

A Dissertation

Presented to

the Faculty of the School of Engineering and Applied Science

at the

University of Virginia

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy (Computer Science)

by

A Method For Examining

Cryptographic Protocols

Brett C. Tjaden

May, 1997

© Copyright by

All Rights Reserved

Brett C. Tjaden

May, 1997

To my family:

Thank you Mom, Dad, and Brian, for a lifetime of love. I will

never be able to repay you for everything you have done for me.

Acknowledgments

I want to thank Bill Wulf, my advisor, for the encouragement, guidance, and insight

he has given me during my time here. Working with you, Bill, has been both enjoyable and

highly beneficial, and I will always feel lucky to have had you as my advisor.

I would also like to thank all of my colleagues, past and present, who have made my

time at the University both enjoyable and rewarding. In particular, I would like to acknowl-

edge David Cooper, Russell Haddleton, Darrell Kienzle, Sally McKee, Michael Nahas,

Chris Oliver, Ramesh Peri, Anne Stinehart, Chenxi Wang, Dee Weikle, Alec Yasinsac, and

Tongtong Zhang.

1

Abstract

In this dissertation we present a powerful, general, extensible, and formal method-

ology that automatically examines cryptographic protocols. Our approach is to specify a

protocol, its assumptions, and a statement of failure in a notation that allows us to give a

formal semantic definition of the protocol and its failure conditions. We then use deductive

program synthesis to try to automatically modify the protocol so that the failure condition

is achieved. If this last step succeeds, we have found a weakness in the protocol and we can

then give a step-by-step description of an attack to the user. Given an adequate set of axioms

and enough time, our method will find any attack that exists for a given protocol and failure

condition. Even if our methodology does not discover a flaw in the amount of time it is

given to run, we can make a concrete statement about the minimum length of a constructive

proof for any attack that might exist on the protocol (for the given failure condition and

axiom set) as a result of its analysis. A preliminary implementation of our methodology has

had great success in finding both known and previously unknown flaws in a significant

number of published protocols. This system also helped us to discover and demonstrate an

important new class of attacks based on the interaction of two or more cryptographic pro-

tocols.

2

Chapter 1

Introduction

1.1 Computer Security

In the days of stand-alone computers the field of computer security was concerned

with protecting the system’s resources from misuse and controlling the information that

was stored on the computer. System resources were protected by ensuring that only specific

users were permitted the use of certain resources and that no user could abuse any resource.

For example, many operating systems used disk quotas and processor scheduling algo-

rithms to apportion storage space and CPU cycles fairly among the system’s users. Infor-

mation was controlled by managing the rights that each user had to it and the manner in

which users could communicate information to one another. Many methods have been pro-

posed to address these two problems, but most of them are based on the access-control

matrix model proposed by Butler Lampson in [LAM74].

Lampson’saccess-control matrixmodel consists of a set ofobjects that are to be

protected and a set ofsubjects which perform actions and are themselves objects in the sys-

tem. Objects can also be resources such as CPUs, memory segments, disk drives, terminals,

Chapter 1: Introduction 3

or printers, or they can be information such as processes, files, databases, or semaphores.

Each operation that can be performed on an object corresponds to aright. The objects are

then protected in the following straight-forward manner. If a subject has a right to an object,

he is permitted to perform that operation on the object; otherwise he is not. An access-con-

trol matrix has a row for each user and a column for each object. Each entry in the matrix

specifies what subset of the rights for the object a particular user has. An example of an

access-control matrix is given below.

We defineS, the set ofsubjects, as follows:

S = {Subject A, Subject B, Subject C}

We defineO, the set ofobjects, as follows:

O = {Object 1, Object 2, Subject A, Subject B, Subject C}

The access-control matrix,M, that defines whatrights each subject has to each object is

given in Figure 1.1 below.

Figure 1.1 : An Access-Control Matrix

Subject A

Subject B

Subject C

Object 1 Object 2

Read Write

Execute
Read
Write
Execute

Read
Write

Read
Write

Read
Write

Subject A Subject B Subject C

Chapter 1: Introduction 4

When subjectX requests to perform operationY on objectZ, we simply need to refer

to rowX, columnZ of the matrix to determine whether or notY is one of the rightsX has to

Z:

Allow subjectX to perform operationY on objectZ if

Disallow subjectX to perform operationY on objectZ if

In practice, an access-control matrix is often large and sparse, so it makes sense to

store only the non-empty elements in it. There are two ways to accomplish this. One is to

make a list, indexed by the objects, and record which subjects have which rights to that

object. This is commonly referred to as anaccess control list. The access control list that

corresponds to the matrix above is given in Figure 1.2.

Figure 1.2 : The Matrix Expressed as an Access Control List

Y M X Z∈

Y M X Z∉

Object 1: (A, Read), (C, Read, Write)

Object 2: (B, Execute)

Subject A: (A, Read, Write)

Subject B: (A, Write), (B, Read, Write, Execute)

Subject C: (C, Read, Write)

Chapter 1: Introduction 5

The other way of partitioning the matrix of Figure 1.1 is by rows. Using this strategy we

obtain a list for each subject of the objects that may be accessed and the rights to that object.

This is called acapability list and is illustrated in Figure 1.3.

Figure 1.3 : The Matrix Expressed as a Capability List

Access control mechanisms play an important role in securing information stored

on computer systems, but they are not a complete solution. That is because there are other

ways for an unauthorized user to gain access to information. For example, if Alice does not

have permission to read a file but Bob does, Alice might be able to convince Bob to read

that file and tell her its contents. In this scenario, none of the access control policies have

been violated, but this still represents a breach of security, since Alice was not authorized

to have access to the contents of the file. Issues like these are addressed by what are called

information flow security policies, defined by Denning [DEN76] as follows: “information

is said to flow from object a to object b if the value of object b some how depends on the

value of object a.”

The most widely-used information flow policy is Multi-Level Security(MLS). In

this policy, every entity in the system is assigned a level from a partially ordered set,L, of

security levels:

L = {Unclassified, Classified, Secret, Top Secret}

The most common partial ordering is that:

Subject A: (Object 1, Read), (Subject A, Read, Write), (Subject B, Write)

Subject B: (Object 2, Execute), (Subject B, Read, Write, Execute)

Subject C: (Object 1, Read, Write), (Subject C, Read, Write)

Unclassified Classified SecretTop Secret≤ ≤ ≤

Chapter 1: Introduction 6

Each object in the system is assigned a security level fromL:

Subject A: Secret

Subject B: Unclassified

Subject C: Classified

Object 1: Classified

Object 2: Top Secret

A typical Multi-Level Security policy used by the U.S. military is:

Figure 1.4 : An Information Flow Policy

where

is an uninterpreted predicate that represents the fact that information flows fromX toY. The

policy in Figure 1.4 states that if information flows fromX to Y thenX must be at the same

level or lower thanY. An implementation of this policy might allow information to flow

from Object 2 to either Subject A or Subject C, but it would be a violation of the security

policy to allow information to flow from Object 2 to Subject B since the level of Subject B

(Unclassified) is lower than the level of Object 2 (Top Secret). Implementations of the

access-control model or Multi-Level Security policy have been very popular for protecting

computers in a stand-alone environment.

1.2 Network Security

The move from stand-alone computer systems to distributed systems produced

many new possibilities in computing, but also a host of new security concerns - notably the

vulnerability of communications. This is due to the ease with which an intruder can tap into

the network and observe messages in transit. By eavesdropping on the network, an intruder

X∀ Y, X Y→() X Y≤()⇒()⋅()

X Y→

Chapter 1: Introduction 7

could learn the contents of the messages that he sees, or he could draw additional

conclusions by observing which users are communicating with each other, when they

transmit their messages, and how often they communicate. For example, knowing that

Carol is communicating regularly with members of an Alcoholics Anonymous group may

allow an intruder to posit some information about Carol, even if he can’t read the messages

she is sending or receiving. Likewise, a substantial increase in the number of transmissions

at an air force base may indicate that some maneuver or attack is imminent.

Entities that observe messages on the network but do not interfere with them are

called passive intruders. In dealing with passive intruders we typically try to hide the

source, destination, and contents of messages from them. Cryptography, the scrambling of

messages so that they will be unreadable to anyone but the intended recipient, is often used

to protect network communications from passive intruders.

In addition to passive intruders there may beactive intruders on the network. Active

intruders have all the capabilities of passive intruders, and in addition, they can interfere

with messages by creating, modifying, destroying, retransmitting, delaying, or misdirecting

them. A possible attack by an active intruder might be to use an ATM to withdraw money

from one’s bank account, and then to delete the debit message from the ATM to the bank

after receiving the money. One could also make a deposit and then either modify the

resulting message to credit the account with a greater amount than was actually deposited

or replay the unmodified message several times.

It is sometimes possible to detect active intruders, but as in the case of passive

intruders, many of the strategies used to defend against them are designed to mitigate or

render their actions innocuous. For example, one branch of cryptography deals withone-

way hash functions (discussed in the next section) that can be used to make it very difficult

to modify a message without being detected. Timestamps can help the recipient of a

message determine whether the message has been delayed or replayed. As in the case of

Chapter 1: Introduction 8

passive intruders, cryptographic techniques can provide valuable safeguards against some

attacks by active intruders. Since cryptography has become such an important component

of network security, we present a brief overview in the next section.

1.3 Cryptography

Cryptography is the art of creating and usingcryptosystems, which are methods of

disguising messages so that only certain people can see through the disguise. The origins

of cryptography are normally traced back to the dawn of human history. According to Kahn

[KAH67], cryptography may be as old as the written word since writing may have

originally been used to transform a spoken message which anyone within earshot would be

able to hear and understand into a form that would be less public and understandable only

to a select group of people. As alphabets were standardized and more people became

literate, cryptographers developed new and more cunning means to camouflage their

messages.

1.3.1 A Classic Cryptosystem

Perhaps the most widely-known cryptosystem is the Caesar cipher. Legend has it

that Julius Caesar disguised the messages he sent to his generals by replacing every ‘A’ in

the message with a ‘D’, every ‘B’ with ‘E’, every ‘C’ with ‘F’, and so on through the

alphabet. So if Caesar wanted to tell his generals to “ATTACK AT DAWN”, he would send

them the message “DWWDFN DW GDZQ”. Although the enemy might capture this

message in transit he would not have been able to understand what it said. When one of

Caesar’s generals received this message, he knew that replacing each letter in the message

with the letter appearing three places before it in the alphabet would reveal the intended

message.

Chapter 1: Introduction 9

This simple cryptosystem can be used to define many of the basic terms in

cryptology. The original message, “ATTACK AT DAWN”, is called theplaintext, and the

disguised message, “DWWDFN DW GDZQ” is called theciphertext. We call the

procedure for converting the plaintext into ciphertextencryption. In the case of the Caesar

cipher, we encrypt a message by replacing each letter with the third letter after it in the

alphabet. The procedure for converting the ciphertext into plaintext is calleddecryption and

is accomplished in the Caesar cipher by replacing each letter with the third letter before it

in the alphabet.

Cryptographers have usually chosen to make the algorithms for encryption and

decryption public but to make their results depend upon some value known as akey. This is

done to allow other cryptographers to examine proposed cryptosystems and convince

themselves that the protection offered by a cryptosystem is based on the secrecy of the key

and not the secrecy of the cryptographic algorithm. If this is the case, then the only factor

that determines whether or not someone can decrypt a message is whether they know the

proper key. If we define the encryption procedure for the Caesar cipher as “shift forward by

n” and the decryption procedure as “shift backwards byn” thenn is the key for the cipher.

Caesar supposedly usedn=3, but any value from the set {1, 2, ..., 25} could be used as a

key. This set of usable keys is usually referred to as a cryptosystem’skeyspace. The problem

with having a keyspace with so few elements is that someone who doesn’t know which key

was used can try decrypting the ciphertext with each possible key until a message that

makes sense (and is almost certainly the plaintext) is produced.

1.3.2 Codes and Ciphers

Most cryptographic algorithms can be classified as either codes, ciphers, or a

combination of the two. We have already seen an example of a cipher in the preceding

section on the Caesar cipher. In acipher, some procedure is used to transform a block of

plaintext into a block of ciphertext. Ablock is the fixed-size unit on which a cryptosystem

Chapter 1: Introduction 10

operates. It could be a single character, as in the Caesar cipher, or two or more characters,

as in some other ciphers. Usually the plaintext blocks are transformed into blocks of

ciphertext by substitution and/or transposition. As we saw in the Caesar cipher,substitution

is performed by applying some function to the plaintext block and the key in order to

produce a block of ciphertext which replaces the block of plaintext.Transposition does not

involve changing the plaintext blocks but instead shuffles the blocks into a new order that

depends on the key and possibly the plaintext. A simple transposition scheme would be to

enter the plaintext into a matrix withn columns and one letter per box.Ciphertext could then

be created by reading down the columns from left to right. If we were to encipher the

message “ATTACK AT DAWN” in this way we could start by choosingn=5 for the key.

Next, we would create a matrix with five columns and enter the plaintext as shown below.

Figure 1.5 : Entering the Plaintext into the Matrix

We could then read the ciphertext, “AKDT ATAWATNC ” from the matrix. To decrypt the

ciphertext we would enter it into a matrix with three columns (the length of the message

divided by the key) and recover the plaintext by reading down the columns from left to

right. Many ciphers include both substitution and transposition operations and perform

several rounds of each to produce the final ciphertext.

A T T A C

K A T

D A W N

Chapter 1: Introduction 11

Figure 1.6 : Entering the Ciphertext in the Matrix

The other class of cryptosystems are calledcodes. Codes rely on acodebook that

specifies one or morecodewords for each word that might be used in a message. Codewords

can be random numbers, strings of characters, or other symbols, but each codeword should

map to only one plaintext word. It is assumed that the sender and receiver each have a copy

of the codebook and that the sender creates the ciphertext by replacing each word in the

plaintext with a corresponding codeword. The recipient can then translate the encrypted

message back to plaintext by referring to codewords in the codebook. Obviously, if an

adversary obtains a copy of the codebook they will be able to decode all of the messages

that utilize that code.

1.3.3 Modern Cryptosystems

In this century, astounding advances in communication and computing power have

served as a catalyst for the development of new cryptosystems. Not only has the speed and

ease with which computers manipulate symbols made these new and highly complex

cryptographic algorithms feasible, but it has been matched by scholarly theoretical work on

the strengths and weaknesses of the cryptosystems. As a result, this century has witnessed

the evolution of cryptography from an art to a science, as well as the beginnings of

standardization normally associated with a scientific field along with some dissemination

A

K D

T

T

T

A

W

N

A

A

C

Chapter 1: Introduction 12

and use of the technologies which have been produced. We can expect the spread of

cryptography to continue well into the next century when it will almost certainly have a

direct influence on the everyday lives of a large number of people. In this section we give

a brief overview of some of the most important modern cryptosystems and refer interested

readers to more detailed sources for additional information.

In 1977, the National Bureau of Standards (NBS), now renamed the National

Institute of Standards and Technology (NIST), established a Federal Information

Processing Standard (FIPS) for data encryption. Often referred to as the Data Encryption

Standard, or simply DES, the algorithm was a descendant of an encryption scheme named

“Lucifer” that had been developed at IBM. After consulting with the National Security

Agency (NSA) and making a few changes, the IBM team submitted their Lucifer variant to

NBS and it was accepted. DES is still a FIPS, having been recertified by NIST in 1993.

DES is a symmetric-key cipher that breaks a message into 64-bit blocks and uses a

56-bit key to encrypt them. The termsymmetric-key alludes to the property that the same

key used to encrypt the plaintext must be used to decrypt the ciphertext. Symmetric-key

cryptosystems are sometimes also calledsecret-key systems since the communicating

parties must share a key that is kept secret from everyone else. The algorithm is performed

in rounds with each plaintext block going through one substitution operation followed by

one transposition operation sixteen times to produce a 64-bit block of ciphertext. DES is

usually referred to as abulk encryption algorithm since it can encrypt a large amount of

plaintext relatively quickly due to the simplicity of the operations used to substitute and

transpose bits.

DES has been extensively studied since its adoption by the U.S. government and is

currently the most well-known and widely used cryptosystem in the world. Most

researchers agree that DES is very hard to cryptanalyze with its most often cited

“weakness” being that the keyspace contains only 256 elements, making a brute-force

Chapter 1: Introduction 13

search for the key feasible but still rather expensive. More recently developed symmetric-

key block ciphers use keys of length 80 (Skipjack) or 128 (IDEA) bits, making an

exhaustive search for the correct key impossible.

In addition to DES and the other secret-key algorithms mentioned above there are

a number of importantpublic-key algorithms. These types of cryptosystems were first

proposed in 1976 [DH76] and are based ontrap-door one-way functions. A function,

f(x) = y, isone-way if, givenx, it is easy to computey, but giveny, it is difficult to determine

x. We often describe this one-way property by saying that the function is easy to compute

in the forward direction but difficult to compute in the backward direction. However, atrap-

door in a one-way function allows anyone who knows the trap-door to compute in the

backward direction easily. Public-key cryptosystems are based on supposed trap-door one-

way functions that enable anyone who knows the trap door to perform the function easily

in both directions, while anyone lacking the trap door can perform the function only in the

forward direction. Using this type of function a cryptosystem can be defined in which the

forward direction is used for encryption and the inverse direction is used for decryption.

Thepublic key in such a system gives information about the particular instance of the one-

way function, and theprivate key gives information about the trap door. For a public-key

cryptosystem to work properly, a user’s public-key information must be widely publicized

so that anyone can encrypt a message to that user, but the user should keep the private-key

information secret so that only he can decrypt messages encrypted with his public key.

Other properties that we would like a public-key system to possess include:

• The public/private key pair is unique to the user

• Encrypting any message,M, with the public key and then decrypting the

result with the private key yieldsM

• Deriving the private key from the public key is as hard as readingM

Chapter 1: Introduction 14

• The encryption, decryption, and key-generation routines are easy to com-

pute

With these conditions in place, a public-key cryptosystem usually operates as follows. If

Alice wants to send a coded message to Bob, she encrypts the message using Bob’s public

key and sends the ciphertext to Bob. When Bob receives the ciphertext he can use his

private key to decrypt it and recover the plaintext. Note that anyone can send an encrypted

message to Bob, since we assume that everyone has his public key. Only Bob, however, can

read messages encrypted with his public key because he alone knows his private key. One

advantage of public-key cryptosystems is that Alice and Bob do not have to agree on a key

prior to communicating, as is the case with symmetric-key algorithms. This is a valuable

property since private keys do not ever need to be transmitted or revealed to anyone,

whereas in secret-key systems, there is always a chance that an enemy could discover the

key while it is being transmitted or by compromising the other communicating party.

Another major advantage of public-key cryptosystems is that they can provide a

method for digital signatures. Adigital signature can be thought of as proof of authorship

of a document or at least agreement with its contents. For a digital signature to be useful it

must have the following properties:

• Authenticity - the signer deliberately signed the document

• Unforgability - only the signer can produce his signature

• Nonreusability - a signature cannot be moved to another document

• Nonrepudiation - the signer cannot reasonably claim that they didn’t sign

a document bearing their signature

In a public-key system, a user produces a digital signature by encrypting a document (or a

hash of it) with her private key. This signature can then be verified by anyone using the

signer’s public key. By contrast, a secret-key system requires the sharing of some key and

Chapter 1: Introduction 15

sometimes requires trust of a third party as well. A sender can then repudiate a previously

signed message by claiming that the shared key was somehow compromised by one of the

parties sharing the secret.

The main disadvantage of public-key cryptography is speed. Public-key systems

tend to be from 100 to 1000 times slower than secret-key systems, depending upon whether

or not they are both implemented in hardware or software. This is due to the greater

complexity of the enciphering operations that are performed in most public-key systems.

For this reason, public and secret key cryptosystems are often used together with the public-

key system used for digital signatures and to transmit a key that will then be used by a

secret-key algorithm to encrypt subsequent communications.

The most famous public-key algorithm, RSA [RSA78], is named for its three

inventors: Rivest, Shamir, and Adleman. It is based on arithmetic operations being

performed on very large integers. RSA, like all practical public-key cryptosystems

proposed to date, is based on functions that are believed to be one-way, but have not been

proven to be so. This means that it is theoretically possible that an algorithm will be

discovered that can compute the inverse function easily without knowledge of a trap door,

rendering any cryptosystem based on that one-way function insecure and useless. In the

case of RSA, the one-way nature of the functions is based upon the belief that the large

integers used must be factored to break the cryptosystem and that factoring large integers

like the ones used in RSA is intractable. Both of these conjectures have never been proven,

but neither has there been any success in disproving them. As with DES, RSA is currently

in wide use and thought to be a strong encryption algorithm.

Chapter 1: Introduction 16

1.4 Cryptographic Protocols

While cryptographic algorithms are valuable tools they do not provide a complete

solution to the network security problem. In section 1.2 we discussed a number of ways in

which intruders can interfere with communications on a network including such things as:

• Intercepting messages and attempting to understand their contents

• Inferring information from messages based on their source, destination,

frequency, routing, or timing

• Introducing new messages into the network or resending a copy of an old

message

• Modifying messages or deleting them altogether

• Misdirecting or delaying messages

Simple utilization of a good cryptosystem will not protect users communicating over a

network from all of the hazards on this list.

In addition to the concerns listed above, there are some higher-level issues that usu-

ally fall under the heading of network security. Most importantly, large-scale distributed

systems have seldom designated a central authority to control all of the resources in the sys-

tem and enforce a single system-wide security policy. This was a role filled by a single

trusted operating system in the case of stand-alone computer systems, but that may not be

viable or desirable in distributed systems. Without this authority, many fundamental issues

that have a direct impact on system security become much more difficult to resolve. For

instance:

• Who is this entity that has asked for my checking account number and is

claiming to represent my bank?

• How can Alice and I agree on a new secret key so that we can have a secure

conversation over the network?

Chapter 1: Introduction 17

• How can I make sure that Bob doesn’t deposit my digital payment until I

receive a copy of the software he sold me and vice versa?

Answering questions such as these will probably require bringing some cryptography to

bear on the problem, but clearly something else is needed as well.

1.4.1 What is a Cryptographic Protocol?

Part of the solution to these problems has been the development of network security

protocols. Aprotocol is an agreed upon sequence of actions performed by two or more enti-

ties in order to accomplish some mutually desirable goal. Many of the protocols that have

been proposed to address issues like those listed above make use of cryptographic tech-

niques and are referred to ascryptographic protocols. The first such protocols were pro-

posed in 1978 to achieve several different types of authenticated communication over a

computer network.

One of these early protocols dealt with interactive communications between two

principals using machines that were physically separated but that were linked by a large

network. The goal of this protocol was to enable the communicating parties to prove their

identities to one another and to agree on a session key that would be used to encrypt all sub-

sequent communications. These two tasks are often calledauthentication andkey-distribu-

tion, respectively. The following specification of the protocol is taken directly from [NS78].

Figure 1.7 : The Needham and Schroeder Private-Key Protocol

A AS:→ A B IA1,,

AS A:→ I A1 B CK CK A,{ }KB,,,{ }KA

A B:→ CK A,{ }KB

B A:→ I B{ }CK

A B:→ I B 1–{ }CK

Chapter 1: Introduction 18

This protocol involves three entities: the two usersA andB, and AS, an authentication

server that they both trust. KA is a secret key shared betweenA andAS, andKB is a secret

key shared betweenB andAS. CK is a session key that the authentication server generates

for A and B to use to encrypt their communications after they are done authenticating each

other.IA1 andIB are nonces generated byA andB respectively. Anonce is an unpredictable

value that is generated by a principal, used once in a protocol, and then never used again.

In the first step of the protocolA sends a plaintext message to the authentication

server. The message containsA’s name,B’s name, and a nonce generated byA. In the sec-

ond step, the authentication server replies toA with a message encrypted using the keyKA.

In this message the authentication server includes the nonce thatA sent,B’s name, a session

key that theAS created, and something that Needham and Schroeder call aticket. The ticket

contains the session key andA’s name encrypted underKB. Upon receipt of this messageA

can remove the outer layer of encryption by decrypting it withKA. A then checks to see that

the nonce is the same one which was sent in step one. If so,A then knows that the message

is fresh because it must have been generated after the time whenA created the nonce. Since

A could be attempting to establish communication sessions with a number of agents simul-

taneously,A also checks forB’s name to make sure that this is a reply to her request to talk

to B.From this same messageA also learnsCK, the conversation key created by the authen-

tication server, and the ticket. SinceA does not knowKB she cannot read the contents of

the ticket, but she can blindly forward it toB which she does in step three.

WhenB receives the messageA sent in step three, he decrypts it and discovers that

A wishes to talk to him and that the session key isCK. In step four,B generates a nonce,

encrypts it under the session key, and sends the result back toA. This is sometimes referred

to as achallenge sinceB is challengingA to prove that she knows the session key. In the

final step of the protocol,A receivesB’s message, decrypts it, subtracts one from the nonce,

encrypts that value with the session key, and sends the result toB. After decrypting this

Chapter 1: Introduction 19

reply and checking thatA has indeed returned one less than the nonce sent in step four,A

has demonstrated her knowledge of the session key toB. So after successfully completing

this protocolA andB each believe that they share a conversation key known only to them

and the authentication server whom they trust. Furthermore, they haveauthenticated each

other -A believes that the agent she will be talking to withCK is B because onlyB could

have decrypted the ticket to find out the conversation key, andB believes that the agent he

will be talking to withCK is A because onlyA could have decrypted the message from the

authentication server that contained the ticket.

1.4.2 Problems with Cryptographic Protocols

Three years after it was proposed, another group of researchers discovered a way

for an intruder to deceive an agent using the Needham and Schroeder Private-Key Protocol

into believing that she was communicating with one of the other principals when she was

actually communicating with an intruder. In [DS81], Denning and Sacco point out that the

reason that principals should use conversation keys is so that any damage done by the com-

promise of a key would be limited to a single session. A conversation key might be com-

promised through cryptanalysis or by breaking into theAS or intoA’s or B’s computer to

steal a key. Conversation keys are intended to discourage intruders from even attempting

these types of attacks by making them expensive, risky, and time-consuming enough so that

the value of breaking a conversation key is not worth the effort. However, it may be worth-

while for an enemy to compromise a conversation key if it jeopardizes more than a single

past session.

Denning and Sacco assume that some intruder, namedI, has recorded a run of the

Needham and Schroeder Private-Key Protocol by agentsA andB and subsequently com-

promised the conversation key,CK. The key may not be compromised for many months or

years after the session between the two had ended, but from that point on the intruder can

Chapter 1: Introduction 20

pass himself off asA to B at will.

Figure 1.8 : Denning and Sacco’s Attack on the Needham and Schroeder Protocol

The attack, illustrated in Figure 1.8, begins with the intruder sendingB a copy of the old

message fromA suggestingCK as a conversation key.B has no way of knowing that this

isn’t a valid connection request fromA or that he has already usedCK as a session key in

the past. Adhering to the protocol,B replies with a new nonce challenge forA which the

intruder intercepts and is able to decrypt. The intruder can then generate the proper

response and convinceB that he is talking withA using the keyCK.

This attack was interesting for several reasons. Most importantly, the protocol had

been studied for quite some time and was actually being used in a popular network appli-

cation, so it was surprising and disturbing that the flaw had gone undetected. Secondly, the

nature of the flaw was interesting because there was no problem with the cryptographic

algorithm (DES). Rather, there was a flaw in the protocol which is rather short and was

thought to be very simple.

This pattern of protocol design, scrutiny, implementation, and flaw discovery has

been repeated an alarming number of times in the years that have followed Denning and

Sacco’s discovery. This has been the main problem with cryptographic protocols: too many

of them have had flaws revealed later rather than earlier, and this has caused many people

to become skeptical of cryptographic protocols in general.

I B:→ CK A,{ }KB

B I :→ I ′B{ }CK

I B:→ I ′B 1–{ }CK

Chapter 1: Introduction 21

1.4.3 The Importance of Protocol Correctness

When flawed security protocols are implemented and used there can be grave con-

sequences. Cryptographic protocols are already being used for electronic funds transfers,

and voting protocols have been proposed and may be used for elections in the near future.

If an unscrupulous person is the first to discover a flaw in one of these protocols, he could

exploit it to steal a large amount of money or influence the results of an election. Since the

payoff for breaking some of these protocols is so large, we should expect these protocols to

be subject to serious, sophisticated, and well-funded attacks. Withstanding these attacks

will require a variety of analysis techniques to reduce the number of flaws in protocols and

to try to ensure that any flaws that may remain will not be easy to find.

There are also less tangible costs that can be attributed to flawed protocols. For

example, while internet use has grown exponentially in the past decade, commerce over the

internet has not expanded at nearly the same rate. Well-publicized flaws in several protocols

for internet commerce have convinced most people that they cannot trust the security mech-

anisms that are in place, and commerce on the internet has suffered accordingly. In order to

begin to realize the vast potential of commerce on the internet, the research community will

have to convince the general public that the best available methods are being used to design

and validate the protocols.

1.5 Our Approach to Protocol Analysis

As important as correctness is for cryptographic protocols, we must acknowledge

that there is a fundamental limitation on what we can hope to achieve through analysis. Pro-

tocols may be short and somewhat simple computer programs, but they are programs none-

theless, and we know that we cannot prove their correctness in the general case.

Chapter 1: Introduction 22

Another problem with trying to prove protocol correctness is the difficulty in spec-

ifying the correctness criteria. Given protocolP with goalG, it is not sufficient to show that

P achievesG. What must really be shown is that for all possible sequences of actions by all

possible intruders,P achievesG. That can be a very hard specification to reason about, par-

ticularly since we assume that intruders are intelligent agents who are actively trying to sub-

vert the protocol.

For the reasons given above, our approach is intended to help designers reduce the

number of flaws in their protocols, and especially to point out some of the flaws that would

be easiest for an adversary to identify and exploit.

1.5.1 Overview of Our Approach

A more detailed description of our method is given in Chapter 5, but our basic strat-

egy is to specify the protocol(s) to be analyzed in a formal language that is designed to

express cryptographic protocols. In this language, the assumptions, actions, and goals of

each protocol are stated explicitly. We then negate the goals to establish a failure condition

for each protocol. Since there is a formal semantics defined for the language we are using,

we can give a formal semantic definition of what it means for a protocol to fail. This defi-

nition of failure can be represented as a logical theorem, the proof of which indicates that

the protocol is vulnerable to an attack.

Our approach is to employ an automatic theorem prover to attempt to find a con-

structive proof of the theorem and then modify the protocol by adding or deleting valid

statements according to the proof. If the proof succeeds, we have not only proven that the

protocol is flawed, but we have also generated code that implements the attack and exploits

the flaw. Unfortunately, if the theorem prover cannot prove the theorem in some reasonable

amount of time, we cannot say that the protocol is sound. In Chapter 5 we discuss some

Chapter 1: Introduction 23

weaker conclusions that we can draw when we cannot prove that the protocol is flawed.

1.5.2 Advantages of our Approach

One of the main strengths of our methodology is its power. Given an adequate set

of axioms and enough time, our approach can discover any attack that exists for a given

protocol and failure condition. For example, our approach has been able to discover a

previously unknown type of attack based on the interactions among different protocols.

Even if our methodology does not discover a flaw in the amount of time it is given to run,

we can make a useful statement about the minimum length of a constructive proof for any

attack that might exist on the protocol (for the given failure condition and axiom set) as a

result of its analysis.We will revisit each of these points in Chapter 7 after we have

presented our method and results in Chapters 5 and 6, respectively.

1.6 Outline of this Dissertation

The organization of this dissertation is as follows. In Chapter 2 we review the work

that has already been done on cryptographic protocol design and analysis. In Chapters 3 and

4, we review the practical and theoretical background material upon which our approach is

built, followed by a detailed presentation of our methodology in Chapter 5. We demonstrate

our method in Chapter 6 by presenting the results of our system’s analysis of a number of

cryptographic protocols from the literature. Finally, in Chapter 7 we offer our conclusions

and note some possible extensions to our work that may be undertaken in the future.

24

Chapter 2

Related Work

In this chapter we review the various cryptographic protocol analysis techniques

that have been developed to date. These methods can be roughly divided into four catego-

ries: ad-hoc strategies, general-purpose specification and verification systems, special-pur-

pose state-based approaches, and logical analysis. Each of the next four sections examines

one of these categories and presents, in roughly chronological order, the methods that com-

prise it.

2.1 Ad-Hoc Strategies

When we consider all of the techniques that have been used to analyze crypto-

graphic protocols in the past twenty years, informal methods have probably been the most

commonly used and the most successful at identifying and eliminating flaws. This can be

attributed to the relative youth of the field, as researchers have only recently moved from

informal towards more formal approaches, and many of these formal methods have not yet

had their full impact. The move to formality is, of course, necessary in this field, and we

can expect many of the formal systems that we will discuss in later sections to overtake and

Chapter 2: Related Work 25

replace these ad-hoc strategies in the near future.

2.1.1 Denning and Sacco

The flaw (see Figure 1.8) in the Needham and Schroeder Private-Key Protocol

[NS78] found by Denning and Sacco [DS81] is the earliest example of informal analysis

uncovering a flaw in a protocol. Denning and Sacco realized that while the ticket sent toB

in step 3 of the protocol (see Figure 1.7) must have been good when it was generated by the

authentication server, there is nothing about the ticket that tellsB how long ago theAS may

have generated it. If the ticket is very old, it is probably not good anymore since an intruder

might have had time to compromise the session key contained in it. Denning and Sacco sug-

gest that this weakness can be avoided if a timestamp is placed in theAS’s reply toA and

in the ticket forB. The use of timestamps eliminates the need for nonces to prove the fresh-

ness of messages and thereby reduces the number of messages in the protocol from five to

three.

Figure 2.1 : Denning and Sacco’s version of the Needham and Schroeder Protocol

In the above specification,T represents atimestamp - an explicit statement of the local time

at which the message was generated. Denning and Sacco assume that the clocks ofA, B,

and theAS, are loosely synchronized so thatA andB can check, respectively, that the mes-

sage from theAS and the ticket were not created too far in the past.

2.1.2 Simmons

Another example of informal analysis is found in [SIM85], in which Simmons pre-

A AS:→ A B,

AS A:→ B CK T A CK T,,{ }KB,,,{ }KA

A B:→ A CK T,,{ }KB

Chapter 2: Related Work 26

sents the results of his analysis of the TMN Protocol [TMN89]. The TMN Protocol is a key

distribution scheme by which a pair of ground stations in a mobile communication system

obtain a common session key, through the mediation of a trusted server. The protocol

assumes that the server has a public/private key pair and that the server’s public key is

known to all of the ground stations. A pseudocode specification of the TMN Protocol is

given below.

Figure 2.2 : The TMN Protocol

In step 1 of the protocol, userA notifies the server that she wishes to communicate withB.

She sends her name,B’s name, and a random number encrypted withS’s public key. When

the server receives this message, it decrypts the random number using its private key and

stores it as the key-encryption key. In step 2, the server notifiesB thatA wishes to talk to

him. UserB then generates a random number, encrypts it withS’s public key, and sends the

result toS in step 3. The server decryptsB’s reply, encryptsB’s random number usingA’s

random number as a key, and sends this value toA. After decrypting the message from the

server,A will know B’s random number which can then be used as a session key to encrypt

subsequent communications.

Simmons identified two security flaws in this protocol. The first results from the fact

that no secure authentication is used between parties, so an intruder,I, can cause the server

to convinceA that a key generated by him was generated byB. He can accomplish this by

interceptingB’s reply to the server in step three and replacing it with the encryption under

S’s public key of a random number he has generated himself. The server will decrypt this

A S:→ A B r1{ }SPublic,,

S B:→ A

B S:→ r2{ }SPublic

S A:→ r2{ }r 1

Chapter 2: Related Work 27

message, encryptI’s random number withA’s key-encryption key, and send the result toA.

WhenA receives this message and decrypts it she will think that the intruder’s random num-

ber is the session key she should use to converse privately withB. This attack is illustrated

in Figure 2.3.

Figure 2.3 : Simmons’ First Attack on the TMN Protocol

The second flaw in the TMN protocol is slightly more complex because it relies on

two properties of the cryptosystems used in the TMN Protocol. For the public-key algo-

rithm used, it is the case that encryption distributes over multiplication:

(2.1)

For the secret-key algorithm we have:

(2.2)

Given these two axioms about the cryptosystems, the attack proceeds as follows.

There are two dishonest ground stations: thecheater, C, and hispartner, P. Before they

attempt to attack the protocol each generates a random number, stores it, and sends a copy

to the other. The number created by the cheater is called thecheater key and the other is

referred to as thepartner key. After they have exchanged these values they wait until station

A decides it needs to talk with stationB. At this timeA performs the first step of the TMN

protocol and send a message toS.

A S:→ A B r1{ }SPublic,,

S B:→ A

B I :→ r2{ }SPublic

I S:→ r3{ }SPublic

S A:→ r3{ }r 1

r1{ }SPublic r2{ }SPublic× r1 r2×{ }SPublic=

X{ }Y Y{ }X=

Chapter 2: Related Work 28

The cheater sees this message in transit and makes a note of the value for later

use. The cheater then encrypts the cheater key under the server’s public key and multiplies

it by the value she has just learned. The result is sent as the third field in the cheater’s next

message, which is a request to the server for a conversation with cheater’s partner.

The server receives the cheater’s request, decrypts it, and notifiesP thatC wants to talk to

him. The partner replies with the partner key encrypted under the server’s public key.

The server receives the message, decrypts it, encrypts the partner key using the value sent

in the cheater’s first message, and sends the result back to the cheater.

After receiving this message the cheater decrypts it using the partner key and divides the

result by the cheater key which gives:

By applying axiom 2.1 we know that this value is equivalent to:

By simplifying to we get:

A S:→ A B r1{ }SPublic,,

r1{ }SPublic

C S:→ C P cheaterkey{ }SPublic r1{ }SPublic×(),,

P S:→ partnerkey{ }SPublic

S C:→ partnerkey{ } cheaterkey{ }SPublic r1{ }SPublic×{ }SPrivate()

partnerkey{ } cheaterkey{ }SPublic r1{ }SPublic×{ }SPrivate(){ } partnerkey

cheaterkey
--

partnerkey{ } cheaterkey r1×{ }SPublic{ }SPrivate(){ } partnerkey

cheaterkey

cheaterkey r1×{ }SPublic{ }SPrivate cheaterkey r1×

Chapter 2: Related Work 29

We can then apply axiom 2.2 to transform into

 and obtain:

This can be simplified to:

which can be further simplified to:

r1

So the cheater has been able to deduceA’s key-encryption key and when the server sends

B’s session key toA, at the end ofA andB’s run of the protocol, the cheater will be able to

decrypt that message and learn the session key. With knowledge of the session key the

cheater can decrypt and read every message betweenA andB for that session. It is both sur-

prising and a testament to Simmons’ abilities that such a complex attack was discovered by

informal analysis of the protocol.

2.1.3 Gong

In [GON92], Gong describes a scenario where a clock synchronization failure ren-

ders a protocol vulnerable to an attack even after the faulty clock has been resynchronized.

Gong’s key observation here is that when a party’s clock is ahead of other clocks, its mes-

sages are postdated. Postdated messages that are sent out while the clock is out of synchro-

partnerkey{ } cheaterkey r1×(){ } partnerkey

cheaterkey

partnerkey{ } cheaterkey r1×()

cheaterkey r1×{ } partnerkey

cheaterkey r1×{ } partnerkey{ } partnerkey

cheaterkey

cheaterkey r1×
cheaterkey

Chapter 2: Related Work 30

nization can be intercepted by an intruder and stored until the timestamp on the message

becomes current, at which time the intruder can replay the message. This replay could

occur even after the faulty clock has been brought back into synchronization with the other

clocks in the system.

Gong illustrates the vulnerability of the Kerberos Authentication Protocol to this

type of attack if a clock falls out of synchronization, as the Kerberos system assumes they

can’t:

Suppose a client had obtained all necessary credentials to use a file server. Also suppose
that, later, the clock on the client’s workstation was five hours ahead of the clock at the file
server when the client tried to initiate a connection with the server by composing a request
message, which included a local timestamp to indicate that the request was current. The cli-
ent had now generated a postdated authenticator. An adversary blocked this request mes-
sage from reaching the server. The client got no response and thought that an omission or
performance failure had occurred. Exactly five hours later, when the client had already left,
the adversary replayed the suppressed message from the same workstation (with the same
network address) and established a connection in the client’s name.

Gong calls this type of attack asuppress-replay attack and notes that it cannot be detected

unless the recipient of the message can be notified before the attack can be mounted. In

order for these warnings to do any good, it is necessary not only to detect loss of clock syn-

chronization early, but also to ensure that the messages warning of the attack get through

quickly.

2.1.4 Abadi and Needham

The final piece of work we discuss in this section on ad-hoc methods is the well-

known paper entitled “Prudent Engineering Practice for Cryptographic Protocols” [AN94].

In this paper, Abadi and Needham present principals for the design of cryptographic proto-

cols. While they do not claim that following these guidelines will guarantee correctness of

the protocols developed, they do argue that their principals are helpful and that “adherence

to them would have avoided a considerable number of published errors.”

Chapter 2: Related Work 31

2.1.4.1 Abadi and Needham’s Explicit Naming Principle

One of Abadi and Needham’s principles is the following:

Principle 3 - Explicit Naming

The identity of a principal is essential to the meaning of a message, it is prudent to mention
the principal’s name explicitly in the message.

Abadi and Needham use a key exchange protocol proposed by Denning and Sacco [DS81]

to demonstrate the dangers of not following this guideline. The protocol is given below:

Figure 2.4 : Denning and Sacco Key Exchange Protocol

In the first two messages of this protocol,A obtains fromS certificatesCA andCB that prove

thatKa andKb are the public keys ofA andB respectively. The exact form ofCA andCB is

not important for Abadi and Needham’s purposes. In the third messageA sends these

certificates toB along with a session key,Kab, which will be used to encrypt subsequent

communication betweenA andB, and a timestamp,Ta. The third field of this last message

is signed withA’s private key (to prove thatA sent it) and encrypted withB’s public key (to

keep the contents secret). Denning and Sacco intend that B should know that the third

message of the protocol was intended for him because it is encrypted with his public key,

but Abadi and Needham demonstrate how this might not be the case. If we assume that an

intruder has a valid certificate for his public key fromS and thatA engages in the protocol

with that intruder, thenA will send the following message to the intruder in step 3:

A S:→ A B,

S A:→ CA CB,

A B:→ CA CB KAB TA,{ }APrivate{ }BPublic,,

A I :→ CA CI KAI TA,{ }APrivate{ }I Public,,

Chapter 2: Related Work 32

The intruder can then remove the outer layer of encryption and re-encrypt withB’s public

key. The intruder can then start a conversation with B pretending to be A. The final message

that the intruder sends to B is:

Upon receipt of this message,B will believe that the message is fromA, andB might then

send out sensitive information intended forA, encrypted underKAI which is known by the

intruder. According to Abadi and Needham, the problem with Denning and Sacco’s

protocol is that the Explicit Naming principle has not been followed. They say that “[t]he

intended meaning of Message 3 [of the Denning and Sacco protocol] is roughly ‘At time

Ta, A says thatKab is a good key for communication betweenA and B.’” Abadi and

Needham suggest that the name of the principal for whom message three is intended, be

mentioned explicitly as in:

With this modification, the protocol is no longer vulnerable to the given attack.

2.1.4.2 Abadi and Needham’s Signing Encrypted Data Principle

Another recommendation that Abadi and Needham make is that secret data be

signed before it is encrypted for privacy. They state this principle as follows:

Principle 5 - Signing Encrypted Data

When a principal signs material that has already been encrypted, it should not be inferred
that the principal knows the content of the message. On the other hand, it is proper to infer
that the principal that signs a message and then encrypts it for privacy knows the content of
the message.

To illustrate the importance of this principle, Abadi and Needham examine a protocol from

the CCITT X.509 standard that encrypts secret data and then signs it. The protocol of

interest is the simple one-message protocol that is intended for signed, secure

I B:→ CA CB KAI TA,{ }APrivate{ }BPublic,,

A B:→ CA CB B K, AB TA,{ }APrivate{ }BPublic,,

Chapter 2: Related Work 33

communication between two principals, assuming that each knows the public key of the

other.

Figure 2.5 : CCITT X.509 One-Message Protocol

HereTA is a timestamp,NA is a nonce, andXA andYA are user data. The protocol is intended

to ensureB thatA sentXA andYA and to guarantee the privacy ofYA. However, as Abadi

and Needham point out “althoughYA is transferred in a signed message, there is no

evidence to suggest that the sender is actually aware of the data sent in the private part of

the message. This corresponds to a scenario where some [intruder] intercepts a message

and removes the existing signature while adding his own, blindly copying the encrypted

section within the signed message.” This weakness can be avoided by applying Abadi and

Needham’s principle and signing the secret data before it is encrypted for privacy as shown

below.

2.2 General-Purpose Formal Specification and Verification Systems

Formal specification and verification techniques have been used for some time in

attempts to ensure that critical systems satisfy their requirements. Secure operating systems

and safety-critical software are two areas where this approach has been applied regularly.

In fact, the National Computer Security Center, which certifies systems for use in classified

or other sensitive environments, requires formal specification and verification of system

designs for its highest rating [DOD85].

Several objections to the formal specification and verification approach have been

raised in the literature including Ken Thompson’s Turing Award lecture [THO84] and

DeMillo, Lipton, and Perlis’ renowned paper [DLP79] entitled “Social Processes and

A B:→ A TA NA B XA YA{ }BPublic,,,,{ }APrivate,

A B:→ A TA NA B XA YA{ }APrivate{ }BPublic,,,,{ }APrivate,

Chapter 2: Related Work 34

Proofs of Theorems and Programs”. In the later work, the authors argue that “it is a social

process that determines whether mathematicians feel confident about a theorem - and ...

because no comparable social process can take place among program verifiers, program

verification is bound to fail.” They go further by stating that “scientists should not confuse

mathematical models with reality - and verification is nothing but a model of believability.”

Many researchers in formal methods respond to this criticism as Kemmerer did in

[KEM89] that “although there is some validity to these arguments, formal specification and

verification techniques should not be abandoned until there is a better method to replace

them.” Indeed, several researchers have had notable success using general-purpose formal

specification and verification systems to analyze cryptographic protocols.

2.2.1 Kemmerer

In [KEM89] and [KMM94], Kemmerer describes how cryptographic protocols can

be analyzed using an existing machine-aided formal verification technique. His approach

makes use of the Formal Development Methodology (FDM), which describes a system as

a state-machine that can be in any one of a number of states. According to Kemmerer, “one

state is differentiated from another by the values of state variables, and the values of these

variables can be changed only via well-defined state transitions.” Kemmerer chooses to

represent the properties of the network as state constants and variables with the protocol

defining state transitions. Assumptions about the cryptographic algorithms used by the

protocol can be represented as axioms, and the goals of the protocol are specified as state

invariants.

Given the above specification, the verification system can automatically generate a

set of theorems that must be proven to guarantee that the invariants always hold. The

verification system includes an automated theorem proving component which assists the

user in proving generated theorems and a facility for testing the formal specification by

executing it symbolically. In [KMM94], Kemmerer demonstrates his approach by using it

Chapter 2: Related Work 35

to analyze the TMN protocol and reproduce the Simmons flaw that we described in Section

2.1.2.

2.2.2 Merritt and Toussaint

Another approach to formal analysis of cryptographic protocols has been to use

algebras to reason about knowledge. The protocol is modeled as an algebraic system which

expresses the state of the participants and the intruder’s knowledge about the protocol. This

technique was used by Toussaint in [TOU91] to demonstrate how attacks can be detected

by a principal’s seeing an inconsistency between messages received and its state of

knowledge of the words used in the protocol. Merritt used a similar approach in [MER83]

to definehidden automorphisms which express an intruder’s lack of knowledge about the

contents of a message:

Suppose, for example, that a principal views a message e(k,m) (denoting the encryption of
m with k), where that principal does not know k. Suppose furthermore that we define an
automorphism h of the space of words such that h(m)=n for some n, but all other words are
left invariant. Then the set of messages known by the principal is invariant under h, (in par-
ticular h(e(k,m)) = e(k,m)). Thus effects of the automorphism are invisible to the principal,
and can be used to define formally the principal’s ignorance of m. [MEA94]

Merritt uses these hidden automorphisms to prove results about secrecy that are

“considerably more subtle than the simple secrecy of words; for example, he is able to

prove that the correspondence between votes and individual voters in a voting protocol is

unknown, even when all the voters and all votes are public.”

2.2.3 Lowe

Another formal method that has had success analyzing cryptographic protocols is

the Failure Divergences Refinement Checker (FDR), a model checker for Communicating

Sequential Processes (CSP). FDR takes as input two CSP processes, a specification and an

implementation, and tests whether the implementation refines the specification. FDR has

been used to analyze many types of systems, including communications protocols,

distributed databases, and puzzles. In [LOW96], Lowe uses FDR to uncover a previously

Chapter 2: Related Work 36

unknown flaw in a reduced version of Needham and Schroeder’s Public-Key

Authentication Protocol shown below.

Figure 2.6 : Needham and Schroeder’s Public-Key Protocol

The complete Needham and Schroeder Public-Key Protocol presented in [NS78] involves

seven steps, but for his analysis Lowe considers only the last three. The omitted steps deal

with each agent requesting and receiving the other’s public key from the server. Lowe notes

that these steps can be omitted if we assume that each agent already knows the other’s

public key. As an aside, Lowe notes that the full seven-step protocol suffers from a

weakness that allows an intruder to replay old, compromised public key messages from the

server, since these messages contain no proof of freshness. This flaw is well known and can

be repaired easily by having the agents include nonces in their requests and then having the

server return the nonces in its replies.

Lowe’s analysis proceeds as follows. The two agents taking part in the protocol are

modeled as CSP processes. Also part of the model is an intruder who can interact with the

two legitimate principals and intercept their messages to each other. FDR is then used to

test whether the protocol correctly achieves its goal of authenticating the two honest

principals to one another. The result of this analysis is the discovery of an attack which

allows the intruder to convince agentB that he is agentA during a run of the protocol. The

attack scenario is shown in Figure 2.7.

A B:→ A B NA A,{ }BPublic,,

B A:→ B A NA NB,{ }APublic,,

A B:→ A B NB{ }BPublic,,

A I :→ A I NA A,{ }I Public,,

I B:→ A B NA A,{ }BPublic,,

B I :→ B A NA NB,{ }APublic,,

I A:→ I A NA NB,{ }APublic,,

Chapter 2: Related Work 37

Figure 2.7 : Lowe’s Attack on the Needham and Schroeder Public-Key Protocol

The attack starts when agentA begins a run of the protocol with the intruder by

sending the nonce encrypted under the intruder’s public key. In step two, the intruder

decrypts the nonce and encrypts it usingB’s public key, forming part of a message he will

send toB claiming to beA. This is usually called aparallel-session attack since the intruder

is taking part in two or more runs of the protocol simultaneously and uses information

learned in one session to attack in another. In step three of the attack, agentB replies to the

message from the intruder by encrypting and a new nonce, , underA’s public key

and sending the result back to the intruder. Since the intruder doesn’t knowA’s private key,

he cannot decrypt this message. In step four, the intruder sends the message he has just

received fromB to A who is waiting forI’s reply in their run of the protocol. In step five

agentA decrypts the message and returns to the intruder encrypted usingI’s public key.

This is exactly the value the intruder needs to construct message six and convinceB that he

has successfully authenticated agentA.

2.3 Special-purpose State-Based Approaches

Both Kemmerer and Lowe’s work are described asstate-based approaches since the

system is always viewed as being in a distinct state1 with the protocol and the abilities of

the intruder defining state transitions. The system is then analyzed to determine whether

any insecure state is reachable. Both Kemmerer and Lowe utilize existing, general-purpose

formal methods for specification and analysis of protocols. Another group of researchers

has chosen to follow the state-based approach as well, but they have developed special-

purpose systems for dealing with cryptographic protocols.

1. This implicitly assumes a blocking semantics for send and receive operations.

A I :→ A I NB{ }I Public,,

I B:→ A B NB{ }BPublic,,

NA

NA NB

NB

Chapter 2: Related Work 38

2.3.1 Dolev and Yao

In [DY83], Dolev and Yao propose several algorithms to analyze restricted classes

of cryptographic protocols. The protocols that Dolev and Yao’s method applies to are

limited to using public-key cryptography only, and their technique does not address any

properties of the cryptosystem that the protocol uses except in so far as:

• Encryption using the public key is cancelled out by decryption with the pri-

vate key and vice versa

• It is impossible to read a message encrypted with a public key unless the

private key is known

Dolev and Yao define the two classes of protocols that they will consider as cascade and

name-stamp protocols. In acascade protocol the users can apply any number of public-key

encryption or decryption operations to form the messages that they send to each other. In a

name-stamp protocol the users are allowed to append, delete, and check names encrypted

with plaintext. As in a cascade protocol, any number of public-key encryption or decryption

operations can be applied in a name-stamp protocol. Dolev and Yao give the following as

an example of a simple cascade protocol.

Figure 2.8 : A Simple Cascade Protocol

Dolev and Yao then give efficient algorithms that determine whether a given

cascade or name-stamp protocol is secure. By secure, they refer only to the privacy of

values that have been encrypted. There is no attempt to reason about the freshness of a value

or the identity of the agent who sent it. For cascade protocols, they state that a protocol is

secure if and only if both of the following conditions are satisfied:

• The messages transmitted betweenA andB always contain some layers of

A B:→ A M{ }BPublic B,,

B A:→ B M{ }APublic A,,

Chapter 2: Related Work 39

encryption (under eitherA or B’s public key)

• In generating a reply message, each participant never applies the decrypt

operator without subsequently applying the encrypt operator.

Dolev and Yao show how the cascade protocol in Figure 2.8 does not meet the first of these

two requirements, and they give the following attack. The intruder interceptsA’s opening

message toB. In step two, he sends this message toB. In step three,B replies with a message

encrypted under the intruder’s public key. The intruder can then decrypt this message and

learn the value ofM. This attack is shown in Figure 2.9 below.

Figure 2.9 : Attack on the Cascade Protocol

Although Dolev and Yao’s algorithms are not applicable to a large number of

cryptographic protocols, they are noteworthy for being among the earliest formal methods

used to analyze security protocols and for pioneering the state-transition model for protocol

analysis. The work we discuss in the next three sections was heavily influenced by the

Dolev and Yao approach and has aimed to extend the state-transition method to a larger

class of operators and message formats, to broaden the types of security that can be

reasoned about, and to supply computer support during analysis.

2.3.2 Millen

One of the earliest systems to extend the Dolev and Yao approach was the

Interrogator [MIL87] [MIL95] developed by Millen. The Interrogator is a Prolog program

that takes a protocol specification and a compromise objective and then performs a search

of the state space in an attempt to find a path from an initial state to a state in which the

A I :→ A M{ }BPublic B,,

I B:→ I M{ }BPublic B,,

B I :→ B M{ }I Public I,,

Chapter 2: Related Work 40

compromise objective is satisfied. Early versions of the Interrogator were fully automatic;

there was no user intervention after specifying the protocol and compromise objective.

More recent versions of the Interrogator allow user interaction during the search.

For example, the Interrogator might be considering several possible state transitions at

some point in the search and it will ask the user which one to try first. If the user’s choice

is unproductive, the program will return to the choice point and, if there are any remaining,

ask for another choice. There is also a limited automatic search mode in which the program

makes an arbitrary choice without asking the user, but this feature is carefully designed to

ensure that the program will not fall into a loop.

The Interrogator has been able to reproduce a number of known attacks on

cryptographic protocols, but it has not yet uncovered any previously unknown vulnerability

in a well-known protocol. Furthermore, according to [MIL95]:

The tool requires some training to use effectively, for two principal reasons. First, the secu-
rity objective must be set up in the initial and goal state with enough information to con-
strain the overall penetration approach. If messages or message fields are to be replayed,
for example, the user must know that and specify them in the initial state. During the inter-
active search phase, the attacker’s use of encryption or other devices is controlled interac-
tively, and this also requires understanding of the overall attack strategy.

2.3.3 Meadows

The NRL Protocol Analyzer [MEA91] is also based on the Dolev and Yao

approach, but it takes a slightly different approach than the Interrogator. As with the

Interrogator, the user specifies a protocol and an insecure state. Unlike the Interrogator,

Meadows’ tool is intended to help the user prove that the insecure state is unreachable from

the initial state. This is done by helping the user prove that certain paths leading backwards

from the insecure state go into infinite loops and therefore never reach the initial state.

According to [MEA94]:

Once these paths have been eliminated, the resulting search space is often small enough to
search exhaustively. The proofs that paths lead into infinite loops are largely guided by the

Chapter 2: Related Work 41

user; thus the search is much less automated than in the Interrogator.

Unlike the Interrogator, the NRL Protocol Analyzer also allows an unlimited

number of protocol rounds in a single path. While this makes the search space infinite, it

also allows the Analyzer to discover parallel session attacks where the intruder takes part

in two or more runs of the protocol simultaneously and uses information learned in one

session to attack in another.

The NRL Protocol Analyzer can also be used to find flaws in protocols by

generating paths to insecure states. It has been used to demonstrate several flaws that were

already known to exist, including the attack on the TMN Protocol shown in Figure 2.3.

More impressively, Meadows has used the Protocol Analyzer to find several previously

unknown security flaws in some well-known cryptographic protocols, including an

authentication flaw in Simmons’ Selective Broadcast Protocol [SIM85] and a vulnerability

in the Burns and Mitchell Resource Sharing Protocol [BM90].

2.3.4 Longley and Rigby

Another system for protocol analysis is that of Longley and Rigby [LR92] who

developed a PROLOG program which automatically examines key management schemes

for flaws. By using a simple rule-based model the package sets up a large but finite search

tree with the intruder’s goal as the root. Each child node in the tree represents a scenario by

which the intruder could discover the information in its parent. The user of Longley and

Rigby’s tool can then guide the search in an attempt to eliminate leaves that correspond to

impossible attacks. When a leaf is removed the search might proceed through other subtrees

of the parent node. The search ends in one of two ways. If the tree has been pruned so that

only the root remains, then the package reports that no attack has been found. If the search

is successful and it finds some subtree that satisfies the goal at the root, the package prints

out the steps needed to implement the attack.

Chapter 2: Related Work 42

As noted by its authors, the value of this system is that it “provides for an automatic,

impartial, and exhaustive search for security-specified security loopholes.” [LR92]

However, Longley and Rigby go on to caution that:

The package does not claim to be an automatic certification system for three reasons. Firstly
it only tests for specified attacks, secondly there is no means of guaranteeing that all possi-
ble data, required for the attack and available to the attacker, are included in the input data,
and thirdly there has been no theoretical analysis of the search technique to guarantee that
it is truly exhaustive.

The Longley and Rigby system was used to find a previously unknown flaw in a draft

hierarchical key management scheme designed for an electronic funds transfer point of sale

(EFTPOS) network.

2.4 Logical Analysis

With more than a dozen different logics defined, logical analysis of cryptographic

protocols is the most extensive of the four analytical approaches we will discuss in this

chapter. According to Carnap [CAR37], a logical system is characterized by stating its

formation rules and its transformation rules. Theformation rules provide us with a list of

recognized characters and a decidable means of delineating the grammatically well formed

formulae. Thetransformation rules provide us with a list of axiomatic sentences and a (not

necessarily decidable) means of delineating those sentences that follow from a given set of

sentences called the inference rules. Many of the logics that have been developed for

cryptographic protocol analysis have their roots in the various logics that had been

developed previously to reason about the knowledge and beliefs of agents in a distributed

system. These logics can be divided into two categories: epistemic and doxastic. Logics that

deal with the knowledge set of principals are calledepistemic logics, and those which deal

with the belief set of agents are calleddoxastic logics. All epistemic logics assume that

principals cannot know something that is false and so they always include the axiom “If

agentX knowsY thenY is true,” but no doxastic logic has a comparable axiom for belief.

Chapter 2: Related Work 43

Therefore, in a doxastic logic it can be a true statement that some principal believes a

statement that is false.

For a cryptographic protocol to be analyzed using logic it must first be translated

from its procedural representation into the language of the logic. This process is called

idealization and has been the topic of some debate in the research community. The

difficulties with idealization are two-fold. First, due to the informal manner in which

protocols are usually specified, idealization itself is often an informal procedure. Without

agreed-upon rules governing idealization, different researchers have sometimes idealized

the same protocol in slightly different ways, leading to vastly different results during

analysis. It is not always the case that the research community can agree on which

idealization was “correct.” The second difficulty in idealization is the need for global

knowledge. According to Burrows, Abadi, and Needham, “the idealized form of each

message cannot be determined by looking at a single protocol step by itself. Only

knowledge of the entire protocol can determine the essential logical components of the

message” [BAN89]. As we will see later, there have been many suggestions aimed at

improving or eliminating the idealization procedure.

In [MEA94], Meadows gives the following overview of the use of logic in analyzing

cryptographic protocols:

In an analysis of a protocol, an initial set of beliefs [and/or knowledge] is assumed. One
then uses the inference rules to determine what beliefs can be derived from the initial beliefs
and the beliefs gained from participating in the protocol. If the set of beliefs [and/or knowl-
edge] is adequate, according to some predefined notion of adequacy, then the protocol is
assumed to have been proven correct. If the set of beliefs [and/or knowledge] is not ade-
quate, then it may lead to the discovery of a security flaw in the protocol.

In the following sections we present a number of logics that have been designed to reason

about cryptographic protocols. We demonstrate how they are used and compare some of

their various strengths and weaknesses. Where possible, we try to discuss some of the

results that analysis with these logics has yielded.

Chapter 2: Related Work 44

2.4.1 Burrows, Abadi, and Needham

Perhaps the best known and most widely-used logic for cryptographic protocol

analysis is that of Burrows, Abadi, and Needham, commonly known as BAN logic. In

[BAN89], Burrows, Abadi, and Needham describe BAN as a “simple logic [that allows] us

to describe the beliefs of trustworthy parties involved in authentication protocols and the

evolution of these beliefs as a consequence of communication.”

2.4.1.1 The Logic

BAN logic is a many-sorted modal logic that distinguishes between different types

of objects including principals, encryption keys, and formulas (also called statements). The

only propositional connective in BAN logic is conjunction, which is denoted by a comma.

An explanation of the basic notation of BAN logic from [BAN89] is given below. In this

list, the symbolsP, Q, andR, range over the set of principals, the symbolsX andY range

over the set of statements, and the symbolK ranges over the set of encryption keys.

P believesX: P would be entitled to believeX. In particular, the principalP may act as
thoughX is true.

P seesX: Someone has sent a message containingX to P, who can read and repeatX
(possibly after doing some decryption).

P said X: The principalP at some time sent a message including the statementX. It is not
known whether the message was sent long ago or during the current run of the
protocol, but it is known thatP believedX then.

P controls X: The principalP is an authority onX and should be trusted on this matter.

fresh(X): The formulaX is fresh, that is,X has not been sent in a message at any time before
the current run of the protocol.

 : P andQ may use the shared keyK to communicate. The keyK is good, in that it
will never be discovered by any principal exceptP or Q, or a principal trusted by
eitherP or Q.

 : P hasK as a public key. The matching secret key (denoted) will never be
discovered by any principal exceptP, or a principal trusted byP.

 : The formulaX is a secret known only toP andQ, and possibly to principals
trusted by them. OnlyP andQ may useX to prove their identities to one another.

 : This represents the formulaX encrypted under the keyK. Formally, is a
convenient abbreviation for an expression of the form fromP. We make the

K
P Q↔

K
P→

K
1–

X
P Q⇔

X{ }K X{ }K
X{ }K

Chapter 2: Related Work 45

realistic assumption that each principal is able to recognize and ignore his own
messages; the originator of each message is mentioned for this purpose.

 : This represents X combined with the formula Y; it is intended that Y be a secret,
and that its presence prove the identity of whoever utters .

The logical postulates given in [BAN89] that are used in proofs are the following.

• The message-meaning rules concern the interpretation of messages. Two of the three concern the
interpretation of encrypted messages, and the third concerns the interpretation of messages with
secrets. They all explain how to derive beliefs about the origin of messages. For shared keys, we
postulate:

That is, ifP believes that the keyK is shared withQ and seesX encrypted underK, thenP believes
thatQ once saidX. For this rule to be sound, we must guarantee thatP did not send the message
himself: it suffices to recall that stands for a formula of the form fromR, and to require
that . Similarly, for public keys, we postulate:

For shared secrets, we postulate:

That is, ifP believes that the secretY is shared withQ and sees , thenP believes thatQ once
saidX. This postulate is sound because the rules forsees (given below) guarantee that was
not just uttered byP himself.

• Thenonce-verification rule expresses the check that a message is recent, and hence that the sender
still believes in it:

That is, ifP believes thatX could have been uttered only recently (in the present) and thatQ once
saidX (either in the past or in the present), thenP believes thatQ believesX. For the sake of
simplicity, X must be “cleartext,” that is, it should not include any subformula of the form .

• The jurisdiction rule states that ifP believes thatQ has jurisdiction overX thenP trustsQ on the
truth ofX:

<X>Y
<X>Y

P believes
K

P Q↔ 
 

P sees X{ }K,

P believes Q said X
--

X{ }K X{ }K
R P≠

P believes K
Q→ 

  P sees X{ } 1–K
,

P believes Q said X
--

P believes Y
P Q⇔ 

  P sees <X>Y,

P believes Q said X
--

<X>Y
<X>Y

P believes fresh(X) P believes Q said X,
P believes Q believes X

--

X{ }K

Chapter 2: Related Work 46

• If a principal sees a formula then he also sees its components, provided he knows the necessary
keys:

Recall that stands for a formula of the form fromR. As a side condition, it is required
that , that is, is not fromP himself. A similar condition applies to .

The fourth rule is justified by the implicit assumption that ifP believes thatK is his public key, then
P knows the corresponding secret key .

Note that ifP seesX andP seesY it does not follow thatP sees (X,Y), since this means thatX andY
were uttered at the same time.

If one part of a formula is fresh, then the entire formula must also be fresh:

2.4.1.2 Analyzing a Protocol Using BAN Logic

One of the authentication protocols analyzed in [BAN89] is the Andrew Secure

RPC Handshake. The protocol is intended to enable a client, A, to obtain from a server, B,

a new session key, , given that they already share a key, . The protocol is given

in the standard cryptographic protocol pseudocode below.

P believes Q controls X,
P believes Q believes X

P believes X
--

P sees (X,Y)
P sees X

P sees <X>Y

P sees X

P believes K
P Q↔ 

  P seesX{ }K,

P sees X
--

P believes K
P→ 

  P seesX{ }K,

P sees X
--

P believes K
Q→ 

  P seesX{ } 1–K
,

P sees X

X{ }K X{ }K
R P≠ X{ }K X{ }

K 1–

K
1–

P believes fresh(X)
P believes fresh(X,Y)
--

K'AB K AB

A B:→ A NA{ }K AB
,

B A:→ NA 1+() NB,{ }K AB

A B:→ NB 1+{ }K AB

Chapter 2: Related Work 47

Figure 2.10 : Pseudocode representation of the Andrew Secure RPC Handshake

 and are nonces created byA andB respectively, and is an initial sequence

number that will be incremented and used to number each message in the session that

follows the authentication protocol. In the first message,A sends a nonce toB. In the second

message,B returnsA’s nonce, incremented by one, along with a nonce of his own. The

client, A, returnsB’s nonce incremented by one, and thenB sendsA the new session key

and the beginning sequence number.

Burrows, Abadi, and Needham idealized the protocol into the following BAN logic

representation.

Figure 2.11 : The Andrew Secure RPC Handshake expressed in BAN Logic

Next the protocol’s assumptions are listed:

A believes

B believes

A believes (B controls)

B believes

A believes fresh()

B believes fresh()

B A:→ K'AB N'B,{ }K AB

NA NB N'B

A B:→ NA{ }K AB

B A:→ NA NB,{ }K AB

A B:→ NB{ }K AB

B A:→ K'AB

A B↔ 
  N'B,

 
 
 

K AB

K AB

A B↔

K AB

A B↔

K
A B↔

K'AB

A B↔

NA

NB

Chapter 2: Related Work 48

B believes fresh()

The first two assumptions indicate thatA andB initially share a good key, . The third

assumption states thatA trustsB to generate good keys, and the fourth indicates thatB has

generated a new key that he considers to be good. The final three assumptions indicate that

each agent believes the nonces it has generated to be fresh.

The analysis of this protocol using BAN logic looks like this. From the assumptions

we know that:

B believes

From the four messages in the protocol we know that:

A said

B said (,)

A said

B said

Since each message was encrypted under we can use the first message-meaning rule

to deduce:

B believes A said

A believes B said (,)

B believes A said

A believes B said

N'B

K AB

K'AB

A B↔

NA

NA NB

NB

K'AB

A B↔ 
  N'B, 

 

K AB

NA

NA NB

NB

K'AB

A B↔ 
  N'B, 

 

Chapter 2: Related Work 49

By using the nonce-verification rule on the three assumptions about nonce freshness and

the preceding formulas we get:

B believes A believes

A believes B believes (,)

However, we cannot get:

A believes B believes

So while it has been proved thatB believes that he andA share a good new session key, we

cannot prove thatA believes the same thing. This is because there is nothing in the fourth

message of the protocol thatA believes to be fresh. Burrows, Abadi, and Needham’s

conclusion is that:

the protocol suffers from the weakness that an intruder can replay an old message as the last
message in the protocol, and convinceA to use an old, possibly compromised session key.
In other words, an intruder may find an old session key, and he may replay the fourth
message of the handshake in which that key was established; he can then impersonateB.
The problem can be fixed simply by adding the nonce to the last message, and indeed
a descendant of the Andrew file system has adopted this solution.

2.4.1.3 Nessett

Although BAN is currently the most popular logic for examining cryptographic

protocols, a number of researchers have identified shortcomings in it. This has lead to the

development of a host of extensions to BAN and a number of new logics all designed to

address BAN’s weaknesses. For example, in [NES90] Nessett presents a simple key-

distribution protocol and then utilizes BAN logic to prove that the protocol is “secure” in

so far as it can be proven that:

A believes

B believes

NB

NA NB

K'AB

A B↔

NA

K AB

A B↔

K AB

A B↔

Chapter 2: Related Work 50

A believesB believes

B believesA believes

and the proof of these four properties was used to demonstrate the security of a key-

distribution protocol in [BAN89]. Nessett’s protocol is given below.

Figure 2.12 : The Nessett Protocol

In the first step of the protocol agentA sends toB a nonce and a new session key, both of

which she has supposedly generated and encrypted under her private key. In the second

step,B generates a nonce, encrypts it under the new session key, and returns the result toA.

The problem is thatB is able to decrypt the first message and learn the session key because

he knowsA’s public key just like everybody else. So is not a good session key, since

anybody who sees the first message can learn . Nessett’s BAN logic analysis of the

protocol is as follows. He idealizes the protocol as:

Next the assumptions are given:

B believes

A believes

A believes fresh()

B believes fresh()

K AB

A B↔

K AB

A B↔

A B:→ NA K AB,{ }
K 1–

A

B A:→ NB{ }K AB

K AB

K AB

A B:→ NA
K AB

A B↔
,

 
 
 

K 1–
A

B A:→ K AB

A B↔ 
 
 

K AB

K A
A→

K AB

A B↔

K AB

A B↔

NA

Chapter 2: Related Work 51

B believesA controls

From message one of the protocol Nessett gets:

B sees

Using the second message-meaning rule he deduces:

B believesA said

And, using the nonce-verification rule on this formula:

B believesA believes

Applying the jurisdiction rule to this statement and the fifth assumption he arrives at:

B believes

The second message gives:

A sees

Which, with the second message-meaning rule produces:

A believes B said

Applying the nonce-verification rule to this formula and the third assumption yields:

A believes B believes

Nessett concludes that “the example protocol is obviously insecure, [and therefore] the

BAN logic is defective.”

In [BAN90], Burrows, Abadi, and Needham argue that Nessett’s example violates

one of the assumptions of the logic, namely, that principals do not divulge their secret keys.

In her summary of this debate in [MEA94], Meadows notes that “Nessett’s example makes

K AB

A B↔

NA
K AB

A B↔
,

 
 
 

K 1–
A

NA
K AB

A B↔
,

K AB

A B↔

K AB

A B↔

K AB

A B↔ 
 
 

K AB

K AB

A B↔

K AB

A B↔

Chapter 2: Related Work 52

the point that this assumption is one that needs to be verified, since keys can be leaked not

only by dishonest or incompetent principals, but as a result of the protocol itself.” She

concludes that “since BAN does not attempt to model knowledge, it can not be used to

prove results about secrecy; it can be used only to reason about authentication.”

2.4.1.4 Snekkenes

In [SNE91], Snekkenes demonstrates another limitation of the BAN approach,

namely, that “flaws due solely to protocol step permutation [are] undetectable by the BAN

logic.” Snekkenes constructs an example protocol for a real-time monitoring system in

which a master process,M, requires information from a number of sensors,S1, S2, ...,Sn,

several times a day. The master process would like to be sure that the replies it receives are

not only authentic, but that they are also timely, so that they correctly reflect the sensor’s

state. Snekkenes suggests the following protocol for this system. Let M send a numbered

query,Qi,j, to each sensor,Si. A sensor responds by sending a message that contains a

nonce, the master’s query, and the sensor’s answer. This reply by the sensor is signed with

its private key to convince the master that it is authentic. It is further assumed that the master

process keeps track of all nonces previously received from the sensors so that it can be sure

that a sensor’s reply contains a fresh nonce. In the final step of the protocol, the master

acknowledges receipt of the answer by returning the nonce signed with the master’s private

key to the sensor. This protocol is shown in standard pseudocode below.

Figure 2.13 : The Snekkenes Protocol

Starting with the assumptions that:

M Si :→ Qi j,

Si M :→ RSi j, Qi j, Ai j,,,{ }
KSi

1–

M Si :→ RSi j,{ }
KM

1–

Chapter 2: Related Work 53

M believes fresh()

M believes

M believes controls

Snekkenes performs a BAN logic analysis of the protocol and concludes that:

M believes

According to Snekkenes, the master process should not believe the answer it gets from a

sensor since the protocol is vulnerable to the following attack. An intruder could pose as

the master, interact with a sensor several times, and store a series of the sensor’s answers:

, j = 1, ..., n

Then, when the master queries the sensor, the intruder can choose one of these replies and

replay it to the master. Snekkenes goes on to observe that simply changing the order of

messages 2 and 3 so that M generates the nonce would render the protocol immune to the

above attack. Snekkenes calls this thestep permutation problem in BAN logic since the

ordering of the steps in a protocol is not represented; instead the actions of a protocol are

transformed into an unordered set of formulae in the logic. As a result, BAN logic can be

used to find a proof of security of a protocol ifsome ordering of the steps is correct, even

though the actual ordering of the steps in the protocol’s specification might be incorrect.

Meadows expresses concern about BAN logic’s inability to “distinguish between the ...

correct version of the protocol and the ... incorrect version.”[MEA94]

2.4.1.5 Moser

Another limitation of BAN logic is highlighted by Moser’s [MOS89] observation

that:

several well-developed formalisms exist for describing security policies and procedures,
these formalisms are based on certainty and, when faithfully implemented, aim to
guarantee security with a high degree of rigor. However, certainty requires complete

RSi j,

Ki
Si→

Si Qi j, Ai j,,()

Qi j, Ai j,,()

RSi j, Qi j, Ai j,,,(){ }
KSi

1–

Chapter 2: Related Work 54

information, which is seldom available and always expensive. Real systems cannot usually
achieve certainty and, thus, are only approximately, and optimistically, modeled within
those formalisms.

With this in mind, Moser develops a nonmonotonic logic of knowledge and belief that she

uses to analyze a key-distribution protocol. Moser’s logic includes both knowledge axioms

and belief axioms, whereas most other logics are strictly epistemic (e.g. KPL [SYV90],

CKT5 [BIE90]) or doxastic (BAN [BAN89]).

The main contribution of Moser’s logic, though, is its nonmonotonicity. A logic,

like BAN, is calledmonotonic if propositions cannot be refuted once they have been

proven. In BAN this means that once an agent believes something he cannot subsequently

disbelieve it. Anonmonotonic logic like Moser’s allows for a proposition to be provable

from a set of axioms, but the addition of a further axiom may render the proposition false.

For example, in Moser’s logic an agent could believe that a key is good, but upon learning

that the key has been compromised, the agent might revise her beliefs and conclude that the

key is not good.

Moser’s nonmonotonicity is accomplished by introducing anunless operator that

takes two arguments that are simple beliefs or negations, conjunctions, or

disjunctions of beliefs. The predicate unless denotes that agenti believesp

unless he believesq. In the above proposition, is presumed to be true unless it is

refuted by other evidence. According to Moser, “reasoning in a nonmonotonic logic

involves applying the axioms in their entirety to determine if any of them refute the

conjectured lemma or theorem.” We summarize Moser’s nonmonotonic logic by noting that

it allows:

• Belief in a proposition in the absence of other information

• Refutation of that presumption if evidence indicates that it is unjustified

• A mechanism to model uncertainty about a proposition in the presence of

contradictory information.

Bi p()

Bi p() Bi q()

Bi p()

Chapter 2: Related Work 55

Nonmonotonic logic also introduces added complexity during reasoning since it

allows for more than one valid solution to exist when there are cycles among variousunless

clauses. For example, (unless) and (unless) has either of two

solutions: (and), or (and). Moser’s explanation of this

property is that “rational agents may interpret the same evidence but reach different

conclusions that are equally valid.” For this reason, Moser acknowledges that reasoning in

a modal logic, like BAN, is more difficult than reasoning in propositional calculus, and that

reasoning in a nonmonotonic logic is harder still, particularly since “natural deduction

methods no longer apply.”

2.4.2 Other Alternatives and Extensions to BAN Logic

As we mentioned at the beginning of this section, research on logics for reasoning

about cryptographic protocols has been a very active area since the introduction of BAN.

Unfortunately, many of the schemes that have been proposed as alternatives or extensions

to BAN logic have been shown to have limitations of their own, and difficulty in

understanding and applying these logics has undermined some of these efforts to replace

BAN with more expressive logics. BAN does have a number of limitations as we have seen

in earlier sections, but the fact that it has only ten inference rules and an easily-understood

model of reasoning makes the logic easy to use.

Simplicity, combined with its usefulness, is probably the main reason that BAN is

still so widely used despite its well-publicized limitations. In contrast, many of the logics

which have been designed to address some of the issues that BAN logic ignores are

extremely complex. For example, Gong, Needham, and Yahalom’s extended version of

BAN logic, GNY logic, contains more than fifty inference rules, many of which are

complicated themselves. One of the many additions this logic makes to BAN is rules for

reasoning about message recognizability. These rules enable one to reason about a

principal’s ability to recognize that a bit string is a meaningful message, for example.

Bi p() Bi q() Bi q() Bi p()

Bi p() Bi q()¬ Bi q()¬ Bi p()

Chapter 2: Related Work 56

Perhaps due to its added complexity, GNY logic has not yet achieved nearly the same wide-

spread use as BAN logic. In the remainder of this section we will briefly discuss some of

the other alternatives and extensions to BAN logic that have been suggested.

2.4.2.1 Bieber

In [BIE90], Bieber presents a logic called CKT5 to reason about communications

in a hostile environment. CKT5 is a combination of epistemic and temporal logic in which

the knowledge operator is indexed by agents and time. For example, in CKT5 the statement

 means that at timet agentA knowsP. CKT5 also defines two new modal operators

that model how an agent’s knowledge can change as a result of communication with other

agents. These two operators are and , which represent, respectively, the

sending and receiving of a message byA at timet. The CKT5 logic is the basis of a formal

method for describing and analyzing cryptographic protocols that is demonstrated in

[CAR93].

2.4.2.2 Syverson

Another epistemic logic is Syverson’s KPL [SYV90]. KPL is a propositional logic

of knowledge that has a possible world semantics. Apossible world semantics defines a set

of different ways the world may be, and an accessibility relation on this set for each agent.

According to Syverson, “if one world isaccessible from another for a given individual, then

that individual cannot distinguish the two worlds in her state of knowledge.” Syverson uses

the following example to illustrate this principle:

if Melissa is in a world where it’s raining, but there is another world accessible from it
where it’s not raining, then Melissa doesn’t know that it’s raining. (She could be in a room
with no windows.)

The advantage of such a semantics is that it gives an easily understandable way of reasoning

about an agent’s knowledge in the real world. To do this we simply need to prove that a

K A t, P

SA t, P RA t, P

Chapter 2: Related Work 57

given proposition about an agent engaged in a protocol is true in all worlds accessible from

the real world.

2.4.2.3 Gaarder and Snekkenes

In [GS91], Gaarder and Snekkenes extend BAN logic to be able to reason about

public as well as private key cryptosystems. They accomplish this by adding the following

statements to the logic:

PK(K,U) : The entityU has a good public key K.

 : The entityU has a good private key known only toU.

 : The formulaX is signed with the private key belonging toU.

The following two inference rules are added to reason about statements of this form:

• The signed-message rule states that in order to believe that once saidX, it is sufficient to

believe that we have ’s public key, that ’s secret key is good, and that a message containingX

signed with ‘s private key must have been seen:

• The signed-message content rule says that the contents of a signed message can always be made
visible:

Gaarder and Snekkenes also introduce the notion of “duration” which allows a more

fine-grained treatment of time than BAN’s simple division of time into the “current” and

“past” runs of the protocol. The statements for time are:

 : X holds in the interval . The creator which uttered the time-
stamped message X, claims that X is, or was, good in the time interval between

.

 : denotes a good interval. The local unique real time clock shows a time
in the interval between .

The rule for reasoning about durations is:

• The duration rule states that when uttering a duration-stamped message, we commit ourselves to

Π U()

σ X U,()

U j

U j U j

U j

Ui believesPK pj U j,() Ui believesΠ U j() Ui seesσ X Uj,(),,

Ui believesU j once saidX
--

Ui seesσ X Uj,()
Ui seesX

Θ t1 t2,() X,() t1 t2,()

t1 t2,()

∆ t1 t2,() t1 t2,()
t1 t2,()

Chapter 2: Related Work 58

believe the message for the interval specified by the duration-stamp:

With these extensions, Gaarder and Snekkenes utilized the logic to demonstrate a flaw in a

CCITT X.509 authentication protocol.

2.4.2.4 Kailar and Gligor

In [KG91], Kailar and Gligor develop a logic that models the evolution of beliefs in

an authentication protocol. Like BAN logic, theirs is also a logic of belief and it is

developed at about the same level of abstraction. In addition to borrowing much of BAN’s

notation and inference rules, Kailar and Gligor introduce additional constructs that enable

principals to reason about other principal’s knowledge set of beliefs. According to Kailar

and Gligor, “an agent,X, is said to be a member of the knowledge set,KS, of message

contenta at message instanceMi if X can recognize the message contenta at and after the

instant when messageMi is received.” They express this formally as .

After presenting their logic, Kailar and Gligor analyze a number of authentication

protocols with BAN logic and then with their own formalism. The most important

difference between the two is the ability of Kailar and Gligor’s scheme to analyze protocols

that do not make use of key jurisdiction properties. For example, in the BAN analysis of a

Multi-Party Session protocol they conclude that agentY does not believe that the

communication key sent by agentX is good becauseY does not believe thatX controls the

session key. However, by usingY’s belief aboutX’s knowledge set beliefs, the logic of

Kailar and Gligor can show thatY can believe that the session key sent byX is good.

2.4.2.5 Campbell, Safavi-Naini, and Pleasants

Campbell et al. [CSP92] extend BAN logic by adding probabilities to the sentences

and rules of the logic allowing them to “quantify the beliefs of principals and represent the

insecurities and uncertainties of a real life situation.” For example, one could assign the

P believesQ believes∆ t1 t2,() P believesQ once said Θ t1 t2,() X,(),

P believesQ believesX

X KS a Mi,()∈

Chapter 2: Related Work 59

probabilityp1 to the assumption thatA believes (B controls) in the BAN analysis

of the Andrew Secure RPC Handshake given in Section 2.4.1.2. Likewise, the probability

p2 could be assigned to BAN logic’s jurisdiction rule. According to Campbell et al., “this

gives a useful means of quantifying the trust on the conclusions derived from formal proofs

in the logic in terms of the probabilities assigned to the beliefs of the principals and the

inference rules they use.”

2.4.2.6 Mao and Boyd

Mao and Boyd’s goal in [MB93] is to suggest a new logic which adopts the basic

notational framework of BAN logic, but takes a more formal approach. Of particular

concern to Mao and Boyd are the various weaknesses of BAN logic that have been noted

previously. Most importantly, Mao and Boyd propose a more formal alternative to BAN’s

idealization process which they consider “fundamentally flawed.” Although they introduce

a small number of new constructs to their logic, Mao and Boyd do not regard their new

technique as being more complex than idealization in BAN logic, and, in fact, intend it to

be more formal and straightforward.

In explaining their alternative to BAN’s idealization step, Mao and Boyd first give

definitions for such things as atomic messages, challenges, replied challenges, responses,

and nonsense. Next, they propose rules for what they call protocol message idealization.

According to Mao and Boyd, these rules are “formally feasible, which means that, with

limited human intervention, they form a guideline to correctly comprehend the

authentication semantics of a security protocol.” They go on to demonstrate the use of their

protocol message idealization and their new logic by examining several standard protocols.

2.4.2.7 Syverson and van Oorschot

In [SvO94], Syverson and van Oorschot present a logic that represents the

unification of the four members of the BAN family of logics presented in [BAN89],

K
A B↔

Chapter 2: Related Work 60

[GNY90], [AT91], and [vO93]. According to Syverson and van Oorschot, the logic

“captures all of the desirable features of its predecessors and more; nonetheless, it

accomplishes this with no more axioms or rules than the simplest of its predecessors.”

Syverson and van Oorschot borrow heavily from the model of computation and semantics

of the AT logic in [AT91], and they include many of the extensions found in the GNY and

VO logics. Rather than simply tacking together the notation and rules from all of those

logics, Syverson and van Oorschot develop an integrated approach that is designed to make

their logic “as simple to use or simpler than any of those [logics] from which it was derived;

yet ... more expressive than any of them.”

2.4.2.8 Rubin and Honeyman

Rubin and Honeyman present a method for specifying and analyzing nonmonotonic

cryptographic protocols in [RH94]. They point out that all of the other logics developed to

date reason monotonically about knowledge - once something is known, it is always

known. This means that there are valid formulas that cannot be derived like “P knew X, but

P no longerknows X,” for example. Rubin and Honeyman differentiate their logic from

Moser’s by pointing out that only beliefs can be reasoned about nonmonotonically in

Moser’s system whereas Rubin and Honeyman deal with nonmonotonicity of knowledge.

Another interesting aspect of Rubin and Honeyman’s approach is that they do not

require protocol idealization but rather specify protocols at a level that is close to the actual

implementation. They demonstrate their technique by uncovering a known flaw in a

protocol by Needham and Schroeder [NS78], and they also apply their method to their own

khat protocol. The analysis reveals what they call a “serious, previously undiscovered flaw

in our nonmonotonic protocol for long-running jobs.”

Chapter 2: Related Work 61

2.4.2.9 Kessler and Wedel

Kessler and Wedel’s AUTOLOG [KW94] is a modified version of BAN logic which

is implemented in PROLOG. Kessler and Wedel consider the following modifications to the

constructs, inference rules, and idealization procedure of BAN logic “useful for most

protocols and [they] do not complicate the logic”:

• introducing the predicaterecognize

• replacing the predicate “A believes thatB believes that ...” by the predicate

“A believes thatB has recently said that ...”

• enlarging the meaning of thesees operator

• not omitting the cleartext messages in the idealization of a protocol

• simulating an eavesdropper,Z

• reducing the ambiguous idealization step by introducing a specialkey rule

Kessler and Wedel demonstrate how their AUTOLOG tool can analyze a simple challenge-

response protocol from the Draft International Standard [ISO93] by using their method to

show a failure in this protocol.

2.5 Summary

In this chapter we have reviewed many cryptographic protocol analysis techniques.

Informal analysis has uncovered a number of flaws in protocols, but this approach depends

entirely on the insight of the person performing the analysis. Flaws have tended to go

undetected for years before being discovered by this method, and relatively little is learned

about a protocol when informal analysis fails to discover a vulnerability.

In [MEA94], Meadows suggests why cryptographic protocols are so “well suited

for the application of formal methods.” According to Meadows, they are “well-contained

enough so that modeling and analysis should be tractable; on the other hand, they are

complex enough and the flaws are counterintuitive enough so that an informal analysis may

Chapter 2: Related Work 62

be too prone to error to be reliable.” State-based and logical methods for analyzing

cryptographic protocols are fairly new, but some important results have already been

obtained using them. While formal methods are not in wide use among protocol designers

yet, we expect this to change in the near future as the techniques are improved and as

protocols are developed for more critical applications.

63

Chapter 3

The Cryptographic Protocol
Analysis Language

In this chapter we present a language for specifying and reasoning about crypto-

graphic protocols that was developed in [YAS96]. This language has several important

advantages over the pseudocode notation which was used in Chapter 2. Most importantly,

Yasinsac’s Cryptographic Protocol Analysis Language (CPAL) defines a semantics that can

be used to reason formally about a protocol. After reviewing pseudocode notation and pre-

senting CPAL, we offer a brief comparison of the two and conclude the chapter by discuss-

ing Yasinsac’s analysis technique based on the formal semantics of CPAL.

3.1 Review of the Standard Pseudocode Notation

Although a number of researchers ([CAR94], [YAS96], [MIL96]) have proposed

alternative methods for specifying cryptographic protocols, most protocols are still

specified almost exactly as they were in Needham and Schroeder’s 1978 paper. The appeal

of what has come to be calledpseudocode or Standard Notation is that it is simple,

Chapter 3: The Cryptographic Protocol Analysis Language 64

compact, and well understood by the research community. As we saw in Chapter 2, the

pseudocode representation of a protocol usually includes a list of messages sent during a

run of the protocol with the messages listed in the order in which they are to be sent. The

name of the principal sending the message and the name of the intended recipient are given

explicitly for each message as in the following pseudocode for agentA sending a message

intended for agentB:

The values that comprise a message are listed, separated by commas. For example, if agent

A sendsB the nonce,NA, the pseudocode representation would be:

Likewise, ifB sendsA his own name and the encryption ofNA underKAB:

While this notation allows straight-forward and compact representations of

cryptographic protocols, it does suffer from some serious limitations. Most importantly, the

semantics associated with this language are informal and incomplete, so protocols

expressed in this manner will have to be translated into some other representation or

annotated to facilitate formal analysis.

It is also clear from the examples in Chapter 2 that pseudocode does not explicitly

represent all of the actions by the agents during a run of the protocol. Actions such as

receiving messages, generating nonces, decrypting values, and checking timestamps are

not represented in a pseudocode specification but are usually described separately using

English prose. For example, consider the following pseudocode specification of a simple

two-message protocol:

A B:→ message

A B:→ NA

B A:→ B NA{ }K AB
,

Chapter 3: The Cryptographic Protocol Analysis Language 65

The pseudocode representation of this protocol does not explicitly state thatB decrypts the

message he receives fromA in the first step, but we can assume he must in order to learn

the value of the nonce he returns in step two. This implies that bothA andB know KAB,

although that assumption is not stated explicitly in the pseudocode specification.

Furthermore, the pseudocode does not tell us whetherB checks to see if the name included

in message one matches his, or ifA checks the nonce returned in the second message to

make sure it matches the one she sent in message one. Whether or not these checks are

performed determines what the given protocol accomplishes. However, we cannot decide

if they should be performed from the pseudocode since it does not represent the intended

goals of the protocol. In the next section we present a protocol specification language that

seeks to remedy all of the limitations of pseudocode notation given in this section while

remaining simple, compact, and easy to understand.

3.2 CPAL

Yasinsac’s CPAL is a language that was designed specifically for cryptographic

protocol specification and formal analysis. We begin our presentation of CPAL by

describing the model of the environment in which cryptographic protocols operate

according to Yasinsac.

3.2.1 The CPAL Environment

CPAL’s model of the environment in which cryptographic protocols operate is very

similar to those suggested by other researchers including Abadi and Tuttle in [AT91]. Each

principal possesses a private address space which cannot be read or written by any other

principal. An agent can use her private address space to store values and to perform

computations on those values. Each principal also has an input queue which can be written

to by anyone. Agents can communicate with one another by performing send and receive

A B:→ NA B,{ }K AB

B A:→ NA

Chapter 3: The Cryptographic Protocol Analysis Language 66

operations. Asend operation places a message into an agent’s input queue, and areceive

operation consists of a principal removing a message from the head of her input queue and

storing it somewhere in her private address space. If the agent’s input queue is empty when

she performs a receive, it is assumed that she blocks waiting for a message to arrive. For

reasons that will be explained later, it is assumed that the blocking will time-out after some

fixed period and the agent will proceed as if a null message had arrived. Given this model

of the environment, we are now ready to present an overview of the syntax of CPAL.

3.2.2 Syntax

For those interested in the complete definition of CPAL’s syntax, it is given in

Backus-Naur form in Appendix B of [YAS96]. CPAL protocol specifications are similar to

those expressed in pseudocode in so far as the protocol is represented as an ordered

sequence of actions by the principals involved in the protocol. In CPAL, each action is

preceded by the name of the agent performing it, and the semicolon is used as an action

separator. A generic CPAL protocol specification might look like:

Agenti: action;
Agenti: action;
Agentj: action;
Agenti: action;
Agentj: action

Unlike pseudocode, there are more actions in CPAL than simply sending messages. In the

following subsections we concentrate on the syntax of the various actions in CPAL while

hinting at the meanings of some of these constructs. In the next section we give a complete

and formal semantics to the CPAL language.

3.2.2.1 Assignment

One of the actions in CPAL is anassignment which has the following syntax:

Agenti: variable := value

Chapter 3: The Cryptographic Protocol Analysis Language 67

As in most procedural programming languages avariable is merely a symbolic name for a

storage location. In an assignment statement, all variables must refer to locations in the

private address space of the agent performing the assignment. For example, in the

statement:

A: x := y

the variables x andy refer to locations in agentA’s address space. In CPAL, if we need to

talk about variables from a global perspective, we always prefix the variable by the name

of the principal in whose address space it resides. For example,A.x andB.x are the CPAL

representations of the distinct variables,x in A’s address space, andx in B’s address space,

respectively.

CPAL is an untyped language where any variable is allowed to store any type of

value. Simplevalues in CPAL include integers, character strings, bit strings, booleans, and

variables. More complicatedvalues can be formed by applying some function to a set of

values or by concatenating values together into a list. Angle brackets are used in CPAL to

represent concatenated values as in:

A: x := <value1, value2, ..., valuen>

A dot operator is used to extract a particular element from a catenated list:

<value1, value2, ..., valuen>.3

3.2.2.2 Conditionals

CPAL also allows principals to execute a conditional action or sequence of actions.

There are several variations on the conditional statement including:

A: if conditionthen action

and

value3 ≡

Chapter 3: The Cryptographic Protocol Analysis Language 68

A: if conditionthen {action1; action2; ..., actionn}

and

A: if conditionthen action1 else action2

Conditions in CPAL include comparisons between values and evaluation of boolean

functions.

3.2.2.3 The Receive Statement

A principal receives a message by removing the head element of her input queue

and storing it somewhere in her private address space. A receive statement in CPAL looks

like this:

In this example, the message is taken offA’s input queue and stored in the location

associated with the namevariable in her address space.

3.2.2.4 Send Statements

There are two different types ofsend statements in CPAL which place a message on

a principal’s input queue. They are thesecure send, which uses the “ ” operator, and the

insecure send, which uses the “ ” operator. The syntax for the secure statement is:

and the syntax for the insecure send statement is:

The first representsA securely placing a message onB’s input queue. That is,A transmits

her message toB in such a way that the message cannot be delayed, redirected, destroyed,

A: variable()←

⇒

→

A: B value()⇒

A: B value()→

Chapter 3: The Cryptographic Protocol Analysis Language 69

modified, or observed by any other agent. A secure send operation would obviously be

quite expensive to implement. The insecure send statement corresponds toA sending a

message toB in an insecure manner. The message might eventually appear onB’s input

queue, but may also be delayed, redirected, destroyed, modified, or observed by another

agent while in transit.

3.2.2.5 The Reject Statement

The reject statement halts a principal’s participation in a protocol run. Any

subsequent actions that the principal would have performed in that protocol run will not be

executed. The syntax for the reject statement is:

A: reject

3.2.2.6 Assumptions

Though not technically an action, CPAL allows principals to explicitly state what

assumptions they make during a run of the protocol. CPAL expresses assumptions as

follows:

A: assume(condition)

3.2.2.7 Assertions

CPAL also includes anassert statement:

A: assert(condition)

which can be used to explicitly state goals at any point in the protocol. Note that while

pseudocode specifications typically use prose to describe many of the actions as well as all

of the assumptions and goals of a protocol, CPAL represents all of these things explicitly

as part of the protocol’s specification. Specifically, CPAL states where and when each goal

should be satisfied in the protocol.

Chapter 3: The Cryptographic Protocol Analysis Language 70

3.2.2.8 Summary of CPAL Constructs

In the table below, we give a brief description of each of the CPAL constructs just

discussed. The table also contains an example for each construct to illustrate its syntax.

Table 3.1: CPAL Constructs

3.2.3 Semantics

In the preceding section we sketched an operational model for CPAL which

included the language’s syntax and some informal semantics. In this section we present

Yasinsac’s formal semantics of CPAL which are based on work by both Hoare and Dijkstra.

Yasinsac has defined a formal method which uses these semantics to analyze a

cryptographic protocol specified in CPAL.

CPAL Construct Example Description

Assert Statement A: assert(A.kab == B.kab) Specify a goal of the protocol.

Assume State-
ment

B: assume(Inverse(B.k, B.k’) Specify an assumption of the protocol.

Insecure Send
Statement

A: -> B (x) Send a message to an agent. While in transit the mes-
sage can be seen, modified, redirected, delayed, or
destroyed by dishonest agents.

Secure Send
Statement

A: => B (y) Send a message to an agent. While in transit the mes-
sage cannot be seen, modified, redirected, delayed, or
destroyed by anyone.

Receive State-
ment

B: <- (z) Receive a message that has been securely or inse-
curely sent and store it in the recipient’s private
address space. If no message has been sent, block and
wait for a message to arrive.

Reject Statement A: reject Halt a principal’s participation in a protocol run

Assignment
Statement

B: a := b Perform an assignment from one location in an
agent’s private address space to another address in
that agent’s private address space. A function may be
applied to the value on the right-hand side of the
assignment.

Conditional State-
ment

A: if (c<d) then m := c
else m := d

Conditionally execute a statement.

Statement Con-
catenation

A: => B (t);
B: <- (u)

Execute two constructs serially.

Chapter 3: The Cryptographic Protocol Analysis Language 71

3.2.3.1 Hoare’s Precondition/Postcondition Reasoning

In [HOA69], Hoare suggested giving a functional semantics for a program segment,

S, using a boolean expression called aHoare triple: Q {S} R, whereQ andR are boolean

expressions called the precondition and postcondition, respectively. We say thatQ {S} R

holds if program segmentS, beginning withQ satisfied, is guaranteed to establishR, if S

terminates.

For example, in order for the postcondition “y = 2” to be true after the statement

“y := ” is executed, the precondition “x = 4” must hold before the assignment. The

preceding semantics for the statement “y := ” can be represented by the Hoare triple:

x = 4 {y := } y = 2

The above Hoare triple holds under the normal definitions of the “ ” and “:=” operators.

Now let us consider the statement “y := ”. Using standard definitions for the operators,

the following Hoare triple holds:

x = 2 {y := } y = 4

However, note that the following Hoare triples hold as well:

x = -2 {y := } y = 4

 {y := } y = 4

The precondition is said to bemore general or weaker than the other

two preconditions because it is logically implied by each of them. In the next subsection we

describe Dijkstra’s notion of weakest precondition, which is an extension to Hoare’s

precondition/postcondition reasoning that Yasinsac uses to define the formal semantics of

CPAL.

x

x

x

x
2

x
2

x
2

x 2–=() x 2=()∨ x
2

x 2–=() x 2=()∨

Chapter 3: The Cryptographic Protocol Analysis Language 72

3.2.3.2 Dijkstra’s Weakest Precondition Reasoning

In [DIJ76], Dijkstra defines a weakest precondition, writtenwp(S,R), as the weakest

solution to the equationQ : Q { S} R. Recall that a weakest solution to a boolean equation

is a solution that is implied by all solutions, so in the case ofQ : Q { S} R, for any solution

Q, Q implies wp(S,R) holds. According to Dijkstra, the weakest precondition for a program

statement can also be viewed as a “predicate transformer” since it is “a rule telling us how

to derive for any postconditionR the corresponding weakest precondition for the initial

state such that activation will lead to a properly terminating activity that leaves the system

in a final state satisfyingR.”

3.2.3.3 Yasinsac’s Weakest Preconditions for CPAL Constructs

The table below gives Yasinsac’s definition of the weakest preconditions for each

CPAL construct.

Table 3.2: Weakest Preconditions for CPAL Constructs

We explain these weakest precondition definitions in more detail below.

CPAL Construct Weakest Precondition Predicate

Assert Statement wp(“assert(X)”, R) =

Assume Statement wp(“assume(X)”, R) =

Assignment Statement
wp(“Y := Z”, R) =

Insecure Send Statement Not defined. (See below)

Secure Send Statement
wp(“ “, R) =

Receive Statement
wp(“ “, R) =

Conditional Statement wp(“if (C) then S1else S2”, R) =

Statement Concatenation wp(S1;S2, R) = wp(S1, wp(S2, R))

X R∧

X R⊃

R
Z
Y

A M()⇒ R
A′s input queue

M

M()← R
M

receiving agent′s input queue

C wp S1 R,()⊃() C¬ wp S2 R,()⊃()∧

Chapter 3: The Cryptographic Protocol Analysis Language 73

The Assign Statement.Assignments in CPAL are always made within a single principal’s

address space. A value, which may be the contents of another variable or may be a more

complex expression, is copied to the location referenced by the destination identifier.

Yasinsac’s semantics of the assign statement given in the table above state that for a

predicate,R, to be true after the statementx := y is executed, the predicateR with each

instance of the variablex textually replaced byy must be true before the statement is

executed. For example, if the postcondition is(x = 3) then the weakest precondition of the

statementx := y is (y = 3). This would be represented in Dijkstra’s notation as:

(y = 3) = wp(“x := y”, (x = 3)).

Conditionals. In a conditional statement of the form “if (C) then S1else S2” only one of

the two substatments,S1 andS2, is executed. Which of the two substatements is executed

depends on the evaluation of the condition,C. If the condition is trueS1 will be executed

and if the condition is falseS2 will be executed. Yasinsac defines the semantics of the

conditional statement by noting that ifR is the desired postcondition for the whole

statement, then the truth of the condition,C, must imply the weakest precondition ofS1

with R as the postcondition. Likewise, the falsity ofC must imply wp(S2, R). The

conjunction of these two requirements is given as the weakest precondition predicate for

conditional statements in Table 3.2 above.

The Receive Statement.A receive statement is similar to an assign statement except that

the source of the assignment is implicit, namely, the input queue of the agent performing

the receive operation. The value is removed from the head of the input queue1 and stored

at the specified location. So the receive statement “A: ” is the same as the

assignment statement, “A: X := head of A’s input queue”, with the first element inA’s input

1. If the agent’s input queue is empty when she performs a receive, it is assumed that she blocks for
some fixed amount of time waiting for a message to arrive. If no message arrives in that time, it is
assumed that she unblocks and proceeds as if a null message had arrived.

X()←

Chapter 3: The Cryptographic Protocol Analysis Language 74

queue being deleted after the assignment. The weakest precondition definition of the

receive statement in Table 3.2 reflects this description.

The Secure Send Statement.A secure send statement places a message on the input

queue of the intended recipient. The message cannot be delayed, redirected, destroyed,

modified, or observed while in transit. Yasinsac does not state how secure sends are to be

carried out, but acknowledges that such an operation would be very expensive and cannot

be the normal mode of communication in cryptographic protocols. As with the receive

statement, the semantics of a secure send statement are similar to that of an assignment. In

this case, a value is copied from one agent’s address space to the input queue of another

principal (see Table 3.2).

The Insecure Send Statement.In an insecure send, a principal sends out a message that is

intended for another agent, but the message can be delayed, redirected, destroyed,

modified, or observed by the all-powerful intruder. To make these abilities of the intruder

explicit, tools that use CPAL always preprocess protocol specifications by changing all

insecure sends into secure sendsto the intruder. Once the intruder has received a message,

he could choose to send it on unmodified to its intended destination, or he could choose any

of the actions mentioned above. Since all insecure sends are removed from protocol

specifications and replaced by secure sends to the intruder, no semantic definition is given

for the insecure send statement.

The Assert Statement.An assert statement in CPAL does not specify any action by a

principal but rather provides a mechanism to represent an agent’s goals in the protocol. The

assert statement:

A: assert(P)

declares that the proposition,P, must be true at this point in the protocol if the protocol is

to work correctly. Since no action is taken by the assert statement, its postcondition,R, must

Chapter 3: The Cryptographic Protocol Analysis Language 75

be satisfied before the assert statement, in addition to the proposition,P, represented in the

assert statement. This is expressed in Yasinsac’s definition of the semantics of the assert

statement in Table 3.2:wp(“A: assert(P)”, R) = .

The Assume Statement.The assume statement is similar to the assert statement in that it

does not specify any actions by the principals involved in the protocol. An assume

statement explicitly states an assumption that is being made by the protocol designer, and

these assumptions can be used later in the analysis of the protocol. Since the assumption,

A, can be used to prove the theorem,R, Yasinsac defines the weakest precondition for the

assume statement to be:wp(“X: assume(A)”, R) = as seen in Table 3.2.

Statement Concatenation.CPAL uses the semicolon to concatenate two statements

together. This means that ifS1 and S2 are CPAL statements, thenS1;S2 denotes the

execution ofS1 followed by the execution ofS2. More formally, Yasinsac defines the

semantics of the semicolon as follows:wp(“S1;S2”, R) = wp(S1, wp(S2, R)). This

definition, along with the blocking semantics of the send and receive operations, allows us

to designate a strict sequencing of the actions in a protocol. This, in turn, allows us to apply

Dijkstra’s weakest precondition reasoning to define the formal semantics for protocols

specified in CPAL. As we saw in Chapter 2, the lack of such sequencing is a known

weakness of many of the logics used for cryptographic protocol analysis.

3.2.4 Analyzing Protocols Using CPAL

Defining a weakest precondition for each CPAL statement not only gives a formal

semantics for every protocol specified in CPAL, but also allows us to analyze the protocol

based on these semantics. In Appendix A we demonstrate Yasinsac’s cryptographic

protocol analysis technique which utilizes CPAL and its weakest precondition definitions

given above.

P R∧

A R⊃

Chapter 3: The Cryptographic Protocol Analysis Language 76

The basic steps in Yasinsac’s approach are:

• to manually translate the protocol into CPAL

• to automatically compute the weakest precondition for the protocol

• to automatically simplify the weakest precondition for the protocol

• to manually attempt to prove the simplified weakest precondition for the protocol

If the final step succeeds, then Yasinsac has shown that a particular trace of the protocol

satisfies the protocol’s stated goals. This does not imply that all valid traces of the protocol

will satisfy the goals, and it is clearly impossible to perform this type of analysis on every

possible trace of the protocol since there are infinitely many of them. However, this

approach is still valuable because it provides us with a formal method for determining

whether or not a trace of the protocol meets the protocol’s goals. In later chapters we

propose extensions to Yasinsac’s approach that result in a more robust protocol analysis

technique.

3.3 Summary

In this chapter we have reviewed the standard pseudocode notation used to express

cryptographic protocols in the literature. We noted some important limitations of

pseudocode including:

• its lack of a formal semantics, and

• its imprecision about the assumptions, actions, and goals that comprise a protocol

We then described Yasinsac’s Cryptographic Protocol Analysis Language (CPAL) which

remedies these two weaknesses. We presented the syntax and semantics of CPAL and gave

a brief overview of how Yasinsac uses CPAL to perform an analysis of a protocol trace. A

detailed example of Yasinsac’s technique is given in Appendix A.

Chapter 3: The Cryptographic Protocol Analysis Language 77

In the next chapter we present a brief review of the field of automatic program syn-

thesis. We do this to prepare the reader for the discussion of our methodology (in Chapter

5) which builds on Yasinsac’s work by having the user specify a protocol,P, in CPAL and

a statement of failure,F, for the protocol. Using the statement of failure as a postcondition

for the protocol, we can then use Yasinsac’s technique to compute the weakest precondi-

tions forP = S1;S2;S3; ... ; SN.

wp(S1,...)

S1;

.

.

.

wp(SN-2,wp(SN-1,wp(SN,F)))

SN-2

wp(SN-1,wp(SN,F))

SN-1;

wp(SN,F)

SN;

F

However, proof of any of these weakest preconditions actually demonstrates that the pro-

tocol isinsecure, sinceF, the postcondition, is a statement of failure. We then use an auto-

matic theorem prover to attempt to find a constructive proof of one of these weakest

preconditions and, if it succeeds, use the proof to modify the protocol so that the failure

condition is achieved. This last step is closely related to automatic program synthesis, as

we demonstrate in the next chapter.

78

Chapter 4

Automatic Program Synthesis

In this chapter we give a broad overview of the field of automatic program synthesis,

which seeks to map a problem specification (usually given in some very high-level, non-

procedural language) to an implementation (usually a program in some programming lan-

guage). We present this information because our cryptographic protocol evaluation system

employs a simple automatic programming strategy that generates attacks from specifica-

tions derived from the formal semantics of the protocols.

4.1 Background

Automatic programming has been a goal of computer science and artificial intelli-

gence almost since their inception. Writing programs for computers is a time-consuming

and error-prone task for humans, and we would much prefer that people be able to explain

what they want the computer to do and have the computer determine how to do it. This is a

difficult problem and researchers have had to settle for gradually increasing the level at

which the user specifies the problem (from machine language to assembly language to

high-level programming languages to very high-level programming languages) while

Chapter 4: Automatic Program Synthesis 79

simultaneously decreasing the user’s responsibility for deciding exactly how the problem

will be solved.

There are currently many researchers working on automatic program synthesis,

some of whose projects have been active for more than 20 years. Most of the approaches

being pursued can be characterized as either procedural, deductive, transformational, or

inspective. In the next four sections we give a brief description of each of these categories

and point out some of the important research projects in each area. In later sections of this

chapter we discuss which of these approaches to automatic programming we have taken for

our work, and why we chose it.

4.2 Procedural Methods

Procedural methods were among the earliest and most successful automatic pro-

gram synthesis techniques. The procedural approach involves writing a special-purpose

program that takes a specification as input and generates the proper implementation as out-

put. The most common example of the procedural approach is the compiler1. Compilers

generally accept a specification in some “high-level” language and produce an implemen-

tation in some lower-level language. Often, the compiler will perform some “program-

ming” (e.g. allocation of registers for variables) and some optimization (e.g. procedure

inlining, loop unrolling, common subexpression elimination).

The main advantage of the procedural approach is that the early stages are usually

completed quickly and without too much difficulty. Producing a working system with a few

basic features for a small subset of the problem domain may be accomplished in a matter

of days or weeks. After that, the code can always be modified to try to add more features to

the system and to expand the problem domain. Unfortunately, the main drawback of proce-

1. In fact, compilers were considered to be “automatic programming” systems when first intro-
duced, although they are no longer thought of in those terms.

Chapter 4: Automatic Program Synthesis 80

dural systems is that it becomes increasingly difficult to modify the code and add new fea-

tures. While there are many examples of useful, domain-specific procedural automatic

programming systems, the difficulties with modifying and extending such systems makes

it unlikely that this approach could yield a general-purpose, full-featured automatic pro-

gram synthesis method.

4.3 Deductive Methods

“The problem of synthesizing a program satisfying a given specification is formally

equivalent to finding a constructive proof of the specification’s satisfiability.” This observa-

tion by Rich and Waters in [RW88] sums up the deductive approach to automatic program-

ming. Deductive techniques are appealing because logic provides a general and powerful

reasoning framework which lends itself well to automation. For this reason, deduction has

become a technique that has been applied time and again in the field of artificial intelli-

gence.

4.3.1 Overview

Finding a deductive proof of a theorem basically consists of starting with an initial

set of facts (oraxioms) and applying the giveninference rules to derive new facts until the

goal fact has been deduced. At each step in this process there may be many different infer-

ence rules that could be applied to derive new facts so the search for an inference path from

the initial state to the goal state will usually be exponential in nature. Deductive program

synthesis systems normally deal with this explosion of the search space by either working

only on “small” problems or by asking a human user to direct the search.

Another limitation of the deductive approach is that specifications must be

expressed using the notation of the underlying logic, and coming up with a logical specifi-

cation that is complete, concise, and correct is difficult for most problems of interest to the

Chapter 4: Automatic Program Synthesis 81

automatic programming community. Indeed, it is not clear that producing such a specifica-

tion would in general be any easier or less error-prone than producing a procedural speci-

fication. Furthermore, we note that the deductive approach contains no bias towards finding

the proof corresponding to the most efficient program, or even a reasonably efficient pro-

gram, that solves a given problem. While this requirement is not normally stated explicitly

in the specification for an automatic programming system, we might expect any useful

automatic programming system to produce programs that are at least somewhat efficient.

4.3.2 Example of the Deductive Approach

The following example from [BIER76] illustrates how the deductive approach can

be utilized to synthesize a program to compute a function, f(x).

Assume thatP(x) is true ifx is a valid input for the program and false otherwise.

Likewise,R(x,z) is true ifz = f(x) and false otherwise.

A program that computesf(x) can be generated by proving the theorem:

 P(x) R(x,z)

This theorem states that for allx, the truth ofP(x) implies that there exists az such

thatR(x,z) is true. Proving this theorem requires that a method be discovered for finding the

requiredz for each suchx, and this method is indeed the desired program. Frequently there

is no restriction on the input, in which case the theorem to be proven is R(x,z).

The complete process can be illustrated by synthesizing a program to compute

f(x)=x2+1. Assume thatf1 andf2 are primitive computing operations that, respectively,

square and increment their arguments:

x∀ ⊃ z∃

x∀ z∃

Chapter 4: Automatic Program Synthesis 82

f1(x) = x2

f2(x) = x + 1

Let R1 andR2 be predicates for the square and increment operations:

Then R1(x,f1(x)) and R2(x,F2(x)) are true, and the program specification is

(R1(x,y) R2(y,z))and the following theorem must be proven:

(R1(x,y) R2(y,z))

The theorem prover might attempt many different transformations on this theorem,

but one reasonable possibility would be to proposey = f1(x). Then the following theorem

must be proven:

(R1(x,f1(x)) R2(f1(x),z))

Here the theorem prover might substitutez = f2(f1(x)), leaving the following theo-

rem to be proven:

 [R1(x,f1(x)) R2(f1(x),(f2(f1(x))))]

But this follows from the above assertions, thus completing the proof of the original

theorem. Notice that the instantiation ofz required to prove the theorem is exactly the

desired program:

z = f2(f1(x))

R1 x z,()
true if z x2=

false otherwise



=

R2 x z,()
true if z x 1+=

false otherwise



=

x∀ x∀

y∃ ∧

x∀ y∃ z∃ ∧

x∀ z∃ ∧

x∀ ∧

Chapter 4: Automatic Program Synthesis 83

4.3.3 Summary of the Deductive Approach

Rich and Waters conclusion is that “deductive methods are certain to play an impor-

tant role in the automatic programming systems of the future, ... [but] the challenge is to

combine automated deduction with other methods so that its inherent limitations can be

avoided.” Some of the important research projects in deductive automatic programming are

described in [MW71], [LCW74], and [MW92].

4.4 Transformational Methods

The transformational approach to automatic program synthesis is to take a specifi-

cation written in a very high level language and to convert it into a low-level implementa-

tion through a sequence oftransformations.

4.4.1 Overview

A transformation has three parts: a pattern, a set of logical applicability conditions,

and an action procedure. When an instance of the pattern is found, the logical applicability

conditions are checked to see whether the transformation should be applied. If the transfor-

mation is applicable, the action procedure is applied to produce a new code segment which

replaces the code matched by the pattern. Typically, transformations are correctness pre-

serving, meaning that the matched code and its replacement represent logically equivalent

computations.

Transformations can be roughly grouped into those that change the level of abstrac-

tion in the specification (e.g. replacing quantification over a set with iteration over a list)

and those that do not (e.g. moving an unchanged computation out of a loop). Most trans-

formational automatic programming systems go through many intermediate levels of

abstraction in transforming the very high level specification into a low level implementa-

tion.

Chapter 4: Automatic Program Synthesis 84

4.4.2 Example of the Transformational Approach

Consider the following set of transformations:

Transformation #1:
Pattern: F(x)
Applicability Conditions: S is a set andF is a function
Action:

Create a list,L, of the elements in the setS;
IterateF(x) overL

Transformation #2:
Pattern: Create a list,L, of the elements in the set,S
Applicability Conditions: S is a set containing elements of typeT
Action:

List of T : L;
New(L);
while (Empty(S) == FALSE)
{

T : element;
element=Select_Element(S);
Add(element,L);
Remove(element,S);

}

Transformation #3:
Pattern: IterateF(x) overL
Applicability Conditions: L is a list ofT
Action:

T : item;
if (Empty(L) == FALSE)
{

integer : i;
for (i=0; i<Length(L); i++)

F(L[i]);
}

Now consider the following high-level program specification:

Print(x)

This specification matches the pattern in Transformation 1 and satisfies its

applicability conditions so it can be replaced by the actions in Transformation 1 to produce:

Create a list,L, of the elements in the set,S;
IteratePrint(x) overL

x∀ x S∈

x∀ x S∈

Chapter 4: Automatic Program Synthesis 85

Now the first line of this new specification matches the pattern in Transformation 2

and satisfies its applicability conditions so the transformation can be applied to yield:

List of T : L;
New(L);
while (Empty(S) == FALSE)
{

T : element;
element=Select_Element(S);
Add(element,L);
Remove(element,S);

}
IteratePrint(x) overL

Next, Transformation 3 can be applied to the last line of the specification to give:

List of T : L;
New(L);
while (Empty(S) == FALSE)
{

T : element;
element=Select_Element(S);
Add(element,L);
Remove(element,S);

}
T : item;
if (Empty(L) == FALSE)
{

integer : i;
for (i=0; i<Length(L); i++)

Print(L[i]);
}

In a more detailed example, additional transformations would probably be applied

to further refine this specification until all high-level specification constructs had been

removed and a low-level implementation was produced.

4.4.3 Summary of the Transformational Approach

According to Rich and Waters, “a major strength of transformational methods is

that they provide a very clear representation for certain kinds of programming knowledge,

[and] for this reason, transformational methods in some form are certain to be part of all

Chapter 4: Automatic Program Synthesis 86

future automatic programming systems.” Another contribution of the transformational

approach is the transformations themselves, which encode knowledge about how to imple-

ment algorithms, create and use data structures, optimize code, and move between levels of

abstraction.

Unfortunately, deciding which transformation to apply at each step is similar to

deciding which inference rule to apply in each step of a deductive system. For this reason,

the transformational approach suffers from some of the same rapid expansion of the search

space that the preceding section on deductive methods discussed. As with deductive auto-

matic programmers, transformational systems must either rely on the user to direct the

search or place strong restrictions on the kinds of transformations that can be used. Some

notable transformational automatic programming systems are the TI project [BAL85] led

by Robert Balzer, and the work of Cordell Greene [GB75].

4.5 Inspection Methods

The inspective approach to automatic programming is based on the codification and

use ofcliches. A cliche has three parts: a skeleton that encompasses every occurrence of the

cliche, roles whose contents vary from one occurrence to the next, and constraints on what

can fill the roles. Most inspective systems contain algorithmic, data structure, and optimi-

zation cliches. For example, if a specification required that a set of names be alphabetized,

an inspective automatic programmer might start by choosing among the cliques for various

sorting algorithms. One of the roles in the chosen clique would probably be filled by the

type of elements to be sorted, and another cliche would probably be used to pick an appro-

priate data structure to represent a collection of those elements.

The differences between inspective and transformational methods are subtle, but the

main distinction is that inspective methods attempt to reduce the search-control problems

Chapter 4: Automatic Program Synthesis 87

that arise with other methods by using some “global understanding” of the problem. The

cliques themselves are not as important in an inspective system as are the relationships

among various cliches. By contrast, transformational systems do not typically have a “glo-

bal understanding” of the problem since the use of a particular transformation at one point

in the process will not be used to subsequently choose other transformations. This “global

understanding” of the problem is the major advantage of the inspective approach and it

helps such systems to make high-level decisions before considering low-level details. The

inspective approach is also closer to how humans normally program by recognizing what

well-known concepts are applicable to a given problem and then applying them with some

minor customizations.

As with deductive and transformational systems, it has not yet been shown that gen-

eral-purpose inspective methods can be automated without advice from the user. This is due

to the fact that the inspective approach is based on experience and only applies to the rou-

tine parts of programming problems. Inspective systems usually require the user to identify

which cliques are applicable after which the system will typically be able to fill in many of

the details without the user’s assistance. MIT’s Programmer’s Apprentice [RICH81],

[WAT85] is an example of an inspective system that works in this fashion.

4.6 Automatic Programming in the CPAL Evaluation System

As noted at the beginning of this chapter, we intended this explanation of automatic

programming to prepare the reader for the presentation of our protocol analysis methodol-

ogy (in Chapter 5), which contains an important automatic programming component.

Recall that after having the user specify a protocol,P, in CPAL, and a statement of failure,

F, for the protocol, our strategy is to take the statement of failure as a postcondition for the

protocol and then employ Yasinsac’s technique for computing the weakest preconditions

for P = S1;S2;S3; ... ; SN.

Chapter 4: Automatic Program Synthesis 88

wp1(S1,...)

S1;

.

.

.

wpN-2(SN-2,wp(SN-1,wp(SN,F)))

SN-2

wpN-1(SN-1,wp(SN,F))

SN-1;

wpN(SN,F)

SN;

F

Note that satisfying any one of these weakest preconditions will cause the protocol to fail

sinceF, the postcondition, is a statement of failure. Therefore,we can view each weakest

precondition as the specification of a program that will cause the protocol to fail and use an

automatic programming technique to attempt to generate the program from its specifica-

tion. If this step succeeds, the generated program can be incorporated into the protocol and

the attack scenario can be reported to the user.

In developing our automatic programming system we chose the deductive approach

because we believe that we can benefit from its considerable strengths while avoiding many

of its limitations. As previously mentioned, the strengths of deductive systems are that they

are general, powerful, and lend themselves to automation. In fact, there are many freely

available automatic theorem proving systems that can serve as the basis for a deductive

automatic programming system. At the same time, the constraints our domain offers mini-

mize the limitations of the deductive approach that were mentioned earlier.

For example, the fact that CPAL contains no looping or procedure call constructs

means that we only need to generate “straight-line” programs. Furthermore, we know that

most attacks on cryptographic protocols are very short, usually consisting of just a few lines

Chapter 4: Automatic Program Synthesis 89

of code. For these reasons, we have found the search space to be manageable in all of the

protocols we have analyzed. In addition, the CPAL system automatically generates our pro-

gram specifications in logic form so we do not burden the user with a difficult specification

problem. Lastly, we are interested only in whether or not there is an attack on a protocol

that meets a given specification. We are not concerned about whether the generated attack

is the most efficient or even reasonably efficient.

4.7 Summary

In this chapter we have given an overview of the field of automatic program gener-

ation, with an emphasis on the deductive approach. We chose the deductive approach for

use in our CPAL evaluation system because of its considerable strengths, ease of implemen-

tation, and because our version of the automatic programming problem mitigate its weak-

nesses. In the next chapter we give a detailed description of our deductive automatic

programming system and its role in our protocol analysis methodology.

90

Chapter 5

The CPAL Evaluation System

In this chapter we present our methodology for automatically examining crypto-

graphic protocols for flaws. This methodology combines the mechanical nature of the state-

based tools with the formal semantics of the logical approach. As discussed in Chapter 2,

the logical and state-based techniques are currently the most popular approaches to crypto-

graphic protocol examination. Unifying these two approaches has allowed us to create a

system that can examine a large number of possible attacks quickly and exploit the seman-

tics of the protocol to guide the search. We have used our methodology to produce a work-

ing cryptographic protocol evaluation system; in Chapter 6 we present the results of its

search for flaws in a number of well-known protocols from the literature.

In the next section we present a broad overview of the three main steps our meth-

odology takes to analyze cryptographic protocols. Then we give a detailed description of

each step and use a common protocol as a running example to illustrate each step. In the

final section we discuss our methodology and note some of its strengths and weaknesses.

Chapter 5: The CPAL Evaluation System 91

5.1 Overview

We first specify the protocol(s) to be tested in the Cryptographic Protocol Analysis

Language (CPAL) presented in Chapter 3. Since most protocols are expressed in Standard

Notation, the user will have to perform a translation (or idealization) into CPAL. This step

is generally trivial because of the similarity of the notations. After a protocol has been

expressed in CPAL, the user will be asked to specify what conditions would implyfailure

of the protocol (though the user will not be required to specifyhow those conditions might

be achieved). These first two steps are informal and rely heavily on the user. In the sections

on these two steps we explain why these two steps are necessary and why we do not expect

these steps to be difficult or time-consuming for most users.

After the user has completed these first two steps, the third step is the automatic

search for an attack that satisfies the failure conditions of the protocol formulated in step

two. Unlike the preceding two steps, the third step is completely formal and does not

require assistance from the user. The semantics of CPAL are used to generate theorems cor-

responding to the failure of the protocol(s) and then a deductive automatic programming

system is used to attempt to prove one of these theorems. If the proof succeeds, the actions

that it generated are added in the correct places in the protocol and the undermined protocol

is displayed so that the user can understand the attack that has been discovered. As we will

see in Section 5.5, even when the proof does not succeed and no attack has been found we

can draw some useful conclusions about the protocol(s).

5.2 Step 1 - Specifying the Protocol(s) in CPAL

We now describe the protocol that we will use as a running example for the rest of

this chapter. This protocol was designed to have an obvious flaw so that it could be used to

demonstrate each of the three steps in our methodology.

Chapter 5: The CPAL Evaluation System 92

Consider the following scenario: agentA wants to send a secret,x, to agentB. Upon

receipt ofA’s message, we would likeB to believe thatx was sent byA and thatx is not

known by anyone besidesA and himself. One possible protocol is the following. Assume

that agentA has a public/private key pair. Recall thatA’s public key is known to everyone

but the private key is known only to her, and that messages encrypted with one of the two

keys can only be decrypted with the other. ThenA could encryptx with her private key and

send the result toB. WhenB receives this message, he could decrypt it withA’s public key

and learnx. This protocol would be expressed in the Standard Notation as follows:

The flaw in this protocol is obvious. SinceA’s public key is well known, anyone who

can intercept the message fromA to B can perform the decryption and learnx. In the next

few sections we demonstrate how this weakness can be uncovered automatically by our

methodology.

The first step we take is to translate the protocol into a CPAL representation:

Line 1 of the CPAL specification defines agentA’s public/private key pair, and lines 2 and

3 state that agentsB andI knowA’s public key. In step 4,A creates a new value and sends

it to B in line 5. AgentB receivesA’s message and decrypts it to learnx in lines 6 and 7,

respectively.

(1) X: assume(Inverse(A.pub_A, A.priv_A));

(2) X: assume(B.pub_A == A.pub_A);

(3) X: assume(I.pub_A == A.pub_A);

(4) A: x := new;

(5) A: (ep[x]priv_A);

(6) B: ;

(7) B: x := dp[msg]pub_A;

A B:→ x{ }KA 1–

B→

msg()←

Chapter 5: The CPAL Evaluation System 93

5.3 Step 2 - Specifying the Failure Condition

The next step is to specify a failure condition for the protocol. This step is not unlike

the “specification acquisition” step in automatic programming which many researchers

consider a “major problem” [BAL85] due to the difficulty of producing a specification that

is correct, complete, and unambiguous. While we cannot claim that specifying the failure

condition for a cryptographic protocol is trivial there are some characteristics of the limited

domain that make this problem easier than the general version which the automatic pro-

gramming community must deal with. For one thing these failure conditions are typically

much shorter than program specifications and are therefore easier to express and under-

stand.

Furthermore, there are generally a small number of standard failure conditions for

each type of protocol, and the failure condition for a protocol is often simply the negation

of the protocol’s stated goals. For example, an authentication protocol would be said to fail

if agentC could convince agentA that he (C) wasB. A natural failure condition for a key

distribution protocol would be one that states that the “secret” key that is agreed upon byA

andB is also known by an intruder. Another possible failure for a key distribution protocol

would be if the two principals believe that they share a key but do not realize that they

haven’t agreed on the same key.

Note that the failure conditions given above describe what it means for the protocol

to fail but do not specify how that failure might be brought about. In the key distribution

example an intruder could accomplish the first failure condition (knowing the “secret” key

agreed on by the two principals) by getting them to accept as the “secret” key some value

she already knows, by tricking one of the two agents into telling her the key they have

agreed on, or through some other sequence of actions. Allowing the user to express the fail-

ure condition in general terms not only makes these specifications simpler, but it also leaves

Chapter 5: The CPAL Evaluation System 94

open the possibility that the system will discover a way to attack a protocol that the user

might not have foreseen.

In our current implementation, we restrict the user to expressing failure conditions

in propositional calculus. We made this choice because a substantial number of failure con-

ditions can be expressed in this notation and because limiting our theorems to statements

in propositional calculus greatly decreased the amount of time it took to prove the resulting

theorems. In the Related Work section of Chapter 7, we discuss how we would go about

modifying our system so that failure conditions could be expressed in first-order logic or

any of the specialized modal logics that have been developed for cryptographic protocol

analysis.

Returning to the example protocol that we introduced in Section 5.3, we recall that

it was intended to transfer a secret piece of data fromA toB. One obvious failure condition

for that protocol would be if the intruder was somehow able to learn the data that the pro-

tocol is supposed to protect. We can express this statement in predicate calculus as

Same(I.x, A.x). This predicate is true if a variable in the intruder’s address space (x in this

case) is the same as the “secret” data,x, fromA’s address space. Here then is the CPAL spec-

ification for the protocol and its failure condition expressed in predicate calculus which

together form the input for the third step of our methodology:

X: assume(Inverse(A.pub_A, A.priv_A));

X: assume(B.pub_A == A.pub_A);

X: assume(I.pub_A == A.pub_A);

A: x := new;

A: (ep[x]priv_A);

B: ;

B: x := dp[msg]pub_A;

Same(I.x, A.x)

B→

msg()←

Chapter 5: The CPAL Evaluation System 95

5.4 Step 3 - Automatically Searching for an Attack

The final step in our methodology is to attempt to modify the protocol so that the

failure condition is achieved. If we return to the definition of weakest precondition given in

Chapter 3, we recall that theweakest precondition, wp(S,R), represents the weakest solution

to the equationQ : Q {S} R, whereQ {S} R is aHoare triple with Q andR being boolean

expressions called the precondition and postcondition, respectively.Q {S} R is said to hold

if program segmentS, beginning withQ satisfied, is guaranteed to establishR, if S termi-

nates. By using the formal semantics of CPAL we can compute the weakest precondition at

each point in the protocol to determine what assumptions,Qi, must hold prior to each state-

ment in the protocol,Si, for the remainder of the protocol to execute and establish the post-

condition,R.So for the protocol,P, composed of a sequence of statements:

P = S1;S2;S3; ... ; SN

and the failure condition,F, we can computewp(P,F):

wp1(S1,...)

S1;

.

.

.

wpN-2(SN-2,wp(SN-1,wp(SN,F)))

SN-2

wpN-1(SN-1,wp(SN,F))

SN-1;

wpN(SN,F)

SN;

F

Chapter 5: The CPAL Evaluation System 96

Eachwpi is then the assumptions that must hold prior toSi for Si;Si+1; ... ; SN-1; SN

to execute and establishF. Therefore, we can think of eachwpi as a formal specification of

a program that, if added to the protocol before statementSi, guarantees that the protocol will

have achieved the failure condition,F, upon completion. Recall from Chapter 4 that we can

apply a deductive automatic programming approach to try to find a constructive proof of

wpi and, if that succeeds, we can add the generated program,GP, to the protocol before

statementSi.

wp1(S1,...)

S1;

.

.

Si-1;

GP;

Si;

.

.

wpN-2(SN-2,wp(SN-1,wp(SN,F)))

SN-2

wpN-1(SN-1,wp(SN,F))

SN-1;

wpN(SN,F)

SN;

F

Sincewpi are the assumptions that must hold prior toSi for Si;Si+1; ... ; SN-1; SN to

execute and establishF, and sinceG establisheswpi, P’ = S1;S2; ... Si-1;GP;Si; ... ; SN-1;SN

is an example of a successful attack onP. So, basically, step three of our methodology com-

putes the weakest preconditions for the protocol and then tries to find a constructive proof

for one of them. Once a proof is found, the modifications it prescribes are made to the pro-

tocol and the resulting attack scenario is reported to the user.

Chapter 5: The CPAL Evaluation System 97

Actually, our methodology does not require that an entire weakest precondition be

proved all at once. In our current implementation, for example, we transform all the weak-

est preconditions into conjunctive normal form and then try to prove any clause in a weakest

precondition. If a proof succeeds, we make the necessary modifications to the protocol,

recompute the weakest preconditions for the modified protocol, and then try to prove

another clause. We continue with this process until one of the weakest preconditions has

had all of its clauses proved. This could give rise to extra actions being added to the protocol

that are not part of a successful attack, but this does not concern us since we are primarily

interested in whether or not an attack exists. In the next subsection, we give the weakest

preconditions for our example protocol. In the subsections after that, we show exactly how

we prove theorems and use those proofs to modify protocols.

5.4.1 Computing the Weakest Preconditions

Computing the weakest preconditions for a protocol expressed in CPAL is simply

an exercise in mechanically applying the predicate transforms that were given in Chapter

3. Yasinsac developed such a tool as part of his dissertation and we currently use a version

of that program in our system. The results of computing the weakest preconditions for the

example protocol and the failure condition are given below. As noted in Chapter 3, before

computing the weakest precondition for a protocol, all insecure sends are replaced with

secure sends to the intruder, who then forwards the message unmodified to its intended

recipient.

Chapter 5: The CPAL Evaluation System 98

Figure 5.1 : The Protocol (with Weakest Preconditions) in CPAL

5.4.2 Searching for a Constructive Proof

The next step after computing the weakest preconditions for a protocol is to use an

automatic theorem proving system to try to find a constructive proof of one of the weakest

preconditions. Many different axioms and inference rules make up the input that will be

given to the automatic theorem prover, but they can all be generated automatically or

derived from the protocol or its weakest preconditions. In the next several subsections we

present all of the axioms and inference rules that we currently include, and we discuss why

we chose each axiom/rule.

Same(I.x, unique1)

(1) X: assume(Inverse(A.pub_A, A.priv_A));

Same(I.x, unique1)

(2) X: assume(B.pub_A == A.pub_A);

Same(I.x, unique1)

(3) X: assume(I.pub_A == A.pub_A);

Same(I.x, unique1)

(4) A: x := new;

Same(I.x, A.x)

(5) A: (ep[x]priv_A);

Same(I.x, A.x)

(6) I: ;

Same(I.x, A.x)

(7) I: (tmp1);

Same(I.x, A.x)

(8) B: ;

Same(I.x, A.x)

(9) B: x := dp[msg]pub_A;

Same(I.x, A.x)

I⇒

tmp1()←

B⇒

msg()←

Chapter 5: The CPAL Evaluation System 99

The axioms and inference rules we currently use can be divided intostandard rules

and axioms that do not differ from protocol to protocol, and theprotocol-specific axioms

that depend on the protocol. We discuss each of these sets in the following two subsections.

5.4.2.1 Standard Axioms and Inference Rules

The standard axioms which we define mostly describe some useful predicates that

allow us to reason about some basic properties of a protocol and the underlying

cryptographic algorithms. One of these predicates which we have already seen is the

Same()predicate which we have already used to specify the failure condition. We use the

Same() predicate to express the equivalence of two values either in the same address space

or in different address spaces. Three of the standard axioms that deal with theSame()

predicate are the following:

Same(X, X).

-Same(X,Y) | Same(Y, X).

-Same(X,Y) | -Same(Y,Z) | Same(X,Z)

The first axiom states that theSame() predicate is reflexive - meaning that any value,X, is

“the same” as itself. The second axiom uses negation (-) and disjunction (|) to state that the

Same()predicate is also symmetric. Translating the second axiom literally, it reads: “Either

X andY are not the same, orY andX are the same.” Readers familiar with logical notation

should recognize that this axiom could be rewritten as:

not(Same(X,Y)) or Same(Y,X)

which is equivalent to the statement:

Same(X,Y) implies Same(Y,X)

under the usual interpretations. The last axiom states that theSame() predicate is also

transitive.

Chapter 5: The CPAL Evaluation System 100

Another predicate that we will use (especially when dealing with protocols that

employ public-key cryptosystems) is theInverse() predicate. This predicate is used to

describe pairs of values which, when used with some function, can each be used to invert

the results of the function applied to the other. Two of our standard axioms about the

Inverse() predicate are:

-Inverse(X,Y) | Inverse(Y,X).

-Same(X,Y) | -Inverse(Y,Z) | Inverse(X,Z).

The first axiom tells us that theInverse() predicate is symmetric just like theSame()

predicate. Note that there are no transitivity or reflexivity axioms for theInverse() predicate.

However, the second axiom above states that ifX andY are the same andY andZ are

inverses, thenX andZ are also inverses.

Two other predicates that we use often are theIknows() andIcontrols() predicates.

We use these predicates to reason about what values the intruder knows and controls,

respectively. We say that the intruderknows a value if he can recognize and repeat it. We

say that the intrudercontrols a value if heknows it and can also overwrite it with another

value. Two of our standard axioms that deal with these two predicates are the following:

-Iknows(X) | -Same(X,Y) | Iknows(Y) | $ANS(Sub(Y,X)).

-Icontrols(X) | -Iknows(Y) | Same(X,Y) | $ANS(Assign(X,Y)).

The first axiom states that if the intruder knowsX andX is the same asY, then the intruder

knowsY. The last clause in this axiom,$ANS(), is called ananswer literal and is used to

record instantiations of variables in input clauses during the search for a proof. Given the

logical formulae below, with lower case names representingliterals and upper case names

representingvariables:

Chapter 5: The CPAL Evaluation System 101

Iknows(a).

Same(a,b).

-Iknows(X) | -Same(X,Y) | Iknows(Y) | $ANS(Sub(Y,X)).

a proof of the theoremIknows(b) would yield the answer literal:

$ANS(Sub(b,a)).

which tells us that during the proof,b instantiated the variableY anda instantiated the

variableX. When we construct protocol actions this will allow us to substitute the correct

values from the protocol into those actions.

In the axiom given above for theIcontrols() predicate we see that if the intruder

controls some value,X, and knows some value,Y, then she can causeX andY to have the

same value by overwritingX with Y. This axiom also contains an answer literal that will tell

us which value was overwritten with which value during the proof.

The remainder of the standard axioms deal with some of the properties of

symmetric and asymmetric cryptosystems. They are only added to the input file if our

system determines that a protocol makes use of the corresponding cryptographic functions.

For symmetric cryptosystems the axioms are:

-Iknows(K) | -Iknows(e(X,K)) | Iknows(X) | $ANS(Sub(X,d(e(X,K),K))). :If the
intruder knows a value,K, and a message encrypted using that value,e(X,K), then
he also knows the contents of the message,X

-Iknows(K) | -Iknows(d(X,K)) | Iknows(X) | $ANS(Sub(X,e(d(X,K),K))). :If the
intruder knows a value,K, and a message decrypted using that value,d(X,K), then
he also knows the contents of the message,X

-Same(K1,K2) | Same(d(e(X,K1),K2),X). :Encrypting a message,X, and then
decrypting the result using the same key yieldsX.

-Same(K1,K2) | Same(e(d(X,K1),K2),X). :Decrypting a message,X, and then
encrypting the result using the same key yieldsX.

Chapter 5: The CPAL Evaluation System 102

-Same(X,Y) | -Iknows(e(X,K)) | Iknows(e(Y,K)) | $ANS(Sub(X,Y)). :If X andY are
the same and the intruder knows the encryption ofX under some key,K, then he also
knows the encryption ofY underK.

-Same(X,Y) | -Iknows(d(X,K)) | Iknows(d(Y,K)) | $ANS(Sub(X,Y)). :If X andY are
the same and the intruder knows the decryption ofX under some key,K, then he also
knows the decryption ofY underK.

-Iknows(K) | -Iknows(X) | Iknows(e(X,K)) | $ANS(Create(e(X,K))). :If the intruder
knows some value,K, and some other value,X, then he can produce the encryption
of X underK.

-Iknows(K) | -Iknows(X) | Iknows(d(X,K)) | $ANS(Create(d(X,K))). :If the intruder
knows some value,K, and some other value,X, then he can produce the decryption
of X underK.

-Icontrols(X) | -Iknows(Y) | -Iknows(d(X,K)) | Iknows(d(Y,K)) | $ANS(Sub(X,Y)). :
When the intruder controls a value,X, knows a value,Y, and knows the decryption
of X with K, then he can learn the decryption ofY with K by overwritingX with Y
and then performing whatever actions allowed him to discoverd(X,K).

-Icontrols(X) | -Iknows(Y) | -Iknows(e(X,K)) | Iknows(e(Y,K)) | $ANS(Sub(X,Y)). :
When the intruder controls a value,X, knows a value,Y, and knows the encryption
of X with K, then he can learn the encryption ofY with K by overwritingX with Y
and then performing whatever actions allowed him to discovere(X,K).

For asymmetric cryptosystems the axioms are:

-Iknows(K1) | -Inverse(K1,K2) | -Iknows(ep(X,K2)) | Iknows(X) |

$ANS(Sub(X,dp(ep(X,K2),K1))). :If the intruder knows a value,K1, andK1 is the
inverse ofK2, and she also knows the public-key encryption ofX underK2, then she
can decrypt the message usingK1 and learnX.

-iknows(K1) | -Inverse(K1,K2) | -Iknows(dp(X,K2)) | Iknows(X) |

$ANS(Sub(X,ep(dp(X,K2),K1))). :If the intruder knows a value,K1, andK1 is the
inverse ofK2, and she also knows the public-key decryption ofX underK2, then she
can encrypt the message usingK1 and learnX.

-Inverse(K1,K2) | Same(dp(ep(X,K1),K2),X). :Encrypting a message,X, and then
decrypting the result using inverse keys yieldsX.

-Inverse(K1,K2) | Same(ep(dp(X,K1),K2),X). :Decrypting a message,X, and then
encrypting the result using inverse keys yieldsX.

Chapter 5: The CPAL Evaluation System 103

-Same(X,Y) | -Iknows(ep(X,K)) | Iknows(ep(Y,K)) | $ANS(Sub(X,Y)). :If two values,
X andY, are the same and an intruder knows the public-key encryption of one then
she also knows the public-key encryption of the other.

-Same(X,Y) | -Iknows(dp(X,K)) | Iknows(dp(Y,K)) | $ANS(Sub(X,Y)). :If two values,
X andY, are the same and an intruder knows the public-key decryption of one then
she also knows the public-key decryption of the other.

-Iknows(K) | -Iknows(X) | Iknows(ep(X,K)) | $ANS(Create(ep(X,K))). :If the
intruder knows some value,K, and some other value,X, then he can produce the
public-key encryption ofX underK.

-Iknows(K) | -Iknows(X) | Iknows(dp(X,K)) | $ANS(Create(dp(X,K))). :If the
intruder knows some value,K, and some other value,X, then he can produce the
public-key decryption ofX underK.

-Icontrols(X) | -Iknows(Y) | -Iknows(dp(X,K)) | Iknows(dp(Y,K)) | $ANS(Sub(X,Y)).:
When the intruder controls a value,X, knows a value,Y, and knows the public-key
decryption ofX with K, then she can learn the public-key decryption ofY with K by
overwritingX with Y and then performing whatever actions allowed her to discover
dp(X,K).

-Icontrols(X) | -Iknows(Y) | -Iknows(ep(X,K)) | Iknows(ep(Y,K)) | $ANS(Sub(X,Y)).:
When the intruder controls a value,X, knows a value,Y, and knows the public-key
encryption ofX with K, then she can learn the public-key encryption ofY with K by
overwritingX with Y and then performing whatever actions allowed her to discover
ep(X,K).

These axioms are not intended to allow us to prove everything that could be proven

about these predicates but were chosen because they allow us to prove many useful things

about these predicates quickly. We discuss this issue more formally and in more depth later

in Section 5.5.

5.4.2.2 Protocol-Specific Axioms

The rest of the axioms that make up the input file for the automatic theorem prover

are derived from the protocol and from the particular weakest precondition that we are

attempting to prove. Since we could attempt to prove any of the weakest preconditions in

the protocol, our approach is to work on the weakest precondition for the first statement of

Chapter 5: The CPAL Evaluation System 104

the protocol first, and, if it has not been proven in some user-specified amount of time, move

on to the next weakest precondition. If at any time a proof succeeds and the protocol is

modified we recompute the weakest preconditions for the new protocol and start again with

the weakest precondition for the first statement. We continue in this manner until one or

more of the weakest preconditions contains no clauses (meaning we have satisfied a

weakest precondition and discovered a successful attack) or until no part of any weakest

precondition can be proved at which point the system reports it could not find any

successful attacks in the allotted time.

For the purpose of this discussion let us assume that we have failed to prove any part

of the weakest preconditions for statements 1-6 in Figure 5.1 and are now considering the

weakest precondition for statement 7. It is:

Same(i_x, a_x).

This is the theorem to be proved and, as is usual in resolution theorem proving, we add the

negation of this theorem to our set of axioms:

-Same(i_x, a_x).

Next, we add axioms corresponding to any assumptions that are given in the protocol under

consideration. In this case, that would be those given in lines 1-3 of Figure 5.1:

Inverse(a_pub_A, a_priv_A).

Same(b_pub_A, a_pub_A).

Same(i_pub_A, a_pub_A).

Then we generate axioms that describe for which variables in the protocol theIknows(),

Icontrols(), andSame() predicates hold.

For the first two, it is always the case that the intruder both knows and controls all the values

in her own address space so from Figure 5.1 we get the axioms:

Chapter 5: The CPAL Evaluation System 105

Iknows(i_tmp1).

Icontrols(i_tmp1).

Iknows(i_x).

Icontrols(i_x).

Iknows(i_pub_A).

Icontrols(i_pub_A).

To derive aSame() predicate for each variable in the protocol we use the variable as a

“postcondition” and compute the weakest precondition from that point in the protocol to

the beginning. In this example, we are attempting to prove the weakest precondition for

statement 7 so theSame() predicate for the variableI.tmp1 would be computed as follows:

This gives us the axiom:

Same(i_tmp1, ep(unique1, a_priv_A)).

By repeating this process for the other variables in the protocol we get:

Same(a_x, unique1).

Same(a_pub_A, a_pub_A).

ep[unique1]A.priv_A

(1) X: assume(Inverse(A.pub_A, A.priv_A));

ep[unique1]A.priv_A

(2) X: assume(B.pub_A == A.pub_A);

ep[unique1]A.priv_A

(3) X: assume(I.pub_A == A.pub_A);

ep[unique1]A.priv_A

(4) A: x := new;

ep[A.x]A.priv_A

(5) A: (ep[x]priv_A);

I.*queue*

(6) I: ;

I.tmp1

I⇒

tmp1()←

Chapter 5: The CPAL Evaluation System 106

Same(a_priv_A, a_priv_A).

Same(b_msg, b_msg).

Same(b_pub_A, b_pub_A).

Same(i_x, i_x).

Same(i_pub_A, i_pub_A).

5.4.2.3 Parallel Session Axioms

The final set of axioms we derive from the protocol are theparallel-session axioms

which describe the effect of running fragments of the protocol. These axioms will allow us

to reason aboutparallel-session attacks in which the intruder may participate in more than

one session of a protocol simultaneously and use messages from one session in another.

These types of attacks are very common on cryptographic protocols and examples of

successful parallel session attacks can be found in [AN94], [BIR93], [BAN89], [CAR94],

and [KMM94], to name a few.

A parallel session fragment is just some initial prefix of a protocol with agents

assigned to each “role” in the protocol. For example, the protocol in Figure 5.2 begins with

some agent playing the role associated with agent A in the specification. It is important to

Chapter 5: The CPAL Evaluation System 107

note that any agent can play the role of “A” in this protocol. So if agent B wants to transmit

a piece of secret data to agent A the protocol will look like:

Figure 5.2 : A Sample Protocol

In this instance of the protocol we would say that agent B is playing the role of “A” in the

protocol and that agent A is playing the role of “B” (Note that the intruder is playing the

role of “I” and is the only agent who can, since the role of “I” must be played by a dishonest

principal). Likewise, if agent A uses the protocol to send a secret to agent C the protocol

looks like:

(1) X: assume(Inverse(B.pub_B, B.priv_B));

(2) X: assume(A.pub_B == B.pub_B);

(3) X: assume(I.pub_B == B.pub_B);

(4) B: x := new;

(5) B: (ep[x]priv_B);

(6) I: ;

(7) I: (tmp1);

(8) A: ;

(9) A: x := dp[msg]pub_B;

(1) X: assume(Inverse(A.pub_A, A.priv_A));

(2) X: assume(C.pub_A == A.pub_A);

(3) X: assume(I.pub_A == A.pub_A);

(4) A: x := new;

(5) A: (ep[x]priv_A);

(6) I: ;

(7) I: (tmp1);

(8) C: ;

(9) C: x := dp[msg]pub_A;

I⇒

tmp1()←

A⇒

msg()←

I⇒

tmp1()←

C⇒

msg()←

Chapter 5: The CPAL Evaluation System 108

Now, if we break the protocol down into turns:

and enumerate all valid prefixes of the protocol (a valid prefix of a protocol must start with

the first statement of the protocol and end on a turn boundary) we get the following:

Prefix 1:

Prefix 2:

Turn 1: X: assume(Inverse(A.pub_A, A.priv_A));

X: assume(B.pub_A == A.pub_A);

X: assume(I.pub_A == A.pub_A);

A: x := new;

A: (ep[x]priv_A);

Turn 2: I: ;

I: (tmp1);

Turn 3: B: ;

B: x := dp[msg]pub_A;

X: assume(Inverse(A.pub_A, A.priv_A));

X: assume(B.pub_A == A.pub_A);

X: assume(I.pub_A == A.pub_A);

A: x := new;

A: (ep[x]priv_A);

X: assume(Inverse(A.pub_A, A.priv_A));

X: assume(B.pub_A == A.pub_A);

X: assume(I.pub_A == A.pub_A);

A: x := new;

A: (ep[x]priv_A);

I: ;

I: (tmp1);

I⇒

tmp1()←

B⇒

msg()←

I⇒

I⇒

tmp1()←

B⇒

Chapter 5: The CPAL Evaluation System 109

Prefix 3:

Prefix 1 gives us 3 distinct parallel session fragments (since agentA, B, or I can play the

role of “A” in Prefix 1). They are:

Parallel Session 1 (A plays “A”):

Parallel Session 2 (B plays “A”):

Parallel Session 3 (I plays “A”):

X: assume(Inverse(A.pub_A, A.priv_A));

X: assume(B.pub_A == A.pub_A);

X: assume(I.pub_A == A.pub_A);

A: x := new;

A: (ep[x]priv_A);

I: ;

I: (tmp1);

B: ;

B: x := dp[msg]pub_A;

X: assume(Inverse(A.pub_A, A.priv_A));

X: assume(B.pub_A == A.pub_A);

X: assume(I.pub_A == A.pub_A);

A: x := new;

A: (ep[x]priv_A);

X: assume(Inverse(A.pub_A, A.priv_A));

X: assume(B.pub_A == A.pub_A)

X: assume(I.pub_A == A.pub_A);

B: x := new;

B: (ep[x]priv_B);

X: assume(Inverse(A.pub_A, A.priv_A));

X: assume(B.pub_A == A.pub_A)

I⇒

tmp1()←

B⇒

msg()←

I⇒

I⇒

Chapter 5: The CPAL Evaluation System 110

Prefix 2 gives us 3 more parallel session fragments (since agentA, B, or I can play the role

of “A” and only the intruder can play the role of “I”):

Parallel Session 4 (A plays “A” and I plays “I”):

Parallel Session 5 (B plays “A” and I plays “I”):

Parallel Session 6 (I plays “A” and I plays “I”):

X: assume(I.pub_A == A.pub_A);

I: x := new;

I: (ep[x]priv_I);

X: assume(Inverse(A.pub_A, A.priv_A));

X: assume(B.pub_A == A.pub_A);

X: assume(I.pub_A == A.pub_A);

A: x := new;

A: (ep[x]priv_A);

I: ;

I: (tmp1);

X: assume(Inverse(A.pub_A, A.priv_A));

X: assume(B.pub_A == A.pub_A)

X: assume(I.pub_A == A.pub_A);

B: x := new;

B: (ep[x]priv_B);

I: ;

I: (tmp1);

X: assume(Inverse(A.pub_A, A.priv_A));

X: assume(B.pub_A == A.pub_A)

X: assume(I.pub_A == A.pub_A);

I: x := new;

I: (ep[x]priv_I);

I⇒

I⇒

tmp1()←

B⇒

I⇒

tmp1()←

B⇒

I⇒

Chapter 5: The CPAL Evaluation System 111

Finally, Prefix 3 gives us 9 more parallel session fragments (since agentA, B, or I can play

the role of “A”, onlyI can play the role of “I”, and agentA, B, or I can play the role of “B”)

of which we list only the first below. A complete list of all 15 parallel session fragments for

the protocol in Figure 5.2 is given in Appendix B.

Parallel Session 7 (A plays “A”, I plays “I”, and A plays “B”):

Each parallel session fragment can be used as an axiom when attempting to prove a weakest

precondition though we may want to eliminate duplicate or “useless” parallel session

fragments from the list in order to minimize the number of axioms the automatic theorem

prover needs to consider.

The last thing we must do to the list of parallel session fragments is to rename some

of the variables. We do this because we expect that certain of the variables in these

fragments will refer to a different memory location in the principal’s address space on each

run of the protocol. For instance, in the statement:

B: ;

I: ;

I: (tmp1);

X: assume(Inverse(A.pub_A, A.priv_A));

X: assume(B.pub_A == A.pub_A);

X: assume(I.pub_A == A.pub_A);

A: x := new;

A: (ep[x]priv_A);

I: ;

I: (tmp1);

A: ;

A: x := dp[msg]pub_A;

tmp1()←

B⇒

I⇒

tmp1()←

A⇒

msg()←

msg()←

Chapter 5: The CPAL Evaluation System 112

we would not expect the variablemsg to refer to the same location inB’s address space in

each run of the protocol. On the other hand, in the statement:

A: (ep[x]priv_A);

we would expect the variablepriv_A to refer to the same location inA’s address space in

each run of the protocol since it corresponds to a permanent and global value. By

performing these substitutions and using the same procedure (described in Section 5.4.2.2)

used to generate protocol-specific axioms we get the following list of parallel-session

axioms which are added to the input file for the automatic theorem prover:

Same(a_tmp1, unique2) | $ANS(session(1)).

Same(b_tmp1, unique3) | $ANS(session(2)).

(Same(a_tmp2, unique4) & Iknows(i_pub_A) & Icontrols(i_pub_A) &

Same(i_pub_A, a_pub_A) & Iknows(i_tmp2) & Icontrols(i_tmp2) &

Same(i_tmp2, ep(unique4, a_priv_A))) | $ANS(session(3)).

(Same(b_tmp2, unique5) & Iknows(i_pub_B) & Icontrols(i_pub_B) &

Same(i_pub_B, b_pub_B) & Iknows(i_tmp3) & Icontrols(i_tmp3) &

Same(i_tmp3, ep(unique5, b_priv_B))) | $ANS(session(4)).

(Same(a_tmp3, unique6) & Iknows(i_pub_A) & Icontrols(i_pub_A) &

Same(i_pub_A, a_pub_A) & Iknows(i_tmp4) & Icontrols(i_tmp4) &

Same(i_tmp4,ep(unique6,a_priv_A)) & Same(a_msg ,ep(unique6,a_priv_A)) &

Same(a_tmp4,dp(ep(unique6, a_priv_A), a_pub_A) | $ANS(session(5)).

(Same(a_tmp5, unique7) & Iknows(i_pub_A) & Icontrols(i_pub_A) &

Same(i_pub_A, a_pub_A) & Iknows(i_tmp5) & Icontrols(i_tmp5) &

Same(i_tmp5,ep(unique7,a_priv_A)) &Same(b_tmp3,ep(unique7,a_priv_A)) &

Same(b_tmp4,dp(ep(unique7, a_priv_A), b_pub_A) | $ANS(session(6)).

(Iknows(i_pub_A) & Icontrols(i_pub_A) & Same(i_pub_A, a_pub_A) &

Iknows(i_tmp6) & Icontrols(i_tmp6) & Same(a_tmp6, i_tmp6) &

Same(a_tmp7,dp(i_tmp6, a_pub_A)) | $ANS(session(7)).

(Iknows(i_pub_B) & Icontrols(i_pub_B) & Same(i_pub_B, b_pub_B) &

Iknows(i_tmp7) & Icontrols(i_tmp7) & Same(b_tmp4, i_tmp7) &

Same(b_tmp5,dp(i_tmp7, a_pub_A)) | $ANS(session(8)).

(Same(b_tmp6, unique8) & Iknows(i_pub_B) & Icontrols(i_pub_B) &

I⇒

Chapter 5: The CPAL Evaluation System 113

Same(i_pub_B, b_pub_B) & Iknows(i_tmp8) & Icontrols(i_tmp8) &

Same(i_tmp8,ep(unique8,b_priv_B)) &Same(a_tmp7,ep(unique8,b_priv_B)) &

Same(a_tmp8,dp(ep(unique8, b_priv_B), a_pub_B) | $ANS(session(9)).

(Same(b_tmp7, unique9) & Iknows(i_pub_B) & Icontrols(i_pub_B) &

Same(i_pub_B, a_pub_B) & Iknows(i_tmp9) & Icontrols(i_tmp9) &

Same(i_tmp9,ep(unique9,b_priv_B)) &Same(b_tmp8,ep(unique9,b_priv_B)) &

Same(b_tmp9,dp(ep(unique9, b_priv_B), b_pub_B) | $ANS(session(10)).

5.4.3 Protocol Interactions

Note that there is no reason to limit the parallel-session axioms to only those derived

from a single protocol. We could generate parallel-session axioms for a number of different

protocols and add them all to the input file that we use to examine any one of them. If any

of these axioms are used during the proof, the corresponding actions would be added to the

protocol yielding an attack that exploited one of the other protocols in the set to undermine

the protocol being examined. We consider this to be an important contribution of our

approach. An example of this type ofprotocol-interaction attack is shown in Chapter 6.

5.4.4 The Automatic Theorem Prover’s Input File

Now that we have explained each of its components, we can present the complete

input file that will be used by the automatic theorem prover.

set(auto).

set(prolog_style_variables).

assign(max_seconds,5).

list(usable).

% ==================== Standard Axioms ====================

Same(X, X).

-Same(X,Y) | Same(Y, X).

-Same(X,Y) | -Same(Y,Z) | Same(X,Z).

-Inverse(X,Y) | Inverse(Y,X).

-Same(X,Y) | -Inverse(Y,Z) | Inverse(X,Z).

-Iknows(X) | -Same(X,Y) | Iknows(Y) | $ANS(Sub(Y,X)).

-Icontrols(X) | -Iknows(Y) | Same(X,Y) | $ANS(Assign(X,Y)).

% ==================== Public-Key Rules ====================

Chapter 5: The CPAL Evaluation System 114

-Iknows(K1) | -Inverse(K1,K2) | -Iknows(ep(X,K2)) | Iknows(X) | $ANS(Sub(X,dp(ep(X,K2),K1))).

-iknows(K1) | -Inverse(K1,K2) | -Iknows(dp(X,K2)) | Iknows(X) | $ANS(Sub(X,ep(dp(X,K2),K1))).

-Inverse(K1,K2) | Same(dp(ep(X,K1),K2),X).

-Inverse(K1,K2) | Same(ep(dp(X,K1),K2),X).

-Same(X,Y) | -Iknows(ep(X,K)) | Iknows(ep(Y,K)) | $ANS(Sub(X,Y)).

-Same(X,Y) | -Iknows(dp(X,K)) | Iknows(dp(Y,K)) | $ANS(Sub(X,Y)).

-Iknows(K) | -Iknows(X) | Iknows(ep(X,K)) | $ANS(Create(ep(X,K))).

-Iknows(K) | -Iknows(X) | Iknows(dp(X,K)) | $ANS(Create(dp(X,K))).

-Icontrols(X) | -Iknows(Y) | -Iknows(dp(X,K)) | Iknows(dp(Y,K)) | $ANS(Sub(X,Y)).

-Icontrols(X) | -Iknows(Y) | -Iknows(ep(X,K)) | Iknows(ep(Y,K)) | $ANS(Sub(X,Y)).

% ============== Protocol-Specific Axioms ==============

Iknows(i_tmp1).

Icontrols(i_tmp1).

Iknows(i_x).

Icontrols(i_x).

Iknows(i_pub_A).

Icontrols(i_pub_A).

Same(i_tmp1, ep(unique1, a_priv_A)).

Same(a_x, unique1).

Same(a_pub_A, a_pub_A).

Same(a_priv_A, a_priv_A).

Same(b_msg, b_msg).

Same(b_pub_A, b_pub_A).

Same(i_x, i_x).

Same(i_pub_A, i_pub_A).

% ============= Protocol Assumptions =================

Inverse(a_pub_A, a_priv_A).

Same(b_pub_A, a_pub_A).

Same(i_pub_A, a_pub_A).

end_of_list.

% =========== Negation of the Weakest Precondition =========

formula_list(usable).

-Same(i_x, unique1).

% ============= Parallel Session Axioms ================

Same(a_tmp1, unique2) | $ANS(session(1)).

Same(b_tmp1, unique3) | $ANS(session(2)).

(Same(a_tmp2, unique4) & Iknows(i_pub_A) & Icontrols(i_pub_A) & Same(i_pub_A, a_pub_A) &

Iknows(i_tmp2)&Icontrols(i_tmp2)&Same(i_tmp2,ep(unique4,a_priv_A))) |$ANS(session(3)).

(Same(b_tmp2, unique5) & Iknows(i_pub_B) & Icontrols(i_pub_B) & Same(i_pub_B, b_pub_B) &

Iknows(i_tmp3)&Icontrols(i_tmp3)&Same(i_tmp3,ep(unique5,b_priv_B)))|$ANS(session(4)).

(Same(a_tmp3, unique6) & Iknows(i_pub_A) & Icontrols(i_pub_A) &Same(i_pub_A, a_pub_A) &

Iknows(i_tmp4) & Icontrols(i_tmp4) &Same(i_tmp4,ep(unique6,a_priv_A)) &

Same(a_msg ep(unique6,a_priv_A))&Same(a_tmp4,dp(ep(unique6,a_priv_A),a_pub_A)|

Chapter 5: The CPAL Evaluation System 115

$ANS(session(5)).

(Same(a_tmp5, unique7) & Iknows(i_pub_A) & Icontrols(i_pub_A) & Same(i_pub_A, a_pub_A) &

Iknows(i_tmp5) & Icontrols(i_tmp5) & Same(i_tmp5,ep(unique7,a_priv_A)) &

Same(b_tmp3, ep(unique7, a_priv_A)) & Same(b_tmp4, dp(ep(unique7, a_priv_A), b_pub_A) |

$ANS(session(6)).

(Iknows(i_pub_A) & Icontrols(i_pub_A) & Same(i_pub_A, a_pub_A) & Iknows(i_tmp6) &

Icontrols(i_tmp6) & Same(a_tmp6, i_tmp6) & Same(a_tmp7,dp(i_tmp6, a_pub_A)) |

$ANS(session(7)).

(Iknows(i_pub_B) & Icontrols(i_pub_B) & Same(i_pub_B, b_pub_B) &Iknows(i_tmp7) &

Icontrols(i_tmp7) & Same(b_tmp4, i_tmp7) &Same(b_tmp5,dp(i_tmp7, a_pub_A)) |

$ANS(session(8)).

(Same(b_tmp6, unique8) & Iknows(i_pub_B) & Icontrols(i_pub_B) &

Same(i_pub_B, b_pub_B) & Iknows(i_tmp8) & Icontrols(i_tmp8) &

Same(i_tmp8,ep(unique8,b_priv_B)) &Same(a_tmp7,ep(unique8,b_priv_B)) &

Same(a_tmp8,dp(ep(unique8, b_priv_B), a_pub_B) | $ANS(session(9)).

(Same(b_tmp7, unique9) & Iknows(i_pub_B) & Icontrols(i_pub_B) &

Same(i_pub_B, a_pub_B) & Iknows(i_tmp9) & Icontrols(i_tmp9) &

Same(i_tmp9,ep(unique9,b_priv_B)) &Same(b_tmp8,ep(unique9,b_priv_B)) &

Same(b_tmp9,dp(ep(unique9, b_priv_B), b_pub_B) | $ANS(session(10)).

end_of_list.

Figure 5.3 : The Input File for OTTER

For this input file, the automatic theorem prover produces the following output:

----> UNIT CONFLICT at 0.08 sec ----> 277 [binary,276.1,12.1] $ANS(sub(ep(uniq

ue1,a_priv_a),i_tmp1))|$ANS(sub(unique1,dp(ep(unique1,a_priv_a),b_pub_a)))|$ANS(

sub(b_pub_a,a_pub_a))|$ANS(sub(a_pub_a,i_pub_a))|$ANS(sub(a_x,unique1))|$ANS(ass

ign(i_x,a_x)).

Length of proof is 9. Level of proof is 5.

---------------- PROOF ----------------

1 [] -same(A,B)|same(B,A).

3 [] -same(A,B)| -inverse(B,C)|inverse(A,C).

4 [] -icontrols(A)| -iknows(B)|same(A,B)|$ANS(assign(A,B)).

5 [] -iknows(A)| -same(A,B)|iknows(B)|$ANS(sub(B,A)).

6 [] -iknows(A)| -inverse(A,B)| -iknows(ep(C,B))|iknows(C)|$ANS(sub(C,dp(ep(C,B)

,A))).

12 [] -same(i_x,a_x).

Chapter 5: The CPAL Evaluation System 116

14 [] same(i_tmp1,ep(unique1,a_priv_a)).

15 [] iknows(i_tmp1).

18 [] icontrols(i_x).

19 [] iknows(i_pub_a).

21 [] same(a_x,unique1).

22 [] inverse(a_pub_a,a_priv_a).

23 [] same(b_pub_a,a_pub_a).

24 [] same(i_pub_a,a_pub_a).

67 [hyper,14,5,15] iknows(ep(unique1,a_priv_a))|$ANS(sub(ep(unique1,a_priv_a),i_

tmp1)).

79 [hyper,21,1] same(unique1,a_x).

127 [hyper,23,3,22] inverse(b_pub_a,a_priv_a).

128 [hyper,23,1] same(a_pub_a,b_pub_a).

163 [hyper,24,5,19] iknows(a_pub_a)|$ANS(sub(a_pub_a,i_pub_a)).

231 [hyper,128,5,163] iknows(b_pub_a)|$ANS(sub(b_pub_a,a_pub_a))|$ANS(sub(a_pub_

a,i_pub_a)).244 [hyper,67,6,231,127] $ANS(sub(ep(unique1,a_priv_a),i_tmp1))|iknows(unique1)|

$ANS(sub(unique1,dp(ep(unique1,a_priv_a),b_pub_a)))|$ANS(sub(b_pub_a,a_pub_a))|$

ANS(sub(a_pub_a,i_pub_a)).

255 [hyper,244,5,79] $ANS(sub(ep(unique1,a_priv_a),i_tmp1))|$ANS(sub(unique1,dp(

ep(unique1,a_priv_a),b_pub_a)))|$ANS(sub(b_pub_a,a_pub_a))|$ANS(sub(a_pub_a,i_pu

b_a))|iknows(a_x)|$ANS(sub(a_x,unique1)).

276 [hyper,255,4,18] $ANS(sub(ep(unique1,a_priv_a),i_tmp1))|$ANS(sub(unique1,dp(

ep(unique1,a_priv_a),b_pub_a)))|$ANS(sub(b_pub_a,a_pub_a))|$ANS(sub(a_pub_a,i_pu

b_a))|$ANS(sub(a_x,unique1))|same(i_x,a_x)|$ANS(assign(i_x,a_x)).

277 [binary,276.1,12.1] $ANS(sub(ep(unique1,a_priv_a),i_tmp1))|$ANS(sub(unique1,

dp(ep(unique1,a_priv_a),b_pub_a)))|$ANS(sub(b_pub_a,a_pub_a))|$ANS(sub(a_pub_a,i

_pub_a))|$ANS(sub(a_x,unique1))|$ANS(assign(i_x,a_x)).

------------ end of proof -------------

Figure 5.4 : Output of the Automatic Theorem Prover

The first line of the output:

----> UNIT CONFLICT at 0.08 sec ----> 277 [binary,276.1,12.1] $ANS(sub(ep(uniq

ue1,a_priv_a),i_tmp1))|$ANS(sub(unique1,dp(ep(unique1,a_priv_a),b_pub_a)))|$ANS(

sub(b_pub_a,a_pub_a))|$ANS(sub(a_pub_a,i_pub_a))|$ANS(sub(a_x,unique1))|$ANS(ass

ign(i_x,a_x)).

is a summary of the proof and contains all the information we will need to make

modifications to the protocol. Note that the summary contains 6 components:

Chapter 5: The CPAL Evaluation System 117

$ANS(sub(ep(unique1,a_priv_a),i_tmp1))

$ANS(sub(unique1,dp(ep(unique1,a_priv_a),b_pub_a)))

$ANS(sub(b_pub_a,a_pub_a))

$ANS(sub(a_pub_a,i_pub_a))

$ANS(sub(a_x,unique1))

$ANS(assign(i_x,a_x))

each of which is an answer literal that was produced by use of a particular inference rule

during the proof. The first,$ANS(sub(ep(unique1,a_priv_a),i_tmp1)), tells us that it was

necessary to substitutei_tmp1 for ep(unique1,a_priv_a) at some point in the proof.

Likewise, the last,$ANS(assign(i_x,a_x)), tells us that the theorem prover discovered that

the valuea_x could be assigned to the variablei_x. Although it is not represented in the

proof summary, the answer literal:

$ANS(assign(i_x,a_x))

was generated from the inference rule:

-Icontrols(X) | -Iknows(Y) | Same(X,Y) | $ANS(Assign(X,Y)).

once the automatic theorem prover had deduced:

Icontrols(i_x)

and

Iknows(a_x)

In the next section we show how we use this proof summary to make modifications to the

protocol.

5.4.5 Using the Proof to Modify the Protocol

Modifying the protocol as dictated by the proof summary is straightforward since

the answer literal for each inference rule states explicitly what changes are required. For

Chapter 5: The CPAL Evaluation System 118

example, asub(x,y) predicate indicates that the valuey must be substituted for the valuex

in any statement that is to be added to the protocol as a result of the proof. Asession(x)

predicate signifies that parallel session fragmentx should be added to the protocol, and an

assign(x,y) predicate prescribes that the assignment statement “x := y;” should be added.

Using these rules we can demonstrate what modifications to the protocol are implied by the

proof in Figure 5.4. As mentioned above, the proof summary contains six components:

$ANS(sub(ep(unique1,a_priv_a),i_tmp1))

$ANS(sub(unique1,dp(ep(unique1,a_priv_a),b_pub_a)))

$ANS(sub(b_pub_a,a_pub_a))

$ANS(sub(a_pub_a,i_pub_a))

$ANS(sub(a_x,unique1))

$ANS(assign(i_x,a_x))

By removing the first clause from the list and performing the substitution it prescribes

(i_tmp1 for ep(unique1,a_priv_a)) we get:

$ANS(sub(unique1,dp(i_tmp1,b_pub_a)))

$ANS(sub(b_pub_a,a_pub_a))

$ANS(sub(a_pub_a,i_pub_a))

$ANS(sub(a_x,unique1))

$ANS(assign(i_x,a_x))

Processing the new head of the list in a similar manner we get:

$ANS(sub(b_pub_a,a_pub_a))

$ANS(sub(a_pub_a,i_pub_a))

$ANS(sub(a_x,dp(i_tmp1,b_pub_a)))

$ANS(assign(i_x,a_x))

then:

$ANS(sub(a_pub_a,i_pub_a))

$ANS(sub(a_x,dp(i_tmp1,a_pub_a)))

$ANS(assign(i_x,a_x))

Chapter 5: The CPAL Evaluation System 119

and:

$ANS(sub(a_x,dp(i_tmp1,i_pub_a)))

$ANS(assign(i_x,a_x))

and finally:

$ANS(assign(i_x,dp(i_tmp1,i_pub_a)))

The modification prescribed by this line is to add the statement:

I: x := dp[tmp1]pub_A;

to the protocol in place of the weakest precondition that produced the proof. After doing

this our list of modifications is empty and the modified protocol is:

Line (7) is the program that was extracted from the proof in Figure 5.4 and has been added

to the protocol. We then recompute the weakest preconditions for the modified protocol:

(1) X: assume(Inverse(A.pub_A, A.priv_A));

(2) X: assume(B.pub_A == A.pub_A);

(3) X: assume(I.pub_A == A.pub_A);

(4) A: x := new;

(5) A: (ep[x]priv_A);

(6) I: ;

* (7) I: x := dp[tmp1]pub_A;

(8) I: (tmp1);

(9) B: ;

(10) B: x := dp[msg]pub_A;

Same(dp[ep[unique1]A.priv_A]A.pub_A,dp[ep[unique1]A.priv_A]A.pub_A)

(1) X: assume(Inverse(A.pub_A, A.priv_A));

Same(dp[ep[unique1]A.priv_A]A.pub_A,dp[ep[unique1]A.priv_A]A.pub_A)

(2) X: assume(B.pub_A == A.pub_A);

I⇒

tmp1()←

B⇒

msg()←

Chapter 5: The CPAL Evaluation System 120

Then we start over by trying to prove the weakest precondition for the first

statement. In this particular case, we are able to prove the verification condition for the

protocol and therefore know that no further modifications are necessary. We can now report

the attack scenario to the user.

Line 7 is the attack - a modification to the original protocol that causes the failure

condition to be satisfied by the end of the protocol. In this line the intruder decrypts the

message she received (line 6) which was encrypted byA using her private key. The intruder

was able to perform this decryption because we assumed (line 3) that she knewA’s public

key. In the next section we offer a discussion of the methodology we have presented in this

chapter and note some of its strengths and weaknesses.

Same(dp[ep[unique1]A.priv_A]A.pub_A,dp[ep[unique1]A.priv_A]B.pub_A)

(3) X: assume(I.pub_A == A.pub_A);

Same(dp[ep[unique1]A.priv_A]I.pub_A,dp[ep[unique1]A.priv_A]B.pub_A)

(4) A: x := new;

Same(dp[ep[A.x]A.priv_A]I.pub_A,dp[ep[A.x]A.priv_A]B.pub_A)

(5) A: (ep[x]priv_A);

Same(dp[I.*queue*]I.pub_A,dp[I.*queue*]B.pub_A)

(6) I: ;

Same(dp[I.tmp1]I.pub_A,dp[I.tmp1]B.pub_A)

(7) I: x := dp[tmp1]pub_A;

Same(I.x,dp[I.tmp1]B.pub_A)

(8) I: (tmp1);

Same(I.x,dp[B.*queue*]B.pub_A)

(9) B: ;

Same(I.x,dp[B.msg]B.pub_A)

(10) B: x := dp[msg]pub_A;

Same(I.x,A.x)

I⇒

tmp1()←

B⇒

msg()←

Chapter 5: The CPAL Evaluation System 121

5.5 Discussion of Our Methodology

As noted in [SIM94], the research community has found it difficult to “either

[design] sound information-based protocols or [to prove] that a candidate protocol is

sound.” One reason for this is that it has never been shown that the cryptographic algorithms

upon which many of these protocols are built are truly one-way trapdoor functions. If they

are not then clearly protocols that utilize these algorithms are unsound. However, even

when we adopt the popular approach of assuming that the underlying cryptographic algo-

rithms are good, Simmons still cautions that “it is extremely difficult to determine whether

an information-based protocol is sound, even for very simple protocols.” This is due to the

same difficulties found in the field of program verification where researchers have not been

able to formally define what correctness means for most programs or to show that a formal

proof about an abstraction implies the correct functioning of the program’s concrete imple-

mentation [DLP79].

Researchers have long known that they cannot prove, in general, that a protocol has

no flaws but realize that it is still important to try to rid candidate protocols of all the flaws

that they can find through analysis. Traditionally, analysis has consisted of the designer

(and perhaps others) attempting to find flaws in a protocol using all of the experience and

analytical tools at their disposal. However, Simmons points to the large number of protocols

that have “survived several rounds of this process, only to have subsequently been shown

to have a protocol failure” as evidence of the need for “more systematic and formal [meth-

ods] of evaluating protocols.”

Our methodology addresses both of Simmons’ criteria well. It not only performs an

extensive search for attacks but it also allows us to make useful statements about protocols

even when no flaws are found. For example, if we assume that the protocol has been trans-

lated correctly into CPAL and that a useful failure condition has been chosen then we have

Chapter 5: The CPAL Evaluation System 122

a set of theorems for which we will try to find a constructive proof. If we assume that the

theorem prover has been given a complete set of axioms with which to prove the theorems

and that the theorem prover performs a breadth-first search for a proof, then we should be

able to stop the theorem prover at any point in the search and say that no constructive proof

of the given theorem exists that is shorter than the length of the longest proof the theorem

prover has considered to that point. Since the proof is constructive, with each inference

relating to an action that must be added to the protocol, we can make definite statements

about the minimum length of any attack that might satisfy the protocol’s failure condition

even if we have not yet generated such an attack. More importantly, if the theorem prover

finds a constructive proof of one of the theorems we can make an even stronger statement,

namely, that there is an attack (which we can exhibit) that achieves the failure condition of

the protocol.

The implementation of our methodology that we have described in this chapter does

not attempt to satisfy many of the assumptions stated in the preceding paragraph and there-

fore cannot make statements as strong as those given above when the system is stopped

before it has found a constructive proof of a theorem. This was done purposely to make the

system find the “standard” types of attacks faster. For instance, the automatic theorem

prover that we use does not perform a breadth-first search when attempting to prove a the-

orem. Instead it uses a number of heuristics to direct the search which means that many

longer inference paths could be examined before a shorter (and potentially successful) path

is found. This makes it much harder to characterize the set of proofs that have not been

examined at any point in the search, but, in general, the heuristics the automatic theorem

prover uses enables it to find proofs much faster than a breadth-first theorem prover would.

Another choice we have made in our implementation to decrease the amount of time

it takes to find proofs is to use only a selected set of axioms. This decision means that there

may be constructive proofs for a theorem that the theorem prover will not be able to find

Chapter 5: The CPAL Evaluation System 123

because it lacks some of the necessary axioms. For example, we do not currently include

any algebraic or number theoretic axioms so it is not possible for the system to discover

attacks which depend on algebraic properties of the underlying cryptosystems. We chose to

exclude such axioms for now because there are very few examples of such attacks and the

inclusion of these axioms would have caused the system to take considerably longer to find

the more common attacks. In the Future Work section we discuss how additional axioms

could be added to our system thereby enabling it to discover such attacks. In the next chap-

ter we demonstrate how our system can automatically find many of the well-known attacks

on cryptographic protocols from the literature.

5.6 Summary

In this chapter we have presented a three-step methodology for examining crypto-

graphic protocols for flaws. First, the user expresses the protocol(s) in CPAL. Next, the user

specifies the failure conditions for the protocol(s). Third, a deductive automatic program-

ming system is employed to try to modify the protocol(s) so that a failure condition is

achieved. If this last step succeeds we have identified an attack that subverts the goals of a

protocol and we can demonstrate the attack to the user.

The main strength of this approach is that the formal semantics of protocols are

exploited in a number of ways to make the analysis comprehensive, automatic, and tracta-

ble. The semantics of CPAL allow us to formally specify a failure condition for a protocol

and then employ a very powerful automatic programming system to search for an attack

that achieves the failure condition. The search for an attack is not user-directed but instead

is guided by the formal semantic definition of failure derived from the protocol and the

user-defined failure condition.

Another contribution of this approach is that it can discover attacks that arise due to

Chapter 5: The CPAL Evaluation System 124

the interaction of two or more cryptographic protocols running in the same environment.

This represents a new class of attack that we callprotocol-interaction attacks.Considering

all possible interactions among all of the protocols that may be used together is clearly

beyond the capability of any human inspector, and since these types of attacks are also not

currently handled by any other cryptographic protocol analysis tool we see an opportunity

for our method to complement many existing cryptographic protocol evaluation techniques.

In the next chapter we demonstrate our method by presenting the results of our sys-

tem’s analysis of a number of cryptographic protocols from the literature. We show that our

system can find well-known “standard” attacks as well as the new protocol-interaction

attacks.

125

Chapter 6

Protocols Analyzed Using CPAL-ES

In this chapter we present the results of our analysis of a number of well-known

cryptographic protocols. We demonstrate our methodology’s ability to discover many of

the known attacks on these protocols and then turn our attention to some of the new types

of attacks that we have uncovered. We close this chapter by characterizing the class of

attacks that our system can currently discover and discuss how this class could be expanded

to include additional ones.

6.1 Finding an Attack on a Simple Cryptographic Protocol

We begin this chapter by working a detailed example that shows all the steps taken

by our system to discover a flaw in a simple cryptographic protocol. The protocol (with line

Chapter 6: Protocols Analyzed Using CPAL-ES 126

numbers added for reference) is given in CPAL below.

Figure 6.1 : A Simple Cryptographic Protocol

The protocol is intended to transfer a value,x, from userA to userB while keeping

it secret from other users on the network. To accomplish this, agentA creates a new key,k,

and sends it toB (lines 1 and 2). PrincipalB receives this key fromA and stores it in the

variablek in his address space (line 3). AgentA then generates the piece of secret data,x,

and sends it toB encrypted under the key,k, using a symmetric cryptosystem (lines 4 and

5). After principalB receives this message fromA, he can decrypt it and learn the value,x,

thatA has sent him. Of course, since both the key and the encrypted message are sent inse-

curely, an eavesdropper could observe these two messages and use the first to decrypt the

second and learnx.

After specifying the protocol in CPAL (Figure 6.1), the next step in our methodol-

ogy is to establish a statement of failure for the protocol. For this protocol we will use the

predicate:

Same(I.x, A.x)1

1. We could also use the predicateSame(I.x,B.x) as our failure condition and although some of the
details that follow would be slightly different the final result of our system’s analysis would be
identical.

(1) A: k := new;

(2) A: (k);

(3) B: ;

(4) A: x := new;

(5) A: (e[x]k);

(6) B: ;

(7) B: x := d[msg]k;

B→

k()←

B→

msg()←

Chapter 6: Protocols Analyzed Using CPAL-ES 127

This predicate is true when the value stored in the variablex in the intruder’s address space

is equivalent to the value stored in the variablex in agentA’s address space. Since the pro-

tocol is intended to transmit the valuex from A to B privately, we are saying that the pro-

tocol has failed if that value also somehow appears in the intruder’s address space (since

that implies thatx is no longer known to onlyA andB). The input to the CPAL-ES system

is the protocol and the failure condition as shown in Figure 6.2 below.

Figure 6.2 : Input to the CPAL-ES System

From this point on, the system operates without any further interaction with the user. First,

each insecure send in the protocol is replaced with a secure send to the intruder and the

weakest precondition of the protocol and the failure condition is computed. The result is

shown in Figure 6.3.

(1) A: k := new;

(2) A: (k);

(3) B: ;

(4) A: x := new;

(5) A: (e[x]k);

(6) B: ;

(7) B: x := d[msg]k;

Same(I.x,A.x)

B→

k()←

B→

msg()←

Chapter 6: Protocols Analyzed Using CPAL-ES 128

Figure 6.3 : Weakest Preconditions for the Simple Protocol

Next, the system attempts to find a constructive proof for one of the weakest

preconditions. It starts with the weakest precondition for the first statement of the protocol

and tries to prove it using an automatic theorem prover. The theorem prover will either

succeed in proving the theorem or give up after some user-specified time limit has been

Same(I.x,unique2)

(1) A: k := new;

Same(I.x,unique2)

(2) A: (k);

Same(I.x,unique2)

(3) I: ;

Same(I.x,unique2)

(4) I: (tmp1);

Same(I.x,unique2)

(5) B: ;

Same(I.x,unique2)

(6) A: x := new;

Same(I.x,A.x)

(7) A: (e[x]k);

Same(I.x,A.x)

(8) I: ;

Same(I.x,A.x)

(9) I: (tmp2);

Same(I.x,A.x)

(10) B: ;

Same(I.x,A.x)

(11) B: x := d[msg]k;

Same(I.x,A.x)

I⇒

tmp1()←

B⇒

k()←

I⇒

tmp2()←

B⇒

msg()←

Chapter 6: Protocols Analyzed Using CPAL-ES 129

reached (one minute in this example). If no proof for the weakest precondition for the first

statement is found in the allotted time, the system moves on to the next weakest

precondition and attempts to prove it. For the protocol in Figure 6.3, the system fails to

prove any of the weakest preconditions for statements one through eight, however, it does

succeed for statement nine. The automatic theorem prover’s input file for statement nine

(which was automatically generated from the protocol as described in Chapter 5) is given

in Figure 6.4. For simplicity, the parallel session axioms have been omitted from Figure 6.4

since there are 28 of them and none of them are used in the proof of the theorem.

set(auto).
set(prolog_style_variables).
assign(max_seconds,60).

list(usable).

% ==================== Standard Axioms ====================

same(X,X).
-same(X,Y) | same(Y,X).
-same(X,Y) | -same(Y,Z) | same(X,Z).
-inverse(K1,K2) | inverse(K2,K1).
-same(K1,K2) | -inverse(K2,K3) | inverse(K1,K3).
-icontrols(X) | -iknows(Y) | same(X,Y) | $ANS(assign(X,Y)).
-iknows(X) | -same(X,Y) | iknows(Y) | $ANS(sub(Y,X)).
-same(A,dot(B,C)) | -same(B,D) | same(A,dot(D,C)) | $ANS(sub(B,D)).
-iknows(X) | iknows(dot(X,Y)).
-same(A,B) | same(dot(A,C),dot(B,C)).
dot($nil,X) = $nil.
dot([X|Y],1) = X.
dot([X|Y],2) = dot(Y,1).
dot([X|Y],3) = dot(Y,2).
dot([X|Y],4) = dot(Y,3).
-iknows(X) | -same(dot(X,Y),Z) | iknows(Z).

% ==================== Private-Key Axioms ====================

-iknows(K) | -iknows(e(X,K)) | iknows(X) | $ANS(sub(X,d(e(X,K),K))).
-iknows(K) | -iknows(d(X,K)) | iknows(X) | $ANS(sub(X,e(d(X,K),K))).
-same(K1,K2) | same(d(e(X,K1),K2),X).
-same(K1,K2) | same(e(d(X,K1),K2),X).
-same(X,Y) | -iknows(e(X,K)) | iknows(e(Y,K)) | $ANS(sub(X,Y)).
-same(X,Y) | -iknows(d(X,K)) | iknows(d(Y,K)) | $ANS(sub(X,Y)).
-icontrols(X) | -iknows(Y) | -iknows(d(X,K)) | iknows(d(Y,K)) | $ANS(sub(X,Y)).
-same(A,B) | same(d(A,C),d(B,C)).
-same(A,B) | same(e(A,C),e(B,C)).

Chapter 6: Protocols Analyzed Using CPAL-ES 130

-icontrols(X) | -iknows(K) | -iknows(Y) | -same(Z,d(X,K)) | same(Y,d(X,K)) |
$ANS(assign(X,e(Y,K))).
-icontrols(X) | -iknows(K) | -iknows(Y) | -same(Z,e(X,K)) | same(Y,e(X,K)) |
$ANS(assign(X,d(Y,K))).

% ==================== Protocol-Specific Axioms ====================

iknows(i_tmp2).
icontrols(i_tmp2).
same(i_tmp2,e(unique2, unique1)).
iknows(i_tmp1).
icontrols(i_tmp1).
same(i_tmp1,unique1).
iknows(i_x).
icontrols(i_x).
same(i_x,i_x).
same(b_k,i_tmp1).
same(a_k,unique1).
same(a_x,unique2).

end_of_list.

% ================ Negation of the Weakest Precondition ================

formula_list(usable).

-same(i_x, a_x).

end_of_list.

Figure 6.4 : Input File For Automatic Theorem Prover

The proof that the automatic theorem prover generates is shown in Figure 6.5.

----> UNIT CONFLICT at 2.41 sec ----> 1677 [binary,1676.1,22.1] $ANS(sub(e(unique2,
unique1),i_tmp2))|$ANS(sub(unique2,d(e(unique2,unique1),unique1)))|$ANS(sub(uniq
ue1,i_tmp1))|$ANS(sub(a_x,unique2))|$ANS(assign(i_x,a_x)).

Length of proof is 6. Level of proof is 4.

---------------- PROOF ----------------

1 [] -same(A,B)|same(B,A).
5 [] -icontrols(A)| -iknows(B)|same(A,B)|$ANS(assign(A,B)).
6 [] -iknows(A)| -same(A,B)|iknows(B)|$ANS(sub(B,A)).
11 [] -iknows(A)| -iknows(e(B,A))|iknows(B)|$ANS(sub(B,d(e(B,A),A))).
22 [] -same(i_x,a_x).
34 [] iknows(i_tmp2).
36 [] same(i_tmp2,e(unique2,unique1)).
37 [] iknows(i_tmp1).
39 [] same(i_tmp1,unique1).
41 [] icontrols(i_x).

Chapter 6: Protocols Analyzed Using CPAL-ES 131

44 [] same(a_x,unique2).
120 [hyper,39,6,37] iknows(unique1)|$ANS(sub(unique1,i_tmp1)).
192 [hyper,44,1] same(unique2,a_x).
335 [hyper,36,6,34] iknows(e(unique2,unique1))|$ANS(sub(e(unique2,unique1),i_tmp2)).
1345 [hyper,335,11,120] $ANS(sub(e(unique2,unique1),i_tmp2))|iknows(unique2)
|$ANS(sub(unique2,d(e(unique2,unique1),unique1)))|$ANS(sub(unique1,i_tmp1)).
1498 [hyper,1345,6,192] $ANS(sub(e(unique2,unique1),i_tmp2))|$ANS(sub(unique2,
d(e(unique2,unique1),unique1)))|$ANS(sub(unique1,i_tmp1))|iknows(a_x)|$ANS(sub(a
_x,unique2)).
1676 [hyper,1498,5,41] $ANS(sub(e(unique2,unique1),i_tmp2))|$ANS(sub(unique2,
d(e(unique2,unique1),unique1)))|$ANS(sub(unique1,i_tmp1))|$ANS(sub(a_x,unique2))
|same(i_x,a_x)|$ANS(assign(i_x,a_x)).
1677 [binary,1676.1,22.1] $ANS(sub(e(unique2,unique1),i_tmp2))|$ANS(sub(unique2,
d(e(unique2,unique1),unique1)))|$ANS(sub(unique1,i_tmp1))|$ANS(sub(a_x,unique2))
|$ANS(assign(i_x,a_x)).

------------ end of proof -------------

Figure 6.5 : The Proof Generated by the Theorem Prover

The system then uses this proof to make modifications to the protocol. By parsing the

summary line:

----> UNIT CONFLICT at 2.41 sec ----> 1677 [binary,1676.1,22.1] $ANS(sub(e(unique2,
unique1),i_tmp2))|$ANS(sub(unique2,d(e(unique2,unique1),unique1)))|$ANS(sub(uniq
ue1,i_tmp1))|$ANS(sub(a_x,unique2))|$ANS(assign(i_x,a_x)).

the system discovers that there are five modifications that need to be made to the protocol.

These modifications correspond to the answer literals that were generated during the proof:

sub(e(unique2, unique1),i_tmp2)
sub(unique2,d(e(unique2,unique1),unique1))
sub(unique1,i_tmp1)
sub(a_x,unique2)
assign(i_x,a_x)

The system removes the first clause from this list and performs the substitution it prescribes

(i_tmp2 for e(unique2,unique1)) on the remaining clauses. This yields:

sub(unique2,d(i_tmp2,unique1))
sub(unique1,i_tmp1)
sub(a_x,unique2)
assign(i_x,a_x)

Processing the new head of the list in a similar manner we get:

Chapter 6: Protocols Analyzed Using CPAL-ES 132

sub(unique1,i_tmp1)
sub(a_x,d(i_tmp2,unique1))
assign(i_x,a_x)

then:

sub(a_x,d(i_tmp2,i_tmp1))
assign(i_x,a_x)

and finally:

assign(i_x,d(i_tmp2,i_tmp1))

This clause can be translated into the following CPAL statement:

I: x := d[tmp2]tmp1;

which is then added to the protocol in place of the weakest precondition that was proven.

The result is the following1:

Figure 6.6 : The Modified Protocol

The system then recomputes the weakest preconditions for the protocol:

1. Asterisks are used to denote lines of a protocol that were inserted or modified by our system.

(1) A: k := new;

(2) A: (k);

(3) I: ;

(4) I: (tmp1);

(5) B: ;

(6) A: x := new;

(7) A: (e[x]k);

(8) I: ;

* (9) I: x := d[tmp2]tmp1;

(10) I: (tmp2);

(11) B: ;

(12) B: x := d[msg]k;

I⇒

tmp1()←

B⇒

k()←

I⇒

tmp2()←

B⇒

msg()←

Chapter 6: Protocols Analyzed Using CPAL-ES 133

Figure 6.7 : The Modified Protocol with Weakest Preconditions

The system then starts over by trying to prove the weakest precondition for the first

statement. In this case, the proof of the first weakest precondition succeeds since:

Same(d[e[unique2]unique1]unique1,unique2)

(1) A: k := new;

Same(d[e[unique2]A.k]A.k,unique2)

(2) A: (k);

Same(d[e[unique2]A.k]I.*queue*,unique2)

(3) I: ;

Same(d[e[unique2]A.k]I.tmp1,unique2)

(4) I: (tmp1);

Same(d[e[unique2]A.k]I.tmp1,unique2)

(5) B: ;

Same(d[e[unique2]A.k]I.tmp1,unique2)

(6) A: x := new;

Same(d[e[A.x]A.k]I.tmp1,A.x)

(7) A: (e[x]k);

Same(d[I.*queue*]I.tmp1,A.x)

(8) I: ;

Same(d[I.tmp2]I.tmp1,A.x)

(9) I: x := d[tmp2]tmp1;

Same(I.x,A.x)

(10) I: (tmp2);

Same(I.x,A.x)

(11) B: ;

Same(I.x,A.x)

(12) B: x := d[msg]k;

Same(I.x,A.x)

I⇒

tmp1()←

B⇒

k()←

I⇒

tmp2()←

B⇒

msg()←

Chapter 6: Protocols Analyzed Using CPAL-ES 134

Same(d[e[unique2]unique1]unique1,unique2)

can be simplified to:

Same(unique2,unique2)

and then to:

TRUE

No modifications to the protocol need to be made as a result of this proof so the system

reports the compromised protocol (Figure 6.6) to the user.

6.2 Published Protocols Analyzed Using CPAL-ES

While cryptographic protocols have been proposed for such things as electronic

voting, oblivious funds transfers, and threshold secret release, by far the majority of

published cryptographic protocols deal with authentication and key-exchange. These two

classes have also served as the focus of research in cryptographic protocol analysis with

specialized logics being designed just to examine authentication protocols [BAN89] and

elaborate tools being designed just to examine key-exchange protocols [MEA91]. We have

chosen to concentrate on these two types of protocols in this section, both because of their

preponderance and because they represent the majority of the types of cryptographic

protocols on which attacks have been published.

To give some structure to our discussion of the numerous protocols that will be

presented in this section, we will further subdivide protocols based on the types of known

attacks to which they are susceptible. Table 6.1 gives a rough classification of protocols

based on their type (authentication or key-exchange) and their known weaknesses (single-

session, multi-session, or key-compromise).

Chapter 6: Protocols Analyzed Using CPAL-ES 135

Table 6.1: A Rough Classification of Protocols

A single-session attack uses only a single run of the protocol whereas amulti-

session attack requires that two or more instances of the protocol be run. The attack that we

demonstrated for the protocol in Section 6.1 is a single-session attack.

A good example of a multi-session attack is the following. Imagine that there is a

room with a door that is being protected by a guard. The guard will only admit people who

know the correct password. When an individual approaches the door, the guard challenges

her to say the password, and if she answers correctly the guard will allow her to enter. This

describes a protocol for controlling access to the room. One attack on this protocol is for an

intruder to wait (within earshot) for an authorized user to approach the door and then

eavesdrop as he tells the guard the correct password. The intruder can then walk up to the

guard, repeat the password, and enter the room. This is an example of a multi-session attack

since the protocol must be run at least twice (once for the intruder to learn the password and

once for the intruder to use the password) for the attack to succeed. Some of the multi-

session attacks we will demonstrate later in this section will be much more complex with

different sessions of the protocol being run between different principals either

simultaneously or in an interleaved manner.

Single-Session
Multi-
Session

Key-
Compromise

Authentication CCITT X.509 ISO Needham and
Schroeder

Key-Exchange Neuman and
Stubblebine

TMN

Denning and
Sacco

Beller et al.

P
ro

to
co

l T
yp

e

Attack Type

Chapter 6: Protocols Analyzed Using CPAL-ES 136

Key-compromise attacks are somewhat unique to cryptographic protocols and are

based on the assumption that certain cryptographic keys are “weaker” than others and more

susceptible to compromise. In fact, this is the justification behind many key-distribution

protocols since they assume that principals already share some secret and want to use it to

establish a new cryptographic key to protect a single “conversation”. One obvious question

is why don’t agents just use the existing shared secret to communicate privately rather than

going through some protocol to establish a conversation key? The answer is that if all

communications between two principals is encrypted with the same key, then if that key is

broken, an attacker can read every message that the two have ever exchanged. But if each

conversation is encrypted with a different key then breaking a single key only reveals the

contents of a single conversation. In addition, cryptanalysis usually becomes easier as the

amount of ciphertext available for a given cryptographic key increases. So session keys also

make the cryptanalyst’s job harder by limiting the amount of ciphertext available for any

one key (especially the long-held shared secrets).

So while agreeing on and using session keys is an important goal or subgoal of

many cryptographic protocols, our analysis of these protocols must take into account the

fact that these conversation keys may be much more likely to be broken (especially over

time) than many of the other cryptographic keys used in these protocols. Akey-compromise

attack is one in which the breaking of a conversation key (usually long after the

conversation in which it was used has ended) allows an intruder not only to read messages

from that old conversation, but to use some of the old messages and knowledge of the

compromised key to attack current and future conversations.

As noted above there are types of protocols and types of known attacks besides

those given in Table 6.1, but we feel that our classification covers the majority of both

protocols and known attack types. We now turn our attention to the protocols given in Table

6.1. For each we will describe the protocol and its goals, the results of our system’s analysis,

Chapter 6: Protocols Analyzed Using CPAL-ES 137

and a description of the weaknesses our system uncovers. All of the protocols presented in

this chapter were thought to be correct at the time they were published and were

subsequently shown to suffer from at least one weakness from Table 6.1. With the exception

of one protocol (as noted) all of the flaws we will demonstrate in this section had been

discovered before we ran our system on the protocols, but our system was able to discover

each flaw independently.

We begin our discussion with a protocol proposed by Tatebayashi, Matsuzaki, and

Newman (TMN) that was used as a common test protocol in a paper [KMM94] that

compared three independently developed systems for cryptographic protocol analysis. In

this paper, each tool (Millen’s Interrogator, Meadows’ NRL Protocol Analyzer, and

Kemmerer’s Inatest system) was used to examine the TMN protocol to illustrate the

differences among these approaches. All three systems were able to find the simple single-

session attack that is illustrated in the next section, but only Kemmerer’s method was able

to discover the more complex attack on this protocol given in Section 2.1.2.

6.2.1 The TMN Protocol

As shown in Table 6.1, TMN is a key-exchange protocol that is vulnerable to a

single-session attack by an intruder. The protocol assumes that there are a number of mobile

“ground stations” that all know the public key of a central trusted server. When two ground

stations want to communicate securely with each other, they establish a session key for the

conversation with the help of the server. The following description of the TMN protocol is

taken from [TMN91]:

• When userA wishes to communicate with userB, it encrypts a random number

with the server’s public key, and sends the encrypted random number, along with

A’s andB’s names.

• When the server receives the request, it decrypts the random number and stores it

Chapter 6: Protocols Analyzed Using CPAL-ES 138

as a key-encryption key for that conversation; it also notifiesB that A wishes to

speak to it.

• UserB, on receiving the notification from the server, generates a random number

to be used as a session key, encrypts it with the server’s public key, and sends it to

the server.

• The server decrypts the response, encrypts the key withA’s random number using a

private-key algorithm, and sends the result toA.

• UserA decrypts the message from the server using the original random number it

had generated and assumes that the result is the session key.

It is assumed that all ground stations can generate random numbers and know the public

key of the server. We now present the TMN protocol in CPAL. We letA represent userA,

B represent userB, S represent the server, and I represent the intruder (a dishonest ground

station):

Chapter 6: Protocols Analyzed Using CPAL-ES 139

Figure 6.8 : The TMN Protocol

Since this is a key-exchange protocol we take the following as its failure condition:

Same(I.k, A.ck)

As in the example from Section 6.1, this predicate states that the value that agentA believes

is the key for a private conversation with agentB appears in the intruder’s address space. If

(1) X: assume(Inverse(S.priv_S,S.pub_S));

(2) X: assume(A.pub_S == S.pub_S);

(3) X: assume(B.pub_S == S.pub_S);

(4) X: assume(I.pub_S == S.pub_S);

(5) A: r1 := new;

(6) A: (<A,B,ep[r1]pub_S>);

(7) S: ;

(8) S: ka := dp[msg1.3]priv_S;

(9) S: (msg1.1);

(10) B: ;

(11) B: r2 := new;

(12) B: (ep[r2]pub_S);

(13) S: ;

(14) S: kb := dp[msg3]priv_S;

(15) S: (e[kb]ka);

(16) A: ;

(17) A: ck := d[msg4]r1;

S→

msg1()←

B→

msg2()←

S→

msg3()←

A→

msg4()←

Chapter 6: Protocols Analyzed Using CPAL-ES 140

we give the TMN protocol (as specified in Figure 6.8) and the above failure condition to the

CPAL-ES system it produces the following output:

Figure 6.9 : An Attack on the TMN Protocol

The attack occurs in line (18) of Figure 6.9. Instead of allowingB’s message (which

contains a proposed session key encrypted underS’s public key) to reachS, the intruder

substitutes a message he creates that contains the encryption of a value that he knows under

the server’s public key. The intruder can create this message because we assume (in line 4)

that he knowsS’s public key. OnceB’s message toS has been replaced in this manner, the

(1) X: assume(Inverse(S.priv_S,S.pub_S));

(2) X: assume(A.pub_S == S.pub_S);

(3) X: assume(B.pub_S == S.pub_S);

(4) X: assume(I.pub_S == S.pub_S);

(5) A: r1 := new;

(6) A: (<A,B,ep[r1]pub_S>);

(7) I: ;

(8) I: (tmp1);

(9) S: ;

(10) S: ka := dp[msg1.3]priv_S;

(11) S: (msg1.1);

(12) I: ;

(13) I: (tmp2);

(14) B: ;

(15) B: r2 := new;

(16) B: (ep[r2]pub_S);

(17) I: ;

* (18) I: (ep[k]pub_S);

(19) S: ;

(20) S: kb := dp[msg3]priv_S;

(21) S: (e[kb]ka);

(22) I: ;

(23) I: (tmp4);

(24) A: ;

(25) A: ck := d[msg4]r1;

I⇒

tmp1()←

S⇒

msg1()←

I⇒

tmp2()←

B⇒

msg2()←

I⇒

tmp3()←

S⇒

msg3()←

I⇒

tmp4()←

A⇒

msg4()←

Chapter 6: Protocols Analyzed Using CPAL-ES 141

rest of the protocol executes as usual - the server will receive the intruder’s message

(thinking it came fromB), decrypt it with his private key, encrypt the proposed conversation

key with A’s random number, and send the result toA. Upon receiving this message from

the server,A will decrypt it using her random number and accept the result as the

conversation key to talk privately withB. However, all messages sent out byA encrypted

under the agreed-upon conversation key will be readable by the intruder but not byB. Note

that this is a single-session attack since it does not rely on multiple runs of the protocol.

This attack was first illustrated by Simmons and was duplicated by the three

systems compared in [KMM94]. Kemmerer’s approach also discovered a different, more

complex multi-session attack (also previously reported by Simmons) that depends on

several mathematical properties of the particular symmetric-key cryptosystem that is used

(see Section 2.1.2). As mentioned in Chapter 5, our system cannot currently discover

attacks based on properties of the underlying cryptosystems, but it could be extended to do

so in the future (see Chapter 7). As stated in [KMM94], “Success on this example does not

prove the power of the ... systems, [and] this example is simply a vehicle for illuminating

such issues as specification style, user interaction, and differences with respect to the kind

of informal analysis done by an expert such as Simmons.”

6.2.2 The Neuman and Stubblebine Protocol

Another key-exchange protocol that is susceptible to a single-session attack is that

of Neuman and Stubblebine [NS93]. The protocol seeks to help usersA andB agree on a

session key with the help of an authentication server, S, with whom they share the secret

keys,Kas andKbs, respectively:

• PrincipalA begins the protocol by sending a message toB containing her name and

a nonce

• Upon receipt of this messageB creates his own nonce and sends a message to the

Chapter 6: Protocols Analyzed Using CPAL-ES 142

authentication server containingB’s name,B’s nonce, and the encryption under

Kbs of A’s name,A’s nonce, and a timestamp fromB.

• The authentication server receivesB’s message, decrypts the part encrypted under

Kbs, and choosesKab, a new conversation key forA andB. The authentication

server then sends a message toA containing a “ticket” forA, a “ticket” for B, and

B’s nonce.A’s ticket containsA’s name,A’s nonce, the newly created conversation

key, andB’s nonce, all encrypted underKas. B’s ticket containsA’s name, the con-

versation key, andB’s nonce, all encrypted underKbs.

• Agent A can decrypt his ticket and check the nonce to ensure the ticket was gener-

ated by the authentication server during the current run of the protocol. If the ticket

is fresh thenA also accepts the conversation key in it and forwardsB’s ticket toB

along withB’s nonce encrypted using the conversation key.

• Upon receipt of this message fromA, B can decrypt his ticket, check its freshness

in the same manner thatA checked the freshness of her ticket, and extract the ses-

sion key from the ticket.B can then decrypt the second part ofA’s message and

check to see that it matches his own nonce.

In Figure 6.10 we present the Neuman and Stubblebine protocol in CPAL.S is the

authentication server,A is userA, B is userB, I is the intruder,na is A’s nonce,nb is B’s

Chapter 6: Protocols Analyzed Using CPAL-ES 143

nonce,tb is B’s timestamp,kas is the shared key betweenA andS, kbs is the shared key

betweenB andS, andkab is S’s proposed conversation key forA andB.

Figure 6.10 : The Neuman and Stubblebine Protocol

The statement of failure is very similar to that of the TMN protocol:

Same(I.k, B.kab)

(1) X: assume(A.kas == S.kas);

(2) X: assume(B.kbs == S.kbs);

(3) A: na := new;

(4) A: (<A, na>);

(5) B: ;

(6) B: nb := new;

(7) B: (<B, e[<msg1.1, msg1.2, tb>]kbs, nb>);

(8) S: ;

(9) S: msg3 := d[msg2.2]kbs;

(10) S: kab := new;

(11) S: (<e[<msg2.1, msg3.2, kab, msg3.3>]kas, e[<msg3.1, kab, msg3.3>]kbs,msg2.3>);

(12) A: ;

(13) A: msg5 := d[msg4.1]kas;

(14) A: assert(A.msg5.2 == A.na);

(15) A: kab := msg5.3;

(16) A: (<msg4.2, e[msg5.2]kab>);

(17) B:

(18) B: msg7 := d[msg6.1]kbs;

(19) B: assert(B.msg7.1 == B.msg1.1);

(20) B: kab := msg7.2;

(21) B: nb1 := d[msg6.2]kab;

(22) B: assert(B.nb1 == B.nb);

B→

msg1()←

S→

msg2()←

A→

msg4()←

B→

msg6()←

Chapter 6: Protocols Analyzed Using CPAL-ES 144

That is, the intruder knows whatB believes to be the conversation key. The results of our

system’s analysis of this protocol is given below.

(1) X: assume(A.kas == S.kas);

(2) X: assume(B.kbs == S.kbs);

(3) A: na := new;

(4) A: (<A, na>);

(5) I: ;

(6) I: (tmp1);

(7) B: ;

(8) B: nb := new;

(9) B: (<B, e[<msg1.1, msg1.2, tb>]kbs, nb>);

(10) I: ;

(11) I: (tmp2);

(12) S: ;

(13) S: msg3 := d[msg2.2]kbs;

(14) S: kab := new;

(15) S: (<e[<msg2.1, msg3.2, kab, msg3.3>]kas, e[<msg3.1, kab, msg3.3>]kbs,msg2.3>);

(16) I: ;

(17) I: (tmp3);

(18) A: ;

(19) A: msg5 := d[msg4.1]kas;

(20) A: assert(A.msg5.2 == A.na);

(21) A: kab := msg5.3;

(22) A: (<msg4.2, e[msg5.2]kab>);

(23) I: ;

* (24) I: k := tmp1.2;

* (25) I: (<tmp2.2, e[tmp2.3]tmp1.2>);

(26) B: ;

(27) B: msg7 := d[msg6.1]kbs;

(28) B: assert(B.msg7.1 == B.msg1.1);

(29) B: kab := msg7.2;

(30) B: nb1 := d[msg6.2]kab;

(31) B: assert(B.nb1 == B.nb);

I⇒

tmp1()←

B⇒

msg1()←

I⇒

tmp2()←

S⇒

msg2()←

I⇒

tmp3()←

A⇒

msg4()←

I⇒

tmp4()←

B⇒

msg6()←

Chapter 6: Protocols Analyzed Using CPAL-ES 145

This attack is based on the similarity between the first messageB sends out (line 9) andB’s

ticket (generated byS in line 15 and sent toB in line 25). These messages can be represented

as:

Message 1: e[A, na, tb]kbs

Message 2: e[A, kab, tb] kbs

In particular, note that both messages are composed of three values encrypted underkbs. In

fact, the only difference between these two messages is in the second field, which isA’s

nonce in one and the session key in the other. Since the protocol does not state that keys and

nonces can be distinguished from one another, the intruder can substitute the first of these

messages whenB is expecting the second and getB to believe thatA’s nonce is the session

key. This is all that is needed to subvert the protocol sinceB does not check the conversation

key in any way and sinceA’s nonce is passed in the clear and therefore known to the

intruder. This is an example of a single-session attack and was first reported by Syverson in

[SYV93].

6.2.3 The CCITT X.509 Protocol

The X.509 family of protocols proposed by the Consultative Committee for

International Telegraph and Telephony (CCITT) are intended for signed, secure

communication between two principals, assuming that each knows the public key of the

other. While these protocols are designed to protect both the integrity and privacy of

messages, the attack that we will demonstrate in this section exploits a flaw in the

authenticity of a message and we have included the CCITT X.509 protocol in the row of

authentication protocols in Table 6.1 for that reason.

For our analysis we consider the “one-message” protocol in which agentA sends a

message to agentB containingA’s name and list of values signed withA’s private key. In

pseudocode notationA’s message toB would be represented as:

Chapter 6: Protocols Analyzed Using CPAL-ES 146

A, {Ta, Na, B, Xa, {Ya}Kb}

HereTa is a timestamp generated byA, Na is a nonce generated byA, andXa andYa are

user data. The protocol is intended to ensure the integrity ofXa andYa, assure the recipient

of their origin, and guarantee the privacy ofYa. The CPAL representation of the one-

message CCITT X.509 protocol is given in Figure 6.11 below.

Figure 6.11 : The CCITT X.509 “One-Message” Protocol

For the failure condition we take:

Same(B.msg2, I)

which implies thatB has verifiedI’s signature on the message and therefore believes that

bothXa and{Ya}Kb came from the intruder. The result of the our system’s analysis of this

protocol and failure condition are given in Figure 6.12.

(1) X: assume(Inverse(A.pub_A, A.priv_A));

(2) X: assume(Inverse(B.pub_B, B.priv_B));

(3) X: assume(Inverse(I.pub_I, I.priv_I));

(4) X: assume(B.pub_A == A.pub_A);

(5) X: assume(I.pub_A == A.pub_A);

(6) X: assume(A.pub_B == B.pub_B);

(7) X: assume(I.pub_B == B.pub_B);

(8) X: assume(A.pub_I == I.pub_I);

(9) X: assume(B.pub_I == I.pub_I);

(10) A: (<A, e[<Ta, Na, B, Xa, e[Ya]pub_B>]priv_A>);

(11) B: ;

(12) B: msg2 := msg1.1;

(13) B: if (Same(msg2, A)) then {msg3 := d[msg1.2]pub_A};

(14) B: if (Same(msg2, I)) then {msg3 := d[msg1.2]pub_I};

(15) B: msg4 := d[msg3.5]priv_B;

(16) B: assert(Same(B.msg4, A.Ya));

Ka
1–

B→

msg1()←

Chapter 6: Protocols Analyzed Using CPAL-ES 147

Figure 6.12 : An Attack on the CCITT X.509 “Single-Message” Protocol

The attack is as follows. In line 11 above, the intruder receives the message thatA has

signed and sent toB. Since the intruder knows A’s public key he can remove her signature

from the message and sign the results with his own private key (line 12). Note that the

intruder cannot decrypt{Ya}Kb to learnYa, but that this value will occur inside his signed

message. The intruder then forwards this message toB claiming to be its originator (line

(1) X: assume(Inverse(A.pub_A, A.priv_A));

(2) X: assume(Inverse(B.pub_B, B.priv_B));

(3) X: assume(Inverse(I.pub_I, I.priv_I));

(4) X: assume(B.pub_A == A.pub_A);

(5) X: assume(I.pub_A == A.pub_A);

(6) X: assume(A.pub_B == B.pub_B);

(7) X: assume(I.pub_B == B.pub_B);

(8) X: assume(A.pub_I == I.pub_I);

(9) X: assume(B.pub_I == I.pub_I);

(10) A: (<A, e[<Ta, Na, B, Xa, e[Ya]pub_B>]priv_A>);

(11) I: ;

* (12) I: tmp2 := e[d[tmp1.2]pub_A]priv_I;

* (13) I: (<I, tmp2>);

(14) B: ;

(15) B: msg2 := msg1.1;

(16) B: if (Same(msg2, A)) then {msg3 := d[msg1.2]pub_A};

(17) B: if (Same(msg2, I)) then {msg3 := d[msg1.2]pub_I};

(18) B: msg4 := d[msg3.5]priv_B;

(19) B: assert(Same(B.msg4, A.Ya));

I⇒

tmp1()←

B⇒

msg1()←

Chapter 6: Protocols Analyzed Using CPAL-ES 148

13), and afterB checks the intruder’s signature he will believe that bothXa andYa came

from the intruder and thatYa is a secret shared by only himself and the intruder.

This single-session attack on the CCITT X.509 protocol was first publicized by

Abadi and Needham in [AN94] where they note that:

... althoughYa is transferred in a signed message, there is no evidence to suggest that the
sender is actually aware of the data sent in the private part of the message. This corresponds
to a scenario where some third party intercepts a message and removes the existing
signature while adding his own, blindly copying the encrypted section within the signed
message.

This concludes our discussion of single-session attacks on cryptographic protocols. We

next take up the class of attacks that depend on executing two or more sessions of the same

protocol either sequentially or in parallel.

6.2.4 The Proposed ISO Protocol

We begin our discussion of multi-session attacks with a protocol proposed for the

International Organization for Standardization (ISO) standard for “entity authentication

using symmetric techniques” [ISO90]. The protocol assumes that usersA andB share some

secret key,k, and that for one agent to authenticate the other they should engage in the

following protocol:

• AgentA generates a nonce and sends it toB encrypted underk

• AgentB decryptsA’s message and sends back the nonce toA

• AgentA checks to see thatB’s response matches her nonce

HereB is proving his identity toA by demonstrating his knowledge of the keyk which A

believes only she andB know. Figure 6.13 gives the CPAL representation of this protocol.

Chapter 6: Protocols Analyzed Using CPAL-ES 149

Figure 6.13 : The Proposed ISO Protocol

As the failure condition for this protocol we use the predicate:

PlayRole(B,I)

This is a failure condition that we will see in many of the authentication protocols in this

chapter. The predicatePlayRole(B,I) basically represents the fact that in order for the

(1) X: assume(A.k == B.k);

(2) A: na := new;

(3) A: (e[na]k);

(4) B: ;

(5) B: (d[msg1]k);

(6) A: ;

(7) A: assert(A.na == A.msg2);

B→

msg1()←

A→

msg2()←

Chapter 6: Protocols Analyzed Using CPAL-ES 150

protocol to fail, the intruder must be able to successfully pass himself off asB to A. The

attack that CPAL-ES finds on the protocol is given below.

Figure 6.14 : An Attack on the Proposed ISO Protocol

As stated earlier, the attack is a multi-session attack. When agentA sends the

encryption of her nonce underk to start the protocol withB, the intruder intercepts that

message. The intruder then starts a run of the protocol withA saying, in effect, “I’m agent

B and I’d like you to authenticate yourself to me.” by sendingA’s message back to her.

AgentA answers this challenge by receiving the message, decrypting it using the key she

shares withB, and returning the answer toB. Of course, the intruder interceptsA’s reply and

can now send it back toA as it is the proper reply toA’s challenge in the original session.

Upon receipt of this reply from the intruder,A believes that she has just successfully

authenticated agentB! The attack is illustrated graphically below. Messages from the first

run of the protocol are denoted by solid arrows and messages from the second run of the

protocol are denoted by dashed arrows.

(1) X: assume(A.k == B.k);

(2) A: na := new;

(3) A: (e[na]k);

(4) I: ;

* (1’) I: (tmp1);

* (2’) A: ;

* (3’) A: (d[tmp10]k);

* (4’) I: ;

* (5) I: (tmp15);

(6) A: ;

(7) A: assert(A.na == A.msg2);

I⇒

tmp1()←

A⇒

tmp10()←

I⇒

tmp15()←

A⇒

msg2()←

Chapter 6: Protocols Analyzed Using CPAL-ES 151

Figure 6.15 : A Graphical Representation of the Attack on the Proposed ISO Protocol

This type of attack is often called anoracle attack since the intruder is using agent

A as an oracle to answer a question that the intruder cannot answer himself. This attack on

the proposed ISO protocol was publicized in [BIR93].

6.2.5 The Denning and Sacco Protocol

In [DS81], Denning and Sacco proposed a key-exchange protocol based on

timestamps and public-key cryptography. In the actual protocol, agents A and B interact

with an authentication server to learn each other’s public keys, but if we assume that they

already know each other’s public keys then the protocol operates as follows:

• AgentA opens the conversation by sending her name in the clear toB to notify B

that she wishes to talk to him

• AgentA then generates a new session key, signs it and a timestamp with her private

key, encrypts the signed message withB’s public key, and sends the result toB

• Agent B decrypts A’s message, and, if A’s signature is authentic, accepts the con-

versation key it contains

A I

{Na}k

{Na}k

Na

Na

Chapter 6: Protocols Analyzed Using CPAL-ES 152

The CPAL representation of the Denning and Sacco protocol is given in Figure 6.16. For

the failure condition for this protocol we use:

((PlayRole(A,I)) and Iknows(B.kab))

since the intruder must not only learn the conversation key but also must convince agentB

that it is a good key for a conversation with agentA.

The result of our system’s analysis of the Denning and Sacco protocol is the attack

scenario illustrated in Figure 6.17. The output of the CPAL-ES system is given in Figure

6.18.

Chapter 6: Protocols Analyzed Using CPAL-ES 153

Figure 6.16 : The Denning and Sacco Protocol

Figure 6.17 : A Graphical Representation of the Attack on the DS Protocol

(1) X: assume(Inverse(A.pub_A, A.priv_A));

(2) X: assume(Inverse(B.pub_B, B.priv_B));

(3) X: assume(Inverse(I.pub_I, I.priv_I));

(4) X: assume(B.pub_A == A.pub_A);

(5) X: assume(I.pub_A == A.pub_A);

(6) X: assume(A.pub_B == B.pub_B);

(7) X: assume(I.pub_B == B.pub_B);

(8) X: assume(A.pub_I == I.pub_I);

(9) X: assume(B.pub_I == I.pub_I);

(10) A: (A);

(11) B: ;

(12) A: kab := new;

(13) A: (e[e[<kab, ta>]priv_A]pub_B);

(14) B: ;

(15) B: msg3 := d[msg2]priv_B;

(16) B: if (Same(msg1, A)) then {kab := d[msg3]pub_A.1};

(17) B: if (Same(msg1, I)) then {kab := d[msg3]pub_I.1};

B→

msg1()←

B→

msg2()←

A I B

A

A

{{K AI, Ta}KA
-1}KI

{{K AI, Ta}KA
-1}KB

Chapter 6: Protocols Analyzed Using CPAL-ES 154

Figure 6.18 : An Attack on the Denning and Sacco Protocol

This attack depends on agentA having run the protocol with the intruder at some time in

the past. Once principal A does this the intruder receives the message:

{{K AI, Ta}KA
-1}KI

(1) X: assume(Inverse(A.pub_A, A.priv_A));

(2) X: assume(Inverse(B.pub_B, B.priv_B));

(3) X: assume(Inverse(I.pub_I, I.priv_I));

(4) X: assume(B.pub_A == A.pub_A);

(5) X: assume(I.pub_A == A.pub_A);

(6) X: assume(A.pub_B == B.pub_B);

(7) X: assume(I.pub_B == B.pub_B);

(8) X: assume(A.pub_I == I.pub_I);

(9) X: assume(B.pub_I == I.pub_I);

* (1’) A: (A);

* (2’) I: ;

* (3’) A: tmp7 := new;

* (4’) A: (e[e[<tmp7, ta>]priv_A]pub_I);

* (5’) I: ;

(10) I: (A);

(11) B: ;

* (12) I: tmp3 := e[d[tmp16]priv_I]pub_B;

* (13) I: (tmp3);

(14) B: ;

(15) B: msg3 := d[msg2]priv_B;

(16) B: if (Same(msg1, A)) then {kab := d[msg3]pub_A.1};

(17) B: if (Same(msg1, I)) then {kab := d[msg3]pub_I.1};

I⇒

tmp15()←

I⇒

tmp16()←

B⇒

msg1()←

B⇒

msg2()←

Chapter 6: Protocols Analyzed Using CPAL-ES 155

which contains a portion signed byA proposingKAI as a session key. The intruder can

decrypt this message to learnKAI and then encrypt the signed portion withB’s public key:

{{K AI, Ta}KA
-1}KB

The intruder can then run the protocol with agentB and claim to be agentA. In his second

message toB the intruder will send the above message and whenB decrypts it and checks

the signature he will believe that agentA has proposedKAI as a conversation key for the

two. At this point the intruder, masquerading as principalA, has established a “private”

session with agentB. This attack on the Denning and Sacco protocol was demonstrated in

Abadi and Needham’s 1994 paper “Prudent Engineering Practice for Cryptographic

Protocols” [AN94].

We now move on to another class of attacks that, strictly speaking, are multi-session

attacks but are different enough from the types of multi-session attacks we have discussed

so far to merit their own class. These attacks are calledkey-compromise attacks and were

introduced at the beginning of Section 6.2.

Recall that the justification for session keys is that there are benefits to using a

different, weaker key to protect each new conversation with a principal as opposed to

always using the same “strong” key. By utilizing session keys, users are accepting the fact

that an intruder may be able, with great effort, to break a session key and gain access to an

old conversation that it protected. Users hope that the time and effort necessary to

compromise an old session key are not worth it to an intruder if he will only get to read one

very old conversation. However, if the compromise of one old session key allows an

intruder to easily compromiseevery conversation from that point on, then it may well be

worth the time and effort necessary to compromise that one key.

Protocols in which current runs become vulnerable due to the compromise of a

single old session key are said to suffer from weaknesses that can be exploited by a key-

Chapter 6: Protocols Analyzed Using CPAL-ES 156

compromise attack. In the next few subsections we will present examples of several

protocols that are vulnerable to key-compromise attacks and show that these attacks can be

discovered by our system.

6.2.6 The Needham and Schroeder Private-Key Protocol

Needham and Schroeder’s 1978 paper on “Using Encryption for Authentication in

Large Networks of Computers” [NS78] is probably responsible for stimulating most of the

work done on cryptographic protocols to date. Not only were they the first to suggest using

cryptographic protocols to accomplish various sensitive tasks over an insecure network, but

one of the protocols presented in their seminal paper turned out to be flawed giving rise to

the field of cryptographic protocol analysis. The protocol that Denning and Sacco attacked

in [DS81] was an authentication protocol that used symmetric-key cryptography and a

trusted authentication server to allow two users to prove their identities to each other and

establish a shared key for a private conversation.

Needham and Schroeder assume that each principal shares a secret key with the

authentication server (e.g.KAS is known only to agentA and the authentication server and

KBS is known only to agentB and the authentication server). For agentA to establish a

private conversation with agentB with the help ofS, the trusted authentication server, the

protocol is as follows:

• UserA sends a message in the clear toS. The message containsA’s name, the name

of the partyA wishes to talk to (B), and a nonce generated byA

• Upon receipt ofA’s message the authentication server generates a new conversa-

tion key forA andB to use and sends a reply toA. The reply, which is encrypted

under the secret key that A and Sshare, containsA’s nonce,B’s name, the conversa-

tion key, and a ticket forB. The ticket is encrypted usingS andB’s shared key soA

will not be able to read it. It containsA’s name and the conversation key.

Chapter 6: Protocols Analyzed Using CPAL-ES 157

• When agentA gets this response back from the authentication server she decrypts

it and checks that it containsB’s name and her own nonce, and, if so, stores the

conversation it contains and sends the ticket on toB

• After receiving the ticket and decrypting it, agent B knows that agent A wants to

talk to him and also knows the conversation key the authentication server has cho-

sen

At this point we interrupt our description of the protocol to review what each party knows

according to Needham and Schroeder:

A now knows that any communication [she] receives encrypted with [the conversation key]
must have originated withB, and also that any communication [she] emits [encrypted with
the conversation key] will be understood only byB. Both are known because the only
messages containing [the conversation key] that have ever been sent are tied toA’s andB’s
secret keys.B is in a similar state, mutatis mutandis. It is important, however, to be sure that
no part of the protocol exchange or ensuing conversation is being replayed by an intruder
from a recording of a previous conversation betweenA and B. In relationship to this
question the positions ofA andB differ. A is aware that he has not used [the conversation
key] before and therefore has no reason to fear that material encrypted with it is other than
the legitimate responses fromB. B ... is unclear that [the ticket] and the subsequent
messages supposedly fromA are not being replayed.

• To guard against the possibility of replay discussed above, agentB generates a

nonce and sends it to agentA encrypted under the conversation key

• Upon receipt ofB’s “challenge”,A decrypts the message to learnB’s nonce, decre-

ments it by one, encrypts the result with the conversation key, and sends that value

to B

• Once agentB receives this reply and checks it, “the mutual confidence is sufficient

to enable substantive communication, encrypted with [the conversation key], to

begin” according to Needham and Schroeder

The CPAL representation of the Needham and Schroeder Private-Key protocol in given in

Figure 6.19.

Chapter 6: Protocols Analyzed Using CPAL-ES 158

Figure 6.19 : The Needham and Schroeder Private-Key Protocol

(1) X: assume(A.ka == S.ka);

(2) X: assume(B.kb == S.kb);

(3) X: assume(not(Iknows(X)) or Iknows(Decrement(X)));

(4) X: assume(WeakKey(S.ck));

(5) A: na := new;

(6) A: r := B;

(7) A: (<A,B,na>);

(8) S: ;

(9) S: ck := new;

(10) S: (e[<msg1.3,msg1.2,ck,e[<ck,msg1.1>]kb>]ka);

(11) A: ;

(12) A: msg3 := d[msg2]ka;

(13) A: na1 := msg3.1;

(14) A: r1 := msg3.2;

(15) A: ck := msg3.4;

(16) A: ticket := msg3.4;

(17) A: assert (A.na == A.na1);

(18) A: assert (A.r == A.r1);

(19) A: (ticket);

(20) B: ;

(21) B: msg5 := d[msg4]kb;

(22) B: ck := msg5.1;

(23) B: r2 := msg5.2;

(24) B: nb := new;

(25) B: (e[nb]ck);

(26) A: ;

(27) A: msg7 := d[msg6]ck;

(28) A: msg8 := Decrement(msg7);

(29) A: (e[msg8]ck);

(30) B: ;

(31) B: msg10 := d[msg9]ck;

(32) B: assert(B.msg10 == Decrement(B.nb));

S→

msg1()←

A→

msg2()←

B→

msg4()←

A→

msg6()←

B→

msg9()←

Chapter 6: Protocols Analyzed Using CPAL-ES 159

Before moving on to the statement of failure for this protocol we need to explain

lines three and four. Line three is an example of how protocol-specific axioms can be added

to our system. Specifically, we are defining an axiom about theDecrement() predicate

which is just an uninterpreted predicate to our system. In this case, all we’re telling the

system about theDecrement() predicate is that if the intruder knows a value,x, then he also

knowsDecrement(x).

In line four we are tagging all conversation keys generated by the authentication

server as “weak” keys. In our system all keys are assumed to be “strong” unless they are

explicitly declared to be “weak”. The system assumes that strong keys will never be

cryptanalytically compromised by an intruder while weak keys can be broken by an

intruder using some (possibly large) amount of time and effort. All key-compromise attacks

depend on certain keys being “weak” and we added this designation into our system to

allow it to discover such attacks.

Since this is an authentication protocol we take the following as its failure

condition:

PlayRole(A,I)

This means that the intruder, posing asA, was able to establish a private conversation with

B. The output from our system is given below.

Chapter 6: Protocols Analyzed Using CPAL-ES 160

* (1’) A: tmp206 := new;

* (2’) A: tmp204 := B;

* (3’) A: (<A, B, tmp206>);

* (4’) I: ;

* (5’) I: (tmp1);

* (6’) S: ;

* (7’) S: tmp155 := new;

* (8’) S: (e[<tmp154.3, tmp154.2, tmp155, e[<tmp155,
tmp154.1>]kb>]ka);

* (9’) I:

* (10’) I: (tmp125);

* (11’) A: ;

* (12’) A: tmp201 := d[tmp202]ka;

* (13’) A: tmp205 := tmp201.1;

* (14’) A: tmp203 := tmp201.2;

* (15’) A: tmp200 := tmp201.4;

* (16’) A: tmp199 := tmp201.4;

* (17’) A: assert(A.tmp206 == A.tmp205);

* (18’) A: assert(A.tmp204 == A.tmp203);

* (19’) A: (tmp199);

* (20’) I: ;

* (21’) S: (tmp155);

* (22’) I: ;

(1) X: assume(A.ka == S.ka);

(2) X: assume(B.kb == S.kb);

(3) X: assume(not(Iknows(X)) or Iknows(Decrement(X)));

(4) X: assume(WeakKey(S.ck));

(5) I: (tmp1);

(6) S: ;

I⇒

tmp1()←

S⇒

tmp154()←

I⇒

tmp125()←

A⇒

tmp202()←

I⇒

tmp124()←

I⇒

tmp123()←

S⇒

msg1()←

Chapter 6: Protocols Analyzed Using CPAL-ES 161

Figure 6.20 : An Attack on the Needham and Schroeder Private-Key Protocol

The attack is both a multi-session and key-compromise attack. First the intruder

observes all the messages in an old run of the protocol betweenA andB (lines 1’ through

22’). By doing this, the intruder learns the ticket thatS generated forB, but the intruder

cannot read it because the message is encrypted underB’s secret key:

{A, ck}KBS

The intruder then records all the messages (encrypted underck) thatA andB exchange in

the subsequent conversation. Again, the intruder cannot read these messages because he

doesn’t knowck. However, the intruder can then cryptanalyze the conversation betweenA

andB and, with some time and effort, determine the value ofck. At this point the intruder

can read the conversation thatA andB had, but it is assumed that the conversation will be

old enough by the time the intruder breaksck to be of little value to him. This was exactly

(7) S: ck := new;

(8) S: (e[<msg1.3, msg1.2, ck, e[<ck, msg1.1>]kb>]ka);

(9) I: ;

* (10) I: (tmp124);

(11) B: ;

(12) B: msg5 := d[msg4]kb;

(13) B: ck := msg5.1;

(14) B: r2 := msg5.2;

(15) B: nb := new;

(16) B: (e[nb]ck);

(17) I: ;

* (18) I: tmp638 := e[Decrement(d[tmp4]tmp123)]tmp123;

* (19) I: (tmp638);

(20) B: ;

(21) B: msg10 := d[msg9]ck;

(22) B: assert(B.msg10 == Decrement(B.nb));

I⇒

tmp2()←

B⇒

msg4()←

I⇒

tmp4()←

B⇒

msg9()←

Chapter 6: Protocols Analyzed Using CPAL-ES 162

the job of the conversation key - to protectA andB’s conversation for some period of time

but not indefinitely. If the intruder needs to expend much time and effort to compromise a

conversation key, and as a result he is only able to read one conversation that is quite old,

then compromising a conversation key is probably not worth the time and effort. However,

if we look at Figure 6.20 we see that by compromisingck the intruder can do much more

than just read an old conversation betweenA andB. It may take a substantial amount of

time, but once the intruder has compromised a conversation key, he can begin the protocol

at the first message A sends to B asking to start a new private conversation. The intruder

sends the old ticket toB claiming to beA and wanting to start a new private conversation

(line 10). After receiving this ticket and decrypting it,B will send the challenge (a nonce

encrypted under the proposed conversation key) back toA. The intruder will intercept this

message toA. Now the intruder’s effort to break the old conversation key pays off because

he is able to decryptB’s message, decrement the nonce, encrypt the result using the

conversation key, and send the correct reply back toB (lines 18 and 19). After verifying the

intruder’s reply,B believes that he has established a new private conversation withA though

that conversation is really with the intruder. This is the same attack that was pointed out by

Denning and Sacco in [DS81].

6.2.7 The Beller Protocol

Another protocol that is vulnerable to a key-compromise attack is one proposed by

Beller et al. in [BEL93]. In this paper a protocol is proposed to protect communications

between PCS (Portable Communications Systems) or “portables” and the telephone

network. It is assumed that portables communicate via microwave radio waves with the

nearest RCE (Radio Control Equipment) which are located on utility poles or in buildings.

Each RCE would be connected to the telephone network and contain hardware to perform

certain cryptographic functions. Also connected to the telephone network is a database

Chapter 6: Protocols Analyzed Using CPAL-ES 163

which also contains cryptographic hardware. It is assumed that each portable and RCE has

a unique key known only to itself and the database.

Beller et al. propose the following protocol to allow a portable to establish a

conversation key with an RCE to protect communications between the two:

• Upon service request by the portable, the RCE requests a conversation key from

the database.

• The database generates a new key and sends a two-part message back to the RCE.

One part is the conversation key encrypted with the RCE’s key and the other part is

the conversation key encrypted with the portable’s key.

• The RCE decrypts the first part of the message to learn the conversation key and

sends the second part of the message on to the portable.

• The portable receives the message, decrypts it, and learns the conversation key as

well.

According to [BEL93], “[The portable and the RCE] now share a common session key

which, after verifying it with standard messages, may be used for encryption and

decryption.” The CPAL specification of this protocol is given in Figure 6.21. We denote the

portable byP, the RCE byR, and the database byD, and intruder byI.

Chapter 6: Protocols Analyzed Using CPAL-ES 164

Figure 6.21 : The Beller Private-Key Protocol

Since this is a key-exchange protocol we use the following as a statement of failure:

Same(I.ck, A.ck)

Note that as with the Needham and Schroeder protocol in Section 6.2.6 we have specified

that conversation keys are “weak” (line 3). The attack on this protocol is given in Figure

6.22 below.

(1) X: assume(D.kp == A.kp);

(2) X: assume(D.kr == R.kr);

(3) X: assume(WeakKey(D.ck));

(4) P: (P);

(5) R: ;

(6) R: (<msg1, R>);

(7) D: ;

(8) D: ck := new;

(9) D: (<e[ck]kr,e[ck]kp>);

(10) R: ;

(11) R: ck := d[msg3.1]kr;

(12) R: (msg3.2);

(13) P: ;

(14) A: ck := d[msg4]kp;

* (1’) P: (P);

* (2’) I: ;

* (3’) I: (tmp271);

* (4’) R: ;

* (5’) R: (<tmp82, R>);

* (6’) I: ;

R→

msg1()←

D→

msg2()←

R→

msg3()←

P→

msg4()←

I⇒

tmp271()←

R⇒

tmp82()←

I⇒

tmp270()←

Chapter 6: Protocols Analyzed Using CPAL-ES 165

Figure 6.22: An Attack on the Beller Private-Key Protocol

Figure 6.22 : ghost

* (7’) I: (tmp270);

* (8’) D: ;

* (9’) D: tmp139 := new;

* (10’) D: (<e[tmp139]kr, e[tmp139]kp>);

* (11’) I: ;

* (12’) D: (tmp139);

* (13’) I: ;

(1) X: assume(D.kp == A.kp);

(2) X: assume(D.kr == R.kr);

(3) P: (P);

(4) I: ;

(5) I: (tmp1);

(6) R: ;

(7) R: (<msg1, R>);

(8) I: ;

(9) I: (tmp2);

(10) D: ;

(11) D: ck := new;

(12) D: (<e[ck]kr,e[ck]kp>);

(13) I: ;

* (14) I: ck := tmp269;

* (15) I: (tmp269);

(16) R: ;

(17) R: ck := d[msg3.1]kr;

(18) R: (msg3.2);

(19) I: ;

(20) I: (tmp4);

(21) P: ;

(22) A: ck := d[msg4]kp;

D⇒

tmp138()←

I⇒

tmp269()←

I⇒

tmp268()←

I⇒

tmp1()←

R⇒

msg1()←

I⇒

tmp2()←

D⇒

msg2()←

I⇒

tmp3()←

R⇒

msg3()←

I⇒

tmp4()←

P⇒

msg4()←

Chapter 6: Protocols Analyzed Using CPAL-ES 166

The attack is very similar to the one we saw in Section 6.2.6 on the Needham and

Schroeder protocol. After observing a run of the protocol and compromising the session

key, the intruder can replay the database’s message suggesting that session key and force

the portable and RCE to use an old, compromised session key (that is known to the intruder)

to protect their communication. No attack on the Beller Private-Key protocol has been

previously published.

This concludes our discussion of the types of known-attacks that our system can

discover. In the next section we will present a new type of attack on cryptographic protocols

and demonstrate our system’s ability to handle this type of attack.

6.3 A New Type of Attack Defined and Demonstrated

Up to this point we have analyzed each protocol in isolation and all the attacks

given, whether single-session, multi-session, or key-compromise, have involved only that

one protocol. Real-world computer systems, however, typically allow users to run many

different cryptographic protocols. A user might run one protocol for authentication, another

for key-exchange, another for electronic funds transfer, and still others for various other

tasks. While each protocol might be secure in isolation there is a possibility that the

interaction between two or more protocols might render one of them insecure.

Unanticipated interactions among protocols are even more likely, given that agents

typically use the same shared secrets and public/private key pairs in a number of different

protocols. For example, if agentsA andB have a shared secret which they use to both

authenticate each other and to agree on new session keys for private conversations there is

a possibility that an intruder will be able to use a message from the authentication protocol

to attack the key-exchange protocol or vice versa. We call this type of attack aprotocol-

interaction attack and currently there are no cryptographic protocol analysis tools that look

Chapter 6: Protocols Analyzed Using CPAL-ES 167

for these types of attacks. In the following sections we will demonstrate a protocol-

interaction attack and show how our system can find such attacks.

6.3.1 The Protocols

Let us assume that agentsA and B share a secret key,KAB. In order forA to

authenticateB she runs the following protocol:

• AgentA generates a nonce and sends it toB

• AgentB encryptsA’s nonce usingKAB and returns it toA

• AgentA checksB’s reply, and if it is correct, believes that it must have come from

B since he is the only other principal that knowsKAB

This is simply the one-way version of the ISO authentication protocol. Recall that this

protocol is flawed since an intruder can start a parallel session pretending to beB and send

A’s challenge back to her. AgentA will reply, as dictated by the protocol, by encrypting the

value withKAB and sending it back to the intruder. The intruder can then resume the original

session withA and send back the answer he has just learned. The fact that this

authentication protocol is flawed will play no role in the protocol-interaction attack that we

intend to demonstrate.

Let us also assume that in order forA andB to agree on a session key for a private

conversation, they engage in the following key-exchange protocol:

• Agent A generates a new conversation key, encrypts it underKAB, and sends the

result to agentB

• AgentB receivesA’s message, decrypts it, and stores the conversation key

• AgentsA andB can then send each other sensitive data encrypted using the conver-

sation key

Chapter 6: Protocols Analyzed Using CPAL-ES 168

The CPAL specifications for these two protocols (with failure conditions added) are given

below.

Figure 6.23 : The Authentication Protocol

Figure 6.24 : The Key-Exchange Protocol

Notice that there is no assumption in the key-exchange protocol that conversation keys are

“weak”. This being the case, we do not know of any attacks (other than brute-force) that

this protocol is vulnerable to if run in isolation.

6.3.2 A Protocol-Interaction Attack

The key-exchange protocol in Figure 6.24 is susceptible to an attack (shown in

Figure 6.25) if it is run in the same environment as the authentication protocol given above.

In Figure 6.25, solid arrows represent messages from the key-exchange protocol and

dashed arrows represent messages from the authentication protocol.

(1) X: assume(A.kab == B.kab);

(2) A: x := new;

(3) A: (x);

(4) B: ;

(5) B: (e[msg1]kab);

(6) A: ;

(7) A: x1 := d[msg2]kab;

(8) A: assert(A.x == A.x1);

PlayRole(B,I)

(1) X: assume(A.kab == B.kab);

(2) A: ck := new;

(3) A: (e[ck]kab);

(4) B: ;

(5) B: ck:= d[msg1]kab;

Same(I.k, B.ck)

B→

msg1()←

A→

msg2()←

B→

msg1()←

Chapter 6: Protocols Analyzed Using CPAL-ES 169

Figure 6.25 : A Graphical Representation of a Protocol-Interaction Attack

The attack from Figure 6.25 works as follows. AgentA starts the key-exchange

protocol with agentB by sending a new session key encrypted underKAB. The intruder

interceptsA’s message toB and starts the authentication protocol withB pretending to be

A. Instead of the nonce normally sent in the first message of authentication protocol, the

intruder sendsk, some value that he would eventually like to foolB into accepting as the

session key forA’s conversation request. Of courseB can’t tell the difference betweenk and

some nonce fromA so he follows the authentication protocol and sendsA the encryption of

k underKAB to authenticate himself. The intruder intercepts this message which is exactly

what he needs to send toB to complete the key-exchange protocol and getB to acceptk as

the conversation key.

Extending our methodology to include protocol-interaction attacks is actually quite

easy. Normally, we generate all the axioms that will go into the automatic theorem prover

from a single protocol, but there is no reason that we must limit ourselves in this way. We

modified our system so that it can read in any number of protocols (each with its own

specific statement of failure) and store them on a stack. Then we pop them off the stack one

at a time and examine them individually as before - except that the parallel-session axioms

A I B

k

{ck}KAB

{k}KAB

{k}KAB

Chapter 6: Protocols Analyzed Using CPAL-ES 170

are generated, not just from the protocol under consideration, but from all the protocols that

were given. After making these modifications and inputting the protocols from Figures 6.23

and 6.24 our system was able to find the protocol-interaction attack shown in Figure 6.25

as shown below.

Figure 6.26 : A Protocol-Interaction Attack on the Key-Exchange Protocol

6.4 Summary

In this chapter we have presented the results of our analysis of a number of well-

known cryptographic protocols. We demonstrated our methodology’s ability to discover

many of the known attacks on these protocols and then presented an important new type of

attack that our approach also handles quite easily. In the next chapter we present our con-

clusions and suggest some future work.

(1) X: assume(A.kab == B.kab);

(2) A: ck := new;

(3) A: (e[ck]kab);

(4) I: ;

* (1’) I: (k);

* (2’) B: ;

* (3’) B: (e[msg37]kab);

* (4’) I: ;

* (5) I: (tmp65);

(6) B: ;

(7) B: ck:= d[msg1]kab;

I⇒

tmp1()←

B⇒

msg37()←

I⇒

tmp65()←

B⇒

msg1()←

171

Chapter 7

Conclusions

Computer networks have become immensely popular and extremely valuable in the

personal computer age, and we can expect their popularity to increase dramatically as

advances continue to be made that expand their content and speed while decreasing their

cost. One problem with computer networks is that information transmitted on them tends

to be particularly vulnerable to eavesdropping and modification by intruders, and their con-

nectivity and openness tends to exacerbate many other computer security concerns. Part of

the solution to the network security problem has been the development of cryptographic

protocols that are aimed at protecting the privacy and integrity of messages that travel over

insecure networks.

When designed and used correctly, cryptographic protocols can provide security for

tasks such as authentication, key-distribution, voting, electronic commerce, and others.

However, the discovery of flaws in a number of proposed and implemented protocols has

lead the security community to conclude that protocol design is difficult and that techniques

for examining proposed protocols must be developed.

Chapter 7: Conclusions 172

7.1 Review of the Research

In this dissertation we have presented a methodology for examining cryptographic

protocols that both compliments existing methods and builds upon them. Our approach is

to have the user specify the protocol(s) to be tested in CPAL and a statement of failure for

each protocol in predicate calculus. The system then uses the formal semantics of CPAL to

generate theorems that correspond to the preconditions at each point for failure of the pro-

tocol. An automatic theorem prover is then used to try to find a constructive proof of one of

these theorems, and, if it succeeds, the proof it generates is used to generate intruder actions

that create the conditions for a failure. The resulting attack on the protocol can then be

reported to the user.

As stated in Chapter 1, reasoning about the correctness of cryptographic protocols

depends on showing that for all possible sequences of actions by all possible intruders, the

protocol achieves its goals. Our method does not attempt to reason about protocol correct-

ness but instead transforms the above statement into a statement about the satisfiability of

the preconditions for failure at each point in the protocol and thereby defines a theoretical

basis for attack generation.

Our approach is based on the general-purpose techniques of weakest precondition

reasoning and deductive automatic programming and is extensible since new weakest pre-

conditions can be defined and additional axioms can be added to the logical system. Fur-

thermore, the search for an attack is performed completely formally (and automatically)

once the protocol and failure condition have been specified. Lastly, the methodology is

powerful since given an adequate set of axioms and enough time, it will find the construc-

tive proof corresponding to any attack that exists for a given protocol, failure condition, and

axiom set.

Chapter 7: Conclusions 173

If we assume that the theorem prover performs a breadth-first search for a proof then

we can halt its search at any point and be sure that no constructive proof for the given the-

orem and axiom set exists that is shorter than the longest proof that the theorem prover con-

sidered. This allows our approach to make a useful statement about a protocol even when

it cannot prove that a flaw exists.

Another major contribution of this work is the discovery and handling of the impor-

tant new class ofprotocol-interaction attacks. Since real computer systems typically

include more than one type of protocol and since the number of possible interactions grows

quickly as each protocol is added, it is important to check groups of protocols for these

types of flaws. The power and automation of our approach makes it well-suited for this pur-

pose.

7.2 Future Work

There are many potential extensions to this research, and in this section we discuss

three specific areas that we consider to be of interest. They are: extension of the set of

axioms used to prove theorems, adoption of another type of logic with which to prove

theorems, and improvement of the automatic theorem prover. We discuss each of these in

more detail below.

7.2.1 Additional Axioms

Some of the axioms that we specifically chose not to include in our preliminary

implementation were those expressing the mathematical properties of the cryptosystems

used by protocols. This was done primarily to reduce the amount of time it took our system

to find attacksnot based on the properties of cryptosystems (which constitute the majority

of known attacks on published protocols). Without these axioms our system cannot find

such attacks as Simmons’ attack on the TMN protocol in [SIM85] and Bird’s attack on his

own XOR protocol in [BIR93]. For example, the Simmons attack on the TMN protocol

Chapter 7: Conclusions 174

alluded to above is based on the fact that the encryption algorithms used in the protocol

have the following properties. For the asymmetric cryptosystem:

• ep(X,K) * ep(Y,K) = ep(X*Y,K)

and for the symmetric cryptosystem:

• e(X,Y) = e(Y,X)

Our axioms do not currently model cryptographic algorithms at this level.

Furthermore, the above properties are not part of the specification for the TMN protocol,

but are characteristics of the cryptographic algorithms that were suggested for

implementation. So it is inappropriate to view them as protocol-specific axioms. The

addition of algebraic axioms would allow our system to discover this and other types of

attacks, but would require improvements (see Section 7.2.3) to be made to the automatic

theorem prover to find proofs in a reasonable amount of time.

7.2.2 Utilizing Other Logics

The use of another logic besides predicate calculus would allow us to take

advantage of the increased power and expressiveness of other logical systems. The use of

either first-order logic, temporal logic, nonmonotonic logic, or one of the specialized modal

logics developed for reasoning about cryptographic protocols ([BAN89], [AT91], [BIE90],

etc.) might help our system to find new types of attacks based upon the properties that such

logics can represent. In order to use another logic in our system we would merely need to

add their inference rules to our system and update the module of our system that makes

modifications to a protocol once a proof is found.

7.2.3 Improvements to the Automatic Theorem Prover

Our system would also benefit from improvements made to the automatic theorem

proving module that would allow it to find proofs more quickly. Such improvements could

x∀() y∀()

x∀() y∀()

Chapter 7: Conclusions 175

include new heuristics that would be useful for proving theorems about cryptographic

protocols or a parallelization of the theorem prover’s search for a proof.

7.3 Summary

In this dissertation we have presented a powerful, general, extensible, and formal

methodology that automatically examines cryptographic protocols. Given an adequate set

of axioms and enough time, our method will find any attack that exists for a given protocol

and failure condition. Even if our methodology does not discover a flaw in the amount of

time it is given to run, we can make a concrete statement about the minimum length of a

constructive proof for any attack that might exist on the protocol (for the given failure

condition and axiom set) as a result of its analysis. A preliminary implementation of our

methodology has had great success in finding both known and previously unknown flaws

in a significant number of published protocols.

176

Appendix A

A Sample CPAL Analysis

In this appendix we will illustrate how a cryptographic protocol can be specified

using CPAL and we will demonstrate Yasinsac’s analysis technique from [YAS96]. We take

as our example protocol the Needham and Schroeder Private-Key Protocol which we have

already discussed in Chapter 1. To quickly review, this protocol is an authentication and

key-distribution scheme for two agents,A andB, who both trust a single authentication

server,AS. It is assumed that bothA andB share secret keys (KA andKB respectively) with

the authentication server, and that they wish to establish a new conversation key,CK, to

encrypt communications between themselves.

The protocol operates as follows. In the first step of the protocolA sends a message

in the clear to the authentication server. The message containsA’s name,B’s name, and a

nonce generated byA. In the second step, the authentication server replies toA with a mes-

sage encrypted using the keyKA. In this message the authentication server includes the

nonce thatA sent,B’s name, a session key that theAS created, and the ticket forB which

contains the session key andA’s name encrypted underKB. Upon receipt of this messageA

Appendix A: A Sample CPAL Analysis 177

can remove the outer layer of encryption usingKA and then check to see that the nonce is

the same one that she sent in step one. If so, she knows that the message from the authen-

tication server isfresh because it must have been generated afterA generated her nonce.

Since she could be attempting to establish communication sessions with a number of agents

simultaneously,A also checks forB’s name to make sure that this is a reply to her request

to talk toB. From this same messageA also learnsCK, the conversation key created by the

authentication server, and the ticket. SinceA does not knowKB she cannot read the contents

of the ticket, but she can forward it toB which she does in step three.

WhenB receives the messageA sent in step three he decrypts it and discovers that

A wishes to talk to him and that the session key isCK. In step four,B generates a nonce,

encrypts it under the session key, and sends the result back toA. In the final step of the pro-

tocol,A receivesB’s challenge, decrypts it, subtracts one from the nonce, encrypts that

value with the session key, and sends the result toB. After decrypting this reply and check-

ing thatA has indeed returned one less than the nonce sent in step four,A andB each believe

that they have authenticated each other and now share a conversation key known only to

them and the authentication server whom they trust. The protocol is given in pseudocode

below:

 Figure A.1: Pseudocode Representation of the Needham and Schroeder Private-Key

Protocol

A AS:→ A B IA1,,

AS A:→ I A1 B CK CK A,{ }KB,,,{ }KA

A B:→ CK A,{ }KB

B A:→ I B{ }CK

A B:→ I B 1–{ }CK

Appendix A: A Sample CPAL Analysis 178

Translating the Protocol into CPAL

The first step in our analysis is to translate the protocol from pseudocode into CPAL

as shown below:

Pseudocode CPAL

X: assume(AS.ka == A.ka);

X: assume(AS.kb == B.kb);

A: i := new;

A: ;

AS: ;

AS: ck := new;

AS: ticket := e[<ck, msg.1>]kb;

AS: (e[<msg.3,B,ck,ticket>]ka);

A: ;

A: tmp := d[msg]ka;

A: assert(i == tmp.1);

A: assert(B == tmp.2);

A: ck := tmp.3;

A: ticket := tmp.4;

A: (ticket);

B: ;

B: ck := (d[msg]kb).1;

B: i := new;

B: (e[i]ck);

A: ;

A: i2 := d[msg2]ck;

A: (i2-1);

B: ;

B: assert(i-1 == d[msg2]ck)

A AS:→ A B IA1,, AS <A B i>,,()→

msg()←

AS A:→ I A1 B CK CK A,{ }KB,,,{ }KA A→

msg()←

A B:→ CK A,{ }KB B→

msg()←

B A:→ I B{ }CK A→

msg2()←

A B:→ I B 1–{ }CK B→

msg2()←

Appendix A: A Sample CPAL Analysis 179

It is clear from this example that it normally takes more CPAL statements than

pseudocode to specify a protocol, but this is mainly due to CPAL’s insistence on making all

assumptions, actions and goals explicit in the protocol specification.

The first step we must take before we can use CPAL’s formal semantics to analyze

this protocol is to replace all of the insecure sends with secure sends to the intruder. To

begin with, we will assume that the intruder simply preforms the benign action of

forwarding a message unmodified to the intended recipient, but we know that the intruder

may decide to take other actions later. Replacing the insecure sends with secure sends to

the intruder we get:

X: assume(AS.ka == A.ka);

X: assume(AS.kb == B.kb);

A: i := new;

A: ;

I: ;

I: ;

AS: ;

AS: ck := new;

AS: ticket := e[<ck, msg.1>]kb;

AS: (e[<msg.3,B,ck,ticket>]ka);

I: ;

I: (tmp2);

A: ;

A: tmp := d[msg]ka;

A: assert(i == tmp.1);

A: assert(B == tmp.2);

A: ck := tmp.3;

A: ticket := tmp.4;

A: (ticket);

I: ;

I: (tmp3);

I <A B i>,,()⇒

tmp1()←

AS tmp1()⇒

msg()←

I⇒

tmp2()←

A⇒

msg()←

I⇒

tmp3()←

B⇒

Appendix A: A Sample CPAL Analysis 180

We are now ready to use Yasinsac’s weakest precondition definitions for CPAL to assign a

formal semantics to this protocol. For this example, we will simply use the predicate TRUE

as the postcondition we want to hold after execution of the protocol since the protocol’s

goals are represented by the assert statement in the last line. Given this postcondition, we

can then calculate the weakest precondition of the last statement in the protocol and this

postcondition:wp(“B: assert(i-1 == d[msg2]ck)”, TRUE). Using the weakest precondition

definitions in Table 3.2 we find that ((i-1 == d[msg2]ck)) is the weakest

precondition for the final statement of the protocol. Using the definition of statement

concatenation in Table 3.2, we then use this weakest precondition for the final statement as

the postcondition for the second to last statement and compute the weakest precondition for

the second to last statement:wp(“B: ”, ((i-1 == d[msg2]ck))) which

yields ((i-1 == d[B’s input queue]ck)) as the weakest precondition for the second

to last statement of the protocol. By continuing in this manner backwards through the

B: ;

B: ck := (d[msg]kb).1;

B: i := new;

B: (e[i]ck);

I: ;

I: (tmp4);

A: ;

A: i2 := d[msg2]ck;

A: (i2-1);

I: ;

I: (tmp5);

B: ;

B: assert(i-1 == d[msg2]ck)

msg()←

I⇒

tmp4()←

A⇒

msg2()←

I⇒

tmp5()←

B⇒

msg2()←

TRUE∧

msg2()← TRUE∧

TRUE∧

Appendix A: A Sample CPAL Analysis 181

protocol we can compute the weakest precondition for each statement in the protocol as

illustrated below:

(AS.ka == A.ka) ((AS.kb == B.kb) (TRUE (B == (d[e[<(<A,B,unique.3>).3,
B,unique.2, e[<unique.2, (<A,B,unique.3>).1>] AS.kb>]AS.ka]
A.ka).2) (unique.3 == (d[e[<(<A,B,unique.3>).3, B,unique.2,
e[<unique.2,(<A,B,unique.3>).1>] AS.kb>]AS.ka]A.ka).1) (B.i-1 ==
d[(d[e[unique.1] (d[(d[e[<(<A,B,unique.3>).3,B, unique.2, e[<unique.2,
(<A,B,unique.3>).1>]AS.kb>]AS.ka]A.ka).4]B.kb).1]
(d[e[<(<A,B,unique.3>).3,B,unique.2,e[<unique.2, (<A,B,unique.3>).1>
]AS.kb>]AS.ka]A.ka).3)-1](d[(d[e[<(<A,B,unique.3>).3,B, unique.2,
e[<unique.2,(<A,B,unique.3>).1>]AS.kb>] AS.ka]A.ka).4]B.kb).1)))

X: assume(AS.ka == A.ka);

(AS.kb == B.kb) (TRUE (B == (d[e[<(<A,B,unique.3>).3,B,unique.2,
e[<unique.2, (<A,B,unique.3>).1>] AS.kb>]AS.ka] A.ka).2) (unique.3 ==
(d[e[<(<A,B,unique.3>).3, B,unique.2, e[<unique.2,(<A,B,unique.3>).1>]
AS.kb>]AS.ka]A.ka).1) (B.i-1 == d[(d[e[unique.1]
(d[(d[e[<(<A,B,unique.3>).3,B, unique.2, e[<unique.2,
(<A,B,unique.3>).1>]AS.kb>]AS.ka]A.ka).4]B.kb).1]
(d[e[<(<A,B,unique.3>).3,B,unique.2,e[<unique.2, (<A,B,unique.3>).1>
]AS.kb>]AS.ka]A.ka).3)-1](d[(d[e[<(<A,B,unique.3>).3,B, unique.2,
e[<unique.2,(<A,B,unique.3>).1>]AS.kb>] AS.ka]A.ka).4]B.kb).1))

X: assume(AS.kb == B.kb);

TRUE (B == (d[e[<(<A,B,unique.3>).3,B,unique.2,e[<unique.2,
(<A,B,unique.3>).1>] AS.kb>]AS.ka] A.ka).2) (unique.3 ==
(d[e[<(<A,B,unique.3>).3, B,unique.2, e[<unique.2,(<A,B,unique.3>).1>]
AS.kb>]AS.ka]A.ka).1) (B.i-1 == d[(d[e[unique.1]
(d[(d[e[<(<A,B,unique.3>).3,B, unique.2, e[<unique.2,
(<A,B,unique.3>).1>]AS.kb>]AS.ka]A.ka).4]B.kb).1]
(d[e[<(<A,B,unique.3>).3,B,unique.2,e[<unique.2, (<A,B,unique.3>).1>
]AS.kb>]AS.ka]A.ka).3)-1](d[(d[e[<(<A,B,unique.3>).3,B, unique.2,
e[<unique.2,(<A,B,unique.3>).1>]AS.kb>] AS.ka]A.ka).4]B.kb).1)

A: i := new;

TRUE (B == (d[e[<(<A,B,A.i>).3,B,unique.2,e[<unique.2,(<A,B,A.i>).1>]
AS.kb>]AS.ka] A.ka).2) (A.i == (d[e[<(<A,B,A.i>).3, B,unique.2,
e[<unique.2,(<A,B,A.i>).1>] AS.kb>]AS.ka]A.ka).1) (B.i-1 ==
d[(d[e[unique.1](d[(d[e[<(<A,B,A.i>).3,B, unique.2,
e[<unique.2,(<A,B,A.i>).1>]AS.kb>]AS.ka]A.ka).4]B.kb).1]
(d[e[<(<A,B,A.i>).3,B,unique.2,e[<unique.2, (<A,B,A.i>).1>
]AS.kb>]AS.ka]A.ka).3)-1](d[(d[e[<(<A,B,A.i>).3,B, unique.2,
e[<unique.2,(<A,B,A.i>).1>]AS.kb>] AS.ka]A.ka).4]B.kb).1)

A: ;

⊃ ⊃ ∧

∧
∧

⊃ ∧
∧

∧

∧
∧

∧

∧
∧

∧

I <A B i>,,()⇒

Appendix A: A Sample CPAL Analysis 182

TRUE (B == (d[e[<(I’s input queue).3,B,unique.2,e[<unique.2,(I’s input
queue).1>] AS.kb>]AS.ka] A.ka).2) (A.i == (d[e[<(I’s input queue).3,
B,unique.2, e[<unique.2,(I’s input queue).1>] AS.kb>]AS.ka]A.ka).1)

(B.i-1 == d[(d[e[unique.1](d[(d[e[<(I’s input queue).3,B, unique.2,
e[<unique.2,(I’s input queue).1>]AS.kb>]AS.ka]A.ka).4]B.kb).1]
(d[e[<(I’s input queue).3,B,unique.2,e[<unique.2, (I’s input queue).1>
]AS.kb>]AS.ka]A.ka).3)-1](d[(d[e[<(I’s input queue).3,B, unique.2,
e[<unique.2,(I’s input queue).1>]AS.kb>] AS.ka]A.ka).4]B.kb).1)

I: ;

TRUE (B == (d[e[<(AS.tmp1).3,B,unique.2,e[<unique.2,(AS.tmp1).1>]
AS.kb>]AS.ka] A.ka).2) (A.i == (d[e[<(AS.tmp1).3, B,unique.2,
e[<unique.2,(AS.tmp1).1>] AS.kb>]AS.ka]A.ka).1) (B.i-1 ==
d[(d[e[unique.1](d[(d[e[<(AS.tmp1).3,B, unique.2,
e[<unique.2,(AS.tmp1).1>]AS.kb>]AS.ka]A.ka).4]B.kb).1]
(d[e[<(AS.tmp1).3,B,unique.2,e[<unique.2, (AS.tmp1).1>
]AS.kb>]AS.ka]A.ka).3)-1](d[(d[e[<(AS.tmp1).3,B, unique.2,
e[<unique.2,(AS.tmp1).1>]AS.kb>] AS.ka]A.ka).4]B.kb).1)

I: ;

TRUE (B == (d[e[<(AS’s input queue).3,B,unique.2,e[<unique.2,(AS’s
input queue).1>] AS.kb>]AS.ka] A.ka).2) (A.i == (d[e[<(AS’s input
queue).3, B,unique.2, e[<unique.2,(AS’s input queue).1>]
AS.kb>]AS.ka]A.ka).1) (B.i-1 == d[(d[e[unique.1](d[(d[e[<(AS’s input
queue).3,B, unique.2, e[<unique.2,(AS’s input
queue).1>]AS.kb>]AS.ka]A.ka).4]B.kb).1] (d[e[<(AS’s input
queue).3,B,unique.2,e[<unique.2, (AS’s input queue).1>
]AS.kb>]AS.ka]A.ka).3)-1](d[(d[e[<(AS’s input queue).3,B, unique.2,
e[<unique.2,(AS’s input queue).1>]AS.kb>] AS.ka]A.ka).4]B.kb).1)

AS: ;

TRUE (B == (d[e[<(AS.msg).3,B,unique.2,e[<unique.2,(AS.msg).1>]
AS.kb>]AS.ka] A.ka).2) (A.i == (d[e[<(AS.msg).3,B,unique.2,
e[<unique.2,(AS.msg).1>] AS.kb>]AS.ka]A.ka).1) (B.i-1 ==
d[(d[e[unique.1](d[(d[e[<(AS.msg).3,B,unique.2,e[<unique.2,(AS.msg).1>]
AS.kb>]AS.ka]A.ka).4]B.kb).1] (d[e[<(AS.msg).3,B,unique.2,e[<unique.2,
(AS.msg).1>]AS.kb>]AS.ka]A.ka).3)-1](d[(d[e[<(AS.msg).3,B,unique.2,
e[<unique.2,(AS.msg).1>]AS.kb>] AS.ka]A.ka).4]B.kb).1)

AS: ck := new;

TRUE (B == (d[e[<(AS.msg).3,B,AS.ck,e[<AS.ck,(AS.msg).1>]AS.kb>]AS.ka]
A.ka).2) (A.i == (d[e[<(AS.msg).3,B,AS.ck,e[<AS.ck,(AS.msg).1>]
AS.kb>]AS.ka]A.ka).1) (B.i-1 == d[(d[e[unique.1](d[(d[e[<(AS.msg).3,
B,AS.ck,e[<AS.ck,(AS.msg).1>]AS.kb>]AS.ka]A.ka).4]B.kb).1]
(d[e[<(AS.msg).3,B,AS.ck,e[<AS.ck,(AS.msg).1>]AS.kb>]AS.ka]A.ka).3)-1]
(d[(d[e[<(AS.msg).3,B,AS.ck,e[<AS.ck,(AS.msg).1>]AS.kb>]AS.ka]A.ka).4]B
.kb).1)

AS: ticket := e[<ck, msg.1>]kb;

∧
∧

∧

tmp1()←

∧
∧

∧

AS tmp1()⇒

∧
∧

∧

msg()←

∧
∧

∧

∧
∧

∧

Appendix A: A Sample CPAL Analysis 183

TRUE (B == (d[e[<(AS.msg).3,B,AS.ck,AS.ticket>]AS.ka]A.ka).2) (A.i
== (d[e[<(AS.msg).3,B,AS.ck,AS.ticket>]AS.ka]A.ka).1) (B.i-1 ==
d[(d[e[unique.1](d[(d[e[<(AS.msg).3,B,AS.ck,AS.ticket>]AS.ka]A.ka).4]B.
kb).1](d[e[<(AS.msg).3,B,AS.ck,AS.ticket>]AS.ka]A.ka).3)-1]
(d[(d[e[<(AS.msg).3,B,AS.ck,AS.ticket>]AS.ka]A.ka).4]B.kb).1)

AS: (e[<msg.3,B,ck,ticket>]ka);

TRUE (B == (d[I’s input queue]A.ka).2) (A.i == (d[I’s input
queue]A.ka).1) (B.i-1 == d[(d[e[unique.1](d[(d[I’s input
queue]A.ka).4]B.kb).1](d[I’s input queue]A.ka).3)-1] (d[(d[I’s input
queue]A.ka).4]B.kb).1)

I: ;

TRUE (B == (d[I.tmp2]A.ka).2) (A.i == (d[I.tmp2]A.ka).1) (B.i-1 ==
d[(d[e[unique.1](d[(d[I.tmp2]A.ka).4]B.kb).1](d[I.tmp2]A.ka).3)-1]
(d[(d[I.tmp2]A.ka).4]B.kb).1)

I: (tmp2);

TRUE (B == (d[A’s input queue]A.ka).2) (A.i == (d[A’s input
queue]A.ka).1) (B.i-1 == d[(d[e[unique.1](d[(d[A’s input
queue]A.ka).4]B.kb).1](d[A’s input queue]A.ka).3)-1] (d[(d[A’s input
queue]A.ka).4]B.kb).1)

A: ;

TRUE (B == (d[A.msg]A.ka).2) (A.i == (d[A.msg]A.ka).1) (B.i-1 ==
d[(d[e[unique.1](d[(d[A.msg]A.ka).4]B.kb).1](d[A.msg]A.ka).3)-1]
(d[(d[A.msg]A.ka).4]B.kb).1)

A: tmp := d[msg]ka;

TRUE (B == (A.tmp).2) (A.i == (A.tmp).1) (B.i-1 ==
d[(d[e[unique.1] (d[(A.tmp).4]B.kb).1](A.tmp).3)-
1](d[(A.tmp).4]B.kb).1)

A: assert(i == tmp.1);

TRUE (B == (A.tmp).2) (B.i-1 ==
d[(d[e[unique.1](d[(A.tmp).4]B.kb).1] (A.tmp).3)-
1](d[(A.tmp).4]B.kb).1)

A: assert(B == tmp.2);

TRUE (B.i-1 == d[(d[e[unique.1](d[(A.tmp).4]B.kb).1](A.tmp).3)-1]
(d[(A.tmp).4]B.kb).1)

A: ck := tmp.3;

TRUE (B.i-1 == d[(d[e[unique.1](d[(A.tmp).4]B.kb).1]A.ck)-1]
(d[(A.tmp).4]B.kb).1)

A: ticket := tmp.4;

TRUE (B.i-1 == d[(d[e[unique.1](d[A.ticket]B.kb).1]A.ck)-1]
(d[A.ticket]B.kb).1)

∧ ∧
∧

I⇒

∧ ∧
∧

tmp2()←

∧ ∧ ∧

A⇒

∧ ∧
∧

msg()←

∧ ∧ ∧

∧ ∧ ∧

∧ ∧

∧

∧

∧

Appendix A: A Sample CPAL Analysis 184

A: (ticket);

TRUE (B.i-1 == d[(d[e[unique.1](d[I’s input queue]B.kb).1]A.ck)-1]
(d[I’s input queue]B.kb).1)

I: ;

TRUE (B.i-1==d[(d[e[unique.1](d[I.tmp3]B.kb).1]A.ck)-1]
(d[I.tmp3]B.kb).1)

I: (tmp3);

TRUE (B.i-1 == d[(d[e[unique.1](d[B’s input queue]B.kb).1]A.ck)-
1](d[B’s input queue]B.kb).1)

B: ;

TRUE (B.i-1 == d[(d[e[unique.1](d[B.msg]B.kb).1]A.ck)-1] (d[B.msg]
B.kb).1)

B: ck := (d[msg]kb).1;

TRUE (B.i-1 == d[(d[e[unique.1]B.ck]A.ck)-1]B.ck)

B: i := new;

TRUE (B.i-1 == d[(d[e[B.i]B.ck]A.ck)-1]B.ck)

B: (e[i]ck);

TRUE (B.i-1 == d[(d[I’s input queue]A.ck)-1]B.ck)

I:

TRUE (B.i-1 == d[(d[I.tmp4]A.ck)-1]B.ck)

I: (tmp4);

TRUE (B.i-1 == d[(d[A’s input queue]A.ck)-1]B.ck)

A: ;

TRUE (B.i-1 == d[(d[A.msg2]A.ck)-1]B.ck)

A: i2 := d[msg2]ck;

TRUE (B.i-1 == d[A.i2-1]B.ck)

A: (i2-1);

TRUE (B.i-1 == d[I’s input queue]B.ck)

I: ;

TRUE (B.i-1 == d[I.tmp5]B.ck)

I: (tmp5);

TRUE (B.i-1 == d[B’s imput queue]B.ck)

B: ;

TRUE (B.i-1 == d[B.msg2]B.ck)

I⇒

∧

tmp3()←

∧

B⇒

∧

msg()←

∧

∧

∧

I⇒

∧

tmp4()←

∧

A⇒

∧

msg2()←

∧

∧

I⇒

∧

tmp5()←

∧

B⇒

∧

msg2()←

∧

Appendix A: A Sample CPAL Analysis 185

The process of generating these weakest precondition predicates is easy to automate since

all of the transformations involve simple textual substitutions.

The weakest precondition for the first statement in the protocol is referred to as the

verification condition since proof of this theorem proves that the protocol will achieve its

stated goals if only the actions given in the specification are performed. The verification

condition for the Needham and Schroeder protocol that we derived above is:

(AS.ka == A.ka) ((AS.kb == B.kb) (TRUE (B == (d[e[<(<A,B,unique.3>).3,
B,unique.2, e[<unique.2, (<A,B,unique.3>).1>] AS.kb>]AS.ka]
A.ka).2) (unique.3 == (d[e[<(<A,B,unique.3>).3, B,unique.2,
e[<unique.2,(<A,B,unique.3>).1>] AS.kb>]AS.ka]A.ka).1) (B.i-1 ==
d[(d[e[unique.1] (d[(d[e[<(<A,B,unique.3>).3,B, unique.2, e[<unique.2,
(<A,B,unique.3>).1>]AS.kb>]AS.ka]A.ka).4]B.kb).1]
(d[e[<(<A,B,unique.3>).3,B,unique.2,e[<unique.2, (<A,B,unique.3>).1>
]AS.kb>]AS.ka]A.ka).3)-1](d[(d[e[<(<A,B,unique.3>).3,B, unique.2,
e[<unique.2,(<A,B,unique.3>).1>]AS.kb>] AS.ka]A.ka).4]B.kb).1)))

Fortunately, much automatic simplification of this predicate is possible. For

example, we can textually substitute “A” for “ (<A, B, unique.3>).1 ” and

“unique.3 ” for “ (<A, B, unique.3>).3 ” in the above theorem to yield:

(AS.ka == A.ka) ((AS.kb == B.kb) (TRUE (B == (d[e[<A, B, unique.2,
e[<unique.2, A>] AS.kb>]AS.ka] A.ka).2) (unique.3 == (d[e[<unique.3,
B,unique.2, e[<unique.2,A>] AS.kb>]AS.ka] A.ka).1) (B.i-1 ==
d[(d[e[unique.1] (d[(d[e[<unique.3,B, unique.2, e[<unique.2,
A>]AS.kb>]AS.ka]A.ka).4]B.kb).1] (d[e[<unique.3,B,unique.2, e[<unique.2,
A>]AS.kb>]AS.ka] A.ka).3)-1](d[(d[e[<unique.3,B, unique.2,
e[<unique.2,A>] AS.kb>] AS.ka]A.ka).4]B.kb).1)))

This theorem can be further simplified using other substitutions and identity

relations to the point that it can be proven manually. By proving the verification condition

we have proven that this particular trace of the protocol does satisfy the stated goals. While

this is an important result, it does not prove that the protocol is secure. If we were to replace

one or more of the intruder’s benign actions with other actions, we would need to

B: assert(i-1 == d[msg2]ck)

TRUE

⊃ ⊃ ∧

∧
∧

⊃ ⊃ ∧
∧

∧

Appendix A: A Sample CPAL Analysis 186

recompute the weakest precondition for that trace of the protocol and attempt to prove the

new verification condition. This technique is used to analyze a number of protocols in

[YAS96].

187

Appendix B

Parallel Session Fragments

In this appendix we list all the parallel session fragments for a sample cryptographic

protocol. The protocol is given below in Figure B.1.

Figure B.1 : The Sample Protocol

(1) X: assume(Inverse(B.pub_B, B.priv_B));

(2) X: assume(A.pub_B == B.pub_B);

(3) X: assume(I.pub_B == B.pub_B);

(4) B: x := new;

(5) B: (ep[x]priv_B);

(6) I: ;

(7) I: (tmp1);

(8) A: ;

(9) A: x := dp[msg]pub_B;

I⇒

tmp1()←

A⇒

msg()←

Appendix B: Parallel Session Fragments 188

This protocol contains 3 “turns” as illustrated below.

Figure B.2 : The Sample Protocol Divided into Turns

This yields 3 valid prefixes of the protocol (recall that a valid prefix of a protocol

must start with the first statement of the protocol and end on a turn boundary):

Prefix 1:

Prefix 2:

Turn 1: X: assume(Inverse(A.pub_A, A.priv_A));

X: assume(B.pub_A == A.pub_A);

X: assume(I.pub_A == A.pub_A);

A: x := new;

A: (ep[x]priv_A);

Turn 2: I: ;

I: (tmp1);

Turn 3: B: ;

B: x := dp[msg]pub_A;

X: assume(Inverse(A.pub_A, A.priv_A));

X: assume(B.pub_A == A.pub_A);

X: assume(I.pub_A == A.pub_A);

A: x := new;

A: (ep[x]priv_A);

X: assume(Inverse(A.pub_A, A.priv_A));

X: assume(B.pub_A == A.pub_A);

X: assume(I.pub_A == A.pub_A);

A: x := new;

A: (ep[x]priv_A);

I⇒

tmp1()←

B⇒

msg()←

I⇒

I⇒

Appendix B: Parallel Session Fragments 189

Prefix 3:

Prefix 1 gives us 3 distinct parallel session fragments (since agentA, B, or I can play the

role of “A” in Prefix 1). They are:

Parallel Session 1 (A plays “A”):

Parallel Session 2 (B plays “A”):

I: ;

I: (tmp1);

X: assume(Inverse(A.pub_A, A.priv_A));

X: assume(B.pub_A == A.pub_A);

X: assume(I.pub_A == A.pub_A);

A: x := new;

A: (ep[x]priv_A);

I: ;

I: (tmp1);

B: ;

B: x := dp[msg]pub_A;

X: assume(Inverse(A.pub_A, A.priv_A));

X: assume(B.pub_A == A.pub_A);

X: assume(I.pub_A == A.pub_A);

A: x := new;

A: (ep[x]priv_A);

X: assume(Inverse(A.pub_A, A.priv_A));

X: assume(B.pub_A == A.pub_A)

X: assume(I.pub_A == A.pub_A);

B: x := new;

B: (ep[x]priv_B);

tmp1()←

B⇒

I⇒

tmp1()←

B⇒

msg()←

I⇒

I⇒

Appendix B: Parallel Session Fragments 190

Parallel Session 3 (I plays “A”):

Prefix 2 gives us 3 more parallel session fragments (since agentA, B, or I can play the role

of “A” and only the intruder can play the role of “I”):

Parallel Session 4 (A plays “A” and I plays “I”):

Parallel Session 5 (B plays “A” and I plays “I”):

Parallel Session 6 (I plays “A” and I plays “I”):

X: assume(Inverse(A.pub_A, A.priv_A));

X: assume(B.pub_A == A.pub_A)

X: assume(I.pub_A == A.pub_A);

I: x := new;

I: (ep[x]priv_I);

X: assume(Inverse(A.pub_A, A.priv_A));

X: assume(B.pub_A == A.pub_A);

X: assume(I.pub_A == A.pub_A);

A: x := new;

A: (ep[x]priv_A);

I: ;

I: (tmp1);

X: assume(Inverse(A.pub_A, A.priv_A));

X: assume(B.pub_A == A.pub_A)

X: assume(I.pub_A == A.pub_A);

B: x := new;

B: (ep[x]priv_B);

I: ;

I: (tmp1);

X: assume(Inverse(A.pub_A, A.priv_A));

X: assume(B.pub_A == A.pub_A)

I⇒

I⇒

tmp1()←

B⇒

I⇒

tmp1()←

B⇒

Appendix B: Parallel Session Fragments 191

Finally, Prefix 3 gives us 9 more parallel session fragments (since agentA, B, or I can play

the role of “A”, onlyI can play the role of “I”, and agentA, B, or I can play the role of “B”):

Parallel Session 7 (A plays “A”, I plays “I”, and A plays “B”):

Parallel Session 8 (A plays “A”, I plays “I”, and B plays “B”):

X: assume(I.pub_A == A.pub_A);

I: x := new;

I: (ep[x]priv_I);

I: ;

I: (tmp1);

X: assume(Inverse(A.pub_A, A.priv_A));

X: assume(B.pub_A == A.pub_A);

X: assume(I.pub_A == A.pub_A);

A: x := new;

A: (ep[x]priv_A);

I: ;

I: (tmp1);

A: ;

A: x := dp[msg]pub_A;

X: assume(Inverse(A.pub_A, A.priv_A));

X: assume(B.pub_A == A.pub_A);

X: assume(I.pub_A == A.pub_A);

A: x := new;

A: (ep[x]priv_A);

I: ;

I: (tmp1);

B: ;

B: x := dp[msg]pub_A;

I⇒

tmp1()←

B⇒

I⇒

tmp1()←

A⇒

msg()←

I⇒

tmp1()←

B⇒

msg()←

Appendix B: Parallel Session Fragments 192

Parallel Session 9 (A plays “A”, I plays “I”, and I plays “B”):

Parallel Session 10 (B plays “A”, I plays “I”, and A plays “B”):

Parallel Session 11 (B plays “A”, I plays “I”, and B plays “B”):

X: assume(Inverse(A.pub_A, A.priv_A));

X: assume(B.pub_A == A.pub_A);

X: assume(I.pub_A == A.pub_A);

A: x := new;

A: (ep[x]priv_A);

I: ;

I: (tmp1);

I: ;

I: x := dp[msg]pub_A;

X: assume(Inverse(A.pub_A, A.priv_A));

X: assume(B.pub_A == A.pub_A);

X: assume(I.pub_A == A.pub_A);

B: x := new;

B: (ep[x]priv_B);

I: ;

I: (tmp1);

A: ;

A: x := dp[msg]pub_B;

X: assume(Inverse(A.pub_A, A.priv_A));

X: assume(B.pub_A == A.pub_A);

X: assume(I.pub_A == A.pub_A);

B: x := new;

B: (ep[x]priv_B);

I: ;

I: (tmp1);

B: ;

I⇒

tmp1()←

I⇒

msg()←

I⇒

tmp1()←

A⇒

msg()←

I⇒

tmp1()←

B⇒

msg()←

Appendix B: Parallel Session Fragments 193

Parallel Session 12 (B plays “A”, I plays “I”, and I plays “B”):

Parallel Session 13 (I plays “A”, I plays “I”, and A plays “B”):

Parallel Session 14 (I plays “A”, I plays “I”, and B plays “B”):

B: x := dp[msg]pub_B;

X: assume(Inverse(A.pub_A, A.priv_A));

X: assume(B.pub_A == A.pub_A);

X: assume(I.pub_A == A.pub_A);

B: x := new;

B: (ep[x]priv_B);

I: ;

I: (tmp1);

I: ;

I: x := dp[msg]pub_B;

X: assume(Inverse(A.pub_A, A.priv_A));

X: assume(B.pub_A == A.pub_A);

X: assume(I.pub_A == A.pub_A);

I: x := new;

I: (ep[x]priv_I);

I: ;

I: (tmp1);

A: ;

A: x := dp[msg]pub_I;

X: assume(Inverse(A.pub_A, A.priv_A));

X: assume(B.pub_A == A.pub_A);

X: assume(I.pub_A == A.pub_A);

I: x := new;

I: (ep[x]priv_I);

I: ;

I⇒

tmp1()←

I⇒

msg()←

I⇒

tmp1()←

A⇒

msg()←

I⇒

tmp1()←

Appendix B: Parallel Session Fragments 194

Parallel Session 15 (I plays “A”, I plays “I”, and I plays “B”):

Each parallel session fragment can be used to generate an axiom for the automatic

theorem prover as discussed in Chapter 5. Deleting some “useless” parallel session

fragments and renaming the variables leaves us with the following 10 parallel session

fragments:

Parallel Session 1:

Parallel Session 2:

I: (tmp1);

B: ;

B: x := dp[msg]pub_I;

X: assume(Inverse(A.pub_A, A.priv_A));

X: assume(B.pub_A == A.pub_A);

X: assume(I.pub_A == A.pub_A);

I: x := new;

I: (ep[x]priv_I);

I: ;

I: (tmp1);

I: ;

I: x := dp[msg]pub_I;

X: assume(Inverse(A.pub_A, A.priv_A));

X: assume(B.pub_A == A.pub_A);

X: assume(I.pub_A == A.pub_A);

A: tmp1 := new;

X: assume(Inverse(B.pub_B, B.priv_B));

X: assume(B.pub_B == B.pub_B);

X: assume(I.pub_B == B.pub_B);

B: tmp1 := new;

B⇒

msg()←

I⇒

tmp1()←

I⇒

msg()←

Appendix B: Parallel Session Fragments 195

Parallel Session 3:

Parallel Session 4:

Parallel Session 5:

Parallel Session 6:

X: assume(Inverse(A.pub_A, A.priv_A));

X: assume(B.pub_A == A.pub_A);

X: assume(I.pub_A == A.pub_A);

A: tmp2 := new;

A: (ep[tmp2]priv_A);

I: ;

X: assume(Inverse(B.pub_B, B.priv_B));

X: assume(B.pub_B == B.pub_B);

X: assume(I.pub_B == B.pub_B);

B: tmp2 := new;

B: (ep[tmp2]priv_B);

I: ;

X: assume(Inverse(A.pub_A, A.priv_A));

X: assume(A.pub_A == A.pub_A);

X: assume(I.pub_A == A.pub_A);

A: tmp3 := new;

A: (ep[tmp3]priv_A);

I: ;

I: (tmp4);

A: ;

A: tmp4 := dp[msg]pub_A;

X: assume(Inverse(A.pub_A, A.priv_A));

X: assume(B.pub_A == A.pub_A);

X: assume(I.pub_A == A.pub_A);

I⇒

tmp2()←

I⇒

tmp3()←

I⇒

tmp4()←

A⇒

msg()←

Appendix B: Parallel Session Fragments 196

Parallel Session 7:

Parallel Session 8:

Parallel Session 9:

A: tmp5 := new;

A: (ep[tmp5]priv_A);

I: ;

I: (tmp5);

B: ;

B: tmp4 := dp[tmp3]pub_A;

X: assume(Inverse(I.pub_I, I.priv_I));

X: assume(A.pub_I == I.pub_I);

X: assume(I.pub_I == I.pub_I);

I: (tmp6);

A: ;

A: tmp7 := dp[tmp6]pub_I;

X: assume(Inverse(I.pub_I, I.priv_I));

X: assume(B.pub_I == I.pub_I);

X: assume(I.pub_I == I.pub_I);

I: (tmp7);

B: ;

B: tmp5 := dp[tmp4]pub_I;

X: assume(Inverse(B.pub_B, B.priv_B));

X: assume(A.pub_B == B.pub_B);

X: assume(I.pub_B == B.pub_B);

B: tmp6 := new;

B: (ep[tmp6]priv_B);

I: ;

I: (tmp8);

I⇒

tmp5()←

B⇒

tmp3()←

A⇒

tmp6()←

B⇒

tmp4()←

I⇒

tmp8()←

A⇒

Appendix B: Parallel Session Fragments 197

Parallel Session 10:

A: ;

A: tmp8 := dp[tmp7]pub_B;

X: assume(Inverse(B.pub_B, B.priv_B));

X: assume(B.pub_B == B.pub_B);

X: assume(I.pub_B == B.pub_B);

B: tmp7 := new;

B: (ep[tmp7]priv_B);

I: ;

I: (tmp9);

B: ;

B: tmp9 := dp[tmp8]pub_B;

tmp7()←

I⇒

tmp9()←

B⇒

tmp8()←

198

References

[1] Abadi, Martin, and Needham, Roger, “Prudent Engineering Practice for Cryptographic
Protocols”,Proceedings of the 1994 IEEE Symposium On Research in Security and Pri-
vacy, pp. 122-136.

[2] Abadi, Martin, and Tuttle, M.R., “A Semantics for a Logic of Authentication”,Proceed-
ings of the 10th Annual ACM Symposium on Principles of Distributed Computing,
August 1991, pp. 201-216.

[3] Balzer, Robert, “A 15 Year Perspective on Automatic Programming”,IEEE Transac-
tions on Software Engineering, Volume SE-11, Number 11, November 1985, pp. 1257-
1277.

[4] Bauer, R.K., Berson, T.A., and Friertag, R.J., “A Key Distribution Protocol using Event
Markers”,ACM Transactions of Computer Systems, Volume 1, Number 3, August
1983, pp. 249-255.

[5] Beller, M.J., Chang, Li-Fung, and Yacobi, Y., “Privacy and Authentication on a Portable
Communication System”,IEEE Journal on Selected Areas in Communications, Vol-
ume 11, Number 6, August 1993, pp. 821-829.

[6] Bellovin, Steven M., and Merritt, Michael, “Limitations of the Kerberos Authentication
System”,Computer Communication Review, Volume 20, Number 5, October 1990, pp.
119-132.

[7] Bellovin, Steven M., and Merritt, Michael, “Encrypted Key Exchange: Password-Based
Protocols Secure Against Dictionary Attacks”,Proceedings of the 1992 IEEE Sympo-
sium On Research in Security and Privacy, pp. 72-84.

[8] Benaloh, Josh, and Tuinstra, Dwight, “Receipt-Free Secret-Ballot Elections”,Proceed-
ings of the 26th Annual ACM Symposium on the Theory of Computation, 1994, pp. 544-
553.

[9] Bieber, Pierre, “A Logic of Communication in Hostile Environment”,Proceedings of
the Computer Security Foundations Workshop III, 1990, pp. 14-22.

199

[10] Bieber, Pierre, Boulahia-Cuppens, Nora, Lehmann, Thomas, and van Wickeren, Erich,
“Abstract Machines for Communication Security”,Proceedings of the Computer Secu-
rity Foundations Workshop VI, 1993, pp. 137-146.

[11] Biermann, A.W., “Approaches to Automatic Programming”,Advances in Computers,
Volume 15, 1976, pp. 1-63.

[12] Biham, Eli, and Shamir, Adi, “Differential Cryptanalysis of DES-like Cryptosystems”,
Advaces in Cryptology - CRYPTO ‘90, pp. 2-21.

[13] Bird, R., et al, “Systematic Design of two-party authentication protocols”,Advances
in Cryptology - CRYPTO ‘91, pp. 44-61.

[14] Bird, Ray, Gopal, I., Herzberg, Amir, Janson, Philippe A., Kutten, Shay, Molva, Refik,
and Yung, Moti, “Systematic Design of a Family of Attack-Resistant Authentication
Protocols”,IEEE Journal on Selected Areas in Communications, Volume 11, Number
5, June 1993, pp. 679-693.

[15] Boyd, Colin, and Mao, Wenbo, “On a Limitation of BAN Logic”,Advances in Cryp-
tology - EYROCRYPT ‘93, pp. 240-247.

[16] Boyd, Colin, “Hidden Assumptions in Crytpographic Protocols”,Proceedings of the
IEE, Part E, Volume 137, Number 6, November 1990, pp. 433-436.

[17] Boyd, Colin, and Mao, Wenbo, “Limitations of Logical Analysis of Cryptographic
Protocols”,-,

[18] Burns, J., and Mitchell, C. J., “A Security Scheme for Resource Sharing Oer a Net-
work”, Computers and Security, Volume 19, February, 1990, pp. 67-76.

[19] Burrows, Michael, Abadi, Martin, and Needham, Roger, “A Logic of Authentication”,
ACM Operating Systems Review, Volume 23, Number 5, 1989, pp. 1-13.

[20] Burrows, Michael, Abadi, Martin, and Needham, Roger, “Rejoiner to Nessett”,ACM
Operating Systems Review, Volume 24, Number 2, April, 1990, pp. 39-40.

[21] Calvelli, Claudio, and Varadharajan, Vijay, “An Analysis of Some Delegation Proto-
cols for Distributed Systems”,Proceedings of the Computer Security Foundations
Workshop V, 1992, pp. 92-110.

[22] Campbell, E. A., Safavi-Naini, R., and Pleasants, P. A., “Partial Belief and Probabilis-
tic Reasoning in the Analysis of Secure Protocols”,Proceedings of the Computer Secu-
rity Foundations Workshop V, 1992, pp. 84-91.

[23] Carlsen, Ulf, “Using Logics to Detect Implementation-Dependent Flaws”,Proceed-
ings of the 9th Annual Computing Security Applications Conference, December 1993,
pp. 64-73.

[24] Carlsen, Ulf, “Cryptographic Protocol Flaws: Know Your Enemy”,Proceedings of the
Computer Security Foundations Workshop VII, 1994, pp. 192-200.

[25] Carlsen, Ulf, “Generating Formal Cryptographic Protocol Specifications”,Proceed-
ings of the 1994 IEEE Symposium On Research in Security and Privacy, pp. 137-146.

200

[26] Carnap, R., “The Logical Syntax of Language”, translated by A. Smeaton, London
(Routledge and Kegan Paul), 1937.

[27] Cheng, Pau-Chen, and Gligor, Virgil D., “On the Formal Specification and Verification
of a Multiparty Session Protocol”,Proceedings of the 1990 IEEE Symposium On
Research in Security and Privacy, pp. 216-233.

[28] De Santis, Alfredo, Desmedt, Yvo, Frankel, Yair, and Yung, Moti, “How to Share A
Function Securely”,Proceedings of the 26th Annual ACM Symposium on the Theory of
Computation, 1994, pp. 522-533.

[29] DeMillo, R., Lipton, R., and Perlis, A., “Social Processes and Proofs of Theorems and
Programs”,Communications of the ACM, Volume 22, Number 5, May, 1979, pp. 271-
280.

[30] DeMillo, R., Lynch, N., and Merritt, M., “Cryptographic Protocols”,Proceedings of
the 14th ACM Symposium on Theory of Computing, May 1982, pp. 383-400.

[31] DeMillo, R., and Merritt, M., “Protocols for Data Security”,Computer, Volume 16,
February 1983, pp. 39-50.

[32] Denning, Dorothy E., and Sacco, Giovanni Maria, “Timestamps in Key Distribution
Protocols”,Communications of the ACM, Volume 24, Number 8, August 1981, pp. 533-
536.

[33] “Department of Defense trusted computer systems evaluation criteria”, National Com-
puter Security Center, DOD 5200.28-STD, December, 1985.

[34] Diffie, W., and Hellman, M.E., “New Directions in Cryptography”,IEEE Transactions
on Information Theory, Volume IT-11, November 1976, pp. 644-654.

[35] Diffie, W., von Oorschat, P.C., and Wiener, M.J., “Authentication and Authenticated
Key Exchanges”,Designs, Codes, and Cryptography, Volume 2, 1992, pp. 107-125.

[36] Dolev, Danny, and Yao Andrew C., “On the Security of Public Key Protocols”, IEEE
Transactions on Information Theory, Volume IT-29, Number 2, March 1983, pp. 198-
208.

[37] ElGamal, T., “A Public Key Cryptosystem and a Signature Scheme based on Discrete
Logarithms”, IEEE Transactions on Information Theory, Volume IT-31, July 1985, pp.
469-472.

[38] Feige, U., Fiat, A., and Shamir, A., “Zero Knowledge Proofs of Identity”,Proceedings
of the 19th Annual ACM Symposium on Theory of Computing, 1987, pp. 210-217.

[39] Feige, Uri, Kilian, Joe, and Naor, Moni, “A Minimal Model for Secure Computation”,
Proceedings of the 26th Annual ACM Symposium on the Theory of Computation, 1994,
pp. 554-563.

[40] Gaarder, K., and Snekkenes, E., “Applying a Formal Analysis Technique to the CCITT
X.509 Strong Two-Way Authentication Protocol”,Journal of Cryptology, Volume 3,
1991, pp. 81-98.

[41] Goldreich, Oded, Micali, Silvio, and Wigderson, Avi, “Proofs that Yield Nothing But

201

their Validity and a Methodology of Cryptographic Protocol Design”,Proceedings of
the 27th Annual Symposium on Foundations of Computer Science, 1986, pp. 174-187.

[42] Goldwasser, Shafi, and Micali, Silvio, “Probabilistic Encryption”,Journal of Com-
puter and System Sciences, Volume 28, 1984, pp. 270-299.

[43] Gong, Li, “Using one-way functions for Authentication”,ACM Computer Communi-
cations Review, Volume 19, Number 5, October 1989, pp. 8-11.

[44] Gong, Li, “A Note on Redundancy in Encrypted Messages”,ACM Computer Commu-
nications Review, Volume 20, October 1990, pp. 18-22.

[45] Gong, Li, “Verifiable-text attacks in Cryptographic Protocols”,Proceedings of the
IEEE INFOCOM ‘90, pp. 686-693.

[46] Gong, Li, Needham, Roger, and Yahalom, Raphael, “Reasoning about Belief in Cryp-
tographic Protocols”,Proceedings of the 1990 IEEE Symposium On Research in Secu-
rity and Privacy, pp. 234-248.

[47] Gong, Li, “A Security Risk of Depending on Synchronized Clocks”,Operating Sys-
tems Review, Volume 26, Number 1, January 1992, pp. 49-53.

[48] Gong, Li, “Variations on the Themes of Message Freshness and Replay - or the Diffi-
culty in Devising Formal Methods to Analyze Cryptographic Protocols”,Proceedings
of the Computer Security Foundations Workshop VI, 1993, pp. 131-136.

[49] Greene, C., and Barstow, D., “Some rules for the Automatic Synthesis of programs”,
Proceedings of the 4th International Joint Conference on Artificial Intelligence, 1975,
pp. 232-239.

[50] Harn, Lein, and Kiesler, Thomas, “Authenticated Group Key Distribution Scheme For
A Large Distributed Network”,Proceedings of the 1989 IEEE Symposium On Research
in Security and Privacy, pp. 300-309.

[51] Heintze, Nevin, and Tygar, J. D., “A Model for Secure Protocols and Their Composi-
tions”,Proceedings of the 1994 IEEE Symposium On Research in Security and Privacy,
pp. 2-13.

[52] I’Anson, C., and Mitchell, C., “Security Defects in CCITT Recommendation X.509”,
ACM Computer Communications Review, Volume 20, Number 2, April 1990, pp. 30-
34.

[53] ISO/IEC Draft International Standard 10181-2.2,Information Technology - Open Sys-
tems Interconnection - Security Frameworks for Open Systems: Authentication Frame-
work, 1993.

[54] Kailar, Rajashekar, and Gligor, Virgil D., “On Belief Evolution in Authentication Pro-
tocols”,Proceedings of the 1991 IEEE Symposium On Research in Security and Pri-
vacy, pp. 103-116.

[55] Kao, I-Lung, and Chow, Randy, “An Efficient and Secure Authentication Protocol
Using Uncertified Keys”, -, pp. 14-21.

[56] Kehne, A., Schonwalder, J., and Langendorfer, H., “A Nonce-Based Protocol For Mul-

202

tiple Authentications”,Operating Systems Review, Volume 26, Number 4, October
1992, pp. 84-89.

[57] Kemmerer, Richard A., “Analyzing Encryption Protocols Using Formal Verification
Techniques”,IEEE Journal on Selected Areas in Communication, Volume 7, Number
4, May 1989, pp. 448-457.

[58] Kemmerer, R., Meadows, C., and Millen, J., “Three Systems for Cryptographic Proto-
col Analysis”,Journal of Cryptology, Volume 7, Number 2, 1994, pp.79-130.

[59] Kessler, Volker, and Wedel, Gabriele, “AUTLOG - An advanced logic of authentica-
tion”, Proceedings of the Computer Security Foundations Workshop VII, 1994, pp. 90-
99.

[60] Lampson, B., “Protection”,Proceedings of the 5th Symposium on Operating Systems,
January 1974.

[61] Lampson, B., Abadi, M., Burrows, M., and Wobber, E., “Authentication in Distributed
Systems: Theory and Practice”,ACM Transactions on Computer Systems, Volume 10,
Number 4, November 1992, pp. 265-310.

[62] Lee, R.C.T., Chang, C.L., and Waldinger, R.J., “An Improved Program-Synthesizing
Algorithm and Its Correctness”,Communications of the ACM, Volume 17, Number 4,
April 1974, pp. 211-217.

[63] Liebl, Armin, “Authentication in Distributed Systems: A Bibliography”,Operating
Systems Review, Volume 27, Number 4, October 1993, pp. 31-41.

[64] Lin, C. H., Chang, C. C., and Lee, R. C. T., “A New Public-Key Cipher System Based
Upon the Diophantine Equations”,IEEE Transactions on Computers, Volume 44,
Number 1, January 1995, pp. 13-18.

[65] Lomsa, T.M.A., Gong, L., Saltzer, J.H., and Needham, R.M., “Reducing Risks from
Poorly Chosen Keys”,Proceedings of the 12th ACM Symposium on Operating System
Principles, December 1989, pp. 14-18.

[66] Longley, D., and Rigby, S., “An Automatic Search for Security Flaws in Key Manage-
ment Schemes”,Computers and Security, Volume 11, 1992, pp. 75-89.

[67] Lowe, Gavin, “Breaking and Fixing the Needham-Schroeder Public-Key Protocol
using FDR”.

[68] Lu, W.P., and Sundereshan, M.K., “Secure Communication in Internet Environments:
A Hierarchical Key Management Scheme for End-to-End Encryption”,IEEE Transac-
tions on Communications, Volume 37, Number 10, October 1989, pp. 1014-1023.

[69] Lu, W.P., and Sundereshan, M.K., “Enhanced Protocols for Hierarchical Encryption
Key Management”,IEEE Transactions on Communications, Volume 40, Number 4,
April 1992, pp. 658-660.

[70] Manna, Zohar, and Waldinger, Richard J., “Towards Automatic Program Synthesis”,
Communications of the ACM, Volume 14, Number 3, March 1971, pp. 151-165.

[71] Manna, Zohar, and Waldinger, Richard, “Fundamentals of Deductive Program Synthe-

203

sis”, IEEE Transactions on Software Engineering, Volume 18, Number 8, August 1992,
pp. 674-704.

[72] Mao, Wenbo, and Boyd, Colin, “Towards Formal Analysis of Security Protocols”,
Proceedings of the Computer Security Foundations Workshop VI, 1993, pp. 147-158.

[73] Mao, Wenbo, and Boyd, Colin, “Development of Authentication Protocols: Some Mis-
conceptions and a New Approach”,Proceedings of the Computer Security Foundations
Workshop VII, 1994, pp. 178-186.

[74] Massey, J.L., “An Introduction to Contemporary Cryptology”,Proceedings of the
IEEE, Volume 76, Number 5, May 1988, pp. 533-549.

[75] Meadows, Catherine, “Using Narrowing in the Analysis of Key Management Proto-
cols”,Proceedings of the 1989 IEEE Symposium On Research in Security and Privacy,
pp. 138-147.

[76] Meadows, Catherine, “A System for the Specification and Analysis of Key Manage-
ment Protocols”,Proceedings of the 1991 IEEE Symposium On Research in Security
and Privacy, pp. 182-195.

[77] Meadows, Catherine, “A Model of Computation for the NRL Protocol Analyzer”,Pro-
ceedings of the Computer Security Foundations Workshop VII, 1994, pp. 84-89.

[78] Meadows, Catherine, “Formal Verification of Cryptographic Protocols: A Survey”,
Advances in Cryptology - ASIACRYPT 1994, pp. 135-150.

[79] Merritt, M. J., “Cryptographic Protocols”, PhD Thesis, Georgia Institute of Technol-
ogy, 1983.

[80] Micali, Silvio, “Fair Public-Key Cryptosystems”.

[81] Millen, Jonathan K., Clark, Sidney C., and Freedman, Sheryl B., “The Interrogator:
Protocol Security Analysis”, IEEE Transactions on Software Engineering, Volume SE-
13, Number 2, February 1987, pp. 274-288.

[82] Millen, Jonathan K., “The Interrogator Model”,Proceedings of the 1995 IEEE Sym-
posium On Research in Security and Privacy, pp. 251-260.

[83] Millen, Jonathan K., “CAPSL: Common Authentication Protocol Specification Lan-
guage”, http://www.mitre.org/research/capsl

[84] Molva, Refik, Tsudik, Gene, Van Herreweghen, Els, and Zatti, Stefano, “KryptoKnight
Authentication and Key Distribution System”,Proceedings of the 1992 European Sym-
posium on Research in Computer Security - ESORICS 1992, pp. 1-16.

[85] Molva, Refik, and Tsudik, Gene, “Authentication Method with Impersonal Token
Cards”,Proceedings of the 1993 IEEE Symposium On Research in Security and Pri-
vacy, pp. 56-65.

[86] Moore, J.H., “Protocol Failures in Cryptosystems”,Proceedings of the IEEE, Volume
76, Number 5, May 1988, pp. 594-602.

[87] Morris, R.H., and Thompson, K., “UNIX password security”,Communications of the

204

ACM, Volume 22, Number 11, November 1979, pp. 594-597.

[88] Moser, Louise E., “A Logic of Knowledge and Belief for Reasoning about Computer
Security”,Proceedings of the Computer Security Foundations Workshop II, 1989, pp.
57-63.

[89] National Bureau of Standards, “Data Encryption Standard”, FIPS Publication 46, Jan-
uary 1977.

[90] Needham, Roger M., and Schroeder, Michael D., “Using Encryption for Authentica-
tion in Large Networks of Computers”,Communications of the ACM, Volume 21, Num-
ber 12, December 1978, pp. 993-999.

[91] Needham, Roger M., and Schroeder, Michael D., “Authentication Revisted”,Operat-
ing Systems Review, Volume 21, Number 1, January 1987, p. 7.

[92] Nessett, Dan M., “A Critique of the Burrows, Abadi, and Needham Logic”,Operating
Systems Review, April 1990, pp. 35-38.

[93] Neufeld, G., and Voung, Son, “An Overview of ASN.1”,Computer Networks and
ISDN Systems, Volume 23, 1992, pp. 393-415.

[94] Neuman, B.C., and Stubblebine, S.G., “A Note on the Use of Timestamps as Nonces”,
Operating Systems Review, Volume 27, Number 2, April 1993, pp. 10-14.

[95] Otway, Dave, and Rees, Owen, “Efficient and Timely Mutual Authentication”,Oper-
ating Systems Review, Volume 21, Number 1, January 1987, pp. 8-10.

[96] Piessens, F., De Decker, B., and Janson, P., “Interconnecting Domains with Heteroge-
neous Key Distribution and Authentication Protocols”,Proceedings of the 1993 IEEE
Symposium On Research in Security and Privacy, pp. 66-79.

[97] Rangan, P.V., “An Axiomatic Basis of Trust in Distributed Systems”,Proceedings of
the 1988 IEEE Symposium on Security and Privacy, pp. 204-211.

[98] Rich, C., “A Formal Representation for Plans in the Programmer’s Aprentice”,Pro-
ceddings of the 7th International Joint Conference on Artificial Intelligence, 1981, pp.
1044-1052.

[99] Rich, Charles, and Waters, Richard C., “Automatic Programming: Myths and Pros-
pects”,IEEE Computer, August, 1988, pp. 40-51.

[100] Rivest, R. L., Shamir, A., and Adleman, L., “A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems”,Communications of the ACM, Volume 21, Num-
ber 2, February 1978, pp. 120-126.

[101] Rivest, R., and Shamir, A., “How to expose an eavesdropper”,Communications of the
ACM, Volume 27, Number 4, April 1984, pp. 393-395.

[102] Rubin, Aviel D., and Honeyman, Peter, “Nonmonotonic Cryptographic Protocols”,
Proceedings of the Computer Security Foundations Workshop VII, 1994, pp. 100-116.

[103] Satyanarayanan, M., “Integrating Security in a Large Distributed System”,ACM
Transactions on Computer Systems, Volume 7, Number 3, August 1989,

205

[104] Shamir, Adi, “How to Share a Secret”,Communications of the ACM, Volume 22,
Number 11, November 1979, pp. 612-613.

[105] Shor, Peter W., “Algorithms for Quantum Computation: Discrete Logarithms and
Factoring”,Proceedings of the 35th Annual Symposium on Foundations of Computer
Science, 1994, pp. 124-134.

[106] Simmons, Gustavus J., “How to (Selectively) Broadcast a Secret”,Proceedings of the
1985 IEEE Symposium on Security and Privacy, pp. 108-113.

[107] Simmons, Gustavus J., “An Introduction to the Mathematics of Trust in Security Pro-
tocols”,Proceedings of the Computer Security Foundations Workshop VI, 1993, pp.
121-127.

[108] Simmons, Gustavus J., “Proof of Soundness (Integrity) of Cryptographic Protocols”,
Journal of Cryptology, Volume 7, 1994, pp. 69-77.

[109] Simon, Daniel R., “On the Power of Quantum Computation”,Proceedings of the 35th
Annual Symposium on Foundations of Computer Science, 1994, pp. 116-123.

[110] Snekkenes, Einar, “Exploring the BAN Approach to Protocol Analysis”,Proceedings
of the 1991 IEEE Symposium On Research in Security and Privacy, pp. 171-181.

[111] Snekkenes, Einar, “Roles in Cryptographic Protocols”,Proceedings of the 1992 IEEE
Symposium On Research in Security and Privacy, pp. 105-118.

[112] Steiner, Michael, Tsudik, Gene, Waidner, Michael, “Refinement and Extension of
Encrypted Key Exchange”, Operating Systems Review, Volume 29, Number 3, July
1995, pp. 22-30.

[113] Stubblebine, Stuart G., and Gligor, Virgil D., “On Message Integrity in Crypto-
graphic Protocols”,Proceedings of the 1992 IEEE Symposium On Research in Security
and Privacy, pp. 85-104.

[114] Stubblebine, Stuart G., and Gligor, Virgil D., “Protocol Design for Integrity Protec-
tion”, Proceedings of the 1993 IEEE Symposium On Research in Security and Privacy,
pp. 41-53.

[115] Syverson, Paul, “Formal Semantics for Logics of Cryptographic Protocols”,Pro-
ceedings of the Computer Security Foundations Workshop III, 1990, pp. 32-41.

[116] Syverson, Paul, “The Use of Logic in the Analysis of Cryptographic Protocols”,Pro-
ceedings of the 1991 IEEE Symposium On Research in Security and Privacy, pp. 156-
170.

[117] Syverson, Paul, “Knowledge, Belief, and Semantics in the Analysis of Cryptographic
Protocols”,Journal of Computer Security, Volume 1, Number 3, 1992, pp. 317-334.

[118] Syverson, Paul, and Meadows, Catherine, “A Logical Language for Specifying Cryp-
tographic Protocol Requirements”,Proceedings of the 1993 IEEE Symposium On
Research in Security and Privacy, pp. 165-177.

[119] Syverson, Paul, “On Key Distribution Protocols for Repeated Authentication”,Oper-
ating Systems Review, Volume 27, Number 4, October 1993, pp. 24-30.

206

[120] Syverson, Paul, “Adding Time to a Logic of Authentication”,Proceedings of the 1st
ACM Conference on Computer and Communication Security, November 1993.

[121] Syverson, Paul, “A Taxonomy of Replay Attacks”,Proceedings of the Computer
Security Foundations Workshop VII, 1994, pp. 187-191.

[122] Syverson, Paul, and van Oorschot, Paul C., “On Unifying Some Cryptographic Pro-
tocol Logics”,Proceedings of the 1994 IEEE Symposium On Research in Security and
Privacy, pp. 14-28.

[123] Tanenbaum, Andrew S., and van Renesse, Robbert, “Using Sparse Capabilities in a
Distributed Operating System”,Proceedings of the 6th International Conference on
Distributed Computing Systems, May 1986, pp. 558-563.

[124] Tatebayashi, M., Matsuzaki, N., and Newman, D. B., “Key Distribution Protocol for
Digital Mobile Communications Systems”,Advances in Cryptology - CRYPTO ‘89, pp.
324-333.

[125] Thompson, K., “Reflections on Trusting Trust”,Communications of the ACM, Vol-
ume 27, Number 8, August, 1984, pp. 761-763.

[126] Toussaint, M. J., “Verification of Cryptographic Protocols”, PhD Thesis. Universite
de Liege (Belgium), 1991.

[127] Toussaint, M.J., “Deriving the Complete Knowledge of Participants in Cryptographic
Protocols”,Advances in Cryptology - CRYPTO ‘91.

[128] Varadharajan, V., Allen, P., and Black, S., “An analysis of the proxy problem in dis-
tributed systems”,Proceedings of the 1991 IEEE Symposium on Research in Security
and Privacy, pp. 255-275.

[129] Voydock, Victor L., and Kent, Stephen T., “Security in High-Level Network Proto-
cols”, IEEE Communications Magazine, Volume 23, Number 7, July 1985, pp. 12-24.

[130] Walker, Stephen T., “Network Security: The Parts of the Sum”,Proceedings of the
1989 IEEE Symposium On Research in Security and Privacy, pp. 2-9.

[131] Waters, R.C., “The Programmer’s Apprentice: A Session with KBEacs”,IEEE Trans-
actions on Software Engineering, Volume 11, Number 11, November 1985, pp. 1296-
1320.

[132] Wobber, E., Abadi, M., Burrows, M., and Lampson, B., “Authentication in the Taos
Operating System”,Proceedings of the 14th ACM Symposium on Operating System
Principles, 1993, pp. 256-269.

[133] Woo, Thomas Y. C., and Lam, Simon S., “Authentication for Distributed Systems”,
Computer, Volume 25, Number 1, January 1992, pp. 39-52.

[134] Woo, Thomas Y. C., and Lam, Simon S., “A Semantic Model for Authentication Pro-
tocols”,Proceedings of the 1993 IEEE Symposium On Research in Security and Pri-
vacy, pp. 178-194.

[135] Yahalom, R., Klein, B., and Beth, Th., “Trust Relationships in Secure Systems - A
Distributed Authentication Perspective”,Proceedings of the 1993 IEEE Symposium On

207

Research in Security and Privacy, pp. 150-164.

[136] Yao, A., “Protocols for Secure Computations”,Proceedings of the 23rd IEEE Sym-
posium on Foundations of Computer Science, November 1982, pp. 160-164.

[137] Yasinsac, A.F., “Evaluating Cryptographic Protocols”, Ph.D. Dissertation, University
of Virginia, 1996.

