can be impacted by storms (e.g., storm surge, wind 
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driven waves, local precipitation, increased discharge from the watershed) as well as frequent 

missing meteorological data during storms precluded the use of such a method. Ultimately, 

tropical cyclone-associated disturbances were not observed for over 60% of the station-storm-

variable combinations analyzed (see Results). Non-detection was expected given the distance 

threshold we used and the minor impacts of weaker hurricanes. Our method identified storm 

impacts on salinity and dissolved oxygen in approximately 40% of the cases and these detections 

were not limited to only events that caused widespread and severe disturbances. 

Disturbance detection – After potentially impacted NERRS sites for each storm were 

determined, individual stations within each site with sufficient data were identified for 

disturbance detection analysis. Station-storm-variable combinations with more than 25% missing 

data or a 5 day or longer gap in measurements during the period from 14 days prior to 60 days 

after the storm was closest were excluded from further analysis, as were combinations with 

fewer than 8 other years of data to use as reference data (see below) during the same date range 

meeting the same requirements. 

We applied a recently developed disturbance detection method designed for use with high 

frequency data (Walter et al. In Review). The method is implemented in an R package available 

on GitHub (https://github.com/jonathan-walter/disturbhf). It compares the distribution of a 

variable for rolling windows of the time series within a test period to a reference period using the 

empirical cumulative distribution function, (ECDF). The analysis consists of three steps. First, 

the difference statistic time series dw(t) is calculated for each window within the test period: 

𝑑𝑤(𝑡) =  ∑ |𝐸𝐶𝐷𝐹 (𝑥𝑡𝑒𝑠𝑡,𝑊(𝑡)) − 𝐸𝐶𝐷𝐹(𝑥𝑟𝑒𝑓,𝑊(𝑡)|
𝑖

∗ 𝑑𝑥

𝑁

𝑖=1

 

https://github.com/jonathan-walter/disturbhf
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where xtest,W(t) are the variable values within a rolling window of width W centered at time t 

within the test period (Figure 5.1A), xref,W(t) are the variable values in a reference period, N is the 

number of intervals at which to evaluate the EDCFs (here we use 1000) over the range of 

observed values in the test and reference windows, and dx is the width of those intervals (equal 

to (xmax – xmin) / N; Figure 5.1B,C). xref can be defined to be either fixed (all values within the 

reference period are used) or adaptive, where rolling windows of a specified width within the 

reference period are used to account for seasonable trends. As tropical cyclones occur from 

summer into late fall when seasonal changes in water quality might be expected, we use the 

adaptive reference period so rolling windows within the test period are compared to windows 

centered at the same day of year in the reference years. 

In the second step, the dw time series is rescaled based on the variability observed in the 

reference period. This is done by calculating dw,ref as above, but xtest,W(t)is instead defined by 

rolling windows of observations within the reference period. The mean (µdw,ref) and standard 

deviation (σdw,ref) of dw,ref are used to rescale dw(t) as a z-score (Figure 5.1D): 

z(t) = (dw(t) - µdw,ref) / (σdw,ref) 

Finally, user-specified thresholds in z(t) that define disturbance (threshdist) and recovery 

(threshrecov) are applied to identify the timing of disturbance events (initiation and conclusion). 

Short disturbances and recoveries can optionally be combined or removed using minimum 

disturbance and recovery lengths. We used a test window width of 3 days and a reference 

window width of 6 days as a balance between the ability to detect short disturbances vs. power to 

robustly characterize variable distributions. We also required that disturbances and recoveries 

last for at least 24 hours and set threshrecov = 0.5* threshdist. 
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Disturbance threshold sensitivity – The disturbance detection algorithm is based on the 

idea that storms can cause changes in the distribution of water quality values that are 

distinguishable from background variability. As the method compares the entire distribution of 

data as opposed to a single metric like the mean or median, it has the potential to capture a wide 

range of storm impacts (e.g., increases or decreases, changes in variance or other moments like 

skewness). To evaluate the dependence of disturbance detection on threshdist, we conducted a 

sensitivity analysis by varying threshdist from 1 to 3 and quantifying the number of detected 

disturbances in the storm and pre-storm periods across all station-storm-variable combinations 

identified above. The storm period was defined as 3 days prior to 7 days after when a storm was 

closest to each NERRS site for this analysis to limit disturbances to those that were highly likely 

to be caused by the storm. The pre-storm period was set to a period of the same length from 14 

days to 4 days prior to when the storm was closest. 

 Disturbance event characteristics and drivers – After setting the algorithm parameters 

and identifying disturbance events, we quantified disturbance characteristics and explored 

potential relationships with station and storm variables. Disturbance event characteristics 

included disturbance occurrence, timing (relative to when the storm was closest), length of time 

between disturbance initiation and recovery, and severity (peak z(t) during the disturbance). 

Disturbance events were limited to first occurring disturbances starting from 3 days before to 30 

days after each storm was closest to a NERRS site. Potentially explanatory station variables 

included mean salinity and depth as proxies for relative location within the estuary (oceanic vs. 

inland), mean tidal range as a proxy for tidal influence, and standard deviation of salinity as a 

proxy for variability in the contribution of upstream vs. ocean water sources. Storm traits 

included closest storm distance to the NERRS site, maximum wind gust speed, duration of wind 
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gusts over 20 m/s, total storm precipitation, and storm surge height. Storm distance and winds 

were determined from the hurricaneexposure R package (Anderson et al. 2020a); winds were 

from the population-weighted center of the closest county. Total storm precipitation was 

obtained from the PRISM reanalysis product (PRISM Climate Group 2021); daily precipitation 

totals from 3 days before to 7 days after the storm was closest were summed. Storm surge height 

was calculated from depth observations at each station as the difference between the maximum 

depth observed from 3 days before to 7 days after storm passage and the maximum depth from 

the preceding two weeks. While imperfect due to not accounting for if storm surge occurred at 

high or low tide, or longer period tidal cycles, the storm surge metric provides an indicator of 

how high water got at each location within an estuary. Relationships between disturbance 

characteristics and potential driver variables were assessed using general multiple logistic and 

multiple linear regression; the best regression model was determined separately for each 

combination of disturbance characteristic and ecosystem variable (salinity or dissolved oxygen) 

using AIC and stepwise model selection (Venables and Ripley 2002). 

Results 

 The disturbance detection method successfully identified anomalous salinity and oxygen 

conditions associated with tropical cyclones, and these anomalies included a wide range of 

responses and disturbance lengths. For example, Hurricane Florence in 2018 caused significant 

declines in salinity at North Inlet-Winyah Bay NERR’s Debidue Creek station, and it took over a 

month to return to normal values (Figure 5.2A). At Jacques Cousteau NERR, there was a sharp 

but short (~ 2 days) increase in salinity in response to storm surge from Hurricane Sandy (2012), 

after which salinity was lower than before the storm but still within the range of natural 

variability (Figure 5.2B). The distribution difference statistic also increased in response to storms 
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that impacted variability more strongly than mean values; at Grand Bay NERR’s Squamscott 

River station, Hurricane Hanna in 2008 significantly decreased the amplitude of dissolved 

oxygen oscillations but the mean remained near 85% saturation (Figure 5.2C). The normalized 

distribution difference statistic (z-score) increased over this period, but not enough to trigger a 

disturbance event for a disturbance threshold of 2. A more severe disturbance in dissolved 

oxygen occurred at Rookery Bay NERR’s Lower Henderson Creek station, where Hurricane 

Irma caused a crash in dissolved oxygen to near 0% saturation (Figure 5.2D). The z-score for this 

disturbance peaked at almost 8, indicating a highly anomalous event for the location. 

Disturbance threshold sensitivity analysis – The number of disturbances detected during 

11-day pre-storm and storm periods across all 972 station-storm-variable cases decreases steadily 

with higher disturbance thresholds (Figure 5.3A,B). For dissolved oxygen, the number of 

disturbances detected for a given disturbance threshold was very similar in the pre-storm and 

storm periods. The number of salinity disturbances was also very similar to the number of 

oxygen disturbances during the storm period, but significantly lower during the pre-storm period 

at a given disturbance threshold. This translates to a higher proportion of cases where a 

disturbance was detected in the storm period but not the pre-storm period for salinity than for 

dissolved oxygen (Figure 5.3C), indicating there is generally more separation between dw values 

before and after a storm for salinity and that dissolved oxygen disturbances had a similar 

probability of starting in the pre-storm and storm periods. Disturbance characteristic and driver 

variable analyses were carried using disturbance threshold of 2 and only for the first occurring 

disturbances starting from 3 days before to 30 days after storm passage, in order to base our 

conclusions on disturbances that were relatively severe and more likely to be driven by storm 

impacts as opposed to other causes. 
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Disturbance event characteristics – A wide range of disturbance timing, length, and 

severities were observed. Over 50% of detected disturbances began within 5 days of when the 

eye of a tropical storm passed closest to each NERRS site for both dissolved oxygen and salinity 

(Figure 5.4C). The peak in timing for disturbance initiation for salinity oxygen was from 0.5 to 

1.5 days after storm passage, with the cluster of most frequently observed times from 3 days 

before to 4.5 days after (Figure 5.4A). For dissolved oxygen, disturbances most frequently began 

from 2.5 to 3.5 days after storm passage; the cluster of most frequent times peaked much lower 

and was wider relative to salinity. (Figure 5.4B).  

Most detected disturbances where relatively short (median length of 6.4 days for salinity 

and 4.5 days for DO % sat.; Figure 5.5C), but there was a long tail in the distribution of 

disturbance lengths, with disturbances more than 50 days long observed for both DO % sat. and 

salinity (Figure 5.5A,B).  Salinity disturbances between 1 and 8 days were most common, with a  

significant drop in the number of observed disturbances longer than 14 days (Figure 5.5A). The 

cluster of most common disturbance lengths for dissolved oxygen was shifted to slightly lower 

values; the most common disturbance lengths was 1 – 6 days and the drop in observed 

disturbance lengths occurred after 12 days (Figure 5.5B). 

 There was significant variation in the peak severity value of each disturbance, with peak 

severities between 2 and 5 being relatively common and several values between 5 and 15 for 

each variable (Figure 5.6). There was a significant, positive relationship between log-

transformed peak severity and log-transformed disturbance length for both salinity and DO % 

saturation (Figure 5.6), with very similar correlation coefficients (r = 0.52 and 0.57 for salinity 

and oxygen, respectively). 
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Potential disturbance drivers – At least one potential driver was identified for all 

disturbance event characteristics for both dissolved oxygen and salinity based on regression 

analysis (Table 5.1). Higher precipitation and mean salinity were associated with increased 

occurrence of salinity disturbances, while increases in tidal range were associated with lower 

salinity disturbance occurrence. For dissolved oxygen, storms with higher precipitation and 

stations with larger depths had more disturbances, while stations with higher tidal ranges had 

fewer disturbances. Storms with longer durations of wind gusts over 20 m/s were associated with 

later occurring salinity disturbances; increased precipitation led to earlier occurring salinity 

disturbances. For dissolved oxygen disturbance timing, stations with higher salinity had later 

starting disturbances while storms with more precipitation that passed closer had earlier 

disturbances. Longer salinity disturbances were positively correlated with tidal range, wind gust 

duration, and precipitation. Longer dissolved oxygen disturbances were positively correlated 

with storm precipitation and station salinity variability, and negatively correlated with station 

mean salinity and storm wind gust duration. Several storm and station variables were positively 

and negatively related to peak severity for salinity disturbance, while the only driver variable that 

had a significant relationship with peak disturbance severity for DO % sat was maximum storm 

surge height. 

Discussion 

Combining the new disturbance detection method with long-term, high frequency data 

allowed us to robustly identify and characterize tropical cyclone-associated disturbances across 

19 estuaries and 59 different storms in the eastern United States. The method was able to 

distinguish diverse disturbance types in two important ecosystem state variables (Figure 5.2, 

Introduction Question 1). Disturbances had a wide range of timing, length, and severity (Figures 
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5.3, 5.4, 5.5; Question 2), and both storm and site properties were important in determining 

disturbance characteristics (Table 5.1; Question 3). 

Across all storms-estuary combinations analyzed, dissolved oxygen saturation and 

salinity had a similar number of disturbances detected during the time period around storms, 

though there were slightly more disturbances detected for salinity at disturbance thresholds > 2 

(Figure 5.3). The lower number of disturbances detected prior to storms for salinity relative to 

DO % saturation suggests that disturbances in this variable are more closely tied to storm events, 

while in addition to tropical cyclones, other mechanisms are important generators of anomalous 

DO % saturation values. Biological processes that alter oxygen concentrations (i.e., respiration 

and primary production) are highly dynamic in time and related to several environmental drivers. 

The dynamic processes that drive respiration and production are a likely explanation for the 

observation of oxygen anomalies not associated with storms (Caffrey et al. 2014, Murrell et al. 

2017). Biological mechanisms could also explain the observed lag in dissolved oxygen 

disturbance initiation relative to salinity. For example, physical processes that alter salinity like 

storm surge or precipitation-driven increases in freshwater discharge may occur simultaneously 

with or shortly after storm passage, whereas respiration and production impacts on oxygen 

concentration may take time to longer to develop. Dissolved oxygen disturbances were generally 

shorter than salinity disturbances. While these variables share many of the physical processes 

that promote recovery (e.g., stream and river discharge, tidal exchange), equilibration with 

atmospheric oxygen concentrations especially under vigorous mixing in estuaries could explain 

the faster recovery of DO % sat. relative to salinity (Kremer et al. 2003). 

While short disturbances (< 7 days) were most frequent for both variables, longer 

disturbances were also common. Forty-six percent of salinity disturbances lasted longer than 7 



110 
 

days as did 28% of dissolved oxygen disturbances. For many organisms that inhabit estuaries, 

these disturbances likely represent prolonged periods of stress and require substantial movement 

for mobile species. Low oxygen can cause fish and shellfish die-offs as documented for some 

hurricanes (Paerl et al. 1998, Paerl et al. 2001, Parker et al. 2013). While many estuarine species 

are euryhaline, large salinity ranges associated with storm-disturbances may exceed tolerance 

(Du et al. 2021). Though rare, we also found several cases where disturbances persisted for more 

than 30 days (salinity: n = 17, maximum = 99 days; dissolved oxygen: n = 3, maximum = 59 

days). The extremely slow recovery rates for these events could arise from different mechanisms. 

Long duration, low salinity disturbances result from high freshwater discharge (Paerl et al. 2001, 

Du et al. 2019). For dissolved oxygen disturbances, extreme loading of organic matter from the 

watershed into estuaries can stimulate high respiration that draws down oxygen concentrations 

(Paerl et al. 2018). Alternatively, storms can increase nutrient loading from internal or external 

sources, leading to algal blooms that increase oxygen concentrations, and though nutrients 

concentrations often decline quickly following hurricanes, recycling can maintain primary 

producer biomass (Peierls et al. 2003). 

We observed a positive relationship between disturbance length (also referred to as 

recovery or return time) and disturbance severity, with slightly more variability in the 

relationship for salinity than dissolved oxygen. These two disturbance characteristics quantify 

metrics of ecosystem resilience and stability; terms that have taken varying definitions and 

received considerable attention in ecology and other fields. To facilitate comparison, here we 

adopt the same definitions used by a recent analysis of coastal ecosystem response to Hurricane 

Harvey in 2017 (Patrick et al. 2020). Disturbance length corresponds to resilience and quantifies 

the ability of a system to recover after a perturbation, while disturbance severity corresponds to 
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ecosystem resistance and measures a system's ability to oppose change (Pimm 1984). Patrick et 

al. (2020) found a negative relationship between resilience and resistance in the response of 

several categories of estuary variables (hydrology, hydrography, biogeochemistry, biota) in the 

response of several Texas estuaries to Hurricane Harvey. The variables we studied (salinity and 

dissolved oxygen) fall in the hydrography category of Patrick et al. (2020). Our disturbance 

lengths are similar to the return times they observed, though the resistance measures are not 

directly comparable (log response ratio vs. peak z-score). Taken together, the wide range in 

observed resilience and resistance values and differing strength and direction of their correlation 

suggests the relationship is scale-related: negative across different variable categories for a given 

storm (Patrick et al. 2020); and positive for individual variables across many estuaries and 

storms (this analysis).  

By analyzing the impact of many storms on several estuaries, we examined the role that 

storm and site properties play in determining disturbance characteristics. Both storm and site 

properties were important (Question 3). Total storm precipitation was the most common storm 

variable related to disturbance responses, with higher precipitation associated with more, earlier 

starting, and longer disturbances for both salinity and dissolved oxygen. This finding is 

important given the projected increase in tropical cyclone severity and precipitation amounts due 

to climate change (Patricola and Wehner 2018). Mean salinity was the most common station 

property associated with disturbance responses, with saltier locations having more and more 

severe salinity disturbances, as well as later and shorter dissolved oxygen disturbances. 

Identifying storm and site characteristics associated with disturbances is important to identify 

current estuarine locations that are highly susceptible to disturbance and how climate change in 

the future may impact responses. Insights may offer ways to increase ecosystem resilience 
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through management of infrastructure (e.g., water retention/release), habitat restoration to 

promote refuges and portfolio effects (Schindler et al. 2015), and watershed land-management to 

limit run-off during extreme storms. 

While the disturbance detection method was able to identify and characterize 

disturbances, it also has limitations. The method quantifies any difference between the 

distribution of values in the test and reference periods, but doesn’t distinguish between different 

types/directions of disturbances (e.g., if a change is to higher or lower values, or 

increased/decreased variability). There also is not a direct correspondence between the 

disturbance statistics (dw or z-score) and physically meaningful ecosystem state values or 

thresholds (e.g., oxygen or salinity concentrations at which organisms are harmed). These issues 

could be addressed by first using the method as described above to demarcate disturbances, then 

to compare differences in the mean, variance, etc. of the test and reference years within those 

periods. Finally, the method requires both high frequency and long-term measurements to 

identify disturbances, which limits the variables and locations to which it can be applied. 

However, these types of data are increasingly available from sensors that can measure important 

ecosystem state variables (Porter et al. 2012). The data from NOAA’s National Estuarine 

Research Reserve System illustrates the immense value of long-term programs measuring the 

same variables at different sites, especially for events that are unpredictable but have large 

consequences like tropical cyclones. 

Despite these limitations, our findings represent an advance in the study patterns and 

drivers of disturbance at broad spatial and temporal scales in estuaries. By detecting disturbances 

that cause diverse deviations from baseline variability and quantifying several important 

disturbance characteristics, our method overcomes many of the constraints that have previously 
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limited studies to one or a few storms and/or locations (Pruitt et al. 2019). The approach fits 

naturally within proposed frameworks for understanding disturbance in ecological and socio-

economic systems (Gaiser et al. 2020), including specifically for responses to tropical cyclone 

(Hogan et al. 2020). Disturbances to salinity and dissolved oxygen in estuaries generally start 

soon after tropical cyclones pass and typically recover within days, though weeks and months 

long disturbance do occur. Properties of both storms and the locations they impact are related to 

disturbance response. Future work extending these findings including real time assessments with 

coupled data-analytical systems offer exciting possibilities that could improve understanding and 

management of hurricane impacts on estuarine ecosystems. 
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Table 5.1. Storm and station variables related disturbance characteristics: occurrence/non-

occurrence, timing (days after storm passage), length (days), and peak severity (z-score). Storm 

characteristics are highlighted in blue; site/station characteristics are highlighted in green. 

Drivers are separated into positive and negative significant relationships with each disturbance 

event characteristic.* denotes 0.05 ≤ p ≤ 0.1; other p-values are < 0.05. 

Disturbance 

Characteristic 
Salinity DO % saturation 

Occurrence 

Positive: precipitation, 

mean(salinity) 

Negative: tidal range* 

Positive: precipitation, depth 

Negative: tidal range  

Timing 

relative to 

storm 

Positive: wind gust duration 

Negative: precipitation 

Positive: mean(salinity) 

Negative: precipitation,  

storm distance 

Length 

Positive: tidal range, wind gust 

duration, precipitation* 

Negative: 

Positive: precipitation, sd(salinity)* 

Negative: mean(salinity), max 

wind gust speed* 

Peak Severity 

Positive: mean(salinity), storm 

distance, wind gust duration 

Negative: sd(salinity) 

Positive: storm surge height 

Negative: 
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Figure 5.1. Illustration of the disturbance detection algorithm. A) Observations of salinity before 

and after Hurricane Hanna impacted the Wells Reserve (Maine, USA) in 2008. Shaded periods 

are example three-day test periods before (blue) and after (red) storm passage. B) Empirical 

cumulative distributions (ECDF) for the before-impact example test period (blue) and 

corresponding reference periods in other years (black). The area of the shaded region 

corresponds to dw, the distribution difference statistic. C) ECDFs for the after-impact example 

test period (red) and corresponding reference periods in other years (black). D) Time series of the 

normalized (z-score) distribution difference test statistic.
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Figure 5.2. Example time series showing hurricane impacts and performance of the normalized 

distribution difference statistic. Black lines are observations of salinity (A, B) and dissolved 

oxygen percent saturation (C, D). Blue lines are the normalized distribution difference statistic 

for thee-day wide rolling windows. Red shaded areas represent disturbances identified with z-

score a disturbance threshold of 2 and recovery threshold of 1. Note different x and y axis scales. 
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Figure 5.3. Proportion of analyzed cases where a disturbance was detected for different 

disturbance threshold values during the storm period (A; 3 days before to 10 days after the storm 

was closest to each site), pre-storm period (B; 14 days before to 4 before the storm was closest to 

each site), and during the storm period but not the pre-storm period (C). Red lines are dissolved 

oxygen percent saturation, blue lines are salinity.  
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Figure 5.4. Histograms (A: dissolved oxygen, B: salinity) and empirical cumulative distribution 

curves (C) showing the timing of disturbance start relative to when the storm was closest to each 

NERRS site. 
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Figure 5.5. Histograms (A: dissolved oxygen, B: salinity) and empirical cumulative distribution 

curves (C) showing the length of time between disturbance initiation and recovery. 
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Figure 5.6. Relationship between disturbance length and peak disturbance severity for dissolved 

oxygen (A) and salinity (B).  
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Chapter 6  

Conclusion 

 

This dissertation advances understanding of ecosystem resilience and applies several 

approaches to assessing large changes in aquatic ecosystems. Chapter 2 established expectations 

for spatial early warning statistics (EWS) for algal blooms, finding that spatial standard deviation 

and autocorrelation provide early warning even in a model with highly dynamic spatial patterns 

controlled by physical transport. Chapter 3 tested these findings in a real aquatic ecosystem; 

spatial EWS did not perform as expected, likely due to the limited spatial heterogeneity observed 

in the small lakes studied. One temporal EWS, rolling window standard deviation, provided early 

warning prior to the bloom for most variables in this experiment and successfully differentiated 

between low and high resilience across multiple lakes and years. Chapter 4 used the same 

fertilization experiments to evaluate accurate forecasting of bloom timing, a crucial period for 

potential management actions. This analysis explored the possibility of using flexible models 

that assimilate information from both model predictions and high frequency observations to 

improve forecasts. Chapter 5 used a new disturbance detection method to quantify disturbance 

characteristics for many estuaries and tropical cyclones, revealing patterns and potential drivers 

of disturbance and recovery. Taken together, these findings illustrate how resilience concepts 

from theory and modeling studies can be applied to the real world. 

Early warning statistics have generated significant excitement and attention due to their 

potential broad applicability, with the hope that “generic” statistics can be used to quantify 

resilience and predict changes across systems as diverse as the Earth’s climate, ecosystems, 

financial systems, and the human body (Scheffer et al. 2009). Numerous modeling studies as 

well as laboratory experiments (e.g., Drake and Griffen 2010) and analyses of historical data 
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(e.g., Dakos et al. 2008) have found support for that excitement. However, others have raised 

valid concerns about EWS, including whether signals of changing resilience can be separated 

from other sources of variability (Perretti and Munch 2012), if case study selection biases 

findings (Boettiger and Hastings 2012), and the prevalence of the mechanism underlying EWS 

theory (Spears et al. 2017). Ecosystem experiments, while often logistically difficult to perform, 

are strong tests as they are both carried out at the same scale that EWS would be applied at and 

can be designed to create changes in resilience. This dissertation builds upon previous whole-

lake experiments that showed EWS do change in expected ways prior to algal bloom regime 

shifts (Pace et al. 2017, Wilkinson et al. 2018) by showing that temporal EWS (specifically, 

rolling window standard deviation) perform better than spatial EWS and can distinguish between 

high and low resilience states to provide management-relevant performance (Chapters 2 and 3). 

The health and economic impacts of algal blooms have also stimulated extensive study of 

directly forecasting blooms over time periods from days to weeks. Doing so is difficult due to the 

diversity of aquatic ecosystems and varied drivers that can promote or suppress blooms (Isles 

and Pomati 2021, Paerl et al. 2001). However, data on algal biomass and driver variables is 

increasingly available for forecasting (Bertone et al. 2018), and a number of forecasting methods 

have been developed (Rousso et al. 2020). Bloom initiation is often a short, but important, period 

for taking management actions to minimize negative bloom impact. Accurately predicting bloom 

timing is difficult but possible with flexible modeling approaches like data assimilation and high 

frequency observations (Chapter 4). Due to the importance of bloom initiation and its potential 

underweighting in traditional model evaluation metrics, future forecasting studies should 

explicitly consider errors in bloom timing forecasts during model development. Further progress 

on the mechanisms for and best indicators of bloom initiation is also critical. 
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Disturbances are ubiquitous in ecosystems, and how a system responds to disturbance 

events depends on and can affect its resilience. Tropical cyclones cause disturbances in estuaries 

that can negatively impact these ecosystems and the services they provide. This dissertation 

builds on prior studies of tropical cyclone disturbances that have generally used one or a few 

locations and storms to elucidate disturbance mechanisms and their effects (e.g., Paerl et al. 

2001, Wetz and Paerl 2008, Patrick et al. 2020). Utilizing a new method that is able to 

systematically identify disturbances across many tropical cyclones and estuaries allowed 

disturbance characteristics to be robustly quantified and tied to properties of storms and the 

locations they impact. Across many storm-estuary combinations salinity and dissolved oxygen 

recovered in estuaries usually within days to weeks (Chapter 5). However, periods of anomalous 

conditions are sufficiently long to stress both mobile and stationary organisms. These and future 

insights into tropical cyclone-caused disturbances will be crucial to maintaining and building 

estuarine resilience in light of projected increases in tropical cyclone severity (Knutson et al. 

2010). 

This dissertation takes important steps towards operationalizing resilience and applying it 

in the real world to improve management. The underlying motivation for studying resilience 

concepts is to maintain or improve the state of a system, but there are several hurdles between 

developing conceptual or mathematical models and putting them into practice. All four chapters 

of this dissertation were conducted at the ecosystem scale, providing a more realistic test than 

laboratory or smaller scale field experiments. The three chapters on algal blooms (Chapters 2 – 

4) utilized whole-ecosystem experiments, allowing us to test methods for prediction and 

forecasting in cases where a change was expected with a high degree of confidence. However, 

fully testing and operationalizing these methods in non-experimental settings, where bloom 
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drivers are less likely to be known and accurately quantified, will require additional research 

before these approaches can be used effectively to inform management decisions. 

The failure of spatial EWS to predict the experimental algal blooms (Chapter 3) despite 

model predictions to the contrary (Chapter 2) deserves further investigation. It’s possible that 

spatial EWS may work better in larger or more complex systems that have more spatial 

heterogeneity; indeed a recent study (Ortiz and Wilkinson 2021) documented high and changing 

spatial variability across different bloom stages in a 40 ha lake in Iowa, USA (20-40 times the 

size of lakes considered in Chapter 3). In experimental lakes study of this dissertation, temporal 

EWS performed better than spatial statistics. However, temporal EWS methods require further 

development to operationalize them for application in scenarios in which reference systems are 

not available. If available, historic data from when a system did/did not subsequently experience 

a bloom could be used to define the distribution of temporal EWS in a low and high resilience 

states. Alternatively, trends or patterns in temporal EWS may be useful for distinguishing 

changes (Ortiz et al. 2020). For direct bloom forecasting, the accuracy of bloom timing forecasts 

should be determined quantitatively for both process-based and data-driven models (e.g., 

Recknagel et al. 2017, Page et al. 2018) and conclusions on the best-performing models 

compared those based on common evaluation metrics like RMSE and R2 (Chapter 4). Both EWS 

and direct forecasting methods also need to be incorporated into a framework that includes 

management actions to determine if warnings come early enough for effective action (Biggs et 

al. 2009).  

For the resilience of estuaries to tropical cyclones (Chapter 5), studying naturally 

occurring disturbances as opposed to experimentally caused ones is an important step toward 

operationalizing this method, as these are the same ecosystems, disturbances, and data that would 
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be used to understand and build resilience in practice. While the current method and results 

quantify disturbance characteristics at a much broader scale than has previously been done, 

additional work is needed to fully understand the drivers of estuarine resilience and use that 

understanding to improve management. The storm and location properties related to disturbance 

characteristics in Chapter 5 are a good starting point, but other, more detailed properties have the 

opportunity to provide deeper understanding and actionable insights, such as: which tide a storm 

impacts a location on; natural (e.g., marsh or SAV) or man-made (e.g., engineered structures like 

seawalls) characteristics; the degree of eutrophication; and watershed characteristics (e.g., total 

area, proportion covered by development, agriculture, and forested/natural landscapes). Finally, 

Chapter 5 can also be extended by analyzing additional variables that can be measured at high 

frequency (e.g., turbidity, chlorophyll-a) to build a more complete picture of estuarine 

disturbance and controls of resilience. 

Resilience as a concept has been questioned as being too vague and multipurpose to be 

useful (Brand and Jax 2007). However, resilience can be defined for specific situations, given 

context, and operationalized (Quinlan et al. 2015). This dissertation evaluates several specific 

approaches to measuring aspects of ecosystem resilience. Expansion, elaboration, and 

application of resilience methodologies needs to continue to be a research priority and is 

especially critical given rapid local, regional, and global environmental changes. 
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Appendix 1: Supplemental Information for Chapter 2 

Model description 

We describe the model of Serizawa et al. (2008) and modifications below, and refer 

readers to the original manuscript for additional details.  

The full spatial model consists of a grid of 180x180 cells, each governed by a pair of 

partial differential equations representing two dynamic variables, the single nutrient (n, 

parameterized for phosphorus) and phytoplankton (p): 

𝜕𝑝 = [𝑑∇2𝑝 − (∇ ∙ 𝑣𝑝) +  
𝑛

1+𝑛
𝑝 − 𝑓𝑝

𝑝

1+𝑝
] 𝜕𝑡 + 𝑝𝜎𝑑𝑊     (1) 

𝜕𝑛 = [𝑑∇2𝑛 − (∇ ∙ 𝑣𝑛) + 𝑖𝑛 − 𝑎
𝑛

1+𝑛
𝑝 − 𝑚𝑛𝑛] 𝜕𝑡      (2) 

Parameter values are from Table 2, Set I in Serizawa et al. (2008), and given below in Table 

A1.1. 

In both (1) and (2), the first term inside the brackets represents diffusion: d is the 

diffusion coefficient and ∇2 is the Laplacian operator (divergence of the gradient of p or n). In (1) 

and (2), the second terms represent advection, where v is the local velocity of the velocity field 

created by 100 eddies randomly seeded on the grid domain (see equation 7 in Serizawa et al. 

2008).  

The third term in (1) represents growth of phytoplankton from nutrient uptake, while the 

fourth represents grazing by zooplankton. Note that fp is fixed (not dynamic), and so zooplankton 

density is constant. The final term in (1) was added in this study to represent  small 

environmental fluctuations. It is a Weiner stochastic process with standard deviation ρ = 0.01. 

For the deterministic portions of the simulations, this term is set to zero. The long-run 

deterministic system state (t=1000) is used as the starting system state for the stochastic portions 

of simulations. 
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The third term in (2) is the input rate of phosphorus, which is constant for a given 

simulation. The fourth term represents the uptake rate of phosphorus by phytoplankton. The fifth 

term represents non-phytoplankton phosphorus losses from processes like sedimentation or 

outflow. 

As in Serizawa et al. (2008), we start our simulations from initial distributions where both 

p and n vary around the fixed point for a given phosphorus input level, and gradients in the two 

variables are perpendicular to each other (see equations 10 and 11 and Figure 5a from Serizawa 

et al. 2008). The initial distribution scale parameter, A, determines the range of initial values 

around the fixed point at the start; we use the same value (A = 1) as Serizawa et al. (2008) do for 

their base case. Serizawa et al. (2008) show that changes in A for the same nutrient input rate 

create different specific patterns at a given time, but do not effect pattern formation (see 

Serizawa et al. 2008 Figure 6). 

The model in (1) and (2) is nondimensional, meaning that the parameters above and in 

Tables A1.1 are unitless. Serizawa et al. (2008) gives a dimensional version of the model in 

equations (1) and (2) of that manuscript. Serizawa et al. (2008) provide equations to convert 

between the dimensional variables and parameters and their nondimensional equivalents in 

equations (3) and (4), which are also reproduced below: 

𝑡 =  𝜇𝑇   ,     𝑛 =
𝑁

𝐻𝑁
   ,     𝑝 =

𝑃

𝐻𝑃
      (3) 

𝑖𝑛 =
𝐼𝑁

𝜇∗𝐻𝑁
   ,     𝑎 =

𝑘𝐻𝑃

𝐻𝑁
   ,     𝑚𝑛 =

𝑚𝑁

µ
   ,     𝑓𝑝 =

𝑓𝑃

µ𝐻𝑃
   (4) 

Variable and parameter meanings and units are presented in Tables A1.1 and A1.2 below. 

Serizawa et al. (2008) also provide dimensional parameter values in Table 1 along with 

parameter value ranges from the literature. Like Serizawa et al. (2008), we have chosen to use 

the nondimensional version for our simulation to minimize the number of parameters and 
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because we are interested in differences in the spatial indicators as the model transitions between 

blooms states, and not the specific parameter values themselves. The use of non-dimensional 

models and parameters is standard for stability analysis of dynamic models in ecology and other 

disciplines (Hastings & Gross 2012). 

Because this model is nondimensional, the spatial components (extent, resolution, 

diffusion and advection) of the grid are defined relative to each other, as is the temporal 

component of the model. For the parameter values used by Serizawa et al. (2008) and in this 

study, the time step of 0.025 corresponds to 1.2 hours and we calculate the spatial indicators 

every 1 time unit (unitless), which corresponds to 2 days. As both the temporal and spatial 

parameters can vary over several orders of magnitude (Table 1 and Section 4.1 in Serizawa et al. 

2008), future work is needed to identify the specific time and spatial scales at which spatial 

patterns and derived spatial indicators occur using spatiotemporal data from individual aquatic 

ecosystems. Our conclusions do not depend on the specific time scale as simulations cover 

several complete cycles in spatial patterns and statistics (Chapter 2, Figure 2.2). 
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Table A1.1. Nondimensional model parameters and values used in this study. 

Parameter Symbol Value(s) 

Scaled nutrient input rate (phosphorus) in 0.3 – 1.8  

Scaled nutrient conc. in phytoplankton A 8 

Scaled nutrient loss rate mn 0.03 

Scaled zooplankton feeding rate fp 0.9 

Diffusion coefficient D 0.04 

Maximum velocity vmax 0.3 

Length of half grid domain L 100 

Initial distribution scale factor A 1 

SD of environmental noise σ 0.01 
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Table A1.2. Variables and parameters from Equations 3 and 4 above. 

Parameter Symbol Units 

Nondimensional time t NA 

Dimensional time T Days 

Phytoplankton growth rate µ days-1 

Nondimensonal nutrient concentration (phosphorus) n NA 

Dimensional nutrient concentration (phosphorus) N g/m2 

Nutrient half-saturation constant HN g/m2 

Nondimensional phytoplankton concentration p NA 

Dimensional phytoplankton concentration P g/m2 

Phytoplankton half-saturation constant HP g/m2 

Dimensional nutrient input rate (phosphorus) IN g/m2/day 

Nutrient content in phytoplankton k NA 

Nondimensional loss rate of nutrient mn NA 

Dimensional loss rate of nutrient mN day-1 

Nondimensional zooplankton feeding rate fp NA 

Dimensional zooplankton feeding rate fP g/m2/day 
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Appendix 2: Supplemental Information for Chapter 3 

Quickest Detection Method Details 

The Quickest Detection method, also called the Shirayaev-Roberts procedure, is an 

‘online’ method that updates with each newly collected data point. It is based on the Shiryaev-

Roberts (S-R) statistic, which accumulates evidence as to whether an event has occurred based 

on the likelihood ratio of two models (Polunchenko and Tartakovsky 2012). For our purposes, an 

event corresponds to a shift from a baseline (high resilience) state to an alarm (low resilience) 

state, with each state defined by a distribution of rolling window early warning statistics 

(Carpenter et al. 2014). When the S-R statistic crosses a threshold, it triggers an alarm indicating 

it is likely the event has occurred and the system has changed state. After an alarm is triggered, 

the S-R statistic resets and is able accumulate more evidence and trigger additional alarms. The 

alarm response is described in equations 1 - 3: 

𝑅𝑡 =  {
(1 + 𝑅𝑡−1) ∗ Λ𝑡, 𝑅𝑡−1 < 𝐴

Λ𝑡, 𝑅𝑡−1 ≥ 𝐴
   (1) 

Λ𝑡 =
𝑔(𝑥𝑡)

𝑓(𝑥𝑡)
      (2) 

     𝐼𝑡 =  {
0,   𝑅𝑡 < 𝐴
1,   𝑅𝑡 ≥ 𝐴

     (3) 

where Rt is the Shiryaev-Roberts statistic at time t, A is the alarm threshold, Λt is the likelihood 

ratio of the alarm state model g() and baseline state model f() evaluated at the data point xt, and It 

is an indicator for whether an alarm has been triggered at time t. The alarm threshold A can be set 

based on the user’s tolerance for false alarms assuming the input data meet certain statistical 

assumptions (Pollak and Tartakovsky 2009); in practice we have found alarm timing to be 

insensitive across broad ranges of A (Carpenter et al. 2014) and use A = 10^7 (Wilkinson et al. 

2018). 
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Baseline and alarm models 

The data points xt are the EWS time series, rolling window standard deviation (SD) and 

autocorrelation (AR(1)), observed in the experimental lake. The models for the baseline f() and 

alarm g() states are determined by the reference lake EWS and expectations from theory, 

respectively, and are statistic specific. For both SD and AR(1), the baseline state model f() is 

centered at the observed EWS value in the reference lake to control for variation in EWS not 

caused by the manipulation in the experimental lake (storms, seasonal trends, etc). 

SD 

For rolling window SD, both f() and g() are normal distributions: 

   𝑓(𝑥𝑡)~ 𝑁(𝜇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒, 𝜎𝑝𝑜𝑜𝑙)     (4) 

𝑔(𝑥𝑡)~ 𝑁(𝜇𝑎𝑙𝑎𝑟𝑚, 𝜎𝑝𝑜𝑜𝑙)     (5) 

 where xt is the observed rolling window SD in the experimental lake, μbaseline is the observed 

rolling window SD in the reference lake and μalarm  = μbaseline +2*σpool . σpool is the pooled 

standard deviation of rolling window SD in both lakes as in Wilkinson et al. 2018 (Supplemental 

Information): 

    𝜎𝑝𝑜𝑜𝑙 =  √𝜎𝑟𝑤,𝑒𝑥𝑝
2 +  𝜎𝑟𝑤,𝑟𝑒𝑓

2      (6) 

where σrw,exp  and σrw,ref  are the standard deviations of the observed rolling window standard 

deviations, sdrw  in the experimental and reference lakes, respectively: 

 𝜎𝑟𝑤,𝑖 = 𝑠𝑑(𝑟𝑜𝑙𝑙𝑖𝑛𝑔 𝑤𝑖𝑛𝑑𝑜𝑤 𝑆𝐷𝑖) = 𝑠𝑑(𝑥𝑡,𝑖) =  √1
1

4∗𝑥𝑡,𝑖
2 ∗ 𝑥𝑡,𝑖

4 ∗ (
2

𝑁−1
+

𝜅

𝑁
)  (7) 

where xt is the observed rolling window SD, N is the sample size (rolling window width), and κ 

is sample kurtosis. 
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AR(1) 

For rolling window AR(1), we use the exact probability distribution for Pearson sample 

correlation coefficient: 

𝑓(𝑟, 𝜌, 𝑁) =
(𝑁−2)∗Γ(𝑁−1)∗(1−𝜌2)

(
𝑁−1

2
)
∗(1−𝑟2)

(
𝑁−4

2
)

√2𝜋∗Γ(𝑁−
1

2
)∗(1−𝜌𝑟)𝑁−

3
2

∗  2𝐹1(
1

2
,

1

2
;

1

2
(2𝑁 − 1);

1

2
(𝜌𝑟 + 1))   (8) 

where r is the observed (sample) rolling window AR(1) coefficient, ρ is the population 

correlation coefficient, N is sample size (rolling window width), Γ() is the gamma function, and 

2F1() is the Gaussian hypergeometric function. Note f(r,ρ,N) in equation 8 refers generically to 

the probability density function for correlation coefficient and not the baseline state; below the 

baseline state likelihood model is denoted fbaseline() to differentiate: 

𝑓𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒(𝑥𝑡) = 𝑓(𝑥𝑡, 𝜌𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 , 𝑁)    (9) 

     𝑔(𝑥𝑡) = 𝑓(𝑥𝑡, 𝜌𝑎𝑙𝑎𝑟𝑚, 𝑁)     (10) 

where xt is the observed rolling window AR(1) in the experimental lake at time t, ρbaseline,t  is the 

observed rolling window AR(1) in the reference lake, and ρalarm  is the “true” correlation 

coefficient of the alarm state. We use ρalarm =0.95 based on theoretical expectations that AR(1) 

should increase towards 1 as a critical transition is approached (Dakos et al. 2012). The above 

formulation for AR(1) quickest detection alarms differs from previous applications, which used 

normal distributions for f() and g() with μbaseline =xt,ref  and μalarm =1 and either fixed σ values 

(Carpenter et al. 2014) or time-varying σ derived from first-order error propagation (Wilkinson et 

al. 2018). While qualitatively very similar (f(xt) centered on the observed autocorrelation in the 

reference lake, g(xt) at/near the theoretical value of 1 at the critical point), the new “exact” 

formulation presented here represents an improvement as the probability density function of f() 

and g() lies entirely within the domain of the Pearson correlation coefficient (-1 to 1) and avoids 



140 
 

erroneous alarms that occur when experimental lake AR(1) is less than reference lake AR(1) (see 

Appendix S1 and Figure S3 of Wilkinson et al. 2018 Supporting Information). 
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Figure A2.1. Daily (A) and cumulative (B) phosphorus added to Peter Lake in 2019. Nitrogen 

additions followed the same pattern at 15:1 N:P molar ratio.
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Figure A2.2. Spatial measurements of phycocyanin in Peter (top basin) and Paul (bottom basin) 

lakes every 7 days in 2019.
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Figure A2.3. Spatial measurements of dissolved oxygen in Peter (top basin) and Paul (bottom 

basin) lakes every 7 days in 2019. 
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Figure A2.4. Spatial measurements of pH in Peter (top basin) and Paul (bottom basin) lakes 

every 7 days in 2019. 
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Appendix 3: Supplemental Information for Chapter 4 

Full model description 

The forecasting model is an ensemble Kalman filter (EnKF), a data assimilation technique that 

iteratively compares model predictions to observations to produce updated estimates of system 

state, which can then be used to forecast model state into the future (Evensen 2009). We use a 

version of EnKF, EnKF with parameter augmentation, to fit model parameters in addition to 

estimating model state (Zhang et al. 2017). Notation below generally follows that of Thomas et 

al. 2020. The model has one state variable, the concentration of chlorophyll-a, which is a proxy 

for algal biomass and corresponds directly to observed concentrations measured daily. Three 

parameters are fit that determine the relationship between color-normalized cumulative 

phosphorus loading (CNCP loading; units mg P / m2 / g440, where g440 is the absorbance at 440 

nm with units m-1) on a given day and the instantaneous “carrying capacity” Kt of the system 

(units ug/L): Bt, Lht, and At. Bt is the baseline chlorophyll-a carrying capacity at zero CNCP 

loading, Lht is the loading half-constant at which there is a rapid increase in chlorophyll with 

increasing CNCP loading, and At is how much higher than Bt the carrying capacity asymptote is 

at high CNCP loading:  

𝐾𝑡 = 𝐵𝑡 + 𝐴𝑡 ∗
𝐿𝑡

𝑘

𝐿ℎ𝑡
𝑘+𝐿𝑡

𝑘                                                                   (1) 

where Lt is the CNCP loading on a given day, and k is a lake-specific sigmoid constant 

determining the steepness of Kt at Lht (see Chapter 4 Figure 4.1).  

 The EnKF consists of N ensemble members (we use N = 300) with different values of 

state and parameter values. State and parameter values were initialized in the following manner: 

the state variable (chlorophyll-a concentration, Chlt) and Bt were initialized at t = 1 with a 

uniform distribution ranging from 90% to 110% of the first observed chlorophyll concentration 
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and standard deviation equal to 10% of the mean; At was initialized with a uniform distribution 

ranging from 90% to 110% of the lake-specific asymptotic value fit from chlorophyll 

observations up to bloom peak (Chapter 4 Figure 4.1); and Lht was initialized with a uniform 

distribution from 90% to 110% of the specified Lht0 for a given analysis. 

 The EnKF carries out data assimilation in two steps: a forecasting step and an update 

step. The forecasting step uses the previous state and the current driver values (for our model, 

CNCP loading) to generate a prediction of the system state at the next time point using a logistic-

type response: 

𝐶ℎ𝑙𝑖,𝑡+1 = 𝐹(𝐶ℎ𝑙𝑖,𝑡, 𝐿𝑡+1 ) =  𝐶ℎ𝑙𝑖,𝑡 ∗ [1 + (1 −
𝐶ℎ𝑙𝑖,𝑡

𝐾𝑖,𝑡+1
)] +  𝜀  (2) 

Where ε represents model process error. For our model there is only one state variable so ε is a 

random draw from normal distribution with mean 0 and variance determined by the difference 

between predicts and observation; in cases with more than one state variable ε is a draw from a 

multivariate normal distribution. 

 In the update step, predictions from the forecast step are compared to the next 

observation and used to adjust the system state and parameter values: 

    𝑥𝑡
𝑖 = 𝑥𝑡

𝑖− + 𝐾𝑥(𝑦𝑡
𝑖  ̂ − 𝐻𝑥𝑡

𝑖−)     (3) 

    𝛼𝑡
𝑖 = 𝛼𝑡

𝑖− + 𝐾𝛼(𝑦𝑡
𝑖  ̂ − 𝐻𝑥𝑡

𝑖−)     (4) 

Where x is the system state variable (chlorophyll-a concentrations) and α corresponds to each of 

the model parameters (Bt, At, Lht). The superscript i corresponds to each ensemble member after 

the update step, while i- is the corresponding value before the update (after the forecast step). 

Using 𝑦𝑡
𝑖  ̂= yt + ε quantifies observation error, where yt is the observed chlorophyll concentration 

at time t and ε is a random draw from a normal distribution for each ensemble member, with 

mean 0 and standard deviation R = 0.05 * yt based on the measured observation error determined 
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from 5 replicate chlorophyll samples collected in August 2018. H represents an observation 

matrix, with ones corresponding to observed state variables in x and zeros elsewhere; as our 

model has only one state variable and observations are available each day it is always [1] and 

could be dropped; we include it for consistency of notation. Kx and Kα represent the Kalman gain 

for the state variable and parameters, respectively: 

    𝐾𝑥 =  𝐶𝑥𝑥𝐻𝑇(𝐻𝐶𝑥𝑥𝐻𝑇 + 𝑅)−1    (5) 

𝐾𝛼 =  𝐶𝛼𝑥𝐻𝑇(𝐻𝐶𝛼𝑥𝐻𝑇 + 𝑅)−1    (6) 

Where Cxx is the covariance of the state variables (for us variance, as there’s only one state 

variable) across the ensemble after the forecast step, and Cαx is the covariance of the parameters 

with the state variable across the ensemble after the forecast step. Before calculating Cαx an 

inflation factor IF > 1 is applied to prevent filter divergence (Evensen 2009): 

    𝛼𝑡
𝑖− =  𝛼𝑡−1̅̅ ̅̅ ̅̅ + 𝐼𝐹(𝛼𝑡−1

𝑖 −  𝛼𝑡−1̅̅ ̅̅ ̅̅ )    (7) 

Where 𝛼𝑡−1̅̅ ̅̅ ̅̅  is the mean value of a parameter after the update step at time t – 1. 

 After the update step was carried out using the observed chlorophyll concentration on a 

given day t, forecasts from 1 to 7 days into the future were created using the parameter values on 

day t and the known (because they were experimentally controlled) future loading values as in 

equations 2 and 3: 

𝐶ℎ𝑙𝑖,𝑡+ℎ = 𝐶ℎ𝑙𝑖,𝑡+ℎ−1 ∗ [1 + (1 −
𝐶ℎ𝑙𝑖,𝑡+ℎ−1

𝐾𝑖,𝑡+ℎ
)]    (8) 

𝐾𝑖,𝑡+ℎ =  𝐵𝑖,𝑡 + 𝐴𝑖,𝑡 ∗
𝐿𝑡

𝑘

𝐿ℎ𝑖,𝑡
𝑘 +𝐿𝑡+ℎ

𝑘     (9) 

Where h is the forecast horizon (1 to 7 days). 
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Figure A3.1. Average error in bloom timing for 3-day forecast across 100 replicate simulations 

for each combination of starting loading half-constant parameter (Lht) and parameter inflation 

factor (IF) for A) Tuesday Lake 2015 and B) Peter Lake 2019. The color scalebar was truncated 

at +/- 3 days to allow for visualization of smaller errors; Lh, IF combinations with < -3 or > +3 

day errors are printed on the grid, rounded to the nearest whole number. 
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Figure A3.2. Average error in bloom timing for 5-day forecast across 100 replicate simulations 

for each combination of starting loading half-constant parameter (Lht) and parameter inflation 

factor (IF) for A) Tuesday Lake 2015 and B) Peter Lake 2019. The color scalebar was truncated 

at +/- 5 days to allow for visualization of smaller errors; Lh, IF combinations with < -5 or > +5 

day errors are printed on the grid, rounded to the nearest whole number. 
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Figure A3.3. Plots of chlorophyll-a concentration (ug/L) vs. potential bloom driver variables for 

Peter Lake (left column) and Tuesday Lak (right column). Point color represents different years. 

Descriptions and units for each variable (from top to bottom) are: color – absorbance at 440nm, 

m-1; daily phosphorus loading mg P / m2 / day; total phosphorus measured at the surface, ug / L; 

water temperature at a depth of 0.75 meters, degrees Celsius; and mixed layer depth, meters.  
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Figure A3.4. Daily time series of chlorophyll-a (ug/L) for all years in which fertilization 

experiments were done for Peter Lake (red) and Tuesday Lake (blue). 
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Appendix 4: Supplemental Information for Chapter 5. 

Table A4.1. NERRS site ID codes, reserve names, location, and the number of stations and 

tropical cyclones analyzed for each NERRS site. 

 

NERRS 
Site ID 

Reserve Name Location 
Number of 
Stations 

Number of 
Storms 

ace 
Ashepoo Combahee 
Edisto (ACE) Basin 

Bennett’s Point, South Carolina 6 7 

apa Apalachicola Eastpoint, Florida 4 9 

cbm 
Chesapeake Bay 
(Maryland) 

Washington DC and Baltimore, 
Maryland 

4 7 

cbv 
Chesapeake Bay 
(Virginia) 

Gloucester Point, Virginia 4 7 

del Delaware Townsend and Dover, Delaware 4 10 

gnd Grand Bay Mass Point, Mississippi 4 13 

grb Great Bay Greenland, New Hampshire 4 5 

gtm 
Guana Tolomato 
Mantanzas 

Ponte Vedra Beach, Florida 4 18 

hud Hudson River Staatsburg, New York 3 1 

jac Jacques Cousteau Tuckerton, New Jersey 4 12 

mar Mission-Aransas Port Aransas, Texas 4 2 

nar Narragansett Bay Prudence Island, Rhode Island 4 4 

niw 
North Inlet-Winyah 
Bay 

Georgetown, South Carolina 6 12 

noc North Carolina 
Corolla, Beaufort, and 
Wilmington, North Carolina 

4 10 

rkb Rookery Bay Naples, Florida 4 9 

sap Sapelo Island Sapelo Island, Georgia 4 13 

wel Wells Wells, Maine 4 5 

wkb Weeks Bay Fairhope, Alabama 4 14 

wqb Waquoit Bay Falmouth, Massachusetts 4 6 

 

 


