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Abstract

In this dissertation we present a powerful, general, extensible, and formal method-
ology that automatically examines cryptographic protocols. Our approach is to specify a
protocol, its assumptions, and a statement of failure in a notation that allows us to give a
formal semantic definition of the protocol and its failure conditions. We then use deductive
program synthesis to try to automatically modify the protocol so that the failure condition
is achieved. If this last step succeeds, we have found a weakness in the protocol and we can
then give a step-by-step description of an attack to the user. Given an adequate set of axioms
and enough time, our method will find any attack that exists for a given protocol and failure
condition. Even if our methodology does not discover a flaw in the amount of time it is
given to run, we can make a concrete statement about the minimum length of a constructive
proof for any attack that might exist on the protocol (for the given failure condition and
axiom set) as a result of its analysis. A preliminary implementation of our methodology has
had great success in finding both known and previously unknown flaws in a significant
number of published protocols. This system also helped us to discover and demonstrate an
important new class of attacks based on the interaction of two or more cryptographic pro-

tocols.



Chapter 1

Introduction

1.1 Computer Security

In the days of stand-alone computers the field of computer security was concerned
with protecting the system’s resources from misuse and controlling the information that
was stored on the computer. System resources were protected by ensuring that only specific
users were permitted the use of certain resources and that no user could abuse any resource.
For example, many operating systems used disk quotas and processor scheduling algo-
rithms to apportion storage space and CPU cycles fairly among the system’s users. Infor-
mation was controlled by managing the rights that each user had to it and the manner in
which users could communicate information to one another. Many methods have been pro-
posed to address these two problems, but most of them are based on the access-control

matrix model proposed by Butler Lampson in [LAM74].

Lampson’saccess-control matrimodel consists of a set objectsthat are to be
protected and a set sfibjectsvhich perform actions and are themselves objects in the sys-

tem. Objects can also be resources such as CPUs, memory segments, disk drives, terminals,
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or printers, or they can be information such as processes, files, databases, or semaphores.
Each operation that can be performed on an object correspondgtit &he objects are

then protected in the following straight-forward manner. If a subject has a right to an object,
he is permitted to perform that operation on the object; otherwise he is not. An access-con-
trol matrix has a row for each user and a column for each object. Each entry in the matrix
specifies what subset of the rights for the object a particular user has. An example of an

access-control matrix is given below.

We defineS the set obubjectsas follows:

S={Subject A, Subject B, Subject C}

We defineO, the set obbjects as follows:

O ={Ohbject 1, Object 2, Subject A, Subject B, Subject C}

The access-control matrik|, that defines whatghts each subject has to each object is

given in Figure 1.1 below.

Object 1 Object 2 Subject A Subject B Subject C
Subject A Read \I/?Veria:(ej Write
_ Read
Subject B Execute Write
Execute
. Read Read
Subject C Write Write

Figure 1.1 : An Access-Control Matrix
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When subjecX requests to perform operatigion objec, we simply need to refer
to row X, columnZ of the matrix to determine whether or fvas one of the rightX has to

Z
Allow subjectX to perform operatiolY on objeciZ if Y O M[x Z}
Disallow subjectX to perform operatioilY on objecZ if Y O M[X Z]

In practice, an access-control matrix is often large and sparse, so it makes sense to
store only the non-empty elements in it. There are two ways to accomplish this. One is to
make a list, indexed by the objects, and record which subjects have which rights to that
object. This is commonly referred to asatess control listThe access control list that

corresponds to the matrix above is given in Figure 1.2.

Object 1: (A, Read), (C, Read, Write)

Object 2: (B, Execute)

Subject A: (A, Read, Write)

Subject B: (A, Write), (B, Read, Write, Execute)
Subject C: (C, Read, Write)

Figure 1.2 : The Matrix Expressed as an Access Control List
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The other way of partitioning the matrix of Figure 1.1 is by rows. Using this strategy we
obtain a list for each subject of the objects that may be accessed and the rights to that object.

This is called &apability listand is illustrated in Figure 1.3.
Subject A: (Object 1, Read), (Subject A, Read, Write), (Subject B, Write)
Subject B: (Object 2, Execute), (Subject B, Read, Write, Execute)
Subject C: (Object 1, Read, Write), (Subject C, Read, Write)

Figure 1.3 : The Matrix Expressed as a Capability List

Access control mechanisms play an important role in securing information stored

on computer systems, but they are not a complete solution. That is because there are other
ways for an unauthorized user to gain access to information. For example, if Alice does not
have permission to read a file but Bob does, Alice might be able to convince Bob to read
that file and tell her its contents. In this scenario, none of the access control policies have
been violated, but this still represents a breach of security, since Alice was not authorized
to have access to the contents of the file. Issues like these are addressed by what are called
information flowsecurity policies, defined by Denning [DEN76] as followsfdrmation

is said to flow from object a to object b if the value of object b some how depends on the

value of object a”

The most widely-used information flow policy is Multi-Level Security(MLS). In
this policy, every entity in the system is assigned a level from a partially ordereddfet,

security levels:
L = {Unclassified, Classified, Secret, Top Secret}
The most common partial ordering is that:

Unclassifieds Classified SecreatTop Secret
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Each object in the system is assigned a security levellfrom

Subject A: Secret
Subject B: Unclassified
Subject C: Classified
Object 1: Classified
Object 2: Top Secret
A typical Multi-Level Security policy used by the U.S. military is:
O@X, YQX - Y)O (X<Y)))

Figure 1.4 : An Information Flow Policy

where

XY

is an uninterpreted predicate that represents the fact that information flows toofrilr he
policy in Figure 1.4 states that if information flows fréno Y thenX must be at the same
level or lower thar. An implementation of this policy might allow information to flow
from Object 2 to either Subject A or Subject C, but it would be a violation of the security
policy to allow information to flow from Object 2 to Subject B since the level of Subject B
(Unclassified) is lower than the level of Object 2 (Top Secret). Implementations of the
access-control model or Multi-Level Security policy have been very popular for protecting

computers in a stand-alone environment.

1.2 Network Security

The move from stand-alone computer systems to distributed systems produced
many new possibilities in computing, but also a host of new security concerns - notably the
vulnerability of communications. This is due to the ease with which an intruder can tap into

the network and observe messages in transit. By eavesdropping on the network, an intruder
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could learn the contents of the messages that he sees, or he could draw additional
conclusions by observing which users are communicating with each other, when they
transmit their messages, and how often they communicate. For example, knowing that
Carol is communicating regularly with members of an Alcoholics Anonymous group may
allow an intruder to posit some information about Carol, even if he can’t read the messages
she is sending or receiving. Likewise, a substantial increase in the number of transmissions

at an air force base may indicate that some maneuver or attack is imminent.

Entities that observe messages on the network but do not interfere with them are
called passiveintruders. In dealing with passive intruders we typically try to hide the
source, destination, and contents of messages from them. Cryptography, the scrambling of
messages so that they will be unreadable to anyone but the intended recipient, is often used

to protect network communications from passive intruders.

In addition to passive intruders there maybtveintruders on the network. Active
intruders have all the capabilities of passive intruders, and in addition, they can interfere
with messages by creating, modifying, destroying, retransmitting, delaying, or misdirecting
them. A possible attack by an active intruder might be to use an ATM to withdraw money
from one’s bank account, and then to delete the debit message from the ATM to the bank
after receiving the money. One could also make a deposit and then either modify the
resulting message to credit the account with a greater amount than was actually deposited

or replay the unmodified message several times.

It is sometimes possible to detect active intruders, but as in the case of passive
intruders, many of the strategies used to defend against them are designed to mitigate or
render their actions innocuous. For example, one branch of cryptography dealsewith
way hash function@iscussed in the next section) that can be used to make it very difficult
to modify a message without being detected. Timestamps can help the recipient of a

message determine whether the message has been delayed or replayed. As in the case of
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passive intruders, cryptographic techniques can provide valuable safeguards against some
attacks by active intruders. Since cryptography has become such an important component

of network security, we present a brief overview in the next section.

1.3 Cryptography

Cryptography is the art of creating and usingptosystemsyhich are methods of
disguising messages so that only certain people can see through the disguise. The origins
of cryptography are normally traced back to the dawn of human history. According to Kahn
[KAH67], cryptography may be as old as the written word since writing may have
originally been used to transform a spoken message which anyone within earshot would be
able to hear and understand into a form that would be less public and understandable only
to a select group of people. As alphabets were standardized and more people became
literate, cryptographers developed new and more cunning means to camouflage their

messages.

1.3.1 A Classic Cryptosystem

Perhaps the most widely-known cryptosystem is the Caesar cipher. Legend has it
that Julius Caesar disguised the messages he sent to his generals by replacing every ‘A’ in
the message with a ‘D’, every ‘B’ with ‘E’, every ‘C’ with ‘F’, and so on through the
alphabet. So if Caesar wanted to tell his generals to “ATTACK AT DAWN”, he would send
them the message “DWWDFN DW GDZQ". Although the enemy might capture this
message in transit he would not have been able to understand what it said. When one of
Caesar’s generals received this message, he knew that replacing each letter in the message
with the letter appearing three places before it in the alphabet would reveal the intended

message.



Chapter 1: Introduction 9

This simple cryptosystem can be used to define many of the basic terms in
cryptology. The original message, “ATTACK AT DAWN?”, is called thlaintext and the
disguised message, “DWWDFN DW GDZQ” is called tbiphertext We call the
procedure for converting the plaintext into ciphertaxtryption In the case of the Caesar
cipher, we encrypt a message by replacing each letter with the third letter after it in the
alphabet. The procedure for converting the ciphertext into plaintext is daltegbtionand
is accomplished in the Caesar cipher by replacing each letter with the third letter before it

in the alphabet.

Cryptographers have usually chosen to make the algorithms for encryption and
decryption public but to make their results depend upon some value knokeyaBhas is
done to allow other cryptographers to examine proposed cryptosystems and convince
themselves that the protection offered by a cryptosystem is based on the secrecy of the key
and not the secrecy of the cryptographic algorithm. If this is the case, then the only factor
that determines whether or not someone can decrypt a message is whether they know the
proper key. If we define the encryption procedure for the Caesar cipher as “shift forward by
n” and the decryption procedure as “shift backwards’ijienn is the key for the cipher.
Caesar supposedly used3, but any value from the set {1, 2, ..., 25} could be used as a
key. This set of usable keys is usually referred to as a cryptosykeysfsaceThe problem
with having a keyspace with so few elements is that someone who doesn’t know which key
was used can try decrypting the ciphertext with each possible key until a message that

makes sense (and is almost certainly the plaintext) is produced.

1.3.2 Codes and Ciphers

Most cryptographic algorithms can be classified as either codes, ciphers, or a
combination of the two. We have already seen an example of a cipher in the preceding
section on the Caesar cipher. lgipher, some procedure is used to transform a block of

plaintext into a block of ciphertext. Blockis the fixed-size unit on which a cryptosystem
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operates. It could be a single character, as in the Caesar cipher, or two or more characters,
as in some other ciphers. Usually the plaintext blocks are transformed into blocks of
ciphertext by substitution and/or transposition. As we saw in the Caesar sigdgitution

is performed by applying some function to the plaintext block and the key in order to
produce a block of ciphertext which replaces the block of plainfextspositiordoes not

involve changing the plaintext blocks but instead shuffles the blocks into a new order that
depends on the key and possibly the plaintext. A simple transposition scheme would be to
enter the plaintext into a matrix withcolumns and one letter per box.Ciphertext could then

be created by reading down the columns from left to right. If we were to encipher the
message “ATTACK AT DAWN” in this way we could start by choosiw for the key.

Next, we would create a matrix with five columns and enter the plaintext as shown below.

A|T|T|A|C
K AT
DIA{W|N

Figure 1.5 : Entering the Plaintext into the Matrix

We could then read the ciphertext, “AKDT ATAWATNC ” from the matrix. To decrypt the

ciphertext we would enter it into a matrix with three columns (the length of the message
divided by the key) and recover the plaintext by reading down the columns from left to
right. Many ciphers include both substitution and transposition operations and perform

several rounds of each to produce the final ciphertext.
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A|K|D
T A
TIAW
A|T|N
C

Figure 1.6 : Entering the Ciphertext in the Matrix

The other class of cryptosystems are catledes Codes rely on aodebookhat
specifies one or momwdewordgor each word that might be used in a message. Codewords
can be random numbers, strings of characters, or other symbols, but each codeword should
map to only one plaintext word. It is assumed that the sender and receiver each have a copy
of the codebook and that the sender creates the ciphertext by replacing each word in the
plaintext with a corresponding codeword. The recipient can then translate the encrypted
message back to plaintext by referring to codewords in the codebook. Obviously, if an
adversary obtains a copy of the codebook they will be able to decode all of the messages

that utilize that code.

1.3.3 Modern Cryptosystems

In this century, astounding advances in communication and computing power have
served as a catalyst for the development of new cryptosystems. Not only has the speed and
ease with which computers manipulate symbols made these new and highly complex
cryptographic algorithms feasible, but it has been matched by scholarly theoretical work on
the strengths and weaknesses of the cryptosystems. As a result, this century has witnessed
the evolution of cryptography from an art to a science, as well as the beginnings of

standardization normally associated with a scientific field along with some dissemination
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and use of the technologies which have been produced. We can expect the spread of
cryptography to continue well into the next century when it will almost certainly have a
direct influence on the everyday lives of a large number of people. In this section we give
a brief overview of some of the most important modern cryptosystems and refer interested

readers to more detailed sources for additional information.

In 1977, the National Bureau of Standards (NBS), now renamed the National
Institute of Standards and Technology (NIST), established a Federal Information
Processing Standard (FIPS) for data encryption. Often referred to as the Data Encryption
Standard, or simply DES, the algorithm was a descendant of an encryption scheme named
“Lucifer” that had been developed at IBM. After consulting with the National Security
Agency (NSA) and making a few changes, the IBM team submitted their Lucifer variant to

NBS and it was accepted. DES is still a FIPS, having been recertified by NIST in 1993.

DES is a symmetric-key cipher that breaks a message into 64-bit blocks and uses a
56-bit key to encrypt them. The tesymmetric-kewlludes to the property that the same
key used to encrypt the plaintext must be used to decrypt the ciphertext. Symmetric-key
cryptosystems are sometimes also caBedret-keysystems since the communicating
parties must share a key that is kept secret from everyone else. The algorithm is performed
in roundswith each plaintext block going through one substitution operation followed by
one transposition operation sixteen times to produce a 64-bit block of ciphertext. DES is
usually referred to aslaulk encryptionalgorithm since it can encrypt a large amount of
plaintext relatively quickly due to the simplicity of the operations used to substitute and

transpose bits.

DES has been extensively studied since its adoption by the U.S. government and is
currently the most well-known and widely used cryptosystem in the world. Most
researchers agree that DES is very hard to cryptanalyze with its most often cited

“weakness” being that the keyspace contains oﬁfye:hements, making a brute-force
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search for the key feasible but still rather expensive. More recently developed symmetric-
key block ciphers use keys of length 80 (Skipjack) or 128 (IDEA) bits, making an

exhaustive search for the correct key impossible.

In addition to DES and the other secret-key algorithms mentioned above there are
a number of importanpublic-keyalgorithms. These types of cryptosystems were first
proposed in 1976 [DH76] and are basedrap-door one-way function#\ function,
f(X) =y, isone-wayif, givenx, it is easy to computg but giveny, it is difficult to determine
X. We often describe this one-way property by saying that the function is easy to compute
in the forward direction but difficult to compute in the backward direction. Howetrap-a
door in a one-way function allows anyone who knows the trap-door to compute in the
backward direction easily. Public-key cryptosystems are based on supposed trap-door one-
way functions that enable anyone who knows the trap door to perform the function easily
in both directions, while anyone lacking the trap door can perform the function only in the
forward direction. Using this type of function a cryptosystem can be defined in which the
forward direction is used for encryption and the inverse direction is used for decryption.
Thepublic keyin such a system gives information about the particular instance of the one-
way function, and therivate keygives information about the trap door. For a public-key
cryptosystem to work properly, a user’s public-key information must be widely publicized
so that anyone can encrypt a message to that user, but the user should keep the private-key
information secret so that only he can decrypt messages encrypted with his public key.

Other properties that we would like a public-key system to possess include:

» The public/private key pair is unique to the user
» Encrypting any messagel, with the public key and then decrypting the
result with the private key yieldd

* Deriving the private key from the public key is as hard as reading
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» The encryption, decryption, and key-generation routines are easy to com-

pute

With these conditions in place, a public-key cryptosystem usually operates as follows. If
Alice wants to send a coded message to Bob, she encrypts the message using Bob’s public
key and sends the ciphertext to Bob. When Bob receives the ciphertext he can use his
private key to decrypt it and recover the plaintext. Note that anyone can send an encrypted
message to Bob, since we assume that everyone has his public key. Only Bob, however, can
read messages encrypted with his public key because he alone knows his private key. One
advantage of public-key cryptosystems is that Alice and Bob do not have to agree on a key
prior to communicating, as is the case with symmetric-key algorithms. This is a valuable
property since private keys do not ever need to be transmitted or revealed to anyone,
whereas in secret-key systems, there is always a chance that an enemy could discover the

key while it is being transmitted or by compromising the other communicating party.

Another major advantage of public-key cryptosystems is that they can provide a
method for digital signatures. digital signaturecan be thought of as proof of authorship
of a document or at least agreement with its contents. For a digital signature to be useful it

must have the following properties:

* Authenticity - the signer deliberately signed the document

* Unforgability - only the signer can produce his signature

» Nonreusability - a signature cannot be moved to another document

» Nonrepudiation - the signer cannot reasonably claim that they didn’t sign

a document bearing their signature

In a public-key system, a user produces a digital signature by encrypting a document (or a
hash of it) with her private key. This signature can then be verified by anyone using the

signer’s public key. By contrast, a secret-key system requires the sharing of some key and
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sometimes requires trust of a third party as well. A sender can then repudiate a previously
signed message by claiming that the shared key was somehow compromised by one of the

parties sharing the secret.

The main disadvantage of public-key cryptography is speed. Public-key systems
tend to be from 100 to 1000 times slower than secret-key systems, depending upon whether
or not they are both implemented in hardware or software. This is due to the greater
complexity of the enciphering operations that are performed in most public-key systems.
For this reason, public and secret key cryptosystems are often used together with the public-
key system used for digital signatures and to transmit a key that will then be used by a

secret-key algorithm to encrypt subsequent communications.

The most famous public-key algorithm, RSA [RSA78], is named for its three
inventors: Rivest, Shamir, and Adleman. It is based on arithmetic operations being
performed on very large integers. RSA, like all practical public-key cryptosystems
proposed to date, is based on functions that are believed to be one-way, but have not been
proven to be so. This means that it is theoretically possible that an algorithm will be
discovered that can compute the inverse function easily without knowledge of a trap door,
rendering any cryptosystem based on that one-way function insecure and useless. In the
case of RSA, the one-way nature of the functions is based upon the belief that the large
integers used must be factored to break the cryptosystem and that factoring large integers
like the ones used in RSA is intractable. Both of these conjectures have never been proven,
but neither has there been any success in disproving them. As with DES, RSA is currently

in wide use and thought to be a strong encryption algorithm.
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1.4 Cryptographic Protocols
While cryptographic algorithms are valuable tools they do not provide a complete
solution to the network security problem. In section 1.2 we discussed a number of ways in

which intruders can interfere with communications on a network including such things as:

* Intercepting messages and attempting to understand their contents

* Inferring information from messages based on their source, destination,
frequency, routing, or timing

* Introducing new messages into the network or resending a copy of an old
message

* Modifying messages or deleting them altogether

» Misdirecting or delaying messages

Simple utilization of a good cryptosystem will not protect users communicating over a

network from all of the hazards on this list.

In addition to the concerns listed above, there are some higher-level issues that usu-
ally fall under the heading of network security. Most importantly, large-scale distributed
systems have seldom designated a central authority to control all of the resources in the sys-
tem and enforce a single system-wide security policy. This was a role filled by a single
trusted operating system in the case of stand-alone computer systems, but that may not be
viable or desirable in distributed systems. Without this authority, many fundamental issues
that have a direct impact on system security become much more difficult to resolve. For

instance:

* Who is this entity that has asked for my checking account number and is
claiming to represent my bank?
* How can Alice and | agree on a new secret key so that we can have a secure

conversation over the network?
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* How can | make sure that Bob doesn’t deposit my digital payment until |

receive a copy of the software he sold me and vice versa?

Answering questions such as these will probably require bringing some cryptography to

bear on the problem, but clearly something else is needed as well.

1.4.1 Whatis a Cryptographic Protocol?

Part of the solution to these problems has been the development of network security
protocols. Aprotocolis an agreed upon sequence of actions performed by two or more enti-
ties in order to accomplish some mutually desirable goal. Many of the protocols that have
been proposed to address issues like those listed above make use of cryptographic tech-
niques and are referred toagptographic protocolsThe first such protocols were pro-
posed in 1978 to achieve several different types of authenticated communication over a

computer network.

One of these early protocols dealt with interactive communications between two
principals using machines that were physically separated but that were linked by a large
network. The goal of this protocol was to enable the communicating parties to prove their
identities to one another and to agree on a session key that would be used to encrypt all sub-
sequent communications. These two tasks are often eaitednticatiorandkey-distribu-

tion, respectively. The following specification of the protocol is taken directly from [NS78].

A~ AS  AB|l,,
AS- A {1 51,.B.CK,{ CK, AL KB} KA
A - B: {CK,A} KB

B- A {Ig}cK

A - B: {lg—1}cK

Figure 1.7 : The Needham and Schroeder Private-Key Protocol
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This protocol involves three entities: the two ugeendB, and AS, an authentication

server that they both trus€A is a secret key shared betwe@eandAS andKB is a secret

key shared betwedhandAS CK is a session key that the authentication server generates
for A and B to use to encrypt their communications after they are done authenticating each
other.l5; andlg are nonces generated A®ndB respectively. Aonceis an unpredictable

value that is generated by a principal, used once in a protocol, and then never used again.

In the first step of the protocAlsends a plaintext message to the authentication
server. The message contaksname B’s name, and a nonce generated®byn the sec-
ond step, the authentication server replieswith a message encrypted using the K&y
In this message the authentication server includes the nonéestatiB’s name, a session
key that theAScreated, and something that Needham and Schroedeticlditarhe ticket
contains the session key afislname encrypted und&B. Upon receipt of this message
can remove the outer layer of encryption by decrypting it MlthA then checks to see that
the nonce is the same one which was sent in step oneAlflsen knows that the message
isfreshbecause it must have been generated after the timeAwdreated the nonce. Since
A could be attempting to establish communication sessions with a number of agents simul-
taneouslyA also checks foB's name to make sure that this is a reply to her request to talk
to B. From this same messagealso learn€K, the conversation key created by the authen-
tication server, and the ticket. Sinteloes not knowKB she cannot read the contents of

the ticket, but she can blindly forward itBowvhich she does in step three.

WhenB receives the messagesent in step three, he decrypts it and discovers that
A wishes to talk to him and that the session k&yKsIn step fourB generates a nonce,
encrypts it under the session key, and sends the result b&ckHs is sometimes referred
to as achallengesinceB is challengingA to prove that she knows the session key. In the
final step of the protocol receiveB’s message, decrypts it, subtracts one from the nonce,

encrypts that value with the session key, and sends the reBulAtier decrypting this
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reply and checking tha# has indeed returned one less than the nonce sent in stef four,
has demonstrated her knowledge of the session k&y3o after successfully completing
this protocolA andB each believe that they share a conversation key known only to them
and the authentication server whom they trust. Furthermore, thewnhidgnenticateceach
other -A believes that the agent she will be talking to Wd#is B because onl could

have decrypted the ticket to find out the conversation keyBdmatieves that the agent he
will be talking to withCK is A because onbA could have decrypted the message from the

authentication server that contained the ticket.

1.4.2 Problems with Cryptographic Protocols

Three years after it was proposed, another group of researchers discovered a way
for an intruder to deceive an agent using the Needham and Schroeder Private-Key Protocol
into believing that she was communicating with one of the other principals when she was
actually communicating with an intruder. In [DS81], Denning and Sacco point out that the
reason that principals should use conversation keys is so that any damage done by the com-
promise of a key would be limited to a single session. A conversation key might be com-
promised through cryptanalysis or by breaking intoABer intoAs or B's computer to
steal a key. Conversation keys are intended to discourage intruders from even attempting
these types of attacks by making them expensive, risky, and time-consuming enough so that
the value of breaking a conversation key is not worth the effort. However, it may be worth-
while for an enemy to compromise a conversation key if it jeopardizes more than a single

past session.

Denning and Sacco assume that some intruder, ngrhad recorded a run of the
Needham and Schroeder Private-Key Protocol by ageatslB and subsequently com-
promised the conversation k&K. The key may not be compromised for many months or

years after the session between the two had ended, but from that point on the intruder can
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pass himself off ad to B at will.

| - B: {CK,A} KB
B I: {I'g}ck
| - B: {I'g—1}cK

Figure 1.8 : Denning and Sacco’s Attack on the Needham and Schroeder Protocol

The attack, illustrated in Figure 1.8, begins with the intruder seillangopy of the old
message from suggestingCK as a conversation keg.has no way of knowing that this
isn't a valid connection request frofnor that he has already usé# as a session key in
the past. Adhering to the protocBlreplies with a new nonce challenge fowhich the
intruder intercepts and is able to decrypt. The intruder can then generate the proper

response and convin@&ethat he is talking witlA using the keyCK.

This attack was interesting for several reasons. Most importantly, the protocol had
been studied for quite some time and was actually being used in a popular network appli-
cation, so it was surprising and disturbing that the flaw had gone undetected. Secondly, the
nature of the flaw was interesting because there was no problem with the cryptographic
algorithm (DES). Rather, there was a flaw in the protocol which is rather short and was

thought to be very simple.

This pattern of protocol design, scrutiny, implementation, and flaw discovery has
been repeated an alarming number of times in the years that have followed Denning and
Sacco’s discovery. This has been the main problem with cryptographic protocols: too many
of them have had flaws revealed later rather than earlier, and this has caused many people

to become skeptical of cryptographic protocols in general.
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1.4.3 The Importance of Protocol Correctness

When flawed security protocols are implemented and used there can be grave con-
sequences. Cryptographic protocols are already being used for electronic funds transfers,
and voting protocols have been proposed and may be used for elections in the near future.
If an unscrupulous person is the first to discover a flaw in one of these protocols, he could
exploit it to steal a large amount of money or influence the results of an election. Since the
payoff for breaking some of these protocols is so large, we should expect these protocols to
be subject to serious, sophisticated, and well-funded attacks. Withstanding these attacks
will require a variety of analysis techniques to reduce the number of flaws in protocols and

to try to ensure that any flaws that may remain will not be easy to find.

There are also less tangible costs that can be attributed to flawed protocols. For
example, while internet use has grown exponentially in the past decade, commerce over the
internet has not expanded at nearly the same rate. Well-publicized flaws in several protocols
for internet commerce have convinced most people that they cannot trust the security mech-
anisms that are in place, and commerce on the internet has suffered accordingly. In order to
begin to realize the vast potential of commerce on the internet, the research community will
have to convince the general public that the best available methods are being used to design

and validate the protocols.

1.5 Our Approach to Protocol Analysis

As important as correctness is for cryptographic protocols, we must acknowledge
that there is a fundamental limitation on what we can hope to achieve through analysis. Pro-
tocols may be short and somewhat simple computer programs, but they are programs none-

theless, and we know that we cannot prove their correctness in the general case.
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Another problem with trying to prove protocol correctness is the difficulty in spec-
ifying the correctness criteria. Given protoBokith goalG, it is not sufficient to show that
P achieve$s. What must really be shown is that for all possible sequences of actions by all
possible intruders? achievess. That can be a very hard specification to reason about, par-
ticularly since we assume that intruders are intelligent agents who are actively trying to sub-

vert the protocol.

For the reasons given above, our approach is intended to help designers reduce the
number of flaws in their protocols, and especially to point out some of the flaws that would

be easiest for an adversary to identify and exploit.

1.5.1 Overview of Our Approach

A more detailed description of our method is given in Chapter 5, but our basic strat-
egy is to specify the protocol(s) to be analyzed in a formal language that is designed to
express cryptographic protocols. In this language, the assumptions, actions, and goals of
each protocol are stated explicitly. We then negate the goals to establish a failure condition
for each protocol. Since there is a formal semantics defined for the language we are using,
we can give a formal semantic definition of what it means for a protocol to fail. This defi-
nition of failure can be represented as a logical theorem, the proof of which indicates that

the protocol is vulnerable to an attack.

Our approach is to employ an automatic theorem prover to attempt to find a con-
structive proof of the theorem and then modify the protocol by adding or deleting valid
statements according to the proof. If the proof succeeds, we have not only proven that the
protocol is flawed, but we have also generated code that implements the attack and exploits
the flaw. Unfortunately, if the theorem prover cannot prove the theorem in some reasonable

amount of time, we cannot say that the protocol is sound. In Chapter 5 we discuss some
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weaker conclusions that we can draw when we cannot prove that the protocol is flawed.

1.5.2 Advantages of our Approach

One of the main strengths of our methodology is its power. Given an adequate set
of axioms and enough time, our approach can discover any attack that exists for a given
protocol and failure condition. For example, our approach has been able to discover a
previously unknown type of attack based on the interactions among different protocols.
Even if our methodology does not discover a flaw in the amount of time it is given to run,
we can make a useful statement about the minimum length of a constructive proof for any
attack that might exist on the protocol (for the given failure condition and axiom set) as a
result of its analysis.We will revisit each of these points in Chapter 7 after we have

presented our method and results in Chapters 5 and 6, respectively.

1.6 Outline of this Dissertation

The organization of this dissertation is as follows. In Chapter 2 we review the work
that has already been done on cryptographic protocol design and analysis. In Chapters 3 and
4, we review the practical and theoretical background material upon which our approach is
built, followed by a detailed presentation of our methodology in Chapter 5. We demonstrate
our method in Chapter 6 by presenting the results of our system’s analysis of a number of
cryptographic protocols from the literature. Finally, in Chapter 7 we offer our conclusions

and note some possible extensions to our work that may be undertaken in the future.
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Related Work

In this chapter we review the various cryptographic protocol analysis techniques
that have been developed to date. These methods can be roughly divided into four catego-
ries: ad-hoc strategies, general-purpose specification and verification systems, special-pur-
pose state-based approaches, and logical analysis. Each of the next four sections examines
one of these categories and presents, in roughly chronological order, the methods that com-

prise it.

2.1 Ad-Hoc Strategies

When we consider all of the techniques that have been used to analyze crypto-
graphic protocols in the past twenty years, informal methods have probably been the most
commonly used and the most successful at identifying and eliminating flaws. This can be
attributed to the relative youth of the field, as researchers have only recently moved from
informal towards more formal approaches, and many of these formal methods have not yet
had their full impact. The move to formality is, of course, necessary in this field, and we

can expect many of the formal systems that we will discuss in later sections to overtake and

24
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replace these ad-hoc strategies in the near future.

2.1.1 Denning and Sacco

The flaw (see Figure 1.8) in the Needham and Schroeder Private-Key Protocol
[NS78] found by Denning and Sacco [DS81] is the earliest example of informal analysis
uncovering a flaw in a protocol. Denning and Sacco realized that while the ticketBent to
in step 3 of the protocol (see Figure 1.7) must have been good when it was generated by the
authentication server, there is nothing about the ticket thaBtetisv long ago th&Smay
have generated it. If the ticket is very old, it is probably not good anymore since an intruder
might have had time to compromise the session key contained in it. Denning and Sacco sug-
gest that this weakness can be avoided if a timestamp is placedAiBstheply toA and
in the ticket forB. The use of timestamps eliminates the need for nonces to prove the fresh-
ness of messages and thereby reduces the number of messages in the protocol from five to

three.

A - AS A,B
AS- A {B,CK, T{ ACK T}KB}KA
A - B: {A,CK, T}KB

Figure 2.1 : Denning and Sacco’s version of the Needham and Schroeder Protocol

In the above specificatioil represents amestamp an explicit statement of the local time
at which the message was generated. Denning and Sacco assume that the &ldks of
and theAS are loosely synchronized so tleandB can check, respectively, that the mes-

sage from théSand the ticket were not created too far in the past.

2.1.2 Simmons

Another example of informal analysis is found in [SIM85], in which Simmons pre-
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sents the results of his analysis of the TMN Protocol [TMN89]. The TMN Protocol is a key
distribution scheme by which a pair of ground stations in a mobile communication system
obtain a common session key, through the mediation of a trusted server. The protocol
assumes that the server has a public/private key pair and that the server’s public key is
known to all of the ground stations. A pseudocode specification of the TMN Protocol is

given below.

A S A,B{rl} SPuinc
S, B A

B-S {r2} Spupiic
S. A  {12n

Figure 2.2 : The TMN Protocol

In step 1 of the protocol, usAmotifies the server that she wishes to communicateBvith

She sends her nant&s name, and a random number encrypted @glpublic key. When

the server receives this message, it decrypts the random number using its private key and
stores it as the key-encryption key. In step 2, the server n@&iftest A wishes to talk to

him. UseiB then generates a random number, encrypts itSgtbublic key, and sends the
result toSin step 3. The server decry's reply, encrypt®8’s random number usings

random number as a key, and sends this valdeAdter decrypting the message from the
serverA will know B's random number which can then be used as a session key to encrypt

subsequent communications.

Simmons identified two security flaws in this protocol. The first results from the fact
that no secure authentication is used between parties, so an infraaecause the server
to convinceA that a key generated by him was generatel. lbye can accomplish this by
interceptingB’s reply to the server in step three and replacing it with the encryption under

Ss public key of a random number he has generated himself. The server will decrypt this
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message, encryps random number witls key-encryption key, and send the resulAto
WhenA receives this message and decrypts it she will think that the intruder’s random num-
ber is the session key she should use to converse privatelp.Wiltis attack is illustrated

in Figure 2.3.

A-S  AB{ri}Spc
S-B A

I - S {r3} Spupiic
S. A  {r3}n

Figure 2.3 : Simmons’ First Attack on the TMN Protocol

The second flaw in the TMN protocol is slightly more complex because it relies on
two properties of the cryptosystems used in the TMN Protocol. For the public-key algo-

rithm used, it is the case that encryption distributes over multiplication:

{r1} Soupiic X {r2} Spypiic = {r1xr2} Spp)ic (2.1)

For the secret-key algorithm we have:

{X}y = {Y}x (2.2)

Given these two axioms about the cryptosystems, the attack proceeds as follows.
There are two dishonest ground stationsctieater C, and higpartner, P. Before they
attempt to attack the protocol each generates a random number, stores it, and sends a copy
to the other. The number created by the cheater is calleti¢l¢er keyand the other is
referred to as thgartner keyAfter they have exchanged these values they wait until station
A decides it needs to talk with statiBnAt this timeA performs the first step of the TMN

protocol and send a messagé&to
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A-S  AB{r}Sopic

The cheater sees this message in transit and makes a note of the Vhlg, i for later
use. The cheater then encrypts the cheater key under the server’s public key and multiplies
it by the value she has just learned. The result is sent as the third field in the cheater’s next

message, which is a request to the server for a conversation with cheater’s partner.

C. s C,P,({ Cheaterke},/Spub”CX { r'rL}SPuinc)

The server receives the cheater’s request, decrypts it, and riotifi@sC wants to talk to

him. The partner replies with the partner key encrypted under the server’s public key.

P.S { partnerkey Sy pic

The server receives the message, decrypts it, encrypts the partner key using the value sent

in the cheater’s first message, and sends the result back to the cheater.

S- C { partnerkey ({{ cheaterke¥ S, piic X {11} Soupiict Sprivate)

After receiving this message the cheater decrypts it using the partner key and divides the

result by the cheater key which gives:

{{partnerkey ({{cheaterkey Sy pic * {1} Spupiict Sprivate) } Partnerkey
cheaterkey

By applying axiom 2.1 we know that this value is equivalent to:

{{partnerkey ({{cheaterkey 1} S, piict Sprivate)} Partnerkey
cheaterkey

By simplifying { { cheaterkey 1} S, et Sprivate t0Cheaterkey t we get:
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{{ partnerkey}(cheaterkey 1)} partnerkey
cheaterkey

We can then apply axiom 2.2 to transfofipartnerkey (cheaterkey 1) into

{cheaterkey 1} partnerkeyand obtain:

{{cheaterkey 1} partnerkey} partnerkey
cheaterkey

This can be simplified to:

cheaterkey 1t
cheaterkey

which can be further simplified to:

rl

So the cheater has been able to dedisckey-encryption key and when the server sends

B’s session key té, at the end ofA andB’s run of the protocol, the cheater will be able to
decrypt that message and learn the session key. With knowledge of the session key the
cheater can decrypt and read every message befvag®B for that session. It is both sur-
prising and a testament to Simmons’ abilities that such a complex attack was discovered by

informal analysis of the protocol.

2.1.3 Gong

In [GON92], Gong describes a scenario where a clock synchronization failure ren-
ders a protocol vulnerable to an attack even after the faulty clock has been resynchronized.
Gong's key observation here is that when a party’s clock is ahead of other clocks, its mes-

sages are postdated. Postdated messages that are sent out while the clock is out of synchro-
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nization can be intercepted by an intruder and stored until the timestamp on the message
becomes current, at which time the intruder can replay the message. This replay could
occur even after the faulty clock has been brought back into synchronization with the other

clocks in the system.

Gong illustrates the vulnerability of the Kerberos Authentication Protocol to this
type of attack if a clock falls out of synchronization, as the Kerberos system assumes they
can't:

Suppose a client had obtained all necessary credentials to use a file server. Also suppose

that, later, the clock on the client’s workstation was five hours ahead of the clock at the file

server when the client tried to initiate a connection with the server by composing a request

message, which included a local timestamp to indicate that the request was current. The cli-

ent had now generated a postdated authenticator. An adversary blocked this request mes-

sage from reaching the server. The client got no response and thought that an omission or

performance failure had occurred. Exactly five hours later, when the client had already left,

the adversary replayed the suppressed message from the same workstation (with the same
network address) and established a connection in the client’s name.

Gong calls this type of attacksappress-replay attacknd notes that it cannot be detected
unless the recipient of the message can be notified before the attack can be mounted. In
order for these warnings to do any good, it is necessary not only to detect loss of clock syn-
chronization early, but also to ensure that the messages warning of the attack get through

quickly.

2.1.4 Abadi and Needham

The final piece of work we discuss in this section on ad-hoc methods is the well-
known paper entitled “Prudent Engineering Practice for Cryptographic Protocols” [AN94].
In this paper, Abadi and Needham present principals for the design of cryptographic proto-
cols. While they do not claim that following these guidelines will guarantee correctness of
the protocols developed, they do argue that their principals are helpful and that “adherence

to them would have avoided a considerable number of published errors.”
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2.1.4.1 Abadi and Needham’s Explicit Naming Principle
One of Abadi and Needham’s principles is the following:

Principle 3 - Explicit Naming

The identity of a principal is essential to the meaning of a message, it is prudent to mention
the principal’s name explicitly in the message.

Abadi and Needham use a key exchange protocol proposed by Denning and Sacco [DS81]

to demonstrate the dangers of not following this guideline. The protocol is given below:

A- S A,B
So A CACB
A- B CA’CB'{{ KAB’TA} APrivate} BPublic

Figure 2.4 : Denning and Sacco Key Exchange Protocol

In the first two messages of this proto@ogbtains fronScertificatesCAandCB that prove

thatK, andKy, are the public keys @& andB respectively. The exact form 6fA andCB s

not important for Abadi and Needham'’s purposes. In the third megsagads these
certificates td along with a session kel which will be used to encrypt subsequent
communication betweef andB, and a timestamf,. The third field of this last message

is signed withAs private key (to prove th# sent it) and encrypted witis public key (to

keep the contents secret). Denning and Sacco intend that B should know that the third
message of the protocol was intended for him because it is encrypted with his public key,
but Abadi and Needham demonstrate how this might not be the case. If we assume that an
intruder has a valid certificate for his public key fr8and thatA engages in the protocol

with that intruder, thei will send the following message to the intruder in step 3:

A CA’CI’{{ KAI’TA} APrivate} I Public
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The intruder can then remove the outer layer of encryption and re-encry@'syahblic
key. The intruder can then start a conversation with B pretending to be A. The final message

that the intruder sends to B is:

| - B: CA,CB{{ KA|1TA} APrivate} Bpubiic

Upon receipt of this messadgwill believe that the message is frénandB might then

send out sensitive information intended Ageencrypted undef,; which is known by the
intruder. According to Abadi and Needham, the problem with Denning and Sacco’s
protocol is that the Explicit Naming principle has not been followed. They say that “[t]he
intended meaning of Message 3 [of the Denning and Sacco protocol] is roughly ‘At time
To, A says thatk,, is a good key for communication betwe@nand B.” Abadi and
Needham suggest that the name of the principal for whom message three is intended, be

mentioned explicitly as in:

A - B CA’CB’{{ B KAB1TA} APrivate} BPublic
With this modification, the protocol is no longer vulnerable to the given attack.

2.1.4.2 Abadi and Needham'’s Signing Encrypted Data Principle

Another recommendation that Abadi and Needham make is that secret data be

signed before it is encrypted for privacy. They state this principle as follows:

Principle 5 - Signing Encrypted Data
When a principal signs material that has already been encrypted, it should not be inferred
that the principal knows the content of the message. On the other hand, it is proper to infer

that the principal that signs a message and then encrypts it for privacy knows the content of
the message.

To illustrate the importance of this principle, Abadi and Needham examine a protocol from
the CCITT X.509 standard that encrypts secret data and then signs it. The protocol of

interest is the simple one-message protocol that is intended for signed, secure
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communication between two principals, assuming that each knows the public key of the

other.

A B AA{TaANABXaL Yl Bpypiict Aprivate

Figure 2.5 : CCITT X.509 One-Message Protocol

HereT, is a timestamp\, is a nonce, and, andY, are user data. The protocol is intended

to ensureB thatA sentX, andY, and to guarantee the privacy ). However, as Abadi

and Needham point out “althougfy, is transferred in a signed message, there is no
evidence to suggest that the sender is actually aware of the data sent in the private part of
the message. This corresponds to a scenario where some [intruder] intercepts a message
and removes the existing signature while adding his own, blindly copying the encrypted
section within the signed message.” This weakness can be avoided by applying Abadi and
Needham'’s principle and signing the secret data before it is encrypted for privacy as shown

below.

A - B A{TANABXAL{Y A} Aprivatel Brublict Aprivate

2.2 General-Purpose Formal Specification and Verification Systems

Formal specification and verification techniques have been used for some time in
attempts to ensure that critical systems satisfy their requirements. Secure operating systems
and safety-critical software are two areas where this approach has been applied regularly.
In fact, the National Computer Security Center, which certifies systems for use in classified
or other sensitive environments, requires formal specification and verification of system

designs for its highest rating [DOD85].

Several objections to the formal specification and verification approach have been
raised in the literature including Ken Thompson’'s Turing Award lecture [THO84] and

DeMillo, Lipton, and Perlis’ renowned paper [DLP79] entitled “Social Processes and
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Proofs of Theorems and Programs”. In the later work, the authors argue that “it is a social
process that determines whether mathematicians feel confident about a theorem - and ...
because no comparable social process can take place among program verifiers, program
verification is bound to fail.” They go further by stating that “scientists should not confuse
mathematical models with reality - and verification is nothing but a model of believability.”
Many researchers in formal methods respond to this criticism as Kemmerer did in
[KEM89] that “although there is some validity to these arguments, formal specification and
verification techniques should not be abandoned until there is a better method to replace
them.” Indeed, several researchers have had notable success using general-purpose formal

specification and verification systems to analyze cryptographic protocols.

2.2.1 Kemmerer

In [KEM89] and [KMM94], Kemmerer describes how cryptographic protocols can

be analyzed using an existing machine-aided formal verification technique. His approach
makes use of the Formal Development Methodology (FDM), which describes a system as
a state-machine that can be in any one of a number of states. According to Kemmerer, “one
state is differentiated from another by the values of state variables, and the values of these
variables can be changed only via well-defined state transitions.” Kemmerer chooses to
represent the properties of the network as state constants and variables with the protocol
defining state transitions. Assumptions about the cryptographic algorithms used by the
protocol can be represented as axioms, and the goals of the protocol are specified as state

invariants.

Given the above specification, the verification system can automatically generate a
set of theorems that must be proven to guarantee that the invariants always hold. The
verification system includes an automated theorem proving component which assists the
user in proving generated theorems and a facility for testing the formal specification by

executing it symbolically. In [KMM94], Kemmerer demonstrates his approach by using it
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to analyze the TMN protocol and reproduce the Simmons flaw that we described in Section

2.1.2.

2.2.2 Merritt and Toussaint

Another approach to formal analysis of cryptographic protocols has been to use
algebras to reason about knowledge. The protocol is modeled as an algebraic system which
expresses the state of the participants and the intruder’s knowledge about the protocol. This
technique was used by Toussaint in [TOU91] to demonstrate how attacks can be detected
by a principal’s seeing an inconsistency between messages received and its state of
knowledge of the words used in the protocol. Merritt used a similar approach in [MERS83]
to definehidden automorphismshich express an intruder’s lack of knowledge about the

contents of a message.

Suppose, for example, that a principal views a message e(k,m) (denoting the encryption of
m with k), where that principal does not know k. Suppose furthermore that we define an
automorphism h of the space of words such that h(m)=n for some n, but all other words are
left invariant. Then the set of messages known by the principal is invariant under h, (in par-
ticular h(e(k,m)) = e(k,m)). Thus effects of the automorphism are invisible to the principal,
and can be used to define formally the principal’s ignorance of m. [MEA94]

Merritt uses these hidden automorphisms to prove results about secrecy that are
“considerably more subtle than the simple secrecy of words; for example, he is able to
prove that the correspondence between votes and individual voters in a voting protocol is

unknown, even when all the voters and all votes are public.”

2.2.3 Lowe

Another formal method that has had success analyzing cryptographic protocols is
the Failure Divergences Refinement Checker (FDR), a model checker for Communicating
Sequential Processes (CSP). FDR takes as input two CSP processes, a specification and an
implementation, and tests whether the implementation refines the specification. FDR has
been used to analyze many types of systems, including communications protocols,

distributed databases, and puzzles. In [LOW96], Lowe uses FDR to uncover a previously
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unknown flaw in a reduced version of Needham and Schroeder's Public-Key

Authentication Protocol shown below.

B_ A B,A{ Na:Ng} Appiic
A B: A,B.{ Ng} Bppiic

Figure 2.6 : Needham and Schroeder’s Public-Key Protocol

The complete Needham and Schroeder Public-Key Protocol presented in [NS78] involves
seven steps, but for his analysis Lowe considers only the last three. The omitted steps deal
with each agent requesting and receiving the other’s public key from the server. Lowe notes
that these steps can be omitted if we assume that each agent already knows the other’s
public key. As an aside, Lowe notes that the full seven-step protocol suffers from a
weakness that allows an intruder to replay old, compromised public key messages from the
server, since these messages contain no proof of freshness. This flaw is well known and can
be repaired easily by having the agents include nonces in their requests and then having the

server return the nonces in its replies.

Lowe’s analysis proceeds as follows. The two agents taking part in the protocol are
modeled as CSP processes. Also part of the model is an intruder who can interact with the
two legitimate principals and intercept their messages to each other. FDR is then used to
test whether the protocol correctly achieves its goal of authenticating the two honest
principals to one another. The result of this analysis is the discovery of an attack which
allows the intruder to convince agdéhthat he is agem during a run of the protocol. The

attack scenario is shown in Figure 2.7.

A — I A,Iv{NA1A}IPUb|IC
| . B: A,B{ Np,A} Bppiic
B_ I B,A{ Na:Ng} Apubiic



Chapter 2: Related Work 37

Al AL Ng}H pubiic
| - B: A,B{ Ng} Bppiic

Figure 2.7 : Lowe’s Attack on the Needham and Schroeder Public-Key Protocol

The attack starts when agehtegins a run of the protocol with the intruder by
sending the noncBl,  encrypted under the intruder’s public key. In step two, the intruder
decrypts the nonce and encrypts it ud'ggpublic key, forming part of a message he will
send tdB claiming to béA. This is usually called parallel-session attackince the intruder
is taking part in two or more runs of the protocol simultaneously and uses information
learned in one session to attack in another. In step three of the attaclg eg@i@s to the
message from the intruder by encryptiNg and a new nadwige, , Aagrrblic key
and sending the result back to the intruder. Since the intruder doesn’Blsnmivate key,
he cannot decrypt this message. In step four, the intruder sends the message he has just
received fromB to A who is waiting forl’s reply in their run of the protocol. In step five
agentA decrypts the message and retuxas to the intruder encrypted'sipiaiglic key.

This is exactly the value the intruder needs to construct message six and cBriligidee

has successfully authenticated agent

2.3 Special-purpose State-Based Approaches

Both Kemmerer and Lowe’s work are describesdtate-based approachssice the
system is always viewed as being in a distinct Statth the protocol and the abilities of
the intruder defining state transitions. The system is then analyzed to determine whether
any insecure state is reachable. Both Kemmerer and Lowe utilize existing, general-purpose
formal methods for specification and analysis of protocols. Another group of researchers
has chosen to follow the state-based approach as well, but they have developed special-

purpose systems for dealing with cryptographic protocols.

1. This implicitly assumes a blocking semantics for send and receive operations.
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2.3.1 Dolev and Yao

In [DY83], Dolev and Yao propose several algorithms to analyze restricted classes
of cryptographic protocols. The protocols that Dolev and Yao’s method applies to are
limited to using public-key cryptography only, and their technique does not address any

properties of the cryptosystem that the protocol uses except in so far as:

 Encryption using the public key is cancelled out by decryption with the pri-
vate key and vice versa
* It is impossible to read a message encrypted with a public key unless the

private key is known

Dolev and Yao define the two classes of protocols that they will consider as cascade and
name-stamp protocols. Ircascade protocdhe users can apply any number of public-key
encryption or decryption operations to form the messages that they send to each other. In a
name-stamp protocahe users are allowed to append, delete, and check names encrypted
with plaintext. As in a cascade protocol, any number of public-key encryption or decryption
operations can be applied in a name-stamp protocol. Dolev and Yao give the following as

an example of a simple cascade protocol.

A-B  A{M}BpyicB
B~ A  B{M}AsicA

Figure 2.8 : A Simple Cascade Protocol

Dolev and Yao then give efficient algorithms that determine whether a given
cascade or name-stamp protocol is secure. By secure, they refer only to the privacy of
values that have been encrypted. There is no attempt to reason about the freshness of a value
or the identity of the agent who sent it. For cascade protocols, they state that a protocol is

secure if and only if both of the following conditions are satisfied:

» The messages transmitted betwaemdB always contain some layers of
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encryption (under eithek or B's public key)
* In generating a reply message, each participant never applies the decrypt

operator without subsequently applying the encrypt operator.

Dolev and Yao show how the cascade protocol in Figure 2.8 does not meet the first of these
two requirements, and they give the following attack. The intruder inter&spipening
message tB. In step two, he sends this messadg ta step threeB replies with a message
encrypted under the intruder’s public key. The intruder can then decrypt this message and

learn the value df1. This attack is shown in Figure 2.9 below.

A-l: A{M}Bp,pcB
| ~B: 1 {M}BpypcB
B-1:  B{M}pypc!

Figure 2.9 : Attack on the Cascade Protocol

Although Dolev and Yao’s algorithms are not applicable to a large number of
cryptographic protocols, they are noteworthy for being among the earliest formal methods
used to analyze security protocols and for pioneering the state-transition model for protocol
analysis. The work we discuss in the next three sections was heavily influenced by the
Dolev and Yao approach and has aimed to extend the state-transition method to a larger
class of operators and message formats, to broaden the types of security that can be

reasoned about, and to supply computer support during analysis.

2.3.2 Millen

One of the earliest systems to extend the Dolev and Yao approach was the
Interrogator [MIL87] [MIL95] developed by Millen. The Interrogator is a Prolog program
that takes a protocol specification and a compromise objective and then performs a search

of the state space in an attempt to find a path from an initial state to a state in which the
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compromise objective is satisfied. Early versions of the Interrogator were fully automatic;

there was no user intervention after specifying the protocol and compromise objective.

More recent versions of the Interrogator allow user interaction during the search.
For example, the Interrogator might be considering several possible state transitions at
some point in the search and it will ask the user which one to try first. If the user’s choice
is unproductive, the program will return to the choice point and, if there are any remaining,
ask for another choice. There is also a limited automatic search mode in which the program
makes an arbitrary choice without asking the user, but this feature is carefully designed to

ensure that the program will not fall into a loop.

The Interrogator has been able to reproduce a number of known attacks on
cryptographic protocols, but it has not yet uncovered any previously unknown vulnerability

in a well-known protocol. Furthermore, according to [MIL95]:

The tool requires some training to use effectively, for two principal reasons. First, the secu-
rity objective must be set up in the initial and goal state with enough information to con-
strain the overall penetration approach. If messages or message fields are to be replayed,
for example, the user must know that and specify them in the initial state. During the inter-
active search phase, the attacker’s use of encryption or other devices is controlled interac-
tively, and this also requires understanding of the overall attack strategy.

2.3.3 Meadows

The NRL Protocol Analyzer [MEA91] is also based on the Dolev and Yao
approach, but it takes a slightly different approach than the Interrogator. As with the
Interrogator, the user specifies a protocol and an insecure state. Unlike the Interrogator,
Meadows’ tool is intended to help the user prove that the insecure state is unreachable from
the initial state. This is done by helping the user prove that certain paths leading backwards
from the insecure state go into infinite loops and therefore never reach the initial state.

According to [MEA94]:

Once these paths have been eliminated, the resulting search space is often small enough to
search exhaustively. The proofs that paths lead into infinite loops are largely guided by the
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user; thus the search is much less automated than in the Interrogator.

Unlike the Interrogator, the NRL Protocol Analyzer also allows an unlimited
number of protocol rounds in a single path. While this makes the search space infinite, it
also allows the Analyzer to discover parallel session attacks where the intruder takes part
in two or more runs of the protocol simultaneously and uses information learned in one

session to attack in another.

The NRL Protocol Analyzer can also be used to find flaws in protocols by
generating paths to insecure states. It has been used to demonstrate several flaws that were
already known to exist, including the attack on the TMN Protocol shown in Figure 2.3.
More impressively, Meadows has used the Protocol Analyzer to find several previously
unknown security flaws in some well-known cryptographic protocols, including an
authentication flaw in Simmons’ Selective Broadcast Protocol [SIM85] and a vulnerability

in the Burns and Mitchell Resource Sharing Protocol [BM90].

2.3.4 Longley and Righy

Another system for protocol analysis is that of Longley and Rigby [LR92] who
developed a PROLOG program which automatically examines key management schemes
for flaws. By using a simple rule-based model the package sets up a large but finite search
tree with the intruder’s goal as the root. Each child node in the tree represents a scenario by
which the intruder could discover the information in its parent. The user of Longley and
Rigby’s tool can then guide the search in an attempt to eliminate leaves that correspond to
impossible attacks. When a leaf is removed the search might proceed through other subtrees
of the parent node. The search ends in one of two ways. If the tree has been pruned so that
only the root remains, then the package reports that no attack has been found. If the search
is successful and it finds some subtree that satisfies the goal at the root, the package prints

out the steps needed to implement the attack.
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As noted by its authors, the value of this system is that it “provides for an automatic,
impartial, and exhaustive search for security-specified security loopholes.” [LR92]

However, Longley and Rigby go on to caution that:

The package does not claim to be an automatic certification system for three reasons. Firstly
it only tests for specified attacks, secondly there is no means of guaranteeing that all possi-
ble data, required for the attack and available to the attacker, are included in the input data,

and thirdly there has been no theoretical analysis of the search technique to guarantee that
it is truly exhaustive.

The Longley and Rigby system was used to find a previously unknown flaw in a draft
hierarchical key management scheme designed for an electronic funds transfer point of sale

(EFTPOS) network.

2.4 Logical Analysis

With more than a dozen different logics defined, logical analysis of cryptographic
protocols is the most extensive of the four analytical approaches we will discuss in this
chapter. According to Carnap [CAR37], a logical system is characterized by stating its
formation rules and its transformation rules. Téwenation rulesprovide us with a list of
recognized characters and a decidable means of delineating the grammatically well formed
formulae. Tharansformation rulegprovide us with a list of axiomatic sentences and a (not
necessarily decidable) means of delineating those sentences that follow from a given set of
sentences called the inference rules. Many of the logics that have been developed for
cryptographic protocol analysis have their roots in the various logics that had been
developed previously to reason about the knowledge and beliefs of agents in a distributed
system. These logics can be divided into two categories: epistemic and doxastic. Logics that
deal with the knowledge set of principals are cadlpigtemic logicsand those which deal
with the belief set of agents are calléaikastic logics All epistemic logics assume that
principals cannot know something that is false and so they always include the axiom “If

agentX knowsY thenY is true,” but no doxastic logic has a comparable axiom for belief.
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Therefore, in a doxastic logic it can be a true statement that some principal believes a

statement that is false.

For a cryptographic protocol to be analyzed using logic it must first be translated
from its procedural representation into the language of the logic. This process is called
idealization and has been the topic of some debate in the research community. The
difficulties with idealization are two-fold. First, due to the informal manner in which
protocols are usually specified, idealization itself is often an informal procedure. Without
agreed-upon rules governing idealization, different researchers have sometimes idealized
the same protocol in slightly different ways, leading to vastly different results during
analysis. It is not always the case that the research community can agree on which
idealization was “correct.” The second difficulty in idealization is the need for global
knowledge. According to Burrows, Abadi, and Needham, “the idealized form of each
message cannot be determined by looking at a single protocol step by itself. Only
knowledge of the entire protocol can determine the essential logical components of the
message” [BAN89]. As we will see later, there have been many suggestions aimed at

improving or eliminating the idealization procedure.

In [MEA94], Meadows gives the following overview of the use of logic in analyzing

cryptographic protocols:

In an analysis of a protocol, an initial set of beliefs [and/or knowledge] is assumed. One
then uses the inference rules to determine what beliefs can be derived from the initial beliefs
and the beliefs gained from participating in the protocol. If the set of beliefs [and/or knowl-
edge] is adequate, according to some predefined notion of adequacy, then the protocol is
assumed to have been proven correct. If the set of beliefs [and/or knowledge] is not ade-
guate, then it may lead to the discovery of a security flaw in the protocol.

In the following sections we present a number of logics that have been designed to reason
about cryptographic protocols. We demonstrate how they are used and compare some of
their various strengths and weaknesses. Where possible, we try to discuss some of the

results that analysis with these logics has yielded.
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2.4.1 Burrows, Abadi, and Needham

Perhaps the best known and most widely-used logic for cryptographic protocol
analysis is that of Burrows, Abadi, and Needham, commonly known as BAN logic. In
[BAN89], Burrows, Abadi, and Needham describe BAN as a “simple logic [that allows] us
to describe the beliefs of trustworthy parties involved in authentication protocols and the

evolution of these beliefs as a consequence of communication.”

2.4.1.1 The Logic

BAN logic is a many-sorted modal logic that distinguishes between different types
of objects including principals, encryption keys, and formulas (also called statements). The
only propositional connective in BAN logic is conjunction, which is denoted by a comma.
An explanation of the basic notation of BAN logic from [BAN89] is given below. In this
list, the symbol$, Q, andR, range over the set of principals, the symbondY range

over the set of statements, and the symbi@nges over the set of encryption keys.

P believesX: P would be entitled to believ&. In particular, the principd® may act as
thoughXis true.

P seesX: Someone has sent a message contaiMing P, who can read and repeét
(possibly after doing some decryption).

P said X: The principalP at some time sent a message including the statefnéns not
known whether the message was sent long ago or during the current run of the
protocol, but it is known tha believedX then.

P controls X: The principalP is an authority oiX and should be trusted on this matter.

fresh(X): The formulaX is fresh, that iSX has not been sent in a message at any time before
the current run of the protocol.

: P andQ may use the shared k&yto communicate. The kd¢ is good, in that it
will never be discovered by any principal excBgir Q, or a principal trusted by
eitherP or Q.

K
PHQ

K . :Phask as a public key. The matching secret key (denKtéld ) will never be
- discovered by any principal exceéptor a principal trusted b.

X _ : The formulaX is a secret known only t8 andQ, and possibly to principals

P trusted by them. Onlf? andQ may useX to prove their identities to one another.

{ X}k : This represents the formukaencrypted under the kd¢. Formally,{ X}, is a
convenient abbreviation for an expression of the foh ¢ fPovile make the
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realistic assumption that each principal is able to recognize and ignore his own
messages; the originator of each message is mentioned for this purpose.

<X>y : This represents X combined with the formula Y; it is intended that Y be a secret,
and that its presence prove the identity of whoever uttirs,

The logical postulates given in [BAN89] that are used in proofs are the following.

The message-meaning rulesncern the interpretation of messages. Two of the three concern the
interpretation of encrypted messages, and the third concerns the interpretation of messages with
secrets. They all explain how to derive beliefs about the origin of messages. For shared keys, we
postulate:

0k O
P believesP ~ QUP seeq X} K

P believes Q said X

That is, ifP believes that the kdy is shared witlQ) and seeX encrypted undeK, thenP believes
thatQ once saiX. For this rule to be sound, we must guaranteeRkd not send the message
himself: it suffices to recall thgtX} ,  stands for a formula of the foXh, Rpamd to require
thatR# P . Similarly, for public keys, we postulate:

P believe% KQ%P seeq X} 1

P believes Q said X

For shared secrets, we postulate:

; ]
P beheve% Z QDP sees X>,

P believes Q said X

That is, ifP believes that the secréis shared witlQ and seesX>,, , théPbelieves thaQ once
saidX. This postulate is sound because the rulesdeggiven below) guarantee thalX>,,  was
not just uttered by himself.

Thenonce-verification rulexpresses the check that a message is recent, and hence that the sender
still believes in it:

P believes fresh(X) P believes Q said X
P believes Q believes X

That is, ifP believes thaX could have been uttered only recently (in the present) an@ thiate
saidX (either in the past or in the present), tRelmelieves tha@ believesX. For the sake of
simplicity, X must be “cleartext,” that is, it should not include any subformula of the fotjy

Thejurisdiction rule states that iP believes tha@ has jurisdiction oveK thenP trustsQ on the
truth of X:
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P believes Q controls X,
P believes Q believes X

P believes X
« If a principal sees a formula then he also sees its components, provided he knows the necessary
keys:
P sees (X,Y) P sees X>y
P sees X P sees X

P believe%D K QEP seef X}«

P sees X

P believe% K PEP see§X} ¢

P sees X

P beIieve% K 5P see§X} 1

s

P sees X

Recall thaf{ X}, stands for a formula of the fofi} frBmAs a side condition, it is required
thatR# P, thatis{ X} is not fror® himself. A similar condition applies X}, _,

The fourth rule is justified by the implicit assumption th&t ifelievesthatK is his public key, then
P knows the corresponding secret key

Note that ifP seesK andP seesy it does not follow thaP seeqX,Y), since this means thxtandY
were uttered at the same time.

If one part of a formula is fresh, then the entire formula must also be fresh:

P believes fresh(X)
P believes fresh(X,Y)

2.4.1.2 Analyzing a Protocol Using BAN Logic

One of the authentication protocols analyzed in [BAN89] is the Andrew Secure
RPC Handshake. The protocol is intended to enable a client, A, to obtain from a server, B,
a new session ke¥s',g , given that they already share &kgy, . The protocol is given

in the standard cryptographic protocol pseudocode below.

A B A{NpY
B A {(Na+1)Ng},
A - B: {NB+1}KAB
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B- A {K'aeNsl
Figure 2.10 : Pseudocode representation of the Andrew Secure RPC Handshake

N, andNg are nonces created AyandB respectively, andN'y is an initial sequence
number that will be incremented and used to number each message in the session that
follows the authentication protocol. In the first messAgesnds a nonce B In the second
messageB returnsAs nonce, incremented by one, along with a nonce of his own. The
client, A, returnsB’s nonce incremented by one, and tigesendsA the new session key

and the beginning sequence number.

Burrows, Abadi, and Needham idealized the protocol into the following BAN logic
representation.
A - B: {NA} Koo

B~ A {NaNgh
A~ B {Ng}

. 4
B - A %\K ABB%NIBD
- IJ(AB

Figure 2.11 : The Andrew Secure RPC Handshake expressed in BAN Logic

Next the protocol’'s assumptions are listed:

Abelieves Kas
A

>

B believes Kas
A

>

Abeli B controls | K
beleves( controls B)

>

B believes Kas
A

>

Abelieves fresliN ,)

B believes frestiNg)



Chapter 2: Related Work 48
B believes freskiN'g)

The first two assumptions indicate tiaandB initially share a good ke g . The third
assumption states thAttrustsB to generate good keys, and the fourth indicate Bthais
generated a new key that he considers to be good. The final three assumptions indicate that

each agent believes the nonces it has generated to be fresh.

The analysis of this protocol using BAN logic looks like this. From the assumptions

we know that:

B beIievesAK::\B
From the four messages in the protocol we know that:

Asaid N,

Bsaid(N,,Ng)

Asaid Ng

B said %AKEBB%N'BE
Since each message was encrypted ukdey we can use the first message-meaning rule

to deduce:
B believesAsaid N o
AbelievesB said (N, ,Ng)
B believesA said N

i id 0 Kag One O
A believesB said Th :BBBN B[]
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By using the nonce-verification rule on the three assumptions about nonce freshness and

the preceding formulas we get:
B believesA believesNg
AbelievesB believes(N 5 ,Ng)
However, we cannot get:

A believesB beIievesAK'AB

>

So while it has been proved tiabelieves that he amdlshare a good new session key, we
cannot prove thaA believes the same thing. This is because there is nothing in the fourth
message of the protocol thAtbelieves to be fresh. Burrows, Abadi, and Needham’s
conclusion is that:

the protocol suffers from the weakness that an intruder can replay an old message as the last

message in the protocol, and convidce® use an old, possibly compromised session key.

In other words, an intruder may find an old session key, and he may replay the fourth

message of the handshake in which that key was established; he can then impBrsonate

The problem can be fixed simply by adding the naNge to the last message, and indeed

a descendant of the Andrew file system has adopted this solution.

2.4.1.3 Nessett

Although BAN is currently the most popular logic for examining cryptographic
protocols, a number of researchers have identified shortcomings in it. This has lead to the
development of a host of extensions to BAN and a number of new logics all designed to
address BAN’s weaknesses. For example, in [NES90] Nessett presents a simple key-
distribution protocol and then utilizes BAN logic to prove that the protocol is “secure” in

so far as it can be proven that:

Abelieves Kas
A

Ll

B believes Kas
A

Ll
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A believesB beIievesAKAB

>

B believesA beIievesAKAB

>

and the proof of these four properties was used to demonstrate the security of a key-

distribution protocol in [BAN89]. Nessett’s protocol is given below.

A~ B {NaKaghea
B~ A {Ngl

Figure 2.12 : The Nessett Protocol

In the first step of the protocol ageksends td a nonce and a new session key, both of
which she has supposedly generated and encrypted under her private key. In the second
step,B generates a nonce, encrypts it under the new session key, and returns theAesult to
The problem is tha is able to decrypt the first message and learn the session key because
he knowsAs public key just like everybody else. 8g,g is not a good session key, since
anybody who sees the first message can IKagn . Nessett’'s BAN logic analysis of the

protocol is as follows. He idealizes the protocol as:
O

A - B: EN Kae [

O Lk

B - A:

Next the assumptions are given:

B believes Ka

—

Abelieves Kas
A

>

Abelieves fresf Kas )
A~ B

B believes frestiN , )
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B believesA controls AKAB

>

From message one of the protocol Nessett gets:
[
BseesENA, Kas [
|:| A - BEk_lA

Using the second message-meaning rule he deduces:

B believesA said N, Kae
Ao B

And, using the nonce-verification rule on this formula:

B believesA beIievesAKAB

>

Applying the jurisdiction rule to this statement and the fifth assumption he arrives at:

B believes Kas
A

«>

The second message gives:

[l
Asees ] Kas

> B
q<AB

Which, with the second message-meaning rule produces:

A believesB said AKAB

>

Applying the nonce-verification rule to this formula and the third assumption yields:

A believesB beIievesAKAB

Nessett concludes that “the example protocol is obviously insecure, [and therefore] the

BAN logic is defective.”

In [BAN9O], Burrows, Abadi, and Needham argue that Nessett’'s example violates
one of the assumptions of the logic, namely, that principals do not divulge their secret keys.

In her summary of this debate in [MEA94], Meadows notes that “Nessett's example makes
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the point that this assumption is one that needs to be verified, since keys can be leaked not
only by dishonest or incompetent principals, but as a result of the protocol itself.” She
concludes that “since BAN does not attempt to model knowledge, it can not be used to

prove results about secrecy; it can be used only to reason about authentication.”

2.4.1.4 Snekkenes

In [SNE91], Snekkenes demonstrates another limitation of the BAN approach,
namely, that “flaws due solely to protocol step permutation [are] undetectable by the BAN
logic.” Snekkenes constructs an example protocol for a real-time monitoring system in
which a master procesd, requires information from a number of sens&ssS,, ..., S,
several times a day. The master process would like to be sure that the replies it receives are
not only authentic, but that they are also timely, so that they correctly reflect the sensor’s
state. Snekkenes suggests the following protocol for this system. Let M send a numbered
query,Q;;, to each sensof. A sensor responds by sending a message that contains a
nonce, the master’s query, and the sensor’s answer. This reply by the sensor is signed with
its private key to convince the master that it is authentic. It is further assumed that the master
process keeps track of all nonces previously received from the sensors so that it can be sure
that a sensor’s reply contains a fresh nonce. In the final step of the protocol, the master
acknowledges receipt of the answer by returning the nonce signed with the master’s private

key to the sensor. This protocol is shown in standard pseudocode below.

M- §: Qi’j
S -~ M: {Rs;:Qi AL, &
M- S: {RS,]}K -1

Figure 2.13 : The Snekkenes Protocol

Starting with the assumptions that:
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M believes frestiRs ;)

M believes Ki

—

M believesS controls(Q; ;,A ;)

Snekkenes performs a BAN logic analysis of the protocol and concludes that:
M believes(Q; ;. A; ;)

According to Snekkenes, the master process should not believe the answer it gets from a
sensor since the protocol is vulnerable to the following attack. An intruder could pose as

the master, interact with a sensor several times, and store a series of the sensor’s answers:

{(RS,J‘,Qi,j,Ai,j)}stl,j =1,..,n

Then, when the master queries the sensor, the intruder can choose one of these replies and
replay it to the master. Snekkenes goes on to observe that simply changing the order of
messages 2 and 3 so that M generates the nonce would render the protocol immune to the
above attack. Snekkenes calls this step permutation problenmm BAN logic since the

ordering of the steps in a protocol is not represented; instead the actions of a protocol are
transformed into an unordered set of formulae in the logic. As a result, BAN logic can be
used to find a proof of security of a protocat@meordering of the steps is correct, even
though the actual ordering of the steps in the protocol’s specification might be incorrect.
Meadows expresses concern about BAN logic’s inability to “distinguish between the ...

correct version of the protocol and the ... incorrect version.”[MEA94]

2415 Moser

Another limitation of BAN logic is highlighted by Moser’'s [MOS89] observation
that:
several well-developed formalisms exist for describing security policies and procedures,

these formalisms are based on certainty and, when faithfully implemented, aim to
guarantee security with a high degree of rigor. However, certainty requires complete
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information, which is seldom available and always expensive. Real systems cannot usually
achieve certainty and, thus, are only approximately, and optimistically, modeled within
those formalisms.

With this in mind, Moser develops a nonmonotonic logic of knowledge and belief that she
uses to analyze a key-distribution protocol. Moser’s logic includes both knowledge axioms
and belief axioms, whereas most other logics are strictly epistemic (e.g. KPL [SYV90],

CKT5 [BIE9Q]) or doxastic (BAN [BAN89]).

The main contribution of Moser’s logic, though, is its nonmonotonicity. A logic,
like BAN, is calledmonotonicif propositions cannot be refuted once they have been
proven. In BAN this means that once an agent believes something he cannot subsequently
disbelieve it. Anonmonotonidogic like Moser’s allows for a proposition to be provable
from a set of axioms, but the addition of a further axiom may render the proposition false.
For example, in Moser’s logic an agent could believe that a key is good, but upon learning
that the key has been compromised, the agent might revise her beliefs and conclude that the

key is not good.

Moser’s nonmonotonicity is accomplished by introducingualessoperator that
takes two arguments that are simple beli&gp) or negations, conjunctions, or
disjunctions of beliefs. The predicaB(p) unlessB,(q) denotes that agenbelievesp
unless he believes In the above propositiorB,(p) is presumed to be true unless it is
refuted by other evidence. According to Moser, “reasoning in a nonmonotonic logic
involves applying the axioms in their entirety to determine if any of them refute the
conjectured lemma or theorem.” We summarize Moser's nonmonotonic logic by noting that

it allows:

* Belief in a proposition in the absence of other information
» Refutation of that presumption if evidence indicates that it is unjustified
* A mechanism to model uncertainty about a proposition in the presence of

contradictory information.
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Nonmonotonic logic also introduces added complexity during reasoning since it
allows for more than one valid solution to exist when there are cycles among vailess
clauses. For exampleB{(p) unlessB;(q) ) and (B;(q) unlessB;(p)) has either of two
solutions: B;(p) and -B;(q)), or (-B;(q) and B;(p)). Moser’s explanation of this
property is that “rational agents may interpret the same evidence but reach different
conclusions that are equally valid.” For this reason, Moser acknowledges that reasoning in
a modal logic, like BAN, is more difficult than reasoning in propositional calculus, and that
reasoning in a nonmonotonic logic is harder still, particularly since “natural deduction

methods no longer apply.”

2.4.2 Other Alternatives and Extensions to BAN Logic

As we mentioned at the beginning of this section, research on logics for reasoning
about cryptographic protocols has been a very active area since the introduction of BAN.
Unfortunately, many of the schemes that have been proposed as alternatives or extensions
to BAN logic have been shown to have limitations of their own, and difficulty in
understanding and applying these logics has undermined some of these efforts to replace
BAN with more expressive logics. BAN does have a number of limitations as we have seen
in earlier sections, but the fact that it has only ten inference rules and an easily-understood

model of reasoning makes the logic easy to use.

Simplicity, combined with its usefulness, is probably the main reason that BAN is
still so widely used despite its well-publicized limitations. In contrast, many of the logics
which have been designed to address some of the issues that BAN logic ignores are
extremely complex. For example, Gong, Needham, and Yahalom’s extended version of
BAN logic, GNY logic, contains more than fifty inference rules, many of which are
complicated themselves. One of the many additions this logic makes to BAN is rules for
reasoning about message recognizability. These rules enable one to reason about a

principal’s ability to recognize that a bit string is a meaningful message, for example.
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Perhaps due to its added complexity, GNY logic has not yet achieved nearly the same wide-
spread use as BAN logic. In the remainder of this section we will briefly discuss some of

the other alternatives and extensions to BAN logic that have been suggested.

2.4.2.1 Bieber

In [BIEQO], Bieber presents a logic called CKT5 to reason about communications
in a hostile environment. CKT5 is a combination of epistemic and temporal logic in which
the knowledge operator is indexed by agents and time. For example, in CKT5 the statement
Ka (P means that at timeagentA knowsP. CKT5 also defines two new modal operators
that model how an agent’s knowledge can change as a result of communication with other
agents. These two operators &g P and, P , which represent, respectively, the
sending and receiving of a messageéA\at timet. The CKT5 logic is the basis of a formal
method for describing and analyzing cryptographic protocols that is demonstrated in

[CAR93].

2.4.2.2 Syverson
Another epistemic logic is Syverson’s KPL [SYV90]. KPL is a propositional logic
of knowledge that has a possible world semantigzogsible world semantickefines a set
of different ways the world may be, and an accessibility relation on this set for each agent.
According to Syverson, “if one world &cessiblédrom another for a given individual, then
that individual cannot distinguish the two worlds in her state of knowledge.” Syverson uses

the following example to illustrate this principle:

if Melissa is in a world where it's raining, but there is another world accessible from it
where it's not raining, then Melissa doesn’t know that it’s raining. (She could be in a room
with no windows.)
The advantage of such a semantics is that it gives an easily understandable way of reasoning

about an agent’s knowledge in the real world. To do this we simply need to prove that a
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given proposition about an agent engaged in a protocol is true in all worlds accessible from

the real world.

2.4.2.3 Gaarder and Snekkenes

In [GS91], Gaarder and Snekkenes extend BAN logic to be able to reason about
public as well as private key cryptosystems. They accomplish this by adding the following

statements to the logic:

PK(K,U) : The entityU has a good public kex.
M(U) : The entityU has a good private key known onlylio

o(X,U) : The formulaX is signed with the private key belongingdo

The following two inference rules are added to reason about statements of this form:

* The signed-message rulgtates that in order to believe tHdtj once s4idt is sufficient to
believe that we havUj 's public key, tﬂdﬁ 's secret key is good, and that a message coftaining
signed withUJ- ‘s private key must have been seen:

U; believesPK(pj,Uj),Ui believesI'I(Uj),Ui seeso(X,Uj)
U; believesU; once saidX

» Thesigned-message content ridays that the contents of a signed message can always be made
visible:

U; seeso(X,Uj)
U, seesX
Gaarder and Snekkenes also introduce the notion of “duration” which allows a more

fine-grained treatment of time than BAN's simple division of time into the “current” and

“past” runs of the protocol. The statements for time are:

(O(t4,t5),X) : X holds in the interva(t,,t,) . The creator which uttered the time-
stamped message X, claims that X is, or was, good in the time interval between

(ty.t).

A(ty,t,) :(tq,t,) denotes a good interval. The local unique real time clock shows a time
in the interval betwee(t,,t,)

The rule for reasoning about durations is:

» Theduration rulestates that when uttering a duration-stamped message, we commit ourselves to



Chapter 2: Related Work 58

believe the message for the interval specified by the duration-stamp:
P believesQ believesA(t,,t,),P believesQ once said O(t,,t,),X)
P believesQ believesX
With these extensions, Gaarder and Snekkenes utilized the logic to demonstrate a flaw in a

CCITT X.509 authentication protocol.

2.4.2.4 Kailar and Gligor

In [KG91], Kailar and Gligor develop a logic that models the evolution of beliefs in
an authentication protocol. Like BAN logic, theirs is also a logic of belief and it is
developed at about the same level of abstraction. In addition to borrowing much of BAN’s
notation and inference rules, Kailar and Gligor introduce additional constructs that enable
principals to reason about other principal’s knowledge set of beliefs. According to Kailar
and Gligor, “an agenti, is said to be a member of the knowledge K&, 0f message
contenta at message instanbg if X can recognize the message conteat and after the

instant when messadé, is received.” They express this formally>asl K g M)

After presenting their logic, Kailar and Gligor analyze a number of authentication
protocols with BAN logic and then with their own formalism. The most important
difference between the two is the ability of Kailar and Gligor’'s scheme to analyze protocols
that do not make use of key jurisdiction properties. For example, in the BAN analysis of a
Multi-Party Session protocol they conclude that aggéntloes not believe that the
communication key sent by agefits good becaus€é does not believe that controls the
session key. However, by usings belief aboutX’s knowledge set beliefs, the logic of

Kailar and Gligor can show thatcan believe that the session key senXlxy good.

2.4.2.5 Campbell, Safavi-Naini, and Pleasants
Campbell et al. [CSP92] extend BAN logic by adding probabilities to the sentences
and rules of the logic allowing them to “quantify the beliefs of principals and represent the

insecurities and uncertainties of a real life situation.” For example, one could assign the
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probability p; to the assumption thatbelieves(B controls K B) in the BAN analysis

A
of the Andrew Secure RPC Handshake given in Section 2.4.1.2. Likewise, the probability
p, could be assigned to BAN logic’s jurisdiction rule. According to Campbell et al., “this

gives a useful means of quantifying the trust on the conclusions derived from formal proofs
in the logic in terms of the probabilities assigned to the beliefs of the principals and the

inference rules they use.”

2.4.2.6 Mao and Boyd

Mao and Boyd's goal in [MB93] is to suggest a new logic which adopts the basic
notational framework of BAN logic, but takes a more formal approach. Of particular
concern to Mao and Boyd are the various weaknesses of BAN logic that have been noted
previously. Most importantly, Mao and Boyd propose a more formal alternative to BAN’s
idealization process which they consider “fundamentally flawed.” Although they introduce
a small number of new constructs to their logic, Mao and Boyd do not regard their new
technique as being more complex than idealization in BAN logic, and, in fact, intend it to

be more formal and straightforward.

In explaining their alternative to BAN'’s idealization step, Mao and Boyd first give
definitions for such things as atomic messages, challenges, replied challenges, responses,
and nonsense. Next, they propose rules for what they call protocol message idealization.
According to Mao and Boyd, these rules are “formally feasible, which means that, with
limited human intervention, they form a guideline to correctly comprehend the
authentication semantics of a security protocol.” They go on to demonstrate the use of their

protocol message idealization and their new logic by examining several standard protocols.

2.4.2.7 Syverson and van Oorschot

In [SvO94], Syverson and van Oorschot present a logic that represents the

unification of the four members of the BAN family of logics presented in [BAN89],



Chapter 2: Related Work 60

[GNY90], [AT91], and [vO93]. According to Syverson and van Oorschot, the logic
“captures all of the desirable features of its predecessors and more; nonetheless, it
accomplishes this with no more axioms or rules than the simplest of its predecessors.”
Syverson and van Oorschot borrow heavily from the model of computation and semantics
of the AT logic in [AT91], and they include many of the extensions found in the GNY and
VO logics. Rather than simply tacking together the notation and rules from all of those
logics, Syverson and van Oorschot develop an integrated approach that is designed to make
their logic “as simple to use or simpler than any of those [logics] from which it was derived;

yet ... more expressive than any of them.”

2.4.2.8 Rubin and Honeyman

Rubin and Honeyman present a method for specifying and analyzing nonmonotonic
cryptographic protocols in [RH94]. They point out that all of the other logics developed to
date reason monotonically about knowledge - once something is known, it is always
known. This means that there are valid formulas that cannot be deriveB kkew X, but
P no longerknows X,” for example. Rubin and Honeyman differentiate their logic from
Moser’s by pointing out that only beliefs can be reasoned about nonmonotonically in

Moser’s system whereas Rubin and Honeyman deal with nonmonotonicity of knowledge.

Another interesting aspect of Rubin and Honeyman’s approach is that they do not
require protocol idealization but rather specify protocols at a level that is close to the actual
implementation. They demonstrate their technique by uncovering a known flaw in a
protocol by Needham and Schroeder [NS78], and they also apply their method to their own
khatprotocol. The analysis reveals what they call a “serious, previously undiscovered flaw

in our nonmonotonic protocol for long-running jobs.”
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2.4.2.9 Kessler and Wedel

Kessler and Wedel's AUTOLOG [KW94] is a modified version of BAN logic which
is implemented in PROLOG. Kessler and Wedel consider the following modifications to the
constructs, inference rules, and idealization procedure of BAN logic “useful for most

protocols and [they] do not complicate the logic”:

* introducing the predicatecognize

* replacing the predicaté&'believesthatB believesthat ...” by the predicate
“A believesthatB has recently saidthat ...

* enlarging the meaning of tlseesoperator

* not omitting the cleartext messages in the idealization of a protocol

* simulating an eavesdroppér,

* reducing the ambiguous idealization step by introducing a sixegialle

Kessler and Wedel demonstrate how their AUTOLOG tool can analyze a simple challenge-
response protocol from the Draft International Standard [ISO93] by using their method to

show a failure in this protocol.

2.5 Summary

In this chapter we have reviewed many cryptographic protocol analysis techniques.
Informal analysis has uncovered a number of flaws in protocols, but this approach depends
entirely on the insight of the person performing the analysis. Flaws have tended to go
undetected for years before being discovered by this method, and relatively little is learned

about a protocol when informal analysis fails to discover a vulnerability.

In [MEA94], Meadows suggests why cryptographic protocols are so “well suited
for the application of formal methods.” According to Meadows, they are “well-contained
enough so that modeling and analysis should be tractable; on the other hand, they are

complex enough and the flaws are counterintuitive enough so that an informal analysis may
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be too prone to error to be reliable.” State-based and logical methods for analyzing
cryptographic protocols are fairly new, but some important results have already been
obtained using them. While formal methods are not in wide use among protocol designers
yet, we expect this to change in the near future as the techniques are improved and as

protocols are developed for more critical applications.



Chapter 3

The Cryptographic Protocol
Analysis Language

In this chapter we present a language for specifying and reasoning about crypto-
graphic protocols that was developed in [YAS96]. This language has several important
advantages over the pseudocode notation which was used in Chapter 2. Most importantly,
Yasinsac’s Cryptographic Protocol Analysis Language (CPAL) defines a semantics that can
be used to reason formally about a protocol. After reviewing pseudocode notation and pre-
senting CPAL, we offer a brief comparison of the two and conclude the chapter by discuss-

ing Yasinsac’s analysis technique based on the formal semantics of CPAL.

3.1 Review of the Standard Pseudocode Notation

Although a number of researchers ([CAR94], [YAS96], [MIL96]) have proposed
alternative methods for specifying cryptographic protocols, most protocols are still
specified almost exactly as they were in Needham and Schroeder’'s 1978 paper. The appeal

of what has come to be callgibeudocodeor Standard Notationis that it is simple,
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compact, and well understood by the research community. As we saw in Chapter 2, the
pseudocode representation of a protocol usually includes a list of messages sent during a
run of the protocol with the messages listed in the order in which they are to be sent. The
name of the principal sending the message and the name of the intended recipient are given
explicitly for each message as in the following pseudocode for Agaariding a message

intended for ager:
A - B: message

The values that comprise a message are listed, separated by commas. For example, if agent

A sendsB the noncel,, the pseudocode representation would be:
A - B: N5

Likewise, if B sendsA his own name and the encryptionN)f underK zg:
B A B{Naby

While this notation allows straight-forward and compact representations of
cryptographic protocols, it does suffer from some serious limitations. Most importantly, the
semantics associated with this language are informal and incomplete, so protocols
expressed in this manner will have to be translated into some other representation or

annotated to facilitate formal analysis.

It is also clear from the examples in Chapter 2 that pseudocode does not explicitly
represent all of the actions by the agents during a run of the protocol. Actions such as
receiving messages, generating nonces, decrypting values, and checking timestamps are
not represented in a pseudocode specification but are usually described separately using
English prose. For example, consider the following pseudocode specification of a simple

two-message protocol:
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A - B: {NaB}y

B- A N,
The pseudocode representation of this protocol does not explicitly staBedinetypts the
message he receives frawin the first step, but we can assume he must in order to learn
the value of the nonce he returns in step two. This implies thatAbatiu B know Kp,
although that assumption is not stated explicitly in the pseudocode specification.
Furthermore, the pseudocode does not tell us whBtbleecks to see if the name included
in message one matches his, oA i€hecks the nonce returned in the second message to
make sure it matches the one she sent in message one. Whether or not these checks are
performed determines what the given protocol accomplishes. However, we cannot decide
if they should be performed from the pseudocode since it does not represent the intended
goals of the protocol. In the next section we present a protocol specification language that
seeks to remedy all of the limitations of pseudocode notation given in this section while

remaining simple, compact, and easy to understand.

3.2 CPAL

Yasinsac’s CPAL is a language that was designed specifically for cryptographic
protocol specification and formal analysis. We begin our presentation of CPAL by
describing the model of the environment in which cryptographic protocols operate

according to Yasinsac.

3.2.1 The CPAL Environment

CPALs model of the environment in which cryptographic protocols operate is very
similar to those suggested by other researchers including Abadi and Tuttle in [AT91]. Each
principal possesses a private address space which cannot be read or written by any other
principal. An agent can use her private address space to store values and to perform
computations on those values. Each principal also has an input queue which can be written

to by anyone. Agents can communicate with one another by performing send and receive
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operations. Asendoperation places a message into an agent’s input queue rece e
operation consists of a principal removing a message from the head of her input queue and
storing it somewhere in her private address space. If the agent’s input queue is empty when
she performs a receive, it is assumed that she blocks waiting for a message to arrive. For
reasons that will be explained later, it is assumed that the blocking will time-out after some
fixed period and the agent will proceed as if a null message had arrived. Given this model

of the environment, we are now ready to present an overview of the syntax of CPAL.

3.2.2 Syntax

For those interested in the complete definition of CPAL's syntax, it is given in
Backus-Naur form in Appendix B of [YAS96]. CPAL protocol specifications are similar to
those expressed in pseudocode in so far as the protocol is represented as an ordered
sequence of actions by the principals involved in the protocol. In CPAL, each action is
preceded by the name of the agent performing it, and the semicolon is used as an action
separator. A generic CPAL protocol specification might look like:

Agent: action;

Agent: action;

Agent: action,

Agent: action;

Agenf: action
Unlike pseudocode, there are more actions in CPAL than simply sending messages. In the
following subsections we concentrate on the syntax of the various actions in CPAL while

hinting at the meanings of some of these constructs. In the next section we give a complete

and formal semantics to the CPAL language.

3.2.2.1 Assignment

One of the actions in CPAL is assignmentvhich has the following syntax:

Agent: variable := value
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As in most procedural programming languagears&ableis merely a symbolic name for a
storage location. In an assignment statement, all variables must refer to locations in the
private address space of the agent performing the assignment. For example, in the

statement:

A x:=y
the variables andy refer to locations in agerts address space. In CPAL, if we need to
talk about variables from a global perspective, we always prefix the variable by the name
of the principal in whose address space it resides. For exatnpkndB.x are the CPAL
representations of the distinct variabbes) As address space, ardn B's address space,

respectively.

CPAL is an untyped language where any variable is allowed to store any type of
value. Simplevaluesin CPAL include integers, character strings, bit strings, booleans, and
variables. More complicatedhluescan be formed by applying some function to a set of
values or by concatenating values together into a list. Angle brackets are used in CPAL to

represent concatenated values as in:

A: x:=<value, value, ..., valug>

A dot operatoris used to extract a particular element from a catenated list:
value; = <value, valus, ..., valug>.3

3.2.2.2 Conditionals

CPAL also allows principals to execute a conditional action or sequence of actions.

There are several variations on the conditional statement including:

A: if conditionthen action

and
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A: if conditionthen {actiony; action; ..., action}

and

A: if conditionthen action, elseactior,

Conditionsin CPAL include comparisons between values and evaluation of boolean

functions.

3.2.2.3 The Receive Statement

A principal receivesa message by removing the head element of her input queue
and storing it somewhere in her private address space. A receive statement in CPAL looks

like this:

A: — (variable)

In this example, the message is taken AHf input queue and stored in the location

associated with the namrariablein her address space.

3.2.2.4 Send Statements

There are two different types eéndstatements in CPAL which place a message on
a principal’s input queue. They are secure sendvhich uses thel[l " operator, and the

insecure sendwvhich uses the . " operator. The syntax for the secure statement is:

A: O B(value

and the syntax for the insecure send statement is:

A: - B(valuée

The first represent& securely placing a message®s input queue. That ig\ transmits

her message t# in such a way that the message cannot be delayed, redirected, destroyed,
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modified, or observed by any other agent. A secure send operation would obviously be
quite expensive to implement. The insecure send statement corresp@ndsriding a
message t® in an insecure manner. The message might eventually app&s imput

gueue, but may also be delayed, redirected, destroyed, modified, or observed by another

agent while in transit.

3.2.2.5 The Reject Statement

The reject statement halts a principal’s participation in a protocol run. Any
subsequent actions that the principal would have performed in that protocol run will not be

executed. The syntax for the reject statement is:

A: reject

3.2.2.6 Assumptions

Though not technically an action, CPAL allows principals to explicitly state what
assumptionghey make during a run of the protocol. CPAL expresses assumptions as

follows:

A: assumécondition)

3.2.2.7 Assertions

CPAL also includes aassertstatement:

A: asserfcondition)

which can be used to explicitly state goals at any point in the protocol. Note that while
pseudocode specifications typically use prose to describe many of the actions as well as all
of the assumptions and goals of a protocol, CPAL represents all of these things explicitly
as part of the protocol’s specification. Specifically, CPAL states where and when each goal

should be satisfied in the protocol.
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3.2.2.8 Summary of CPAL Constructs

In the table below, we give a brief description of each of the CPAL constructs just

discussed. The table also contains an example for each construct to illustrate its syntax.

CPAL Construct Example Description

Assert Statement| A: assert(A.kab == B.kab) Specify a goal of the protocol.

Assume State- B: assume(Inverse(B.k, B.k")  Specify an assumption of the protocol.

ment

Insecure Send A:->B (X) Send a message to an agent. While in transit the mes-

Statement sage can be seen, modified, redirected, delayed, or
destroyed by dishonest agents.

Secure Send A:=>B(y) Send a message to an agent. While in transit the mes-

Statement sage cannot be seen, modified, redirected, delayed, or
destroyed by anyone.

Receive State- B: <-(2) Receive a message that has been securely or inse-

ment curely sent and store it in the recipient’s private

address space. If no message has been sent, block and
wait for a message to arrive.

Reject Statement| A: reject Halt a principal’s participation in a protocol run
Assignment B:a:=b Perform an assignment from one location in an
Statement agent’s private address space to another address|in

that agent’s private address space. A function may be
applied to the value on the right-hand side of the

assignment.
Conditional State4{ A: if (c<d) thenm :=c Conditionally execute a statement.
ment elsem:=d
Statement Con- | A: => B (); Execute two constructs serially.
catenation B: <- (u)

Table 3.1: CPAL Constructs
3.2.3 Semantics
In the preceding section we sketched an operational model for CPAL which
included the language’s syntax and some informal semantics. In this section we present
Yasinsac’s formal semantics of CPAL which are based on work by both Hoare and Dijkstra.
Yasinsac has defined a formal method which uses these semantics to analyze a

cryptographic protocol specified in CPAL.
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3.2.3.1 Hoare’s Precondition/Postcondition Reasoning

In [HOAG9], Hoare suggested giving a functional semantics for a program segment,
S, using a boolean expression calledaare triple Q {S R, whereQ andR are boolean
expressions called the precondition and postcondition, respectively. We s@y{tBaR
holds if program segme® beginning withQ satisfied, is guaranteed to estabkshf S

terminates.

For example, in order for the postconditign= 2" to be true after the statement
“y := /X" is executed, the preconditiox ‘= 4’ must hold before the assignment. The

preceding semantics for the statemagnt= ./X” can be represented by the Hoare triple:
x=4{y:=./x}y=2

The above Hoare triple holds under the normal definitions of.¢he “  ” and “:=" operators.

211

Now let us consider the statemept:= x™”. Using standard definitions for the operators,

the following Hoare triple holds:
x=2{y:= xz}y:4

However, note that the following Hoare triples hold as well:
x=-2{y:= xz}y=4
(x=-2)0(x=2) {y:= x}y=4

The preconditionx = -2) [0(x = 2) is said to lmore generabr weakerthan the other

two preconditions because it is logically implied by each of them. In the next subsection we
describe Dijkstra’s notion of weakest precondition, which is an extension to Hoare’s
precondition/postcondition reasoning that Yasinsac uses to define the formal semantics of

CPAL.
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3.2.3.2 Dijkstra’s Weakest Precondition Reasoning

In [D1J76], Dijkstra defines a weakest precondition, writtgxiS,R) as the weakest
solution to the equatio® : Q{S R Recall that a weakest solution to a boolean equation
is a solution that is implied by all solutions, so in the casg o {S} R, for any solution
Q, Q implies wp(S,Rholds. According to Dijkstra, the weakest precondition for a program
statement can also be viewed as a “predicate transformer” since it is “a rule telling us how
to derive for any postconditioR the corresponding weakest precondition for the initial
state such that activation will lead to a properly terminating activity that leaves the system

in a final state satisfying.”

3.2.3.3 Yasinsac’s Weakest Preconditions for CPAL Constructs

The table below gives Yasinsac’s definition of the weakest preconditions for each

CPAL construct.

CPAL Construct Weakest Precondition Predicate
Assert Statement Wp(“asser’()()”, R) =XOR
Assume Statement wp(“assuméX)”, R) = X O R

Assignment Statement Y
g wp('Y :=2",R) = R

Insecure Send Statement Not defined. (See below)

Secure Send Statement “ 0 AMY- R) = R M
wh( (M) R) = A's input queue

Receive Statement ) . receiving agens input queue
wp(* — (M)",R)=R|

Conditional Statement | wp(“if (C)then SlelseS2”, R) = (C O wp( S, R)) 0(~-C Owp(2, R))

Statement Concatenatiorn wp(S1;S2, R) = wp(S1, wp(S2, R))

Table 3.2: Weakest Preconditions for CPAL Constructs

We explain these weakest precondition definitions in more detail below.



Chapter 3: The Cryptographic Protocol Analysis Language 73

The Assign StatementAssignments in CPAL are always made within a single principal’s
address space. A value, which may be the contents of another variable or may be a more
complex expression, is copied to the location referenced by the destination identifier.
Yasinsac’s semantics of the assign statement given in the table above state that for a
predicate R, to be true after the statement=y is executed, the predicaewith each
instance of the variable textually replaced by must be true before the statement is
executed. For example, if the postconditiofxis 3) then the weakest precondition of the

statemenk :=y is (y = 3). This would be represented in Dijkstra’s notation as:

(y =3) =wp(*x :=y", (x = 3)).

Conditionals. In a conditional statement of the fornf {C) then SlelseS2 only one of

the two substatmentS1andS2 is executed. Which of the two substatements is executed
depends on the evaluation of the conditiGnlf the condition is tru&1will be executed

and if the condition is fals&82 will be executed. Yasinsac defines the semantics of the
conditional statement by noting that i is the desired postcondition for the whole
statement, then the truth of the conditi@),must imply the weakest precondition 1

with R as the postcondition. Likewise, the falsity ©f must imply wp(S2, R) The
conjunction of these two requirements is given as the weakest precondition predicate for

conditional statements in Table 3.2 above.

The Receive StatementA receive statement is similar to an assign statement except that

the source of the assignment is implicit, namely, the input queue of the agent performing
the receive operation. The value is removed from the head of the input quelustored

at the specified location. So the receive statement—"AX) " is the same as the

assignment statemenfX := head of A’s input quetgwith the first element ilks input

1. If the agent’s input queue is empty when she performs a receive, it is assumed that she blocks for
some fixed amount of time waiting for a message to arrive. If no message arrives in that time, it is
assumed that she unblocks and proceeds as if a null message had arrived.



Chapter 3: The Cryptographic Protocol Analysis Language 74

gueue being deleted after the assignment. The weakest precondition definition of the

receive statement in Table 3.2 reflects this description.

The Secure Send Statemenf secure send statement places a message on the input
gueue of the intended recipient. The message cannot be delayed, redirected, destroyed,
modified, or observed while in transit. Yasinsac does not state how secure sends are to be
carried out, but acknowledges that such an operation would be very expensive and cannot
be the normal mode of communication in cryptographic protocols. As with the receive
statement, the semantics of a secure send statement are similar to that of an assignment. In
this case, a value is copied from one agent’s address space to the input queue of another

principal (see Table 3.2).

The Insecure Send Statementn an insecure send, a principal sends out a message that is
intended for another agent, but the message can be delayed, redirected, destroyed,
modified, or observed by the all-powerful intruder. To make these abilities of the intruder
explicit, tools that use CPAL always preprocess protocol specifications by changing all
insecure sends into secure setadhe intruder. Once the intruder has received a message,
he could choose to send it on unmodified to its intended destination, or he could choose any
of the actions mentioned above. Since all insecure sends are removed from protocol
specifications and replaced by secure sends to the intruder, no semantic definition is given

for the insecure send statement.

The Assert StatementAn assert statement in CPAL does not specify any action by a
principal but rather provides a mechanism to represent an agent’s goals in the protocol. The

assert statement:

A: asser(P)

declares that the propositid®, must be true at this point in the protocol if the protocol is

to work correctly. Since no action is taken by the assert statement, its postcoRgditiast
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be satisfied before the assert statement, in addition to the propd3itiepresented in the
assert statement. This is expressed in Yasinsac's definition of the semantics of the assert

statement in Table 3.%p(“A: asser(P)”, R) = P OR.

The Assume StatemeniThe assume statement is similar to the assert statement in that it
does not specify any actions by the principals involved in the protocol. An assume
statement explicitly states an assumption that is being made by the protocol designer, and
these assumptions can be used later in the analysis of the protocol. Since the assumption,
A, can be used to prove the theoré&nYasinsac defines the weakest precondition for the

assume statement to lvep(“ X: assuméA)”, R) = A R as seen in Table 3.2.

Statement ConcatenationCPAL uses the semicolon to concatenate two statements
together. This means that §1 and S2 are CPAL statements, the$il;S2denotes the
execution ofS1 followed by the execution 082 More formally, Yasinsac defines the
semantics of the semicolon as followsp(“S1;S2, R) = wp(S1 wp(S2 R)). This
definition, along with the blocking semantics of the send and receive operations, allows us
to designate a strict sequencing of the actions in a protocol. This, in turn, allows us to apply
Dijkstra’s weakest precondition reasoning to define the formal semantics for protocols
specified in CPAL. As we saw in Chapter 2, the lack of such sequencing is a known

weakness of many of the logics used for cryptographic protocol analysis.

3.2.4 Analyzing Protocols Using CPAL

Defining a weakest precondition for each CPAL statement not only gives a formal
semantics for every protocol specified in CPAL, but also allows us to analyze the protocol
based on these semantics. In Appendix A we demonstrate Yasinsac's cryptographic
protocol analysis technigue which utilizes CPAL and its weakest precondition definitions

given above.
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The basic steps in Yasinsac’s approach are:

to manually translate the protocol into CPAL

to automatically compute the weakest precondition for the protocol

to automatically simplify the weakest precondition for the protocol

to manually attempt to prove the simplified weakest precondition for the protocol

If the final step succeeds, then Yasinsac has shown that a particular trace of the protocol
satisfies the protocol’s stated goals. This does not imply that all valid traces of the protocol
will satisfy the goals, and it is clearly impossible to perform this type of analysis on every
possible trace of the protocol since there are infinitely many of them. However, this
approach is still valuable because it provides us with a formal method for determining
whether or not a trace of the protocol meets the protocol’s goals. In later chapters we
propose extensions to Yasinsac’s approach that result in a more robust protocol analysis

technique.

3.3 Summary

In this chapter we have reviewed the standard pseudocode notation used to express
cryptographic protocols in the literature. We noted some important limitations of

pseudocode including:

» jts lack of a formal semantics, and

* its imprecision about the assumptions, actions, and goals that comprise a protocol

We then described Yasinsac's Cryptographic Protocol Analysis Language (CPAL) which
remedies these two weaknesses. We presented the syntax and semantics of CPAL and gave
a brief overview of how Yasinsac uses CPAL to perform an analysis of a protocol trace. A

detailed example of Yasinsac’s technique is given in Appendix A.
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In the next chapter we present a brief review of the field of automatic program syn-
thesis. We do this to prepare the reader for the discussion of our methodology (in Chapter
5) which builds on Yasinsac’s work by having the user specify a profanlCPAL and
a statement of failurd;, for the protocol. Using the statement of failure as a postcondition

for the protocol, we can then use Yasinsac’s technique to compute the weakest precondi-

tions forP = S;;S,;Ss3; ... ; S\

wp(s;,...)
S

WP(Sy-2WP(-1 WP (S F)))
N-2
WP(Sy-1WP(S,F))
N
wp(Sy,F)

SN
F

However, proof of any of these weakest preconditions actually demonstrates that the pro-
tocol isinsecure, sincg, the postcondition, is a statement of failure. We then use an auto-
matic theorem prover to attempt to find a constructive proof of one of these weakest
preconditions and, if it succeeds, use the proof to modify the protocol so that the failure
condition is achieved. This last step is closely related to automatic program synthesis, as

we demonstrate in the next chapter.



Chapter 4

Automatic Program Synthesis

In this chapter we give a broad overview of the field of automatic program synthesis,
which seeks to map a problem specification (usually given in some very high-level, non-
procedural language) to an implementation (usually a program in some programming lan-
guage). We present this information because our cryptographic protocol evaluation system
employs a simple automatic programming strategy that generates attacks from specifica-

tions derived from the formal semantics of the protocols.

4.1 Background

Automatic programming has been a goal of computer science and artificial intelli-
gence almost since their inception. Writing programs for computers is a time-consuming
and error-prone task for humans, and we would much prefer that people be able to explain
what they want the computer to do and have the computer determine how to do it. Thisis a
difficult problem and researchers have had to settle for gradually increasing the level at
which the user specifies the problem (from machine language to assembly language to

high-level programming languages to very high-level programming languages) while
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simultaneously decreasing the user’s responsibility for deciding exactly how the problem

will be solved.

There are currently many researchers working on automatic program synthesis,
some of whose projects have been active for more than 20 years. Most of the approaches
being pursued can be characterized as either procedural, deductive, transformational, or
inspective. In the next four sections we give a brief description of each of these categories
and point out some of the important research projects in each area. In later sections of this
chapter we discuss which of these approaches to automatic programming we have taken for

our work, and why we chose it.

4.2 Procedural Methods

Procedural methods were among the earliest and most successful automatic pro-
gram synthesis techniques. The procedural approach involves writing a special-purpose
program that takes a specification as input and generates the proper implementation as out-
put. The most common example of the procedural approach is the conpdepilers
generally accept a specification in some “high-level” language and produce an implemen-
tation in some lower-level language. Often, the compiler will perform some “program-
ming” (e.g. allocation of registers for variables) and some optimization (e.g. procedure

inlining, loop unrolling, common subexpression elimination).

The main advantage of the procedural approach is that the early stages are usually
completed quickly and without too much difficulty. Producing a working system with a few
basic features for a small subset of the problem domain may be accomplished in a matter
of days or weeks. After that, the code can always be modified to try to add more features to

the system and to expand the problem domain. Unfortunately, the main drawback of proce-

1. In fact, compilers were considered to be “automatic programming” systems when first intro-
duced, although they are no longer thought of in those terms.
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dural systems is that it becomes increasingly difficult to modify the code and add new fea-
tures. While there are many examples of useful, domain-specific procedural automatic
programming systems, the difficulties with modifying and extending such systems makes
it unlikely that this approach could yield a general-purpose, full-featured automatic pro-

gram synthesis method.

4.3 Deductive Methods

“The problem of synthesizing a program satisfying a given specification is formally
equivalent to finding a constructive proof of the specification’s satisfiability.” This observa-
tion by Rich and Waters in [RW88] sums up the deductive approach to automatic program-
ming. Deductive techniques are appealing because logic provides a general and powerful
reasoning framework which lends itself well to automation. For this reason, deduction has
become a technique that has been applied time and again in the field of artificial intelli-

gence.

4.3.1 Overview

Finding a deductive proof of a theorem basically consists of starting with an initial
set of facts (oaxiomg and applying the giveimference rule$o derive new facts until the
goal facthas been deduced. At each step in this process there may be many different infer-
ence rules that could be applied to derive new facts so the search for an inference path from
the initial state to the goal state will usually be exponential in nature. Deductive program
synthesis systems normally deal with this explosion of the search space by either working

only on “small” problems or by asking a human user to direct the search.

Another limitation of the deductive approach is that specifications must be
expressed using the notation of the underlying logic, and coming up with a logical specifi-

cation that is complete, concise, and correct is difficult for most problems of interest to the
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automatic programming community. Indeed, it is not clear that producing such a specifica-
tion would in general be any easier or less error-prone than producing a procedural speci-
fication. Furthermore, we note that the deductive approach contains no bias towards finding
the proof corresponding to the most efficient program, or even a reasonably efficient pro-
gram, that solves a given problem. While this requirement is not normally stated explicitly
in the specification for an automatic programming system, we might expect any useful

automatic programming system to produce programs that are at least somewhat efficient.
4.3.2 Example of the Deductive Approach
The following example from [BIER76] illustrates how the deductive approach can

be utilized to synthesize a program to compute a fundipon,

Assume thaP(x) is true ifx is a valid input for the program and false otherwise.

Likewise,R(x,2)is true ifz = f(x) and false otherwise.
A program that computdéx) can be generated by proving the theorem:
Ox P(x) O [z R(x,2)

This theorem states that for &jlthe truth ofP(x) implies that there existszasuch
thatR(x,z)is true. Proving this theorem requires that a method be discovered for finding the
requiredz for each suck, and this method is indeed the desired program. Frequently there

is no restriction on the input, in which case the theorem to be proven i R(x,z).

The complete process can be illustrated by synthesizing a program to compute
f(x)=x%+1. Assume that; andf, are primitive computing operations that, respectively,

square and increment their arguments:
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fi(x) = 52

fHr(x)=x+1

Let R, andR, be predicates for the square and increment operations:

(true if z= X

R.(X,2 = :

1% 2 false otherwise
(rue if z= x+1

Rx(x,2) = O .
Ofalse otherwise

Thenx Ry(x,f;(x)) andIx Ry(x,F»(x)) are true, and the program specification is

Oy (Ri(x,y) O Ry(y,z))and the following theorem must be proven:

Ox Oy [z (Ry(xy) O Ruy.2))

The theorem prover might attempt many different transformations on this theorem,
but one reasonable possibility would be to proposd;(x). Then the following theorem

must be proven:

Ox [z (Ri(xh(x) O Ry(f1(x),2))

Here the theorem prover might substitate f5(f,(x)), leaving the following theo-

rem to be proven:

Ox [R1(x,f1(x)) O Ro(f1(x),(f2(f1(x))))]

But this follows from the above assertions, thus completing the proof of the original
theorem. Notice that the instantiationzatquired to prove the theorem is exactly the

desired program:

z = f(f1(x))
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4.3.3 Summary of the Deductive Approach

Rich and Waters conclusion is that “deductive methods are certain to play an impor-
tant role in the automatic programming systems of the future, ... [but] the challenge is to
combine automated deduction with other methods so that its inherent limitations can be
avoided.” Some of the important research projects in deductive automatic programming are

described in [MW71], [LCW74], and [MW92].

4.4 Transformational Methods

The transformational approach to automatic program synthesis is to take a specifi-
cation written in a very high level language and to convert it into a low-level implementa-

tion through a sequence w&nsformations

4.4.1 Overview

A transformation has three parts: a pattern, a set of logical applicability conditions,
and an action procedure. When an instance of the pattern is found, the logical applicability
conditions are checked to see whether the transformation should be applied. If the transfor-
mation is applicable, the action procedure is applied to produce a new code segment which
replaces the code matched by the pattern. Typically, transformations are correctness pre-
serving, meaning that the matched code and its replacement represent logically equivalent

computations.

Transformations can be roughly grouped into those that change the level of abstrac-
tion in the specification (e.g. replacing quantification over a set with iteration over a list)
and those that do not (e.g. moving an unchanged computation out of a loop). Most trans-
formational automatic programming systems go through many intermediate levels of
abstraction in transforming the very high level specification into a low level implementa-

tion.
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4.4.2 Example of the Transformational Approach

Consider the following set of transformations:

Transformation #1:
Pattern: [0x x [0 S HX)

Applicability Conditions: Ss a set ané is a function
Action:

Create a listl., of the elements in the s&t
IterateF(x) overL

Transformation #2:
Pattern: Create a listl_, of the elements in the s&;,
Applicability Conditions: Ss a set containing elements of type

Action:

Listof T:L;

New();

while (Empty§) == FALSE)

{
T : element;
element=Select_Elemef)(
Add(element,);
Remove(elemert);

}

Transformation #3:
Pattern: IterateF(x) overL
Applicability Conditions: Lis a list of T
Action:
T item;
if (Empty(L) == FALSE)

integer : i
for (i=0; i<Length(); i++)
F(LLD);

Now consider the following high-level program specification:

Ox x O S Print(x)

This specification matches the pattern in Transformation 1 and satisfies its

applicability conditions so it can be replaced by the actions in Transformation 1 to produce:

Create a listl., of the elements in the s&,
IteratePrint(x) overL
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Now the first line of this new specification matches the pattern in Transformation 2

and satisfies its applicability conditions so the transformation can be applied to yield:

Listof T:L;

New(L);

while (Empty§) == FALSE)
T : element;
element=Select_Elemef)(
Add(element,);

Remove(elemert);

IteratePrint(x) overL

Next, Transformation 3 can be applied to the last line of the specification to give:

Listof T:L;

New(L);

while (Empty§) == FALSE)
T : element;
element=Select_Elemef)(
Add(element,);

Remove(elemert);

T: item;
if (Empty(L) == FALSE)
integer : i;
for (I=0; i<Length(); i++)
Print(L[i]);

In a more detailed example, additional transformations would probably be applied
to further refine this specification until all high-level specification constructs had been

removed and a low-level implementation was produced.

4.4.3 Summary of the Transformational Approach

According to Rich and Waters, “a major strength of transformational methods is
that they provide a very clear representation for certain kinds of programming knowledge,

[and] for this reason, transformational methods in some form are certain to be part of all
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future automatic programming systems.” Another contribution of the transformational
approach is the transformations themselves, which encode knowledge about how to imple-
ment algorithms, create and use data structures, optimize code, and move between levels of

abstraction.

Unfortunately, deciding which transformation to apply at each step is similar to
deciding which inference rule to apply in each step of a deductive system. For this reason,
the transformational approach suffers from some of the same rapid expansion of the search
space that the preceding section on deductive methods discussed. As with deductive auto-
matic programmers, transformational systems must either rely on the user to direct the
search or place strong restrictions on the kinds of transformations that can be used. Some
notable transformational automatic programming systems are the Tl project [BAL85] led

by Robert Balzer, and the work of Cordell Greene [GB75].

4.5 Inspection Methods

The inspective approach to automatic programming is based on the codification and
use ofcliches A clichehas three parts: a skeleton that encompasses every occurrence of the
cliche, roles whose contents vary from one occurrence to the next, and constraints on what
can fill the roles. Most inspective systems contain algorithmic, data structure, and optimi-
zation cliches. For example, if a specification required that a set of names be alphabetized,
an inspective automatic programmer might start by choosing among the cliques for various
sorting algorithms. One of the roles in the chosen clique would probably be filled by the
type of elements to be sorted, and another cliche would probably be used to pick an appro-

priate data structure to represent a collection of those elements.

The differences between inspective and transformational methods are subtle, but the

main distinction is that inspective methods attempt to reduce the search-control problems
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that arise with other methods by using some “global understanding” of the problem. The
cliques themselves are not as important in an inspective system as are the relationships
among various cliches. By contrast, transformational systems do not typically have a “glo-
bal understanding” of the problem since the use of a particular transformation at one point
in the process will not be used to subsequently choose other transformations. This “global
understanding” of the problem is the major advantage of the inspective approach and it
helps such systems to make high-level decisions before considering low-level details. The
inspective approach is also closer to how humans normally program by recognizing what
well-known concepts are applicable to a given problem and then applying them with some

minor customizations.

As with deductive and transformational systems, it has not yet been shown that gen-
eral-purpose inspective methods can be automated without advice from the user. This is due
to the fact that the inspective approach is based on experience and only applies to the rou-
tine parts of programming problems. Inspective systems usually require the user to identify
which cliques are applicable after which the system will typically be able to fill in many of
the details without the user’s assistance. MIT's Programmer’s Apprentice [RICH81],

[WAT85] is an example of an inspective system that works in this fashion.

4.6 Automatic Programming in the CPAL Evaluation System

As noted at the beginning of this chapter, we intended this explanation of automatic
programming to prepare the reader for the presentation of our protocol analysis methodol-
ogy (in Chapter 5), which contains an important automatic programming component.
Recall that after having the user specify a protdgah CPAL, and a statement of failure,

F, for the protocol, our strategy is to take the statement of failure as a postcondition for the

protocol and then employ Yasinsac’s technique for computing the weakest preconditions

forP =S5;5,S; ... 0 S\
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wpy(Sy,--.)
S
WPN-2A(SN-2WP(-1WP(S.F)))
N-2
WPN-1(SN-1WP(S:F))
N
WPN(S\:F)
SV
F

Note that satisfying any one of these weakest preconditions will cause the protocol to fail

sinceF, the postcondition, is a statement of failure. Therefgescan viev each weadst

precondition as the specification of a program that will cause the protoadldnd use an

automatic programming technique to attempt to generate the program from its specifica-

tion. If this step succeeds, the generated program can be incorporated into the protocol and

the attack scenario can be reported to the user.

In developing our automatic programming system we chose the deductive approach
because we believe that we can benefit from its considerable strengths while avoiding many
of its limitations. As previously mentioned, the strengths of deductive systems are that they
are general, powerful, and lend themselves to automation. In fact, there are many freely
available automatic theorem proving systems that can serve as the basis for a deductive
automatic programming system. At the same time, the constraints our domain offers mini-

mize the limitations of the deductive approach that were mentioned earlier.

For example, the fact that CPAL contains no looping or procedure call constructs
means that we only need to generate “straight-line” programs. Furthermore, we know that

most attacks on cryptographic protocols are very short, usually consisting of just a few lines
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of code. For these reasons, we have found the search space to be manageable in all of the
protocols we have analyzed. In addition, the CPAL system automatically generates our pro-
gram specifications in logic form so we do not burden the user with a difficult specification
problem. Lastly, we are interested only in whether or not there is an attack on a protocol
that meets a given specification. We are not concerned about whether the generated attack

is the most efficient or even reasonably efficient.

4.7 Summary

In this chapter we have given an overview of the field of automatic program gener-
ation, with an emphasis on the deductive approach. We chose the deductive approach for
use in our CPAL evaluation system because of its considerable strengths, ease of implemen-
tation, and because our version of the automatic programming problem mitigate its weak-
nesses. In the next chapter we give a detailed description of our deductive automatic

programming system and its role in our protocol analysis methodology.



Chapter 5

The CPAL Evaluation System

In this chapter we present our methodology for automatically examining crypto-
graphic protocols for flaws. This methodology combines the mechanical nature of the state-
based tools with the formal semantics of the logical approach. As discussed in Chapter 2,
the logical and state-based techniques are currently the most popular approaches to crypto-
graphic protocol examination. Unifying these two approaches has allowed us to create a
system that can examine a large number of possible attacks quickly and exploit the seman-
tics of the protocol to guide the search. We have used our methodology to produce a work-
ing cryptographic protocol evaluation system; in Chapter 6 we present the results of its

search for flaws in a number of well-known protocols from the literature.

In the next section we present a broad overview of the three main steps our meth-
odology takes to analyze cryptographic protocols. Then we give a detailed description of
each step and use a common protocol as a running example to illustrate each step. In the

final section we discuss our methodology and note some of its strengths and weaknesses.
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5.1 Overview

We first specify the protocol(s) to be tested in the Cryptographic Protocol Analysis
Language (CPAL) presented in Chapter 3. Since most protocols are expressed in Standard
Notation, the user will have to perform a translation (or idealization) into CPAL. This step
is generally trivial because of the similarity of the notations. After a protocol has been
expressed in CPAL, the user will be asked to specify what conditions wouldfaiiphg
of the protocol (though the user will not be required to spéaifythose conditions might
be achieved). These first two steps are informal and rely heavily on the user. In the sections
on these two steps we explain why these two steps are necessary and why we do not expect

these steps to be difficult or time-consuming for most users.

After the user has completed these first two steps, the third step is the automatic
search for an attack that satisfies the failure conditions of the protocol formulated in step
two. Unlike the preceding two steps, the third step is completely formal and does not
require assistance from the user. The semantics of CPAL are used to generate theorems cor-
responding to the failure of the protocol(s) and then a deductive automatic programming
system is used to attempt to prove one of these theorems. If the proof succeeds, the actions
that it generated are added in the correct places in the protocol and the undermined protocol
is displayed so that the user can understand the attack that has been discovered. As we will
see in Section 5.5, even when the proof does not succeed and no attack has been found we

can draw some useful conclusions about the protocol(s).

5.2 Step 1 - Specifying the Protocol(s) in CPAL

We now describe the protocol that we will use as a running example for the rest of
this chapter. This protocol was designed to have an obvious flaw so that it could be used to

demonstrate each of the three steps in our methodology.
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Consider the following scenario: agénivants to send a secretfo agenB. Upon
receipt ofAs message, we would likgto believe thak was sent byA and thai is not
known by anyone besidédsand himself. One possible protocol is the following. Assume
that agenA has a public/private key pair. Recall tiat public key is known to everyone
but the private key is known only to her, and that messages encrypted with one of the two
keys can only be decrypted with the other. TA@ould encrypk with her private key and
send the result BB. WhenB receives this message, he could decrypt it Agipublic key

and learrx. This protocol would be expressed in the Standard Notation as follows:

A - B: {x}ka-1

The flaw in this protocol is obvious. Sin&es public key is well known, anyone who
can intercept the message fréno B can perform the decryption and learrin the next
few sections we demonstrate how this weakness can be uncovered automatically by our

methodology.

The first step we take is to translate the protocol into a CPAL representation:

(1) X:assuméinverse(A.pub_A, A.priv_A));
(2) X:assumégB.pub_A == A.pub_A);

(3) X:assumél.pub_A == A.pub_A);

(4) A x:=new

(5) A - B (ep[x]priv_A);

(6) B: « (msgQ;

(7) B:x:=dp[msg]pub_A

Line 1 of the CPAL specification defines agérs public/private key pair, and lines 2 and
3 state that agenBandl knowA'’s public key. In step 4A creates a new value and sends
it to B in line 5. AgenB receivesA’s message and decrypts it to leain lines 6 and 7,

respectively.
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5.3 Step 2 - Specifying the Failure Condition

The next step is to specify a failure condition for the protocol. This step is not unlike
the “specification acquisition” step in automatic programming which many researchers
consider a “major problem” [BAL85] due to the difficulty of producing a specification that
is correct, complete, and unambiguous. While we cannot claim that specifying the failure
condition for a cryptographic protocol is trivial there are some characteristics of the limited
domain that make this problem easier than the general version which the automatic pro-
gramming community must deal with. For one thing these failure conditions are typically
much shorter than program specifications and are therefore easier to express and under-

stand.

Furthermore, there are generally a small number of standard failure conditions for
each type of protocol, and the failure condition for a protocol is often simply the negation
of the protocol’s stated goals. For example, an authentication protocol would be said to fail
if agentC could convince agem that he C) wasB. A natural failure condition for a key
distribution protocol would be one that states that the “secret” key that is agreed u#pon by
andB is also known by an intruder. Another possible failure for a key distribution protocol
would be if the two principals believe that they share a key but do not realize that they

haven’t agreed on the same key.

Note that the failure conditions given above describe what it means for the protocol
to fail but do not specify how that failure might be brought about. In the key distribution
example an intruder could accomplish the first failure condition (knowing the “secret” key
agreed on by the two principals) by getting them to accept as the “secret” key some value
she already knows, by tricking one of the two agents into telling her the key they have
agreed on, or through some other sequence of actions. Allowing the user to express the fail-

ure condition in general terms not only makes these specifications simpler, but it also leaves
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open the possibility that the system will discover a way to attack a protocol that the user

might not have foreseen.

In our current implementation, we restrict the user to expressing failure conditions
in propositional calculus. We made this choice because a substantial number of failure con-
ditions can be expressed in this notation and because limiting our theorems to statements
in propositional calculus greatly decreased the amount of time it took to prove the resulting
theorems. In the Related Work section of Chapter 7, we discuss how we would go about
modifying our system so that failure conditions could be expressed in first-order logic or
any of the specialized modal logics that have been developed for cryptographic protocol

analysis.

Returning to the example protocol that we introduced in Section 5.3, we recall that
it was intended to transfer a secret piece of data A¢mB. One obvious failure condition
for that protocol would be if the intruder was somehow able to learn the data that the pro-
tocol is supposed to protect. We can express this statement in predicate calculus as
Same(l.x, A.xX)This predicate is true if a variable in the intruder’'s address spatéhis
case) is the same as the “secret” datlipm As address space. Here then is the CPAL spec-
ification for the protocol and its failure condition expressed in predicate calculus which

together form the input for the third step of our methodology:

X: assumélnverse(A.pub_A, A.priv_A));
X: assuméB.pub_A == A.pub_A);

X: assumél.pub_A == A.pub_A);

Al X:=new

A: - B (ep[x]priv_A),

B: « (msg;

B: x := dp[msg]pub_A

Same(l.x, A.x)
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5.4 Step 3 - Automatically Searching for an Attack

The final step in our methodology is to attempt to modify the protocol so that the
failure condition is achieved. If we return to the definition of weakest precondition given in
Chapter 3, we recall that tiaeeakest preconditigmvp(S,R)represents the weakest solution
to the equatio® : Q {S} R whereQ {S} Ris aHoare triplewith Q andR being boolean
expressions called the precondition and postcondition, respec@vEb}. Ris said to hold
if program segmers, beginning withQ satisfied, is guaranteed to estabkshif Stermi-
nates. By using the formal semantics of CPAL we can compute the weakest precondition at
each point in the protocol to determine what assumpt@nsjust hold prior to each state-
ment in the protocol, for the remainder of the protocol to execute and establish the post-

condition,R. So for the protocol?, composed of a sequence of statements:
P=5:5S;5 ... ;.
and the failure conditiork;, we can computep(P,F}

wpy(Sy....)
Sy

WPN-2ASN-2WP(Sy-1.WP (S, F)))
N-2

Wpn-1(Su-2WP(SF))
N-v

wWpN(SyiF)
S\

F
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Eachwp, is then the assumptions that must hold pric for §;Si.1; ... ; Sv-p SN
to execute and establihTherefore, we can think of eaelp, as a formal specification of
a program that, if added to the protocol before statefeguarantees that the protocol will
have achieved the failure conditidfh,upon completion. Recall from Chapter 4 that we can
apply a deductive automatic programming approach to try to find a constructive proof of

wp; and, if that succeeds, we can add the generated progfane, the protocol before

statemen§.
wpy(Sy,--.)
S
SEE
GP;
S;
WPN-2ASN-2WP(Sy-1. WP (S, F)))
N-2
WpN-1(SN-2WP(S F))
N1
WPN(SyiF)
S\
F

Sincewp, are the assumptions that must hold pridg tor §;S;1; ... ; Sy-1; Syto
execute and establighand sincés establishesp, P’ =S;;S,; ... S.1,GP;S; ... ; S-S\
is an example of a successful attackPo8o, basically, step three of our methodology com-
putes the weakest preconditions for the protocol and then tries to find a constructive proof
for one of them. Once a proof is found, the modifications it prescribes are made to the pro-

tocol and the resulting attack scenario is reported to the user.
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Actually, our methodology does not require that an entire weakest precondition be
proved all at once. In our current implementation, for example, we transform all the weak-
est preconditions into conjunctive normal form and then try to prove any clause in a weakest
precondition. If a proof succeeds, we make the necessary modifications to the protocol,
recompute the weakest preconditions for the modified protocol, and then try to prove
another clause. We continue with this process until one of the weakest preconditions has
had all of its clauses proved. This could give rise to extra actions being added to the protocol
that are not part of a successful attack, but this does not concern us since we are primarily
interested in whether or not an attack exists. In the next subsection, we give the weakest
preconditions for our example protocol. In the subsections after that, we show exactly how

we prove theorems and use those proofs to modify protocols.

5.4.1 Computing the Weakest Preconditions

Computing the weakest preconditions for a protocol expressed in CPAL is simply
an exercise in mechanically applying the predicate transforms that were given in Chapter
3. Yasinsac developed such a tool as part of his dissertation and we currently use a version
of that program in our system. The results of computing the weakest preconditions for the
example protocol and the failure condition are given below. As noted in Chapter 3, before
computing the weakest precondition for a protocol, all insecure sends are replaced with
secure sends to the intruder, who then forwards the message unmodified to its intended

recipient.
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Same(l.x, uniquel)

(1) X:assumélnverse(A.pub_A, A.priv_A));
Same(l.x, uniquel)

(2) X:assuméB.pub_A == A.pub_A);
Same(l.x, uniquel)

(3) X:assumél.pub_A == A.pub_A);
Same(l.x, uniquel)

(4) A x:=new
Same(l.x, A.X)

(5) A 0O I (ep[x]priv_A),
Same(l.x, A.x)

6) I: < (tmpl);
Same(l.x, A.x)

(7 1. O B (tmpl)
Same(l.x, A.x)

(8 B: - (msg;
Same(l.x, A.x)

(9) B:x:=dp[msg]pub_A

Same(l.x, A.X)

Figure 5.1 : The Protocol (with Weakest Preconditions) in CPAL
5.4.2 Searching for a Constructive Proof

The next step after computing the weakest preconditions for a protocol is to use an
automatic theorem proving system to try to find a constructive proof of one of the weakest
preconditions. Many different axioms and inference rules make up the input that will be
given to the automatic theorem prover, but they can all be generated automatically or
derived from the protocol or its weakest preconditions. In the next several subsections we
present all of the axioms and inference rules that we currently include, and we discuss why

we chose each axiom/rule.
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The axioms and inference rules we currently use can be dividestamidardrules
and axioms that do not differ from protocol to protocol, ancgtb&col-specifi@xioms

that depend on the protocol. We discuss each of these sets in the following two subsections.

5.4.2.1 Standard Axioms and Inference Rules

The standard axioms which we define mostly describe some useful predicates that
allow us to reason about some basic properties of a protocol and the underlying
cryptographic algorithms. One of these predicates which we have already seen is the
Same()predicate which we have already used to specify the failure condition. We use the
Same()predicate to express the equivalence of two values either in the same address space
or in different address spaces. Three of the standard axioms that deal w&anie€

predicate are the following:

Same(X, X).

-Same(X,Y) | Same(Y, X).

-Same(X,Y) | -Same(Y,Z) | Same(X,2)
The first axiom states that tiame(Jpredicate is reflexive - meaning that any vaKids
“the same” as itself. The second axiom uses negation (-) and disjunction (]) to state that the
Same(predicate is also symmetric. Translating the second axiom literally, it reads: “Either
X andY are not the same, 8randX are the same.” Readers familiar with logical notation

should recognize that this axiom could be rewritten as:

not(SaméX,Y)) or Saméey,X)

which is equivalent to the statement:

SaméX,Y) implies SaméeY,X)

under the usual interpretations. The last axiom states th&atme()predicate is also

transitive.
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Another predicate that we will use (especially when dealing with protocols that
employ public-key cryptosystems) is thaverse() predicate. This predicate is used to
describe pairs of values which, when used with some function, can each be used to invert
the results of the function applied to the other. Two of our standard axioms about the

Inverse()predicate are:

-Inverse(X,Y) | Inverse(Y,X).

-Same(X,Y) | -Inverse(Y,Z) | Inverse(X,Z).
The first axiom tells us that tHaverse() predicate is symmetric just like ti&ame()
predicate. Note that there are no transitivity or reflexivity axioms fdntleese()predicate.
However, the second axiom above states thxtahdY are the same and andZ are

inverses, theX andZ are also inverses.

Two other predicates that we use often ardkhews()andlcontrols() predicates.
We use these predicates to reason about what values the intruder knows and controls,
respectively. We say that the intruderowsa value if he can recognize and repeat it. We
say that the intrudarontrolsa value if heknowsit and can also overwrite it with another

value. Two of our standard axioms that deal with these two predicates are the following:

-lknows(X) | -Same(X,Y) | Iknows(Y) | SANS(Sub(Y,X)).
-Icontrols(X) | -lknows(Y) | Same(X,Y) | SANS(Assign(X,Y)).

The first axiom states that if the intruder knovandX is the same ag then the intruder
knowsY. The last clause in this axio®ANS() is called aranswer literaland is used to
record instantiations of variables in input clauses during the search for a proof. Given the
logical formulae below, with lower case names represetitergls and upper case names

representinyariables
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Iknows(a).
Same(a,b).
-lknows(X) | -Same(X,Y) | Iknows(Y) | SANS(Sub(Y,X)).

a proof of the theorertknows(b)would yield the answer literal:

$ANS(Sub(b,a)).

which tells us that during the prodd,instantiated the variablé anda instantiated the
variableX. When we construct protocol actions this will allow us to substitute the correct

values from the protocol into those actions.

In the axiom given above for tHeontrols() predicate we see that if the intruder
controls some valueg, and knows some valu¥,then she can cau¥eandY to have the
same value by overwriting with Y. This axiom also contains an answer literal that will tell

us which value was overwritten with which value during the proof.

The remainder of the standard axioms deal with some of the properties of
symmetric and asymmetric cryptosystems. They are only added to the input file if our
system determines that a protocol makes use of the corresponding cryptographic functions.
For symmetric cryptosystems the axioms are:

-lknows(K) | -lknows(e(X,K)) | Iknows(X) | $ANS(Sub(X,d(e(X,K),K)M).the

intruder knows a valué§, and a message encrypted using that valQ€K) then
he also knows the contents of the messdge,

-lknows(K) | -Iknows(d(X,K)) | Iknows(X) | SANS(Sub(X,e(d(X,K),K)}.the
intruder knows a valuds, and a message decrypted using that val(}¢K), then
he also knows the contents of the messdge,

-Same(K1,K2) | Same(d(e(X,K1),K2),X)Encrypting a messages, and then
decrypting the result using the same key yids

-Same(K1,K2) | Same(e(d(X,K1),K2),X)Decrypting a messages, and then
encrypting the result using the same key yids
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-Same(X,Y) | -lknows(e(X,K)) | Iknows(e(Y,K)) | SANS(Sub(X,¥)X andY are
the same and the intruder knows the encryptiotwider some key, then he also
knows the encryption of underK.

-Same(X,Y) | -lknows(d(X,K)) | Iknows(d(Y,K)) | SANS(Sub(X,¥)X andY are
the same and the intruder knows the decryptiotwider some key, then he also
knows the decryption of underK.

-Iknows(K) | -Iknows(X) | Iknows(e(X,K)) | SANS(Create(e(X,K)j)the intruder
knows some valuds, and some other valu¥, then he can produce the encryption
of X underK.

-lknows(K) | -lknows(X) | Iknows(d(X,K)) | SANS(Create(d(X,K))the intruder
knows some valuds, and some other valu¥, then he can produce the decryption
of X underK.

-Icontrols(X) | -lknows(Y) | -lknows(d(X,K)) | Iknows(d(Y,K)) | $ANS(Sub(X,Y)). :
When the intruder controls a vald€,knows a valueY, and knows the decryption
of X with K, then he can learn the decryptionYoivith K by overwritingX with Y
and then performing whatever actions allowed him to disaeK).

-Icontrols(X) | -Iknows(Y) | -lknows(e(X,K)) | Iknows(e(Y,K)) | SANS(Sub(X,Y)). :
When the intruder controls a vald€,knows a valuey, and knows the encryption
of X with K, then he can learn the encryptionYoliith K by overwritingX with Y
and then performing whatever actions allowed him to dise@€eK).

For asymmetric cryptosystems the axioms are:

-lknows(K1) | -Inverse(K1,K2) | -lknows(ep(X,K2)) | Iknows(X) |

SANS(Sub(X,dp(ep(X,K2),K1)))f the intruder knows a valu&l, andK1 is the
inverse 0K2, and she also knows the public-key encryptiod ohderK2, then she
can decrypt the message usiiband learrX.

-iknows(K1) | -Inverse(K1,K2) | -lknows(dp(X,K2)) | Iknows(X) |

SANS(Sub(X,ep(dp(X,K2),K1)))If the intruder knows a valu&l, andK1 is the
inverse 0K2, and she also knows the public-key decryptiod ohderK2, then she
can encrypt the message usiiband learrX.

-Inverse(K1,K2) | Same(dp(ep(X,K1),K2),XEncrypting a messag¥, and then
decrypting the result using inverse keys yietds

-Inverse(K1,K2) | Same(ep(dp(X,K1),K2),XDecrypting a messag¥, and then
encrypting the result using inverse keys yietds
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-Same(X,Y) | -lknows(ep(X,K)) | Iknows(ep(Y,K)) | SANS(Sub(Xiiv)yo: values,
X andy, are the same and an intruder knows the public-key encryption of one then
she also knows the public-key encryption of the other.

-Same(X,Y) | -lknows(dp(X,K)) | Iknows(dp(Y,K)) | SANS(Sub(X|¥)ua values,
X andy, are the same and an intruder knows the public-key decryption of one then
she also knows the public-key decryption of the other.

-lknows(K) | -lknows(X) | lknows(ep(X,K)) | $ANS(Create(ep(X,K))f. the
intruder knows some valu&, and some other valu, then he can produce the
public-key encryption oK underK.

-lknows(K) | -lknows(X) | Iknows(dp(X,K)) | $SANS(Create(dp(X,K)) the
intruder knows some valu&, and some other valu, then he can produce the
public-key decryption oK underK.

-Icontrols(X) | -lknows(Y) | -lknows(dp(X,K)) | Iknows(dp(Y,K)) | SBANS(Sub(X,Y)).:
When the intruder controls a vald§,knows a valueY, and knows the public-key
decryption ofX with K, then she can learn the public-key decryptio¥ with K by
overwriting X with Y and then performing whatever actions allowed her to discover
dp(X,K)

-Icontrols(X) | -lknows(Y) | -lknows(ep(X,K)) | Iknows(ep(Y,K)) | SANS(Sub(X,Y)).:
When the intruder controls a valdg,knows a valueY, and knows the public-key
encryption ofX with K, then she can learn the public-key encryptio¥ with K by
overwriting X with Y and then performing whatever actions allowed her to discover
ep(X,K)

These axioms are not intended to allow us to prove everything that could be proven
about these predicates but were chosen because they allow us to prove many useful things
about these predicates quickly. We discuss this issue more formally and in more depth later

in Section 5.5.

5.4.2.2 Protocol-Specific Axioms

The rest of the axioms that make up the input file for the automatic theorem prover
are derived from the protocol and from the particular weakest precondition that we are
attempting to prove. Since we could attempt to prove any of the weakest preconditions in

the protocol, our approach is to work on the weakest precondition for the first statement of
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the protocol first, and, if it has not been proven in some user-specified amount of time, move
on to the next weakest precondition. If at any time a proof succeeds and the protocol is
modified we recompute the weakest preconditions for the new protocol and start again with
the weakest precondition for the first statement. We continue in this manner until one or

more of the weakest preconditions contains no clauses (meaning we have satisfied a
weakest precondition and discovered a successful attack) or until no part of any weakest
precondition can be proved at which point the system reports it could not find any

successful attacks in the allotted time.

For the purpose of this discussion let us assume that we have failed to prove any part
of the weakest preconditions for statements 1-6 in Figure 5.1 and are now considering the

weakest precondition for statement 7. It is:

Same(i_x, a_x).

This is the theorem to be proved and, as is usual in resolution theorem proving, we add the

negation of this theorem to our set of axioms:

-Same(i_x, a_Xx).

Next, we add axioms corresponding to any assumptions that are given in the protocol under

consideration. In this case, that would be those given in lines 1-3 of Figure 5.1:

Inverse(a_pub_A, a_priv_A).
Same(b_pub_A, a_pub_A).
Same(i_pub_A, a pub_A).
Then we generate axioms that describe for which variables in the protodihdmes()

Icontrols() andSame(Jpredicates hold.

For the first two, it is always the case that the intruder both knows and controls all the values

in her own address space so from Figure 5.1 we get the axioms:
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Iknows(i_tmp1l).
Icontrols(i_tmp1).
Iknows(i_x).
Icontrols(i_x).
Iknows(i_pub_A).
Icontrols(i_pub_A).

105

To derive aSame()predicate for each variable in the protocol we use the variable as a

“postcondition” and compute the weakest precondition from that point in the protocol to

the beginning. In this example, we are attempting to prove the weakest precondition for

statement 7 so thifeame(predicate for the variableémplwould be computed as follows:

1)

()

®3)

(4)

(5)

(6)

ep[uniquel]A.priv_A
X: assumélnverse(A.pub_A, A.priv_A));
ep[uniquel]A.priv_A
X: assumégB.pub_A == A.pub_A);
ep[uniquel]A.priv_A
X:assumél.pub_A == A.pub_A);
ep[uniquel]A.priv_A
Al X:=new
ep[A.X]JA.priv_A
A: [ I (ep[x]priv_A);
l.*queue*
I: < (tmpl);
[.tmpl

This gives us the axiom:

Same(i_tmpl, ep(uniquel, a_priv_A)).

By repeating this process for the other variables in the protocol we get:

Same(a_x, uniquel).
Same(a_pub_A, a_pub_A).
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Same(a_priv_A, a_priv_A).
Same(b_msg, b_msg).
Same(b_pub_A, b_pub_A).
Same(i_x, i_x).
Same(i_pub_A, i _pub_A).

5.4.2.3 Parallel Session Axioms

The final set of axioms we derive from the protocol argé#rallel-session axioms
which describe the effect of running fragments of the protocol. These axioms will allow us
to reason aboytarallel-session attackis which the intruder may participate in more than
one session of a protocol simultaneously and use messages from one session in another.
These types of attacks are very common on cryptographic protocols and examples of
successful parallel session attacks can be found in [AN94], [BIR93], [BAN89], [CAR94],

and [KMM94], to name a few.

A parallel session fragment is just some initial prefix of a protocol with agents
assigned to each “role” in the protocol. For example, the protocol in Figure 5.2 begins with

some agent playing the role associated with agent A in the specification. It is important to
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note that any agent can play the role of “A” in this protocol. So if agent B wants to transmit

a piece of secret data to agent A the protocol will look like:

(1) X:assuméinverse(B.pub_B, B.priv_B));
(2) X:assumé¢A.pub_B == B.pub_B);

(3) X:assumél.pub_B == B.pub_B);

(4) B:x:=new

(5) B: U I (ep[x]priv_BY),

6) . <« (tmpl);

(7) I O A (tmpl)

8 A ~(msg;

(9) A x:=dp[msg]pub_B

Figure 5.2 : A Sample Protocol

In this instance of the protocol we would say that agent B is playing the role of “A” in the
protocol and that agent A is playing the role of “B” (Note that the intruder is playing the
role of “I” and is the only agent who can, since the role of “I” must be played by a dishonest
principal). Likewise, if agent A uses the protocol to send a secret to agent C the protocol

looks like:

(1) X:assuméinverse(A.pub_A, A.priv_A));
(2) X assuméC.pub_A == A.pub_A);

(3) X:assumél.pub_A == A.pub_A);

(4) A x:=new

5) A 0O I (ep[x]priv_A);

6) I: < (tmpl);

(7) I O C (tmpl)

8 C: ~(ms9;

(9) C:x:=dp[msglpub_A
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Now, if we break the protocol down into turns:

Turn 1:  X: assumélnverse(A.pub_A, A.priv_A));
X: assuméB.pub_A == A.pub_A);
X: assumél.pub_A == A.pub_A);
Al X:=new
A: [ 1 (ep[x]priv_A);

Tun 2: |1 < (tmpl);
I: O B (tmpl)

Turn 3: B: « (msgQ;

B: x := dp[msg]pub_A

and enumerate all valid prefixes of the protocol (a valid prefix of a protocol must start with

the first statement of the protocol and end on a turn boundary) we get the following:

Prefix 1:

X: assumélnverse(A.pub_A, A.priv_A));
X:assuméB.pub_A == A.pub_A);
X:assumél.pub_A == A.pub_A);

Al X:=new

A: O 1 (ep[x]priv_A);

Prefix 2:

X: assumélnverse(A.pub_A, A.priv_A));
X:assuméB.pub_A == A.pub_A);
X:assumél.pub_A == A.pub_A);

A: X :=new

A O 1 (ep[X]priv_A);

I: < (tmpl);

I: O B (tmpl)
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Prefix 3:

X: assumélnverse(A.pub_A, A.priv_A));
X:assuméB.pub_A == A.pub_A);

X: assumél.pub_A == A.pub_A);

Al X:=new

A: [ I (ep[x]priv_A);

I < (tmpl);

I: O B (tmpl)

B: « (msg;

B: x :=dp[msg]pub_A

Prefix 1 gives us 3 distinct parallel session fragments (since AgBnbr | can play the

role of “A” in Prefix 1). They are:

Parallel Session 14 plays “A”):

X: assumélnverse(A.pub_A, A.priv_A));
X: assuméB.pub_A == A.pub_A);

X: assumél.pub_A == A.pub_A);

Al X:=new

A [ I (ep[x]priv_A);

Parallel Session 2B plays “A”):

X: assumélnverse(A.pub_A, A.priv_A));
X:assuméB.pub_A == A.pub_A)

X: assumél.pub_A == A.pub_A);

B: X :=new

B: [ 1 (ep[x]priv_B),

Parallel Session 3l(plays “A”):

X: assumélnverse(A.pub_A, A.priv_A));
X: assuméB.pub_A == A.pub_A)
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X:assumél.pub_A == A.pub_A);
I: X :=new

I: O I (ep[x]priv_D);

Prefix 2 gives us 3 more parallel session fragments (sinceAaggndr| can play the role

of “A” and only the intruder can play the role of “I”):

Parallel Session 44 plays “A” and | plays “I”):

X: assumélnverse(A.pub_A, A.priv_A));
X:assumégB.pub_A == A.pub_A);

X: assumél.pub_A == A.pub_A);

Al X:=new

A [ I (ep[x]priv_A);

I < (tmpl);

I: O B (tmpl)

Parallel Session 58 plays “A” and | plays “I"):

X: assumélnverse(A.pub_A, A.priv_A));
X: assuméB.pub_A == A.pub_A)
X:assumél.pub_A == A.pub_A);

B: X := new

B: O I (ep[x]priv_B),

I < (tmpl);

I: O B (tmp1)

Parallel Session 6l(plays “A” and | plays “I”):

X: assumélnverse(A.pub_A, A.priv_A));
X: assuméB.pub_A == A.pub_A)
X:assumél.pub_A == A.pub_A);

I: X :=new

I: O 1 (ep[x]priv_);
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I (tmpl);
I: O B (tmp1)
Finally, Prefix 3 gives us 9 more parallel session fragments (sincefAdrir | can play
the role of “A”, onlyl can play the role of “I”, and ageAt B, orl can play the role of “B”)
of which we list only the first below. A complete list of all 15 parallel session fragments for

the protocol in Figure 5.2 is given in Appendix B.

Parallel Session 74 plays “A”, | plays “I", and A plays “B”):

X: assumélnverse(A.pub_A, A.priv_A));
X: assuméB.pub_A == A.pub_A);

X: assumél.pub_A == A.pub_A);

Al X:=new

A: O 1 (ep[x]priv_A);

I « (tmpl);

I O A (tmpl)

A < (msg;

A: x :=dp[msg]pub_A

Each parallel session fragment can be used as an axiom when attempting to prove a weakest
precondition though we may want to eliminate duplicate or “useless” parallel session
fragments from the list in order to minimize the number of axioms the automatic theorem

prover needs to consider.

The last thing we must do to the list of parallel session fragments is to rename some
of the variables. We do this because we expect that certain of the variables in these
fragments will refer to a different memory location in the principal’s address space on each

run of the protocol. For instance, in the statement:

B: « (msg;
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we would not expect the variabiesgto refer to the same location®s address space in

each run of the protocol. On the other hand, in the statement:
A: O 1 (ep[X]priv_A),

we would expect the variabjwiv_A to refer to the same location As address space in

each run of the protocol since it corresponds to a permanent and global value. By
performing these substitutions and using the same procedure (described in Section 5.4.2.2)
used to generate protocol-specific axioms we get the following list of parallel-session

axioms which are added to the input file for the automatic theorem prover:

Same(a_tmpl, unique2) | $ANS(session(1)).

Same(b_tmp1, unique3d) | $ANS(session(2)).

(Same(a_tmp2, unique4d) & lknows(i_pub_A) & Icontrols(i_pub_A) &
Same(i_pub_A, a_pub_A) & Iknows(i_tmp2) & Icontrols(i_tmp2) &
Same(i_tmp2, ep(uniqued, a_priv_A))) | SANS(session(3)).

(Same(b_tmp2, uniqueb) & lknows(i_pub_B) & Icontrols(i_pub_B) &
Same(i_pub_B, b_pub_B) & lknows(i_tmp3) & Icontrols(i_tmp3) &
Same(i_tmp3, ep(uniqueb, b_priv_B))) | $ANS(session(4)).

(Same(a_tmp3, uniqueb) & lknows(i_pub_A) & Icontrols(i_pub_A) &
Same(i_pub_A, a_pub_A) & Iknows(i_tmp4) & Icontrols(i_tmp4) &
Same(i_tmp4,ep(unique6,a_priv_A)) & Same(a_msg ,ep(unique6,a_priv_A)) &
Same(a_tmp4,dp(ep(unique6, a_priv_A), a_pub_A) | SANS(session(5)).

(Same(a_tmpb5, unique7) & lknows(i_pub_A) & Icontrols(i_pub_A) &
Same(i_pub_A, a_pub_A) & Iknows(i_tmp5) & Icontrols(i_tmp5) &
Same(i_tmp5,ep(unique7,a_priv_A)) &Same(b_tmp3,ep(unique7,a_priv_A)) &
Same(b_tmp4,dp(ep(unique7, a_priv_A), b_pub_A) | $ANS(session(6)).

(Iknows(i_pub_A) & Icontrols(i_pub_A) & Same(i_pub_A, a_pub_A) &
Iknows(i_tmp6) & Icontrols(i_tmp6) & Same(a_tmp6, i_tmp6) &
Same(a_tmp7,dp(i_tmp6, a_pub_A)) | SANS(session(7)).

(Iknows(i_pub_B) & Icontrols(i_pub_B) & Same(i_pub_B, b_pub_B) &
Iknows(i_tmp7) & Icontrols(i_tmp7) & Same(b_tmp4, i_tmp7) &
Same(b_tmp5,dp(i_tmp7, a_pub_A)) | SANS(session(8)).

(Same(b_tmp6, unique8) & lknows(i_pub_B) & Icontrols(i_pub_B) &
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Same(i_pub_B, b_pub_B) & Iknows(i_tmp8) & Icontrols(i_tmp8) &
Same(i_tmp8,ep(unique8,b_priv_B)) &Same(a_tmp7,ep(unique8,b_priv_B)) &
Same(a_tmp8,dp(ep(unique8, b_priv_B), a_pub_B) | $ANS(session(9)).
(Same(b_tmp7, unique9) & lknows(i_pub_B) & Icontrols(i_pub_B) &
Same(i_pub_B, a_pub_B) & Iknows(i_tmp9) & Icontrols(i_tmp9) &
Same(i_tmp9,ep(unique9,b_priv_B)) &Same(b_tmp8,ep(unique9,b_priv_B)) &
Same(b_tmp9,dp(ep(unique9, b_priv_B), b_pub_B) | $ANS(session(10)).

5.4.3 Protocol Interactions

Note that there is no reason to limit the parallel-session axioms to only those derived
from a single protocol. We could generate parallel-session axioms for a number of different
protocols and add them all to the input file that we use to examine any one of them. If any
of these axioms are used during the proof, the corresponding actions would be added to the
protocol yielding an attack that exploited one of the other protocols in the set to undermine
the protocol being examined. We consider this to be an important contribution of our

approach. An example of this typeprbtocol-interaction attacks shown in Chapter 6.

5.4.4 The Automatic Theorem Prover’s Input File

Now that we have explained each of its components, we can present the complete

input file that will be used by the automatic theorem prover.

set(auto).

set(prolog_style variables).
assign(max_seconds,5).
list(usable).

% Standard Axioms
Same(X, X).

-Same(X,Y) | Same(Y, X).

-Same(X,Y) | -Same(Y,Z) | Same(X,Z2).
-Inverse(X,Y) | Inverse(Y,X).

-Same(X,Y) | -Inverse(Y,Z) | Inverse(X,Z).
-Iknows(X) | -Same(X,Y) | Iknows(Y) | SANS(Sub(Y,X)).
-lcontrols(X) | -lknows(Y) | Same(X,Y) | $ANS(Assign(X,Y)).
% Public-Key Rules
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-Iknows(K1) | -Inverse(K1,K2) | -lknows(ep(X,K2)) | Iknows(X) | SANS(Sub(X,dp(ep(X,K2),K1))).
-iknows(K1) | -Inverse(K1,K2) | -lknows(dp(X,K2)) | Iknows(X) | SANS(Sub(X,ep(dp(X,K2),K1))).
-Inverse(K1,K2) | Same(dp(ep(X,K1),K2),X).

-Inverse(K1,K2) | Same(ep(dp(X,K1),K2),X).

-Same(X,Y) | -lknows(ep(X,K)) | Iknows(ep(Y,K)) | SANS(Sub(X,Y)).

-Same(X,Y) | -lknows(dp(X,K)) | Iknows(dp(Y,K)) | SANS(Sub(X,Y)).

-lknows(K) | -lknows(X) | Iknows(ep(X,K)) | $ANS(Create(ep(X,K))).

-lknows(K) | -Iknows(X) | Iknows(dp(X,K)) | $ANS(Create(dp(X,K))).

-Icontrols(X) | -lknows(Y) | -Iknows(dp(X,K)) | Iknows(dp(Y,K)) | $ANS(Sub(X,Y)).

-lcontrols(X) | -lknows(Y) | -lknows(ep(X,K)) | Iknows(ep(Y,K)) | SANS(Sub(X,Y)).

% Protocol-Specific Axioms
Iknows(i_tmp1l).

Icontrols(i_tmp1).

Iknows(i_x).

Icontrols(i_x).

Iknows(i_pub_A).

Icontrols(i_pub_A).

Same(i_tmp1, ep(uniquel, a_priv_A)).
Same(a_x, uniquel).

Same(a_pub_A, a_pub_A).
Same(a_priv_A, a_priv_A).

Same(b_msg, b_msg).

Same(b_pub_A, b_pub_A).

Same(i_x, i_X).

Same(i_pub_A,i_pub_A).

% Protocol Assumptions
Inverse(a_pub_A, a_priv_A).
Same(b_pub_A, a_pub_A).
Same(i_pub_A, a_pub_A).

end_of_list.

% =========== Negation of the Weakest Precondition =========
formula_list(usable).
-Same(i_x, uniquel).

% Parallel Session Axioms
Same(a_tmp1, unique2) | $ANS(session(1)).
Same(b_tmp1, unique3) | $ANS(session(2)).
(Same(a_tmp2, uniqued) & Iknows(i_pub_A) & Icontrols(i_pub_A) & Same(i_pub_A, a_pub_A) &
Iknows(i_tmp2)&Icontrols(i_tmp2)&Same(i_tmp2,ep(unique4,a_priv_A))) [SANS(session(3)).
(Same(b_tmp2, uniqueb5) & Iknows(i_pub_B) & Icontrols(i_pub_B) & Same(i_pub_B, b_pub_B) &
Iknows(i_tmp3)&Icontrols(i_tmp3)&Same(i_tmp3,ep(uniques,b_priv_B)))|[$ANS(session(4)).
(Same(a_tmp3, uniqueb) & Iknows(i_pub_A) & Icontrols(i_pub_A) &Same(i_pub_A, a pub_A) &
Iknows(i_tmp4) & Icontrols(i_tmp4) &Same(i_tmp4,ep(uniqueb,a_priv_A)) &
Same(a_msg ep(unique6,a_priv_A))&Same(a_tmp4,dp(ep(uniqueb,a_priv_A),a_pub_A)|
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$ANS(session(5)).

(Same(a_tmp5, unique?) & Iknows(i_pub_A) & Icontrols(i_pub_A) & Same(i_pub_A, a_pub_A) &
Iknows(i_tmp5) & Icontrols(i_tmp5) & Same(i_tmp5,ep(unique?,a_priv_A)) &

Same(b_tmp3, ep(unique?7, a_priv_A)) & Same(b_tmp4, dp(ep(unique7, a_priv_A), b_pub_A) |
$ANS(session(6)).

(Iknows(i_pub_A) & Icontrols(i_pub_A) & Same(i_pub_A, a_pub_A) & Iknows(i_tmp6) &
Icontrols(i_tmp6) & Same(a_tmp6, i_tmp6) & Same(a_tmp7,dp(i_tmp6, a_pub_A)) |
$ANS(session(7)).

(Iknows(i_pub_B) & Icontrols(i_pub_B) & Same(i_pub_B, b_pub_B) &lknows(i_tmp7) &
Icontrols(i_tmp7) & Same(b_tmp4, i_tmp7) &Same(b_tmp5,dp(i_tmp7, a_pub_A)) |
$ANS(session(8)).

(Same(b_tmp6, unique8) & Iknows(i_pub_B) & Icontrols(i_pub_B) &

Same(i_pub_B, b_pub_B) & Iknows(i_tmp8) & Icontrols(i_tmp8) &
Same(i_tmp8,ep(unique8,b_priv_B)) &Same(a_tmp7,ep(unique8,b_priv_B)) &
Same(a_tmp8,dp(ep(unique8, b_priv_B), a_pub_B) | $ANS(session(9)).

(Same(b_tmp7, unique9) & Iknows(i_pub_B) & Icontrols(i_pub_B) &

Same(i_pub_B, a_pub_B) & Iknows(i_tmp9) & Icontrols