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ABSTRACT
As part of the FloodWatch project’s mission to develop an early
warning detection system for floods, I developed a new water level
detection sensor that leverages LiDAR technology, greatly expand-
ing the number of environments and configurations that our sensors
can be deployed within, and adding more sources of data for our
data collection pipeline. This data is then used by our project to
train machine learning models and predict flood risk in regions all
across Vietnam, and later, the world. To build this sensor, I used
an Arduino Uno board, SX1276 LoRa module, and VL53L0X LiDAR
sensor, detecting water level height based on the distance between
the surface of the water and the LiDAR sensor, and transmitting
the data through the LoRaWAN network to our online servers on
The Things Network as well as our own API. After connecting all
modules together and writing the software to power the integrated
device, I tested the accuracy of LiDAR distance readings and water
level detections, and verified the transmission of data payloads
from the device to The Things Network server. The tests found
promising results on the accuracy of the LiDAR sensor, though to a
certain extent, finding that detected water surfaces that are 6 cm or
closer to the sensor will lead to greater errors in detection accuracy.
Next steps in this project will be in the integration of the device
to our API using a webhook, the development of an outer casing
for the device for the final prototype, and testing in the field after
deployment.

1 INTRODUCTION
One of the most vulnerable regions of the world affected by flooding
and climate change, Vietnam has a complex relationship with water,
especially with its great traditional dependence on water to support
rice farming, fishing, shrimp fishing, and other livelihoods. With
the annual wet season comes an increase in flooding, as a result
of large amounts of rainfall. This increase in rainfall will cause
flooding through two major sources: when rivers overflow, through
what is called fluvial flooding, or when sewers overflow, flooding
inner-city streets. Rainfall will cause a rise in water level in both
of these sources, and lead to widespread flooding across the country.

In the context of fluvial flooding, most of Vietnam’s population
(around half of the population of Vietnam) resides in two major
deltas, or wetlands created when a major river deposits sediment
into another slower moving body of water. These deltas, as they
are formed by rivers, are concentrated spatially around those rivers
as well. The Mekong Delta and the Red River Delta, the two deltas
in this discussion, are both named after the two major rivers in
Vietnam of the same names, of which run through the regions
of wetlands that over half the population resides. When either of
these two rivers overflow, a massive percentage of the population
of Vietnam is at risk for harm due to extensive flooding.

As researchers, we want to leverage new technologies to introduce
more and more effective solutions to protect these communities
at risk. As part of the FloodWatch team at the University of Vir-
ginia, we want to develop an early warning system tool to help
detect flooding early and accurately, providing critical time for local
communities to prepare and plan how to protect themselves and
their community from flood risk. We also hope to expand our plat-
form into an overarching smart city application, utilizing sensors
collecting a diverse range of different types of data and machine
learning models to predict across multiple domains such as soil
quality to support agriculture, air quality, and water quality. How-
ever, our main focus is addressing the most pressing environmental
issue faced by Vietnam, flooding, which will continue to worsen as
climate change gets worse.

2 BACKGROUND
The FloodWatch team is made up of three subteams – the Fullstack
team, developing our full stack application software at floodwatch.
io, the machine learning team, developing machine learning models
that predict flood risk in localized areas based on collected data as
well as to detect anomalies from data that is sent in from sensors to
remove outliers and possibly incorrect data points, and finally, the
Internet of Things (IoT) team, in charge of managing our current
network of sensors across Charlottesville, monitoring the network
in Vietnam, France, and Germany, and handling the data transmis-
sion pipeline. When it comes to the IoT team, we already have a
deployed design that was developed by our partners. This design is
made from a modified Arduino board called the UCA board, and has
a hole at the top to collect rainwater through. It leverages a balance
and magnet situated immediately underneath the hole inside of
the casing which seesaws back and forth each time 0.03 milliliters
of water pass through the sensor. The magnet counts the number
of flips that the balance performs, and the board multiplies it by
0.03 milliliters of water. Then, the board prepares the packet for
transmission to our server, leveraging a LoRa module, a chip that
is able to handle transmission of data with an attached coil antenna.

The main mode of transmission for our devices is the use of the
LoRaWAN network, a networking protocol that allows for long
range and wide area communication, and uses much less power
than connection through other methods like WiFi. I will also use
this mode of transmission for my LiDAR-based device. Any LoRa
node simply has to transmit its readings in all directions, and has to
be picked up by a LoRaWAN gateway. A gateway is simply a router
for the LoRaWAN network, and may be managed by organizations
or users all across the world. After a join request is accepted by
the gateway, in which keys are exchanged for encryption of fur-
ther communication, the LoRa node is connected to the rest of the
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network, and can continue to send encrypted messages from the
node to the gateway, which reroutes the data to a specified location,
in which we want to route our messages to The Things Network
server. This is a server that is widely used by thousands of Internet
of Things companies worldwide to manage LoRaWAN data trans-
mission. Each user may register a device with The Things Network
with a LoRaWAN device’s set of keys uniquely generated either
by the device manufacturer or manually by The Things Network.
These sets of keys will uniquely identify the device. When data is
received by a gateway, its keys will identify the user who registered
the device, and the data will be routed to the user’s The Things
Network dashboard. From there, the user can reformat the payloads
received by the server, and write code to manage the data collected.

For our team, we reformat the data on The Things Network into
a JSON format, and set up an API call to our own platform’s ex-
posed external API endpoints, submitting a POST request with the
data we receive on The Things Network to our own server, which
stores it in our internal database, managed on Amazon’s AWS. From
there, the Machine Learning team can use the data to train models
and predict flood risks from corresponding locations. The Fullstack
team is also able to display the data on the application for users to
see and interact with.

Figure 1: The user interface of our application’s website, al-
lowing users to interact with the map to view flood risk and
weather data for different regions across the world, monitor
sensors, and view live sensor data.

2.1 LiDAR
LiDAR is a technology that uses light to measure distances and map
out its surroundings. Taking advantage of the constant value for
the speed of light, it uses the time of flight principle, as well as basic
physics of kinematics to calculate distances of objects that it wants
to detect. [2]

The sensor simply shoots out a beam of light from the sensor,
and records the amount of time that it takes for the light to have
been reflected back into the sensor. How does this allow the de-
vice to calculate for distance? Take the formula for average velocity:

𝑣 =
Δ𝑥

Δ𝑡

Figure 2: An illustration of how LIDAR sends and receives
lasers to calculate distance, of which ToF stands for time
of flight, via LIDAR News (https://blog.lidarnews.com/lidar-
technology-explained-at-the-electronics-level/).

Since the speed of light is constant, and the sensor is able to mea-
sure the amount of time for the light to travel from the sensor to the
detected object (and back, but we divide the time by 2 in order to
only obtain the amount of time it takes to travel to the object), this
means that one can solve for the displacement, which represents
the distance to the object. [6]

How may distance measurements therefore be utilized for water
level measurements for our project? By periodically measuring a
grounding distance for the sensor to the ground, we obtain a base
measurement for the height of the sensor to the ground. Using
this calibration, for any measurement we obtain thereafter, if this
measurement is less than the grounding distance we originally ob-
tained, we know that there must be water on the ground, and can
take the water level depth to be the difference between the original
grounding distance and the new distance measured. There may also
be other objects that may pass through the sensor’s line of sight to
the ground at times. However, we can perform anomaly detection
on sensor readings on our server side to determine the feasibility
of detected levels.

3 RELATEDWORK
LiDAR, though a fairly older piece of technology, has not seen
many applications to smart city applications until recently, when
the rise of cyber physical system research empowered by major
technological developments in the 21st century. This includes us-
age of LiDAR for flood detection. In a paper published in Water
Resources Research, J.D. Paul and others expressed that LiDAR had
rarely been used to measure water levels, but can be very viable for
doing so. The paper experiments with the accuracy of using LiDAR
for determining water levels, and tests its effectiveness based on
certain factors, including sensor temperature, measuring distance,
incidence angle, and surface roughness. Through experiments, they
assert that the best deployment location for LiDAR-based sensors
for flood detection will be under bridges and or inclined along river
banks, minimizing the effects of all the previous factors. It also
identifies the usage of LiDAR flood detection to be cost efficient,
with a high energy efficiency. [4]

In addition, a group of researchers led by P. J. Basford have lever-
aged the use of LoRaWAN transmission-based devices to monitor
air quality in Southampton, England, running experiments upon
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the efficiency and reliability of LoRaWAN for use in smart city
contexts. It was found that it was the most reliable mode of data
transmission when balanced with power usage. [1]

Finally, a group of researchers led by Indra Riyanto proposed a
flood water monitoring system that integrates the use of a web
camera to take images of water levels, processing them to detect
flooding, and integrate LiDAR to ensure accuracy and confirm cor-
rectness of data, through a combined processing of both sources of
information. They are moving in a similar direction to our project,
but with their main focus on the usage of web cameras over other
detection devices. LiDAR is simply used for correction and corrob-
oration purposes. [5]

4 DESIGN
4.1 Hardware
For our LiDAR-based water level detection sensor, there are four
main components that make up the device. They are as follows:

• Arduino Uno board - a programmable microcontroller
board with a large number of pins with which one can at-
tach multiple different modules onto the board, each with
different functionalities, and integrate all of the modules’ in-
dividual functionalities into an overall device with a single
program, using C++ code.

• SX1276 LoRaModule - a module that supports LoRaWAN
transmission. I had to solder headers and wires onto the
module, as well as a coil antenna. This coil antenna is specif-
ically designed for transmission at 915 MHz, which is the
standard LoRaWAN frequency in the United States. [3]

• VL53L0X LiDAR sensor - a small LiDAR module that re-
ceives one-dimensional distancemeasurements (in a straight
line from the sensor). It utilizes a Median Filter on the re-
ceived times to calculate for distance.

• Battery

I connected each module and the battery to the Arduino Uno board
with the configuration found in Tables 1 to 3.

4.2 Software/Firmware
The Arduino Uno board can be programmed using the Arduino
IDE, an environment that allows you to write, compile, and upload
code to a board, written in the language C++. This allows you to
define the functionality of the integrated board as a whole, and
write code that utilizes the modules in a way that allows interac-
tions between all of the modules, creating a cohesive device in its
defined behavior. In an Arduino file, there are two main functions
that must be defined – a setup() function that is called exactly once
when the device first starts up to set all desired settings, as well as
a loop() function, which is called continuously as long as the board
is connected to power, and is where the behavior of the board is
written.

In order to interact with each of the two specialized modules in the
code for the Arduino Uno board, a corresponding library that can
interact with each module must be used, with defined functions
that can interface your code with the hardware. For the VL53L0X

Figure 3: The final setup of the hardware for this sensor de-
vice. The LiDAR sensor is the module that is being held, with
the battery at the bottom of the screen, LoRaWANmodule to
the right, and board to the top-middle, in which all modules
are connected into.

LiDAR sensor, this is the VL53L0X library. For the SX1276 LoRa
module, this is the MCCI LoRaWAN LMIC library, maintained by
IBM.

Using the VL53L0X library, we simply set a timeout of 500 mil-
liseconds in the setup() function, meaning that it will abort sensor
start up if it is not responsive within 500 milliseconds, and the
library’s startContinuous() function is called to start the sensor and
to keep detecting distances continuously without stopping.

The MCCI LMIC library instead supports an event-driven imple-
mentation such that it only wants the board to act when it receives
a certain event, from a list of events. Events include a joining event,
a joined event (when the device has successfully joined the Lo-
RaWAN network), error events including when the packet being
transmitted fails to reach the specified destination, as well as a
completed transmission event. This was accomplished by writing
a function called do_send(), in which I call once right after the
setup() is complete, and only after every successful transmission
event such that the next packet of detection data should be prepared
and sent. Within do_send(), I first check if there is a current trans-
mission or reception job in progress (so that I do not take up the
bandwidth in the LoRaWAN module and block currently incoming
or outgoing messages). Then, if there is no current job running, I
start to prepare the next packet of data, using my reference to the
VL53L0X sensor to call readRangeContinuousMillimeters(). This
requests the LiDAR sensor to detect a distance reading. Then, if
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Table 1: Connection between Arduino Uno and VL53L0X

Arduino Uno VL53L0X

A4 SDA
A5 SCL
5V VIN/VCC
GND GND

Table 2: Connection between Arduino Uno and LoRa SX1276

Arduino Uno SX1276

GND GND
D12 MISO
D11 MOSI
D13 SCK
D10 NSS
D9 RST
3.3V VIN/VCC
D3 DIO0
D4 DIO1
D5 DIO2

Table 3: Connection between Arduino Uno and Battery

Arduino Uno Battery

VIN +
GND -

the sensor’s reading is successful, I set the packet payload to be
the reading I received from the sensor, and queue the packet to be
sent. The packet will then be sent on completion of the previous
transmission event (plus an additional delay to prevent sending too
many measurements too quickly and draining the battery). This is
because the do_send() function is set as the callback function for
each sendjob() call performed by the library.

Figure 4: The do_send() function implementation in my Ar-
duino code for the device.

4.3 Overall Behavior of Device
With all of these integrated together, this means that every single
time a packet is ready to be sent, a request is sent to the LiDAR
sensor to obtain a reading for distance. Once obtained, the reading

is set as the payload for a packet, and transmitted by the LoRaWAN
SX1276 module into the air to be picked up by nearby gateways.
Once picked up and routed to The Things Network server, we
can reformat the received packet into JSON to send to our server
endpoints. However, before the packet is translated into JSON, we
must calculate the water depth using the distance measurement.
Each device will have a saved value for the grounded distance that
came from calibration of the height of the sensor from the ground.
By taking the difference between the original distance and this new
reading’s distance, we obtain water level depth in millimeters. We
can then translate this value to JSON, and then make an API call to
our server endpoint with a POST request, storing our data into our
AWS database.

5 TESTING
To ensure the functionality of each module is working, there were
two separate demonstrations that had to be performed. First, the
LiDAR sensor must be able to detect changes in water height. Sec-
ond, transmissions by the LoRaWAN module must be detected and
received by a LoRaWAN gateway.

By simply wiring the LiDAR sensor to an Arduino Uno board,
and prompting the sensor to receive continuous readings by plac-
ing a call to the readRangeContinuousMillimeters() function, we
can get the sensor to record readings without any worry of other
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functionality (being placed in the loop() function, it is called im-
mediately as the last reading was received and printed, so I was
able to obtain a practically continuous stream of data with a new
reading every approximately hundredth of a second). However, to
see outputs from the sensor, I connected a USB to USB-B adapter
between my laptop and the Arduino Uno board, and by utilizing
the Serial Monitor within the Arduino IDE, I can see the messages
that are printed out to the serial port from the Arduino Uno board.
Therefore, I needed to add statements in the code to also print the
received measurements to the serial port each time a new one was
received.

After setting up this configuration, I attached the LiDAR sensor
to the top of a cup, pointing face down to the bottom of the cup. I
gradually poured water into the cup, and watched as the stream
of distance measurements declined each time I poured more water
into the cup. To test for accuracy, I attached a ruler to the inside of
the cup, with ruler precision up to 1 millimeter. Then, I attached the
LiDAR sensor connected to the board, which was connected to the
laptop through the configuration noted earlier. I then slowly poured
water into the cup, noting the height of the water with the ruler,
versus the detected water depth (which I calculated by subtracting
the original detected distance of the sensor to the bottom of the
cup by the new detected distances). See the setup in Figure 5:

Figure 5: The setup for the LiDAR accuracy experiment. As
shown, there is a ruler attached to the inside of the cup to
verify ground-truth water height. The LiDAR sensor is at-
tached above the water looking down towards the bottom of
the cup.

In addition, in setting up our own LoRaWAN gateway in the pres-
ence of my final prototype with the configuration noted in the
Design section, I was able to test for the functionality of the Lo-
RaWAN module by checking the Live Data feed on The Things
Network, and seeing the physical payloads of the packet being sent.

6 RESULTS
From the first experiment testing for the accuracy of the LiDARmod-
ule, we find many interesting discoveries. The first is the accuracy
range of the module (which creates limitations to its deployment).
In our first experiment, we found the initial height of our sensor
being 132 mm, which states that the sensor is 132 mm from the bot-
tom of the cup. As we begin our experiment and obtain measured
distances, we will subtract measured distances from this original
distance to find the detected depth of the water. The results of this
experiment can be found in Table 4.

From these findings, it is revealed that the accuracy of the sensor
diminishes as the water level approaches the sensor. At around a
water height of 60 mm, or when the water level is around 6 cm from
the sensor, the accuracy of the sensor drops, going from an absolute
error of around +/- 1-3 to an absolute error of 6 mm. This is a drastic
change, relative to the scale at which we are measuring the level
of water, in millimeters. This means that in deployment, sensors
should not be placed so close to the surface in which they are to
be measuring and detecting water heights for, with 6 centimeters
recommended as being the absolute minimum distance from the
sensor to any surface’s typical height, due to the clear increase in
error at that distance away. However, the best minimum distance
between the sensor and its base surface of measurement should
be much greater for best results. In addition, deployment should
also take into account other factors that were not tested in this
experiment as well, such as external effects as a result from other
objects interfering with the beam of light’s path, which are further
investigated in the study by J.D Paul [4].

Next, I investigated the transmission of payloads from a LoRa
SX1276 to The Things Network. By simply connecting the battery
to the board, and uploading the software code I wrote to the Ar-
duino Uno board, it started to transmit by itself to the LoRaWAN
network, first sending a join request, and on having the join request
accepted, transmitting data to the network. I am able to see a live
feed of the transmitted data through the Live Data window on The
Things Network as seen here in Figure 6:

Figure 6: Live payload data received from my registered de-
vice on The Things Network’s Live Data window.

As you can see, the payloads sent by the device are in bytes, found
in the "Forward uplink data message" events after the DevAddr
field. These received bytes can be reformatted through a payload
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Table 4: Experiment Results: Testing Accuracy of LiDAR sensor

True Water Depth (mm) Average Detected Water Depth (mm) (Initial Distance Detected - Distance Detected) Error (mm)

0 132 - 132 = 0 0
12 132 - 119 = 13 1
20 132 - 110 = 22 2
30 132 - 99 = 33 3
41 132 - 89 = 43 2
50 132 - 84 = 48 -2
60 132 - 78 = 54 -6
70 132 - 74 = 58 -12
80 132 - 72 = 60 -20

formatter, such that it can now be displayed and read in a more
human-readable form. This can be seen in Figure 7.

Figure 7: The custom JavaScript payload formatter that I
employ in The Things Network server to decode the uplink
message payload received from my device.

Figure 8: Updated payload data in the Live Data window after
reformatting using the payload formatter tool.

Through using this interface, we are able to ensure that the data
that is collected from the LiDAR sensor and transmitted by the
LoRaWAN module in our device is successfully transmitted to The
Things Network server. This means it can now be submitted to
our FloodWatch API through a POST request, and be stored to our
database on AWS.

7 CONCLUSION
In conclusion, my development of a LiDAR-based water level de-
tection sensor enables a much more low-cost and energy efficient

solution for water level detection in the context of early warning de-
tection systems for floods across the world as part of FloodWatch’s
overall smart city platform and mission. With such flood monitor-
ing capabilities, communities in vulnerable regions such as Vietnam
are able to know, plan, protect, and evacuate their communities and
livelihoods ahead of time when a flood is likely to occur, greatly
increasing the amount of lives and infrastructure that can be saved
when flooding does occur. My device demonstrated very promising
results in terms of accuracy, though there were some limitations
that can be found when in close proximity to water surface. How-
ever, testing showed and confirmed the functionality and reliability
of the sensor to detecting changes in water levels, and the ability to
transmit this data to a cloud server on The Things Network, as well
as the ability to therefore forward data to our internal databases
through our FloodWatch API.

8 FUTUREWORK
Moving forward, I hope to integrate the sensor with the rest of the
data collection pipeline that our project has in place, joining the
ranks of the rain gauge devices and cameras we currently use to
collect data for our platform. This includes updating the handling
of uplinks to send to our FloodWatch API, through the creation of a
webhook. By doing this, we will further our efforts towards a multi-
modal data collection pipeline and system. It will take more testing
for accuracy in a wider range of conditions and environments
(outside of a simple ideal controlled environment experiment), and
test deployment in the field. I will also have to design and create an
outer casing to protect and enclose the hardware of the sensor when
deployed into the public. Finally, with our project’s aspirations to
turn our sensors into DIY kits for students and others interested
in citizen science opportunities, allowing them to explore building
their own IoT devices for use in a real-world smart city network, I
must develop a streamlined and user-friendly development process
and tutorial that will ease the development of these sensors, and
allow for as many people without a background in computer science
or engineering to participate in building new sensors. This will
likely involve the designing of my own PCB file that interfaces with
the SX1276 module to remove the need for soldering, a written and
recorded tutorial, and outer casing to enclose the hardware.
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