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Abstract

The overall goal of this dissertation is in two parts; 1) minimizing experts’ review time on Capsule
Endoscopy (CE) videos via video summarization; and 2) developing models that captures the
temporal and topological relationship between frames in the videos as against an independent image
analysis that has been addressed in literature.

With an estimated 70 million Americans affected by different digestive tract diseases each year,
physicians use VCE as a nonsurgical procedure to examine the entire digestive tract without the
invasiveness associated with the traditional upper and lower endoscopy procedures. While VCE
helps ease diagnosis of many digestive tract diseases, a single capsule endoscopy study can last
between 8 - 11 hours generating up to 100,000 images of various sections of the digestive tract.
Even when up to fifty thousand (50,000) images are obtained in a typical small bowel VCE study,
it is possible for pathology of interest to be present in as few as one single frame. Physicians have
to review the entire video in order to identify frames with the pathology of interest.

Many researchers have proposed different techniques to automate analysis of CE frames, however,
large proportion of the proposed techniques require fully labelled video frames for each class of
abnormality in the video. Meanwhile, collecting frame-level annotation for medical video is not an
easy task. In this dissertation, we developed novel models with three (3) levels of supervision to
mitigate this problem. Our goal is to generate summaries with selected representative frames that
captures the regions of abnormality in the GI tract thereby saving the physician the time and effort
required to review the entire video.

The first model in this dissertation is an unsupervised video shots boundary detector used for
efficient temporal segmentation of the VCE video. The key novelty is in the efficient representation
of the video frame features with a lower 1-dimensional embedding. It is prohibitively expensive
to temporally segment a video using the high-dimensional frame features extracted from a CNN
model. Therefore, we projected the frame features to a 1-dimensional embedding space to minimize
the computational cost of detecting shots boundaries. Our experiments with multiple embedding
algorithms shows that encoding the video features using PCA achieved the best performance in shot
boundary detection on the videos.

Secondly, we developed a weakly-supervised temporal segmentation technique using Graph-based
representation learning. We believe the topological relationship between the frames is better
captured using a GCNN model as it relaxes the hard assumption of temporal dependence between
the frames as well the implicit frames independence assumption in traditional CNN model. In
addition, while a short video may follow a temporal correlation assumption, multiple scene and
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events in long videos may not. The goal of our GCNN model is to learn to map the nodes in
the graph into binary class-agnostic categories. During testing, we use the categories of the nodes
to segment the videos into normal and abnormal segments. To achieve this, we represented each
video segment as a graph and each frame as the nodes in the graph. We trained the graph in a
class agnostic manner to separate normal from abnormal nodes. We represented the relationship
between the frames as the edge weights of the graph and the model acts as a binary classifier to
classify each frame into abnormal or normal frame. Chaining this prediction together allows us to
temporally detect scene change in the video and segment the video into an homogeneous identifiable
pathological unit.

Lastly, leveraging the boundary detection technique above, we developed an end-to-end weakly
supervised abnormality localization model where we applied video-level labels, to localize the frames
where the relevant disease is captured. A GCNN model was trained to generate an embedding for
each video segment and then classifies the video into binary category of abnormal or normal. We
considered full video as a graph, each video segment as a sub-graph and the frames as the nodes.
The model was divided into two parts - graph classification and abnormality localization. The graph
classification model, trained based on cross-entropy loss classifies each sub-graph (video segment)
into binary disease-agnostic classes and the disease localization selects relevant frames from each
abnormal video segment that contains the respective disease. An extension of this framework,
which we describe in our future work, would be an end-to-end localization of the full long video
with multiple abnormalities.
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Chapter 1

Introduction

Analysis of videos encompasses tasks such as object detection, object recognition, tracking, action
localization and general understanding of objects behavior in a video. Video structured data is
becoming more and more popular across multiple domains including surveillance, medical diagnosis,
human social behavior and entertainment. The rate at which video data is generated across these
and many more domains keeps increasing. Meanwhile, while collection of video data keeps getting
easier, analysis of videos, particularly VCE videos, is extremely tedious, time-consuming and also
prone to error.

The key to analysis of video structured data is leveraging both spatial (images) and temporal
information in the data. Analysis of VCE videos has received significant attention for more than
two (2) decades. However, significant portion of the prior works have limited the task to detection
of objects/abnormalities in the video frames while paying little to no attention to the temporal
and topological relationship between the frames. We believe the frames in VCE videos have spatio-
temporal as well as topological structure that needs to be considered when building any automated
system for the analysis. Capturing the relationship between the sequence of frames, would also
allow us track the dynamics of any abnormality in the GI tract. Factoring such relationship into
models would, in addition, offer useful information that could guide the development of more robust,
end-to-end automated VCE video analysis system.

Research efforts on automating analysis of videos have been on for many years and many interesting
techniques have been developed over the years with promising results (see literature review section).
However, many of the systems focus on short video clips with fixed number of frames or clips
containing only one target event or activity. Meanwhile, real videos, in offline settings, are either
longer with multiple actions or events or constantly being streamed. Very little attention has be

1
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given to an end-to-end offline analysis of long videos nor the computational cost that is required
for such task. Therefore, adapting any off-the-shelf video analysis model to a real world long video
application would require significant modification or some form of manual preprocessing for it to
be effective. This modification could be very expensive, particularly when an expert attention is
required, which may not be readily available. The work in this dissertation is motivated by this real
world application and we will be describing our contribution on developing an end-to-end system
to automate analysis of long VCE videos.

Furthermore, VCE videos have unique properties that, if not properly factored-in, significantly
degenerates the performance of any generic image and video analysis technique. For example, poor
illumination, occlusion by food, unstable camera motion resulting in frequent camera flip in the
digestive tract, and inter-patient variability creates a wide gap between models for ordinary video
analysis and VCE video analysis. In order to understand the motivation for this dissertation, it is
critical to mention the above which defines the structure of the research work that was conducted.
We strove to strike a balance between generalization of the approach in this work as well as the
clinical relevance when the specific characteristics VCE video data is considered.

This dissertation tackles two challenging problems in long video analysis: (1) Video summarization;
and (2) Abnormality localization. The main focus of the first solution is to develop a system that
reduces the computational cost of generating video summaries from long videos by exploiting both
spatial and temporal structure of the data. The second solution focuses on leveraging the topological
relationship between the frames to generate a summarized form by localizing abnormalities from
video-level information to frames containing the abnormalities. Our solutions is applied to VCE
videos collected during standard clinical procedure.

This chapter provides an overview of the dissertation, highlights key contributions and discusses
the contributions in our other works that have both been published. Section 1.4 gives the full list
of our previous publication as well as brief explanation of the contribution in each paper.

1.1 Video Capsule Endoscopy (VCE)

Endoscopy is the non-surgical procedure used to visualize and examine the stomach, upper small
bowel and colon of a person (see fig. 1.1). Using an endoscope, a flexible tube which carries
light by fibreoptic bundles with attached camera, the physician is able to view pictures of the
digestive tract on a color TV monitor. Traditionally, three main endoscopy procedures include
gastroscopy, small-bowel endoscopy and colonoscopy. During gastroscopy, also known as the upper
endoscopy, an endoscope is easily passed through the mouth and throat and into the esophagus,
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thereby allowing the physician to view the esophagus and stomach [1].The small bowel endoscopy
advances further and allows visibility into the upper part of the small intestine. Colonoscopy involves
passing endoscopes into the colon through the rectum to examine the colon. Small bowel endoscopy
is especially limited by how far it can advance into the small bowel, thereby limiting the extent of
the physicians’ examination. All three traditional methods are also limited due to the invasiveness
and discomfort that accompanies them. While there has not been a complete replacement for
these traditional procedures, especially when a biopsy (removal of tissue) is necessary, VCE has
innovatively changed the approach to endoscopy to make the procedure a lot less invasive and
uncomfortable.

Figure 1.1: Upper and Lower Endoscopy Procedure

VCE was invented in 2000 by Iddan G. [2] to allow for painless imaging of the whole small bowel.
And for more than two decades, it has gained popularity as the less invasive alternative to other
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traditional endoscopy procedures. Having now become the standard procedure for visualization and
diagnostics of several gastrointestinal (GI) tract diseases, transforming the traditional gastroscopy,
small-bowel endoscopy and colonoscopy to allow non-invasive visualization of the entire GI tract.
The small bowel region of the GI tract could contain multiple abnormalities including Inflammatory
Bowel Disease (IFB) [3], Obscure GI Bleeding (OGIB) [4], Small Bowel Crohn’s (SBC) [5], Celiac
Disease (CD) [5], ulcer [6], and polyps [7]. Traditional upper and lower GI endoscopy allows a
gastroenterologist to visualize up to the proximal duodenum and ascending colon respectively [8]
but are not able access and visualize the distal duodenum, jejunum, and ileum of the small bowel.
These together is 5.5-6 meters in length [9,10]. VCE innovatively allows visualization of all regions
of the entire GI tract, thereby facilitating prompt and easy diagnosis.

During the VCE procedure, the patient swallows a tiny capsule camera (see fig. 1.2) which is
propelled down the gastrointestinal (GI) tract through peristaltic movement of the intestinal walls.
The capsule camera captures images at about 2 to 6 frames per second (fps) as it navigates through
the entire digestive system. A single VCE procedure can last between 8 - 11 hours generating up to
100,000 images [11]. The collected images are transmitted to a recorder 1 attached to the patient
and subsequently transferred to a work station where they are reviewed and analysed by a human
expert gastroenterologist. The video is manually reviewed and analysed - frame-by-frame - in order
to identify regions of the GI tract with lesioned tissues and/or other abnormalities. In a single CE
study, up to fifty thousand (50,000) images may be obtained in the small bowel region, while as few
as one single frame may capture pathology of interest. Given the large volume of images generated
in single VCE procedure, coupled with the high redundancy rate in the frame distribution, this
review process can be very tedious, time-consuming, and error prone. The detection rate of VCE
depends on abnormality indication but was 56% - 61% [9] in a pooled analysis. While capsule
endoscopy procedure is superior in many respects to alternative imaging, it has a significant miss
rate of 5.9% for vascular lesions, 0.5% for ulcers, and 18.9% for neoplasm, many of which are due
to inherent limitations in human readability [12].

1https://www.medtronic.com/covidien/en-us/products/capsule-endoscopy/pillcam-sb-3-system.html
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Figure 1.2: Video Capsule Endoscopy Procedure

1.2 VCE Video Analysis

In this section, we discuss some of the motivation for this dissertation and also provide overview for
the work in the remainder of the dissertation.

Analysing VCE videos encompasses disease or abnormality recognition, quantifying severity of a
disease, approximating location of any identified abnormality, making proper follow-up diagnosis
and also decisions on intervention. For close to two decades, researchers have proposed different
techniques to automate this process by leveraging both classical machine learning and image analysis
techniques [7,13] and as well as more recent and advanced deep learning methods [14,15,16]. These
prior works fall into three broad categories which include 1) Detecting or recognizing specific object
or abnormality such as bleeding in VCE frames; 2) Anomaly or outlier detection where frames with
abnormalities are consider outliers; and 3) VCE video summarization by selecting key representative
frames from the entire video.

To motivate the work in this dissertation, we will discuss each of these categories, the problem
formulations and their limitations to pave the way for the work done in the remaining chapters of
this woek.
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Firstly, approaches aimed at detecting or recognizing specific disease, objects or abnormalities in
VCE video frames have been proposed by many researchers. These models are trained to recognize
only a specific disease / abnormality in the video frames and using a binary classifier, they identify
only those frames containing the disease of interest. This approach tends to work well when
the categories of abnormality captured in a each endoscopy study are limited but spread over
the entire video [13]. However, VCE videos exhibit distribution that is usually skewed towards
the normal categories. So, every category that is different from the normal frames will have far
fewer samples. This characteristic of CE video makes gathering and annotating sufficient example
frames of every abnormality very difficult. Therefore, models that identify specific lesions will suffer
lack of robustness on any new class of lesion encountered in an unseen video. Consequently, this
will necessitate time-to-time retraining of an already trained model to generalize to new classes.
Secondly, given a very large labelled dataset, Deep Convolutional Neural Network (DCNN) models
have demonstrated superior performance on different object detection and other image analysis
tasks across multiple domains including detection of diseased frames in VCE frames. However,
deep learning models are notoriously sample inefficient and training them to generalize to multiple
diseases will require very large labelled examples of each disease across multiple patients. This will
impact classification based models as its impracticable to gather enough samples of all the classes
of the GI abnormalities to take advantage of the performance of these DCNN models. Furthermore,
just applying a DCNN model on video structured data, with frames captured in sequence, assumes
complete temporal independence between the frames, thereby ignoring the correlation between them.
Other sequence-based models such as variants of Recurrent Neural Network - LSTM and GRU -
have also shown promising results on multiple task when applied on text and video data. However,
their performance degenerates significantly when applied on a very long sequence, which is typical
of VCE videos.

Another formulation of VCE video analysis is outlier detection methods [3,15,17]. Outlier detectors
identifies rare objects, events or observations which raise suspicion by differing significantly from
other data points [18]. However, outlier detectors do not provide detailed information of the detected
outlier, employing this approach on CE data will lead to flagging large number of frames as outlier,
most of which will contain similar redundant information of the same disease/abnormality. This
leads to very little time saving for the physician. Both single or multiple lesion detection model
and outlier detection models do not account for any associative relationship between the sequence
of frames. Each frame instance is assumed to be independent of the other frames in the video.

The third approach involved key frame extraction on VCE videos [19, 20]. Other literature termed
this task video summarization [16,21,22,23,24,25,26,27] where the goal is to reduce the amount of
data that must be examined in order to retrieve the desired information in the video. This allows
reviewer to only examine few selected key frames thereby distilling the information contained in
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the entire video. Video summarization techniques generally assume the videos have already been
manually segmented into shots (a continuous sequences of frames taken over a short period of time)
and therefore extract key frames from within each shot. One major challenge with this traditional
approaches to key frame extraction is that the length of the video summary must be set depending
on the number of shots in the video. Secondly, the generated summary does not guarantee that
the selected frames will not be correlated and determining the time interval between shots may
be difficult. However, video summarization techniques generally take into account the information
contained between frame sequence, eliminates redundancy and consequently reduces the required
time for review and analysis of videos.

With only about five percent (5%) or less of VCE video frames capturing useful and informative
content that aids the gastroenterologists’ diagnosis, the motivation for this work is borne out of
effort towards minimizing time spent by expert gastroenterologist in reviewing VCE video. In many
cases, in order to save time, expert gastroenterologist ask a junior medical researcher for an initial
review and to extract summarized and more informative frames for secondary review.

1.3 Dissertation Outline

This work investigates three key solutions to long VCE video summarization, figure 1.3 captures
the overall structure of the content of the chapters and below, we give more detailed overview of
each chapter.

1.3.1 Chapter 2: Literature Review

Chapter two (2) covers review of techniques from literature that have been developed to solve various
problems in VCE and other video analysis. The review covers temporal shot boundary detection
techniques, video summarization and video activity localization.

1.3.2 Chapter 3: Shot Boundary Detection and Temporal Segmentation in Long
Videos

The work presented in chapter (3) has been submitted to the 2021 IEEE International Conference

on Bioinformatics & Biomedicine and it is currently under review . In this paper, we
developed a model for automatic video shot boundary detection with minimal computational cost.
Detecting temporal boundaries allows us to automatically segment long VCE videos into short,
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Figure 1.3: Overall Dissertation Outline

meaningful, homogeneous and identifiable video clips.

We extracted frame-features matrix from a model pretrained on large imageNet data and then fine-
tune on our VCE video frames. Thereafter, we projected the frame-features into a 1-dimensional
manifold space with the sequence for the entire video appearing like a single time series data.
Projecting from p-dimensional video features reduces the computational cost of segmenting the video
from O(np) or O(np) to linear O(n). We conducted experiment using different embedding methods
and then applied the Pruned Exact Linear Time statistical change point detection technique to
detect points at which there is a distributional shift in the sequence.

Many open dataset used in video analysis research have already been manually segmented into
short video clips with fixed frame counts, therefore many video analysis techniques, especially deep
learning based models, are designed to operate mostly on short video clips. Manually segmenting
long video into clips have two (2) main problems: 1) The sequence of frames contained in different
video shots cannot be guaranteed uncorrelated. Manually segmenting long videos, therefore, will
not yield an homogeneous and identifiable segment that can lead to optimal summarization output;
2) When a non-homogeneous video segment is to be summarized, there is a chance of selecting a
non-key frame as the representative frame, leading to higher miss-rate in the diagnosis.
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1.3.3 Chapter 4: Weakly Supervised Temporal Segmentation of Long Capsule
Endoscopy Video Using Graph Neural Network

The work presented in this chapter will be submitted to the 2021 IEEE International Symposium on
Biomedical Imaging (ISBI) . Following our unsupervised temporal shot boundary detection model
in chapter 3 in this work, we developed a weakly supervised class-agnostic model for temporal
segmentation of the long CE videos. Detecting boundary is sensitive to visual change in the sequence
of frames which may not necessarily coincide with a pathological event. Frequent camera flip due
to the unstable peristaltic movement of the bowel leads to frequent visual change in the sequence
of frames.

To mitigate this problem, we developed a weakly-supervised boundary detection for our VCE
temporal segmentation. We trained a class-agnostic GCNN model for binary classification. Each
frame is predicted to belong to either the abnormal or normal category [17]. Abnormal frames
contain any type of disease or content that physician would be interested in. To benchmark this
approach, we trained a baseline CNN model on same dataset. Using such binary classifier as our
temporal segmentation model, we are able to more accurately segment the video into homogeneous
and pathologically identifiable video segments for our summarization. The performance of the
summarization model therefore depends on the performance of this classifier. The novelty of this
model is in striking a balance between extreme assumption of temporal correlation using time-series
model and complete independence assumption using traditional outlier detection technique that do
not factor in the temporal information. GCNN takes advantage of topological relationship between
the nodes in the graph through message passing, to learn a representation for each node also known
as embedding.

1.3.4 Chapter 5: Weakly Supervised Abnormality Localization

The work presented in this chapter has been submitted to the 2021 IEEE International Conference

on Big Data and is currently under review . The main contribution of this work lies in mitigating
the high cost of frame-level annotation for VCE videos. Obtaining frame level label for VCE videos
is a very difficult task. With the sparsity of frames containing abnormality in the entire video, and
the expertise needed to assign labels, the task can be highly time consuming and also expensive.
However, using other patients’ medical record and self-reported information, physicians are able
to retrieve global video level information, though with some uncertainty. In this we, we used this
video level label to develop a weakly supervised localization model using GCNN. The GCNN model
localizes the video labels to the frames containing the abnormality. The GCNN model has two
components - Graph Classification and Abnormality Localization - after training to classify video
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segments into binary categories, the model tries to localize the frames capturing the abnormality
based on the node-feature activation score.

A single long video contains an average of three (3) to four (4) different categories of abnormality.
Since each video is more likely to contain more than one disease or abnormalities; a set of video
of videos will contain different categories abnormalities. First we apply shot boundary detection
technique described in chapter 3 to partition the videos into short segments and during training, the
model classifies each video segment into binary abnormal / normal video segments. During testing,
we applied a temporal pool layer over the network to select the top k-nodes in the graph to be
representative of each video segment. We demonstrated the effectiveness of this model on multiple
VCE videos.

1.3.5 Chapter 6: Video Summarization Using Encoder-Decoder LSTM for Key
Frame Selection

Following the work in chapter 3 where we temporally segment the videos into short video segments,
here we developed a key / most representative frame selection from each video segment to serve as
the summary of the long VCE video. We trained an encoder-decoder LSTM model using the trio
of diversity, sparsity and reconstruction losses. Details of the model as well as our experimentation
is covered in chapter 6.

1.4 List of Publications

• Adewole, Sodiq, Michelle Yeghyayan, Dylan Hyatt, Lubaina Ehsan, James Jablonski, Andrew
Copland, Sana Syed, and Donald Brown. "Deep Learning Methods for Anatomical Landmark
Detection in Video Capsule Endoscopy Images." In Proceedings of the Future Technologies
Conference, pp. 426-434. Springer, Cham, 2020.
Abstract: Video capsule endoscope (VCE) is an emerging technology that allows examination
of the entire gastrointestinal (GI) tract with minimal invasion. While traditional endoscopy
with biopsy procedures are the gold standard for diagnosis of most GI diseases, they are
limited by how far the scope can be advanced in the tract and are also invasive. VCE allows
gastroenterologists to investigate GI tract abnormalities in detail with visualization of all parts
of the GI tract. It captures continuous real time images as it is propelled in the GI tract by
gut motility. Even though VCE allows for thorough examination, reviewing and analyzing up
to eight hours of images (compiled as videos) is tedious and not cost effective. In order to pave
way for automation of VCE-based GI disease diagnosis, detecting the location of the capsule



Chapter 1. Introduction 11

would allow for a more focused analysis as well as abnormality detection in each region of
the GI tract. In this paper, we compared four deep Convolutional Neural Network models for
feature extraction and detection of the anatomical part within the GI tract captured by VCE
images. Our results showed that VGG-Net has superior performance with the highest average
accuracy, precision, recall and, F1-score compared to other state of the art architectures:
GoogLeNet, AlexNet and, ResNet.

• Adewole, Sodiq, Philip Fernandez, James Jablonski, Michelle Yeghyayan, Michael Porter,
Andrew Copland, Sana Syed, and Donald Brown. "Lesion2Vec: Deep Meta Learning For Few
Shots Multiple Lesions Recognition In Video Capsule Endoscopy Video." This work has been
accepted to the Future Technology Conference for publication.
Abstract: Effective and rapid detection of lesions in the Gastrointestinal (GI) tract plays a
critical role in how fast gastroenterologist can respond to life-threatening diseases. Capsule
Endoscopy (CE) has revolutionized traditional endoscopy procedure by allowing physician
visualize the entire GI tract non-invasively. Once the tiny capsule is swallowed, it captures
sequence of images as it is propelled down the GI tract. A single video can last up to 8 hours
producing between 30,000 to 100,000 images. Automating the detection of frames containing
specific lesion in CE video would relieve gastroenterologists of the arduous task of reviewing
the entire video before making diagnosis. Convolutional Neural Network (CNN) based models
have been very successful in various image classification tasks. However, they suffer excessive
parameters, are sample inefficient and rely on very large amount of training data. Deploying
a CNN classifier for lesion detection task will require time-to-time fine-tuning to generalize
to any unforeseen category. In this paper, we propose a meta-learning framework followed by
a few-shot lesion recognition in CE video. Meta-learning framework is designed to establish
similarity or dissimilarity between concepts while few-shot learning (FSL) aims to identify
new concepts from only a small number of examples. We train a feature extractor to learn a
representation for different small bowel lesions using meta-learning. At the testing stage, the
category of an unseen sample is predicted from only a few support examples, thereby allowing
the model to generalize to a new category that has never been seen before. We demonstrated
the efficacy of this method on real patient CE images.We conducted experiments to evaluate
the impact of the number of support samples and compared performance across multiple CNN
networks. Our experiment showed that this approach performs competitively with baseline
models and is effective in few-shot lesion recognition in CE images.

• Adewole, Sodiq, Philip Fernandez, James Jablonski, Michelle Yeghyayan, Michael Porter,
Andrew Copland, Sana Syed, and Donald Brown. "Unsupervised Temporal Segmentation
of Long Capsule Endoscopy Videos." This work has been submitted to the 2021 IEEE
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International Conference on Bioinformatics and Biomedicine (BIBM) and is under

review . The technique proposed in this work is covered in chapter 3. The work covers
computational efficient algorithm for temporal boundary detection and segmentation of long
CE videos. We investigated feature extraction techniques that captures pathological information
of the sequence of frames and the most effective method to project the high dimensional feature
extracted from the frames by the CNN network to a lower dimensional 1-D embedding space.
Abstract Physicians use Capsule Endoscopy (CE) as a non-invasive and non-surgical procedure
to examine the entire gastrointestinal (GI) tract for diseases and abnormalities. A single CE
examination could last between 8 to 11 hours generating up to 80,000 frames which is compiled
as a video. Physicians have to review and analyze the entire video to identify abnormalities or
diseases before making diagnosis. This review task can be very tedious, time consuming and
prone to error. While only as little as a single frame may capture useful content that is relevant
to the physicians’ final diagnosis, frames covering the small bowel region alone could be as
much as 50,000. To minimize physicians’ review time and effort, this paper proposes a novel
unsupervised and computationally efficient temporal segmentation method to automatically
partition long CE videos into a homogeneous and identifiable video segments. However, the
search for temporal boundaries in a long video using high dimensional frame-feature matrix
is computationally prohibitive and impracticable for real clinical application. Therefore,
leveraging both spatial and temporal information in the video, we first extracted high level
frame features using a pretrained CNN model and then projected the high-dimensional frame-
feature matrix to lower 1-dimensional embedding. Using this 1-dimensional sequence embedding,
we applied the Pruned Exact Linear Time (PELT) algorithm to searched for temporal boundaries
that indicates the transition points from normal to abnormal frames and vice-versa. The
key novelty of this work is in three (3) folds - first, the automated detection of temporal
boundaries in long CE video has not been previously considered. Secondly, the reduction in
the computational cost of the temporal boundary detection search by using a lower dimensional
frame feature embedding; and lastly, the entire temporal segmentation of the CE videos
requiring no supervision from medical expert is a new concept. The output of our model
can be easily integrated into any CE video summarization model where physicians only need
to review a selected sample frame from each video segment. We experimented with multiple
real patients’ CE videos and our result showed PCA was superior in capturing the transition
between pair of normal and abnormal frames in the video. We also bench-marked with expert
provided label, and our system achieved an AUC of 66% on multiple test videos.

• Adewole, Sodiq, Philip Fernandez, James Jablonski, Michelle Yeghyayan, Michael Porter,
Andrew Copland, Sana Syed, and Donald Brown. "Weakly Supervised Temporal Segmentation
of Long Capsule Endoscopy Videos Using Graph Convolutional Neural Network". This
work covers the work presented in chapter 4 and will be submitted to the 2021 IEEE
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International Symposium on Biomedical Imaging (ISBI). In this paper, we employed
Graph Convolutional Neural Network (GCNN) model for unsupervised temporal segmentation.
We represented the whole CE video as a graph while the frames in the video are the nodes
in the graph. GCNN model gives more flexibility to capture more complex as well as simple
relationship in the edge weights of the graph. As against hard temporal dependence assumption,
the nodes in the graph is connected to every other node and this connection is weighted based
on a defined similarity metric. Essentially, the GCNN is a binary classifier that learns to
embed normal and abnormal frames and discriminate between the two classes. This model is
more powerful than any CNN model as the nodes receives messages from other nodes in the
network and is able to map the embedding for similar nodes to the closer embedding space
than a CNN network that assumes independence of the frames in the video.

• Adewole, Sodiq, Philip Fernandez, James Jablonski, Michelle Yeghyayan, Michael Porter,
Andrew Copland, Sana Syed, and Donald Brown. "Graph Convolution Neural Network
For Weakly Supervised Abnormality Localization In Long Capsule Endoscopy Videos". This
work has been submitted to IEEE International Conference on Big Data - 2021 and
currently under review . The work covers what is presented in chapter 5.
Abstract Temporal abnormality localization in long Wireless Capsule Endoscopy (WCE)
videos is an important problem. The cost of obtaining frame level label for long WCE videos
is prohibitive. In this paper, we propose an end-to-end temporal abnormality localization
for long WCE videos using only weak video level labels. Physicians use Capsule Endoscopy
(CE) as a non-surgical and non-invasive method to examine the entire digestive tract in order
to diagnose diseases or abnormalities. While CE has revolutionized traditional endoscopy
procedures, a single CE examination could last up to 8 hours generating as much as 100,000
frames. Physicians must review the entire video, frame-by-frame, in order to identify the
frames capturing relevant lesion or abnormality. This, sometimes could be as few as just
a single frame. Given this very high level of redundancy, analysing long CE videos can be
very tedious, time consuming and also error prone. This paper presents a novel multi-step
method for an end-to-end localization of target frames capturing abnormalities of interest
in the long video using only weak video labels. First we developed an automatic temporal
segmentation using change point detection technique to temporally segment the video into
uniform, homogeneous and identifiable segments. Then we employed Graph Convolutional
Neural Network (GCNN) to learn a representation of each video segment. Using weak video
segment labels, we trained our GCNN model to recognize each video segment as abnormal if
it contains at least a single abnormal frame. Finally, leveraging the parameters of the trained
GCNN model, we replaced the final layer of the network with a temporal pool layer to localize
the relevant abnormal frames within each abnormal video segment. We experimented with
multiple real patients’ endoscopy videos and achieved an accuracy of 89.9% on the graph
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classification task and a specificity of 97.5% on the abnormal frames localization task.



Chapter 2

Literature Review

In this chapter, we review prior works on VCE video analysis viz-a-viz the proposed techniques,
limitations as well as general challenges in developing automated system for VCE video analysis.
Thereafter, we focus on techniques proposed across other domains on video shot boundary detection,
video summarization, and video action localization, providing a good context for the contributions
made in this dissertation.

2.1 Video Capsule Endoscopy Video Analysis

First we consider how developing automated system for analysis of long VCE videos has evolved,
focusing on the problem formulation by different researchers, the techniques and the limitations
of the formulations in building a realistic system. The discussion in this chapter will serve as the
motivation for subsequent chapters in this dissertation.

For more than two (2) decades VCE has become a routine, first line investigational tool for many
small bowel pathologies [28] and the task of reviewing the videos by the physician after the endoscopy
process is very tedious, time consuming and also error prone. Leveraging the distributional structure
of the frames in the video, where there are far more normal frames than frames with abnormality,
researchers have framed automatic analysis of capsule endoscopy video in three ways: this include
lesion detection methods [29, 30], outlier or abnormality detection using disease-agnostic models
[13, 15, 17] and key frame selection or video summarization [3, 4, 7, 11, 14, 16, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]. Many of these proposed methods aim to
automatically detect different lesions or abnormalities while others capture high-level information
by only differentiating abnormal from normal frames.

15
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Videos are spatial-temporal data with information captured in both spatial (image), temporal
(sequence) and topological structure of the frames in the video. This means that in formulating
analysis of VCE video data, capturing spatial elements as well as the temporal and topological
relationship between the frames will benefit any model or solution. However, many prior works
[4, 11, 32, 38] on VCE video analysis considered each frame in the video as an independent and
identically distributed data point with no relationship with the other frames in the video. This
approach over-simplifies the problem of video analysis and diminishes the applicability of the models
in real-world clinical setting. In the next few sections, we will consider some of the formulations and
methods that researchers have proposed in solving the problem of automated review and analysis of
VCE video data. First we review, in more detail, these three (3) main categories of prior research
on VCE video analysis by considering the problem formulation as well as their limitations. This will
form the basis for the remainder of this dissertation. In the next two subsections, we will discuss
the framework of independent disease recognition and anomaly detection. We will discuss works on
video summarization in section 2.3.

2.1.1 Single or Multiple Lesion Detection

Many techniques have been proposed to detect specific lesion such as bleeding in [4], polyp in
[29, 38, 39, 40], ulcer [44], and angioectasia [41, 42, 43]. In [39] Mamonov et al. proposed a model
for colorectal polyp detection based on a binary classification using geometric analysis and texture
content of the frames. Their model achieve 47% sensitivity and 90% specificity. Similarly, Hwang
et al. [29] proposed a polyp detection model by first segmenting the affected region using Gabor
texture features before applying K-means clustering algorithm. The resulting geometric information
is then used to identify frames containing polyp. Yixuan et al. [40] proposed a bag of feature (BoF)
technique using integration of multiple features such as texture features, Scale-Invariant Feature
Transform (SIFT), Complete Local Binary Pattern (CLBP) with visual words to automatically
detect polyp in CE video frames. While SIFT remains the baseline feature for traditional image
analysis, CNN based models achieve superior performance in complex geometric and lighting conditions
which is typical of CE frames. Akiyoshi et al. [41] used a Single Shot Multibox Detector (SSMD)
to automatically detect frames with angioectasia in CE images. Similar task was attempted
in [43] using saliency-based unsupervised method. In [42], the authors combined deep learning
and handcrafted features by concatenating the extracted features for a polyp detection problem.

First, one of the limitations of this formulation is that, for each class of lesion or abnormality,
large labelled examples are needed to train the model in order to generalize properly. Secondly,
Convolutional Neural Network (CNN) based models are, currently, the state-of-the-art models for
object detection and image recognition [45, 46] task across multiple domains. However, they are
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notoriously sample inefficient and, given the high class imbalance in typical VCE video frames,
training CNN models will require large number of labelled examples for each class of disease. While
large volume of frames can be generated in a single CE video, the distribution is always skewed,
with far more normal frames than abnormal ones. This leads to very high redundancy rate in
the normal samples limiting the sample size for each disease category that one can collect from a
single patient’s video. When we couple this fact with the cost of obtaining expert label for each
frame across multiple patients, given that they still have to sift through all the redundant normal
frames in order to identify the few abnormal ones. This can be prohibitively expensive. Therefore,
any technique that can help minimize this cost by filtering out the normal frames leaving the few
abnormal ones for annotation would save significant amount of time and effort. One attempt to
alleviate this problem was proposed in [11]. Here the authors proposed a meta learning framework
using Siamese Neural Network (SNN) that learns to project each abnormality into a embedding
region such that the distant embedding features for same abnormality class are closer than other
abnormality classes.

Lastly, the limitation of models that are trained to only detect specific diseases or lesions also include
their inability to generalize to new unseen class of disease without having to retrain the model to
capture the new category. One solution to this challenge is formulating the overall detection as an
outlier or anomaly detection problem where any frame with disease are separated as outliers from
normal frames without any disease. This will help the physician minimize the time that could have
been spent reviewing the entire video and they only have to focus on the abnormal frames but
the abnormal / normal categorization lacks granularity that may be useful to most physician’s use
cases.

2.1.2 Abnormal / Outlier Frame Detection

Anomaly detection involves identifying a sample data point that shows significant statistical difference
from other data points [18]. In VCE video analysis, some prior research efforts considered the task an
abnormal / outlier frames detection problem, classifying any frame that differs from the normal class
as abnormal. In the context of CE videos, an abnormal/outlying frame may not differ significantly
when compared with other frames in the video. This is mainly because some abnormality such
as bleeding gradually decrease in intensity as you move away from the source. This framework
demonstrate promising real-world clinical applicability as it allows the physician focus only of the
selected abnormal frames. However, most prior formulations of this problem have neglected the
temporal and topological relationship between the frames in the video. This is the motivation for
the work done in chapter 6 where we combine temporal segmentation with binary classification in
a weakly supervised manner. The temporal segmentation allow us to further capture the temporal
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dependence between the frames thereby minimizing the redundancy even within the abnormal frame
categories. Some of the proposed techniques in this area include, [34], where Sivakumar et al.
proposed using Bag-of-Visual Words (BOVW) technique to extract feature and then applying Naive
Bayes (NB) classification model to detect abnormal frames with bleeding. Similarly, [3] Miaou et al.
proposed a four-stage classification model based on low-level Hue-Saturation-Intensity (HSI) features
followed by fuzzy-C means clustering analysis to separate images carrying different lesions. The final
stage is a neural network model that discriminate normal from abnormal frames. In [36] the authors
applied similar multi-stage technique to extract quality frames by removing over-/under-expose
images as well as images with significant non-tissue areas. Using color histogram of images, [37]
employed fuzzy neural model which combines fuzzy systems and artificial neural networks to detect
lesions in CE images. In [3] Miaou et al. propose a four-stage classification model based on low-level
Hue-Saturation-Intensity (HSI) features followed by fuzzy-c means clustering analysis to separate
images carrying different abnormalities in a step-wise manner. The final stage is a neural network
model that discriminate normal from abnormal frames. In [36] Mewes et al. applied similar multi-
stage technique to extract quality frames by removing over-/under-expose images as well as images
with significant non-tissue areas.

Using color histogram for representation, [37] employed fuzzy neural model which combines fuzzy
systems and artificial neural networks to detect lesions in CE images. In [4], the authors proposed
to detect bleeding regions in frames by computing statistical features of the first order histogram
probability of the three color channels (RGB) in the images before passing the computed features
to a neural network to discriminate bleeding from non-bleeding frames. In [15], the authors applied
semi-supervised CNN-based model to detect frames with abnormality. The model was trained
only on normal images and subsequently applied to flag outliers based on a determined parameter
threshold. Outlier frames such as bleeding may span multiple frames capturing the same content,
outlier detection models do little to minimize this redundancy. Limitation of outlier detection
approach is ineffectiveness in minimizing review time spent by the gastroenterologist in reviewing
the video since multiple abnormal frames with same information are captured as outliers.

The chapter 4 of this work is motivated by the limitation of outlier detection problem where prior
works fail to capture the temporal correlation between the frames. Considering the relationship
between the frames will allow further reduction in the redundancy among the abnormal categories.

2.1.3 VCE Video Summarization

By mainly leveraging the distribution of the frames, works that have been proposed under video
summarization [16,19,20,21,22,23,24,25,26,27] or key frame extraction tries to reduce any redundancies
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in the video. Although they do not necessarily provide granular annotation of the specific lesion
in the frames, they significantly cut down the time it takes to review a complete VCE video while
still guaranteeing same information coverage that would have been achieved had the complete video
been reviewed. In addition, it helps the gastroenterologist focus only on frames with few informative
frames capturing disease or lesions.

The primary goal of VCE is to detect mucosal abnormalities such as blood, ulcer, polyp etc in the
gastrointestinal tract. With close to 100,000 frames, as few as a single frame of the total video
could be relevant for the physician diagnosis [34]. Therefore developing techniques to automatically
reduce the number frames to only relevant ones would have very significant clinical implication. One
technique used to minimize review time spent by the gastroenterologist on CE video is to extract
only informative/key frames from the entire VCE video using both low [19, 20, 21] and high [16]
level features.

Prior proposed techniques on VCE video summarization can be broadly categorised based on the
level of supervision. In [16] Chen et al. applied the Siamese Neural Network (SNN) framework where
the CNN model learns the features of each frame based on a distance metric from the neighbouring
frames. Using a similarity matrix, every pair of frames in the sequence were assigned binary labels
by medical expert. Scaling this task to many more videos can be prohibitively expensive and tedious.
Training the SNN based on contrastive loss function, the extracted features is passed to a Support
Vector Machines (SVM) classifier to identify video temporal segments. While a Siamese Neural
Network feature extractor is a very laudable approach, using contrastive loss function requires
getting a label for each pair of frames in the video as mentioned above. This can be really tedious,
time consuming and also very expensive.

Ismail et al [27] proposed an unsupervised endoscopy video summarization approach where the
collection of video frames is first partitioned into homogeneous categories based on their visual and
temporal features. A clustering approach was guided using the frames’ temporal information before
generating a possible membership score for each frame in the subset. Other works apply clustering on
the video frames before selecting representative frames from each cluster [25,26]. Other works such
as [22,24], performed key frames extraction from VCE video using different low level features. Main
shortcomings of the unsupervised summarization technique based on clustering include: 1) Having
to manually specify the number of clusters, in which case, the temporal information in the sequence
of frames is not taken into consideration; 2) In the cases where temporal information is considered,
having a specific number of frames in each video segment will result into non-homogeneous video
segment with huge impact on the extent to which the model can reduce the redundancy in the data.
On the other hand, annotating VCE videos, for a supervised model, is also a very difficult task
mainly due to the volume of frames generated in each VCE study.
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2.2 Shot Boundary Detection and Temporal Segmentation

Serving as the motivation for the work presented in chapter 3, this section discusses related works
on automated temporal shot boundary detection in long videos.

2.2.1 Shot Boundary Detection in Long Videos

Partitioning a video sequence into shots is the first step toward video-content analysis and content-
based video browsing and retrieval. Shot boundary detection (SBD) is the process of automatically
detecting the boundaries between shots in long videos [47]. These boundaries are used to temporally
segment the video into short homogeneous segments. A video shot is defined as a series of inter-
related consecutive frames taken contiguously by a single camera and representing a continuous
action in time and space [48]. The problem of temporal segmentation in videos structured data is
not new and has attracted much attention since video data became available digitally. This area
has been a core research area for more than two (2) decades and also popular among researchers
working on video analysis. SBD is an essential pre-processing step to almost all video analysis,
indexing, summarization, search, and other content-based operations.

Various methods of automatic shot boundary detection have been proposed and claimed to perform
reliably [49,50]. In [51], the authors proposed model using color histogram for boundary detection.
Their method was able to differentiate abrupt temporal boundaries by the analysis of color histogram
differences and smooth temporal boundaries by temporal color variation. The aim of their method
is to provide a simple and fast algorithm that is able to work in real-time with reasonable high
performances in a video indexing tool. Their results showed reduced computational cost as well as
an overall precision of 84.7% and a recall of 80.6%.

Similarly, in [52], the authors proposed a model-based shot boundary detection technique using
frame transition parameters. They formulated a frame estimation scheme using the previous and
the next frames. And instead of using properties of frames itself, frame transition parameters
and frame estimation errors based on global and local features were used for boundary detection
and classification. The Local features include scatter matrix of edge strength and motion matrix
before finally classifying the frames as no change, abrupt change, or gradual change frames using a
multi-layer perceptron network.
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2.2.2 Temporal Segmentation of Long Videos

Temporal segmentation is usually the first step when trying to automate analysis of long videos.
The goal is to divide the video stream into a set of meaningful segments known as shots. In
conventional videos, shots transition are two types: abrupt or gradual. While abrupt transitions are
easier to detect due to higher gradient between the two boundary frames in the sequence, gradual
transitions are much more difficult to detect. Different models have been proposed for shot transition
detection in conventional videos, however, they do not work well for CE videos [33]. While little to
know attention has been devoted to shot boundary detection and temporal segmentation on VCE
videos, one prior work used digestive peristalsis and image analysis techniques for shot boundary
and organ boundary detection. In [30], Vu et al. proposed a coherent three-stage procedure to
detect intestinal contractions. They utilized changes in intestinal edge structure of the intestinal
folds for contraction assessment. The output is contraction-based shots. Another limitation that
has received less attention is the computational cost of boundary detection on high dimensional
features.

Another attempt at shot boundary detection scheme based on digestive organs was proposed by
Mackiewicz et al. in [32]. The authors utilized three dimension LBP operator, color histogram, and
motion vector to classify every 10th image of the video. The final classification result was assessed
using a 4-state hidden Markov model for topographical segmentation. In [31], two color vectors
that were created with hue and saturation components of HSI model were used to represent the
entire video. Spectrum analysis was applied to detect sudden changes in the peristalsis pattern.
Chen et al. assumed that each organ has a different peristalsis pattern and hence, any change in
the pattern may suggest an event in which a gastroenterologist may be interested. Energy and High
Frequency Content (HFC) functions are used to identify such change while two other specialized
features aim to enhance the detection of duodenum and cecum. Zhao et al. [17] proposed a temporal
segmentation approach based on adaptive non-parametric key-point detection model using multi-
feature extraction and fusion. The aim of their work was not only to detect key abnormal frames
using pairwise distance, but also to augment gastroenterologist’s performance by minimizing the
miss-rate and thus, improving detection accuracy.

2.3 Video Summarization

Video Summarization (VS) is critical to video semantic analysis, browsing, and retrieval. VS involves
effectively extracting important information from video data while removing redundant ones. It
also refers to the process of eliminating redundant information in a video by selecting frames that
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captures information that is considered most representative of the entire video. In [53], the authors
applied singular value decomposition (SVD) on the feature-matrix first to derive the refined feature
space and then cluster visually similar frames. Using the degree of visual changes computed based
on the amount of visual content contained in each frame cluster, they found the most static frame
cluster, define it as the content unit, and use the context value computed from it as the threshold to
cluster the rest of the frames. They generated optimal set of key-frames and a summarized motion
video with the user specified time length from the video. Similar techniques was adopted on VCE
video in [20]. Another work [54] used visual co-occurrence by exploiting the visual co-occurrence
across multiple videos. In [55], the authors propose technique base on user attention model by
estimating the attentions viewers may pay to video contents

2.4 Video Abnormality Localization

Despite the high cost of frame-level annotation for VCE videos, little to no attention has been given
to weakly supervised model for temporal abnormality localization. In [56], the authors proposed as
weakly supervised lesion detection in a 2D VCE frame. To the best of our knowledge, this is the
first work to considered temporal abnormality localization on VCE video data. We present this idea
in chapter 5 where our model generate proposal score sequence for each frame in the video. This
score is considered the degree of representativeness of the frame for the video. The score sequence,
similar to Class Activation Mapping presented in [57] for image data with only one dimension. In
the next few paragraphs, we will consider some of the prior works on weak supervision and temporal
action localization.

Recent work on temporal action localization in video analysis include [58,59,60,60,61,62,63,64,65,
66]. Reduce cost of storage and ease of video data collection has recently been the main motivation
for recent research interest in this area.

For example, in [67], Shou et al. proposed a weakly supervised temporal action localization
(TAL) method focus on generating good Class Activation Sequence (CAS) over time and conduct
thresholding on CAS to localize actions. Similarly, [68, 69] proposed Temporal Segment Network
which employs two-stream network to model the long-range temporal structure in video by combining
sparse temporal sampling strategy and video-level supervision. However, using softmax over action
proposal may not be effective when applied to CE video where there are multiple instances of a
particular diseases separated by instances of normal frames.

Most of these works on temporal video action localization proposed techniques requiring full supervision
with frame level annotation. Supervised approaches construct predictive models where each training



Chapter 2. Literature Review 23

example has a label indicating ground truth. While many supervised learning models have achieved
great success, video annotation on a frame-by-frame basis, particularly VCE video with large volume
of frames and high redundancy, remains a challenge. Expertise required to annotate large number of
VCE videos is not readily available and may be too expensive, thereby making frame-level annotation
impracticable in real world environment. In addition, training a model on VCE video dataset
requires training over a wide range of patients’ videos so as to minimize patient bias. Lastly, strong
frame-level labels for VCE video are not common as even gastroenterologist sometimes have doubt
as to the true identity of lesion in a frame. The leads to noisy labels and consequently, high cost of
data-labeling.

Weakly supervised models require global object level annotation that can be localized to the
components of the object. Weakly supervised learning techniques [70] are in three (3) broad
categories: incomplete supervision, where only a subset of training data is given with labels; inexact
supervision, where the training data are given with only coarse-grained labels; and inaccurate
supervision, where the given labels are not always ground truth. In chapter 5, we limit our task
to the problem of of inexact supervision with video-level labels to localize frames with highest
class-activation in our VCE video.

Temporal action localization using weakly supervised methods have recently started gaining attention
of the computer vision research community [60,63,64,65,67,71]. TAL [67,72,73] is an extension of
weakly supervised segmentation on video structured data. Some of these works focus on task such
as semantic segmentation [74,75], video captioning [76], and visual relation detection [77].

Methods such as structured segment network [59], contextual relation learning [78], multi-stage
CNN [58], temporal association of frame-level action detection [61], and techniques using recurrent
neural networks [62,79]. Action proposals [66,80,81] in action localization is an extension of object
proposal for object detection.

In [82], the authors proposed a weakly supervised framework where they randomly hide patches
in the training image, thereby forcing the network to seek other relevant parts when the most
discriminative part is hidden. Their proposed model that do not only localize the most discriminative
parts of an object, rather than all relevant parts. Several other works have proposed to solve the
problem of temporal action localization in long untrimmed videos [83].

As a counterpart to weakly supervised temporal object localization, recent application of weakly
supervised CNN based object localization was proposed in [71, 84] with promising results. Given
a training video, in TAL methods, several segments are randomly sampled and are then fed into a
network together to yield a video-level class prediction. During testing, the trained network is slided
over time to produce the classification score sequence of being each action over time. The score
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sequence is similar to the Class Activation Map [85] in one dimension. This is referred to as Class
Activation Sequence (CAS). A simple thresholding is thereafter applied on the CAS to localize each
action instance in terms of the start and end time. Models for object detection has been significantly
improved via combining Multiple Instance Learning (MIL) [86] and deep networks [73,87,88,89,90]
with most techniques are built upon Fast-RCNN [91]. These methods first generated candidate
proposals beforehand; then they employed deep networks to classify each proposal and the scores
from all proposals were fused together to obtain one label prediction for the whole image to be
compared with the image-level label. In, [92], the authors proposed a recurrent neural networks
to model relationships between time segments in a video. However, relationships between time
segments that are temporally distant, or that belong to different videos cannot be modeled with this
approach. Conversely, GCNN-based model is not restricted by temporal proximity when modeling
similarity and dissimilarity relationships between time segments. Other works employed boundary
regression model to learn to predict more accurate boundaries [64,65].



Chapter 3

Unsupervised Shot Boundary Detection
and Segmentation for Long Capsule
Endoscopy Videos

3.1 Introduction

In this chapter, we developed an unsupervised, domain-agnostic shot boundary detection and
temporal segmentation for long VCE videos. Analysis of video structured data have received
significant attention from the research community [47,93] including the medical domain [94]. With
the recent exponential rate at which video data is generated, developing models to automatically
segment long videos has never been more important.

Analyses of videos encompasses tasks such as summarization [95, 96, 97], learning representation
[98,99], anomalous event detection [100], video classification [46,101] and video retrieval [102]. Each
of these tasks have multiple applications across different domains such as action recognition [99]
and analysis of the content of the video [103]. Approaches to video analysis have mainly been
applied on temporal video clips as most researchers benchmark their model on open dataset such
as TRECVID videos [47, 104], VSUMM [95], and the open video project [105]. These videos have
already been manually segmented using fixed frame count. Other works on long videos proposed to
divide the video into N clips with equal number of frames / duration [69]. In analysis of short video
clips, researchers only have to deal with one activity or a single event [63, 106]. However, in long
videos, the problem gets much more complicated [107] but more realistic. Examples include work
on streaming video [108] from surveillance and offline long video sources such as VCE [16,25]. Long
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videos have peculiar characteristics which include multiple scene changes and multiple objects.

Two main approaches for analysing long videos are the offline [109] and online [108, 110] methods.
Typically, Offline analysis will require temporal segmentation into independent homogeneous temporal
unit by detecting temporal boundaries in the video [47,48,49,50,51,52]. Each member frame within
a segment are correlated and have visual similarity while each segment will exhibit independence
characteristic. Temporal segmentation of long videos is a very challenging problem mainly due to
the high dimensionality of the frames. The problem can be further aggravated, as in the case of
VCE video, when visual change in scene may not mean pathological event. Ground truth labels
for temporal boundaries is very subjective and depends on type of transition between the scenes,
leading to noise and subjective labels. In the case of VCE videos, collecting annotation frame-by-
frame requires an expert to determine both pathological and visual change points in the sequence.
Such medical expertise are hardly available or expensive to get.

In this chapter, we developed an unsupervised algorithm for temporal segmentation of long VCE
videos. We leveraged prior works in time series domain for change point detection (CPD) in a
sequence of observation [111,112,113]. CPD methods have been successfully applied on time-series
data in one dimension with linear computational time [111]. However, video frame features are
usually in higher dimensions, therefore, exponentially increasing the computational cost. In our
model, we applied the Prune Exact Linear Time (PELT) algorithm [111] to detect the temporal
change point with linear computational time without requiring any label. The novelty of this work
is that no any form of annotation is required for the temporal segmentation of the videos, thereby
saving experts significant amount of time. To the best of our knowledge, this is the first work to
approach VCE video analysis using concept from CPD model to exploit the temporal information
in the sequence of frames. This work has the potential to minimize redundant frames in any VCE
video and saving expert time when annotating VCE video data.

3.2 Related Work

Detection of Change Points on sequence data has been considered in solving sequence segmentation
problems across various applications such as medical condition monitoring [114,115,116,117], climate
change detection [118,118,119], audio activity segmentation and boundary recognition for silence in
speech [120, 121], speaker segmentation, scene change detection, human activity analysis [122, 123,
124] as well as medical imaging [111]. Other areas where detection and location of distributional
changes in data arises include online sequential time series analysis [125,126,127,128]. These tasks
involved partitioning a sequence into several homogeneous segments.



Chapter 3. Unsupervised Shot Boundary Detection and Segmentation for Long Capsule
Endoscopy Videos 27

Some prior works proposed a probabilistic sequence models such as Hidden Markov Models (HMM)
[129] or the discriminative counterpart such as Conditional Random Fields [130] for this task. These
probabilistic models require a good knowledge of the transition structure between the segments and
require careful pre-training to yield a competitive performance. This may not be practicable for
online applications where data are acquired online.

Parametric approaches model the distribution before and after the change based on maximum
likelihood framework [112] while non-parametric methods [131] have been mostly limited to uni-
variate data. Other change point detection techniques in time series 1-dimensional data leveraged
weakly-supervised learning methods where the number of change points is known and provided to
the model before hand. The model, therefore, tries to optimize the locations of these change points
within the sequence.

Kernel-based methods use maximum kernel fisher discriminant ratio as a measure of homogeneity
between segments [113] and have been applied on multivariate, high-dimensional data. The approach
used a regularized kernel-based test statistic to determine if: 1) there is a change point in the data
and 2) the location/instant of the change point, if there is one [113,132]. In [69] the authors presented
a sampling method to trim long videos using temporal change points. Their model was based on
HOG features for each frame and then they calculated the HOG feature difference between adjacent
frames. The absolute value of this difference was used to measure the change of visual content
based on a pre-determined threshold [69]. In summarizing VCE, [16] proposed to find transition
boundaries in the video using pair-wise similarity between the sequence of frames. A threshold
parameter is used to determine the boundaries based on the similarity score between frame pairs.

Other algorithms such as Bayesian change point detection [133], two-sample homogeneity test based
on Wilcoxon rank statistic [134]; and kernel based methods [113, 135, 136]. These methods can
achieve good results for moderately multidimensional data or in specific situations (e.g., if the
data lie on a low-dimensional manifold). They lack robustness when moving to larger dimensions.
Particularly, kernel-based methods are not robust with respect to the presence of contaminating
noise and to the fact that the changes in the detected points may only affect a subset of the
components of the high-dimensional data. Below we discuss some of the algorithms in detail.

Algorithms such as binary change point [137] and dynamic programming [137], can identify locations
where there are significant changes in the distribution of a sequence of data through recursive search.
However, in order to use these techniques, one has to already know the number of change point
instances in the sequence. The algorithms only try to recursively find the location of these points
using maximum likelihood estimation.

Binary Segmentation (BS) search is the most established in literature. BS is an approximate
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method with an efficient computational cost of O(nlogn), where n is the number of data points.
The algorithm works by iteratively applying a single change point method to the entire sequence
to determine if a split exists or not. If a split is detected, then the sequence splits into two sub-
sequences. The same process is then applied to both sub-sequences [138].

Dynamic Programming (DP) search method is an exact search method, with a computational cost
of O(Q2

n), where Q is the max number of change points and n is the number of data points [137].
DP can also be applied using different kernels such as the linear or Gaussian kernels.

Window-based Searching is an approximate search method. The window-based search computes the
discrepancy between two adjacent windows that move along with signal y. When the two windows
are highly dissimilar, a high discrepancy between the two values occurs, which is indicative of a
change point. Upon generating a discrepancy curve, the algorithm locates optimal change point
indices in the sequence [137].

Pruned Exact Linear Time (PELT) PELT is an unsupervised CPD technique where no prior
knowledge of the number of change point is necessary. Rather the model finds the optimal location
as well as count of the change points in the series based on a penalty parameter that can be set by
the user.

3.2.1 Problem formulation

Shot boundary detection in unlabelled sample sequence of frames use change point analysis to 1)
test whether there is a change in the distribution within the sample and 2) If a change occurs,
estimating the change point instant after which the distribution of observation switches from one
distribution to another different distribution.

Shot boundary detection problem involves testing hypothesis where for every time step, we consider
the null hypothesis - H0 - there is a change point and Ha - there is no change point. We use available
data to determine whether to reject the null hypothesis.

Let f1, ..., fT be a sequence of frames in a sample CE video V . The shot boundary detection analysis
of a sample video consist of;

Step 1: H0 → Pf1 = ... = Pfk = ... = PfT

HA → ∃ 1 < k∗ < T : Pf1 = ... = Pfk 6= Pfk∗+1
= ... = PfT

Step 2: Estimate k∗ from the sample if HA is true

Figure 3.1 shows the end-to-end shots boundary detection pipeline.
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Figure 3.1: Proposed Unsupervised VCE Video Temporal Segmentation Pipeline

3.3 Methodology

3.3.1 Feature Extraction

First we consider feature extraction to learn a representation for the frames in the video. There are
different techniques for image-level feature extraction categorised as low and high-level techniques.
Low level feature extraction techniques include Local Binary Pattern (LBP) [139], Scale Invariant
Feature Transform (SIFT) [140], Speeded-Up Robust Features (SURF) [141] and Bag of Visual
Words [40, 142]. convolutional Neural Networks have shown superior performance in high level
feature extraction from 2-dimension image data. These can be done as a unsupervised feature
representation learning using Convolutional Auto-Encoder (CAE) [143] as well as using supervised
pre-trained models such as those trained on very large ImageNet data [144]. Convolutional Feature
Extraction uses sequence of convolution, pooling, activation and batch-normalization to extract
meaningful features from a 2-dimensional image. These extracted features are referred to as high-
level features. We performed feature extraction on each frame by testing multiple CNN architectures
[145,146,147,148,149,150]. Figures 3.2 and 3.3 shows the visualization of the different architecture
on a sample video indicating their representation capabilities. Based on the separation between
the classes shown in the figure, we selected the architecture with the most distinction between the
classes.

The figure 3.2 shows the 2-dimensional TSNE visualization of our feature extraction experiment
using different CNN architecture pretrained on Large ImageNet data and then fine-tuned on VCE
images. We selected the most representative architecture based the VCE dataset classes of the CE
image data for this rest of this work.
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(a) Mobile-Net: Video 2 (b) Mobile-Net: Video 3

(c) ResNet-152: Video 2 (d) ResNet-152: video 3

(e) VGG-19: Video 2 (f) VGG-19: video 3

Figure 3.2: 2-D plot of Video Features Using Different CNN Architectures
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(a) Alex-Net: Video 2 (b) Alex-Net: Video 3

Figure 3.3: 2-D plot of Video Features Using Different CNN Architectures

3.3.2 Class Oversampling

VCE video is highly imbalance with far more normal frames than frames containing diseases or
lesion. To train a feature extraction model, the disproportionately large normal frame samples, if
not adjusted for, impacts the models ability to distinguish between normal and diseased frames in
the embedding space. Figure 3.4 shows the distribution of five sample videos used in all our training
including training the feature extractor. We applied oversampling technique by placing more
sampling weight on the classes with fewer samples to ensure the model learns a good representation of
each class. We applied the inverse proportion of each class in the entire dataset as a sampling weight.
While there are other techniques such as the SMOTE, weighted loss and under sampling to account
for imbalance data distribution, we opted for the oversampling due the ease of implementation and
effectiveness on VCE structured data.

3.3.3 Feature Embedding

Once a good representation for the frames is learnt, in this section, we describe our approach
for encoding the extracted features to a 1-dimensional embedding. We applied this technique to
improve the computational efficiency of finding the temporal boundaries in the video sequence. We
approached this by projecting the high dimensional frame feature vector to a lower 1-dimensional
embedding space. As described in section 3.3.1, we extracted features for each frame in the video
using the model with the most discriminative representation between classes of the frames. In
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Figure 3.4: Frame Distribution for 4 Video Samples

determining the shot boundaries, first, we experimented with detecting change boundaries using this
high dimensional feature vectors, however, our experiment showed that this was impractical and
computationally prohibitive as it took several days to segment a single video using the Pruned Exact
Linear Time (PELT) algorithm. In order to minimize computation cost of detecting boundaries
between the sequence of frame features, we projected the high-dimensional frame features to a 1-
dimensional manifold space. We compared multiple manifold learning frameworks such as PCA,
Auto-encoder, TSNE, Kernel-PCA with different kernels and LSTM-encoder.

In figure 3.5, we show the visualization of the 1-dimensional plot for one (1) test video using different
encoding method.

Principal Component Embedding (PCE)

The principal component of a feature matrix extracts the dominant patterns in the matrix in terms
of a complementary set of score and loading plots [151]. PCA is used to decompose a multivariate
dataset in a set of successive orthogonal components that captures maximum variance in the data.
PCA is a linear dimensionality reduction technique that uses Singular Value Decomposition (SVD)
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of the data to project it to a lower dimensional space. The input data is centered but not scaled
for each feature before applying the SVD [152]. The computational efficiency and speed of PC
method makes it a very popular option in most data analysis. However, the linearity assumption
between the higher dimensional and lower dimensional space makes it less effective on most data
that are structurally non-linear. Below we consider variants of the PCE algorithm by replacing the
linear kernel with other kernels. We used PCA to reduce the dimensionality of the frame features
to a single component (1-dim). See figure 3.5 for the visualization of a sample video projected on
the 1-dimension that explains most variance using 4096-dimensional feature vector extracted from
VGG-19.

Kernel Principal Component Embedding (KPCE)

In order to capture the non-linearity between the high-dimensional feature vector and the lower-
dimensional embedding space, we applied kernel principal component which achieves non-linear
dimensionality reduction through the use of kernels. Kernels are measure of similarity. PCA uses
a linear kernel k(x, y) = XT y to construct the eigen-decomposition of the covariance matrix of the
data. Kernel PCA uses the kernel trick by mapping the data to a hyperplane with the original linear
eigen-decomposition performed in a reproducing kernel hilbert space [153]. We experimented with
three different kernels - gaussian and cosine kernels. Figure 3.5 shows the 1-d plot using different
kernels.

Figures 3.5 shows the visualization of a sample video after projecting to a 1-dimensional manifold
space.

The cosine kernel compute the using cosine distance metrics d(x, y) = xT y
||x||·||y|| . Two objects that

are exactly alike have zero distance. The gaussian kernel is an exponential function of the gamma
scaled quadratic distance between any two points k(x, y) = exp(−γ||x−y||2. The aim of comparing
multiple kernels as shown in figure 3.5 is to understand the impact on the sensitivity of the change
point algorithm as we shall discuss below.

Auto-Encoder

Auto-encoders learns useful representation with little or no supervision. The goal of an autoencoder
is to learn a mapping from high-dimensional observations to a lower-dimensional representation
space such that the original observations can be reconstructed (approximately) from the lower-
dimensional representation. It is a parametric model that is trained using an encoder-decoder
neural network architecture without any supervision. The parameters are optimized using mean
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(a) Kernel PCA - Linear kernel

(b) Kernel PCA - Cosine kernel

(c) Kernel PCA - Gaussian kernel

(d) Autoencoder Embedding

(e) TSNE

Figure 3.5: 1-D Plot of Sample Video Using VGG-19 Feature Extractor
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squared loss function [154,155]. We pretrained our autoencoder and optimized the parameters using
the mean squared error loss. We saved and used the trained model to encode the extracted videos
features to a 1-dimensional sequence. The model parameters were optimized to capture as much
information as required to reconstruct the original feature vector. In training the model, we also
applied the oversampling technique as described in 3.3.2.

T-Stochastic Neighborhood Embedding (TSNE)

TSNE [156] uses a probabilistic model to minimize the KL-divergence between the high dimensional
input Gaussian distributed feature vector and the lower dimensional t-distributed manifold. We also
applied this model to encode the extracted video features to a 1-dimensional manifold. TSNE fits
the data by minimizing the KL-divergence between the higher dimensional gaussian distributed
input feature and the lower dimensional t-distributed embedding. We set the perplexity parameter
to 50 which is similar to the number of nearest neighbour that is used in other manifold learning.
Figure 3.5 shows the 1-d embedding plot for our test video. TSNE is computationally intensive and
does not scale well for very large data.

3.3.4 Video Shot Boundary Detection

In this section, we outline the shot boundary detection problem and describe strategy for building
shot boundary analysis in long VCE video. Video temporal boundaries or visual change points
are sudden visual variations in the sequence of frames leading to statistical variation in the vector
representation of the frames. These variations typically represent transitions occurring between
states in a process that generates the data. Change Point Detection on sequence data has been
applied in solving sequence segmentation problems across various applications [129,130,157] including
video shot boundary detection [50, 51, 52]. In our video analysis, we define boundary detection as
detecting change in both visual property as well as a pathological event in the sequence of observed
frames. As discussed above, different techniques exist in literature to optimize detection of change
point. The techniques are typically applied on lower dimensional time series data. However, little to
no prior work has been proposed to optimize similar technique for high-dimensional video data [158].
Some of the algorithms used on time series sequence data include, Binary Segmentation (BS)
algorithm, the Segment Neighbourhood (SN) algorithm, Optimal Partitioning (OP) algorithm, and
the Pruned Exact Linear Time (PELT) algorithm [111]. The PELT algorithm is based on the OP
algorithm but involves a pruning step within the dynamic program to minimize the computational
cost. The pruning reduces the computational cost without affecting the exactness of the resulting
segmentation making it an ideal candidate for high dimensional video data.
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The PELT method is an exact method, and generally produces quick and consistent results. This
algorithm solves the penalized detection problem when the number of change points in the sequence
is unknown. It tries to minimize the log-likelihood cost function (see 3.1) by estimating both the
number of change points as well as location of the change in a sequence of data. The algorithm has
a computational cost of O(n), where n is the number of data points [159]. The PELT algorithm
can solve the change point detection problem using different kernels. The commonly used ones are
the linear and Gaussian kernels.

Similar to time series data, video data are a sequence of measurement over time describing the visual
behaviour of objects being captured. Therefore, any CPD technique can be considered applicable
after the manifold projection. In our experimentation, we applied the PELT algorithm on the VCE
video data after projecting to a 1-dimensional manifold for temporal segmentation task.

3.3.5 Temporal Segmentation of VCE Video

To divide the sequence of frames into segments, we assume that a sequence of observed frames
{x1, x2, ..., xT } can be divided into non-overlapping, homogeneous segments {θ1, ...θτ}. The delineations
between partitions are called the temporal boundaries. We further assume that for each partition
θ, the data within it are temporally correlated and also comes from the same distribution P (xt|θi)
while each segment are independent.

While temporally segmenting long can be very challenging, the problem is much more complicated
in VCE videos. VCE videos have peculiar non-uniform characteristics and inter-frame variations.
Such variations may be due to poor lighting in a particular region, inter-patients variations as well
as instability of the camera motion due peristaltic movement of bowel. Often times, this leads to
highly degraded and poor quality video. Also, detecting change points in a video needs to be in line
with the objective of the analysis as visual change points does not necessarily indicate a pathological
event. For CE videos, change in the visual property of the sequence of frames due to the camera
flip, may not necessarily represent a pathological event.

Applying the PELT algorithm on an ordered sequence of frames features x1, ..., xT , our CPD model
will have m change points with their positions τ1:m = {τ1, ..., τm}; where 1 ≤ m ≤ T −1. We specify
τ0 = 0 and τm+1 = T and assume change points are ordered such that τi < τj . The m change points
will split the data into m+ 1 segments with the ith segment containing x(τi−1+1):τi

The algorithm begins by first conditioning on the last point of change, it then iteratively relates the
optimal value of the cost function to the cost for the optimal partition of the data prior to the last
change point plus the cost for the segment for the last change point to the end of the data [111].
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Let τ = {τ : 0 = τ0 < τ1 < · · · < τm < τm+1 = T} be set of possible vectors of change points for
the video. Set F (0) = −β. The optimal partition is defined as:

F (s) = min
τ∈Ts

m+1∑
i=1

[C(x(τi−1+1):τi) + β]

= min
t

{
min
τ∈Tt

m∑
i=1

[C(x(τi−1+1):τi) + β] + C(xt+1 : n) + β

}
= min

t

{
F (t) + C(xt+1 : n) + β

}
(3.1)

Where C is a cost function for the ith segment; βm is a penalty to guard against over fitting which
essentially determines how many change points the algorithm will find. The higher the specified βm
the less the number of detect change points forcing the algorithm to reduce the False Positives (FP).
Experimenting with this to make sure increasing the penalty βm is not jeopardising the ability to
detect true change points (TP).

C(x(τi−1+1):τi) = (τi − τi−1)

(
log(2π) + log

(∑τi
j=(τi−1+1)(xi − µ)2

τi − τi−1

)
+ 1

)
(3.2)

C is chosen as twice the negative log-likelihood as in 3.2 and the minimum segment length τi−1−τi ≥
1. Temporal segmentation algorithm:

Data: VCE video with frames 1 : T ; V = {f1, f2, ..., fT }
Result: video shot boundary θ = (θ1, ..., θk)
begin

for fi ∈ V do
Extract Features using CNN: Xi ← G(fi)
Project each feature vector xi to 1-D manifold λi ← xi

Concatenate manifold projections ∀f ∈ V ; λ = {λi, ..., λT }
Compute change points {τi, ..., τm}
Get segments for V ; {vj}kj=1
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Video Training samples Testing samples
Video 1 12,303 -
Video 2 13,177 -
Video 3 8,452 -
Video 4 23,124 -
Video 5 32,181 -
Video 6 - 8,701
Video 7 - 16,909
Video 8 - 10,037

Table 3.1: Data summary for training and test videos

3.4 Experiments

3.4.1 Dataset and Pre-processing

We conducted experiments using eight (8) VCE videos. In review and analysis of VCE, physicians
are only interested in the small bowel region which can only be accessed through VCE and not
through any of the upper and lower endoscopy procedures.

We extracted the videos from the RapidReader software program and pre-processed each video
into frames. The eight (8) videos were collected from different patients during a clinical endoscopy
procedure using the SB3 Given Imaging PillCam capsules. The capsules were equipped with 576
x 576 pixel camera. For each complete video, the small bowel transit time corresponds to about
3.93±1.43hr [35]. In order to isolate the small bowel region, each video was reviewed and annotated
by two endoscopy research scientists. After the annotation, the total number of frames in the videos
is summarized in table 3.1 and the class distribution based on the content is show in figure 3.4.

We randomly selected 5 videos for pre-training our feature extraction model and also to perform
other pre-training. The remaining three (3) videos were reserved for testing the models. These
three test videos were not at any point shown to the model. Using videos from different patient
during testing helps minimize any bias and ensures our approach will generalize to any new unseen
video data.

3.4.2 Implementation

During the preprocessing stage, we trimmed the frames to 500 x 500 to remove the black boundary
region. We developed our entire system using the Pytorch framework on NVIDIA GTX2080
machine. We ensured that all our experiment was run on the same configuration for consistency
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Figure 3.6: Detected Boundaries vs Ground Truth using PCA @ beta=150

across the compared techniques. Each of the feature extractors were trained for 30 epochs using 0.001
as learning rate and Stochastic Gradient Descent optimization. We also trained the autoencoder
to embed the frame-features for 50 epochs. During of the training, we over-sampled the minority
classes based on the inverse of their population in the data. This gave a significant boost to the
representation learned by the model.

Evaluation

We evaluated the performance of this method based on the AUC-ROC. At each time step t, the
model predicts whether t is a change point or not. A change point is defined when the class of
frame at t− 1 is different from the frame at t. Using the predicted output, we computed the True
Positive and False Positive rates and we applied this in computing the ROC. Each change point is
considered to be a pathological change point and so we benchmarked against the ground truth label
provided by the medical experts. This is, obviously a very challenging problem as the change point
detector has no prior information on the statistical properties of any pathology.

3.5 Results and Discussion

Figure 3.6, shows experimental results of detected boundaries using PCA embedding and the
PELT change point algorithm. Each of the alternating pink-colored intervals are sections of some
pathological abnormality. There are points where visually one can observe changes but are not
really pathological events. These points are due to the camera rotation and flips as it is propelled
down the GI tract through peristalsis.
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(a) ROC Plots @ beta=10

(b) ROC Plots @ beta=50

Figure 3.7: ROC Plots @ beta=10 & 50

Experiments on feature extraction also showed that feature extraction capability of the base CNN
model is critical to what the boundary detector is able to locate. How well the base CNN is able
to encode the lesioned-frames, different from the normal frames will impact the performance of the
boundary-detector model. In addition, different CNN architectures showed varying performance
when applied on different classes of lesion. Lesions show significant difference both geometrically
and in terms of color, texture as well as the surrounding lighting condition. This indicates that the
base CNN capabilities are not universal and some architectures better capture some structure than
others.

Figure 3.7 - 3.9 shows comparative results using different parametric and non-parametric embedding
techniques. Parametric representation frameworks such as auto-encoder are very difficult to train,
but are able to capture some non-linearity in the data wherever they train successfully. Similar
to training the feature extractor, we also adjusted for the data imbalance when training the auto-
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encoder to avoid encoding bias into the network.

(a) ROC Plots @ beta=100

(b) ROC Plots @ beta=150

(c) ROC Plots @ beta=200

Figure 3.8: ROC Plots @ beta = 100, 150 & 200
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(a) ROC Plots @ beta=250

(b) ROC Plots @ beta=300

Figure 3.9: ROC Plots @ beta=250 & 300

Figure 3.7 - 3.9 compares the receiver operating characteristics of different embedding techniques
on a test video using different penalty hyper-parameter. From the figure, PCA with linear kernel
is able to encode the video to capture more abnormal boundaries than other kernels as well as
autoencoder and tsne.

While VGG-19 was able to encode the frames and separate diseased frames from the normal frames,
the final pool layer of the model has 4096 features. Encoding 4096-d to 1-d is very challenging due
to the complexity of the higher dimensional space and doing this without supervision is even harder.

Detected Video Boundaries in a Sample Test Video

Figure 3.10 below show the detected change points in the sequence of frames.
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Figure 3.10: Visual Illustration of Detected Video Boundaries

As shown in figure 3.10, the actual boundaries detected in the video frames does not necessarily
indicate pathological event. However, very similar frames are captured in the same temporal
boundaries. Clearly detecting pathological boundaries in VCE videos is not trivial and also a
very challenging problem. Developing a model, similar to binary segmentation, that would only
require broad abnormality label - normal/abnormal - without pathology level annotation would
help mitigate the challenge of completely unsupervised when adapted for temporal segmentation
task. This is the objective of the work covered in chapter 5. The model developed in chapter 5
is trained on pathology-agnostic basis to flag the boundary between sequence of frames based on
binary classification.



Chapter 4

Weakly Supervised Temporal
Segmentation of Long Capsule
Endoscopy Video Using Graph Neural
Network

4.1 Introduction

Graph Convolutional Neural Network (GCNN) allows more flexibility in capturing the topological
relationship between frames in a video. GCNN strikes a balance between extremely rigid temporal
dependence relationship between the frames and also highly independence frame analysis that has
been mostly adopted in VCE video abnormality recognition. Therefore, GCNN allows us to perform
non-sequential search for an temporal boundary in a video frame sequence by predicting a binary
category for each node in the graph without the restriction of temporal correlation.

Weakly-supervised learning for video temporal segmentation based on binary categories can generate
a higher quality video summaries than unsupervised approach that are blind to the categories of
activities in the video. Motivated by the work in [160], this chapter focuses on temporal segmentation
of VCE video into semantically-consistent segments, delimited not only by temporal boundaries but
also pathological change points.

VCE video data differ from conventional video structured data with predictable temporal dependence
between the sequence of frames. The unstable peristaltic movement of the bowel leads to frequent

44
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Figure 4.1: VCE Video Network Representation

camera flip that impacts the temporal relationship between the sequence of frames. Intermittent
movement of the intestinal walls and sudden transition between different regions of the GI tract
are other characteristics that are peculiar to VCE video. This characteristics leads to unusual
temporal relationship between the frames, even though they are captured in sequence. Any pair of
frames captured in the sequence may not be correlated. Therefore, change in visual property in the
frame sequence may not correspond to a pathological event. This peculiar property makes applying
traditional video analysis or sequence-to-sequence model to VCE videos unrealistic.

In this chapter, we consider relationship between frames in a CE video as an undirected independent
graph G = (N,E) where the frames are represented as the nodes of a graph and the entire VCE
video is a complete graph. As against the assumption of temporal correlation between the sequence
of frames, with this formulation, we are able to capture relationship between the frames in the
video based similarity which was captured into the edge weights between the nodes of the graph.
We applied this formulation in disease-agnostic manner by formulating the problem as an abnormal
vs normal frames problem. This formulation is similar to outlier detection problem in [3, 34, 37].
However, we leverage additional frame relationship information by using Graph Convolutional
Neural Network (GCNN) to model a CE video (fig 4.1). We argue that CE video frames with
graph structure performs better that modelling the frames independently using traditional CNN.
The VCE video will, therefore form a graph network with frames containing abnormalities sharing
similar properties while normal frames also share similar properties. The unique capability of
graphical model on VCE video data allows capturing the structural relations among the frames
thereby allowing us to harvest more insights between pairs of frames compared to independent or
open temporal dependence assumption.
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Graph Convolutional Neural Networks (GCNN) [161] have recently gained popularity among deep
learning researchers [162, 163]. They are an efficient variant of Convolutional Neural Networks
(CNNs) on graph structured data [164]. Previously, deep learning based model have been successful
on spatial structured data, such as images [45]. And also on sequential data using variants of
Recurrent Neural Network (RNNs) [165, 166]. However, they have not been able to generalize to
graph structured data. Recent advances in GCNN allows leveraging advantages of deep models on
graph structured data. In CNN, the trainable local filters enable the automatic extraction of high-
level features. The computation with filters requires fixed number of ordered units in the receptive
fields. However, the number of neighboring units is neither fixed nor are they ordered in generic
graphs (see fig. 4.1). GCNN stack layers of learned first-order spectral filters followed by a nonlinear
activation function to learn node and graph representations.

Motivated by binary segmentation [138], we developed a disease agnostic GCNN model to classify
nodes (frames) of VCE video into normal / abnormal, for each time step in the video, our model
predict the binary category for each node in the graph. The output of our model forms a complete
VCE video sequence with corresponding boundary marker using the prediction from our GCNN
model. Each contiguous homogeneous segment are considered temporal regions of either abnormal or
normal frames. Finally, we select a representative frame within each boundary as the corresponding
video summary. This technique generalizes to many unseen new videos as GCNN can be trained
both transductively and inductively.

4.2 Related Work

4.2.1 Anomaly Detection in VCE Images

Our propose approach can also be formulated as an outlier detection model which have been
applied on problems such as intrusion detection [167] and traffic speed forecasting [168]. Many
researchers have also applied semi-supervised concept to anomaly detection on VCE videos in
[3, 13, 15]. The techniques for detecting abnormal frames or outlying frames have leveraged the
skewed distribution of VCE video data where there is far more normal frames than abnormal.
Learning the characteristics of the normal frames allowed the models to flag any frames that are out
of the range of the learned characteristics. Wide variations exist between different patients’ videos
in endoscopy studies. Therefore, an attempt to capture characteristics of all possible normal may
be infeasible. We propose to mitigate this problem by learning both transductively and inductively
using GCNN model then applying the model in a summarization context to generate representative
frames as video summaries of an entire long VCE video. Our model differs from traditional outlier
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detection model as GCNN takes advantage of topological relationship between the nodes in the
graph as against assuming independence of individual node. This tends to balance the extreme
assumption of temporal correlation using time-series assumption and complete independence using
traditional outlier detection technique.

4.2.2 Graph Convolutional Neural Network (GCNN)

GCNNs extends existing neural network methods for processing data represented in graph and
graph-based applications. They can generally be divided into graph-focused and node-focused
applications [169]. In graph-focused applications, the function Γ is independent of the node n and
implements a classifier or a regressor on a graph structured dataset. The mapping Γ(G) may be used
to determine overall category of G. In node-focused applications, Γ depends on the node n, so that
the classification (or the regression) depends on the properties of the node. This is very applicable
in object detection and localization [170]. GCNN has also been applied on video data. For example,
in [171], GCNN was applied to localize action in short videos. Similarly, [172] applied spatial-
temporal graph convolutional network (ST-GCNN) in recognizing human action in a video. Another
work [173] propose stacked spatio-temporal graph convolutional networks for action segmentation
in video data. In [174], the authors applied graph convolutional neural network for video question
answering. [175] combines LSTM network with Graph Convolutional Network in a dynamic fashion
to model applications where the relationship between edges of the graph changes over time. Other
applications of Graph Convolution Network include text classification [176]. In [177], the authors
proposed a graph convolution tracking for visual tracking of objects in videos.

4.2.3 Problem Formulation and Notations

We represent a CE video as a graph G = (N,E) where, N represents the vertex set consisting of
nodes {x1, ..., xn} representing the frames’ features, and E ∈ Rnxn is a symmetric adjacency matrix
where eij denotes the edge weight between nodes pair {xi, xj}. A missing edge is represented
with eij = 0. We also define the degree matrix D = diag(d1, ..., dn) as a diagonal matrix where
dij =

∑
j eij . Each node xi has a p−dimensional feature vector xi ∈ Rp. For a complete video, the

feature matrix X ∈ Rnxp stacks n feature vectors on top of one another, X = [x1, ...,xn]T .
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4.3 Methodology

4.3.1 Feature Extraction

Our feature extraction was a follow up on the procedure described in section 3. We extracted visual
features using pretrained CNN model which was fine-tuned on the VCE video data as described
in Chapter 3. We selected the VGG-19 network for our model based on it’s more representative
capability.

4.3.2 Graph Convolutional Neural Network Classification

We employed the GraphSAGE network proposed in [163] to learn the embedding for each video
frame from the extracted features. The GCNN method leverage the neighborhood of each node and
aggregate the representation in each layer over the entire network.

Node Embedding

The embedding generation (forward propagation) assumes that the model has already been trained
with fixed parameters W l where l is the number of layers in the network. W performs the linear
transformation of the node embeddings from the input dimension to a specified output dimension.

To generate embedding for each node i in the graph, we aggregate the representations of nodes in its
immediate neighborhoodN(i) to the neighborhood vector hlNi

, which depends on the representations
generated in the previous iteration:

Given a graph G = (N,E) with input features {xi,∀i ∈ V } with l layers each with weight matrices
W l, The GCN network iteratively computes the embedding for each layer-l as follows:

Starting from the initial input features

h0
i = xi, ∀i ∈ V; (4.1)

Aggregator Function In contrast to our baseline model where we learn over the features of the
frames without any neighborhood contribution, the aggregator function operates over an un-ordered
set of vectors and account for message passing between nodes and layers of the network. An ideal
aggregator function would be symmetric (i.e. invariant to permutations of its inputs) while still being
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trainable and maintaining high representational capacity [163]. Motivated by [163], we considered
three (3) aggregator functions in our training.

hLN(v) = AGGREGATE
(
eijh

l
j , ∀j ∈ N(i)

)
; (4.2)

Mean Aggregator This is an element-wise mean of the input vectors in every layer. The mean
aggregator is nearly equivalent to the convolutional propagation rule applied in transductive GCNN.

hl+1
N(i) =

1

N − 1

∑
j

(
eijh

l
j

)
; (4.3)

LSTM Aggregator This is a more complex aggregator compared to the mean aggregator as it has
the advantage of larger expressive capability. However, our configuration for the LSTM architecture
differs from the mean and pool aggregator. This is because LSTM is not permutation invariant as
they process input in a sequential manner. Rather than use the similarity based function on the
edges of the graph, we specified a chain function where every xt is connected to the previous node
xt−1 and xt+1

hl+1
i = σ

(
W · LSTM

(
{hli} ∪ {hl+1

j , ∀j ∈ N (i)}
))

(4.4)

The LSTM aggregation steps are as follows:

zl = σ
(
Wz · [hli, eijhlj ], ∀j ∈ N(i)

)
; (4.5)

rl = σ
(
Wr · [hli, eijhlj ], ∀j ∈ N(i)

)
; (4.6)

h̃l = tanh
(
W · [rl ∗ hli, eijhlj ], ∀j ∈ N(i)

)
; (4.7)

hl+1
N(i) = (1− zl) ∗ hli + zl ∗ h̃l (4.8)

Max-Pool Aggregator Similar to a pool layer on a convolutional network, the pool aggregator
performs an element-wise max-pool function across neighbor vectors.

hl+1
N(i) = max

j

(
eijh

l
j

)
; (4.9)
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The node’s current representation hli is concatenated with its aggregated neighborhood vector hlN(i),
which is later fed into a fully connected layer with a nonlinear activation function σ. This is then
used for the next layer representations:

hl+1
i = σ

(
W l ·

(
hli ∪ hl+1

N(i)

))
(4.10)

We experimented with each aggregator function and found LSTM to outperformed the others such as
mean and pool aggregation functions. The embedding at the last layer is used as the representation
for each node.

zi = hLi (4.11)

where zi is the learned embedding for node i.

In contrast to [163] we train the parameters of the network using weak disease-agnostic labels
provided by the expert research gastroenterologist. This formulation allows the network to generalize
to any unseen category of disease. The network parameters were trained using cross-entropy loss
function.

4.3.3 Temporal Segmentation

We consider any homogeneous segment of the CE video with a certain number of frames as
independent with member frames identically distributed. The relationship between members of
a segment can be captured by a similarity model such as nearest neighborhood. For our model, we
applied the cosine similarity function to capture this neighborhood relationship.

4.4 Experiment

We ran our experiments using eight (8) CE videos. We trained the GCNN on five (5) videos to learn
the k W linear transformation parameters and evaluated on three (3) separate videos. The model
was trained using back propagation and cross entropy loss function. Our temporal segmentation
task was modeled as a binary classification problem. Essentially, for every time step, the model
determines if xt is normal or abnormal frame. We applied this model in detecting a change point
in the sequence of frames based on whether the current frame contains an abnormal tissue or not.
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4.4.1 Dataset and Preprocessing

A total of 8 VCE videos were collected from different patients during a clinical endoscopy procedure
using the SB3 Given Imaging Pillcam capsules. The capsules were equipped with 576 x 576 pixel
camera. The videos have been diligently annotated and verified by two medical gastroenterology
experts. We randomly selected five (5) videos of training while three (3) remaining videos were used
as the test set. Each frame in the video was trimmed to 500 x 500 to remove the black boundary
region. We employed pre-trained VGG-19 CNN network for our feature extraction as described in
chapter 3. The input to our model is the frame-feature matrix X ∈ Rnxp where n is the length of
the video and p is the dimension of the features for each frame.

4.4.2 Implementation

Our model was developed using the Pytorch framework on NVIDIA P100 machine. The model was
trained for 50 epochs with a learning rate of 0.001.

4.4.3 Evaluation

The models are evaluated as a binary classifier based on precision, recall, f-score and accuracy for
each binary class. The metrics are defined as follows:

Precision =
TP

TP + FP
(4.12)

Recall =
TP

TP + FN
(4.13)

F1− Score =
2 · Precision * Recall
Precision + Recall

(4.14)

Accuracy =
TP

TP + FN
(4.15)

4.5 Results and Discussion

Table 4.1 shows experimental results on a sample test video. The test video was never seen by
the model during training. We experimented with different aggregator function at each layer of
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Table 4.1: Results of Abnormality Classification

Method Metric
Class

Normal
(34,508)

Abnormal
(1,139)

GCNN (mean)

Accuracy 0.970
Precision 0.971 0.171
Recall 0.997 0.011
F1 score 0.984 0.021

GCNN (pool)

Accuracy 0.955
Precision 0.971 0.111
Recall 0.982 0.013
F1 score 0.976 0.023

CNN-Baseline

Accuracy 0.956
Precision 0.974 0.142
Recall 0.980 0.076
F1 score 0.977 0.099

the GCN network and compared this with the baseline model. From the table, the GCNN model
out-performs the baseline CNN model showing that the GCNN is able to leverage the neighborhood
information based on message passing at each layer of the network to learn a better representation
of the nodes (frames) in the video. As against the independent representation by the CNN baseline
model with an accuracy of 95.6% across three test videos while the GCNN with mean aggregator
outperforms the model with 97.0% accuracy. Other metrics captured are the precision, recall and
the f-score. The GCNN shows significant improvement over the baseline indicating they are able
to generalize better to unseen videos than traditional deep CNN models. This result is despite
weighted oversampling the minority weight while training the CNN-baseline.

While we can generally classify VCE data across patients as easy and hard videos, our sample videos
were never seen before by the models. With lower precision, recall and f-score for the abnormal class
across all three (3) models, this indicates that oversampling the minority class in training the CNN-
baseline model did little to mitigate the problem. The result also further underscores the challenge
in developing robust system for VCE video analysis with minimal miss-rate for abnormalities. As
against traditional video structured data in other domains, generalizing across patients is equally a
difficult problem.

Furthermore, from result in table 4.1, the difference in performance between the normal and
abnormal class is clear. Low recall on the normal class indicates high false negatives (FN) which will
lead to the model flagging a lot of non-change points as change points when adapted to temporal
segmentation problem. This means the model will not significantly reduce the redundancy in the
data amounting to less time saving for the physician. Similarly, low recall on the abnormal class
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equally indicates high false negative which will lead to the model ignoring a number of abnormal
frames and considering them as normal. This has huge implication on the diagnosis outcome of the
physician.

Finally, a direction for future work would be to consider weighted oversampling in training the
GCNN model. This will expose the model more to the examples in the abnormal category to
minimize the effect of the class imbalance.



Chapter 5

Graph Convolution Neural Network For
Weakly Supervised Abnormality
Localization In Long Capsule Endoscopy
Videos

5.1 Introduction

In this chapter, we address the problem of temporal abnormality localization in long VCE videos
using video-level class labels.

Activity localization or action detection [178,179,180] in a video involves identifying the region where
the activation score of frames corresponding to the class of activity in the video is maximum. Activity
localization in a short video has received significant attention among computer vision research
community [58, 59, 59, 61, 62, 63, 64, 65, 66, 72, 78, 79, 80, 81]. However, models such as structured
segment network in [59], multi-stage CNN model in [58] and boundary regression in [65] requires
frame-level labels to train. Obtaining frame annotation in medical domain, particularly for CE video
data is very challenging. In order to develop a model that generalizes across multiple patients and
diseases, the model would require large sample of each abnormality collected across multiple patients.
Furthermore, while Deep Convolutional Neural Network (DCNN) based models have demonstrated
improved performance on various image recognition [144, 145, 146] and video analysis tasks [96, 97,
106,181,182] including medical image analysis [3,4,7,44,143], they are notoriously sample inefficient
requiring large samples per training class to optimized its parameters for ease of generalizability.
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The challenge of obtaining frame level label is further exacerbated, in the medical domain, when
the expertise, time and effort required are not readily available. Despite the large volume of frames
generated in a single CE examination, the high class imbalance, with significantly more normal
frames than disease-containing frames, limits the feasibility of training a fully supervised DCNN
model that generalizes across multiple abnormalities and also patients.

Prior works on CE video have mostly focused on single or multiple lesion detection on each individual
and independent frames in the video [3,4,6,7,11,13,14,15,17,28,29,30,31,32,33,34,35,36,37,38,39,40,
41,42,43,44]. Despite the extreme difficulty of obtaining frame-level label for CE video frames, little
to no attention has been made towards leveraging temporal or topological relationship between the
frames to develop a more robust system. To the best of our knowledge, no prior work has addressed
the task of temporal abnormality localization within a sequence of CE video frames. We believe that
analysis of video data requires leveraging the spatial, temporal and topological relationship between
the frames to achieve a system that can be deployed in real clinical environment to aid physicians
in their diagnosis. The novelty of the work proposed in this chapter is in three (3) folds; Firstly, we
leverage the spatial, temporal and topological relationship between the frames to develop a model
to localize abnormal regions containing the disease or abnormality of interest in a full CE video.
Secondly, our model uses only weak video level labels for this task, thereby obviating the need for
an expert provided frame-level annotation, which is often very challenging. Thirdly, we employed
Graph Convolutional Neural Network (GCNN) model, based on the GraphSage architecture [163].
This allows us to learn a robust representation of CE videos both transductively and inductively by
leveraging the message passing architecture and neighborhood information aggregation.

Different techniques have been proposed for lesion segmentation within a 2-D CE video frame
[17,29,32]. Similar to the high cost of obtaining pixel-level label for image segmentation, obtaining
frame-level labels for CE videos is not an easy task. First, annotating individual frame is much
more tedious than the normal CE video review process. Secondly, challenging conditions such as
poor illumination and camera instability due to peristaltic motion of the bowel impacts the quality
of frames generated in the video, leading, sometimes, to noisy and unreliable expert-provided frame-
level annotation. To the best of our knowledge, this is the first work on abnormality localization in
a sequence of CE video frames using weak video level labels. The model proposed in this chapter,
addresses several issues in CE video analysis where our weakly supervised model requires no frame-
level annotation from medical experts. In addition, by using graph-based model, we learn a more
robust representation of the video through message passing and information aggregation.

Given weak labels for each video segment, we train a weakly supervised GCNN model on aggregate
frame features and classify each video segment. During testing, we applied an adaptive temporal
pool layer on the GCNN model to generate frames’ activation score corresponding to the video
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Figure 5.1: Abnormality Localization in Capsule Endoscopy Video

class activation map over the sequence of frames. The adaptive temporal pool layer ranks the
frames within each segment based on the significance to identifying the segment as abnormal. This
significance of this framework is in minimizing experts’ review time on CE videos by generating
frames relevant to abnormality of interest for review by the expert physician or gastroenterologist
without the need for frame level labels.

Long videos typically differs from short videos based on the duration and also the number of
actions contained in the sequence. Since short videos usually contain one object or activity of
interest, activity localization within a short video involve detecting a single high energy region in
the sequence. Meanwhile, long videos pose additional challenge with multiple energy activation
regions requiring temporal segmentation before localization. In addition to the novelty of the work
previously mention, with the end-to-end system for long videos proposed in this chapter, we are
able to generalize the concept activity localization to long videos with multiple activities within the
sequence. Without requiring manual partitioning of the video into fixed frame length. Localizing
action in short videos involves a temporal search for a single class activation map within the sequence
while long videos with multiple activities will have multiple actions withing the sequence.

Models based on weakly supervised learning have recently gained traction among the machine
learning researchers [87, 88, 89]. In this chapter, we address the problem of temporal abnormality
localization in long CE videos using video-level class labels. We developed a weakly supervised
Graph Convolutional Neural Network (GCNN) model for frame-level localization, based on global
video level multiple labels. Figure 5.1 shows the framework of the proposed model in this chapter.

To further demonstrate the uniqueness of this work, figure 5.2 shows the comparison between activity
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Figure 5.2: Comparing Long and Short Videos

localization in long and short videos as it applies to activity localization. Short videos usually
contain one object or activity of interest while long videos, due to the extended duration, often
capture multiple object or actions of interest requiring temporal segmentation before localization.
The novelty of the work in this chapter is in the generalization of activity localization concept to
long videos with multiple activities within the sequence. Localizing action in short videos involves a
temporal search for a single class activation map within the sequence while long videos with multiple
activities will have multiple actions withing the sequence.

5.2 Related Work

In this section, we discuss the prior works on analysis of CE video as well as techniques that have
been developed for various disease and abnormality detection. Our review covers work on GCNN
in other domains and different formulations and solutions to weakly supervised learning tasks.

5.2.1 Abnormality Detection in Capsule Endoscopy Videos

Analysis of CE videos encompasses tasks such as disease or abnormality detection, quantifying
severity of identified diseases, localizing identified abnormalities, and decision making on appropriate
intervention by the physician. Prior works on automating review and analysis of CE videos can
broadly be categorized into three (3) - 1) detection of specific disease or lesion such as bleeding in [4],
polyp [39], ulcer [44], and angioectasia [41,42]; 2) abnormal or outlier frame detection where frames
with abnormalities are consider outliers [15,17]; and 3) models aimed at minimizing experts review
time on CE video - video summarization. Here key frames capturing abnormalities are selected as
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representative frames from the entire video [16, 20, 21, 22, 26, 27]. While obtaining frame level label
for CE videos is very difficult, little to no attention has been paid to models that will leverage the
relationship between the frames to mitigate this challenge. To the best of our knowledge, no prior
work has considered temporal abnormality localization on CE video data. The work proposed in
this chapter aligns with the concept of video summarization where, by leveraging the temporal and
topological relationship between the video frames, we localize the abnormality to a more narrow
temporal region. This allows us to select representative samples within each abnormal region as a
video summary for the experts. In addition, our model does not require any frame level label to
identify the abnormal regions and localize abnormal frames in the video.

5.2.2 Graph Convolutional Neural Network (GCNN)

Following the work in [161], GCNN continues to gain increased popularity among deep learning
and machine learning researchers. GCNN extends techniques such as Recursive Neural Networks
(RNN) [183,184] and Markov Chains [185,186] while leveraging the powerful representation power
of neural networks on graph structured data. Traditional deep learning models are well developed
for spatial (CNN) and sequential (RNN) data with little contribution on graph structured data.
CNNs are used to learn representation on 2D spatial image data while RNNs learns to encode and
represent sequential data. While CNNs and RNNs based models [16] can automatically learn the
internal encoding of the graph structured data, SVM’s internal representation needs to be user
designed. Meanwhile, many natural interactions between objects can be represented as a graph
with the relationship between the objects captured in the edges between the nodes of the graph.
Graph Neural Networks (GNN) models are robust and generic enough to also accommodate spatial
and sequence data by specifying the nature of the edge and node relationships.

Main operations on graph network are filtering, activation and pooling. Similar to regular convolution,
Graph Convolution Network (GCNN) combines the benefit of spatial and spectral based filtering
operations [161] in addition to non-linear transformation of the input features to achieve a robust
representation of the graph structured data. GCNN represents features as nodes in the graph and
wide range of relationships, from simple similarity (e.g. cosine similarity) to long- short term memory
(LSTM) can be modelled to capture the relationship between the nodes as weighted edges. Graph
filtering uses neighborhood aggregation from the previous layer to determine the representation
of each node in subsequent layer [163]. [163] proposed GraphSage to leverage both inductive and
transductive learning capability of GNN. For each layer of the network, the model aggregates the
representation for each node in the graph based neighborhood sampling from surrounding nodes.
Graph Attention Network (GAT) [187] was proposed to improve the neighborhood aggregation by
ranking the neighboring nodes using an attention layer to generate better representation.
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5.2.3 Weakly Supervised Localization

State-of-the-art methods address the problem of temporal action localization in long videos by
applying RNN based action classifiers on sliding windows [178, 179] for action detection in a video
sequence. Methods such as structured segment network in [59], multi-stage CNN model in [58] and
boundary regression in [65] are some of the approaches to action detection in a sequence of video
frames. However, these techniques require frame level annotation which is a very difficult to collect,
particularly in medical domain. In order to mitigate this challenge, weakly supervised methods using
global video level labels for activity localization has recently been gaining traction among researchers
[60, 85, 188, 189, 190]. In [60] Nguyen et al., proposed sparse temporal pooling network for action
localization in an untrimmed video. Using video-level class labels, their model predicts temporal
intervals of human actions in a video. In [189] the authors proposed the Weakly supervised Temporal
Activity Localization and Classification (W-TALC) framework using only video-level labels. They
used two sub-networks - a two-stream based feature extractor network and a weakly-supervised
module - trained by optimizing two complimentary loss functions. The model learns to classify
the videos and also localize the region of the action within the video. Class Activation Mapping
(CAM) was introduced in [85] for weakly supervised action localization in an untrimmed video.
Similarly, [65] proposed a cascaded boundary regression method for temporal action localization.

In [64], Lin et al. proposed a single shot technique for temporal action detection in a video.
Their model based on 1D temporal convolutional layers, skips the proposal generation step in
detection by classification framework, to directly detect action instances in untrimmed videos. [63]
used convolution de-convolution network to precisely localize action in untrimmed videos. The work
in [71] is focused on weakly supervised localization of novel objects using the objects’ appearance
transfer framework. Another unique attempt at action localization was proposed in [67], where the
authors temporally localized action in untrimmed videos using (Auto-loc). UntrimmedNets was
proposed in [69] for temporal action recognition and detection.

While our proposed framework is motivated by [163, 188, 190], our model combines more effective
GraphSage representation network with a final attention layer in the classification model. As against
just simple temporal attention model used in [60], our GCNN representation is able to leverage the
neighborhood information for more effective representation of each member node in the graph.
However, we adapted the temporal pool layer based on [188] for the abnormal frame localization
during inference. GCNN localization framework was considered in [190], our model is different in
that the aim of our localization task is to select sparse representative frames in each video segment
as against using similarity between time segments to determine the temporal boundaries [190].
Secondly, this chapter addresses the problem of temporal abnormality localization in long CE videos
which is collected under more unstable and challenging digestive tract environment than most open
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dataset. Lastly the peculiarity of this work as against other prior works on activity localization
is that abnormal regions in CE videos are not usually contiguous, making frameworks developed
temporal segment boundary detection ineffective. Our model, therefore aims to select sparse non-
contiguous representative frames within each video segment by applying a temporal pool layer over
the final GCNN activation layer. To the best of our knowledge, this is the first work using temporal
information to localize abnormal frames in CE video data.

5.3 Methodology

Weakly supervised temporal abnormality localization is an extension of weakly supervised object
segmentation task on 2-dimensional images. The weakly-supervised abnormality localization and
classification problem addressed in this chapter can be directly mapped to Multiple Instance Learning
(MIL) problem [191]. In extending this to videos, we consider a video segment as a bag of normal
and abnormal frames i.e. given a video V ∈ RHxWxT where H and W are the height and width
of the frames and T is the temporal length of the video or number of video frames, we considered
V = {fn, fa} where fn and fa are normal and abnormal frames respectively. A single VCE video may
contain multiple abnormalities making the video a mixture of both normal and abnormal frames
with different diseases while the video may also contain no abnormality at all.

Following the above, we define a graph G = {N,E} with nodes N representing the frames in the
video and edges E representing the connections between the frames. Secondly, we denote a sub-
graph g = {v, e} representing video segment and edges e representing edges between the frames in
the video segment. Recall that V is a bag containing both normal and diseased frames occurring at
different points in the video. Our goal are in two stages, First is the graph classification where, for
any video segment containing at least one abnormal frame, we predict abnormal label. Next is the
abnormality localization where we generate frame-level activation score the abnormal video segment.
The goal of the video segment classification is to first learn a mapping of Γ(G) → {y1, ..., yk} to k
categories of diseases including normal frames contained in the video. The graph G is then optimized
to the multiple instances of normal and abnormal frames it contains by aggregating the embedding
of the frames to predict the corresponding multiple classes. Next is to use the parameters of the
learned network to score each frame based on their contribution to the graph prediction. This will
be subsequently referred to as our localization step which happens only during testing.

For a long video with multiple diseases at different regions, we applied our unsupervised temporal
segmentation method described in chapter 3 to split the videos into homogeneous visual segments.
Each segment is then considered a bag of normal and abnormal frames with some frames containing
only normal frames. A video segment is considered abnormal if it contains at least one frame with
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an abnormality. Similar to a Multi-instance learning problem, an abnormal video segment contains
a mix normal and abnormal frames [192,193,194].

5.3.1 Feature Extraction

Similar to the procedure described in Chapter 3, we compared multiple feature extraction approaches
on the VCE frames, and adopted the VGG-19 [145] network for our feature extraction from each
frame. The network was pretrained on five (5) VCE videos by oversampling on the minority classes to
create a balanced exposure of the model for better representation. We obtained a 4096-dimensional
feature vector per frame from the pool-5 layer. Each video segment is represented by feature volume
of t x pin where t is the length of the segment and pin is the dimension of each frame extracted
from the pretrained VGG-network.

5.3.2 Model Architecture

For this task, we applied the Graph Convolutional Neural Network (GCNN) model where the VCE
video segment is considered a graph while the frames represents the nodes in the graph. The model
architecture is shown in figure 5.3. The input to the model is the extracted frame features for each
video and partitioned into sub-videos txpin where t is the length of the video and video segment
(i.e. number of frames) and pin is the dimension of the feature vectors.

During training, we only have access to weak video-level labels. While we know there is a certain
abnormality in the video, we do not have granular information as to the frames where the disease
is captured nor frequency of occurrence of the disease in the entire video. A fully supervised model
will utilize labels pointing to the actual frame containing the disease as localizing the frame with
the disease is important in helping the physician make quick and proper diagnosis.

5.3.3 Graph Convolution Network - GCNN

Few prior works have proposed Graph Convolutional Network (GCN) model for action localization
in videos [190]. However, the uniqueness of this work is the application to long videos where there
may be more than action within the sequence. Secondly, this work advances other prior works
through frame level localization as against localizing to temporal region or volume in the video.
Lastly, rather that using a fixed length temporal segment as proposed in [171, 190], our temporal
segmentation is integrated into the temporal segmentation work described in chapter 3 for an end-
to-end automated summarization system. Such end-to-end segmentation and localization helps
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Figure 5.3: Weakly Supervised Abnormality Localization Model

mitigate against any intersection between member frames in different temporal shots.

For a long CE video with multiple diseases at different regions, we applied unsupervised temporal
segmentation method using the PELT change point detection algorithm to split the videos features
into homogeneous visual segments. Each segment is then considered a bag of normal and abnormal
frames with some frames containing only normal frames. A video segment is considered abnormal
if it contains at least one frame with an abnormality. Similar to a Multi-instance learning problem,
an abnormal video segment contains a mix normal and abnormal frames [192,193,194].

Each unique patient’s video V n is temporally segmented into k video shots {vni=0, ..., v
n
i=k} based on

the visual temporal boundaries. While the long video V n can contain multiple diseases and therefore
have multiple labels {y1, ..., yl}, the result of the segmentation step allows us to only capture one or
no abnormality within each short video segment. The illustration in shown in figure 5.3. First, we
partition the videos into uniform segments {vni=0, ..., v

n
i=k} such that not more than abnormality is

present in each segment with no overlapping frames. We considered a disease agnostic framework
with labels yi ∈ {0, 1} such that we only classify each segment as either abnormal or normal based
on whether it contains at least an instance of an abnormal frame. This binary disease-agnostic
framework will allow our model to generalize to any unseen category of abnormality in the future.
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5.3.4 Graph Representation and Classification

We applied Graph-Sage convolution framework from [163]. The framework allows for inductive and
transductive learning on large graphs. The model architecture is shown in figure 5.3. The input to
the model is the extracted frame features for each video segment t x p where t is the length of the
video segment (i.e. number of frames) and p is the dimension of the feature vectors.

During training, we only have access to weak labels for the video segments as shown in fig. 5.3.
While we know there is a certain abnormality in the video, we do not have granular information
of the frames where the disease is captured. Physicians also use the frequency of occurrence of a
disease in multiple frames to determine its severity. A fully supervised node classification model
will utilize labels pointing to the actual frame containing the disease as localizing the frame with
the disease is important in helping the physician make quick and proper diagnosis. We consider a
video segment as a bag of normal and abnormal frames i.e. given a video v ∈ Rhxwxt where h and
w are the height and width of the frames and t is the number of video frames in the segment. We
consider V = {fn, fa} where fn and fa are normal and abnormal frames respectively. A single CE
video may contain multiple diseases or abnormalities making the abnormal class a combination of
different abnormalities or diseases. This class agnostic model makes the model generalize to other
new unseen diseases in the future.

Following the above, we define a graph G = {V,E} with nodes V representing the frames in the
video and edges E representing the connections between the frames. Secondly, we denote a sub-
graph for each video segment g = {v, e} and edges e representing edges between the frames in the
video segment. Recall that each sub-graph v is a bag containing both normal and diseased frames
occurring at different points in the video. Our goal are in two stages, First is the multi-instance
graph classification where, for any video segment containing at least one abnormal frame, we predict
abnormal label otherwise, we predict abnormal label. Next is the abnormality localization where we
generate frame-level activation score the abnormal video segment. The goal of the video segment
classification is to first learn a mapping of Γ(G) → {yi}1i=0 to binary normal and abnormal video
segment. In our case, we employed disease agnostic binary category so as to be able to generalize to
any unseen videos of new patient. The Graph-Sage network, through the sequence of transformation,
aggregation, attention and multi-instance classification learns to classify each video segment into
binary category of normal and abnormal segment. Next is to use the parameters of the learned
network and the sequence of linear transformation, aggregation and final attention layer to score
the frames in the abnormal segment based on their contribution to the graph prediction. This step
is our localization step which occurs only at test time.
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5.3.5 Graph Convolution Network

The uniqueness of this work is the application to long videos where there may be more than action
within the sequence. Secondly, this work advances other prior works through frame level localization
as against localizing to temporal region or volume in the video. Lastly, rather that using a fixed
length temporal video features as input to the GCNN network [171,190], our video segment inputs
have varying length based on detected shot boundary in the long video. This makes our framework
a complete end-to-end localization framework which has not been previous addressed in literature.
Such end-to-end automatic segmentation, classification and localization helps mitigate against any
intersection and correlation between member frames in each video segment.

The graph convolution involves three main steps: 1) Neighborhood aggregation; 2) Node representation:
which involve concatenation, linear transformation and non-linear activation steps; 3) graph read-
out.

Steps (1) and (2) occur at each layer of the network, while step (3) occurs at the final layer of the
network. For our model, we used two (2) graph convolution layer.

The input to the network are the frame feature sub-matrix where each frame-feature represents a
node in the graph with the weighted edges computed as the similarity between the features. Each
node is directly connected to every other nodes but the edge weights is set to be proportional to the
level of similarity between the pair of nodes. Thus, each video graph is a complete graph. Since all
frames are images of different locations of the small bowel, we allow nodes to derive message from
every other nodes in the graph. Secondly, the formulation allows feature similarity and dissimilarity
to be incorporated into the parameter learning process. This similarity between edges, essentially,
captures the topological relationship between the frames. GCNN explicitly ensures relationship
between frames is put into consideration during both training and testing as it aggregates the
neighbouring nodes into each node for every layer of the network. Each frame feature vector is
transformed by a weighted average of all other neighbouring frames it is connected to with weights
based on learned edge strengths. In our case, all the frames in the video is a neighbour but the
edges are weighted by the similarity function. We applied cosine similarity defined in 5.11 as the
similarity metric between pair of the frame feature vector. Frames without any similarly will have
edge weight of zero - meaning no connection between them. Other similarity function such as
nearest neighbor, correlation and euclidean distance were also experimented with and we compared
the results across. The only problem with using a nearest neighbor relationship is having to set the
number of neighbors k, which may not be optimal for the dataset.
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Feature Aggregation and Node Embedding

Fig. 5.4 shows a representation for he neighborhood feature aggregation. After the first layer, each
node feature is a weighted average of all the neighboring node features.

Starting from the initial input features

h0
i = xi, ∀i ∈ v; (5.1)

where i represents a nodes (frames) and v is the video segment.

the representation of the neighbors of node i at layer l + 1 is given as the weighted aggregation of
all neighboring node j features;

hl+1
N(i) = AGGREGATE

(
eijh

l
j , ∀j ∈ N(i)

)
; (5.2)

where j represents neighboring node to node i.

Aggregation functions such mean, max-pool and LSTM can be applied. After experimenting with
the different aggregator functions, LSTM outperformed the others and also more stable to train.
We used the LSTM aggregation between each pair of the nodes. Eq 5.2 becomes

hl+1
N(i) = LSTM

(
eijh

l
j , ∀j ∈ N(i)

)
; (5.3)

where N(i) is the total number of neighbors of node i. For a complete graph, this will be one short
of the total number of nodes in the graph. The LSTM aggregation steps are as follows in step eqn.
5.4:

zl = σ

(
Wz · [hli, eijhlj ], ∀j ∈ N(i)

)
; (5.4)

rl = σ

(
Wr · [hli, eijhlj ], ∀j ∈ N(i)

)
; (5.5)

h̃l = tanh

(
W · [rl ∗ hli, eijhlj ], ∀j ∈ N(i)

)
; (5.6)

hl+1
N(i) = (1− zl) ∗ hli + zl ∗ h̃l (5.7)

Next, we get the embedding for node i by concatenating neighboring nodes representation hl+1
N(i)
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Figure 5.4: Neighborhood Aggregation

with the previous layer embedding of node i itself;

hl+1
i = σ

(
W k · CONCAT

(
hli, h

l+1
N(i)

))
(5.8)

Eq. 5.3 is the aggregation of the features from all connected neighboring nodes weighted by the
edge similarity.

Graph Attention and graph aggregation Layer

After the final layer of the graph convolution operation, we applied an attention layer over the node
embedding. The attention layer allows us to learn a parametric weighting of the nodes based on
their importance to the graph classification. This allows the model to learn to place more weight
on abnormal frames for the video segments with abnormality as also the most relevant frames for
segments that are completely normal. We learn a representation of the entire GCN network at
that last layer by aggregating features from all the nodes. Attention-based LSTM and GRU have
been report effective in learning similar representation over sequences [195]. However, GCNN model
allows additional flexibility over a wide range of representation from mean to max-pooling over the
nodes to the more complex LSTM aggregation at this layer. This final graph aggregation is called
the graph readout layer.

hg =
1

N

(∑
i

αihi
)

(5.9)

where hg is the representation of the entire graph g of the video segment Vk. Other readout
operations include mean, summation and max-pool over the nodes embedding learnt across the
layers of the network.
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Figure 5.5: Multi-Instance Graph Classification

Multi-Instance Graph Classification

Once we aggregate the graph into a single feature vector, the final graph classification layer is a
fully-connected layer that maps the graph embedding to the number of categories in our dataset
before applying a sigmoid layer. We predict the binary label for each graph as follows:

ŷNi=1 =
1

1 + e−hg
(5.10)

Where N is the number of graphs and hG is the learned representation of g.

Fig. 5.5 shows the illustration of the multi-instance graph classifier.

ei,j =
xTi xj

||xi||2 · ||xj ||2
(5.11)

5.3.6 Graph Localization Network

The graph localization network is the second step after training the parameters W of g. The step
occurs during testing, using the trained parametersW , we replaced the final graph readout function
with a temporal pool layer to allow us generate a class activation map over the sequence of frames
in the video. Our localization network generates ranking for each node in the graph. We sampled
the temporal pool layer to identify nodes with the abnormality. Since abnormal regions in CE
video is not necessarily contiguous, temporal pool over frames better captures the localization than
temporal boundary regression [65]. Non-contiguity of abnormal regions is a unique property of CE
videos which differentiates it from other video structured data.
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5.4 Experiments

5.4.1 Dataset Description

Our dataset consist of nine (9) long VCE videos collected during real clinical endoscopy procedure
under the supervision of expert gastroenterologist. All IRB requirements and approval processes
were completed prior to analyzing the data. Since physicians are more interested in the small bowel
region for the CE video examination, we focused our analysis on images of the small bowel region
only. Each video was carefully annotated by two (2) endoscopy research scientist and verified by
an expert gastroenterologist. We fine-tuned the pretrained feature extractor network on the first
five (5) videos in our dataset and used it to extract features for all other videos. Since each video
is unique to each patient, we ensured separation between videos that have been previously seen by
the model were not part of the test videos. This helps mitigate patient bias.

The training video and the diseases captured in training data one is shown in table 5.1

Table 5.1: Training & Test Video Data Description

Video Content
Train Video Nodes Count Abnormal Categories
Video - 1 13,177 Normal, Erythema,

Outgrowth (Mass)
Video - 2 8,452 Normal, Angioectasia, Diffuse bleeding,

Erosion, Erythema, Ulcer
Video - 3 23,124 Normal, Diffuse bleeding, Ulcer,

Angioectasia, Outgrowth
Video - 4 12,303 Normal, Angioectasia, Outgrowth

Erythema, Erosion, Clot
Video - 5 29,236 Normal, Bleeding, Ulcer

Erythema
Total 86,292

Video Content
Test Video Nodes Count Abnormal Categories
Video - 6 14,173 Normal, Ulcer, Angioectasia,

Erythema, Erosion
Video - 7 16,909 Normal, Bleeding
Video - 8 10,037 Normal, bleeding, Angioectasia
Video - 9 19,104 Normal, Bleeding, Ulcer
Total 60,223

In our proposed model (shown in Figure: 5.3), the score predicted for each frame corresponds to the
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node activation sequence for the frame. Rather than using the granular class of each abnormality
shown in table 5.1, we used a class-agnostic binary label for the graph classification. This allows
the model to generalize to any unseen categories of abnormalities in future videos.

5.4.2 Evaluation

We evaluated our proposed framework in two folds. First, the performance of the multi-instance
graph classification model was evaluated on new patients’ test videos based on accuracy, sensitivity,
specificity and f-score. Evaluation based on the intersection-over-union that has been employed in
literature on localization does not directly apply on CE video since an abnormal temporal bound
may not be contiguous. Instead, we employed the widely adopted evaluation framework on CE
videos [19, 20] - Coverage. Which also is a measure of specificity of the model on the abnormal
frames. The specificity of the abnormal classes is the most important criteria on which medical
experts base the performance of machine learning models since this impacts the accuracy of their
diagnosis. The coverage is defined as in equation 5.12 which is the number of selected sample frames
as a proportion of all abnormal frames in the segment. We aggregate this over the entire video to
report our result.

C =

∑Nab
i ci
Nab

; ci =

1, Abnormal frame is selected

0, otherwise
(5.12)

where Nab is the count of video segments with abnormality. From 5.12 The metric scores one (1) if
at least one abnormal frame is selected and zero otherwise.

Implementation

Our entier model was implemented in Pytorch [196] on NVIDIA RTX2080 GPU. We trained the
GCNN using stochastic gradient descent optimization algorithm using cross entropy loss function
with a batch size of 8 and learning rate of 0.001. The models were trained for a minimum of 100
epochs.
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5.5 Results and Discussion

Table 5.2 shows the result of the binary multi-instance graph classification task applied on four
(4) different video data. The four (4) test videos are different from the training videos and have
never been seen before by our model. This allows generalization of our model to new patients’
videos. The total segments is the count of the abnormal and the normal video segments and the
disease categories is the number of different diseases present in the complete video. Table 5.3 shows
the performance on the localization task. The result in both tables is the weighted average of the
metrics computed over the binary classes which accounts for the class imbalance in the dataset.

Table 5.2: Video Graph Classification Results

Metrics Test Video Data
Video 6 Video 7 Video 8 Video 9

Frames Count (T) 14,173 16,909 10,037 19,104
Total Segments 770 1,124 248 1,071
Disease Categories 5 2 3 3
Accuracy 0.899 0.848 0.560 0.859
Sensitivity 0.911 0.804 0.601 0.889
Specificity 0.899 0.848 0.560 0.859
F-score 0.905 0.822 0.578 0.873

On video-1, the model achieved classification accuracy of 89.9% on 770 video segments with 5
different categories of diseases. The sensitivity, specificity and F-score are 91.1%, 89.9% and 90.5%
respectively. The best performance was recorded on video-1 indicating that the performance across
patients are not equal and some patients’ videos may be more challenging than others. With
different number of classes across each of the videos, the result of the model reflects the realistic
output when a new patient’s video is shown to the model. Prior to administering the capsule
endoscopy, patients are advised not to eat or consume any opaque liquid that could obstruct the
visibility of the camera. Occlusion and other factors in the digestive tract varies across patients
leading to difference in classification performance. On the segment classification task, the model
performed least on video-3 with classification accuracy of 56.0%; sensitivity of 60.1%; specificity of
56.0% and F-score of 57.8%. The performance on the other two videos are better and closer to the
performance on video-1. With the highest number of disease classes in video-1, the performance
on video-2 makes it rather difficult to believe the number of different abnormalities present in the
video may impact the performance of the multi-instance classifier.

From table 5.3, for video-1 at k=1, by sampling a single (1) frame from each abnormal video segments
the model is able to cover 92.5% of all the abnormalities in the video. Similarly, by sampling the
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top-2 frames, the models covers 97.5% of all abnormalities in the video. This, however, flattens
after this point which may be attributed to a number of reasons. The number of activated high
energy frames in the video segments is a proportion of the total number of frames that captures
abnormality and the total length of the video segment. With very few (e.g. only 1) abnormal frames
and very long video segment, it may difficult for the model to identify this single frame within the
segment.

The performance on the localization task does not exactly mirror the graph classification when
looking across patients’ videos. However, the trend is that the more the number of high energy
frames selected, the higher the coverage that is obtained. While this may appear obvious, the
performance varies across the videos with video-2,3 and 4 requiring a minimum of 9-high activation
frames to achieve the same coverage obtained on video-1 with just 2-samples. High coverage means
high true positive rate and indicates the model is able to accurately identify and rank frames leading
to the output of the multi-instance graph classifier for abnormal graphs. Very high coverage will also
allow the physician to only focus and examine the few selected localized frames as against having
to review the entire video which would be much more time consuming. For example, in video-1,
by selecting a sample frame from each abnormal video segment, physician will only have to review
40 frames to make their diagnosis as against the entire 14,173 of the small bowel region. On the
other hand, a low coverage indicates high false positive (FP) leading to frames that do not contain
any abnormality being selected as high energy frame. This will lead to increase sample frames that
physician will have to review and analyse, thereby saving them less time and effort.

Figure 5.6: Performance on Abnormality Coverage
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Table 5.3: Results of Abnormality Localization using Adaptive Temporal Pool Node Sampler

Metrics/Data Test Video Data
Video 6 Video 7 Video 8 Video 9

Frames Count (T) 14,173 16,909 10,037 19,104
Abnormal Segments (Nab) 40 137 57 69

Coverage (C =
∑
ci/Nab)

k=1 0.925 0.467 0.667 0.391
k=2 0.975 0.664 0.772 0.464
k=3 0.975 0.752 0.825 0.638
k=5 0.975 0.883 0.825 0.797
k=7 0.975 0.956 0.877 0.913
k=9 0.975 0.912 0.912 0.928



Chapter 6

Video Summarization Using
Encoder-Decoder Key Frame Selection

6.1 Introduction

Following the work described in chapter 3, it is very difficult to have completely homogeneous
segment can can be identified as pathology or no pathology. This is mainly because most instances,
due to the unstable movement of the capsule camera causing frequent flips, there is a visual change
in what the camera is seeing, which may not necessarily be a pathological change.

Our main idea in this chapter is to use Long Short Term Memory (LSTM) encoder-decoder to
model selection of key frame in a short video clip. This chapter details our key frame selection
technique from a non-homogeneous segment where there is a mix of normal and abnormal frames.
Identifying the most representative frame within a video segment with non-homogeneous content
has been considered in prior works [16, 97, 197, 198]. Our contribution in this chapter is a novel
unsupervised technique for key frame selection in a VCE video segments. The input to the model
in this chapter is the output of the temporal segmentation previously described in chapter 3. While
the expected output of a weakly supervised temporal segmentation that we will describe in chapter
4 should be fully homogeneous class of frames, based on pathology, in some cases differentiating
between normal and abnormal frames is not a very clear decision.

Key frame selection eliminates redundant and uninformative frames in a video, selecting only frames
with content relevant for the physicians to make diagnostics. It is important to differential between
key frame selection and video compression, since video compression [199] focuses on minimizing
redundant information due to digital storage limitation, key frame selection [96, 97, 181, 182] is
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focused on reducing temporal redundancy in the due to review time constraint. Either of the two
tasks can leverage correlation and similarity between the frames to achieve their objective.

6.2 Related Work

In VCE literature, automating review and analysis of the long VCE videos emphasizes the task
of image (frame) analysis capturing only spatial content as against actually capturing both spatial
and temporal content of the data. This, potentially, can limit the clinical applicability of such
models in real-life. However, few works have attempted the summarization task of VCE videos, for
example [16,19,20,21,25,26,27]. The goal of the summarization task is to minimize the review time
spent by the expert on the review and analysis step before making diagnosis.

Research focused on automatically generating summary for video structured data have been on
for years [96, 97, 181, 182]. While the open dataset on which this techniques have been evaluated
are generally short videos that have been manually segmented into fixed frame counts, our work
extends these techniques to long videos with multi-stage summarization. First, following the
output of the automatic temporal segmentation proposed in chapter 3, we passed the output to the
summarization network to select the representative frames that captures the pathological content
of the video segment. In [96], the authors proposed an encoder-decoder architecture for weakly
supervised video summarization by using web-crawled data as a prior. Chen et al. [181] and [182]
used reinforcement learning approach to hierarchically generate summary for videos. Other works
that have also applied reinforcement learning techniques include [200] where the author proposed
diversity-representativeness reward to motivate the agent to select the most representative frames in
the segment. Mahsenni et al. proposed and unsupervised model using and LSTM-Encoder-Decoder
architecture to generate representative frames for videos as summary.

6.3 Methodology

6.3.1 Overview of the Approach

Fig 6.1 shows the framework for our key frame selection model. From a capsule endoscopy video
of the small bowel region, the first step involves extracting features from each frame of the video.
Following the work presented in chapter 3, a lower dimensional representation of the feature is
extracted using Principal Component Analysis (PCA) and then projected to a one-dimensional
manifold space. The motivation behind this dimensionality is to minimize the computational
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cost of computing the points where the statistical property of the sequence of frames changes.
Following this, we employed the Pruned Exact Linear Time change point detection algorithm to
determine the points that mark the change in the visual properties of the sequence. These frames
are considered the change points and used in the temporal segmentation of the video into multiple
homogeneous segments. The next stage uses an LSTM network for the Most Representative Frame
(MRF) selection. The network selects the MRF with maximum pairwise orthogonal distance from
the neighbors. The final step involve an LSTM-Encoder encoding the selected MRF to a fixed
dimensional representation before using another LSTM-Decoder to reconstruct the video from the
encoded representation.

The generated video summary is a sparse, diverse, and representative frames selected by the LSTM-
selector for each video segment.

6.3.2 Representative Frame Selection and Encoder-Decoder Networks

As shown in 6.1, there are three (3) LSTM networks comprising the MRF selector-LSTM (LSTMS),
the encoder LSTME and the decoder LSTMD networks. The CFE takes a sequence of frames
{f i1, ..., f it} in each video clip vi and encodes them into a fixed dimensional embedding feature. The
summarizer network is an LSTM frame-selector (LSTMS) with a final Sigmoid layer that scores
each frame based on diversity from other members of the segment. Since each video clip contains
homogeneous set of frames, we consider the frame with minimum pairwise similarity the most diverse
and the most representative of the segment. The Encoder-LSTM (LSTME) takes the output of the
LSTMS multiplied by the original features extracted by the CFE to generate an encoding of the
most representative frame within the segment. The encoder-LSTM (LSTME) network accounts for
the long term dependence between the frames and encodes the sequence into a fixed length context
vector Cn. The decoder-LSTM (LSTMD) takes the context vector Cn and tries to reconstruct
the original input sequence of features corresponding to the input video v̂i = {ĥd1, ..., ĥdt }. Given a
distance between the output of the LSTME representations of the selected input frames features, our
goal is to optimize the frame selector such that the similarity is minimized over training examples.
The LSTMD is used to reconstruct the entire video features from the input context vector by
minimizing the reconstruction loss LSTMD.
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Figure 6.1: Network Architecture

Training Losses

Parameters of the LSTME and LSTMD were optimized using the reconstruction loss function eq.
6.1 and LSTMS using the diversity loss function eq. 6.2.

Lrecon =
t∑
||xi − f(hdi )||2; (6.1)

where hdi is the latent state of the decoder network LSTMD

Motivated by [200], the diversity loss ensures maximum orthogonal distance between the selected
frame and the rest of the neighbourhood frames within the segment.

Ldiv =
1

t

∑
i 6=j
||hsi − hsj ||2 (6.2)

where t is the the length of the video segment and hi and hj are the hidden state of LSTMS . Ldiv
ensures dissimilarity in the subset of frames selected.

Evaluation

In evaluating the performance of the model, we adopted widely used evaluation model - Coverage (C)
and Compression ratio (CR). The summarized video should contain at least one representative frame
from each of the abnormal findings in the original video data. The compression ratio determines
the proportion of redundant frames that was eliminated from the video. We computed coverage
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Video Number of videos Total Number of Frames
Training videos 10 421,955
Testing videos 5 43,258

Table 6.1: Data summary for training and test videos

based on diffuse bleeding, polyp and angioectasia present in our test videos.

C =

∑Nab
i ci
Nab

; ci =

1, if at least one frame from the abnormal frames is selected

0, otherwise
(6.3)

CR =
t

T
(6.4)

where Nab is the count of video segments with abnormality; t is the number of video segments
generated and T is the total count of frames in the video.

6.4 Experiments and Analysis

Dataset Summary and Pre-processing

A total of 15 VCE videos were collected from 15 different patients during a clinical endoscopy
procedure using the SB3 Given Imaging Pillcam capsules. The capsules were equipped with 576
x 576 pixel camera. For each complete video, the small bowel transit time corresponds to about
3.93±1.43hr [35]. In order to isolate the small bowel region, each video was reviewed and annotated
by two GI research scientists. After the annotation, the total number of frames in the videos is
summarized in table 6.1. We randomly split the video into 70% train and 30% test set. Since there
were 15 videos, we ended up with ten (10) training videos and five (5) test videos. Each frame in the
video was trimmed to 500 x 500 to remove the black boundary region. Our model was developed
using the Pytorch framework on NVIDIA P100 machine. The model was trained for 50 epochs with
a learning rate of 0.0004. We specified a dimension of 512 for the hidden states of the LSTM models
with two (2) hiddle layers while the original input features were 2048 dimension.
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6.5 Results and Discussion

Fig. 3.5 in chapter 3 shows the time series plot for two selected videos with clear change in the
computed manifold projection observed at different points. Figures 3.10 in chapter 3, shows a
sample sequence of frames from the test videos with detected multiple change points indicated. In
table 6.2, we show the compression ratio for each video in our test data as well as the coverage of
the generated summary. For each video, our model achieved 100% coverage which is mainly due to
the sensitivity of CPD model on the 1-D manifold representation.

Video Video Length Compression
ratio (%) Coverage (%)

Video 1 2367 81.79 100
Video 3 8577 79.88 100
Video 7 6535 83.58 100
Video 8 14532 86.62 100
Video 15 11247 80.33 100

Table 6.2: Frame Reduction Ratios on Test VCE Videos

6.6 Conclusion and Limitations

We developed a novel unsupervised summarization algorithm for Video capsule endoscopy videos.
Following the techniques discussed in chapter 3, this approach provides an end-to-end unsupervised
capsule endoscopy video summarization by extracting most diverse and representative frame from
each homogeneous temporal segment of the video. In our experiments, We demonstrated the
capability of the frame selector network to effectively pick good representatives to form the video
summary based on diversity training loss function. While our model is able to reduce the number of
frames that needs to be reviewed by gastroenterologist, one limitation is that the generated summary
still contains frames without any abnormality or lesions from complete homogeneous segments. Since
we selected representative frames from each segment, our summary will also include normal video
frames that may not he useful for the physician. This is partly responsible for the very high coverage
achieved by the model. Completely eliminating normal frames would save the gastroenterologist
additional time and allow them to only focus on lesion containing frames. However, due to large
set of possible abnormalities in the GI tract, our model generalizes better than specifically training
to identify certain lesions or abnormality in the small bowel.
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Conclusion and Future Works

This dissertation presents our work on long video analysis with special application to video capsule
endoscopy videos. The focus of the work is three fold: unsupervised and weakly supervised long
temporal segmentation (Chapter 3 and 4), temporal abnormality localization (Chapter 5) and
unsupervised video summarization (Chapter 6). Under each focus area, we presented a novel
architectures and applied the models on long VCE videos. In this chapter, we summarize the
contributions and discuss directions for future research.

7.0.1 Summary of Contribution

Unsupervised Shot Boundary Detection and Temporal Segmentation of Long Capsule
Endoscopy Videos
First we developed an unsupervised temporal segmentation method for long VCE videos in linear
computational time complexity. We projected the high-dimensional frame representation feature-
vector of the videos to a 1-dimensional embedding space. To do this we investigated multiple
embedding techniques to find the most suitable to the VCE dataset. Subsequently, we applied
uni-variate time-series change point detection algorithm - Pruned Exact Linear Time algorithm
(PELT) - on this lower dimensional manifold to detect the pair of frames on which the boundaries
changed. We investigated this technique across multiple embedding algorithms to determine the
best performing method. We conclude that While it may be easier to detect change in visual
characteristics of a sequence of frames, detecting pathological events require more information for
the model to do well. Detecting pathological event without any supervision is much more challenging
problem. We will investigate a supervised approach to solving this problem in the next chapter.
Secondly, adjusting for class imbalance is very critical to what the CNN-based feature extractor can
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learn. In VCE data, there’s significantly more normal frames in some videos than any abnormality,
without adjusting for the class imbalance, the model will be bias towards only the normal class with
little to no capability to separate the abnormal categories properly.

Weakly Supervised Temporal Segmentation of Long Capsule Endoscopy Video Using
Graph Neural Network
Detecting temporal boundary that mark pathological event in the sequence of VCE video without
supervision is very challenging. In this chapter, we developed a weakly-supervised disease-agnostic
model for temporal segmentation of long video using graph convolutional neural network. The
model is trained as a binary classifier where it learns to predict the binary category for each node in
the graph based on whether the frame is abnormal or normal. This model captures the topological
relationship between nodes of the graph through message passing in each layer of the network to
construct an embedding for the nodes at the final layer. Our model was trained on extracted features
using VGG-19 as described in chapter 3 and compared to a baseline binary CNN classifier. The
GCNN model performed better than the baseline model using overall accuracy, recall and f-score
for the normal class. Both model suffer significantly in properly identifying the abnormal frames
with the best model yielding 14.2% precision, 7.6% recall and 9.9% f-score.

Graph Convolution Neural Network for Weakly Supervised Abnormality Localization
In this chapter, we developed a novel end-to-end temporal abnormality localization for long wireless
capsule endoscopy video using only weak video level annotation. We achieved the abnormality
localization in three-steps, first is the long video temporal segmentation, then video segment classification
before finally localizing to the high energy frames within each segment using temporal pooling. In
the classification step, our model learns to identify abnormal video segments from the aggregated
embedding feature vectors using multi-instance learning framework. The localization step involves
leveraging the representation of the graph to generate the high energy frames from each abnormal
video segments. The end-to-end system involves, first applying an unsupervised temporal segmentation
technique to partition the long WCE video into short, homogeneous segments. Thereafter, we
trained a Graph Convolution Neural Network (GCNN) on each video segment to classify them into
binary categories. We consider each video segment as a graph and the frame features as the nodes
in the graph. We learnt a representation of the video segments using a 2-layer graph convolution.
We applied attention layer on the nodes embedding before aggregating the node features at the
final layer to generate the graph representation. The final layer is a multi-instance graph classifier
that classifies the video segment feature vector into binary class-agnostic categories. Leveraging
the parameters of the trained GCNN model, we replaced the final classifier with a temporal pool
layer to select the most activated frames within the video segment which represents the highest
energy elements of the graph. Similar to a video summarization model, the approach proposed in
this paper for CE video abnormality localization allows physicians and gastroenterologist to quickly
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focus and review identified abnormal frames that captures abnormal lesion or diseases in more detail
as against having to wade through the entire long CE video with thousands of redundant normal
frames.

Video Summarization Using Encoder-Decoder Key Frame Selection
Following the work on temporal segmentation, we integrated the method into a summarization
model to select the most representative frame from each video segment. Our model consist of
an LSTM-Encoder-Decoder architecture trained on reconstruction, sparsity and diversity losses.
The model learns to select frames within the video segment that are most representative of the
entire video segment. The model was evaluated based on redundancy reduction and coverage. We
achieved 100% coverage for each of the test video and redundancy reduction of 80%. The proposed
approach is able to reduce the number of frames that needs to be reviewed by gastroenterologist with
100% coverage in each case. However, one limitation is that the generated summary still contains
frames without any abnormality or lesions. This is because some shot boundaries in the video are
completely normal but was detected as change points due to change in view of the capsule camera.
Completely eliminating normal frames would save the gastroenterologist additional time and allow
them to only focus on lesion containing frames with little to no redundancy. However, due to large
set of possible abnormalities in the GI tract, our model generalizes better than specifically training
to identify certain lesions or abnormality in the small bowel.

7.1 Future Works

• Convolution feature extraction that takes into account the topological relationship between
the frames as against assuming frames independence.

• Domain shift in VCE video data. With different models of the capsule cameras being regularly
released such as Pillcam SB2, PillCam SB-3, PillCam Crohn’s System, PillCam Colon system
and PillCam UGI system. Our models were designed and tested only on PillCam SB3 with
image resolution 576x576. Performance of the model may degenerate when applied on videos
from a different capsule camera due to domain shift.

• Performance variability between patients and factors responsible for any performance degradation
when models are tested inter-patient is an equally important research area. This is because
patients have different internal GI conditions and factors.

• Model performance across different classes of abnormalities. Most work try to solve identification
of single abnormality but generalizing across multiple abnormalities would be an interesting
problem. Different abnormalities have different geometric, edge and coloration properties.
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Abnormality such as bleeding is much easier to detected compared to mass or polyp in terms
of size and how dispersed the disease is. Similarly, angioectasia can vary significantly in size
and differs in color when compared to Ulcer. It could also be confused with bleeding leading
to noise in labels that comes even from experts. These and many more differences between
abnormalities impact the sensitivity of the models and worth investigating further.

• Investigating the impact of depth of GCNN model on representation performance on VCE
videos segments.

• Occlusion is a major issue in VCE videos. There may be obstruction by food particles or
shadow of other part of the GI tract itself. Estimating the tissue structure that lies under the
occluded region using the surrounding tissue would be an interesting problem to consider.

• Temporal segmentation using partial or noisy annotation where the model is given partial
information on the region around which there is a change point. The model can then be
trained to detect the exact change point based on distance metric.

• Automated system to generate report from VCE videos using language and sequence-to-
sequence would be an interesting future research area.
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