
Solar Car Telemetry System

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Joon Tae Kim

Spring, 2022.

Technical Project Team Members

Victor Pham

Vinay Bhaip

On my honor as a University Student, I have neither given nor received unauthorized aid on
this assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Daniel Graham, Department of Computer Science



Solar Car Telemetry System K. Joon

Solar Car Telemetry System
A dashboard developed for the Solar Car Team at UVA

Joon Kim
Computer Science

University of Virginia School of Engineering and Applied Sciences
Charlottesville, VA

jtk2rw@virginia.edu

ABSTRACT
The goal of the Solar Car Team at the University of
Virginia (UVA) is to design, implement, and maintain
efficient and effective solar-powered cars that can
compete with other solar cars from across the nation in
the annual Formula Sun Grand Prix. To keep the cars
competitive, designers and engineers must constantly
improve and maintain the car, but such changes must be
supported by data showing the changes are warranted.
Additionally, it is important for drivers to monitor vehicle
performance so they are able to make informed
judgements about potential dangers to the vehicle
and/or driver. To address this issue, I worked with a
team that created a web-based application that displays
data collected from the Solar Car. We created the
application using asynchronous websockets in the
frontend and a Python-centered backend. We also
collected and saved data for future viewing and analysis.
The web application consists of a few pages, each
dedicated to a different component of the car (e.g., solar
panels, motors, battery), where various data are
displayed and updated in real time. To assist the team
with future design changes and improvements, the
application gives members of the team a means of
monitoring and judging the performance of various parts
of the car as it is on the road. Currently, the system is still
a work in progress.

1  INTRODUCTION
Creating a piece of technology or software that would
allow for use without difficulty is only half the effort
involved in creating a successful long-term product. To
conduct maintenance and additional research needed to
improve the product, performance must be monitored
through data, where potential faults and shortcomings

may be identified. In addition, the safety of the product
may not be guaranteed without proper monitoring of
components that may pose any danger to the user. The
importance of tracking data for these purposes is
amplified when put into the context of the goal of the
Solar Car Team at UVA. The mechanical components of
the car must be improved and reworked every year in
order to stay competitive with other solar cars racing
against it. In addition, while gas provides a stable reliable
source of fuel to cars, solar power must be constantly
monitored to make sure enough power is flowing
through the car for the duration of the drive. This is what
motivated our team to develop a telemetry system for
the team’s solar car. The solar car will measure and
collect data through its various instruments, and send it
out as radio waves through a radio module. Our web
application that is hosted on an external laptop will
receive this data through a receiving radio module
before processing and displaying it through our web
application.
Telemetry is defined as “the process of recording and
transmitting the readings of an instrument” [1]. Our solar
car telemetry system, in particular, handles the
displaying of collected data through a web application.
The solar car will measure and collect data through its
various instruments and send it out as radio waves
through a radio module. Our web application that is
hosted on an external laptop will receive this data
through a receiving radio module before processing and
displaying it through our web application. The reception
of asynchronous and continuous data is made possible
using Socket.IO, a JavaScript library that allows for the
establishment of websockets (bidirectional
communication channel) between the web application
and the computer that is receiving the data [2]. Each
individual data value is assigned a key, and the JavaScript



Solar Car Telemetry System K. Joon

uses this to display the data to their respective positions
on the UI as the web socket detects new incoming data.
The design of the dashboard UI was implemented using
the frontend HTML and CSS framework called Bootstrap.

2  RELATED WORKS
Many similar past projects have existed in the past, each
of which have attempted to create efficient telemetry
communication systems. Hackystat, starting
development in 2001, is a tool to provide “automated
collection and analysis of software engineering process
and product data”, with an aim to simulate a
“telemetry-based approach to software measurement
trend definition and display” [3]. Initially developed with
a focus on communication between client and server,
interestingly it was later reworked completely to use a
service-oriented architecture to process more types of
data and stakeholders. The server-oriented architecture
uses distributed computation, caching, and pre-fetching
to preserve the quicker asynchronous performance that
comes with client-server architecture [3].

Many similar telemetry systems for solar cars have been
implemented by other teams with similar motives and
functionality. The telemetry system developed by the
Missouri S&T Solar Car Team is one such example. They
similarly utilize a Controller Area Network (CAN) and
broadcast data through a CAN to Ethernet bridge using
the User Data Protocol (UDP) [4]. The team uses a chase
vehicle that will stay within proximity to the solar car
“running the telemetry software layer full-time logging
data from the vehicle and reading data off to the team”
[4]. The goals of our team may prove more difficult
compared to this approach, as we hoped to be able to
receive data with such a strong enough connection that
the host computer running the software would be able
to remain in a stationary position. However, this goal
may be unrealistic considering the current budget of the
team and vast size of the race track, which stretches up
for 2 miles in length.

3  SYSTEM DESIGN
The system design for the solar car consisted of the
architecture, the web application requirements, and key
components that allowed the web application to
function.

3.1  Review of System Architecture

The architecture of the solar car telemetry system can be
divided into 3 different tiers: the vehicle layer, the server,
and the client.

Figure 1. Vehicle Layer

The vehicle layer, as shown in Figure 1, exists inside of
the solar car itself and holds the electronic control unit
(ECU) which collects data and sends it to the sender radio
module. The sender radio module in turn transmits the
data to the server layer.

Figure 2. Server side architecture

The server layer, as shown in Figure 2, is connected to
the vehicle layer via a radio module, which acts as the
receiver for the data transmitted from the radio module
on the solar car which acts as the sender. This data is
then transferred to the server via a simple USB
connection. The server side of the application contains a
PostgreSQL database for the storing of incoming data,
and creates the websockets for the transmission and
communication with the client.

Figure 3. Client side architecture

Lastly, the client-side layer, as shown in Figure 3, receives
and displays the processed data sent by the server
through a websocket. This layer contains the front-end
code for creating the dashboard UI by rendering HTML



Solar Car Telemetry System K. Joon

templates. It also contains JavaScript code for the
rendering and updating of the graphs on the dashboard.

3.2 Web Application Requirements

Figure 4. Finished dashboard concept

Ideally, the client side of the web application should be
usable to all members of the team. Thus, it is important
that the web application displays the appropriate data
that each sub team may find useful for analysis. For
these reasons the team has decided to divide the web
application into different pages for each subteam
(battery, solar, and motor). The battery page should
display a diagram of the layout of all battery cells, along
with their respective temperatures within each cell in the
diagram. General statistics such as average battery
temperature, lowest/highest cell voltage, pack amp
hours, etc. will be displayed as well in a separate table.
Similarly, the solar page will also display a diagram
showing the arrangement of solar panels on the car.
Each cell in the diagram will display the respective solar
panel’s generated voltage, light level, and temperature.
The averages of these statistics across solar panels will
also be displayed. The motor page will display relevant
statistics corresponding to each motor on the car such as
revolutions per minute (RPM), temperature, throttle,
min/max voltage, and min/max temperature.
The web application will also have a general “homepage”
that will display a broad overview of all areas of the car.
From this screen, users will also be able to initiate
recordings of data as well as see the physical location of
the car through GPS. A mockup of the ideal layout of the
web application with all these design elements in
consideration is shown in figure 4.

3.3 Key Components
3.3.1 Socket.IO

The real time display of data as it is transmitted from the
solar car is made possible with websockets. We have
specifically used a JavaScript framework called Socket.IO
for our websocket implementation. Socket.IO enables
the establishment of a “full-duplex communication
channel” that allows for “real-time, streaming updates
between a web server and a browser client” [5]. This
communication between server and client can be
represented through “emit events” and “listener”
methods from either side. Mainly, the “socket.send
method will send the message on the socket,” classified
by an event name, while socket.on listener methods calls
corresponding event handlers and “is triggered when a
message sent with socket.send is received.” [5]

Figure 5. Emitting and listening for Socket.IO events

Our web application uses the socketio.emit method
instead, which is identical to socket.send but used to
trigger custom events. When the server receives data
from the solar car, it immediately emits it as a event
named “dataevent” with the data formatted using
JavaScript object notation (JSON). On the client side, the
socket.on method listens for this “dataevent” from the
server. As soon as it receives this event, it executes the
JavaScript to display the JSON data onto the dashboard.
This interaction between the socketio.emit method from
the client and the socket.on listener method is shown in
figure 5.

3.3.2 Database and Runs System

A database is essential for any task that requires data to
be stored and retrieved for future use. A database is “an
organized collection of structured information, or data,
typically stored electronically in a computer system” [6].
For our web application, we used a free and open-source
data management service named PostgreSQL to manage
our tables in which we would be storing data. Data was
stored and retrieved primarily through our “runs”
system. A user can initiate a run on the main dashboard,
which will set a boolean variable to true. While this
variable is true, data that is emitted from the socket.emit
method will be formatted as JSON before being sent to a
method named storeData. The storeData method itself
will then unpack the JSON and store each attributed key
value pair into their respective columns in the database.



Solar Car Telemetry System K. Joon

Each entry in the table will also be associated with the ID
of the current run that is determined by user input.

Queries are made to the database as the user requests
runs to be loaded onto the web application. When the
user clicks a button to load the run, an event is emitted
with the corresponding run id that is listened for by the
server. When the server catches this event, it initiates the
query and returns all data associated with the run id, and
emits this back to the client as another event. Lasty, the
client catches this method, loops through the data
entries, and displays the data accordingly.

3.4 Challenges
Our team encountered many challenges beginning with
development. One challenge that still stands today is the
need to optimize the performance of the dashboard. The
application must handle and process a large amount of
incoming data sent at a very quick rate, and must
constantly update graphs and values on the dashboard
in order to display the most up-to-date statistics about
the components of the car. We considered a few
solutions to address this. Socket.IO comes with a “sleep”
method that will pause the channel for a set amount of
time. We have placed an instance of this method inside
of our method that will emit data, in order to slow down
the rate at which data is being sent to the client. We
currently have the channel to sleep in 1 second intervals
between emissions of data [7]. We also discovered that
dividing the application into separate pages based on
different areas of the car (see subsection 3.2) would help
in that less data would need to be updated on the
current page view.

Another challenge encountered earlier in development
was related to being able to associate incoming data with
correct corresponding parts of the dashboard. Data
came into the server in a certain sequence but without
any specific label that would help in identifying values
apart from each other. With this, we were able to
associate each value with a specific key in a Python
dictionary using labels that we defined. In this way, the
JavaScript could pull values using the labels of key names
from the dictionary.

4  RESULTS

Figure 6. Current dashboard implementation

Although not yet in widespread use by the solar car team
due to incomplete development, the web application was
able to simulate the receiving, processing, and displaying
of data with a class that would generate random values
and send the data through a fake serial port. These
random values were successfully displayed onto the
dashboard in an asynchronous manner. Teammates
were able to access the dashboard by connecting to the
host computer’s public IP address, which was running
the application on a local server.

5  CONCLUSIONS
Overall, the telemetry web application would be a very
useful tool for the team, as it would allow members of
the team to make more informed design decisions based
on observations in data displayed by the dashboard.
The asynchronous nature of the web application will
always keep the team up-to-date with the performance
of the car, and will allow team members to help the
driver make more informed driving decisions. The
database and runs system will allow team members to
look back on collected data to help identify strong and
weak elements of the car. Although development has
not yet been completed, the web application has much
potential to provide more benefit to the team. It can be
expanded to include many more features and
applications in data analysis, as well as more types of
charts that may be more insightful than simple digits.
Just as the possibilities with computer science are
limitless, so can this web application be limitless, given
enough research and development.

6  FUTURE WORK
There are many ways in which our web application can
be expanded to provide more use for the team.
Currently, we don’t utilize the database in any other way
other than storing data associated with runs. We have



Solar Car Telemetry System K. Joon

agreed that more meaningful graphs and statistics could
be produced by associating data values together and
creating new values through calculations between
values, but our lack of knowledge of database
management and querying languages such as SQL has
prevented us from achieving any desirable results with
this. There are many more optional features that may be
added to the web application that may be useful for the
team. We have started looking at developing a GPS
system using MapBox’s API but have only gone as far as
to displaying/updating the current position of the car on
the map. The team has yet to find a way to transmit GPS
coordinates to the web application, but some
possibilities have been explored such as a physical GPS
module or a phone that will transmit the coordinates
with the rest of the data.

7  COURSEWORK RELEVANCE
Although I conducted this project during my first year at
the university, I found the knowledge acquired in CS2150
Program and Data Representation to be helpful in the
context of this project. Particularly, acquired knowledge
about hash maps proved essential at optimizing the
speed of the application. As hash maps provide for
constant time access for values [8], our web application
was able to access and display values passed in by the
server at a desirable pace. The convenience of being able
to access values by their associated keys eliminated the
need to display values on the dashboard in a specific
sequence according to value positions in the data, as well
as the need for searches in the data.

8  ACKNOWLEDGMENTS
I would like to express my sincerest thanks to Victor
Pham, for working with me on this project since the
beginning, and for being able to co-lead the team with
me. I would also like to thank Vinay Bhaip, for being able
to quickly pick up our work and our position as sub-team
leader soon after joining.
I also would like to thank Sandesh Banskota, for
onboarding me onto the team. His leadership and
assistance during the first year of the was essential to
the success of the project and the team.
Lastly, I would like to thank the UVA Solar Car team for
giving me the opportunity to work for them in their
mission for pioneering greener future.

REFERENCES
[1]   Lexico. Telemetry English definition and meaning. Retrieved October

2021 from https://www.lexico.com/en/definition/telemetry
[2]   Socket.IO. Introduction: What Socket.IO is. Retrieved 24, 2021 from

https://socket.io/docs/v4/
[3]   Johnson, Philip & Zhang, Shaoxuan & Senin, Pavel. (2009).

Experiences with hackystat as a service-oriented architecture.
[4]   Eric Walter, Nicholas Glover, Jesse Cureton, and Kurt Kosbar.

Telemetry System Architecture for a Solar Car. International
Telemetering Conference Proceedings.

[5]    Rohit Rai. 2013. Socket.io real-time web application development
build modern real-time web applications powered by Socket.io,
Birmingham: Packt Pub.

[6]    Oracle, “What is a database?” Retrieved October 2021 from
https://www.oracle.com/database/what-is-database/

[7]    Socket.io. API. Retrieved October 2021 from https://python-
socketio.readthedocs.io/en/latest/api.html

[8]    Oracle, “HashMap” Retrieved October, 2021 from
https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html


