

©Copyright by Patricia Gonzalez-Guerrero 2019
All Rights Reserved

Abstract
The internet of things (IoT) is shaping the way we live and the evolution of society. Re-
cent prototypes demonstrated continuous monitoring of fitness activities, health indica-
tors, environmental factors and industrial processes, with sensors that operate under re-
strictive power budgets (⇠100-200µW) harvested from piezo, thermo, solar or even bio-
electric sources. These applications are enabled by aggressively lowering the power supply
(>0.3V), sampling (>1KHz) and processing rates (>200KHz). However, those constraints
are at odds with the next generation of IoT devices. We expect the IoT sensor to interact
with us, follow voice commands, stream video, recognize faces and even emotions in real
time, all powered by machine learning algorithms. More importantly, we expect all these
demanding applications, under the restrictive power budget and form-factor of a typical
IoT sensor.

To address the challenge of high performance and low power at the IoT sensor node, we
propose asynchronous computing with streams (ACS), a novel paradigm that leverages the
advantages of previous computing with streams approaches such as synchronous stochas-
tic computing (SSC), while addressing its drawbacks. In SSC data is encoded in streams
of bits decreasing circuit complexity, generating savings in power and area. However,
the high cost of generating these streams and the long computation latency eclipses any
potential savings. To address these drawbacks, we propose a new efficient asynchronous
architecture for the IoT sensor node with end to end processing on streams. This approach,
avoids costly binary-stream-binary conversion and waives the need of clock generation and
distribution. In this dissertation we explore asynchronous stochastic computing (ASC) and
stochastic computing with SD streams, both paradigms falling under the umbrella of ACS.
We first develop a theoretical framework based on 2 state continuous time Markov Chains
to model the dynamics of asynchronous stochastic streams and estimate the computing
error due to random fluctuation. Furthermore, we address the need for efficient stream
generation circuits by exploring asynchronous sigma delta modulators as stream generator
for ACS. We also propose an end to end asynchronous architecture including interfaces
with the memory and the IO. Finally, To demonstrate the effectiveness of ASC, we im-
plement 1) an image processing algorithm: Gamma correction, 2) A signal processing
algorithm: Fast Fourier Transform and 3) a machine learning algorithm: Decision Trees.

Acknowledgments
This is by far my favorite part of this book. This PhD left me with two lessons: (1) dreams
do come true and (2) they do come true thanks to the paradoxical crazy situations that
bring us together in one way or another.

To my adviser, Professor Mircea R. Stan, I of course have to thank him all the guid-
ance and financial support. However, the most important lesson I take from him is his
unwavering faith in humanity and his kindness towards all. These two qualities are hard
to find in a culture where competition is pervasive. I am sure that if all of us acted more
like him, the world would be a better place. To my committee, Professors Lorena Anghel,
Nikhil Shukla, Steven M. Bowers and Stephen G. Wilson, I am grateful for the time you
put into the meetings and calls to answer all my questions. I would like to specially thank
Professor Wilson for all the time we spent thinking about SD streams error. It was a joy
and a blessing to observe and learn from a person with such attention to detail, to carefully
analyze every aspect of a problem. More importantly his commitment to guide and help
students is unique and I am extremely thankful for this.

To the current members of my research lab: Tommy Tracy II, Sergiu Mosanu, Vaibhav
Verma, Junhan Han, Nazmus Sakib, Robert E. West II a.k.a. Trey, Ceylan Morgul, Rahul
Sreekumar, Yunfei Gu and Mateja Putic, and the ones that already graduated, Xinfei Guo,
Pi, and Alec Roelnek. I thank you all for the laughs in the happy moments, but also the
laughs in the really stressful moments which is only possible with such a great bunch of
people. To Xinfei Guo thanks for enlighten me about how to write papers, create plots,
tables and many other tricks. To Tommy Tracy II thanks for being so supportive and hop
on some of my crazy ideas. To Alec Roelnek thanks for being always so extremely funny.
To Vaibhav thanks for making us do push-ups in the middle of the day. To Rahul, thanks
for all the help, support and commitment to the ACS cause.

To my parents Nohora Guerrero and Enrique Gonzalez, I thank you for every day you
went to work while extremely ill so we can have an education. Thank you for giving us
the hope of a different future even-though there were not many opportunities. Thank you
for breaking the chains of ignorance. Thank you for dreaming for us and with us. I am
really-truly standing on the shoulders of giants. To my siblings Kike and Dani Gonzalez
thanks for being my engine, my fuel and my reason.

To the little family from the land of magical-realism: Juliana, Jaidy, Edna, Yuly, Mar-
iana, Paula, Natali, and Dona Berta, thanks for the good memories and funny stories in
New-year, Christmas, Thanksgiving, Graduations, Accomplishments, Birthday parties and
so on.

i

To Olga, Matt and little Hanna thank you for all the yoga, hiking and camping adven-
tures. To Gerardo, Kristy and little Sophi thank you for the afternoons of food, wine and
laughing. To Ritu for her love when I needed it the most. To Andrea King for all the care
and fun moments around delicious food.

My heart cherishes all of you.
Last but not least, I am eternally grateful to Carlos A. Polanco. It was your support,

patience, and commitment throughout all the difficulties of this PhD journey which made
it possible. Thanks for all the advice, constructive and objective criticism at every step of
this process. Thank you for your example of unwavering discipline and tenacity. I am so
lucky I had you throughout all this and I can’t wait for the next crazy adventure we decide
to embark on.

ii

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Ultra-low power sensors challenges 1
1.1.2 Ultra-low power sensors state of the art 3
1.1.3 SSC potential to enable ultra-low power computing 6

1.2 Thesis Contribution: asynchronous computing with streams 8
1.2.1 Theoretical foundations for Asynchronous Stochastic Computing 8
1.2.2 Asynchronous stream generator 9
1.2.3 Memory element for ACS . 9
1.2.4 Applications . 10
1.2.5 Wireless sensor architecture . 10

1.3 Thesis Organization . 10

2 Asynchronous Stochastic Computing (ASC) 12
2.1 Synchronous Stochastic Computing . 13
2.2 Asynchronous Stochastic Computing . 14

2.2.1 Data Representation . 16
2.3 Operations . 17

2.3.1 Unipolar multiplier . 18
2.3.2 Unipolar weighted adder . 18

2.4 Asynchronous versus Synchronous SC 19
2.5 Energy and power considerations . 23

2.5.1 Power and area analysis . 23
2.5.2 Delay . 26
2.5.3 Energy . 26

2.6 Conclusion . 27

iii

3 Asynchronous computing on SD streams 28
3.1 Introduction . 28
3.2 Background . 30

3.2.1 Computation on SD streams . 30
3.2.2 Pulse modulation . 30
3.2.3 The asynchronous SD modulator 30

3.3 Modulator architecture . 33
3.4 Correlation between SD streams . 34

3.4.1 Process variations . 35
3.4.2 Frequency shifting . 36

3.5 Evaluation results . 40
3.6 Theoretical foundations of computing with asynchronous SD streams . . . 45
3.7 Theoretical model for SC-ASDM . 46
3.8 Latency-Error analysis for SC-ASDM 47

3.8.1 Identical ASDMs . 48
3.8.2 Shifting the natural frequency of the modulators 48
3.8.3 Error-Latency trade-off . 49

3.9 Circuit design . 50
3.9.1 Error-latency trade-off for multiplication 52
3.9.2 Error-latency trade-off for gamma correction 52
3.9.3 Energy considerations . 53

3.10 Conclusions . 54

4 Applications 55
4.1 An ultra-low-power dual-phase latch based digital accelerator for contin-

uous monitoring of wheezing episodes 55
4.1.1 Hardware optimizations . 56
4.1.2 Results and discussion . 57
4.1.3 Conclusion . 58

4.2 ACS-FFT: Area-Efficient Low-Latency FFT Design Based on Asynchronous
Stochastic Computing . 59
4.2.1 Asynchronous Stochastic Computing FFT Architecture 60
4.2.2 results . 65
4.2.3 Conclusion . 68

4.3 Towards low power machine learning using asynchronous computing with
streams . 68

iv

4.3.1 Summary . 68
4.3.2 Introduction . 69
4.3.3 Motivation and Background . 71
4.3.4 Algorithm and Architecture . 76
4.3.5 Experimental Setup . 83
4.3.6 Results . 85
4.3.7 Conclusions . 91

5 Conclusions and Future Directions 92
5.1 Future Directions . 93

5.1.1 Asynchronous SD Modulator metrics of performance 93
5.1.2 Design automation tools . 94
5.1.3 Wireless interface . 95
5.1.4 Building the first Asynchronous computing on streams based mote 101

A List of publications 103
A.1 Peer-reviewed Journals . 103
A.2 Peer-reviewed Conferences . 103

v

List of Figures

1-1 Stochastic multipliers for a) unipolar b) and bipolar representation. c)
Unipolar multiplication example. d) SNG state of the art 7

1-2 Examples for SSC and ASC for p = 0.5. Dashed lines represent the posi-
tive edge of the clock for SSC. 9

2-1 a) Typical binary data representation. b) Synchronous stochastic streams
with generating probability p= 0.25. c) Two state continuous time Markov
chain model for ASC. 14

2-2 This figure compares the theoretical models (Eq.) with the simulated
streams (Exp.) for ASC and SSC. Synchronous streams are modeled as L
consecutive Bernoulli trials, while asynchronous streams are modeled as
2-state-continuous-time-Markov-chains of length tL. The expected value
E[p̂] is at the left while the VAR[p̂] is at the right. a) Stream generation for
p = 0.5. b) Multiplication for px = 0.7 and py = 0.7. c) Scaled addition
for px = 0.5 and py = 0.5 with pa = 0.5 16

2-3 The stochastic computer basic building blocks. a) Unipolar multiplier with
streams x and y as inputs b) Inverter with stream x as input c) Bipolar
multiplier with streams x and y as inputs. d) Scaling adder with streams x
and y as inputs . 17

2-4 a) Error distribution for p = 0.0625 with L=16 (SSC) and tL = 8s (ASC).
b) SSC and ASC VAR[p̂] for different computation times. b) VAR[p̂] for
L=16 (SSC) and for tL = 8s,7s,6s,5s (ASC) d) RMSE versus time for
stream generation and multiplication . 20

2-5 Compares the variance for synchronous (a) and asynchronous (b) multi-
plication. 21

2-6 Gamma correction: a) Block diagram. b) Results for different times using
SSC and ASC. c) RMSE versus time . 22

vi

2-7 a) Block diagrams for ANN. b) Stochastic implementation of a neuron
c) Sigmoid-like asynchronous activation function. d) Output of the asyn-
chronous activation function for different input currents. The smaller cur-
rent (1) results in a sharp transition while increasing the current 3X and
5X, results in a smoother transition. 24

2-8 Streams at stochastic computing neuron with 2 inputs. a) Input 0 (I0). b)
Weight 0 (W0). c) Multiplication IW0=I0⇥W0. d) Input 1 (I1). e) Weight
1 (W1). f) Multiplication IW1=I1⇥W1. g) Auxiliar stream generated with
p = 0 to control the stochastic adder. h) Adder result (Â). i) Activation
function output. 25

2-9 a) Block diagrams for ANN. b) Stochastic implementation of a neuron
c) Sigmoid-like asynchronous activation function. d) Output of the asyn-
chronous activation function for different input currents. The smaller cur-
rent (1) results in a sharp transition while increasing the current 3X and
5X, results in a smoother transition. 26

3-1 In this figure we identify the common components between the typical
approach and our approach. a) Typical SoC with a SD ADC and a digital
core for on node processing. For SC, a SNG is added before the stochastic
core. b) SC-SD. 29

3-2 SD streams (PDM) example for a sine wave. Notice that w and d change
with the input. The maximum frequency occurs when the input is 0.5, on
the other hand the frequency is zero when the input is at its minimum or
maximum. 31

3-3 Current Based ASDM building circuits: a) Adder, b) Integrator, c) Feed-
back, d) Comparator. e) SD Modulator block diagram. f) Current based
ASDM architecture. 32

3-4 Continuous blue line shows the ASDM’s frequency and power consump-
tion versus Vdd. The black square shows the frequency and power con-
sumption for the SNG used in SSC at V dd=0.7 V. 34

3-5 Stochastic multiplication with PDM streams for px = 0.6, py = 0.5 and
px py = 0.3. For this example, the streams x and y are generated with two
identical modulators. 35

3-6 a) Circuit setup for correlation study. b) Starved inverter to control the
delay in the ASDM, thus the natural frequency wc. 36

vii

3-7 Transient simulation results showing SD Streams x and y generated with
two ASDMs and the output of the stochastic multiplier (AND gate). a)
Two identical modulators. b) Two identical modulators affected by process
variation (MC simulation results) c) Two modulators set with different
natural frequencies wc1 6= wc2 . 37

3-8 Example of Monte Carlo runs for a) px = py = 0.83 and b) px = py = 0.28.
From left to right, the figures show px, py, px^y and SCC distributions. . . 38

3-9 Modulator response to the input current. a) Frequency, b) Period, c) Aver-
age (p), and d) duty-cycle (d) . 39

3-10 a) Error count for b = 1 and b = 0.9. b) RMSE in stochastic multiplication
calculated varying b from 0.1 to 0.9 for 1000 randomly generated pairs.
The maximum error happens when both ASDM have the same natural
frequency wc. 40

3-11 Gamma Correction architecture showing the original image, and for com-
parison, the image after applying gamma correction in Matlab and with
our approach. 42

3-12 Power and latency considerations . 44
3-13 Continuous-time output streams of ASDMs for a) px = �7/8 = �0.875

and b) py = 3/8 = 0.375. c) output of XNOR gate x(t)� y(t) and d)
Multiplication error versus time. Example generated with ideal Matlab
model. 45

3-14 Histograms for a) Common period Tp distribution for identical modula-
tors, that is Tcx = Tcy = Tc. b) Error distribution for identical modulators.
c) Common period Tp distribution for modulators with different natural
frequencies Tcx = bTcy and b = 0.9. d) Error distribution for modulators
with different natural frequencies. In these figures we set r=16. Note scale
changes from case to case. 47

3-15 a) Maximum Tp versus b for different grids r. 49
3-16 Error distribution for a) SSC for 16-bit stream. b) SC-ASDM for t =

4.57Tc < Tp. c) RMSE versus time for SC-ASDM compared with SSC
for r=16. For these plots r=16 and b = 0.9. 50

viii

3-17 Spice simulation for stochastic multiplication with ASD streams. The
ASDMs are designed in cadence using a FinFET1X technology for b =
0.9. a),b) Outputs for the ASDMs generated with px = py = �0.46. c)
AND gate output. d) XNOR gate output e) Estimated probability p̂z at the
output of the XNOR gate. The expected value is pz = 0.21 f) Error for
multiplication. 51

3-18 RMSE calculated for multiplication using all possible pairs of inputs given
a grid r versus time with b = 0.9. Continuous lines shows the results
from the ideal model (Matlab) ignoring initial conditions and phase shift
between signals. Individual samples marked as “r Circ", are the results
from Spice simulations including the initial condition effect. The figure
includes the SSC error for comparison. 51

3-19 Gamma correction algorithm results obtained at different computing times. 52

4-1 Example of a Spectrogram obtained after STFT calculation. a) Matlab
results b) Our accelerator results. 56

4-2 a) Block Diagram for the accelerator. b), and, c) Compares the Energy vs.
VDD for the accelerator control logic and memory banks. d) Compares
Total energy of the dual phase latch vs flip-flop implementations 59

4-3 a) Buttterfly unit as described in equation 4.2 b) ASC-FFT architecture c)
Stochastic Implementation of the BU 60

4-4 a) Example of non-scaling synchronous addition with digital integrator.
b),c) Example of asynchronous adder, input streams (b) and evolution of
the voltage in the capacitor and output stream (c). 61

4-5 Proposed asynchronous adder. A(t) and B(t) are the continuous time input
streams and Z(t) is the continuous time output stream. a) Block diagram.
b) Architecture. c), d) Current adder theory. c) Current flux when inputs
are PN or NP. d) Current flux when inputs are PP or NN. 62

4-6 Control logic for scaling (a) and non-scaling (b) adder. 63
4-7 Example for average adder. a) Input streams A(t) and B(t). b) Voltage in

the capacitor and output stream for initial condition Vc > T hr 64
4-8 Metrics of performance for the ASC-FFT compared with other architec-

tures. a) SNR versus NFFT for different SSC-FFT architectures b) SNR
versus Delay varying NFFT s. Transistor count (c), delay (d) and delay-
area product (e) for ASC-FFT and conventional FFT architectures versus
NFFT . 66

ix

4-9 Streams x and y represent number px = py = 0.25. An stochastic multiplier
can be implemented using an AND gate. Stream z is the output of the AND
gate and represents number pz = 0.0625 = px⇥ py. Dashed lines represent
the clock. 70

4-10 State of the art SSC vision chip composed of an array of Nh⇥Nv units.
Each unit has a pixel, a SSC-readout circuit which in this case is the
analog-to-stream-converter and SNG [1], and the SSC processing units
for gamma correction [2]. 73

4-11 a) Current-based asynchronous SD modulator (ASDM) architecture. b)
Multiplication setup using SD streams 74

4-12 ASDM’s output stream for a triangular waveform at the input. 74
4-13 a) Typical Analog memory architecture. Promising options for analog

memory technologies are memristors [3] [4], floating-gates [5], Ferro elec-
tric field effect transistor (FeFET) [6] and Flash [7]. b) Simplified block
diagram for an image sensor. The read-circuit includes a column paral-
lel ADC. Previous work have demonstrated DT-SD ADCs as a feasible
low-power option [8] . 75

4-14 Image sensor architecture with on-node image classification capabilities
using the machine learning algorithm Random Forest. 77

4-15 a) Single Tree example and b) the input feature vector. 78
4-16 Implementation of RaF that enables parallel execution of decision trees [9].

Each node has a high and low threshold, see row 1, column 5. In this exam-
ple, the thresholds are omitted when they are the minimum or maximum
values. 79

4-17 a) Conventional hardware implementation to compare two arbitrary num-
bers. b) SSC sign detector [10] c) Adder for asynchronous streams [11].
d) Current comparator. e) D-flipflop to keep the column status. The com-
bination of the CTS-adder and the current comparator form the continuous
time streams comparator. 80

4-18 Comparator operation example keeping the input feature (p=�0.73) con-
stant and varying the threshold (T hr) for 22 different comparisons. If
p � T hr the comparator output (out) is “1" a), b) Threshold (T hr) and
feature (p) to be compared. c) Comparator signals: Voltage in the capaci-
tor (vc) and final comparator output. 81

x

4-19 A visualization of the importance of pixels for classifying the image. Black
is assigned to unimportant features that can be discarded, while white rep-
resents the most important features. 86

4-20 Metrics of performance for the ACS architecture. a) Accuracy versus #
of cells. b) Power consumption versus number of columns for the mem-
ory interface (ASDMs) and ACS-cores for V dd1, f1. Also the combined
power consumption of the ACS-cores and the ASDMs for three different
operating points. V dd1 < V dd2 < V dd3 c) Latency versus # of cells for
three different operating points. d) Product delay product for three differ-
ent operating points. 87

5-1 A possible implementation for a transceiver (transmission-reception units)
for ACS streams. Adapted from [12]. 96

5-2 a) Analog input for the ASDM. A sine wave with period Ti, b) Output of
the ASDM with a natural frequency fc = fi ⇥ 10. c) Tx signal generated
at the transmitter. d) Rx signal at the receiver. e) Output for both envelope
detectors. f) Recovered SD stream at the output of the SR flip-flop. g)
Recovered SD stream in the presence of noise. Dashed lines represent the
expected stream, continuous line is the recovered streams. 97

5-3 Transceiver scheme for the proposed approach to an asynchronous, non-
coherent IR-UWB radio for an ACS architecture.The input x is an asyn-
chronous stream. The output is the Rx signal to be fed to a buffer driving
an antenna. 98

5-4 Power spectral density (PSD) for signal at the output of the high-Z buffer
simulated in Cadence-Spectre with a FinFET1X technology. 99

5-5 a), b) PSD for asynchronous SD stream using a modulating sine wave with
frequency fi =

fc
10 and fi =

fc
2 respectively. The figure also shows ideal

pass-band filters frequency response to recover the sine-wave from the
SD stream. c) ENoB versus fi for different pass-band filters band-width
calculated as c⇥ fi. 100

5-6 A wireless sensor architecture using SSC. In red all the digital-streams-
digital-conversion required for SSC-digital integration 101

5-7 Our approach . 102

xi

List of Tables

1.1 Summary of metrics of performance for IoT-sensors/motes reported in
ISSCC in 2018 and 2019. 5

2.1 Compares SSC and ASC probability models. We also show the expected
value E[·] and variance VAR[·] for different stochastic operations. 19

2.2 Metrics of performance for a SSC and ASC stochastic neuron building
components such as: multiplication (⇥), addition (+), and the sigmoid
function (s). Power and delay obtained for maximum frequency of op-
eration at V dd2. The streams were generated assuming the same average
number of transitions for both approaches. 27

3.1 Area-Power summary for LFSR-SNG and ASDM 33
3.2 Metrics for gamma correction. *At maximum frequency of operation. . . 43
3.3 Energy, power and latency metrics for the conventional-binary approach,

SSC and SC-ASDM. VDD=0.7V maximum frequency for circuits de-
signed in FinFET1X technology. *ADC metrics are common for Binary
and SSC . 53

4.1 Truth table for control signals for the asynchronous adder. 64
4.2 Hardware Performance Comparison. *Valid for L=4 bits. **At maximum

frequency of operation and NFFT =64 . 67
4.3 Metrics for Memories. 84
4.4 Metrics for individual components of the system 85
4.5 Accuracy obtained for different number of features, trees and leaves per

tree, with the corresponding memory array size required for RaF 89
4.6 Best accuracy for RaF, ADABoost and BRT, with the corresponding power

and latency estimates. The cost of the majority voter, pixel array is not
included since it is the same cost for conventional architectures. 91

xii

5.1 Transmitter parameters for 65nm and FinFET1x technologies. *The av-
erage power of transmitting a square wave with a frequency of 1MHz.
**Work in progress leaded by Rahul Sreekumar, member of HPLP re-
search group. 99

xiii

Chapter 1

Introduction

1.1 Motivation
Gaines [10] introduced SC around the 1960s as an efficient way to deal with algorithms
that require large arrays of elements such as adders and multipliers. At that time, the
size of the arrays were severely limited by area and power consumption. More than 50
years later these limitations have become relevant again with big data driven technologies,
like machine learning (ML) and extremely constrained energy-scavenging systems that
will shape the Internet of Things (IoT) [13], smartdust [14] [15], and edge intelligence
(EI) [16] .

Smartdust, IoT, and EI, terms coined around 1990, 1999 and 2019 respectively, share
a common base: the deployment of billions of interconnected wireless sensor nodes with
applications in the military, health management, smart farming and environmental moni-
toring among many others. Around 2003, news were spreading that by 2013 there would
be one trillion of interconnected autonomous sensors [17] [18]. It is hard to argue that
we had hit that goal by today (2019), and given the technical challenges that still need to
be addressed, we keep on moving the target date to some years in the future. Similarly,
even-though SSC yields spectacular power savings in the computing units, major draw-
backs end-up increasing the overall cost of a SSC-based system to the point it becomes
impractical.

1.1.1 Ultra-low power sensors challenges
Smartdust was originally envisioned as billions of autonomous, tiny micro-electro-mechanical
(MEM) 1mm⇥1mm⇥1mm devices, a.k.a. motes, featuring basic computation resources

1

and the ability to detect and communicate with other motes in the vicinity. Individual
motes would self-organize into ad-hoc computer networks capable of relaying data using
wireless technology [19].

Although, several technical challenges are still to be addressed to deploy the smartdust
technology, advancements in fabrication, integration and batteries have already enabled
the IoT: a conglomeration of all kinds of objects with the ability to connect to the in-
ternet such as mobile-phones, smart refrigerators or coffee makers, self-driving cars and
fitness monitors, among others. At first sight, the main difference between a mote and an
IoT-sensor is a form-factor, way larger than 1mm⇥ 1mm⇥ 1mm [14] [15]. However, the
evolution of IoT technology is uncovering the most important difference: the data flow
across the IoT ecosystem. Typically an IoT-sensor is dumb, meaning that it only collects
and transmits health, location, or environmental data, just to name a few examples. Ad-
vanced data processing relies on the intelligence of the Cloud, where data is aggregated,
storaged and analyzed enabling patterns recognition, or action triggering such as turn off
lights, lock a door, or emergency protocols. By 2017, we started to observe the IoT rela-
tively "dumb" [16], relatively large and energy unaware sensors slowly entering the market
with products such as virtual assistants or fitness monitors. Those IoT sensors don’t have
form-factor limitations, power consumption restrictions, particularly demanding process-
ing requirements or require a person to periodically replace/recharge a battery (1 day/1
week). As the IoT looks into other applications where the energy available is unreliable
and scarce, the form factors are reduced for accessibility or wearability and the cost of con-
stantly replacing/recharging batteries in embedded systems deployed in masses becomes
unfeasible, the “dumb" sensor model can’t keep up. Challenges such as: 1) applications re-
quiring low latency, that is, real-time conversion of data to information, 2) energy scarcity
for the sensors 4) privacy and 5) security still remain to be addressed to achieve the mark
of one trillion autonomous sensors wirelesly connected [16].

Moving closer to the original mote, and addressing the challenges of current IoT so-
lutions, the scientific community is moving towards EI which stresses the importance of
two main features for wireless sensor nodes:

1. Energy harvesting capabilities: Replacing or recharging batteries for one trillion
devices deployed in the field is not a practical or economical assumption. Thus
the node should be designed to operate under harvested, intermittent and restricted
energy conditions.

2. Adding “intelligence”, which in this context means processing capabilities, to the
sensor node addresses some of the IoT challenges in the following ways:

2

• Energy scarcity: One of the most expensive operations in a wireless sensor
is the transmission of raw-data which can take up to 60% of the power budget
in a node [20] [21]. Thus, adding local capabilities to transform raw data into
information for classification, decision making, context detection or analytics,
dramatically reduces the volume of data that needs to be transmitted to a central
node. Adding intelligence to the node assume that the cost of local processing
is less than that of wireless transmission of raw data.

• Real time: Many applications require responsive local decision-making [22]
and thus, real-time local computing. For example in cases where the required
responsiveness does not tolerate the latency associated with communication
with the Cloud for decision-making.

• Security and Privacy: For many applications, locally collected data are best
secured by keeping that data local and not sending it to the Cloud [16]. For
example, Apple’s Siri virtual assistant performs keyword spotting locally to
detect the trigger phrase “hey Siri” [23].

Increasing the computing power while operating from scavenged energy looks like two
opposite directions. Recent work showed that key spotting, as the one used by Apple’s
Siri, using machine learning algorithms requires 2W and 431mJ of power and energy
respectively [24], while the power budget for a battery-less IoT sensor is no more than
200µW. This is, 10K times less than the required power to run the ML algorithm on a
Raspberry Pi [25].

1.1.2 Ultra-low power sensors state of the art
To achieve ultra-low-power operation, current approaches heavily rely on reducing the
power supply to 0.3V-0.45V where yield, reliability and performance get compromised to
meet the power constrains. Table 1.1 summarizes examples of motes/IoT-sensors show-
cased at the International Solid-State Circuits Conference (ISSCC) in 2018 and 2019. A
remarkable example of low power consumption is the implantable glucose monitoring
system that senses, digitize and transmit information operating at 0.3V consuming only
1.15µW , however, this sensor does not include any processing capabilities [26]. Process-
ing capabilities are showcased in the general purpose processor that operate at 0.45V with
energy harvested from a solar cell, however the frequency of operation is limited to only
4Hz [27]. As the sensor increases the processing capabilities and include the power con-
sumption of the transducers (image processing and multi-sensor platform in Table 1.1) the

3

power consumption jumps to the order of mW. These examples discussed above have one
common feature, data representation is base 2 digital binary, moreover, the image pro-
cessing, the multi-sensor, and the general purpose platforms follow a very traditional Von
Neumann architecture.

In contrast, Table 1.1 shows the metrics of performance for a system designed for
photoplethysmography (PPG) [28] and speech processing [29] with a processing power
of 44µW and 1µW respectively. In both cases the key feature for low power operation
is enabled by the data representation. Contrary to Von Neumann architectures, in this
case periodic sampling is substituted by signal dependent schemes, where sampling is
triggered irregularly and occurs when a specified event, defined by its amplitude variation
is detected [30]. That is, the analog to digital converter (ADC) is replaced by an analog
to events converter, originating architectures with very different data-flows. These last
sensors examples, show that to achieve the final 1µW power consumption budget we may
need to overhaul the sensor architecture and re-think the data to information flow.

4

#
Pu

rp
os

e
B

ui
ld

in
g

C
om

po
-

ne
nt

s
Pr

oc
es

so
r

Te
ch

.
A

re
a

M
em

or
y

si
ze

V
dd

[V
]

Fr
eq

.
[H

z]
Po

w
er

1 [2
7]

G
en

er
al

M
C

U
,

En
er

gy
ha

r-
ve

st
in

g
(s

ol
ar

),
B

at
-

te
ry

M
SP

43
0

18
0n

m
5.

33
m

m
2

2K
B

0.
2-

1.
2

2
59

5p
W

0.
45

V

2 [3
1]

Im
ag

e
Pr

o-
ce

ss
in

g
M

C
U

,
C

N
N

ac
-

ce
le

ra
to

r,
cr

yp
to

-
en

gi
ne

,
A

FE
,

W
up

R
X

,
PM

U
,

B
at

te
ry

,
vo

lta
ge

re
gu

la
to

r,
B

LE
ra

di
o,

C
M

O
S

ca
m

er
a,

En
er

gy
ha

rv
es

tin
g

(s
ol

ar
)

G
en

er
ic

Fi
nF

ET
14

nm
33

m
m
⇥

33
m

m
51

2k
B

0.
55

-
1.

7
20

0k
-

25
0M

0.
2m

W
id

dl
e,

25
m

W
Pe

ak

3 [2
6]

G
lu

co
se

m
on

ito
rin

g
D

S-
A

D
C

+
C

lo
ck

+
A

FE
+

TX
+

FI
FO

N
o

65
nm

0.
7m

m
⇥

1.
3m

m
-

0.
3

25
6K

1.
15

µW
4 [2

9]
Sp

ee
ch

pr
oc

es
si

ng
LN

A
,

16
fil

te
r

ba
nk

s,
B

N
N

,
m

ic
ro

ph
on

e

N
o

18
0n

m
1.

6m
m
⇥

1.
5m

m
N

o
0.

55
-

0.
6

-
1µ

W

5 [2
8]

Pu
ls

eo
xi

m
et

ry
A

FE
,

a
PP

G
-to

-
cl

oc
k

co
nv

er
te

r,
di

gi
ta

l
H

ea
rt

B
ea

t
Lo

ck
ed

Lo
op

N
o

18
0n

m
-

-
3.

3
-

44
µW

6 [3
2]

B
od

y
m

ul
ti-

se
ns

or
no

de

A
cc

el
er

at
or

s,
B

lu
e-

to
ot

h,
A

FE
s,

C
lo

ck
ge

ne
ra

tio
n,

tra
ns

-
du

ce
rs

,
D

ig
ita

l
IO

A
R

M
co

rte
x

55
nm

4.
3m

m
⇥

4.
3m

m
19

2k
B

,
Fl

as
h

0.
8-

2.
8

-
2m

W

Ta
bl

e
1.

1:
Su

m
m

ar
y

of
m

et
ric

s
of

pe
rf

or
m

an
ce

fo
rI

oT
-s

en
so

rs
/m

ot
es

re
po

rte
d

in
IS

SC
C

in
20

18
an

d
20

19
.

1.1.3 SSC potential to enable ultra-low power computing
SSC is a candidate to enable high-performance low-power consumption processing capa-
bilities for the energy-constrained wireless node. In SC, a number g is associated with the
probability p of an event to occur. p is the probability of having a high (P) voltage on a
stream of bits that can only take two voltages high (P) or low (N). The streams are encoded
in either unipolar (N = 0 and P = 1) or bipolar (N = �1 and P = 1) representations. To
properly process information using SC, the input streams should be uncorrelated or in-
dependently generated. Under that assumption, a stream multiplier can be implemented
with a simple AND gate (Figure 1-1a) or an adder with a multiplexer. Figure 1-1c shows
an example for multiplication. The stream X is generated with probability px = 0.5 and
stream Y with probability py = 0.5. The output is the stream C with probability pc = 0.25.
Given the minimum footprint of its computing units SC has the potential to enable on node
high-performance, low-power data processing for energy constrained systems.

Stochastic computing is by definition a synchronous approach where each bit is the
result of a random experiment happening at the positive edge of the clock. Several re-
searchers have shown SSC applications demonstrating more than 90% of logic simplifica-
tion and robustness in the presence of bit errors [2] [33] [34]. Although very appealing,
SSC has three major drawbacks: (1) All SSC approaches in literature focus on replacing
the processing core with an stochastic computing core while keeping the remaining blocks
of the system the same. To do this all the digital binary data is converted to streams using a
Digital to Stochastic Converter, a.k.a Stochastic Number Generator (SNG), and Stochastic
to Digital Converters. Figure 1-1d shows the block diagram of a typical SNG. A Linear
Feedback Shift Register (LFSR) is used to generate pseudo-random numbers (rn) that are
compared with the digital input pg. The output of the comparator is P if pg is larger than
rn otherwise is N. In this approach, stochastic number generation can use up to 80% of
the total area and 67%-92% of the total power consumption in a SC system [2]. (2) Since
the streams are randomly generated, these must be long enough to obtain a minimum level
of accuracy. Long streams have a negative effect in latency and energy consumption. (3)
A SSC based sensor requires the generation and distribution of a very fast clock to make
up for the latency penalty incurred by the long streams of bits. The combination of these
factors results in latency, power and energy metrics 48X, 1.3X and 457X larger than the
binary counterpart [35]. These reasons make stochastic computing as we know it, very
promising but impractical for the large majority of applications.

6

Figure 1-1: Stochastic multipliers for a) unipolar b) and bipolar representation. c) Unipolar
multiplication example. d) SNG state of the art

7

1.2 Thesis Contribution: asynchronous computing with
streams

In this dissertation, we introduce asynchronous computing with streams (ACS) as a way
to leverage SSC advantages while addressing its drawbacks. In SSC, a number g is asso-
ciated with the count of Ps or “1s" in a stream of bits. In contrast for ACS data is mapped
in the following way:

Given a stream that can be in two states {N, P}, we map a number g to the percent-
age of the time the stream is at state P

This change in the stream definition originates ACS, and enables the overhaul of the
wireless sensor architecture to met the restrictive power constrains. The main contributions
of this thesis are summarized as follows.

1.2.1 Theoretical foundations for Asynchronous Stochastic Comput-
ing

Recent work [36] suggested that synchronization requirements between streams for SSC
can be relaxed, thus it was proposed to split clock domains down to the level of a hand-
ful of gates. In this way, local blocks rely on locally, independently and inexpensively
generated clocks instead of a centrally synchronized one [36]. In this work, we propose
to eliminate all system clocks and synchronization requirements originating asynchronous
stochastic computing (ASC) where the streams are continuous-in-time instead of discrete.
Given the continuous nature of this approach, the SSC-Bernoulli model does not explain
the dynamics for ASC. Thus, we need to find an appropriate model to explain ASC and
the error due to random fluctuations. Figure 1-2 contrast an asynchronous with a syn-
chronous stochastic stream for p = 0.75. Notice that for ASC the transitions occur at
random continuous-times.

In this dissertation, we develop the theoretical foundations for ASC based on two-
state-continuous-time Markov chains (2CTMC) and evaluate the metrics of performance
for the basic computing units. We calculate the generation and computation error associ-
ated with random fluctuations for asynchronous streams. These foundations enables a fair
comparison between SSC and ASC.

8

0

1

SS
C

0

1

0 2 4 6 8 10 12 14 16
A

SC
Time (s)

p = 0.5, p̂ = 0.59

p = 0.5, p̂ = 0.51

Figure 1-2: Examples for SSC and ASC for p = 0.5. Dashed lines represent the positive
edge of the clock for SSC.

1.2.2 Asynchronous stream generator
The asynchronous nature of the ASC yields savings in power and energy compared with
SSC and typical digital approaches. Encouraged by these results, the next question to
address is how to generate asynchronous streams. SSC has historically use LFSRs and
comparators to generate the stochastic streams (Figure 1-1d). However, the generation
of stochastic streams is one of the major obstacles for stochastic computing because it
increases the system cost by 80%-90% [2] and requires expensive stream-digital-stream
conversion back-and-forth.

To address the stream generation question, we realized that the strict stochastic condi-
tion for the streams can also be relaxed, opening the door for non entirely stochastic yet
cost-effective stream generation approaches. Inspired by current architectures for systems
on chip (SoC) with sensing capabilities, we propose to use an asynchronous sigma delta
modulator (ASDM), to generate asynchronous streams. We evaluate the SD streams using
stochastic computing building blocks and analyze the metrics of performance for the ap-
proach, originating SC-ASDM. Notice that ASC and SC-ASDM fall under the umbrella of
ACS.

1.2.3 Memory element for ACS
Computing with asynchronous streams has been limited to single stage simple combina-
tiona logic. However, more advanced functions such as, stochastic-tanh (stanh) based on
state machines [37], or low-error-adders [38] [39] [40] require the use of clocked flip-flops
as memory elements. The need for a clock makes this approach not compatible with an
asynchronous paradigm, thus we introduce the use of a capacitor embedded in a feed-
back loop, as a memory-element for continuous time streams and the implementation of a
low-error adder for the ACS paradigm.

9

1.2.4 Applications
To evaluate the performance of ACS compared with the synchronous counterpart and the
typical binary approach, we propose, implement and analyze three applications: 1) an im-
age processing algorithm : gamma correction; 2) a digital signal processing algorithm:
Fast Fourier Transform; and 3) random forest (Raf) inspired, machine learning (ML) al-
gorithms.

1.2.5 Wireless sensor architecture
Typical SSC approaches rely on multiple digital-to-stochastic, and stochastic-to-digital
converters to integrate the stochastic computing units with different components of the
architecture. The cost of these interfaces completely eclipses any savings in area and
power performance. We propose a novel sensor architecture that takes advantage of the
asynchronous nature of the streams and minimizes digital-to-stochastic-to-digital inter-
faces. Also, we explore the performance of three of those interfaces with: 1) analog inputs
(ADC), 2) memory and 3) communication interface.

1.3 Thesis Organization
Following this introduction, Chapter 2 includes a brief description of the theoretical foun-
dations for SSC developed by Gaines [10] in the 60s. Then we develop the theoretical
foundations for ASC and use it to understand the metrics of performance for this novel
computing paradigm. Chapter 2 will hopefully leave you intrigued given the potential
savings in power and energy of ASC.

In Chapter 3 we describe how to generate asynchronous streams. Typical SSC ap-
proaches use different sources of noise or pseudo-noise to create the stochastic streams.
Examples of these are LSFRs or magnetic tunnel junction devices [41]. Since these ex-
tra components increase the energy, power and area cost of the system, in Chapter 3 we
propose to use an asynchronous SD modulator to generate continuous-time asynchronous-
streams. These streams can be connected directly to stochastic computing units, origi-
nating stochastic computing with asynchronous SD modulators (SC-ASDM). This chapter
evaluates the metrics of performance for this approach.

In Chapter 4 we explore applications using ACS. We start our discussion with an FFT
implementation, one of the most popular yet expensive algorithms in signal processing.
We discuss the performance for ACS when multi-stage logic is required and the imple-

10

mentation of a low-error adder as a capacitor embedded in a feedback loop for the ACS
paradigm. As part of the last application, we analyze the cost of large arrays of asyn-
chronous computing elements and the use of near non-volatile, analog-memory (NAM)
computing, with an implementation of a machine learning algorithm: Random Forest
(RaF).

Finally, in Chapter 5 we discuss some future directions for the evolution of ACS.

11

Chapter 2

Asynchronous Stochastic Computing
(ASC)

In SC a multiplier is a single AND gate, while an adder is a multiplexer [10]. Both circuits
cost less than ⇠ 7% of the total area and power of conventional binary implementations.
This characteristic makes SC extremely attractive for applications that require large arrays
of computing elements like digital signal processing [11,38,42,43], Artificial Intelligence
algorithms [44–48], and the Internet of Things [49].

The key for the area and power efficiency for SSC is in the unique data representation,
which maps a quantity g to the probability p of a stream to be in one of two states {N,P}.
Figure 1-2a shows an example of a typical stochastic stream generated with probability p=
0.5 and N = 0,P = 1. SSC is an approximate paradigm, thus there is an error associated
with the stream generation that propagates through the different layers of computation. For
example, the stream in Figure 1-2a is generated with p = 0.5 but the estimated probability
p̂ from the stream is p̂ = 1

L ÂL
i=1 Xi = 0.59, where Xi is the stream at clock cycle i and L =

32. This generation and computation error can be derived by modeling the synchronous
streams as L consecutive Bernoulli trials [10].

The transitions from one state to another in the stochastic stream occur at discrete
moments of time nT where T is the clock period and n = 1,2, The need for a clock
means that similarly to binary computing, SSC rely on a robust yet expensive clock dis-
tribution network (CDN) to counteract the increased susceptibility to process-voltage-
temperature (PVT) variations, aging, device mismatch and lowering the power supply
to near-threshold and sub-threshold levels [50–52]. The energy cost and low throughput
due to long streams [2], on top of the power-area-design cost of the CDN, compromise the
initial area and power savings.

12

ASC is a novel paradigm that leverages SSC advantages, eliminates the cost of CDN
and asynchronous-handshake-circuitry, and has the potential to reduce the long latency
required to obtain acceptable accuracy. In ASC the generating probability p is mapped to
a continuous time (tP) the stream remains at state P. As we discuss on the remaining of this
chapter, this subtle change in the probability definition results in better accuracy, latency
and consequently energy metrics. Figure 1-2b shows an example of an asynchronous
stochastic stream for p = 0.5. Notice that the transitions occur at random continuous
times.

To quantify the advantages of ASC over SSC, we describe the asynchronous stochastic
streams as Two-state Continuous Time Markov Chains (2CTMC) (section 2.2), and de-
rive analytical expressions for the error associated with basic SC building blocks (section
2.3). We validate our model by comparing it with numerical simulations of 2CTMC and
Bernoulli trials. Using the probability foundations, developed in this chapter, we estimate
savings in energy/latency of 20%-50% for ASC compared with SSC for multiplication and
gamma correction (section 2.4). Based on Spice-level simulations and post-(P&R) anal-
ysis (section 2.5) of an artificial neural network (ANN) implementation we estimate that
ASC has the potential of 33%-44%, 10%-55%, and 50% savings in power, latency and
energy respectively compared with the SSC approach. These savings makes ASC a good
candidate to implement ultra-low-power machine learning accelerators for systems with
restricted power budgets such as sensors for the IoT.

2.1 Synchronous Stochastic Computing
Any type of computer that interfaces with the real world deals with analog inputs and
outputs. In a typical binary system an Analog to Digital Converter samples an analog
signal at a fixed rate to generate a deterministic set of bits [10]. Figure 2-1a shows a typical
fixed point representation of the number 4 using 8 bits. In SSC, a number g with range
0 < g < V is mapped to the probability p = g/V . In turn p is reflected on the probability
that the logic level is “P" in a stream of bits where each bit last one clock cycle [10]. Figure
2-1b shows examples of typical stochastic streams with p = 0.25, P = 1, and N = 0.

The sequences shown in Figure 2-1b are L = 8 successive Bernoulli trials, hence, we
can define the random variable (RV):

Xssc = number of samples being 1 in a sequence. (2.1)

where the sub-index “ssc" indicates that it is valid for the SSC approach. Xssc has a bi-

13

Figure 2-1: a) Typical binary data representation. b) Synchronous stochastic streams with
generating probability p = 0.25. c) Two state continuous time Markov chain model for
ASC.

nomial distribution with expected value E(X) = Lp. From a Bernoulli sequence only the
estimate p̂ssc of p can be obtained. This estimate can be expressed as p̂ssc = Xssc/L. The
expected value of p̂ssc is E[p̂ssc] = p and the associated variance VAR[p̂ssc]:

VAR[p̂ssc] =
p(1� p)

L
. (2.2)

The error between the estimated probability p̂ssc and the generating probability p is given
by the standard deviation: s(p̂ssc) =

p
VAR[p̂ssc] [10].

2.2 Asynchronous Stochastic Computing
In ASC the number g is mapped to the probability of the time the stream is at logic level
“P", thus we define a RV Xasc:

Xasc = Total time the stream is at logic level “P". (2.3)

This random experiment can be described as a two-state continuous time Markov chain
(2CTMC), which is a continuous time stochastic process {Xt} with the Markov property.
{Xt} holds the complete record of logic levels occupied by the stream at all times [53] [54]
and there are only two possible states {1, 0}. If at time t the stream is at state 0(1), it
remains in that state for a random time that is exponentially distributed with parameters
t0 = 1/p and (t1 = 1/(1� p) = 1/q). The asynchronous stream is fully described by the

14

transition matrix [53]:

P(t) =

"
q+ pe�

t
pq p� pe�

t
pq

q�qe�
t

pq p+qe�
t

pq

#
(2.4)

Similarly to the synchronous case, we can only estimate from the stream the generating
probability as:

p̂asc =
1
tL

Z tL

0
{Xt}dt (2.5)

where the sub-index “asc" indicates that it is valid for the ASC approach, and tL is the
stream length in seconds. Using 2.4 and 2.5, we obtain the expected value E[p̂asc] as:

E[p̂asc] =
1
tL

Z tL

0
E[{Xt}]dt = p (2.6)

Since the generation error is proportional to the variance we calculate VAR[p̂asc] as:

VAR[p̂asc] = E[p̂2
asc]�E[p̂asc]

2

=
2p3q3

t2
L

�
e
�tL
pq �1

�
+

2p2q2

tL

(2.7)

To verify equations 2.6 and 2.7, we compare them against the E[·] and VAR[·] calcu-
lated from 20 simulated streams using 2CTMC generators developed in Matlab (Figure 2-
2a) . The experimental E[p̂] will converge to the analytical E[p̂] as the number of samples
N in the experiment increases. The ASC models agree with the generated asynchronous
stochastic streams.

To compare ASC with SSC, Figure 2-2a also shows SSC’s E[·] and VAR[·] for both,
simulated streams and the expressions derived from the probability model described in
[10]. For a fair comparison, we assume that SSC is equivalent to ASC if the stochastic
streams for both approaches have a similar average number of transitions. For example,
L=16 (SSC) is equivalent to a computing time of tL = 8 (ASC), given a clock-cycle of 0.5
s. This clock-cycle is an arbitrary choice to simplify the mathematics but can be scaled
to µ/n/p s to match current technologies clock frequencies. As we will further discuss in
section 2.4 ASC yields a slightly smaller error due to the absence of quantization error.

15

0.4

0.5

0.6a) E[p̂] VAR[p̂]

0
0.05
0.1

0.15
0.2

0.25
0.3

0.4

0.5

0.6b) E[p̂multiplier] VAR[p̂multiplier]

0
0.05
0.1

0.15
0.2

0.25
0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10
Time (s)

c) E[p̂adder] VAR[p̂adder]

0
0.05
0.1

0.15
0.2

0.25
0.3

1 2 3 4 5 6 7 8 9 10
Time (s)

SSC Exp
ASC Exp
ASC Eq.
SSC Eq.

Figure 2-2: This figure compares the theoretical models (Eq.) with the simulated streams
(Exp.) for ASC and SSC. Synchronous streams are modeled as L consecutive Bernoulli
trials, while asynchronous streams are modeled as 2-state-continuous-time-Markov-chains
of length tL. The expected value E[p̂] is at the left while the VAR[p̂] is at the right. a)
Stream generation for p = 0.5. b) Multiplication for px = 0.7 and py = 0.7. c) Scaled
addition for px = 0.5 and py = 0.5 with pa = 0.5

2.2.1 Data Representation
Similar to SSC, in ASC the analog input g can be mapped in two ways:

Unipolar

In a unipolar representation, g in the range 0 < g <V is mapped to the range [0,1] which
is the natural range for probability [10]. Thus p = g/V , and E[p̂asc], VAR[p̂asc] are given
by (2.6) and (2.7) respectively.

Bipolar

Several applications require the use of negative numbers or a bipolar representation of
data. In the bipolar representation, the analog input g in the range �V < g <V is mapped

16

to a binary stream using the transformation [10]

p =
g

2V
+

1
2

(2.8)

In this case the maximum level V is represented by a stream that is 1 all the time. The
minimum level -V is a stream that is 0 all the time. Finally, for g = 0 the stream is
generated with p = 0.5. From (2.8), g/V = 2p� 1 thus an estimate for g/V is given by
ĝ/V = 2p̂�1 [10] and

VAR[ĝ/V] = 4VAR[p̂] = 2(1� (g/V)2)(
1
t 0L
+

e�t 0L �1
t 02L

) (2.9)

with t 0l = 4VtL/(V 2 �g).

2.3 Operations
In section 2.2 we introduced an analytic model to describe asynchronous stochastic streams
and their properties. In this section, we use this mathematical model to find the computing
error due to random fluctuation for the stochastic multiplier and adder (Figure 2-3). To
find this error, we use the estimated probability at the output of the computing block p̂z.
Thereafter, we calculate the expected value (E[·]) and variance (VAR[·]). In this chapter
we showcase the analysis for the unipolar case, however, the error for the bipolar inverter,
multiplier (2-3c) and adder can be derived using the transformation in (2.8) following a
similar methodology. Our model confirms that asynchronous and synchronous SC share
the basic combinational computing elements and enables the comparison between ASC
and SSC developed in section 2.4.

Figure 2-3: The stochastic computer basic building blocks. a) Unipolar multiplier with
streams x and y as inputs b) Inverter with stream x as input c) Bipolar multiplier with
streams x and y as inputs. d) Scaling adder with streams x and y as inputs

17

2.3.1 Unipolar multiplier
Two continuous-time streams {Xt} and {Yt} with generating probabilities px and py can
be multiplied by using an AND gate (figure 2-3a). The estimated probability at the output
of the AND gate is:

p̂z =
1
tL

Z tL

0
{Xt}{Yt}dt (2.10)

The expected value for p̂and is given by:

E[p̂z]xy = px py (2.11)

and the variance is:

VAR[p̂z]xy = p2
xVAR[p̂y]+ p2

yVAR[p̂x]

+
2a3

b2t2
L

�
e
��btL

a

�
�1

�
+

2a2

btL

(2.12)

with VAR[p̂y], VAR[p̂x] given by 2.7, a = pxqx pyqy, b = pxqx+ pyqy and tL is the comput-
ing time. Figure 2-2b shows E[p̂z] and VAR[p̂z] versus tL for px = py = 0.7. We validate
our expression with the same approach used in section 2.2. The simulated streams match
the curves described by 2.12 and 2.11. We also show the expectance and variance for SSC
multiplication [10].

2.3.2 Unipolar weighted adder
Weighted addition for two asynchronous stochastic streams can be implemented using a
2:1 Multiplexer (Figure 2-3d), where {At} is a third stochastic stream that connects the
output with one input at a time. The generating probability for {At} is pa, a scaling factor
used to guarantee that the adder result is always within the probability valid range [0,1].
For random streams {Xt}, {Yt}, and {At} the estimated probability at the output of the 2:1
Multiplexer for ASC can be found as:

p̂z =
1
tL

Z tL

0
{At}+(1�{At}){Yt}dt (2.13)

The expected value is:

E[p̂z]xy = pa px +(1� pa)py = pa px +qa py (2.14)

18

In particular, when pa = 0.5 we obtain the average adder E[p̂add] =
pX+pY

2 . The variance
can be calculated as:

VAR[p̂z]xy = VAR[p̂mult]ax +VAR[p̂mul]āy

�2px pyVAR[p̂a]
(2.15)

with VAR[p̂mult]ax, VAR[p̂mult]āy given by 2.12 and VAR[p̂a] given by 2.7. Figure 2-2
shows the E[p̂z] and VAR[p̂z] for the addition versus tL. Similarly to previous examples
we validate our mathematical expressions with simulated streams.

Table 2.1: Compares SSC and ASC probability models. We also show the expected value
E[·] and variance VAR[·] for different stochastic operations.

Parameter SSC ASC

Probability Model Binomial Distribu-
tion

2 State Continuous time
Markov Chain

Random Variable Xssc discrete Xasc continuous
Estimated probability p̂ 1

L ÂL
i Xi

1
tL

R tL
0 {X}dt

Stream Generation E[p̂] pg pg

VAR[p̂] pg(1�pg)
L

2p3q3

t2
L

�
e
�tL
pq �1

�
+ 2p2q2

tL

Multiplication E[p̂AND] px ⇥ py px ⇥ py

VAR[p̂AND]
pxVAR[p̂y] +
pyVAR[p̂x] +
L VAR[p̂x]VAR[p̂y]

p2
xVAR[p̂y] +

p2
yVAR[p̂x]

2a3

b2t2
L

�
e
��btL

a

�
�

1
�
+ 2a2

btL

Addition E[p̂ADD/2] px+py
2

px+py
2

VAR[p̂ADD/2]
paVAR[p̂x] +
(1+pa)VAR[p̂y] +
(px � py)2 VAR[p̂a]

VAR[p̂mult]ax +
VAR[p̂mul]āy �
2px pyVAR[p̂a]

Inversion E[p̂INV] �px �px

VAR[p̂INV]
pg(1�pg)

L
VAR[p̂]

2.4 Asynchronous versus Synchronous SC
In sections 2.2, 2.3 we observed that ASC yields a small accuracy improvement. In this
section, we show that this small improvement yields 20%-50% for the overall system

19

accuracy/latency. To obtain a fair comparison between SSC and ASC we apply the same
methodology used in section 2.2.

Quantization error for stream generation

0
5

10
15
20
25
30
35
40
45

-6.25 0 6.2512 18 25

C
ou

nt
⇥10

(p̂� p)⇥10�2

a)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

0 0.2 0.4 0.6 0.8 1

VA
R

[p
]

p

b)
L=16

tl = 8s

L=32
tl = 16s

L=64
tl = 32s

⇥10�2

0
0.5

1
1.5

2
2.5

0 0.2 0.4 0.6 0.8 1

VA
R

[p
]

p

c)⇥10�2

tl=8-5 s

0
1
2
3
4
5
6
7
8
9

10⇥10�2

1 2 4 8 16

R
M

SE

time (s)

d)

SSC
ASC

SSC
ASC

SSC
ASC ASC

SSC
ASC-Mult
SSC-Mult

Figure 2-4: a) Error distribution for p = 0.0625 with L=16 (SSC) and tL = 8s (ASC). b)
SSC and ASC VAR[p̂] for different computation times. b) VAR[p̂] for L=16 (SSC) and
for tL = 8s,7s,6s,5s (ASC) d) RMSE versus time for stream generation and multiplication

For SSC, p̂ is mapped to a discrete space S= [0,1/L,2/L, ...,L/L]. In contrast for ASC,
p̂ is mapped to the real numbers in the interval [0,1]. Intuitively, this difference between
continuous and discrete spaces yields a more accurate representation of the continuous
analog input. As an example, Figure 2-4a shows the histogram for the distance d = p� p̂
for 1000 SSC and ASC streams when p = 0.0625. For SSC d is quantized and is �0.0625
for ⇠350 streams. In contrast, for ASC d is distributed in the interval [�0.625� 0.1]
resulting in less than 5 streams having an error as high as �0.0625. The advantage of
ASC over SSC for all ps can be observed in the VAR[·] (Figure 2-4b). ASC yields lower
variance as p tends to the extremes given the freedom for when to transition.

This feature enables a reduction in latency for ASC. Figure 2-4d shows the root mean
squared error (RMSE) versus time (L) calculated over all possible ps representable by a
particular L. ASC requires 20% less time than the SSC counterpart, while obtaining the

20

same average error. To understand this, let’s take a look at Figure 2-4c, where we compare
VAR[p̂ssc] for L=16 with VAR[p̂asc] for t=8,7,6,5. For a small reduction in the computing
time, for example t=7 s, VAR[p̂ssc]<VAR[p̂asc] around p ⇡ 0.5, however, this is balanced
out as p moves to the edges and VAR[p̂ssc]>VAR[p̂asc] yielding a smaller RMSE for
ASC. The balancing effect dissapears when VAR[p̂asc]>VAR[p̂ssc] for the major part of
the curve.

Quantization error for Multiplication

0 .2.4.6.8 1
.2.4.6.81

0.5
1

1.5
2

2.5
⇥10�2 a) SSC

0 .2.4.6.8 1
.2.4.6.81

0.5
1

1.5
2

2.5
⇥10�2 b) ASC

pxpy pxpy

Figure 2-5: Compares the variance for synchronous (a) and asynchronous (b) multiplica-
tion.

Figures 2-5a and 2-5b show the variance for ASC and SSC multiplication for t=8s and
L=16. Similar to the stream generation error, VAR[p̂asc] <VAR[p̂ssc]. To evaluate the
overall advantage of ASC multiplication, we calculate the RMSE versus time (Figure 2-
4d). There is also a slight improvement in accuracy that reflects in a reduction in latency
of 20% for ASC.

Quantization error for Gamma Correction

To evaluate how ASC performs for an application, we implement gamma correction, an
algorithm used to control the brightness of an image. Each pixel in the image is trans-
formed by Vout =V g

in [55]. We use a compact SC architecture of gamma correction based
on Bernstein polynomials [2], depicted in Figure 2-6a. The coefficients b0 = 0.0955,
b1 = 0.7207, b2 = 0.3476, b3 = 0.9988, b4 = 0.7017, b5 = 0.9695, and b6 = 0.9939
approximate g = 0.45 [2]. We implement Continuous Time Markov Chain Generators
(CTMCG) in Matlab to generate the continuous time streams. Figure 2-6b shows the out-
put of the stochastic architecture for gamma correction obtained at different times. Notice
that ASC yields a better image quality in less computing time. To quantify the latency
savings we calculate the RMSE versus time for both SSC and ASC (Figure 2-6c). ASC
yields at least 50% of savings in latency for the same SSC accuracy.

21

Figure 2-6: Gamma correction: a) Block diagram. b) Results for different times using
SSC and ASC. c) RMSE versus time

22

2.5 Energy and power considerations
Developments in machine learning, especially in ANN algorithms, have shown commer-
cial applicability in video and natural-language processing [56]. However, an ANN usually
requires massive, power-hungry computational resources typically found only in datacen-
ters [57, 58]. Among several efforts to reduce the power/energy/area cost of ANN, is the
development of SSC-ANN [44–48].

We use an ANN as an example to evaluate how ASC measures against SSC in terms of
power, area and energy. Figure 2-7a shows the block diagram for a typical ANN composed
of interconnected neurons. Each neuron consist of (1) synapses that multiply inputs by
weights and (2) sigmoid-like activation function (s) applied on the sum of the output of
the synapses [59]. Figure 2-7b shows the stochastic implementation of the neuron. While
the bipolar multipliers and adders are common for the ASC and SSC approaches, there is
not an ASC equivalent for the activation function. In SSC, the activation function is the
stochastic tanh(N,x), implemented as a state machine with N states [37]. Unfortunately
such implementation requires clocked flip-flops not compatible with ASC. In this work,
we use a charge pump integrator to implement the activation function (Figure 2-7c). A
charge pump consist of a current source (I1) and sink (I2) of equal magnitude separated
by switches s1 and s2. The inverter acts as a current comparator [60]. In the neuron, the
output of the adder controls s1(s2) such that charge is pumped in and out of the capacitor
Cp. Figure 2-7d shows the estimated average p̂o of the output of the activation function for
different values of I1(I2). Figure 2-8 shows an example of the streams at different stages
of the ASC-neuron obtained from Spice level simulations, in particular, notice the stream
nature for the output of the activation function (Figure 2-8i). We implement a single layer
of a fully connected ANN for both SSC (multiplier-adder-activation function) and ASC
(multiplier-adder) using SystemVerilog. We run synthesis and P&R for both approaches,
using a FinFET1X technology foundry models for three different power supplies. V dd3 is
the technology’s nominal power supply, V dd2 =V dd3�0.1 and V dd1 =V dd2�0.1. For
the purposes of P&R, we model the ASC activation function as an inverter (switches s1
and s2). Since the ASC activation function is not included in the P&R flow, we compare
its metrics of performance using Spice-level simulations (Table 2.2). These results can be
extrapolated to several layers, given the regularity of the ANN architecture.

2.5.1 Power and area analysis
The dynamic power Pdyn = CLV 2

dd f0!1 dissipated by the computing units (section 2.3)
is in average the same for both ASC and SSC, because the circuit capacitance CL and

23

Figure 2-7: a) Block diagrams for ANN. b) Stochastic implementation of a neuron c)
Sigmoid-like asynchronous activation function. d) Output of the asynchronous activation
function for different input currents. The smaller current (1) results in a sharp transition
while increasing the current 3X and 5X, results in a smoother transition.

24

0
1I0a)

p =�0.6, p̂ =�0.52

0
1

W
0

b)

p =�0.96, p̂ =�0.97

0
1

IW
0

c)
p = 0.58, p̂ = 0.49

0
1I1d)

p = 0.26, p̂ = 0.48

0
1

W
1e)

p = 0.64, p̂ = 0.68

0
1

IW
1

f)

p = 0.16, p̂ = 0.24

0
1

C
trlg)

p = 0.0, p̂ =�0.04

0
1Âh)

p = 0.37, p̂ = 0.29

0
1

0 2 4 6 8 10 12 14

O
uti)

Time (ns)

p̂ = 0.13

Figure 2-8: Streams at stochastic computing neuron with 2 inputs. a) Input 0 (I0). b)
Weight 0 (W0). c) Multiplication IW0=I0⇥W0. d) Input 1 (I1). e) Weight 1 (W1).
f) Multiplication IW1=I1⇥W1. g) Auxiliar stream generated with p = 0 to control the
stochastic adder. h) Adder result (Â). i) Activation function output.

the power supply Vdd are identical, and we assume a comparable average transition rate
(f0!1). However, ASC has the potential for power savings due to the elimination of the
CDN (typical digital paradigm) or handshake signals (typical asynchronous paradigm).

Figure 2-9a shows the gate count for ASC and SSC after P&R. SSC requires in average
5X more buffers and 9X more inverters than ASC to compensate for PVT variations. The
increment of buffer and inverters is more evident as the power supply is reduced. For
V dd1 SSC requires at least 18X more inverters than ASC, while for V dd3 SSC requires
only 5X more inverters than ASC. This increment in the number of buffers/inverters can
be directly translated to an increment in power/area consumption. Figure 2-9c shows the
percentage of the power dedicated solely to the CDN for the SSC approach. Given the
absence of CDN in ASC we can infer savings in power of at least 33%-44%.

25

Figure 2-9: a) Block diagrams for ANN. b) Stochastic implementation of a neuron c)
Sigmoid-like asynchronous activation function. d) Output of the asynchronous activation
function for different input currents. The smaller current (1) results in a sharp transition
while increasing the current 3X and 5X, results in a smoother transition.

2.5.2 Delay
In section 2.3, we assume ideal circuits with zero propagation delay tp. For real circuits
tp 6= 0 and depends on the logic-gate output load and PVT variation. Figure 2-9b shows the
minimum propagation delay tp for both ASC and SSC obtained after P&R. Notice that for
V dd1, the difference in tp is only 10% given the more pronounced effect of PVT variation
for both approaches. However as the power supply increases the propagation delay for
ASC is 52% smaller than for SSC.

2.5.3 Energy
Dynamic energy can be estimated as Edyn = PdyntL. A reduction in either Pdyn or tL, yields
equivalent savings in energy. From the previous discussion about power and delay we can
argue at least 10%, or up to 52% savings in energy due to the latency reduction and the
CDN elimination.

To estimate the energy consumption for both approaches we obtain the metrics of
performance (Table 2.2) from Spice-level simulations for the ASC and SSC neuron with
two inputs. ASC saves 50% of energy compared with the SSC for a stochastic neuron

26

implementation.

Table 2.2: Metrics of performance for a SSC and ASC stochastic neuron building compo-
nents such as: multiplication (⇥), addition (+), and the sigmoid function (s). Power and
delay obtained for maximum frequency of operation at V dd2. The streams were generated
assuming the same average number of transitions for both approaches.

ASC SSC
⇥ + s Total ⇥ + s Total

Latency (ns) 9.6 16
Power (µW) 5.4 3.3 7.9 16.6 2.9 3.2 1.4 7.5
Energy (fJ) 52 32 75 160 47 51 224 322

2.6 Conclusion
This chapter develops theoretical foundations for ASC, modeling the asynchronous streams
stochastic behavior with a 2CTMC. Using our model, we analyze the error due to random
fluctuations for the stochastic multiplier and adder. One of the major roadblocks for SSC
is the long computation latency required to obtain acceptable accuracy. A comparison be-
tween the probability models shows that ASC yields 20% and 50% of savings in latency
for multiplication and gamma correction respectively. Moreover one of the most attractive
features of ASC is the elimination of CDN or asynchronous hand-shake circuits. For a
single layer in an ANN, we find that ASC yields savings of at least 33%-44% and 10%-
50% in power and latency respectively after P&R. Spice-level simulations for a typical
stochastic neuron show that ASC saves 50% in energy compared with SSC. The savings in
power, latency and energy makes ASC an alternative to reduce the power consumption of
complex machine learning algorithms, enabling artificial intelligence in power constrained
environments such as the Internet of Things.

27

Chapter 3

Asynchronous computing on SD streams

3.1 Introduction
The previous chapter introduced asynchronous stochastic computing and analyzed the
computing error due to random fluctuations, finding that ASC yields savings in power,
latency and energy for the stochastic computing units compared with the SSC paradigm.
In this chapter we shift our attention towards how to generate these asynchronous streams.

The main advantages of SC are the simplicity of the logic required for otherwise com-
plex functions and the robustness in the presence of bit errors (flipped-bits) [2] [33] [34].
However, one of the roadblocks for SC mainstream adoption is the stream generation.
Currently, the streams are generated using LFSRs to generate pseudo-random numbers
(Figure 1-1d). In this approach, SNG can use up to 80% of the total area and 67%-92% of
the total power consumption in a SC system [2].

In this work, we propose to apply SC directly on SD streams in order to minimize
the power associated with SNG. This approach is specially advantageous for Systems on
Chip (SoCs) with sensing capabilities which already include a SD modulator as part of
the Analog to Digital Converter (ADC) (Figure 3-1a). Instead of adding the LFSR based
SNG to convert the binary data back to a stream (Figure 3-1a), we propose to simplify the
node by computing directly on the streams generated by the SD modulator (Figure 3-1b).
Our approach eliminates the power and area associated with the SNG and digital filters
in the ADCs. To further minimize the power consumption of the proposed system, we
use a current-based asynchronous SD modulator. Operating in current mode simplifies the
building circuits for the modulator and the asynchronous nature posses several benefits
described in Section 3.2.3.

Applying SC directly on the SD streams is not a straightforward solution because those

28

Figure 3-1: In this figure we identify the common components between the typical ap-
proach and our approach. a) Typical SoC with a SD ADC and a digital core for on node
processing. For SC, a SNG is added before the stochastic core. b) SC-SD.

streams are highly correlated. For example, multiplying SD streams x, y with an AND gate,
when x = y, yields to px^y = px = py instead of px^y = px py. To address these challenges,
in this work, we propose for the first time, to the best of our knowledge, to use SC directly
on pulse density modulated (PDM) streams by :

1. Using the ASDM as a low power solution for the analog to streams generator. (Sec-
tion 3.2.3)

2. Exploring reducing the correlation between PDM streams generated with SD mod-
ulators in two ways (Section 3.4):

(a) Taking advantage of on-chip process variation as a source of randomness for
SD streams.

(b) Shifting the modulator natural frequency of oscillation (wc).

We demonstrate the potential of these ideas to achieve low energy SC-inspired com-
putation by implementing a widely used image processing algorithm (gamma correction)
with the streams generated from ASDMs (Section 3.5). We implement the Gamma cor-
rection application in an industry-standard 1xFinFET technology. Simulation results show
98%-11% savings in the total system latency, and, 50%-38% in power savings when com-
pared with the binary counterpart or the SC-LFSR approach. Due to the fact that the front

29

end stages and the SNG circuits have been simplified, we believe that similar savings can
be achieved by implementing the proposed techniques on other applications as well.

3.2 Background

3.2.1 Computation on SD streams
Different approaches have been proposed for operating directly on SD streams with 1-bit
stream processors. One approach is to modify the structure of the modulator to implement
complex functions like filtering [61] [62]. However the output of the modulator is not the
raw stream but a modified version. A second approach operates over the SD streams using
counters or transversal filters [63] [64] [40]. Both approaches are difficult to generalize
for different applications and some include the use of analog blocks that increase the com-
plexity of the design. Non of these approaches apply SC for processing the SD streams.
Analog to stochastic converters in literature, combining ADC with LFSRs do not improve
power-area metrics [65] [66]. To the best of our knowledge, our work is the first to ap-
ply stochastic computing directly on PDM streams as generated with an asynchronous SD
modulator, and to discuss methods to lower the correlation among the streams.

3.2.2 Pulse modulation
SD modulators generate Pulse Density Modulated (PDM) streams, which encode the input
into the density of pulses as shown in Figure 3-2. More formally, PDM sets the duty cycle
d and the angular frequency w = 2p/T of the output stream according to [67]:

d =
I +1

2
w
wc

= 1� I2 for |I|< 1 (3.1)

with wc the natural frequency of the modulator or the frequency of oscillation when the
input is zero [67], T the period and I the input normalized by its maximum value. Note
that the average value of the output stream, which represent its probability, is given dvh.

3.2.3 The asynchronous SD modulator
To implement the SD modulator we adopt two design techniques that present several ad-
vantages over more conventional clocked plus switched-capacitors schemes:

30

Figure 3-2: SD streams (PDM) example for a sine wave. Notice that w and d change with
the input. The maximum frequency occurs when the input is 0.5, on the other hand the
frequency is zero when the input is at its minimum or maximum.

1. Current-based design, which reduces area and power by eliminating switched ca-
pacitors and high gain active components. Reducing the circuit capacitance to only
the parasitic capacitance associated with transistors allows an increase in the sam-
pling rate [68] [69].

2. Asynchronous modulation, which switches only when the input integrator crosses
a threshold instead of at each clock cycle, reducing the activity factor (a). This
combined with a simpler integrator leads to power and area savings. Moreover, the
lack of sampling and hold circuits eliminates errors due to charge injection, switch
non-linearity, clock feed-through and finite settling time [70] [30].

Figure 3-3e shows the block diagram of the ASDM. It includes an integrator, a quan-
tizer, a feedback element and an adder. The modulator takes the difference between the
input signal Xin and the output signal Vout and integrates it until the comparator (quantizer),
threshold is reached. Then the output is reversed and the integration starts again. While
the pulse at the output has a constant amplitude of vh, the transition time related with w
and pulse width related with d depend on the input signal dynamics, thus the stream is
discrete in amplitude but continuous in time.

Each building block of the ASDM is broken down in circuit elements in Figure 3-3. By

31

Figure 3-3: Current Based ASDM building circuits: a) Adder, b) Integrator, c) Feedback,
d) Comparator. e) SD Modulator block diagram. f) Current based ASDM architecture.

32

Table 3.1: Area-Power summary for LFSR-SNG and ASDM

SNG Area (µm2) Power (µW) @1GHz Technology
LFSR 22 138 1XFinFET
ASDM 9 26 1XFinFET

Kirchhoff law, the current adder is just connecting the currents to the same node (Figure
3-3a). The integrator is a capacitor (Figure 3-3b) whose voltage Vc is proportional to the
integral of its current ic. The current comparator is a CMOS inverter (Figure 3-3d) [71].
Iin greater than zero charges the input capacitor Cgs until Vgs is higher than the inverter
threshold voltage, causing the output of the inverter to go low. On the other hand, Iin less
than zero pulls the input to ground, hence the output will be high. Finally, the digital-to-
analog feedback circuit, shown in Figure 3-3c, has two possible states. When the output is
low, transistor M1 is off and the current is zero. When the output is high, transistor M1 is
on and current is kIre f where k denotes the feedback gain.

3.3 Modulator architecture
We propose to implement the ASDM shown in Figure 3-3e using the architecture de-
scribed in Figure 3-3f. To adjust the time to start the integration cycle again, we use
inverter chains. The capacitor used for integration is the comparator input capacitance Ci.
Minimum size inverters are used to isolate the modulator from the output. We use a state
of the art 1xFinFET process and simulate it using Cadence Spectre. The area and power
metrics are summarized in Table 3.1. The modulator’s power consumption depends on the
input current Iin. When the input current is at its minimum or maximum, a = 0 and the
power consumed by the modulator is 6.8µW . When the modulator operates at the natural
frequency a = 1 the power consumed is 47µW . The calculated average power is 26µW .
For comparison we implement a LFSR based SNG in SystemVerilog and run synthesis and
place and route using the cadence tool flow to obtain power and area metrics. Compared
with a single LFSR based SNG implemented in the same technology the ASDM approach
can save up to 81% in power consumption. In applications where more than one LFSR is
used, we can replace each LFSR by a modulator thus similar savings are expected.

To improve the modulator’s signal to noise response at the expense of an increment in
latency and circuit area we add a 3 fF capacitor as the integrator. The ASDM is designed
in Cadence-Virtuoso using a FinFet1X technology. Figure 3-4 shows the frequency and
power consumption for the ASDM versus power supply V dd. For comparison, we include

33

the frequency and power consumption for a SNG used in SSC, for V dd = 0.7 V. Figure 3-4
shows that the natural frequency (fc) of the modulator and the frequency for the SNG are
comparable. On the other hand, the power consumption, of the SSC-SNG is at least two
orders of magnitude larger. Section 3.9 further compares the energy consumption for SSC,
binary and SC-ASDM.

10�2
10�1

100
101

0.4 0.5 0.6 0.7 0.8
V dd

Frequency (GHz)

10�2
10�1

100
101
102
103

0.4 0.5 0.6 0.7 0.8
V dd

Power (uW)

SNG-SSC SNG-SSC

Figure 3-4: Continuous blue line shows the ASDM’s frequency and power consumption
versus Vdd. The black square shows the frequency and power consumption for the SNG
used in SSC at V dd=0.7 V.

3.4 Correlation between SD streams
In certain cases we can directly multiply two SD streams with the stochastic multiplier
(AND/XOR gate). Figure 3-5 shows PDM streams x and y generated by identical SD
modulators where px = 0.6, py = 0.5, and the output of an stochastic multiplier px^y =
px py = 0.3. The key for obtaining the correct multiplication is that Tx and Ty are relatively
prime, similar to Pulse Width Modulated (PWM) streams running at different frequencies
[72]. Contrary to PWM, the frequency of PDM streams is not constant but varies with the
input (Equation 3.1), thus we cannot guarantee inharmonicity between streams for all the
cases. For example, when x = y (Figure 3-7a) the px^y = px = py instead of px py.

The accuracy for stochastic multiplication or other stochastic functions depends on
how uncorrelated are the input streams. To quantify correlation between streams, we cal-
culate the Stochastic Computing Correlation (SCC) [34] for streams x and y, with proba-
bilities px and py:

SCC(X ,Y) =

8
<

:

px^y�px py
min(px,py)�px py

px^y � px py
px^y�px py

px py�max(px+py�1,0) otherwise,
(3.2)

where the probability p is defined as p= 1
T
R T

0 x(t)dt and x(t) is a stream of bits. Intuitively,
the SCC indicates how similar streams are to each other. SCC = +1 means maximum
similarity between streams. SCC = �1 means minimum similarity, and, SCC = 0 means

34

Figure 3-5: Stochastic multiplication with PDM streams for px = 0.6, py = 0.5 and px py =
0.3. For this example, the streams x and y are generated with two identical modulators.

the sequences are uncorrelated. In this section we explore how to make SCC = 0 for SD
streams relying on: Process variations (Section 3.4.1) and shifting the modulator’s natural
frequency wc (Section 3.4.2).

3.4.1 Process variations
The random nature of process variations [73] inspires us to explore its potential as a source
of randomness for stream generation. To that end, we run Monte Carlo (MC) simulations
of two identical ASDMs connected to an AND gate as shown in Figure 3-6a (ignore for
now Vb1 and Vb2). The system was simulated using Cadence Virtuoso with the foundry
provided MC models. The SCC was calculated with px, py, and px^y obtained as the
average voltage at the output of each modulator and the AND gate respectively. Figure
3-7b shows x, y, and x^y streams for one MC run, where the streams are different enough
so px^y ⇡ px py. Figure 3-8 shows the MC results distribution for two examples: a) px =
py = 0.83, and b) px = py = 0.28 with the corresponding px^y and SCC. Note that the
mean (µ) for x and y in both examples is the expected px, py. The variance (s2) is less
than 10mV .

The multiplication error depends on the streams associated probability p, since a larger
p result in a lower relative error. For example when px = py = 0.83 (Figure 3-8a), 77% of

35

Figure 3-6: a) Circuit setup for correlation study. b) Starved inverter to control the delay
in the ASDM, thus the natural frequency wc.

the samples have a multiplication error lower than 3% while only 3% of the samples have
an error larger than 5%. On the other hand, when px = py = 0.23 (Figure 3-8b) only 20%
of the samples have a multiplication error of less than 3% and 61% of the samples present
an error larger than 5%. Those examples show different multiplication error for the same
on-chip process variations.

In contrast with the multiplication error, SCC gives more cohesive results (Figure 3-8).
In both examples, SCC indicates that from solely process variation we expect ⇠ 50% of
the samples to have a correlation as low as |SCC|< 0.1 and ⇠ 88% of the samples have a
|SCC|< 0.3.

Depending on the application, process variation alone might not lower the correlation
between streams enough to yield an acceptable error. Figure 3-8a shows how process vari-
ation keeps the stochastic multiplication error between PDM streams < 5%. On the other
hand, Figure 3-8b shows that process variation lowers the correlation between streams but
do not guarantee a low enough SCC. In the case of multiplying small stochastic numbers
the requirement for SCC ! 0 is critical for a good stochastic performance and process
variation alone do not suffice.

3.4.2 Frequency shifting
Although process variation cannot 100% guarantee SCC ! 0, it causes the stream’s fre-
quency to shift, which in turn reduces the correlation between streams, compare Figure3-
7b (streams affected by process variation) with Figure3-7a (ideal case). Inspired by this
observation, we can deliberately decrease SCC by using different natural frequencies wc1

36

Figure 3-7: Transient simulation results showing SD Streams x and y generated with two
ASDMs and the output of the stochastic multiplier (AND gate). a) Two identical modula-
tors. b) Two identical modulators affected by process variation (MC simulation results) c)
Two modulators set with different natural frequencies wc1 6= wc2

37

Figure 3-8: Example of Monte Carlo runs for a) px = py = 0.83 and b) px = py = 0.28.
From left to right, the figures show px, py, px^y and SCC distributions.

and wc2 for the modulators generating the streams x and y. To implement this, we replace
the regular inverters in the ASDM delay chain (Figure 3-3f) for starved-inverters (Figure 3-
6b) controlled by a bias voltage vb. Different voltages for vb result in different wc. Figures
3-9a and 3-9d show the frequency and d of the ASDM set to operate at different natural
frequencies wc1, wc2, wc3. The difference between Vb1 and Vb2 is 100mV and between
Vb1 and Vb3 is 500mV . Although the frequency of operation changes, the duty cycle d
(Figure 3-9d) which is related to the probability p or stream average (Figure 3-9c) remains
unaffected.

Shifting the natural frequency wc of the modulators decreases the correlation between
streams which is reflected in lower error levels for SC. We use the setup shown in Figure
3-6a with the modified ASDM including the variable delay chain. Figure 3-7c shows an
example of streams generated with this setup for vb1 6= vb2. In this case, SCC = 0.008
and the px ^ py = px py = 0.22. We repeat this simulation using 1000 randomly generated
pairs of inputs, calculate the multiplication error as Error = px py�px^y

px py
and get the error

histogram envelopes (Figure 3-10a). We define b = wc1/wc2 as the ratio between the
modulators natural frequencies. Notice that for modulator x and y in Figure 3-6a vb1 and
vb2 are fixed, which in turn fixes wc1 and wc2. With this we guarantee wc1 6= wc2 however

38

Figure 3-9: Modulator response to the input current. a) Frequency, b) Period, c) Average
(p), and d) duty-cycle (d)

the frequency w for each PDM stream changes with the input as described in equation 3.1.
Our simulations confirm that using modulators with different natural frequencies re-

duces the multiplication error. Figure 3-10a, compares the error distribution for b = 0.9
and b = 1. When b = 1 we obtain a wider distribution whose µ is far from zero, caused
by pairs where wc1 ⇠ nwc2. On the other hand, for b = 0.9 the error distribution narrows
down around zero, such that 80% of the samples have an error less than 0.04 and only 9%
of the samples have an error larger than 0.1. The reduction in multiplication error when
using different natural frequencies shows that PDM streams are good candidates for SC.

To evaluate how the error depends on the difference between modulations frequencies,
we use a first order Verilog-A model to vary b within (0�1]. We randomly generate 1000

39

pairs of inputs and calculate the Root Mean Squared Error (RMSE) for each b (Figure
3-10b). We find that increasing the distance between wc1, and wc2 reduces the error except
for an increment observed when wc1 = nwc1 or Tc1 = (1/n)Tc2. Those peaks in the error
result from an increase of the total number of cases with harmonic input frequencies. On
the other hand, we observe a drop in the error even for wc1 close to wc2 (b = 0.9). Finally,
the minimum error happens when b = 0.1 which increases the operation time.

Figure 3-10: a) Error count for b = 1 and b = 0.9. b) RMSE in stochastic multiplication
calculated varying b from 0.1 to 0.9 for 1000 randomly generated pairs. The maximum
error happens when both ASDM have the same natural frequency wc.

The results in this section show that shifting wc1 from wc2 lowers the correlation be-
tween the streams enough so we can use SC techniques directly on PDM streams as gen-
erated with a SD-Modulator. Even for wc1 being very close to wc2 we still obtain a RMSE
of 0.05 for stochastic multiplication.

3.5 Evaluation results
In section 3.4 we explored how to lower the correlation between PDM streams. We found
that setting wc1 6= wc2 the streams generated by two asynchronous modulators have a low
SCC index. For the specific case of stochastic multiplication we showed that we reduce
the RMSE by 70% without increasing the stream length (usually done in typical SC).

40

Stochastic computing has great potential for being used in several applications, and more
complex SC applications require more than two SNGs. In these cases, we would want to
replace each SNG by an ASDM. We envision that the significant power and area savings
reported in section 3.2.3 still apply. To evaluate these ideas we implement the Gamma
Correction algorithm. This algorithm requires the generation of 13 different streams. In
the remaining of this section we will describe the implementation and explore the area,
power, and energy metrics.

Gamma correction is a popular image processing algorithm used to code and decode
luminance and tristimulus values, defined by the relation Vout =V g

in [55]. We use a compact
SC architecture of gamma correction based on Bernstein polynomials [2], depicted in
Figure 3-11. The coefficients b0 = 0.0955, b1 = 0.7207, b2 = 0.3476, b3 = 0.9988, b4 =
0.7017, b5 = 0.9695, and b6 = 0.9939 approximate g = 0.45 [2]. The input xi corresponds
to each pixel in the image to be processed. To generate the coefficients we use 7 ASDMs.
Since this is a multiplexer based operation, the correlation between the multiplexer inputs
does not affect the output accuracy [74]. Thus, all the ASDM generating the coefficients
are set to operate at the same natural frequency wc1. To generate xi we use one more
ASDM operating at a different natural frequency wc2. Non-correlated versions of xi are
created by using different delayed versions of xi [10]. Notice that in this system we use
8 ASDMs in total, the streams generated from the pixels Pi and the coefficients b should
have a low SCC thus we use two different natural frequencies wc1 6= wc2 as discussed in
section 3.4. Two different bias voltages vb1 6= vb2 are used to enable this. All the stream
frequencies therefore depend on the natural frequency of the modulators wc1 or wc2 which
are constant and the input as described in equation 3.1 which varies with the corresponding
coefficient or pixel value.

We implement this SC gamma correction architecture using a 1xFinFET technology
and simulate the circuit using Cadence Spectre. The power and latency metrics are ex-
tracted from spectre level simulation results. For comparison, we also design using Sys-
temVerilog and run synthesize and place and route for the LFSR-SC approach and the typ-
ical binary approach. To estimate the power, area, latency and energy metrics we use the
post place-and-route results obtained from the Cadence Innovus (P&R tool). The metrics
for the three implementations are summarized in Table 3.2. Figure 3-11 shows the origi-
nal image, the output of the stochastic gamma correction circuit, and the Matlab gamma
correction results for comparison. The calculated ERMS with our approach is only 2.54%.

41

Figure 3-11: Gamma Correction architecture showing the original image, and for compar-
ison, the image after applying gamma correction in Matlab and with our approach.

42

Ta
bl

e
3.

2:
M

et
ric

s
fo

rg
am

m
a

co
rr

ec
tio

n.
*A

tm
ax

im
um

fr
eq

ue
nc

y
of

op
er

at
io

n.

A
pp

ro
ac

h
A

re
a

(µ
m

2)
G

at
e

C
ou

nt
Po

w
er

(µ
W

)
En

er
gy

D
el

ay
Te

ch
no

lo
gy

La
te

nc
y

co
re

SN
G

to
ta

l
co

re
SN

G
To

ta
l

co
re

SN
G

To
ta

l
(p

J)
(n

s)
(n

s)
C

on
ve

nt
io

na
l-B

in
ar

y
72

-
14

5
42

2
-

42
2

82
4

-
82

4
0.

49
0.

5
Fi

nF
ET

4.
3

St
oc

ha
st

ic
+L

FS
R

5
18

5
19

0
13

36
2

37
5

51
10

47
10

98
22

4
20

4
Fi

nF
ET

20
7.

8
St

oc
ha

st
ic

+P
W

M
[7

2]
76

67
8

75
4

-
-

-
-

-
16

90
3

1.
8

45
nm

-
Th

is
W

or
k

5
91

10
0

13
-

-
51

25
4

30
5

1.
16

3.
8

Fi
nF

ET
3.

8

Latency: We estimate 97% and 11% latency savings when compared with the SC-
LFSR and the binary approach respectively. The savings result from using an analog to
stochastic converter instead of the typical analog to binary to stochastic approach. Figure
3-12 compares the latency for the three approaches. tADC is the ADC conversion time, and
tb, tSC are the binary and stochastic processing times. In SC-SD, the stream length (tADC)
depends on the T for the modulators. While processing SD streams with SC only takes
tADC, in a binary system processing a sample takes tb longer.

Power: Operating on PDM streams as generated with the ASDM saves power follow-
ing the SC original intention. Table 3.2 shows that a typical SC-LFSR gamma correction
design consumes up to 25% more power than its binary counterpart and 97% is dedicated
to SNG. With our approach we replace the LFSRs with ASDMs. This approach lowers the
power by up to 62% when compared with the binary counterpart.

Figure 3-12: Power and latency considerations

Energy: In this work, we lower the power and total system latency. Thus, contrary to
any other SC architecture, we expect energy savings in spite of processing streams instead
of compact binary numbers. Simplified energy expressions for binary (Ebinary), SC-LFSR
(ESC) and a SC-SD (ESCSD) are:

Ebinary = PSDtADC +PFiltertADC +Pbinarytb (3.3)
ESC = PSDtADC +PFiltertADC +PSNGtSC +PSCtSC (3.4)

ESCSD = PSDtADC +PSNGtADC +PSCtADC (3.5)

where PSD, and PFilter are the power associated with the modulator and filters in the ADC.

44

PSNG, and, PSC are the power associated with the SNG and the stochastic core and Pbinary
is the power consumed by a typical binary core. As usually presented in the literature, the
energy reported in Table 3.2 for the binary approach only includes Pbinarytb, neglecting the
energy associated with the analog to binary conversion. We estimate this neglected energy
to be about 12pJ per clock-cycle. For this, we implement a 32-tap Finite Impulse Response
(FIR) filter with one multiplier (typically used for SD ADCs) [75] using SystemVerilog.
We run synthesis using the 1xFinFET library and find the energy associated with this filter.
After the neglected terms are included, we find that SC-SD saves up to 90% in energy when
compared with the binary counterpart.

3.6 Theoretical foundations of computing with asynchronous
SD streams

Figure 3-6a shows a typical stochastic bipolar multiplier (XNOR gate) connected to ASDMs
and Figure 3-13 shows a multiplication example. In this example, the ASDMs generate
streams x(t), y(t) with px =�7/8, py = 3/8 and periods Tx ⇡ 0.1µs and Ty ⇡ 0.4µs. Since
Tx 6= Ty, the two streams drift relative to each other over time. The drift pattern repeats at
the least common multiple (LCM) of the periods Tp =LCM(Tx,Ty)= 1.28µs (marked by a
green line in Figure 3-13), that is, the output of the XNOR gate is periodic with period Tp.

Figure 3-13: Continuous-time output streams of ASDMs for a) px =�7/8 =�0.875 and
b) py = 3/8= 0.375. c) output of XNOR gate x(t)�y(t) and d) Multiplication error versus
time. Example generated with ideal Matlab model.

To obtain the output of the multiplier pz, we integrate the output stream z(t) over the
computing time t. Thus, pz(t) = 1

t
R t

0 x(t 0)�y(t 0)dt 0 = 1
t
R t

0 z(t 0)dt 0 and the computing error
is Esd(t) = |pz(t)� px py| (Figure 3-13d). The error decreases with time and becomes quite

45

small. In the following sections we (1) quantify the magnitude of the error, that is, how
small is small? and (2) study the error-latency trade-off. These contributions allow us to
identify the necessary computing time given an accuracy requirement.

Although in this work we focus our efforts in the bipolar stochastic multiplier our
results can be extended to other combinational stochastic logic as we will show in sec-
tion 3.9.

3.7 Theoretical model for SC-ASDM
To find the asymptotic computation error for SC-ASDM, we note the ASD streams peri-
odicity and work in the Fourier space. For a stream x(t), the Fourier series expansion is
given by

x(t) = px +4dx

•

Â
n=1

sinc(ndx)cos
✓

2p n
Tx

t
◆
, (3.6)

where sinc(ndx) =
sin(npdx)

npdx
, and the period Tx and duty-cycle dx depend on the modulator’s

input px (equation 3.1). The output of the XNOR gate z(t) is the multiplication of the
Fourier series expansions for streams x(t) and y(t). Therefore, the multiplication error
Esd�F can be expressed as

Esd�F(t) =
1
t

�����4pxdy

•

Â
m=1

sinc(mdy)
Z t

0
cos

✓
2p m

Ty
t 0
◆

dt 0

+4pydx

•

Â
n=1

sinc(ndx)
Z t

0
cos

✓
2p n

Tx
t 0
◆

dt 0

+8dxdy

•

Â
n=1

•

Â
m=1

sinc(ndx)sinc(mdy)

Z t

0
cos

✓
2p

✓
n
Tx

+
m
Ty

◆
t 0
◆

+ cos
✓

2p
✓

n
Tx

� m
Ty

◆
t 0
◆

dt 0
������.

(3.7)

Esd�F oscillates over time, due to the mixing of cosine integrals that causes maximums
and minimums that depend heavily on the signals’ phase. However as t increases, the
fluctuations die off as 1/t, settling around an asymptotic error.

46

To find this asymptotic error, we observe that the first and second terms in (3.7) inte-
grate to zero for multiples of Tx and Ty respectively. For the third term, cos(2p(n

Tx
+ m

Ty
)t 0)

integrates to zero at t = Tp =LCM(Tx,Ty) = NTx = MTy with N,M integers. However,
cos(2p(n

Tx
� m

Ty
)t 0) = 1 when n

Ty
= m

Tx
which occurs at multiples of Tp and pairs (n,m) =

(kM,kN) with k = 1,2,3... Therefore, the asymptotic error for a given pair of SD streams
x(t), y(t) is

Esd�F(Tp) = Esd�T p = 8dxdy

•

Â
k=1

sinc(kMdx)sinc(kNdy). (3.8)

Equation (3.8) constitutes a fundamental limit to the achievable accuracy in SC-ASDM.
Contrary to SSC, as t increases the error does not go to zero. In many cases this error
is negligible. For the example in Figure 3-13, Tp = 1.28µs = 3Tx = 11Ty and Esd�Tp =
0.0023 after adding phase adjustment. In other cases, such as px = py, the error is unac-
ceptably large. The magnitude of this error is determined by dx, dy and (M,N). Since dx,
dy depend on the inputs, we do not have control over them. However maximizing M,N for
all cases minimizes the computation error as described in the following sections.

3.8 Latency-Error analysis for SC-ASDM

Figure 3-14: Histograms for a) Common period Tp distribution for identical modulators,
that is Tcx = Tcy = Tc. b) Error distribution for identical modulators. c) Common period
Tp distribution for modulators with different natural frequencies Tcx = bTcy and b = 0.9.
d) Error distribution for modulators with different natural frequencies. In these figures we
set r=16. Note scale changes from case to case.

In the previous section we found an expression for the asymptotic error Esd�Tp for
stochastic multiplication given two ASD streams. Esd�Tp occurs at multiples of the com-
mon period Tp. To estimate the average multiplication error over all input pairs, we have
to find all possible common periods given all possible inputs. Since, the number of inputs

47

is infinite, to simplify our analysis, we assume px, py are rational numbers represented as
fractions qx/r and qy/r respectively. Notice, that any real number can be approximated
with a fractional expression; thus our assumption does not affect the generality of our
analysis. r defines a grid for the possible numbers that can be represented. For example,
r = 8 yields 8 different numbers which is equivalent to a resolution of 3 bits in typical
binary computing or a stream length of 8 bits in SSC. We can express the stream’s periods
in terms of qx,qy and r using (3.1) as

Tx =
r2

r2 �q2
x

Tcx Ty =
r2

r2 �q2
y

Tcy (3.9)

with 1/Tcx and 1/Tcy the natural frequencies of the ASDMs generating streams x(t) and
y(t). With this, we can analyze the average error given an input set.

3.8.1 Identical ASDMs
If the two modulators are identical, that is under ideal conditions with no process-voltage-
temperature variation, some input pairs yield an unacceptable large error. To understand
which pairs results in this large error, we define Tc as Tc = Tcx = Tcy. Thus Tp is given by

Tp = LCM(Tx,Ty) =
r2Tc

gcd(r2 �q2
x ,r2 �q2

y)
(3.10)

with gcd the greatest common divisor. Figure 3-14a shows the distribution of all possible
common periods for r = 16. In this case, the maximum Tp is 64Tc. Figure 3-14b shows the
distribution for the asymptotic error Esd�F for r = 16. Although the error for most input
pairs is concentrated around 0.025, some pairs result in unacceptably large error (close to
1). These high errors occur when (N,M)s are small, for example, when Tx is multiple of
Ty. In particular, when Tx = Ty, (N,M) = (1,1) the error can go as high as 0.97.

3.8.2 Shifting the natural frequency of the modulators
To address the low accuracy caused by small (N,M) pairs we can shift the natural fre-
quency of one modulator [35]. To quantify this improvement, we define the common
period for a pair of inputs as

Tp = LCM(
b

(r2 �q2
x)a

,
1

r2 �q2
y
)r2Tc (3.11)

48

with Tc = Ty = bTx and the shift ratio b = b/a a rational number. Figure 3-14c shows the
distribution of all possible common periods for r = 16 and b = 0.9. Comparing Figure 3-
14a (obtained with identical modulators) and Figure 3-14c, the distribution of common
periods increases by an order of magnitude. This increment lessens the computing error,
because the values for (N,M) increase as well. Figure 3-14d shows a reduction in the max-
imum error of at least an order of magnitude, eliminating the catastrophic error observed
when the modulators operate at the same natural frequency.

Figure 3-15 shows the maximum common period versus b for different grids r. The
b s that result in sharp spikes, e.g. b = 1, b = 0.5, should be avoided because small
Tp causes large computing error. Furthermore, similar to SSC, increasing the resolution
requirements increases computing time. For instance, to obtain the best case error for
r = 256, the computing time should be larger than 106Tc.

101
102
103
104
105
106
107

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
ax

im
um

T p

b

8 16 32 64 128 256

Figure 3-15: a) Maximum Tp versus b for different grids r.

3.8.3 Error-Latency trade-off
The previous sections discussed the fundamental limits for SC-ASDM accuracy. However,
we made two unrealistic assumptions: 1) For any pair of inputs the common period is
known a priori, and 2) the computing time can be extended to the longest Tp, which
for r = 256 is in the order of 106Tc. Both assumptions are not practical for a circuit
implementation. In this section, we analyze the error versus computation time for t < Tp
using SSC as a benchmark for the expected computing error.

Given an accuracy requirement, SC-ASDM yields at least 70% of latency savings com-
pared with SSC. Figure 3-16a shows the error distribution for SSC (Essc) calculated for
16-bit-long streams. The root mean squared error (RMSE) is 0.24. For a fair comparison
between Esd and Essc, we obtain the computing time t for SC-ASDM that results in a sim-
ilar RMSE. Figure 3-16b shows the error distribution for SC-ASDM with t = 4.57Tc, the
minimum common period. 70% of the samples result in Esd�F < 0.05 and less than 1%

49

of the samples result 0.3 < Esd�F < 0.45 which increases the overall error. Nevertheless,
the RMSE for SC-ASDM is comparable with SSC.

0
1
2
3
4
5
6
7
8

012345678910

⇥10�1

C
ou

nt

E2
ssc ⇥10�1

a)t = 16Tcc
t = 6.7ns

RMSE = 0.24

0
1
2
3
4
5
6
7
8

012345678910

⇥10�1

E2
sd�F ⇥10�1

b)t = 4.57Tc
t = 1.7ns

RMSE = 0.18

5
10
15
20
25

4 8 12 16 20 24

⇥10�2

t/Tc

c)RMSE

71
%

A
cc

ur
ac

y73%Latency
SSC

Figure 3-16: Error distribution for a) SSC for 16-bit stream. b) SC-ASDM for t = 4.57Tc <
Tp. c) RMSE versus time for SC-ASDM compared with SSC for r=16. For these plots r=16
and b = 0.9.

Figure 3-16c shows the RMSE for SC-ASDM versus time calculated for r = 16. Com-
pared with SSC, SC-ASDM yields 73% less latency for the same RMSE. Similarly, SC-
ASDM yields 71% better accuracy when the computation runs the same time.

3.9 Circuit design
To validate our theoretical model, we simulate the setup shown in Figure 3-6 using Cadence-
Spectre and calculate the multiplication error. Figure 3-17 shows an example for x(t), y(t),
z(t) = x(t)�y(t), pz(t) and the error components versus time. Approximating Tx = 351 ps
and Ty = 392 ps the common period is Tp = 6.7 ns = 19Tx = 17Ty (green lines in Figure 3-
17).

Besides the error studied in the previous sections, the initial transient at the outputs
of the modulators yields an additional error in the multiplication result. For the example
in Figure 3-17, this transient lasts for tic = 236 ps. At this time (tic) the streams start a
periodic behavior. The error due to this initial condition is given by Eic(t) = tic/t for t > ti
and shown in Figure 3-17f. Only after tic the streams x(t), and y(t) can be described by 3.6.
In consequence, the total computing error Esd can be expressed as

Esd =

⇢
|±1� px py| if t tic
|Esd�F +Eic| if t > tic

(3.12)

with Esd�F given by (3.7). Figure 3-17f shows the total error Esd and the error obtained
at multiples of Tp (Esd�Tp) excluding the initial transient, both from simulations. We also

50

Figure 3-17: Spice simulation for stochastic multiplication with ASD streams. The
ASDMs are designed in cadence using a FinFET1X technology for b = 0.9. a),b) Outputs
for the ASDMs generated with px = py = �0.46. c) AND gate output. d) XNOR gate
output e) Estimated probability p̂z at the output of the XNOR gate. The expected value is
pz = 0.21 f) Error for multiplication.

show the calculated Eic. Notice that Esd�T p+Eic at multiples of Tp matches the total error
obtained from the circuit simulation.

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35

1 2 4 8 16 32 64 128

R
M

SE

Time (ns)

8b

74%

78%
84%

84%
83% 256b

SSC

C-8
C-16
C-32
C-64

8
16
32
64
128
256

Figure 3-18: RMSE calculated for multiplication using all possible pairs of inputs given a
grid r versus time with b = 0.9. Continuous lines shows the results from the ideal model
(Matlab) ignoring initial conditions and phase shift between signals. Individual samples
marked as “r Circ", are the results from Spice simulations including the initial condition
effect. The figure includes the SSC error for comparison.

51

3.9.1 Error-latency trade-off for multiplication
To obtain a general estimate of the error we calculate the multiplication RMSE for all
the possible pair of inputs in the grids given by r = 8,16,32,64,128 using our Matlab
model (solid lines, Figure 3-18). For comparison, Figure 3-18 also shows with symbols
the RMSE obtained from Spice level simulations for grids r = 8,16,32,64. The slight
difference between the Spice-level simulations and the ideal model is due to the effect of
the initial conditions and phase between the multiplier input signals. We also show the
RMSE for SSC since it is the error benchmark. Given the same RMSE, SC-ASDM yields
at least 74% latency savings compared with SSC.

3.9.2 Error-latency trade-off for gamma correction
The results obtained for stochastic multiplication with ASDMs can be extended to other
combinational logic. As an example, we implement gamma correction, an image process-
ing algorithm used to code and decode luminance and tristimulus values, defined by the
relation Vout = V g

in [55]. We implement the compact SC architecture from [2] and [35]
using a FinFet1X technology and simulate the circuit using Cadence Spectre. Figure 3-19
compares the original image, the output of the gamma correction algorithm as calculated
with Matlab (golden case), and the results from the SC-ASDMs architecture obtained at
different computing times. One interesting property for SSC is progressive precision or
sketching. Since shorter sequences yields lower accuracy estimates of the computation, the
accuracy can be dynamically adjusted without radical modifications in the hardware, that
is just adjusting the computing time. This property has applications in image processing
and computer vision [76] [77]. Figure 3-19 shows that similar to SSC, shorter computing
times with SC-ASDM yields lower accuracy estimates of the computation. For our exam-
ple we have an estimate of the result as early as 772ps. Also, increasing the computing
time beyond 7ns does not yield significant improvements in the RMSE. Although, using
the maximum common period for all possible combinations, results in computing times
unfeasible large. the majority of common periods are still concentrated below 10ns.

Figure 3-19: Gamma correction algorithm results obtained at different computing times.

52

3.9.3 Energy considerations
Table 3.3 summarizes the power, latency and energy metrics for the binary, SSC and SC-
ASDM approaches using multiplication and gamma correction as examples. As expected
the power savings at the core are more than 93%, at expense of latency and computing
accuracy. For a fair comparison between the binary and the SC-ASDM architectures (Fig-
ure 3-1) we use the ADC metrics reported in [78] for a SAR architecture designed in a
FinFET14 nm technology. The core and SNGs were synthesized using Cadence-Genus
to operate at maximum frequency. All circuits operate at a power supply of 0.7V. Even
though the latency for SC-ASDM is 5X-10X larger compared with the binary approach,
we find energy savings of 89% and 79% for multiplication and gamma correction respec-
tively. The energy savings are mainly due to the elimination of the ADC and the simplicity
of the ASDM used to generate the streams.

Table 3.3: Energy, power and latency metrics for the conventional-binary approach, SSC
and SC-ASDM. VDD=0.7V maximum frequency for circuits designed in FinFET1X tech-
nology. *ADC metrics are common for Binary and SSC

Latency Power Energy Latency Power Energy
(ns) (mW) (pJ) (ns) (mW) (pJ)

Multiplier Gamma Correction
Binary

ADC* [78] 1.05 2.26 2.38 1.05 2.26 2.38
Core 0.58 0.17 0.1 0.5 0.82 0.41
Total 1.63 2.43 2.48 1.55 3.08 2.79

SSC
SNG 108 0.73 79 204 1.05 214
Core 108 0.005 0.54 204 0.03 6.5
Total 109 3 82.1 205 3.34 223

SC-ASDM
ASDM 16 0.01 0.2 7.3 0.04 0.33
Core 16 0.005 0.08 7.3 0.03 0.23
Total 16 0.016 0.27 7.3 0.07 0.56

53

3.10 Conclusions
SC is one of the most attractive paradigms for ultra-low power, error tolerant, approximate
computing, since hardware expensive functions can be implemented with only ⇠ 5% of
the area required for binary computing. However, SNG and the increment in processing
time ultimately leads to more power, area and energy numbers. In this work, we propose
asynchronous computing on PDM streams generated with a low power ASDM as an analog
to streams converter. We design and simulate our architecture using an industry-standard
1xFinFET technology. Simulations show that by using our ASDM instead of a typical SNG
scheme we obtain power and area savings of up to 81% and 60%. Since PDM streams can
be highly correlated, we study on-chip process variations as a source of randomness for the
stream generation. Based on these results we propose to set the different modulators in the
system to run at different but fixed natural frequencies. Simulation results show 98%-11%
savings in the total system latency, and, 50%-38% in power savings when compared with
the binary counterpart or the previous stochastic approaches.

We also analyze the error-latency trade off for SC-ASDM multiplication using the
Fourier series expansion for the SD-streams. Our theoretical model demonstrates that
there is an asymptotic error or bias for SC-ASDM. For the majority of inputs this bias
is small, yielding superior accuracy compared with SSC. This bias depends on the rela-
tion between the streams’ periods Tx,Ty and it is obtained at Tp =LCM(Tx,Ty). However,
Tp can be unfeasibly large, thus we analyze the error-latency trade-off for SC-ASDM us-
ing SSC as the benchmark. To validate the theoretical model we use Spice-level circuits
simulations using a FinFet1X technology. Our model and simulations results show that
multiplication with SC-ASDM yields at least 70% of latency savings obtaining the same
SSC accuracy performance, or 70% better accuracy when the computing time is similar to
SSC. Although the latency is 5X-10X longer when compared with the binary approach,
the power efficiency of SC-ASDM yields savings in energy of at least 79% in gamma cor-
rection. The energy savings make the approach ideal for the constrained conditions of the
IoT sensors.

54

Chapter 4

Applications

Computation with continuos time streams has been limited to single-stage combinational
logic, because more complex algorithms require the incorporation of a memory element.
In SSC the memory elements are just flip-flops, which unfortunately require synchronized
streams. Yet, algorithms like the FFT, one of the most used and expensive operations in
digital signal processing, could benefit from the ACS savings in area, power and latency.
Therefore, we need to find an effective, yet inexpensive way to incorporate a memory
element in asynchronous computing units.

In this chapter we first introduce a digital implementation of a Fast Fourier Transform
accelerator used for wheezing detection. This, help us to describe the limitations of the
ultra-low power digital paradigm. With the lessons learned from the typical implemen-
tation, we delve into the ACS based FFT implementation and an ACS low-error adder.
Finally we present the ACS-NAM architecture for random forest inspired machine learn-
ing algorithms.

4.1 An ultra-low-power dual-phase latch based digital ac-
celerator for continuous monitoring of wheezing episodes

A wheeze is a continuous lung sound that if continuously monitored can provide cru-
cial information for medical diagnosis and treatment of Asthma or Obstructive Pulmonary
Diseases (OPD). Although the Internet of Things (IoT) has the potential to enable wheez-
ing continuous monitoring, an IoT device must be extremely energy-efficient since it is
powered from small batteries or even harvested energy. Some prototypes for wheezing
detection have been demonstrated in Field Programmable Arrays (FPGAs) [79], however,

55

Figure 4-1: Example of a Spectrogram obtained after STFT calculation. a) Matlab results
b) Our accelerator results.

the power consumption for these is still two or three orders of magnitude higher than what
can be supported by harvesting energy from the environment. In this section we present an
ultra low power accelerator to generate the STFT representation of the respiratory signal
used to monitor and detect wheezes. The input for our accelerator is a respiratory signal
recording that can be obtained by placing a microphone in the trachea region [80]. A
wheeze in this signal, is a superimposition of sinusoidal sounds that last more than 150 ms
and are located beyond 100 Hz in the frequency domain. To process the respiratory signal,
the STFT is used to generate the spectrogram shown in Fig. 4-1a for further analysis [81]

4.1.1 Hardware optimizations
A block diagram of the accelerator is depicted in Fig. 2a and it is composed of a Fast
Fourier Transform (FFT), input, and output controllers. The three controllers share access
to 4 multipliers and three memory banks that are multiplexed in time to reduce the energy
consumption due to leakage current associated to idle components.

The input controller multiplies the respiratory signal with a set of programmable coef-
ficients for windowing and takes care of window overlapping. The output controller reads
the FFT results from the memory banks and uses the multipliers to get the square of the
Power Spectral Density (PSD2). The FFT controller is used to calculate the Fast Fourier
Transform for each window. A third memory bank A1 is included to keep the overlapped
section of the data for the next window calculation. The register banks are implemented
with positive level latches [82].

The rest of this section describes other key optimizations implemented in this work:
Architecture Width: We choose a word width of 13 bits for internal FFT calculations

and an input word width of 10 bits to avoid overflow errors. Simulations show that a
sampling frequency of 1.5 KHz with an FFT core of 64 points is sufficient to extract the

56

wheezing information.
Near Threshold Operation: The switching energy can be calculated as Eactive =

aCV dd2, where (a) is the activity factor, (C) is the switched capacitance and V dd is
the power supply. Since the energy consumption is proportional to V dd2 we lower V dd
up to the near-threshold region where we found the minimum energy operation point for
our accelerator.

Dual Phase Implementation: Lowering the V dd, although powerful for energy re-
duction, increments the effects of Process, Voltage and Temperature (PVT) variations by
up to 20X [83]. To address the variation effect, without increasing the energy consump-
tion we adopt a dual phase latch based design style [52]. To implement our accelerator we
convert flip flop registers into their master and slave latches and use commercial tools for
time borrowing optimization.

FFT core adaptation: Since the Fourier Transform is one of the fundamental opera-
tions in digital signal processing a lot of work has been done to optimize its performance.
In this work we adopt the implementation described in [84] which presents an efficient
addressing scheme for "in-place" memory access. This implementation, however, requires
delays between the write and read addresses to compensate the butterfly computation time.
These delays are a hazard when operating at low V dd because of the increased PVT varia-
tion effect. For our implementation, we take advantage of the dual phase clocking scheme.
The address generated by the FFT core is buffered during the positive level of Clock 1 and
is used for reading data from the memory asynchronously. This data will be used by the
FFT core to perform the butterfly calculation during the positive level of clock 2.

4.1.2 Results and discussion
We build our accelerator using SystemVerilog, and synthesize it using a GF-130nm library
optimized for sub-threshold operation. We compare our dual phase latch based accelerator
with a regular flip-flop implementation [84]. We simulate the netlist after place and route
for V dd = 0.3V �0.8V and find the maximum operating frequency per each VDD point.

Figure 4-1 compares the output of the the STFT accelerator (4-1b) with the Matlab
spectrogram function (4-1a). To calculate the PSD2 we scale the FFT results before the
final multiplication. This, avoids overflow in this last stage of the calculation. As a result,
a good portion of the spectrogram is zeroed in discarding only the non wheezing related
information.

Figures 4-2c and 4-2b compare the Energy vs. V dd for the control logic and register
files. The control logic shows up to 15% in savings for voltages lower than 0.6V . Below

57

0.6V a wider shoulder between clock phases is used to compensate for longer delays due to
the reduced power supply. Therefore there is no gain in performance but savings in energy
due to the absence of clock buffering and gates up-sizing. On the other hand, for voltages
above 0.6V the shoulder required between clock phases is reduced. For this reason, there
is an increment in performance of up 25% (V dd = 0.8V) and the energy in the latch based
implementation moves towards the flip-flop based implementation.

Figure 4-2b compares the energy consumption of the flip-flop memory bank with the
latch memory bank. When using latches for the memory banks, we get up to 80% savings
in energy consumption. Since latches have around 35% less transistors than flip flops,
latches leak less current. Also, we see less active energy for the latch based register file.
In this case, the enable signal (G) going to the latch is not switching for every clock cycle
as it is the equivalent clock (CK) signal in the flip-flop. To improve the flip-flop bank
energy consumption clock gating per row can be implemented [82]. Figure 4-2b shows
that clock gating, decreases the energy consumption at higher voltages when the active
energy dominates but increases the energy consumption at lower voltages when leakage is
dominant.

Figure 4-2d compares the total energy for both implementations including control logic
and register banks. The total energy savings when including memory banks and control
logic can be up to 50%. The major contributer to the energy savings is the latch based
memory included as part of the design.

4.1.3 Conclusion
In this section we present an ultra low power accelerator for STFT calculation, optimized
for wheezing detection. We implement a two phase latch based scheme to counteract PVT
variation in the sub-threshold and near-threshold regime. The accelerator consumes 3.3
pJ/cycle, and 155 nJ/FFT at the minimum energy point located at 0.5V with a maximum
operating frequency of 163 KHz. To evaluate its performance we compare it with a flip
flop implementation and we save up to 50% in energy consumption. We take advantage of
the dual phase clock timing of our accelerator to read the data from memory during clock
1 and write data to memory during clock 2, avoiding the need to add hazardous delays
between the read/write memory address buses while we still have a simplified "in place"
memory address generator.

58

�12

�11

�10

0.3 0.5 0.7 0.9

(b)FF
FF Clk_gt

Latch

lo
g(

E
)

(J
)

Voltage (V)

2

5

7

9

0.3 0.5 0.7 0.9

(c)
FFLatch

E
(p

J)

Voltage (V)

2
5

10
15

23

0.3 0.5 0.7 0.9

(d)
FF
Latch

E
(p

J)

Voltage (V)

Figure 4-2: a) Block Diagram for the accelerator. b), and, c) Compares the Energy vs.
VDD for the accelerator control logic and memory banks. d) Compares Total energy of
the dual phase latch vs flip-flop implementations

4.2 ACS-FFT: Area-Efficient Low-Latency FFT Design
Based on Asynchronous Stochastic Computing

Computation on asynchronous streams has been limited to single-stage combinational
logic, because more complex algorithms require the incorporation of a memory element.
In SSC the memory elements are just flip-flops, which unfortunately require synchronized
streams. We need to find an effective, yet inexpensive way to incorporate a memory ele-
ment in asynchronous computing units.

In this section, we propose to use a capacitor embedded in simple feedback loop as the
asynchronous memory element. Based on this idea, we design a low-error asynchronous
adder that is able to keep track of the addition carry. Then, we implement an ASC-FFT
architecture based on this adder using a FinFET1X technology. We compare its accuracy,
area, and latency, against conventional FFT architectures and find that the ASC-FFT shows
better area-delay performance than pipelined, and minimum hardware FFT architectures

59

Figure 4-3: a) Buttterfly unit as described in equation 4.2 b) ASC-FFT architecture c)
Stochastic Implementation of the BU

for NFFT � 32 and NFFT � 128 respectively, where NFFT is the FFT size.

4.2.1 Asynchronous Stochastic Computing FFT Architecture
The radix-2 FFT is a multistage algorithm based on butterfly units (BUs) described by:

xm+1(p) = xm(p)+ xm(q) (4.1)

xm+1(q) = [xm(p)� xm(q)]e� j 2p
N nk (4.2)

and shown in Fig. 4-3a, where m = 1, ..., log2(NFFT) labels the stage, x(p) and x(q) label
the inputs for a particular BU, NFFT is the FFT size, xm+1(p) and xm+1(q) are the BU com-
plex outputs. Finally, e� j 2p

NFFT
nk are the twiddle (Tw) coefficients with k,n = 0, ...,NFFT �

1. Directly mapping conventional multipliers and adders to the typical stochastic versions
(Fig.4-3c) yields poor SNR due to the adder output being divided by two which we refer
as the adder scaling effect [85]. The authors in [38] present a SSC-FFT, which achieves

60

better SNR response due to a non-scaling adder whose output result is px + py instead of
(px + py)/2. This adder, relies on a digital counter (flip-flops) that keeps track of carry
bits. Unfortunately, this SSC-FFT implementation still suffers from the drawbacks de-
scribed before, expensive SNG and long latency. To address these challenges, we propose
an efficient non-scaling asynchronous adder for CTS that exploits the simplicity of a cur-
rent based design approach.

Asynchronous non-scaling adder

Fig. 4-4a shows an example of SSC streams addition. A(t)+B(t) at each clock cycle can be:
1� N+N, 2� N+P=0 or 3� P+P. In case 3�(1�) the output stream can only take one P(N).

The other P(N) is accumulated in a clocked counter as a carry. A carry can be released
when case 2� occurs and the counter decreases (increments) by one [38] [39] [40]. For
ASC streams the time the inputs are in a given state {N, P} is not quantized, thus counting
carry bits would require an unfeasible fast clock. Instead, we propose to use an integrator
that accumulates “time" when 3�(1�) and decrements when the carry “time" is sent to the
output.

Figure 4-4: a) Example of non-scaling synchronous addition with digital integrator. b),c)
Example of asynchronous adder, input streams (b) and evolution of the voltage in the
capacitor and output stream (c).

This adder can be implemented with the block diagram in Fig. 4-5a. The integrator
output can be expressed as:

y(t) = y(to)+
1
k

Z t

t0

✓
A(t)+B(t)� y f (t)

◆
dt (4.3)

61

where y(t0) is the initial condition on the integrator and k is the integrator constant. The
integrator output is converted to an asynchronous stream by a quantizer. If y(t) > T hr,
z(t) = P, otherwise z(t) = N. y f (t) is the output of the system converted back to the input
units.

Figure 4-5: Proposed asynchronous adder. A(t) and B(t) are the continuous time input
streams and Z(t) is the continuous time output stream. a) Block diagram. b) Architecture.
c), d) Current adder theory. c) Current flux when inputs are PN or NP. d) Current flux
when inputs are PP or NN.

The main SC advantage is the computing units low hardware cost (Fig. 1-1). To keep
this advantage, we adopt a current based methodology, eliminating the need of switched
capacitors and high gain active components like operational amplifiers. The adder’s archi-
tecture is depicted in Fig. 4-5b. To implement the addition of the inputs and the feedback
path, we adopt a current based adder. By Kirchhoff law, this adder is just connecting the
currents to the same node. Fig. 4-5c, d shows one current mirror per input stream A(t),
B(t) and a third current mirror for y f (t). Fig. 4-5c shows the current flow when the inputs

62

are PN (NP). In this case the net current is zero and the input for the integrator depends en-
tirely on y f (t). On the other hand, Fig. 4-5d shows the current flow when the input streams
are either PP or NN. In these cases, the current from A(t)+B(t) is ±2Ib and the input to
the integrator can be ±Ib or ±3Ib depending on z(t). The current integrator is implemented
as a capacitor given its current-voltage relation Vc =

1
c
R

Icdt. The current-comparator can
be implemented as an inverter [71].

Figure 4-6: Control logic for scaling (a) and non-scaling (b) adder.

Fig. 4-4b shows the adder operation. In this example A(t) and B(t) are streams with
associated probability of pA = 0.25 and pB = 0.25. Fig. 4-4c shows the evolution of the
voltage in the capacitor Vc (integrator) and the output of the comparator z(t). The slope
for Vc is given by the integrator input current and can be either ±1 or ±3. Table 4.1 shows
the slope for all the different combinations of A(t), B(t) and the output of the modulator
z(t). Based on this we can reduce the number of current supplies from 6 to 4 as shown
in Fig. 4-5b. When the slope is +3 (-3) current sources I1, I3 (I2, I4) are active at the
same time. The control logic to activate the current sources is shown in Fig. 4-6a which is
implemented based on Table 4.1.

Asynchronous scaling-adder

We can implement a low-error scaling adder (A(t)+B(t)
2) following the same reasoning used

to design the non-scaling version. Based on the implementation in Fig. 4-5b, we modify
the capacitor charging slopes to ±2 and ±1 depending on A(t), B(t) and z(t). To adapt for
the new slopes I1 and I2 become Ib instead of 2Ib.

Fig. 4-7 shows the scaling adder operation. In this example A(t) and B(t) are streams
with associated probability pA = 0.25 and pB =�0.25. Fig. 4-7c shows the evolution of

63

Table 4.1: Truth table for control signals for the asynchronous adder.

Z Inputs Slope Active Source

A B Scaling Non-
Scaling Scaling Non-

scaling
N (P) N (P) N (P) 0 -1 (1) None I2 (I1)

N (P) P (N) P (N) 2
(-2) 3 (-3) I1,I3

(I2,I4)
I1,I3

(I2,I4)
N (P) x x 1 1 (-1) I1 (I2) I1 (I2)

Figure 4-7: Example for average adder. a) Input streams A(t) and B(t). b) Voltage in the
capacitor and output stream for initial condition Vc > T hr

the voltage in the capacitor Vc (integrator) and the output of the comparator. For different
initial conditions, the evolution of Vc is different but the expected result is correct. Notice
that if the input streams are PP(NN) and the output is P(N) there is not accumulation in
the integrator. On the contrary, if the output stream is N(P) the integrator accumulates the
input current until the comparator switches to P(N).

Asynchronous FFT Architecture

We replace the multiplexer based stochastic adder with our asynchronous adders and im-
plement the FFT architecture shown in Fig. 4-3b. We scaled the outputs at each FFT
stage by two to avoid overflow errors, and both inputs and twiddle coefficients are CTS

64

generated with ASDM. In the following section, we compare the area and delay perfor-
mance for the proposed ASC-FFT with SSC-FFT and typical FFT pipelined (optimized
for throughput) [86] and one-BU (optimized for area) [84] architectures .

4.2.2 results
FFT SNR Perfomance: We implement the ASC-FFT architecture (Fig. 4-3b) using a Fin-
FET1X technology. We run SPICE level simulations and calculate the average and the
FFT SNR for the resulting streams. Fig. 4-8a shows the SNR versus NFFT for differ-
ent SC-FFT implementations (SSC [38], un-even, and Direct [85]). The direct BU SSC
implementation is not practical given the quick performance degradation as NFFT incre-
ments [85]. The SNR performance for the ASC-FFT is better than the un-even SSC-FFT
architecture for NFFT � 8 when the scaling degrading effect on the SNR is more notori-
uous for the un-even architecture. Fig. 4-8b shows the ASC-FFT SNR versus delay for
NFFT = 8,16,32,64. Increasing the computation time has a positive effect on the over-
all computation accuracy. However, to obtain an accuracy comparable with SSC-FFT
architectures (SNR ⇡ 20dB) the ASC-FFT requires 3X less computing time. Table 4.2
summarizes the performance results for the ASC adder and FFT.

65

a)

-6
0

-5
0

-4
0

-3
0

-2
0

-1
001020304050

8
16

32
64

SNR(dB)

N
F

F
T

b)

-3
0

-2
0

-1
001020304050

0
10

0
20

0
30

0

SNR(dB)

D
el

ay
(n

s)

c)

01234

8
16

32
64

12
8

51
2

log10(TC)

lo
g 2
(N

F
F

T
)

d)

01234

81
63

2
64

12
8

51
2

log10(D)

lo
g 2
(N

F
F

T
)

e)

-5-4-3-2-101

81
63

26
41

28
51

2

log10(A⇥D)

lo
g 2
(N

F
F

T
)

un
-e

ve
n

SS
C

A
SC

D
ire

ct
N

=8
N

=1
6

N
=3

2
N

=6
4

Pi
p

A
SC

O
ne

-B
U

Pi
p

A
SC

O
ne

-B
U

Pi
p

A
SC

O
ne

-B
U

Fi
gu

re
4-

8:
M

et
ric

s
of

pe
rf

or
m

an
ce

fo
rt

he
A

SC
-F

FT
co

m
pa

re
d

w
ith

ot
he

ra
rc

hi
te

ct
ur

es
.

a)
SN

R
ve

rs
us

N
F

F
T

fo
r

di
ff

er
en

tS
SC

-F
FT

ar
ch

ite
ct

ur
es

b)
SN

R
ve

rs
us

D
el

ay
va

ry
in

g
N

F
F

T
s.

Tr
an

si
st

or
co

un
t(

c)
,d

el
ay

(d
)a

nd
de

la
y-

ar
ea

pr
od

uc
t(

e)
fo

rA
SC

-F
FT

an
d

co
nv

en
tio

na
lF

FT
ar

ch
ite

ct
ur

es
ve

rs
us

N
F

F
T

.

Table 4.2: Hardware Performance Comparison. *Valid for L=4 bits. **At maximum
frequency of operation and NFFT =64

FFT/Adder
Implementation

Adder
tran-
sistor
count

Multiplier
tran-
sistor
count

#
Clock
cy-
cles

Latency
for

FFT
(ns)**

Binary-One-BU [84] 444 3379 192 135
Binary-Pipelined [87] 444 3379 64 45
SSC D.Adder [39]* 146 - - -
SSC DigitalSD [40] 240 10 1024 328
SSC Dual-Line [85] 156 10 1024 256
ASC (This Work) 108 10 - 84

Hardware Cost: The ASC adder has 76% and 24% less hardware cost than a conven-
tional binary adder and other stream-adder approaches respectively (see transistor count
(TC) in Table 4.2). The hardware cost for the conventional FFT architectures depends
on the number of adders, multipliers and registers between stages. We compare the TC
neglecting interconnection and routing logic for different FFT architectures in Fig. 4-8c.
The ASC-FFT hardware cost is placed between the pipelined and the one-BU architec-
ture. Even though in the ASC and pipelined FFT architectures, the number of adders and
multipliers is growing with NFFT , the registers in the pipelined architecture grows faster
(2*N/3-2) [86] while in the ASC-FFT there is no memory involved in the computation. For
the one-BU architecture, on the other hand, the number of computing elements is constant
and only the registers grow with NFFT .

Delay: For conventional and SSC FFT architectures, we estimate the delay as cc⇥Tmin
where cc is the number of clock cycles to finish the FFT computation, which grows with
NFFT and Tmin is determined by the worst propagation delay in the logic data-path. To
keep the comparison fair, for the ASC-FFT architecture we choose a computation time
that results in the same SNR performance as the SSC-FFT architecture (latency column
in table 4.2). Fig. 4-8d shows delay (D) versus NFFT . The computation delay for the
ASC-FFT architecture is better for NFFT � 32 and NFFT > 128 than the One-BU and the
pipelined architecture respectively.

Fig. 4-8e shows that the AxD for the ASC-FFT is better for NFFT > 16 and NFFT > 32
than the pipelined and the one-BU architectures respectively.

67

4.2.3 Conclusion
Recent work demonstrated that using CTS reduces the latency, power and energy con-
sumption for SC, opening the door for a new paradigm: ASC. However, this asynchronous
approach has been limited to simple logic which constrains its application. In this work,
we first present a low-error asynchronous adder for CTS that incorporates a capacitor em-
bedded in a feedback loop as a memory element to keep carry “time". This adder, enables
more complex functions such as the ASC-FFT presented here. Our adder requires 70%-
30% less transistors when compared to conventional and SC adders respectively. Besides,
the ASC-FFT shows 3X less latency than SSC-FFTs. Furthermore, there is a significant
advantage in hardware cost when compared with pipelined architectures. Overall, simula-
tion results show that ASC-FFT outperforms both pipelined and one-BU FFT architectures
for NFFT > 32 and NFFT � 128 in terms of area-delay efficiency. Due to improved area
and latency performance, ASC-FFT architecture can be embedded as a promising acceler-
ator for energy and area constrained systems such as sensors and IoT devices.

4.3 Towards low power machine learning using asynchronous
computing with streams

4.3.1 Summary
We combine near-analog-memory (NAM) computing and asynchronous-computing-with-
streams (ACS) to obtain a NAM-ACS based architecture for the next generation of sen-
sors for the internet of things (IoT), smartdust, or edge intelligence (EI). ACS has the
potential to enable ultra-low power, massive computational resources required to execute
on-node complex machine learning (ML) algorithms; While NAM addresses the memory-
wall which increases the power and latency of ML and other complex functions. In ACS
an analog value is mapped to an asynchronous stream that can take one of two values (vh,
vl). This stream-based data representation enables area-power efficient computing units
such as the multiplier implemented as an AND gate yielding savings in power of ⇠90%
compared with digital approaches. NAM-computing and ACS have one common issue,
the cost of analog-to-digital and digital-to-streams converters sky-rocket the power, la-
tency and energy cost making the approaches impractical. Our NAM-ACS architecture
simplifies the sensor architecture and eliminates expensive conversions, enabling an end-
to-end processing on asynchronous streams data-path. In this work, we tailor the NAM-
ACS based architecture for random forest (RaF), a ML algorithm, chosen for its ability to

68

classify using a reduced number of features. Our simulations show that the NAM-ACS
approach enables 75% of savings in power compared with a single ADC obtaining a clas-
sification accuracy of 85% using a RaF inspired algorithm.

4.3.2 Introduction
The IoT, smartdust and EI have one common factor the deployment of trillions of ultra-
low-power, interconnected wireless sensors. Moreover, due to the elevated cost and long
latency incurred in raw data transmission to the cloud, the next generation of these sensors
are expected to locally process data such as images and speech in real time using com-
plex machine learning algorithms [56, 88, 89]. Unfortunately, current examples of these
advanced sensors can drain a battery in only 40 minutes of use [57], given the restrictive
form factor due to safety concerns and to enable wearability. To meet the expectations
of long battery life and small form factors for smart sensors, three challenges need to
be addressed: (A) the high power and area cost of parallel intensive computational re-
sources; (B) the high power (power wall) and latency (memory wall) cost of data transfer
from memory to processing units; and (C) the high power cost of analog-to-digital con-
version (ADC) required as part of the sensor read-out circuits. In this work we propose
an asynchronous computing with streams, ACS, based architecture that addresses all three
challenges.

Computing with streams, instead of the typical approach based on digital numbers,
addresses the need for ultra-low-power parallel computing units (challenge A). One of the
most popular versions of this computing paradigm is synchronous stochastic computing
(SSC1) [10] [90], where digital numbers are mapped to long streams of bits (Figure 4-
9). Several SSC-based architectures for image processing algorithms have demonstrated
power savings in the computing units of ⇠ 90% [1, 2, 91] compared with typical digital
approaches. Despite the power efficiency of these computing units, the SSC paradigm
incurs in higher power, area and energy cost due to the extra circuits required for the
interaction between the computing units and the conventional parts of the sensor such as
ADC, digital memory and output interfaces (Section 4.3.3).

ACS has the potential to leverage SSC advantages while addressing its drawbacks. In
ACS an analog quantity is mapped to an asynchronous stream (Section 4.3.3). Although
previous work demonstrated significant savings in power and energy compared with SSC
and typical digital approaches, for applications such as multiplication, gamma correction

1Commonly known in literature as SC, we make emphasis in the synchronous nature of Gaines [10]
approach.

69

Figure 4-9: Streams x and y represent number px = py = 0.25. An stochastic multiplier
can be implemented using an AND gate. Stream z is the output of the AND gate and
represents number pz = 0.0625 = px ⇥ py. Dashed lines represent the clock.

and fast Fourier transform [35] [11] [92] [93], the challenge to achieve seamless integration
between the computing units and all the different building blocks in the architecture still
remains. Similarly to SSC, unless this challenge is addressed, its power/energy/area cost
will be prohibitively high.

In this work, we propose a sensor architecture based on ACS (Section 4.3.4), focus-
ing on the interface between the computing units with the memory (challenge B) and
the read-circuit (challenge C). We adopt a memory-centered architecture using analog-
memory instead of SRAM or DRAM. Typically, to integrate analog memory with other
digital components in the system, several ADCs are required which account for 58%,
31% [3] and 50% [7] of the total power, area and energy respectively (Section 4.3.3). Sim-
ilarly, the sensor read interface requires several ADCs, which account for 33%-85% of the
total power [94] for this interface (Section 4.3.3). In this work, we replace the ADCs with
power/energy efficient asynchronous sigma delta modulators (ASDMs) which convert the
analog inputs to streams of ones and zeros. The elimination of complex ADCs combined
with the simplicity of the ASDMs avoids any expensive digital!streams!digital conver-
sion achieving an end-to-end processing on asynchronous streams data-path.

We evaluate the performance of our architecture using RaF inspired algorithms, such
as ADABoost and boosted-regression-trees (BTR) for image classification (Section 4.3.4).
Other approaches for artificial vision sense, record, and process an entire image using

70

complex classifiers trained with massive amounts of data. However, the concept of active
vision suggests that biological vision systems do not store complete images of the world
but focus on few visual features needed for a particular task [95]. RaF enables the use
of at least 75%-97% less features compared with other machine learning algorithms such
as neural networks [96] [97] enabling the application of active vision. Moreover, RaF
is widely used today because of its high accuracy across a large array of applications,
low complexity for implementation, low training time, high-throughput inference, and
robustness against noise and over-fitting. Previous work using RaF inspired algorithms
demonstrated 90%+ accuracy using only 30-200 [96] [97] features, out of a total of 784
features for an image in the MNIST database [98].

The framework to evaluate our ACS-based architecture uses ideal models for the ana-
log memory and sensors. The interfaces and the ACS units are designed and simulated
in Cadence-Virtuoso using a foundry provided FinFET1X2 technology. Training for RaF
algorithm is performed off-line to obtain the decision thresholds (Section 4.3.5). Our work
shows that using a NAM-ACS architecture results in savings in latency, power and energy
compared with an ADC based architecture. Assuming a memory read time of 100ns [3],
our simulations yields savings of 49%-99% at the analog-memory interface depending on
the memory-array size. Moreover the power efficiency of the memory interface combined
with the parallel asynchronous computing on streams cores is 1.6X-3.6X better than the
power efficiency of a single ADC. Notice that while the ADC is only doing conversion,
our approach includes data processing as well. Finally, for a memory of size 64⇥ 128
and assuming 100 ns of memory-read-time [3], the accuracy obtained using BRT is 85%
and the power of the ASDM interface combined with the computing unit enables 75% and
25% of savings in power and latency compared with the cost of single ADC.

4.3.3 Motivation and Background
Addressing challenge (A) with asynchronous computing with streams

Synchronous Stochastic Computing: One approach that is gaining popularity to address
challenge (A), the high power and area cost of massive amounts of computational re-
sources, is to encode data in streams of ones and zeros instead of the typical digital rep-
resentation [35] [10] [72]. In SSC, the most popular of these approaches, a number is
represented as the average of a stream of bits. This data representation enables extremely
efficient computing units. Figure 4-9 shows a stochastic multiplier (AND gate) and a

2In modern technologies the node number does not refer to any one feature in the process, and foundries
use slightly different conventions; we use 1x to denote the 14/16nm FinFET nodes offered by the foundry.

71

stochastic multiplication example for 16-bit streams. Notice that the stochastic multiplier
requires 6 transistors while an 8-bit digital multiplier requires 3000. This contrast yields
savings in power and area of at least 90%.

Although promising, the SSC approach is not widely adopted for three major reasons.
First, expensive stochastic number generators (SNG) are required to form random streams.
Figure 4-10b shows an example of a SSC image sensor and the circuit used for the image
processing algorithm gamma correction. The gamma correction circuit yields savings of
93% and 96% in power and area compared with the typical digital approach [72]. How-
ever, to generate the random streams of bits, SNGs with linear feedback shift registers
(LFSRs) are required. The SNGs account for 87% of the system cost [2] eclipsing the
savings achieved by the efficient processing units. Second, long streams are required to
obtain acceptable accuracy. For example, SSC implementations of finite impulse response
filters [99] and fast Fourier transform [100] require 8000 and 1200 bits, respectively, to
obtain acceptable accuracy, negatively impacting the latency of the system. Finally, the
fast clock generation and distribution networks required to ameliorate the impact on the
latency performance increase the design complexity and power consumption.

Asynchronous Computing with Streams: In ACS an analog value g is mapped to an
asynchronous stream that can take two possible values vh and vl , and data is mapped to
the time the stream is at vh instead of the probability of a discrete event to occur [92] [93].
To generate asynchronous streams we use a current-based-asynchronous SD modulator
(ASDM) [35] which architecture is shown in Figure 4-11a. The ASDM takes an input
current Iin such that Iin/Imax = p with Imax the maximum current in the system. Then, the
modulator generates a continuous-time, asynchronous and periodic stream such that p is
encoded in the average value of the stream [67]. Figure 4-12 shows the output stream of
the ASDM for a triangular waveform. The frequency is maximum for p = 0 and minimum
for p =±1, while the duty-cycle is 50% for p = 0 and 0%(100%) for p =�1(1).

The output of the ASDMs can be directly connected to the computing units as shown
in Figure 4-11b, achieving an end-to-end asynchronous computing on streams data-path.
The combination of a clock-less design and the asynchronous nature of the modulator en-
ables a practical implementation of ACS. Previous work demonstrated ACS multiplication,
gamma correction, low error addition and fast Fourier transform [35] [11] with significant
savings in area, power, latency and energy.

ACS shares most of the advantages of asynchronous systems such as high performance
and low-power consumption. In a synchronous system, either SSC or digital computing,
the maximum frequency of a global clock is determined by the single path with the worst
propagation delay in-between registers. Faster paths, have to wait until the arrival of the

72

Figure 4-10: State of the art SSC vision chip composed of an array of Nh⇥Nv units. Each
unit has a pixel, a SSC-readout circuit which in this case is the analog-to-stream-converter
and SNG [1], and the SSC processing units for gamma correction [2].

positive edge of the clock for the next step. In contrast for asynchronous computing the
next step starts immediately after the previous step finishes without waiting for a slower
central clock. That is, the information propagates through the logic as fast as each in-
dividual path permits [101]. Moreover, in a synchronous system the clock is switching
non-stop, even for inactive paths, consuming active power continuously. An asynchronous
system only consume active power when completing a task returning to an almost not dis-
sipating state afterwards [101]. An example of this, is the ASDM (Figure 4-11) which
switches only when the input integrator crosses a threshold instead of at each clock cycle,
reducing the activity factor (a) [30].

A caveat for asynchronous systems is the need of completion and hand-shake circuits
that indicate when the computation is done. As we will discuss in section 4.3.4, for ACS

73

Figure 4-11: a) Current-based asynchronous SD modulator (ASDM) architecture. b) Mul-
tiplication setup using SD streams

00.250.50.251

SD
In

0

1

0 0.5 1 1.5 2 2.5 3 3.5 4

SD
O

ut

Time (µs)
Figure 4-12: ASDM’s output stream for a triangular waveform at the input.

there is no need for these supporting circuits.

Addressing challenge (B) with near analog memory computing

A Memory-centric architecture, is one of the options to address challenge B, reducing
the data movement and power-latency overhead. One approach packs large amounts of
memory close to the processing elements such as is done in Google’s TPU [58]. However,
data transfers are not fully eliminated, thus the memory/power wall is not addressed. A
second approach, brings the computing units adjacent to the memory core, yet limitations
in the memory technology constrain the processing capabilities that can be implemented
[102]. A third approach uses the memory architecture for storage and computing (in-
situ). Prior work demonstrated in-situ SSC on DRAM using clever optimizations for data
representation to address the latency penalties inherent to SSC [103]. However, the cost of
analog-binary-stream-binary conversion makes the approach prohibitively expensive for
an energy constrained sensor.

74

One promising approach for processing near memory replaces the typical digital mem-
ory with non-volatile analog memory. This approach increases memory density, and facil-
itates node recovery for ultra-low power IoT sensors prone to blackout periods [7]. How-
ever, to be fully compatible with digital architectures, ADCs are included in the memory to
obtain a digital output (Figure 4-13a). These ADCs become a bottleneck for the resoruce-
constrained system, because they consume 58%, 31% [3] and 50% [7] of the total power,
area and energy respectively. In this work, we assume the presence of an analog memory
and address the cost of the memory peripheral circuits by replacing typical ADCs with
ASDMs (Section 4.3.4).

Figure 4-13: a) Typical Analog memory architecture. Promising options for analog mem-
ory technologies are memristors [3] [4], floating-gates [5], Ferro electric field effect tran-
sistor (FeFET) [6] and Flash [7]. b) Simplified block diagram for an image sensor. The
read-circuit includes a column parallel ADC. Previous work have demonstrated DT-SD
ADCs as a feasible low-power option [8]

75

Addressing challenge (C)

Figure 4-13b shows the block diagram of a typical image sensor composed of 3 elements:
(1) a pixel array that converts light intensity into analog signals. (2) Column-parallel
ADCs convert the analog information to a digital format with N bits; and (3) the control
logic (not shown) and auxiliary circuits that orchestrate the sensor operation. A major
bottleneck for low power operation for the sensor, is the column-parallel ADCs which
consume 33%-85% of the total power [94]. Several ADC architectures such as cyclic,
successive approximation register and flash have been demonstrated. As an example, Fig-
ure 4-13b shows the sensor using discrete-time SD ADCs (DT-SD-ADC) [8]. Section 4.3.4
describes our solution.

4.3.4 Algorithm and Architecture
In this section we start by describing the Random Forest algorithm. Then we delve into the
details of each of the components for the proposed NAM-ACS based architecture, shown
in Figure 4-14.

The algorithm: Random Forest

The Random Forest [104] algorithm is a machine learning model composed of an ensem-
ble of randomly trained, binary decision trees. Each tree is trained independently from a
random subset of the training data made with replacement, called bagging [105], and is
grown by recursively choosing a split feature from a random subset of the feature space,
and splitting the training data-points along a threshold. This threshold comparison for the
split feature is captured as a split node in the decision tree, whose left child corresponds
to the next state if the threshold qualification is met, and the right to the contrary. Each
leaf node in a tree represents a classification result [9]. Figure 4-15a shows an example
for a decision tree used to classify an input sample into 3 different classes: Class0-Class3.
Figure 4-15b shows an input sample, a.k.a feature vector, conformed of features p1-p4.

At run-time, each tree yields a classification result for the input feature vector. Starting
at the root node, a root-to-leaf path is traversed based on the values of the features of the
input sample. Figure 4-15a highlights the root-to-leaf path for the feature vector shown
in Figure 4-15b. Since each of the split outcomes is mutually exclusive, there is only one
root-to-leaf path per tree which can be traversed for any input feature vector [9].

To address the nonuniform memory access patterns of tree traversal algorithms and
load balancing, we adopt a RaF-AP [9] implementation based on Automata Processing

76

Figure 4-14: Image sensor architecture with on-node image classification capabilities us-
ing the machine learning algorithm Random Forest.

(AP). In RaF-AP each root-to-leaf path in a decision tree is represented as a chain of
feature evaluation nodes (Figure 4-16). Each evaluation node represents one side of the
decision tree’s split node, and all possible paths are translated into ordered chains, enabling
both parallel and streaming execution of all decision trees simultaneously. This architec-
ture enables complete inference in a single stream of the feature vector without the need

77

Figure 4-15: a) Single Tree example and b) the input feature vector.

of buffering or data movement across the architecture.
Two other decision tree-based algorithms: Adaboost, for Adaptive Boosting, and Boosted

Regression Trees using boosting [106] instead of bagging. Unlike with Random Forests
where the decision trees independently learn the same distribution, and the resulting in-
dependent classifications are combined with a voter, Adaboost and Boosted Regression
Tree algorithms have decision trees that are much weaker learners that are summed to-
gether to create a stronger learner. Inference is made in the same way as with RaF with a
tree traversal; the only difference is how the results are combined in the final stage of the
algorithm.

Architecture description

The block diagram for the proposed architecture is shown in Figure 4-14. An analog
memory is used to keep the thresholds obtained after offline training. Notice, that each
column in the memory is mapped to a chain of features, which in turn represents a class
(Figure 4-16). The analog output of each column is converted to a stream using column-
parallel ASDMs. These streams are connected directly to the column-parallel computing
units (comparators), which compare the input features with the thresholds coming from the
memory one row at a time. After evaluating all the rows the output of the comparator is “1"

78

p1≤0.2 0.2<p1≤0.5 p1>0.2p1≤0.2 p1≤0.2 p1≤0.2 p1>0.2

p2≤0.3

*

p4>0.75

Class
0

p2>0.3

*

p4>0.75

Class
1

*

p3>0.1

p4≤0.75

Class
2

*

p3≤0.1

p4≤0.75

Class
0

*

p3>0.6

*

Class
3

p2≤0.8

p3≤0.6

*

p2>0.8

p3≤0.6

*

Class
0

Class
2

Figure 4-16: Implementation of RaF that enables parallel execution of decision trees [9].
Each node has a high and low threshold, see row 1, column 5. In this example, the thresh-
olds are omitted when they are the minimum or maximum values.

when the feature set belongs to the class associated with that column, and “0" otherwise.
A majority voter decides the class with more votes among the trees.

The efficiency of this architecture is due to two key factors. (1) A reduced set of
features required for classification (Section 4.3.6). (2) The end to end asynchronous com-
puting with streams approach enabled by the ACS paradigm combined with the use of the
NAM-processing approach.

On the remaining of this section we describe the computing units for asynchronous
streams and in section 4.3.6 we analyze the cost of the analog memory interface using
ASDMs combined with the computing units.

Computing units for asynchronous streams

79

Figure 4-17: a) Conventional hardware implementation to compare two arbitrary numbers.
b) SSC sign detector [10] c) Adder for asynchronous streams [11]. d) Current comparator.
e) D-flipflop to keep the column status. The combination of the CTS-adder and the current
comparator form the continuous time streams comparator.

80

01 Thr
a)

0.
99

-0
.9

8-
0.

99
0.

78
-0

.9
8-

0.
95

-0
.6

4-
0.

96
-0

.7
2-

0.
81

-0
.9

0-
0.

92
-0

.2
1-

0.
34

-0
.9

7-
0.

98
-0

.9
7-

0.
71

-0
.9

60
.7

7-
0.

78
-0

.6
2

01 p
b)

01 0
5

10
15

20

Comp.
c)

C
om

pa
ris

on
#

v c
ou

t

Fi
gu

re
4-

18
:C

om
pa

ra
to

ro
pe

ra
tio

n
ex

am
pl

e
ke

ep
in

g
th

e
in

pu
tf

ea
tu

re
(p

=
�

0.
73

)c
on

st
an

ta
nd

va
ry

in
g

th
e

th
re

sh
ol

d
(T

hr
)f

or
22

di
ff

er
en

tc
om

pa
ris

on
s.

If
p
�

T
hr

th
e

co
m

pa
ra

to
ro

ut
pu

t(
ou

t)
is

“1
"

a)
,b

)T
hr

es
ho

ld
(T

hr
)a

nd
fe

at
ur

e
(p

)t
o

be
co

m
pa

re
d.

c)
C

om
pa

ra
to

rs
ig

na
ls

:V
ol

ta
ge

in
th

e
ca

pa
ci

to
r(

v c
)a

nd
fin

al
co

m
pa

ra
to

ro
ut

pu
t.

Processing the data coming from the pixel array requires massive hardware and soft-
ware capabilities specially when using ML algorithms. To demonstrate the potential of
ACS for ML we use a parallel array of computing units. Each unit compares the stream
coming from the pixel array, that is the feature p, with the thresholds T hs from the RaF
algorithm coming from the analog memory, that is:

z =
⇢

1 if p > T h
0 if otherwise

�
(4.4)

where z is the computing unit output. A comparison between two numbers is typically
implemented with an adder to obtain (T h� p), followed by a comparator with zero as
shown in Figure 4-17a. Figure 4-17c shows the adder for asynchronous streams, composed
of a capacitor embedded in a feedback loop, acting as an asynchronous memory element.
The function of the capacitor is to keep track of the addition carry significantly reducing
the error associated with computing with streams [11].

A sign detector can be implemented with an integrator as shown in Figure 4-17b [10].
Typically in SSC, an integrator is implemented as a clocked-counter that increases when
the input stream equals 1 or decreases when the input stream is 0. The quantity in the
counter represents the integral of the input. Eventually, the counter will become full or
empty depending on the sign of the input quantity [10]. A digital counter requires a clock
which is not compatible with the continuous time nature of the asynchronous streams.
To implement the asynchronous comparator, we use a current based integrator instead
(Figure 4-17d). The voltage in the capacitor acts as continuous-time state-keeper that
increases(decreases) when the input stream is 1(0). The inverters convert V c to 0 or 1.
We design the computing units in Cadence-Virtuoso using a FinFET1x technology and
perform spectre level simulations to obtain the metrics of interests. Figure 4-18 shows the
output of the unit comparing a fixed feature p with 22 different thresholds T hr. The output
of the comparator is "1" when p > T hr.

Analog memory for thresholds and pixel array considerations

Analog memory: Advancements in non volatile memory (NVM) technologies such as
resistive-RAM (RRAM) [4] [3], Ferro-electric-Fet (FeFET) [5] and Floating-gate (FG) [7],
enable the fabrication of analog memories with 2-8 bits of resolution. Table 4.3 summa-
rizes the recent analog memory implementations showing improvements in all metrics of
performance. All numbers are taken directly from the published literature. The summary
shows that leakage power is reduced by 98% for FeFET, PCM and RRAM compared with

82

SRAM. Power per cell is reduced by 99.9% and 54% for FG and RRAM respectively com-
pared with eDRAM or SRAM. Analog memories also have comparable retention time
compared to conventional DRAM and SRAM memories. Although the current reading
and writing speeds are slower than DRAM and SRAM, they are still fast compared to
flash memories [107], and the significant power and density advantages made them great
candidates for budget-constrained applications. Unfortunately, the ADC-based interface,
used for digital compatibility, is expensive and a major drawback for the adoption of this
technology. In this work we propose to use column-parallel ASDM as the output inter-
face for the analog memory, in this way we overcome the ADC bottleneck, and the analog
memory output is converted to asynchronous streams for the ACS units (Figure 4-14).
Section 4.3.6 will discuss the memory interface cost in detail.

The image sensor: Similar to the analog memory, we can simplify the read-out sensor
interface. Notice in Figure 4-13b that the output of a DT-SD modulator for the DT-SD-
ADC is a stream of bits, thus to use a stream based approach, we can remove the digital
filter and operate directly on the streams. Furthermore, we can replace the DT modula-
tor with an ASDM. Figure 4-14 shows a generic pixel array with the proposed interface.
Given that for this RaF inspired architecture, we only evaluate one pixel at a time, a single
ASDM multiplexed among the pixels of interest suffices. Table 4.4 compares the power
consumption of a single ASDM with an ADC, both designed in the same technology. The
power consumption for the asynchronous modulators is at least one order of magnitude
less than a SAR-ADC designed in the same technology.

4.3.5 Experimental Setup
Machine learning

We use the Scikit-Learn [113] Python machine learning framework to train our decision
tree models. Random Forest, Boosted Regression Tree, and ADABoost Regression models
are each parameterizable by the number of decision trees in their ensemble as well as the
maximum number of leaves per tree.

One parameter that is uniquely important for this RaF implementation is the number
of features considered by the models. This parameter determines the depth of each of
our decision chains as well as the run-time for inference by setting the stream length. To
set the maximum number of features considered by each model, we train a model with
all features, and then select the top N features based on feature importance values. We
then transform our training data and retrain the models with this reduced set of features.
Figure 4-19 shows a heatmap of the feature importance obtained from the RaF model when

83

Table 4.3: Metrics for Memories.

Type Feature ArrayBits
per # Area Power Power

per Read Write Retention

size
**** size cell Bytes ActiveLeakagecell time time time

1
FeFET*
[6]
[107]

180nm - 5 - 1071
µm2 - 35.29

µW - 45ns 65ns 10
years

2
PCM
[108]
[107]

45nm 256⇥
256 8 32KB0.043

mm2
16.1
mW

35.29
µW*

245
nW 12ns 100ns >10

years

3
RRAM
[3]
[107]

9nm 128⇥
128 2 4KB 25

µm2
300
nW

35.29
µW*

9.1
nW 50ns 0.3ns >10

years

4
FG [109]
[5]
[110]

20nm 4⇥
8 8 32B 490

µm2**

1.5
nW

- 5.8
pW - - -

4
eDRAM
[3]
[107]

36-
65nm - 1 64KB0.083

mm2
10.35
mW - 20 nW 2-

10ns
2-
10ns

>10
years

6
SRAM
[6]
[107]

45nm - 1 - 10311
µm2* 0.9mW1.1

mW*
19.09nW
[111] 0.2ns 0.2ns -

* Results obtained for MNIST classification using multilayer perceptron [6].
** Metrics for single memory cell [109].
*** Memory power consumption for a 16⇥16 image classification [5].
**** Feature size is compared against 45nm CMOS technology in this table. Although changes
are expected due to advances in both CMOS and memory technologies, the relative relation-
ship will stay similarly.

trained with all 784 features. The lighter the pixel color the most important the feature is
for accurate classification. The closest the pixel is to black the less information it conveys.
Using the top most relevant features for classification enables a significant reduction in
the hardware size and consequently the system power consumption and latency. During
run-time, we choose the top N features, which in turn determines the length of the chains
and number of rows in the memory.

Once the model has been trained, we provide the Scikit-Learn model to the RFAu-

84

Table 4.4: Metrics for individual components of the system

Power Supply (V)
0.6 0.7 0.8

Memory Interface

ADC [112]
Sample rate (GS/s) 0.95 1.2

Power (mW) 2.26 3.1
Resolution 10 10

ASDM
Power (µW) 0.984 9.28 17.28

Max. Frequency (MHz) 337
ACS Computing Unit Power (µW)

Adder 1.4 15 29
Comparator 0.96 5.2 12.6

Valid 0.01 0.13 0.13
Total 4.81 41.2 83

tomata [114] tool. This automata transformation tool based on Tracy, Fu, et al’s [9] work,
converts decision tree ensembles into an automata representation that consist in a range per
node (Figure 4-16). In this work, Each node (range) is mapped to two cells in a memory
row to keep the low and high thresholds.

Circuit simulation

To evaluate our architecture we use ideal current sources to model the memory and pixel
arrays. We design the computing units and the ASDMs using foundry provided models
for a FinFET1X technology. This work focuses on the trade-offs when using a massive
amount of parallel computing units and modulators. For functional verification we use the
thresholds obtained from off-line training for MNIST data-base classification to run circuit
level simulations using Cadence-Spectre.

Finally, independently of the architecture of choice, given a digital data representation
data-path, on-node real-time image classification requires several ADCs. Table 4.4 shows
the metrics of performance for an ADC designed in a FinFET 14nm technology [112],
which we use as a baseline for comparison.

4.3.6 Results
This section describes the metrics of performance for the NAM-ACS architecture. There
is a power-latency trade-off that depends on the memory-array size and the power supply

85

Figure 4-19: A visualization of the importance of pixels for classifying the image. Black
is assigned to unimportant features that can be discarded, while white represents the most
important features.

V dd (Note that the metrics of performance reported for the ACS architecture include the
cost of processing the data). However, even when the power consumption of the ACS
architecture (ASDMs + ACS-cores) is maximum, its energy performance is comparable
with the energy consumed by a single ADC.

To evaluate the ACS-architecture performance, we calculate the power, latency, and
power-delay-product (PDP) from circuit level simulations for two different cases where
the slowest component in the system dominates the minimum latency:

• Case I: The latency is determined by the memory-read time. Using a memristor
analog memory we assume a read-time of 100 ns [3] [4].

• Case II: The system latency is defined by the ACS latency, which depends on the
maximum frequency of operation of the ACS-core.

86

45505560657075808590

0
50

10
0

15
0

20
0

25
0

#
C

el
ls
⇥

10
3

a)
A

cc
ur

ac
y

%

16
⇥

32

32
⇥

64
64

⇥
12

8

12
8
⇥

25
625

6
⇥

51
2

25
6
⇥

10
24

10
1

10
2

10
3

10
4

10
5

10
6 32

64
12

8
25

6
51

21
02

4
#

C
ol

um
ns

b)
Po

w
er

(µ
W

)
A

D
C

-V
dd

2
A

C
S-

V
dd

3
A

C
S-

V
dd

2
A

C
S-

V
dd

1

A
SD

M
-V

dd
1

A
C

S-
V

dd
1

A
D

C
-V

dd
2

49
%

61
%

68
%

76
%

83
%

89
% 10�

2
10�

1

10
0

10
1

10
2

10
3 0

50
10

0
15

0
20

0
25

0
#

C
el

ls
⇥

10
3

c)
La

te
nc

y
(n

s)

10�
2

10�
1

10
0

10
1

10
2

10
3 0

50
10

0
15

0
20

0
25

0
#

C
el

ls
⇥

10
3

d)
PD

P
(m

W
s)

R
aF

A
D

A
B

oo
st

B
RT

A
D

C
-V

dd
2

A
C

S-
V

dd
1

To
t-A

C
S-

V
dd

2
To

t-A
C

S-
V

dd
3

A
D

C
-V

dd
2

A
C

S-
V

dd
1

To
t-A

C
S-

V
dd

2
To

t-A
C

S-
V

dd
3

Fi
gu

re
4-

20
:M

et
ric

s
of

pe
rf

or
m

an
ce

fo
rt

he
A

C
S

ar
ch

ite
ct

ur
e.

a)
A

cc
ur

ac
y

ve
rs

us
#

of
ce

lls
.b

)P
ow

er
co

ns
um

pt
io

n
ve

rs
us

nu
m

be
r

of
co

lu
m

ns
fo

r
th

e
m

em
or

y
in

te
rf

ac
e

(A
SD

M
s)

an
d

A
C

S-
co

re
s

fo
r

V
dd

1,
f 1

.
A

ls
o

th
e

co
m

bi
ne

d
po

w
er

co
ns

um
pt

io
n

of
th

e
A

C
S-

co
re

sa
nd

th
e

A
SD

M
sf

or
th

re
e

di
ff

er
en

to
pe

ra
tin

g
po

in
ts

.V
dd

1
<

V
dd

2
<

V
dd

3
c)

La
te

nc
y

ve
rs

us
#

of
ce

lls
fo

rt
hr

ee
di

ff
er

en
to

pe
ra

tin
g

po
in

ts
.

d)
Pr

od
uc

td
el

ay
pr

od
uc

tf
or

th
re

e
di

ff
er

en
to

pe
ra

tin
g

po
in

ts
.

Accuracy

Figure 4-20a shows the accuracy results for our trained models as a function of the number
of cells (# Cells) in the memory array. The # Cells is obtained as the array’s number of
rows multiplied by the number of columns. Table 4.5 shows the results of a parameter
exploration of the number of trees and number of leaves per tree and the classification
accuracy for MNIST using RaF. The maximum number of features is set to 256 because
we determined there not to be an increment in accuracy beyond this point.

We found that to maximize our accuracy, we had to trade off the number of leaves per
tree, with the number of trees in the ensemble. Adding more leaves to the tree resulted
in a model that better fit its random subset of the training data, while adding more trees
reduces the effect of variance incurred by overfitting the subset.

Figure 4-20a also shows the accuracy results for ADABoost and BRT regression mod-
els. The memory size required is 4X-8X smaller compared with RaF for the same level of
accuracy at the expense of an increment in the majority voter complexity.

Power consumption

Figure 4-20b compares the power consumption for the memory interface (ASDMs) and
the ACS-cores with the power consumption of a single ADC. A reasonable assumption
in an analog-memory-based architecture, given the large power consumption of typical
ADCs, is the use of a single ADC per array (Figure 4-13a) [3], thus the average power for
an ADC based interface (dashed blue line) is constant and independent of the array size.

For the ACS architecture we can vary the voltage and frequency (V dd, f) to meet a
latency requirement. When the latency of the system is determined by the analog-memory
read-time (Case I), we find (V dd1, f1) such that the computation is completed in 100 ns.
Figure 4-20b shows a monotonic increment in the power consumption for the ACS-cores
and the memory interface versus the number of columns (# Columns) in the memory array.
Compared with a single ADC, the total power consumption of the NAM-ACS architecture
is at least 1 order of magnitude smaller for an array with 32 columns, and comparable for
an array of 512 columns. That is, ACS enables 512 parallel comparisons for the cost of
only one of the ADCs required in previous architectures. This demonstrates the potential
for ACS to enable massive computational resources for low-power ML algorithms.

When the latency of the system is determined by the ACS-cores (Case II), the maxi-
mum latency is achieved at the technology nominal power supply (V dd3, f3). Figure 4-20b
shows the combined power consumption of the ACS-cores and memory interface (ACS-
V dd2), which quickly grows faster than the consumption of a single ADC. As we discuss

88

Table 4.5: Accuracy obtained for different number of features, trees and leaves per tree,
with the corresponding memory array size required for RaF

Memory array size Features Trees Leaves Accuracy
(# rows ⇥ # columns) (# rows) per Tree

16⇥32

16 1 16 49%
16 2 8 47.60%
16 4 4 42.40%

32⇥64

32 1 32 60.80%
32 2 16 60.40%
32 4 8 53.40%
32 8 4 50.90%

64⇥128

64 1 64 67.20%
64 2 32 67.90%
64 4 16 67.87%
64 8 8 60.97%
64 16 4 54.40%

128⇥256

128 1 128 74.90%
128 2 64 74.60%
128 4 32 76.50%
128 8 16 72.70%
128 16 8 66.90%
128 32 4 56.50%

256⇥512

256 1 256 78.30%
256 2 128 79.70%
256 4 64 82.70%
256 8 32 81.30%
256 16 16 76.50%
256 32 8 70.40%
256 64 4 59%

256⇥1024 256 8 128 88.90%
256 4 256 88.30%

below, this comes with a significant reduction in the system latency.

89

Latency

Figure 4-20c shows the latency versus number of cells. For the ACS architecture the
latency is proportional to the number of rows (features p) multiplied by the computation
time. For comparison, we also show the memory read-time for an ADC based analog-
memory architecture (Figure 4-13a) where the latency is proportional to the number of
cells multiplied by the ADC conversion time.

When the system latency is limited by the analog-memory read-time, the ACS-cores
operate at (V dd1, f 1). We find that for a memory array of 8X16 the latency for the ACS
architecture is 6X times longer than for the ADC based approach. For a memory array with
8K cells (64X128), the latency for both approaches is comparable, and beyond this point
ACS yields better latency than the ADC based approach. Since RaF for MNIST classifi-
cation does not yield any significant accuracy improvement when increasing the number
of features beyond 256 (section 4.3.6), the maximum number of rows in the memory array
is 256 and the latency is constant beyond this point.

When the system latency is limited by the ACS-cores (V dd3, f3), the latency is 1.6X-
207X better than the ADC approach (Figure 4-20b). The improvements in system latency
have a significant impact on the overall energy consumption of the system as we discuss
below.

Power-Delay-Product

A good estimate of the power efficiency of a system is given by the power-delay-product
(PDP) shown in Figure 4-20d. In an ACS system limited by the memory read-time, the
PDP for the combined ACS memory interface and ACS-cores is 3X smaller than the
power-efficiency of a single ADC. In a system limited by the ACS-cores latency, even-
though there is a significant increment in the power consumption, the PDP product for the
memory interface combined with the ACS-cores is still 2X better than the PDP of a single
ADC.

Table 4.6 summarizes the metrics of performance for RaF, ADABoost and BRT for the
best accuracy obtained. Notice that ADABoost and BRT enable a reduction of 96% in the
memory size for a similar accuracy compared with RaF. This reduction enable savings of
up to 87% in power and latency at the expense of a small increment in the majority voter
complexity.

90

Table 4.6: Best accuracy for RaF, ADABoost and BRT, with the corresponding power and
latency estimates. The cost of the majority voter, pixel array is not included since it is the
same cost for conventional architectures.

RaF ADABoost BRT
Accuracy 88.9% 78.4% 85%

Memory Size 256⇥1024 64⇥128 64⇥128
Power Memory [5] 15⇥10�3 47⇥10�6 47⇥10�6

(mW) Memory interface 1 0.125 0.125
Sensor interface 0.001 0.001 0.001

ACS-core 4.9 0.616 0.616
Total 5.9 0.742 0.742

Latency (us) 275 17 17
PDP (nWs) 152 2.38 2.38

4.3.7 Conclusions
The next generation of sensors for the IoT, smartdust or EI not only will operate un-
der constrained power budgets, but will also require sophisticated processing capabilities
for machine learning algorithms. In this paper we propose a NAM-ACS architecture for
RaF-inspired machine learning algorithms. This architecture enables an end-to-end asyn-
chronous computing on streams data-path leveraging the advantages of other computing
on streams paradigms such as SSC while addressing its drawbacks. To enable the end-to-
end asynchronous data-path we introduce an analog-memory-centric architecture. Typical
architectures using analog memories require ADCs to interface with the other blocks in
the system, making these ADCs power and latency bottlenecks. In our work all the ADCs
are eliminated and replaced with parallel ASDM. The cost of the parallel components in-
creases with the memory size. However, for a memory of size 64⇥128 and assuming 100
ns of memory-read-time [3], the accuracy obtained using BRT is of 85% and the power
of the ASDM interface combined with the computing unit enables 75% and 25% of sav-
ings in power and latency compared with the cost of single ADC. This demonstrate the
potential for ACS to enable ultra-low-power machine learning for the energy constrained
sensors that will conform the IoT, smartdust or EI.

91

Chapter 5

Conclusions and Future Directions

Wireless sensors for the IoT, smartdust or EI must operate under power and energy con-
strained conditions, yet the next generation of these sensors are expected to perform power-
hungry and complex computational tasks. To conciliate these two contradictory needs,
power-hungry computational tasks and ultra-low-power consumption, we propose a com-
puting paradigm where data is mapped to asynchronous streams: ACS.

We first introduce asynchronous stochastic computing (ASC) and develop its theoret-
ical foundations. We evaluate the performance of three applications. (1) A multiplier
implemented with a single AND gate. (2) Gamma correction: and image processing algo-
rithm and (3) a single layer for an artificial neural network. We find significant savings in
latency, power and energy compared with SSC.

Given the encouraging results, we embark on the search for an asynchronous stream
generator. In this dissertation we propose asynchronous computing on pulse density mod-
ulated streams generated with a low power ASDM as an analog to streams converter. We
use circuit simulations and develop a theoretical model to understand the error bound-
aries for this approach. Our theoretical model demonstrates that there is an asymptotic
error or bias for SC-ASDM. Our model and simulations results show that multiplication
with SC-ASDM yields at least 70% of latency savings obtaining the same SSC accuracy
performance, or 70% better accuracy when the computing time is similar to SSC.

To implement complex operations, that go beyond single stage combinational logic,
we propose a capacitor embedded in a feedback loop, as a memory element. The memory
element enables the implementation of an asynchronous low-error adder that we use later
to implement the ASC-FFT enabling savings in area and latency compared with typical
digital implementations.

The next generation of ultra-low-power sensors demand complex processing for ma-

92

chine learning algorithms. To address this need we propose a NAM-ACS architecture for
RaF-inspired machine learning algorithms. The architecture features an analog-memory-
centric architecture. Typical architectures using analog memories require ADCs to inter-
face with the other blocks in the system, making these ADCs power and latency bottle-
necks. In our work all the ADCs are eliminated and replaced with parallel ASDM.

The ideas described in this dissertation originates a novel sensor architecture that fea-
tures end-to-end asynchronous processing on streams. This architecture eliminates the
need for a clock generation unit and costly clock distribution networks. Moreover, the
sensor is simplified by eliminating expensive stream-digital-stream conversions.

The significant savings in latency, area, power and energy demonstrate the potential of
asynchronous computing on streams to reduce the power consumption and enable ultra-
low-power operation for the wireless sensors that will conform the smartdust, IoT and
EI.

5.1 Future Directions

5.1.1 Asynchronous SD Modulator metrics of performance
In this dissertation we use a simple version of an asynchronous SD modulator architecture.
We designed the architecture in cadence virtuoso using a FinFET1X technology and run
simulations using foundry models. We also developed a continuous time Matlab model
used for algorithm evaluation. These efforts, were targeted towards obtaining metrics of
performance such as power, energy and delay, setting aside non-ideal effects given the
ASDMs low sensitivity to circuit imperfections.

A necessary next step is a study of the effect of process, voltage and temperature vari-
ation using post-layout circuit simulations, Matlab models and post-silicon verification.
Ideally, as there is no quantiser in the system, the ASDM do not suffer of quantisation
errors. Hence, in theory, the signal-to-noise ratio (SNR) can be very high, even for a first-
order system [30]. In practice the signal-to-noise-distortion ratio (SNDR) depends on the
circuit deviations from the ideal behavior. Thus, an analysis of the effects of these non-
idealities is required to define and measure a metric analogous to the effective number of
bits in traditional ADCs. Examples of these non-idealities are:

• Transistor miss-match in the current mirrors used to charge and discharge the passive
integrator (capacitor).

93

• Output current dependency of the load. A cost versus performance evaluation for
different current mirror architectures would give a better understanding of the most
suitable architecture depending on the application requirements.

• The effect of thermal and flicker noise as a fundamental limit for the ASDM perfor-
mance.

• Propagation delay in the comparator.

• Variation in the propagation delay.

Also, a good portion of the trade-offs and circuit knobs are tied to the particular ap-
plication requirements. For example, the final implementation of the ASDM as the output
interface will be informed by the analog memory characteristics. To the best of our knowl-
edge some work has been done from the signals and system perspective to understand the
behavior of the modulator, yet a complete analysis of the circuit design trade-offs could
result in a new PhD dissertation.

5.1.2 Design automation tools
One of the main advantages of digital versus analog design is the level of automation in the
design and verification flows, which enables the development of complex systems (billion
of transistors) with high probability of success.

In order to validate our ideas we looked into some applications that included multistage
circuits (FFT) or high parallelism (RaF) using custom made scripts that generate circuits
for spectre level simulations. However, as the complexity of the system increases and the
necessity to go through the complete design flow for chip fabrication arises, some form
of design automation is required. A custom design flow, similar to analog circuits, would
make the approach unfeasible as we increase the level of complexity.

To address this, we envision mixed-signal elements such as the low power adder, the
asynchronous stochastic tanh and the asynchronous comparator, being implemented fol-
lowing standard cells dimensions and being included as part of the libraries used for syn-
thesis and PnR. The success of such endeavor depends on the ability to minimize the
effect of circuits non-idealities and the accuracy constrain determined by each particular
application.

94

5.1.3 Wireless interface
An ACS based sensor should be capable of energy efficient wireless communication.
One of the options to achieve ultra-low power wireless transmission is Ultra-Wide-Band
Impulse-Radio (IR-UWB). An IR-UWB system is characterized by the low complexity
of the transmitter and receiver units, achieving high- energy-efficiency. In IR-UWB, each
symbol (in the simplest case a bit) is encoded in a train of extremely short pulses which
results in a bandwidth wider that 500MHz [115]. Since the IR-UWB scheme is impulse
based, the transmitter and receiver units are simplified due to the elimination of up-down
converters. Typical IR-UWB implementations are optimized for synchronous streams of
bits which requires accurate clock sources. Moreover, successful transmission requires the
use of expensive synchronization schemes between the transmitter and receiver unit. In an
ACS architecture data is mapped to asynchronous streams, thus there is not a definition
of bit, the presence of clock or the notion of clock synchronization. Thus, an ACS based
architecture requires an asynchronous, non-coherent wireless communication scheme. An
option to address this requirement is shown in Figure 5-1, and Figure 5-2 show the wave-
forms at different stages of the architecture.

The transmission unit receives data from the ACS-core (Figure 5-7) or directly from
an ASDM (Figure 5-1). Figures5-2a,b show the analog input and the stream output for the
ASDM. A delay-cell (Figure 5-1a) is used to generate a short-pulse at each rising (“R")
and falling (“F") edge of the asynchronous stream. The short-pulse activates a current-
starved VCO to start an oscillation (Figure5-2c). This oscillation shaped by the effect
of the antenna, approximates the Gaussian-like train of pulses typically used for UWB
communication . To differentiate between the edge polarity, “R" and “F" are transmitted
with center frequencies f 1 and f 2 respectively (Figure5-2c-zoom-in).

The receiver is shown in Figure 5-1b. A low-noise-amplifier (LNA) amplifies the signal
captured by the antenna (Figure5-2d). Two band-pass filters centered around frequencies
f 1, f 2 respectively, differentiates between the “R" and “F" information. Non-coherent
energy detectors with level cross sampling are used to detect the incoming UWB-pulses
and generate a single pulse (Figure5-2e) feasible for the energy detector. The outputs from
the energy detectors are sent to a Set-Reset (SR) flip-flop to reconstruct the asynchronous
SD stream (Figure5-2f).

Figure 5-3 shows the circuit implementation for the short-pulse generator built as a
series of 3 current-starved inverters. The generator’s pulse-width is programmable in two
ways. (1) The voltages Vb,V̄b control the inverters current through transistors M1-M3,
P1-P3, and (2) the variable-capacitors modify the inverter load [12]. The output of the
short-pulse generators, activate a 3-stages current-starved VCO. A header-footer com-

95

Figure 5-1: A possible implementation for a transceiver (transmission-reception units) for
ACS streams. Adapted from [12].

bination, M4-M6, P4,P6, power-gates the VCO lowering the power consumption to the
minimum when no pulse is transmitted, while bias-voltages Vf 1,V̄f 1 and Vf 2,V̄f 2 control
the frequency of oscillation of the VCOs. Each VCO drives a high-impedance (High-Z)
inverter which output is connected together to generate the combined IR-UWB signal to
be transmitted. As part of preliminary explorations, we design the TX unit in FinFET1X
and 65nm technologies. Figure 5-4 shows the PSD for the circuits designed in FinFET1X.
Notice the peak frequencies located at f 1 = 5.3 GHz and f 2 = 5.3 GHz the frequency
of oscillation for the VCOs. Continuing this work requires the pulse engineering at the

96

0

1

p(
t)a)

0

1

x(
t)b)

-0.4
0

0.4
0.8

Txc)

-0.6
0

0.6

R
xd)

0
0.25
0.5

0.75

En
v

e)

0

1

x̂f)

0

1

0 Ti/8 Ti/4 3Ti/8 Ti/2 5Ti/83Ti/47Ti/8 Ti

x̂g)

time [s]

x x̂

E1 E2

Figure 5-2: a) Analog input for the ASDM. A sine wave with period Ti, b) Output of the
ASDM with a natural frequency fc = fi ⇥10. c) Tx signal generated at the transmitter. d)
Rx signal at the receiver. e) Output for both envelope detectors. f) Recovered SD stream
at the output of the SR flip-flop. g) Recovered SD stream in the presence of noise. Dashed
lines represent the expected stream, continuous line is the recovered streams.

following stages including the output buffer and the antenna to reduce the power emission
at the bands below 1.61GHz. Table 5.1 summarizes the design parameters and metrics of
performance for both technologies.

The average power and energy consumption of the wireless transmitter depends on the
data rate which in turn depends on the application. As an example, health-care applica-
tions such as electrocardiogram (ECG) and electroencephalogram (EEG) typically require
a sample rate of 600Ms/s, the maximum frequency of the signal of interest is ⇡ 70Hz, and
the required ADC resolution is 8-12 bits [116]. In ACS there is not a definition of bit.
However, to set the system requirements from the application perspective we could derive
the Effective Number of Bits (ENoB) for the ASDM after applying a band-pass filter. Fig-

97

Figure 5-3: Transceiver scheme for the proposed approach to an asynchronous, non-
coherent IR-UWB radio for an ACS architecture.The input x is an asynchronous stream.
The output is the Rx signal to be fed to a buffer driving an antenna.

ure 5-5a,b shows the power spectral density (PSD) calculated for a SD stream modulated
with a sine wave (Figures 5-2a,b). The input sine waves used to generate Figures 5-5a,b
have frequencies of fi = fc/10 and fi = fc/2 with fc the natural frequency of the modu-
lator. Similar to the discrete-time SD modulator, a band-pass filter, can be placed at the
output of the ASDM to obtain the effective-number-of-bits (ENoB). Figure 5-5c shows
ENoB for different input frequencies and different filters centered around fi with band-
widths ranging from 0.1⇥ fi to 0.7⇥ fi. Typical health-care applications require an ENoB
of 8-12 bits, thus to build a system tailored towards these applications we can design the

98

-100
-90
-80
-70
-60
-50
-40
-30

2e+09 4e+09 6e+09 8e+09 1e+10Em
is

si
on

le
ve

l[
dB

m
/M

H
z]

Frequency [GHz]

“R"
7.4e-9

“F"
5.3e-9

Figure 5-4: Power spectral density (PSD) for signal at the output of the high-Z buffer
simulated in Cadence-Spectre with a FinFET1X technology.

Parameter Technology
65nm FinFET1x

R Frequency ** 7.4 GHz
F Frequency ** 5.3 GHz

Power Supply 1.0 0.8 V
Pulse Power ** 6.88µ W

Average power* ** 15n W

Table 5.1: Transmitter parameters for 65nm and FinFET1x technologies. *The average
power of transmitting a square wave with a frequency of 1MHz. **Work in progress
leaded by Rahul Sreekumar, member of HPLP research group.

ASDM natural frequency fc = 10⇥ fi. That is, fi = 100KHz and fc = 1MHz. Setting fc
sets the maximum frequency of operation in the system, thus the power-supply and metrics
of performance such as power, latency and energy.

The continuous time representation has the potential to reduce the transmission power
consumption by 66%-77% compared with a fully digital approach. Figure 5-2b shows the
SD stream generated with a modulator designed such that fc = 10⇥ fi. A naive analysis
shows that transmitting one period of a sine wave requires 16 pulses (8 “F" and 8 “R"). Us-
ing a fully digital approach, assuming a sampling rate of 660S/s [116] and the generation
of a pulse per bit in the data representation, the number of pulses required is at least 48-72
for 8-12 bits of resolution respectively. This analysis ignores the cost of synchronization
preambles. Our preliminary results show that the pulse generation average power, for an
ACS system operating at the maximum frequency fc is 15nW .

The naive analysis presented on this section is an introduction to all the work that lies

99

-90
-80
-70
-60
-50
-40
-30
-20
-10

0

fc
10

fc
5

fc
2 fc

Frequency [Hz]

a) PSD

-90
-80
-70
-60
-50
-40
-30
-20
-10

0

fc
10

fc
5

fc
2 fc

Frequency [Hz]

b) PSD

0

5

10

15

20

25

fc
104

fc
103

fc
100

fc
10

fc
5

fc
2

fi [Hz]

c) ENoB

c = 0.1
c = 0.2
c = 0.5
c = 0.7

Target

Figure 5-5: a), b) PSD for asynchronous SD stream using a modulating sine wave with
frequency fi =

fc
10 and fi =

fc
2 respectively. The figure also shows ideal pass-band filters

frequency response to recover the sine-wave from the SD stream. c) ENoB versus fi for
different pass-band filters band-width calculated as c⇥ fi.

ahead:

• The continuous-time nature of the data representation in ACS, requires to re-think
the metrics of performance for the ACS-based wireless communication system. Al-
though the pulses sent resembles a digital system, the information each pulse repre-
sents in not a bit. Typical approaches can be modeled and compared using metrics
such as energy-per-bit or bit-error-rate. Thus further theoretical developments are
required to obtain metrics that explains the dynamics of the system. A simple ap-
proach to measure the cost and performance of the system is to use the sine-wave as
the information unit and compare different systems by the cost of transmitting it.

• Preliminary results show that using a fc = 10⇥ fi relation for the modulators natural
frequency and the maximum input frequency can yield an ENoB of 10 to 12. How-
ever, we do not study the band-pass filter characteristics or limitations of hardware
implementation. Possible options are the time-to-digital converters usually accom-
panying the ASDM when used as an ADC.

• A not-explored hypothesis is the increase (decrease) of robustness against pulse
transmission errors for the ACS wireless transmission unit. An exploration is re-
quired to measure the quality of the information received, for example the sine wave,
in the presence of missed pulses of falsely detected pulse. Figure 5-2g shows exam-
ples of both cases.

100

5.1.4 Building the first Asynchronous computing on streams based
mote

Smartdust, IoT and EI has applications in farming, healthcare, smart cities, transportation,
and inventory among others. Each application present different constrains that dictate the
characteristics of the smartdust mote. To validate the ideas discussed on this dissertation
we need to fabricate and verify the first prototype of a wireless sensor using and asyn-
chronous computing on streams paradigm.

This dissertation focused on developing the theoretical foundations for ACS and un-
derstanding its metrics of performance. We need to put together all the pieces to build an
ACS based, wireless sensor architecture for the IoT, smartdust or EI.

A SSC based architecture

SSC [10] has potential for spectacular power and area savings in the computing units.
However a SSC based architecture would replace conventional digital implementations
of computing units with their stochastic counterparts and add several digital-to-stream
(stochastic number generator, binary to streams) and stream-to-digital converters at the
interfaces between the computing units and the remaining blocks in the architecture (Fig-
ure 5-6). As discussed in Chapter 3 one of the major drawbacks for SSC is the elevated
cost of these interfaces.

Figure 5-6: A wireless sensor architecture using SSC. In red all the digital-streams-digital-
conversion required for SSC-digital integration

101

An ACS based architecture

Our goal is to achieve seamless node integration in order to capitalize the power savings
provided by the stream-based computing units. To do this, we eliminate the digital-stream-
digital conversion steps in the architecture, aiming for an end-to-end asynchronous com-
puting with streams data-path. Figure 5-7 shows the proposed sensor architecture.

Figure 5-7: Our approach

As discussed in Chapter 3, the ADC is replaced by an ASDM which generates con-
tinuous time streams from an analog input. The ASDM is attractive, for the simplicity
of its architecture, the absence of a clock, and the reliability for low current and supply
voltages [67]. In Chapter 3, we also discuss how the SD streams can be connected di-
rectly to the stochastic core. Moreover, in Chapter 4 we explore the stochastic core for
applications such as FFT and RaF. In section 4.3 we discuss the use of analog-memory
and near-analog memory computing using ACS. Section 5.1.3 gives a brief glimpse for
the wireless communication system requirements and considerations.

102

Appendix A

List of publications

A.1 Peer-reviewed Journals
[J1] P. Gonzalez-Guerrero, T. Tracy, X. Guo, M. Lejani, K. Skadron, M. Stan, “Towards
low power machine learning using asynchronous computing with streams,” In preparation

[J2] P. Gonzalez-Guerrero, M. Stan, “Area-Efficient Low-Latency FFT Design Based on
Asynchronous Computing with streams,” Transactions on Circuits and Systems I (TCAS-
I), January 2020. Submitted

[J3] X. Guo, V. Verma, P. Gonzalez-Guerrero, S. Mosanu, M. Stan, “Back to the Future:
Digital Circuit Design in the FinFET Era,” Journal of Low Power Electronics (JOLPE),
Vol. 13, No. 3, pp. 338–355, 2017.

A.2 Peer-reviewed Conferences
[C1] P. Gonzalez-Guerrero, T. Tracy, Guo Xinfei, M. Stan, “Towards low power machine
learning using asynchronous computing with streams”, The tenth International green and
sustainable computing conference (IGSC), 2019. Accepted

[C2] P. Gonzalez-Guerrero, M. Stan, "Asynchronous Stochastic Computing", Asilomar
conference on signals, systems, and computers, 2019. Accepted, Nominated best paper
award.

103

[C3] P. Gonzalez-Guerrero, S. Wilson, M. Stan, "Error-latency trade-off for computing
on asynchronous sigma delta streams", IEEE Systems on Chip conference (SoCC), 2019.

[C4] P. Gonzalez-Guerrero, X. Guo, M. Stan, "ASC-FFT: Area-Efficient Low-Latency
FFT Design Based on Asynchronous Stochastic Computing", 2019 Latin American Sym-
posium on Circuits and Systems (LASCAS). Best paper award.

[C5] P. Gonzalez-Guerrero, X. Guo, M. Stan, "SCSD: Towards Low Power Stochastic
Computing Using Sigma Delta Streams ", 2018 IEEE International Conference on Re-
booting Computing (ICRC).

[C6] X. Guo, V. Verma, P. Gonzalez-Guerrero and M. Stan, “When “things” get older
- Exploring Circuit Aging in IoT Applications,” In Proc. of International Symposium on
Quality Electronic Design (ISQED), Santa Clara, CA, 2018.

[C7] P. Gonzalez-Guerrero, M. Stan, "Ultra-low-power dual-phase latch based digital
accelerator for continuous monitoring of wheezing episodes", IEEE SOI-3D-Subthreshold
Microelectronics Technology Unified Conference (S3S), 2017.

104

Bibliography

[1] A. Alaghi et al. Stochastic circuits for real-time image-processing applications.
In 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6,
May 2013.

[2] Weikang Qian et al. An Architecture for Fault-Tolerant Computation with Stochas-
tic Logic. IEEE Transactions on Computers, 60(1):93–105, 1 2011.

[3] A. Shafiee et al. Isaac: A convolutional neural network accelerator with in-situ
analog arithmetic in crossbars. In 2016 ACM/IEEE 43rd Annual International Sym-
posium on Computer Architecture (ISCA), pages 14–26, June 2016.

[4] M. Hu et al. Dot-product engine for neuromorphic computing: Programming 1t1m
crossbar to accelerate matrix-vector multiplication. In 2016 53nd ACM/EDAC/IEEE
Design Automation Conference (DAC), pages 1–6, June 2016.

[5] J. Lu et al. A 1 tops/w analog deep machine-learning engine with floating-gate
storage in 0.13 µm cmos. IEEE Journal of Solid-State Circuits, 50(1):270–281, Jan
2015.

[6] Matthew Jerry, Pai-Yu Chen, Jianchi Zhang, Pankaj Sharma, Kai Ni, Shimeng Yu,
and Suman Datta. Ferroelectric FET analog synapse for acceleration of deep neural
network training. In 2017 IEEE International Electron Devices Meeting (IEDM),
pages 1–6. IEEE, 12 2017.

[7] M. Reza Mahmoodi et al. An ultra-low energy internally analog, externally digital
vector-matrix multiplier based on nor flash memory technology. In Proceedings of
the 55th Annual Design Automation Conference, DAC ’18, pages 22:1–22:6, New
York, NY, USA, 2018. ACM.

[8] Y. Chae et al. A 2.1 m pixels, 120 frame/s cmos image sensor with column-parallel-
delta-sigma-adc architecture. IEEE Journal of Solid-State Circuits, 46(1):236–247,
Jan 2011.

105

[9] Tommy Tracy, Yao Fu, Indranil Roy, Eric Jonas, and Paul Glendenning. Towards
machine learning on the automata processor. In International Conference on High
Performance Computing, pages 200–218. Springer, 2016.

[10] B. R. Gaines and B. R. Stochastic computing. In Proceedings of the April 18-20,
1967, spring joint computer conference on - AFIPS ’67 (Spring), page 149, New
York, New York, USA, 1967. ACM Press.

[11] L. Patricia Gonzalez-Guerrero et al. ASC-FFT: Area-Efficient Low-Latency FFT
Design Based on Asynchronous Stochastic Computing. In 2019 Latin American
Symposium on Circuits and Systems (LASCAS). IEEE, 2019.

[12] W. Tang and E. Culurciello. A non-coherent fsk-ook uwb impulse radio transmitter
for clock-less synchronization. In 2011 IEEE International Symposium of Circuits
and Systems (ISCAS), pages 1295–1298, May 2011.

[13] Kevin Ashton et al. That ‘internet of things’ thing. RFID journal, 22(7):97–114,
2009.

[14] Kris Pister. Smart dust. https://people.eecs.berkeley.edu/
~pister/SmartDust/SmartDustBAA97-43-Abstract.pdf, 2001.

[15] Joseph M Kahn, Randy H Katz, and Kristofer SJ Pister. Next century challenges:
mobile networking for “smart dust”. In Proceedings of the 5th annual ACM/IEEE
international conference on Mobile computing and networking, pages 271–278.
ACM, 1999.

[16] A. Keshavarzi and W. van den Hoek. Edge intelligence—on the challenging road to
a trillion smart connected iot devices. IEEE Design Test, 36(2):41–64, April 2019.

[17] Alfred Hermida. Caution over computerised world. http://news.bbc.co.
uk/2/hi/technology/3340491.stm, 2003.

[18] The economist. The smart dust revolution. https://www.economist.com/
news/2003/11/20/the-smart-dust-revolution, 2003.

[19] Azonano. Precision agriculture - nanotech methods used, such as ‘smart dust’,
smart fields’ and nanosensors. https://www.azonano.com/article.
aspx?ArticleID=1318#_What_is_\T1\textquoteleftSmart_
Dust\T1\textquoterightandWhoInvent, 2005.

106

https://people.eecs.berkeley.edu/~pister/SmartDust/SmartDustBAA97-43-Abstract.pdf
https://people.eecs.berkeley.edu/~pister/SmartDust/SmartDustBAA97-43-Abstract.pdf
http://news.bbc.co.uk/2/hi/technology/3340491.stm
http://news.bbc.co.uk/2/hi/technology/3340491.stm
https://www.economist.com/news/2003/11/20/the-smart-dust-revolution
https://www.economist.com/news/2003/11/20/the-smart-dust-revolution

[20] Alicia Klinefelter, Nathan E. Roberts, Yousef Shakhsheer, Patricia Gonzalez,
Aatmesh Shrivastava, Abhishek Roy, Kyle Craig, Muhammad Faisal, James Bo-
ley, Seunghyun Oh, Yanqing Zhang, Divya Akella, David D. Wentzloff, and Ben-
ton H. Calhoun. 21.3 A 6.45&#x03BC;W self-powered IoT SoC with inte-
grated energy-harvesting power management and ULP asymmetric radios. In 2015
IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical
Papers, pages 1–3. IEEE, 2 2015.

[21] Yanqing Zhang, Fan Zhang, Yousef Shakhsheer, Jason D. Silver, Alicia Klinefel-
ter, Manohar Nagaraju, James Boley, Jagdish Pandey, Aatmesh Shrivastava, Eric J.
Carlson, Austin Wood, Benton H. Calhoun, and Brian P. Otis. A Batteryless 19
μW MICS/ISM-Band Energy Harvesting Body Sensor Node SoC for ExG Ap-
plications. IEEE Journal of Solid-State Circuits, 48(1):199–213, 1 2013.

[22] Y. Nait Malek, A. Kharbouch, H. El Khoukhi, M. Bakhouya, V. De Florio, D. El
Ouadghiri, S. Latre, and C. Blondia. On the use of iot and big data technologies for
real-time monitoring and data processing. Procedia Computer Science, 113:429 –
434, 2017. The 8th International Conference on Emerging Ubiquitous Systems and
Pervasive Networks (EUSPN 2017) / The 7th International Conference on Current
and Future Trends of Information and Communication Technologies in Healthcare
(ICTH-2017) / Affiliated Workshops.

[23] Apple. Machine learning journal. https://machinelearning.apple.
com/2017/10/01/hey-siri.html, 2017.

[24] Raphael Tang, Weijie Wang, Zhucheng Tu, and Jimmy Lin. An Experimental Anal-
ysis of the Power Consumption of Convolutional Neural Networks for Keyword
Spotting. In 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 5479–5483. IEEE, 4 2018.

[25] Raspberry Pi. Teach, Learn, and Make with Raspberry Pi. https://www.
raspberrypi.org/.

[26] A. F. Yeknami, X. Wang, S. Imani, A. Nikoofard, I. Jeerapan, J. Wang, and P. P.
Mercier. A 0.3v biofuel-cell-powered glucose/lactate biosensing system employing
a 180nw 64db snr passive sigma delta adc and a 920mhz wireless transmitter. In
2018 IEEE International Solid - State Circuits Conference - (ISSCC), pages 284–
286, Feb 2018.

[27] L. Lin, S. Jain, and M. Alioto. A 595pw 14pj/cycle microcontroller with dual-mode
standard cells and self-startup for battery-indifferent distributed sensing. In 2018

107

https://machinelearning.apple.com/2017/10/01/hey-siri.html
https://machinelearning.apple.com/2017/10/01/hey-siri.html
https://www.raspberrypi.org/
https://www.raspberrypi.org/

IEEE International Solid - State Circuits Conference - (ISSCC), pages 44–46, Feb
2018.

[28] D. Jang and S. Cho. A 43.4µw photoplethysmogram-based heart-rate sensor using
heart-beat-locked loop. In 2018 IEEE International Solid - State Circuits Confer-
ence - (ISSCC), pages 474–476, Feb 2018.

[29] M. Yang, C. Yeh, Y. Zhou, J. P. Cerqueira, A. A. Lazar, and M. Seok. A 1µw voice
activity detector using analog feature extraction and digital deep neural network. In
2018 IEEE International Solid - State Circuits Conference - (ISSCC), pages 346–
348, Feb 2018.

[30] Dariusz Kościelnik and Marek Miśkowicz. Asynchronous Sigma-Delta analog-to
digital converter based on the charge pump integrator. Analog Integrated Circuits
and Signal Processing, 55(3):223–238, 6 2008.

[31] T. Karnik, D. Kurian, P. Aseron, R. Dorrance, E. Alpman, A. Nicoara, R. Popov,
L. Azarenkov, M. Moiseev, L. Zhao, S. Ghosh, R. Misoczki, A. Gupta, M. Akhila,
S. Muthukumar, S. Bhandari, Y. Satish, K. Jain, R. Flory, C. Kanthapanit, E. Qui-
jano, B. Jackson, H. Luo, S. Kim, V. Vaidya, A. Elsherbini, R. Liu, F. Sheikh,
O. Tickoo, I. Klotchkov, M. Sastry, S. Sun, M. Bhartiya, A. Srinivasan, Y. Hoskote,
H. Wang, and V. De. A cm-scale self-powered intelligent and secure iot edge mote
featuring an ultra-low-power soc in 14nm tri-gate cmos. In 2018 IEEE International
Solid - State Circuits Conference - (ISSCC), pages 46–48, Feb 2018.

[32] M. Konijnenburg, R. van Wegberg, S. Song, H. Ha, W. Sijbers, J. Xu, S. Stanzione,
C. van Liempd, D. Biswas, A. Breeschoten, P. Vis, C. Van Hoof, and N. Van
Helleputte. 22.1 a 769µw battery-powered single-chip soc with ble for multi-modal
vital sign health patches. In 2019 IEEE International Solid- State Circuits Confer-
ence - (ISSCC), pages 360–362, Feb 2019.

[33] Peng Li, David J Lilja, Weikang Qian, Kia Bazargan, and Marc D Riedel. Com-
putation on Stochastic Bit Streams Digital Image Processing Case Studies. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 22(3):449–462, 3
2014.

[34] Armin Alaghi and John P. Hayes. Exploiting correlation in stochastic circuit design.
In 2013 IEEE 31st International Conference on Computer Design (ICCD), pages
39–46. IEEE, 10 2013.

108

[35] Patricia Gonzalez-Guerrero, Xinfei Guo, and Mircea Stan. SC-SD: Towards Low
Power Stochastic Computing using Sigma Delta Streams. In 2018 IEEE Interna-
tional Conference on Rebooting Computing (ICRC). IEEE, 2018.

[36] M. H. Najafi, D. J. Lilja, M. Riedel, and K. Bazargan. Polysynchronous stochastic
circuits. In 2016 21st Asia and South Pacific Design Automation Conference (ASP-
DAC), pages 492–498. IEEE, 1 2016.

[37] B. D. Brown and H. C. Card. Stochastic neural computation. i. computational ele-
ments. IEEE Transactions on Computers, 50(9):891–905, Sep. 2001.

[38] Bo Yuan et al. Area-Efficient Scaling-Free DFT/FFT Design Using Stochastic Com-
puting. IEEE Transactions on Circuits and Systems II: Express Briefs, 63(12):1131–
1135, 12 2016.

[39] Ensar Vahapoglu and Mustafa Altun. Accurate Synthesis of Arithmetic Operations
with Stochastic Logic. In 2016 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), pages 415–420. IEEE, 7 2016.

[40] Yifei Liu, Paul Furth, and Wei Tang. Hardware-Efficient Delta Sigma-Based Dig-
ital Signal Processing Circuits for the Internet-of-Things. Journal of Low Power
Electronics and Applications, 5(4):234–256, 11 2015.

[41] N. Onizawa, D. Katagiri, W. J. Gross, and T. Hanyu. Analog-to-stochastic con-
verter using magnetic-tunnel junction devices. In 2014 IEEE/ACM International
Symposium on Nanoscale Architectures (NANOARCH), pages 59–64, July 2014.

[42] Arash Ardakani et al. Hardware implementation of FIR/IIR digital filters using inte-
gral stochastic computation. In 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 6540–6544. IEEE, 3 2016.

[43] Ran Wang et al. Design and evaluation of stochastic FIR filters. In 2015 IEEE
Pacific Rim Conference on Communications, Computers and Signal Processing
(PACRIM), pages 407–412. IEEE, 8 2015.

[44] K. Kim et al. Dynamic energy-accuracy trade-off using stochastic computing in
deep neural networks. In 2016 53nd ACM/EDAC/IEEE Design Automation Confer-
ence (DAC), pages 1–6, June 2016.

[45] K. Sanni et al. Fpga implementation of a deep belief network architecture for char-
acter recognition using stochastic computation. In 2015 49th Annual Conference
on Information Sciences and Systems (CISS), pages 1–5, March 2015.

109

[46] A. Ren et al. Designing reconfigurable large-scale deep learning systems using
stochastic computing. In 2016 IEEE International Conference on Rebooting Com-
puting (ICRC), pages 1–7, Oct 2016.

[47] Z. Li et al. Dscnn: Hardware-oriented optimization for stochastic computing based
deep convolutional neural networks. In 2016 IEEE 34th International Conference
on Computer Design (ICCD), pages 678–681, Oct 2016.

[48] J. Li et al. Towards acceleration of deep convolutional neural networks using
stochastic computing. In 2017 22nd Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 115–120, Jan 2017.

[49] P. Gonzalez-Guerrero et al. Scsd: Towards low power stochastic computing using
sigma delta streams. In 2018 IEEE International Conference on Rebooting Com-
puting (ICRC), pages 1–8, Nov 2018.

[50] Xinfei Guo et al. Back to the future: Digital circuit design in the finfet era. Journal
of Low Power Electronics, 13(3):338–355, 2017.

[51] X. Guo et al. When things get older: Exploring circuit aging in iot applications. In
2018 19th International Symposium on Quality Electronic Design (ISQED), pages
296–301, March 2018.

[52] Yanqing Zhang et al. Hold time closure for subthreshold circuits using a two-phase,
latch based timing method. In 2013 IEEE SOI-3D-Subthreshold Microelectronics
Technology Unified Conference (S3S), pages 1–2. IEEE, 10 2013.

[53] Nicolas Privault. Notes on Markov chains. Open Library, 2011.

[54] Solomon Frederick. Probability and Stochastic Processes. Prentice-Hall, Inc, En-
glewood Cliffs, 1987.

[55] Charles A. Poynton. SMPTE Tutorial: Gamma and its Disguises: The Nonlinear
Mappings of Intensity in Perception, CRTs, Film, and Video. SMPTE Journal,
102(12):1099–1108, 12 1993.

[56] BP. Brain power. http://www.brain-power.com/, 2019.

[57] Robert LiKamWa et al. Draining our glass: An energy and heat characterization of
google glass. In Proceedings of 5th Asia-Pacific Workshop on Systems, APSys ’14,
pages 10:1–10:7, New York, NY, USA, 2014. ACM.

110

http://www.brain-power.com/

[58] Norman P. Jouppi et al. In-datacenter performance analysis of a tensor processing
unit. In Proceedings of the 44th Annual International Symposium on Computer
Architecture, ISCA ’17, pages 1–12, New York, NY, USA, 2017. ACM.

[59] S. L. Bade and B. L. Hutchings. Fpga-based stochastic neural networks-
implementation. In Proceedings of IEEE Workshop on FPGA’s for Custom Com-
puting Machines, pages 189–198, April 1994.

[60] J. Ramirez-Angulo. A compact current controlled cmos waveform generator. IEEE
Transactions on Circuits and Systems II: Analog and Digital Signal Processing,
39(12):883–885, Dec 1992.

[61] D.A. Johns and D.M. Lewis. Design and analysis of delta-sigma based IIR filters.
IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Process-
ing, 40(4):233–240, 4 1993.

[62] Naman Saraf, Kia Bazargan, David J Lilja, and Marc D Riedel. IIR filters using
stochastic arithmetic. In Design, Automation & Test in Europe Conference & Exhi-
bition (DATE), 2014, pages 1–6, New Jersey, 2014. IEEE Conference Publications.

[63] F. Maloberti. Non conventional signal processing by the use of sigma delta tech-
nique: a tutorial introduction. In IEEE International Symposium on Circuits and
Systems, volume 6, pages 2645–2648. IEEE, 1992.

[64] Victor da Fonte Dias. Signal processing in the sigma-delta domain. Microelectron-
ics Journal, 26(6):543–562, 9 1995.

[65] SL Toral, JM Quero, JG Ortega, and LG Franquelo. Stochastic A/D sigma-delta
converter on FPGA. In Circuits and Systems, 1999. 42nd Midwest Symposium on,
volume 1, pages 35–38. IEEE, 1999.

[66] Armin Alaghi, Cheng Li, and John P Hayes. Stochastic circuits for real-time image-
processing applications. In Proceedings of the 50th Annual Design Automation
Conference on - DAC ’13, page 1. ACM Press, 2013.

[67] E. Roza. Analog-to-digital conversion via duty-cycle modulation. IEEE Trans-
actions on Circuits and Systems II: Analog and Digital Signal Processing,
44(11):907–914, 1997.

[68] S.J. Daubert and D. Vallancourt. A transistor-only current-mode Sigma Delta mod-
ulator. In Proceedings of the IEEE Custom Integrated Circuits Conference, pages
1–24. IEEE, 1991.

111

[69] D.G. Nairn and C.A.T. Salama. Algorithmic analogue/digital convertor based on
current mirrors. Electronics Letters, 24(8):471, 1988.

[70] Dazhi Wei, Vaibhav Garg, and John G Harris. An asynchronous delta-sigma con-
verter implementation. In IEEE International Symposium on Circuits and Systems,
page 4. IEEE, 2006.

[71] P.J. Crawley and G.W. Roberts. Switched-current sigma-delta modulation for A/D
conversion. In [Proceedings] IEEE International Symposium on Circuits and Sys-
tems, volume 3, pages 1320–1323. IEEE, 1992.

[72] M. Hassan Najafi, Shiva Jamali-Zavareh, David J. Lilja, Marc D. Riedel, Kia
Bazargan, and Ramesh Harjani. Time-Encoded Values for Highly Efficient Stochas-
tic Circuits. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
25(5):1644–1657, 5 2017.

[73] Jung Hwan Choi, Jayathi Murthy, and Kaushik Roy. The effect of process variation
on device temperature in finFET circuits. In IEEE/ACM International Conference
on Computer-Aided Design, pages 747–751. IEEE, 2007.

[74] Hideyuki Ichihara, Shota Ishii, Daiki Sunamori, Tsuyoshi Iwagaki, and Tomoo In-
oue. Compact and accurate stochastic circuits with shared random number sources.
In International Conference on Computer Design, pages 361–366. IEEE, 10 2014.

[75] Kun Lin, Kan Zhao, E. Chui, A. Krone, and J. Nohrden. Digital filters for high
performance audio delta-sigma analog-to-digital and digital-to-analog conversions.
In Proceedings of Third International Conference on Signal Processing (ICSP’96),
volume 1, pages 59–63. IEEE.

[76] Mohammed Alawad et al. Sketching computation with stochastic processing en-
gines. ACM Journal on Emerging Technologies in Computing Systems (JETC),
13(3):46, 2017.

[77] A. Alaghi et al. Stochastic circuits for real-time image-processing applications. In
2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC), May 2013.

[78] L. Kull et al. A 10b 1.5gs/s pipelined-sar adc with background second-stage
common-mode regulation and offset calibration in 14nm cmos finfet. In 2017 IEEE
International Solid-State Circuits Conference (ISSCC), pages 474–475, Feb 2017.

112

[79] Bor-Shing Lin and Tian-Shiue Yen. An FPGA-based rapid wheezing detec-
tion system. International journal of environmental research and public health,
11(2):1573–93, 1 2014.

[80] Syamimi Mardiah Shaharum, Kenneth Sundaraj, and Rajkumar Palaniappan. A
survey on automated wheeze detection systems for asthmatic patients. Bosnian
journal of basic medical sciences, 12(4):249–55, 11 2012.

[81] Styliani A. Taplidou and Leontios J. Hadjileontiadis. Wheeze detection based on
time-frequency analysis of breath sounds. Computers in Biology and Medicine,
37(8):1073–1083, 8 2007.

[82] Pascal Meinerzhagen, S. M. Yasser Sherazi, Andreas Burg, and Joachim Neves
Rodrigues. Benchmarking of Standard-Cell Based Memories in the Sub-$V_{\rm
T}$ Domain in 65-nm CMOS Technology. IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, 1(2):173–182, 6 2011.

[83] Mingoo Seok, Gregory Chen, Scott Hanson, Michael Wieckowski, David Blaauw,
and Dennis Sylvester. CAS-FEST 2010: Mitigating Variability in Near-Threshold
Computing. IEEE Journal on Emerging and Selected Topics in Circuits and Sys-
tems, 1(1):42–49, 3 2011.

[84] Xin Xiao et al. An Efficient FFT Engine With Reduced Addressing Logic. IEEE
Transactions on Circuits and Systems II: Express Briefs, 55(11):1149–1153, 11
2008.

[85] Bo Yuan et al. Area-Efficient Error-Resilient Discrete Fourier Transformation De-
sign using Stochastic Computing. In Proceedings of the 26th edition on Great Lakes
Symposium on VLSI, pages 33–38. ACM, 2016.

[86] J.A. Johnston. Parallel pipeline fast fourier transformer. IEE Proceedings F Com-
munications, Radar and Signal Processing, 130(6):564, 1983.

[87] Liang Yang et al. An efficient locally pipelined FFT processor. IEEE Transactions
on Circuits and Systems II: Express Briefs, 53(7):585–589, 7 2006.

[88] R. LiKamWa et al. Redeye: Analog convnet image sensor architecture for contin-
uous mobile vision. In 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), pages 255–266, June 2016.

[89] H. Li, K. Ota, and M. Dong. Learning iot in edge: Deep learning for the internet of
things with edge computing. IEEE Network, 32(1):96–101, Jan 2018.

113

[90] Bingzhe Li, M Hassan Najafi, and David J Lilja. Low-cost stochastic hybrid mul-
tiplier for quantized neural networks. ACM Journal on Emerging Technologies in
Computing Systems (JETC), 15(2):18, 2019.

[91] P. Li, D. J. Lilja, W. Qian, K. Bazargan, and M. D. Riedel. Computation on stochas-
tic bit streams digital image processing case studies. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 22(3):449–462, March 2014.

[92] Patricia Gonzalez-Guerrero, Stephen G. Wilson, and Mircea R Stan. Error-latency
Trade-off for Asynchronous Stochastic Computing with SD Streams for the IoT. In
System on chip conference. IEEE, 2019.

[93] Patricia Gonzalez-Guerrero and Mircea R. Stan. Asynchronous Stochastic Com-
puting. In Asilomar conference on signals systems and computers. IEEE, 2019
(Submitted).

[94] Robert LiKamWa et al. Energy characterization and optimization of image sensing
toward continuous mobile vision. In Proceeding of the 11th Annual International
Conference on Mobile Systems, Applications, and Services, MobiSys ’13, pages
69–82, New York, NY, USA, 2013. ACM.

[95] J Kevin O’regan. Solving the" real" mysteries of visual perception: The world as an
outside memory. Canadian Journal of Psychology/Revue canadienne de psycholo-
gie, 46(3):461, 1992.

[96] Irina Burciu, Thomas Martinetz, and Erhardt Barth. Sensing forest for pattern
recognition. In Jacques Blanc-Talon, Rudi Penne, Wilfried Philips, Dan Popescu,
and Paul Scheunders, editors, Advanced Concepts for Intelligent Vision Systems,
pages 126–137, Cham, 2017. Springer International Publishing.

[97] J. Wadden, T. Tracy, E. Sadredini, L. Wu, C. Bo, J. Du, Y. Wei, J. Udall, M. Wallace,
M. Stan, and K. Skadron. Automatazoo: A modern automata processing bench-
mark suite. In 2018 IEEE International Symposium on Workload Characterization
(IISWC), pages 13–24, Sep. 2018.

[98] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

[99] R. Wang, J. Han, B. Cockburn, and D. Elliott. Design and evaluation of stochastic
fir filters. In 2015 IEEE Pacific Rim Conference on Communications, Computers
and Signal Processing (PACRIM), pages 407–412, Aug 2015.

114

[100] B. Yuan, Y. Wang, and Z. Wang. Area-efficient scaling-free dft/fft design using
stochastic computing. IEEE Transactions on Circuits and Systems II: Express
Briefs, 63(12):1131–1135, Dec 2016.

[101] C. H. Van Berkel, M. B. Josephs, and S. M. Nowick. Applications of asynchronous
circuits. Proceedings of the IEEE, 87(2):223–233, Feb 1999.

[102] Y. Kang, W. Huang, S. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik, and J. Torrel-
las. Flexram: Toward an advanced intelligent memory system. In 2012 IEEE 30th
International Conference on Computer Design (ICCD), pages 5–14, Sep. 2012.

[103] S. Li, A. O. Glova, X. Hu, P. Gu, D. Niu, K. T. Malladi, H. Zheng, B. Brennan,
and Y. Xie. Scope: A stochastic computing engine for dram-based in-situ accelera-
tor. In 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 696–709, Oct 2018.

[104] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[105] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[106] Jerome H Friedman. Greedy function approximation: a gradient boosting machine.
Annals of statistics, pages 1189–1232, 2001.

[107] Mohammed Affan Zidan, Hossam Aly Hassan Fahmy, Muhammad Mustafa Hus-
sain, and Khaled Nabil Salama. Memristor-based memory: The sneak paths prob-
lem and solutions. Microelectronics Journal, 44(2):176–183, 2013.

[108] M. Le Gallo, A. Sebastian, G. Cherubini, H. Giefers, and E. Eleftheriou. Com-
pressed sensing recovery using computational memory. In 2017 IEEE International
Electron Devices Meeting (IEDM), pages 28.3.1–28.3.4, Dec 2017.

[109] J. Lu and J. Holleman. A floating-gate analog memory with bidirectional sigmoid
updates in a standard digital process. In 2013 IEEE International Symposium on
Circuits and Systems (ISCAS2013), pages 1600–1603, May 2013.

[110] F Merrikh Bayat, Xinjie Guo, HA Om’Mani, N Do, Konstantin K Likharev, and
Dmitri B Strukov. Redesigning commercial floating-gate memory for analog com-
puting applications. In 2015 IEEE International Symposium on Circuits and Sys-
tems (ISCAS), pages 1921–1924. IEEE, 2015.

115

[111] Raj Johri, Ravindra Singh Kushwah, Raghvendra Singh, and Shyam Akashe. Mod-
eling and simulation of high speed 8t sram cell. In Proceedings of Seventh Interna-
tional Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA
2012), pages 245–251. Springer, 2013.

[112] L. Kull et al. A 10b 1.5gs/s pipelined-sar adc with background second-stage
common-mode regulation and offset calibration in 14nm cmos finfet. In 2017 IEEE
International Solid-State Circuits Conference (ISSCC), pages 474–475, Feb 2017.

[113] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al. Scikit-learn: Machine learning in python. Journal of machine
learning research, 12(Oct):2825–2830, 2011.

[114] Tommy Tracy. Rfautomata. https://github.com/tjt7a/ANMLZoo/
tree/master/RandomForest/code, 2019.

[115] Huseyin Arslan, Chen Zhi-Ning, and Di Benedetto Maria-Gabriella. Ultra Wide-
band Wireless communication. John Wiley & Sons, 2006.

[116] N. Verma, A. Shoeb, J. Bohorquez, J. Dawson, J. Guttag, and A. P. Chandrakasan.
A micro-power eeg acquisition soc with integrated feature extraction processor for a
chronic seizure detection system. IEEE Journal of Solid-State Circuits, 45(4):804–
816, April 2010.

116

https://github.com/tjt7a/ANMLZoo/tree/master/RandomForest/code
https://github.com/tjt7a/ANMLZoo/tree/master/RandomForest/code

