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Abstract

Machine learning models, which have found tremendous success in several commercial

applications where large-scale data is available (e.g., computer vision and natural lan-

guage processing), are beginning to play an important role in scientific disciplines such

as biomedicine. Over the past few years, several domain-specific knowledge discovery

frameworks have been proposed. Despite significant advances made, current research

trends in machine learning-based approaches have not kept pace, for two main reasons.

1) The rapid proliferation of biomedical literature (on average around 3,000 articles

are published every day) necessitates the development of innovative systems that can

continually acquire and adapt to the new data. However, the existing approaches usu-

ally adopt a static learning paradigm and thus are unable to handle this setting. 2)

Since the existing approaches mainly assume a static setting, they do not factor in

the temporal evolution of biomedical concepts. This is limiting because the biomedical

concepts are known to periodically acquire new semantic sense and lose old ones. To

address these aforementioned challenges, we propose to shift the research direction from

the currently dominant paradigm of static learning to continual learning, wherein the

proposed approach is able to transfer useful knowledge over time and process the newly

available articles in an efficient yet accurate manner. Specifically, the proposed approach

exploits the unique capabilities of self-supervised learning, supervised learning and life-

long learning to design a continual learning framework that progressively acquires new

scientific knowledge, models the semantic evolution of biomedical concepts, and gen-

erates actionable insights (novel meaningful associations) that can drive new research

frontiers.
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Chapter 1

Introduction

1.1 Overview

The constant influx of scientific articles and their easy accessibility via the World Wide

Web (WWW) has made biomedical informatics a fast growing field [3]. Researchers in

the field have thrived to make sense of huge number of academic publications, discovery

notes, electronic medical records and other text materials leading to advancements of

practical significance [4]. While this swift availability of scientific information has acted

as an impetus for pacing research innovation, it has also overwhelmed researchers trying

to survey published studies and construct new ideas. For instance, consider a novice

researcher attempting to formulate a new hypothesis for the cures of Diabetes. In doing

so, one might have to survey tens of thousands of existing publications (more than

400,000 in PubMed [3] alone) already written on Diabetes. This overloaded amount of

information creates a fundamental bottleneck to scientific productivity, as it is almost

impossible for one to process and analyze such a large volume of available material. To

mitigate these issues, there has been a growing research interest among data/text mining

researchers to develop computational models that are able to assist biomedical experts in

forging analytically probable, medically sensible hypothesis for possible in-vitro clinical

trials. Towards this end, Hypothesis generation (HG), a sub-problem of biomedical

text-mining, aims to discover hitherto unknown connections by chaining together the

already known and established scientific facts remaining dispersed across the corpus.

Simply put, given an input concept of interest (e.g., disease or gene), HG attempts

to find implicit connections (e.g., potential drug target or novel indicator of disease’s

1
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mechanism) that link them in a previously unknown but semantically meaningful way.

As an illustration, consider the example of Raynaud’s disease and Fish Oils markedly

discussed in the literature [5, 6, 7]. Prior to 1985, there was no direct connection

known between Raynaud’s disease and Fish Oils. However, in 1986, after manually

inspecting the titles of articles on both topics separately, researchers inferred (later

clinically validated [8]) an association between them. Finding such meaningful implicit

links is the essence of the problem that this proposal attempts to address.

In the past few decades, numerous studies based on distributional approaches [6, 9],

graph-based methods [10, 11], and supervised machine learning [12] have been conducted

to tackle this problem. However, these studies posses a few inherent drawbacks. First, a

majority of these preceding approaches rely on a pre-defined structure (e.g., graph) and

hence possibly risk missing surprising links that are not included in their route. Second,

almost all of these studies assume that the domain is static. This is limiting because

it is known that the biomedical domain is a highly evolving field with new facts being

added evey now and then [13]. Meanwhile, some of the contemporary studies [10] have

also attempted to use the triplets (subject-relation-object) obtained from SemRep [14] as

their unit of analysis to perform hypothesis generation. Although promising, at present,

the overall recall of predications extracted by SemRep is relatively low (55%) [15]. This

might cause a substantial number of semantic associations between entities to be missed,

resulting in inaccurate hypotheses.

Recent advances in Artificial Intelligence (AI) and Machine Learning (ML) has pre-

sented us with a new capability to scour the world’s scientific literature using the state-

of-the-art Natural Language Processing (NLP) approaches. Amongst others, word em-

bedding [16, 17] techniques, that are primarily based on multi-layer neural networks

have the ability to parse the wealth of readily available textual information and iden-

tify underlying implicit connections. These embedding techniques learn continuous low

dimensional vectors of words (commonly known as word embeddings) in a completely

unsupervised manner. As these word embeddings have been shown to encode the im-

plicit semantics at a granular level, they are well suited for the current task of interest.

This is because HG itself can be thought of as identifying implicit connection across

previously disjoint terms in the latent space. While there exist word embedding models

such as Word2Vec [18] and GLoVe [17] that can generate vector representation of words

from natural language text, these models assume a static world. This becomes problem-

atic for task such as hypothesis generation where it is crucial to factor in the temporal
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dynamics of medical concepts in order to generate accurate hypothesis. To overcome

this challenge, we propose our solution to identify the implicit links by learning the sub-

tle cues manifested in temporal association formation process. In other words, we aim to

gain a holistic understanding of evolutionary association formation process, wherein the

terms with a potential of forming a connection iteratively come closer to each other in

each time-stamp. Generally speaking, our proposed framework automatically discovers

new knowledge based on what it perceives as significant historical trend and causes for

relationship formation. Powered by recent NLP techniques such as word-embeddings,

this proposal provides a scalable approach to identify high quality novel postulates that

could be of potential clinical interest to the biomedical researchers. Furthermore, the in-

terpretability part of this research provides a systematic mechanism through which one

can study the evolution of the association formation process over time slices. This form

of explainability augments the output of hypothesis generation module and provides the

researchers with necessary evidence required to validate the hypotheses.

1.2 Problem Statement

Although, related to the problem of link prediction [19, 20, 21], hypotheses generation

differs markedly from it in the sense that the output or the hypotheses is backed with

explainable evidence. Furthermore, it draws similarity to the deep QA systems which

are widely studied in area of Information Retrieval. This similarity stems from the fact

that the input to the hypotheses generation system could be formulated as a question:

“Is Fish oils and Raynaud’s Disease connected?”. Questions like this are generally

categorized as ’closed discovery’ wherein one is interested in evidence that connects

the two medical concepts in the question. A variation of this question is “What are

the therapeutic options for Raynaud’s Disease?”. This type of questions is essentially

a generalization of the “closed discovery” and requires efficient algorithms to search

amongst all different possible answers. In other words, hypotheses generation can be

thought to be as one of making connections across previously unconnected terms. To-

wards that goal, we model our solution to handle the process of the connection formation

as one driven by temporal characteristics of the medical concepts. In other words, we

understand evolutionary association formation process of, wherein the terms with a po-

tential of forming a connection iteratively come closer to each other in each time-stamp.

However, modeling such a behavior requires the capability to quantify the semantic
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similarity between the terms and the changes between them over a time period. Apart

from this, it opens up a new challenge of determining candidate connecting terms as

focusing on all the medical concept would not only affect the efficiency of our model

but also introduce noise in our output.

The input to the system is a pair of medical terms (a medical term and a meta-

information in the case of open discovery). Along with these terms, a year is also

provided that acts as a threshold and limits the framework to base its analyses only

on the documents published before that date. This is an optional field. The job of the

“Hypotheses Generation Module” is to list a series of postulates that relate the two input

terms through intermediaries/connecting term, e.g., Fish oils→ Beta-Thromboglobulin

→ Raynaud Disease. The “Ranking Module” is then responsible for determining which

of these candidate connecting terms have a higher chance of materializing in the fu-

ture. In other words, based on the temporal/evolutionary properties of these connect-

ing terms, the model measures the likelihood of an edge forming between these terms

and the input query terms. Since, the final output would be ranked list of connecting

terms, this module is called the “Ranking Module”. As the core task, i.e., finding the

connecting terms, is cascaded to the previous step, one can treat this as a black-box,

where various algorithms/techniques could be applied as a plug and play.

In this work, we will be discussing our approaches towards solving these two tasks.

Namely, we exploit recent advances in the area of word-embeddings to automatically

learn which of the hypotheses have the potential to be ranked higher by a ranking

module; thus, allowing us concentrate only on high quality viable hypotheses. De-

tailed discussion on the approach is presented in [22]. We then extend the concept of

word-embeddings and its application to include temporal aspect to measure novelty and

importance of the hypotheses. Through this, we rank the generated hypotheses [23].

In the following sections, we briefly describe the concept of word-embeddings and then

its application to efficient enumeration of connecting terms through a process we call

’self-learning’. These discussions are then followed by introduction incorporating tem-

poral aspect to the word-embeddings and its usage in measuring the importance of the

connecting terms.
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1.3 Contributions and Dissertation Organization

This research introduces a novel framework to tackle the challenging issues raised by the

unprecedented proliferation of massive biomedical data - both structured and unstruc-

tured. By advancing the deep learning powered NLP techniques, the proposed approach

elucidates the capability to discern plausible associations that would otherwise elude

the domain experts. The inter-disciplinary nature of our problem brings biomedical

researchers and computer scientists to work together in a fresh and integrated view.

This collective endeavor will expedite the discoveries in complex biomedical domain,

by identifying latent associations between disjoint concepts and inferring new meanings

behind the ones already identified. More specifically, the proposed framework learns the

association formation process between concepts, by tightly incorporating their evolu-

tionary features and semantic relations present in human curated knowledge-bases such

as ontologies and lexicons. The innovative scientific aspects of this research include:

• The capability of proposed approach to model the gradual semantic evolution of

medical concepts over time. This allows the biomedical practitioners to track and

visualize the evolutionary trajectories of various concepts, thereby, achieving fine

interpretability of the generated output.

• The intrinsic ability of proposed framework to learn subtle cues manifested in

temporal drift enables it to reveal promising implicit relationships, which can be

translated into explicit real-world connections.

• The ”plug-and-play” nature of various research components provides opportunity

for biomedical practitioners to seamlessly integrate our modules with their off-the-

shelf ML algorithms, benefiting a plethora of biomedical applications.

• The proposed framework provides an ideal setting where the navigation of the

hypothesis generation is personalized at a query level, allowing the practitioners

to drill down onto aspects relevant to them and their specific analysis goals.

• The introduced framework is versatile enough to enable the users/biomedical prac-

titioners run custom queries and analyses on their proprietary data, and at the

same time allow them to leverage the knowledge from existing public repository

knowledge bases (KBs).

• The inherent interpretability of modules assists us in gathering additional evidence

to strengthen our results and further utilize it for experimental validation.
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Apart from these we are also planning to release a suite of tools that can be readily

employed on the datasets for knowledge discovery. Altogether, our main contribution

lies in accelerating the scientific progress by integrating large-scale scientific biomedical

corpus, identifying the implicit links that are relevant to a given query, and from these

links suggesting hypotheses that are new, insightful, testable and likely to be true. The

proposed research will advance the state-of-the-art in biomedical sciences by providing

new, efficient, and powerful tools for research and analysis. In addition to comparing

against a range of baselines and benchmark algorithms, we shall apply this framework

in several kind of diseases. This will demonstrate the capability of proposed system

to discover the reasons and mechanistic interactions in a variety of case studies. By

including comprehensive biomedical literature and knowledge bases that are publicly

available, we can perform collective discovery and analyses of the same, giving an insight

of causal relationships and their evolution over time.

The organization of this dissertation is summarized as follows:

In chapter 2, we propose to develop an enhanced word embedding representation that

jointly exploits both contextual information and available explicit biomedical knowledge

to learn a high-quality word embeddings representation. Unlike existing approaches, the

proposed methodology is more dexterous in its ability to handle relationships between

indirectly related concepts. Furthermore, we propose a dynamic word embeddings model

that is capable of modeling the temporal information of concepts present in diachronic

biomedical corpus.

In chapter 3, we propose to learn temporally aware vector representation of medical

concepts from the time-stamped text data, and in doing so provide a systematic ap-

proach to formalize the problem. More specifically, a dynamic word embedding based

model that jointly learns the temporal characteristics of medical concepts and performs

across time-alignment is proposed. Apart from capturing the evolutionary character-

istics in an optimal manner, the model also factors in the implicit medical properties

useful for a variety of bio-medical applications. Empirical studies conducted on two im-

portant bio-medical use cases validates the effectiveness of the proposed approach and

suggests that the model not only learns quality embeddings but also facilitates intuitive

trajectory visualizations.

In chapter 4, we propose to develop a novel model to be used for interpreting word
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embeddings representations, that is capable of transforming any pre-trained word em-

beddings to a new space such that the hidden conceptual meaning of individual dimen-

sions are revealed. To the best of our knowledge, we are among the first to study the

interpretability of word embedding in the biomedical domain. By leveraging upon the

principles of dictionary learning and exploiting the categorical knowledge present in the

biomedical domain, the proposed model is capable of generating an interpretable word

representation that resembles closely to the human-level intuition.

In chapter 5, we propose a novel representation learning approach that accurately

preserves the intricate bipartite structure, and efficiently updates the node represen-

tations. Specifically, we design a customized autoencoder that captures the proximity

relationship between nodes participating in the bipartite bicliques (2 × 2 sub-graph),

while preserving both the global and local structures. Moreover, the proposed structure-

preserving technique is carefully interleaved with the central tenets of continual machine

learning to design an incremental learning strategy that updates the node representa-

tions in an online manner. Taken together, the proposed approach produces meaningful

representations with high fidelity and computational efficiency. Extensive experiments

conducted on several biomedical bipartite networks validate the effectiveness and ratio-

nality of the proposed approach.

In chapter 6, we propose a new representation learning approach that efficiently

adapts the concept representations to the newly available data. Specifically, the pro-

posed approach develops a knowledge-guided continual learning strategy wherein the

accurate/stable context-information present in human-curated knowledge-bases is ex-

ploited to continually identify and retrain the representations of those concepts whose

corpus-based context evolved coherently over time. Different from previous studies that

mainly leverage the curated knowledge to improve the accuracy of embedding models,

the proposed research explores the usefulness of semantic knowledge from the perspec-

tive of accelerating the training efficiency of embedding models. Comprehensive ex-

periments under various efficiency constraints demonstrate that the proposed approach

significantly improves the computational performance of biomedical word embedding

models.

In chapter 6, we propose a new representation learning approach that progressively
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fuses the semantic information from multiple KBs into the pretrained biomedical lan-

guage models. Since most of the KBs in the biomedical domain are expressed as parent-

child hierarchies, we choose to model the hierarchical KBs and propose a new knowl-

edge modeling strategy that encodes their topological properties at a granular level.

Moreover, the proposed continual learning technique efficiently updates the concepts

representations to accommodate the new knowledge whilst preserving the memory effi-

ciency of contextualized language models. Altogether, the proposed approach generates

knowledge-powered embeddings with high fidelity and learning efficiency. Extensive ex-

periments conducted on bioNLP tasks validate the efficacy of the proposed approach

and demonstrates its capability in generating robust concept representations.

In chapter 8, we study the problem of mining implicit linkage is known as hypotheses

generation and its potential to accelerate scientific progress is widely recognized. Almost

all of prior studies to tackle this problem ignore the temporal dynamics of concepts.

This is limiting because it is known that the semantic meaning of a concept evolves over

time. To overcome this issue, in this study, we define this problem as mining time-aware

Top-k conceptual bridges and in doing so provide a systematic approach to formalize

the problem. Specifically, the proposed model first extracts relevant entities from the

corpus, represents them in time-specific latent spaces, and then further reasons upon

it to generate novel and experimentally testable hypotheses (A → B → C). The key

challenge in this approach is to learn a mapping function that encodes the temporal

characteristics of concepts and aligns the across-time latent spaces. To solve this, we

propose an effective algorithm that learns precise mapping sensitive to both global

and local semantics of input query. Both qualitative and quantitative evaluation are

performed on the largest available biomedical corpus. The results obtained substantiate

the importance of leveraging the evolutionary semantics of medical concepts and suggest

that the generated hypotheses are novel and worthy of clinical trials.

In chapter 9, we present a novel hypothesis generation framework that unearths the

latent associations between concepts by modeling their co-evolution across complemen-

tary sources of information. More specifically, the proposed approach adopts a shared

temporal matrix factorization framework that models the co-evolution of concepts across

both corpus and KB. Extensive experiments on the largest available biomedical corpus

validates the effectiveness of the proposed approach.

Chapter 10 concludes the dissertation with a discussion of future research directions.
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Chapter 2

Learning Knowledge-Powered

Word Embedding

2.1 Introduction

Improving distributed representation of words has been at the nucleus of research in

Natural Language Processing (NLP) community for a long time [24, 25, 26]. The initial

works to tackle this problem were based on the Bag of words (BOW) representation [27,

28], where each individual word is represented as a one-hot vector (i.e., one component

in the vector has a value one and rest are zero). However, this representation fails

to capture the rich structure of synonyms and antonyms among words. As opposed

to this, works like [25, 16, 29] have focused on representing words as continuous low

dimensional dense vectors. Vectors of this kind, commonly known as word embeddings,

have been shown to capture the implicit semantics of the corresponding words based on

the idea of distributional hypotheses (words appearing in similar context have similar

meaning) [30].

But does implicit semantics always correlate to meaningful interpretation in real-

world? While works like [16, 17] have shown the capability of word embeddings to

capture synonyms, the inability to capture meanings under insufficient local context

has been pointed out by many researchers [31, 32, 33]. The problem aggravates further

in the case of medical domain since one needs to factor in the semantics of the medical

terms. Consider the examples in Table 2.1, where we illustrate 2 scenarios. The pair

Heart and Blood Vessels refer to concepts which can be deemed similar at semantics level

10
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Table 2.1: A sample example of medical concept similarity.

Concept 1 Concept 2 Human Corre-

lation

Only Semantic

Knowledge

Word Vectors (No

Semantic Knowl-

edge)

Word Vectors

(With Semantic

Knowledge)

heart blood vessels 0.80 0.65 0.31 0.75

migraine dis-

orders

vascular

headaches

0.78 0.30 0.75 0.72

but as shown in the example, the word embeddings are unable to manifest this relation

due to lack of local context. However, such scenarios are well captured through external

knowledge-bases (KBs) that are curated and maintained by Subject Matter Experts

(SMEs). At the same time, relying solely on such curated external coding dictionaries

restricts the capability of models to discover terms that have high contextual evidence

but are distant in the KBs. Consider the second example in Table 2.1 wherein the pair

Migraine and Vascular Headache are adjudicated to be of low correlation by the external

KB despite having high co-occurrence and close semantic proximity in the corpus. Thus,

it is necessary to develop a balanced approach such that the model is sensitive not only

to the implied semantics but also regulated by the external curated KB. This is the

main problem that we are going to address in this paper and in doing so, we provide a

systematic approach on how to generate the required prerequisites, cast the objective

as a joint optimization and the necessary update rules to solve them for the biomedical

domain.

Towards this direction, we leverage MEDLINE1 , the popular and perhaps the most

comprehensive citation repository in the biomedical domain. While this source provides

us with the co-occurrence information of the Medical Subject Headings (MeSH terms)2

required to create its word embeddings, we also utilize MeSH tree codes which serves

as the external curated knowledge-base. We provide more details on this in Section 9.3

but it suffices to say at this point that the objective of this paper is to combine these

two sources of information to create word embeddings of superior quality as compared

to the methods operating on these sources in an isolated fashion. While there have

been some works in this area, and even fewer in case of biomedical domain, most of

these methods can be categorized to either retrofitting domain knowledge on top of

1 https://www.nlm.nih.gov/pubs/factsheets/medline.html
2 https://www.nlm.nih.gov/pubs/factsheets/mesh.html
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the learnt word embeddings [34, 35] or one that adopts a similar approach that we

describe in this paper. However, it is important to mention that the external coding

dictionary that these methods use are usually denoting equivalence/similarity between a

pair of concepts and do not capture/measure the similarity between concepts connected

indirectly. For instance, the WordNet[36] which is used by authors of [37, 33] provides

cognitive synonyms for a word and thus can be used to refine the word vectors to reflect

the expert knowledge. However, it cannot quantify the association between any two

arbitrarily chosen terms and this is precisely the lacuna in the methodologies using such

resources. In our experimental results, we show that such solutions are restrictive in

nature and do not suit as well as scale to the biomedical domain and problem setting.

Consequently, we leverage the taxonomic structure of the MeSH tree code to compute

the distance between any two MeSH terms which is then used as a “regularizer” to refine

the word embeddings. It is worthwhile to point out that although we have used MeSH

tree and MeSH terms as the inputs, the solution by itself is generic and can be used as a

plug-and-play for different tree based external knowledge-bases. Furthermore, compared

to existing approaches, the word embeddings we obtain are trained on a relatively small

vocabulary. We show that our proposed approach achieves a gain of 13% in terms of

Spearman coefficient when compared to state of the art baselines.

To summarize, in this paper, we make the following particular contributions:

1. We propose a new word embedding model for biomedical domain that is not

only sensitive to external domain knowledge but intrinsically can handle indirect

relationships manifested in it.

2. The vocabulary of the model is small and yet provides a rich representation of the

semantic relationships between the medical concepts.

3. Compared to existing best Spearman coefficient result of 0.69, our method achieves

a boost of 13% to yield a very high concordance with respect to biomedical experts

as well as physicians.
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Figure 2.1: Basic Architecture of Proposed Model

2.2 Methodology

2.2.1 Background and Problem definition

To reiterate, our goal in this paper is to develop external knowledge powered word em-

bedding model for the biomedical domain. The following subsections briefly introduces

the corpus and the chosen vocabulary.

MEDLINE

Our corpora is MEDLINE, the largest bibliographic database in biomedicine. At present,

it contains more than 24 million references to journal articles from life science and bio-

medicine. Each article in the corpus contains several attributes such as a unique iden-

tifier (PubMed ID), title, abstract, Mesh terms, Publication date, etc. In this work, we

use MeSH terms as the source of information and also as our overall vocabulary. As of

2016, there are in total 27,882 MeSH terms and consequently is the size of our vocabu-

lary. The following paragraph introduces the MeSH vocabulary, which is followed by a

brief introduction of MeSH tree that serves as our external KB.

Medical Subject headings (MeSH)

Medical Subject Headings (MeSH) are National Library of Medicine (NLM) controlled

vocabulary that human experts use to index journal articles in the life sciences do-

mains. Mesh terms are classified into three categories a) Descriptors, b) Qualifiers and

c) Supplementary concept records. Descriptors represent the conceptual meaning of the
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Figure 2.2: Sample document annotated with MeSH terms

article. In this work, we use Descriptors as the unit of representation for documents.

Figure 2.2 illustrates a snapshot of citation within the MEDLINE corpus.

External Knowledge-base

In addition to MeSH terms, we also use external expert curated knowledge-base that is

organized in a tree hierarchy. Every MeSH term has a corresponding tree code which

represents its level of specificity in the tree. As an example, the tree code for concept

Migraine Disorders is: C10.228.140.546.399.750. Also, in this regard it is important

to note that there can be multiple tree codes associated with a single Mesh term. For

instance, the MeSH term Cell Count in Figure 3.3 has MeSH tree codes E01.370.225.500

and G04.140.

2.2.2 Approach

Traditionally, word embeddings are generated using neural networks with majority of

them modelling the objective function as a one trying to predict either the word under

consideration based on a context described through a window or the vice-versa [16, 18].

Such methodologies are usually non-interpretable as the neural network acts as a black

box. However, recently in [38], the authors proved that the objective function the neu-

ral network attempts to solve in case of skip-gram model with negative sampling [16]

(word2vec) is the same as matrix factorization of the Shifted Positive Point-wise Mutual
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Information (SPPMI) matrix obtained from the co-occurrence matrix of the corpus. In

other words, if one creates a co-occurrence matrix of words occurring in a corpus and

then calculates the corresponding SPPMI to create a new matrix, the matrix decompo-

sition of the resultant matrix will yield the word and its corresponding context vectors.

This proof has subsequently led to many researchers adopting this route over neural

network training to obtain word-embeddings; since for reasonably sized matrix, factor-

ization methods like SVD are deterministic in nature. We also adopt a similar approach

as it enables us to model the external knowledge-base as one of the components of

the objective function. Furthermore, MeSH terms do not have word order information

available (a necessity for Neural network based approach) that reinforces the need to

adopt the SPPMI based route.

Formally, let us denote D as our text corpus and V = {w1, ..., wv} as our vocabulary

of size |V |, where each wi corresponds to an individual term. Next, we construct a

term-by-term (V × V ) co-occurrence frequency matrix, where the rows and columns

represent words present in the vocabulary and element represents the raw frequency

between them. Now, our goal is to find a dense, low dimensional representation vector

uw ∈ Rd, d ≪ |V | for each word w ∈ V . We denote uwi as the embedding for word

w, and d as the embedding dimension. In compact form, U represents the embedding

matrix of size V × d, whose i-th row corresponds to the embedding vector of i-th word

uwi .

In the following step, we compute the |V | × |V | Shifted Positive Point-wise Mutual

Information (SPPMI) matrix specific to a corpus D, whose <w,c>-th entry is:

SPPMI(w, c) = max(PMI(w, c)− logk, 0) (2.1)

where logk refers to a global constant. This acts as a prior on the probability of observing

a positive example (an actual occurrence of (w,c) in the corpus) versus a negative

example. A higher value of k indicates that negative examples are more likely. The

PMI in the above equation is defined as:

PMI(w, c) = log
#(w, c).|D|
#(w).#(c)

(2.2)

where # (w,c) counts the number of times that words w and c co-occur within a

document d over the entire corpus D, #(w) and #(c) denote the total number of times

w and c occur in the entire corpus alone. |D| is the total number of word tokens in the

corpus.
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To represent the conclusion of [38] mathematically, if M represents the SPPMI

matrix then,

M ≈Md = Ud · Σd ·W T
d (2.3)

where Md = Ud · Σd · V T
d is the matrix of rank d that best approximates the original

matrix M . In such a scenario, the word-vector Wd and Cd is obtained by:

Wd = Ud ·
√

Σd

Cd = Wd ·
√

Σd

(2.4)

where each row in Wd, Cd corresponds to a d-dimensional word-vector and context-

vector respectively for a corresponding row (word) in M . While the above discussion

illustrates matrix factorization through SVD, the results of the derivation is applicable

to any matrix factorization approach when M is viewed as the product of W and

C [38]. In our experiments, the value of global constant (logk) and dimensionality of

the generated MeSH vectors is empirically set to 5 and d = 200 respectively. Figure 2.1

pictorially describes the discussion so far.

2.2.3 Proposed Model (MeSH2Vec)

Motivated by the above observation, we formulate our problem as one comprising of

three components. The first component is based on the observation where we use the

co-occurrence matrix to generate the word embeddings. However, the resulting word

embeddings not only needs to satisfy the minimization error in the matrix factorization

part but also should have short “distance” in the external knowledgebase (in our case it

is the MeSH tree code). This along with the regularizer to prevent over-fitting are the

remaining two components of the joint optimization problem. Formally we define it as:

J = min

Matrix Factorization Component︷ ︸︸ ︷
1
2 ||M −WCT ||22 +

Regularizers︷ ︸︸ ︷
β
2 (||W ||22 + ||C||22)

+ γ
2 ||Mdist −N ||22︸ ︷︷ ︸

External KB Component

(2.5)

In expanded form, this can be written as:
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J = min

|V |,|V |∑
i,j

(
1

2
(mij −

d∑
k=1

wikckj)
2

+
β

2

d∑
k=1

(w2
ik + c2kj) +

γ

2
(nij −Dist(w⃗i, w⃗j))

2

) (2.6)

where mij refers to the element of matrix M and wik and ckj refer to the i-th and j-

th column of word and context vector respectively. The second part of the objective

function (w2
k and c2k) are the regularizer term to avoid overfitting and β controls the

magnitude of word and context vectors. In this work, we set the value of β = 0.01. As

mentioned before, the third part incorporates the prior knowledge into the model, which

is regulated by the value of γ. The basic idea being, the word embedding of two words

(wi, wj) should be closer to each other if they have a smaller semantic distance (higher

similarity) in their structured representation. We set the value of γ = 1 essentially saying

giving equal importance to the matrix factorization as well as external KB component.

Mdist is the distance matrix for word vectors, where the distance adopts the basic

Euclidean distance between their word vectors

Dist(w⃗i, w⃗j) = ||w⃗i − w⃗j ||22 (2.7)

and nij denotes the element in the ith row and jth column of N (semantic distance

matrix), indicating the semantic distance between concepts i and j. The following

section provides more details on using this external KB.

2.2.4 Calculating Distance in the External Curated KB

In this section, we describe how to calculate the semantic distance between terms using

MeSH taxonomy. As mentioned above, MeSH terms are categorized in a hierarchical

fashion. The hierarchical nature of terms can be considered as a “IS A” tree and its

structure gives us a concept measure of semantic similarity distance between MeSH

terms. Towards this end, there are two aspects of MeSH taxonomy that needs to be

considered while calculating the semantic distance: a) The deeply nested structure of

MeSH taxonomy (the lower the concepts in the hierarchy the greater shared information

they account for) b) One concept in the tree may belong to several sub-categories. To

address these issues, in this work, we calculate the semantic distance between MeSH
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Figure 2.3: Example for calculating semantic distance between concepts in the external

tree based KB

terms based on the depth of the least common “subsumer” (LCS) (immediate common

parent) and shortest path length between MeSH terms, much akin to [39, 40]. The

depth of least common subsumer quantifies the amount of information shared among

the concepts in the hierarchy. For the second issue (concepts belonging to multiple

categories), we take the minimum semantic similarity distance between the two concepts.

The formula for calculating the semantic distance between two concepts is described

below:

nij = log2([distance(Ci, Cj) + 1]

∗ [D − depth(lcs(Ci, Cj))]),
(2.8)

where distance(Ci, Cj) is the shortest distance between concept Ci, Cj , depth(lcs(Ci, Cj))

is the depth of lcs(Ci, Cj), D is the maximum depth of the taxonomy, and lcs(Ci, Cj)

is the lowest common subsumer of Ci and Cj .

As an example, in Figure 2.3, the lcs(leptin, resistin) is adipokines and its depth is

3, assuming the depth of the root (hormones) is 1. It should be noted that the greater

the semantic distance the lower the semantic similarity and vice-versa.

2.2.5 Parameters Update Rules

We take the gradient of our objective function (Equation 2.9) with respect to each of the

model parameters wik , cjk and then adopt stochastic gradient descent to update them
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(See ?? for derivation). Thus, on each co-occurrence record, this gives us the following

closed-form updates:

w′
ik = wik + α(−eijckj + βwik+

2γ(||w⃗i − w⃗j ||22 − nij)(wik − wjk)),

c′kj = ckj + α(−eijwik + βckj),

(2.9)

where α is the learning rate. The value of α is empirically set to 0.01.

2.3 Experiments

Having explained the methodological details, we now empirically evaluate, analyze and

discuss the proposed model’s performance against a variety of biomedical concept sim-

ilarity/relatedness datasets.

In particular, we attempt to answer the following questions:

1. Are MeSH terms a better source of information for word embedding models in

biomedical domain?

2. Does the embedding model based only on co-occurrence/PPMI statistics produce

results on par with existing works?

3. Does the augmentation of semantic knowledge to corpus based embedding model

improve the overall performance?

2.3.1 Evaluation Datasets

To evaluate the output embeddings on biomedical concept similarity/relatedness task,

we borrow evaluation set from [41]. Table 2.2 enumerates the benchmark datasets along

with the number of concept pairs that were manually rated by human experts to denote

semantic similarity.

• MeSH-1 : The first dataset (MeSH-1) [42] was created by experts from Mayo Clinic

and consists of a set of word pairs that are related to general medical disorders.

The similarity of each concept pair was assessed by 3 physicians and 9 medical

coders. Each pair was annotated on a 4 point scale: practically synonymous,

related, marginally, and unrelated. The average correlation between physicians is
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0.68 and between experts is 0.78. In our experiments, similar to [39, 34], we found

25 out of 30 concepts pairs as MeSH terms using the latest MeSH dictionary3 .

Also, some of the term pairs in this set were found in the entry terms set of MeSH

terms. Every MeSH term has a few corresponding entry terms that are considered

to be quasi-synonyms (they are not always exactly synonyms).

• MeSH-2: The second biomedical benchmark (MeSH-2) was introduced in [43].

It consists of a set of 36 word pairs extracted from the MeSH repository. The

similarity between word pairs was assessed by 8 medical experts and assigned a

score between 0 (non-similar) to 1 (synonyms).

• UMNSRS-SIM: The third dataset (UMNSRS-SIM) was developed by [44] and

consists of 725 clinical term pairs whose semantic similarity were determined in-

dependently by four medical residents from the University of Minnesota Medical

School. Each concept pair was given a score in the range of 0-1600, with higher

score implying similar or more related judgments of manual annotators. In our

experiments, we mapped these Unified Medical Language System (UMLS) medical

concepts to their corresponding MeSH terms and found 218 pairs in the UMNSRS-

SIM.

• UMNSRS-REL: Similar to the previous dataset, the fourth dataset (UMNSRS-

REL) was also developed by medical residents from the University of Minnesota

Medical School [44]. However, the concepts in this dataset were rated for their

semantic relatedness rather than similarity. The semantic relatedness score spans

the four relatedness categories: completely unrelated, somewhat unrelated, some-

what related, closely related. It should be noted that semantic similarity can be

viewed as a special case of semantic relatedness. In our experiments, we mapped

these medical concepts to their corresponding MeSH terms and found 221 pairs

in the UMNSRS-REL dataset.

2.3.2 Evaluation metric

The way we are going to demonstrate the superiority of our word embeddings is by

showing that for the datasets enumerated above, we obtain a better correlation coeffi-

cient when compared to the ground truths provided by the experts. Consequently, we

3 https://www.nlm.nih.gov/mesh/filelist.html
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Table 2.2: Summary of datasets used for evaluating semantic similarity/relatedness task

for biomedical concept pairs.

Datasets Concept Pairs

MeSH-1[42] 30

MeSH-2[43] 36

UMNSRS-SIM[44] 218

UMNSRS-Rel[44] 221

use Spearman coefficient as the evaluation metric.

Spearman coefficient (ρ): This metric is used to correlate word pair rankings pro-

duced by the proposed method to the ones assigned by expert judgments. The formula

for calculating ρ is given in Equation 2.10, where di is the difference between the ranks

of xi and yi, xi refers to the ith element in the list of human judgments, yi to the

corresponding ith element in the list of semantic similarity computed values, and n is

the total number of word pairs. In this work, we use Spearman coefficient to judge the

quality of our result.

ρ = 1− 6
∑
d2i

n(n2 − 1)
(2.10)

2.3.3 Evaluation Scheme

As the main objective of this section is demonstrate the efficacy of the proposed model,

we evaluate it under two conditions - (a) Without incorporating external KB and (b)

With incorporating external KB. Through this type of ablation testing, we want to

study and quantify not only the benefits of the various components in our system but

also understand the scenarios in which a particular component tends to be more useful.

As such analyses tend to be dataset specific which can then be generalized, we have

added a brief discussion at the end of the results for each dataset.

2.3.4 Results and Discussion

MeSH-1

Table 4.3 presents the Spearman (ρ) coefficient values obtained after applying the pro-

posed model on the first dataset (MeSH-1). This dataset is one of the two dataset (the
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Table 2.3: Absolute values of correlation of the five measures relative to human judg-

ments - MeSH-1

Measure Physician Expert

Path length[45] 0.627 0.852

Leacock and Chodorow[46] 0.672 0.856

Wu and plamer[47] 0.652 0.794

Choi and Kim[48] 0.560 0.724

Nguyen[39] 0.672 0.862

Yu et al.[34] 0.696 0.665

MeSH2Vec (without prior knowledge) 0.817 0.76

MeSH2Vec (prior knowledge) 0.836 0.801

Table 2.4: Absolute values of correlation of the five measures relative to human

judgments- MeSH-2

Measure Human expert

Baseline 0.55

Aouicha et al[41] 0.724

MeSH2Vec (without prior knowledge) 0.79841

MeSH2Vec (prior knowledge) 0.81542

Table 2.5: Correlation values relative to human judgments for UMNSRS-Similarity

Measure Human expert

Pyysalo et al.[49] 0.549

Chiu et al.[50] 0.652 (N/A)

Munneb et al.[51] 0.52 (N=462)

Pakhomov et al.[52] 0.62 (N=449)

Mcinnes et al.[53] 0.66 (N=401)

MeSH2Vec (without prior knowledge) 0.74 (N=218)

MeSH2Vec (prior knowledge) 0.75 (N=218)

other being MeSH-2) where the original concepts were MeSH terms and we did not have

to perform any mapping. Consequently, results in this dataset assumes more impor-

tance than the latter as it give a fair one-to-one comparison with the baselines. As it
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Table 2.6: Correlation values relative to human judgments for UMNSRS-Relatedness

Measure Human expert

Pyysalo et al.[49] 0.506 (N/A)

Chiu et al.[50] 0.601 (N/A)

Munneb et al.[51] 0.45 (N=465)

Pakhomov et al.[52] 0.58 (N=458)

Mcinnes et al.[53] 0.49 (N=401)

Aouicha e al.[41] 0.634 (N/A)

MeSH2Vec (without prior knowledge) 0.70 (N=221)

MeSH2Vec (prior knowledge) 0.73 (N=221)

can be observed from the table, the proposed model (MeSH2Vec) outperforms others

and achieves the highest correlation with Physician’s judgments. In terms of Expert

judgments, even though we do not make it the top, the difference between our approach

and the baselines is comparable (considering they perform good only in one of the two

columns).

Discussion: For comparing our results with previous works, we extracted results

reported by [39] and [34]. The first five techniques [45, 46, 47, 48, 39] in Table 4.3 are

the ontology only techniques (they purely rely on taxonomic information), while the

fifth is a retrofitting technique based on both context vectors and semantic lexicons.

Since they rely on the taxonomical details, which are usually prepared by experts, they

have high concordance in that evaluation criterion. However, from the perspective

of users, i.e., physicians, much of these approaches perform poorly. To analyze the

reason for the difference between the perception of coders and physicians, we would

like to recapitulate the discussion in [54]: The medical coders were more sensitive to

the hierarchical classification thereby being more inclined to the concept of (taxonomic)

similarity whereas physicians seemed to represent a more general concept of (taxonomic

and non-taxonomic) relatedness. The rationale seems plausible as the ontology based

measures (such as [39]), presumed better at capturing taxonomic similarity have better

correlation with Coders whereas the context vector based methods (such as the proposed

method) that is sensitive to both taxonomic and contextual information have better

correlation with physicians. The proposed model outperforms others and achieves the

highest correlation with physician’s judgments and yet maintains a comparable result
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with expert’s judgment. Since the experts are usually medical coders following some

form of guidelines and not physicians, we need a mechanism that balances the need of

both. We believe our methodology does that.

Another observation is that the more recent technique of retrofitting (it fits seman-

tic lexicons in a post-processing step) introduced by Yu et al. [34] obtains improvement

over ontology-only techniques based on Physician correlation. However, they have low

correlation with the coders. Perhaps, the reason lies in the inability of this method

to fully leverage the hierarchical structure of MeSH tree. In contrast, the proposed

model obtains significant improvement over the aforementioned work in both physician

and coder’s judgment. Analyzing results further, in our perspective, the boost in per-

formance is because the proposed model apart from capturing the implicit similarity

between words via co-occurrence/PPMI statistics also integrates evidence of multiple

taxonomic paths between concepts and relative densities of their taxonomical branches

present in the MeSH hierarchy.

MeSH-2

Table 4.4 shows the correlation values obtained for the Spearman (ρ) coefficient for

MeSH-2 dataset. Unlike the first dataset (MeSH-1), there are no results reported by

ontology only techniques on this dataset. In order to have a baseline, a correlation

score was calculated by only considering the taxonomic information of MeSH hierarchy

and the formula introduced in Equation 2.8. The proposed model obtains the highest

correlation as compared to baseline and existing works.

Discussion: More recently, Aouica et al. [41] evaluated their intrinsic information

content based similarity measure on this dataset and reported their best correlation

score as 0.724. The proposed model improves upon this baseline. Upon further analyses

of results, we observe that the limited performance of this method is due to its nature

to ignore the contextual information present in plain text.

UMNSRS-SIM and UMNSRS-REL

Tables 2.5 and Table 2.6 show the correlation scores of our proposed model on University

of Minnesota Semantic Relatedness (UMNSRS) datasets. In these tables, N refers to

the number of concept pairs that we were able to successfully map between MeSH and

UMLS concepts (recall that these datasets are based on UMLS concepts and not all
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UMLS concept need to have a corresponding MeSH term). Such form of analysis was

also done by other researchers in past and for comparison, we report the correlation

scores of these existing works along with the number of pairs they were able to map to

this dataset. Note that they do not use MeSH terms and consequently the numbers are

not the same.

Discussion: The substantial improvement of our approach over existing baselines

should be attributed to the joint exploitation of local contextual evidence and relational

information from taxonomy. As an example, concept pairs such as “appendicitis” and

“peritonitis” which despite being semantically related (they both are related to Intra-

abdominal infections) have diverse context in the corpus. Thus, the methods based

solely on co-occurrence/PPMI statistics have limited performance. However, the addi-

tion of taxonomic evidence from MeSH hierarchy refines their embeddings to be closer to

each other in euclidean space. Apart from that, another added advantage of the model

is the relatively lower size of vocabulary. In comparison to previous works such as [55],

which require a larger token size (93,095,323), our proposed model attains higher or on

par performance on a smaller dictionary (27,882). We believe the reason for this is the

high quality input, thanks to MeSH terms, that provides an accurate representation of

concepts.

2.4 Related Works

In the past few years, a series of works [25, 56, 16, 57] have applied deep learning tech-

niques to learn distributed word representation. These methods have shown dramatic

improvement in the performance of several NLP tasks. For instance, Collobert et al.

[24] proposed a neural network that learns a unified word representation suited for tasks

such as parts of speech tagging, named-entity recognition and semantic role labeling.

Similarly, Socher et al. in [58] improved the performance of sentiment analysis task and

semantic relation classification using recursive neural network. More recently, Mikolov

et al. [16, 18] proposed two efficient neural network models: a) Continuous bag-of-words

model (CBOW) and b) word2vec for learning word representation. These models are

unsupervised in nature and trained on large text corpora. Particularly, these models

maximize the log likelihood of each word given its context words within a sliding win-

dow. They have been shown to capture analogical relations and improved performance

in various evaluations [59, 23, 60, 61].
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In the biomedical domain, recent years have seen some early attempts towards ap-

plying word embedding model for bioNLP tasks. Munnet et al. [51] trained both the

Skip–gram and CBOW models over the PubMed Central Open Access (PMC) corpus

with approximately 400 million tokens. On the task of semantic similarity and relat-

edness, they report that Skip-gram model (word2vec) performed the best for the task

of semantic similarity, on the other hand, none of the models outperformed others in

the semantic relatedness task. Chiu et al. [50] performed analysis on the effect of input

corpora, architecture and hyperparameter setting (negative sample size, sub-sampling,

minimum-count, learning rate, vector dimension, and context window size) on the qual-

ity of embeddings. In their results, they report the values of some of the influential hy-

perparamater, 10 (negative sample size), 1e-4 (sub-sampling), 0.05 (learning rate), 200

(vector dimension), and 30 (context window size) for word2vec and conclude that the

size of corpora does not affect the quality of word embeddings. Similar to the aforemen-

tioned work, a more recent study [62] examined the effect of recency, size and section of

biomedical publication (abstract/full-text) data on the performance of word2vec. They

reported that the models trained on recent datasets did not boost the performance and

as compared to the full text articles bodies, abstracts excel in accuracy.

Despite the prominent role played by above works in highlighting the salient aspects

of biomedical embedding models, they did not make any model level innovation and at

their core followed the distributional hypotheses [30]. In other words, the embeddings

generated by these model suffer for those words that are infrequent or unseen during

training, such as domain-specific words. To circumvent this problem, it is necessary to

incorporate domain knowledge. It is known that the biomedical domain has abundant

amount of taxonomic and relational information stored in form of vocabularies and

ontologies, however little attention has been paid to integrate them into the embedding

model itself. In this work, the proposed model collectively learns the word representation

by exploiting both the co-occurrence statistics from plain text and semantic evidence

from the domain knowledge. In this regard, it is worthwhile to point out that there have

been some works in NLP domain to include the prior knowledge [55, 63, 64, 32]. As an

example, [37] proposed a simple but effective method to encode relational knowledge.

In particular, they proposed a new learning objective that incorporates both a neural

language objective and a semantic prior knowledge objective. Similarly, [33] proposed

an alternate method to encode semantic knowledge via ordinal constraints. However,

these models have mostly been limited to general domain text and their architecture
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does not fit the structural representation of taxonomies present in biomedical domain.

Perhaps, the work that is very closely related to ours is a retrofitting method pro-

posed by [34] that incorporates semantic lexicons into the vector representation as a

post-processing step. However, as raised by the authors themselves this model does not

completely leverage the hierarchical structure of MeSH vocabulary. In contrast to all

of these aforementioned works, in this paper, we present a general method that jointly

exploits both contextual information and coherency of taxonomical knowledge to learn

better word representation for biomedical application.



Chapter 3

Dynamic Word Embedding

3.1 Introduction

Understanding the semantics and intent behind a text is a core task in the field of

Natural Language Processing (NLP) [26, 25]. As a precursor to any application with

real-world significance, this task has garnered much attention from many researchers

leading to the development of various models with distinct assumption on the structure

and organization of text [56, 30, 65]. Lately, practitioners in the community have be-

come interested in applying deep learning inspired language models - word embedding

models [16, 18] - to learn the distributed representation of words. Apart from being

scalable, these models in conjunction with the distributional hypothesis (popularly ex-

plained as a word is known by the company it keeps) have been shown to capture the

implicit semantics in a much better fashion. Notable examples of word embedding mod-

els that have accomplished significant improvement in the performance for several NLP

tasks include word2vec [16] and Glove [17]. Despite considerable advances achieved,

a major drawback of these models lie in their assumption of a static world. Simply

put, these models assume that the semantic meaning of a concept remains the same

over the period of time. This is problematic because it is known that the domains in

general are dynamic with concepts periodically acquiring new semantic sense and losing

old ones [13]. As a simple illustration, consider the word Intelligence - during the early

1960’s, its meaning used to be associated with concepts such as ”war”, ”opponent” and

”experts”; however, lately (2018) it is more often associated with concepts like ”artificial

intelligence” and ”cognitive reasoning”. Such drifts in the meaning of a word is observed

28
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in almost all the domains, however, its effect is especially prevalent in domains such as

biomedicine, where some new facts emerge and some are rendered obsolete every now

and then [13]. Capturing these semantic drift over time is crucial to understanding the

dynamics of medical concepts and the evolution of overall medical knowledge. Moti-

vated with this, in this study, we consider the problem of detecting semantic shifts in

meaning and usage of medical concepts over a given time frame based on the text data.

More specifically, the objective is to characterize the semantic change incurred across

time frames and encapsulate them into the learned representation of medical concepts.

As mentioned before, studies [17, 16] in the past have investigated the problem

of learning distributed representation of words; however, models that are sensitive to

the dynamic nature of domain are scarce. Though a few recent studies [66, 67, 68]

have attempted to tackle this problem, more or less, they follow a two-step process: a)

compute static word embeddings in separate time-frames separately, and b) then find a

way to align these embeddings across time-frames. Adopting such two-step procedure

has a few inherent issues. First, as embedding models are known to have stochastic

nature of initialization, training them separately might result in produced embeddings

being less interpretable [69]. Second, as theses approaches only consider two time frames

(instead of all) of embeddings at each alignment phase, they jeopardize the quality of

embeddings learned [69, 70]. To mitigate these aforementioned issues, in this study, we

systematically formulate this problem of learning distributed representation of medical

concepts from the sequential text. In doing so, we discuss the procedure to generate

the required prerequisites, cast the objective as a joint optimization and provide the

necessary update rules to solve them. The proposed model, Dynamic Word Embedding

for Medicine (DWE-Med), basically captures the temporal dynamics by relying upon

the principles of statistical co-occurrence and temporal smoothing. Essentially, the

core idea of proposed technique is to compute the word embeddings and alignments

jointly, through solving one overall optimization problem. In addition, the alignment

strategy over all time slices (instead of two) enables the model to learn embeddings

of higher quality. Lastly, the temporal smoothing step encourages the embeddings to

vary smoothly over time, thereby, easing the interpretation and visualization of results.

As will be shown in the experiments later (See Section 9.4), the dynamic embeddings

learned using this approach facilitates an intuitive trajectory visualization of concepts

by tracking neighboring words across times. For example, a concept homosexuality has

a trajectory of substance-related disorder → gender identity (See Figure 3.1).
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In addition to presenting a dynamic language model, we also demonstrate the ef-

fectiveness of dynamic embeddings by studying their role in two novel use cases from

the biomedical domain. These use cases are: a) hypotheses generation [23, 7, 22] and

b) ontology expansion [71]. The goal of first use-case (i.e., hypotheses generation) is to

find implicit linkage between previously disjoint topics of interest. In other words, given

two concepts (A, C ) that have no known direct connection, the objective is to find B

terms that connects them in a novel way. These new connections are hitherto unknown

and therefore called hypothesis (A → B → C). Our intent behind this use-case is to

elucidate the importance of dynamic embeddings in the process of evolutionary associ-

ation formation process, wherein, the concepts with a potential of forming a connection

iteratively come closer to each other in each time-stamp. Apart from the potential of

aiding scientists in the process of formulating novel hypothesis, this task also benefits

other related areas of biomedical research such as drug-drug interaction and biomedical

QA [72]. While the first use-case provides insights into the capability of DWE-Med

in standalone applications, the choice of second use-case illuminates its importance for

downstream applications. Towards this end, we choose another related problem from

biomedical domain, namely, ontology expansion. The objective of ontology expansion

is to predict the branches on an ontology that will undergo expansion in near future.

The motivation behind this task is to automate the process of ontology evolution thus

easing its current practice of manual maintenance by the subject matter experts. Fur-

thermore, as our goal in this study is to explore the utility of word embeddings in a

dynamic setting, the task of ontology evolution provides a relevant use-case.

Note that this paper is an extended version of our previous study [23]. In this article,

we adopt and extend the methodological innovation of [23] to propose a general frame-

work for dynamic word embedding and further study its applicability for a completely

novel use-case. In particular, our contributions can be summarized as:

1. In this study, we propose a general framework for dynamic word embedding, that is

capable of modeling the gradual semantic evolution of medical concepts over time.

As a supplement, these embeddings allow us to track and visualize the evolutionary

trajectories of various concepts, thereby, achieving fine interpretability.

2. The capability of dynamic embeddings to encode both implicit semantics and evo-

lutionary behaviors of medical concepts enables us to reveal previously unknown

associations in the medical domain.
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Figure 3.1: Two dimensional projection of word embeddings for the concept homosexual-

ity and its trajectory visualization using t-Distributed Stochastic Neighbor Embedding

(t-SNE)

3. A novel RNN based deep architecture to predict the expansion of ontology con-

cepts is proposed. The superiority of predicting ontology expansions from an

evolutionary perspective is validated in the experiments.

4. Extensive experimentation is conducted on bio-medical corpus spanning more than

hundred years. New detailed analysis and discussion are presented for both the

chosen use-cases.

3.2 Methodology

This section first describes the proposed DWE-Med model in detail, and then elucidates

their applicability in two biomedical use cases. As our focus in this study is to learn the

temporally sensitive dense representation of words, we first need a text corpus collected

across time. This corpus is then split into distant time scopes, and a co-occurrence

matrix of medical concepts for each time period is created. The co-occurrence statistics

thus obtained is used to learn evolutionary characteristics of medical concepts. More

specifically, first all the documents are aggregated to the granularity of five years, e.g.,

1900-1904, 1905-1909, 1910-1914 and so on. Then, for each time slot t, a co-occurrence

matrix X(t) of medical concepts is constructed to capture the co-occurrence patterns,
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wherein, each entry X
(t)
ij denotes the number of times that the ith concept co-occurs

with the jth concept in the same article.

3.2.1 Evolutionary Word Embeddings

Given T time-stamped concept co-occurrence matrices {X(1), ...,X(t), ...,X(T )}, the se-

mantics and evolutionary patterns of each medical concept are carried implicitly within

those matrices. In the following sub-sections, we describe how our model learns these

semantics and evolutionary patterns of medical concepts in an optimal manner. Sec-

tion 3.2.1 first describes the method to learn static word embeddings and then Sec-

tion 3.2.1 generalizes this to the dynamic setting.

Static Word Embeddings

To learn the static embeddings, we adopt and extend a popular word embedding model,

namely, GloVe [17]. The main motivation behind adoption of GloVe is its capability to

leverage the benefits of both global matrix factorization (e.g., Latent Semantic Analysis)

and local context window methods (e.g., Skip-gram) simultaneously. Concretely, the

model achieves this by training explicitly on the non-zero elements in a word-word co-

occurrence matrix, instead of training on the entire matrix that are generally sparse.

Motivated with this unique aspect of GloVe to take the best of both worlds, we choose

to follow this line of research. We assume that the co-occurrence information described

the semantics of a concept, i.e., its context information. As an example, consider two

concepts i = male and j = female, their relationship can be examined by studying

the ratio of their co-occurrence probabilities with other probe terms, k: for terms k like

brain or carbon, that are related to both male and female, or to neither, we expect the

co-occurrence probability ratio P (k|i)/P (k|j) to be close to one; for terms k more related

to female than to male, say k = pregnancy, the probability ratio P (k|i)/P (k|j) should

be small; in contrast, for terms more related to male than to female, the ratio should

be large. This assumption suggests that the probability ratio P (k|i)/P (k|j) depends

on two target terms i, j and one probe term k. By adopting the vector difference and

the dot product of the embeddings, the linear structures of the embedding space can be

captured and modeled via:

F ((w
(t)
i −w

(t)
j )⊺w̃

(t)
k ) =

P (k|i)
P (k|j)

, (3.1)
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where w(t) ∈ Rd are embeddings at time stamp t and w̃(t) ∈ Rd are the context em-

beddings at time stamp t, respectively. w
(t)
i is used when term i works as a target

term, and w̃
(t)
i is used when term i works as a probe term. Given the term-term co-

occurrence matrix at time t, X(t), P (k|i) is empirically set as P (k|i) = X
(t)
ik /X

(t)
i , where

X
(t)
i =

∑
mX

(t)
im is the number of times any concept co-occurred with another con-

cept i at time t. Thus, by taking F as the exponential function and adding biases, a

simplification over Equation 3.1 is obtained:

w
(t)⊺
i w̃

(t)
k + b

(t)
i + b̃

(t)
k = log(X

(t)
ik ), (3.2)

where b
(t)
i and b̃

(t)
k are biases associated with term i and k at time t. Considering that

the term co-occurrence matrix X(t) is very sparse, static embeddings for time stamp t

can be learned via a weighted least squares regression:

J (t) =
V∑

i,j=1

f(X
(t)
ij )(w

(t)⊺
i w̃

(t)
j + b

(t)
i + b̃

(t)
j − log(X

(t)
ij ))2, (3.3)

where f is a weighting function for each entry in the co-occurrence matrix. As suggested

in GloVe [17], f is set as:

f(x) =

(x/xmax)α if x < xmax

1 otherwise
. (3.4)

The reason for choosing this weighting function is the following: a) For large values

of x, f(x) is relatively small. This property prevents the frequent co-occurrences from

being overweighted. b) As it observed, f(x) is a non-decreasing function and thus the

rare term are not over-weighted.

DWE-Med

The previous subsection introduced the procedure to learn static word embeddings from

an independent term co-occurrence matrix. Now, given a time sequence of term co-

occurrence matrix {X(1), ...,X(t), ...,X(T )}, we aim to learn dynamic word embeddings

that evolves smoothly over time.

Figure 3.2 shows the framework of our DWE-Med model. The learned dynamic

word embeddings at time t must account for both their semantics which are carried by

the current term co-occurrence matrix and their historical evolutionary trajectories. At
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each time stamp t, we add a distance constraint to each medical concept which prevents

the embedding from drifting too far from its historical location:

O(t) =

V∑
i,j=1

f(X
(t)
ij )
(

(w
(t)⊺
i w̃

(t)
j + b

(t)
i + b̃

(t)
j − log(X

(t)
ij ))2

+βI(t)(i)l(w
(t)
i ,w

(t−1)
i )

)
,

where β is the parameter controlling the damping to the historical embeddings, I(t)(i) is

a indicator function, and l(w
(t)
i ,w

(t−1)
i ) measures the distance between term i’s current

location in the embedding space w
(t)
i and its historical location w

(t−1)
i . I(t)(i) indicates

if term i has occurred in history:

I(t)(i) =

1 if term i has occurred before time t

0 otherwise
. (3.5)

A large number of distance measurements can be used as l(w
(t)
i ,w

(t−1)
i ), such as

cosine distance, but since we aim to learn smooth evolutionary trajectories of medi-

cal concepts, we adopt the Euclidean distance between the current embeddings and

historical embeddings:

l(w
(t)
i ,w

(t−1)
i ) = ||w(t)

i −w
(t−1)
i ||2. (3.6)

In practice, β is set to a small value, so the damping to the history is very weak.

At time stamp t = 1, we define I(0)(i) = 0. We put the embedding shift constraint

l(w
(t)
i ,w

(t−1)
i ) only on word embeddings, because context embeddings might need to

change its scale frequently as the scale of the co-occurrence matrices changes. Thus, the

overall objective function of our DWE-Med model is as follows:

O =

T∑
t=1

O(t) =

T∑
t=1

V∑
i,j=1

f(X
(t)
ij )
(

(w
(t)⊺
i w̃

(t)
j + b

(t)
i + b̃

(t)
j − log(X

(t)
ij ))2

+βI(t)(i)l(w
(t)
i ,w

(t−1)
i )

)
.

(3.7)

Equation 3.7 enforces that the DWE-Med model learns dynamic embeddings which

vary smoothly over time. On each occurrence of a concept, its corresponding embedding
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is regulated not to drift too far from its historical location. Thus, the higher term

frequency, the larger regulation to be stable over time. This is consistent with the law

of conformity of language evolution – ‘rates of semantic change scale with a negative

power of word frequency’ [66]. DWE-Med efficiently shares information across the time

domain, which allows us to feed the time-stamped data sequentially in steps. The

dynamic embeddings thus produced are able to capture both the implicit semantics of

concepts and also track their temporal change.

Figure 3.2: Framework of DWE-Med. T time slices of data are connected via dynamic

word embeddings.

3.2.2 Parameter Inference

We take the gradient of DWE-Med objective (Equation 3.7) with respect to each of the

model parameters {w(t)
i , w̃

(t)
j , b

(t)
i , b̃

(t)
j } and then adopt stochastic gradient descent to

update them. Thus, on each co-occurrence record, this gives us the following closed-

form updates:

w
(t)
i ← w

(t)
i − η ∗ 2f(X

(t)
ij )
(

(w
(t)⊺
i w̃

(t)
j + b

(t)
i + b̃

(t)
j

− log(X
(t)
ij ))w̃

(t)
j + βI(t)(i)(w

(t)
i −w

(t−1)
i )

)
,

w̃
(t)
j ← w̃

(t)
j − η ∗ 2f(X

(t)
ij )
(

(w
(t)⊺
i w̃

(t)
j + b

(t)
i + b̃

(t)
j

− log(X
(t)
ij ))w

(t)
i

)
,

b
(t)
i ← b

(t)
i − η ∗ 2f(X

(t)
ij )(w

(t)⊺
i w̃

(t)
j + b

(t)
i + b̃

(t)
j − log(X

(t)
ij )),

b̃
(t)
j ← b̃

(t)
j − η ∗ 2f(X

(t)
ij )(w

(t)⊺
i w̃

(t)
j + b

(t)
i + b̃

(t)
j − log(X

(t)
ij )),

where η is the learning rate. Note that the vectors are randomly initialized at the

beginning, and then are subsequently updated in the later time units. Further details

on the parameters are provided in Section 9.4.
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Having explained the core idea behind dynamic embedding, we now illuminate the

applicability of DWE-Med in two biomedical use-cases (See Section 3.2.3 and Sec-

tion 3.2.4).

3.2.3 Use-Case I (Hypotheses generation)

Given two previously disjoint terms i and j along with a cut-off time-stamp t, the task

is to identify high confident bridge terms k that will connect them in the future (after t).

In doing so, all the concepts present in the vocabulary (besides i and j) are considered

as our candidate bridge concepts. To find promising bridge concepts among the possible

candidates, we filter and rank these intermediary k terms using the following criteria:

(1) term k’s cosine similarity with i and j at current time stamp t: k should be close to

both input terms to be a bridging term; (2) the evolutionary trajectories: k is favored

if there is a growing association trend between k and i, j; (3) the generality of term k:

we prefer informative terms to generic terms. Therefore, the intermediary terms k are

ranked according to:

s(k|i, j, t) = sim(w
(t)
k ,w

(t)
i ,w

(t)
j )∆(wk, t)trd(wk,wi,wj , t), (3.8)

where sim(w
(t)
k ,w

(t)
i ,w

(t)
j ) denotes k’s cosine similarity with i and j at time t. To

penalize terms that are close to only one input term but far away from the other input

term, we adopt F1 cosine similarity score as sim(w
(t)
k ,w

(t)
i ,w

(t)
j ):

2
cos-sim(w

(t)
k ,w

(t)
i ) ∗ cos-sim(w

(t)
k ,w

(t)
j )

cos-sim(w
(t)
k ,w

(t)
i ) + cos-sim(w

(t)
k ,w

(t)
j )

.

∆(wk, t) reflects the generality of k till time t as defined in Equation 3.9 (See Sec-

tion 3.2.3), and trd(wk,wi,wj , t) is the association trend between k and i, j up until

time t, defined as:

exp
(

acs(w
(t)
k ,w

(t)
i ,w

(t)
j )− acs(w

(a)
k ,w

(a)
i ,w

(a)
j )
)
,

where acs(w
(t)
k ,w

(t)
i ,w

(t)
j ) stands for the average cosine similarity between them, and a

denotes the first time stamp they appeared.

Demoting Generic Concepts

One challenge in the problem of hypotheses generation is to discern between informative

and generic terms. Simply put, generic terms (also known as stopwords in NLP domain),
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such as humans and animals tend to frequently co-occur with a wide variety of other

terms, and thus tend to have high association score with most of the terms. However,

these generic terms are to be demoted when ranking bridge concepts, as they are not

informative. The conventional approach to tackle this issue is to utilize certain heuristic

rules such as removing the concepts which appeared more than 10,000 times in the entire

corpus [73]. However, such heuristics lack clear rationale behind them. To do this in a

more effective manner, we use the metric proposed in Equation 3.9 to penalize highly

general terms.

∆(wi, T ) =
1

Ni

T−1∑
t=1

I(t)(i) ∗ cos-dist(w
(t)
i ,w

(t+1)
i ), (3.9)

where Ni is the number of time slices a term i occurred. The basic idea is to penalize

the terms in accordance with their semantic stability. Highly frequent or general words

tend to have more stable meaning over time [66], as a result, the average cosine distance

change over time for these terms (calculated by Equation 3.9) is lower. This cause the

overall candidate score of generic terms to decrease.

3.2.4 Use-Case II (Ontology Expansion)

In this task of Ontology expansion, our focus is to demonstrate the utility of dynamic

embeddings as a feature. To briefly recapitulate the problem: Given the past ontology

versions and a related corpora, the task is to predict the branches in the ontology that

will undergo expansion in the future. Figure 3.3 provides a conceptual description of

the problem statement. While the proposed methodology to tackle this problem is

applicable to any tree-based Ontology, for the sake of illustration, we choose Medical

Subject Headings (MeSH) 1 from the biomedical domain.

Figure 3.3: Snapshot depicting evolution of Ontology

1 https://www.nlm.nih.gov/mesh/mbinfo.html
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As mentioned in the introduction, our objective is to tackle this problem from an

evolutionary perspective. This requires us to define and quantify the semantic change

of ontology concepts. In more detail, the semantic change of a concept is defined as

the total semantics directly associated with a concept or indirectly through its immedi-

ate neighbors. For example, consider the medical concept ”choline” that was initially

associated only to ”amines”. However, the continued research over time with ”amino

alcohols”, ”quaternary ammonium compounds” and other neighboring terms increased

the semantic density of ”choline” by including near-synonyms and subsets. We assume

that this increasing trend of semantic density gives rise to the need for higher speci-

ficity of ”choline” in the ontology, i.e., the possible expansion of concept ”choline” in

the ontology. To encapsulate this semantic change as a feature, we use the dynamic

embeddings of ontology concepts (Further details in Section 3.2.4).

As an auxiliary source of information, we also use other two type of features (See

Section 3.2.4 and Section 3.2.4).

Temporal Entropies.

While dynamic embeddings provides features representing semantic change, it is also

important to incorporate usage diversity of concepts. Simply put, if a term turns more

and more polysemous over time, it has a high chance to expand. This polysemous level

of a term can be measured by the entropy score from information theory that is based

on its contextual diversity in the corpus. As the focus of this work is on capturing

temporal dynamics, we adapt the measure to incorporate the time component. The

temporal entropy for term i at time t is described as below:

e
(t)
i =

∑
j

p(c
(t)
j , w

(t)
i ) log

p(w
(t)
i )

p(c
(t)
j , w

(t)
i )

,

where c
(t)
j is a context word of w

(t)
i at time t, p(c

(t)
j , w

(t)
i ) = X

(t)
ij /

∑
kX

(t)
ik denotes the

occurrence probability of w
(t)
i with its context c

(t)
j , and p(w

(t)
i ) =

∑
j p(c

(t)
j , w

(t)
i ) denotes

the occurrence probability of w
(t)
i .

Temporal Structural Features.

This feature captures the temporal characteristics of concepts from their taxonomic

structure (a portion of MeSH hierarchy is shown in Figure 3.3). We use six such
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structural features for each time stamp t. Specifically, we use three static features,

namely, minDepth, maxDepth, siblings and three dynamic features, namely, tempMin-

Depth, tempMaxDepth and tempSiblings. MinDepth and MaxDepth refer to the mini-

mum and maximum depth of a medical concepts at time t. Siblings refer to the number

of medical concepts that share at least one common parent with term i. For the re-

maining three dynamic features, they measure the difference between time stamp t and

previous time stamp t− 1:

f
(t)
i,tempSiblings =

f
(t)
i,siblings − f

(t−1)
i,siblings

f
(t)
i,siblings

.

Since all our features are temporal in nature, the problem blends itself into a sequence

modelling task. Towards this end, we propose a Recurrent Neural Networks (RNN)

based deep architecture namely, Evolutionary MeSH Expansion (EME) to model the

evolutionary characteristics of medical concepts. A complete pipeline of the proposed

framework is illustrated in Figure 3.4.

Figure 3.4: Proposed framework for Ontology Expansion.

Evolutionary MeSH Expansion (EME)

The goal of the proposed model is to predict the expansion label (yes or no) for a term

at time T . Given a training sample in the form of {term i, time T}, features from time

t0 to T are utilized to predict whether term i will expand at time T or not, as illustrated

by the right half of Figure 3.4. In practice, we set t0 = T − 10 to incorporate term i’s

previous 10 years’ evolution until time T .
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RNNs provide an elegant way of modeling sequential data. In Figure 3.4, ”RNN”

could be any RNN variants, such as Long Short Term Memory (LSTM) [74] and Gated

Recurrent Unit (GRU) [75]. In our implementation, we use GRU to deal with the

vanishing gradient problem. Based on the temporal features obtained, at each time

stamp t, the RNN takes dynamic medical concept embeddings W (t), temporal entropies

e(t), temporal structural features f (t) as well as the hidden state h(t−1) from the previous

time slot as the input. To measure the semantic change of term i, the first layer is a

semantic similarity layer, where the kth entry denotes the similarity between term i and

its kth closest neighbor in the embedding space:

s
(t)
i,k = cos-sim(w

(t)
i ,a

(t)
i,k),

where a
(t)
i,k denotes the embedding for term i’s kth closest neighbor. Cosine similarity

is adopted as the similarity measurement due to its simplicity and effectiveness. Other

similarity measurements such as Euclidean distance could also be utilized here. We then

employ a concatenation layer to combine the semantic similarities with the temporal

entropies and structural features. The hidden state at time t is calculated as follows:

h(t) = GRU(h(t−1), [s(t); e(t);f (t)]).

Hidden state h(t) is subsequently fed to a softmax layer to produce the expansion

prediction ŷ(t) ∈ R2 for time t:

ŷ(t) = softmax(U oh
(t) + v), (3.10)

where U o and v are the weight matrix and biases to be learned. Based on Equation

3.10, our objective function can be calculated as the cross-entropy between ground truth

expansion label y(t) and prediction expansion label ŷ(t):

L = − 1

T − t0

T∑
t=t0

(y(t)⊺ log(ŷ(t)) + (1− y(t)⊺) log(1− ŷ(t))).

3.3 Experiments

The focus of this section is to demonstrate the efficacy of dynamic embeddings for both

the chosen use cases. In our experiments, we use MEDLINE2 as our main corpora. The

2 https://www.nlm.nih.gov/pubs/factsheets/medline.html
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latest dump (2017) contains more than 24 million articles, primarily, from the domain

of life sciences and biomedicine. Every article contains a unique identifier (PMID),

title, abstract, publication date and Medical Subject Headings (MeSH) terms. As a

unit of representation for articles, we choose MeSH terms. MeSH terms are the special

keywords assigned by subject matter experts to each article in MEDLINE. Since these

terms are selected by subject matter experts based on the full text of articles, it is safe

to assume that they represent the conceptual meaning of an article. Furthermore, the

choice of MeSH terms (over other sources of representation such as title/abstract) has

certain specific benefits: a) previous studies [9, 6] have shown that the use of concepts

from plain title/abstract introduces noise into the system and is also computationally

expensive, b) several articles pre-1990 have limited or no abstract content and c) being

assigned by human experts they are concise. These particular benefits make MeSH

terms a good choice for unit of representation. On average around 13 MeSH terms are

assigned to each article in MEDLINE [76]. To obtain the dynamic word embeddings3

, as suggested by a few previous studies [17, 77], we empirically set α = 0.75, β = 0.01,

xmax = 100, η = 0.05 and run DME for 100 iterations on each time slice. The value of

dimension is also empirically set to d = 200. Based on conclusions provided in existing

word embedding literature [16, 50], the dimensionality of embeddings is determined by

examining its performance on word similarity and relatedness tasks [50].

3.3.1 Use-Case I (Hypotheses generation)

To assess the effectiveness of our model, we perform both qualitative and quantitative

evaluation. The qualitative evaluation determines the extent to which our approach

is capable of rediscovering the known knowledge, while the quantitative evaluation is

intended to analyze the overall quality of results.

Fish-oil (FO) and Raynaud’s Disease (RD): In 1986, Swanson [5] investigated

the research question of “role of dietary fish oils in treating patients with Raynaud’s

syndrome”. By manually inspecting literature belonging to Fish oils and Raynaud’s

disease respectively, he found that Raynaud’s disease is worsened by high blood viscosity,

high platelet aggregation, Vasoconstriction, and the ingestion of Fish oils reduced these

phenomena.

In our results, it can be seen that both platelet aggregation and blood viscosity are

3 The source code of dynamic embeddings is made available at https://www.dropbox.com/sh/

pi28cwxg46f5xy9/AAAtII95M3ypJw5aQtL1-Q0ja?dl=0.

https://www.dropbox.com/sh/pi28cwxg46f5xy9/AAAtII95M3ypJw5aQtL1-Q0ja?dl=0
https://www.dropbox.com/sh/pi28cwxg46f5xy9/AAAtII95M3ypJw5aQtL1-Q0ja?dl=0
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found at rank 8 and 11 respectively. With regards to this, it is worthwhile to note that

many rediscovery approaches consider it a success if they find platelet aggregation in

their list of intermediates [10]. Furthermore, other important connections besides the

ground truth include ‘fattyacids, essential’ and ‘vasodilation’.

Magnesium (MG) and Migraine Disorder(MIG): Swanson [78] proposed eleven

bridging connections between Magnesium and Migraine Disorder. These important

connections are: epilepsy, serotonin, prostaglandins, platelet aggregation, calcium an-

tagonist, type A personality, vascular tone and reactivity, calcium channel blockers,

spreading cortical depression, inflammation, brain hypoxia and substance P. Unlike the

previous test case, we are unable to achieve high recall. Nonetheless, we obtained im-

portant connections such as epilepsy, calcium channel blockers, adenosine triphosphate,

etc. With regards to this, it should be noted that previous research indicates this to be

a difficult test case [6].

Somatomedin C (SMC) and Arginine (ARG): Somatomedin C (SMC) (also

known as Insulin-like Growth Factor I (IFG1)) is a growth regulating peptide and Argi-

nine is an important amino acid. They both were found to be associated to each other

through the means of growth hormones such as somatotropin and somatostatin. Growth

hormones tend to influence SMC and ARG in turn triggers the secretion of growth hor-

mones.

As it can be observed, in our results, somatotropin is ranked number 1 and somato-

statin is found in top K. In comparison to the prior works [6] which use ad-hoc semantic

types to get these results, our model finds them in a completely automated way.

Indomethacin (INN) and Alzheimer Disease (AD): An important research

question of whether Alzheimer Disease (AD) - a progressive disease that destroys mem-

ory and other important functions, can be treated with an inflammatory agent - In-

domethacin (INN) was explored during 1990’s. Researchers reported that connections

such as Acetylcholine, Membrane fluidity to be important bridging pathways. In our

findings, similar to previous test case, Acetylcholine is ranked 1. Although Membrane

fluidity was not ranked in top K, its derivatives were found at higher ranks. An inter-

esting observation worth mentioning is regarding the term nitric oxide (Rank=3). Al-

though not yet experimentally proven, several papers identified nitric oxide as important

for understanding alzheimers [6]. Moreover, during 2000-2001, there were works [79] that

depicted strong influence of nitric oxide in both Alzheimer’s disease and Indomethacin.
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Schizophrenia (SZ) and Calcium - Independent Phospholipase A2 (CI-

PA2): Schizophrenia is a disease that affects the person’s ability to think, feel and

concentrate. It has been found to be elevated in patients suffering from SZ. After

synthesizing independent works of [80] and [81], Swanson and Smalheiser hypothesized

oxidative stress to be the key connecting term. In our findings, we were able to obtain

oxidative stress indirectly through receptors, adrenergic (PMID: 3820966). Also, much

alike to the previous test case, our top ranked term (glutamates) is found to be heavily

investigated for its influences in treating Schizophrenia (PMID: 20686195) during more

recent years.

Overall, the proposed model was able to identify a majority of true connections at

top ranks. Next, we illuminate on how the availability of dynamic embedding facilitates

visualization of intuitive trajectories.

Evolutionary Trajectories

As our medical knowledge develops, the semantics (medical properties) of medical

evolve, for example, the finding of a new medication or a new cause to a specific disease

would probably result in their medical properties getting more similar. This semantic

evolution is reflected as evolutionary trajectories of medical concepts in the embedding

space. Consider the classic example of Fish Oils (FO) – Blood Viscosity (BV) – Ray-

naud’s Disease (RD), Figure 3.5 shows the two-dimensional projection of the dynamic

embeddings and their evolutionary trajectories using t-Distributed Stochastic Neighbor

Embedding (t-SNE) [82]. As it can be noticed, initially in 1953, all three concepts were

at different positions, but, as the research over these topics increased in parallel, their

implicit semantics started getting closer, making them very close to each other in 1983.

This evolutionary behavior eventually in 1986 led to their co-occurrence for the first

time in a research article.

Quantitative evaluation

In the previous subsection, we discussed the capability of proposed model to predict

novel associations much ahead of their real discovery time. The focus of this section

is to measure the overall quality of ranked set. To do so, we need a ground truth.

Unfortunately, there is no standard ground truth available, therefore, a ”supposed”

ground truth (based on the documents published after the cut-off date) is generated.
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Figure 3.5: An example of the evolutionary behavior of MeSH embeddings.

As an example, consider test case ”FO-RD” whose cut-off year is 1985, so based on the

documents in 1985-2016, the ground truth intermediate terms k are ranked according

to:

gt(k) =
#(k, “FO”) + #(k, “RD”)

#(k)
, (3.11)

where #(i, j) is the number of times terms i and j co-occured, and #(i) =
∑

j #(i, j).

Hence, the ranked hypotheses can be evaluated by measuring the Spearman’s rank

correlation with the ground truth set. We compare the proposed DME model with

three baselines:

• Graph [83]: Graph is a distributional-graph theoretic approach and we imple-

mented our own version of it. This approach uses a combination of graph-based

global and local measures to rank the bridging terms between a given pair of input

concepts.

• Static: Static refers to the standard word2vec embeddings [16], trained on the

entire corpus without respecting the temporal information.

• Transformed-CBOW (Trans) [68]: In Trans, the embeddings are first trained

separately by factorizing PPMI matrix for each year t, and then transformed by
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optimizing a linear transformation matrix which minimizes the distance between

w(t) and w(t + 1) for the semantically stable words (i.e., those words whose se-

mantic meaning remains relatively stable over the period of time).

The comparison results on the five test cases are reported in Table 3.1, 3.2, 3.3, 3.4

and 3.5. The first column of each table is calculated on the entire ground truth ranked

set. As it can be observed, the proposed model consistently outperforms the baselines.

Analyzing the results further, we gain several insights. First, the improved result ob-

tained by ”Static” over ”Graph” demonstrates the importance of modelling the problem

in latent space. We speculate the reason for this improvement lies in the ability of pro-

posed model to capture implicit connections in an effective manner. Second, leveraging

the temporal component of biomedical domain proves crucial. This is validated by the

improvement in results for both dynamic embedding approaches (Trans and DME) as

compared to ”Static” alone. Notably, the reasonable performance for ”Trans” lies in its

ability to align latent space using frequent words. As the semantic of meaning of such

frequent words (example: ”humans”, ”male”, ”female”) tend to remain relatively stable

over time, they act as good ”anchors” to bridge distinct latent spaces [68]. While this

provides an important insight, yet, as it can be observed the performance of ”Trans”

is still lower than that of the proposed model. We believe this is because of the high

quality alignment of embeddings achieved by the proposed model. In this regard, one

important point to note is that the proposed framework performs ”smoothing” over all

the words, whereas, the ”Trans” performs alignment using only a set of frequent words.

To example with an illustration, consider the case shown in Figure 3.5, in this example

the semantic meaning of medical concept ”blood viscosity” evolves from nephritis (1953)

→ erythocyte aggregation (1968) → thromboangitiis obliterions (1983) over the period

of time. Such uniform nature of evolution cannot be precisely captured by alternate

dynamic embedding methods such as ”Trans” because they do not perform any kind of

”smoothing”.

For other prior works, as they were performed under different experimental settings

and a complete ranked set is difficult to obtain, a direct comparison with their results

cannot be performed.
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Table 3.1: Spearman’s Correlation for FO-RD.

Methods Top 1505 Top 500 Top 100 Top 20

Graph 0.236 0.142 0.086 -0.266

Static 0.423 0.429 0.440 0.055

Trans 0.426 0.429 0.450 0.060

DME 0.430 0.430 0.460 0.066

Table 3.2: Spearman’s Correlation for MIG-MG.

Methods Top 3976 Top 1500 Top 300 Top 200

Graph 0.203 0.035 -0.023 0.013

Static 0.351 0.186 0.161 0.152

Trans 0.354 0.193 0.169 0.163

DME 0.357 0.201 0.178 0.174

3.3.2 Use-Case II (Ontology Expansion)

In this section, we present the experimental results for the second use case of Ontology

expansion. In our literature review, we found that there is almost no (besides one

exception [71]) existing work on ontology expansion optimized for MeSH. This sole prior

work cannot handle the newly added MeSH nodes as those nodes have no occurrence

before, thus a direct comparison with their results cannot be performed. In order to

compare and evaluate our results, we implemented the following supervised learning

models as our baselines: Support Vector Machine (SVM) [84], Random forest [85] and

Logistic regression [86]. Before we plunge into the details of quantitative evaluation,

we first illustrate how the model facilitates in capturing the semantic density change of

medical concepts.
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Table 3.3: Spearman’s Correlation for INN-AD.

Methods Top 5351 Top 2500 Top 500 Top 100

Graph 0.188 0.036 0.051 0.023

Static 0.163 0.139 0.224 0.230

Trans 0.165 0.141 0.232 0.235

DME 0.168 0.144 0.239 0.239

Table 3.4: Spearman’s Correlation for IGF1-ARG.

Methods Top 7599 Top 4000 Top 400 Top 300

Graph 0.266 0.185 0.063 0.063

Static 0.307 0.192 0.169 0.172

Trans 0.313 0.195 0.182 0.181

DME 0.319 0.197 0.196 0.183

Table 3.5: Spearman’s Correlation for SZ-CI,PA2.

Methods Top 519 Top 100 Top 50 Top 20

Graph 0.121 -0.244 -0.034 0.058

Static 0.317 0.362 0.176 0.202

Trans 0.319 0.392 0.197 0.312

DME 0.327 0.412 0.247 0.373

Semantic Change of Medical Concepts.

The semantic change of a medical concept refers to the amount of semantics that the

concept carries or around that concept, manifested as the compactness in its neigh-

borhood in the embedding space. The evolving body of scientific literature causes the

addition of new semantically related terms, and the semantic association of a medical

concept to drift with other pertinent concepts, thereby increasing its semantic density.

For illustration, consider Figure 3.6, which shows the semantic density change of medical
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concept “p38 Mitogen-Activated Protein Kinases”. The red dot represents this medical

concept and the black dots represent its top 10 closest neighbor terms in the embedding

space. As it can be observed, over the passage of time, the region around the concept

become more and more dense. We believe this escalation in semantic density gives rise

to the need for a higher level of specificity, thus resulting in concept expansion.

Figure 3.6: Evolving semantic density of a medical concept.

Experimental Setup.

Our dataset for evaluation is the MeSH releases from 2001 to 2016. Firstly, it should

be noted that although MeSH exists since 1963, it is only since 1999 that it has been

systematically maintained [71]. The training samples are generated year-wise. Now, as

the problem is a classification task, for each year, the dataset is first split into positive

samples and negative samples. A positive sample {term i, time t} means term i expands

at time t, while a negative sample {term i, time t} means term t doesn’t expand at time

t. The number of negative samples is much larger than the number of positive samples.

Therefore, we randomly select an equal number of negative samples as the positive

samples to make the dataset balanced. Then we perform 10-fold cross-validation.

Results and Discussion.

In Table 3.6, we report the micro-averaged Precision, Recall and F1-score for the pro-

posed framework and baselines. Note that for this problem, we calculate Precision,

Recall and F1 for both the positive and the negative class. Positive class refers to
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the case when a term i expands at time t and negative class refers to the case when

the term i does not expand at time t. The final reported results are the average of

these two classes. Analyzing results further, figure 3.7 shows the yearly performance

of the models over the last 15 years in terms of F1-score. The reported results show

that EME is able to predict the concept expansion with F1-score reaching 0.90 in the

year of 2014. Now, as the main focus of this work is to demonstrate the efficacy of

the temporal features used, we examine our results under three conditions - a) with

only literature based temporal features, i.e., dynamic MeSH embeddings and temporal

entropies (EME-literature), b) with only temporal structural features (EME-structure)

and c) with the combination of both (EME). Through this kind of analysis, we intend

to study and quantify not only the benefits of the various feature set in our system but

also understand the scenarios in which a particular feature set tends to be more useful.

Figure 3.7: F-score comparison of proposed model with baselines

For EME-literature, it can be observed from Table 3.6 that it performs better than

SVM and logistic regression. Its performance is comparable to the best baseline Random

Forest. For EME-structure, we implement the model using only temporal structural

features. As shown in the results, EME-structure surpasses all the baselines. Upon

further inspection, we observe that the continuous evolution trend of the topology plays

a crucial role to simulate concept expansion. Finally, we probe the results by aggregating

both the structural and the literature based features. The result of EME achieves the

best performance. Interpreting the reported results further from a broader perspective,

we believe that the boost in performance is due to the ability of the proposed model

to capture temporal dynamics of medical concepts. The escalation in semantic density
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Table 3.6: Prediction results

Precision Recall F1

SVM 0.576 0.576 0.575

Random Forest 0.701 0.678 0.687

Logistic Regression 0.574 0.574 0.573

EME-literature 0.640 0.622 0.631

EME-structure 0.696 0.696 0.694

Trans-ALL 0.727 0.721 0.724

EME 0.733 0.745 0.739

and usage diversity gives rise to the need for a higher level of specificity, thus analyzing

all the temporal features together yields a better result. As a consequence, it can be

substantiated that the temporal dynamics of a medical concept play a crucial role in

their probable expansion.

Having demonstrated the importance of leveraging the temporal component for this

particular task, next, we are interested in examining the quality of ”dynamic embed-

dings” itself. To do so, we generated temporal embeddings using an alternate dynamic

embedding approach (i.e., transformation based approach [68]) and utilized them as

features for this task. The results obtained are reported in Table 3.6. Notably, ”Trans-

ALL” achieves better performance than the baselines such as SVM, Random Forest and

Logistic regression. This observation reinforces the importance of leveraging temporal

dynamics for tasks such as Ontology expansion. Nevertheless, as it can be seen from the

Table 3.6, the overall highest performance is achieved by the proposed model (EME).

Similar to the previous use-case of hypotheses generation, we speculate that this is

because of the higher quality of alignment achieved by the proposed model; thereby,

encapsulating the temporal dynamics at a much granular level.

3.4 Related Works

Improving distributed representation of words has been an important problem in the re-

search area of NLP [25]. As a consequence of advances made in the research area of deep

learning, recently, a series of studies [25, 56, 16] have applied neural network inspired

models to learn the distributed representation of words. Collobert et al. [56] proposed

a deep learning based framework that aims to learn distributed representation of words
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useful for task such as named-entity recognition and semantic role labeling. Similarly,

[58] proposed a recursive neural tensor network to improve the performance in the task

of sentiment analysis. More recently, studies such as [16] and [17] proposed two scal-

able language models, namely, word2vec and Glove. These models are unsupervised in

nature and trained on large text corpora. Generally speaking, these models maximize

the log likelihood of each word given its context words within a sliding window. Apart

from capturing implicit semantics at a finer level they also provide special analogical

features such as vec(”ibuprofen”) - vec(”pain”) ≈ vec(”treats”). While these models

made substantial strides in this area of study, yet, almost all of them ignored the tem-

poral dynamics of concepts. In this study, we aim to learn the time-aware distributed

representation of words by modelling the problem in a dynamic setting.

To mitigate the limitations of a static domain, a few recent studies [68, 67] have

taken initial steps towards incorporating the temporal aspect in their language mod-

els by adopting a two-step approach: a) compute the static word embeddings in each

time-frame independently and b) find a way to align them. A key challenge in these

approach is to achieve the alignment. To do so, [67] found a linear transformation of

words between any two time slice by solving a least squares problem of k nearest neigh-

bor words. Another study [68] utilized semantically stable words - those words whose

meaning do not change between the two time slices - as anchor points to compute the

linear transformation. [66] imposed the transformation to be orthogonal, and solve pro-

crustes problem between every two adjacent time slices to perform alignment. While

these studies have substantiated the importance of considering time-specific semantics

and are able to capture the temporal change in an effective way (particularly in ”on-

line settings”), however, they do not perform any kind of smoothing. To address this,

in [23], we proposed a joint optimization based approach, wherein, the embeddings and

alignments are learned simultaneously. Furthermore, we perform smoothing over the

learning process that allows us to leverage the correlation between embeddings at suc-

cessive time-stamps and learn ”smooth” evolutionary trajectories. More recently, few

studies such as [70, 69] also proposed a joint modelling based approach, nevertheless, we

differ from them in several aspects. First, the probabilistic approach proposed in [70]

requires a ”sequence” information of words present in the natural language text. How-

ever, in the current problem of interest (and perhaps several other real-world scenarios),

the word sequence information is not available and the medical concepts are assigned to

their respective articles simply as ‘bag-of-words’. Thus, to handle this distinct problem
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setting, in this study we adopted a bilinear regression based model that exploits the

statistical co-occurrence information and generates quality word embeddings. Second,

in comparison to [69], our core objectives differ. In this study, we aim to understand the

semantic evolution of medical concepts and capture their true meaning in vector repre-

sentations that are useful for a multitude of knowledge discovery tasks in the medical

domain.

In another line of research, few studies from the research area of temporal topic

modeling [87] and temporal information retrieval [88, 89] recognized and attempted to

tackle this problem of quantifying semantic change. In [87], the authors proposed a

probabilistic approach to develop and analyze the temporal evolution of topics. Sim-

ilarly, [88] proposed a LDA inspired model to capture the low-dimensional structure

of change of data over time. More recently, [89] used brownian motion to model the

temporal change of latent topics through a time-stamped collection of documents. Our

study has a connection to them in a sense them we too are interested in studying the

semantic evolution of concepts, nonetheless, our objectives differ. We aim to learn the

time-aware vector representation of concepts from large-scale sequential text, whereas,

their goal is to detect emerging topics.



Chapter 4

Learning Interpretable Word

Embedding

4.1 Introduction

Modelling the lexical semantics behind a word has acquired significant interest in the

recent years [25, 18, 90]. As a consequence of advances made in the research area of deep

learning, more recently, practitioners in the community have applied neural network in-

spired language models (commonly known as word embedding models [18]) to model the

latent structure present in the text, and produced more nuanced form of word represen-

tations. Simply put, these word embeddings models learn to generate dense, continuous,

low-dimensional vectors representation of words from raw, unannotated corpora in a

completely unsupervised manner. Such succinct form of representation thesedays have

become the “de-facto” word representation for a multitude of downstream bioNLP tasks

such as disease diagnosis [91], drug re-purposing [92] and hypotheses generation [23, 22].

Despite their considerable success and widespread adoption, a drawback of these

word embedding models lie in their inability to provide meaningful interpretation of

the individual embedding dimensions. This is problematic because even though we can

comprehend the underlying mathematical principles of such models, it is still important

to understand what exactly do these dimensions signify? What kind of properties are

being (and not being) captured by these dimensions? As a simple illustration, consider

the example of medical concepts “Insulin” and “Diabetes mellitus” shown in Figure 4.1.

53
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Figure 4.1: The original word embedding space (left) and the transformed embedding

space (right).

As it can be observed, the current word embedding models can capture the seman-

tic proximity between these concepts, yet, they cannot answer questions like: “To what

extent the medical concept insulin captures the property of being a pharmacological sub-

stance or a hormone ?”. In contrast, with the aid of proposed transformation technique

(Figure 4.1), we can precisely answer such questions. The main advantage of having

such form of post-hoc reasoning is that these interpretable representations might not

only aid in generating explainable answers to the sensitive downstream medical tasks

such as disease diagonosis [91], but also provide us with keen insights into the nature

of state-of-the-art embedding models themselves. Motivated with these speculations, in

this study, we consider the problem of improving the interpretablity of words embed-

dings learned over a particular text corpora.

Unlike numerous studies done on generating vector representations, literature on

learning interpretable word embeddings is relatively scarce: [93, 94, 95]. In general, the

key idea of these prior studies to improve the interpretability of vector representations

is by inducing sparsity in the word vector dimensions [93]. Arguably, these studies made

substantial advances, however, they still have a few inherent drawbacks. First, either

these models cannot be learned over pre-trained word vectors available from the widely

used embedding models such as Word2Vec [18]/GloVe [17] or they produce vectors with

much higher dimensions. Second, these studies did not attempt to elucidate the partic-

ular conceptual notion (property) being carried within these individual dimensions.

To mitigate these aforementioned issues, in this study, we systematically formulate

this problem of improving the intepretability of word embeddings. Basically, the core

idea of the proposed model is to leverage upon the rich categorical/taxonomic knowledge

present in the biomedical domain and learn a transformation matrix being sensitive to
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them. As the available categorical knowledge is manually curated and maintained by

subject-matter-experts, our conjecture is that the interpretability of word embeddings

in terms of these human-defined categories will reflect more proximity to the human

level interpretations. Towards this end, we propose a novel framework that first in-

fers the vector representation of categorical concepts and then learns a transformation

matrix that is able to transform the original word embeddings to a new space where

these aforementioned categorical concepts act as their basis. Besides, the learning of

transformation matrix is performed in such a way that the expressive features of original

vectors are retained.

In this study our contributions can be summarized as:

1. We propose a novel framework for interpreting word embeddings, that is capable

of transforming any pre-trained word embedding to a new space such that the

hidden conceptual meaning of individual dimensions are revealed. To the best

of our knowledge, we are among the first to study the interpretability of word

embedding in the medical domain.

2. By leveraging upon the principles of dictionary learning and exploiting the cate-

gorical knowledge present in the biomedical domain, the proposed technique learns

to infer the categorical representations at a granular level.

4.2 Related Work

Improving interpretability of word embeddings has been an active area of study over the

past few years [96, 95, 93]. The initial study [96] proposed a non-negative matrix fac-

torization based technique, namely, Non-Negative Sparse Embedding (NNSE) to learn

the interpretable embeddings. While this study elucidated the importance of studying

interpretability of word embeddings, yet, they were shown to suffer from memory and

scale issues. To alleviate this, [97] proposed to learn interpretable embeddings in an

online manner. In doing so, their key idea was to adopt a neural network approach to

learn the word embeddings, and then employ an adaptive gradient descent to accelerate

their convergence.

Building upon the ideas of aforementioned studies, [93] proposed a principled sparse

coding technique to improve the interpretability of word vectors. Basically, they utilized
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sparse coding in a dictionary learning setting to obtain longer, sparser and overcom-

plete vectors. A potential drawback of this study is that it produces vectors of very

high dimensions. More recently, another study [98] adopted l1 regularization into their

learning objective to induce sparsity and learned interpretable vectors. In general, the

central notion behind these sparsity inducing techniques is that they aim to increase

the sparseness in vectors, that then leads to better separability, thereby, improving the

interpretability. While crucial insights were gained from these aforementioned studies,

they still did not focus on explicating the precise conceptual/categorical meaning being

carried within the individual dimensions. In this study, by relying upon the principles

of categorical theory [99] and correspondingly exploiting the rich categorical knowl-

edge present in the medical domain we attempt to study the interpretability of word

embedding dimensions at a more granular level.

The work much akin to ours is a recent study done by [95]. In this study, the authors

proposed to rotate the original vector dimensions in such a way that the rotated vectors

are interpretable. While close in spirit, we differ from this study in two aspects. Firstly,

the objectives are different. We aim to study the interpretability of words embedding

in the medical domain by leveraging upon the categorical knowledge. Secondly, our

problem is more difficult in a sense that the we aim to particularly illuminate the

implicit conceptual notion remaining hidden within these individual dimensions.

4.3 Overview of Proposed Model

Recall that the input to our system is a set of pre-trained word vectors of medical

concepts, and the goal is to learn a transformation matrix that projects the input

embeddings to a new space wherein the transformed embeddings are both interpretable

and retain their original expressive features.

To accomplish our first objective (interpretability), we focus on exploring the prin-

ciples of category theory [99] and aim to interpret the embeddings in terms of these

categories. Such categories in the biomedical domain refer to a broad subject themes

that provide a consistent categorization of the medical concepts [100]. These categories

in addition to possessing a conceptual meaning also have dictionary definitions associ-

ated with them. By taking advantage of this expert knowledge, we infer their categorical

representations. These inferred categorical representations then further act as the basis
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for our new space. Once this new space is defined, we then learn a transformation ma-

trix from the original embedding space to this new target space. This transformation

matrix in particular allows us to achieve interpretability for the input embeddings in

the transformed space.

Next, to achieve our second objective (i.e., retaining the expressive features present

in the pre-trained vectors), a form of orthogonal constraint is imposed on the learned

transformation. Such form of imposition allows us to minimize the possible loss of

information; thereby, aiding us to achieve our second objective of retaining the expressive

information present in the pre-trained vectors. Further details on these are provided in

Section 4.4.1 and Section 4.4.2.

Last but not the least, we wish to highlight that one crucial advantage of adopting

this transformation based technique is that it provides the proposed model an added

flexibility of acting as a “plug-and-play” module for other downstream tasks. Because

the proposed approach does not jeopardize the word embedding training process, it

allows end-users the liberty of choosing their own method of generating word embed-

dings and then utilize the proposed model as a means of post-processing step to gain

interpretability.

4.4 Methodology

Our methodology section is divided into two sections. Section 4.4.1 describes the tech-

nique to infer the categorical representations. Then, Section 4.4.2 presents the details

on how the transformation matrix is learned, and further discusses on how it induces

the interpretability for word embeddings.

4.4.1 Inferring Categorical Embeddings

To infer the embeddings of categories, we leverage upon the dictionary definitions pro-

vided by the subject matter experts [100]. As an illustration, consider the definition of

category “Disease or Syndrome” shown below:

Disease or Syndrome: “A condition which alters or interferes with a normal pro-

cess, state, or activity of an organism. It is usually characterized by the abnormal functioning

of one or more of the host’s systems, parts, or organs. Included here is a complex of

symptoms descriptive of a disorder. Any specific disease or syndrome that is modified by

such modifiers as acute, prolonged, etc. will also be assigned to this type. If an anatomic
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abnormality has a pathologic manifestation, then it will be given this type as well as a

type from the Anatomical Abnormality hierarchy, e.g., Diabetic Cataract”.

As these definitions are very precise, we leverage this expert knowledge and aim to

infer the representation of “Disease or Syndrome”. To do so, we first extract the medical

concepts from their definitions and then use their already available word representations

to infer their categorical meaning. Note that these medical concepts (underlined in the

above example definition) are also present in our input pre-trained embeddings. Now,

as the number of concepts contained in these categorical definitions is limited, this

inevitably leads to a coarser estimation of their categorical meaning. To overcome

this issue, we expand the set of associated medical concepts based on the external

knowledge graph present in the bio-medical domain (the effectiveness of incorporating

the neighbourhood set is validated in the experimental section). In this knowledge

graph, the medical concepts are arranged in the form of a hierarchical tree (i.e., IS-A

relationships). As such, the distance between the concepts in this tree denotes their

semantic proximity. Building upon this premise, we assume that the concepts closer to

each other in the hierarchy share greater information and thus the subtle cues obtained

from the local neighborhood of concepts present in dictionary definitions might improve

the overall categorical representation.

Formally, let C ∈ Rd×m denote the overall collection of categorical embeddings, d

denote the embedding dimension and m denote the number of semantic categories. Now,

to incorporate the above discussed local neighborhood information for concepts present

in the dictionary definitions, a simple graph based scenario is considered. In this graph,

nodes refer to the set of medical concepts and an edge is formed between concepts,

if there is an hypernyms/hyponyms relationship between them. Let Vi = {vi1, ..,vij}
denote the set of embedding vectors for medical concepts contained in the definition of i-

th categorical concept, and Neigh(vij) denote the corresponding set of local neighbours

(siblings, parents and children) for the medical concept vij .

Our objective now is to infer the set of categorical embeddings Ĉ = [ĉi, ..., ĉm] such

that the categorical vectors are both close to the concepts present in their dictionary

definitions and also to the local neighbours of the dictionary concepts. To achieve this,

we propose the following loss function to infer their categorical representations:

Lc =

m∑
i=1

[
J∑

j=1

(||ĉi − vij ||22 +
∑

k∈Neigh(vij)

α||ĉi − vijk||
2
2)

]
(4.1)
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where J denotes the number of dictionary concepts present in the particular category

definition, and vij , vijk represents the embeddings of dictionary concepts. The value

of α is empirically set to 0.1 and is used to control the relative strengths between the

concepts explicitly present in the dictionary definitions and their local neighbours. As

it can be observed, the formulation is convex and its solution can be found by solving

a system of linear equations. We minimize the categorical loss function and infer the

categorical embeddings as follows:

Ĉ =Ĉ Lc (4.2)

The entire set of categorical embeddings is denoted as Ĉ = [ĉ1, ..., ĉm], and the

closed form solution for ĉi is shown below:

ĉi =

J∑
j=1

(vij + α
∑

k∈Neigh(vij)

vijk)

J + α
J∑

j=1

Kij
(4.3)

where Kij represents the size of Neigh(vij).

4.4.2 Learning Transformation

To be precise, we expect our transformation technique to meet the following two ob-

jective: 1) the implicit conceptual property within the individual dimensions should be

enlightened and 2) the transformation should be carried out in such a way that the resul-

tant embeddings retain the information present in the original vectors. To accomplish

the first goal, the idea is to attain a target space (after performing transformation) with

the basis as the semantics of inferred categorical representations (refer Section 4.4.1).

The corresponding value on individual dimension quantifies the amount of conceptual

property being captured within these individual dimensions. Let T : Rd → Rm represent

a linear transformation, and the transformed categorical embeddings are represented as

T (Ĉ) = [T (ĉ1), ..., T (ĉm)]. Since the transformed categorical embeddings act as a basis

of the new space and these basis are also linearly independent unit vectors in the new

space, an identity matrix could be used as a target for the transformed basis. To achieve

this, we formulate the transformation as an optimization problem shown below:

min
W
||WT · Ĉ− I||22 (4.4)
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Here the transformation matrix is denoted as W and I refers to an identity matrix.

Note that this step acts as a soft regularization for linear independence, as in the real-

word scenario, the distinct categorical embeddings may not be strictly independent of

each other. In essence, this particular step of categorical basis conversion plays a vital

role in inducing the interpretability in word vectors, and also allows us to explicitly

define the meaning of the individual dimensions with their categorical types; thereby,

enabling us to achieve our objective of performing dimension-wise interpretability.

Next, to meet our second objective of preserving the expressive features, we propose

to regularize the transformation matrix by an orthogonal constraint. This is because

of the peculiar property of orthogonal transformation to preserve the bilinear form i.e.,

Euclidean distance and Cosine in the latent space [95]. Since our transformation is from

the original embedding space to an interpretable space, this may result in the change

in number of dimensions; thereby, causing a possible information loss. To handle this,

we adopt the principles of orthogonal transformation and mould that into our proposed

optimization framework. This allows us to preserve the information particularly relevant

to the categorical dimensions. The proposed orthogonal constraint is shown below:

min
W
||WT ·W − I||22 (4.5)

Now, since the focus of this study is to find a transformation matrix W ∈ Rd×m

that transforms the original pre-trained embeddings from d dimensional space to m

dimensional space (that has inferred categorical embeddings as the basis), and the

corresponding transformation matrix also attempts to preserve the information, the

final objective to be minimized becomes the combination of these two objectives:

Lw = ||WT · Ĉ− I||22 + β||WT ·W − I||22 (4.6)

Here β (empirically set to 0.2) controls the relative strengths of associations. To

solve this, we take the gradient of our objective function (Equation 4.6) with respect to

each of the model parameters and then adopt stochastic gradient descent to update our

transformation matrix W :

W ← W − η ∂Lw

∂W
(4.7)

where η (empirically set to 0.001) is the learning rate for gradient descent. Overall, the

fulfillment of two above discussed objectives allows us to achieve our goal of inducing the
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interpretability in vector representation and concurrently retain the original expressive

features.

4.5 Experiments

The focus of this section is to demonstrate the efficacy of the proposed model in im-

proving the interpretability of the pre-trained word embeddings. In doing so, we first

need a set of word embeddings trained on a massive corpora. For this purpose, we

choose MEDLINE1 - the largest available bibliographic repository in the domain of

biomedicine. At this time of writing, it contains more than 24 millions records (arti-

cles) primarily from the research area of life sciences and biomedicine. Every article in

MEDLINE is tagged with a set of special keywords known as Medical Subject Headings

(MeSH) terms. Because they are assigned by subject-matter-experts, they find their

utility in a variety of biomedical tasks. Thus, we believe that the use of MeSH terms

(and correspondingly release of interpretable MeSH embeddings2 ) will have immediate

practical benefits to the community.

Based on the full-scale MEDLINE corpus (and correspondingly MeSH terms), we

use CBOW [16] word embedding model to train our embeddings. Additionally, as

means of an alternate baseline, we also train another prominent word embedding model,

namely, GloVe [17] on the same MEDLINE corpora. As suggested by the previous

studies [18, 17], the number of embedding dimension is set to 300. Also, note the total

number of semantic types (m) available is 133 [100].

4.5.1 Interpretability

(1) Qualitative Assessment of Interpretability

To perform the qualitative assessment of our results, we borrow experimental settings

from the interpretable word embeddings literature [95, 93]. Specifically, the idea in

qualitative evaluation is that if a particular vector dimension is interpretable then the

top ranking words (from the entire vocabulary) for that dimension should display a

form of semantic coherence. To examine this, we select four examples of biomedical

significance [22, 23]. The selected examples are the following: a) Diabetes mellitus, b)

1 https://www.nlm.nih.gov/pubs/factsheets/medline.html
2 https://github.com/kishlayjha/InterpretableMedicalEmbeddings

https://github.com/kishlayjha/InterpretableMedicalEmbeddings
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Migraine disorders, c) Alzheimer’s disease and d) Insulin. For each of these examples,

we examine their top participating dimension and then look up for the top words with

highest value in the same dimension. Table 4.1 presents the results for both pre-trained

word embedding models (both CBOW and Glove) and the proposed model. As it

can be observed, the semantic grouping of words resulted by CBOW/Glove is more or

less arbitrary. In contrast, the results obtained by our transformed embeddings yields

a meaningful semantic coherence. As an illustration consider the case of “Diabetes

mellitus”. For the proposed model, it can be observed (refer Table 4.1) that most of the

terms in the group are closely related to the various aspects of “Diabetes” itself and the

remaining few are related to the concept of “Disease” in general. In our transformed

embeddings, we find the category name of these terms to be “Disease or Syndrome”.

Recall that as our transformation matrix is augmented with the categorical information,

every dimension in the transformed vector is regularized by a particular categorical

concept.

Another point we wish to highlight is the ability of the proposed model to answer

question like: “To what extent a medical concept (e.g., Insulin) encodes the semantics

of category Pharmacological substance or a Hormone within their dense dimensions”.

Note that the transformed embeddings have numerical values in their individual dimen-

sions. These numerical values precisely help us in answering such aforementioned kind

of questions. As an illustration, consider the case of “Insulin”. In the medical domain,

“Insulin” acts both as a pharmacological substance and a hormone. In our results, we

obtained highest score for insulin in the category name - “pharmacological substance”

and a relatively higher score in the category name - “hormone”. From this result, one

can speculate that the vector representations (generated by the state-of-the-art embed-

ding models) of insulin captures the conceptual property of being a “pharmacological

substance” more than that of a “hormone”.

In essence, from the above discussed qualitative assessment it can be deduced that

the proposed model is able to elucidate the meaning of individual dimensions and po-

tentially shed insights into the notion of conceptual properties being captured by the

state-of-the-art embedding models too. While informative, this form of qualitative as-

sessment still does not inform us about the overall quality of the result set. To this end,

a quantitative evaluation has to be performed.

(2) Quantitative Assessment of Interpretable Embeddings
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Table 4.1: Qualitative evaluation of the original and generated embeddings

Concepts CBOW Glove Proposed

Diabetes mel-

litus

25-hydroxyvitamin d 2, 3-

hydroxyacyl coa dehydro-

genases, whiplash injuries,

youth sports, abdominal

fat

humans, xanthomatosis,

cerebrotendinous, glyco-

gen, yang deficiency

diabetes insipidus, dia-

betes complications, diet

therapy, digestive system

diseases

Indomethacin acute kidney injury, acute

disease, “administration,

oral”, “abortion, septic”,

acidosis

acetohexamide, “adminis-

tration, intravenous”, ag-

glutination, albumins, “4-

aminobenzoic acid”

endothelin-1, endothelins,

endothelin-1, endotoxemia,

“endothelin-converting en-

zymes”

Alzheimer

Disease

ac133 antigen, acinar cells,

ablation techniques, ab-

ducens nerve diseases, aci-

nar cells

“active transport, cell

nucleus”, “acid sensing

ion channels”, “abducens

nerve diseases”, “acinar

cells”, “actins”

amyotrophic lateral scle-

rosis, amyloidosis, “amy-

loidosis, familial”, amy-

loid neuropathies, “amy-

loid neuropathies, familial”

Insulin alpha-msh, artemia, an-

abolic agents, antithyroid

agents, appetite

appetite, acromegaly,

adrenalectomy, anabolic

agents, andropause

insulin antagonists,

insulin-like growth fac-

tor binding protein 1,

insulin-like growth factor

binding protein 2, lacta-

tion, lactation disorders

In order to perform a quantitative assessment, we analyze our results on a task much

akin to semantic categorization. In more detail, every medical concept present in our

vocabulary belongs to a certain number semantic categories. For instance, the medical

concept “Diabetes mellitus” belongs to the semantic category of “Disease or syndrome”.

In this manner, every concept present in the dictionary is assigned a semantic category

from the range of one to five. We probe whether the dimension with highest score

(i.e., semantic labels predicted by proposed model) match the true semantic labels or

not. Table 4.2 reports the accuracy for our Top-K dimensions. Now, as the previous

studies do not perform dimension-wise interpretability, a direct comparison with their

approach cannot be performed. For the sake of comparison, we developed a baseline
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Table 4.2: Quantitative evaluation of semantic categorization task

Baseline Accuracy

(K=5)

Accuracy

(K=10)

Accuracy

(K=15)

Supervised 0.732 0.857 0.925

Proposed model (without neighbours) 0.423 0.557 0.652

Proposed Model 0.522 0.683 0.762

Table 4.3: Absolute values of correlation of the five measures relative to human judg-

ments - MeSH-1

Measure Physician Expert

CBOW 0.8174 0.7632

GLoVe 0.8057 0.7541

Proposed model 0.8015 0.74328

(i.e., Supervised) that uses all the explicit semantic labels to train a linear model (using

pre-trained emebddings) and reported the results in Table 4.2. As it can be observed,

the proposed model (though unsupervised in nature) still maintains a reasonable per-

formance as compared to the supervised model. Note that in our proposed model we

do not use any explicit semantic labels. Now, in order to explore the effectiveness of

incorporating the neighbour sets of medical concepts from the knowledge graph (refer

Section 4.4.1), we evaluate the proposed model (with/without neighbourhood set) and

report results. As it can be observed, the proposed technique of categorical inference

significantly outperforms the baseline. We believe this is due to the ability of the pro-

posed technique to obtain subtle cues from the informative neighbours of the dictionary

concepts that ultimately improves the quality of categorical representation.

In summary, from Section 4.5.1, we can conclude that the proposed model has the

capability to generate interpretable embeddings that have high proximity to the human

intuition. While this accomplishes our core objective, we also aim to ensure that the

information present in original pre-trained word vectors is retained in the transformed

embeddings. To evaluate this, in Section 4.5.2, we report and analyze our results on the

biomedical concept similarity/relatedness tasks.



65

Table 4.4: Absolute values of correlation of the five measures relative to human

judgments- MeSH-2

Measure Human expert

CBOW 0.7677

GLoVe 0.7586

Proposed model 0.7789

4.5.2 Expressive Performance

In this section, we inspect the expressive performance of our transformed embeddings

as compared to the original vectors.

(1) Evaluation Datasets

To examine the ability of transformed embeddings to retain original information, we

choose biomedical concept similarity/relatedness task. The evaluation sets (i.e., MeSH-

1 and MeSH-2) are borrowed from [42] and [43] respectively. Both datasets consist of

30 and 36 concept pairs that were manually rated by human experts indicating their

semantic similarity.

(2) Results and Discussion

MeSH-1

Table 4.3 presents the Spearman (ρ) coefficient values obtained after applying the pro-

posed model on the first dataset (MeSH-1). As it can be observed from the table, the

proposed model performs on par with both CBOW and GloVE and achieves similar

correlation as pre-trained embeddings with both physician’s and experts judgments.

From the results, it can be inferred that the transformed embeddings retain the

features of original vectors. We believe the reason for this lies in the orthogonality

constraint imposed on the learned transformation. Because such form of imposition

leverages the principles of orthogonal transformation (the has unique capability of pre-

serving the bilinear form), the categorical related information loss is minimized.

MeSH-2

Table 4.4 shows the correlation values obtained for the Spearman (ρ) coefficient for

MeSH-2 dataset. Note that in this dataset, the proposed model obtains even higher



66

correlation value as compared to the state-of-the word embedding models. Analyzing

this result further, we believe that the reason for this lies in the capability of the proposed

model to preserve the relevant information related to categorical dimensions in the

transformed space, and correspondingly removing the unrelated information.

4.6 Conclusions

In this study, we proposed a novel framework that induces the interpretability of word

embeddings in the medical domain. Specifically, by leveraging upon the principles

of category theory and rich categorical knowledge present in the biomedical domain,

the model learns a transformation matrix that induces the interpretability of word

embedding dimensions at a granular level. The transformation matrix in particular is

learned in a such a way that any pre-trained input embeddings can be transformed to a

new space where the produced embeddings reveal the conceptual meaning hidden within

their individual dimensions and concurrently posses the expressive features present in

the original pre-trained vectors.
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Chapter 5

Learning Continual

Representations for Bipartite

Networks

5.1 Introduction

Bipartite networks are a special class of complex networks that contain two distinct

types of entities, and the relational ties only exist between entities (or nodes) of differ-

ent types. Many real-world biomedical networks pertain to a native bipartite structure,

where one class of the nodes is usually comprised of cellular components such as genes,

miRNAs or proteins, and the other class is composed of various indicators of human

diseases such as symptoms and drug effects. Effective data analysis on this ubiquitous

network structure can benefit a multitude of practical applications, such as identifying

casual pathways in gene-phenotype networks, predicting new targets for existing drugs

in drug-target networks, and assisting clinical decision making via patient-symptom

graphs [101]. However, traditional network analysis methods suffer from high computa-

tional and space costs. To overcome this challenge, network representation learning, an

area of research that aims to learn low-dimensional vector representations of nodes has

attracted significant attention. These node representations (or embeddings) are learned

such that the connectivity structure of the network is preserved in the learned vector

space. Recent literature has intensively studied this topic and various approaches rang-

ing from matrix factorization [102], random walk based [103] to graph convolution [104]

68
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Figure 5.1: An example of a bipartite network with various topological properties.

have been proposed. While a majority of these approaches have been developed for ho-

mogeneous/heterogeneous networks, some recent studies such as [105] have attempted to

model the special properties of bipartite networks. Despite significant advances made,

the existing approaches still have certain inherent drawbacks. First, the approaches

fail to model the unique high-order structures (e.g, bicliques) present in the bipartite

networks. This is limiting because bicliques are the smallest high-order structures that

characterize the bipartite networks. More importantly, bicliques facilitate a principled

approach to analyze the biomedical bipartite networks as they are capable of addressing

critical biological challenges in the biomedical applications such as biclustering microar-

ray data, identifying common gene-set associations, and integrating diverse functional

genomics data [106, 107]. Second, the existing approaches mainly assume a static set-

ting for networks. However, real-world biomedical networks are continually evolving.

To address these issues, we propose a new representation learning approach that accu-

rately preserves the topological properties of bipartite networks, and at the same time

efficiently updates the node representations in consecutive network snapshots. To ac-

curately preserve the intricate bipartite structure, we design a customized autoencoder

that maximally reconstructs the structural proximity between nodes in the learned em-

bedding space. Figure 5.1 presents an illustrative example of a bipartite network with

various structural components. Here, the vertexes of distinct node types that are linked

by a direct edge (e.g. [a,y]) characterizes the local structure. In contrast, the vertices

that share common neighbors (e.g. [a,b]) but have no direct link constitute the global

structure. Finally, the vertices (e.g. [a,b,x,y]) that participate in the 2 × 2 sub-graph

represents the biclique structure. To effectively encode these structural properties into

node representations, we design a dedicated objective function for each component and

then propose a joint inference mechanism.

Meanwhile, to efficiently generate the representations in a dynamic setting, we de-

sign an incremental learning strategy that interleaves the proposed structure-preserving
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technique with the central principles of continual machine learning [108]. Specifically,

the approach considers the successive network snapshots as a sequence of related tasks

and carefully updates the node representations affected by the new snapshot, while pre-

serving the representations that are well-trained previously. The main challenge in this

strategy is to automatically identify the parameters that are subject to retraining and

retention. To address this, we propose the following: at every new network snapshot,

we quantify the importance of parameters according to their contribution to the loss

function. Then, the important parameters are frozen to preserve the current knowledge

and the remaining are used for future training. This process is iteratively applied to the

consecutive snapshots and the node representations are obtained promptly.

In this research, our contributions can be summarized as:

• We propose a new representation learning approach that is tailored for bipartite

networks. Notably, this class of network has special usability and implications in

the field of network biology and medicine.

• The proposed structure-preserving technique identifies and models the intricate

topological properties (i.e., local, global and biclique) such that the unique bipar-

tite structure is accurately preserved.

• We propose a continual learning scheme that updates the representations in an

online fashion. This strategy greatly improves the computational efficiency of pro-

posed approach whilst accounting for the rapidly evolving nature of the biomedical

bipartite networks.

• Extensive experiments on real-world biomedical datasets through the tasks of

network reconstruction, link prediction, and recommendation validates the effec-

tiveness of the proposed approach.

5.2 Related Work

5.2.1 Network Embedding

For a recent survey on this topic, please refer [109]. The initial NRL approaches mainly

used matrix factorization (MF) based techniques. However, the traditional MF ap-

proaches suffered from scalability issues. To mitigate this, recent NRL research lever-

aged upon the advances in deep neural networks and developed powerful approaches
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such as DeepWalk [110], LINE [111], node2vec [103], and SDNE [112]. Building upon

this research, the authors in [113] proposed an approach named DynGEM that learns

the node representations in dynamic networks. More recently, the authors in [105] pro-

posed an approach named BiNE that models the vertex type information of bipartite

networks. However, we differ from them in two aspects. First, BiNE misses to model the

unique high-order structure (i.e., bicliques) present in the bipartite networks. Second,

BiNE is designed for static networks, and thus is unable to obtain the representations

in a dynamic setting.

5.2.2 Network Embedding In Biomedicine

While the network embedding approaches have been widely evaluated on social and in-

formation networks, their investigation with biomedical networks is recent. In biomedicine,

network embedding techniques have been broadly applied to pharmaceutical data analy-

sis, multi-omics data analysis, and clinical data analysis [101, 114, 115]. Studies such as

[101] introduced DeepWalk [110] to learn the concept representations in heterogeneous

biological knowledge graphs. In another study [114], the authors integrated NLP tech-

niques with network embedding, and demonstrated significant improvement in the task

of drug-disease interaction. While these approaches elucidated the practical benefits

of NRL in biomedicine, they did not factor in the evolving nature of biomedical data.

The proposed approaches continually acquires new information, and correspondingly

updates the node representations over longer time-spans.

5.2.3 Continual Machine Learning

Continual learning [108, 116] is an area of research that is useful when the data arrives

in streams or snapshots. Prior research has studied continual learning in the context of

supervised, semi-supervised, and unsupervised learning. While our research builds upon

the ideas of continual learning, it differs from the existing approaches in two aspects.

Firstly, the goals are different. Unlike the existing studies that mainly focus on multi-

task learning, the proposed approach is designed for single-task incremental settings.

Second, the existing approaches are proposed for computer vision focused embedding

models that mainly utilize the imaging datasets. However, the imaging datasets do not

share the topological properties of the bipartite network datasets. As a consequence, the

computer vision focused approaches cannot be directly applied to the current problem
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Figure 5.2: Continual representation learning framework for bipartite networks: The

figure (left) shows the deep autoencoder model that preserves the intricate bipartite

structure from three perspectives (i.e., global, biclique and local). The figure (right)

shows the input/output expansion and selective retraining mechanisms to update the

representations in an online fashion.

setting.

5.3 Approach

5.3.1 Problem Formulation

Let G = (U, V,E) denote a bipartite network, where U = {u1, ..., un} and V =

{v1, ..., vm} are the two sets of distinct vertices, and E ⊆ U × V defines the set of

links between them. Each edge eij is associated with a weight that denotes the strength

of relationship between connected vertices ui and vj . The weighted adjacency matrix

for G is denoted as A ∈ Rn×m. If eij ∈ E, aij > 0; otherwise, aij = 0. The i-th row

of the adjacency matrix is denoted as Ai = [ai1, ..., aim]. Now, given a series of net-

work snapshots, i.e., G = {G1, ..., GT }, where Gt = (Ut, Vt, Et) and T is the number of

snapshots, the continual representation learning aims to learn a time-series of mappings

F = {f1, ..., fT } such that the function ft maps each node in Gt to a d-dimensional

embedding space.
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5.3.2 Overview of Proposed Model

A promising continual representation learning approach should be able to generate node

embeddings such that the embeddings preserve the intricate bipartite structure and flex-

ibly updates the representations to accommodate the newly available data. To achieve

this, we design a customized autoencoder architecture that reconstructs the bipartite

network structure from three perspectives: a) global structure (Section 5.3.3), b) bi-

clique structure (Section 5.3.4), and c) local structure (Section 5.3.5). Unlike the

existing bipartite embedding approach [105] that is unable to model the non-linear

properties of networks, the proposed approach employs a multi-layer autoencoder archi-

tecture (consisting of non-linear functions) that maps the data into a highly non-linear

latent space and effectively captures the non-linearity. Further, to continually accom-

modate the new data, the proposed autoencoder model is carefully retrained such that

only the representations that are affected by the new network snapshot are retrained

while the remaining are simply retained. Figure 7.2 shows an overview of the proposed

model.

5.3.3 Modeling Global Structure

The global structure of a bipartite network is described by the similarity of node pairs

neighborhood structure. Specifically, this structure attempts to model the implicit rela-

tions between vertices of the same type. For any node of type ui ∈ U , its neighborhood

structure is defined as N(ui). Then, the proximity between two nodes of the same type

U is defined as:

SU
ij =

|N(ui) ∩N(uj)|√
didj

, ui, uj ∈ U, (5.1)

where N(ui) = {vj ∈ V |aij > 0, ui ∈ U} represents the neighbourhood set of node ui.

di and dj refers to the degree of nodes ui and uj respectively. Similarly, for any node of

type vi ∈ V , the proximity between nodes of type V is:

SV
ij =

|N(vi) ∩N(vj)|√
didj

, vi, vj ∈ V , (5.2)

In this way, the implicit relation between nodes is obtained by the similarity matrix

SU (or SV ). Meanwhile, the proximity relationship between vertices is also charac-

terized in the adjacency matrix A. Thus, to obtain a comprehensive representation of

relationships between vertices, we introduce an extended matrix A′ ∈ R(n+m)×(n+m).
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A′ =


SU ... A

. . . . .

AT ... SV


Given the matrix A

′
, the global structure of a node xi ∈ {U ∪ V } is represented by

the vector a
′
i (i.e., xi). This global structure can be modeled by an autoencoder that

consists of two parts: a) encoder and b) decoder. Both parts contain multiple layers

of non-linear function that map the input data to the reconstruction space. Thus,

given an input data X = {xi}n+m
i=1 and reconstructed data X̂ = {x̂i}n+m

i=1 , the hidden

representations for each layer in the encoding procedure is shown as follows:

hi
1 = f(W 1xi + b1),

hi
k = f(W khk−1 + bk), k = 2, ...,K,

(5.3)

where f denotes the sigmoid activation. hi
k denotes the representation of the k-th hidden

layer. W k and bk denote the k-th hidden layer’s weight matrix and bias respectively.

The calculation procedure is reversed for decoder and the hidden representations for

each layer is calculated as:

ĥ
i
k−1 = f(Ŵ kx̂i + b̂k), k = K, ..., 2,

x̂i = f(Ŵ 1ĥ1 + b̂1),
(5.4)

where ĥ
i
k−1, Ŵ k and b̂k denote the hidden representations, weight matrix, and bias term

of the reconstruction layer respectively. The loss function to minimize the reconstruction

error is defined as follows:

Lglob = ||(X̂ −X)⊙B||2F (5.5)

In Equation 5.5, ⊙ denotes the Hadamard product and B denotes the weight matrix.

Each weight vector bi = {bij}n+m
j=1 in matrix B is defined as:

bij =

α > 1, a
′
ij > 0

1 a
′
ij = 0

(5.6)

where a
′
ij is the j-th elements of a

′
i and α is the hyper-parameter. The weight matrix B

is introduced to enforce greater penalty to the reconstruction loss of non-zero elements

than that of zero elements. Overall, the proposed approach exploits the power of deep

autoencoder to preserve the neighborhood structure, thus making them robust to the

sparse nature of biomedical bipartite networks. Notably, the proposed approach is
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different from the existing approaches such as BiNE [105] that perform biased random

walk to characterize the global structure.

5.3.4 Modeling Bicliques

Bicliques are the subgraphs that characterize the smallest cohesive structure in bipar-

tite networks [117]. While modeling the neighborhood structure captures the global

structure, it is important to encode such high-order structures to preserve the overall

structure accurately. To encode these structural units into feature representations, we

first utilize the biclique algorithm [118] to enumerate bicliques and then perform bi-

clique expansion to identify the implicit links. For instance, the expansion of biclique

shown in Figure 5.1 is the following: clique pairs = {(a,b), (x,y), (a,c), (x,y)}. Following

the expansion, we create a clique matrix C, where each element cij is defined as the

following:

cij =

1 if pair (i,j) is present in clique pairs

0 otherwise
(5.7)

Since the vertices participating in bicliques form a cohesive structure, we speculate

that retaining the proximity of participant nodes in the embedding space will enable us

to retain the network structure more accurately. The loss function for capturing this

relationship can be formulated as:

Lbiclique =

n∑
i=1

m∑
j=1

cij ||hi
z − hj

z||22 (5.8)

where hi
z and hj

z denote the representations of the output layer.

5.3.5 Modeling Local Structure

A direct edge between vertices of different types in a bipartite network provides the

explicit structure information. For instance, in a citation network, if an article cites

another then they should share some common topic. Modeling this type of explicit

relation enables us to capture the local structure of the network. The loss function for

capturing the local structure of a bipartite network can be formulated as:

Llocal =

n∑
i=1

m∑
j=1

aij ||hi
z − hj

z||22 (5.9)

Minimizing the loss function Llocal makes two nodes with direct links to be mapped

close in the embedding space, thus preserving the local network structure. Different
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from BiNE [105] that uses the inner product to model the interaction between two

entities, we utilize the hidden representations of two directly connected nodes from two

parallel deep autoencoders to preserve the explicit relations.

5.3.6 Joint Optimization

To embed a bipartite network by preserving global, biclique and local structural units

simultaneously, we combine their objective functions to form a joint optimization frame-

work:

L = Llocal + λ1Lglob + λ2Lbiclique + λ3Lreg (5.10)

where λ1, λ2 and λ3 are the balancing parameters. Lreg is the regularization term that

prevents overfitting, which is defined as follows:

Lreg =
1

2

K∑
k=1

(||W(k)||2F + ||Ŵ(k)||2F ) (5.11)

To optimize the joint model, we run the stochastic gradient descent algorithm until

convergence.

5.3.7 Generalizing To Evolving Bipartite Networks

In this section, we describe our efforts to handle the evolving nature of biomedical

bipartite networks. Given a stream of network data for T snapshots, t = 1, ..., t, ..., T ,

the objective is to efficiently update the node representations in successive network

snapshots (Gt). To address this, we propose an incremental learning strategy that

expands and selectively retrains [116] the autoencoder to fit the data distribution of the

incoming network snapshot. Since the proposed approach exploits the power of deep

neural networks, selective retraining can be done in a straightforward manner through

retraining of the learned network weights. Once the selective retraining is complete,

we perform temporal alignment over the representations to ensure that the embeddings

evolve smoothly. Overall, the proposed incremental learning strategy allows the model

to scale to larger networks without compromising the prediction accuracy.

Formally, at time t, the proposed incremental strategy aims to learn the autoencoder

parameters W t by solving the following problem:

min
W t
L(W t;W t−1, Gt) , t=1,...,T (5.12)

where L is the loss function defined in Equation 5.10. W t−1 is the representations

learned at t − 1 and acts as a prior knowledge. This formulation enables an effective
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mechanism to learn and transfer useful knowledge among the network snapshots. Now,

with each new network snapshot, the number of vertices may vary. To address this

issue, we propose the following: if the number of vertices at time t is smaller than the

number of vertices at time t− 1, we add the corresponding number of isolated vertices

to the network. On the contrary, if the number of vertices at time t is greater than

the number of vertices at time t − 1, the number of input and output neurons of the

autoencoder is increased to meet the size of input data (for illustration refer red nodes in

Figure 7.2). The change in the size of input induces two parameter matrices expansion:

W t
1 = [W t−1

1 ,W L
1 ] and W t

z = [W t−1
z ,W L

z ], where W L denotes the expanded weight

matrix and z is the output layer. Once the input and output layer of the autoencoder

is expanded, the model can adapt to the new shape of data. This mechanism allows

us to pre-train the newly added weights and preserve the weights that are well-trained

previously. The optimization formulation is shown below:

min
WL

k

L(W L
k ;W t−1

k , Gt) , k=1,z (5.13)

Having adapted to the new shape of data, the next step is to update the node repre-

sentations without retraining the model from scratch. To accomplish this, we propose

to selectively retrain the network parameters (for illustration refer orange nodes in Fig-

ure 7.2). More specifically, the idea is to explicitly retrain the weights that are affected

by the new network snapshot and retain the other weights that are well-trained pre-

viously. To achieve this, we filter the neurons based on their contribution to the loss

function. The contribution score is developed from the Taylor expansion of the loss

function. Basically, it represents the difference between the loss with and without each

neuron. In other words, if the removal of a neuron leads to relatively small accuracy

degradation, then this unit is recognized as an unimportant unit and vice-versa. This

form of local sensitivity based ranking strategy effectively factors in the background in-

formation while computing the informativeness of concepts/samples for performing dy-

namic updates. Different from techniques that adopt global sensitivities, i.e., selecting

concepts at a topic-level, the proposed approach accounts for neighborhood semantics

at a granular level [119]. Technically, the contribution of a parameter can be quantified

by the error induced after removing it. The induced error can be measured by squared

difference of prediction errors with/without the parameter wm.

Im = L(W t;W t−1, Gt)− (L(W t|wt
m = 0);W t−1, Gt)

2 (5.14)

As computing Im for each parameter wt
m is computationally expensive, we approximate
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Im in the vicinity of W t by its first-order Taylor expansion which simplifies to:

I(1)m (W t) = (gtmw
t
m)2 (5.15)

where gtm = ∂L
∂wt

m
are the elements of gradient g. Based on this contribution score, we

sort the neurons unit layer by layer and identify top β units. We consolidate the units

that contribute little to the final loss into a sub-network S. Then, we utilize them for

retraining in the next snapshot by solving the following problem:

min
W t

S

L(W t
S ;W t−1

S , Gt) (5.16)

where W s are the weights of the selected subnetwork S. In this way, the selective

retraining is accomplished for every consecutive snapshot. Finally, to ensure the stability

of embeddings over successive snapshots and prevent the catastrophic forgetting, we

perform temporal alignment [67].

5.4 Experiments

In this section, we conduct experiments and analysis on the publicly available biomedical

bipartite networks. Below, we describe the chosen datasets and Table 5.1 reports their

overall statistics.

• Biological General Repository for Interaction Datasets (BioGRID) [120]: BioGRID

is a publicly available bipartite interaction network consisting of two types of

nodes, where the nodes represent gene and protein respectively, and the edge

weight indicates the strength of relationship between them.

• PubTator [121]: This is a bipartite network dataset created from articles present

in PubMed [3]. The nodes in this dataset contain diseases and genes, where the

edge weight represents the co-occurrence of gene-disease in the same article.

• Disease-Symptom [3]: This is a bipartite dataset that depicts relationship between

diseases and symptoms. The edge weight refers to the co-occurrence of disease-

symptom in the same article.

5.4.1 Baselines

The following benchmark network embedding algorithms are chosen to examine the

performance of the learned representations. Since the majority of baseline algorithms
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Table 5.1: Statistics of the chosen biomedical datasets

—V— —E— T

BioGRID 1,000-1,268 65,000-105,195 70

PubTator 3,510-4,523 143,190-322,590 110

Disease-Symptom 6,123-9,126 66,435-171,025 120

are designed for static networks, we apply them independently to each snapshot and

then rotate the embeddings as in [67] for alignment.

• Deepwalk [110]: This algorithm learns representations by leveraging skip-gram

with truncated random walk technique.

• LINE [111]: LINE learns node representations by optimizing both first-order and

second-order proximity.

• Node2Vec [103]: Node2Vec designs a biased random walk to generate a corpus of

node sequences, and then adopts the strategy similar to DeepWalk to generate

representations.

• SDNE [112]: SDNE is an autoencoder based model that learns representations by

capturing the non-linearity of networks.

• Metapath2Vec [122]: Metapath2Vec is a heterogeneous network embedding al-

gorithm that formalizes meta-path based random walks to construct the hetero-

geneous neighborhood of a node and then adopts skip-gram model to produce

representations.

• DynGEM [113]: DynGEM is a dynamic network embedding algorithm that em-

ploys deep autoencoder at its core and generates stable embeddings over time.

• BiNE [105]: BiNE is a recent bipartite network embedding approach that models

the explicit and implicit relations simultaneously by performing a biased and self-

adaptive random walk.

5.4.2 Results and Discussion

In our experiments, we evaluate the performance of the proposed approach and baseline

algorithms on the tasks of network reconstruction, link prediction, and recommendation.
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Table 5.2: Network reconstruction performance on biomedical datasets

Models BioGRID PubTator Disease-Symptom

DeepWalk 0.325 0.314 0.098

LINE 0.452 0.431 0.119

Node2Vec 0.553 0.514 0.214

SDNE 0.801 0.697 0.594

Metapath2Vec 0.803 0.701 0.608

DynGEM 0.812 0.703 0.618

BiNE 0.821 0.729 0.635

Proposed 0.861 0.753 0.674

Table 5.3: Link prediction performance on biomedical datasets

Models BioGRID PubTator Disease-Symptom

DeepWalk 65.18 77.11 67.18

LINE 67.12 80.33 69.11

Node2Vec 69.13 82.11 71.08

SDNE 71.49 83.92 72.93

Metapath2Vec 75.34 85.11 75.12

DynGEM 79.34 87.11 78.11

BiNE 81.48 90.91 82.11

Proposed 84.22 94.13 86.50

Network Reconstruction

The objective of this experiment is to examine the capability of node representations

generated by various approaches to accurately reconstruct the network. Specifically,

we learn the node representations over various networks (i.e., BioGRID, PubTator and

Disease-Symptom) and predict the links between pair of vertices in the corresponding

networks. Since the existing links in the networks are already known, these can act

as our ground-truth. The pairs of vertices are ranked according to their corresponding

reconstructed proximity. Then, we calculate the ratio of real links in top-k pairs of
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vertices as the reconstruction precision (i.e., the training set error, of different meth-

ods). Table 6.7 reports the Mean Average Precision (MAP) averaged over the entire

network snapshot for each dataset. From the results, we can observe that the proposed

method achieves significant improvement over the baselines in all the datasets. The

results indicate that the proposed approach is able to reconstruct the network structure

in an accurate manner. Among the baselines, the existing bipartite network embedding

approach (BiNE) performs better than other homogeneous/heterogeneous embedding

approaches. This demonstrates the importance of modeling special bipartite properties

for learning quality node representations. Moreover, it emphasizes the necessity of de-

veloping approaches that are tailored for the bipartite networks. Analyzing the results

further, we observe that both SDNE and DynGEM perform better than other contem-

porary homogeneous network embedding approaches. We speculate that the reason for

this lies in the capabilities of both SDNE and DynGEM to capture the non-linearity of

networks.

Link Prediction

To examine the performance in link prediction, we follow the experimental protocol

proposed in BiNE [105]. Specifically, for all the datasets, the observed links are treated

as positive instances, and an equal number of random (unobserved) node pairs are

considered as the negative instances. For each of our datasets, we randomly selected

85% of the data as training, 5% for validation, and the remaining 10% as test. Each

network embedding algorithm is trained on the training data and the node embeddings

are generated. The node embeddings of connected node pairs are concatenated to obtain

the representations of edges. These edge representations are treated as feature vectors

for training a logistic regression classifier, and whether or not a node pair has edge (link)

as the ground truth. The logistic regression classifier is trained on the training data,

and its performance is evaluated on the test data. We use ROC curve (AUC-ROC)

as the evaluation metric. Table 5.3 reports the results. The results demonstrate the

capability of the proposed approach to capture the relevant links. Moreover, the gain in

performance with respect to BiNE highlights the importance of incorporating bicliques

that nudge the node representations to be robust.
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Table 5.4: Recommendation performance on biomedical datasets
BioGRID PubTator Disease-Symptom

F1@10 MAP@10 F1@10 MAP@10 F1@10 MAP@10

DeepWalk 5.82 4.11 4.28 6.32 8.50 9.67

LINE 9.62 8.94 7.81 9.12 8.99 11.11

Node2Vec 6.73 6.07 6.25 7.11 8.54 10.23

SDNE 10.33 9.65 15.67 17.19 15.38 18.28

Metapath2Vec 11.45 13.45 17.67 19.32 16.12 20.45

DynGEM 12.18 15.83 18.97 23.98 19.23 23.03

BiNE 17.45 22.98 21.57 27.32 22.54 24.11

Proposed 20.21 25.89 23.18 31.67 25.81 27.76

Table 5.5: Effect of local, global and biclique on network reconstruction

Models BioGRID PubTator Disease-Symptom

Local 0.752 0.651 0.580

Global 0.801 0.702 0.621

Biclique 0.781 0.683 0.604

Local+Biclique 0.811 0.714 0.634

Local+Global 0.821 0.729 0.645

Global+Biclique 0.844 0.737 0.652

Proposed 0.861 0.753 0.674

Recommendation

Given a network, the objective is to estimate the preference of an entity ui (e.g., gene) to

associate with another entity vj (e.g., disease). Similar to link prediction, we split 85% of

the links in the datasets as training, 5% as validation, and the remaining links as test set.

For a gene and a disease in the training set, we use the inner product of their embedding

to evaluate the gene’s binding preference for the disease, and for each gene, we select n =

10 items with a largest preference scores for recommendation. We run the experiment

10 times and average the performance. Both F1@10 and MAP@10 are reported in

Table 5.4. In this particular task, we observe that homogeneous network embedding

approaches have relatively poor performance. The reason for this lies in the inability

of homogeneous approaches in modeling the disease-gene bipartite networks properties,

which is especially important for recommendation tasks. This is also supported by the

observation that BiNE perform significantly better than others in this task. Overall,
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the proposed method outperforms baseline methods in all three data sets. This result

reinforces the importance of modelling the fundamental structural units (i.e., global,

bicliques, and local) of bipartite networks in a joint manner.

Figure 5.3: Mean Average Precision of various approaches on PubTator network snap-

shots.

Figure 5.4: Runtime Performance of various approaches PubTator network snapshots.

Effect of Local, Global and Bicliques

To analyze the contribution of each topological units (i.e., local, global and bicliques),

we develop multiple variants of the proposed model by removing individual compo-

nents and generate the feature representations. Then, we evaluate the performance of

representations on the task of network reconstruction. Table 5.5 reports MAP results

over snapshots on all three datasets. As it can be seen from the table, each individual

structural units contributes uniquely towards the structure of bipartite networks. We

also observe that the performance of bicliques is greater than local. This is reasonable

because bicliques are the intricate units that characterize the community structure of

bipartite networks. Further, we note that the contribution of ”Global+Biclique” is more
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Figure 5.5: Impact of hyper-parameter values α and λ2 on the task of link prediction.

than ”Local+Global” or ”Local+Biclique”. This indicates the critical role of high-order

structures in preserving the network structure accurately. In summary, the overall re-

sults validate the importance of incorporating various topological units in preserving

the network structure in a more effective manner.

Effect of Continual Training on Computational Efficiency

In this section, we analyze the effect of continual training upon the computational ef-

ficiency of various embedding approaches. The comparison includes the time taken

to compute embeddings and MAP performance of various approaches in the network

snapshots (2010-2019) of the PubTator dataset. Figures 5.3 and 5.4 show the results.

To compare the performance, we choose two baselines: a) BiNE and b) DynGEM. It

can be observed that the proposed approach is faster than both BiNE and DynGEM

in most of the network snapshots. We speculate this is due to the inability of BiNE to

account for the temporal dynamics of biomedical bipartite networks. As compared to

DynGEM that considers dynamic graphs, the proposed approach yield better perfor-

mance due to the design choice of selective retraining. To better examine the benefits of

selective retraining, we design a variant of model (Proposed - No Selective Retraining)

that does not perform selective retraining. Instead, the model retrains from scratch at

every incoming network snapshot. From the results, we observe that the computational

efficiency of DynGEM is better than the variant model. However, the variant model

performs better in terms of MAP. This is reasonable because DynGEM do not model

the unique topological properties of bipartite networks. Overall, the results demonstrate

that the design choice of selective retraining plays a critical role in improving both the

fidelity and learning efficiency of the proposed approach.
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5.4.3 Hyper-Parameter Settings

The experiments were carried out on NVIDIA TITAN Xp GPU. The proposed approach

uses a 2-layer autoencoder. For a systematic comparison of results, we set the size of

embeddings produced from both the proposed approach and the baseline algorithms to

100. The hyper-parameters of the loss functions are tuned by using grid search on the

validation set. Following the convention in existing studies [105, 111], we set the range

to [0.01, 0.05, 0.1, 1, 10]. The optimal hyper-parameters values are set to λ1 = 10, λ2

= 0.1, and λ3 = 0.01 respectively. We study the sensitivity of biclique parameter (λ2)

by fixing the others. Figure 5.5 (right side) shows the results. The best performance

is obtained at 0.1 and then the performances starts to decrease. Similarly, we test the

learning rate and the weight α of reconstruction loss for non-zero elements in the range

of [0.01, 0.025, 0.1] and [5, 10, 20, 30, 40] respectively. The optimal values for learning

rate and α are set to 0.025 and 10. From the Figure 5.5 (left side), we observe that

introducing the parameter α is useful. The results initially improve when we increase

the value of α, however, they stabilize at the higher values.

5.5 Conclusions

In this research, we proposed a new representation learning approach for the bipartite

networks. The proposed approach designs a structure-preserving technique that models

the unique topological properties of bipartite networks and preserves the intricate struc-

ture accurately. Moreover, the proposed approach develops a continual learning scheme

that progressively acquires the newly available information, and adapts the represen-

tations to reflect the up-to-date knowledge. Extensive experiments conducted on the

real-world biomedical networks validate the efficacy of the proposed approach, and sug-

gests that the proposed framework is capable of generating meaningful representations

that are useful for a variety of downstream biomedical applications.



Chapter 6

Knowledge-Guided Continual

Representation Learning

6.1 Introduction

Around 70% of the total web search queries are of medical and healthcare category [123].

Consequently, there is a growing interest among practitioners to develop sophisticated

text mining and natural language processing (NLP) systems that can handle the unique

challenges posed by the biomedical domain. A precursor to many of these modern deep-

learning powered NLP systems is the availability of pre-trained concept representations.

These concept representations are learned such that the precise syntactic and seman-

tic relationships between concepts are preserved in the learned vector space. Due to

its wide usability and practical implications, learning high-quality concept representa-

tions remains a fundamental problem in the research area of biomedical NLP. Over the

past few years, many biomedical word embedding models such as BioWordVec [124],

BioBERT [2], and SciBERT [125] have been proposed in the literature. Recent trends

show that the contextualized embedding approaches (i.e., BERT [2] based models) sig-

nificantly outperforms the conventional word embedding approaches (i.e, Word2vec [16]

based models) in a variety of NLP tasks. This is primarily because the contextual

embedding approaches are able to capture the semantic properties of concepts under di-

verse linguistic contexts. Despite significant advances made, the contextual embedding

approaches suffer from high computational and space costs. For instance, BioBERT

takes nearly 23 days to train on the entire biomedical corpora and requires hundreds

86
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of millions of parameters [2]. This is limiting for rapidly evolving domains such as

biomedicine (around 3,000 articles are added every-day [2]) wherein the timely update

of concept representations is essential to reflect the accurate knowledge of the field.

Moreover, such longer training times severely impacts the practicalities of contextual

embedding approaches in time-critical medical applications such as real-time disease

diagnostics and monitoring [126]. To address these issues, it is imperative to develop

representation learning approaches such that the contextual embedding models are able

to efficiently (yet accurately) adapt the feature representations of biomedical concepts

to the progressively available data. This is the crux of the problem that this paper

attempts to address. Prior research has attempted to accelerate the efficiency of em-

bedding models through a range of solutions such as knowledge distillation [127], weights

pruning [128], and continual learning [116]. Amongst them, the continual learning (CL)

based approaches have attracted increasing attention due to their natural ability to

adapt the representations to the continuous streams of data. However, the existing

CL approaches [129, 116] have been predominantly designed for the embedding models

proposed in the research area of computer vision. Directly applying these approaches to

the NLP focused embedding models yields unsatisfactory performance due to the funda-

mental differences in the characteristics of imaging and textual datasets. Moreover, the

specialized nature of the biomedical domain presents unique opportunities/challenges to

leverage the rich semantic knowledge present in curated knowledge-bases (KB’s) whilst

designing an efficient representation learning approach.

To address the aforementioned challenges, we leverage upon the principles of con-

tinual machine learning [116, 129] and propose a new representation learning approach

that efficiently yet accurately adapts the concept representations to the newly avail-

able data. Specifically, the proposed approach considers the successive corpus snap-

shots as a sequence of related tasks and updates the concept representations that

are affected by the new snapshot, while preserving those that are well-trained previ-

ously. The main challenge in this strategy is to automatically identify the concepts

whose representations are subject to retraining or retention, referred to as ‘selective

retraining’ in the continual-learning literature [116, 129]. To address this, we propose

a knowledge-guided retraining scheme wherein at every new corpus snapshot, we lever-

age the semantic knowledge from KB’s to identify and retrain the representations of

those concepts whose corpus-specific context evolved coherently with-respect-to their

KB-specific context. More concretely, using the curated context information from KB’s
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as a reliable signal, we discern the coherency/noisiness of the concept’s corpus-specific

contextual neighbors and retrain/retain their feature representations accordingly. Fol-

lowing this strategy, the proposed knowledge-guided technique is iteratively applied to

the consecutive snapshots, and the concept representations are generated efficiently.

Furthermore, we propose a knowledge-guided pruning mechanism that eliminates the

redundant parameters present in the overparameterized transformer-based embedding

architectures [130, 131], thus greatly improving their overall memory efficiency. Finally,

the proposed approach is designed to remain agnostic to the choice of the embedding

loss-function. Given the fact that there are multiple competing contextualized embed-

ding models such as BioBERT [2], SciBERT [125], and ClinicalBERT [132] to generate

the concept representations, it is desirable to develop approaches that do not jeopardize

the embedding training process, and flexibly enables the users to utilize the proposed

technique as a pluggable module for obtaining the improved training performance.

In this research, our contributions can be summarized as:

• We propose a new representation learning approach that efficiently (yet accu-

rately) adapts the concept representations to the newly available data. While the

methods proposed in this research are entirely general, our focus on the biomedical

domain has immediate practical benefits for the practitioners of biomedical data

science.

• The proposed research explores the usefulness of semantic knowledge present in

the curated KB’s from a new perspective, i.e, improving the training efficiency of

embedding models. To achieve this, we conceptualize the paradigm of knowledge-

guided continual learning and design new techniques such as knowledge-guided

retraining and pruning.

• Extensive experiments in datasets from four bioNLP tasks demonstrate that the

proposed approach can significantly improve the computational performance of

the state-of-the-art biomedical word embedding models.

6.2 Related Work

6.2.1 Word Embedding In Biomedicine

Learning meaningful representations of concepts is a fundamental problem in the re-

search area of biomedical NLP. For a recent survey on this topic, please refer [133]. Over
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the past decade, many approaches [16, 65, 134, 135, 136, 17] for deriving word embed-

dings have been proposed in the literature. Among them, the prediction-based [16]) and

count-based [17] models attracted significant attention from the research community.

Prediction based approaches derive the word embeddings by optimizing the language

model objectives that predict the next word given its context. In contrast, the count

based models exploit the global word-context co-occurrence counts to obtain the word

representations. Apart from capturing the implicit semantics, these approaches produce

special analogical relations that are useful for various practical tasks. More recently,

contextualized representation learning approaches (i.e., BERT based models) have ob-

tained state-of-the-art performance in a number of bioNLP tasks such text classification,

document retrieval and question-answering. Unlike conventional embedding approach

such as word2vec, these approaches capture the semantic properties of concepts under

varying local-contexts. Due to their promising results, a number of BERT based models

such as BioBERT [2], SciBERT [125], ClinicalBERT [132], BlueBERT [137] and Pub-

MedBERT [138] have been proposed. Despite the significant accuracy gains achieved by

these embedding models, they still incur significant costs both in terms of training-time

and memory. Thus, it is desirable to develop efficient representation learning approaches

that can accelerate both their training-time and memory efficiency.

6.2.2 Continual Learning

Continual learning (CL) [116, 129] is a special type of online learning that incrementally

acquires and fine-tunes information from non-stationary data distributions. The main

challenge in CL is to continually accommodate the new information from streams of

data while retaining the past knowledge. To address this, the CL based approaches

perform selective retraining such that the network parameters adapt to the new infor-

mation without overwriting the previously consolidated knowledge. In the recent years,

various approaches such as regularization [129], dynamic architecture [116], and memory

replay [139] has been proposed to tackle the issue of selective retraining. [129] pro-

posed elastic weight consolidation (EWC) model that regularizes the model parameters

at each step via fisher information matrix. [140] proposed to incrementally train an

autoencoder by adding in new neurons for a group of difficult examples with high loss,

and later merging them with other neurons to prevent redundancy. [116] proposed a
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Figure 6.1: Overview of the proposed knowledge-guided retraining and pruning ap-

proach.

model that combines the best of both architectural and regularization strategies. Dif-

ferent from these approaches, the authors in [141] proposed to block any changes to

the model trained on previous knowledge and expand the network architecture by allo-

cating sub-networks with fixed capacity to be trained with the new information. While

the aforementioned approaches made significant advances, none of them explored the

usefulness of semantic knowledge present in curated KB’s to design a knowledge-guided

continual learning approach.

6.3 Methodology

We consider the problem of efficiently learning the representations of biomedical con-

cepts under the continual learning scenario, where the corpus-snapshots (or training

data) arrive at the model in a sequence. Specifically, our goal is to incrementally learn

the representations from a sequence of T corpus-snapshots, t = 1, . . . , T for unbounded

T . Each time-slice t comes with a training dataset Dt, and all the previous datasets

up to t − 1 are not available. We consider an overall vocabulary V = {w1, . . . , wV }
of size |V |. w ∈ Rd denotes a d−dimensional word embeddings that can be derived

from any contextualized word embedding models (e.g., BioBERT [2], SciBERT [125]

or ClinicalBERT [132]). Since the contextualized word embedding models generate

a context-specific representations for each word, the representations for each word w

specific to the context S is denoted as E(w, S). E refers to the chosen contextualized

embedding model. Now, given a pre-trained contextual embeddings at initial time t = 1,

i.e., E(wt, St), the objective is to efficiently update the representations for each word w
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at successive time-slices, i.e., E(wt+1, St+1), . . . , E(wT , ST ). To achieve this, we propose

two strategies: a) knowledge-guided retraining (Section 6.3.2), and b) knowledge-guided

pruning (Section 6.3.3). These strategies efficiently adapt the concept representations

to the newly available data whilst maintaining its prediction accuracy. Figure 7.2 shows

an overview of the proposed knowledge-guided approach.

6.3.1 Preliminaries

Transformers

Transformer architecture [142] underscores the foundation behind BERT-based models.

Basically, a transformer is a stack of layers composed of a multi-head attention and

a feed-forward network. The multi-head attention layer consists of multiple attention

heads that are executed in parallel. Each attention head takes matrix X where each

row represents an element of the input sequence, and updates their representations by

aggregating information from their context using the attention mechanism [143].

Z = Softmax(XTY(QX + P))WX, (6.1)

where Y, W, Q and P are the matrices of parameters. The outputs from these heads are

concatenated along the time-steps into a sequence of vectors. Then, a fully connected

feedforward network is applied to each element of this sequence independently. Both of

these layers are followed by an AddNorm operation that consists of a residual connection

and a layer normalization.

Unified Medical Language System Definitions

Unified Medical Language System (UMLS [144]) is an integrated biomedical knowledge

resource that provides definitions associated with the medical concepts. As these def-

initions are curated by the subject-matter-experts, they are considered to be highly

accurate. Table 6.1 presents an example of the UMLS definition for ‘coronavirus infec-

tions’.

Medical concept hierarchy

Medical concepts in the biomedical domain are arranged in an hierarchical fashion [145]

(i.e., ISA tree). The distance between concepts in the tree indicates the degree of

semantic proximity between them. The depth of a concept in the tree indicates its level

of specificity.
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Table 6.1: Example of a medical concept and its definition obtained from the UMLS.

Medical Concept Definition

Coronavirus

Infections

Virus diseases caused by the

coronavirus genus. Some specifics

include transmissible enteritis of

turkeys (enteritis, transmissible, of turkeys)

and feline infectious peritonitis

and transmissible gastroenteritis of

swine (gastroenteritis, transmissible, of swine)

6.3.2 Knowledge-guided Retraining

Our main objective is to identify the concepts that require the retraining of their feature

representations in order to accommodate the newly available data. To accomplish this,

we quantify the context-coherence of concepts (between their current corpus-specific

context and KB-specific context), and update the representations of those concepts

whose context evolved coherently over time. The rationale is the following: since the

expert-curated context information available from KB’s are both accurate and stable,

they provide reliable feedback to discern whether the current corpus-specific context

information is coherent or noisy. If coherent, we retrain the representations of concepts.

Otherwise, we retain the previously well-trained representations. This context-coherence

based premise is supported by recent research [146] that have shown that the quality of

contextual neighbors significantly contributes to the stability/quality of medical concept

embeddings. To this end, we propose to measure the context-coherence of concepts from

two perspectives: a) explicitly shared context between corpus and KB, and b) implicitly

shared context between corpus and KB.

Explicitly Shared Context.

Let St
cp(w) and St

umls(w) denote the set of corpus-based and UMLS-based (refer Sec-

tion 6.3.1) context terms for a concept w at time t respectively. To measure the coher-

ence between these context sets, we first compute the intersection St
cp(w)∩ St

umls(w) of

their shared concepts. However, this straightforward mechanism severely penalizes the

inexact concept-name matches across the two sets. To mitigate this issue, we augment

the context-sets with the semantic neighbours of concepts from the medical concept
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hierarchy (refer Section 6.3.1). Then, we use the cartesian product of the two context

sets St
cp(w)× St

umls(w) to determine the pairs of concepts that adequately indicate re-

latedness between the context-sets. Pairs of concepts (mt
cp,m

t
umls), where mt

cp ∈ St
cp(w)

and mt
umls ∈ St

umls(w), whose similarity is above pre-defined threshold of semantic sim-

ilarity are retained, and those below are discarded. To compute the semantic similarity

between concepts the measure of dice similarity is used. Dice similarity computes the

proportion of common ancestors between the concepts in the medical hierarchy, thus

accounting for their shared semantics at a granular level. For two concepts mt
cp and

mt
umls the dice similarity is computed as:

dice(mt
cp,m

t
umls) = 2×

|ancestors(mt
cp) ∩ ancestors(mt

umls)|
|ancestors(mt

cp)|+ |ancestors(mt
umls)|

(6.2)

where ancestors(mt
cp), ancestors(m

t
umls) refers to the set of all ancestors of mt

cp and

mt
umls in the medical concept hierarchy respectively. The maximum similarity between

two concepts computed using dice similarity is 1 (i.e., mt
cp = mt

umls). The range of

similarity values is [0, 1]. Pairs of concepts whose dice similarity exceed the threshold

of semantic similarity (manually assigned as τsim = 0.75) are normalized to a value of

1. The normalized dice similarity is:

diceC(mt
cp,m

t
umls) =

1 if dice(mt
cp,m

t
umls) > τsim

0 otherwise
(6.3)

where C denotes the total number of concept pairs. The semantic relatedness (sr′)

between St
cp(w) and St

umls(w) is the sum of the normalized pairwise dice similarity

scores that exceed the threshold of semantic similarity across the cartesian product of

the context sets St
cp(w)× St

umls(w).

sr′(St
cp(w), St

umls(w)) =
∑

(a,b)∈St
cp(w)×St

umls(w)

diceC(a, b) (6.4)

An outcome of this semantics-enhanced shared context metric is that a broad range

of semantic relatedness scores between context-sets may exist. To dampen the major

differences in similarity scores of different context sets, we apply a log reduction on the

normalized dice similarity scores. This is achieved by first computing the relatedness

score between a given concept in context set St
cp(w) against the entire set of concepts

in the context set St
umls(w). This calculation yields the similarity score:

sim′(a, St
umls(w)) =

∑
b∈St

umls(w)

diceC(a, b) (6.5)

The log reduction is then applied to sim′(a, St
umls(w)), and the overall semantic re-

latedness between the two context sets is the aggregate of the log-reduced scores for
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each concept in St
cp(w) and the entire set in St

umls(w). Below is the resultant metric to

calculate the explicitly shared context:

sim′′(St
cp(w), St

umls(w)) =
∑

a∈St
cp(w)

log(1 + sim′(a, St
umls(w))) (6.6)

Implicitly Shared Context.

While the technique proposed in Section 6.3.2 captures the explicitly shared context,

it misses to factor in the implicit semantics. Thus, from a complementary perspec-

tive, we propose to quantify the context-coherence by measuring the amount of implicit

semantics shared between the concepts corpus and KB-specific context-sets. To accom-

plish this, we first use the BERT [142] language model to produce the representations

of concepts from their UMLs definitions alone. Then, we cluster the representations

of each unique concept into a number of partitions. Note that since BERT produces

context-specific representations, a concept can have multiple representations. The clus-

ter partitions capture the usages of the concepts along different dimensions (or senses).

For example, the three clusters for the medical concept ‘coronavirus infection’ are ‘dis-

ease’, ‘virus’, and ‘infections’. These dimensions are formally referred to as the semantic

types [144] in the biomedical domain. The semantic types basically provide a formal

categorization of the biomedical concepts. Next, similar to the clustering mechanism of

KB-specific representations, we cluster the initial corpus-specific representations (t = 1)

as well. Now, given the clustered usage representations from both corpus and KB, we use

the Jensen-Shannon divergence (JSD) [147] to compute the implicit context-coherence

of concepts at any time t. Specifically, we count the number of occurrences of each usage

type l in a given time slice t (we refer to this count as freq(l, t)) and obtain frequency

distributions ftw for each time-slice as the following:

ftw[l] = freq(l, t) l ∈ [1, Lw] (6.7)

where Lw denotes the total number of usage types for concept w. This normalised

frequency distributions can be interpreted as probability distributions over usage types

ut
w : ut

w[l] = 1
Vt
ftw[l]. Below is the metric used to compute the implicit coherence:

JSD(ucp
w ,u

kb
w ) = H

(
1

2

(
ucp
w + ukb

w

))
− 1

2

(
H
(
ucp
w

)
−H

(
ukb
w

))
(6.8)

where H is the normalized shannon entropy [148]. By quantifying the implicitly shared

context, the proposed approach is able to measure the context coherence of concepts at

a granular level.
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Joint Context-coherence.

Both the explicitly and implicitly shared-context measures the context-coherence of

concepts between corpus and KB from complementary perspectives. Thus, we compute

the coherence score of concepts in a joint manner.

score(w) = (1− α)· explicitcontext(w) + α· implicitcontext(w) (6.9)

where explicitcontext(w), implicitcontext(w) are computed using Equations 6.6 and

6.8 respectively. The value of α controls the contribution of each part. Using this

measure, the concepts with high values of coherence score are chosen for retraining their

representations in the consecutive snapshots, while those with lower coherence values

(i.e., noisy context) are simply retained. In this way, the proposed knowledge-guided

selective retraining strategy is able to produce the representations promptly, thereby

significantly accelerating the training time of contextualized embedding models.

6.3.3 Knowledge-guided Pruning

While the proposed knowledge-guided retraining scheme accelerates the training time, it

is equally important to address the memory challenges posed by the contextualized word

embedding models. Specifically, the contextualized embedding models are recognized to

be overparameterized [131, 130], which makes them memory inefficient for applications

requiring execution in real-time. To address this issue, we propose a knowledge-guided

pruning mechanism that localizes the knowledge (or important parameters) within the

network layers and prunes the redundant parameters such that only the relevant knowl-

edge is retained. Concretely, the proposed approach explores the recent developments

in block structured pruning techniques [128], and designs a new objective that effec-

tively eliminates the uncritical weights (in groups) in transformer-based contextualized

embedding models whilst preventing the possible information loss. Figure 7.2 (right

side) shows an overview of the proposed knowledge-guided pruning approach.

Since almost all the state-of-art contextualized embedding models [2, 125, 132] em-

ploy the transformer architecture [142] at its core, we use them as our running example

for the proposed pruning scheme. Consider an N -layer transformer where the weights of

the n-th layer are denoted as θn. The function f
({

θn

}N
n=1

,Dt

)
denotes the loss function

of the chosen contextualized embedding model. Dt denotes the training data at time t.

To efficiently localize the knowledge in network layers, the weight matrix θn is divided

into K blocks θn = [θn1,θn2, ·,θnK ], where θnm ∈ Rn×m. Let [θnm]p, : and [θnm] :, q
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denote the p-th row and the q-th column of θnm respectively. For each row/column

block, we compute the parameters importance with respect to the loss function and

prune the weights that are below a preset threshold. Specifically, our objective is to re-

duce the number of columns and rows in the blocks of weight matrix whilst maintaining

the prediction performance.

minimize f
({

θn

}N
n=1

,Dt

)
subject to # of non-zero block rows in θn is less than rn

subject to # of non-zero block rows in θn is less than cn

(6.10)

where rn and cn are the desired non-zero block rows and columns respectively. Moreover,

to effectively prune the weights in groups, we add the group lasso regularization [149]

to the objective function. The objective function becomes:

min f
({

θn

}N
n=1

,Dt

)
+ λ1

N∑
i=1

K∑
j=1

||θij ||g (6.11)

where λ1 controls the relative strength of lasso regularization, and || · ||g denotes group

lasso regularization. The groups are defined based on the incoming weights for each neu-

ron in the feed forward network layer of the transformer architecture. While the group

lasso regularization significantly promotes the structured sparsity, its precise applica-

tion is needed to address the overparameterized nature of transformer-based embedding

architectures. Thus, we introduce a new loss that penalizes the weights that are neither

close to 0 nor 1, pushing them close to either 0 or 1. The introduced loss is shown

below:
N∑
i=1

K∑
j=1

(
θij × (1− θij)

)
(6.12)

The key addition of this loss to the objective function facilitates the precise application

of group lasso such that it effectively zeros out the non-critical weights. Next, we add

this loss to the block-based row pruning and column pruning formulation. For block-

based row pruning, we solve:

min f
({

θn

}N
n=1

,Dt

)
+ λ1

N∑
i=1

K∑
j=1

||[θij ]p,:||2 + λ2

N∑
i=1

K∑
j=1

(
θij × (1− θij)

)
(6.13)

For block-based column pruning, we solve:

min f
({

θn

}N
n=1

,Dt

)
+ λ1

N∑
i=1

K∑
j=1

||[θij ]:,q||2 + λ2

N∑
i=1

K∑
j=1

(
θij × (1− θij)

)
(6.14)

In Equations 6.13 and 6.14, λ1 and λ2 control the contribution of each part. Using

this strategy, the proposed knowledge-guided pruning mechanism is able to significantly
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Algorithm 1 knowledge-guided pruning

1: Input: Pretrained transformer model with weight matrix θ, threshold ϵ

2: Output: Pruned weight matrix θs

3: Initialize θs = θ

4: Divide θs into K matrices: θ1,θ2, ..,θK

5: Set i = 1

6: Set total number of iterations = maxT

7: Solve the regularization problem (13),(14) using ADAM

8: while i ≤ maxT do

9: l2−normsl equals the l2 norm of each p-th/q-th row of θs

10: if l2−normsl ≤ ϵ then

11: θs(p, :) = 0

12: θs(:, q) = 0

13: end if

14: end while

15: θs = concatenate{θ1,θ2...,θK}

improve the memory efficiency of transformer-based embedding models, and at the

same time maintain its predictive accuracy. The pseudocode of the proposed approach

is shown in Algorithm 3.

6.4 Experiments

Our main objective is to examine the capability of proposed approach to accelerate

the learning efficiency of contextualized embedding models whilst maintaining their

prediction accuracy. As such, we compare the quality of continual (or incremental)

embeddings produced by our approach for contextualized embedding models [2, 125, 132,

138] with their batch-mode counterparts in terms of both accuracy and computational

efficiency.

6.4.1 Datasets

Pre-Training Data. We use the abstracts from PubMed [3] (1960-2019) as our training

dataset to generate the concept representations. PubMed contains more than 30 million

articles from the areas of life-sciences and biomedicine. We follow the preprocessing steps
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suggested in BioBERT [2] to generate an overall vocabulary of over 3.2 billion concepts.

To generate the incremental embeddings, the preprocessed dataset is split yearly (i.e.,

publication year) and the proposed approach is applied. The batch-mode embeddings

are generated from the same dataset, i.e., PubMed (1960-2019), using the source code

of the models from their public releases. For a head-to-head comparison, we set the

hyperparameter values of the models as reported in their respective papers.

BioNLP Tasks. The experiments are conducted on four biomedical NLP tasks that

have publicly available datasets, including named entity recognition, relation extraction,

sentence similarity, and question answering. Below are detailed descriptions for each

task and their corresponding datasets.

Named Entity Recognition. For the biomedical named entity recognition task, we con-

duct experiments on the Natural Center for Biotechnology Information Disease (NCBI) [150]

and Biocreative II Gene Mention (BC2GM) datasets [151]. NCBI dataset contains 793

abstracts with 6892 annotated disease mentions. BC2GM consists of sentences with

manually labeled gene and alternative gene entities. We use the pre-processed version

of train, development, test splits released by [152].

Relation Extraction. For this task, we consider the drug-drug interaction (DDI) [153]

and chemical protein interaction (ChemProt) datasets released by [154]. These datasets

contain sentence-level annotation of drug-drug interactions and protein–chemical rela-

tions respectively. We follow the pre-processing procedure described in [155] to reduce

noise in the dataset.

Sentence Similarity. BIOSSES [156] is a sentence similarity dataset that consists of 100

pairs of sentences. These sentences are annotated by five subject-matter-experts with

a similarity score in the range of 0 (no relation) to 4 (equivalent meanings). Another

dataset, MedSTS [157] consists of 1,068 sentence pairs that are annotated by two ex-

perts. The similarity of sentence pairs is annotated in terms of five categories from 0

(not similar) to 5 (very similar). The average score from the annotators is considered

as the final score.

Question Answering (QA). For the task of QA, we use the BioASQ factoid dataset [158].

Each question is paired with a reference text that contains multiple sentences and a

yes/no answer. Similarly, another chosen QA dataset (PubMedQA [159]) contains a set

of questions, each with a reference text, and an annotated label of whether the text

contains the answer to the question (yes/maybe/no).
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6.4.2 Experimental Setup

To fine-tune the models on downstream tasks, we add a single linear layer (or regression

layer for sentence similarity) on top of each contextualized embedding models. We train

the embedding models on bioNLP tasks with their corresponding datasets. This training

procedure flexibly adapts the embedding models to specific tasks. Following the practice

in contextual embedding literature [2, 125, 132], the range of hyperparameters are chosen

to be the following: learning rate within the range [1e-5, 3e-5, 5e-5], batch size [10, 16,

32, 64] and epoch number [2–60]. Considering the average prediction performance,

the learning rate, batch size, and epochs are set to 3e-5, 32 and 4 respectively on

all four tasks. Analyzing the contributions of explicit and implicit context (details in

Section 6.4.4), the value of α in Equation 6.9 is set to 0.4 and 0.6 respectively. Similarly,

the values of both λ1 and λ2 in Equations 6.13 and 6.14 are set to 0.5.

Baseline Models. Our baseline models are the batch versions of BioBERT [2], SciB-

ERT [125], ClinicalBERT [132], BlueBERT [137] and PubMedBERT [138]. As shown

in Table 6.2, for each contextualized embedding model, we report the accuracy and

efficiency metrics for both the original (batch) and proposed (continual) versions. The

continual version of the embedding models are named with suffix ”-CL” in the Tables 6.2

and 6.3. Moreover, we compare our results with the existing efficient transformer-based

models such as [127, 160], and continual learning approaches such as [129, 116, 161].

Evaluation Metrics. To measure the quality of concept embeddings in downstream

bioNLP tasks, we follow the convention in literature [2, 125, 132] and report micro F1

for named-entity-recognition and relation extraction, Pearson coefficient for sentence

similarity, and accuracy for question-answering. For measuring the computational effi-

ciency, we report floating-point operations (FLOPs [127]). Specifically, FLOPs calculate

the number of floating-point operations that the models perform for a single process.

6.4.3 Results

Tables 6.2, 6.3, 6.4, and 6.5 report the results of the proposed approach and base-

line algorithms in the datasets from four bioNLP tasks. In Table 6.2, we compare the

performance of the contextualized embedding models that are obtained after applying

the proposed selective retraining technique with their original batch counterparts. Our

approach performs on par with the batch versions in terms of prediction accuracy whilst
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Table 6.2: Comparison of prediction performance and training efficiency in the bioNLP datasets. The evalua-

tion metric for NCBI, BC2GM, DDI, and ChemProt is micro-F1. BIOSSES and MedSTS use Pearson Coefficient.

BioASQ and PubMedQA use Accuracy.

Model NCBI BC2GM DDI ChemProt BIOSSES MedSTS BioASQ PubMedQA #Params #FLOPs

BioBERT (Batch) 89.772 83.120 80.188 76.645 88.321 81.524 83.242 61.301 109M 22.5B

BioBERT-CL (Proposed) 89.778 83.123 80.189 76.646 88.323 81.525 83.246 61.312 66.1M 13.7B

SciBERT (Batch) 88.575 83.762 81.361 74.463 85.154 81.194 77.832 58.194 106M 19.2B

SciBERT-CL (Proposed) 88.579 83.765 81.365 74.467 85.155 81.196 77.838 58.199 54.4M 11.4B

ClinicalBERT (Batch) 86.242 80.562 77.898 72.542 90.182 79.301 67.322 48.186 103M 17.8B

ClinicalBERT-CL (Proposed) 86.245 80.566 77.899 72.544 90.185 79.307 67.326 48.188 52.3M 9.4B

BlueBERT (Batch) 88.143 81.172 76.686 70.712 84.495 76.145 69.788 47.572 107M 20.1B

BlueBERT-CL (Proposed) 88.145 81.177 76.689 70.717 84.497 76.146 69.784 47.575 55.6M 12.5B

PubMedBERT (Batch) 87.383 85.122 81.761 76.454 91.205 82.643 86.766 54.192 92M 14.2B

PubMedBERT-CL (Proposed) 87.388 85.127 81.766 76.457 91.208 82.642 86.767 54.198 40.3M 5.3B

Table 6.3: Comparison of prediction performance and compression rate (memory) in

the bioNLP datasets.
Model NCBI BC2GM DDI ChemProt BIOSSES MedSTS BioASQ PubMedQA Rate

BioBERT (Batch) 89.772 83.120 80.188 76.645 88.321 81.524 83.242 61.301 N/A

BioBERT-CL (Proposed) 90.971 85.220 82.294 77.545 89.684 83.951 84.321 63.689 1.487×

SciBERT (Batch) 88.575 83.762 81.361 74.463 85.154 81.194 77.832 58.194 N/A

SciBERT-CL (Proposed) 89.244 84.271 81.698 75.690 85.435 83.247 78.856 58.411 1.487×

ClinicalBERT (Batch) 86.245 80.566 77.899 72.544 90.185 79.307 67.326 48.188 N/A

ClinicalBERT-CL (Proposed) 87.321 81.288 78.157 72.955 91.974 79.922 68.431 49.242 1.487×

BlueBERT (Batch) 88.145 81.177 76.689 70.717 84.497 76.145 69.788 47.575 N/A

BlueBERT-CL (Proposed) 89.257 82.342 77.667 71.832 85.525 76.796 69.924 48.691 1.831×

PubMedBERT (Batch) 87.383 85.122 81.761 76.454 91.205 82.643 86.766 54.192 N/A

PubMedBERT-CL (Proposed) 88.145 86.238 82.789 77.322 92.912 84.516 87.142 56.289 1.667×

DistilBERT (Batch) 85.111 83.122 80.761 74.454 86.205 78.643 82.766 51.192 N/A

DistilBERT-CL (Proposed) 85.997 84.382 81.008 75.831 87.102 80.011 83.381 52.111 1.667×

FastBERT (Batch) 83.001 81.222 78.112 72.121 88.102 78.129 83.112 53.225 N/A

FastBERT-CL (Proposed) 84.481 82.092 79.119 73.311 89.999 79.587 84.322 54.981 1.831×

Table 6.4: Comparing pruning results of BioBERT with different compression rates.

Compression Rate NCBI BC2GM DDI ChemProt BIOSSES MedSTS BioASQ PubMedQA

1× 89.998 83.345 81.378 76.811 89.859 81.117 84.113 62.229

1.48× 89.772 83.120 80.188 76.645 88.321 81.524 83.242 61.301

2.0× 87.303 82.183 77.472 75.128 88.225 78.384 82.295 60.689

4.0× 85.903 79.133 74.001 71.204 88.102 73.193 81.295 59.293
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Table 6.5: Comparing prediction performance with different continual learning methods

in the bioNLP datasets.
Model NCBI BC2GM DDI ChemProt BIOSSES MedSTS BioASQ PubMedQA

Elastic Weight Consolidation [129] 81.146 72.156 69.056 67.802 71.492 65.034 68.175 45.827

Dynamically Expandable Networks [116] 84.289 76.122 73.095 69.679 74.671 69.788 71.992 49.881

AdapterBERT [161] 86.557 79.888 76.231 71.708 84.401 75.809 76.101 55.223

Proposed 89.778 83.123 80.189 76.646 88.323 81.525 83.246 61.312

significantly improving their computational efficiency. This result validates the effec-

tiveness of the proposed selective retraining scheme that retrains the representations of

only those concepts whose context evolved coherently with respect to their KB-specific

curated context. Table 6.3 reports the performance of the proposed approach after ap-

plying the knowledge-guided pruning mechanism. We set a compression rate of 1.428×
(i.e., 30% sparsity) or above for all the models. The results show that the proposed

technique is capable of improving memory efficiency while maintaining the prediction

accuracy. Notably, on a majority of datasets, the pruned models further improve the

overall accuracy. We attribute this result to the effective pruning of redundant weights

in the transformer-based embedding architecture. We also compare the performance

with compact language models such as DistilBERT [127] and FastBERT [160]. The

proposed knowledge-guided techniques are able to boost their computational efficiency.

Analyzing the results further, we evaluate the performance changes (using BioBERT)

with varying compression rates and report the results in Table 6.4. Results show that

the performance varies significantly under different levels of compression rates. In gen-

eral, as we increase the compression rate beyond a certain threshold, the performance

starts to degrade. For specific tasks such as BIOSSES, we can achieve up to 4 com-

pression rates from the baseline model with almost zero performance loss. Results on

tasks such as BIOASQ and PubMedQA show minor degradation, while the results on

NCBI, BC2GM, DDI, ChemProt, and MedSTS show higher degradation when the com-

pression rate is set to 4.0. We speculate the different performance results due to the

differences in the characteristics of datasets and the unique challenges posed by the

particular tasks. Next, to analyze the effectiveness of the proposed continual learning

approach, we compare it with three existing methods that are applicable to our problem

setting. Note that the continual learning techniques are mainly designed for multi-task

learning problems, and thus a direct comparison with a majority of techniques cannot
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be performed. While our research builds upon the ideas of continual learning, it is

designed for single task incremental settings. Table 6.5 reports the results. The pro-

posed knowledge-guided continual learning approach outperforms the traditional CL

approaches. We attribute two reasons for this: a) The existing computer vision focused

approaches do not effectively characterize the syntax and semantics information present

in natural language text, b) The existing approach are inept at exploiting the semantic

knowledge present in curated KB’s.

6.4.4 Ablation Studies

In this section, we perform ablation studies over several parameters to better understand

their relative influence. The parameters chosen are the following: the effect of explicit

and implicit context in the knowledge-guided retraining scheme, effect of regularization

losses in the objective function of Equation 6.13, and the numbers of blocks in the

knowledge-guided pruning phase. We chose the datasets from each of the four tasks

and report the results using BioBERT [2]. The evaluation metrics are F1-score for

NCBI and DDI, Pearson correlation for BIOSSES, and accuracy for PubMedQA.

Effect of explicit and implicit context in context-coherence

To understand the relative influence of explicit and implicit context in the overall

context-coherence score, we perform a component-wise analysis. Table 6.6 presents

the results. As it can be observed, the prediction performance is best when both the

components are exploited jointly. Notably, the contribution of implicit context is greater

than that of the explicit context. We believe that this is due to the capability of the

proposed implicit metric to capture the underlying semantics of biomedical text data

at a granular level.

Effect of regularization parts in knowledge-guided pruning

The regularization parts in the objective function (Equation 6.13) of knowledge-guided

pruning are added to eliminate the unimportant parameters. Table 6.7 summarizes

the results of both the losses. While the group lasso regularization obtains reasonable

performance in the datasets, the addition of proposed loss (i.e., Equation 6.12) facilitates

its application to be more precise.
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Table 6.6: Influence of explicit and implicit context on the datasets from each of the

four bioNLP task

Type of context NCBI DDI BIOSSES PubMedQA

Explicit context 82.128 76.284 84.194 55.486

Implicit context 84.485 78.382 86.103 58.983

Explicit+Implicit 89.778 80.189 88.323 61.312

Table 6.7: Influence of regularization parts on the datasets from each of the four

bioNLP task

Regularization NCBI DDI BIOSSES PubMedQA

Group lasso 87.793 75.172 86.095 57.102

Proposed loss 86.834 76.933 86.119 58.502

Lasso+Proposed 90.971 82.294 89.684 63.689

Table 6.8: Influence of number of blocks in the proposed knowledge-guided pruning

strategy

Number of blocks 8 128 256 768

BioBERT 85.329 86.392 88.756 90.971

SciBERT 82.378 83.481 85.912 89.244

ClinicalBERT 83.291 84.129 85.294 87.321

BlueBERT 85.183 86.299 87.447 88.143

PubMedBERT 84.692 85.391 86.566 87.388
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Effect of number of blocks in knowledge-guided pruning

Table 6.8 presents the results of the prediction performance vs the number of blocks.

The performance significantly increases with the number of blocks. This result indicates

that the structured pruning based approaches have higher flexibility in exploring the

sparsity of transformer-based embedding models.

6.5 Conclusion

In this research, we proposed a new representation learning approach that continually

adapts the representations to the progressively available data. Specifically, the approach

explores the semantic knowledge present in curated KB’s to design a knowledge-guided

strategy that selectively retrains the representations of those concepts whose context

evolved coherently over time. Moreover, the proposed knowledge-guided pruning tech-

nique eliminates redundant parameters in the transformer-based models, thereby sig-

nificantly improving its memory efficiency. Comprehensive experiments conducted in

the datasets from four bioNLP tasks validate the efficacy of the proposed approach and

demonstrates its potential usefulness in a variety of real-time biomedical applications.



Chapter 7

Continual Knowledge Infusion

Into Biomedical Models

7.1 Introduction

Mining and analyzing the vast numbers of unstructured text in the biomedical domain

offers great opportunities to advance scientific discovery [162]. Consequently, there is an

increasing interest towards developing robust text-mining and natural language process-

ing systems that can generate actionable insights and drive research frontiers. Many of

these modern deep-learning powered bioNLP/text-mining systems utilize the pretrained

feature representations of concepts as their input source. As such, numerous biomedical

language models have been proposed in the machine learning literature. More recently,

contextualized language models [2, 1] that capture the semantic properties of concepts

under diverse linguistic contexts have achieved cutting-edge performance. Despite sig-

nificant accuracy gains, these models are still unable to learn high-quality feature rep-

resentations for concepts with low co-occurrence frequency (i.e., rare or domain-specific

concepts). Such domain-specific concepts are abundantly present in the biomedical cor-

pus and learning accurate representations for these concepts is essential to the success of

predictive biomedical applications [163, 164, 136]. One way to address this challenge is

by exploiting the complementary resources such as domain-expert curated knowledge-

bases (KBs). Infusing the semantic knowledge from such KBs into the pretrained lan-

guage models is likely to improve the representations for domain-specific concepts, and

possibly even for those concepts that have adequate co-occurrence information. This is

105
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the core objective of the proposed research in this paper.

Over the past few years, some efforts [165, 166, 167] have been dedicated to in-

fusing the semantic knowledge into the contextualized language models. Despite their

effectiveness, these approaches still have certain limitations. First, the existing ap-

proaches mainly incorporate the KBs by augmenting the language modeling objective

with knowledge-specific regularizers. However, this strategy usually requires retraining

of the entire model parameters that incurs significant computational overhead to the

already overparameterized [130] contextualized embedding models. Second, the existing

approaches are mainly designed for the general domain use-cases that primarily focused

on integrating only one kind of KB, e.g., WordNet [168]. However, specialized domains

such as biomedicine contain a plethora of well-organized KBs such as the Medical Sub-

ject Headings (MeSH) [145], International Classification of Diseases (ICD-10) [169], and

Systematized Nomenclature of Medicine-Clinical Terms (SNOMED-CT) [170]. To flex-

ibly incorporate multiple KBs, we propose to formulate the problem in a continual

learning (CL) setting wherein the approach progressively integrates diverse semantic

knowledge. Moreover, as the proposed CL formulation facilitates incremental updates

of concept representations, it effectively mitigates the expensive retraining of contextu-

alized language models. One critical issue in CL based formulation is to prevent catas-

trophic forgetting, i.e., the model abruptly forgets knowledge learned from previous

KBs when learning on the new KB. To overcome this, we propose a new regulariza-

tion mechanism that constraints the learned concept representations in the embedding

space. This approach is different from the existing CL approaches [129, 171] that usually

operate over the parameter space rather than the embedding space.

Meanwhile, as the majority of KBs in the biomedical domain are expressed as parent-

child hierarchies, we focus on modeling them in this study. While some recently proposed

language models [167, 166] have attempted to incorporate the hierarchical KBs, they still

have certain drawbacks. Specifically, the existing approaches incorporate the hierarchi-

cal structure by solely modeling the direct hyponym-hypernym (i.e., one-level structure)

relationships. This is limiting because these approaches miss to model the semantic con-

tribution from concept’s ancestors (i.e., multi-level structure). For instance, consider

the concept ”Heart Failure, Diastolic” shown in Figure 7.1. Existing approaches such as

LIBERT [165] model the semantics of this concept by only considering its direct parent

(i.e., Heart Failure). However, as it can be observed, the ancestors of this concept (i.e.

”Heart Diseases”, ”Cardiovascular Diseases”) provide useful semantic information too.
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Figure 7.1: Example of a hierarchical structure extracted from MeSH taxonomy.

Thus, it is imperative to model the semantic contribution of ancestors in order to fully

explore the comprehensive structure of hierarchical KBs. We propose to capture the

semantic contribution of ancestors on a concept’s representation via attention mech-

anism [143]. Furthermore, the existing approaches have largely missed to model the

distinctive semantic information between siblings (i.e., concepts at the same level). For

instance, although the concepts ”Heart Failure, Diastolic” and ”Heart Failure, Systolic”

share the same parent, they add specific semantics to form their unique meaning. The

proposed knowledge modelling strategy factors in this semantic information too.

Altogether, the proposed approach models the special topological properties of taxo-

nomic KBs at a granular level, and develops a new continual learning based mechanism

to integrate diverse KBs in a systematic manner. Finally, as the proposed approach

does not change the core architecture of transformer based contextualized embedding

models, it can be flexibly integrated with multiple competing pretrained biomedical

language models such as BioBERT [2], SciBERT [125], and BioELMo [1] for boosting

their overall prediction accuracy.

In this research, our contributions can be summarized as:

• The proposed approach integrates diverse KBs into the pretrained language models

from a new perspective, i.e., in a continual fashion. Notably, the designed tech-

nique has special usability for the text-mining/NLP practitioners of the biomedical

domain where a large number of KBs are known to exist.

• We propose a new technique to model the hierarchical structure of taxonomic

KBs. By modeling the unique semantic contributions from both the ancestors

and siblings, the proposed approach explores the taxonomic structure of KBs in

a comprehensive manner.

• Extensive experiments in datasets from three bioNLP tasks demonstrate that the
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knowledge-powered embedding can significantly improve the accuracy of state-of-

the-art biomedical language models.

7.2 Related Work

7.2.1 Biomedical Language Models

Biomedical language models such as BioBERT [2], SciBERT [125], PubMedBERT [138],

and BioELMo [1] have achieved cutting-edge performance in a variety of bioNLP tasks

such as named-entity-recognition, relationship extraction, and question-answering. For

a recent survey on this topic, please refer [172]. The initial language modelling ap-

proaches [51, 50] generated concept representations using models such as Skip-gram [18]

and GLoVE [17]. Skip-gram based models learn concept representations by maximizing

the probability of individual words given its context, whereas GLoVE based models min-

imize the reconstruction error between co-occurrence statistics predicted by the model

and the global co-occurrence statistics observed in the training corpus. While these ap-

proaches were effective in practice, they generated context-agnostic representations, i.e.,

a single representation for each concept. Such decontextualized representations ignored

the polysemous properties of words. To overcome this, recently proposed contextualized

language models [2, 1] encode the semantics of concepts under varied linguistic contexts

and generate context-specific representations. These context-sensitive approaches have

demonstrated significant improvement in performance. Building upon the success of

these approaches, some studies [173, 167, 165] have attempted to incorporate the prior

knowledge into the pretrained language models. For instance, KnowBERT [167] incor-

porated synset-synset and lemma-lemma relationships from WordNet [168] into BERT.

Similarly, LIBERT [165] injects hyponym-hypernym pairs present in the WordNet [168]

into BERT. Despite important advances made by these approaches, none of them at-

tempted to integrate multiple kinds of KBs in a continual manner.

7.2.2 Continual Machine Learning

Continual machine learning [129, 174] aims to train the models over a sequence of tasks

in an online manner. It is often tackled as an online multi-task learning problem where

the objective is to progressively accommodate the new knowledge while retaining the

previously acquired knowledge. The main challenge in this learning paradigm is referred
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Figure 7.2: Continual Knowledge Infusion into the Pretrained Biomedical Language

Models. PBLM refers to any pre-trained language model such as BioBERT [2].

to as catastrophic forgetting [129, 116], i.e., knowledge of previous tasks is abruptly for-

gotten when learning on the new task. Existing research has attempted to tackle this

issue from three perspectives. The first class of approaches, i.e., memory-based ap-

proaches [174, 171] attempted to mitigate catastrophic forgetting by replaying the old

training data from the explicitly stored memory. However, this approach suffers from

scalability issues as the number of task increases. The second class of approaches, i.e.,

regularization approaches, overcome catastrophic interference by imposing constrains

on the neural network parameters. [175] proposed learning without forgetting algo-

rithm that enforced regularization via knowledge distillation. Specifically, given a set of

shared parameters across all tasks, it optimizes the parameters of the new task together

with the shared parameters. [140] proposed to incrementally train the autoencoder

by adding neurons for training samples with high loss. Similarly, [176] proposed an

algorithm that incrementally trains the network to grows in a hierarchical fashion. More

recently, [116] proposed a dynamically expanding network that increases the number of

parameters to incrementally train the models on new tasks. Concretely, it performs se-

lective retraining that expands the network capacity using group sparse regularization.
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While the aforementioned approaches made significant advances, they mainly focused

on alleviating the issue of catastrophic forgetting by designing solutions that operate

over the parameter space. Different from these, the proposed research alleviates the is-

sue of catastrophic forgetting by designing a new regularization technique that operates

over the embedding space rather than the parameter space.

7.3 Approach

Our goal is to continually integrate multiple kinds of KBs into the pretrained biomed-

ical language models, and generate knowledge-powered representations. To achieve

this, we develop a new representation learning approach that first models the hierarchi-

cal structure of KBs (Section 7.3.1), and then proposes a continual learning scheme

to integrate multiple KBs in a perpetual manner (Section 7.3.2). Formally, let us

consider an overall vocabulary V = {w1, . . . , wV } of size V . wi ∈ Rd denotes a

d−dimensional word embeddings that can be derived from any pretrained language

representation models, e.g., BioBERT [2] or PubMedBERT [138]. Given a pretrained

set of word representations (w1, ...,wV ), the objective is to update the representations

for each word wi ∈ V by infusing the semantic knowledge from the successive KBs,

i.e., (w1
1, ...,w

1
V ), (w2

1, ...,w
2
V ), . . . , (wN

1 , ...,w
N
V ) for unbounded N , where N refers to

the n-th KB. Figure 7.2 shows an overview of the proposed approach.

7.3.1 Modeling Hierarchical Knowledge-base

A hierarchical KB represents a directed acyclic graph G with two intrinsic topological

parameters, i.e., ancestors and siblings. Ancestors refer to the direct and indirect hy-

pernyms of a concept, whereas siblings refer to the set of concepts located at the same

level. Modeling the complementary information from both the ancestors and siblings

can enable us to capture the taxonomic structure of KBs in a comprehensive manner.

Modeling Ancestors: The meaning of a concept is formed by the accumulation of the

features coming from a higher ancestor to another less deep. Thus, we propose to quan-

tify the contribution of each ancestor, i.e., both direct and indirect parents of a concept.

This is different from the existing approaches lauscher2019informing that only consider

modeling the direct parents. Specifically, each concept wi in G is assigned a basic em-

bedding vector ei ∈ Rd. Next, we formulate a concept’s final representation mi as a
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convex combination of the embeddings of itself and its ancestors:

mi =
∑

j∈N (i)

βijej ,
∑

j∈N (i)

βij = 1, βij ≥ 0 for j ∈ N (i) (7.1)

where mi ∈ Rd denotes the final representation of the concept wi, N (i) denotes the

indices of the concept wi and its ancestors, ej the embeddings of the concept wj , and

βij ∈ R+ the attention weight on the embedding ej when computing mi. The attention

weight βij in Equation 7.1 is calculated by the following softmax function:

βij =
exp(f(ei, ej))∑

k∈N (i) exp(f(ei, ek))
(7.2)

where f(ei, ej) calculates the compatibility between the basic embeddings of ei and ej

via a scoring function. Specifically, the scoring function is approximated by a single

layer perceptron:

f(ei, ej) = ST tanh(Q

[
ei
ej

]
+ b1) (7.3)

where S, Q and b1 are the parameters to be learned. tanh is the activation function

of the hidden layer. In order to learn these attention weights, we propose to train the

model on a multi-label classification task where the objective is to predict the labels for

the biomedical articles. Existing studies [177] have found this to be an effective strategy

for learning high-quality predictive embeddings. To train the model on the multi-label

classification task, we use another single layer perceptron:

ŷj = softmax(tanh(Pmi + b2)) (7.4)

where P and b2 are the learnable parameters. Finally, we use the cross-entropy loss as

the objective function for the predictive task as follows:

Lc = − 1

NK

N∑
i=1

K∑
j=1

yijlog(ŷij) + (1− yij)log(1− ŷij) (7.5)

where N refers to the number of articles, and K refers to the number of labels. ŷij and

yij refers to the predicted probability and true value, respectively, for the i-th article

and the j-th label. Using the above mechanism, we model the semantic contribution of

each ancestor on the concept’s final representation in a comprehensive manner.

Modeling Siblings: Concepts that are descendants of a common parent are referred to

as siblings. Siblings possess both the common and distinctive semantics with respect

to one another. While modeling the ancestors accounts for the semantic commonality

between siblings, their specific semantic differences remain ignored. For example, in

Figure 7.1, the concepts ‘Heart Failure, Diastolic’ and ‘Heart Failure, Systolic’ are close

to ‘Heart Failure’ as they inherit the same attribute. However, they should be differ-

entiated from each other as they also hold significantly different attributes. Unlike the
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existing approaches [165, 167] that mainly exploit the hyponyms-hypernyms relation-

ships, we argue that modeling the discriminative semantics between siblings can assist in

capturing the semantic richness of taxonomies in a coarse-grained manner. Technically,

this is achieved by widening the semantic distance between the embeddings of concepts

at the same level. The training objective to minimize is the following:

Ls =
∑

j∈Siblings(wi)

cos(ei, ej); i ̸= j (7.6)

where Siblings(wi) refers to the set of siblings for concept wi. cos(, ) denotes the

similarity measure function computed by:

cos(ei, ej) =
eTi .ej
|ei| · |ej |

(7.7)

By combining the objective functions of both the ancestors and siblings, we can derive

the overall objective function as L = Lc + λ1Ls. λ1 is the balancing hyperparameter.

The pseudocode of the proposed knowledge modeling technique is shown in Algorithm

1.

7.3.2 Continual Knowledge Infusion

In this section, we describe our efforts to continually integrate the KBs into the pre-

trained language models. Let {KB1, . . . ,KBn−1,KBn} and {θ1, . . . , θn−1, θn} denote

a set of existing KBs and their embedding representations respectively. Given the em-

bedding representation θ1 generated from KB1 (via modeling the KBs ancestors and

siblings), we propose to incrementally fuse the successive KBs by initializing the em-

beddings θn of KBn with θn−1 of KBn−1. This initialization scheme aligns the learned

embeddings in the unified coordinate space [178] and enables continual knowledge in-

fusion by performing direct knowledge transfer. While this straightforward mechanism

works well in practice, it might lead to catastrophic forgetting [129] when a large num-

ber of KBs need to be integrated. Concretely, as we train the model on new KBs,

the embedding space might become distorted and thus forget the previously acquired

knowledge. Some existing continual learning approaches [174, 171, 134] have attempted

to alleviate this issue (i.e, catastrophic forgetting). However, they mainly operate over

the models parameter space which is different than the current setting of embedding

space. Additionally, the existing approaches are mainly proposed for the multi-task

settings whereas the current setting is single-task incremental (i.e., progressively inte-

grating diverse KBs). To address these challenges, we propose a new regularization

mechanism that mitigates the issue of catastrophic forgetting in the embedding space
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Algorithm 2 Learning knowledge-powered representations

1: Input: Hierarchical knowledge-base G, dimensionality d of the word embeddings,

word vocabulary V
2: Output: Knowledge powered embeddings M

3: repeat

4: for concept ci in V do

5: if ci in G then

6: Refer G to find ci’s ancestors C ′

7: for concept cj in C ′ do

8: Calculate attention weight βij using Equation 2

9: end for

10: end if

11: end for

12: Calculate prediction loss Lc for ancestors using Equation 5

13: Calculate prediction loss Ls for siblings using Equation 6

14: Obtain the final representations M using L = Lc + λ1Ls
15: Update the parameters according to the gradient of L
16: until converge

for the single-task incremental settings. Simply put, an effective regularization mecha-

nism should allow the embedding updates to accommodate the new knowledge and at

the same time ensure the changes do not loose the previously acquired knowledge. To

achieve this, we propose to identify the concepts whose embeddings changed sporadi-

cally (i.e., unstable) during the successive KB integration. To measure the embedding

stability, we propose to quantify the portion of overlapping words between the concept’s

k-nearest neighbors from their successive embedding spaces. Concretely, given a con-

cept wi, let c1 and c2 be the k-nearest neighbors of wi in the consecutive embedding

spaces KBn−1 and KBn. The stability value for concept wi is the ratio of overlapping

words in c1 and c2. All concepts with the stability value below a pre-defined threshold

are deemed as unstable.

Having identified the unstable concepts, we propose to minimize the variance of rep-

resentations in the embedding space. Since the embeddings are in the unified coordinate

space, we argue that minimizing the variance of concepts representations learned over

successive KBs can mitigate the issue of catastrophic forgetting. Specifically, given two
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neighbourhood sets c1 and c2 for a concept wi, the difference of representations in the

successive embedding space can be defined by the L2 norm,

dc1,c2(wi) = ||(mi)c1 − (mi)c2||2 (7.8)

Let B (B ⊆ V) denote the set of concepts that have significantly distorted representa-

tions in the successive embedding spaces. We propose to minimize the variance in their

representations using the hinge loss:

LH =
∑

wi∈B and wi∈c1∩c2

[dc1,c2(Xmi) + γ − dc1,ĉ2(Xmi)]+ (7.9)

where X ∈ Rd×d is a transformation matrix and γ > 0 is a hyper-parameter that

denotes the margin. To enlarge the semantic distance with unrelated neighbours, we

generate the negative samples (c1, ĉ2) by substituting c2 with a random neighbour set

ĉ2. The operator [x]+ denotes max(x, 0). We impose an orthogonal regularization on

X to prevent the information loss.

L0 = ||I−XTX||F (7.10)

where ||.||F denotes the Frobenius norm, and I is an identity matrix. The overall learning

objective of the proposed regularization scheme is then denoted as L = LH +λ2LO with

a positive hyperparameter λ2. In this way, the proposed approach prevents the issue of

catastrophic forgetting by minimizing the variance of concept representations learned

over successive KBs. It is worth nothing that the above formulation (Equation 7.8, 7.9)

apart from mitigating catastrophic forgetting also models the interplay between multiple

KBs that results in knowledge enriched concept representations. Finally, we concatenate

the produced knowledge representations with the pre-trained language representations

to generate knowledge-powered representations that can be utilized as the input feature

for the task-specific layer of the downstream tasks (refer Figure 7.2).

7.4 Experiments

7.4.1 Datasets

• Named entity recognition (NER): For the biomedical NER, we choose BioCre-

ative II Gene Mention (BC2GM) [151] and Joint Workshop on Natural Language

Processing in Biomedicine and its Applications (JNLPBA) [179] as our datasets.

The BC2GM dataset contains sentences from PubMed that are annotated with

gene entities. We use the pre-processed set of train (15197), development (3061),
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and test (6325) splits released by [138] for our experiments. The JNLPBA dataset

is another NER corpus that is annotated with entities such as protein, DNA, RNA,

cell line, and cell type. Similar to the BC2GM dataset, we use the pre-processed

set of train (46750), development (4551), and test (8662) splits released by [138].

• Relationship Extraction (RE): For the biomedical RE, we utilize the widely used

datasets such as CHEMPROT [154] and GAD [180] for our experiments. These

datasets contain protein-chemical and gene-disease relations respectively. The to-

tal number of training/dev/test splits for CHEMPROT and GAD are 18035/11268/15745

and 4261/535/534 respectively. The preprocessed datasets are available at [2].

• Question Answering (QA): For the biomedical QA task, we use BioASQ 7b-

factoid [181] and BioASQ 6b-factoid [182] as our datasets. These datasets contain

factoid question answers that are annotated by the biomedical experts. Since the

baseline algorithms choose the factoid part of BioASQ datasets for their experi-

ments, we followed the same practice. The total number of train/test for BioASQ

7b-factoid and BioASQ 6b-factoid are 670/140 and 618/161 respectively. We use

the preprocessed datasets released by [2] for our experiments.

Hierarchical Knowledge-Bases

We choose to integrate three well-known hierarchical knowledge-bases, i.e., Medical

Subject Headings (MeSH) [145], Systematized Nomenclature of Medicine Clinical Terms

(SNOMED-CT) [170], and International Classification of Diseases (ICD-10) into the

pretrained contextualized language models. MeSH is a taxonomic resource wherein

the concepts are arranged in a hypernym-hyponym relationships. The concepts are

organized into 16 sub-trees such as Anatomy, Organism, Diseases and so on. SNOMED-

CT is another parent-child hierarchy that contains more than 300,000 concepts. These

concepts are organized into 18 sub-trees such as clinical findings, procedures, organisms,

and so on. ICD-10 is an ontological resource that contains over 70,000 concepts. Similar

to the MeSH and SNOMED-CT, the concepts in ICD-10 are also organized into a

hierarchical structure.
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Table 7.1: Comparison of prediction performance and training efficiency in the bioNLP

datasets. The evaluation metric for BC2GM, JNLPBA, CHEMPROT, and GAD is

micro-F1. Accuracy is reported for BioASQ 7b-Factoid and BioASQ 6b-Factoid. To

measure training efficiency, we report FLOPS.

Model BC2GM JNLPBA CHEMPROT GAD BioASQ 7b-Factoid BioASQ 6b-Factoid #FLOPs

BioBERT 80.113 76.223 70.023 75.228 80.872 71.782 N/A

BioBERT-KB (Proposed) 84.189 79.554 74.229 79.389 82.982 74.897 N/A

SciBERT 79.721 75.112 70.113 74.112 76.762 71.998 N/A

SciBERT-KB (Proposed) 84.221 79.943 74.922 78.343 78.223 75.218 N/A

PubMedBERT 80.982 75.112 71.121 76.298 82.872 70.221 N/A

PubMedBERT-KB (Proposed) 84.287 79.742 74.912 80.421 84.872 74.264 N/A

BioELMo 81.198 75.111 69.123 75.998 73.982 72.221 N/A

BioELMo-KB (Proposed) 85.932 79.432 74.299 79.732 75.845 76.223 N/A

LIBERT 83.223 79.845 73.521 78.193 87.223 73.955 N/A

LIBERT-KB (Proposed) 86.873 83.392 76.117 81.231 88.929 76.892 N/A

KnowBERT 82.114 78.984 72.112 78.421 87.111 72.198 N/A

KnowBERT-KB (Proposed) 85.821 81.932 75.367 81.754 88.228 76.823 N/A

SenseBERT 81.432 77.231 71.122 77.289 86.121 72.143 N/A

SenseBERT-KB (Proposed) 84.733 80.744 74.763 79.833 87.276 75.734 N/A

BERT-MK 81.832 77.872 72.843 77.341 86.222 72.397 N/A

BERT-MK-KB (Proposed) 84.763 80.733 75.234 80.721 87.989 76.633 N/A

K-BERT 80.231 75.245 70.123 74.908 85.227 71.983 N/A

K-BERT-KB (Proposed) 83.145 78.932 73.982 77.871 86.278 73.172 N/A

BIOBERT-LWF 81.632 77.672 71.812 76.891 81.672 72.984 19.2B

BIOBERT-MAS 82.023 78.945 73.619 77.904 83.872 73.764 17.2B

BIOBERT-EWC 83.192 79.893 73.892 78.009 83.989 74.167 15.3B

BIOBERT-Continual (Proposed) 86.732 83.873 76.981 82.982 85.321 77.983 9.4B
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Pre-training and Task-specific Settings

Pre-training: We train the state-of-the-art (SOTA) contextualized language models such

as BioBERT [2], SciBERT [125], PubMedBERT [138], and BioELMo [1] on the same

training corpus. We choose the latest collection of PubMed1 abstracts as our pre-

training corpus. The corpus contains 14 million abstracts that are predominantly from

the areas of life sciences and biomedicine. Following suggestions from the previous stud-

ies [2, 173], we utilize the Natural Language Toolkit (NLTK) [183] to split sentences. The

sentences that are less than 5 words are removed. Altogether, a large corpus containing

3.2 billion words is achieved for the language model pre-training. We use the publicly

released source codes of these language models to conduct the pre-training procedure.

Since our goal is to perform effective knowledge infusion, the concepts appearing in the

corpus needs to be aligned with the concepts present in the hierarchical KBs. To achieve

this, we utilize the concept normalization algorithm proposed in [184]. The algorithm2

maps the concept mentions in the natural language text to their corresponding con-

cept entries in the standardized biomedical thesaurus, i.e., Unified Medical Language

Systems (UMLS) [185]. Generally speaking, the approach first applies a candidate

generator to generate a list of candidate concepts, and then use a BERT [142]-based

list-wise classifier to rank the candidate concepts. The main advantage of this approach

is that it considers both the morphological and semantic information to perform ac-

curate concept normalization. Experiments conducted on three social media datasets,

TwADR-L [186], SMM4H-17 [187], AskAPatient [186], and one clinical notes dataset,

MCN [188] validate the efficacy of the proposed approach. TwADR-L and SMM4H-17

contains 5,074 and 9,149 adverse drug reaction (ADR) annotations that are mapped to

2,220 and 513 concepts from the Medical Dictionary Regulatory Activities respectively.

Similarly, AskAPatient and MCN contains 17,324 and 13,609 concept mentions that are

mapped to 1,036 and 3,792 concepts from the SNOMED-CT respectively. For all these

four datasets, the performance is measured using accuracy metrics averaged over the

10-fold cross validation. The results are compared with the existing concept normaliza-

tion algorithms [189, 190]. Overall, the chosen concept normalization algorithm [184]

obtains SOTA performance in two social media datasets and one the clinical dataset.

Specifically, the impact of performance (in terms of accuracy gains) is highest in the

clinical domain, i.e., MCN dataset (83.56%), whereas the performance is lowest in one

1 ftp://ftp.ncbi.nlm.nih.gov/pubmed/baseline
2 https://github.com/ dongfang91/Generate-and-Rank-ConNorm.
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of the social media dataset SMM4H-17 (Achieved: 88.24%, SOTA: 89.64%).

Task-specific Settings: All of the chosen downstream bioNLP tasks, i.e, named entity

recognition, relationship extraction and question answering can be formulated as a clas-

sification problem. Consequently, we fine-tune the models by adding a single linear

layer on top of each contextualized embedding models and then train them using the

task-specific training data. Following the practice in the existing literature [2, 125], the

range of hyperparameters such as learning rate, batch size, and epoch number is chosen

within the range of [1e-5, 3e-5, 5e-5], [10, 16, 32, 64], and [2–60] respectively. After

analyzing the average prediction performance in the validation sets, the learning rate,

batch size, and epochs are set to 3e-5, 16 and 6 respectively.

Baseline Models

(1) The first class of baselines are the state-of-the-art (SOTA) contextualized language

models [2, 125, 138] that are trained solely on the biomedical corpus. Our main ob-

jective in this experiment is to measure the boost in performance achieved by these

models when integrated with multiple kinds of KBs. (2) The second class of base-

lines are the KB-augmented methods [165, 167] that learn concept representations by

injecting the external semantic knowledge into the pretrained contextualized language

models. Our objective is to compare the performance with the existing knowledge-

powered approaches. Note that we do not compare our results with the KB-augmented

approaches [191, 173] that are not designed for integrating the hierarchical KBs. (3)

The third class of baselines are the continual learning approaches [129, 175] that can be

adapted to the current NLP setting. Our objective is to compare the performance of the

proposed continual learning strategy with the existing continual learning approaches.

We choose these approaches [129, 175] as our baselines because they can be adapted to

the continual learning settings for NLP tasks.

7.4.2 Results and Discussion

Table 7.1 reports the results on the tasks of named entity recognition, relationship

extraction, and question answering. Following the evaluation criteria used in the pre-

vious studies [2, 125, 138], we report the micro F1 score for named-entity-recognition,

relationship extraction and accuracy for question-answering. We utilize the same eval-

uation metrics as the baseline algorithms to facilitate a standardized comparison of
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results. From the results, we make the following observations:

(1) All of the SOTA contextualized language models (without knowledge infusion)

achieve competitive performance on the bioNLP tasks. No specific model significantly

outperforms the others. This is reasonable because all of the aforementioned mod-

els adopt the same transformer [142] based architecture at its core. Some existing

studies [138] have reported higher performance gains for the PubMedBERT model.

However, this result has been attributed to the choice of the training corpus. As our

objective in this research is to quantify the gains achieved from integrating KBs, the

training corpus for all the SOTA models are fixed (refer Section 7.4.1). We observe

that the proposed knowledge-powered versions of the SOTA models obtains significant

improvement in performance. This result demonstrates that the semantic knowledge

from KBs play a positive role in improving the feature representations of concepts.

Analyzing the results, we observe that the incorporation of prior knowledge is espe-

cially useful for concepts with paucity of co-occurrence information in the training

corpus, i.e., rare or domain-specific concepts. For instance, the concept Myocarditis

is rarely observed in the training corpus, and thus its semantic proximity with related

concepts such as Heart is relatively low, i.e, cosine distance = 0.39. However, their

semantic relatedness is well captured via the MeSH hierarchy. As such, after inte-

grating the MeSH hierarchy into the language models, the semantic proximity between

their feature representations is significantly boosted, i.e, cosine distance = 0.67. This

result indicates that the proposed approach can learn robust representations for the

rare (or domain specific) concepts. To further evaluate our approach, we perform case-

studies on two rare biomedical concepts (i.e., Peritonitis and Atherosclerosis) [124, 115].

For both of these concepts, we analyze their top 5 nearest neighbour returned by the

baseline algorithm (BioBERT) and the proposed approach (BioBERT-KB). The top 5

neighbours for ‘Peritonitis’ returned by BioBERT and BioBERT-KB are [‘Gastroenteri-

tis’,‘Empyema’,‘Enterocolitis’,‘Pyomyositis’,‘Esophageal

Diseases’] and [‘Peritoneal Fibrosis’,‘Peritoneal Neoplasms’,‘Peritonitis, Tuberculous’,‘Panniculitis,

Peritoneal’,‘Pneumoperitoneum’] respectively. Similarly, the top 5 neighbours for ‘Atheroscle-

rosis’ returned by BIOBERT and BioBERT-KB are [‘Fibromuscular Dysplasia’,‘Angioedema’,‘Angio

matosis’,‘Angiodysplasia’,‘ Moyamoya Disease ’] and [‘Arteriosclerosis Obliterans’,‘Peripheral

Arterial Disease’,‘Coronary Artery Disease’,‘Intra

cranial Arteriosclerosis’,‘Arterial Occlusive Diseases’] respectively. As it can be ob-

served, the neighbours returned by the proposed approach, i.e., BioBERT-KB, forms
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more meaningful semantic coherence than those returned by the baseline algorithm,

i.e., BioBERT. This result indicates that the injection of prior knowledge (proposed

approach) helps to improve the representations of rare or domain-specific words.

(2) Analyzing the results with the second-class of baselines, i.e., knowledge-augmented

algorithms such as [165, 167, 166, 173], we observe that most of the knowledge-powered

models perform better than the purely data-driven models. This result reinforces the

usefulness of exploiting the semantic knowledge. For a head-to-head comparison, we

compare the proposed approach with the existing approaches [173, 192] that also fo-

cus on integrating the medical knowledge graph (KG). BERT-MK [173] models the

subgraphs in the medical KG and injects the graph contextualized knowledge into the

pretrained language model, whereas K-BERT [192] injects the domain knowledge in the

form of semantic triples (e.g., ‘Diabetes Mellitus, Type 1’, Child-of, ‘Diabetes Mellitus’).

As it can be observed from the Table 7.1, the proposed approach outperforms BERT-

MK and K-BERT in all the bioNLP tasks. This result indicates that whilst integrating

the semantic knowledge can boost the performance, the methods to integrate the struc-

ture of knowledge has direct implications on the overall performance. Moreover, we also

compare the performance of our approach with existing approaches such as LIBERT-

lauscher2019informing and KnowBERT [167] that are also designed for integrating the

hierarchical structure of KBs. However, they do not perform on par with the proposed

approach. We speculate this is because whilst the existing knowledge-augmented algo-

rithms incorporate the ancestral information present in hierarchical KBs, they usually

ignore to model the discriminative semantic information present between concept’s sib-

lings. This is limiting because the “siblings” contribute valuable semantic information

too (refer Table 7.2). The proposed approach models both the ancestral and sibling

relationship present in hierarchical KBs, and the overall results show that this strategy

is both reasonable and effective. We note that the proposed approach obtain SOTA

results within the realm of pre-trained biomedical language models. Some existing

approaches [193] that also explore the usage of biomedical KBs (in different problem

setting) have reported approximately 5% improvement in F-score for the same relation-

ship extraction task. This result indicates that the other (or more accurate) methods

to exploit KBs may result in better performance for the same bioNLP tasks, and thus

further comparison studies should be conducted to examine this issue.

(3) Comparison with the existing continual learning baselines is performed to exam-

ine whether the proposed approach can effectively mitigate the issue of catastrophic
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forgetting. Following the practice in the existing literature, we report average accu-

racy [194] obtained after incrementally integrating all three KBs. As it can be observed

from the Table 7.1, EWC appears to be the strongest baseline. The performance of

MAS is marginally better than LWF. We believe this is because EWC does not overly

constrain the embeddings and thus has better knowledge retention capabilities. The

proposed continual learning technique performs significantly better than the existing

approaches. We speculate two reasons for this: (a) Most of the existing continual

learning approaches [194] are designed for computer vision tasks, and thus their direct

application to the realistic NLP tasks yields unsatisfactory results [195]. This is due

to the fundamental differences in the properties of imaging and textual datasets. (b)

Existing continual learning approaches mainly operate over the neural networks’ pa-

rameter space. However, deep neural networks are known to posses a huge number of

parameters, and thus the methods operating over the parameter space can be compu-

tationally expensive [171]. As such, the ability of these approaches to overcome the

issue of catastrophic forgetting is limited. To address this, we formulate the continual

learning problem in the embedding space (as opposed to the parameter space). This

strategy is both memory efficient and at the same time has better knowledge retention

capabilities. Consequently, the issue of catastrophic forgetting is effectively mitigated

(refer Table 7.1 - third block). Moreover, we also measure the computational efficiency

of the proposed approach with the existing continual learning approaches. Note that

for a head-to-head comparison, we report the computational efficiency with the con-

tinual learning baselines only. Specifically, for measuring the computational efficiency

we report floating-point operations (FLOPs) [127]. FLOPs calculate the number of

floating-point operations that the models perform for a single process. From the re-

sults in Table 7.1, we can observe that the proposed approach effectively preserves the

memory efficiency of the contextualized language models. We speculate two reasons for

this: (a) Different from the existing approaches that require a working memory to store

the informative samples from previous tasks/snapshots, the proposed approach directly

operates over the embedding space. (b) Since the proposed regularization mechanism

selectively identifies the concepts that require an embedding update, it is more efficient

than approaches [171] that update the embeddings in a batch-mode fashion.
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Analyzing contribution of ancestors/siblings and individual KBs

To quantify the semantic contributions from both the ancestors and siblings, we develop

variants of the SOTA models, e.g, BioBERTAncestors, BioBERTSiblings, and generate

representations. We choose one dataset from each of the three bioNLP tasks and report

the results in Table 7.2. As it can be observed, modeling both the ancestors and siblings

contribute uniquely towards capturing the topological properties of the hierarchical KBs.

The accuracy gain margins are higher for the ancestors. We speculate this is because

the cardinality set of ancestors is greater than the siblings. Nevertheless, the siblings

provide distinctive semantic information too. This can be observed from the result

that the contribution of ”Ancestors+Siblings” obtains the best result. In summary,

the results validate the importance of incorporating both the ancestors and siblings to

preserve the comprehensive structure of hierarchical KBs.

In another ablation study, we study the benefits of integrating multiple hierarchical

KBs. Table 7.3 reports the results. All of the ablated versions use BioELMo [1] as

the backbone model. It can be observed that the KBs (i.e., SNOMED-CT and MeSH)

contribute more accuracy gains to the overall performance. We believe this is due to the

broader coverage of biomedical concepts in the SNOMED-CT/MeSH. The combination

of multiple KBs achieves the best performance. We also conducted experiments whilst

shuffling the order of KBs. However, we did not observe any noticeable change in the

results. Overall, the result suggests the practical benefits of integrating multiple kinds

of KBs into the biomedical language models. More importantly, it demonstrates the

necessity of designing new continual learning approaches that can integrate diverse KBs

in a progressive manner.

7.4.3 Hyper-Parameter Settings

The experiments are conducted on NVIDIA TITAN Xp GPU. For a head-to-head com-

parison, we set the size of embeddings generated by both the proposed approach and the

baseline algorithms to 200. The hyper-parameters for the loss functions are tuned using

grid search on the validation set. Following the convention in existing studies [2, 138],

we set the range to [0.01, 0.05, 0.1, 1, 10]. The best performance for λ1 and λ2 is

obtained at 0.05 and 0.1 respectively.
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Table 7.2: Analyzing the semantic contribution of ancestors and siblings using SOTA

biomedical language models.

Models BC2GM CHEMPROT BioASQ

BioBERTAncestors 82.783 72.123 78.198

BioBERTSiblings 80.432 70.751 76.763

SciBERTAncestors 82.456 71.219 75.638

SciBERTSiblings 80.912 70.094 72.281

BioELMoAncestors 82.562 72.945 70.229

BioELMoSiblings 80.903 70.091 68.398

BioBERTAncestors+Siblings 84.189 74.229 80.872

SciBERTAncestors+Siblings 84.221 74.992 77.762

BioELMoAncestors+Siblings 85.932 74.299 73.982

Table 7.3: Analyzing the semantic contribution of individual KBs using BioELMo [1]

KBs BC2GM CHEMPROT BioASQ

MeSH 81.093 70.566 70.227

SNOMED-CT 81.234 70.984 70.981

ICD-10 81.013 70.094 68.241

MeSH + ICD-10 83.093 72.187 71.102

SNOMED-CT + ICD-10 83.112 72.094 71.011

MeSH + SNOMED-CT 83.903 72.987 71.912

MeSH + SNOMED-CT + ICD-10 85.932 74.299 73.982
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7.5 Conclusions

In this research, we proposed a new representation learning approach that continually

infuses the semantic knowledge from the hierarchical KBs into the pretrained biomed-

ical language models. Specifically, the approach models the unique topological proper-

ties, i.e., ancestors/siblings of the hierarchical KBs and efficiently updates the concept

representations whilst integrating diverse hierarchical KBs. Overall, the proposed ap-

proach generates high-quality knowledge-powered representations and at the same time

preserves/improves the learning efficiency of SOTA contextualized language models.

Comprehensive experiments conducted on the bioNLP tasks validate the efficacy of the

proposed approach, and suggests that the proposed framework is capable of generating

meaningful representations that are useful for a variety of biomedical applications.
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Chapter 8

Uncovering Conceptual Bridges

Based on Concept Evolution

8.1 Introduction

Scientific knowledge is growing at an unprecedented rate as evident from the growing

body of research publications, grants, clinical trials and other scientific endeavors. A

large body of this knowledge available in the free-form text has provided practitioners

access to a staggering amount of information; however, at the same time, it has also

made it increasingly difficult for them to keep up with the latest information, trends and

findings in their field of interest in a reasonable amount of time. Imagine a researcher

attempting to formulate a new hypothesis in the research area of autism (a serious de-

velopmental disorder). To do so, first, one has to thoroughly study and understand the

existing body of literature already available. At present, a simple search in MEDLINE

(a popular bibliographical database) for autism yields more than 50,000 results. While

technologies based on text summarization would help users get a high level idea of the

papers, it fails to stitch together disparate and seemingly uncorrelated facts together

to present novel and ”actionable” insights that can drive new research frontiers. Mo-

tivated by this, hypotheses generation, a sub-branch of biomedical text mining, aims

at identifying non-trivial implicit assertions within a large body of documents. Simply

put, the task of hypotheses generation is to answer questions like: Is there an implicit

linkage between two seemingly related but explicitly disjoint topics of interest (A and
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Figure 8.1: An Overview Schematic of Hypotheses generation

C)? Consider the example shown in Figure 8.1. It can be observed that a direct re-

lationship between two topics A and C might not be known/studied but there might

exist an implicit linkage between them via bridging terms (B). Finding these conceptual

bridges might reveal hitherto unknown but potentially interesting relationships. This is

the crux of the problem that this paper attempts to address.

Prior studies tackle this problem through a range of solutions based on approaches

such as distributional statistics [9, 196], graph theoretic measures [10, 11] and supervised

machine learning techniques [12, 197]. However, in a broad sense, they are afflicted with

three major drawbacks:

1. Rigid schema: Almost all of the previous approaches rely on a ”hard-wired” schema

(e.g. graph) that results in finding only those linkages that are en route. Conse-

quently, it risks missing the connections that are surprising or radical. More often,

these radical linkages have the potential of shedding novel insights into pathways

that would remain otherwise hidden.

2. Strict query reliance: Existing approaches find implicit connections by strictly

relying on the given input pairs; thereby ignoring the subtle cues from concepts

present in their local neighbourhood.

3. Static domain: The prior studies mainly assume the prevailing domain to be static;

nevertheless, it is known that the domains in general (and in particular bio-medicine)

are usually dynamic with new facts being added every single day [13].

To tackle the problem of rigid schema, we model the problem of finding key concep-

tual bridges in the latent continuous space which allows us to include even those terms

in our search-space that have not yet been rigorously investigated; thereby nudging the

system to perform novel and radical discovery. We use the concept of word embedding

techniques [18, 66] in conjunction with temporal information to identify bridge terms

that have the highest likelihood of creating a meaningful connection.
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The use of word-embeddings also allows us to circumvent the second issue of strict

query reliance. Because word-embeddings project semantically similar terms closer

in the vector space [18], we can leverage the terms that are deemed ‘close enough’ to

the query to augment our search-space. This differs markedly from the classical ap-

proaches [10, 198] that find conceptual bridges by relying solely on the user provided

input query terms. Their idea being that those concepts that have high semantic re-

latedness to both the start and end concepts (A and C) are promising candidates for

bridge concepts. In this study, we extend this intuition and argue that good bridge

concepts are those that, apart from being connected to A and C, are also connected to

their semantically similar neighbours.

The infusion of temporal information into our word-embedding generation process

enables the proposed model to be sensitive to the dynamic nature of the domain; thus

alleviating the limitations of modeling it under static domain. While some prior

studies [67, 66] have attempted to generate temporally sensitive word-embeddings, they

cannot handle the current problem setting, wherein it is important for the temporal em-

beddings to factor in the fundamental relationship between input query and its informa-

tive local context in order to find promising conceptual bridges. To this end, we propose

a new approach that allows us to first train the distributed representation of words in

temporally distant time scopes and then learn a mapping function/transformation ma-

trix being sensitive to both the global and query-specific semantics; thereby enabling

the system to learn precise transformation.

Thus, our contributions can be summarized as:

1. We propose a novel model for hypotheses generation, namely Concepts-Bridges,

that infers implicit relations by capturing the latent evidence manifested in the

temporal drift.

2. The proposed technique for capturing temporal dynamics is sensitive to both local

and global correspondence of input query, thereby capturing the semantics at a

granular level.

3. The experimental results corroborate the efficacy of the proposed model - we

obtain a 20% improvement over baselines in terms of Mean Average Precision @

top-K. Qualitative evaluation of the bridge terms also validate that the hypotheses

generated are plausible and worthy of further investigations.
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8.2 Related Work

Hypothesis generation from unstructured text has long been an important problem

of text mining [198, 199]. This area of study in particular started gaining attention

after the seminal work of Don R. Swanson in 1986 [5]. In this study, the researchers

demonstrated the potential of combining facts from multiple documents to discover new

knowledge. However, their approach required significant manual labor. To overcome

this issue, the subsequent studies focused on automating it.

Distributional approaches: Some of the previous studies in this area of research

relied on statistical analysis of concept co-occurrence (term frequency, inverse document

frequency, record frequency and so on) [9, 198, 196]. Their notion being, new associ-

ations are likely to be found if the conceptual bridges are highly or rarely connected

to the disparate topics of interest. However, a drawback of these approaches lie in the

fact that term frequencies indicate strong but not necessarily semantically meaningful

associations. Another disadvantage is their neglect of temporal dimension. This is trou-

blesome because it is known that the semantic meaning of a concept evolves over time.

Furthermore, it promptly affects domain such as bio-medicine where some new facts

emerge and some are rendered obsolete every now and then.

Graph theoretic approaches: Another line of research tends to model the prob-

lem of hypotheses generation using graph based approaches [11, 10, 22]. In [11], the

authors proposed a graph-based approach utilizing semantic predicates present in the

form of subject-verb-object. However, their performance was tied to the accuracy and

coverage of such predicate extracting tools. More recently, [10] proposed a context-

driven approach wherein the sub-graphs are automatically generated for the user pro-

vided input. The essence of this study was to utilize the idea of shared context to find

relevant bridge concepts. While these graph based approaches have been shown more

successful than distributional approaches, they still suffer from scalability issues. More-

over, as these models rely on a rigid schema, they risk missing surprising association

that are not in their route. This may be limiting because one of the main objectives of

hypotheses generation is to provide users with radical (but meaningful) associations.

Machine learning based techniques: Recently, several studies [12, 197] pro-

posed supervised machine learning based approaches to generate novel hypotheses. In

[12], the authors proposed a logistic regression based model to learn the characteris-

tic path patterns of biomedical relations to infer new linkages. The machine learning
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based techniques have shown the promise to find novel associations; however, a poten-

tial drawback lies in the monetary cost associated with the process of gathering training

data.

Some of the motivation for this study stems from the research area of automatic

language translation and temporal information retrieval [66, 23, 200]. While close in

spirit, we differ from these studies in two aspects. Firstly, the goals are different. Our

study focuses to capture temporal dynamics of concepts to find conceptual bridges.

Secondly, our problem is more difficult in a sense that the given input is a pair of terms

(instead of a single concept), and to learn accurate temporal change one has to factor

in the nature of relationships between the given input pair too.

8.3 Overview of Proposed Model

In this section, we outline our proposed methodology at a high level by providing the

necessary intuition behind various components in our proposed model.

Recall that the input to our system is a pair of topics of interest, which we inter-

changeably call as query terms. Our goal is to find temporally charged top-k bridge

concepts that are most likely to connect them in future. To find these concepts in a

large-scale setting, we first need a text corpus collected across time. This corpus is then

split into distant time scopes to obtain the collection of articles occurring within over-

lapping time windows. Based on this time-specific set of articles, we extract relevant

entities, represent them into the latent embedding space and then reason upon it to find

novel conceptual bridges. Since the focus of this study is to capture the temporal dy-

namics, it is important to track the semantic evolution of concepts over time. However,

due to the prevailing stochastic nature of initialization for word embedding models, a

direct comparison of vector spaces to quantify bio-medical concept evolution cannot be

performed. To tackle this problem, we propose to learn a transformation matrix that

aligns vectors spaces across time slices and thus correspondingly encapsulates the dy-

namics of medical concepts. Once this alignment is performed, we can capture and rank

the bridge terms by their evolving proximity to the query terms in the latent embedding

space.

To learn the aforementioned transformation, we propose two ways: a) Global and b)

Query-biased. While the global transformation captures the more ”general” information

from the corpus, the query-specific transformation captures the information particular
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Figure 8.2: An Overview of the Proposed Framework

to the semantics of input query. To achieve the latter, we need a way to identify concepts

similar to the input query so as to learn the transformation matrix utilizing them. This is

where we leverage the principles of collaborative filtering. The importance of combining

information from these two sources and the speculation that they complement each other

is experimentally validated. Having learned the transformation matrices, we use them

to calculate the likelihood of a concept to be potential conceptual bridge between the

input query terms. Figure 8.2 provides a high level intuition of the proposed framework.

8.4 Methodology

This section describes our methodology in detail. It is primarily divided into three sec-

tions. Section 8.4.2 provides details on how the transformation matrix at a global level is

learned from word-embeddings corresponding to the individual time-slices. Section 8.4.3

extends this idea to include the information from the local context of individual query

and describes the technique to find transformation matrix in a query sensitive fashion.

Having calculated both the transformation matrices, Section 8.4.4 calculates the ranked

list of bridge terms.
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8.4.1 Preliminaries

In this sub-section, we introduce some definitions and background information on word-

embeddings.

Definition 1. Those concepts that do not change their semantic meaning over time

are referred to as semantically stable concepts. An example of semantically stable

concepts is ”Animals”. The meaning of concept ”Animals” in (1850) is equivalent to

its meaning in (2018).

Definition 2. Those concepts that change their meaning over time are referred to as

semantically unstable concepts. An example of semantically unstable concept is ”Cell”.

The meaning of concept cell during 1850’s used to be associated with ”cave”, ”dungeon”

and ”prision”, however, at present (2018) it is associated with ”cytoplasm”, ”tumor”

and ”epithelial cells”.

Word Embeddings: To learn the distributed representation of concepts in each snap-

shot, we utilize a popular word embedding model, namely Continuous Bag-of-Words

Model (CBOW) [18]. Given a target word wv and its u neighboring words, the model

aims at maximizing the log-likelihood of each word given its context. The objective

function is shown below:

J =
1

V

V∑
v=1

log p(wv|wv+u
v−u)x (8.1)

where V refers to the overall size of Vocabulary. The probability p(wv|wv−u
v+u) is calcu-

lated as:
exp(e′⊤wv

.
∑

−u≤j≤u,j ̸=0 ewv+j )∑
w exp(e

′⊤
w .
∑

−u≤j≤u,j ̸=0 ewv+j )

where ew and e′w denote the input and output embeddings respectively. In this study,

to generate word embeddings for different time slots, we first collect all the concepts

occurring in the corpus and prepare an overall vocabulary. Based on this vocabulary, we

train CBOW model for each consecutive time unit. The time unit is aggregated to the

granularity of ten years (e.g., 1981-1990, 1982-1991 and so on) to handle the data spar-

sity issue. In this setting, every concept present in the vocabulary (from the beginning

of time unit) has a certain position in the vector space. Then, for each consecutive time

unit, we iterate over epochs and train the word vectors until convergence. As suggested

by the previous studies [18, 200], the number of embedding dimension is set to 300.
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8.4.2 Global transformation

The focus of this section is to discuss the methodology of learning a global transfor-

mation matrix. This matrix is expected to capture the global temporal dynamics of

concepts present in the corpus. Another objective is to align the two different vector

spaces.

Having learned the distributed representation of words on distinct snapshots through

Equation 8.1, the next step is to learn the transformation matrix that captures temporal

change and also aligns them. In this direction, the main idea in learning a global

mapping is to utilize the semantically stable terms across time as anchors to bridge the

two distinct vector spaces. Once the mapping is found using anchors, other semantically

unstable concepts within the two spaces can be aligned by the similarity of their positions

relative to the anchor terms in their own spaces. However, this gives rise to a new

challenge of selecting the candidate anchor terms. To circumvent this issue, we rely

on an approximate method and choose the anchor pairs based on two criteria: a) they

should have same syntactic/literal form and b) they are sufficiently frequent in both

the time periods. A few examples of such terms in medical domain include ”humans”,

”animals”, ”male” and so on. The rationale behind choosing frequent terms as anchors

is their tendency to have high degree centrality/connectedness; this causes their position

in the vector space to be semantically stable [66].

For the ease of explanation, we present the technique to learn global transformation

matrix using two time stamps (t0, t1). Formally, given P pairs of global anchor terms

(w0
1, w1

1),...,(w0
p, w1

p), where w0
i denotes the anchor term at time t0 and w1

i denotes the

anchor term at time t1 respectively. The transformation matrix M1 is then found by

minimizing the differences between M1 · w⃗0
i and w⃗1

i (See Equation 8.2). To prevent over-

fitting, a regularization component is added to Equation 8.2 with γ as its corresponding

weight.

M1 =M1

P∑
i=1

||M1.w⃗
0
i − w⃗1

i ||22 + γ||M1||22 (8.2)

where w⃗0
i and w⃗1

i refers to the vector position of w0
i and w1

i at t0 and t1 respectively.

In our implementation, the top 5% frequent terms in the corpus is chosen as the size of

P . Both the threshold for P and γ = 0.02 is empirically set as suggested by some of

the previous studies [200].
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8.4.3 Query biased transformation

The global transformation explained in Section 8.4.2 is query independent; therefore,

the mappings generated are not sensitive to the specific semantics of input query. This is

problematic because it generates transformation matrix that neglects the fundamental

relation between query and its local context. Furthermore, this also leads to insufficient

characterization of temporal dynamics that in particular affects the current problem

of interest, wherein the quality of conceptual bridges is highly dependent on the given

input query. To overcome this issue, we propose an approach to train the transformation

matrix in a query-biased way by leveraging upon the principles of collaborative filtering.

The collaborative filtering provides a systematic approach to identify terms similar to

the input query terms - refer Section 8.4.3. These terms act as a ”seed” to the process

of generating local anchors - refer Section 8.4.3.

Generating similar concepts

Given an input concept of interest A (or C) and a date (t′), the goal is to find top-

N concepts similar to the input for downstream processing. A straightforward way

is to find the similar concepts by comparing the distance (in latent space) of input

with each of the concepts present in the vocabulary and choosing the top-N closest

neighbours. However, this becomes inefficient if the size of vocabulary scales to millions

or billions. To do this in an efficient manner, we perform a soft-clustering of concepts

present in the dictionary based on their word-vectors. Gaussian Mixture Model is used

to perform the soft-clustering with number of clusters set to 300 as suggested in previous

studies [201, 22].

Simply put, for a given input concept, we first find their respective cluster IDs and

then all the concepts belonging to those clusters are added to the candidate similar

set. However, this resultant set consists of concepts that are both semantically similar

and semantically related to the input concept. Note that similarity calculated based on

word-vectors captures both the notions of semantic similarity and relatedness [18]. This

becomes problematic because in the current problem of interest we are particularly

interested in finding only similar concepts. To mitigate this issue, we leverage the

categorical information (known as semantic type in medical domain) of concepts. Every

concept present in the vocabulary is assigned a semantic type. For example, a disease
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Algorithm 3 Generate similar concepts

1: Given: Set of clusters C1, C2, C3, ..., Semantic Dictionary of medical concepts

Dict

2: Input: Input concept (A) and cutoff-date (t′)

3: Output: A set (Max Heap of N) of similar concepts which are similar to a -

setSimilarConcepts

4: setSimilarConcepts← ϕ

5: {CA} ← clusterLookUpOn(A)

6: for x ∈ CAi do

7: {candA} ← Extract all terms that have Cx as the cluster with highest membership prob-

ability
8: end for

9: {SemA} ← Dict(A)//Get the semantic type of A

10: for x ∈ candA do

11: {Semx} ← Dict(x)//Get the semantic type of x

12: CommonSem←Get all types of relationships existing between

{SemA × Semx}
13: if CommonSem ̸= ϕ then

14: setSimilarConcepts ∪ {x}
15: end if

16: end for

17: Return setSimilarConcepts

such as ”Migraine” is assigned to a semantic type ”Disease or syndrome”1 . We leverage

this semantic information and retain only those concepts whose explicit semantic type

is same as the given input. This step allows us to distill only similar concepts. Overall,

this technique allows us to efficiently identify similar concepts for any given input.

Algorithm 3 provides the pseudo-code for generating similar concepts.

Generating Local Anchors

Having identified a set of concepts similar to input A and C (i.e., Sa, Sc), our objective

is to find set of anchor pairs, {¡a1, c1¿. . . ¡aq, cq¿}, such that ai ∈ Sa and ci ∈ Sc. To do

this, a Cartesian product between terms in Sa and Sc has to be performed. However, this

1 The explicit semantic types of medical concepts can be obtained from Unified Medical Language
System.
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leads to N×N (N refers to the size of similar concept set for both A and C) comparison

that is computationally expensive. Therefore, in order to find quality anchors, we

define its goodness on the hypothesis that, ”a good anchor pair should align well with

many other good anchor pairs”. This idea is inspired by the theory of PageRank. To

implement this, a graph based scenario is considered where a pair is referred to as vertex

(V ′
i ) and the degree of alignment between them defines their weight. The formula to

calculate the alignment between pairs is shown in Equation 8.3.

ψij = cos((⃗ai − a⃗j), (c⃗i − c⃗j)) (8.3)

where ψij denotes the two pairs (ai, ci) and (aj , cj). Here, (ai, aj) ∈ Sa (i.e., concepts

similar to A) and (ci, cj) ∈ Sc (i.e., concepts similar to C). The intuition behind this

is that the difference in vector points of concepts captures the relational/functional

alignment between concepts and it is important to preserve this geometric arrangement

to precisely capture the query specific semantics.

Equation 8.4 is used to calculate the final weight of each pair. Specifically, the im-

portance (λ) of each pair in the candidate set is computed in a way similar to TextRank

algorithm [202] by interactively computing Equation 8.4 until convergence. One crucial

advantage of using the idea PageRank is that it promotes pairs with higher authority;

as a result, those pairs that have higher connectivity are assigned higher weights. Com-

monly, generic pairs tend to have higher connectivity than specific pairs. This ensures

the pairs that are generic (correspondingly having relatively stable semantic meaning)

and simultaneously cognizant to the semantics of input query have a higher impact on

the transformation matrix being learned. Algorithm 4 provides the pseudo-code for

generating anchor pairs.

λ(V ′
i ) = (1− d) + d

∑
V ′
j∈Neigh(V ′

i )

ψji∑
V ′
k∈Neigh(V ′

j )
ψjk
∗ λ(V ′

j ) (8.4)

where Neigh(V ′
j ) denotes the neighbours of V ′

j and d is the damping factor set to 0.85

by default.

Query biased transformation

Based on Section 8.4.3 and Section 8.4.3, we have identified a set (Q) of quality anchor

pairs. Now given that, this section enumerates the process to learn the transformation

that is sensitive to the relationship between input query terms. Towards this end, the

model builds upon some of the special features provided by word embedding spaces

such as linear analogical reasoning vec(”ibuprofen”) - vec(”pain”) ≈ vec(”treats”). In
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particular, to capture the relation between anchor pair (a, c), where a is a term similar

to ‘A’ and c is a term similar to ‘C’, we take the difference of their vector representations.

Such linear operations are expected to capture the relational/functional aspect of input

query. Our intuition behind this is to preserve the geometric arrangements of pairs

in vector space that in turn is expected to encapsulate the precise temporal dynamics

particular to a given query. The optimization function for learning local transformation

M2 is given in Equation 8.5.

M2 =M2

(
Q∑
i=1

||M2.λ
0
i (⃗a

0
i − c⃗0i )− λ1i (⃗a1i − c⃗1i )||22 + γ||M2||22

)
(8.5)

where a⃗i and c⃗i refers to the vector position of ai and ci at their respective time-slots.

λ0i and λ1i are the weights associated with anchor pairs at t0 and t1 respectively. The

λi in Equation 8.5 is the weight associated to each anchor pair based on its ”goodness”

as compared to other pairs (Using Equation 8.4). Similar to global transformation,

the value of regularizer component (γ) is set to 0.02. By default, all the anchor pairs

generated are chosen as the size of Q.

Combining with global transformation

Our contention is that the temporal change captured by both global and local transfor-

mation has valuable information and their amalgamation is necessary to find important

bridge concepts. While the global transformation effectively captures the general infor-

mation present in the corpus, it misses the subtle cues from the local context. On the

other hand, relying solely on query specific transformation risks awarding undue impor-

tance to overly specific terms. Thus, it is important to leverage the benefits provided by

two distinct but complementary transformations. Against this backdrop, we propose to

combine Equation 8.2 and Equation 8.5 and jointly minimizes the following objective

function. This allows us to preserve both the global and local proximity of input query

simultaneously.

M = αM1 + (1− α)M2 (8.6)

It can be observed that the final expression still results in regularized least square form.

Thus, similar to solving Equation 8.2, we find its closed form updates and obtain the

unified transformation matrix. Despite its simplicity, this concatenated approach of

linear transformation method worked well in our experiments. The value of α is set to

0.5 by default.
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Algorithm 4 Generate candidate anchor pairs

1: Input: Set of concepts similar to A - setSimilarConcepts(A) and Set of concepts

similar to C - setSimilarConcepts(C) (From Algorithm 3)

2: Output: A ranked set (Max Heap of Q) of pair of terms {a,c} which are similar to

A and C - candidateAnchors

3: candidateAnchors← ϕ

4: {Sa} ← setSimilarConcepts(A)

5: {Sc} ← setSimilarConcepts(C)

6: filteredCandidateAnchors← ϕ

7: for a ∈ Sa do

8: for c ∈ Sc do
9: if (cosine(a,c)≈ cosine(A,C)) then

10: filteredCandidateAnchors ∪ {a, c}
11: end if

12: end for

13: end for

14: tempCandidateAnchors← ϕ

15: for pair1 ∈ filteredCandidateAnchors do

16: for pair2 ∈ filteredCandidateAnchors do

17: align=calculateAlign(pair1, pair2) //According to equation 8.3

18: tempCandidateAnchors ∪ {pair1}
19: end for

20: end for

21: candidateAnchors=pageRankScore(tempCandidateAnchors) // According to

equation 8.4

22: Return candidateAnchors

8.4.4 Scoring Conceptual Bridges

Given two previously disconnected terms A and C along with a cut-off time-stamp t′

(a meta-constraint to restrict the search space), the goal is to identify plausible bridge

concepts k that will connect them in future (t′+1). The candidate for B terms are

all the concepts present in vocabulary besides - A, setSimilarConcepts(A), C and

setSimilarConcepts(C). Recall that our objective to find bridges concepts that are not
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only connected to the query pairs but also to their semantically similar local neighbours.

To compute the semantic relatedness of bridges, we first learn the transformation matrix

(M) particular to this input query between an initial time stamp t′0 (by default set to

t′-10) and t′. This matrix is learned by the methods described in Section 8.4.3 and is

expected to encode the temporal dynamics. Note that as the goal is to predict which

conceptual bridge has the highest likelihood at t′ + 1, the corresponding embeddings

(⃗bt
′+1, a⃗t

′+1 and c⃗t
′+1) are not available. The following formula is used to compute the

likelihood score for each candidate bridge concept (bk).

Score(bt
′+1
k ) =

1

2
{
N1∑
i=1

cos(M.⃗at
′
i ,M.⃗bt

′
k ) +

N2∑
j=1

cos(M.⃗ct
′
j ,M.⃗bt

′
k )} (8.7)

whereN1 andN2 refers to the number of neighbours of A and C, ai ∈ setSimilarConcepts(A)

and cj ∈ setSimilarConcepts(C). Based on the obtained likelihood score, the candidate

bridge concepts are ranked and presented to the user.

8.5 Experiments

The focus of this section is to demonstrate the efficacy of the proposed model through

a variety of experiments performed under different settings. In our experiments, we

use MEDLINE2 as our main corpora because it provides access to more than 100

years of time-stamped scientific articles, primarily, from life sciences and bio-medicine.

The latest dump (2017) contains more than 24 million articles. Every article contains a

unique identifier (PMID), title, abstract, publication date and Medical Subject Headings

(MeSH) terms. As a unit of representation for articles, we choose MeSH terms. MeSH

terms are the special keywords assigned by subject matter experts to each article in

MEDLINE. Since these terms are selected by subject matter experts based on the full

text of articles, it is safe to assume that they represent the conceptual meaning of an

article without adding noise [9, 198]

DataSets: To evaluate the performance of proposed model and compare them with

existing hypotheses generation algorithms, the following test cases are chosen. These

test case are widely regarded as the ”golden dataset” in this area of study [9, 198, 196,

10, 11]. The test cases are enumerated below:

1. Fish-oil (FO) and Raynaud’s Disease (RD) (1985)

2 The source code of Concepts-Bridges is available at https://github.com/kishlayjha/

Concepts-Bridges.

https://github.com/kishlayjha/Concepts-Bridges
https://github.com/kishlayjha/Concepts-Bridges
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2. Magnesium (MG) and Migraine Disorder (MIG) (1988)

3. Somatomedin C (IGF1) and Arginine (ARG) (1994)

4. Alzheimer Disease (AD) Indomethacin (INN) (1989)

5. Schizophrenia (SZ) and Calcium - Independent Phospholipase A2 (PA2) (1997)

For the consideration of being self-contained, we briefly provide a background about

these test cases. The pioneers in this area of study [5, 78] applied their hypotheses gener-

ation technique and postulated above enumerated hypotheses. Later, these hypotheses

were clinically verified in the real world laboratories. Since then the re-discovery of these

test cases is widely adopted as a way of demonstrating the effectiveness of proposed ap-

proach. Note that the dates given for above test cases acts as a threshold to base our

analyses. These are the dates when the association between query terms were known

and published in the literature. We run the proposed model and baseline algorithms

to generate possible connections using all the articles before threshold (pre-cutoff) and

then check their validity in the articles present in post-cutoff period.

Evaluation scheme: We provide both qualitative as well as quantitative validation

of our approach. In qualitative evaluation, we present the top-k bridge terms and inspect

their correctness. In quantitative evaluation, we compare our approach against a variety

of baselines and show the superiority of our approach.

Evaluation baselines for quantitative evaluation: To evaluate effectiveness of

the proposed model, the following five previous hypotheses generation algorithms are

implemented. The initial four algorithms are based on raw term co-occurrence frequency

and fifth is a word embedding based approach.

1. Apriori algorithm: This algorithm [196] uses two important measure of association

rule: a) support and b) confidence to rank the bridge concepts. The threshold for

support and confidence are chosen as suggested in [196].

2. Chi Square (χ̃2): This study [203] uses Chi-square test to quantify and rank the

bridge terms. The threshold for χ̃2 is used as suggested in [203].

3. Term-frequency and Inverse-document frequency (TF−IDF): TF-IDF is a popular

metric that measures the importance of a concept present in an article. [198] adopts

this measure to identify the bridge concepts.

4. Literature Cohesiveness (coh): Literature Cohesiveness is a metric proposed by [204],

to identify bridge concepts based on the cohesion of literature.
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5. Static embeddings (Static): This algorithm [205] generates cumulative year-wise co-

occurence matrix and applies SVD to generate word embeddings. Based on these

embeddings, the bridge terms are then ranked using cosine measure.

It should be noted that a direct comparison with the results of above enumerated

baselines cannot be performed. This is because of the difference in choice of input,

threshold used to select linking terms and the use of domain expertise to prepare gold

standard. Nevertheless, to facilitate a fair comparison, their methods have been adjusted

to fit the current problem setting.

Evaluation metrics for quantitative evaluation: Two evaluation metrics are

used to quantify our results: 1) Precision@k and 2) Mean Average Precision (MAP).

Precision@k allows us to measure the coverage of ground truth terms in top-k target

set; thus allowing analysis at a granular level. To quantify the system’s performance

across queries, we report MAP.

8.5.1 Qualitative evaluation

In this section, we evaluate our proposed model based on its ability to rediscover the

existing knowledge.

Fish-Oil - Raynaud’s Disease: In this test case, the pioneers identified that fish

oils might prevent raynaud disease by a) inhibiting platelet aggregation, b) reducing

blood viscosity and c) preventing vasoconstriction (epoprostenol) [5] and reported them

in an article in 1986. These conceptual bridges were later experimentally validated. In

our experiments, we seed our algorithm with input pairs (A,C) as (”fish oils”, ”Raynaud

disease”) and a date (t′) as 1985. T

Migraine - Magnesium: The objective of this test case was to examine the effect

of magnesium in treating migraine disorder. Similar to the previous case, several inter-

mediate terms such as epilepsy, serotonin, prostaglandins, platelet aggregation, calcium

antagonist, type A personality, vascular tone and reactivity, calcium channel blockers,

spreading cortical depression and substance P were reported. Unlike the previous case,

we are unable to achieve high recall. Nevertheless, we obtain important conceptual

bridges such as epilepsy, calcium antagonist, prostaglandins, etc. Note that the previ-

ous studies indicate this to be a difficult test case [198].

Indomethacin - Alzheimer Disease: The most significant pathways reported for

this case are Acetylcholine and Membrane fluidity. Both of these pathways were found



142

in top five.

Somatomedin C - Arginine: For this test case, Somatotropin and somatostain

are the most important pathways [204]. In our results, we were able to obtain both of

them in top five.

Schizophrenia - CI Phospholipase A2: The initial studies reported oxidative

stress to be the key connecting term for this test case. In our results, we found Dopamine

Receptors (a derivative of oxidative stress at rank 3).

Overall, the proposed model was able to identify a majority of true connections

at top ranks, however, a related questions arises: How novel are the other top terms

reported?

Discovery Example: For the first test- case (FO-RD), one of the term reported

in Top-10 was beta-thromboglobulin. Beta-thrombo-globulin is a platelet-specific protein

that is released when platelets aggregate. Manually inspecting the literature, we found

that an article [206] in 2001 reported the potential role of beta-thromboglobulin in

preventing endothelial cell damage that is known to cause Raynaud’s disease. Although

prior to 1986 there was no reported connection, the proposed model could identify it by

analyzing existing connections in the medical literature. Similarly, for another test-case

of INN-AD, one of the top ranked connecting term was Phenylacetates. More recently,

[207] reported the potential role of Phenylacetates in treatment for Alzheimer Disease.

While these connections are being reported recently in the literature, the model was

able to identify them much in advance. We believe one reason for this lies in the choice

of modelling in latent space that enables the algorithm to find connections that might

be surprising at the time of being postulated. To further aid the biomedical scientists

in conducting extensive study, we provide evidence for our top 10 terms (refer Table

??) in the form of PMID.

Based on the rediscovery of existing knowledge and aforementioned discovery sce-

nario, it can be deduced that the model is able to replicate already known knowledge

and possibly originate new knowledge. However, this form of evidence based evaluation

does not inform us about the overall quality of result set. To this end, a quantitative

evaluation has to be performed.
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Table 8.1: Precision@k for FO-RD

Algorithm k=10 k=20 k=30 k=40 k=50

apriori 0.5 0.6 0.6 0.55 0.54

TF-IDF 0.4 0.6 0.567 0.55 0.54

χ̃2 0.4 0.4 0.567 0.475 0.54

coh 0.6 0.5 0.467 0.5 0.5

static 0.2 0.35 0.467 0.45 0.46

Concepts-Bridges 0.8 0.7 0.667 0.625 0.62

8.5.2 Quantitative evaluation

The purpose of this section is to probe the overall quality of output generated. However,

to perform a quantitative analysis certain ground truth is required. Unfortunately, there

is no standard ground truth available and creating one remain an open problem [208].

One reason behind this is the fact that it is near-impossible to build a comprehensive

ground truth set that will presumably have all the future discoveries. Therefore, a

”supposedly” ground truth has to be constructed. To accomplish this goal, a split

corpus approach is adopted. Specifically, the dataset is divided into two sets: 1) Pre-

cut-off segment: this includes articles published before the cut-off date and 2) Post-

cut-off segment: this includes articles published after the cut-off date. The proposed

model and baseline algorithms are run on the pre-cut-off segment. Then, the generated

connections are checked in the post-cut-off segment. The legitimacy of a connection is

defined as its presence (co-occurence) in post-cut-off segment and absence in pre-cut-off.

Equation 8.8 presents the formula to rank ground truth bridge term k for a given pair

(A,C).

gt(k) =
#(k,A) + #(k,C)

#(k)
, (8.8)

where #(i, j) is the number of times terms i and j co-occur and #(i) =
∑

j #(i, j). In

this way, a ranked set of ground truth is constructed. As a post-processing step, all

the stop-words (also referred to as check-tags in medical domain) are removed from the

resultant set.

Results: Table 9.1, 9.2, 9.4, 9.3, 9.5 reports the Precision@k for each of the five

golden datasets. The value of K is gradually increased from 10 to 50 (in the interval

of 10) and results are reported. Table 9.6 reports the Mean Average Precision @k by
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Table 8.2: Precision@k for MG-MIG

Algorithm k=10 k=20 k=30 k=40 k=50

apriori 0.7 0.65 0.7 0.675 0.64

TF-IDF 0.8 0.65 0.7 0.66 0.66

χ̃2 0.4 0.55 0.667 0.6 0.62

coh 0.5 0.45 0.5 0.525 0.54

static 0.5 0.55 0.633 0.675 0.66

Concepts-Bridges 0.8 0.8 0.733 0.725 0.7

Table 8.3: Precision@k for AD-INN

Algorithm k=10 k=20 k=30 k=40 k=50

apriori 0.6 0.7 0.8 0.75 0.66

TF-IDF 0.5 0.55 0.7 0.75 0.7

χ̃2 0.6 0.65 0.667 0.675 0.64

coh 0.6 0.7 0.7 0.7 0.66

static 0.7 0.65 0.7 0.675 0.7

Concepts-Bridges 0.9 0.85 0.833 0.825 0.8
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Table 8.4: Precision@k for IGF1-ARG

Algorithm k=10 k=20 k=30 k=40 k=50

apriori 0.8 0.85 0.833 0.725 0.7

TF-IDF 0.5 0.45 0.467 0.575 0.64

χ̃2 0.6 0.7 0.7 0.7 0.7

coh 0.8 0.85 0.833 0.825 0.7

static 0.6 0.45 0.433 0.525 0.58

Concepts-Bridges 0.9 0.9 0.867 0.85 0.84

Table 8.5: Precision@k for SZ-PA2

Algorithm k=10 k=20 k=30 k=40 k=50

apriori 0.6 0.75 0.767 0.825 0.82

TF-IDF 0.4 0.6 0.7 0.75 0.78

χ̃2 0.5 0.7 0.767 0.825 0.86

coh 1.0 0.95 0.967 0.85 0.82

static 0.4 0.6 0.7 0.775 0.78

Concepts-Bridges 1.0 1.0 0.967 0.95 0.92

consolidating numbers across different datasets.

Discussion: It can be observed that the proposed model outperforms all the exist-

ing baselines. Across all the datasets, a common pattern noticed for the proposed model

is the decrease in precision with the increase in value of K. In contrast, for baseline al-

gorithms the precision increases (in general) with increase in value of K. This trend

elucidates the advantage of proposed model to rank relevant connections at higher po-

sitions. Analyzing the results further, we observe that Literature Cohesivenes (COH)

performs the best among all the baselines. Perhaps, the reason for this lies in the ability

of COH to leverage the cohesion of literature effectively.

Another important point to note is that pure frequency based approaches (Top 4

baselines) boosts contextually generic terms at higher positions. Contextually generic

terms are those terms that are generic to the given input query. For instance, in the Fish

Oils and Raynaud’s disease test case, some of the top terms found for COH (and other

baselines) are ”double-blind method”, ”skin ulcer”, ”leg ulcer” and so on. Although

these terms have relatively lower overall frequency they tend to frequently co-occur
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Table 8.6: Mean Average Precision@k for all test cases

Algorithm k=10 k=20 k=30 k=40 k=50

apriori 0.616 0.667 0.702 0.728 0.744

TF-IDF 0.538 0.571 0.594 0.615 0.632

χ̃2 0.477 0.548 0.587 0.605 0.618

coh 0.731 0.723 0.725 0.723 0.725

static 0.442 0.487 0.528 0.552 0.570

Concepts-Bridges 0.907 0.907 0.860 0.847 0.836

with the input query (i.e., Raynaud’s disease). Selecting these terms prove counter-

productive as they are ranked lower in the ground truth. The reason being, these

contextually generic terms have no functional relationship with the input concept. Note

that more often the true conceptual bridges have important functional relationship with

input query. For example: Fish oils
disrupts−−−−−→ platelet aggregation

cause−−−→ Raynaud’s dis-

ease. Furthermore, as the fifth baseline (Static embeddings) too does not factor in the

”functional” aspect, it suffers from this issue. To mitigate these issue, the proposed

model (in particular query-specific transformation component) takes advantage of the

analogical relationships provided by word embedding spaces to capture the functional

component of medical concepts.

Another reason for the lower performance of baselines lies in the fact that they

strictly rely on the given input query (ignoring the cues from local neighbourhood). This

is limiting because more often when a potential conceptual bridge (e.g. ”platelet aggre-

gation”) is being studied/reported in the literature with a particular concept (e.g. ”fish

oils”), it is highly likely that it is also being reported with the chemical substances/genes

associated with them. In this case, the chemical substance being ”eicosapentaenoic

acid”. Models based on strict query reliance attempt to find bridge concepts (”platelet

aggregation”) by only considering the semantic association with particular input concept

(”fish oils”). Ignoring such semantically similar neighbours (”eicosapentaenoic acid”)

may limit the capability of model to find potential bridge concepts. Note that some of

the existing approach [10] manually augment their input query to enrich their relevant

document set. However, this requires the user to possess some form of domain knowl-

edge. In the proposed approach, the use of word embeddings automatically enables to

find semantically similar concepts that enriches the user provided input queries. Lastly,
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Table 8.7: Effect of global and local transformation. MAP@K

Algorithm k=10 k=20 k=30 k=40 k=50

global 0.728 0.715 0.697 0.688 0.657

local 0.816 0.797 0.782 0.781 0.764

Concepts-Bridges 0.907 0.907 0.860 0.847 0.836

the fifth baseline chosen for comparison is Static embeddings (Static). This baseline

ranks the bridge concepts based on the static embeddings generated from cumulative

co-occurrence matrix. Our intend behind this is to test the necessity of leveraging tem-

poral dynamics itself. Static essentially assumes a static world in which each term is

supposed to retain its semantics across different domains. As reported in the results,

we can see that the proposed approach outperforms it. This result suggests that it is

crucial to consider the temporal change of concepts in order to generate semantically

sensible hypotheses.

8.5.3 Effect of global and local transformation

The only parameter in the proposed approach is the α in Equation 8.6. The α parameter

controls the contribution of global and local transformation. Table 8.7 compares the

influence of each transformation in the form of MAP@k calculated for all the five test

cases. As can be seen, the local transformation outperform global transformation. We

believe the reason for this lies in the ability of local transformation to encode query-

specifics semantics in an effective manner. Furthermore, the best result comes from

combination of both global and local, thus validating the need for Equation 8.6.

8.6 Conclusions

In this study, we proposed a new model to discover conceptual bridges between two

disparate but complementary topics of inquiry. Specifically, the model leverages upon

the temporal information present in the corpus and captures the semantic change of

medical concepts at a coarse-grained level. The proposed query-biased transformation

technique, in particular, leverages the fundamental relationship between input query

and its informative neighbours to encapsulate precise semantics. This enables the model

to promote those conceptual bridges that have higher semantic meaning. Empirically,
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we evaluate the model in a variety of experimental settings. The experimental results

demonstrate that the proposed model has the potential of generating practical new

knowledge. In future research, we intend to add more semantic expressiveness to our

generated hypotheses. Towards this end, we are looking at more specialized biomedical

resources such as SEMMEDDB - a repository of semantic predications in the form of

‘subject-predicate-object’.



Chapter 9

Hypothesis Generation based on

Co-Evolution of Biomedical

Concepts

9.1 Introduction

The constant influx of scientific articles and their easy accessibility via the World Wide

Web (WWW) has made medical informatics a fast growing field [3]. Practitioners in

the field have thrived to make sense of huge number of academic publications, discovery

notes, electronic medical records and other text materials (a.k.a ”big biomedical data”)

leading to advancements of practical significance [4]. While this swift availability of sci-

entific information has acted as an impetus for pacing research innovation, at the same

time, it has also overwhelmed researchers trying to survey published studies and con-

struct novel research hypotheses. For instance, consider a novice researcher attempting

to formulate a new hypothesis for the cures of Diabetes. In doing so, at this point in

time, one might have to survey tens of thousands of existing publications (more than

400,000 in PubMed [3] alone) already written on Diabetes. This overloaded amount

of information presents a bottleneck, as it is almost impossible for one to process and

analyze such a large volume of available material. Moreover, it introduces delays in sci-

entific productivity, as biomedical researchers are faced with a daunting task of choosing

postulates/hypotheses - based upon the manual inspection of literature - for possible

149
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in-vitro clinical trials. To mitigate these issues, there has been a growing research in-

terest among data/text mining practitioners to develop computational models that are

able to assist biomedical experts in forging analytically probable and medically sensible

hypothesis. Towards this end, Hypotheses generation (HG), a sub-problem of biomed-

ical text-mining, aims to discover cross-silo connections (also known as undiscovered

public knowledge) by chaining together the already known and established scientific

facts that remain dispersed across the disparate research fields [8]. Simply put, given an

input concept of interest (e.g., disease or gene), HG attempts to find implicit links (e.g.,

potential drug target or novel indicator of disease’s mechanism) that connects them

in a previously unknown but semantically meaningful way. Finding such meaningful

associations is the crux of the problem that this paper attempts to address.

Over the past few decades, numerous studies have been conducted to tackle this

problem. Broadly, they can be categorized into three major groups: a) distributional

approaches [6, 9], b) graph-based methods [10, 11] , and c) supervised machine learning

based approaches [12]. Arguably, these studies made significant advances, however, they

still contain a few inherent drawbacks. First, a majority of these preceding approaches

rely on a pre-defined structure (e.g., graph) and hence possibly risk missing links that

are not included in their route. Second, almost all of these studies assume that the

domain is static. This is limiting because it is known that the biomedical domain is

a highly evolving field with new facts being added and old ones being obsolete every

single day [13]. To overcome these issues, more recently, a few studies [7, 23] attempted

to formulate this problem in latent space and generated hypotheses by modeling the

temporal evolution of concepts based on the diachronic biomedical corpora. While these

studies substantiated the importance of leveraging the temporal component, they still

neglected the evolutionary features of concepts present in contemporary biomedical on-

tologies. Such ontologies/taxonomies in biomedical domain are constantly updated by

subject-matter-experts to reflect the up-to-date knowledge of the field. Thus, to gain a

holistic understanding of temporal change, it is crucial to factor in the semantic change of

medical concepts from these subject-matter-experts maintained KB too. Furthermore,

in practice, a significant amount of information is also encoded in the (co)-evolutionary

dynamics of medical concepts between these complementary sources of information (i.e.,

corpus and ontology). Considering the complementary strength of both these resources,

a few natural questions arise: Would the joint modelling of co-evolutionary dynamics

lead to the generation of robust temporal embeddings? Would the mutual interaction
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between these intertwined resources simulate better predictive effects and thus bene-

fit tasks such as hypothesis generation? To answer these questions, in this study, we

model the co-evolution of medical concepts driven by the complex interaction between

concepts’ linguistic usage (reflected in local context information) and their structural

localities (reflected in domain ontology). More specifically, we achieve this by adopt-

ing a shared temporal matrix factorization framework, wherein the subspaces between

multiple related matrices are jointly learned by sharing information between them. By

collaboratively exploiting the evolutionary features of medical concepts from both cor-

pus and domain knowledge, the proposed approach yields hypotheses that are medically

sensible and of potential interest to the domain experts. In this study, our contributions

can be summarized as:

1. We propose a general framework for the task of hypothesis generation that is

capable of inferring previously unknown but potentially interesting cross-silo con-

nections by capturing the subtle cues manifested in the temporal drift.

2. The proposed approach for capturing the temporal change models the (co)-evolutionary

dynamics of medical concepts across both the complementary sources of informa-

tion - corpus and domain knowledge - thereby generating temporal embeddings

that are robust and useful for a variety of downstream biomedical text-mining

tasks.

3. We propose an effective technique to leverage the evolving topological properties

of biomedical KB, resulting in vector representations that encode the temporal

dynamics at a granular level.

9.2 Related Work

Discovering hidden, previously unknown and potentially useful associations between

biomedical concepts is a problem of practical value in the research area of biomedical

text-mining [209, 164, 210, 211, 212, 164, 134, 213, 214, 65, 215, 216, 217, 218, 219, 220,

135, 136, 115, 23, 177, 221, 222, 223]. For a recent survey, please refer [221, 223]. The

initial works [5, 8] in this area of study elucidated that the novel implicit links (e.g., Fish

Oils
treats−−−→ Raynaud’s disease) can be discovered by connecting independent nuggets of

information remaining dispersed across the literature. While these pioneering studies

laid the foundational groundwork, they were extremely time-consuming. Consequently,

the subsequent studies focused on automating it. Primary studies such as [6, 9] applied



152

statistical co-occurrence techniques (term frequency, inverse document frequency, record

frequency and so on) to quantify the statistical strength between links. Similarly, [196,

9] adopted associate rule mining technique to estimate the strength of co-occurrences

between concepts. While these purely co-occurrence based methods were progressive,

a major drawback lies in their over-reliance on term frequencies. A greater statistical

association implies strong but not necessarily semantically meaningful (real biological

significance) association. To circumvent this drawback, we choose to model the problem

of HG in latent space wherein the system is capable of capturing the implicit semantics

between concepts, thereby finding connections that have greater semantic association.

Meanwhile, another line of research focused on modeling the problem of HG in a

graph-based setting. Since graph based methods provide a natural way of representing

concepts and their relationship, this line of research has attracted considerable atten-

tion. In [11], the authors presented a novel graph-based approach utilizing semantic

predicates (subject-predicate-object), where subject/object refer to the entities (nodes)

and predicates refer to the relationship (edge) between them. Another popular graph

based HG system is Obvio [10]. Given a user input, Obvio, first constructs a graph

on-the-fly and then uses the context information to automatically create semantically

meaningful sub-graphs. One major contribution of this study is their ability to eluci-

date the meaning of complex associations between medical concepts along the multiple

thematic dimensions. While graph-based approaches [11, 10] remain more successful

than their distributional counterparts, they are still unable to find implicit connections.

This is because the graph-based techniques still rely on a pre-defined structure/schema.

More recently, some of the studies such as [12] applied supervised machine-learning

based techniques to find the hidden connections. However, they require the domain

expertise to generate the training data. This is both time-consuming and monetarily

expensive. Despite important advances made, all of the aforementioned studies assumed

the biomedical domain to be static. This is limiting because the domains in general (and

in particular biomedicine) are usually dynamic with updates being made every now and

then. To overcome this issue, recently, a few studies [23, 7] incorporated the temporal

component by modelling the semantic evolution of medical concepts present in the his-

torical biomedical corpus. However, these studies still neglect the semantic change of

concepts from KB and thus fail to leverage the (co)-evolutionary dynamics of medical

concepts.

Some of the motivation for this study stems from the research area of temporal
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network modelling [224].While close in spirit, we differ from them in two aspects: a)

Our focuses are different. b) Unlike modelling the temporal dynamics from multiple

views of a network, in the current problem setting, our objective is to model the (co)-

evolutionary features of medical concepts from their linguistic usage and structural

localities in a concurrent manner.

9.3 Methodology

In this section, we describe our proposed framework in detail. Recall that the input to

our hypothesis generation system is a topic of interest (A), date (d), and the goal is to

predict previously unknown implicit links (C ) at (d + 1). To tackle this problem, the

key intuition behind our proposed approach is the following: If two medical concepts (A

and C ) are known to be primarily disjoint (i.e., no known relationship exists), and yet

their implicit semantics continue to grow closer to each other over time, then these two

terms have a higher chance of materializing a meaningful connection in the near future.

In other words, our core objective is to capture the temporal ‘proximity’ between the

medical concepts by modelling their semantic change over time. Generally speaking,

this can be achieved by adopting a two-step solution: a) apply the temporal word em-

bedding model [23] and generate the time-aware vector representations of concepts, b)

quantify the degree of proximity between concepts by measuring the distance between

their vector representations. While effective in practice, this class of techniques gener-

ate temporal embeddings in an isolated manner (e.g., corpus/ontology alone), and thus

neglect the prevalent (co)-evolutionary features of medical concepts. To overcome this,

in this study, we aim to generate the temporal embeddings that are infused with (co)-

evolutionary dynamics generated due to the mutual influence of both complementary

sources of information - corpus and ontology. Technically, we achieve this by adopting a

shared temporal matrix factorization framework, wherein the sub-spaces between mul-

tiple related matrices are mutually learned by sharing the information between them.

Further details on this are provided in the subsequent sub-sections. Section 9.3.1 and

Section 9.3.2 introduce the two building blocks (modelling corpus-based and ontology-

based evolutionary dynamics) of the proposed model. Then, in Section 9.3.3, we describe

the joint co-evolution framework.
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9.3.1 Corpus-Based Evolutionary Dynamics

To obtain the corpus-based temporal embeddings, we first need a text corpus collected

across time (e.g., time-stamped scientific articles). Given this corpus, the objective

is to generate the temporal word embeddings for each word present in the corpus.

Traditionally, these temporal word embeddings could be generated by applying the

neural network inspired language models such as Skip-gram (augmented with temporal

component) [16] to the input sequential text. Simply put, the objective function of

skip-gram is to predict the surrounding words within a fixed window, given a focus

word. Following similar research direction, more recently in a related study [77], the

authors proved that the objective function that the neural network attempts to solve in

case of Skip-gram model with negative sampling is the same as the matrix factorization

of Shifted Positive Point-wise Mutual Information (SPPMI) matrix obtained from the

co-occurrence matrix of the corpus. As a result, the word and its corresponding context

vectors can be obtained from the matrix decomposition of SPPMI matrix. This result is

attractive as it enables the adoption/extension of techniques from the well-established

area of matrix factorization. In this study, we utilize this equivalence result and propose

a temporal matrix factorization based framework to obtain our temporal embeddings.

Formally, let us denote Dt as our time-stamped text corpus, where time-stamp t

represents a discrete and ordered variable that varies from 1 to T . Given this corpus,

we first collect all the concepts occurring in the corpus and prepare an overall vocabulary

V = {w1, ..., wv} of size |V |, where each wi corresponds to an individual term. Note that

this vocabulary is common to both the corpus and chosen ontology. Next, we construct

a term-by-term Y(t) Pairwise Mutual-Information Matrix (PMI), whose i, j-th entry is:

PMI(i, j)t = log

(
#(i, j)t.|Dt|
#(i)t.#(j)t

)
(9.1)

where #(i, j)t counts the number of times the words wi and wj co-occurs within a

document over the corpus D at time t, #(i)t and #(j)t denotes the total number of

times words wi and wj occur in the corpus at time t alone. |Dt| is the total number

of word tokens in the corpus at time t. Following this, we compute the shifted positive

point-wise mutual information matrix (SPPMI) specific to a corpus D at time t, whose

(i,j)-th entry is:

SPPMI(i, j)t = max(PMI(i, j)t − log k, 0) (9.2)



155

where log k refers to a global constant. The constant log k acts as a prior on the

probability of observing a positive example versus a negative example. A higher value

of k implies that negative examples are more likely.

Following this idea, now our objective is to obtain a dense, low-dimensional vector

representation V
′
(t) = [v′

w1
(t),v′

w2
(t), ...,v′

wv
(t)] ∈ R|V |×n, n ≪ |V | for each word

w ∈ V , at each time-period t. v′
wi

(t) denotes the embedding vector for the i-th word at

time-stamp t, and n is the number of dimensions. To achieve this, we adopt a standard

matrix factorization framework and set up a least square optimization problem, so

that the PPMI matrix Y(t) matches U.V
′
(t)T as closely as possible. The formulated

optimization is shown below:

min
U,V′(t)≥0

T∑
t=1

h(t)

2
||Y(t)−U ·V′

(t)T ||2F (9.3)

Both U and V′(t) are |V | × n matrices. The main difference between U and V′(t) is

that U is a constant matrix and V′(t) is a time-dependent matrix. While it is possible

to make both U and V′(t) time-dependent, as shown in [224], a simpler model can

achieve good approximation and also avoid over-fitting. The function V′(t) can take on

any canonical form, such as linear models, polynomial models and so on. h(t) refers to a

decay function that regulates the importance between current and historical snapshots.

This acts as an smoothing. The exponential function is chosen as a decay function with

parameter θ > 0.

h(t) = e−θ(T−t) (9.4)

One challenge in this setting is that the PPMI matrix Y(t) is large and difficult to fit

into memory. However, as most of the real-world networks are usually sparse, the com-

putation can be made efficient. In most of the real-world scenarios, the presence of a

co-occurrence conveys more significant information than the absence of a co-occurrence.

This is because the absence of a co-occurrence could mean: a) either there exists no as-

sociation between the two concepts. b) there might exist a possible association between

them in the near future. The presence of co-occurrence is seemingly more meaningful

and thus the aforementioned objective function is adjusted to prioritize the presence of

co-occurrence rather than the absence of co-occurrence. However, a small number of

negative co-occurrence is needed to properly train the model. Suppose E(t) be the set

of word-pairs (wi, wj) such that the value of yijt = 0, and F (t) be the set of word-pairs
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(wi, wj) such that the value of yijt > 0. Then, total set of co-occurrences is shown

below:

G(t) = E(t) ∪ F (t) (9.5)

Now, one can express the objective function as:

min
U,V′(t)≥0

T∑
t=1

h(t)

2

∑
(wi,wj)∈G(t)

(yijt − (U ·V′
(t)

T
)ij)

2 (9.6)

Note that non-negativity is imposed on the factors for the purpose of greater inter-

pretability.

9.3.2 Ontology-Based Evolutionary Dynamics

Ontologies/Hierarchies usually represented as Trees are known to provide a natural way

of categorizing the knowledge of a particular domain. Such ontologies, also referred to

as knowledge-bases (KB’s), are abundantly present in the biomedical domain. Some

common examples include Medical Subject Headings (MeSH), Systematized Nomen-

clature of Medicine-Clinical Terms (SNOMED-CT), and International Classification of

Diseases (ICD9). These KB’s are periodically updated by the subject-matter-experts

in order to reflect the contemporary knowledge of the field. Given that these KB’s are

manually curated and showcase the prevailing knowledge of the field, our speculation

is that integrating the evolutionary features of concepts from these resources will result

in more accurate temporal representation of biomedical concepts. In our present study,

the KB chosen is hierarchical (i.e., IS-A relationships) in nature (further details in ex-

periments). Basically, the edges between concepts in the Tree denotes ”parent-child”

relationship, and the depth of a concept from the root indicates its level of specificity.

Note that greater the depth of a concept in the tree the greater is its semantic richness.

To leverage this valuable information, we adopt a technique similar to Section 9.3.1,

and later extend our objective function. More specifically, we first convert the given

hierarchical KB into a semantic distance matrix M(t)1 , and then approximate the

semantic distance matrix by the product of two smaller matrix.

M(t) ≈ U.V
′′
(t)T (9.7)

1 Note that the hierarchical KB is released every year and thus evolves over time.
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Here both U and V
′′
(t) are |V | × n matrices with n << |V |, n denotes the number of

dimensions. The semantic distance matrix M(t) between concepts is calculated based

on two factors: a) shortest path between concepts, and b) the depth of least common

subsumer (LCS). The LCS refers to the immediate common parent of two concepts.

Given two concepts wi, wj at time t, the distance between them is calculated by the

formula below:

lij = log2([path(wi, wj) + 1]

∗ [D′ − depth(lcs(wi, wj))])
(9.8)

where path(wi, wj) is the shortest distance between concept wi, wj at time t, depth(lcs(wi, wj))

is the depth of lcs(wi, wj) at time t, D′ is the maximum depth of the taxonomy, and

lcs(wi, wj) is the lowest common subsumer of wi and wj . Prior research studies [39]

have shown that the exploitation of these two factors is an effective strategy to leverage

the ontology specific features. Having obtained our semantic distance matrix M(t), our

next step is to generate the ontology-specific temporal embeddings. To do so, similar

to Equation 9.3, the optimization problem is formulated as shown below:

min
U,V′′(t)≥0

T∑
t=1

h(t)

2
||M(t)−U ·V′′

(t)T ||2F (9.9)

Though intuitive, in practice, this basic formulation does not fully leverage the typical

topological properties of given hierarchical KB. To overcome this issue, we propose an

enhanced strategy that exploits the topological properties of the available taxonomy

in a more effective manner. Basically, we consider a practical assumption that in the

hierarchical KB, the meaning of a particular concept is particularly influenced by its

ancestors in the following order: direct-parents (strongest), grand-parents (stronger),

higher-ancestors (lower) and root (least). As an example, consider the concept ”Dia-

betes Mellitus, Lipoatrophic”. This concept forms its semantics by inheriting the basic

properties from its ancestor concepts (”Diabetes Mellitus, Type 2”, ”Diabetes Melli-

tus”, ”Endocrine System” and ”root”)2 , and also adds its own specific properties.

Accordingly, the vector representation of a concept wi should be modelled by quanti-

fying the semantic contribution for each of its ancestor wij . We define the strategy to

quantify semantic contribution by exploiting the principles of label propagation [225, ?],

usually adopted in network modeling tasks. Simply put, the idea in label propagation

2 https://meshb.nlm.nih.gov/record/ui?ui=D003920

https://meshb.nlm.nih.gov/record/ui?ui=D003920
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is to preserve the local spatial consistency of network by nudging the neighbourhood

concepts to have similar feature vectors. Much alike, we mould its principles to fit the

current hierarchical structure of KB, and argue that the features of a concept should be

particularly influenced by their ancestors in accordance to their level of specificity.

b
(t)
ij =

1√
λ

(9.10)

λ denotes the depth of ancestor concept (wij) in the tree. Note that the semantic

contribution value of each concept changes over time based on their evolving structural

locality. Having calculated the semantic contribution value, now, each concept in the

tree adjusts (updates) its feature vectors based on its ancestors. Suppose that the initial

feature vector of concept wi is vi(t), and the updated vector is v
′′
(t) at timestamp t.

Then, the feature vector update process from vi(t) to v
′′
(t) can be modeled by the

following optimization problem.

min
v′′ (t)

α
∑
i

||v′′

i (t)− vi(t)||2 + (1− α)
∑

j∈Ancestors(wi)

b
(t)
jj ||v

′′

i (t)− vij(t)||2 (9.11)

In the above Equation 9.11, the first term is known as the fitting constraint. This

constraint penalizes large deviation from the initial feature vectors. The second term

ensures that the feature vectors of concepts are updated in accordance to the semantic

contribution of its ancestors. α balances the contribution of each part of the equation.

As the formulation in Equation 9.11 is convex, its solution can be found by solving a

system of linear equations. The closed updates are give below:

v
′′

i (t) = (1− α)(I− αB(t))−1vi(t) (9.12)

where I ∈ R|V |×|V | is an identity matrix. B(t) is defined as the depth matrix. Next, we

substitute the analytical solution of Equation 9.11 in Equation 9.9.

S(t) = (1− α)(I− αB(t))−1 (9.13)

V
′′
(t) = S(t)V(t) (9.14)

min
U,V′′(t)≥0

T∑
t=1

h(t)

2
||M(t)−U · S(t) ·V(t)T ||2F (9.15)
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In this regard, one might ask: What is the necessity of adopting this route when the

semantic distance matrix M(t) already captures the global hierarchical information? In

our research we found two reasons for it: a) the strategy to exploit the typical ancestral

property of a given concept acts as a ”local regularization” and thus aids to leverage the

taxonomic features in a more effective way. b) it provides a good initialization (generates

basis vectors that are much closer to the best basis vectors found) for the Non-negative

matrix factorization (NMF) formulation, resulting in improved convergence speed and

accuracy.

9.3.3 Corpus-Ontology Based (Co)-Evolutionary Dynamics

Both Section 9.3.1 and Section 9.3.2 can obtain the temporal embeddings for biomedical

concepts. The former exploits the local context information from natural language text

and the later leverages upon the topological properties of given taxonomy. However,

these two components should not be isolated from one another as they provide com-

plementary sources of information. Furthermore, a significant amount of information is

encoded in their (co)-evolutionary dynamics with respect to one another. To address

this, we propose to jointly model the co-evolution of biomedical concepts from these

interdependent sources of information. The objective function to be optimized is shown

below:

min
U,V(t),V′(t)≥0

T∑
t=1

h(t)

2
||Y(t)−U ·V′

(t)
T ||2F

+||M(t)−U · S(t) ·V(t)T ||2F

(9.16)

As it can be observed, the first and second part of objective function models the temporal

change of concepts from natural language text and ontology respectively. To facilitate

the joint learning and mutual sharing of information, the latent factor U is shared by

both parts of the objective function. As mentioned before, both V, V′ can take any

canonical form (e.g., linear, polynomial and so on). For simplicity of the model, we

choose a linear function. For instance: V(t) = Xt+ Y. As V(t) ≥ 0, both X ≥ 0 and

Y ≥ 0. Now, after adding regularization terms the expanded form of Equation 9.16

becomes:
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J(U,X′,Y′,X,Y) =
T∑
t=1

h(t)

2

∑
(wi,wj)∈G(t)

(yijt −U · (X′
t+ Y′)T )ij+

∑
(wi,wj)∈G(t)

(mijt −U · S(t) · (Xt+ Y)T )ij +
β

2
||U||2

+
γ1
2
||X||2 +

ω1

2
||Y||2 +

γ2
2
||X′||2 +

ω2

2
||Y′||2

(9.17)

where G(t) refers to the set of co-occurrence set as defined in Equation 9.6. The bound-

constraint formulation of the above objective function is shown below:

min
U,X′,Y′,X,Y

J(U,X′,Y′,X,Y)

subject to U,X′,Y′,X,Y ≥ 0

(9.18)

Next, we find the update rules for our cost function J(U,X′,Y′,X,Y) with respect

to each of the model parameters { U,X′,Y′,X,Y } and run the stochastic gradient

descent. The choice of optimization method is agnostic to the model and thus any-

thing that successfully solves Equation 9.18 should generate quality temporal vector

representations. Note that the update requires calculating inverse of a matrix (Refer

Equation 9.13). This step is computationally expensive. Thus, to overcome this, we

adopt an iterative approach (See below) similar to [225] and obtain our solution.

S(t) = (1− α)
B∑
b=1

(αB(t))b−1 (9.19)

where B refers to the number of iterations. Once the iterative algorithm converges, we

can obtain our time-aware embeddings as V
′
(t) = X

′
t + Y

′
. As our vector represen-

tations are parameterized with time, it allows us to predict the future co-occurrence

matrix Y(t + 1) ≈ UV
′
(t + 1)T . The entry values in Y(t + 1) quantify the likeli-

hood of future association (hypothesis) between biomedical concepts. Now, given an

input concept of interest (A), the candidate concepts (C ) are ranked based on their

predicted future co-occurrence value and then presented to the user for further analysis

and investigation. Having described the nuances of our methodology, in the next section

we describe our experimental protocol and perform extensive analysis to validate the

effectiveness of proposed approach.
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9.4 Experiments

In this section, we demonstrate the efficacy of our proposed framework. Towards this

end, we perform both qualitative and quantitative evaluations. The qualitative evalua-

tion determines the extent to which our approach is capable of rediscovering the already

known knowledge (and potentially new knowledge), whereas the quantitative evaluation

is intended to analyze the overall quality of predictions/discoveries made by the system.

Dataset Description: MEDLINE3 , the largest available scientific repository,

is used as the primary source of information for performing experiments. At present,

it provides access to more than 24 million time-stamped articles primarily from the

domain of life-sciences and bio-medicine. Among others, each article in MEDLINE

contains the following attributes: a) unique identifier known as PMID, b) title, c)

abstract, d) publication date and e) Medical Subject Headings (MeSH) terms. Previous

studies [9] have shown that using concepts from raw title/abstract may introduce noise

to the system and prove computationally expensive. To circumvent this problem, a

majority of studies [6, 208, 196] conduct their investigation studies by choosing MeSH

terms as their unit of analysis. MeSH terms in MEDLINE refer to a set of special

keywords that are assigned to each article by the subject-matter-experts. As the experts

annotate these terms based on the full-content of the article, they can be assumed to

represent the conceptual meaning of an article. Being manually curated, they are highly

accurate and find their utility in a multitude of downstream biomedical applications.

Considering its high input quality and broader applicability, in this study, we use MeSH

terms as our unit of analysis4 . Fortunately, these MeSH terms are also arranged

in a hierarchical/taxonomic structure5 . In our study, this taxonomic structure of

MeSH terms serve as our Knowledge-base. As of year 2018, there are approximately

28,000 MeSH terms (V ). For our experiments, we generate the temporal embeddings

for these medical concepts. As recommended in some of the prior studies [16, 77], we

set the dimensionality of our temporal embeddings to n = 200. The hyper-parameter

for exponential decay function is set to θ = 0.3. The regularization weights β = γ1 = γ2

= ω1 = ω2 = is 0.01. The value of α in Equation 9.11 is empirically set to 0.5. Finally,

the number of iteration for model and the value of B in Equation 9.19 are both set to

200.

3 https://www.nlm.nih.gov/bsd/medline.html
4 https://github.com/kishlayjha/hypotheses-generation-coEvolution
5 https://www.nlm.nih.gov/mesh/intro_trees.html

https://www.nlm.nih.gov/bsd/medline.html
https://github.com/kishlayjha/hypotheses-generation-coEvolution
https://www.nlm.nih.gov/mesh/intro_trees.html
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9.4.1 Qualitative evaluation

To perform qualitative assessment, we borrow experimental settings from the hypotheses

generation literature [6, 208]. A common way of performing evaluation is to replicate

the five golden test-cases (enumerated below) reported by the pioneers in this area of

study. For the sake of uniformity, we adopt the same setting and run the proposed

model on these test-cases and probe for the results.

1. Raynaud’s Disease (RD) and Fish Oils (FO) (1985)

2. Migraine Disorder (MIG) and Magnesium (MG) (1988)

3. Arginine (ARG) and Somatomedin C (IGF1) (1994)

4. Alzheimer Disease (AD) Indomethacin (INN) (1989)

5. Schizophrenia (SZ) and Calcium - Independent Phospholipase A2 (PA2) (1997)

To recapitulate our problem statement, the input to our hypothesis generation al-

gorithm is a topic of interest (A) (e.g., Raynaud’s disease), date (d) (e.g., 1985) and

the goal is to find new biological relationships (C ) (e.g., Fish Oils). The date (d) in

the input acts as a cut-off threshold. Both the proposed model and baseline algorithms

are run on the pre-cut-off segment (before date d) and the obtained results (predicted

connections) are evaluated in the post-cut-off segment (after date d). To analyze the

predicted results, we need a ground truth. However, there is no standard ground truth

available and creating one remains an open problem [208]. Therefore, for the purpose of

quantitative analysis, a supposedly ground truth is constructed. All those connections

that co-occur with the input concept of interest in the post-cut-off segment but not

in the pre-cut-off segment are assumed to be valid connections. These valid connec-

tions are ranked based on their TF-IDF co-occurrence score with the input concept of

interest. The candidate set for target ‘C ’ terms are all the concepts present in vocab-

ulary besides - A and Co-occur(A). Co-occur(A) refers to the set of terms that have

co-occurred with A before the threshold date d. All the possible target terms are ranked

based on their predicted co-occurrence score with the input concept of interest. Then,

the top-k results are presented to the user. Semantic filters are needed because in the

biomedical domain practitioners have a diverse range of interest. Some experts working

in a specific area (ex: Genes or Drugs) might be interested only in those terms that

have a possible genetic linkages or posses certain chemical properties. On the other

hand, a novice biomedical scientist might have a general interest and is possibly looking

for a surprising (or radical) connection. To emphasize our focus on finding potential



163

therapeutic preventions (and in the interest of space), we report results only for the

semantic category ”Drugs”. Now, in the rest of this section, we discuss the ability of

proposed model to rediscover the already known knowledge.

Raynaud’s Disease (RD) and Fish Oils (FO): To replicate this knowledge, we

seeded our HG system with input concept (A) as ”Raynaud disease” and a date (d) as

”1985”. The objective is to find possible treatments (e.g, ”Fish Oils”) or other terms of

biological significance in the top-k results. The top-k results for this and all other test

cases are reported in Table, along with the evidences in the form of PMIDS. As it can

be observed, the target term ”Fish Oils” in ranked 3. If we filter the terms by Semantic

category ”Drug”, the term ”Fish Oils” obtain rank 1.

Migraine Disorder (MIG) and Magnesium (MG): In 1988, the authors in

[78] studied the possible linkage between ”Migraine Disorder” and ”Magnesium”. In

their conclusion, the authors reported eleven previously unknown connections. In our

results, we found the target term at rank 5 (overall) and rank 2 (semantic filter - Drug)

respectively.

Arginine (ARG) and Somatomedin C (IGF1): In this test-case, the authors [8]

explored the relationship between a growth-regulating peptide (i.e., Somatomedin C)

and an amino acid (i.e., Arginine). In our results, we found the target concept So-

matomedin C at rank 2 (overall) and 3 (semantic filter - Drug) respectively.

Alzheimer Disease (AD) Indomethacin (INN): The objective of this case-

study was to find a possible connection between Indomethacin (an anti-inflammatory

agent) and Alzheimer Disease (a progressive disorder that cause memory loss and other

mental issues) [8]. The target term ”Indomethacin” is ranked 5 (Overall) and 2 (Se-

mantic filter - Drug) respectively.

Schizophrenia (SZ) and Calcium - Independent Phospholipase A2 (PA2):

Schizophrenia is a chronic disorder that affects person’s ability to think, feel and rea-

son clearly [8]. In our results, the target term Phospholipase A2 (PA2) was ranked 3

(Overall) and 2 (Semantic - Filter) respectively.

Discovery example for the case of Autism: In our experiments, we tried to

analyze the results of proposed approach on new test cases. To do so, we choose a disease

of biomedical significance: Autism. Autism is a serious development disorder found in

children that impairs the ability to communicate and interact. We seeded our algorithm

with input as ”Autism”, date (d) as ”2014” and analyzed the top-k results. The top term

found was ”calcineurin” (a protein phosphate). Upon manually inspecting the medical
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literature, we found that there might exist an indirect link between the calcineurin and

autism via terms such as ”Bcl-2”, ”calmodulin” and ”synaptic plasticity”. Although

clinical trails are needed to corroborate any hypothesis, several recent studies [226]

suggest that these terms are of potential clinical interest.

From the results of above qualitative analysis, one can infer that the proposed HG

system is able to successfully replicate the known knowledge and potentially discover

new practical knowledge. While this form of evaluation provides insight into the quality

of top-ranked results, a quantitative form of evaluation is necessary to gain an under-

standing of overall results.

9.4.2 Quantitative evaluation

The objective of this section is to examine the overall quality of prediction/discoveries

generated. To achieve this, we split the corpus into pre-segment/post-segment (Refer

Section 9.4.1), and obtain the ranked set for both generated connections and ground

truth. Then, Spearman coefficient is used to measure the performance. As a post-

processing step, all the trivial connections (check-tags [3] such as ”humans”, ”male”,

”female” and so on) are removed from both the ground truth and predicted set. Next

in this section, we report the quantitative results and discuss our findings on all the

five test-cases enumerated in Section 9.4.1. In this regard, one might question: How is

the performance of HG systems in test-cases other than the traditional five test-cases?

To answer this, we choose 200 diseases of biomedical significance and conducted exper-

iments using the same timeslicing scheme. Specifically, for each of these 200 diseases,

we set the cut-off date to January 1, 2014, which resulted in a pre-cut-off set composed

of 19,895,212 million documents published before January 1, 2014 and a post-cut-off set

composed of 4,587,929 documents published after January 1, 2014. The results obtained

are reported and analyzed later in this section.

Evaluation baselines for quantitative evaluation: To compare the performance

of proposed model with existing hypothesis generation systems, the following six baseline

algorithms are implemented.

1. Jaccard : Jaccard is a popular link prediction technique. The formula to calculate

the strength of association between two concepts is given below:

Association(A,C) =| CountA ∩ CountC | / | CountA ∪ CountC |, where Counti

refers the set of terms that co-occur with i.
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2. Preferential Attachment : Preferential Attachment is another classical link prediction

technique. The formula to calculate preferential attachment is given below:

Association(A,C) =| CountA | + | CountC |, where Counti refers the set of terms

that co-occur with i.

3. Arrowsmith: Arrowsmith is a popular hypothesis generation system proposed in [8].

4. BITOLA: BITOLA is a recent hypothesis generation algorithm proposed in [227].

5. Static Embeddings: Static embeddings refers to the word embeddings generated from

given corpus without incorporating any temporal component. The static embed-

dings are generated by training the standard CBOW [16] model on the entire MED-

LINE corpus. All the hyper-parameters for CBOW are chosen as suggested in the

study [16].

6. Dynamic MeSH Embedding [23]: DME refers to a recent HG algorithm that models

the semantic evolution of medical concepts from the diachornic biomedical corpora

alone. It does not incorporate the (co)-evolving features of medical concepts from

contemporary knowledge bases.

Note that the first two algorithms (Jaccard and Preferential Attachment) are from

the link prediction literature. As we formulated the current task into a weighted link

prediction problem, it is of interest to compare the results with classical link prediction

techniques.

Evaluation metrics for quantitative evaluation: Two evaluation metrics are

used to quantify our results: 1) Spearman Coefficient@k and 2) Mean Average Precision

(MAP@k).

Results: Table 9.1, 9.2, 9.3, 9.4, 9.5 reports the Spearman-Coefficient@k for each

of the five golden datasets enumerated in Section 9.4.1. The value of K is gradually

increased from top 200 to 1500 and results are reported. Table 9.6 reports the MAP@K

by consolidating numbers across 200 diseases (excluding the five golden test-cases) of

biomedical significance.

Discussion: From Tables 9.1, 9.2, 9.3, 9.4, 9.5 and 9.6 it can be observed that

the proposed model consistently outperforms all the existing baselines in terms of both

Spearman-Coefficient@K and MAP@K. This result indicates the ability of proposed

framework to find semantically meaningful connections at top ranks. Analyzing the
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Table 9.1: Spearman’s Correlation for FO-RD

Algorithm k=200 k=800 k=1000 k=1500

Jaccard 0.012 0.011 0.017 0.102

Preferntial attachment 0.004 0.006 0.009 0.101

Arrowsmith 0.018 0.013 0.012 0.106

BITOLA 0.019 0.021 0.018 0.119

Static (No evolution) 0.027 0.031 0.019 0.127

DME (No co-evolution) 0.068 0.081 0.101 0.189

Proposed 0.189 0.205 0.301 0.407

Table 9.2: Spearman’s Correlation for MG-MIG

Algorithm k=200 k=800 k=1000 k=1500

Jaccard 0.017 0.023 0.009 0.109

Preferntial attachment 0.019 0.026 0.011 0.112

Arrowsmith 0.021 0.041 0.017 0.115

BITOLA 0.023 0.042 0.019 0.127

Static (No evolution) 0.034 0.061 0.027 0.136

DME (No co-evolution) 0.078 0.092 0.109 0.193

Proposed 0.179 0.275 0.389 0.469

Table 9.3: Spearman’s Correlation for AD-INN

Algorithm k=200 k=800 k=1000 k=1500

Jaccard 0.012 0.014 0.018 0.100

Preferential attachment 0.011 0.013 0.017 0.112

Arrowsmith 0.014 0.023 0.038 0.118

BITOLA 0.027 0.032 0.047 0.124

Static (No evolution) 0.036 0.045 0.101 0.137

DME (No co-evolution) 0.058 0.079 0.112 0.187

Proposed 0.197 0.292 0.362 0.447
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Table 9.4: Spearman’s Correlation for IGF1-ARG

Algorithm k=200 k=800 k=1000 k=1500

Jaccard 0.018 0.026 0.013 0.101

Preferntial attachment 0.022 0.012 0.017 0.103

Arrowsmith 0.022 0.031 0.017 0.104

BITOLA 0.026 0.032 0.018 0.119

Static (No evolution) 0.033 0.082 0.028 0.157

DME (No co-evolution) 0.092 0.097 0.125 0.194

Proposed 0.280 0.385 0.425 0.487

Table 9.5: Spearman’s Correlation for SZ-PA2

Algorithm k=200 k=800 k=1000 k=1500

Jaccard 0.024 0.014 0.095 0.112

Preferntial attachment 0.023 0.015 0.017 0.121

Arrowsmith 0.089 0.029 0.102 0.136

BITOLA 0.092 0.031 0.108 0.143

Static (No evolution) 0.017 0.095 0.129 0.195

DME (No co-evolution) 0.098 0.164 0.157 0.278

Proposed 0.187 0.224 0.384 0.416

Table 9.6: Mean Average Precision@k for 200 disease

Algorithm k=200 k=800 k=1000 k=1500

Jaccard 0.012 0.013 0.017 0.102

Preferntial attachment 0.011 0.012 0.015 0.103

Arrowsmith 0.018 0.011 0.012 0.106

BITOLA 0.019 0.021 0.018 0.119

Static (No evolution) 0.027 0.031 0.019 0.127

DME (No co-evolution) 0.068 0.081 0.101 0.189

Proposed 0.185 0.262 0.392 0.435
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overall results from different perspectives, we detect various trends. First, the contem-

porary HG systems - ARROWSMITH and BITOLA - perform better than classical link

prediction techniques. This highlights the challenges that are unique to HG task and

encourages us to develop solutions tailored to HG. Second, we notice that though the

contemporary HG algorithms perform better than link prediction techniques, they fall

behind the Static embedding approach. Upon manual inspection of results, we found

that this is mainly due to two factors: a) over reliance on co-occurrence statistics, b)

failing to capture the implicit semantics of medical concepts. To elaborate, the base-

line HG algorithms (Number 3 and 4) are purely distributional in nature. This results

in promoting those terms that are ”contextually generic”. Contextually generic terms

are those terms that co-occur frequently with the input concept of interest but have

meager semantic meaning associated to them. For instance, consider the example of

”Migraine Disorder”. Some of the related terms that frequently co-occur with Migraine

are ”headache”, ”pain”. While these terms are statistically associated to ”Migraine”,

they have poor semantic association. As baseline HG algorithms rely strongly on sta-

tistical co-occurrence, these contextually generic terms are ranked higher. This proves

counter-intuitive as these same terms are ranked lower in the ground truth. Another

point we wish to highlight is that, as embeddings based approaches are capable of

capturing the implicit semantics, they successfully promote those terms that have func-

tional relationship with input concept of interest. Recall that the word embeddings

can capture special features such as linear analogical relationships vec(”ibuprofen”) -

vec(”headache”) ≈ vec(”treats”). This special feature provides leverage to embedding

based techniques over other approaches. Third, we observe that a recent temporal em-

bedding based approach [23] performs better than Static embedding [16]. This result

highlights the importance of leveraging the semantic change of concepts for predictive

tasks such as Hypothesis generation. Lastly, we would like to highlight that the proposed

model outperforms the existing temporal embedding approach. This is because the ex-

isting temporal embedding based approach [23] fails to leverage the (co)-evolutionary

features of medical concepts from contemporary KB’s. In our experiments, we found

that such subject-matter-expert maintained KB’s have invaluable information and their

incorporation is important to generate robust temporal embeddings. Furthermore, we

noticed that the collaborative exploitation of semantics from natural language text and

KB’s proved particularly helpful for domain-specific (rare) words. As an illustration,
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consider the medical concept ”Adioisotopes”. This concept rarely co-occurs with ”Mag-

nesium” but is known to have strong semantic association with it. The recent temporal

word embedding approach [23] (without external knowledge) fails to identify this term

(and such domain-specific words in general) in top-ranks, due to the lack of sufficient sta-

tistical information. While such domain-specific words lack local-context information,

their semantics can be mined from human curated KB’s. As the proposed framework

effectively leverages the KB’s, such domain-specific terms are successfully promoted to

higher ranks in our predicted set, thereby resulting in improved performance. In sum-

mary, from our both qualitative and quantitative experiments, we conclude that jointly

leveraging the local-context information from natural language text and topological fea-

tures from knowledge-base aids to generate temporal embeddings that are both robust

and posses better predictive power, thereby, generating effective hypothesis.

9.5 Conclusions

In this study, we proposed a general framework for hypothesis generation that mod-

els the temporal (co)-evolution of biomedial concepts from two complementary sources

of information - corpus and domain knowledge. By synthesizing the mutual evolution

of concepts from these intertwined resources, the proposed model generates temporal

embeddings that are both robust and posses higher predictive effects. Technically, the

model achieves this by adopting a temporal co-factorization framework wherein the

sub-spaces between multiple related matrices are learned by sharing a constant factor.

Both qualitative and quantitative experiments conducted on the largest biomedical cor-

pora validates the efficacy of the proposed approach, and suggests that the proposed

framework has potential for generating new practical knowledge.



Chapter 10

Conclusions and Future

Directions

An advanced hypothesis generation system that generates “actionable” postulates is

a particularly difficult task, given the intrinsic complexities present in the process of

imitating the steps a cognitive mind undertakes while forging a plausible hypothesis.

However, the massive amount of data being generated by health-care sector and its

current trend towards rapid digitization has overwhelmed the domain experts. Con-

sequently, it has become necessary to design a system that can process, analyze this

quintessential (bio)-medical “big data” and generate promising hypotheses that could

be potentially validated, thereby, benefiting the society at large.

In this direction, the proposed framework is our initial step towards developing a

robust hypothesis generation system. Aside from the evolutionary characteristics it

carries and the flexibility it provides in integrating heterogeneous textual sources, it is

computationally tractable. This allows the end users to obtain the desired results in a

reasonable amount time. Furthermore, another crucial advantage of this framework lies

in its ability to present evolution trajectory visualization of medical concepts. For any

two medical concepts, their semantic progression over time can be analyzed and under-

stood. This form of visualization is believed to aid domain experts in making informed

choices. Finally, the system also provides evidences (PubMED article identifier) for its

outputs thus making its results interpretable.

The results indicate that the hypotheses generated by the proposed framework are

encouraging. As an illustration, consider the bridge concept nitric oxide that was found

170
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for the test-case of Alzheimer’s disease and Indomethacin. Although not clinically cor-

roborated yet, several papers identified nitric oxide as an important element for under-

standing Alzheimer’s Disease [198]. Additionally, during 2000-2001, there were studies

[79] showing evidence of strong influence of nitric oxide in both Alzheimer’s disease and

Indomethacin. Thus, the results suggest that the proposed methodology is capable of

generating both semantically meaningful and temporally sensible hypotheses that are

worthy of clinical trails and further investigation.

In our continuing research, we are investigating in several directions. First is to

speculate more sophisticated approaches to generate medical concept embeddings that

are able to capture the multifaceted aspects of semantic expressiveness. Another area

of interest is to explore the application of our methodology to tasks such as drug-drug

interaction, adverse-drug events and biomedical question answering.
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