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Abstract 

Body sensor networks (BSNs) have shown significant potential in health applications by 

empowering researchers, scientists, doctors, caregivers, and patients to explore correlations 

between human-related sensor data and human health through continuous, vigilant, remote, and 

non-invasive data collection. To enable continuous vigilant monitoring for long-term logging of 

sensor data without human intervention, the operation time of BSNs is a significant concern. 

Harvesting energy from the body and the ambient environment has become a promising solution 

for realizing self-powered sensor systems capable of quasi-perpetual operation. However, the 

discontinuous and dynamic characteristics of energy harvesting in real-world scenarios – and their 

implications for the design and operation of self-powered sensor systems – are not yet well studied.  

 Conventional characterization of energy harvesters is done in a laboratory environment, without 

much consideration for such real-world dynamics. In order to better understand the nature of the 

energy sources like solar and thermoelectric and how the human behavior affects the energy 

harvesting, we designed a custom Energy Harvesting and Data Collection (EHDC) platform to 

explore energy harvesting dynamics by longtime profiling in the real world. 

 Since the energy sources are uncontrollable but often predictable, we proposed a context-aware 

hybrid model for the multimodal indoor and outdoor energy harvesting prediction. Here we term 

context to refer to energy harvesting related factors including environmental parameters like light 

intensity, temperature, weather forecast; and human behavior like motion, schedule, and location. 

By leveraging the knowledge of the current context and near future, the system could predict 

harvested energy more accurately and thus improve the efficiency of power consumption. 

 The core of this work is the design of the context-aware dynamic power management 

framework for self-powered body sensor networks. With the understanding of energy harvesting 
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dynamics, the framework is proposed to efficiently use the harvested power to optimize the data 

quality according to the environmental and behavioral context. The power management in an 

energy harvesting system is formalized as a convex optimization problem, and the optimal solution 

is derived. Online scheduling in the real world with energy prediction is discussed. A case study 

of Atrial Fibrillation detection is analyzed to demonstrate the application-specific utility/cost 

function which could better represent the demand of the application. Such application-specific cost 

analysis outperforms the methodologies that solely from the perspective of digital signal 

processing, or generally assume a linear cost function in related work which would be too 

simplified.  

 We validate this framework by designing a custom Self-powered and Context-aware Dynamic 

Power Management (SCDPM) platform. The platform is capable of vigilant health monitoring 

with ECG and motion data. It also collects environmental data which help to understand the context 

and make dynamic power management. The SCDPM is an ultralow power platform which 

performs better than state-of-the-art health monitoring platforms regarding system power 

consumption and the dynamic power management and adaptive sensing capabilities.  

 Overall, this work explores the energy harvesting dynamics to improve the design of self-power 

sensor systems and the proposed context-aware dynamic power management framework improves 

the self-powered BSN performance and operation time by taking advantage of context information.  
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1 Introduction 

Body sensor networks (BSNs) have shown significance in healthcare domain by providing 

enormous help for researchers, scientists, doctors, caregivers, and patients to explore the implicit 

correlations between human-related sensor data and human health [1]–[4]. The correlations have 

been demonstrated to be beneficial for preventing, diagnosing, staging and tracking chronic 

diseases such as Alzheimer’s disease, dementia, and heart disease[5]–[11]. Therefore, BSN 

technology has the great potential to improve the quality of publics’ lives and to reduce medical 

costs.  

 To enable continuous monitoring for long-term logging of clinical data, the operation time of 

BSN is a significant concern [1]–[5]. Considering the wearing comfortability for human subjects, 

the form factors and weight of BSN nodes and the supporting batteries are usually small. Since in 

general the energy storage of a battery is related to its form size, tiny batteries provide insufficient 

amounts of energy to support long operating time of BSN nodes. The burden of frequent recharge 

or replacement of batteries for BSN impedes widespread adoption of BSN in clinical use[1][4]. 

 The objective of this work is to solve these energy challenges encountered in BSN area which 

are critical for continuous health monitoring. Specifically, to address the research questions of: 

1. How can we better understand the dynamics of available energy for BSN systems in 

the real world to enable vigilant health monitoring with self-powered BSN? 
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2. How can we optimize the power management in an energy harvesting system to achieve 

the optimal application-specific data quality? 

 Energy profiling. A critical challenge encountered when designing self-powered energy 

harvesting BSN applications is the discontinuity nature of energy sources[12]–[14]. The energy 

sources including solar and thermal are all intermittent and discontinuous. The dynamic 

characteristics of energy harvesting in real-world scenarios and their implications on the design of 

self-powered BSN are of profound importance, while not well studied yet. Conventional ways 

usually characterize energy harvesters or make simulations in the lab[12], [13], [15]–[26], without 

much consideration in real-world dynamics. An approach worth noting is that in solar energy 

harvesting area, researchers create profiles for months or even years to explore the relationship 

between solar energy harvesting and environmental dynamics[19]. However, in BSN area, besides 

environmental factors, human behavior has a significant influence on energy harvesting and should 

be taken into consideration. In this work, energy profiling and modeling for BSN regarding real-

world environmental dynamics and human activities are discussed in Section 3 to address the first 

questions. An Energy Harvesting and Data Collection (EHDC) platform is designed to harvest 

solar and thermoelectric energy and collect data on environmental and human activities. With the 

EHDC platform, energy profiles are created to explore the energy availability and to understand 

the energy dynamics in the real world. 

 A context-aware dynamic power management framework for prediction and power 

management. With the understanding of the dynamics of energy harvesting using the proposed 

approach, the power management in an energy harvesting system is explored. In order to answer 

the second question, a novel context-aware dynamic power management (DPM) framework for an 

energy harvesting system is proposed. Here the context includes environmental factors like light 
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intensity, temperature; and human behavior like acceleration data, schedule, location, 

indoor/outdoor. With the knowledge of the current context and prediction of the near future, a BSN 

node could achieve a better performance of power management. Dynamic strategies could be 

utilized to optimize the data quality/fidelity which includes sensor sampling rate and precision, 

data delay, and data loss (power down or connection loss) based on the context. In Section 5, firstly, 

the DPM framework is presented and discussed. Second, the scheduling model regarding energy 

harvesting and consumption is proposed, and an optimal offline solution algorithm and the online 

version based on prediction are derived. Finally, a case study of Atrial Fibrillation (AFib) detection 

is discussed. 

 Self-powered Context-aware Dynamic Power Management Platform (SC-DPM). We 

validate the proposed framework by designing a custom Self-powered and Context-aware 

Dynamic Power Management (SCDPM) platform. The platform is capable of vigilant health 

monitoring with ECG and motion data. It also collects environmental data which help to 

understand the context and make dynamic power management. The SCDPM is an ultralow power 

platform which performs better than state-of-the-art health monitoring platforms regarding system 

power consumption and the dynamic power management and adaptive sensing capabilities. The 

details of platform design and energy consumption model are presented in Section 6.  

 The thesis of this dissertation is that energy profiling and context-aware dynamic power 

management can improve the performance of self-powered BSNs. Energy profiling regarding 

environmental and human factors could help provide a better understanding of energy harvesting 

dynamics for BSNs in the real-world conditions. Context-aware dynamic power management 

considering both energy harvesting dynamics and system power consumption could maximize 

application-specific data quality while preserving continuous self-powered operation. 
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1.1 Dissertation Outline 

This dissertation consists of 8 Chapters which are organized as the follows. Chapter 2 introduces 

the background of this work including the emergence of Body Sensor Networks (BSNs) in health 

applications which empowers researchers, scientists, and doctors to explore correlations between 

human-related sensor data and human health through remote continuous data collection. To enable 

such long-term continuous monitoring, the operating time of body sensor networks is a significant 

concern and energy harvesting from ambient environment is a promising solution. The commonly 

used energy sources especially solar and thermoelectric sources are discussed. 

 Chapter 3 describes the design of our custom Energy Harvesting and Data Collection (EHDC) 

platform to harvest solar and thermoelectric energy and collect data on environmental and human 

activities. In 2015, we were interested in the energy harvesting dynamics in BSN in the real world 

and generated the idea of energy harvesting profiling. At first, we used the commercial Shimmer 

sensor nodes and related custom circuitry for the research, however, it had many limitations. 

Therefore, we designed the custom EHDC which better fits our demand.  The platform was utilized 

to explore the energy harvesting dynamics in the real world as shown in Section 3.3 and Section 

3.4. The EHDC platform could be considered as the beginning of this doctoral research. After the 

dissertation proposal, we generated the idea of utilizing the EHDC platform to create an apparatus 

to simulate and replay light profiles for validation of the solar-powered systems. This collaborative 

project is presented in Section 3.5. 

 We discuss the energy harvesting prediction in Chapter 4. Since the unique characteristics of 

energy harvesting for on body deployed BSNs that we observed from the real-world profiling, we 

found the previous work for energy prediction cannot perform well in BSN area. Therefore, 

inspired by the features of some prediction methodologies, we proposed a context-aware hybrid 
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model for both indoor and outdoor BSN energy harvesting prediction by leveraging as much as 

the context information for predicting both the environmental and human behavior. We term 

context to cover all information from the sensor system or the smartphone which is related to 

energy harvesting including environmental variables, online information, and human behaviors.  

 Chapter 5 is the most critical section to describe the primary contribution of the dissertation. A 

context-aware dynamic power management framework is proposed to optimize the data quality in 

an energy harvesting BSN. The power management is discussed from the perspective of nonlinear 

convex optimization. In Section 5.2, the optimization model of the power management in the 

energy harvesting system is formally constructed, and the optimal offline solution is derived in 

Section 5.3. We further consider the constraint of the supercapacitor capacity limit in Section 5.4 

and add the constraints to the problem to derive the updated optimal solution. The offline solution 

is the theatrically optimal as strictly proved, however, in the real world, we cannot have the Oracle 

information of future harvested energy. Therefore, we leverage the energy prediction methodology 

to approximate the future energy harvesting behavior, and we prove that higher prediction 

accuracy brings better power management performance which could be close to the optimal offline 

solution. Finally, we study the Atrial Fibrillation (AFib) as a case study in Section 5.6 to explore 

the application-specific relationship between the power consumption and utility/cost, and we prove 

that in this application the proposed DPM algorithm works well. Besides, we demonstrate that in 

this scenario and many other applications, the utility/cost function is nonlinear and cannot be well 

modeled as a linear optimization problem as shown in many previous works.  Simulations are 

executed to help demonstrate the validity of the proposed algorithms. 

 In Chapter 6 we presented another custom system, the Self-powered Context-aware Dynamic 

Power Management Platform (SCDPM). This platform is designed and has been evolved from late 
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2016 to 2018. Much effort was put into the hardware design, software design, and system test at 

different levels. The SCDPM is an ultralow power multimodal context-aware self-powered 

wearable sensor system for real-world vigilant cardiac and activity monitoring that achieves a 

positive energy balance from both solar and thermoelectric energy sources. The platform collects 

ECG, acceleration, and environmental parameters including light intensity and ambient air 

temperature. It wirelessly streams data to a smartphone through Bluetooth Low Energy (BLE) for 

data visualization and processing. Besides, the sensor data is interfaced to specific cloud service 

in real time for data storage, remote data access, and caregiver/clinician/researcher notification. 

The SCDPM is used to validate the proposed energy prediction and DPM algorithms. It receives 

commands from the phone in real-time for power management according to the DPM scheduling 

algorithm to dynamically adjust its operating parameters. The hardware system design is described 

in Section 6.1, and the software design including Android programming on the phone side and 

embedded C programming on the sensor node side is described in Section 6.2 and Section 6.3. In 

Section 6.4, the power consumption model of SCDPM is discussed. We compared SCDPM to our 

EHDC platform and other state-of-the-art platforms in Section 6.5. 

 Chapter 7 presents the results related to the SCDPM platform, prediction, and the DPM 

scheduling. The SCDPM was deployed in the real world and collected more than 50 hours of data 

from 12 sessions. Profiles from typical weather conditions including sunny, cloudy, and rainy were 

collected to understand how weather conditions affect the energy harvesting. The ECG and motion 

data are presented and analyzed to demonstrate the effectiveness of health monitoring. Finally, we 

tested the adaptive sampling and dynamic power management using a profile. 

 Chapter 8 finalizes the dissertation with the discussion of the contribution of this work and 

future work.  



7 

 

1.2  Dissertation Contributions 

The primary impact of this work is the context-aware dynamic power management framework to 

leverage context information for energy harvesting prediction and to make dynamic power 

management to achieve the optimal data quality. The framework has a broader impact in areas of 

general sensor networks, Internet of Things (IoT), and Cyber-Physical Systems (CPS) to achieve 

better power management performance. The energy profiling work could equip BSN designers 

with a more in-depth understanding of energy dynamics in the real world to work towards self-

powered BSN.  

 To be specific, the direct contributions of this dissertation include: 

1. Energy profiling for BSN in the real world. The idea of understanding energy harvesting 

dynamics by profiling it in the real world in addition to the in-lab characterization is 

innovative at the time of publishing the papers. The Energy Harvesting and Data Collection 

(EHDC) platform for energy harvesting profiling and modeling was one of the first 

platforms that implement this idea. The EHDC platform itself could be considered a 

contribution as well, and the LITE project discussed in Section 3.5 is actually an example 

usage of EHDC. The software code for the EHDC is open sourced on [27] for people to 

use. 

2. A context-aware hybrid energy prediction model for both indoor and outdoor environment 

energy harvesting. This is more like a framework than a model, and we use calendar events 

and weather forecast as the context information for the prediction. The scope of context 

and the way to utilize the context information could be extended. 

3. A context-aware Dynamic Power Management (DPM) framework for energy harvesting 

BSNs. A formal model and analysis of the scheduling optimization problem in an energy 
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harvesting system are constructed, and the optimal solution is derived. A case study of 

AFib detection is intensely studied to prove the validity of the framework.  

4. A Self-powered Context-aware DPM (SCDPM) platform for vigilant health monitoring 

including motion, ECG, and environmental data collection. The SCDPM is an ultralow 

power platform which performs better than state-of-the-art health monitoring platforms 

regarding system power consumption and the dynamic power management and adaptive 

sensing capabilities. The entire system compromises the work of hardware system design, 

embedded system programming for the sensor node, Android application design on the 

phone side, and power modeling. The code of the platform is open sourced [28]. 
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2  Motivating Self-Powered Body 

Sensor Networks 

2.1 Body Sensor Networks 

Body sensor networks (BSNs) have shown significant potential in health applications by 

empowering researchers, scientists, and doctors to explore correlations between human-related 

sensor data and human health through remote continuous data collection. To enable such long-

term continuous monitoring, the operating time of body sensor networks is a significant concern 

and energy harvesting from ambient environment is a promising solution. This dissertation 

research aims at addressing energy challenges encountered in self-powered BSN design, by 

exploring the real-world energy harvesting dynamics and improving the dynamic power 

management. 

 In a typical BSN as shown in Figure 2.1. One or multiple sensors are deployed in different 

locations on a human body, for instance, on wrists or chest. The collected sensor data are usually 

transferred to a data aggregator, like a smartphone, for data processing and visualization. The data 

could also be uploaded to a remote cloud server for data storage and processing. Doctors or 

researchers could remotely access the data, make analysis, and give a diagnosis or feedback to the 

user. 
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 Considering the wearing comfortability for human subjects, the form factors and weight of 

sensor nodes and batteries are usually quite small, and the batteries are hard to support long 

operating time of the sensor nodes. The burden of frequent recharge or replacement of batteries 

could impede widespread adoption of BSN. 

 

 

Figure 2.1 Self-powered body sensor networks. The sensor nodes harvest energy from the 

environment and the human body, collect sensor data, and transmit data to a phone. The 

phone uploads the data to a cloud service for data storage and processing.   

 In order to address this issue, two primary approaches have been explored: a) saving power 

consumption utilizing ultra-low power technologies for BSN and b) harvesting energy from the 

ambient environment to achieve the quasi-perpetual operating time. For the first approach, ultra-

low power techniques have been studied including System on Chip (SoC) design[29]–[34], sensor 

design[35][36], wireless communication transceiver and protocols[37]–[42], and data transmission 

strategies[43]–[47]. In Appendix A.1, a case study of designing and implementing a data 

aggregation solution for custom ultra-low power radio is presented. The data aggregator is 

validated to be efficient for data aggregation, visualization, and cloud computing. Compared with 

commercial wireless communication protocols like Bluetooth[48] and ZigBee[49], the custom 

Ultrawide-band (UWB) radio[30][50] reduces much power consumption.  
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 The second approach, harvesting energy from the ambient environment in real-world scenarios 

has been attracting researchers’ interests recently, and it is the focus of this dissertation. Energy 

harvesting technologies have been leveraged by researchers in BSN area to develop self-powered 

sensor systems. Self-powered BSN capable of quasi-perpetual operation enables truly continuous 

monitoring of human subjects even beyond the clinic.  

2.2 Energy Harvesting and Sources 

The energy sources from environment and human body include solar (indoor/outdoor)[34]–[47], 

thermoelectric[47]–[52], piezoelectric[53]–[59], RF[60]–[65], wind[66]–[69], and some others. 

Among them, solar and thermoelectric energy are good candidates for BSN applications 

considering the availability and the amount of harvested energy. For solar energy harvesting, 

indoor environments are more important since most deployments occur in hospitals, homes, 

gymnasiums, and offices. Compared with outdoor solar energy harvesting which has been studied 

for a long time[34][37][40][44], indoor solar energy harvesting is quite different. First, indoor light 

is usually incandescent light, fluorescent light, LED, rather than the sun[35]. The radiant spectrum 

of different light sources differs and affects the efficiency of solar cells. Second, the indoor light 

has a much lower illumination level which is usually less than 1000 lux, compared to outdoor 

sunlight around 10000~ 200000lux[35][36]. The power density of indoor solar is around 

1µW/mm2[36]. Third, the indoor light is more controlled by people and has little dependence on 

weather or seasonal changes.  

 For thermal energy harvesting, since human beings are warm-blooded, they are the heat sources 

for objects attached to the skin. Therefore, thermoelectric generators (TEGs) can be applied to 

collect human body heat and generate electrical power. Regarding the comfortability for humans 

to wear TEG devices, it is popular to attach TEGs on the wrist or arm[51]. The power density of 
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TEG is 250µW in daytime corresponding to 20µW/cm2[52]. Solar and thermal energy harvesting 

could be utilized separately or collaboratively to support BSN applications[47]. 

2.3 Summary 

In this chapter, we discussed the emergence of BSNs for health monitoring, and the energy 

harvesting technologies to enable batter-less self-powered BSNs. The energy sources are discussed, 

and solar and thermoelectric energy sources are the focus of this work. In the following sections, 

we will discuss the main contributions of this work exploring how to efficiently utilize the 

harvested energy through profiling, prediction leveraging context information, and dynamic power 

management. 
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3  Energy Harvesting Profiling 

A critical challenge encountered when designing self-powered energy harvesting BSN 

applications is the discontinuity nature of energy sources[12][13][14]. The dynamic characteristics 

of energy harvesting in real-world scenarios and their implications on the design of self-powered 

BSN are of profound importance, while not well studied yet. Besides characterizing energy 

harvesters or making simulations in the lab, we designed a platform to harvest solar and 

thermoelectric energy and collect data on environmental and human activities. To explore the 

energy harvesting dynamics in the real world, we profile energy harvesting using our Energy 

Harvesting and Data Collection (EHDC) platform.  

 An overview of a typical energy harvesting system is introduced in Section 3.1. Related work 

of energy harvesting profiling is discussed in Section 3.2. The system design of EHDC is described 

in Section 3.3. Energy profiling results using the EHDC are presented in Section 3.3. Finally, in 

Section 3.4 a Lighting IoT Test Environment (LITE) platform based on the EHDC platform is 

designed to simulate and replay light profiles for self-powered system design.  

 The work presented in Section 3.1 ~ Section 3.3 was published in [52], and the work in Section 

3.4 was published in [53]. 



14 

 

3.1 An Overview of Energy Harvesting Systems 

In a typical energy harvesting system, there are four modules: energy harvesting, energy 

conversion, energy storage and energy consumption, as shown in Figure 3.1.  

 The primary component of this system is the energy harvesting module since it transforms a 

form of renewable energy into electrical energy. Harvesters include solar panels, TEG, and other 

devices depending on the energy sources. Since the output voltage level of harvesters in BSN 

applications which commonly in the order of mV is insufficient to power electronics like sensors 

and microcontrollers, energy conversion module is required in most of energy harvesting systems. 

Ultra-low power boost converters managing 𝜇𝑊 to 𝑚𝑊 power are utilized for energy conversion 

to increase the voltage to a certain level. In addition, boost converters designed for energy 

harvesting application are usually capable of extracting the maximum power from harvesters 

through dynamic maximum power point tracking (MPPT). The efficiency of the boost converter 

is defined as 𝜂𝑐 to model the intrinsic power loss through the boost converter. After converting the 

voltage to a certain level 𝑉𝑠, the energy is stored in a supercapacitor for dissipation. The energy 

feeds into regulators to provide specific voltages for electrical components. Regulators are utilized 

to provide one or more voltage levels for the loads with an efficiency 𝜂𝑟.  

 

Figure 3.1 Diagram of a typical energy harvesting system which consists of four modules: 

energy harvesting, energy conversion, energy storage, and energy consumption. 
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3.2 Related Work 

The intermittency and discontinuity nature of energy sources in the real world is a critical concern 

in self-powered BSN design [12]–[14]. The dynamic characteristics of energy harvesting in real-

world scenarios and their implications on the design of self-powered BSN are of profound 

importance, while not well studied yet. Conventional ways usually characterize energy harvesters 

or make simulations in the lab[12], [13], [15]–[26], without much consideration in real-world 

dynamics.  

 Some research groups profile energy harvesting to explore the relationship between harvested 

energy and the environmental factors. For instance, in solar energy harvesting area, researchers 

create profiles for months or even years to explore the relation between solar energy harvesting 

and environmental dynamics[19]. However, in BSN area, besides environmental factors, human 

behavior has a significant influence on energy harvesting and should be taken into consideration. 

 Since human behavior profoundly impacts and dominates energy harvesting performance in 

body sensor networks, having a better understanding of how such behavior correlates with energy 

harvesting is fundamental to achieve self-powered sensor systems. One way to accomplish this 

understanding is by collecting energy profiles for heterogeneous energy sources available in the 

environment where self-powered sensors are deployed. 

 In [54], power profiles for indoor solar energy harvesting are presented. The profiles were 

elaborated with data collected over one year, and simulation for a specific load is designed to show 

the application of these profiles. The limitation of this work relies on the fact that the energy 

transducer was fixed next to a window, the interest for BSNs is to have profiles that consider 

human activity since the nodes are usually attached to people’s bodies. Regarding thermoelectric 

energy harvesting profiling, the research conducted in this topic is significantly less than the case 
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of indoor solar. One of the few studies focusing on characterizing this type of energy harvesting 

for wearable devices is presented in [55]. This work shows the correlation of the power generated 

for one activity (cycling) over one hour and mentions the average amount of energy harvested 

while working in the office but it does not present a full profile for different activities over more 

extended periods of time. One of the aims of this work is to present an energy profile over several 

hours for different ordinary daily activities, both at work and at home. 

 The targets of energy profiling in this work include two aspects: a) explore the energy available 

and dynamics in the real world, and 2) establish relations between energy harvesting and 

environmental and human factors for energy modeling and prediction.  

3.3 EHDC: Energy Harvesting and Data Collection Platform1
 

The target of the EHDC platform is to collect energy harvesting profiles of BSN and explore the 

relationship between energy harvesting and the dynamics of human activity and the environment. 

 Following the described topology in Figure 3.1, for the specific case of energy harvesting 

module, we selected an amorphous solar cell AM-1417CA from Sanyo and Marlow SP5424-04AC 

thermoelectric generators (TEGs). A heatsink is attached to the cold side of each TEG to maximize 

the temperature difference across the TEGs. For the energy conversion module, we use BQ25504 

from Texas Instruments for solar energy harvesting and LTC3108 for thermoelectric energy. 

BQ25504 has MPPT function and could be cold-started from 330mV. The LTC3108 can be 

operated from inputs as low as 20mV which is suitable for thermoelectrical energy harvesting. The 

                                                 
1 In this project, Luis Lopez Ruiz worked on most of the design and implementation of the EHDC hardware platform. The author 

of the dissertation worked on the software design and implementation. The profiles were collected by Luis Lopez Ruiz and the 

author of this dissertation. 
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harvested energy is stored in a supercapacitor AVX BZ155B823ZNB with the capacitance of 

82mF, and an LT3009 is used to regulate voltage. 

 In the platform, light intensity and temperature of the skin and ambient air are sensed as 

environmental factors which are related to solar and thermoelectric energy harvesting. To measure 

light illumination at which the solar cells are exposed, the NOA1212 from On Semiconductor is 

attached close to solar cells. The range of light intensity could be adjusted up to 100000 lux. In 

order to measure the temperature difference between two ends of a TEG pad, two MAX6605 

temperature sensors from Maxim Integrated are used. One is attached to the skin under the 

armband to measure the temperature of the hot end, and the other is put close to the TEG heatsink 

to measure the cold end. In order to track human activity level, the ADXL326 accelerometer from 

Analog Devices is applied in the platform. 

 To measure the instantaneously usable power, we monitored the current delivered by the boost 

converter and its output voltage. A current shunt monitor INA285 from Texas Instruments is used 

to allows us to monitor minimal currents while also minimizing losses. A 16-channel analog to 

digital converter (ADC) AD7490 from Analog Devices is used to sample analog signals including 

signals from environmental sensors, the accelerometer, and current and voltage of energy 

harvesters. 

 In the first version, we used standalone electrical components on a breadboard connecting to 

Shimmer nodes as a data logger, as shown in Figure 3.2. Then we designed the EHDC hardware 

platform, a daughter board integrating all sensor and energy harvesting modules and connected it 

to a Raspberry Pi 0 board as a data logger and controller. 
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Figure 3.2 The first version platform which includes standalone components on 

breadboards connecting to Shimmer nodes. 

 The diagram of the EHDC platform is shown in Figure 3.3. The daughter board includes the 

sensing module, the energy harvesting module, and related circuitry. A variable load is included 

in the platform to simulate the load of a sensor node which is potential to test power management. 

The daughter board interfaces Raspberry Pi 0 with I2C, SPI, and GPIO ports. The Raspberry Pi 0 

uses Linux as the operating system (OS), and we designed Java application for controlling, data 

logging, data compressing, and data storage, as shown in Figure 3.4. The collected sensor data was 

stored in a micro SD card and to reduce the power expended with each logging, and the data was 

compressed into binary files. Additional software was developed to enable uploading the sensor 

data to a custom cloud server for data visualization and storage in real time. 



19 

 

 

Figure 3.3 Block diagram of the EHDC platform and the interface with the Raspberry Pi 0. 

 

Figure 3.4 Software architecture for EHDC platform. 

 The EHDC platform and the deployment on a human subject are shown in Figure 3.5. The 

designed EHDC platform is capable of profiling multi-source energy harvesting with 

environmental and human factors, which could be utilized in general research in energy harvesting 

area. The EHDC could be easily extended to include other energy sources like piezoelectric energy. 

In our research, we use EHDC for energy profiling and then for modeling, as discussed in the 

following sections. 
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Figure 3.5 From left to right, the full EHDC platform for multi-source energy harvesting 

and the platform deployed on a human subject. 

3.4 Experiments and Results 

We collected energy profiles with EHDC platform from two male subjects for several days. The 

subjects were wearing the platform for several hours each day to collect data in a mainly indoor 

environment in the office or at home. The activities include working at a desk, walking around, 

eating, cooking, and some others. More than 80% of them are indoor activities, and there are some 

outdoor activities like walking and driving.  

 The energy profile includes motion (Teager calculator[56] is utilized to assess the motion level), 

light intensity, averaged solar power (µW), the temperature difference between skin and ambient 

air (°C), averaged thermoelectric power (µW), and total power (µW). To fit all data series in a 

figure, the unit of light intensity is 100lux, and Teager energy is scaled. The four profiles are shown 

in Figure 3.6.  

 The first two energy profiles were collected mainly indoor at home and in office. The activities 

include indoor activities like working in the office, walking around, eating, and doing housework 

(sweeping mopping floor, cleaning, etc.) The average light intensity of two days was 469lux and 
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101lux, respectively. The air temperature was around 25°C, and the average temperature difference 

was 5~6°C for both days. The average power was 5.1uW and 1.7uW respectively. 

 The last two profiles were collected both indoor and outdoor. In figure (c), the profile was 

collected at night, and activities indoor cooking, working at a desk, walking around, and a short 

period of outdoor activities: walking outside and driving. The average indoor light intensity was 

209.0lux, and around 0lux outdoor since it was midnight. The average temperature difference 

indoor was 1.1°C, and 6.1°C when walking outdoors. The average indoor power was 3.6µW, and 

average outdoor power was 41.7µW which consists mainly of thermal energy. Figure (d) displayed 

a profile created in the office. The activities include indoor walking, working at a desk, and outdoor 

walking. The average light intensity in the office is 537.1lux, and more than 10000lux outdoor. 

The average temperature difference was 5.0°C when the subject was walking indoor, and only 

0.9°C when sitting at a desk. When walking outdoors, the average temperature difference was 

9.7°C. The average indoor power was 7.1µW, and average outdoor power was 171.4µW. 

 From the experiments, we find that in an indoor environment, most of the time solar power 

dominates the total power profile. In certain situations, such as walking the thermoelectric power 

dominates due to the arms movement. In an outdoor environment, since the ambient air 

temperature is low in winter, there is much more thermal energy harvested than indoor. The light 

intensity and harvesting power have a good linear relationship. On the other hand, the temperature 

difference and harvested thermoelectric power are not well linearly related. Instead, thermoelectric 

power is related to the motion for some time. Such a relationship indicates that human activity 

level which relates to airflow has a significant influence on thermoelectric energy harvesting. 
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(d) 

Figure 3.6 Energy harvesting profiles for four sessions. 

3.5 Lighting Environment Simulation with EHDC2 

In the last part of this chapter, we discuss the Lighting IoT Test Environment (LITE) platform 

based on the EHDC as a demonstration of the broader usage of EHDC in IoT. This work has been 

published in [53] and part of the content and results are from the paper. 

 The LITE platform is a tool that provides insight on solar powered energy harvesting systems 

operate in low lighting environments, and it can physically emulate a variety of indoor lighting 

sources with mapping technique. In Section 3.4 we discussed the energy harvesting profiling, and 

here we can simulate the time-series light profiles in the LITE platform. The LITE platform 

performs both light source emulation and time-series light profiles simulation on an isolated 

hardware system. The combination of these two capabilities enables realistic lighting profile re-

creation. For hardware engineers and prototypers, the LITE platform can rapidly reveal the 

                                                 
2 This project was done with Henry Bishop and Peng Wang. They worked on the physical apparatus implementation, experiments 

of light sources emulation, mapping functions for calibration and emulation, and some other experiments. The author of this 

dissertation worked mainly on the algorithm and software on the EHDC for implementing the calibration, emulation, and simulation. 

Also the author worked on some of the experiments, hardware test, and data collection of profiles. 



24 

 

effectiveness of a harvesting circuit or commercial off-the-shelf (COTS) systems to demonstrate 

a proof of concept. The light source emulation and time-series simulation capabilities are 

characterized with a worst case mean absolute percentage error (MAPE) of 3.2% and 0.5%, 

respectively. The LITE platform better equips engineers to design, debug, and deploy self-powered 

sensor systems by experimenting with how these self-powered systems work under real-world 

conditions.  

3.5.1 Hardware Platform 

The LITE platform consists of three components: the physical apparatus where simulations and 

measurements take place, the custom LED lighting array and control hardware circuitry that 

provides lighting capabilities, and the EHDC platform as the control system. High accuracy and 

repeatability were requirements for the platform to provide exact and consistent light profile 

simulations. Figure 3.7 shows a system block diagram of the platform proposed in this paper.  

 Isolating the test space from external light is crucial for experimental control. A 1 x 1 x 1.2 

cubic foot enclosure was designed to meet this requirement as shown in Figure 3.8. With the frame 

constructed from 8020 T-slotted aluminum beams, the left, right, and back side panels were 

covered in opaque, black acrylic sheets laser cut to size ensuring minimal leakage. The top and 

front of the platform were covered with thick fabric providing substantial light isolation as well as 

easy accessibility to the internals of the apparatus. A single piece of acrylic was used to support 

the LED lighting array and drivers. The acrylic sheet attached to the four vertical 8020 columns 

enabling the light source to be moved closer or further away from the system to test. 
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Figure 3.7 System block diagram of the LITE Platform consisting of the EHDC board's 

hardware and software components, the physical LITE apparatus, PV cell (DUT), and lux 

sensors. 

 The platform's lighting array consists of sixteen, 5000k cool white LEDs arranged in sets of 

two, which matches the number of current sinks provided by the driver. This lighting array was 

typically operated at a height over 16 cm to provide a relatively distributed amount of light across 

the area where the sensors and PV cell were positioned. The driver board comprises a TI 

TLC59108 LED driver and a Microchip MCP4261 digital potentiometer. The driver has eight 

constant current sink inputs requiring two LEDs per channel and communicates with the EHDC 

platform over an I2C interface. The digital potentiometer communicates with EHDC via an SPI 

interface. The driver uses two separate lighting control mechanisms: inverse linear control of 

current through the digital potentiometer and piecewise linear control of current via control bits 

internal to the driver. 
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Figure 3.8 LITE platform implementation based on the block diagram. 

 An SLMD600H10L monocrystalline solar cell produced by IXYS is used with the light sensors 

on the EHDC. The sensors and the PV cells were placed as close to one another as possible during 

the experiments. 

3.5.2 Calibration of the Lighting System 

Different from functions in energy profiling, the purpose of EHDC in LITE is to generate the 

specific lux values in the apparatus from an input. A calibration stage is required to create a 

regression-based profile that translates any desired input lux value to control bits for the driver 

board.  

 The platform takes an input of desired lux values and outputs generated light with an equivalent 

value to the input. Control application is used to translate lux into driver control bits. To achieve 

this, we calibrated the system by selecting five LED driver gain bits and sweeping all potentiometer 

control bits for each gain. The resulting lux values are recorded in five curves. This mapping from 



27 

 

control bits to generated lux is inverted such that the input is lux and output is control bits. Four 

of these calibration curves created for the LITE platform are shown in Figure 3.9. Out of these five 

inverted curves, a single piecewise mapping function is created. These steps allow the apparatus' 

input and output to be in lux. A limitation of this method is that recalibration is required if the 

platform setup is altered such as LED settings, distance, or other conditions.  

 

Figure 3.9 The relationship between light intensity and resistance control bits and gain.  

 The calibrated low light operating range is from 30 to 800 lux which is normal indoor lighting 

range. Eight LED driver gains are selected to increase the span of possible lux values. For every 

gain value, all potentiometer control bits from 0 to 255 are swept. After curve fitting the data and 

piecing together eight sections from each curve, a piecewise, inverse linear equation is generated. 

The root-mean-square error (RMSE) between user input lux values and generated lux values 

collected from the lux sensor is 12.32 lux. Figure 3.10 illustrates the relative error across lux values 

from the piecewise calibration equation. 
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Figure 3.10 Relative error between input (ideal) lux and output (generated) lux of the 

apparatus. The calibration equation turns an input lux stream into control bits, which in 

turn creates real light that should match in value to the input. 

3.5.3 Light Source Emulation and Mapping Functions 

Each type of solar cells has its spectral sensitivity range. For instance, polycrystalline cells have a 

spectral sensitivity range of 500 nm to 1100 nm and are usually used in outdoor applications; 

monocrystalline cells have a spectral sensitivity range from 300 nm to 1100 nm which could be 

used in both indoor and outdoor environment; and amorphous cells have a range of 300 nm to 600 

nm and are used in predominantly indoors[57]. 

 On the other side, the different light sources also have different spectral, thus have a different 

effect on solar cells even with the same light intensity. Therefore, emulating different light sources 

could help to recreate the light scenarios accurately. The LITE platform uses the LED to emulate 

different light sources by employing specific mapping functions. There are two steps to accomplish 

this. Firstly, a relative set of equations describing the relationship between the light intensity of 

each light source and power for PV cells need to be made. Secondly, using those relationships a 
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mapping equation must be constructed to demonstrate how to convert any other light source to a 

specific light source, and in this project, it is the LED. 

 Concerning PV cell power, the EH systems typically utilize boost converters with maximum 

power point tracking (MPPT) function to extract the most power possible under the immediate 

conditions. This assumption is essential when considering mapping because changing the load will 

change the mapping equation. Bounding the scope to only consider nodes using MPP tracking 

(MPPT), far less information needs to be gathered from every light source.  

 This paper presents the mapping results for the following types of light sources in Figure 3.11: 

5000k white LED, compact fluorescent lamp (CFL), fluorescent lamp, incandescent bulb, and the 

sun. The LED curve is omitted since it is used for emulating other sources. Even though the lux 

range in Figure 3.11 was capped at 800 lux, some measured lux points exceeded this value ensuring 

that each curve was accurate beyond the bounds of interest for this apparatus. The accuracy of the 

sensors and measurements limited the lower bound of the range to approximately 30 lux. All IV 

curves were created using software to sweep current and measure voltage with a Keithley 2400 

source meter.  

 The verification result of the mapping functions is also illustrated in Figure 3.11 by the dashed 

lines which represent the emulated curves of the light source that the symbol is hovering over. The 

LED curve has been modified in such a way that it entirely acts as another source's curve. The 

mapping technique for this experiment was completed in three steps. Firstly, eight lux values 

associated with a particular source were chosen. Secondly, the MPPs associated with those lux 

values were derived and then used to solve for the equivalent LED lux that would produce that 

power. Thirdly, the LED lux values were applied to the platform's input generating the specific lux 

inside of the platform. 
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Figure 3.11 Lux-power curves are showing the relationships between light intensity and 

maximum power obtained from the data of four typical light sources. The LED is used to 

emulate the other four types of light sources and shown by the dashed lines and diamond 

symbols. 

 There is visibly little error between the original curve and its emulated counterpart. To 

demonstrate the actual error over each set, all four light sources' RMSE and MAPE values are 

given in Table 3.1. From this table, the data shows that the mapping functionality of the platform 

works very well over the given intensity range with the incandescent source having the highest 

accuracy. 

Table 3.1 Mapping RMSE and percentage error. 

 CFL Fluorescent Incandescent Solar 

RMSE 0.828µW 0.804µW 0.780µW 2.423µW 

Percentage Error 3.2% 2.5% 1.4% 2.1% 
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3.5.4 Simulations of Time-series Profiles  

The time-series simulation capability of the LITE platform requires discrete time, lux-based 

datasets to operate. The EHDC board collected multiple environmental profiles for a variety of 

lighting sources that the platform can emulate and lux sequences could be generated by the 

software application in EHDC. After calibration and light source emulation, the apparatus is 

capable of simulating time-series light profiles. The Java-based simulation program takes an array 

of lux values and a delay parameter as inputs. It then controls the LED array by sending control 

bits to the LED driver. In the experiment, 800ms was used as the delay parameter. 

 Figure 3.12 illustrated a 12 minutes lighting profile collected in a lab under the fluorescent light. 

The dashed curve represents the emulated power-equivalent input profile converting fluorescent 

lux to LED lux using the mapping equations. The RMSE is approximately four lux, and the MAPE 

is half a percent. The small error between the expected and measured light intensities effectively 

means the platform's performance does not vary over time. Figure 3.13 compares the time-series 

power profiles during this period. The emulation matches the original power profile well except 

one point around the 7th minute. 
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Figure 3.12 Time-series light profile simulation. The yellow dashed line represents the 

calculated power-equivalent LED lux sequence, and the orange line is the measured lux 

values which match the input well.  

 
Figure 3.13 Time-series power profile. The emulated curve matches the original power 

profile well except one point around the 7th minute. 
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 To conclude, the LITE platform helps designers to understand how a physical node operates in 

realistic energy harvesting conditions by providing a completely customizable, physically 

simulated lighting environment for testing these systems. Future work mainly includes expanding 

the emulation capabilities of the platform as well as improving the accuracy of the system. 

3.6 Summary 

This chapter discusses the energy harvesting profiling for BSNs. An EHDC platform is designed 

for this purpose, and the profiles are presented. Finally, a LITE platform based on the EHDC is 

introduced for light environment simulation. The experiments and results demonstrated that: 

• Energy profiling regarding the ambient environment and human factors could help 

understand the energy harvesting dynamics in the real world.  

• The LITE simulation platform could help validate solar-powered designs using profiles in 

real-world scenarios. 
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4  Energy Harvesting Prediction 

The discontinuous and dynamic characteristics of energy harvesting in real-world scenarios – and 

their implications on the design and operation of self-powered systems – are critical for self-

powered BSN engineers. The frequently used energy sources including solar and thermal are all 

intermittent and discontinuous. The [58] discussed and classified energy sources in different types 

according to their controllability and predictability. Only a few energy sources like self-powered 

flashlights are entirely controlled by the user whenever needed. Most other sources like wind, solar, 

and thermal are usually uncontrollable. In other words, the user cannot fully control them to 

generate the required amount of energy at desired times. However, most of the uncontrolled energy 

sources could be modeled, and the expected behavior could be predicted in a given time horizon 

with limited error margin. There isn’t a clear boundary between the definitions of unpredictable 

and predictable energy sources, but the performance of prediction model complexity, accuracy, 

and prediction time horizon make it impractical to predict some energy sources in the real world. 

In the scope of this work, we discuss the uncontrollable and predictable energy sources of solar 

and thermoelectric. 

  Predicting or forecasting the harvested energy in advance could help to improve the 

performance of the system power management. Better prediction accuracy usually brings more 
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performance improvement as discussed in related works [12]–[19] and this is also proved in 

Section 5.5. 

 Context information related to energy harvesting could be utilized for energy prediction. 

Environmental variables such as light intensity and temperature, are directly related to solar and 

thermoelectric energy harvesting. Human activity level, inferred from motion sensors, affects 

harvested energy especially in an indoor environment as well[59]. Information from a smartphone, 

including GPS, indoor/outdoor, schedule, weather forecast, and others also help to infer the context 

which benefits for energy harvesting prediction. For instance, if the GPS shows the subject is in a 

building on campus, and there is a class going on according to the subject’s schedule, then we 

could predict the harvested energy in an hour with almost constant indoor temperature, and an 

indoor illumination level. 

 In this chapter, we discuss the energy prediction models in related works in Section 4.1. The 

prediction horizon, application scenarios, and performance of these models are analyzed. Inspired 

by these models, a context-aware hybrid model for both indoor and outdoor BSN energy harvesting 

prediction is proposed in Section 4.2. The model is more like a framework to demonstrate the idea 

of integrating context information to improve the prediction performance. We use a real-world 

profile to evaluate its performance on our custom SCDPM platform, and the experiments and 

results will be discussed in Section 7.3. 

4.1 Related Work  

The harvested energy from a system is a time-series data sequence thus the energy harvesting 

prediction belongs to the time-series prediction field. Therefore, the classic methods that have been 

well discussed for time-series prediction could be utilized for energy prediction.  The prediction 

models for time-series forecasting could be found in this book [60]. 
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 From the point of view of energy sources, many types of research focus on the outdoor solar 

energy harvesting, and the wind energy harvesting ranked the second. The outdoor solar and wind 

have strong cyclicity which draws the attention of the researchers. There is not much research on 

thermoelectric energy prediction, and one of the few that discussed the factors that affect TEG is 

[55] with short-term profiling. Technically, the thermoelectric energy prediction is almost equal 

to predict the temperature difference between two sides of the TEGs, and it highly depends on the 

experimental conditions. The indoor solar energy is similar to TEG, which is affected by 

experimental conditions or human factors. We focus our discussion on the solar and thermoelectric 

energy sources but also study models for other energy sources in related works. 

 Instead of discussing prediction models according to different energy sources, we organize the 

discussion of models by their underlying methodology. 

4.1.1 Exponential Weighted Moving Average Based Models 

Many of the previous research on energy harvesting techniques are focused on outdoor solar energy 

harvesting [16] [58][61][62]. The outdoor solar energy has a very strong diurnal cyclicity which is 

different from other energy sources such as thermal electric, RF, and others.  Besides, the solar 

energy also has seasonality in a longer time horizon. The temporal weather conditions also affect 

the short-term solar energy harvesting which is from minutes level to hours level. Other factors like 

the angle between the solar cell and the light and temperature are not discussed much. 

Among the prediction models, the Exponential Weighted Moving Average (EWMA) is a 

fundamental and effective model which utilized the EWMA filter[63]. The model exploits both the 

diurnal cycles of the solar energy and seasonal variations. It maintains a summary of historical 

energy harvesting values in each time slot of a day, and usually, the slot length is chosen as 30 

minutes and the total slots in a day are 48. The value of energy harvested in each slot is maintained 
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as a weighted average of the energy collected in the time slot at that time of all observed days. The 

exponential weights result in decaying weights for profiles in older days. The EWMA model 

performs well since it handles the diurnal and seasonal cycles of the solar energy expertly. However, 

the primary limitation is that it fails to consider the weather conditions which has a significant effect 

on the solar energy harvesting but does not have periodicity. For example, the light intensity in 

cloudy and rainy days(~1000lux) could be significantly lower than that in sunny days(~10,000lux). 

Therefore, when different weather conditions alternate the algorithm could produce a significant 

error. 

Noticed this issue there have been many researchers working on adding the weather effect to the 

EWMA model, and the way they deal with weather conditions is different. A Weather Conditioned 

Moving Average (WCMA) prediction is proposed in [62]. The model keeps D previous days data 

rather than one-day data used in EWMA, and they added a parameter GAP to indicate the solar 

conditions in the present day relative to the average of previous days. Similarly, in [61] a Weather-

Conditioned Selective Moving Average (WCSMA) is proposed by using the trend similarity of 

energy harvesting and the classification of sunny and cloudy days. Especially, three datasets of 

sunny, cloudy, and mixed days are kept, and current data from the beginning till now is compared 

with these profiles to calculate the similarities. A weight factor array based on the similarity is used 

to estimate the energy in the current time slot. In [16], a prediction model was designed based on 

the additive decomposition (SEPAD) model. In the model, they divided the solar energy into three 

parts reflecting the diurnal cycle, seasonal effect, and temporal weather change. EWMA is 

implemented for each part, and then all parts are combined for the final prediction. 
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4.1.2 Profile-Based Models 

Technically the EWMA model could be considered as a profile-based model as well since it 

maintains one day profile. The weather-related models based on EWMA discussed above require 

more than one profile to consider the weather conditions. For example, the WCMA in [62] requires 

D past days, and the WCSMA in [61] keeps three types of profiles for sunny, cloudy, and mixed 

days. 

The profile energy model (Pro-Energy) in [17] developed the idea of profile-based prediction 

further. Different from keeping D past days profiles as in [62], it maintains D selected “typical” 

profiles of different weather conditions. The profile set is updated dynamically to discard old 

profiles and remove profiles which are too similar. The energy harvesting data of the current day 

from the beginning till current time slot is compared with each stored profile to calculate a similarity 

factor. Then the most similar profile is selected to predict data in the next time slot in a similar way 

to EWMA. It is further improved to select the top K most similar profiles and use the weighted 

average of them to predict.  

The number of profiles should be large enough to represent different types of weather conditions. 

Compared with [61] which keeps three profile sets, the Pro-Energy could handle weather conditions 

better and have a higher prediction accuracy. The model is capable of providing accurate predictions 

for short-term and medium-term forecasting horizons. 

4.1.3 Empirical Models 

As mentioned, the energy prediction can be treated as a time-series prediction problem and utilize 

various empirical models. Empirical models only rely upon the observed relationships among 

experimental data, and the relationship could be utilized for forecasting. The empirical models 

usually have very limited or no information about the underlying mechanism of the system. Thus 



39 

 

the model may or may not have real-world interpretation. Therefore, the empirical models usually 

cannot be used for long-term prediction which requires more knowledge of the underlying system 

mechanism. 

 The empirical models are usually employed for short-term prediction with pretty good accuracy. 

Also, they usually have low computation complexity and memory requirement, which fit for fast, 

accurate short-term prediction. 

 Three commonly used statistical models including linear regression model, moving average, 

and exponential smoothing are discussed in [13]. The three different models are used for short-

term solar energy prediction in a horizon of seconds to minutes level.  They used the deadline miss 

rate of the system to evaluate the performance of energy prediction and power management, and 

they conclude that linear regression and moving average worked better on the simulation data. The 

prediction horizon is not designed for medium-term and long-term prediction. 

 In [15], six empirical statistical models including uniform distribution, geometric distribution, 

transformed geometric distribution, Poisson distribution, transformed Poisson distribution and a 

Markovian model are tested for both outdoor and indoor environments, and their results show that 

no single model fits all the data sets. This work mainly shows the limitation of empirical models.  

4.1.4 Weather Forecast Based Models  

In addition to the models discussed before, an entirely different model worth noting is proposed in 

[64] leveraging the weather forecast information to deal with the temporal weather change in 

outdoor solar and wind energy harvesting. The authors termed past predicts the future (PPF) to refer 

to the previous models discussed in 4.1.1 ~ 4.1.3 and argued the PPF models have least accurate at 

the time-scales of 3 hours to several days due to the significant inter-day and intra-day variations. 

Therefore, instead of seeking information from the past, it utilized weather forecast to enhance the 
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prediction ability. The hours-level weather forecast usually contains more information than the past 

data thus improving the prediction accuracy.  

 The performance of their forecast-based prediction model was compared with the PPF models 

in two case studies and showed better results. One possible limitation of the model could be the 

overhead of accessing and processing the weather information, as pointed in [17]. However, as the 

ubiquitous computing technologies, internet coverage, and IoT devices have been developed 

rapidly, the cost of accessing and processing diminishes. 

 More importantly, this idea could be developed by extending the “context information” beyond 

the weather forecast to acquire more information related to energy harvesting and integrate it in 

the prediction model rather than solely based on the past data.  

 From the point of view of general time-series prediction, adding context variables related to the 

model extends the univariate prediction model to a multivariate prediction model. By carefully 

selecting the related variables, the performance of the multivariable model could be better by 

leveraging the context information.  

4.1.5 Prediction Horizon 

In addition to the prediction accuracy, the prediction horizon is another critical factor to consider. 

The prediction accuracy usually changes along the forecast horizon as shown in [64].  The 

definitions of the short-term, medium-term, and long-term are not unified in energy harvesting area. 

According to most of the related papers, here we clarify the short-term to be the seconds to several 

minutes, medium-term to be minutes to hours, and long-term to be several hours to days. Longer 

time horizon like months or years is usually not considered.  

 The models discussed before are summarized in Table 4.1. Statistical empirical models like 

regression, moving average, smoothing and others are best for short-term prediction by focusing 
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on the trend and relationship from the observed data samples. In BSN energy harvesting, such 

short-term predictions are even more critical since the energy harvesting is highly dependent on 

the human motion which is random and changes in a short time-scale. For example, consider a 

solar energy harvesting system on a wristband, when the person moves or rotates his arm, the 

harvested energy could change significantly. Such behavior is impractical to model, and empirical 

models are a good fit for it. 

 The EWMA-based including the weather conditioned models usually divided a day into 30 

minutes and predicted well in such a medium-term time horizon. The profile-based models as in 

[17] have good accuracy in both the medium and long-term prediction. Weather forecast based 

model proposed in [64] depends on the weather forecast time scale which is usually an hour to 

days. They concluded that the weather forecast based model performs well from 3 hours to 72 

hours in future and better than PPF models.   

Table 4.1 Prediction horizon of different models. 

Prediction horizon Models 

Short-term 

(seconds ~minutes) 

Empirical models 

Medium-term 

(minutes ~ hour) 

EWMA-based, weather-forecast-based, 

profile-based 

Long-term 

(hours ~ days) 

Profile-based 

Weather-forecast-based 

4.1.6 Hybrid Indoor and Outdoor Prediction For BSN 

From the application perspective, most of the previous work is for general Wireless Sensor 

Networks (WSNs) rather than BSN. It often assumes the harvesters and the sensing system are 

fixated in a specific location, and the solar energy is mainly decided by the time of a day, seasonal 

changes, and weather conditions. However, this assumption does not hold for the BSN area. 

 The solar energy harvesting in BSN area usually includes both indoor and outdoor environment. 

The indoor lighting level is more human controlled and affected by human motion. Compared with 
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outdoor, the lighting in the indoor environment like in an office, hospital, gymnasium, and 

classroom is almost stable regardless of time, except locations close to a window. However, the 

solar harvesters deployed on the human body are affected by human motion, and the harvested 

energy could fluctuate considerably. Prediction of indoor solar energy harvesting usually utilizes 

the general time-series prediction methods. The transition of indoor and outdoor is also complex 

to model and predict. 

 Besides, the dimensions of the harvesters and related circuits are limited compromising for 

wearability, and the harvested energy is much less than other WSN applications.  

 Due to the differences in BSN energy harvesting, the methodologies mentioned above cannot 

be directly employed. For instance, the EWMA including weather conditioned models would fail 

without distinguishing the indoor and outdoor environment. Therefore, inspired these models, we 

proposed a context-aware hybrid model for indoor and outdoor energy harvesting prediction. 

4.2 A Hybrid Context-Aware Profile Based Model 

The context has different scopes in different areas, and in energy harvesting prediction area we 

limit the context to be the information collected by the sensor system or the smartphone which are 

related to energy harvesting prediction. We will discuss our custom Self-power Context-aware 

DPM (SCDPM) platform in Section 6, and the context discussion is based on the sensing capability 

of SCDPM. 

4.2.1 The Scope of Context 

The target of employing context information is to leverage as much as possible the available 

knowledge of the current situation and thus to execute appropriate prediction models for accurate 

prediction. As discussed before, the solar energy harvesting in BSN area usually includes both 

indoor and outdoor environment which has distinct behavior. Therefore, an essential task is to try 
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to predict the indoor/outdoor environment. Here are the context information sources that we 

employ in the model. 

 Weather Forecast Information. In our work, since we are using a smartphone, the weather 

forecast could be acquired very conveniently. We can get the hourly weather information in real 

time from the internet. Therefore, the similarity is not required, and we can have a more accurate 

weather classification rather than just cloud or sunny days as discussed in [64]. 

 Calendar Events. Calendar events 𝐶 could be used to predict the user’s behavior especially for 

predicting indoor or outdoor environment, and the specific indoor locations.  Here we assume that 

we could directly extract the place name from an event description. For instance, “Gym”, “UVa 

Hospital”, “Rice Hall 304”, “Home”, etc. Extracting such information from a complex sentence 

may require natural language processing related methods, and they are out of the scope of this 

work. The light profiles for each place is maintained and could be employed to predict indoor 

energy harvesting. 

 GPS. The GPS denoted by 𝐺 provides information of the place, and the moving speed of the 

user as well. The place information could be used with the calendar information to decide the 

indoor/outdoor situation and places. 

4.2.2 Profiles 

Inspired by the EWMA and profile-based models, we also maintain a typical profile 𝐸𝑖
𝑃. In addition, 

we keep the statistics on the lighting conditions and temperature of indoor locations. The statistics 

of the mean and variance of the light intensity and temperature are stored. Such information is 

maintained in a matrix of  [𝐿1, 𝐿2, … , 𝐿𝑀] for M indoor locations. Examples include gym, classroom, 

restaurant, home, etc. The location could be co-decided by GPS and calendar events. 
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 In order to utilize the weather forecast, a parameter list is used to describe the relationship 

between each weather condition and the maximum light intensity (also the maximum solar energy).  

Such a parameter list [𝑊1, 𝑊2, … , 𝑊𝐾] is in a range (0, 1], 1 for sunny and smaller values for 

cloudy or rainy, foggy. The harvested solar energy under a specific weather condition is predicted 

by multiplying the 𝑊𝑖 to the maximum harvested energy in a sunny day. Such a parameter list is 

calculated for our SCDPM platform as shown in Section 7.3. 

 The parameters for the indoor locations and weather sets could be updated, but we first ignore 

it and use stationary parameter data sets. 

4.2.3 Context-Aware Hybrid Models 

Hybrid models are used to predict the different time horizons and indoor/outdoor situations. Here 

the minimum time slot that we select is 30 seconds. The indoor energy harvesting prediction based 

on the [𝐿1, 𝐿2, … , 𝐿𝑀], and the outdoor solar energy harvesting relies on the weather forecast 

information. The context information including calendar events and GPS are employed to predict 

the location. 

 Medium-term and long-term prediction. We use the weather forecast and profiles for 

medium-term and long-term prediction with the range from 30 minutes to several hours. Longer 

time horizon more than a day is not considered. A time slot of 30 minutes as in EWMA-based and 

profile-based modes is selected for such horizon. 

 �̂�𝑡 = 𝛼𝐸𝑡−1 + (1 − 𝛼)𝑓(𝐸𝑡
𝑃, 𝐿𝑡 , 𝑊𝑡 , 𝐶, 𝐺) (4.1) 

 If there isn’t any context information to decide the indoor/outdoor situation, then the model is 

degraded to the EWMA based models as shown in (4.2). The profiles are used for medium-term 

and long-term prediction. 

 �̂�𝑡 = 𝛼𝐸𝑡−1 + (1 − 𝛼)𝐸𝑡
𝑃 (4.2) 
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 If there is context information at the tth time slot, the model could be improved without using 

𝐸𝑡
𝑃. If the current time slot is indoor and the location is mth in [𝐿1, 𝐿2, … , 𝐿𝑀], then: 

 �̂�𝐼𝑛𝑑𝑜𝑜𝑟 = 𝑔𝑖𝑛(𝐿𝑚) (4.3) 

 If the current time is outdoor with the weather condition k in [𝑊1, 𝑊2, … , 𝑊𝐾], then: 

 �̂�𝑂𝑢𝑡𝑑𝑜𝑜𝑟 = 𝑔𝑜𝑢𝑡(𝑊𝑘) (4.4) 

 Therefore, based on the context information, 

 �̂�𝑡 = 𝛼𝐸𝑡−1 + (1 − 𝛼) 𝐸𝑡
𝑃, if no context information, or  

 �̂�𝑡 = 𝛼𝐸𝑡−1 + (1 − 𝛼)�̂�𝐼𝑛𝑑𝑜𝑜𝑟, for an indoor situation, or (4.5) 

 �̂�𝑡 = 𝛼𝐸𝑡−1 + (1 − 𝛼)�̂�𝑂𝑢𝑡𝑑𝑜𝑜𝑟, for an outdoor situation  

 Short-term prediction. A time slot of 30 seconds is selected for short-term prediction inside 

the 30 minutes slots. As discussed in 4.1.3 and 4.1.5, we use exponential smoothing from the 

empirical models for short-term prediction with the range from 30 seconds to 30 minutes.  

4.3  Summary 

In this chapter, solar and thermoelectric energy harvesting prediction methods were studied and 

these methods cannot directly apply in self-powered BSN systems regarding human behavior 

effect and prediction horizon. Based on these previous work, a hybrid context-aware prediction 

model for both indoor and outdoor environment is proposed utilizing weather forecast information, 

calendar, and GPS to improve the performance of prediction accuracy and horizon. 

 The proposed model is more like a framework to demonstrate the idea of utilizing context 

information rather than a concrete model or algorithm. For instance, there are different ways to 

use GPS and calendar events, and we assume that the calendar events could directly provide the 

energy harvesting information. The scope of context could be extended as well.  
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 Unlike outdoor solar energy harvesting research, there aren’t any databases for the hybrid 

indoor and outdoor solar energy harvesting with our required information. Thus, the performance 

is hard to validate or compare, and it highly depends on the experiment platform and conditions. 

In order to try to prove the effectiveness of our proposed model, we test it on our custom SCDPM 

platform which will be discussed in Section 6. The experiments and results are presented in Section 

7.3 as part of the validation of the SCDPM platform. 
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5  Dynamic Power Management 

Optimization 

Dynamic Power Management (DPM) is a design and operating methodology for reconfiguring 

systems dynamically to provide specific services and performance with some of the components 

shutting down or in a low power state when inactive. DPM has been widely adopted in systems 

design [65]–[73], portable and embedded electrical design[74]–[77], high performance computing 

clusters[78]–[80], electrical vehicles[81], and wireless sensor networks[82]–[85]. There are two 

fundamental assumptions for the applicability of DPM: a) the workload of the system could 

fluctuate during operation time; and b) it is possible to observe and predict the workload 

change[65]. The system, which usually consists of heterogeneous power-manageable components, 

could then be managed to achieve a better power efficiency with specific DPM policies. 

 In the area of self-powered BSN, the fluctuation of available energy is a critical concern in 

addition to the workload change. As stated before, the harvested energy from solar, thermoelectric, 

and other sources in the real world is discontinuous, which is different from the stable power 

supply like batteries. Therefore, DPM in self-powered BSN should consider the dynamics of both 

energy harvesting and workload during operation time. On the workload side, the power 

consumption of most power manageable components at different operating conditions could be 

modeled. In the next section, such a power consumption model is discussed for the proposed 
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SCDPM platform. On the energy harvesting side, the harvested energy could be predicted. As 

discussed in the previous section, we developed the hybrid context-aware model for indoor and 

outdoor solar energy harvesting prediction.  

 In order to optimize the data quality in an energy harvesting sensor system, a context-aware 

dynamic power management framework is proposed. The fundamental idea is to take advantage 

of context information from the smartphone and the system nodes for energy harvesting prediction 

and power management.  The context-based energy harvesting prediction was discussed in the last 

chapter. 

 In this section, firstly the proposed context-aware dynamic power management framework for 

an energy harvesting sensor system is presented in Section 5.1. The framework mainly includes a 

scheduling module and an energy harvesting predictor. In the following part, the power 

management is discussed from the perspective of nonlinear convex optimization. In Section 5.2, 

the optimization model of the power management in the energy harvesting system is formally 

constructed, and the optimal offline solution is derived.  In Section 5.3, the constraint of the 

supercapacitor capacity is added to the problem, and the updated optimal solution is derived. Then 

the online scheduling problem is discussed in Section 5.4. Simulations of the power management 

using an energy profile collected in the real world are presented in each subsection. 

 The cost function of the optimization in the real world is difficult to find. In general, the cost 

function is related to the specific applications. To explore this issue, we studied the vigilant Atrial 

Fibrillation (AFib) monitoring as a case study. In this application, the AFib detection performance 

is the most concerned by the medical area. Therefore, the relationship between the power 

consumption and the AFib detection performance is explored. We proved that our cost function 
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could be extended and is practical and meaningful in the real medical applications and the proposed 

solution remains valid. 

 A preliminary result of this section (Section 5.2, 5.3, 5.6) was published in [86]. 

5.1 Context-Aware Dynamic Power Management Framework 

The conceptual diagram of a general system level DPM scheduling is shown in Figure 5.1 which 

is adapted from [65]. The sensing modules work as an observer to collect information on the 

workload and harvested energy. The controller receives information, executes power management 

scheduling algorithms, and then sends commands to the system to dynamically reconfigure the 

system. 

 

Figure 5.1 Abstract diagram of system-level dynamic power management. 

 The configuration parameters determine the system power consumption and data quality. The 

parameters mainly include the sampling rate, the number of enabled environmental sensors, data 

delay, radio power, and sleep mode configurations. By changing those parameters separately or 

collaboratively, the power consumption and data quality could be changed almost continuously.  

Since there is a tradeoff between the power consumption and data quality, the target of the dynamic 

power management is to optimize the data quality within a power budget and an operation time 

requirement.  
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 A context-aware dynamic power management framework is proposed as illustrated in Figure 

5.2 to achieve this goal. Consider a typical energy-harvesting body sensor system communicating 

with a phone. The sensor node collects sensor data and transmits it to the power manager which 

runs on the phone. The power manager includes an energy predictor and an online scheduler. The 

energy predictor receives sensor data and collects context data from the phone and combines them 

to make a prediction of harvested energy in future time slots. Then the prediction result is sent to 

the scheduler to make a decision of the optimal parameter set. The sensor node receives the updated 

parameter set and changes them accordingly. 

 

Figure 5.2 The workflow for the proposed context-aware dynamic power management 

framework. The sensor system communicates with a phone which runs the power 

management algorithm. 

 As shown in Figure 5.2, there are two modules in the power manager, an energy predictor, and 

a scheduler. For the energy predictor, the hybrid context-aware model is developed as discussed 

in the last chapter. For the scheduler, we will focus on it in this chapter. A formal analysis of the 
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model will be provided, and the optimal scheduling algorithm will be derived in the following 

sections.   

5.2 A DPM Scheduling Model for Energy Harvesting Sensor System 

The power management problem could be modeled as a mathematical optimization problem: 

deciding the energy consumption in each time interval to minimize the total cost or maximize the 

objective function. To compare the cost, we define a limited time range and minimize the overall 

cost function during this time. Consider an energy harvesting sensor system which is required to 

run from 1st to Nth discrete time unit. The harvested energy in each time slot is given as: 

 𝑒 = [𝑒1, 𝑒2, … , 𝑒𝑁]𝑇 (5.1) 

 The initial energy in a battery or a supercapacitor is included in the 𝑒1. 

 The variable 𝑥 is the energy consumption during these time slots and we assume the power 

management is continuous. 

 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑁]𝑇 (5.2) 

 A cost function is required to be defined regarding 𝑥. The object in general is to maximize the 

overall “data quality” of the sensor system during a predefined operating period. The data quality 

or the target is closely related to the system power consumption and they are usually positively 

correlated. In the Section 6.4, we will use our SCDPM system as an example to prove that the 

system power consumption is positively correlated to the sensors sampling rate in a duty-cycled 

system. In most cases, the data quality of a sensing system increases with a higher sampling rate 

of the sensors. Intuitively, when increasing the sampling rate or operating speed, the power 

consumption will be higher, and then we will have the more detailed information of the signal of 

interest and the data quality is better. When the system is down the signal is lost then the penalty 

should be significantly high.  
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 In a comprehensive paper about power management in energy harvesting systems [58], the 

authors assumed a linear relationship between power consumption and utility with thresholds. 

Power consumption smaller than the low threshold will lead to zero utility, and more than the high 

threshold will not increase the utility. This linear model could represent some use cases. However, 

the relationship between the utility or cost and the power consumption could present nonlinearity 

even inside the two thresholds. For instance, when the power consumption is low, increasing a 

little will improve the data quality a lot. As the sampling rate and power consumption are 

increasing, the power increment will bring less data quality improvement. In the Section 5.6.4, we 

analyzed the AFib application in which the relationship between utility/cost and power 

consumption cannot be modeled with a linear function. 

 In reality, the cost function depends on the specific medical applications, and it is impractical 

to give a universal form. Considering the properties discussed above, here we consider a cost 

function form during the entire operation period as shown in (5.3). Such a form can represent the 

fundamental relationship between power consumption and the data quality for most applications. 

The basic idea of this form is that evenly data sampling is preferred than unevenly. The benefit of 

this form is that it is smooth and the derivative is concise. In Section 5.6, we will study the vigilant 

Atrial Fibrillation (AFib) monitoring as a case study and discuss the application specific cost 

function for this application in Section 5.6.4. We will prove that the optimal solution remains the 

same even the cost function is different from (5.3). 

 

𝐽 = ∑
1

𝑥𝑖

𝑁

𝑖=1

 (5.3) 

 The constraint is in each time slot the consumed power is no higher than available energy 

(remaining energy plus harvested energy in the current time slot). Assuming 𝑒𝑖 is positive, which 
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means that energy could be always harvested in each slot even though it might be arbitrarily small. 

The N inequalities are: 

 𝑥1 ≤ 𝑒1 

𝑥1 + 𝑥2 ≤ 𝑒1 + 𝑒2 

… 

𝑥1 + 𝑥2 + ⋯ + 𝑥𝑁 ≤ 𝑒1 + 𝑒2 + ⋯ + 𝑒𝑁 

(5.4) 

 Define 𝑔𝑘(𝑥) to represent the N inequalities: 

 

𝑔𝑘(𝑥) = ∑ 𝑥𝑖

𝑘

𝑖=1

− ∑ 𝑒𝑖

𝑘

𝑖=1

(𝑘 = 1,2, … , 𝑁) (5.5) 

 The formal optimization problem could be written as: 

 Minimize: 

 

𝑓(𝑥) = ∑
1

𝑥𝑖

𝑁

𝑖=1

 (5.6) 

 Subject to: 

 𝑔𝑘(𝑥) ≤ 0 (𝑘 = 1,2, … , 𝑁) (5.7) 

 𝑥𝑖 > 0, 𝑒𝑖 > 0 (𝑖 = 1,2, … , 𝑁) (5.8) 

5.3 Optimal Solution 

In this section, we first consider the optimal offline solution which assuming that we have all the 

information on harvested energy during each time slot. In other words, the 𝑒 is given in advance. 

The problem is an optimization problem with only inequalities [87]. All the constraint functions 

are linear, but the objective function is nonlinear: 

 For the constraint functions: 
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𝛼 ∑ 𝑥𝑖

𝑘

𝑖=1

+ 𝛽 ∑ 𝑦𝑖

𝑘

𝑖=1

= ∑(𝛼𝑥𝑖

𝑘

𝑖=1

+ 𝛽𝑦𝑖) (5.9) 

 For the objective function: 

 

𝑓(𝛼𝑥 + 𝛽𝑦) = ∑
1

𝛼𝑥𝑖 + 𝛽𝑦𝑖

𝑁

𝑖=1

 (5.10) 

 

𝛼𝑓(𝑥) + 𝛽𝑓(𝑦) = 𝛼 ∑
1

𝑥𝑖

𝑁

𝑖=1

+ 𝛽 ∑
1

𝑦𝑖
= ∑

𝛼𝑦𝑖 + 𝛽𝑥𝑖

𝑥𝑖𝑦𝑖

𝑁

𝑖=1

𝑁

𝑖=1

 (5.11) 

 There exist 𝛼, 𝛽 that: 

 𝑓𝑘(𝛼𝑥 + 𝛽𝑦) ≠ 𝛼𝑓𝑘(𝑥) + 𝛽𝑓𝑘(𝑦) (5.12) 

 Therefore, the problem is nonlinear. Now consider if the problem is convex. 

 For the constraint functions: 

 𝛼 ≥ 0, 𝛽 ≥ 0, 𝛼 + 𝛽 = 1 (5.13) 

 

𝑔𝑘(𝛼𝑥 + 𝛽𝑦) = ∑(𝛼𝑥𝑖

𝑘

𝑖=1

+ 𝛽𝑦𝑖) − ∑ 𝑒𝑖

𝑘

𝑖=1

 (5.14) 

 

𝛼𝑔𝑘(𝑥) + 𝛽𝑔𝑘(𝑦) = 𝛼 ∑ 𝑥𝑖

𝑘

𝑖=1

+ 𝛽 ∑ 𝑦𝑖

𝑘

𝑖=1

− ∑ 𝑒𝑖

𝑘

𝑖=1

= ∑(𝛼𝑥𝑖

𝑘

𝑖=1

+ 𝛽𝑦𝑖) − ∑ 𝑒𝑖

𝑘

𝑖=1

= 𝑔𝑘(𝛼𝑥 + 𝛽𝑦) 

(5.15) 

 For the objective function: 

 𝛼 ≥ 0, 𝛽 ≥ 0, 𝛼 + 𝛽 = 1 (5.16) 

 

𝑓(𝛼𝑥 + 𝛽𝑦) = ∑
1

𝛼𝑥𝑖 + 𝛽𝑦𝑖

𝑁

𝑖=1

 (5.17) 

 

𝛼𝑓(𝑥) + 𝛽𝑓(𝑦) = 𝛼 ∑
1

𝑥𝑖

𝑁

𝑖=1

+ 𝛽 ∑
1

𝑦𝑖

𝑁

𝑖=1

 

(5.18) 
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 𝑓(𝛼𝑥 + 𝛽𝑦) − (𝛼𝑓(𝑥) + 𝛽𝑓(𝑦))

= − ∑
𝛼𝛽𝑥𝑖

2 + 𝛼𝛽𝑥𝑖
2 + (𝛼2 + 𝛽2 − 1)𝑥𝑖𝑦𝑖

(𝛼𝑥𝑖 + 𝛽𝑦𝑖)𝑥𝑖𝑦𝑖

𝑁

𝑖=1

= − ∑
𝛼𝛽𝑥𝑖

2 + 𝛼𝛽𝑥𝑖
2 − 2𝛼𝛽𝑥𝑖𝑦𝑖

(𝛼𝑥𝑖 + 𝛽𝑦𝑖)𝑥𝑖𝑦𝑖

𝑁

𝑖=1

= −𝛼𝛽 ∑
(𝑥𝑖 − 𝑦𝑖)2

(𝛼𝑥𝑖 + 𝛽𝑦𝑖)𝑥𝑖𝑦𝑖
≤ 0

𝑁

𝑖=1

 

(5.19) 

 Therefore, all constraint functions and the objective function are convex, and thus the problem 

is a convex optimization problem. For such optimization problems, a fundamental property is that 

all locally optimal points are globally optimal points [87]. 

 Define the Lagrangian expression 𝐿(𝑥, 𝜆) with the Lagrange multiplier vector 𝜆: 

 

𝐿(𝑥, 𝜆) = 𝑓(𝑥) + ∑ 𝜆𝑖𝑔𝑖(𝑥)

𝑁

𝑖=1

,  𝜆𝑖 ≥ 0, 𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑁 (5.20) 

 Since the optimization problem is convex as proved before, the necessary Karush–Kuhn–

Tucker (KKT) conditions are also sufficient for the points to be primal and dual optimal. The KKT 

conditions are listed as below: 

 𝑔𝑖(𝑥) ≤ 0 (5.21) 

 𝜆𝑖𝑔𝑖(𝑥) = 0 (5.22) 

 𝜕

𝜕𝑥
𝐿(𝑥, 𝜆) = 0 

(5.23) 

 Equation (5.23) indicates that:  

 1

𝑥𝑖
2 = ∑ 𝜆𝑖

𝑁

𝑘=𝑖

 (5.24) 
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𝜆𝑖 =

1

𝑥𝑖
2 −

1

𝑥𝑖+1
2 (𝑖 = 1,2, … , 𝑁 − 1) (5.25) 

 
𝜆𝑁 =

1

𝑥𝑁
2  

(5.26) 

 Since 𝜆𝑖 ≥ 0: 

 𝑥𝑖 ≤ 𝑥𝑖+1 (5.27) 

 

∑ 𝑥𝑖

𝑁

𝑖=1

= ∑ 𝑒𝑖

𝑁

𝑖=1

 (5.28) 

 

𝜆𝑖(∑ 𝑥𝑖

𝑘

𝑖=1

− ∑ 𝑒𝑖) = 0

𝑘

𝑖=1

 (5.29) 

 The x is nondecreasing during all time intervals. There are two trivial solutions. If 𝑒 is non-

decreasing, then 𝑥𝑖=𝑒𝑖. If 𝑒 is non-increasing, then 𝑥𝑖=𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑒).  

 For general cases, we consider the sequence  𝑃𝐸𝑘. 

 
𝑃𝐸𝑘 =

∑ 𝑒𝑖
𝑘
𝑖=1  

𝑘
    (1 ≤ 𝑘 ≤ 𝑁) 

(5.30) 

 Since 𝑥𝑖 is non-decreasing, for the kth equation: 

 

𝑥1𝑘 ≤ ∑ 𝑥𝑖

𝑘

𝑖=1

≤ ∑ 𝑒𝑖

𝑘

𝑖=1

 

(5.31) 

 𝑥1 ≤ 𝑃𝐸𝑘(1 ≤ 𝑘 ≤ 𝑁) (5.32) 

 Find: 

 𝑘∗ = 𝑎𝑟𝑔𝑚𝑖𝑛1≤𝑘≤𝑁(𝑃𝐸𝑘) (5.33) 

 Then: 

 𝑥1 ≤ 𝑃𝐸𝑘∗ (5.34) 

 Assign 𝑥1 = 𝑃𝐸𝑘∗ and this is the optimal solution for 𝑥1. Besides, 
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 𝑥1, 𝑥2, … , 𝑥𝑘∗ = 𝑃𝐸𝑘∗ (5.35) 

 The 𝑘∗th inequality is active and 𝑔𝑖(𝑥) = 0. 

 If 𝑥1 is reduced to be 𝑥1′ = 𝑃𝐸𝑘∗ − ε > 0(ε > 0), then one or more 𝑥𝑘(1 < 𝑘 ≤ 𝑘∗) could be 

increased to reduce the cost. Suppose 𝑥𝑏′(1 < 𝑏 ≤ 𝑘∗) is increased to 𝑥𝑏′ = 𝑃𝐸𝑘∗ + ε, then the 

total cost will be increased due to the change: 

 
∆𝑓(𝑥) = (

1

𝑥𝑏′
+

1

𝑥1′
) − (

1

𝑥𝑏
+

1

𝑥1
) =

1

𝑃𝐸𝑘∗ − ε
+

1

𝑃𝐸𝑘∗ + ε
−

2

𝑃𝐸𝑘∗

=
2ε2

(𝑃𝐸𝑘∗ − ε)(𝑃𝐸𝑘∗ + ε)𝑃𝐸𝑘∗
> 0 

(5.36) 

 Therefore, 𝑥1, 𝑥2, … , 𝑥𝑘∗ = 𝑃𝐸𝑘∗  is the optimal solution for the first 𝑘∗ elements. If 𝑘∗ < 𝑁, 

then start from 𝑘∗ + 1 to continue to calculate until the end.  In general, when start from begin 

(1 ≤ 𝑏𝑒𝑔𝑖𝑛 ≤ 𝑁), let:  

 
𝑃𝐸𝑘 =

∑ 𝑒𝑖
𝑘
𝑖=1 − ∑ 𝑥𝑖

𝑏𝑒𝑔𝑖𝑛−1
𝑖=1

𝑘 − 𝑏𝑒𝑔𝑖𝑛 + 1
,     (𝑏𝑒𝑔𝑖𝑛 ≤ 𝑘 ≤ 𝑁) 

(5.37) 

 𝑘∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑏𝑒𝑔𝑖𝑛≤𝑘≤𝑁(𝑃𝐸𝑘) (5.38) 

 Then: 

 𝑥𝑓𝑟𝑜𝑚, 𝑥𝑓𝑟𝑜𝑚+1, … , 𝑥𝑘∗ = 𝑃𝐸𝑘∗ (5.39) 

 The end case is: 

 

𝑥𝑁 = ∑ 𝑒𝑖

𝑁

𝑖=1

− ∑ 𝑥𝑖

𝑁−1

𝑖=1

 

 

(5.40) 

 The algorithm could be summarized in the following table. The worst-case complexity of the 

algorithm is 𝑂(𝑁2). 
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ALGORITHM 5.1 

1:  Input: 𝑒 = [𝑒1, 𝑒2, … , 𝑒𝑁]𝑇 for harvested energy in each time slot, and N for the number 

time slots 

2:  𝐽 = ∑
1

𝑥𝑖

𝑁
𝑖=1  as the cost function of data quality 

3:  Output: 𝑥, energy consumption in each time slot to minimize the cost 

4:  𝑥 = [] 

5:  while 1<= i <= N do 

6:       min = infinity 

7:       𝑘∗ = 𝑖 

7:       for each j in {i, i+1,…, N} do 

8:             min = Min(min, 
∑ 𝑒𝑘

𝑗
𝑘=1 −∑ 𝑥𝑘

𝑖−1
𝑘=1

𝑗−𝑖+1
) 

9:             𝑘∗ = 𝑗 

9:       end for 

10:     assign 𝑥𝑖 , 𝑥𝑖+1, … , 𝑥𝑘∗ = 𝑚𝑖𝑛 

11: end while 

12: return 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑁]𝑇 

 Here is a simulation of the offline algorithm illustrated in Figure 5.3. The energy profile for 

around 6 hours was collected by the EHDC platform. The proposed algorithm is compared with 

the stoplight algorithm and a greedy algorithm (𝑥𝑖=𝑒𝑖). The cost of the proposed optimal solution 

and the greedy algorithm is 1846.9 and 1436.4, respectively. For the stoplight algorithm, the 

consumption depends only on current remained energy and predefined thresholds. The operating 

modes might oscillate even using hysteretic thresholds. In the simulation, three operation modes 

are used. Since the stoplight algorithm encounters powering down as shown in the figure, the total 

cost is infinity. 
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Figure 5.3 Simulation of DPM strategies on an energy profile. The cost of the proposed 

algorithm (offline solution) and the greedy algorithm is 1436.4, 1846.9 respectively. The 

stoplight algorithm encounters powering down. 

5.4 DPM Model with Battery Capacity Limit 

The battery of the energy harvesting systems is limited and, in some cases, the battery cannot store 

all harvested energy. For instance, in the outdoor environment when it is sunny, the solar energy 

is abundant, and the supercapacitor can be fully charged in a short time and cannot store additional 

energy.  

 Suppose the maximum capacity of a supercapacitor is C (C > 0), the 2N constraints are:  

 

∑ 𝑥𝑖

𝑘

𝑖=1

≤ ∑ 𝑒𝑖

𝑘

𝑖=1

 (𝑘 = 1,2, … , 𝑁) (5.41) 

 

∑ 𝑥𝑖

𝑘

𝑖=1

≥ ∑ 𝑒𝑖

𝑘

𝑖=1

− 𝐶(𝑘 = 1,2, … , 𝑁) (5.42) 

 Similar to the previous solution, define: 
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ℎ𝑘(𝑥) = −𝐶 − ∑ 𝑥𝑖

𝑘

𝑖=1

+ ∑ 𝑒𝑖

𝑘

𝑖=1

(𝑘 = 1,2, … , 𝑁) (5.43) 

 Then the optimization model with a capacity limit could be expressed as the following. 

 Minimize: 

 

𝑓(𝑥) = ∑
1

𝑥𝑖

𝑁

𝑖=1

 (5.44) 

 Subject to: 

 𝑔𝑘(𝑥) ≤ 0 (𝑘 = 1,2, … , 𝑁) (5.45) 

 ℎ𝑘(𝑥) ≤ 0 (𝑘 = 1,2, … , 𝑁) (5.46) 

 𝑥𝑖 > 0, 𝑒𝑖 > 0 (𝑖 = 1,2, … , 𝑁) (5.47) 

 For the newly added N constraint functions: 

 𝛼 ≥ 0, 𝛽 ≥ 0, 𝛼 + 𝛽 = 1 (5.48) 

 

ℎ𝑘(𝛼𝑥 + 𝛽𝑦) = −𝐶 − ∑(𝛼𝑥𝑖

𝑘

𝑖=1

+ 𝛽𝑦𝑖) + ∑ 𝑒𝑖

𝑘

𝑖=1

 (5.49) 

 

𝛼ℎ𝑘(𝑥) + 𝛽ℎ𝑘(𝑦) = −𝐶 − 𝛼 ∑ 𝑥𝑖

𝑘

𝑖=1

− 𝛽 ∑ 𝑦𝑖

𝑘

𝑖=1

+ ∑ 𝑒𝑖

𝑘

𝑖=1

= −𝐶 − ∑(𝛼𝑥𝑖

𝑘

𝑖=1

+ 𝛽𝑦𝑖) + ∑ 𝑒𝑖

𝑘

𝑖=1

= ℎ𝑘(𝛼𝑥 + 𝛽𝑦) 

(5.50) 

 Therefore, it is still a convex optimization problem. Define the Lagrangian expression as: 

 𝐿(𝑥, 𝜆, 𝜇) = 𝑓(𝑥) + 𝜆𝑔(𝑥) + 𝜇ℎ(𝑥) (5.51) 

 

𝐿(𝑥, 𝜆, 𝜇) = 𝑓(𝑥) + ∑ 𝜆𝑖𝑔𝑖(𝑥)

𝑁

𝑖=1

+ ∑ 𝜇𝑖ℎ𝑖(𝑥)

𝑁

𝑖=1

,  𝜆𝑖 ≥ 0, 𝜇𝑖 ≥ 0, 𝑓𝑜𝑟 𝑖

= 1, 2, … , 𝑁 

(5.52) 
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 The KKT conditions are: 

 𝑔𝑖(𝑥) ≤ 0 (5.53) 

 𝜆𝑖𝑔𝑖(𝑥) = 0 (5.54) 

 ℎ𝑖(𝑥) ≤ 0 (5.55) 

 𝜇𝑖ℎ𝑖(𝑥) = 0 (5.56) 

 𝜕

𝜕𝑥
𝐿(𝑥, 𝜆, 𝜇) = 0 

(5.57) 

 That is: 

 
𝜆𝑖 − 𝜇𝑖 =

1

𝑥𝑖
2 −

1

𝑥𝑖+1
2 (𝑖 = 1,2, … , 𝑁 − 1) (5.58) 

 
𝜆𝑁−𝜇𝑁 =

1

𝑥𝑁
2 (𝑖 = 𝑁) (5.59) 

 

𝜆𝑖(∑ 𝑥𝑖

𝑘

𝑖=1

− ∑ 𝑒𝑖) = 0

𝑘

𝑖=1

 (5.60) 

 

𝜇𝑖(−𝐶 − ∑ 𝑥𝑖

𝑘

𝑖=1

+ ∑ 𝑒𝑖) = 0

𝑘

𝑖=1

 (5.61) 

 For the capacity limit C, if C is large enough, then (−𝐶 − ∑ 𝑥𝑖
𝑘
𝑖=1 + ∑ 𝑒𝑖) > 0𝑘

𝑖=1  for all N 

inequalities, and all 𝜇𝑖 should be zero and the solution is the same with the previous no-capacity-

limit scenario. If C= 0, the solution is trivial: 𝑥𝑖 = 𝑒𝑖 as the greedy algorithm. When given the e, 

the cost should be nonincreasing along with C. 

 Since 𝜆𝑁−𝜇𝑁 =
1

𝑥𝑁
2 , 𝜆𝑁 > 0. Then ∑ 𝑥𝑖

𝑘
𝑖=1 − ∑ 𝑒𝑖 = 0𝑘

𝑖=1 , which means all the energy should 

be consumed at the last time interval. If 𝑥𝑖 ≠ 𝑥𝑖+1 , then either ∑ 𝑥𝑖
𝑘
𝑖=1 − ∑ 𝑒𝑖 = 0𝑘

𝑖=1  or −𝐶 −

∑ 𝑥𝑖
𝑘
𝑖=1 + ∑ 𝑒𝑖 = 0𝑘

𝑖=1 , which means the battery should be either empty or full. 

 Compared with the no-capacity-limit solution, here we consider the two sequences. 
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𝑃𝐸𝑘 =

∑ 𝑒𝑖
𝑘
𝑖=1  

𝑘
    (1 ≤ 𝑘 ≤ 𝑁) 

(5.62) 

 
𝑃𝐹𝑘 =

∑ 𝑒𝑖 − 𝐶𝑘
𝑖=1  

𝑘
    (1 ≤ 𝑘 ≤ 𝑁) 

(5.63) 

 The 𝑃𝐸𝑘  sequence relates to points that satisfy  𝑔𝑖(𝑥) = 0  and 𝑃𝐹𝑘  relates to ℎ𝑖(𝑥) =

0. Starting from previous non-capacity-limit scenario to calculate 𝑘∗ from equation (12) and assign 

𝑥1, 𝑥2, … , 𝑥𝑘∗ = 𝑃𝐸𝑘∗. When adding the capacity constraint, if the battery doesn’t saturate before 

𝑘∗, then the solution remains unchanged. If the battery saturates or overflows before the 𝑘∗th point 

and assume the battery saturates or overflows at the jth point (j < 𝑘∗) for the first time, then 𝑥𝑗+1 

will be less than 𝑃𝐸𝑘 since there isn’t enough remaining from the previous time slot due to the 

capacity limit. Let 𝑥𝑗+1 = 𝑃𝐸𝑘∗  − 𝜀, then the 𝑥𝑗  could be relaxed to 𝑥𝑗 = 𝑃𝐸𝑘∗ + 𝜀 , and the total 

cost increases.  

 To deal with the capacity limit constraint, we consider the points that satisfy ℎ𝑖(𝑥) = 0 in 

addition to points that satisfy 𝑔𝑖(𝑥) = 0 in the previous solution. Specifically,  

 1) Search the next minimum 𝑃𝐸𝑖. If the supercapacitor full doesn’t happen before i, then repeat 

1) to search forward.  

 2) If supercapacitor full happens before i(𝑃𝐸𝑖.< 𝑚𝑎𝑥1≤𝑝≤𝑖 (𝑃𝐹𝑝)), then search backward form i 

to find the maximum 𝑃𝐹𝑗. If supercapacitor empty doesn’t happen before j then repeat 1) from 

(j+1), else execute 3). 

 3) If supercapacitor empty happens before j(𝑃𝐹𝑗.>𝑚𝑖𝑛1≤𝑝≤𝑗  (𝑃𝐸𝑝)), then search backward from 

j to find the minimum 𝑃𝐸𝑙. If supercapacitor full doesn’t happen before l then repeat 1) from (l+1), 

else repeat 2). 

 Repeat until the entire array is processed. Note that i = 1 satisfies both 2) and 3) since 𝑃𝐸1 <= 

𝑃𝐹1 , so the solution exists.  
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 There are two cases when condition 2) or 3) is satisfied. First, the supercapacitor is empty at 

the kth point: 

 𝑥𝑓𝑟𝑜𝑚~𝑥𝑘 = 𝑃𝐸𝑘 (5.64) 

 𝑃𝐸𝑘 = 𝑚𝑖𝑛𝑓𝑟𝑜𝑚≤𝑖≤𝑘(𝑃𝐸𝑖) (5.65) 

 𝑃𝐸𝑘 ≥ 𝑚𝑎𝑥𝑓𝑟𝑜𝑚≤𝑖≤𝑘(𝑃𝐹𝑖) (5.66) 

 Moreover, the second, the supercapacitor is full at the kth point: 

 𝑥𝑓𝑟𝑜𝑚~𝑥𝑘 = 𝑃𝐹𝑘 (5.67) 

 𝑃𝐹𝑘 = 𝑚𝑎𝑥𝑓𝑟𝑜𝑚≤𝑖≤𝑘(𝑃𝐹𝑖) (5.68) 

 𝑃𝐹𝑘 ≤ 𝑚𝑖𝑛𝑓𝑟𝑜𝑚≤𝑖≤𝑘(𝑃𝐸𝑖) (5.69) 

 For the first case:  

 Since 𝑃𝐸𝑘 = 𝑚𝑖𝑛1≤𝑖≤𝑘(𝑃𝐸𝑖), so: 

 

∑ 𝑥𝑗 = 𝑗𝑃𝐸𝑘

𝑗

𝑖=1

≤ 𝑗𝑃𝐸𝑗 = 𝑗
∑ 𝑒𝑖

𝑗
𝑖=1  

𝑗
= ∑ 𝑒𝑖

𝑗

𝑖=1

 (5.70) 

 Since 𝑃𝐸𝑘 ≥ 𝑚𝑎𝑥1≤𝑖≤𝑘(𝑃𝐹𝑖),  

 

∑ 𝑥𝑖

𝑗

𝑖=1

= 𝑗𝑃𝐸𝑘 ≥ 𝑗𝑃𝐹𝑖 = 𝑗
∑ 𝑒𝑖 − 𝐶

𝑗
𝑖=1  

𝑗
= ∑ 𝑒𝑖 − 𝐶

𝑗

𝑖=1

 (5.71) 

 All inequalities are satisfied and the second case is similar to prove. The algorithm is 

summarized in the following table. 
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ALGORITHM 5.2: 

1:  Input: 𝑒 = [𝑒1, 𝑒2, … , 𝑒𝑁]𝑇 for harvested energy in each time slot, N for the number time 

slots, and C for the capacity of the battery 

2:  𝐽 = ∑
1

𝑥𝑖

𝑁
𝑖=1  as the cost function of data quality 

3:  Output: 𝑥, energy consumption in each time slot to minimize the cost 

4:  𝑥 = [] 

5:  start = 1 

6:  while start <= N do 

7:       j = argmin(
∑ 𝑒𝑖

𝑗
𝑖=1 −∑ 𝑥𝑖

𝑠𝑡𝑎𝑟𝑡−1
𝑖=1

𝑗−𝑠𝑡𝑎𝑟𝑡+1
) 

8:       𝑃𝐸𝑙 =
∑ 𝑒𝑖

𝑙
𝑖=1 −∑ 𝑥𝑖

𝑠𝑡𝑎𝑟𝑡−1
𝑖=1

𝑙−𝑠𝑡𝑎𝑟𝑡+1
(𝑠𝑡𝑎𝑟𝑡 ≤ 𝑙 ≤ 𝑗)  

9:       𝑃𝐹𝑙 =
∑ 𝑒𝑖−∑ 𝑥𝑖

𝑠𝑡𝑎𝑟𝑡−1
𝑖=1 −𝐶𝑙

𝑖=1  

𝑙−𝑠𝑡𝑎𝑟𝑡+1
(𝑠𝑡𝑎𝑟𝑡 ≤ 𝑙 ≤ 𝑗) 

10:     end =𝑚𝑎𝑥(𝑘) s.t.: 

11:     𝑔𝑘(𝑥) = 0  (1)      or     ℎ𝑘(𝑥) = 0  (2) 

12:     assign 𝑥𝑠𝑡𝑎𝑟𝑡 , 𝑥𝑠𝑡𝑎𝑟𝑡+1, … , 𝑥𝑒𝑛𝑑 = 𝑃𝐸𝑘 for (1) or 

13:     assign 𝑥𝑠𝑡𝑎𝑟𝑡 , 𝑥𝑠𝑡𝑎𝑟𝑡+1, … , 𝑥𝑒𝑛𝑑 = 𝑃𝐹𝑘 for (2) 

14:     start = end +1  

15: end while 

16: return 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑁]𝑇 

 Note that it is required to compare 𝑃𝐸𝑒𝑛𝑑 and 𝑃𝐸𝑒𝑛𝑑+1 to decide empty (𝑃𝐸𝑒𝑛𝑑 <  𝑃𝐸𝑒𝑛𝑑+1) or 

full status (𝑃𝐸𝑒𝑛𝑑 <  𝑃𝐸𝑒𝑛𝑑+1) at the endth point in addition to check (5.65)(5.66)(5.68)(5.69). 

Besides, when end = N, the supercapacitor should be empty, as proved before. 

 Here are simulations of calculated x regarding different C values (the unit is mJ in the 

simulations) using the same energy profile as in Section 5.3. Figure 5.4 illustrates the consumed 

energy in each time interval at different capacity values. With smaller C values, the x is closer to 

e since the supercapacitor cannot store much energy, so it tends to use up available energy in the 

current time interval. When C is large enough, the optimal solution is the same as the no-capacity-

limit scenario, as shown by the cyan curve of C = 5.0 in Figure 5.4. The cost of each case is shown 

in Figure 5.5. 
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Figure 5.4 Offline simulation of DPM strategies on an energy profile according to different 

capacity C values in mJ. 

 

Figure 5.5 The cost of the scheduling of each capacity C. The cost decreases along with the 

increase of the capacity C until C is large enough. 

 Figure 5.6 illustrates the remained energy on the supercapacitor in each time slot. As the 

capacity C increases, more energy could be stored for future use. The maximum remained energy 

in this range is 4.38mJ, so when C is higher than it, the x and cost don’t change.  
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 In Figure 5.7, the capacity C is swept from 0 to 5 to calculate the cost for each C. The cost 

decreases as C increases from 0 to 4.38mJ and remains the same after that. 

 

Figure 5.6 The remained energy on the supercapacitor regarding different C values (mJ). 

 

Figure 5.7 The cost versus the capacity C from 0 to 5. The cost decreases as C increases 

from 0 to 4.38mJ and remains the same after that. 
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5.5 Online Scheduling with Energy Harvesting Prediction 

The previously discussed solution with all e in advance could be called the "offline solution" or 

the "Oracle solution". In practice, future energy harvesting information is unavailable, and only 

the past 𝑒𝑖 values are available. If there is no prediction, the trivial solution is to use up energy in 

each time slot, which is apparently not optimal. With a prediction model, short-term and long-term 

energy can be evaluated as shown in Figure 5.8 and the predicted energy values 𝑒�̂� can be used for 

online scheduling algorithm similar to the offline algorithm.  

 

Figure 5.8 Short-term and long-term prediction for online scheduling. 

 Better energy prediction models with higher accuracy could improve the performance of the 

online scheduling to be closer to the optimal offline solution, and on the other hand, no prediction 

or poor prediction will perform inappropriate scheduling. For instance, predicting too 

conservatively leads to less energy consumption in the current time slot which is supposed to spend 

more to achieve better data quality. While predicting too radically leads to more energy 

consumption than it should be and will perhaps lead to system powering down. 

 To demonstrate that the accuracy of prediction models affects the power management 

performance, here is a simulation to compare the performance of different grades of predictions. 

Here we do not assume specific prediction methodologies and only model the short-term and long-

term error range. Since short-term energy harvesting is more accessible to forecast than long-term, 
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the short-term error range  𝑒𝑟𝑟𝑠  is assumed to be smaller the long-term 𝑒𝑟𝑟𝑙 . In each step, we 

"predict" future energy 𝑒�̂� by adding a random noise with uniform distribution in the specific range 

(𝑒𝑟𝑟𝑠 or  𝑒𝑟𝑟𝑙) to the real 𝑒𝑙. Then we update the algorithm to calculate the optimal solution with 

Algorithm 5.3 which is modified from Algorithm 5.2. In this online algorithm, in each step only 

one 𝑥𝑖 for the current time slot is calculated which is different from the offline algorithms.  

ALGORITHM 5.3: 

1:  Input: �̂� = [𝑒𝑚, 𝑒𝑚+1, … , 𝑒𝑁]𝑇 for future N – m + 1 harvested energy in each time slot, r for 

remained energy from previous time slot, N for the number time slots, and C for the capacity 

of the battery 

2:  𝐽 = ∑
1

𝑥𝑖

𝑁
𝑖=1  as the cost function of data quality 

3:  Output: 𝑥𝑚, energy consumption in the current time slot to minimize the cost 

4:   j = argmin(
𝑟+∑ 𝑒𝑖

𝑗
𝑖=𝑚

𝑗−𝑚+1
) 

5:  𝑃𝐸𝑙 =
𝑟+∑ 𝑒𝑖

𝑙
𝑖=𝑘

𝑙−𝑚+1
(𝑚 ≤ 𝑙 ≤ 𝑗)  

6:  𝑃𝐹𝑙 =
𝑟+∑ 𝑒𝑖−𝐶𝑙

𝑖=𝑘  

𝑙−𝑚+1
(𝑚 ≤ 𝑙 ≤ 𝑗) 

7:  end =𝑚𝑎𝑥(𝑘) s.t.: 

8:  𝑔𝑘(𝑥) = 0  (1)      or     ℎ𝑘(𝑥) = 0  (2) 

9:  assign 𝑥𝑚 = 𝑃𝐸𝑘 for (1) or assign 𝑥𝑚 = 𝑃𝐹𝑘 for (2) 

10: return 𝑥𝑚 

 The simulation result is shown below. The error range parameters ( 𝑒𝑟𝑟𝑠, 𝑒𝑟𝑟𝑙 ) for three 

prediction plots are (0.15, 0.60), (0.60, 2.00), (1.00, 3.50), respectively from the best to the worst.  

Figure 5.9 illustrates the energy consumption in each prediction method comparing to the offline 

solution, and Figure 5.10 shows the remained energy in each time slot. The cost of the offline, best 

prediction, medium prediction, worst prediction, and the greedy algorithm is 1438.54, 1440.51, 

1467.66, 1590.67, 1846.87, respectively, as shown in Figure 5.11. Better prediction methods with 

higher accuracy will have better scheduling performance with lower cost. 



69 

 

 

Figure 5.9 Online energy consumption simulation in each prediction method comparing to 

the offline solution. 

 

Figure 5.10 The remained energy on the supercapacitor regarding different prediction 

methods. 



70 

 

 

Figure 5.11 Compare of the cost from the greedy algorithm, offline, online with three 

different prediction accuracies. The online algorithm performs better the than greedy 

algorithm but worse than the optimal offline algorithm. The better prediction model has 

lower cost. 

5.6 A Case Study: Vigilant Atrial Fibrillation Monitoring 

In Section 5.2 ~ 5.5, we discussed the power management as a convex optimization problem and 

derived the optimal solution in offline and online scenarios. In this part, we study the vigilant Atrial 

Fibrillation (AFib) monitoring as a case study to further discuss the relationship between the 

application-specific data quality and system power consumption.  

5.6.1 Vigilant Monitoring and Atrial Fibrillation 

In the context of sensor systems, the term “vigilant” has a specific meaning – a vigilant monitoring 

system is one that operates in a mode such that no critical events are missed. Events may be missed 

due to noise or user error, but not due to operational mode. It is important to note the difference 

between vigilant sensing and continuous sensing, as a continuous sensing system may not include 

all of the necessary sensors or operates at the minimum sampling frequency or quantization bit 
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depth to ensure that all critical events will be detected. Conversely, not all vigilant systems perform 

continuous sensing, as critical events may only happen during certain times, activities, and the 

system needs not operate otherwise. A precise definition of a critical event must be made before 

designing a vigilant monitoring system, and is inherently application dependent. For the use case 

application explored in this work, a critical event is AFib episodes as detected through ECG 

monitoring using a state-of-the-art AFib classification algorithm. 

 AFib is an abnormal heart rhythm, which is usually associated with heart diseases like a cardiac 

failure. Studies show that AF is related to stroke and frequently occurs in elderly persons[88]. The 

early detection and diagnose of AF could help to prevent heart failure and stroke. Therefore 

vigilant monitoring is necessary to capture transient periods of AF. 

 There are two main categories of AF detection approaches: using R-R intervals or QRS 

waveforms. In a comparative study of AF detection [89], different algorithm performances were 

compared, and the R-R interval-based approach provided better performance. Also, the QRS 

waveform could be distorted when the sampling rate is low; therefore, we focus on the R-R 

interval-based AFib detection in this work. 

 The R-R interval variations are analyzed in different ways for AFib detection. In [90], a 

normalized R-R interval variation threshold is set to classify AFib events. Some use both the R-R 

interval and its change for detection[91]. In [92], the Kolmogorov-Smirnov test is used to detect 

AFib episodes. In this paper, we use the method in [90] for its simplicity and high performance. 

There are five steps in this algorithm: a) determine the R-R intervals; b) normalize the R-R 

intervals as a feature normalization; c) compute the statistics of the normalized intervals; d) 

initially classify the AFib episodes using a settable threshold; e) smooth the classification results 

to reduce spurious errors and improve the overall performance. 
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 For R-R interval calculation, there are algorithms including curve-length-transform in [93], 

wavelet-transform in [94], and some others. The curve length transform algorithm could deal with 

baseline changes using a dynamic threshold, and we use it in our experiment for AFib detection. 

5.6.2 Application-Driven Metrics for Vigilant Monitoring 

The vigilant BSNs requires an application-driven approach to determine the relationship between 

power consumption and the ability to detect critical events. Previous works discuss signal quality 

versus power consumption, but many of these approaches come from a signal processing 

perspective using metrics such as Signal-to-Noise Ratio (SNR) and Mean Squared Error (MSE), 

which may or may not be tied to application-level information metrics, such as event detection 

vigilance.  

 A typical example is measuring the time interval between successive heart beats – R-R interval 

– which is frequently used in cardiac monitoring applications[93] including the AFib detection. 

The R-R interval is usually extracted from digital ECG signals. Figure 5.12 shows a 10-second 

window of ECG waveform from the database at a sampling rate of 250Hz, and the other five 

subplots are the downsampled version of the original signal at 200Hz, 100Hz, 50Hz, 20Hz, and 

10Hz. The detected peaks using the curve length transform algorithm [93] are marked in red circles 

in each row. Along the downsampling, the signal quality of the ECG signal degrades, but the QRS 

complex detection can still be adequately performed down to 20Hz. Therefore, the R-R interval 

measuring performance cannot be precisely evaluated by the ECG signal quality. 

 In the following, we analyze the relationship between AFib detection performance and ECG 

sampling rate and quantization depth. The sampling rate is directly related to the power 

consumption of a sensing system as proved in Section 6.4. The quantization depth of a sample 

decides the data rate of the system which also affects the total power consumption.  
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Figure 5.12 ECG waveforms and detected QRS complexes in red circles with different 

sampling rates at 250Hz, 200Hz, 100Hz, 50Hz, 20Hz, and 10Hz. With the decrease of the 

sampling rate, the ECG signal becomes distorted, but the QRS complex detection works 

well until a minimum sampling rate of 20Hz. 

 Since the AFib detection is binary classification task to distinguish regular heartbeats and 

abnormal AFib episodes, the metrics of classification performance are discussed. The assessment 

of the performance of a classifier is a complex topic, and there are various measures including 

accuracy, precision, recall, F score, receiver operating characteristic ROC, and many others [95]. 

Though these measures are commonly used in the machine learning area, the effectiveness of the 
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measures remains debatable. The discussion of the effectiveness of measures is out the scope of 

this work, and we selected the most frequently used metrics of the ROC curve and the F score. In 

addition, we used the metrics to evaluate how different data qualities affect the performance of the 

same classifier rather than assessing the performance of different classifiers. 

 The ROC curve is constructed by adjusting parameters used to classify the two categories and 

plotting the true positive rate (sensitively) and false positive rate (1-specificity) [95] [96]. The area 

under the ROC curve (AUC) is usually used for performance comparison. The F score is a measure 

of the accuracy of a test considering both the precision and recall [95] as shown in (5.72).  The 𝐹1 

score is the harmonic average of the precision and recall as shown in (5.73). In AFib detection and 

many other medical applications, false negatives (failing to detect critical events) are much worse 

than false positives. In other words, more emphasis should be put on the false negatives and the 

recall should be weighted higher. In such case the 𝐹2 score is preferred as shown in (5.74).  

 
𝐹𝛽 =

(1 + 𝛽2)𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝛽2 ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (5.72) 

 
𝐹1 =

2 ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (5.73) 

 
𝐹2 =

5 ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

4 ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (5.74) 

5.6.3 Experiments and Results 

In the experiment, the original ECG data was retrieved from the MIT-BIH AF database [97], 

number 05121. The total recording length is 10.23 hours, which contains 26 AF and premature 

junctional episodes that comprise 6.51 hours out of the total length. The raw signal was sampled 

at 250Hz with 12-bit resolution over a range of ±10mV. The recording bandwidth of the ECG 

recorders is from 0.1Hz to 40Hz. The WFDB MATLAB Toolbox [98][99] was used for reading 
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the ECG signal and annotations. The curve-length-transform based R-R interval calculation 

algorithm was reimplemented from [93] to tune the parameters for dealing with low sampling 

frequency scenarios. 

 The original ECG signals are resampled or truncated to emulate different sampling rates and 

quantization depths. Then the AFib detection performance based on the R-R interval calculation 

algorithm is compared in each case to determine the impact of the signal quality in the application 

performance.  

 The ROC curves of AFib detection under nine sampling rates from 250Hz to 10Hz are 

illustrated in Figure 5.13. In general, the curve moves inward (performance decreases) as the 

sampling rate decreases. The AUC and the maximum 𝐹2  score of AFib detection under nine 

sampling rates are illustrated in Figure 5.14. The values in general increase with the sampling rate. 

 

Figure 5.13 The receiver operating characteristic (ROC) curves of AFib detection under 

nine sampling rates. The curve is moving inward as the sampling rate decreases. 
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Figure 5.14 The ROC area (AUC) and the maximum F2 score of AFib detection under nine 

sampling rates. The value in general increases with the sampling rate. 

 Similarly, the ROC, AUC, and the 𝐹2 were analyzed over quantization depths from the original 

12 bits to 6 bits as illustrated in Figure 5.15 and Figure 5.16. 
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Figure 5.15 The receiver operating characteristic (ROC) curves of AFib detection under 

seven quantization depths. The curve is moving inward as the quantization depth 

decreases. 

 
Figure 5.16 The ROC area (AUC) and the maximum F2 score of AFib detection under 

seven quantization depth. The value in general increases with the quantization depth. 
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 Finally, we combine the sampling rate and quantization depth and discuss the relationship 

between the AUC and the overall system power consumption. The 3D plot of AUC related to the 

sampling rate and quantization depth is illustrated in Figure 5.17. In general, the AUC representing 

the performance increases with the quantization depth and sampling rate, but there are 

abnormalities when the quantization depth is low as shown in Figure 5.17. The main reason is that 

the initial classification result is smoothed using a majority vote as discussed in Section 5.6.1. At 

the low quantization bits, the R-R intervals calculation performs poorly, but the smoothing may 

increase the performance irrelevant to the sampling rate. However, quantization depth lower than 

8 bits is impractical due to the low signal quality and usually are not considered in real-world 

monitoring.  

 
Figure 5.17 The ROC area (AUC)  versus quantization depth and sampling rate. 

 The power consumption of the sensor system is mainly decided by the sampling rate and 

quantization depth. Employing the power consumption model by equation (6.3) and (6.9) in 

Section 6.4, the design space of combinations of the sampling rate and quantization depth is 
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illustrated by the blue markers in Figure 5.18. The red line is part of the convex hull of all the 

points, and it represents the optimal design decisions at specific power consumption level.  

 

Figure 5.18 Design space considering the sampling rate and quantization depth. Power 

consumption is calculated using a model developed in Section 6.4 of our SCDPM platform. 

The red line is part of the convex hull of all the points, and it represents the optimal design 

decisions at specific power consumption level.   

5.6.4 Application-Specific Cost Function 

In Section 5.2 we used a simple form cost function (5.3) to derive the optimal solution. In this part, 

we will derive the application-specific cost function with cur fitting and prove that the optimal 

solution remains the same. 

 Since AUC represents the AFib detection performance, 1-AUC could be used as the cost 

function. Using the previous dataset of the power consumption and AUC, a curve is fitted with the 

form of (5.75). The Root Mean Squared Error (RMSE) of the curve fitting is 0.0023 which is very 

small. The parameters a = 14.64 and b = -3287.4, and they satisfy (5.76). 
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𝑓(𝑥) = ∑
𝑥𝑖

𝑎𝑥𝑖 + 𝑏

𝑁

𝑖=1

 (5.75) 

 
𝑎 > 0, b < 0, 𝑎𝑥𝑖 + 𝑏 > 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥𝑖 (5.76) 

 

Figure 5.19 Curve fitting of the cost function, which is power versus AUC.   

 The cost function (5.75) is different from (5.3), but the optimal solution remains the same. With 

(5.75), the (5.25) is changed to: 

 −𝑏

(𝑎𝑥𝑖 + 𝑏)2
= ∑ 𝜆𝑖 ≥ 0

𝑁

𝑘=𝑖

 (5.77) 

 
𝜆𝑖 = −𝑏 (

1

(𝑎𝑥𝑖 + 𝑏)2
−

1

(𝑎𝑥𝑖+1 + 𝑏)2
) > 0(𝑖 = 1,2, … , 𝑁 − 1) (5.78) 

 
𝜆𝑁 =

−𝑏

(𝑎𝑥𝑁 + 𝑏)2
> 0 

(5.79) 

 For (5.78): 
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𝜆𝑖 = −𝑏 (

1

(𝑎𝑥𝑖 + 𝑏)2
−

1

(𝑎𝑥𝑖+1 + 𝑏)2
) > 0 (𝑏 < 0) => 

1

(𝑎𝑥𝑖 + 𝑏)2
−

1

(𝑎𝑥𝑖+1 + 𝑏)2
> 0 (𝑎𝑥𝑖 + 𝑏 > 0) => 

𝑎𝑥𝑖 + 𝑏 < 𝑎𝑥𝑖+1 + 𝑏 (𝑎 > 0) => 𝑥𝑖 ≤ 𝑥𝑖+1 

(5.80) 

 Therefore, the inequality (5.27) still holds. 

 For (5.36) in the discussion of the optimal solution:  

 ∆𝑓(𝑥) = (
𝑥𝑏′

𝑎𝑥𝑏′ + 𝑏
+

𝑥1′

𝑎𝑥1′ + 𝑏
) − (

𝑥𝑏

𝑎𝑥𝑏 + 𝑏
+

𝑥1

𝑎𝑥1 + 𝑏
)

=
𝑃𝐸𝑘∗ − ε

𝑎𝑃𝐸𝑘∗ + 𝑏 − 𝑎ε
+

𝑃𝐸𝑘∗ + ε

𝑎𝑃𝐸𝑘∗ + 𝑏 + 𝑎ε
−

2𝑃𝐸𝑘∗

𝑎𝑃𝐸𝑘∗ + 𝑏

=
−2𝑎𝑏ε2

(𝑎𝑃𝐸𝑘∗ + 𝑏 − 𝑎ε)(𝑎𝑃𝐸𝑘∗ + 𝑏 + 𝑎ε)(𝑎𝑃𝐸𝑘∗ + 𝑏)
> 0 

(5.81) 

 Other parts in the solution are only related to the constraints rather than the cost function. 

Therefore, the solution does not change. The problem with the supercapacitor capacity limit is 

similar to prove.  

 To sum up, with the application specific cost function (5.75), we could still utilize the 

algorithms discussed in Section 5.3~5.5 to execute the DPM scheduling. 

5.7 Summary 

This chapter demonstrated that the proposed convex optimization model could be utilized to solve 

the power management in energy harvesting systems. The proposed solution can improve the 

system power management performance. 

 The “Oracle” solution is the optimal solution assuming the harvested energy in each slot is 

given in advance. This optimal solution is the theoretical solution while impractical in the real-

world applications. Therefore, the online version of the scheduling algorithm is discussed 
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assuming energy harvesting prediction methods are employed. With the better accuracy of the 

future energy prediction, the performance of the online algorithm is closer to the offline version. 

 In the last part, we analyzed the vigilant AFib detection as a case study to discuss the 

relationship between power consumption and the detection performance. An application-specific 

cost function is derived, and we proved that the cost function is not limited to the pure form as 

illustrated in (5.3) but rather working for many convex functions. In fact, any cost functions which 

are both nonincreasing and convex will have the same solution. Our optimal solution only relies 

on the constraints which include the energy harvesting data and the battery capacity. And it is 

irrelevant to the specific form of the cost function. Compared with the off-the-shelf convex 

optimization solvers which depend on the cost function forms, our algorithm has better speed and 

less complexity. 

 Future work could explore more medical applications to extend the scope of the proposed DPM 

model. Another direction of the future work is to validate the algorithm on the real-world 

deployments.  

  



83 

 

 

6  Self-powered Context-aware 

Dynamic Power Management 

Platform 

In this chapter, the Self-powered Context-aware Dynamic Power Management Platform (SCDPM) 

design is described. The SCDPM is a multimodal context-aware self-powered wearable sensor 

system for real-world vigilant cardiac and activity monitoring that achieves a positive energy 

balance from both solar and thermoelectric energy sources. The platform collects ECG, 

acceleration, and environmental parameters including light intensity and ambient air temperature. 

It wirelessly streams data to a smartphone through Bluetooth Low Energy (BLE) for data 

visualization and processing. Besides, the sensor data is interfaced to specific cloud service in real 

time for data storage, remote data access, and caregiver/clinician/researcher notification. 

 A target of the SCDPM is to execute real-world self-powered health monitoring with the 

capability of ECG, motion, and environmental sensing. This function will be validated in Section 

7, and the collected profiles will be presented and analyzed. 

 The SCDPM is also used to validate the proposed energy prediction and DPM algorithms. It 

receives commands from the phone in real-time for power management according to the DPM 
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scheduling algorithm to dynamically adjust its operating parameters. The DPM algorithm runs on 

the phone side since the phone has stronger computing capability and more power budget. 

The hardware system design is described in Section 6.1, and the software design including 

Android programming on the phone side and embedded C programming on the sensor node side 

is described in Section 6.2 and Section 6.3. In Section 6.4, the power consumption model of 

SCDPM is discussed. 

6.1 Hardware System Design3 

The SCDPM platform is a custom component-off-the-shelf (COTS) based sensor system designed 

to perform long-term vigilant cardiac and activity monitoring and environmental sensing that 

continuously samples and wirelessly streams sensor data to a smartphone through BLE. It has three 

printed circuit boards (PCBs) including the main board for control and data transmission, a sensing 

board for ambient temperature and light intensity sensing, and an energy harvesting board, as 

shown in the block diagram in Figure 6.1. The distributed architecture gives the system certain 

extendibility to interface with different harvesters and more sensors if the target application is 

changed. 

                                                 
3 For the hardware system design of SCDPM, Luiz Lopez Ruiz worked on the main board, and the author of this dissertation worked 

on the energy harvesting board and the sensing board. 
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Figure 6.1 Block diagram of the SCDPM platform including a main board, a sensing 

board, and an energy harvesting board.  

 The main board which performs the system control and data transmission function is based on 

a DA14580 ARM Cortex-M0 SoC from Dialog Semiconductor. The DA14580 is responsible for 

controlling and wireless BLE data transmission. The main board also consists of an accelerometer 

for motion tracking and a discreet analog-front-end (AFE) and an ECG electrodes connector for 

ECG monitoring. 

 The energy harvesting board performs multimodal energy harvesting from solar and 

thermoelectric energy sources and energy storage. It integrates boost converters, a supercapacitor, 

and connectors for solar cells and thermoelectric generators (TEGs).  

 The sensing board consists of a light sensor and ambient air temperature sensor. Both sensors 

communicate with the main board through an I2C interface. 

 The form factors of the PCBs are optimized to be compact to improve the wearability of the 

platform. Both the main board and the energy harvesting board are around 1.30in by 0.99in, and 
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the sensing board is 0.26in by 0.31in. The detailed design of each block is described in the 

following subsections. 

6.1.1 Control and Data Transmission 

The Control and Data Transmission block is the core of the platform which controls the system 

workflow and communicates with smartphones through wireless protocols. The controller is 

required to execute computation tasks, to interface with various sensors, to manage the system 

memory and power consumption, and to have ultralow power consumption. Bluetooth Low Energy 

(BLE) is employed to achieve low power data transmission. BLE consumes much less power, 

0.01mW ~ 10mW, compared with Bluetooth 1mW ~100mW[Bluetooth specs]. The data rate of 

BLE is less than Bluetooth. However, it is sufficient for health applications.  

 The ultra-low power processor DA14580 from Dialog Semiconductor is used in this project to 

meet the above requirements. The chip integrates a 16 MHz 32-bit ARM Cortex-M0 core and a 

dedicated Bluetooth 4.2 compliant radio transceiver and baseband core. The BLE transmitter has 

a configurable output power of 0 dBm or -20 dBm, and the receiver sensitivity is -93dBm. The 

onboard memory resources are limited, mainly including 32kB One-Time-Programmable (OTP) 

memory for custom application code, 42kB System SRAM, 8kB Retention SRAM, and 84kB 

ROM for the BLE protocol stack and the boot code sequence for start-up. For the peripherals, the 

chip incorporates 32 General Purpose I/O (GPIO) channels, an SPI bus, and four 10-bit analog-to-

digital converter (ADC) channels.  

 A highlight feature of the DA14580 is its various power modes. Besides the active mode, there 

are two sleep modes including the extended sleep mode and the deep sleep mode. In the deep sleep 

mode, only the Retention SRAM is switched on, and in the extended sleep mode, both Retention 

and System SRAM are switched on. Current consumption is significantly reduced to around 1.4uA 
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for extended sleep mode and 0.8uA for deep sleep mode which brings opportunity for dynamic 

power management. Since the BLE connection interval is less than 2 seconds for most of the 

scenarios in our applications, extended sleep mode is employed according to the Dialog user 

manual.  The “sleep mode” is used to refer to “extended sleep mode” hereafter. 

6.1.2 Energy Harvesting  

The Energy Harvesting block supplies power to the entire system by extracting the available power 

from the solar cells and TEGs and stores surplus energy into a supercapacitor. The block includes 

the energy harvesting board, solar cells, and TEG arrays. 

 In the project, flexible solar cells from PowerFilm Solar are selected in consideration of the 

system wearability. Two LL200-3-37 and two MP3-37 cells are serialized with a combined surface 

area of 27.0 in2 and surrounded to a running armband to optimize the wearability. The 

characterization P-V curves of the combined solar cells under typical indoor and outdoor 

illumination levels is presented in Figure 6.2. All P-V curves were generated using a program to 

sweep current and measure voltage with a Keithley 2400 source meter. The Maximum Power Point 

(MPP) of the solar cells is usually 80% of their open circuit voltage as shown in the figure. 

 

Figure 6.2 Solar panel characterization. 
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 An ultra-low power with high-efficiency DC-DC boost charger BQ25505 from Texas 

Instruments is selected to utilize the solar power. It is responsible for tracking the MPP 

dynamically and extracting the maximum power available from the solar cells then distribute the 

energy to the system load and energy storage. When there is surplus harvested energy, it is stored 

on the supercapacitor, and when the input is insufficient or unavailable, the supercapacitor will 

power the system instead. The boost charger has various thresholds which can be configured using 

a resistor network for battery undervoltage protection, overvoltage protection, and normal 

operating range. The standard operating range of the battery is configured to be 2.2V ~ 3.6V since 

2.2V is the minimum voltage for BQ25505 and 3.6V is the maximum voltage for the system load 

(DA14580). The cold-start voltage of the boost charger is 330mV, and the maximum operating 

voltage is 5100mV. The output voltage for powering the system load is configured to be 3.6V, and 

the charger efficiency is 79.0% ~ 95.0% when the input is from 330mV ~ 4200mV. The charger 

efficiency increases with the input voltage. 

 For thermoelectric energy harvesting, the thermoelectric generator SP5424-AC from Marlow 

Industries Inc is selected. Small TEG pads considering the wearability for integration on a running 

armband, are preferred and could be connected in an array to increase the power. The dimension 

of each TEG is 0.26in by 0.52in. Ten TEGs are connected in series, and two such groups are 

connected in parallel to constitute a 4 by 5 TEG array as shown in Figure 6.3. The TEG array is 

fixated on a thin flexible plastic board to avoid breaking wires when it is stretched. The connection 

style of TEGs should consider both the current and voltage from the TEGs. 
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Figure 6.3 TEG array. Hot side in the left picture attaching to people’s skin, and cold side 

with a heat sink to dissipate heat into the ambient air.  

 The characterization of the created TEG array is shown in Figure 6.4. In the experiment, the 

TEG array was put on a hot plate with the room temperature of 22°C. The temperature of the hot 

plate was adjusted from 27°C to 45°C. All P-V curves were generated using a program to sweep 

current and measure voltage with a Keithley 2400 source meter. The MPP of the TEG is usually 

50% of their open circuit voltage as shown in the figure. Compared with solar cells, TEGs have 

less power and less open circuit voltage.  
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Figure 6.4 TEG characterization under a room temperature of 22°C. 

 When using TEG on the human body, the hot side usually attaches the skin, and the cold side 

with heat sink exposes to the ambient air. The location of skin for TEG and the airflow should be 

considered to optimize the TEG power. The skin temperature varies at different locations as shown 

in [100], where the human body skin temperature is investigated, and the experiments were 

conducted with 26 people. The average temperature from ten locations at the neutral sensation is 

summarized (in descending order) in Table 6.1. The forehead has the highest average temperature, 

followed by belly, chest, and other locations. Hand and foot have the lowest temperature. 

Table 6.1 Skin temperature of ten different body locations. 

Location Temperature 

(°C) 

Forehead 35.47 

Belly 35.34 

Chest 33.98 

Upper arm 32.09 

Thigh 31.97 

Anterior calf 31.43 

Wrist 30.57 

Posterior calf 30.15 

Hand 29.89 

Foot 29.30 
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 In addition to the static temperature of the location, airflow around the specific location when 

people are doing normal activities should be considered as well. For instance, the hand and arm 

have more airflow than the chest and belly when people are walking, running, or waving hands. 

Besides, the wearability is also an essential factor to consider where to put the TEGs. For instance, 

it is inconvenient to put TEGs on forehead or chest or belly. Consider all these tradeoffs; we choose 

to put the TEG on the upper arm by integrating the TEGs on to a running armband. 

 The voltage from the TEG array under normal conditions is less than 400mV, which requires 

ultralow voltage boost converters. The LTC3108 from Linear Technology is selected for its 

extremely low input from 20mV, and the input range is 20mV to 500mV. When using a 1:100 

ratio transformer in our design, the efficiency increases from 35% to 40% when the input voltage 

increases from 20mV to 50mV and the efficiency decreases from 40 % to 5% when the input 

increases continually to 500mV. Similar to the BQ25505, the LTC3108 could store the surplus 

energy on a supercapacitor extract energy from it to power the system when there isn’t enough 

input voltage. 

 A 1F supercapacitor is connected to the solar and TEG energy harvesting circuitries together to 

store the harvested energy. As mentioned before, the working range of the supercapacitor is from 

2.2V to 3.6V. 

6.1.3 Sensing 

The sensing modalities include motion, ECG, light, temperature, and the voltage on the 

supercapacitor. A summary of the sensors is listed in Table 6.2. The accelerometer and ECG 

circuits are located on the main board. The SPI bus is used to communicate with the accelerometer, 

and an ADC channel is used to digitize the ECG signal. The light and temperature sensors are 

located on a separate sensor board interfacing the main board through a Flexible Flat Cable (FFC) 
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using the I2C bus. An internal ADC channel VBAT_3V of the DA14580 is used to measure the 

voltage on the supercapacitor. 

Table 6.2 Sensing modalities, IC, the interface with DA14580, and power consumption. The 

sampling rate is 100Hz. 

Sensor IC Interface Power 

Accelerometer ADXL362 SPI 4.6uW 

ECG custom circuit ADC 67.0uW 

Light MAX44009 I2C 1.2uW 

Temperature PCT2202 I2C 54.0uW 

Voltage - ADC - 

 The ADC of the DA14580 has 10-bit resolution, and the range could be programmed to be 

either 0 ~1.2V or 0 ~ 3.6V. There are four general ADC channels and six internal channels for 

measuring input power supply and reference voltages. 

 Custom analog low pass filters constitute the ECG AFE. The AFE consists of discreet LPV521 

operational amplifiers from Texas Instruments. The quiescent current of these amplifiers is 400nA, 

and the supply voltage ranges from 1.6V to 5.5V. Standard 3M patch electrodes are used to attach 

on the human skin, and three button leads are attached to an interface with the AFE circuit. 

 A 3-axis digital output MEMS accelerometer ADXL362 from Analog Devices is selected to 

track the motion. The ADXL has at most 12-bit data width, while in the project 8-bit data width is 

configured for saving power. The measurement range is configured to be from -2g to 2g which is 

sufficient for human motion tracking. The operating range is from 1.8V to 3.3V, and it consumes 

less than 5µW of power at a 100 Hz output data rate in normal operation mode. The device 

incorporates a standard Serial Peripheral Interface (SPI) that communicates with the controller. 

 The ultralow power digital light sensor MAX44009 from Maxim Integrated is selected to 

measure the light intensity in both indoor and outdoor environment.  It has an ultra-wide 22-bit 

dynamic range from 0.045lux to 188000lux, and the consumes 0.65uA with the supply voltage 
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range of 1.7V to 3.6V. The digital data output format consists of a 4-bit exponent and an 8-bit 

mantissa, and the device communicates with the controller through the I2C bus. The resolution of 

the lux values scales with the absolute measurement. 

 The PCT2202 temperature sensor from NXP company is used to measure the ambient air 

temperature for predicting thermoelectric energy harvesting. The PCT2202 is an ultralow power 

sensor which consumes 30uA active current and 1uA shut-down current. The accuracy is 0.5°C 

from 0°C to 85°C, and the resolution is 12-bit or 0.0625°C. The device also interfaces the controller 

with the I2C bus. 

6.1.4 Power Management 

The system has various supply voltage inputs and requirements summarized in Table 6.3, and the 

power flow is illustrated in Figure 6.1 by the red arrows. The supply voltage generated from the 

energy harvesting board is converted to be in the range of 2.15V to 3.6V. The main board including 

the SoC, accelerometer, and the ECG AFE is directly powered by this dynamic voltage input which 

almost meets the device requirements. A low-dropout linear regulator TPS78318 from Texas 

Instruments is used to regulate the 2.15V~3.6V to 1.8V for the sensing board.  

Table 6.3 Operation voltage range of the main components in the system. 

Component IC Operation 

Voltage Range 

Operation 

Voltage in SCDPM 

SoC DA14580 0.9V~2V(boost) 

2.15V~3.6V1(buck) 

2.15V~3.6V 

Accelerometer ADXL362 1.6V~3.5V 2.15V~3.6V 

ECG AFE custom circuit 1.6V~5.5V 2.15V~3.6V 

Light sensor MAX44009 1.7V~3.6V 1.8V 

Temperature 

sensor 

PCT2202 1.65V~1.95V 1.8V 

TEGs SP5424-AC - 0~0.35V 

Solar cells LL200-3-37 

MP3-37 

- 0~4.2V 

Note 1: According to the experiment, the operation voltage range is wider than the datasheet.  
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 The SoC DA14580 has both boost and buck mode concerning the provided voltage as shown 

in the table. In the experiment, we found that the power consumption of the chip in the buck mode 

is significantly less than the boost mode mainly due to the low efficiency of the DC-DC boost 

conversion. Therefore buck mode is configured, and the input voltage is thus decided to be 

2.15V~3.6V. Along the increasing of the input voltage, the efficiency is reduced from 88% to 80%. 

6.1.5 System Integration 

The electrical and physical integration of the SCDPM platform is described in this part. Figure 6.5, 

Figure 6.6, and Figure 6.7 display the 3D board view in Altium Designer on the left side and the 

real PCBs on the right side. There are some jumper wires on the main board due to a few changes 

after manufacturing the board.  

 

Figure 6.5 The main board. 

 The main board connects to an ECG cable using a 3.5mm Jack connector on the right bottom 

side. The JTAG connector on the left bottom side is used for programming and debugging with a 

computer. The main board is connected to the sensing board through an FFC connector on the 

middle bottom side and connected to the energy harvesting board through a 2-wire cable on the 

top right. 
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Figure 6.6 The energy harvesting board. 

 The energy harvesting board is connected to the solar cells using the top left connector and 

connected to the TEG array using the bottom left connector. It connects to the main board using 

the connector on the right side. The supercapacitor is attached to the bottom side of the energy 

harvesting board. 

 

Figure 6.7 The sensing board. 

 The entire system is integrated into a running armband as shown in Figure 6.8. The solar cells 

are attached to the outside surface of the armband covering around 60% of the surface area. The 

TEG array traverses the outside surface of the armband, such that the hot side is attached to the 

human skin and the cold side with the heat sink is exposed into the air for heat dissipation. The 

sensing board is attached right above the solar cells for environmental sensing, as shown in the left 

figure. The main board and the energy harvesting board are put inside the armband. 
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Figure 6.8 Physical integration with an armband. 

Figure 6.9 shows that a human subject is wearing the SCDPM platform on the left upper arm. 

The solar cells face outward from the body to receive more light and avoid being covered by the 

body trunk. The TEG array faces almost inward. The three ECG electrodes are attached to the 

chest under the shirt to collect the ECG signal. The total weight of the system including the 

armband is around 50g. The platform has been tested on the human body for more than 50 hours, 

and it is comfortable to wear as an ordinary running armband. 
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Figure 6.9 Wearable system on the body. (ECG electrodes locations are not accurate) 

6.2 Embedded Software Development for SoC 

The primary target of the application on the SoC side is to collect sensor data and communicate 

with the phone through BLE. The application interfaces with each sensor for configuration and 

data sampling, and the sensor data is transmitted to the phone. The central part of the programming 

is the BLE related implementation including custom profiles definition based on Generic 

Attributes (GATT) and related event handlers. 

 The Dialog SoC is based on the ARM M0 core, and the development is in C programming 

environment. In this project, we use the ARM Keil µVision IDE/Debugger with ARM C/C++ 

Compiler, and Segger ARM JTAG software stack. The DA1458x Software Development Kit 

(SDK) in its latest v5.0.4 release is employed in the project. The SDK contains an embedded 
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Operating System (OS), complete BLE stack, and various services and Application Programming 

Interfaces (APIs).  

6.2.1 Software Platform Overview 

The overall software architecture for the DA14580 SoC is illustrated in the diagram in Figure 6.10 

which is based on their software user guide. From a high-level perspective, the architecture could 

be divided into three primary layers: the OS, the BLE stack, and the application. 

 

Figure 6.10 Diagram of the DA14580 software architecture. 

 The platform utilizes a small, efficient Real-Time Kernel (RTK) from Riviera Waves which 

provides most of the services for the BLE stack and applications. The event-driven kernel provides 

task, message, event, and memory management capabilities. Tasks communicate with each other 

using message queues and event queues, and the relevant event handler will be invoked when an 

event is triggered.  

 The SDK has complete BLE stack support including the sublayers of controller, host, and 

profiles. The Generic Attributes (GATT) define a hierarchical data structure that is exposed to 
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connected Bluetooth Low Energy (LE) devices [101]. It is a service framework that defines all 

procedures for using the Attribute Protocol (ATT) and describes in detail about data and profile 

exchange. The GATT profile has one or more services composed of characteristics, and a 

characteristic consists of a UUID, a value, a set of properties of available supported operations, 

and a set of permissions relating to security. Generic Access Profile(GAP) specifies the usage 

model of the lower-level radio protocols to allow BLE devices to discover devices, establish 

connections, manage connections, and exchange data, which focuses on the low-level interactions. 

 The user application on the top of the stack is responsible for implementing the custom profiles 

definition based on GATT, their data logic, user interface, and event handlers related to the data 

streams. The specific design of each part is discussed in the following parts. 

6.2.2 Custom BLE Services Definition.  

In the application, two custom services are created: Control and Sensor as shown in Table 6.4. The 

Control service is used for receiving the commands from the phone to change operating parameters, 

and the Sensor service integrates the collected sensor data and transmits to the phone. 

Table 6.4 Custom service definition. 

Custom service Read/Write Length UUID 

Control Write 4 Bytes 0 

Sensor Read/Notify 20 Bytes 1 

 A command protocol is constructed on both SoC and Android side. The parser on the SoC side 

will decode the command from the phone and respond. Currently, there are four types of command 

patterns as illustrated in Table 6.5. The commands are at most 3 bytes long, including the command 

type from 0x00 ~ 0x03 and the followed option or parameters of 1 or 2 bytes. 

 The sensor data is stored in a buffer of 20 bytes, and when the buffer is full, it will be put in a 

packet and transmitted to the phone. Then the data could be accessed from the Sensor service. 
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Table 6.5 Command pattern. 

Command Type (code) Option/Parameter 

Stream(0x00) Start(0x00) | Stop (0x01), 1 Byte 

Change_SamplingRate (0x01) New sampling rate(10ms), 2Bytes 

Change_ConnPara(0x02) New connection interval (ms), 2Bytes 

Change_DataScheme(0x03) New scheme, 1 Byte 

6.2.3 Device Driver 

Four types of sensors interface with the SoC with different protocols as shown in previous Table 

6.2, and drivers are required to access the devices. The driver functions include device 

configuration, data access, and auxiliary functions like part number reading. The ECG AFE is 

directly connected to the ADC of the SoC without the need for a driver. Similarly, the voltage on 

the supercapacitor is measured from an internal ADC channel. 

 The ADXL362 accelerometer communicates with the SoC through SPI. The device is 

configured as an 8-bit data output, ±2g range. The PCT2202 temperature sensor and MAX44009 

light sensor communicate with the SoC through I2C, and the address of them are configured as 

0x48 and 0x4A, respectively. Both sensors could be configured as 1 Byte or 2Byte data mode. 

6.2.4 Data Schemes for Use Cases 

To efficiently transfer the data, we fill the 20 bytes data buffer. In each packet, the data load is 20 

bytes. Android does not support MTF more than 20 bytes. 

 For different use cases, six data schemes are designed. We term data scheme to refer the way 

that data from different sensors are sampled, the quantization depth, and the organization in a 

packet. The various data schemes are designed to enable efficient data collection in different use 

cases. For instance, when the system is used as a motion tracker, only the acceleration data is 

collected and transmitted, and when the system is used as an ECG monitor, only ECG data is 
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collected. In some other cases, data from all the sensors are collected but could be at a different 

sampling ratio.  

 The user could dynamically change the data scheme by sending specific commands to the 

system.  On the SoC side, the application will listen to the incoming commands and parse them. If 

the command is to request changing data scheme, then the timer handler relevant to the scheme 

will be invoked and take effect. The details of each scheme are described below. 

 Scheme 0 collects data from all sensors including ECG, acceleration, light, temperature, and 

voltage on the supercapacitor. The temperature is 12 bits long but occupies 2 bytes, and other 

sensors are 1-byte long. The sampling sequence detail is shown in Table 6.6. 

Table 6.6 Sampling sequence of scheme 0. 

Time slot Sensor 

0 ECG 

1 ECG 

2 ECG 

3 ECG 

4 ECG, accel 

5 ECG 

6 ECG 

7 ECG 

8 ECG 

9 ECG, accel, vol, temp, light 

 Scheme 1 also collects data from all sensors. In this scheme, the quantization depth of ECG is 

10 bits. The temperature is still 12 bits long and occupies 2 bytes, and other sensors are 1-byte 

long. The sampling sequence detail is shown in Table 6.7. 
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Table 6.7 Sampling sequence of scheme 1. 

Time slot Sensor 

0 ECG 

1 ECG 

2 ECG 

3 ECG, accel 

4 ECG 

5 ECG 

6 ECG 

7 ECG, accel, vol, temp, light, ECG-LSB 

 Scheme 2 is used as a motion and environment profiler which functions like the EHDC 

discussed in Section 3.3. It collects all sensor data except the ECG. The light, temperature, and 

voltage are all configured as 12-bits long to have better accuracy. The sampling sequence detail is 

shown in Table 6.8.  

Table 6.8 Sampling sequence of scheme 2. 

Time slot Sensor 

0 accel 

1 accel, vol 

2 accel 

3 accel, vol, temp, light 

 Scheme 3 is used as a motion tracker which only collects the three-axis acceleration data. 

 Scheme 4 is used as an ECG monitor which only collects ECG data with the quantization depth 

of 10 bits. The sampling sequences are omitted for Scheme 3 and 4. 

 Scheme 5 collects data from ECG, acceleration, and voltage. This scheme is used for systems 

without the sensing board, or when the light and temperature information is not of interest. The 

sampling sequence detail is shown in Table 6.9. 
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Table 6.9 Sampling sequence of scheme 5. 

Time slot Sensor 

0 ECG 

1 ECG 

2 ECG, accel 

3 ECG 

4 ECG 

5 ECG, accel 

6 ECG 

7 ECG 

8 ECG, accel 

9 ECG, vol  

6.3 Android Application Development 

The primary targets of the application on the phone side include: 

a) Communicate with the sensor system through BLE. The phone sends commands to the 

sensor system for dynamic configuration and receives the collected sensor data. 

b) User interface. The phone has a Graphic User Interface (GUI) for user input and real-time 

display of the sensor data. 

c) Dynamic power management and energy prediction algorithms implementation. The energy 

prediction algorithm proposed in 4.2 and the online DPM scheduling algorithm in 5.5 are 

implemented on the phone in Java. 

d) Data storage, processing, and cloud service. The sensor data could be stored locally or 

uploaded into a remote cloud server for further processing. The phone side application is 

responsible for storage and cloud interface management. 

 The Android application is developed in Android Studio and tested on a Samsung smartphone 

with Android 6.0 version. An overview of the application. 
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Table 6.10 An overview of the Android application 

Item Number 

Packages 6 

Classes 25 

Interfaces 2 

Application size 23.9MB 

6.3.1 User Interface 

The GUI is the central part of the application which is used for receiving user input for system 

connection and configuration, and for sensor data display. A screenshot of the application when it 

is running is displayed in Figure 6.11. The user could configure the system parameters including 

data schemes, sampling rate, connection parameters, and power management option. The sensor 

data of ECG, acceleration, the voltage on the supercapacitor, temperature, and light intensity are 

displayed in real-time. The androidplot library [102] is used to plot the real-time data series. As 

shown in the figure, the system is running with scheme 1, with the ECG sampling rate of 50Hz 

and connection interval of 80ms. The ECG waveform is clearly presented with 50 Hz and 10 bits 

long. The acceleration data in the second figure is sampled at 25Hz. The voltage on the 

supercapacitor, light, and temperature are displayed in the following three plots with lower 

sampling rates. 
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Figure 6.11 Screenshot of the Android application running. The user could configure the 

system parameters including data schemes, sampling rate, connection parameters, and 

power management option. The sensor data of ECG, acceleration, the voltage on the 

supercapacitor, temperature and light intensity are displayed in real-time.  

6.3.2 Communication 

A Communication class is designed for managing the BLE connection with the system, and data 

exchange. Callback functions are designed to receive the data packets from the sensor system and 

to send commands the system. 

6.3.3 Context Manager 

Besides the context information from the SCDPM platform, the smartphone also provides useful 

context which could improve the energy harvesting prediction as discussed in Section 4.2. In this 

work, we limit the context discussion to the three types: weather forecast, calendar events, and 

GPS. 
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 Weather forecast. Assuming the smartphone has an internet connection, the weather forecast 

could be accessed conveniently. In this work, we employ the free weather forecast service from 

AccuWeather[103]. Specifically, we use their locations APIs to detect the user’s place and utilize 

the forecast APIs to acquire the weather forecast information. The forecast has different horizons, 

from hours to days, and we mainly use the hourly data. 

 The forecast API returns data in JSON format containing a timestamp, temperature, and weather 

icon. A typical weather result is shown in Figure 6.12. The weather icon is employed to estimate 

the sunlight intensity for outdoor solar energy harvesting. There are as many as 44 weather icons 

which could provide an accurate estimation of the sunlight intensity. Temperature could be utilized 

to predict thermoelectric energy harvesting. The Android application processes such weather data 

to extract useful information then push into the prediction model. 

 

Figure 6.12 An example of the weather forecast data in JSON format. 

 Currently, we utilize the hour number, temperature, and weather icon as “useful information” 

for the prediction model. For example, the result of the 12 hours forecast for Charlottesville, VA, 

from 3 pm to 2 am is listed below. The weather icon code 2 is for “most sunny”, 1 for “sunny”, 
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and 33 for “clear”. Technically, we only need to predict the daytime weather when the light 

intensity is sufficient. 

Table 6.11 A weather forecast result example. 

Time 3pm 4pm 5pm 6pm 7pm 8pm 9pm 10pm 11pm 12am 1am 2am 

Icon 2 2 2 2 2 1 33 33 33 33 33 33 

Temperature 

(ºF) 

80 81 80 79 77 75 71 69 67 65 64 63 

  

 Calendar. Calendar events could be used to predict the user’s behavior especially for predicting 

indoor or outdoor environment, and the specific indoor location. With the permission of accessing 

the user’s calendar, a list of future calendar events could be acquired as a 

CalendarContract.Instances [104]. From the instance, we could get the related information of the 

event including the place, description, time start/end, and duration. The information related to the 

place and time is utilized by the prediction model. 

 Here we maintain an enumerable places list and assume that we could directly extract the place 

name from an event description. For instance, “Gym”, “UVa Hospital”, “Rice Hall 304”, “Home”, 

or others. Extracting such information from a complex sentence may require natural language 

processing related methods, and they are out of the scope of this work. As discussed before, a light 

profile is also stored for each place. 

 GPS. The GPS provides information about the place, and the moving speed of the user as well. 

The place information could be used with the calendar information to decide the indoor/outdoor 

situation and places. The GPS information processing is not fully implemented, but the method of 

getting the raw GPS information is implemented. 
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6.3.4 Energy Harvesting Prediction and DPM Scheduling 

The DPM algorithm is discussed in the previous section. Primarily, the online version with a 

supercapacitor capacity limit is employed. In the application, the time slot is selected to be the 30s. 

In each time slot, the energy prediction will be updated and then execute the scheduling algorithm. 

 After calculating the operating parameters including the sampling rate and connection interval, 

the phone sends the new configuration command to the SCDPM system to be reconfigured. 

6.3.5 Local and Cloud Data Storage  

The sensor data could be stored locally or uploaded to a remote database using cloud services. 

When the data is stored locally, the data format is CSV which is more accessible for processing. 

Every 1 hour, a new folder with the name of the UNIX timestamp will be created, and the data 

files for each sensor is created as well. 

 . The data could be uploaded to a database in a remote cloud server for better performance. In 

this project, the InfluxDB database from InfluxData is utilized for storage, and Amazon AWS 

cloud service is selected. InfluxDB is a custom high-performance Time Series Database(TSDB) 

optimized for time series data storage including IoT sensor data, application instrumentation, and 

real-time analytics. Therefore, it matches well the requirement for real-time multi-sensor data 

sensing in the BSN area. The InfluxDB provides high performing write and query HTTP APIs 

which are convenient to interface with other services and platforms. The APIs are utilized by the 

Android application for uploading the sensor data and utilized by data visualization service to 

display the data in real time. 

 The opensource platform Grafana is utilized for data visualization. Grafana works with 

InfluxDB seamlessly to display the data and execute the query in real time. 
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 The InfluxDB and Grafana services are running on the Amazon server. The sensor data is stored 

in Influx on the server, and the Grafana panels could be viewed by any devices with granted 

permission. 

 The data visualization on the cloud side is shown in Figure 6.13. There are five panels for real-

time display of ECG, motion, the voltage on the supercapacitor, light intensity, and temperature. 

The viewer could zoom in or out of the data series and change the refresh rate of the plot. In 

addition, custom alerts could be configured for the data series. 

 

Figure 6.13 Screenshot of the cloud application. The sensor data of ECG, acceleration, the 

voltage on the supercapacitor, temperature and light intensity are displayed in real-time. 

The viewer could change the time range, refresh rate, and zoom in/out. 

6.4 Power Consumption Modeling 

Accurately model the power consumption of the entire system is essential for dynamic power 

management. By modeling the power consumption under different operating modes, the schedule 

could select the appropriate operating mode according to current energy status.  
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 The basic idea of changing the power consumption of the whole system is to adjust the duty 

cycling of the SoC, in other words, deciding the active period and sleep period. The peak power 

consumption of the SoC during BLE transmission is around 10mW, and it is around 2mW in active 

mode without BLE transmission when collecting and processing data and running tasks. Compared 

with such high-power consumption, it consumes only 6.9µW during sleep mode. Therefore, the 

overall power consumption could be reduced by changing the duty cycling of the SoC. Other 

components of the system are using ultralow power electronics and consume around 100µW in 

total when active. The quiescent current of most of the sensors are pretty low, so they are not duty 

cycled externally. The power consumptions of the main components in SCDPM are listed in Table 

6.12.  

Table 6.12 Power consumption of each component. 

Sensor Power1 

(µW) 

Accelerometer 4.6 

ECG 67.0 

Light 1.2 

Temperature 54.0 

SoC (sleep) 6.9 

SoC (active) 2640 

SoC (BLE transmission) 16500 

Note: 1, Some power numbers are calculated from datasheets when cannot be directly measured. 

6.4.1 Current Consumption Profiling 

The SoC has three main operation modes: sleep, active, and active with BLE transmission. The 

detailed power consumption profile in each mode is studied in SmartSnippet and experimented 

using an oscilloscope. The SmartSnippet is a software tool from Dialog which can profile the real-

time power consumption at a high frequency of 105kHz. Figure 6.14 illustrates the detailed current 

consumption during operating. When the SoC wakes up from sleep mode, there will be a peak 
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current for charging decoupling capacitors, and then around 1µA current for memory operations. 

After the initialization, the SoC will execute tasks consuming around 0.8µA. If a connection event 

happens in the period, there will be additional current consumption as high as 5mA for BLE 

operation as shown by the orange curve. The number of current spikes depends on the number of 

packets that are transmitted during the connection event. The total length of such an active period 

with or without BLE transmission depends on the task load. We also measured the current 

consumption of the whole system using an oscilloscope as shown in Figure 6.15 and the results 

are similar. 

 
Figure 6.14 Current consumption profiling using SmartSnippet. The blue curve shows the 

active mode without BLE transmission and the orange curve with BLE transmission. 
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Figure 6.15 Comparison of current consumption profiling by using SmartSnippet and an 

oscilloscope. 

 The workload fluctuation of the system during operation is modeled as shown in Figure 6.16. 

Figure 6.17 illustrates the actual power profile while the system is running using an oscilloscope. 

The SoC will wake up from sleep mode to active mode periodically to sample data from sensors, 

and the data is stored in a 20 bytes buffer. When the buffer is full, it will be dumped into a data 

packet, and the packet will be transmitted to the phone during the next BLE connection event. 

During each connection event, there could be one to up to four packets sent. The radio could 

transmit data as infrequent as possible to save power, provided that all data be transmitted. If the 

data cannot be transmitted due to large connection interval for a long time, the SoC will crash due 

to kernel message queue overflow. 

 

Figure 6.16 Workload change during normal operations. There are roughly three levels of 

power consumption: sleep, active, and data transmission. 
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Figure 6.17 Workload change during operation. The curve was plotted using data collected 

from an oscilloscope. 

6.4.2 Power Consumption Modeling 

The primary energy consumption of the SC-DPM consists of sensors and SoC, among which the 

SoC dominates the total power consumption when active. The SoC power consumption consists 

of three modes: sleep, active and sampling, and active and transmitting. The energy model could 

be expressed as below. 

 𝑃 = 𝑃𝑆𝐸𝑁𝑆𝑂𝑅 + 𝑃𝑆𝑜𝐶 (6.1) 

 The 𝑃𝑆𝑜𝐶 is decided by the duty cycling of the SoC and the BLE transmission frequency. Since 

the SoC can only collect data during the active period, the sampling rate of sensors is promotional 

to the duty cycling and is directly related to 𝑃𝑆𝑜𝐶. The connection interval is decided according to 

the data rate which relates to the sampling rate as well. The power consumptions of active, active 

with BLE transmission, and during sleep are denoted as 𝑃𝑎, 𝑃𝑡 ,and 𝑃𝑠. The connection interval is 

defined as 𝑇𝑐.  The period of active and BLE transmission are denoted as 𝑇𝑎, and 𝑇𝑡, respectively. 

𝑇𝑎 and 𝑇𝑡 depend on the task load of the SoC and the data load. In the application, the timing 

parameters are measured and could be considered as static although not strictly static. If the sensor 
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samples are evenly distributed, there should be at most one sample in each active period. In other 

words, the sensor sampling rate 𝑓  is at most the frequency of active operation. The power 

consumption of the system is: 

 
𝑃𝑆𝑜𝐶 =

𝑓𝑇𝑐𝑇𝑎𝑃𝑎 + 𝑇𝑡𝑃𝑡 + (𝑇𝑐 − 𝑇𝑡 − 𝑓𝑇𝑐𝑇𝑎)𝑃𝑠

𝑇𝑐
 (6.2) 

𝑃 = 𝑃𝑆𝐸𝑁𝑆𝑂𝑅 +
𝑓𝑇𝑐𝑇𝑎𝑃𝑎 + 𝑇𝑡𝑃𝑡 + (𝑇𝑐 − 𝑇𝑡 − 𝑓𝑇𝑐𝑇𝑎)𝑃𝑠

𝑇𝑐
 (6.3) 

 The constraint of connection interval 𝑇𝑐 is that it should be short enough to transmit all the 

sampled data through BLE. According to the Bluetooth specification, 𝑇𝑐 should be in the range of 

7.5ms to 4 seconds [48]. But smartphone OS such as Android and iOS have their own constraint, 

and even different OS versions has different constraints. For Android, here we set: 

 15𝑚𝑠 ≤ 𝑇𝑐 ≤ 4𝑠  (6.4) 

 The number of packets that can be transmitted during a connection event also depends on the 

OS, and here assuming during each connection event, there are at most four packets transmitted 

for the Android systems [105]. The data rate, packet rate, and packet length (in bytes) are denoted 

as 𝐷𝑟, 𝐾𝑟, and 𝐿, respectively. Assuming the average data length sampled during an active period 

is 𝑛, then 

 𝐷𝑟 = 𝐿𝐾𝑟 = 𝑓𝑛 (6.5) 

 
𝐾𝑟 ≤ 4

1

𝑇𝑐
 (6.6) 

 Therefore: 

 
15𝑚𝑠 ≤ 𝑇𝑐 ≤ 4

𝐿

𝑓𝑛
 (6.7) 
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 When the sensor sampling rate is higher than (𝑇𝑐 − 𝑇𝑡)/(𝑇𝑐𝑇𝑎) the chip cannot enter sleep 

mode at all and will stay in active mode. The power will increase along the sampling rate for data 

transmission. 

𝑃𝑆𝑜𝐶 =
𝑃𝑎(𝑇𝑐 − 𝑇𝑡) + 𝑇𝑡𝑃𝑡

𝑇𝑐
 (6.8) 

𝑃 = 𝑃𝑆𝐸𝑁𝑆𝑂𝑅 +
𝑃𝑎(𝑇𝑐 − 𝑇𝑡) + 𝑇𝑡𝑃𝑡

𝑇𝑐
 (6.9) 

 The values of the parameters in the model are measured which are summarized in Table 6.13.  

Table 6.13 Parameters measured or assigned. 

Parameter Value 

𝑃𝑆𝐸𝑁𝑆𝑂𝑅 126.8µW 

𝑃𝑎 2640µW 

𝑃𝑡 3960µW 

𝑃𝑠 6.9 µW 

𝑇𝑎 5.7ms 

𝑇𝑡 7.3ms 

L 20 

n (scheme 0) 2 

 Assuming 𝑇𝑐 = 4
𝐿

𝑓𝑛
 , the relationship between the power consumption and the sample rate is 

shown in Figure 6.18. The power consumption is under 1mW when the sampling rate is 50Hz. 

When the sampling rate is higher than 175Hz, the SoC will be active all the time without entering 

sleep mode. The SCDPM is among the state-of-the-art lowest power consumption systems. 
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Figure 6.18 Power Consumption versus sampling rate. 

6.5 Summary 

This chapter described the design of the custom SCDPM system as a self-powered context-aware 

DPM sensing platform. Compared with the EHDC platform, this platform targets for health 

monitoring with ECG, motion, and environment sensing capabilities. While EHDC is mainly for 

energy harvesting profiling without the ECG capabilities and it is battery-powered since it is based 

on a Raspberry Pi board. Regarding the size, the SCDPM is much smaller and convenient for 

wearing.  

Table 6.14 Comparison between EHDC and SCDPM. 

Platform EHDC SCDPM 

Sensors Light √ √ 

Temperature √ √4 

Motion √ √ 

ECG × √ 

Harvesters TEG √ √ 

Solar √ √ 

Controller/SoC Raspberry Pi 0/2/3  DA14580 

                                                 
4 EHDC uses two temperature sensors to collect temperature of skin and the ambient air. SCDPM only has one to measure the air temperature. 
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Energy measurement √ ×5 

Self-powered × √ 

Dimension2 2.7in×2.6in×1.0in 1.30in×0.99in×0.6in  

Data storage Local SD card/cloud6 Phone/cloud 

Purpose Profiling Health monitoring, 

profiling, DPM 

DPM × √ 

 

 We compared our work with other state-of-the-art sensing systems with ECG monitoring 

functions. Some of the platforms have motion or context sensing as well, as shown in [106]–[110] 

others are only for ECG. Most of the other platforms have a higher sampling rate of ECG signal 

for general ECG collection. However, we demonstrate 50Hz is sufficient for vigilant monitoring 

which is still capable of accurately calculating the R-R interval, and our platform is also capable 

of higher sampling rates.  

 Our platform achieves the least power consumption of all. In the “Power ratio” row, we 

calculated the power consumption of our platform running at the same frequency as each other 

ones and listed the ratio. From that row, we could see that our platform consumes 3.2%~82.2% of 

other platforms. The work in [108] is quite different, and they achieved an ultra-low power 

consumption of 137 µW, however, by employing an extremely low duty cycling. The operation 

period of the system is 12.5 minutes including 0.5 minutes for monitoring, evaluation, data 

transmission and 12 minutes at a lower energy level hibernation, and the system repeats it 

periodically. Though it could be considered as “continuous” sampling, it is not vigilant since it 

may miss many critical events in the incredibly long 12 minutes. 

 

 

                                                 
5 The SCDPM measures the battery voltage rather than the energy harvested as in EHDC. 
6 The cloud function is available if there is internet connection. Pi3 with WiFi has to be used. 
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Table 6.15 Comparison of low power, wearable, health monitoring systems including ECG. 

 [106] [107] [108] [111] [109] [110] [112] This Work 

Number of ECG 

leads 
2 3 3 3 4 3 2 3 

Motion Yes Yes Yes No Yes Yes No Yes 

Environmental 

sensing 
No No Yes No Yes No No Yes 

ADC (bits) 8 n/a 12 16 24 12 
16.5 (14 

ENOB) 
10 

fsECG (Hz) 300 n/a 200 500 500 750 320 50
7

 

Voltage (V) 3.7 3 3 1.8 3 3.3 3 2.1~3.6 

Power (µW) n/a 12500 137 6500 90000 13400 12000 942
8

 

Power ratio
9

  n/a n/a 0.822 0.444 0.032 0.220 0.237 1 

Communication 

Protocol 
BT BT BLE BLE BT BLE ZigBee Pro BLE 

Cloud Access Yes No No No No Yes Yes Yes 

Continuous 

Operation 
Yes Yes Yes

10
 n/a Yes Yes Yes Yes 

Vigilant 

Operation 
Yes2 Yes2 No n/a Yes2 Yes2 Yes2 Yes 

Data Storage 
Local/Rem

ote 
Local Remote Remote 

Local/Remot

e 
Local/Remote Remote 

Phone/Remot

e 

Power Source 
Battery (48 

hrs) 

Battery (30 

hrs) 

TEG (Self-

powered) 
Battery 

Battery (5 

hrs) 

Battery (96 

hrs) 

Battery (160 

hrs) 

Photovoltaic 

(Self-

powered) 

Adaptive 

Sampling/DPM 
No No No No No No No Yes 

Dimensions 

(mm) 

90 x 40 x 

16 

58 x 50 x 

10 
60 x 32 x n/a 24 x 14 x n/a 30 x 25 x 10 13 x 11 x 5 65 x 34 x n/a  30 x 23 x 25 

 

 In terms of dynamically adjust the operation parameters, all others are not capable of this and 

only run at a fixed sampling rate. Our SCDPM could adjust sensor sampling rates, connection 

intervals, and data scheme dynamically or manually to adapt the energy availability.  

 To sum up, this chapter demonstrated our custom SCDPM platform performs better than state-

of-the-art sensing systems regarding system power consumption and the capability of dynamic 

power management and adaptive sensing. The platform is utilized to make vigilant health 

monitoring in the real-world as discussed in the next chapter. 

                                                 
7 The system could sample ECG at different frequencies, and the power number here is at 50Hz. 
8 The number includes power consumption of motion, light, voltage, and temperature sensing. 
9 We compared the power consumption when the proposed work runs at the same frequency with each work and computed the ratio. 
10 The continuous operation has an extremely low duty cycling. 
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7  Validation of Context-aware 

Dynamic Power Management on 

SCDPM 

As the last section of this work, we presented the results of the SCDPM platform as a validation 

of the work. Section 7.1 describes the profiles that collected on the human subject in the real world 

for more than 50 hours in total, and the longest period is around 11 hours. Continuous collecting 

data on a human subject in the real world could validate that the proposed SCDPM platform 

performs well on the health and environmental monitoring with low power consumption. The 

system could be powered in the daytime. In Section 7.2, the details of the ECG and motion data is 

analyzed. In Section 7.3, the energy harvesting prediction model is discussed. Since there are not 

similar related work to compare, we calculated the RMSE of the prediction. Section 7.3 discusses 

the simulation for online DPM scheduling.  

7.1 Data Collection Using SCDPM. 

We used the SCDPM for long-term continuous data collection in the real-world to validate its 

functionalities. One human subject wore the SCDPM armband with three ECG electrodes on the 

chest. All the sessions were using scheme 1 to collect data from all the sensors. The total length is 
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more than 50 hours, and the longest continuous profile that collected is around 11 hours from 8:35 

am to 6:55 pm. We selected sampling rates from 20Hz to 100Hz during the data collection, and 

the sampling rate was fixed during each session except the last one for validating energy prediction 

and adaptive sensing.  

 

Table 7.1 An overview of collected profiles. 

Session Length 

(hours) 

ECG sampling 

rate (Hz) 

Indoor percent 

(%) 

1 (sunny) 8.73 50 83.46 

2 (cloudy) 10.36 33.3 83.26 

3 (rainy) 9.11 25 94.88 

4 (indoor-1) 0.60 100 100 

5 (indoor-2) 0.96 50 100 

6 (indoor-3) 1.09 33.3 100 

7 (indoor-4) 1.58 25 100 

8 (indoor-5) 1.91 20 100 

9 (night) 2.27 33.3 89.22 

10 (full) 1.09 33.3 6.12 

11 (afternoon) 5.22 50 88.51 

12 (dynamic) 9.15 dynamic 84.01 

Total: 52.07 - - 

  

 In the following sessions, we first described three typical profiles in a hybrid indoor and outdoor 

environment in different weather conditions, and then profiles collected at home to test the 

operation time with almost no energy harvesting.  

 For each profile, we show the voltage on the supercapacitor, light intensity, temperature, and 

motion using the Teager[56] calculator. We scale the values as shown in the legend to fit all curves 

in a single figure. 
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7.1.1 Profiles in Various Weather Conditions  

The profile collected on a sunny day is presented in Figure 7.1. Since it was sunny in the morning, 

a relatively high sampling rate was selected as 50Hz. In the morning from 8:16 am to 9:20 am, the 

subject was walking outdoor, then stayed in the office until noon. The light intensity in the meeting 

room is around 300~500, which provides little energy and the voltage dropped. The following two 

spikes around 12:00 pm were due to going outdoor for returning home for lunch by bus, and the 

low light intensity between the two spikes were on the bus with the duration of around 20 minutes. 

The subject was at home at 12:30 pm ~ 13:10 pm and the voltage kept dropping. Then two outdoor 

periods were outdoor from home to the office. Tough these outdoor periods were at noon, it was 

cloudy at that time, and the light intensity was lower than in the morning. The afternoon periods 

were most inside the office until going to a gym at 3:40 pm. The motion spike around 5 pm was 

due to the running, followed by some strength exercises. On the way from the gym to the office at 

around 4:25 pm, it was showering, and the light intensity was serval hundreds. The system ran 

until powering down until around 5:00 pm. 

 

Figure 7.1 A profile collected on a sunny day. 
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 The profile collected on a cloudy morning is presented in Figure 7.2. The sampling rate was 

selected as 33.3Hz since it was cloudy in the morning. The light intensity increased from 9:00 am 

to 11:00 am due to the weather change, and the supercapacitor was fully charged. Similar to the 

previous profile, there were two outdoor periods for going out for lunch. In the afternoon, the light 

intensity was around 2000 lux which kept the supercapacitor fully charged for the entire afternoon. 

The two spikes around 17:35 pm were due to heading home by bus. The system was powered 

down at home at around 7 pm. 

 

Figure 7.2 A profile collected on a cloudy day. 

 The profile on a rainy day is illustrated in Figure 7.3. Unlike the previous two profiles, the 

supercapacitor was not fully charged for most of the time. Even outdoor, the light intensity was 

still less than 5000 lux, and the supercapacitor was charging slowly. Still, there were two outdoor 

periods for lunchtime, while the light intensity was around 2000 lux~4000 lux. From 3:40 pm to 

4:20 pm, the subject went to the gym for running and strength exercises. When going out, the 

temperature decreased as shown around 10:30 am, 12:30 pm, and 15:40 pm. The system kept 

running indoor in the office till 17:40 pm. 
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Figure 7.3 A profile collected on a rainy day. 

7.1.2 Profiles in Indoor Environment 

We collected profiles at home as tests of the only indoor environment, also tested the power 

consumption at different sampling rates. The light intensity is as low as 100 lux in the living room, 

kitchen, bathroom, .and other rooms, which is usually lower than the office. In addition, the 

profiles were collected at night, and the light was only from the CFL. In such a dark environment 

the supercapacitor cannot be charged and kept decreasing until the system is running out of power. 

Running at other sampling rates were quite similar with longer operation time and thus omitting 

the plots. 
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Figure 7.4 A profile collected at home. 

 The voltage versus running time at different sampling frequencies are compared in Figure 7.5. 

The voltage on the supercapacitor slowly drops until 2.4V and then suddenly drops to around 2.1V. 

This feature is due to the boot converter functions.  

 

Figure 7.5 Supercapacitor voltage drop along time at different sampling rates. 
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7.2 ECG and Motion Details 

In addition to the light, temperature, voltage, and Teager, we present the details of the ECG and 

acceleration collected to prove the function. The in-the-wild ECG monitoring performed well most 

of the time even during running and exercises. 

7.2.1 ECG Profile 

ECG data of 10 seconds at different sampling frequencies are shown in Figure 7.6. This plot is 

comparable to Figure 5.12 which shows downsampled versions of ECG signals from the MIT-BIH 

AF database [97]. Sampling rates below 25Hz lead to the miss of detecting some R peaks as shown 

in the last two rows. 

 
Figure 7.6 10 seconds ECG signal at different sampling rates. 

 The quality of the ECG signal while running is still useful as shown in Figure 7.7. The snippet 

is from the sunny day profile which collected ECG at 50Hz. During the running, the P-wave and 

T-wave of the ECG are affected by the running, but the R-peaks are still clear which is frequently 
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used for health monitoring. For example, the heart rate in beats per minute (BPM) before, during, 

and after running is displayed in Figure 7.8. The heart rate increased from around 100 to 160 after 

2 minutes fast running and kept increasing to 170, then dropped to around 100 again and lowered 

after rest.   

 

Figure 7.7 ECG waveform while running. 

 

Figure 7.8 Heat rate (BPM) before, during, and after running calculated from the collected 

ECG signal. 
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7.2.2 Motion Profile 

The 3-axis acceleration data while running or doing exercise could be employed for motion 

tracking like step counting, exercise classification. Here we show the acceleration patterns of some 

activities to demonstrate the potential usage of the SCDPM as a motion tracker, but the specific 

algorithms are out of the scope of this work. All the profile sessions are from the sunny day profile 

as shown in Figure 7.1 and were collected at 12.5Hz. 

 The acceleration pattern while running is shown in Figure 7.9. The left plot shows the overview 

of a 13-minutes duration, and the right one shows a 10 seconds detail. The acceleration data has 

significant periodicity, and from the acceleration data, the running pace could be calculated.  

 

Figure 7.9 Acceleration during running. 

 In addition to the running, doing different exercises has distinct acceleration pattern as well. 

Here we show two activities including the pulldown and shoulder press. The acceleration during 

doing pulldown is shown in Figure 7.10, and doing shoulder press is shown in Figure 7.11. The 

acceleration pattern including the duration, values, shape could be used to classify different 

activities for monitoring or training. 
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Figure 7.10 Acceleration during pulldown exercise. 

 

Figure 7.11 Acceleration during shoulder press exercise. 

7.3 Energy Prediction 

Unlike EHDC, the SCDPM platform does not have a current monitor, so the harvested power 

cannot be measured directly, and we assume the solar energy is linearly related to the light intensity 

as in [64]. The relationship could be calculated with linear regression. As mentioned before, the 
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TEG power constitutes a very limited amount of the total power, so we only consider the solar 

energy. 

 An average profile in the daytime is calculated from the three collected profiles presented before, 

and we keep it in the model as 𝐸𝑖
𝑃. Each point represents the average power in a 10 minutes interval. 

The number of the profiles are quite limited, and it could be improved with more data collection. 

 
Figure 7.12 Average power profile in the daytime. 

7.3.1 Weather Parameter 

Weather parameter regarding the weather icons[113] is discussed. Only the daylight parameters 

are considered. Theoretically, to acquire the parameters for each weather conditions, long-term 

experiments are required to record the light intensity data and then make a linear regression for 

each case. However, this costs much time and are not directly related to the research focus. 

Therefore, here we calculate the parameters with the data in weather conditions we have, then 

estimate others. By analyzing the profiles, we use an average of 20K lux as the full light intensity 

in sunny conditions. 
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Table 7.2 Power consumption of each component. 

Weather 

parameter 

Weather Icon (code) 

1.0 Sunny(1) 

0.95 Mostly Sunny(2) 

0.85 Partly Sunny(3),  

Partly Sunny w/ Showers(14) 

Partly Sunny w/ T-Storms(17) 

Partly Sunny w/ Flurries(21) 

0.75 Intermittent Clouds(4) 

0.60 Hazy Sunshine(5) 

0.30 Mostly Cloudy(6) 

Mostly Cloudy w/ Showers(13) 

Mostly Cloudy w/ T-Storms(16) 

Mostly Cloudy w/ Flurries(20) 

Mostly Cloudy w/ Snow(21) 

0.12 Cloudy(7) 

0.05 Dreary (Overcast)(8) 

Fog(11), Rain(18), Flurries(19) , Snow(22) 

7.3.2 Location Profiles 

The indoor environment is mainly human controlled and thus stable. The four typical locations are 

summarized in Table 7.3. The measured temperature seems to be affected by the skin since it is 

attached to the armband, and higher than the actual room temperature. For the office environment, 

since the seat is by the window, the light intensity is decided by the sun and the orientation of the 

window. In the early morning, there is a period of time that the solar cells receive direct solar 

radiation and the light intensity could be at most more than 10 K lux. Since the light is directly 

from the sun, it is considered as outdoor, and the data is not included in the table. Indirect solar 

radiation situations are considered as indoor which is about several K lux level but still varies 

significantly. In the afternoon, the light intensity is reduced to around 800~2000 lux. Except for 

the “Office”, the light sources of the other three locations are mainly decided by the indoor light 

and quite stable.  
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Table 7.3 Indoor location profiles. 

Location Light 

 (mean) 

Light 

(std) 

Temperature 

 (mean) 

Temperature 

(std) 

Home 74.9 8.1 32.2 0.3 

Gym 108.9 39.0 28.8 0.85 

Office 936.8 323.9 28.3 1.0 

Meeting room 342.3 29.1 30.2 0.5 

7.3.3 Experiment and Results 

Here we use a day’s profile to present the context-aware prediction. To show the difference 

between the EWMA based methods as discussed in Section 4.2, we assume there is a calendar and 

weather information available for the prediction. 

 The schedule and the weather information of this day are summarized as follows. Here we 

assume an ideal situation that there is a complete calendar event list from the beginning to the end. 

However, in the real world there might be only a few calendar events, then the prediction is based 

more on the history profile. 

Table 7.4 A schedule and weather forecast of a typical day. 

Time Activity Location Weather forecast 

(icon,  

Temperature °F) 

08:30 ~ 10:30 Work Office (1, 68~72) 

10:30 ~ 11:30 Meeting Meeting room (1, 72~75) 

11:30 ~ 11:45 Outdoor for lunch Outdoor (1, 75) 

11:45 ~ 12:15 Lunch Home (1, 75~78) 

12:15 ~ 12:30 Return to office Outdoor (1, 78) 

12:30 ~ 13:30 Work Office (1, 78~80) 

13:30 ~ 15:00 Meeting Meeting room (1, 80~82) 

15:00 ~ 16:00 Exercise Gym (1, 82) 

16:00 ~ 17:00 Office Office (1, 83) 

  

 In the experiment, we show the context-based medium-term prediction and short-term 

prediction. At the beginning of a day, the scheduler acquires information including weather and 

calendar events. Then it makes an initial day-long prediction which is used for the DPM. Since the 
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light intensity is assumed to be directly related to the solar energy, here we use light intensity 

prediction to show the results.  

 The data from the location's profile as shown in previous Table 7.3 is used for prediction as 

represented by the blue line. A limitation of using calendar events is that the event might not 

happen or the real time of the event could be different from the calendar. For instance, it was 

scheduled to be in the gym from 15:00 ~ 16:00, while actually, it happened from 15:10 ~ 15:40. 

This type of error could be alleviated by the short-term prediction.  

 

Figure 7.13 Long-term prediction of light intensity using context information. 

 For short-term predictions, we utilize the exponential smoothing method which is one of the 

most frequently used with high accuracy. The time slot is selected as 30 seconds as mentioned in 

Chapter 4. The results of the short-term prediction are shown in Figure 7.14. The RMSE of the 

long-term and short-term prediction is 7.60K and 7.35K, respectively. 
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Figure 7.14 Short-term prediction of light intensity using exponential smoothing. 

7.4 Dynamic Power Management on SCDPM 

The proposed DPM algorithms are discussed in Section 5. Here we run the algorithms on the 

collected profiles and test how the power consumption and cost will change. For the cost function, 

we follow the application-specific equation (5.75) derived in Section 5.6. For the online algorithm, 

we mainly demonstrate the capability of adaptively changing sampling rates. 

 In the SCDPM, the operation voltage of the supercapacitor is from 2.15V~3.6V. Thus the 

equivariant capacity limit of the supercapacitor is 

 
𝐶 =

1

2
𝐶𝑎𝑝(𝑉𝐹𝑢𝑙𝑙

2 − 𝑉𝐿𝑜𝑤
2 ) = 4.17𝐽 (7.1) 

7.4.1 The Offline Algorithm 

The optimal offline solution is discussed first. Here we selected the time slot as 2 minutes. The y-

axis is the energy harvested or consumed in the 2 minutes window. We assume the system could 

be configured to consume any amount of power. 
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 The power consumption of the optimal DPM scheduling is shown by the yellow curve, and the 

static power consumption that we used for collecting the profile is shown in the orange curve. The 

optimal solution, if we have a big enough supercapacitor without wasting any energy, is shown by 

the purple line. The cost of static, dynamic, dynamic without capacity limit is 30.06, 23.82, and 

21.30, respectively. 

 

Figure 7.15 Power management with different policies for the rainy day. 

 

Figure 7.16 Power management with different policies for the sunny day. 
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Figure 7.17 Power management with different policies for the cloudy day. 

 Similarly, we plotted the other two profiles and analyzed the DPM performance of them. The 

results are summarized in Table 7.5. Here we see the demand for high capacity or high power-

density supercapacitors. As shown in Section 5, low capacity limits the DPM performance. From 

the results, based on our current platform supercapacitors with much more capacitance are required 

to improve the overall power management performance. 

Table 7.5 DPM performance comparison over three profiles. 

Cost Sunny Cloudy Rainy 

Static 53.55 40.48 30.06 

DPM 45.36 37.69 23.82 

DPM without limit 36.29 29.07 21.30 

Required capacity(J) 596.62 244.65 23.02 

 

7.4.2 The Online Algorithm 

The online solution is tested on the profile that mentioned in Section 7.3.3. The SCDPM platform 

and most of the others cannot have continuous power states, and here we only demonstrate the 

dynamic adaptive sampling. The scheduler on the phone side could adjust sampling rates in real-

time. 
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 The profile and power management results are shown in Figure 7.18. The profile was collected 

from 8:25 am to 5:39 pm with around 9 hours with dynamic power management. The smartphone 

is responsible for scheduling the system and sending parameters to the system to adjust the 

operating parameters. Here we used discrete sampling rates from the list {100Hz, 50Hz, 33.3Hz, 

25Hz, 20Hz} to prove that the system could be able to execute dynamic power management 

according to the predicted energy status.  

 In the morning the solar energy was sufficient to support the system running at the 100Hz. 

Between 8:25 am to 9:00 am, there was direct sunlight on the solar cells, as shown by the red 

curves. Then the light intensity was decreasing to around 1500 lux in the office and around 300 

lux in the meeting room. Going home for lunch and returning to the office were the two out periods 

and the sampling rate was adjusted to 100Hz again. In the afternoon, since there was a long indoor 

period. The sampling rate was decreased to 25Hz and later to 20Hz. Following are the two short 

outdoor periods for going to the gym and returning. The system was then running at 33.3Hz till 

being powered down. 

 Instead of running at a fixed sampling rate like most of the previous work, adaptively change 

operating parameters bring a better performance by leveraging the understanding of the energy 

dynamics. 



137 

 

 

Figure 7.18 The profile and dynamic power management. 

7.5 Summary 

In this chapter, we presented experiments and results for the validation of the designed SCDPM 

platform. The SCDPM was used to collect multiple series of profiles in the real world. The sensor 

data including ECG, motion, environmental sensors are analyzed and presented. The platform is 

also utilized to demonstrate the proposed energy prediction and DPM algorithms. 
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8  Closing Remarks 

Over the course of this dissertation, we presented energy harvesting profiling and context-aware 

dynamic power management model to achieve better power management performance of self-

powered BSN systems. In addition to the in-lab characterization of energy harvesters, we profiled 

energy harvesting on the human body in the real world and collected data of environmental factors 

and human behavior to study the energy harvesting dynamics in depth. The convex optimization 

model is formalized to solve the fundamental problem of system level power management in 

energy harvesting systems. The offline solution and online solution with context-based energy 

harvesting prediction were developed for dynamic power management in real applications to 

maximize application-specific data quality while preserving continuous self-powered operation. 

8.1 Contributions and Future Work 

The contributions of this dissertation include: 

1. Energy profiling for BSN in the real world. The idea of understanding energy harvesting 

dynamics by profiling it in the real world in addition to the in-lab characterization is 

innovative at the time of publishing the papers. The Energy Harvesting and Data 

Collection (EHDC) platform for energy harvesting profiling and modeling was one of 

the first platforms that implement this idea. The EHDC platform itself could be 

considered a contribution, as well and the LITE project discussed in Section 3.5 is 
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actually an example usage of EHDC. The software code for the EHDC is open sourced 

on [27] for people to use. 

2. A context-aware hybrid energy prediction model for both indoor and outdoor 

environment energy harvesting. This is more like a framework than a model, and we 

use calendar events and weather forecast as the context information for the prediction. 

The scope of context and the way to the context information could be extended. 

3. A context-aware Dynamic Power Management (DPM) framework for energy harvesting 

BSNs. A formal model and analysis of the scheduling optimization problem in an energy 

harvesting system are constructed, and the optimal solution is derived. A case study of 

AFib detection is intensely studied to prove the validity of the framework.  

4. A Self-powered Context-aware DPM (SCDPM) platform for vigilant health monitoring 

including motion, ECG, and environmental data collection. The SCDPM is an ultralow 

power platform which performs better than state-of-the-art health monitoring platforms 

regarding system power consumption and the dynamic power management and adaptive 

sensing capabilities. The entire system compromises the work of hardware system 

design, embedded system programming for the sensor node, Android application design 

on the phone side, and power modeling. The code of the platform is open sourced [28]. 

 Future works required to achieve the perpetual operation of self-powered BSN include: 

• Collecting more profiles to improve the accuracy of prediction. The human behavior is 

complex to model, and the profile-based models could help to understand the behavior 

and make better predictions. The prediction will be more accurate by exploring more 

profiles in different conditions. 
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• A better understanding of the context information. In this work, we use calendar events 

and weather forecast to help predict energy harvesting. However, the scope of the 

context and the way to utilize the information is not thoroughly discussed. Future work 

could extend the idea of context-aware prediction. 

• Ultralow power SoC, radio, protocols, sensors, and better energy harvesters. In this 

work, though the energy is from both solar and thermoelectric, the thermoelectric energy 

is too small compared to the solar energy. With higher efficiency TEGs, the 

thermoelectric energy could be complementary to the solar energy and achieve more 

harvested energy. 

• Human behavior related modeling. For instance, extending indoor/outdoor prediction 

considering human behavior. Explore more context information especially related to the 

human behavior which could help to improve the energy harvesting prediction.  

• More and further case studies in BSN area to explore the relationship between power 

consumption and application-specific utility. We use the AFib, which is typical heart 

disease, to demonstrate the application-specific performance could be more helpful. 

Other medical applications could be studied to extend the scope. 

• Improvement of the wearability of the sensing and energy harvesting system which 

enable the long-term health monitoring in the real world. 

8.2 Publications 

The publications during the Ph.D. study: 

 D. Fan, L. L. Ruiz, and J. Lach, “Application-driven dynamic power management for self-

powered vigilant monitoring,” in 2018 IEEE 15th International Conference on Wearable and 

Implantable Body Sensor Networks (BSN), 2018 



141 

 

 L. L. Ruiz, M. Ridder, D. Fan, J. Gong, J. Lach, and J. Strohmaier, “SCAVM: A self-powered 

cardiac and activity vigilant monitoring system,” in 2017 IEEE Biomedical Circuits and Systems 

Conference (BioCAS), 2017 

 D. Fan, L. Lopez Ruiz, J. Gong, and J. Lach, “EHDC: An Energy Harvesting Modeling and 

Profiling Platform for Body Sensor Networks,” IEEE J. Biomed. Heal. Informatics, vol. 2194, no. 

c, 2017. 

 D. Fan, L. L. Ruiz, J. Gong, and J. Lach, “Profiling, modeling, and predicting energy harvesting 

for self-powered body sensor platforms,” in 2016 IEEE 13th International Conference on Wearable 

and Implantable Body Sensor Networks (BSN), 2016 

 D. Fan, J. Gong, B. Ghaemmaghami, A. Zhang, J. Lach, and D. B. Peden, “Characterizing and 

Calibrating Low-Cost Wearable Ozone Sensors in Dynamic Environments,” in 2017 IEEE/ACM 

International Conference on Connected Health: Applications, Systems and Engineering 

Technologies (CHASE), 2017 

 D. Fan, J. Gong, and J. Lach, “Eating gestures detection by tracking finger motion,” in 2016 

IEEE Wireless Health (WH), 2016 

 J. Gong, K. M. Rose, I. A. Emi, J. P. Specht, Enamul Hoque, D. Fan, S. R. Dandu, R. F. 

Dickerson, Y. Perkhounkova, J. Lach, J. A. Stankovic “Home Wireless Sensing System for 

Monitoring Nighttime Agitation and Incontinence in Patients with Alzheimer’s Disease,” in 2015 

IEEE Wireless Health (WH), 2015 
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Appendix A. Other Completed 

Research Projects 

In addition to the work that directly related to the dissertation, there are other works in the BSN 

area that I accomplished during the Ph.D. research. 

A.1 Data Aggregator Design for Custom Ultra-Low Power Radio 

Wireless communication consumes a significant portion of the power profile. Therefore custom 

protocols are utilized to achieve better power performance in some specific applications. Ultra-

Wide Band (UWB) radio[50] could be used in short range, and it consumes much less power than 

other radio like Bluetooth or Bluetooth Low Energy (BLE). In the project, a 4.18uW UWB 

transmitter [30] is used for communication from a self-powered sensor node to a data aggregator. 

Unlike using Bluetooth protocol which end devices could directly communicate with the sensor 

nodes, a data aggregator is required to process the custom UWB signal and then transfer to an end 

device like a phone. The data aggregator is also responsible for data processing, data visualization, 

and cloud computing interface. 

 In this collaborative project, firstly, I co-designed the custom data aggregator integrating an 

IOIO board, an FPGA board, and a radio board, and validated the functionality. Second, I designed 

and implemented Java and Android application for data communication, visualization, and cloud 
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computing interface. Third, I designed a repetition code with context information to reduce 

communication errors. 

A.2 Wearable Ozone Sensors Calibration in Dynamic Environments 

Air quality has been investigated in recent years due to its high relevance to public health. To assist 

persons with asthma, wearable devices that enable alerts of potential asthma attacks caused by 

high ozone concentration exposure could become a life-saving technology. We have developed 

hardware sensing platforms with low-cost ozone sensors, calibrated sensors in an ozone chamber 

in NCU and proposed algorithms to calibrate ozone sensors regarding dynamic environmental 

context, especially temperature and relative humidity (RH). The algorithms integrated 

characteristics of the ozone sensors under influences of RH and temperature and optimized the 

trade-off between calibration complexity and quality of the measurement. 

 In this collaborative project, I designed the first version sensor daughter board working with a 

Shimmer 2 node, calibrated ozone sensors in the ozone chamber several times, and proposed the 

algorithms. The work is published in CHASE 2017 [114]. 

A.3 Eating Gestures Detection by Tracking Finger Motion 

Individuals’ eating habits are growing to be a major concern of healthcare researchers since 

unhealthy eating habits such as irregular eating schedule, speed eating, are related to various 

diseases such as obesity, diabetes, and cardiovascular diseases. Monitoring people’s eating 

behavior provides opportunities to give feedback and suggestions towards healthy eating habits. 

The motivation of this project is to explore the potential of detecting eating gestures by tracking 

finger motion. Seven state-of-the-art learning methods are tested to make binary (eating/non-eating) 

or multiclass (seven classes) classification. Accelerometer and gyroscope datasets are tested 

separately and compared. The results show that for finger motion data, K-Nearest Neighbor (KNN) 
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performs best in binary classification, which performs better than on wrist motion dataset. The 

results indicate that finger motion is a useful indicator for classifying eating and non-eating 

behaviors. The work has been published in [115]. 

A.4 Nighttime Agitation and Incontinence Monitoring 

Patients with Alzheimer’s Disease frequently experience urinary incontinence, disturbed sleep, 

and nighttime agitation. Although anecdotal evidence shows that there is a relationship between 

these three phenomena, there is a lack of systematic evidence. In this project, we explored the 

relationships among the times of occurrence of nighttime agitation, sleep quality, and urinary 

incontinence by using innovative and non-invasive sensing technology.  

 In this collaborated project, I deployed hardware platforms in three patients’ homes, processed 

sensor data and proposed algorithms for agitation detection and correlation inference. The work 

has been published [6]. 
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