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Abstract

Quantum computing promises exponential speedup over classical computing for spe-
cific algorithms [38], such as integer factoring [53] and quantum simulation [19].
While a classical computer follows the rules of classical physics, a quantum com-
puter follows the rules of quantum physics. These rules include superposition and
entanglement. Classical computers store the information into bits, 0 and 1, and
quantum computers typically use qubits, superpositions of |0〉 and |1〉, to store the
information. However, in this work, the information is stored in quantized elec-
tromagnetic fields called qumodes. Just like the qubits are regarded as discrete
variables due to their basis being composed of |0〉 and |1〉, the qumodes are named
continuous variables because their basis is formed of the eigenstates of amplitude
quadratures (or phase quadratures) which are continuous. To use qumodes for
quantum computing, measurement-based quantum computing is preferred, which
requires a particular type of large entangled quantum states, cluster states, as cal-
culation resources. Simply speaking, cluster states are sparsely (i.e., locally) but
fully entangled networks of qubits or qumodes, represented by a two-dimensional
graph. The computing is performed by local measurements on each qumode with
feedforward. To perform universal quantum computing, preparing a 2-dimensional
(2-d) cluster state is one of the criteria [49] to achieve the quantum speed up. Sup-
pose one can prepare a 3-d cluster state. In that case, it is possible to perform
topological quantum error correction encoding [50] to decrease the error rate to a
small amount. Therefore, this thesis aims to provide a method to generate 2-d and
3-d cluster states and then experimentally verify the states.

This thesis will discuss a theoretical method that generates 1-d, 2-d, and 3-d
cluster states in the frequency domain by employing only one optical parametric
oscillator (OPO) and one electro-optic modulator (EOM). This thesis will also dis-
cuss how the author approaches the experimental realization and verification of 1-d
cluster states in the lab. In order to increase the performance and stability of the
systems, several improvements have been performed: first and foremost, the ob-
served squeezing was improved from 3.2 dB to 5.0 dB; also, a quantum heterodyne
measurement method was devised to verify the cluster states by reconstructing their
covariance matrix; last but not least, vast improvements of the stability and per-
formance of the quantum optical setup were achieved by increasing signal-to-noise
ratios by one order of magnitude on quantum detection and by two orders of mag-
nitude on servo loops, and by implementing two new servo loops to phase lock all
quantum fields.
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Chapter 1

Introduction

1.1 Overview

The idea of quantum computing was proposed around 1980, and one of the pro-
posers is Richard Feynman [19]. His main idea is to use a computer that follows
quantum mechanics to simulate quantum systems, while this is a challenging task
for a computer that follows classical physics. A computer that follows quantum me-
chanics (classical physics) is called a quantum computer (classical computer). The
power of quantum computers is due to a quantum computer that can scale well
with the size of the quantum system, which we now call scalability. Furthermore,
quantum computers can provide some speed up in certain algorithms, which have
great impact on human society. For example, Peter Shor found an efficient quantum
algorithm for factoring large numbers [54], which significantly impacts cryptanal-
ysis. Lov Grover found an efficient quantum search algorithm, which can speed up
an unstructured search problem quadratically. With these outstanding features and
impacts, more and more countries and facilities invest many resources to develop
quantum computers.

Up to date, there are three main types of quantum computers listed in the
following. The first kind of quantum computer is developed using superconducting
transmons, and around 50 entangled qubits have been reported [1]. Second, trapped
ions are used as another quantum computer, and about 30 to 70 entangled qubits
have been shown [67]. Finally, the third type of quantum computer is developed
using optics, which typically have more than 50 entangled qumodes (the photon
version of qubits) [69, 13, 63, 30, 2].

The most widely used quantum computing operation is circuit-based quantum
computing (CBQC) [40], a classical analogy. The “ quantum” circuit comprises
quantum gates interconnected by quantum wires, which move the qubits. Com-
puting is performed by an ordered sequence of quantum gates, measurements, and
resets. The CBQC is favored in trapped-ion and superconducting quantum comput-
ing.

The other type of quantum computing is measurement-based quantum comput-
ing (MBQC), which is computationally equivalent to CBQC. The idea of MBQC is
proposed by Robert Raussendorf and Hans Briegel in 2002 [51]. To perform MBQC,
a particular kind of quantum state, cluster states, need to be prepared ahead of time.
For example, suppose one can prepare a square-grid qubits cluster state and per-
form computations by local measurements on each qubit with feedforward. Once

1



1.2. THESIS PLAN

the calculation is done, the entanglement is destroyed and the cluster state needs
to be regenerated for a new calculation. In 2006, Nicolas Menicuci and Peter van
Loock generalized the idea of MBQC from qubits (discrete-variable, DV) to qumodes
(continuous-variable, CV). More detail about CV MBQC can be found in chapter 3.

There are two significant challenges toward realizing practical quantum com-
puters: realizing scalability and resilience to decoherence [44, 14]. Compared to
CBQC, the advantages of CV MBQC are (1) the scalibility [44, 42, 33, 35, 20]
and (2) the computation performed by measurement is more accessible than the
gates implementations in the CBQC. To perform universal quantum computing in
CV MBQC [33, 49], 2-d cluster states need to be prepared. To allow topological
quantum error correction encoding, one needs to have 3-d cluster states [50]. It is
worth mentioning the CV MBQC can be made fault-tolerant at reachable squeezing
levels [34, 58, 22].

The goal of this thesis can be separated into three parts. The first part of the
thesis is mainly to provide the necessary background knowledge of quantum optics.
Since the reader can easily find those content in many textbooks, readers familiar
with quantum optics can omit the reading of this part. The second part of the thesis
provides a theoretical background about CV cluster states and a simple method
(EOM method) we proposed to generate higher-dimensional cluster states in the
frequency domain by a phase modulated quantum optical frequency comb. Finally,
the third part of the thesis is to present my experimental works toward verifying
the cluster states generated by our EOM method to improve the performance and
stability of the optical system.

1.2 Thesis Plan

During my time at the University of Virginia as a Ph.D. candidate, my research
work was focused on experiments. In the meantime, I also contributed to two the-
oretical works with my talented colleagues and lab partners. Here is the list of my
two publications:

1. Rajveer Nehra, Chun-Hung Chang, Qianhuan Yu, Andreas Beling, and Olivier
Pfister,
”Photon-number-resolving segmented detectors based on single-photon
avalanche-photodiodes”,
Opt. Express 28, 3660 (2020).

2. Xuan Zhu, Chun-Hung Chang, Carlos González-Arciniegas, Avi Pe’er, Jacob
Higgins, and Olivier Pfister,
”Hypercubic Cluster States in the Phase-Modulated Quantum Optical Frequency
Comb”,
Optica 8, 281 (2021).

For the coherence of this thesis, the work for the first publication will not be
covered in the content. However, readers interested in reading the work can find the
paper online or find Rajveer Nehra’s Ph.D. thesis [39].

In chapter 2, I present the quantum model to describe the electromagnetic wave

2



1.2. THESIS PLAN

and the three pictures to depict the evolution of time. Then, I introduce quantum
states: Fock states, coherent states, and squeezed states. I also introduce a beam
splitter, which is used in the homodyne measurement and loss model. Lastly, the
squeezing degradation by phase noise and loss is discussed as well.

In chapter 3, I introduce cluster states, which acts as computing resources for
continuous-variable quantum computing. I provide the mathematical description of
cluster states, also known as graphical calculus. I also present a simple method we
proposed to generate 1-d, 2-d, and 3-d cluster states by a phase-modulated quantum
optical frequency comb (QOFC) in the frequency domain. A graph error analysis
of the bipartite case about the effect of omitting the spurious graph edges is provided.

In chapter 4, a crucial two-mode cluster states generator, an optical parametric
oscillator (OPO), is presented, which can be divided into three sections, an optical
cavity, nonlinear medium, and Pound-Drever-Hall (PDH) locking. I also discuss
squeezing estimation based on the experimental parameters, such as parametric
gain, loss, visibility, and phase noise.

In chapter 5, I present my experimental work to improve the optical system’s
stability. I will present the phase noise investigation of the optical system. And
then, I will show the OPO PDH cavity lock improvement: the signal-to-noise ra-
tio is improved from 40 to more than 3000. Preliminary evidence for multipartite
entanglement generation by phase modulation of the QOFC is also discussed and
presented.

In chapter 6, the first part is about the OPO improvements. The squeezing is
improved by changing the OPO mirror and the observed squeezing is improved from
3 dB around to 5 dB with a squeezing calibration of electronic noise. I will talk about
the idea of using a reference beam as a local oscillator, including the advantages and
disadvantages of this method. The sensitivity improvement of a balanced homodyne
detector will also be presented. The second part is for verification of cluster state
by reconstructing covariance matrix. I will discuss the measurement principle and
plan by reconstructing a two-mode covariance matrix as an example. Two phase
locks to stabilize the phases between three optical fields in order to reconstruct
the covariance matrix will also be covered, from error signal derivation to the real
implements.

Finally, in chapter 7, I summarize the main results of this thesis and present a
brief outlook for future work.

3



Chapter 2

Quantum Optics

This chapter will introduce the basics of mathematical formalism and physics de-
scriptions in quantum optics. The references for this chapter are my adviser, Prof.
Olivier Pfister, Quantum Optics and Quantum Information lecture notes [43], Moran
Chen’s Ph.D. thesis [12], and Ping Koy Lam’s Ph.D. thesis [29].

2.1 Quantum Harmonic Oscillators

For a one-dimensional harmonic oscillator, the Hamiltonian is

H =
P̂ 2

2m
+

1

2
kX̂2, (2.1)

where P̂ and X̂ are the momentum and position operators. These two operators
can be converted into scaled and dimensionless operators by

Q = βX̂, (2.2)

P =
P̂

β~
, (2.3)

where β is defined by

β =

√
mω

~
, (2.4)

m is the mass of oscillator and ω =
√

k
m

being the resonance angular frequency of

the oscillator.

The annihilation and creation operators a and a† are defined in terms of Q and
P as:

a =
1√
2

(Q+ iP ), (2.5)

a† =
1√
2

(Q− iP ). (2.6)

Despite the Q and P are Hermitian operators, the a and a† are not. Therefore,
the annihilation and creation operators are not observables. What a and a† do to

4



2.1. QUANTUM HARMONIC OSCILLATORS

an n phonon number state (a.k.a. Fock states) is adding and removing one phonon
from the state:

a |n〉 =
√
n |n− 1〉 (2.7)

a† |n〉 =
√
n+ 1 |n+ 1〉 (2.8)

The commutator of the annihilation and creation operators is:

[a, a†] = 1, (2.9)

and the commutator of Q and P is:

[Q,P ] = i, (2.10)

With Eqs. (2.2)-(2.6) above, the Eq. (2.1) can be reformulated as

H =
~ω
2

(Q2 + P 2) = ~ω(N +
1

2
), (2.11)

where N = a†a is the phonon number operator.

Due to the quantization of electromagnetic field [57], the electric field becomes

~E(~r) =
∑
j

√
~ωj

2ε0L3
êj(aje

i~kj ·~r + a†je
−i~kj ·~r), (2.12)

where aj is the photon annihilation operator for the field mode that is a monochro-
matic plane wave, propagating in vacuum; ~ is the Planck constant; ε0 is the per-
mittivity of free space; ωj is the optical angular frequency of the field; L is the side
length of the quantization cube; and êj is polarization unit vector.

So, the dynamics of the electric-field amplitudes can be described by a set of
independent quantum harmonic oscillators, {aj} and {a†j}, which follow the com-
mutation relation:

[ai, a
†
j] = δij. (2.13)

Also note, by using Eq. (2.5) and (2.6), the Eq. (2.12) can be rewritten as:

~E(~r) =
∑
j

√
~ωj
ε0L3

êj(Qj sin ~kj · ~r + Pj cos ~kj · ~r), (2.14)

where Qj and Pj are called amplitude quadrature operator and phase quadrature
operator, they also follow the commutation relation:

[Qj, Pk] = iδjk. (2.15)

SinceQ and P are Hermitian operators, and they can be measured from experiments,
it is natural to use Q and P to describe each bosonic state, rather than using a and
a†.
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The Eq. (2.12) and (2.14) do not show the explicit time dependence. However,
it is implicit in the creation and annihilation operators (so do the amplitude and
phase quadrature operators). Based on the free field Hamiltonian, their equations
of motion are:

i~ȧj = [aj, H] = ~ωj[aj, a†jaj] = ~ωjaj, (2.16)

i~ȧ†j = [a†j, H] = ~ωj[a†j, a
†
jaj] = −~ωja†j. (2.17)

We can thus obtain
aj(t) = aj(0)e−iωjt, (2.18)

a†j(t) = a†j(0)eiωjt (2.19)

and therefore

~E(~r, t) =
∑
j

√
~ωj

2ε0L3
êj

[
aje

i(~kj ·~r−ωt) + a†je
−i(~kj ·~r−ωt)

]
, (2.20)

~E(~r, t) =
∑
j

√
~ωj
ε0L3

êj

[
Qj cos

(
~kj · ~r − ωt

)
+ Pj sin

(
~kj · ~r − ωt

)]
. (2.21)

2.2 Heisenberg Uncertainty Principle

For two operators, A and B, suppose they have commutation relation:

[A,B] = c, (2.22)

where c is a complex number. Then, they have following uncertainty relation:

∆A∆B ≥ 1

2
|c|, (2.23)

where ∆A and ∆B are the standard deviation (STD) of the operator A and B of a
given state |ψ〉, defined as:

∆A =
√

(〈ψ|A2 |ψ〉)− (〈ψ|A |ψ〉)2. (2.24)

Eq. (2.23) is the famous Heisenberg uncertainty principle (HUP) relation, and it
implies that it is impossible to know two physical quantities whose commutation
relation is nonzero, with arbitrary precision simultaneously.

For photons, from Eq. (2.15), the HUP relations are:

∆Q∆P ≥ 1

2
. (2.25)

Taking Fock state as an example, |ψ〉 = |n〉, the STD for two quadrature operators
is:

∆Q = ∆P =

√
n+

1

2
, (2.26)

which shows the fluctuations in two quadrature measurements and they are known
as the quantum noise, and the corresponding HUP relation is:

∆Q∆P = n+
1

2
≥ 1

2
. (2.27)
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It is worth mentioning that the Fock state with n = 0 is the ground state of the quan-
tum harmonic oscillator and called the vacuum state. The STD of two quadratures
and the HUP relation becomes:

∆Qvac = ∆Pvac =
1√
2
, (2.28)

∆Qvac∆Pvac =
1

2
, (2.29)

which showed the saturation of the HUP relation. The Eq. (2.28) is the standard
quantum limit.

2.3 Three Pictures

When describing the dynamics of a time evolved quantum system, there are three
equivalent dynamical pictures to formulate the quantum system’s evolution math-
ematically. The three pictures are Schrödinger picture, Heisenberg picture, and
Interaction picture. In quantum optics, due to the simplicity and convenience, the
Heisenberg picture and Interaction picture are usually preferred.

2.3.1 Schrödinger Picture

In the Schrödinger picture, the operators remain static as AS(t) = A0 while the
quantum states evolves with time: |ψS〉 = |ψ(t)〉. The time evolution of a quantum
system from t0 to later time t can be described by an unitary operator, U(t, t0). For
a quantum state |ψ(t0)〉 at time t0, the state evolution from t0 to t is:

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 , (2.30)

where the state ψ(t) obeys the Schrödinger equation with time-dependent Hamilto-
nian H(t):

i~
d |ψ〉

dt
= H(t) |ψ(t)〉 , (2.31)

and the unitary operator, U(t, t0), also follows the similar differential equation:

i~
dU(t, t0)

dt
= H(t)U(t, t0). (2.32)

If the Hamiltonian is time-independent, H(t) = H, then the unitary operator,
U(t, t0), has an analytic form:

U(t, t0) = e−
i
~ (t−t0)H . (2.33)

The expectation value of an operator A0 can be represented as the following:

〈ψS(t)|AS(t) |ψS(t)〉
= 〈ψ(t)|A0 |ψ(t)〉
= 〈ψ(t0)|U †A0U |ψ(t0)〉 .

(2.34)
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2.3.2 Heisenberg Picture

In the Heisenberg picture, it is the operators AH(t) evolving in time while the quan-
tum states are stationary: |ψH(t)〉 = |ψ(t0)〉.

By using the constraint that the expectation value for the operator A is identical
in any pictures:

〈ψS(t)|AS(t) |ψS(t)〉 = 〈ψH(t)|AH(t) |ψH(t)〉 . (2.35)

By expanding the left-hand side:

〈ψS(t)|AS(t) |ψS(t)〉 = 〈ψ(t0)|U †(t, t0)AS(t)U(t, t0) |ψ(t0)〉
= 〈ψH(t)|AH(t) |ψH(t)〉 .

(2.36)

Therefore, we can conclude in the Heisenberg picture, the time evolved operator
AH(t) is:

AH(t) = U †(t, t0)AS(t)U(t, t0). (2.37)

Taking the time derivative of AH(t) yields:

dAH
dt

= (U̇ †ASU + U †ȦSU + U †ASU̇)

=
1

i~
(−U †H†ASU + U †ASHU) + U †ȦSU

=
1

i~
(U †[AS, H]U) + U †ȦSU

=
1

i~
[AH , HH ] + (ȦS)H .

(2.38)

By rearrange the above equation, we can get the Heisenberg evolution equation:

i~
dAH(t)

dt
= [AH(t), HH(t)] + i~(ȦS)H . (2.39)

Taking the free field Hamiltonian, Eq. (2.11), as an example. After solving it by
Heisenberg equation, we can get

a(t) = a(0)e−iωt, (2.40)

where a(0) is the initial condition of a(t). The linear combination of the above
equation with its Hermitian conjugate provides

Q(t) = Q(0) cosωt+ P (0) sinωt (2.41)

P (t) = −Q(0) sinωt+ P (0) cosωt, (2.42)

where Q(0) and P (0) are the initial condition of Q(t) and P (t). Eq. (2.41) and (2.42)
state that the quadrature operators precess sinusoidally in phase space at frequency
omega under free field evolution. That is to say, equivalently under Schrodinger
evolution, the state evolves by rotating between its quadratures. Moreover, a π/2
local phase shift, from ωt = π/2, applied to the quadratures does the following.

Q→ P (2.43)

P → −Q. (2.44)

In the experiment, we use a piezoelectric transducer (PZT) mounted mirror on the
beam path to achieve the π/2 phase shift.
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2.3.3 Interaction Picture

In the interaction picture (a.k.a. Dirac picture), the states and the operators evolve
with time. Consider the Hamiltonian H = H0 + V , where the first term H0 is a
single-system interaction, whereas the second term V is a coupling term between
different systems. Generally, [H0, V ] 6= 0. There are two versions of the interaction
picture:
(i). the states evolve solely under V whereas the operators evolve solely under H0;
(ii). the operators evolve solely under V , whereas the states evolve solely under H0.

Version (i) is preferred in the atomic physics area, but version (ii) is favored in
the quantum optics area. Therefore, we will only focus on version (ii) here.

We can find the interaction-picture operator by de-evolving under H0 the fully
evolved operator, i.e. AH(t), as the following:

AI(t) = U0AH(t)U †0 = e−iH0teiHtASe
−iHteiH0t. (2.45)

The time derivative of AI(t) gives:

dAI(t)

dt
=

d(U0AH(t)U †0)

dt

= U̇0AHU
†
0 + U0ȦHU

†
0 + U0AHU̇

†
0

= − i
~

(H0U0AHU
†
0 − U0AHU0H0) + U0

dAH
dt

U †0

=
i

~
[AI , H0] + U0

dAH
dt

U †0

=
i

~
[AI , H0] + U0(

1

i~
[AH , HH ] + (ȦS)H)U †0 .

(2.46)

Consider the typical case where H commutes with its derivative at different
times, thus HH = H, Eq.(2.46) becomes

dAI(t)

dt
=
i

~
([AI , H0]− [AI , H0]− [AI , U0V U

†
0 ]) + U0(ȦS)HU

†
0

= − i
~

[AI , U0V U
†
0 ] + U0(ȦS)HU

†
0 .

(2.47)

Eq. (2.47) is the time evolution equation for the operators in the interaction picture,
and the evolution is under VI = U0V U

†
0 where V is in the Schrödinger picture. Note

AS is time-independent oftentimes.

Since the state evolved solely under H0, we have

|ψI(t)〉 = U0 |ψ(t0)〉 , (2.48)
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and its time derivative is

d |ψI(t)〉
dt

=
dU0 |ψ(t0)〉

dt

=
dU0

dt
|ψ(t0)〉

=
i

~
H0 |ψ(t0)〉 .

(2.49)

2.4 Quantum States

This section will introduce two commonly used quantum states, Fock states, and co-
herent states. Another important quantum state, squeezed states, will be presented
later.

2.4.1 Fock States

As we discussed in Section 2.1, for quantized electromagnetic fields, we can use
a quantum harmonic oscillator to describe it. Thus the radiation field has the
eigenenergy ~ω(n + 1

2
). Fock states (or number states) |n〉 are the corresponding

eigenstates, and they are also eigenstates of the number operator

a†a |n〉 = N |n〉 = n |n〉 , (2.50)

where N = a†a is the photon number operator.

The annihilation and creation operators applied on Fock states follow Eq. (2.7)
and (2.8).

The ground state with zero photon number hence is also called vacuum state,
which is defined by

a |0〉 = 0. (2.51)

For arbitrary Fock state with n photon number, it can be represented by the
vacuum state and creation operator

|n〉 =
(a†)n√
n!
|0〉 . (2.52)

Fock states are orthogonal
〈n|n′〉 = δnn′ , (2.53)

and complete ∑
n

|n〉 〈n| = 1, (2.54)

where 1 is the identity operator.

Since a Fock state with photon number n has a precisely known number of
photons, therefore the STD of photon number for Fock state is zero

∆N =
√

(〈n|N2 |n〉)− (〈n|N |n〉)2 = 0. (2.55)
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2.4.2 Coherent States

Coherent states |α〉 are the most classical quantum states of a harmonic oscillator.
The coherent state can well describe laser light because the coherent state has a more
precisely defined phase. Thus, α is a complex number, and it can be represented by
the following:

α = |α|eiθ. (2.56)

A coherent state is the eigenstate of annihilation operator with eigenvalue α

a |α〉 = α |α〉 , (2.57)

this is due to the fact that a coherent state is a displaced vacuum state by α:

|α〉 = D(α) |0〉
= eαa

†−α∗a |0〉

= exp

(
−|α|

2

2

)
∞∑
n=0

αn√
n!
|n〉 ,

(2.58)

where D(α) = eαa
†−α∗a is the displacement operator.

The expectation value of the photon number operator is

n̄ = 〈α|n |α〉 = |α|2, (2.59)

and the expectation value of square of the photon number operator is

〈α|n2 |α〉 = |α|2 + |α|4. (2.60)

Therefore, the STD of the photon number operator is

∆n =
√

(〈α|n2 |α〉)− (〈α|n |α〉)2 = |α|2 = n̄. (2.61)

For a photon number measurement in the field, the probability of detecting n
photon is a Poisson distribution with a mean of n̄

Pn = |〈n|α〉|2 = e−|α|
2 |α|2n

n!

= e−n̄
n̄n

n!
.

(2.62)

On the other hand, the STD of the Q and P are

∆Q =
√

(〈α|Q2 |α〉)− (〈α|Q |α〉)2 =
1√
2
, (2.63)

∆P =
√

(〈α|P 2 |α〉)− (〈α|P |α〉)2 =
1√
2
, (2.64)

which is the same as a vacuum state Eq. (2.28), but the average photon number is
nonzero. This is the reason why a coherent state is a displaced vacuum state.
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2.5 Beam Splitter

A beam splitter (BS) is a passive optics where one side of the surface has an anti-
reflection coating, and the other side of the surface has a reflective coating, so we
can only consider it a single interface. From a classical optics point of view, when a
single stream of light enters a beam splitter, part of the light will be reflected, and
part will be transmitted. From quantum optics point of view: a BS always has two
input ports and two output ports, and what a beam splitter does is mix/interfere
with the two input lights. For a single stream of light entering a BS, the other
unused port still has a vacuum mode that can come in, and the BS will interfere
with the incident light with vacuum mode.

We can use a 2×2 matrix to describe a lossless BS with electric field amplitude
reflection coefficient ρ and transmission coefficient τ . The figure 2.1 illustrates a BS
with two input modes and two output modes. The output modes are related to the
input modes as (in the interaction picture):(

c
d

)
=

(
ρ τ
τ −ρ

)(
a
b

)
. (2.65)

Figure 2.1: BS with two input modes and two output modes

For the classical input light, say input light a, it can be represented by |α|eiθa ,
where |α| is the field amplitude and θa is the field phase. For the quantum input
mode, the input mode a is the field operator. Note one can choose different kinds
of BS matrices as long as the matrices are unitary, such that the total energy (total
photon number) is conserved.

As the interference is based on the wave feature of light, another interesting
interpretation about BS is based on the particle feature of light. Consider a single
photon enters a BS with electric field amplitude reflection coefficient ρ and trans-
mission coefficient τ , it actually implies the photon has a probability of ρ2 to be
reflected and probability of τ 2 to be transmitted.

One can also use the BS Hamiltonian in the interaction picture to find the unitary
operator of BS [10, 28, 55]. The BS Hamiltonian used in the Heisenberg equation,
Eq. (2.47), is
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VBS =
i~
2

(a†be−iθ − ab†eiθ), (2.66)

where a=a(0) and b=b(0) are the two input (t=0) mode operators and θ is related
to the reflectivity of the beam splitter. By applying the Eq. (2.47) to the BS Hamil-
tonian, one can find the evolved modes d=a(t) and c=b(t) due to the BS. Note the
parameter t here is fixed and is simply equal to the BS interaction time, i.e. t is con-
tained in the ρ and τ in the BS matrix, Eq. (2.65), which is just like the parameter
r in the squeezing, which will be discussed in the next section, section 2.6.

2.6 Squeezing Generation, Detection, and Degra-

dation

In this section, I will discuss a quantum phenomenon - squeezing. To observe squeez-
ing, which is noise reduction, we first need to prepare the squeezed states via a
nonlinear interaction. And then, I will talk about how we observe squeezing, i.e. by
using homodyne detection. Finally, I will discuss two important factors that affect
the amount of observed squeezing.

2.6.1 Single-Mode Squeezing

Let’s consider the following Hamiltonian in the interaction picture:

H =
i~
2

(χba†2 − χ∗b†a2), (2.67)

where χ = χ(2) is a second-order nonlinear susceptibility, b is the annihilation oper-
ator for the pump mode and a is the annihilation operator for the signal mode.

Eq. (2.67) describes a parametric process that converts pump fields with higher
frequency 2ω into two identical signal fields with frequency ω, and this process is
known as degenerate parametric down-conversion. Eq. (2.67) also describes the re-
verse process, known as degenerate parametric up-conversion. In the experiment,
we operate a device called optical parametric oscillator (OPO) by sending the pump
beam into the device with its power right below the lasing threshold. Thus, it initi-
ates a process called spontaneous parametric down-conversion (SPDC). (The detail
of OPO will be covered in a later chapter.)

By solving the Heisenberg equation, Eq. (2.39), taking χ as a real number, and
assuming the pump beam is a strong coherent classical field (thus undepleted),

b→ |β|eiφ, (2.68)

where β is the field amplitude of pump beam and φ is the phase of the pump
(Note actually, φ is the relative phase between pump field and two signal fields,
i.e., φp − 2φs = φ, but here we take φs = 0). We can get the so-called Bogoliubov
transformation

a(t) = S†(r, φ)aS(r, φ) = a cosh r + a†eiφ sinh r, (2.69)
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where r = χ|β|t is the squeezing parameter and S(r, φ) is the squeezing operator

S(r, φ) = e
r
2

(a†2eiφ−a2e−iφ). (2.70)

Then the linear combination of Eq. (2.69) and its Hermitian conjugate provides

a(t)†ei
φ
2 + a(t)e−i

φ
2 = er(a†ei

φ
2 + ae−i

φ
2 ), (2.71)

a(t)†ei(
φ
2

+π
2

) + a(t)e−i(
φ
2

+π
2

) = e−r(a†ei(
φ
2

+π
2

) + ae−i(
φ
2

+π
2

)). (2.72)

Define a generalized quadrature as

A(θ, t) = a(t)†eiθ + a(t)e−iθ, (2.73)

where θ = φ
2
. The generalized quadratures can also be represented by two quadra-

tures as
A(θ, t) = Q(t) cos θ + P (t) sin θ. (2.74)

The evolution of two quadratures can be found at θ = 0 and π
2
:

A(0, t) = Q(t) = Qer, (2.75)

A(
π

2
, t) = P (t) = Pe−r. (2.76)

With the aid of Eq. (2.24), we can find out the STD of them:

∆Q =
er√

2
, (2.77)

∆P =
e−r√

2
, (2.78)

and their product saturates the HUP:

∆Q∆P =
1

2
. (2.79)

For Eqs. (2.77) and (2.78), the squeezing parameter plays an important role.
When r = 0 (the condition of no pump beam), Eqs. (2.77) and (2.78) become the
STD of vacuum state. As r increases, the STD of phase quadrature P decreases while
at the same time the STD of amplitude quadrature Q increases, but their product
still remains the same. Thus, the squeezing is a process to turn the uncertainty
circle (from vacuum state) into an ellipse (that’s why the state is called a single-
mode squeezed vacuum state), such that one quadrature has smaller noise while
increasing the noise on the other quadrature.
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2.6.2 Two-Mode Squeezing

For the parametric process, the two signal fields don’t have to be identical in general
(nondegenerate), as long as the energy conservation and momentum conservation
hold. The two signal fields, one is called the signal field, and the other is called
the idler field. Now, we can consider the following Hamiltonian in the interaction
picture

H = i~(χba†sa
†
i − χ∗b†asai), (2.80)

where χ is a second-order nonlinear susceptibility, b is annihilation operator for
the pump mode, as is the annihilation operator for the signal mode and ai is the
annihilation operator for the idler mode.

As we did for the single-mode squeezing case, we can solve the Heisenberg equa-
tion, Eq. (2.39), by taking χ as a real number, and assuming the pump beam is a
strong coherent classical field (thus undepleted), b = |β|eiφ, we then obtain

as(t) = as cosh r + a†i sinh r, (2.81)

ai(t) = ai cosh r + a†s sinh r, (2.82)

which is the two mode squeezing Bogoliubov transformation.

The squeezing and antisqueezing appear as we convert the Eq. (2.81) and (2.82)
into the amplitude quadrature and phase quadrature:

Q+(r) = Qs(r) +Qi(r) = (Qs +Qi)e
r, (2.83)

P+(r) = Ps(r) + Pi(r) = (Ps + Pi)e
−r, (2.84)

Q−(r) = Qs(r)−Qi(r) = (Qs −Qi)e
−r, (2.85)

P−(r) = Ps(r)− Pi(r) = (Ps − Pi)er. (2.86)

Note Eq. (2.84) and (2.85) are called variance-based entanglement witnesses[27] or
nullifiers.

The corresponding STD are

∆Q+(r) = er, (2.87)

∆P+(r) = e−r, (2.88)

∆Q−(r) = e−r, (2.89)

∆P−(r) = er. (2.90)

The Eq. (2.88) implies Ps and Pi are anticorrelated while the Eq. (2.89) impliesQs

and Qi are correlated, and the amount of correlation/anti-correlation is determined
by the squeezing parameter r. This quantum correlation is, in fact, entanglement.
Figure 2.2a and 2.2b show the STD of ∆P+ and ∆Q−. Three different squeezing
parameters are considered. Purple dashed circle: when r = 0, the STD is the same
as the vacuum fluctuation, and there is no correlation (anticorrelation) between
Qs and Qi (Ps and Pi). Red line: when r → ∞, the STD of ∆P+ and ∆Q−
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(a) ∆P+ (b) ∆Q−

Figure 2.2: Phase diagram for the two-mode squeezed state. The purple dashed
circle represents vacuum fluctuation, the blue ellipse represents the finite squeezing
case, and the red line represents the infinite squeezing case.

becomes zero. Therefore, Qs and Qi are perfectly correlated (Ps and Pi are perfectly
anticorrelated). This is the case of Einstein-Podolski-Rosen (EPR) state [16], which
is the continuous variable version of Bell state (see next chapter for detail). However,
infinite squeezing requires infinite pump energy, which is impossible to achieve. Blue
ellipse: r is finite, the STD is squeezed for ∆Q− and ∆P+ compared to the vacuum
fluctuation. Therefore, the two-mode squeezing is the best practical realization of
the EPR state in the experiment.

2.6.3 Squeezing Detection: Balanced Homodyne Detection

To detect the squeezing, we need to use a special type of measurement scheme, bal-
anced homodyne detection (BHD). Figure 2.3 illustrates the setup, and the principle
is the following: preparing a classical coherent state of light b, so-called optical local
oscillator (LO), and interfering LO with the target light a by a 50:50 BS. The target
light can be a vacuum state or squeezed state. Collect the two output beams after
the BS, c and d, by using two photodiodes and then send the photocurrent difference
signal to a spectrum analyzer to observe the noise.

Mathematically, by using Eq. (2.65) (or by solving the Heisenberg equation of
Eq. (2.66)) with ρ = τ = 1√

2
, the out modes, c and d, are related to the input modes,

a and b, as the following:

c =
1√
2

(a+ b), (2.91)

d =
1√
2

(a− b). (2.92)

Thus, the photocurrent difference is

N− = Nc −Nd = c†c− d†d = a†b+ b†a

= |β|(a†eiθ + ae−iθ) = |β|A(θ)

= |β|(P cos θ +Q sin θ),

(2.93)

with classical LO, b = |β|eiθ been employed, where |β| is LO electric field magnitude,
θ is the relative optical phase difference between LO and target light, and A(θ) is the
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Figure 2.3: Set up for the balanced homodyne detection

generalized quadrature. Note the generalized quadrature A(θ) is amplified by strong
LO field amplitude |β| and we now have the ability to measure the quadrature from
θ = 0 to 2π. With squeezing, the two quadratures is P → Pe−r and Q → Qer.
Therefore, the photocurrent difference becomes

N− = |β|(Pe−r cos θ +Qer sin θ). (2.94)

Experimentally, the optical phase difference, θ, can be introduced by setting a
piezoelectric (PZT) mounted mirror on the target light path or LO path with a
ramp or triangular wave signal with a known frequency.

The STD of photocurrent difference is

∆N− = |β|
√
e−2r + 2 sinh [2r](sin θ)2, (2.95)

but what is measuring by the spectrum analyzer is the power spectrum in decibel
(dB) units, thus the squeezing in dB is defined as

s(r, θ) = 20 log10

∆N−(r)

∆N−(r = 0)
, (2.96)

which implies the squeezing is normalized to the noise of vacuum.

Figure 2.4 shows the squeezing traces. The vertical axis is variance in dB, and
the horizontal axis is relative phase θ in radiant. Different color of lines represents
different squeezing parameters. For r = 0, which provides the variance of the vacuum
state, a.k.a. shot noise, and the variance is independent of θ. When r 6= 0, the
variance depends on θ and r: as θ changes, the variance can become larger or smaller
than the shot noise, and the minimal (maximal) variance is the largest squeezed
(antisqueezed) can be obtained; as r increases, the maximal values of squeezing and
antisqueesing also increase.
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Figure 2.4: Squeezing traces: the variance changes with the relative phase θ and
squeezing parameter r.

2.6.4 Squeezing Degradation - Phase Noise and Loss

Squeezed light is quite fragile, and there are two important factors that will affect
the amount of observed squeezing: phase noise and loss.

Phase noise: When phase noise exists inside an optical system, if the phase
noise has a frequency larger than the inverse of acquisition time of the detector or
spectrum analyzer, then the maximal squeezing will be mixed with less squeezing
part and thus reduce the amount of observed squeezing. We can measure the phase
noise from an interference measurement. Considering the case when two fields are
mode matched, we can observe the interference fringe by a power meter, and the
observed signal is

I =
∣∣E1e

i(ω1t+φ1) + E2e
i(ω2t+φ2)

∣∣2
= |E1|2 + |E2|2 + 2|E1E2| cos [(ω1 − ω2)t+ (φ1 − φ2)]

= I1 + I2 + 2
√
I1I2 cos [(ω1 − ω2)t+ (φ1 − φ2)],

(2.97)

where Ei is the electric field amplitude for field i, Ii = |Ei|2 is the intensity for field
i, ωi is the frequency of field i, φi is the initial phase of field i, and i ∈ [1, 2]. The
amplitude envelope of the oscillating intensity is

A = Imax − Imin = 2
√
I1I2 (2.98)

and the average intensity is

Ī = Imax + Imin = I1 + I2. (2.99)

Figure 2.5 shows an interference fringe without the phase noise looks like with max-
imal, minimal, and average value denoted.

To find out the phase noise, we can simplify the Eq. (2.97) by considering the
two fields are ideally monochromatic, ω2 = ω1. Suppose we introduce a relative
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Figure 2.5: Interference fringe without the phase noise. (from Wikipedia).

phase changing (say from a PZT mounted mirror in the optical pass of field 1) and
assume a phase noise, δφ, exists, the Eq. (2.97) can be written as

I1 + I2 + 2
√
I1I2 cos [Ωt+ δθ]

→ I1 + I2 + 2
√
I1I2[cos (Ωt) cos δθ + sin (ωt) sin δθ]

δθ�1−−−→ I1 + I2 + 2
√
I1I2[cos (Ωt) + sin (Ωt)δθ],

(2.100)

where Ω is the frequency of phase changing introduced by a PZT mounted mirror. In
the equation above, we take the assumption of the δθ is small and the approximation
in the last two steps. Eq. (2.100) implies we can measure the effect of phase noise
from the interference fringe, Iphase, at the place cos (Ωt) = 0, which is the average
value of the interference fringe, we then obtain

Iphase = I1 + I2 + 2
√
I1I2δθ

= Ī + Aδθ.
(2.101)

Rearrange the above equation, and we can get

δθ =
Iphase − Ī

A
=
Inoisepp

2A
, (2.102)

where Inoisepp is the peak to peak value of noise measured at the average of fringe, see
figure 5.3 for an example. Note the phase noise δθ is in units of radian. Actually,
the phase noise is also a function of time, therefore the phase noise can be written
as

δθ →
∑
i

δθi sin Ωit, (2.103)

where δi is the amplitude of phase noise i and Ωi is the frequency of phase noise i.
However, when the interference fringe contains only one or two phase noises, we still
can use Eq. (2.102) to estimate the amplitude of phase noise.

The effect of phase noise on the squeezing can be estimated by using Eq. (2.93).
When phase noise doesn’t exist, the photocurrent difference for squeezed quadrature
is at θ = 0

N− = |β|(Pe−r cos 0 +Qer sin 0) = |β|Pe−r. (2.104)

19



2.6. SQUEEZING GENERATION, DETECTION, AND DEGRADATION

The photocurrent difference for squeezed quadrature when phase noise exists be-
comes

Nnoise
− = |β|(Pe−r cos (0 + δθ) +Qer sin (0 + δθ))

= |β|(Pe−r cos (δθ) +Qer sin (δθ)),
(2.105)

and the corresponding STD of photocurrent difference is

∆Nnoise
− = |β|

√
e−2r + 2 sinh [2r](sin δθ)2, (2.106)

which is in the same form as Eq. (2.95). Therefore, by regarding the relative phase
as phase noise, the figure 2.4 can be understood as the effect of phase noise on the
squeezing. As an example, when r = 1.2, the maximal amount of squeezing is about
−10.4 dB if there is no phase noise. With phase noise 6◦ = 0.1 rad, the observed
squeezing dropped to −6.8 dB.

Loss: When there is a loss in the squeezed light path, the maximal amount of
observed squeezing will also drop. There are two ways to understand the effect of
the loss on squeezing. The first point of view is a loss causes some of the photons
lost, so the detector can’t catch all the correlated photons. Thus, the observed
squeezing will drop. The second point of view is the loss introduces a channel such
that a vacuum state can come in and mix with the squeezed state. As we discussed
before, a vacuum state has zero photons but still has noise. Therefore, the observed
squeezing will drop. Figure 2.6 illustrates these two points of view about the loss.

We can use a BS with electric field amplitude reflection coefficient ρ and trans-
mission coefficient τ to model the loss, i.e. ρ = 0 means no loss and ρ = 1 means all
the light is missed. Here, I will use the second point of view about the loss to do the
estimation. The squeezed state is denoted as a, and the vacuum mode is denoted
as b. The STD of the mode’s two quadratures after the BS becomes

∆Pout = (〈00| (ρ∆Pa + τ∆Pb)
2 |00〉)1/2

= ∆Pb
√
ρ2 + τ 2e2r ≥ ∆Pb,

(2.107)

∆Qout = (〈00| (ρ∆Qa + τ∆Qb)
2 |00〉)1/2

= ∆Qb

√
ρ2 + τ 2e−2r ≤ ∆Qb.

(2.108)

Hence, Eq. (2.107) and Eq. (2.108) provide how the maximal antisqueezing and
squeezing are affected by the loss. Convert them into variance in dB units and
normalize to vacuum noise

s(r, τ) = 20 log10

∆Pout(r)

∆Pout(r = 0)
, (2.109)

as(r, τ) = 20 log10

∆Qout(r)

∆Qout(r = 0)
, (2.110)

where s(r,τ) is squeezing and as(r,τ) is antisqueezing. As Figure 2.7 shows the loss
degrades the maximal amount of observed squeezing and antisqueezing. Hence, it
is very important to minimize the loss in the experiment. Besides, figure 2.7 also
reveals the squeezing and anti-squeezing have different sensitivity to loss.
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(a) Loss causes degradation to photon correlations.

(b) Loss introduces a channel for the vacuum to come in

Figure 2.6: Two-point of view about how the loss degrades the maximal amount of
observed squeezing.
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Figure 2.7: Loss degrades the maximal amount of observed squeezing and anti-
squeezing.

Note when using the balanced homodyne detection, there are two factors that
introduced the loss: inefficient photodiodes and mode mismatch in the balanced
homodyne measurement.

Inefficient Photodiode: When observing squeezing by a photodiode with quan-
tum efficiency, ηd, which is less than 100%, the observed squeezing will drop. One
can understand this result by modeling a nonideal photodiode as the following: a
BS with intensity transmission T = ηd placed in front of an ideal photodiode with
100% quantum efficiency. Such BS couples the quantum light and vacuum modes
before entering the ideal photodiodes. Therefore, it is desired to use a photodiode
with quantum efficiency as perfect as possible, such that the observed squeezing
degrades as little as possible.

Mode Mismatch: When aligning the optical LO and target light to the bal-
anced homodyne detector, it is very crucial to mode match one to the other. Mode
matching of the two fields requires them to have identical polarization and the same
spatial modes. Once again, we can use a BS with transmission coefficient η and re-
flective coefficient

√
1− η2, where

√
1− η2 also represents the fraction of mismatch.

We can measure the interference quality by defining the visibility as a ratio of the
amplitude envelope of the oscillating intensity and the average intensity

V IS =
A

Ī

=
Imax − Imin
Imax + Imin

.
(2.111)

V IS = η, (2.112)

where Imax and Imin are the maximal and minimal of the interference fringe.
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In fact, when two fields have different optical intensity, I1 and I2, the ideal
visibility is given by

V ISideal =
2
√
I1I2

I1 + I2

. (2.113)

Therefore, the visibility can be calibrated by the following

V IScal =
V IS

V ISideal

. (2.114)

Without showing the detail, the balanced homodyne efficiency of the system is given
by

ηBHD = (V IScal)
2. (2.115)

Remark: In fact, in the experiment, the power of quantum light is about a few
nW, which requires a special photodiode with very high sensitivity to directly detect
it. However, we can use the transmitted beam of the OPO, which has the identical
polarization and spatial mode as the quantum light, to find out the balanced homo-
dyne efficiency, which is the same as the case of quantum light.

Escape efficiency: We define a parameter, ηesc, as the escape efficiency, and it is
defined as the following

ηesc =
T

T + L
, (2.116)

where T is the cavity OC’s transmittance, and L is the round-trip loss (for one-sided
cavity). The larger the escape efficiency, the more light can come out from the cav-
ity, and thus less consumed by the intra-cavity loss.

Total Detection Efficiency: Consider all the effects related to the loss, we can
define a total detection efficiency as the following [56]:

ηtotal = ηd × ηesc × ηBHD. (2.117)

Therefore, to estimate the squeezing after the effect of the loss by Eq. (2.107) and
(2.108), we can use the ηtotal as τ 2 in the equations.
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Chapter 3

Generating the 1-d, 2-d, and 3-d
Cluster States by a Phase
Modulated Quantum Optical
Frequency Comb

In this chapter, I will cover two main topics, one topic is cluster states, and the
other topic is cluster state generation in the phase-modulated two-mode squeezed
quantum optical frequency comb (QOFC). The details about generating QOFC by
an optical parametric oscillator will be covered in the next chapter.

3.1 Introduction of Measurement-Based Quantum

Computing (MBQC) and the Cluster States

In this section, a brief introduction of measurement-based quantum computing
(MBQC) and cluster states will be given. The major references I am using are
Prof. Oliver Pfister’s review paper [44] and the ”Hypercubic cluster states in the
phase-modulated quantum optical frequency comb” paper [70].

3.1.1 Bits, Qubits, and Qumodes

As classical computers use (binary) bits to encode the information, quantum com-
puters use qubits to encode the information. While a binary bit can only be either
0 or 1, a qubit is a superposition of |0〉 and |1〉, such as a spin-1

2
particle. When

encoding the information to the light, the qubit counterpart in quantum optics is
called qumode [31]. The qumodes, {|q〉}q∈R, which are the eigenstates of position
operator, Eq. (2.2), in 1-dimensional case:

Q |q〉 = q |q〉 , (3.1)

and {|q〉}q∈R is a continuous spectrum of states in contrast to qubit whose basis is
discrete. Therefore, the quantum computing (QC) performed by using qumodes is
called continuous-variable quantum computing (CVQC), while performed by qubits
is called discrete-variable quantum computing (DVQC). There is a correspondence
between qubit- and qumode-based quantum computing and is shown in table 3.1.
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Note the capital letters stand for operators, and lower case letters stand for numbers.
Also note the special symbol in table 3.1, ⊕, in the Pauli group means addition the
modulo 2.

Qubit-based Qumode-based

Computational basis

{|0〉 , |1〉} {|q〉}q∈R

〈k|l〉 = δkl, k, l ∈ {0, 1} 〈q|q′〉 = δ(q − q′), q, q′ ∈ R
|ψ〉 = ψ0 |0〉+ ψ1 |1〉 |ψ〉 =

∫
dqψ(q) |q〉

Conjugate basis

Hadamard transformed Fourier transformed
|±〉 = 1√

2
(|0〉 ± |1〉) |p〉 = 1√

2π

∫
eipq |q〉 dq, p ∈ R

Single-qubit/qumode group generators

Pauli group Weyl-Heisenberg group of phase-space displacements
〈X,Z〉 〈{X(ξ)}ξ∈R, {Z($)}$∈R〉 ≡ 〈{e−iξP}ξ∈R, {ei$Q}$∈R〉
X |j〉 = |j ⊕ 1〉 , j = 0, 1 X(ξ) |q〉 = |q + ξ〉
Z |j〉 = eijπ |j〉 , j = 0, 1 Z($) |q〉 = ei$q |q〉
X |±〉 = ± |±〉 X(ξ) |p〉 = e−iξp |p〉
Z |±〉 = |∓〉 Z($) |p〉 = |p+$〉

Controlled, entangling gates

CSUM:
CX |j〉1 |k〉2 = |j〉1 |k ⊕ j〉2 CX |q〉1 |q′〉2 = e−iQ1P2 |q〉1 |q′〉2 = |q〉1 |q′ + αq〉2

CPHASE

CZ |j〉1 |k〉2 = eiπjk |j〉1 |k〉2 CZ |q〉1 |q′〉2 = eiQ1Q2 |q〉1 |q′〉2 = eiq1q
′ |q〉1 |q′〉2

Bipartite entanglement

Bell state (unnormalized) EPR state (unnormalizable)

|B00〉12 =
∑1

j=0 |j〉1 |j〉2 |EPR(0, 0)〉12 =
∫
|q〉1 |q〉2 dq =

∫
|p〉1 |−p〉2 dp

=
∑∞

n=0 |n〉1 |n〉2 (Schmidt decomp.)
Bell basis EPR basis
|Bkl〉12 = Zk

1X
l
1 |B00〉12 , k, l ∈ {0, 1} |EPR($, ξ)〉12 = Z1($)X1(ξ) |EPR(0, 0)〉12 , $, ξ ∈ R

=
∑1

j=0 e
ikπ(j⊕l) |j ⊕ l〉1 |j〉2 =

∫
ei$(q+ξ) |q + ξ〉1 |q〉2 dq

Table 3.1: Correspondence between qubit- and qumode-based quantum comput-
ing [4, 44].

3.1.2 Measurement-Based Quantum Computing

The idea of measurement-based QC was proposed by Rober Raussendorf and Hans
J. Briegel in 2001 [49]. Measurement-based QC is a universal and equivalent alter-
native to the circuit model QC [40]. Figure 3.1a shows an example of circuit-based
QC: quantum circuit for teleporting a qubit. The two top lines represent Alice’s
system, while the bottom line is Bob’s system. The meters represent measurement,

25



3.1. INTRODUCTION OF MEASUREMENT-BASED QUANTUM
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and the double lines coming out of them carry classical bits.

To perform measurement-based QC, a special type of quantum state need to
be prepared, which is a cluster state. A cluster state is an entangled qubit lattice
that contains all the required entanglement for a quantum algorithm. Thus clus-
ter state reacts as a computing substrate. The computation is carried out solely
by single-qubit measurements with feedforward (quantum teleportation). Hence
measurement-based QC is also called ”one-way” QC: the state can be used only
once, and irreversible project measurements drive the information flow [9]. Fig-
ure 3.1b shows an example of measurement-based QC. Before the measurements,
the cluster state is in a square grid structure. Circles � symbolize measurements
of Z to remove the qubit measured from cluster state, vertical arrows are measure-
ments of X to propagate the information, while tilted arrows refer to measurements
in the x-y plane [49].

(a)

(b)

Figure 3.1: Examples of quantum computing. (a) example of circuit-based quantum
computing [40]; (b) example of measurement-based quantum computing [49].

Later, the measurement-based QC was extended from qubit to qumode [37].
One significant advantage of qumodes measurement-based QC is the scalability:
the capability to handle an increasing number of qumodes in an increasingly stable
way [44, 45, 33, 35, 20]. To perform universal QC and to enjoy the quantum speed up
by measurement-based QC, it is believed we need to prepare 2-d cluster states [49].
To allow the quantum error correction code and reduce the error, we need to prepare
3-d cluster states [50].
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3.1.3 Graph States and Cluster States

A qubit cluster state can be canonically generated by initially preparing n-qubit
state in the |+〉 state, and then applying CZ gates between some pairs of qubits to
build the entanglements. It is convenient to represent cluster states as graphs where
vertices are qubits and edges are the entanglement between qubits. This is called
graph state representation. Figure 3.2a shows a simple two qubits cluster state, and
its literal expression is:

CZ |+〉1 |+〉2

=
1

2
(|0〉1 |0〉2 + |0〉1 |1〉2 + |1〉1 |0〉2 − |1〉1 |1〉2)

=
1√
2

(|0〉1 |+〉2 + |1〉1 |−〉2).

(3.2)

If we apply a Hadamard transformation on the qubit 2, the state becomes:

1√
2

(|0〉1 |0〉2 + |1〉1 |1〉2), (3.3)

which is the Bell state [40].

We can utilize the correspondence between qubits and qumodes (table 3.1) to
generate CV cluster states: the CV cluster states are generated by applying CPHASE

gates between some pairs of qumodes in phase-quadrature eigenstates |0〉P . Fig-
ure 3.2b shows a simple two qumodes cluster state and the literal expression is:

CPHASE |0〉P1
|0〉P2

=
1

2π
eiQ1Q2

∫
dq1 |q1〉Q1

∫
dq2 |q2〉Q2

=
1

2π

∫ ∫
eiq1q2dq1 |q1〉Q1

dq2 |q2〉Q2

=
1√
2π

∫
dq |q〉Q1

|q〉P2
.

(3.4)

If we apply a Fourier transform on the qumode 2, the expression becomes:∫
dq |q〉Q1

|q〉Q2
=

∫
dp |p〉P1

|p〉P2
, (3.5)

which is the EPR state [16], and it is the qumode counterpart of the Bell state in
qubits.

(a) (b)

Figure 3.2: Graphical representation of a cluster state: (a) vertices denote qubits in
the |+〉 state, edges denote the CZ gates; (b) vertices denote qumodes in the |0〉P
state, edges denote CPHASE gates

.
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In fact, as we discussed in section 2.6.2, the EPR state is unphysical. The two-
mode squeezed state with finite squeezing is the best practical realization of the
EPR state in the laboratory, and the fault-tolerant QC with continuous-variable is
still feasible with finite squeezing [34].

3.1.4 Stabilizers and Nullifiers

An important feature of any graph state |ψ〉 (over qubits or qumodes) is that the
cluster states |ψ〉 satisfy the following set of eigenvalue equations:

S |ψ〉 = |ψ〉 , (3.6)

and S is defined as:
S = 〈Xj

⊗
k∈Nj

Zk〉 = 〈Sj〉, (3.7)

where Nj represents the neighbors of vertex j in the graph.

For example, the stabilizer for two-qubit cluster state, as per figure 3.2a, is

(X1Z2)CZ |+〉1 |+〉2

=
1

2
{|1〉1 |0〉2 + |1〉1 (− |1〉2) + |0〉1 |0〉2 − |0〉1 (− |1〉2)}

= CZ |+〉1 |+〉2 .

(3.8)

We can translate the stabilizer to the CV cluster states. From table 3.1, we have
the correspondence

X → X(ξ) = e−iξP , (3.9)

and
Z → Z($) = ei$Q. (3.10)

The stabilizer now becomes

Sj = Xj(ξj)
⊗
k∈Nj

Zk($k) = exp

−iξj
[
Pj −

∑
k∈Nj

$k

ξj
Qk

]. (3.11)

As an example, the stabilizer for a two-qumode cluster state with an edge weight
of one, as per figure 3.2b, is

[X1($)Z2(ξ)]CPHASW |0〉P1
|0〉P2

= e−iξP1ei$Q2
1

2π

∫ ∫
eiq1q2dq1 |q1〉Q1

dq2 |q2〉Q2

=
1

2π

∫ ∫
eiq1q2+i$q2dq1 |q1 + ξ〉Q1

dq2 |q2〉Q2

=
1

2π

∫ ∫
eiq1q2e+iq2($−ξ)dq1 |q1〉Q1

dq2 |q2〉Q2

(3.12)

which yields stabilization for $ = ξ. If $ 6= ξ, then it means we didn’t find the
correct stabilizer for the two-qumode cluster state with an edge weight of one.
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We can define an operator, Nj, and it relates to the stabilizer, Sj, by the following

Sj = exp{−iξjNj} (3.13)

with
Nj = Pj −

∑
k∈Nj

$k

ξj
Qk = Pj −

∑
k∈Nj

VjkQk, (3.14)

where Vjk is the weight between qumodes j and k, and Vjk is nonzero if and only if
there exists an edge between vertices j and k.

Considering Eq. (3.11), Eq. (3.6) holds implies Nj satisfies

Nj |ψ〉 = 0 |ψ〉 . (3.15)

Therefore, Nj is called nullifiers or variance-based entanglement witnesses [27]. Nul-
lifiers are Hermitian operators, thus they can be directly measured in the experiment.
Define Q = (Q1, . . . , QN)T and P = (P1, . . . , PN)T for N qumodes, we can write the
nullifiers equation, Eq. (3.15), into the vector form

(P−VQ) |ψ〉 = 0 |ψ〉 , (3.16)

where V is the adjacency matrix of the cluster graph, which defines the cluster
state graph shapes and edge weights. Note the CV cluster states can have weighted-
edge graphs, which is not the case for qubits cluster states. A qubit graph state is
described by an unweighted adjacency matrix whose entries denote edge presence
(value 1) or absence (value 0)

Taking the simple CV cluster state, figure 3.2b, as an example, the matrix ele-
ments V12 = V21 = 1, which imples its nullifiers are

N1 = P1 −Q2 (3.17)

and
N2 = P2 −Q1. (3.18)

Applying a π
2

local phase shift on qumode 1 provides the two-mode squeezed nullifier,
Eq. (2.84) and (2.85), with zero variance.

3.1.5 H-Graph

Now let’s focus on the actual CV cluster states generated in the laboratory. Eq. (2.80)
is a Hamiltonian describing the two-mode entanglement. The Hamiltonian can be
generalized into a matrix form to describe the multipartite entanglement

H = i~κ
∑
i<j

Gij(a
†
ia
†
j − aiaj), (3.19)

where κ = χαp. χ is the 2nd-order susceptibilities of the medium and αp is the field
strength of pump field. Gij is the adjacency matrix element: Gij = 0 if there is no
edge (i.e. entanglement) between mode i and j; Gij = 1 (or 6= 0) if there is an edge
between mode i and j. Since the Hamiltonian has quadratic fields, it is thus called
Gaussian Hamiltonian, and the corresponding states are called Gaussian states.
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Using the Heisenberg equation, Eq. (2.39), we can get the equation of motion.

dx

dt
= κGx, (3.20)

where x = (Q,P)T , Q = (Q1, · · · , QN)T , P = (P1, · · · , PN)T , and G is the matrix
of entries Gij. We now introduce a new type of graph, the H-graph, which is based
on the Hamiltonian and matrix G. The matrix G is thus the adjacency matrix of
the H graph. The nonzero matrix element Gij represents there is squeezing and
entanglement between mode i and j. Thus, G is a symmetric matrix. Moreover,
diagonalizing G provides the squeezing parameters (eigenvalues) and the squeezed
multi-mode observables (eigenvectors). We also always assume the initial state is
the vacuum state.

Figure 3.3 is a simple example for the practical two-qumode cluster state, which
is also the two-mode squeezed state. The corresponding adjacency matrix is

G =

(
0 1
1 0

)
, (3.21)

where the diagonal elements are zero due to the lack of single-mode squeezing on
each mode, and off-diagonal terms are the same and nonzero due to the two-mode
squeezing between two modes.

Figure 3.3: H-graph representation for two-mode cluster states. Note the starting
states are vacuum states.

The relation of the H-graph, which is based on the adjacency matrix G, to the
canonical graph, whose graph shapes and edge weights are defined by the matrix V,
has been studied for infinite and finite squeezing. One of the theorem is [66], when
G is self-inverse:

G = G−1, (3.22)

then, under this circumstance, the adjacency matrices G and V are equal:

G = V. (3.23)

3.1.6 Graphical Calculus

I will provide a short introduction of graphical calculus: a generalized CV cluster
state formalism for finite squeezing [36], which is the method we used to find out the
output state of the phase-modulated quantum optical frequency comb. And here,
the reference I am using is in [70].

Eq. (3.20) can be solved by diagonalizing G = RGdiagR
−1, yielding the solution

x(t) = S(t)x(0), (3.24)
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where the symplectic matrix S (Note the S here is not the same as the stabilizer) is
given by

S(t) = RetGdiagR−1, (3.25)

and R is the unitary transformation matrix obtained from eigenvectors of G. Note
that, in a sequence of unitary operations (tn > tn−1 > · · · > t1), the symplectic
matrix ordering is the Schrödinger picture one

x(tn) = Sn(tn)Sn−1(tn−1) · · · S1(t1)x(0) = Sx(0). (3.26)

Once S is known, we obtain the covariance matrix Σ, which contains all the infor-
mation about the Gaussian state,

Σ =
1

2
SST . (3.27)

An important property of Σ is that it is related to the complex graph of the Gaussian
state [36], which we now briefly introduce.

Gaussian states are described by a complex-weighted adjacency matrix Z =
V + iU, where V is the exact analog to the adjacency matrix of a qubit graph
state [44] and U is called the error matrix, and U→0 in the limit of infinite squeezing.
See subsection 3.2.3 for a discussion about the importance of error matrix U.

Any Gaussian state |ψ〉 can be defined by its nullifiers

(P− ZQ) |ψ〉 = 0 |ψ〉 . (3.28)

Because Z is complex in general, these nullifiers are non-Hermitian and cannot be
measured, which makes measurement-based quantum computing problematic since
it must proceed by measuring, among other things, graph nullifiers [26]. Thus, only
Gaussian states with Z real, i.e., with Z=V and U=0, can be proper cluster states.

However, measurement-based quantum computing is still possible with U6=0. In
that case, we use the (arbitrarily good) approximate nullifiers given by Hermitian
operators P−VQ, which verify [36]

cov[P−VQ] =
1

2
U, (3.29)

where we defined the covariance matrix in the standard way for vector operator A
with zero expectation values in state |ψ〉,

(cov[A])jk =
1

2
〈ψ| {A†j, Ak} |ψ〉 . (3.30)

We can deduce from Eq. (3.29) that an arbitrary Gaussian state of the matrix
Z can be accurately considered as a cluster state of the matrix V iff

(i), the error matrix U is diagonal [23, 24] and,

(ii), it verifies tr[U]→ 0 in the limit of infinite squeezing [36].

In that case, P−VQ are squeezed, uncorrelated Hermitian operators.
We are now ready to determine the Gaussian graph matrix Z from the covariance

matrix. The relation between the two is [36]

Σx = cov[x] =
1

2

(
U−1 U−1V

VU−1 U + VU−1V

)
, (3.31)
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where the block structure cöıncides with the definition of x. Note in the case of infi-
nite squeezing, U→ 0 and U−1 →∞, the covariance matrix Σx becomes ill-defined.
This result is corresponding to the quadrature eigenstates at infinite squeezing have
∆P → 0 and ∆Q → ∞, and the quadrature eigenstates are non-normalizable. For
a free field, the Hamiltonian is proportional to P 2 +Q2, and the energy becomes in-
finite when squeezing is infinite. Therefore, the infinitely squeezed CV cluster states
are not achievable. The covariance matrix can also be represented by quadratures
as the following

Σx =

(
cov[Q] cov[Q,P]

cov[P,Q] cov[P]

)
. (3.32)

As an example, for the case of two modes, x = (Q,P)T , Q = (Q1, Q2)T , P =
(P1, P2)T , and the covariance matrix in terms of quadratures is

Σx =〈
Q2

1 Q1Q2
1
2
(Q1P1 + P1Q1) Q1P2

Q2Q1 Q2
2 Q2P1

1
2
(Q2P2 + P2Q2)

1
2
(P1Q1 +Q1P1) P1Q2 P 2

1 P1P2

P2Q1
1
2
(P2Q2 +Q2P2) P2P1 P 2

2


〉
.

(3.33)

One final remark highlights the importance of U. The covariance matrix can be
rewritten, using the rewritten symplectic vector y = (Q,P−VQ)T , as

Σy = cov[y] =
1

2

(
U−1 O

O U

)
. (3.34)

An allowable strategy for diagonalizing U so that it verifies (i,ii) above is to ap-
ply local symplectic operations, which are equivalent to local unitaries (LU), to
qumodes [36, 23] since these cannot change the state’s entanglement. We will be
making abundant use of this property.

Remark: When dealing with a sequence of unitary operations, one can apply
Eq. (3.26) directly, or another, equivalent way to treat the cascading case is the
Möbius transformation [36]

Z′ = (C + DZ)(A + BZ)−1. (3.35)

where Z′ is the resulting adjacency matrix by the action of second symplectic matrix,
which is in the form S = ( A B

C D ).

3.2 Cluster State Generation in the Phase-Modulated

QOFC

In this section, I will first introduce the phase modulation achieved by an electro-
optical modulator (EOM). And then, I will present the output state in the phase-
modulated QOFC.
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Figure 3.4: Quantum description of PM at frequency Ω (blue lines) of the two-
mode-squeezed (red lines, pump frequency ω2 +ω3) QOFC: because the modulation
frequency equals the qumode spacing, there is no vacuum input and a unitary op-
eration can be realized solely on the initial comb state |ψ〉.

3.2.1 Phase Modulation

When a monochromatic light field of frequency ω0 has been phase modulated, say
by an electro-optical modulator, the sidebands at frequencies ωn = ω0 +nΩ (n ∈ Z)
having amplitudes given by the Bessel functions of the first kind can be generated

ei[ωot+m sin(Ωt+φ)] = eiωot
∞∑

n=−∞

Jn(m) ein(Ωt+φ), (3.36)

where m is the modulation index and φ the PM phase. An effective quantum model
of PM [11] is the multiport frequency-domain beamsplitter Hamiltonian

HPM = ~
α

τ
e−iφ

∞∑
j=−∞

aja
†
j+Ω + H.c., (3.37)

where α = m/2, τ is the interaction time in the phase modulator, and aj is the
annihilation operator of the qumode of frequency j in units of the qumode spacing,
i.e., of the free spectral range (FSR) of the OPO. We take Ω in units of the FSR
from Eq. (3.37) on. The use of a QOFC input to PM replaces vacuum inputs with
QOFC qumodes when Ω is an integer, figure 3.4.

By solving the Heisenberg equation and following the procedure in subsection 3.1.6,
we can obtain, for φ = π/2 in Eq. (3.37), the analytic expression of the PM sym-
plectic matrix

S(PM) =

(
M O
O M

)
, (3.38)

where we have, for Ω = 1,

Mjk = Jk−j(m)− (−1)j Jk+j(m). (3.39)

This gives the well-known phase modulation spectrum, as was first obtained by
Capmany and Fernández-Pousa [11]. Note that S(PM) may not be block-diagonal
for other values of φ, which will lead to couplings between amplitude and phase
quadratures. These are therefore totally controllable by setting φ experimentally.

33



3.2. CLUSTER STATE GENERATION IN THE PHASE-MODULATED QOFC

3.2.2 Cluster State Generation in the Phase-Modulated EPR
QOFC

We now demonstrate cluster state generation by external phase modulation of the
EPR QOFC emitted by a monochromatically pumped OPO below the threshold.
Figure 3.5 depicts the experimental configuration.

Figure 3.5: Phase modulation of a single QOFC. An OPO with a single pump
frequency, whose half is denoted by the green arrow, creates TMS qumode pairs as
indicated by the red dashed lines. Electro-optic phase modulation, or Kerr-medium
cross phase modulation, is then done at index m and frequencies Ω1,2,3.

A doubly resonant OPO is pumped at a single frequency ωp such that frequency
ωp/2 is set exactly halfway between 2 OPO mode frequencies (usually by a phase
lock loop [48, 13]), as per the green arrow in figure 3.5. This generates independent
EPR qumode pairs in two-mode-squeezed (TMS) states [41, 52], a.k.a. the EPR
QOFC. While entanglement scalability is already present in this case, it manifests
itself only as of the scaling of the number of copies of a bipartite EPR state, rather
than as the scaling of the size of a multipartite state. Phase modulation by the EOM
of the OPO QOFC will change that: by modulating at one, two, or three frequen-
cies, we can knit up 1-d, 2-d (square-grid), 3-d (cubic) cluster states. We postulate
that this extends to n-hypercubic cluster states, using n modulation frequencies.

Note that, for every graph presented in this paper, we conducted a thorough
analysis of the errors due to finite squeezing and imperfections due to nonlocal
modulation couplings. This analysis is detailed in [70].

3.2.2.a Generation of 1-d cluster states:

Following the steps in subsection 3.1.5 and 3.1.6, we derive the complex adjacency
matrix Z of the created Gaussian state for Ω1=1, r=2.3, and for m=0, 0.1, 0.2,
0.5, and 1 rad. Figure 3.6 displays the real and imaginary parts of Z (V and
U, respectively) after the appropriate LUs were applied; these LUs are Fourier
transforms, i.e., rotations by π/2 in quadrature phase space (Q,P ), exerted on
the lower-frequency-half qumodes, i.e., on all qumodes left of the green arrow in
figure 3.5.

We can immediately see that phase modulation yields multipartite entanglement.
We now examine the particular graphs that can be generated by this method, turn-
ing first to the effect of the modulation index parameter m. The initial case m = 0
corresponds to EPR pairs from the OPO with no phase modulation. When the
latter is turned on, additional edges are created, whose weights increase with m, as
the EPR weights decrease. The classical FM spectra in the left column of figure 3.6
give a good illustration of the effect on the quantum graph of the oscillations with
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Figure 3.6: V and U graphs for the state generated by OPO-extrinsic PM at Ω1=1
and r=2.3, for different values of m. The pump frequency is equal to the sum of the
frequencies of all vertical qumode pairs in the V and U graph columns. Note that
the qumode labeled “0” in the PM spectrum column is any of the QOFC qumodes
in the V and U graph columns.

m of the Bessel-function amplitudes. The onset of next-nearest neighbor couplings
in the quantum graph cöıncides, unsurprisingly, with the growth of the first-order
modulation sidebands, decrease of the carrier, and rise of the second harmonic side-
bands. Such non-local graph edges are a known hindrance to one-way quantum
computing [3, 25, 7]. However, this problem can be circumvented upon closer, rig-
orous inspection of the edges’ weights, which can always be found to be too small
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to be observable when m isn’t too large [70]. Note that this optimal m will decrease
as the squeezing parameter r increases.

Remarkably, the imaginary part of the graph (rightmost column of figure 3.6),
given by the error matrix U, complements the V graph, which tends toward a
complete bipartite graph with increasing m. In a sense, U leaves V globally invariant
in terms of its bipartite structure, i.e., while V only connects qumode set {1, . . . , 8}
to qumode set {9, . . . , 16} in figure 3.6, U only connects qumodes within each of
these two sets.

Note the self-loops in the U denote the main diagonal matrix elements of U
matrix.

The same property that spurious edges can always be made small enough will
appear in the U graph. In [70], we will show that U is weak enough to validate this
experimental technique.

Another crucial point that can be made immediately is that tr{U} → 0 when
r � 1, as required and illustrated in figure 3.7, where tr{U} is plotted and shown
to adhere to the theoretical value obtained analytically for two-mode squeezed
states [36]. This point is important: it means that PM of two-mode-squeezed pairs

Figure 3.7: Plot of the average trace of U versus the squeezing parameter r, com-
pared to the function sech(2r). This U matrix is for the externally modulated QOFC
at Ω1=1.

doesn’t detract from the fact that the overall cluster state error is solely determined
by the amount of initial squeezing. One should indeed remember that U, being
symmetric positive semidefinite, must tend to zero as a whole when its trace tends
to zero as per requirement (ii). (Note that requirement (i) remains crucial as we can-
not reach this infinite squeezing limit experimentally and, again, a fault-tolerance
threshold has been proven to exist in this case of finite squeezing [34].)

At this point, we anticipate the conclusions of the rigorous error analysis [70]
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and ignore the weak edges in the whole complex graph to focus on the cluster states
constructed by the dominant edges. We only have to limit the modulation index
m to low enough a value, keeping the PM couplings nearest-neighbor so as not to
get nonlocal edges. The resulting graph is given by figure 3.8(a). Swapping every

Figure 3.8: (a) V graph of figure 3.6, revealing its typical structure for 1D cluster
state. Two modes that are in the red dashed circle are the EPR-qumodes. (b)
compact representation of the graph using EPR macronodes.

other vertical pair of qumodes shows the graph to be a 1-d “ladder” whose rungs are
the initial EPR-pair qumodes. This dual graph structure connected by the initial
EPR pairs will actually be a feature of the 2-d and 3-d graphs as well. In order to
simplify the graph rendering, in this case, we will bunch these EPR pairs into “EPR
macronodes,” as in figure 3.8(b). This ladder state spans the whole phasematching
bandwidth of the OPO, which can reach 10 THz in our previous work [61]. With
a typical mode spacing of 1GHz [48, 13], this yields on the order of 104 entangled
qumodes in this linear cluster state.

As is well known, the 1-d graph isn’t enough to generate the universal gate set
in one-way quantum computing, for which a 2-d graph is required.

3.2.2.b Generation of 2-d ClusterStates:

The experimental configuration of figure 3.5 is surprisingly versatile: just adding
modulation frequencies allows to increase the dimension of the graph lattice. Again,
see [70] for a detailed analysis of all graph imperfections and why they are negligible.

Driving the EOM with two modulation signals at frequencies Ω1,2 transforms
Eq. 3.37 into

HPM2 = ~

[
α1

τ
e−iφ1

∞∑
j=−∞

aja
†
j+Ω1

+
α2

τ
e−iφ2

∞∑
j=−∞

aja
†
j+Ω2

]
+ H.c. (3.40)

Here we set φ1 = φ2 = π/2, α1 = α2, and follow the same procedure as in the 1-d
case, which yields the square-grid cluster state of figure 3.9. One can interpret this
case in the following way: PM at frequency Ω1=1 creates next-neighbor coupling
in the QOFC which forms a ladder graph; PM at frequency Ω2=10 then introduces
additional coupling every 10 modes which is tantamount to spiraling the ladder into
the two-layer square-grid cluster state of figure 3.9(a). As in figure 3.8(b), a more
streamlined version of the graph can be obtained by considering EPR macronodes;
see figure 3.9(b).

37



3.2. CLUSTER STATE GENERATION IN THE PHASE-MODULATED QOFC

Figure 3.9: (a), square-grid cluster state created with Ω1=1, Ω2=10. Two modes
circled by red dashed lines are EPR-qumodes, one of which is on the upper layer and
the other one is on the bottom layer. (b), same graph, over EPR macronodes. The
width of this square lattice is the number of “spokes” in the graph: Ω2/Ω1 = 10.

As was mentioned earlier, the width of the square lattice, which is the number
of ”spokes”, is simply the ratio Ω2/Ω1, the total number N of qumodes being de-
termined by the phasematching bandwidth of the OPO’s nonlinear medium. In the
case of our previous experiments [48, 13], for which we estimated N ∼ 104 [61], a
100 × 100 square cluster grid could therefore be created with PM at 1 and 100 GHz
for a 1 GHz mode spacing. Note also that, in this case, the quasi-phasematching
bandwidth can be further engineered to be larger.
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This is an important result because the square-grid cluster state is a resource
for universal quantum computing. Note that this is true even though the clus-
ter state is a Gaussian state and that universal quantum computing requires non-
Gaussian resources for exponential speedup and quantum error correction. This is
strictly equivalent to the qubit case where cluster states stabilized by Pauli opera-
tors, globally invariant under Clifford operations (just like CV clusters are stabilized
by Weyl-Heisenberg displacements, globally invariant under Gaussian operations),
even though non-Clifford resources are required to achieve exponential speedup. In
both cases, the necessary respective non-Gaussian and non-Clifford gates are realized
by like measurements on the cluster state.

3.2.2.c Generation of 3-d Cluster States:

At this point, we make the general claim that simply adding another modulation
frequency adds another dimension to the EPR-macronode graph, extending this
procedure to yield hypercubic cluster graphs. We illustrate this in the 3-d case,
which is relevant to quantum computing because the 3-d architecture is a known
base for implementing topological error encoding over cluster states [50].

With modulation frequencies, {Ω1,Ω2,Ω3} = {1, 8, 80}, the quantum derivation
yields the graph state pictured over EPR macronodes in figure 3.10. The six-edge
valence of each graph vertex is clear in their vast majority. Note that, as always for
cluster states, any local imperfections (graph center) in the graph can be removed
by single-qumode measurements [8, 68, 26].

Finally, the ratio of PM frequencies determines the graph’s structure, which
here is cylindrical: the number of “spokes” is set by Ω3/Ω2 and the length of the
cylinder is set by Ω2/Ω1. The radius of the spokes increases with the mode number
N as N/Ω3. In the example of figure 3.10, a cubic cluster state is created over 400
macronodes in a cylindrical shape with 10 ”spokes”, five set of macronodes in the
radial direction, and a cylinder 8 macronodes long.

3.2.3 Graph Error Analysis:

As we mentioned earlier, an arbitrary Gaussian state is a valid cluster state iff

(i), the error matrix U is diagonal [23] and,

(ii), it verifies tr{[U]} → 0 in the limit of infinite squeezing [36].

While requirement (ii) has been systematically fulfilled in all previous realizations
of CV cluster states [65, 48, 13, 64, 2, 30], requirement (i) had not been considered
until very recently [23], largely because all previous experimental realizations of
cluster states had, in theory, a diagonal U (in practice, they might not have). In
this thesis, U is not always diagonal, which can be seen as the price to pay for the
considerable simplification of the experimental setup. As Eq. 3.34 makes clear, an
off-diagonal element of U has the general physical meaning of a correlation between
two cluster-state nullifiers. Such covariances must be zero in order for the cluster
state to be adequate for one-way quantum computing. We evaluate the contribution
of off-diagonal elements of U and determine the precise conditions under which they
can be neglected, which amounts to relaxing requirement (i) to
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Figure 3.10: Cubic cluster state, over N=400 EPR macronodes, obtained from
{Ω1,Ω2,Ω3} = {1, 8, 80}. Number of ”spokes”=10. Length= 8 macronodes. Spoke
length= 5 macronodes.

(i’), the error matrix U is diagonally dominant.

Before we deal with error matrix U, we first assume it fulfills both (i) and (ii)
and focus on the effect of the weak, undesirable edges in V that can be seen in
figure 3.6 but not in figure 3.8.

Effect of a spurious graph edge – bipartite case:
We first take the simplest example of a canonical cluster state: in the unphysical
limit of infinite squeezing, a single qumode 1 has, by definition, nullifier P1. In the
realistic case of finite squeezing, the exact nullifier of qumode 1 in a single-mode
squeezed (SMS) state of squeezing parameter r1 is

Ns1 = S1(r1) a1 S
†
1(r1) = P1 − ie−2r1 Q1. (3.41)

These nullifiers are given by the complex Z graph, which always exists, but they are
non-Hermitian, which makes the graph unsuited for quantum computing. A cluster
state can be well defined as long as the imaginary part of Z, U, fulfills requirements
(i,ii). Finite squeezing is not a problem so long as it reaches a fault tolerant value,
which has been theoretically proven to be within experimental reach [34].
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Two phase-squeezed qumodes coupled by gate CZ = exp(iεQ1Q2) form a Gaus-
sian cluster state of nullifiers

N1 = CZNs1 CZ
† = P1 − ie−2r1 Q1 − εQ2 (3.42)

N2 = CZNs2 CZ
† = P2 − ie−2r2 Q2 − εQ1, (3.43)

where U is diagonal and vanishes with increasing squeezing. We now ask the fol-
lowing question: if we wrongly assumed qumode 1 to be isolated when it is, in fact,
linked to qumode 2 by a graph edge of small weight ε, how large could ε be before
its effects are detectable?

To answer this question, we must first relate it to the actual physical measure-
ments we can make on qumode 1.

Under the assumption that we have two single-mode phase-squeezed states, the
lowest measurement noise should be obtained by measuring the phase quadrature
operator P1, typically by homodyne detection. In the case of a phase-squeezed
qumode 1, observable P1 has squeezed noise given by

(∆P1)2 = 1〈0|S1(r1)† P 2
1 S1(r1) |0〉1 =

1

2
e−2r1 . (3.44)

We now assume P1 when qumode 1 also has a CZ graph edge of weight ε with
qumode 2 (squeezed by r2), then we have

(∆P1)2 = 12〈00|S†2S
†
1CZ

† P 2
1 CZS1S2 |00〉12

= 12〈00| (P1 e
−r1 − εQ2 e

r2)2 |00〉12

=
1

2
e−2r1

[
1 + ε2 e2(r1+r2)

]
.

(3.45)

Comparing Eq. 3.44 and 3.45, we deduce the condition for neglecting a graph edge
of weight ε:

ε� εmin = e−(r1+r2) (3.46)

where εmin is the edge weight at which the quantum noise is raised by 3 dB on a
single qumode quadrature measurement. Short conclusions from the bipartite case
are: (1) Eq. 3.44 implies the effect of omitting the spurious graph edge is a decrease
in the squeezing of qumode 1. And (2) Eq. 3.45 indicates the amount of squeezing
determines how weak the spurious graph edge weight can be measured: the higher
the squeezing, the smaller the graph edge weight can be detected.

The above analysis can be generalized to find out the effect of spurious graph
edges on the multipartite case, but the short conclusions from the bipartite case still
hold. Readers who are interested in learning about the full graph error analysis can
check Xuan Zhu’s Ph.D. thesis or reference [70]. We now turn to the details of how
to generate EPR QOFC in the laboratory.
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Chapter 4

The Optical Parametric Oscillator

This chapter will introduce the optical parametric oscillator (OPO), an optical cav-
ity with at least one nonlinear medium inside. OPO is a crucial element in this
experiment because it generates the two-mode squeezed state, used as the building
block for generating larger cluster states. I will also talk about how we lock the OPO
and make the cavity resonance follow the locking laser. Lastly, I will discuss how
to measure the parametric gain to estimate the maximal of squeezing. An excellent
reference I use here is Moran Chen’s thesis [12].

4.1 Optical Cavity

An optical cavity is an arrangement of at least two mirrors, and light waves bounce
back and forth between those mirrors to do the interference. Hence, only some light
that matches the cavity eigenmodes (transverse modes) can be confined inside the
cavity. The cavity also imposed another condition on the frequency of light: only
light satisfies the resonance condition (longitudinal modes) of the cavity can pass
through the cavity.

In the experiment, we use a four-mirror one-sided cavity, which implies one mir-
ror, output coupler (OC), has intensity reflection (r′21 = 5%) and the rest have near
unity reflection (r′22 = r′23 = r′24 = 99.995%). For the simplicity of theory, we can use
a two-mirror cavity to model it without loss of generality. Assuming the cavity is
lossless, some of the important features and definitions are listed in the following:

• Reflected field, field inside the cavity, and transmitted field:
for a field Ei = E0e

iωt incident to a two-mirror cavity with field reflection coefficient
r1 (incident mirror) and r2, the total reflected field is

Er =
r2e

iδ − r1

1− r1r2eiδ
Ei, (4.1)

the total field inside the cavity is

Ec =
t1

1− r1r2eiδ
Ei, (4.2)

and the total transmitted field is

Et =
t1t2e

iδ/2

1− r1r2eiδ
Ei, (4.3)
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where δ = ωL
c

is the round trip phase shift, L is the round trip cavity length,

t1 =
√

1− r2
1 and t2 =

√
1− r2

2 are the field transmission coefficient, and c is the
speed of light in vacuum. Figure 4.1 illustrates the incident, total reflected, total
internal, and total transmitted filed for a two-mirror cavity.

Figure 4.1: The total reflected, total internal, and total transmitted field of a two-
mirror cavity when the incident beam is injected from r1 mirror side. L is the round
trip length of the cavity

Therefore, we can find the reflection

R =

(
Er
Ei

)2

, (4.4)

and the phase response

θR = arctan

(
Er
Ei

)
. (4.5)

Similarly, for the total internal field and total transmitted field, we have

C =

(
Ec
Ei

)2

, (4.6)

θC = arctan

(
Ec
Ei

)
, (4.7)

T =

(
Et
Ei

)2

, (4.8)

θT = arctan

(
Et
Ei

)
. (4.9)

Figure 4.3 illustrates the lossless cavity response for case of cavity with r2
1 = 0.95

and r2
2 = 0.99995. Due to the fact of the lossless cavity, one can see T +R = 1 holds.

One can also notice the internal intensity can be built up to a very large amount.
Lastly, when the frequency of the incident field differs from the resonance frequency
of the cavity (frequency detuning), the reflected and transmitted fields always have
phase shifts. The phase response is the key to the Pound-Drever-Hall (PDH) cavity
locking, which will be discussed later.
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Remark The four-mirror cavity is slightly more complicated than the two-mirror
cavity due to (1) the light is bouncing back and forth between four mirrors instead
of two mirrors; (2) the four-mirror cavity has three transmitted fields rather than
one. For the above two reasons, the total reflected fields, total fields inside the
cavity, and the total transmitted fields are changed accordingly. Figure 4.2 shows
a four-mirror cavity with an incident field Ei to the OC. r′1, r′2, r′3, and r′4 are the
field reflection coefficients. l′1, l′2, l′3, and l′4 are the distances between mirrors. The
total cavity length is L′ and L′ = l′1 + l′2 + l′3 + l′4.

Figure 4.2: Four-mirror cavity. r′1, r′2, r′3, and r′4 are the field reflection coefficients.
l′1, l′2, l′3, and l′4 are the distances between mirrors.

The total reflected field is

Er =
r′2r
′
3r
′
4e
iδ′ − r′1

1− r′1r′2r′3r′4eiδ
′ , (4.10)

the total field inside the cavity is

Ec =
t′1

1− r′1r′2r′3r′4eiδ
′Ei, (4.11)

and the total transmitted fields are

Et2 =
t′1t
′
2e
iδ′1

1− r′1r′2r′3r′4eiδ
′Ei, (4.12)

Et3 =
t′1r
′
2t
′
3e
i(δ′1+δ′2)

1− r′1r′2r′3r′4eiδ
′Ei, (4.13)

Et4 =
t′1r
′
2r
′
3t
′
4e
i(δ′1+δ′2+δ′3)

1− r′1r′2r′3r′4eiδ
′ Ei, (4.14)

where δ′ = ωL′

c
is the total trip phase shift, δ′i =

ωl′i
c

is the phase shift due to li,

t′i =
√

1− r′2i is the field transmission coefficient, and i ∈ {1, 2, 3}. One can use the
above five field equations to find the cavity responses, similar to what I did for the
figure 4.3. Note by setting r1 = r′1 and r2 = r′2r

′
3r
′
4, Eqs. (4.10) and (4.11) become

Eqs (4.1) and (4.2) for the two-mirror cavity case.
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(a) Reflection response (b) Reflected field phase response

(c) Internal intensity response (d) Internal field phase response

(e) Transmission response (f) Transmitted filed phase response

Figure 4.3: Illustration of the cavity response for a lossless cavity with r2
1 = 0.95

and r2
2 = 0.99995. On the left side is the intensity response and on the right side

is the phase response. The x-axis in all the subfigures is the round trip phase shift,
which is proportional to the frequency detuning.
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4.2. NONLINEAR MEDIUM

• Linewidth, free spectral range (FSR), finesse:

Now, let’s focus on the transmitted light from a cavity. Suppose the incident
light has a continuous frequency distribution and mode matched to the cavity. In
that case, the transmitted light has a comb-like distribution, i.e., the cavity only
allows light with frequencies satisfying resonance conditions to pass through. Each
comb line has a distribution in the frequency domain, which is called linewidth. The
linewidth is defined by the full-width at half-maximum of each comb line:

fFWHM =
2c

πL
arcsin

(
1−
√
R1R2

2(R1R2)1/4

)
, (4.15)

where R1 = r2
1 and R2 = r2

2.
Each transmitted comb line is separated from its neighbor by a certain spacing

in the frequency domain. This is called the free spectral range (FSR), or mode
spacing, and is defined as:

FSR =
c

L
. (4.16)

The linewidth and FSR above are represented in the frequency domain, f , which
is in units of Hz, and they can be converted from frequency domain to the phase
domain, δ, which is in units of radian, by the relation between round trip phase shift
and frequency, δ = 2πfL

c
. We then have linewidth in the phase domain

δFWHM = 4 arcsin

(
1−
√
R1R2

2(R1R2)1/4

)
, (4.17)

and the FSR in phase domain
∆δ = 2π. (4.18)

Figure 4.4 plots the transmittance T as a function of round trip optical phase δ for
a symmetric cavity with R1 = R2 = 0.95.

The finesse is defined as a ratio of the FSR over the FWHM:

Finesse =
∆δ

δFWHR

=
FSR

fFWHM

=
π

2 arcsin [ 1−
√
R1R2

2(R1R2)1/4
]
.

(4.19)

Remark: a high finesse cavity is usually used as an optical filter, such cavity is
called a filter cavity. For example, one can use a filter cavity to clean and narrow
the spectra of a laser beam.

4.2 Nonlinear Medium

A great reference for the physics of nonlinear medium is the Nonlinear Optics by
Robert W. Boyd and Pei Wang’s thesis [59], and here I provide a brief recap.

In the case of conventional optics, the polarization depends linearly on the electric
field strength:

P (t) = ε0χ
(1)E(t), (4.20)
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4.2. NONLINEAR MEDIUM

Figure 4.4: The transmittance T is a function of round trip optical phase δ for a
symmetric cavity with R1 = R2 = 0.95.

where χ(1) is the linear susceptibility, and ε0 is the permittivity of free space. In
nonlinear optics, the induced polarization P (t) can be expressed by a power series
in the field strength E(t) as

P (t) = ε0[χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + · · · ]
= P (1)(t) + P (2)(t) + P (3)(t) + · · · ,

(4.21)

where χ(2) and χ(3) are the second- and third-order nonlinear optical susceptibilities.
P (2)(t) is referred to as the second-order nonlinear polarization and P (3)(t) is referred
to as the third-order nonlinear polarization. The physical requirement for P (2)(t) to
occur is distinct from the physical requirement for P (3)(t) to occur: the second-
order nonlinear optical interaction cannot occur in crystals that do not display
inversion symmetry (centrosymmetric crystals); the third-order nonlinear optical
interaction can occur for both centrosymmetric and noncentrosymmetric media.
In general, P (1) � P (2) � P (3), so when we consider the second-order nonlinear
optical interaction, we can neglect the effect from third-order nonlinear interaction.
Therefore, we can only consider the second-order nonlinear optical interaction in the
following.

Consider two optical fields, E1e
iω1t and E2e

iω2t, pass through a χ(2) nonlinear
crystal, the second-order nonlinear polarization becomes

P (2) = χ(2)(E1e
iω1t + E2e

iω2t)2

= 2χ(2)E1E2e
i(ω1+ω2)t + χ(2)(E2

1e
i(2ω1t) + E2

2e
i(2ω2t)).

(4.22)

The first term implies there is a new field generated with a frequency equal to
the sum of two input fields, so-called sum-frequency generation. A sum-frequency
generation is an up-conversion process (from a frequency perspective) and it is a
reversible process, which is called parametric down-conversion (PDC). Figure 4.5
illustrates the idea of the sum-frequency generation. The intensity of the new field:

I3 ∝ L2 sinc2(∆kL/2), (4.23)

47



4.3. QUANTUM OPTICAL FREQUENCY COMB

where L is the length of the nonlinear crystal and ∆k is the phase match.

Figure 4.5: Sum frequency generation: converting two fields with frequencies ω1 and
ω2 into new field with frequency ω3 = ω1 +ω2. It is also known as an up-conversion
process.

Assume three waves are propagating collinearly, to maximize the intensity of the
new field, i.e., maximize the conversion efficiency, the phase matching conditions
needs to be satisfied, that is energy conservation:

ω3 = ω2 + ω1, (4.24)

and momentum conservation:

∆k = k1 + k2 − k3 = 0, (4.25)

where ω3 is the frequency of new filed and ki = niωi
c

is the wave vector for i-th field,
i = 1, 2, or 3.

However, due to the dispersion, ∆k 6= 0. One way to circumvent this issue is
quasi-phase matching. To achieve the quasi-phase matching, it is necessary to
create additional spatial oscillation of nonlinear efficiency, for example, by periodi-
cally inverting the c axis of a ferroelectric material, thus flipping the sign of χ(2) and
generating a new term in wavevector to compensate the mismatch. Figure 4.6 shows
schematic representations of a regular nonlinear crystal (4.6a) with a periodically
poled crystal (4.6b). Therefore, the wavevector mismatch is given by

∆kQ = k1 + k2 − k3 − 2π/Λ. (4.26)

The requirement of ∆kQ = 0 and Eq. (4.23) determine a continuous frequency
range, also known as quasi-phase matching bandwidth (QPBW), for converting effi-
ciently between field 1 and field 2 to field 3 (and vice versa). By using temperature-
dependent Sellmeier equations [17, 21], one can find the suitable polling period and
crystal temperature for particular frequencies with a very broad QPBW for efficient
conversion.

4.3 Quantum Optical Frequency Comb

The OPO used in this thesis is a four-mirror one-sided cavity with a χ(2) PPKTP
nonlinear crystal inside. Figure 4.7 illustrates the schematic representations of OPO
(4.7a) and the real setup when the pump beam is injected (4.7b). The OPO mirrors
were fabricated by Advanced Thin Films. The cavity is constituted by two concave
mirrors (50 mm radius) and two flat mirrors. One of the flat mirrors is the output
coupler (1st mirror), which was a 5% transmittance mirror at 1064 nm and 0.05% at
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4.3. QUANTUM OPTICAL FREQUENCY COMB

(a)

(b)

Figure 4.6: Schematic representations of a nonlinear crystal. (a) a homogeneous
single crystal and (b) a periodically poled crystal. The arrows represent the positive
c axis, and Λ represents the polling period.

532 nm. Later, the 1st mirror was changed to a 17% transmittance mirror at 1064
nm and less than 0.01% at 532 nm, for the purpose of increasing squeezing. All other
mirrors have a transmittance of near-zero at 1064 nm and near-unity at 532 nm.
The cavity has an FSR of about 1 GHz, and it is stabilized by Pound-Drever-Hall
cavity lock to a weak counterpropagating beam, which is called a locking beam. The
OPO linewidth was about 10 MHz before but increased to 36 MHz after changing
the output coupler. The four-mirror one-sided cavity has two beam waists, based on
eigenmode calculation, one waist is 35 µm (between 2nd and 3rd curved mirrors),
and the other waist is 135 µm (between 1st and 4th flat mirrors). The PPKTP
nonlinear crystal is placed at 35 µm waist place.

The PPKTP crystal is a χ(2) nonlinear crystal and was provided by Raicol Crys-
tals. The crystal is an x-cut, 1×2×10 mm3 in size, and 9 µm polling period (at room
temperature) so as to quasiphasematch zzz PDC [18, 46, 47] (zzz stands for the po-
larization of pump beam is in z-polarization, and the polarization of signal and idler
are also in z-polarization). The crystal has antireflection coated by Advanced Thin
Films at 1064 nm and 532 nm, and it is temperature-stabilized such that the PDC
efficiency is maximized. The Quantum Fields and Quantum Information (QFQI)
group at the University of Virginia has performed a theoretical and experimental
investigation about the QPBW of the crystal [60], and it has been shown the QPBW
is about 3.18 THz. The reset of the experiment detail can be found in Moran Chen’s
thesis [12].
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(a) (b)

Figure 4.7: A four-mirror one-sided OPO. (a) a schematic representation of OPO.
Ri is the intensity reflection of i-th mirror at 1064 nm. (b) a real setup of OPO
when the pump beam is injected. The pump beam is at a wavelength of 532 nm.

The operation principle is in the following: by sending a 532 nm laser light as
the pump field (field 3 in the previous section) with its power below the OPO lasing
threshold, a spontaneous parametric down-conversion (SPDC) will happen. SPDC
converts the pump beam photon into two photons with lower frequencies (field 1 and
field 2 in the previous section), which are now called signal and idler. Figure 4.8a
illustrates the idea of SPDC. The frequencies of signal and idler are the same as the
quasi-phase matching bandwidth, which is a continuous distribution over 3.2 THz in
this experiment. However, because there is an optical cavity surrounding the non-
linear crystal, and the optical cavity only allows certain frequencies of fields (signal
and idler) satisfying the resonance condition to build up. The fields building up in
the cavity stimulate the down-conversion process and generate more resonance fields
and then come out from the output coupler. Therefore, in the frequency domain,
the emission spectrum of OPO looks like an optical frequency comb. The spacing
between each comb line (FSR) is about 1 GHz. Considering the mechanism of PDC,
creating the signal and idler photons by annihilating the pump photon, the Hamilto-
nian is, in general, the two-mode squeezing Hamiltonian, Eq. (2.80). There is some
quantum correlation between signal and idler as discussed in subsection (2.6.2). The
emission spectrum of OPO is actually a bunch of two-mode squeezing pairs, which
are evenly distributed around the half frequency of the pump. Therefore the output
modes are called quantum optical frequency comb (QOFC). Figure 4.8b illustrates
the QOFC in the frequency domain, which is nothing but many two-mode squeezing
pairs. The curved red lines represent the quantum correlation (entanglement) be-
tween the signal and idler fields, and the green arrow represents the half frequency
of the pump.
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(a) (b)

Figure 4.8: The principles behind the OPO output fields. (a) SPDC converts the
pump photon into signal and idler photons, whose frequency range is the same as
the QPBT; (b) The emission spectrum of OPO generates many two-mode squeezing
pairs, which is called quantum optical frequency comb (QOFC). The dashed curved
lines represent the entanglement. The green arrow in the center represents the half
frequency of the pump.

4.4 Pound-Drever-Hall (PDH) Locking

4.4.1 Introduction of PDH Locking

The Pound-Drever-Hall (PDH) is an elegant and powerful approach to stabilize the
frequency of laser light. In this experiment, the PDH locking is used to lock the
OPO cavity to a 1064 nm laser light (locking beam), which is phase locked to a
532 nm pump laser, such that the cavity can follow the 1064 nm laser and stay
resonance.

There are two advantages of using PDH locking rather than another kind of
locking method:
(1) PDH locking can lock the laser to the center of the resonance peak due to it
providing a cavity phase response (as figure 4.3 shows) like an error signal.
(2) PDH locking is insensitive to the slow drift of laser power.

Here I briefly summarize the paper by Eric D. Black for the introduction of PDH
cavity locking [6].

Figure 4.9 shows the basic layout for a PDH cavity lock to a laser. The principle is
when a monochromatic laser light (carrier) passes through a phase modulation device
(ex: Pockels Cell or EOM), which generates sidebands around the carrier. When the
modulation amplitude is small, we can only consider the first-order sidebands with
frequencies blue-shifted and red-shifted from the carrier frequency by one modulation
frequency. Moreover, one sideband is in phase with the carrier while the other
sideband is out of phase with the carrier. As the carrier and two sidebands hit on
the cavity, the reflection due to the cavity not only reflects the light in different
magnitudes, it also introduces different phase responses (as figure 4.3 shows) to the
carrier and two sidebands. By using a photodetector to receive the reflected carrier
and two sidebands, we can get a signal containing a beat note signal. The beat
note signal actually comes from the reflected carrier and reflected two sidebands.
Thus the beat note frequency is the same as the modulation frequency. By using a
mixer to demodulate the photodetector signal by the same modulation signal, the
beat note signal can be extracted, which is very similar to the phase response of the
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Figure 4.9: The basic layout for PDH cavity locking to a laser. Solid lines are optical
paths, and dashed lines are signal paths. The signal going to the laser controls its
frequency [6].

cavity. Depending on the frequency of modulation signal and linewidth of the cavity
mode, the error signal might have a slight difference, as figure 4.10 shows. Hence,
the demodulated beat note signal can be used as the error signal to lock the laser
frequency to the center of the cavity mode, which is also the zero point of the error
signal. The full mathematical treatment can be found in [5, 6, 15].

(a) Mod. freq. ≈ half a linewidth (b) Mod. freq. ≈ 20 linewidths

Figure 4.10: The PDH error signal v.s. modulation frequency (normalized to the
linewidth of mode) when (a) the modulation frequency is low; (b) the modulation
frequency is high. The cavity finesse is 500 [6].

The schematic setup for the OPO PDH cavity lock in the experiment is shown
in figure 4.11a. The 532 nm pump bean and 1064 nm locking beam come from the
same laser. Hence they are phase locked. The laser itself has a weak 12 MHz phase
modulation that can be used to perform the PDH lock. The corresponding output
quantum optical frequency comb looks like figure 4.11b, which is different from the
QOFC in figure 4.8b.

Note: to generate the QOFC like figure 4.8b, one can install an EOM in the
locking beam path. By setting the modulation frequency to 0.5 FSR with strong
enough modulation depth, one can lock the OPO onto one of the first-order side-
bands to generate QOFC as figure 4.8b.
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(a)

(b)

Figure 4.11: (a) schematic setup for OPO PDH cavity lock in the experiment. (b)
the corresponding emission spectrum of OPO. The green arrow represents the half
frequency of the pump.

4.4.2 Signal-to-Noise Ratio of PDH Lock

To minimize the phase noise coming from the OPO cavity (recall the cavity response
showed in figure 4.3), the PDH lock needs to have the best possible signal-to-noise
ratio (SNR). The higher the SNR of the PDH lock, the more stable the OPO cavity
is and, thus, the more minor phase noise introduced by the OPO cavity to the
squeezed light. The SNR of a PDH lock can be defined as follows

SNR =
2
√

2Vpp
V noise
pp

=
fFWHM

δlock
, (4.27)

where Vpp is the peak-to-peak value of the PDH lock error signal, V noise
pp is the peak-

to-peak value of the noise in PDH lock error signal, fFWHM is the cavity linewidth,
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Eq. (4.15) and δlock is residual locked frequency bandwidth, which is a quantity of
how tight the PDH locking is.

4.5 Parametric Gain and Squeezing

Figure 4.12: Schematic setup for measuring the parametric gain by injecting the
1064 nm reference beam (red line) and 532 nm pump beam (green line) to the OPO.
The detector after the output coupler is measuring the reference beam power and
monitors the signal by an oscilloscope. Ref.: reference beam.

Considering the following ideal scenario: when a stable and strong 532 nm pump
beam and a stable 1064 nm beam, called reference beam, are both injected into a
frequency stabilized OPO, if there is a relative phase change between two fields, the
power of the transmitted reference beam will be amplified and deamplified depend-
ing on the relative phase. This phenomenon is called parametric amplification and
deamplification. The ratio of the maximal power of the amplified transmitted refer-
ence beam to the power of reference beam with no pump is the (parametric) gain,
and the strength of gain determines the maximal amount of squeezing. Figure 4.12
shows the schematic setup for measuring the parametric gain by injecting the 1064
nm reference beam (red line) and 532 nm pump beam (green line) to the OPO at
the same time. Here, I will provide the derivation.

Start with the single-mode squeezing Bogoliubov transformation, Eq. (2.69),
which describes the time evolution of the vacuum field influenced by the pump field.
Here, we can rewrite the Eq. (2.69) to describe the time evolution of the reference
beam influenced by the pump. Because the reference beam is a classical light, we
can take

a→ αeiθ, (4.28)

where α is a real number, and assume θ = 0 for simplicity, we then have

α(t) = α cosh r + α∗eiφ sinh r. (4.29)

By using a detector to collect the reference beam, we can get the photon number of
the reference beam
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α(t)α∗(t)

= (α cosh r + α∗eiφ sinh r)(α∗ cosh r + αe−iφ sinh r)

= |α|2(cosh2 r + sinh2 r) + (α2e−iφ + (α∗)2eiφ) cosh r sinh r

= |α|2(cosh2 r + sinh2 r) + |α|2 sinh 2r cosφ.

(4.30)

When φ = 0, we can get the maximum photo number

(α(t)α∗(t))max = |α|2(cosh 2r + sinh 2r)

= |α|2e2r.
(4.31)

Therefore, the gain due to the parametric amplify is defined as

Gain =
(α(t)α∗(t))max

|α|2
= e2r. (4.32)

In fact, we can measure the gain even when the cavity is scanning as long as
the phase of pump, φ, is changing faster than the cavity scan rate. Figure 4.13 is
a real example of gain estimation. In the condition of OPO scanning by a 10 Hz
and 3 Vpp ramp (to the PZT driver), figure 4.13a shows the reference beam signal
without pump beam, and figure 4.13b shows the reference beam signal with pump
beam, whose phase is scanned by a 123 Hz and 5 Vpp ramp to the PZT driver.
By taking the ratio of maximum value in two different cases, we can conclude the
Gain = 194.25 mV/46.5 mV = 4.18 = e2r. Therefore, we can find out the squeezing
parameter, r, is 0.72, and the corresponding squeezing (SQ) in dB can be calculated
by

SQ(r) = 20 log10 e
r, (4.33)

and the squeezing is 6.2 dB.

(a) (b)

Figure 4.13: reference beam signal (red line) in the condition of (a) without pump
beam and (b) with pump beam when OPO cavity is scanned by a 10 Hz and 3 Vpp

ramp (yellow line) to the PZT driver. The pump beam phase is also scanned by a
123 Hz and 5 Vpp ramp to the PZT driver. The different peaks in (b) are because of
the pump phase scanning faster than cavity scan rate. Also, notice the peak value
in (a) is 46.5 mV while the peak value in (b) is 194.25 mV.
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Chapter 5

Old OPO setup

In this chapter, the author will discuss the phase noise investigation and some per-
formance improvements performed to the optical system to increase squeezing and
provide preliminary evidence for our EOM method of generating 1-d cluster states.

5.1 Phase Noise Investigation

Figure 5.1: Former experimental setup for generating 1-d dual-rail wire cluster
state [12, 13]. PLL: phase lock loop; HWP: half-wave plate; PZT: piezoelectric
transducer; PBS: polarizing beam splitter; SA: spectrum analyzer; AOM: acousto-
optic modulator; EOM: electro-optic modulator; PDH: Pound-Drever-Hall lock loop;
x2: frequency doubling crystal.

Figure 5.1 shows the former experimental setup for generating a 1-d dual-rail wire
cluster state, which was generated by entangling two QOFC in two different polar-
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izations. The details can be found in [12, 13]. But one important feature I want
to emphasize is there were two PPKTP crystals placed on the two waists of cavity
eigenmode, one (with waist 31 µm) between the curved mirrors and one (with waist
131 µm) between the flat mirrors. They were mounted oriented at 90◦ from each
other in the (yz) plane. Each crystal was temperature-stabilized to a few tenths of
millidegree, and the temperature was tuned within the phase-matching bandwidth
to make both polarizations resonant. By sending two 532 nm green pump lights
with two different polarizations into the OPO, we can generate two QOFC in two
different polarizations at the same cavity length. This feature is essential, and we
use this feature to improve the PDH cavity locking.

However, when the author took over the experiment, the experimental setup
changed, as figure 5.2 shows. Figure 5.2 is different from the figure 5.1: (1) the laser
2 was broken, hence was not in service; (2) the OPO was locked by laser 1 and filter
cavity was locked by laser 3. Due to the laser 2 was not in service, the OPO locking
beam was set to be the same polarization as the polarization of laser 1 green light
(hence the same polarization of QOFC generated by laser 1 pump). Therefore, yyy
PPKTP crystal was acted as a dummy crystal, and its temperature was not crucial.

Figure 5.2: Modified experimental setup after dual-rail wire cluster state generation
project. Note that laser 2 was broken and the OPO was locked by laser 1, which is
different from figure 5.1. The purple squares with numbers and blue squares with
letters mark the places for the interference measurements between laser 1 and laser
3. Ref.: reference beam; LB: locking beam; AOM: acousto-optic modulator.

The first thing to try with this optical system was the squeezing measurement.
However, the squeezing level the author obtained was less than 1 dB, while in the
past, we were able to get around 3.2 dB of squeezing (see figure 5 in [13]). As we
discussed in subsection 2.6.4, loss and phase noise degrades the amount of observed
squeezing. A careful check of loss had been performed and confirmed the loss was
at the same level as in the previous experiments. Thus, it was most likely the
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a phase noise that degraded the squeezing. A phase noise investigation was thus
performed: by interfering two laser lights from two different locations and scanning
the relative phase slowly (0.2 Hz and 5 Vpp applied the PZT driver), we can directly
measure the amount of phase noise and its corresponding frequency, as discussed in
subsection 2.6.4. Figure 5.3 shows an example of measuring the phase noise between
laser 1 before the OPO (purple square 1) and laser 3 after the filter cavity (blue
square D).

(a) (b)

Figure 5.3: Interference of laser 1 before OPO and laser 3 after the filter cavity: (a)
interference fringe when relative phase scanned slowly; (b) zoomed-in of the half-
maximal of the fringe, which is the average of fringe, and the phase noise can be
measured directly. The peak to peak value of fringe is 357.5 mV while the noise peak
to peak value at half-maximal of the fringe is 49.375 mV (denoted by two horizontal
dashed cursor lines). By employing Eq. (2.102), the phase noise can be determined
and it is 7.8◦.

Table 5.1 summarizes the investigation results and a 9.5◦ of phase noise might
hinder our squeezing measurement. Another interesting finding is that the phase
noise increased after the laser beam passed through either cavity. As we discussed
in subsection 4.4.2, the increasing phase noise after cavities is possibly due to the
low SNR of the PDH lock for the two cavities. In the later section, we will show the
improvement of the OPO PDH lock, which increased the SNR from 40 to more than
3000, and the corresponding phase noise can be further reduced. We can follow the
discussion in subsection 2.6.4, and if we assume the squeezing generated by the OPO
is 3.2 dB. Then, with a phase noise of 9.5◦, the observed squeezing will be dropped
to 2.8 dB, which is different from the 1 dB of squeezing we observed in figure 5.4.

The possible reasons why we only measured 1 dB of squeezing might come from
(1) the imperfection in phase lock loop (PLL) between laser 1 and laser 3, and (2)
the OPO and FC PDH lock. The PLL between laser 1 and laser 3 was used to
make laser 1 and laser 3 have the same frequency. Figure 5.5 shows the simplified
schematic experimental setup for the PLL between laser 1 and laser 3. The PLL was
achieved by shifting the frequency of laser 3 by 70 MHz (with the aid of acousto-optic
modulator (AOM)) and then combining the frequency-shifted laser 3 beam with laser
1 beam. A large bandwidth photodetector was used to measure the 70 MHz beat
note and its photocurrent signal was sent to a servo loop to lock the 70 MHz beat
note to a 70 MHz signal source. The error signal was feedback to laser 3 to stabilize
its output frequency. Therefore, to check the performance of PLL, we sent the 70
MHz beat note and the 70 MHz signal source, which is coming from two phase-
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Figure 5.4: The first attempt to observe squeezing and the squeezing level is about
1 dB. Yellow trace: electronic noise; Blue trace: shot noise; Red trace: squeezing
trace.

Results of Phase Noise Investigation
Laser 1 Laser 3 Noise Freq./Hz Noise Angle/degree

2 D 700 9.5
1 D ∼100 7.8
1 A 170 2.9
1 B 200 2.9
1 C 200 2.9, 3.8

2 C 724, 180
2.9 (fast freq.)

7.19 (slow freq.)

Table 5.1: Results of phase noise investigation. The corresponding interference
places for laser 1 and laser 2 are marked in figure 5.2 by purple boxes with numbers
and blue boxes with letters. FC: filter cavity.

locked synthesizers (one for modulation purposes and the other for demodulation
purposes), to a spectrum analyzer (SA). The detail of the PLL between laser 1 and
laser 3 can be found in Moran Chen’s thesis [12]. Figure 5.6 shows the measurement
results from SA and one can see the three signals have exactly the same frequency
within the SA 1 Hz resolution, which implies the PLL works quite well. However,
as we switched the OPO locking beam from laser 1 to laser 3, and checked the
squeezing again, we can observe more than 3 dB of squeezing, as figure 5.7 shows.
The corresponding phase noise measured was about 3.8◦. We can perform the phase
noise analysis again: assuming the OPO generated 3.2 dB of squeezing, the 3.8◦

phase noise degrades the observed squeezing to 3.1 dB, which implies phase noise
of 3.8◦ in the current case. These results implied there was some limitation on the
PLL, thus some phase noise did exist.

In order to better understand the phase noise, we sent the interference signal
from a detector to the spectrum analyzer to check the spectrum of phase noises.
Figure 5.8a shows the spectrum of phase noises, which contains multiple noises with
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Figure 5.5: Simplified schematic experimental setup for the PLL between laser 1
and laser 3.

Figure 5.6: Checking the 70 MHz signals by a SA. Yellow trace: 70 MHz beat note;
Blue and Red traces: 70 MHz signals from two synthesizers.

different frequencies as marked in the figure. To check the PLL, we sent the error
signal, while the PLL was not activated, to the spectrum analyzer to check the error
signal’s spectrum. Figure 5.8b shows the spectrum of the PLL error signal and one
can see it also contains multiple signals with different frequencies: By comparing
figure 5.8a and 5.8b, we can conclude the phase noises mostly come from the PLL,
and the frequencies of noises imply they are coming from the AC unit, which are
power line noises and they are hard to get rid of. Therefore, we locked our OPO
cavity and filter cavity by the same laser (laser 3) from now on, which was the
original locking scheme as the former experimental setup, figure 5.1, to reduce the
phase noise. Also note the noise on the laser 3 still matter, so for the work presented

60



5.1. PHASE NOISE INVESTIGATION

Figure 5.7: Squeezing measurement after switching the locking beam from laser 1
to laser 3. Yellow trace: shot noise; Blue trace: squeezing signal.

in chapter 6, we modified the optical system by removing the filter cavity and using
laser 1 only for the OPO locking beam, reference beam, and LO.

(a) (b)

Figure 5.8: Spectra of (a) interference fringe signal and (b) PLL error signal when
PLL was not activated. The frequencies of peaks are: (A) 60 Hz, (B) 120 Hz, (C)
200 Hz, and (E) 298 Hz. The blue trace and red trace are the cases of different gains
in the filter cavity PDH lock servo.
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5.2 OPO PDH Cavity Locking Improvement

(a)

(b)

Figure 5.9: Two types of OPO locking beam injection. (a) locking beam is injected
from one of the HR mirrors; (b) locking beam is injected from the unused port of
PBS to the output coupler.

To minimize the phase noise coming from the OPO cavity (recall the cavity response
showed in figure 4.3), the PDH lock needs to have the best possible signal-to-noise
ratio (SNR). The higher the SNR of the PDH lock, the more stable the OPO cavity
is. Previously, as figure 5.9a shows the simplified schematic setup, the locking beam
was in the same polarization as the pump beam and was injected from one of the
HR mirrors, thus the transmitted signal was quite weak due to weakly transmitted
carrier and sidebands. Therefore, the SNR was about 40. To increase the PDH
locking SNR, it was natural to inject the locking beam from the output coupler
mirror, due to the fact that the sidebands are off-resonance and hence sidebands are
much more reflected than transmitted. Moreover, the carrier gets reflected less at
the output coupler, so the beat note signal is stronger when measuring the reflected
signal than the transmitted signal. To achieve the goal, we sent the locking beam
from the unused port of PBS, therefore, the locking beam was counter-propagating
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with respect to the squeezed light. But, in this way, the polarization of the locking
beam was in y-polarization while the squeezed was in z-polarization. Due to the
birefringence, the y-polarization and z-polarization wouldn’t resonate at the same
cavity length. As we discussed in the previous section, since laser 2 was not in
service, we don’t need to pay too much attention to the birefringence. However,
for our new locking beam in different polarization from the polarization of squeezed
light, we thus need to compensate the birefringence as we did in generating dual-rail
cluster state, figure 5.1: by tuning the temperature of the yyy PPKTP crystal, such
that the y-polarization and z-polarization can resonate at the same cavity length.
Figure 5.9b shows the schematic setup.

Figure 5.10: The improved PDH cavity locking signal was recorded when OPO
cavity length was scanning, therefore, the x-axis is time. Top panel: measured error
signal. The green circle represents the locking point, and Vpp is the peak-to-peak
value of the error signal. Bottom panel: zoomed-in noise (red circle in the top
panel). V noise

pp is the peak-to-peak value of noise.

The improved PDH cavity locking signal is presented in figure 5.10, and the
corresponding SNR is more than 3,000. By using the Eq. (4.27), with the OPO
linewidth of about 10 MHz, the δlock is about 3.3 kHz, which is very close to the
linewidth of the CW lasers used in the experiment.

Although the SNR of the cavity lock had been improved, the observed squeezing
didn’t improve much. As discussed at the end of section 5.1, the phase noise of
3.8◦ can only decrease the squeezing from 3.2 dB to 3.1 dB, which means a further
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Comparison of Old and New PDH Lock
Old PDH Lock New PDH Lock

Properties
LB is injected from OPO HR mirror

LB is in the same pol. as QOFC
LB is injected from OPO OFC
LB is in the diff. pol. as QOFC

Pros
Doesn’t care about the temp. of yyy crystal

Better long term stability
High SNR (>3000)
Lower phase noise

Cons
Low SNR (∼40)

Larger phase noise
Require better temp. stability

Poor long term stability

Table 5.2: Comparison of old PDH lock and new PDH lock. pol.: polarization; diff.:
different; temp.: temperature.

improvement of phase noise wouldn’t significantly increase the squeezing. However,
it was still worthwhile to improve the PDH locking to prepare for the situation where
squeezing is larger, therefore we want to minimize the phase noise as much as we
can. In the case of larger squeezing, which is more sensitive to the phase noise, as
we discussed in subsection 2.6.4, the improvement showed above can be applied and
reduce the phase noise from the cavity.

The other issue about this new OPO PDH lock is the long-term stability: when
there was a temperature drift in the two nonlinear crystals, the y-polarization and
z-polarization modes wouldn’t resonant at the same cavity length. Therefore, with a
y-polarization locking beam, that implies the z-polarization is slightly off-resonance,
which is equivalent to the loss. Therefore, the observed squeezing can drop from
3.1 dB to 2.7 dB, and the temperature of the crystal needed to readjust. For the
squeezing measurement, we can either actively tune the temperature of yyy crystal
or simply wait for a long time until the temperature is correct.

Table 5.2 shows the comparison between the old PDH lock and new PDH lock
with pros and cons. We will use the new PDH locking scheme from now on until
we discuss the covariance matrix measurement setup in section 6.2. Two reasons
make us switch the OPO locking scheme and pull out the yyy nonlinear crystal: (1)
Reconstructing the covariance matrix requires better long term stability due to the
data will be taken for a certain amount of time; (2) We can use the other port of
PBS, which is used to inject the new LB, to accomplish the phase lock between the
reference beam and pump. See section 6.2 for more details.

Remark: the squeezing we observed here was only about 3.2 dB, comparing it
to the 15 dB squeezing paper [56], one major reason is the pump power. In our
setup, the pump power we use is 190 mW and the pump is single-passed through
the OPO. On the other hand, in the 15 dB paper, the pump power they use is 160
mW and the pump beam resonant to the cavity. Considering the cavity is one-
sided and the OC reflection R = 97.5%, the intra-cavity strength of the pump is
about 6400 mW, which is about 34 times stronger than the pump power we use.
On the other hand, the OC we use is with T = 5% at 1064 nm, while in the 15
dB paper, they use OC with T = 12.5% at 1064 nm. The higher the T, the larger
the escape efficiency, Eq. (2.116), the better the detection efficiency and the larger
the squeezing. Therefore, a relatively simple way (compared to changing the cavity
from single resonance to double resonance) to increase the squeezing for our optical
system is to increase the escape efficiency by increasing the OPO OC’s T, which will
be discussed in subsection 6.1.1.
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5.3 Preliminary Evidence for Multipartite Entan-

glement Generation by Phase Modulation of

the QOFC

The V and U graphs for the state generated by OPO-extrinsic PM at Ω1 = 1 and
r = 2.3, for different values of m are presented again in figure 5.11. From figure 5.11,
one can see as the m increases, more and more graph edges appear in the V graph.
As a reminder, from the bipartite case of the effect of a spurious graph edge in
section 3.2.3, we showed that omitting the spurious graph edge is fine as long as
the spurious graph edge weight is small enough, which means Eq. (3.46) holds. As
the Eq. (3.46) doesn’t hold, then omitting the spurious graph edge decreases the
squeezing. From Eq. (3.45), one can also see that if the weight of the spurious
graph edge keeps increasing, then the squeezing will keep decreasing. When the
edge weight reaches εmin = e−(r1+r2), then the squeezing will disappear and we only
can get vacuum noise.

With these properties of spurious graph edge in mind, let’s go back to figure 5.11.
When modulation index m = 0, suppose one performs a two-mode squeezing mea-
surement on one of the two-mode squeezed pairs, then, ideally, one should get the
same amount of squeezing generated by the OPO. As m starts to increase, spurious
edges appear but with very weak weights. If the spurious graph edge weights are
small enough, recall Eq. (3.46), then omitting those spurious edges wouldn’t affect
the amount of squeezing. But, as the spurious graph edge weights get larger and
larger, the Eq. (3.46) doesn’t hold, then from Eq. (3.45), we can expect the squeez-
ing will start to decrease when omitting the spurious graph edges. Therefore, we
would like to perform a two-mode squeezing measurement on one of the EPR QOFC
phase-modulated by an EOM with one modulation frequency. If we can observe the
two-mode squeezing decreasing as modulation index m increases, then that would
be preliminary evidence indicating our theory might be right.

Figure 5.12 shows the schematic experimental setup. Laser 1 and laser 3 are
phase locked, such that the two lasers have the same frequency at IR. The laser 1
IR beam passes through a doubling crystal and generates a 532 nm light as an OPO
pump beam. The pump beam is in z-polarization and passes through the OPO
and zzz PPKTP crystal directly. The zzz PPKTP crystal turns the 532 nm photon
into two-mode squeezed pairs. The two-mode squeezed pairs pass through an EOM
(Qubig PM9-NIR) with modulation frequency equal to the OPO FSR and then enter
the balanced homodyne detector. The output of the balanced homodyne detector
is sent to a spectrum analyzer for squeezing trace measurement. The OPO is PDH
locked by laser 3, whose locking beam is injected from the unused port of PBS,
hence in y-polarization, and is counter-propagating with respect to the two-mode
squeezed light. By tuning the temperature of yyy PPKTP crystal, the birefringence
has been compensated, so light in y-polarization and z-polarization can be resonant
at the same cavity length. The laser 3 passes through two EOMs: the first EOM has
modulation frequency Ω′ = (n + 1

2
)×FSR to generate strong first-order sidebands,

where n ∈ N. By locking the OPO and filter cavity onto the first-order sidebands,
the value of n can decide which of the two-mode squeezing pairs is observed; the 2nd
EOM is used for FC PDH locking purposes. The filter cavity filter out the carrier,
two sidebands can pass through and act as LO for the homodyne detection.
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Figure 5.11: V and U graphs for the state generated by OPO-extrinsic PM at Ω1=1
and r=2.3, for different values of m. The pump frequency is equal to the sum of the
frequencies of all vertical qumode pairs in the V and U graph columns. Note that
the qumode labeled “0” in the PM spectrum column is any of the QOFC qumodes
in the V and U graph columns.

Figure 5.13 shows the preliminary result. The modulation frequency for EOM1 is
Ω′ = 5.5 FSR, thus it’s the two-mode squeezing pairs, which have the sixth smallest
frequency difference between the two modes. As the modulation index m increases,
the corresponding squeezing level drops, which agrees with figure 3.6 implies: as the
modulation index increase, more entanglement edges appear. We can extend the
model for the bipartite case to a slightly complicated one and compare it with the
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Figure 5.12: Schematic experimental setup for the preliminary experiment. PLL:
phase lock loop; HWP: half-wave plate; PZT: piezoelectric transducer; AOM:
acousto-optic modulator; EOM: electro-optic modulator; PDH: Pound-Drever-Hall
lock loop; SA: spectrum analyzer.

result of two-mode squeezing measurement.
Considering the following canonical cluster state scenario: When m = 0, qumode

a and qumode b are two phase-squeezed qumodes with squeezing parameter r cou-
pled by gate CZ = exp(iεQaQb), thus have an edge weight ε between them, as
figure (5.14a) shows. Then the observable N1 = Pa − Qb (or N2 = Pb − Qa) has
squeezed noise given by

(∆N1)2 = 〈00| [(Pa − εQb)e
−r]2 |00〉 =

1

2
e−2r. (5.1)

When modulation index m 6= 0, we assume there are n single-mode squeezed
qumodes with the same squeezing parameter r connecting to the qumode a or
qumode b by CZ gates, so that there are also some extra edges connected to qumode
a or qumode b, as figure (5.14b) shows. The number of actual extra qumodes and
their edge weights are based on the theoretical result for 1-d cluster states genera-
tion. Then we perform the same measurement on qumode a and qumode b as we
did in the m = 0 case, and thus we have

(∆N1)2 = 〈00|
[
(Pa − εQb)e

−r +
n∑
i=1

εiQie
r
]2

|00〉

=
1

2

[
e−2r + (

n∑
i=1

ε2i )e
2r
]
.

(5.2)

An accurate model would require knowing the exact number of extra edges, i.e., the
size of the quantum comb. We only have an estimate of this, based on the work
of former student Pei Wang [59]. Therefore, to completely verify our theoretical
results, we will need to measure all the entanglement edges and fully characterize
the cluster state. For this purpose, we are planning to reconstruct the covariance
matrix of the cluster state, which will be discussed in a later chapter.
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(a) m = 0.35 rad (b) m = 0.85 rad

(c) m = 1.25 rad (d) m = 1.35 rad

Figure 5.13: Preliminary results of two-mode squeezing with different EOM modu-
lation index. Yellow trace: shot noise; Blue trace: two-mode squeezing with m = 0;
Red trace: two-mode squeezing affecting by modulation index m. The error bar in
m is ± 0.05 rad. Note we set Ω′ = 5.5 FSR in figure 5.12, so we are detecting the
sixth two-mode squeezing pair if we assume the most center pair is the first pair.
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(a) (b)

Figure 5.14: (a) two-mode squeezed canonical cluster state when m = 0; (b) two-
mode squeezed canonical cluster state with n extra qumodes with edge weight εi,
i ∈ {1, n}. The edge between qumode a and qumode b is in red color to emphasize
the measurement is performed on qumode a and qumode b.
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Chapter 6

New OPO setup

6.1 OPO Improvements

6.1.1 Squeezing Improvement and Calibration

Squeezing Improvement by Changing the OC: The level of squeezing is im-
portant for quantum computing and characterizing the cluster states. For the for-
mer, squeezing is related to determining the fault tolerance thresholds for GKP
encoding [34, 44]; for the latter, squeezing determines how small the graph edges
we can observe [70]. Therefore, it is desired to have squeezing as large as possible.
Previously, we observed at most 3.2 dB of squeezing by an OPO with transmittance
of output coupler 5% [13]. One thing we can do to increase the squeezing is to
increase the escape efficiency of OPO. Recall the escape efficiency, Eq. (2.116), is
defined as the following

ηesc =
T

T + L
, (6.1)

where T is the cavity output coupler’s transmittance and L is the round-trip loss.
The round-trip loss in our system is 0.08%. Since the escape efficiency is related to
the loss, we thus desire to have escape efficiency as large as possible. While decreas-
ing the round-trip loss requires better cavity mirrors’ reflectivity. It is relatively
easier to increase the escape efficiency by increasing the transmittance of the OPO
output coupler. But this is at the expense of larger OPO lasing threshold power,
which is proportional to the T 2. From the analytical expression for squeezing in [62],
the strongest squeezing is happening when the pump power is just below the lasing
threshold. Another advantage of increasing the transmittance of output coupler is
the increasing of OPO linewidth, Eq. 4.15. Because the squeezing can only be ob-
served with the cavity linewidth, this is beneficial, especially for intra-mode cluster
states generation (see next section for more detail).

Hence, we changed the output coupler from 5% of transmittance to 17% of
transmittance at IR, the corresponding lasing threshold thus changed from 190 mW
to 2200 mW. The escape efficiency can increase from 98.4% to 99.5%, which is
beneficial for obtaining high squeezing. Our 532 nm pump lasers, laser 1 and laser
2, can provide 1 W from each laser. So, our original plan was to fix laser 2, such that
we can have total pump power of 2 W. But, unfortunately, we couldn’t fix laser 2.
Moreover, after the laser 1 pump beam passes through many optics and the EOM
is installed for the pump and reference beam lock, only 630 mW can enter the OPO
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cavity. With pump power 630 mW, the measured gain is 4.83 and the corresponding
squeezing is 6.8 dB. With the visibility equals to 95.1%, transmission loss 4%, the
quantum efficiency of PDs near 1, and phase noise 1.8◦ (this is due to the setup
has been changed: shortening the optical path, removing the filter cavity, and using
Laser 1 to lock OPO. See the next section for the modified schematic setup), the
estimated observed squeezing is 5.0 dB.

Suppose we can get a new laser with high enough 532 nm power, then in prin-
ciple, we can get higher squeezing when using T = 17% OC. Due to the squeezing
parameter r is proportional to the strength of pump field, α, we can relate the
squeezing parameter at 630 mW, r1, to the squeezing parameter at 2200 mW, r2,
by r2 =

√
17/5 × r1 = 1.84 × r1. From Eq. (4.33), the corresponding squeezing

for pump power 2200 mW, SQ(r2), is related to the squeezing for pump power 630
mW, SQ(r1) , as the following:

SQ(r2) = 20 log er2 = 20 log e1.84×r1

= 1.84× 20 log er2 = 1.84× SQ(r1)

= 1.84× 6.85 dB = 12.6 dB.

(6.2)

However, as we consider the escape efficiency 99.5%, visibility 95.1%, transmission
loss 4%, and phase noise 1.8◦ (taking the quantum efficiency to be 1 for simplicity),
the squeezing will drop to 7.3 dB. The squeezing drops for pump power 2200 mW
(12.6 dB → 7.3 dB) more than pump power 630 mW (6.8 dB → 5.0 dB) is mainly
due to the high squeezing is much more sensitive to the loss and phase noise, as we
discussed in subsection 2.6.4. Therefore, to obtain high squeezing from a measure-
ment, we not only need to increase the pump power, but also need to decrease the
loss, increase the visibility and decrease the phase noise as much as we can.

On the other hand, suppose we can get a new OC with suitable transmission T2,
such that the lasing threshold is close to the maximal pump power we can provide.
As we know the lasing threshold is proportional to the T 2

2 , the new OC should have
T2 = 9.1%. The corresponding escape efficiency is 99.1%. To estimate the amount
of squeezing we can get, we need a better theory to estimate it. Here, I directly
use the squeezed (−) and antisqueezed (+) quadrature variances for an OPO below
threshold formula in [56]

V± = 1± ηtotal

4
√
P/Pthr

(1∓
√
P/Pthr)2 + (2πf

γ
)2
, (6.3)

where ηtotal is the total detection efficiency, Eq. (2.116), P is the pump power, Pthr

is the lasing threshold for pump laser, and f is the sideband frequency of the mea-
surement. γ is the cavity decay rate and γ = c(T + L)l, with the speed of light
c, the cavity round-trip length l, the OPO output coupler’s power transmissivity
T , and the round-trip loss L. In the estimation, I use P/Pthr = 0.99 (right below
lasing threshold), ηtotal = ηesc, f is 1.22 MHz (so that in T = 5% case, the estimated
squeezing is 3.2 dB), and L = 0.08% for the round-trip loss, the estimated squeezing
for T2=9.1% without phase noise and any other loss is 5.8 dB. However, as we con-
sider the visibility 95.1%, transmission loss 4%, and phase noise 1.8◦, the squeezing
will drop to 4.4 dB.

Squeezing Calibration: The squeezing trace obtained by the spectrum ana-
lyzer is shown in figure 6.1a, and the observed squeezing is about 4.7 dB on average.
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The observed squeezing is lower than the expected squeezing, 5 dB. This is due to
the fact that the measured squeezing and measured shot noise are actually contain-
ing the electronic noise (also known as dark noise) inside, as figure 6.1b shows, so
we need to perform calibration to find out the actual squeezing.

(a) (b)

Figure 6.1: Squeezing trace after changing the output coupler mirror from 5% of
transmittance to 17% of transmittance. (a) squeezing trace. Shot noise (yellow
trace).; (b) electronic noise. The setting is center frequency 1.25 MHz, zero spans,
resolution bandwidth 30 kHz, video bandwidth 30 Hz, and sweep time 1.5 seconds.

The dark noise contaminated squeezing obtained from the experiment is

Sexp = 10 log10

(
Vsq + Vdn

Vsn + Vdn

)
, (6.4)

while the actual squeezing level is

Sact = 10 log10

(
Vsq
Vsn

)
, (6.5)

where Vsq is the variance of the squeezing, Vsn is the variance of the shot noise,
and Vdn is variance of dark noise. (As a reminder, the spectrum analyzer measures
the power spectrum, i.e. the variance of noise.) We then can obtain an equation
connecting the Sexp and Sact as

Sact = 10 log10 [(10
Sexp
10 − 1)

10
Sdn
10

10
Ssn
10

+ 10
Sexp
10 ], (6.6)

where Sdn = 10 log10 Vdn and Ssn = 10 log10 Vsn which converting the variance of
noises to dB unit. Figure 6.2 shows the relation between the squeezing obtained from
experiment and the actual squeezing. Hence, in our case, with observed squeezing
4.7 dB, the actual squeezing is 5.0 dB, which is the same as what we predicted
above.

6.1.2 The Anomalous OPO Reflected Mode

While checking the OPO beam profile by beam profiler (Newport LBP2-HR-VIS3,
190-1100 nm Silicon CCD, 1624 × 1224 Pixels), we noticed the OPO reflected beam
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Figure 6.2: Calibration of the squeezing obtained experimentally from the actual
squeezing. The horizontal axis is the observed squeezing from 0 dB to 15 dB and
the vertical axis is the squeezing after calibration. Note the negative sign represents
squeezing.

from the output coupler, which is a combination of partially reflected input beam
and the OPO output beam (the input beam partially entered to the OPO and then
came out), looks quite anomalous when OPO was near- and on-resonance. Figure 6.3
shows the reflected beam profiles at four different conditions, and one can see how
the profile changes (the recorded video can be watched on Youtube by clicking here).

This phenomenon is confusing to us because for a good mode matched beam
injected to a cavity (> 90% mode matched), we expect the injected beam inside the
OPO is very similar to the OPO eigenmode. Therefore, the reflected beam should
be very close to the OPO transmitted mode as well and the reflected mode shouldn’t
change when OPO is near- and on-resonance. We thus want to understand what
causes such anomalous reflected beam and can we regard the reflected beam as the
OPO output mode. Knowing how to obtain the OPO output mode is important for
us to estimate the visibility between quantum light and LO. The quantum light is
quite weak, and we have to use another coherent light that has the same wavefront,
waist, polarization, and propagating direction as quantum light, to mimic the quan-
tum light and couple to the LO before entering the balanced homodyne detector.
Due to the OPO reflected beam being stronger, mW, than OPO transmitted beam,
µW, it is tempting and easier to use the OPO reflected beam to mode match to LO
than use OPO transmitted beam.

Figure 6.4 shows the schematic setup of observing the anomalous OPO reflected
beam profile by a beam profiler while monitoring the second harmonic generation
(SHG) by a power meter. The SHG monitor is used to tell when the OPO is on
resonance. The laser used here is laser 1. Few things we can see from figure 6.3 and
video. First of all, the profile changes when OPO is off-, near- and on-resonance.
Secondly, the near-resonance profiles are not the same. As a reminder, the reflected
beam profile is actually an interference by the directly reflected beam from the
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(a) Off-resonance beam profile. (b) Near-resonance beam profile (left).

(c) On-resonance beam profile. (d) Near-resonance beam profile (right).

Figure 6.3: Reflected beam profiles at four different resonance conditions, which are
shown on the screen in the pictures. The oscilloscope monitors the SHG powers (red
trace) and ramp signal for driving the OPO PZT (yellow trace).
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Figure 6.4: Schematic experimental setup for observing the anomalous OPO re-
flected beam profile while scanning the cavity length by a ramp signal. SHG:
second-harmonic generation of the injected IR beam (as denoted by green beam);
OC: output coupler; HR: high reflection mirror.

output coupler and the output beam from the OPO. Therefore, the profile change
might be due to incomplete interference. This phenomenon doesn’t exist for the
filter cavity’s reflected beam or the OPO’s transmitted beam (when input beam was
injected from HR mirror, as figure 6.5 shows: the beam profiles remain the same no
matter whether the cavity is off-, near- or on-resonance. It’s not entirely clear what
physics causes this anomalous OPO reflected profile, but one thing suspicious is the
OPO nonlinear medium, i.e. nonlinear effect, such as, for example, a self-focusing
effect from the third-order nonlinearity. If so, lowering the incident beam power
in figure 6.4 should dramatically change the effect. But, unfortunately, we tried
different incident power from 12 mW down to 12 µW, the strangeness of the OPO
reflected beam still exists.

Figure 6.5: Schematic experimental setup for observing the OPO transmitted beam
profile while scanning the cavity length by a ramp signal. SHG: second-harmonic
generation of the injected IR beam (as denoted by green beam); OC: output coupler;
HR: high reflection mirror.
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Hence, based on the above discussion, we believe the OPO output mode can
not be obtained by injecting the input beam from OC of the OPO, as figure 6.4
shows. To obtain the OPO output mode, we have to use the OPO transmitted
beam injected from HR, as figure 6.5 shows. Then, we can use such transmitted
OPO mode, which mimics the quantum light, to mode match it to the LO.

6.1.3 Using reference beam as Local Oscillator

Figure 6.6 shows the schematic setup of using the reference beam as the LO. The
advantage of this method is because the reference beam is transmitted through the
OPO cavity, it must have the same mode as the mode of quantum light. Due to
the reference beam is propagating collinearly with the quantum light, the mode
matching between the reference beam and quantum light should be perfect, and the
visibility would be as good as 100%. But we can’t measure the visibility to confirm
it because the quantum light is too weak to detect by a photodetector.

Figure 6.6: Schematic experimental setup for using the reference beam as the LO to
observe the squeezing. Note the OPO locking beam and reference beam are coming
from laser 1. Ref.: reference beam.

There are a few disadvantages of using a reference beam as LO.
1. weak OPO transmitted reference beam. As we discussed before, the
reference beam is injected from the HR mirror side of OPO, so with the incident
reference beam 20 mW, we only can get 20 µW. Therefore, we need a balanced
homodyne detector that can measure 20 µW and still have good SNR. See the next
subsection for the balanced homodyne detector sensitivity improvement work.
2. balanced homodyne detector not balancing. One of the reasons that we
like to use a balanced homodyne detector, from subsection 2.6.3, is it can remove the
DC term. But this statement is only true when the two fields, LO and quantum light,
are coming from two adjacency sides of the beam splitter, such that the interference
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terms in the photon number representation of two output fields have π phase shift.
However, as the LO and quantum light enters from the same beam splitter port,
the interference terms in the two output fields’ photon number representation don’t
have π phase shift. Therefore, the ”balancing” kills all the signals.
3. wrong relative phases between reference beam, quantum light, and
pump beam. To observe the phase quadrature squeezing, the required phase
between the reference beam and the quantum light is

φref − φq =
π

2
, (6.7)

where φref is the phase of reference beam and φq is the phase of quantum light. We
can only introduce this phase difference to the reference beam before it enters the
OPO or the pump beam. As we discussed in section 6.2.2.a, the pump determines
the phase of quantum light, and their phase relation is

φp − 2φq = 0, (6.8)

By rewriting the Eq. (6.7), we can obtain the phase relation between pump and
reference beam from Eq. (6.8) as

φp − 2φq = 0

⇒ φp − 2φref + π = 0

⇒ φp − 2φref = −π,
(6.9)

which implies a parametric deamplification for the reference beam. In the experi-
ment, this deamplification on the reference beam depletes the reference beam power,
which is under the sensitivity limit of OPA818 based balanced homodyne detector.

Therefore, due to the above three reasons, we have to use other approaches to
observe squeezing.

6.1.4 Balanced Homodyne Detector Sensitivity Improvement

As discussed in the previous section, when we tried to use the reference beam as the
LO, the usable power dropped and the signal to noise ratio (SNR) also dropped. The
SNR is also called shot-to-electronic noise clearance or clearance [32], and is defined
as the ratio of the shot noise (measured in the presence of LO) and the electronic
noise of BHD (measured with the LO blocked). Figure 6.7 shows the spectra of
balanced homodyne detector signal at two different LO powers. The SNR dropped
from 16 dB for 2 mW LO power to 2 dB for 20 µW. Due to the reference beam
being injected from the HR mirror side, and the laser we used already reaching its
maximal output power, therefore, we can’t further increase the power of the reference
beam anymore. With an SNR of 2 dB, this is not enough for us to detect 3 dB of
squeezing. Hence, we need to increase the SNR of BHD by decreasing the (dark)
noise from the detector. Note one may notice the signal from a single PD starts
to fall below the shot noise after 5.5 MHz in figure 6.7a and 2 MHz in figure 6.7b,
which seems counterintuitive. This is because when there is uncorrelated noise in
the two PDs’ signals, the subtraction in the balanced homodyne detector can not
remove but actually add the noise up. Therefore, the shot noise signal is larger than
the single PD signal.
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(a) LO power = 2 mW (b) LO power = 20 µW

Figure 6.7: Spectra of balanced homodyne detector signal at (a) 2 mW and (b) 20
µW. The SNR, the difference between shot noise and dark noise, dropped from 16
dB (a) to 2 dB (b). Yellow trace: dark noise; Blue trace: shot noise; Red trace:
single PD signal.

Figure 6.8: Transimpedance amplifier converts the photo-current difference into
voltage. C: capacitance of PD; Rf: feedback resistance.

For the balanced homodyne detector, we use a transimpedance amplifier to con-
vert the photo-current difference into voltage, as figure 6.8 shows. The op-amp we
used is the OPA686. We can use the model in the OPA686’s manual to estimate
the SNR for the BHD. Specifically, for the electronic noise part

i2eq = i2n +
e2
n

R2
f

+
4kBT

Rf

+
(en2π2Cf)2

3
+ 2qId, (6.10)

where ieq is equivalent input noise current if the output current is band-limited to
F < 1

2πRfC
, F is the bandlimiting frequency in Hz, in is the input current noise

for the op-amp inverting input, en is the input voltage noise for the op-amp, Rf is
the feedback resistance, C is the PD capacitance, f is frequency in unit of Hz, q is
the elementary electric charge, and Id is the dark current. The ieq is in the unit of
A2/Hz. For the signal part, which is the shot noise, the model is

i2shot = 2qRP, (6.11)
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where R is the responsivity of PD with a unit of A/W and P is the optical power
of LO. The responsivity is related to quantum efficiency η as follows

η = R
1.24

λ
, (6.12)

where λ is the wavelength of incident field and is in units of µm. Same as the i2eq,

i2shot is in the unit of A2/Hz. The SNR in decibel can be defined as

SNR = 10 log10

(
ishot
ieq

)2

. (6.13)

With this model in hand, we now can tune parameters and hunt for an op-amp
with smaller in or en. Qualitatively speaking, for the electronic noise, the input
current noise in dominates at low frequency and the input voltage noise en dominates
at high frequency. A way to reduce in is using a MOSFET op-amp and we found
an op-amp, OPA818, that provides smaller current noise and enough bandwidth.
The voltage noise is also related to the capacitance: the smaller the capacitance,
the smaller the voltage noise. We thus also changed the photodiodes with smaller
sensing areas and smaller capacitance. The former photodiodes we used are high
quantum efficiency InGaAs photodiodes (quantum efficiency > 99% at 1064 nm)
with a sensing area of 0.5 mm diameter. Later, we changed the photodiodes to
Fermionics InGaAs PIN photodiodes (quantum efficiency > 99% at 1064 nm) with
a sensing area of 0.15 mm diameter. Figure 6.9 shows the model results of SNR by
using OPA686 and OPA818, and the corresponding parameters used can be found
in table 6.1.

Figure 6.9: Model results: SNR by using OPA686 (purple line) and OPA818 (green
line) with feedback resistance 100 kΩ. Other parameters and noise values can be
found in table 6.1. The OPA818 with proper settings can provide higher SNR than
OPA686 by 11 dB around.

We modified the OPA818 demo board (from Texas Instruments) based on the
parameters used in the model, as figure 6.10a shows. The new BHD’s spectra of
signal with 15 µW LO power is also shown in figure 6.10b. One can see the new
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P in en C

OPA686 20 µW 1.8 pA/
√

Hz 1.3 nV/
√

Hz 12 pF

OPA818 15 µW 0.145 pA/
√

Hz 2.2 nV/
√

Hz 1.6 pF

Table 6.1: Noises of op-amps and parameters used in the model.

BHD has 10 dB SNR, which is higher than the SNR from the OPA686 based BHD
(figure 6.7b). However, this is limited to frequencies 2 MHz and there is some
discrepancy between the model result and the measurement result. The discrepancy
may be due to the fact that the model is quite simple, and there are some residual
inductance and capacitance in the circuit.

(a) (b)

Figure 6.10: New BHD circuit and its performance. (a) the new BHD is modified
from the OPA818 demo board. (b) the spectra of signal with 15 µW LO power.
Yellow trace: dark noise; blue trace: single PD signal; Red trace: shot noise.

6.1.5 Lifting the Bandwidth of a Balanced Homodyne De-
tector

In the previous subsection, we were trying to increase the SNR of a balanced homo-
dyne detector by lowering the electronic noise, due to the power of reference beam
can’t be further increased to more than 20 muW. Note the reference beam is injected
from the HR mirror of the OPO. However, in the normal case, the power of LO is
about 2 mW and its power can be easily increased, because the LO doesn’t pass
any cavity. In this case, the LO is combined with the quantum light by a BS (or
polarizing BS) before entering a balanced homodyne detector, and we can increase
the SNR of a balanced homodyne detector by increasing the power of LO. From
Eq. (6.11) in the previous subsection, we know the shot noise is proportional to the
optical power of LO. Therefore, suppose we can increase the power of LO by 4 times
from 2 mW to 8 mW, then the SNR should be increased by 6 dB. The bandwidth of
the OPA686 based balanced homodyne detector is shown in figure 6.11 with 2 mW
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and 8 mW LO power. One can see, within 33 MHz, the shot noise increased by 6
dB as expected. As frequency goes higher, the increased SNR becomes smaller and
smaller, which might be caused by the bandwidth of electronics. Another benefit
of increasing the LO power is the bandwidth of the balanced homodyne detector is
also increased: the bandwidth with SNR > 3 dB is increased from 50 MHz for 2
mW LO to 95 MHz for 8 mW LO. Therefore, it is usually desired to have the optical
power of LO as large as possible. The increased detector bandwidth is beneficial for
the covariace matrix reconstruction by heterodyne measurement, which will require
a detector with bandwidth about 70 MHz (half of OPO linewidth, 20 MHz, plus
the frequency difference between LO and center of target comb line, 50 MHz). The
detail of covarance matrix reconstruction will be discussed in section 6.2.

Figure 6.11: The bandwidth of the OPA686 based balanced homodyne detector.
Yellow trace: dark noise; Blue trace: shot noise with the power of LO 2 mW; Red
trace: shot noise with the power of LO 8 mW. The bandwidth with SNR > 3 dB is
increased from 50 MHz (blue trace) to 95 MHz (red trace).

6.2 Covariance Matrix Measurement Setup

6.2.1 Measurement Principle and Plan

From inter-mode cluster states to intra-mode cluster states: In chap-
ter 3, we introduced a simple method to generate cluster states by phase-modulated
QOFC, which requires the EOM modulation frequency to be an integer of OPO
FSR. This is what we called inter-mode cluster states generation: generating cluster
states by entangling comb lines. However, considering the linewidth of each comb
line is actually a 40 MHz continuous distribution in the frequency domain, with the
half frequency of pump is aligned with one comb line, as figure 6.12a shows, we
can apply our phase-modulation method to entangle the modes, which are called
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intra-modes, within this comb line, as figure 6.12. Since the comb line distribution
is continuous, we can define the modulation frequency at will in principle, but due
to the linewidth of the LO laser being about 1 kHz, we need to set the EOM modu-
lation frequency to at least 10 kHz. In this way, we can have at most 4000 qumodes
to build the cluster states.

(a)

(b)

Figure 6.12: The idea of intra-modes in QOFC. (a) The half frequency of the pump
(green arrow) is set to align with one of the QOFC combs. (b) The half frequency
of pump aligned QOFC comb line zoomed-in, which is a Lorentzian lineshape with
FWHM about 40 MHz. The comb line is composed of continuous two-mode squeezed
pairs, which only showed 4 pairs with 4 different colors for simplicity.

Cluster states verification via heterodyne measurement: In the two-
mode squeezed state case, we can verify the two-mode squeezed state by performing a
squeezing measurement. We can set the frequency of LO to half of the frequency sum
of the two modes or use two LOs with their frequencies the same as the frequencies of
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two modes, and then measure the beat note to observe the squeezing. The squeezing
implies there is an entanglement between the two modes. But this type of verification
becomes harder to perform if there are entangled edges between other two-mode
squeezed pairs, such as the preliminary result shown in section 5.3. Therefore, we
need another type of measurement scheme to fully characterize all the entanglements
in cluster states. One way to achieve this goal is to reconstruct the covariance matrix,
Eq. 3.32, of the state. Practically, instead of setting the LO to the center of the
target comb line, we will shift the frequency of LO by 50 MHz, then measure the
beat note between LO and target comb line by a balanced heterodyne detector. To
illustrate the idea, let’s consider the case of reconstructing the two-mode covariance
matrix, Eq 3.33, which is

Σx =〈
Q2

1 Q1Q2
1
2
(Q1P1 + P1Q1) Q1P2

Q2Q1 Q2
2 Q2P1

1
2
(Q2P2 + P2Q2)

1
2
(P1Q1 +Q1P1) P1Q2 P 2

1 P1P2

P2Q1
1
2
(P2Q2 +Q2P2) P2P1 P 2

2


〉
.

(6.14)

Figure 6.13: The idea of two-mode covariance matrix reconstruction from a balanced
heterodyne measurement. ai is the operator of mode i, b is the operator of LO, vi
is the operator for vacuum mode i, Ωi is the frequencies difference between ai (and
vi) and LO, and i ∈ {1, 2}

Figure 6.13 represents the idea of two-mode covariance reconstruction from a
balanced heterodyne measurement. The photocurrent difference is

N− = b†(a1 + a2 + v1 + v2) + (a†1 + a†2 + v†1 + v†2)b. (6.15)

Because the LO is a classical field and it’s a frequency reference, we take b→ |β|eiθ.
Here θ is the relative phase between LO and target fields, which are two quantum
fields and two vacuum fields in current scenario. The other four operators become

a1 → a1e
iΩ1t

a2 → a2e
iΩ2t

v1 → v1e
iΩ1t

v2 → v2e
iΩ2t.

(6.16)
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The photocurrent difference thus become

N− = |β|
[
(a1e

iΩ1t + a2e
iΩ2t + v1e

iΩ1t + v2e
iΩ2t)e−iθ

+ (a†1e
iΩ1t + a†2e

iΩ2t + v†1e
iΩ1t + v†2e

iΩ2t)eiθ
]

=
√

2|β|
{

cos (Ω1t)
[

cos θ(Q1 +Qv1)− sin θ(P1 + Pv1)
]

+ sin (Ω1t)
[

cos θ(−P1 + Pv1) + sin θ(−Q1 +Qv1)
]

+ cos (Ω2t)
[

cos θ(Q2 +Qv2)− sin θ(P2 + Pv2)
]

+ sin (Ω2t)
[

cos θ(−P2 + Pv2) + sin θ(−P2 + Pv2)]
}
.

(6.17)

Eq. 6.17 indicates the heterodyne measurement gives Qi and Pi with i ∈ {1, 2}
together with vacuum quadratures at two different beat note frequencies. Hence,
we can separate those two beat note frequencies by a fast Fourier transform (FFT)
of the photocurrent difference N−. If the relative phase between LO and interested
modes is stable, then a FFT yields cosine and sine demodulated quadratures, for
example,

[
cos θ(Q1+Qv1)−sin θ(P1+Pv1)

]
and

[
cos θ(−P1+Pv1)+sin θ(−Q1+Qv1)

]
for Ω1 frequency. This is exactly the same as a demodulated signal at the different
beat note frequencies by using RF local oscillators. Therefore, it is very important to
know the value of phase of LO, θ, and make sure it doesn’t change while recording
the photocurrent difference. Here I set the θ = 0 for the reason of showing how
we can obtain the two-mode covariance matrix, but the θ can be any value for the
covariance matrix reconstruction, as long as it is stable. The photocurrent difference
with θ = 0 is:

N− =
√

2|β|[cos (Ω1t) (Q1 +Qv1)︸ ︷︷ ︸
term 1

+ sin (Ω1t) (−P1 + Pv1)︸ ︷︷ ︸
term 2

+ cos (Ω2t) (Q2 +Qv2)︸ ︷︷ ︸
term 3

+ sin (Ω2t) (−P2 + Pv2)︸ ︷︷ ︸
term 4

].
(6.18)

We then can reconstruct the covariance matrix from the four terms indicated in
Eq. (6.18), by taking the averaged product of two terms. For example, we can take
the averaged product of term 1 and term 3 to obtain the matrix elements Q1Q2

follows 〈
(Q1 +Qv1)(Q2 +Qv2)

〉
=
〈
Q1Q2 +Q1Qv2 +Qv1Q2 +Qv1Qv2

〉
=
〈
Q1Q2

〉
,

(6.19)

which we used the average of vacuum quadratures are zero 〈Qv1〉 = 〈Qv2〉 = 0. The
generalized and detailed calculations will be included in Xuan Zhu’s Ph.D. thesis.

Because we plan to record the data for a certain amount of time, chop the
data into smaller time windows, then perform FFT and average to reconstruct the
covariance matrix, we need to make sure the relative phase between LO and target
lights is stable. Therefore, we inject a reference beam to the OPO via the HR mirror
side, for the purpose of (1) providing a frequency reference for two phase lock loops;
(2) finding out the phase change due to the reference beam and quantum light are
in the same path and in the same polarisation. The frequency of the reference beam
is set to be the same as the half frequency of the pump. Figure 6.14 represents the
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LO and reference beam with respect to the interested comb line in the frequency
domain. The detail of the phase lock between those three fields will be discussed
later.

Figure 6.14: Representation of using frequency-shifted LO (purple arrow) and refer-
ence beam (sky blue arrow) with respect to the interested comb line in the frequency
domain to reconstruct the covariance matrix. Green arrow: half frequency of pump;
Blue Lorentzian curve: target comb line; Two Red lines: two intra-modes j and −j.

Current experiment setup: Figure 6.15 shows the modified experimental
setup. Compared to figure 5.12, a few modifications are performed in order to
increase the system stability and to fix the relative phase between quantum light
and LO for the covariance matrix construction:
(1) phase lock between the reference beam and pump beam; (2) phase lock between
the reference beam and LO; (3) the yyy PPKTP crystal has been removed and
OPO PDH locking is locked by a transmitted locking beam which is in the same
polarization as QOFC; (4) removed laser 3 from the experiment and only use laser
1 for LO, the reference beam, and the OPO locking beam.

The principle of the first two modifications will be discussed in the next two
sections, but the basic idea is the reference beam acts as a frequency reference for
the two phase locks. The pump beam, which determines the phase of quantum
light, is locked to the reference beam. The LO is also phase locked to the same
reference beam. Therefore, the relative phase between quantum light and LO is
fixed. Moreover, to achieve the two phase locks in modification (1) and (2), one
common equipment the author would like to mention is the Moku. Moku stands
for the Liquid Instruments Moku:Lab, which is a reconfigurable hardware platform
that combines the digital signal processing power of an FPGA with versatile analog
inputs and outputs. Here, we use the Laser Lock Box function to accomplish the
two phase lock loops. Moreover, the two Moku:Labs and function generators for 100
kHz (from Moku 1), 10.5 MHz (Hewlett Packard 3314A function generator), and 50
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MHz (two Hewlett Packard 8648A signal generator) signals are all phase locked by
the 10 MHz build-in reference signal.

For the third modification, as discussed in the covariance matrix reconstruction
above, due to the reason of averaging, it is required to have better stability. We have
to switch the OPO locking back to the old one. By doing so, it frees the other port
of PBS, which was used for the new PDH lock section 5.2. We thus send 9% power
of squeezed light (and reference beam) to a detector, Thorlab PDA10CF InGaAs
Amplified Detector, to accomplish the phase lock loop (1).

The reason for the last modification is simply to reduce the phase noise as much
as we can, as we discussed in section 5.1.

Figure 6.15: Phase stability improved experimental setup. One of the reasons we
injected the reference beam is that the reference beam can act as a frequency refer-
ence for accomplishing two phase locks. Also note the OPO locking beam, reference
beam, and Lo are coming from laser 1. Ref.: reference beam; EOM: electro-optic
modulator; AOM: acousto-optic modulator; PDH: Pound-Drever-Hall lock loop;
HWP: half-wave plate; PZT: piezoelectric transducer; Moku: Moku:Lab; PC: per-
sonal computer.

For the OPO PDH lock, the detector to receive the transmitted locking beam is
also a Thorlab PDA015C InGaAs Fixed Gain Amplified Detector. To frequency shift
the LO, an IntraAction AOM-402AF3 AOM is used. The EOM 1 is the Conoptics
350-52, which does the phase modulation on the 532 nm pump beam with modula-
tion frequency 10.5 MHz. The EOM2 is the Thorlabs EO-PM-NR-C2 Electro-Optic
Phase Modulator, which is used to phase modulate the two-mode squeezed intra-
mode pairs. The output signal of the OPA686 based balanced ”homodyne” detector
with 8 mW LO power is split into two ports by two power splitters, one-fourth of
the signal is sent to the Moku 2 to accomplish the phase lock (2), half of the signal
is collected by an AlazarTech ATS9440 waveform Digitizer installed in the PC.
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6.2.2 Two Optical Phase Locks

6.2.2.a Pump and reference beam phase lock

Derivation of error signal for phase lock: In order to lock the relative phase
between the reference beam and QOFC, we utilize the fact that the phase of QOFC
is determined by the pump phase. Their phase relations are

φp − 2φq = 0 : parametric down-conversion; (6.20)

φp − 2φq = π : parametric up-conversion, (6.21)

where φp is the phase of the pump beam and φq is the phase of the QOFC. However,
since the whole parametric process stats with a vacuum (no QOFC), if there are
QOFC fields, then it implies Eq. (6.20) must hold and φp can be an arbitrary value.
Therefore, the phase of the pump controls the phase of the QOFC mandatorily. On
the other hand, since the reference beam doesn’t start from the vacuum, then we
have the following relations

φp − 2φs = 0 : parametric amplification; (6.22)

φp − 2φs = π : parametric deamplification, (6.23)

where φs is the phase of the reference beam. The Eqs. (6.22) and (6.23) suggest
the relative phase between the pump and reference beam led to the amplification
and deamplification of the power of the reference beam. We then can apply a phase
modulation to the pump, then control their phase. Here is the derivation: Recall
the classical form of single-mode squeezing Bogoliubov transformation, Eq. (4.29),
due to the phase modulation on the pump (we assume the phase of the reference
beam is zero for simplicity), the phase of the pump becomes

φ→ φ0 +m sin (Ωt+ θ), (6.24)

where φ = φp, φ0 is the initial phase of the pump, m is the modulation index, Ω is
the modulation frequency, whose frequency is 10.5 MHz and it is smaller than the
linewidth of comb line, 40 MHz, and θ is the initial phase of the RF signal for the
modulation. The photon number of the reference beam becomes

ns(t) = |α|2(cosh2 r + sinh2 r) + |α|2 sinh 2r cosφ

= |α|2(cosh2 r + sinh2 r) + |α|2 sinh 2r cos [φ0 +m sin (Ωt+ θ)]

= |α|2(cosh2 r + sinh2 2r cosφ0)︸ ︷︷ ︸
DC signal

−m|α|2 sinh 2r sinφ0 sin (Ωt+ θ)︸ ︷︷ ︸
AC signal

.
(6.25)

The photon number of the reference beam can be regarded as a DC signal plus an
AC signal, which is a signal with modulation frequency. We can extract the AC
signal by demodulating the photon number signal by a signal with frequency Ω and
phase δ with the aid of a mixer. The demodulated signal, which is the error signal,
becomes

− m

2
|α|2 sinh 2r sinφ0 cos (δ + θ)

θ=0−−→ −m
2
|α|2 sinh 2r sinφ0 cos (δ)

δ=0−−→ −m
2
|α|2 sinh 2r sinφ0,

(6.26)
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where we take θ = 0 for simplicity, and δ = 0 due to the demodulated signal phase
can be changed to zero easily. We don’t take φ0 = 0 here, because, in experiment, we
apply a ramp signal to a PZT mounted mirror in the pump beam path to change φ0,
such that we can see the error signal and lock the phase of pump. The modulation
frequency we used in experiment is 10.5 MHz and the ramp signal is typically 10 Hz
around. Figure 6.16a shows the calculated error signal with different m with r = 0.4
and φ0 from 0 to 4π. Figure 6.16b shows the calculated error signal with different r
with m = 0.2 and φ0 from 0 to 4π. One can see the larger the value of m or r, the
larger the error signal. Note the locking point is the error signal equals to zero, so
from figure 6.16, we can lock the relative phase at 0 or π in principle. However, in
practice, we can’t lock the relative phase at π, due to the reference been completed
depleted, so we only can lock at phase of 0, which is the power of reference beam
been amplified the most.

(a) (b)

Figure 6.16: Calculated error signals plot against φ0 from 0 to 4π: (a) with m =
0.2, 0.4, and 0.8 while r = 0.4; (b) with r = 0.2, 0.4, and 0.8 while m = 0.2.

Physical implementation and results: Figure 6.17 shows the simplified
schematic experimental setup for the phase lock of the pump and a reference beam.
The 10.5 MHz modulation is sent to the EOM 1 implemented in the pump beam
path for modulating the pump phase and also sent to the Moku 1 for demodula-
tion. By detecting the reference beam, and demodulating it at the Moku 1, we then
can obtain the error signal to PZT mounted mirror to stabilize the relative phase
between the pump and reference beam.

Figure 6.18 shows the reference beam power and error signal as the pump phase
is scanned by a ramp applied on the pump PZT mirror. Figure 6.18 also shows
the XY mode of reference beam power and error signal, whose result is a horizontal
ellipse, which indicates the phase between error signal and reference beam power is
90◦. And the zero point of the error signal is happening when the reference beam
power is amplified the most, which agrees with our prediction.
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Figure 6.17: Simplified schematic experimental setup for the pump and reference
beam phase lock. Ref.: reference beam.

Figure 6.18: Recorded reference beam power (red trace) and the error signal (blue
trace) as the pump phase scanned. The yellow trace is the XY mode of reference
beam power and error signal, which is a horizontal ellipse. The two red dashed
cursors indicate the minimal and maximal value of the reference beam. The y-axis
is meaningful to the blue trace.

The performance of the reference beam and pump phase lock can be checked
by monitoring the reference beam power after the OPO output, as indicated in
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figure 6.17, with and without the phase lock. If there is a random relative phase
drift, then the reference beam power will fluctuate randomly. Figure 6.19a shows the
results without the reference beam and pump phase lock. The two dashed orange
horizontal cursors mark the minimal and maximal of the reference beam power, and
one can see the reference beam power drifts almost from minimal to maximal value
over 5 seconds, which is about 180◦ phase changing. On the other hand, figure 6.19b
shows the case when the reference beam and pump phase lock kicked in. One can
see the reference beam power stability is improved by two order of magnitude and
the reference beam power can be stabilized for 10 seconds, which is enough for the
data taking. Moreover, the reference beam power stays at its maximal, which agrees
with what we discussed above that the error signal is 90◦ with respect to the signal
of reference beam power.
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(a)

(b)

Figure 6.19: Reference beam power without (a) and with (b) the phase lock between
the reference beam and pump over 10 seconds. Each box in the horizontal axis is 1
second and in the vertical axis is 84 mV.

6.2.2.b LO and reference beam phase lock

Derivation of error signal for phase lock: The LO is frequency-shifted from the
frequency of reference beam by 50 MHz, therefore, we can lock their relative phase by
detecting their beat note. Figure 6.20 shows the simplified schematic experimental
setup for the phase lock of LO and reference beam. The detail of the phase locked
physical implementation will be discussed later. Let’s derive the error signal and
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Figure 6.20: Simplified schematic experimental setup for the reference beam and
frequency-shifted LO phase lock. Ref.: reference beam.

understand the properties of the error signal first: When two fields enter a detector,
the observed signal is∣∣E1e

i(ω1t+φ1) + E2e
i(ω2t+φ2)

∣∣2
= |E1|2 + |E2|2︸ ︷︷ ︸

DC signal

+ 2|E1E2| cos [(ω1 − ω2)t+ (φ1 − φ2)]︸ ︷︷ ︸
AC signal

, (6.27)

where Ei is the electric field amplitude for field i, ωi is the frequency of field i, φi is
the initial phase of field i, and i ∈ [1, 2]. With the aid of mixer and a demodulation
signal cos [∆t+ θ], where ∆ = ω1 − ω2, we can obtain the error signal (neglecting
the DC term due to it will be filter out by a low pass filter)

cos [∆t+ θ]× 2|E1E2| cos [(ω1 − ω2)t+ (φ1 − φ2)]

= 2|E1E2|{cos (2∆t+ θ + δ) + cos (θ − δ)}
after a low pass filter−−−−−−−−−−−→ 2|E1E2| cos (θ − δ),

(6.28)

where δ = φ1 − φ2 is the initial phase difference between the two fields. Figure 6.21
shows the error signal with different demodulated signal phase θ. The lock point
it the place where θ − δ = 0. Therefore, the error signal shifts horizontally as θ
changes implying we can lock the relative phase between two fields to any value.

Physical implementation and results: Figure 6.20 shows the simplified
schematic experimental setup for the phase lock of LO and reference beam. The
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6.2. COVARIANCE MATRIX MEASUREMENT SETUP

Figure 6.21: Calculated error signal, normalized to 2|E1E2|, with different demodu-
lated phase δ.

frequency of LO has been frequency-shifted by 50 MHz by an AOM. The LO and
reference beam both enter the balanced ”homodyne” detector. Due to the interfer-
ence of the reference beam and LO, there is a π

2
phase shift between the two fields

detected by the photodiodes. Therefore, the subtraction removes the DC signal in
Eq. 6.27. Then, the output signal, which 50 MHz beat note signal, from the detector
is demodulated at the Moku 2, and the error signal is feedback to the PZT mounted
mirror in the LO path to stabilize the phase.

Figure 6.22a shows the beat note of LO and reference beam without the phase
lock (one can see the video recording on Youtube by clicking here). Without the
phase lock, the beat note is moving around relative to the 50 MHz reference signal,
which is phase locked to the signal to modulate the AOM, indicating the relative
phase is not stable. Figure 6.22b shows the case when the phase lock kicked in,
which improves the phase stability by an order of magnitude (one can check the
recording on Youtube by clicking here). Therefore, by implementing a phase lock
loop between the reference beam and LO, we can improve the phase stability of
their beat note by two order of magnitude.
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(a) (b)

Figure 6.22: Performance test of phase lock between the reference beam and
frequency-shifted LO. 50 MHz beat note (red trace) and 50 MHz reference signal
(blue trace), which is phase locked to the signal sent to the AOM, without (a) and
with (b) the phase lock between the reference beam and LO.
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Chapter 7

Conclusion and Future Work

To perform universal quantum computing by CV measurement-based quantum com-
puter, a 2-d or 3-d cluster state is one of the crucial conditions. The 2-d cluster
states are required for performing universal quantum computing. With the 3-d clus-
ter states, one can perform the topological error correcting code to further reduce the
error rate. For the first part of this thesis, the goal is to provide a method to generate
higher-dimensional cluster states and verify the cluster states in the experiment. I
presented a simple method to achieve the goal by a phase-modulated quantum opti-
cal frequency comb. Specifically, by using only one OPO and one EOM, our method
can generate 1-d, 2-d, and 3-d cluster states. A measurement principle and plan for
verifying the cluster states by reconstructing the covariance matrix was discussed.
In order to reconstruct the covariance matrix by heterodyne measurement, several
improvements in the apparatus has to be implemented. Specifically, the phase noise
needs to be as smaller as possible, the optical phase between LO and quantum fields
needs to be stable, the balanced homodyne detector needs to have enough band-
width, and the measured squeezing needs to be as high as possible. And the second
part of this thesis describes those implementations.

I discussed the key element in this experiment, the OPO, from a classical point of
view to a quantum point of view. I have presented my experimental work to improve
the stability and sensitivity of the optical system, for the purpose of realizing cluster
states by the phase modulation method. For the performance improvement, I have
shown the work of improving the sensitivity of a balanced homodyne detector, from
a simple model to estimate the SNR to a real implementation. An anomalous OPO
reflection mode has been shown for the purpose of knowing which beams, reflected
beam or transmitted beam, can be used to mimic the OPO output mode. For the
stability improvement, I have presented the work of phase noise investigation, the
improvement of OPO PDH cavity locking from SNR 40 to 3000, phase lock between
pump and reference beam and improving their relative phase stability by two orders
of magnitude, and the phase lock between the reference beam and LO and improving
their relative phase stability by two orders of magnitude. I also have presented the
work of increasing the squeezing by changing the OPO output coupler from T = 5%
to 17%, and increased the observed squeezing from 3.2 dB to 5.0 dB. A discussion
about increasing the squeezing by changing the OPO OC is also presented in this
thesis.

Future work: The future work will focus on experimentally verifying the cluster
states by reconstructing the covariance matrix. So, the first thing to check is if our
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new method, heterodyne measurement, to reconstruct the covariance matrix can
work. Due to the complexity of the results obtained from Fourier transform, we
are planning to reconstruct the covariance matrix of the two-mode squeezed QOFC
first. Once we successfully reconstruct the two-mode squeezed QOFC, then we can
increase the complexity of the states by applying one modulation frequency to the
QOFC.

On the other hand, we are desired to have measured squeezing as large as pos-
sible, for the reason of resolving the weak edges in the cluster states. Therefore,
increasing the pump power to obtain more gain and squeezing is desired. One way
to achieve this goal is coherently combining the 532 nm pump beam from laser
1 with another laser by phase lock the two lasers together, so that we can inject
more pump power into the OPO. Due to the high squeezing is much mores sensitive
to lower squeezing, we also need to further reduce the phase noise and loss in the
apparatus.

Lastly, we would like to modify the pump and reference beam phase lock. Cur-
rently, we sent 9% of the reference beam and squeezed light to the phase lock detec-
tor, which is a 9% loss to the squeezed light and it degrades the squeezing. Therefore,
for the purpose of obtaining high squeezing, we want to lock the pump and reference
beam by using other methods and thus lowering the loss. Once the above few im-
provements can be implemented, the QFQI lab at the University of Virginia should
be able to reconstruct the covariance matrices of any 2-d and 3-d cluster states.
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