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ABSTRACT 
A major American bank holding company, with 
over 100 million customers, launched a two-
factor authentication system that was prone to 
untraceable crashes and overloaded 
components. To improve the service, I utilized 
Splunk and New Relic to construct new tooling 
and Spring WebFlux to prototype a higher 
throughput component. Splunk was used to 
trace individual customers and New Relic 
monitored system health with service-
encompassing dashboards. Java’s Spring 
WebFlux library was used to prototype an async 
component of the service, enabling greater 
throughput. The developed tools and 
dashboards improved crash detection and 
diagnosis time by 2-3x, while the prototype 
resulted in a >7x increase in supported 
concurrent users. Moving forward, the 
dashboards could be streamlined to focus on 
high-priority components and automatically 
generate actionable alerts. The prototype could 
undergo further testing and a production 
deployment to ensure more efficient SSE 
communications. 
 
1. INTRODUCTION 

In the summer of 2023, I began an internship 
with a team that launched two-factor 
authentication (2FA) method for customers 
logging into the browser application called the 
Browser Notification Service (BNS). The goal 
for the service was to become the de facto 2FA 
method for all customer-facing endpoints. 
Therefore, it needed to be highly reliable and 

have the capacity to support (potentially) the 
entire user-base simultaneously. But, as the 
service was in its infancy, it lacked monitoring 
capabilities and performant implementations, 
preventing it from meeting reliability and 
throughput standards.  

Cloud system monitoring is a key tool in an 
incident manager’s toolbox. According to a 
Microsoft study on Cloud production incidents, 
“quick detection of an incident is crucial to limit 
its impact” (Ghosh, et. al., 2022). Such quick 
detection is “achieved with automated 
monitors.” At the time, the team was using 
rudimentary process monitors. Splunk was used 
to query across numerous JSON records emitted 
by every component of the BNS to isolate failed 
components. But Splunk would take a 
significant amount of time to run the queries and 
generate the corresponding visuals. Combined 
with the fact that there were four versions of this 
service (one on each coast, as well as a 
blue/green deployment scheme), the total time 
taken to run the Splunk query, generate the 
graphic, and find the source of failure was 
unacceptably high. Further, the lack of low-
level visibility such as hardware utilization, 
AWS auto-scaling functionality, and more 
requited a new approach to monitoring the BNS 
service.  

A key part of BNS is a Server-Sent-Events 
(SSE) stream to a customer’s desktop 
application. This ensures that the moment a 
customer approves a log-in on their phone, the 
browser application reflects the authentication. 
The existing implementation used a Thread Pool 



 

to support synchronous, blocking SSE requiring 
many resources and providing relatively little 
throughput in return. Therefore, re-
implementing this service more efficiently 
could reduce hardware utilization and increase 
scalability, ensuring that the service could scale 
with user needs.  
 
2. RELATED WORKS 

While it is difficult to find related works that 
properly encapsulate the process at hand, the 
seminal work by Leners, et. al. (2011) provides 
an understanding of the problem landscape. In 
the past, cloud systems were applications 
executed on bare metal hardware, modern cloud 
systems are an application running within an 
OS, which is running on some virtualization 
software (VMM), which is running on bare 
metal. Each of these layers of abstraction 
presents a new opportunity for failure and a new 
subject of observation. Further, when numerous 
sub-systems are tied together, as seen in Huang 
(2018), it becomes difficult to localize the cause 
of a failure rendering fault assignment and issue 
resolution difficult.  

In a traditional threading model, a new 
thread is used to support each new request. This 
causes performance overhead and issues with 
scalability. Filipchenko (2023) a Google 
Engineer, explains how Spring WebFlux is a 
framework that decomposes requests into 
asynchronous tasks. These tasks are executed in 
a non-blocking manner enabling the “thread to 
move on to handle other requests while the tasks 
are executed in the background.” This 
framework makes efficient use of CPU 
resources, enabling high throughput I/O 
dependent tasks such as SSE.  
 
3. PROJECT DESIGN  
This section is structured to offer an 
understanding of the system in focus. It 
describes the system's architecture and 
operational framework, highlighting its 
deployment strategy and components. 
Following this foundational overview, the 
discussion shifts to the implemented monitoring 

mechanisms, detailing both the challenges 
solutions applied. Then it transitions into a deep 
dive into the API re-design efforts, elaborating 
the strategies employed to enhance system 
efficiency. It concludes with the results of the 
changes.  
 
3.1 System Description 

The BNS is a 2FA service for a web 
application. It has four deployments and is 
hosted via AWS’ Elastic Container Service 
(ECS) with auto-scaling capabilities. Each 
microservice is composed of an Auto-Scaling 
Group (ASG) and an Elastic Load Balancer 
(ELB) enabling complete automation of the 
allocation and deallocation of compute 
resources. 

The BNS is composed of twelve 
microservices and five API endpoints. These 
services are responsible for the management of 
users, management of user devices, and the 
authentication for user login. Yielding seven 
unique workflows.  

While each service produces individual 
logs, it is difficult to stitch together these logs 
for a holistic view of the health of the system. 
Further, the platform on which these logs are 
hosted, Splunk, is unsuitable for the large scale, 
repeated log digestion required to analyze the 
system from a log-based approach. The solution 
for this problem will be explored in the System 
Monitoring subsection.  

A component of the BNS service is the SSE 
API. This API is responsible for initializing and 
maintaining the SSE streams to deliver 
authorization to the user’s browser. The original 
implementation of the SSE API was recognized 
as a bottleneck of the overall service. Despite 
being the primary microservice, it was highly 
resource intensive and unable to serve the 
requisite volume of users efficiently, driving 
AWS costs in provisioning and maintaining 
additional compute. The solution for this 
problem will be explored in the API Re-Design 
subsection. 
 
 



 

3.2 System Monitoring 
 

3.2.1 Monitoring Requirements 
One of the earliest steps of any 

debugging process is fault localization. Without 
this, it is difficult to determine where and how 
to allocate resources to effectively address the 
problem at hand. As the BNS was in its infancy, 
it lacked the mature monitoring capabilities 
required for a high-reliability system.  

To properly understand the state of the 
system, the following service metrics must be 
tracked: the number and health of the allocated 
Docker containers, the throughput and latency 
of each microservice, and the quantity and 
distribution of error codes. Further, the state of 
the supporting infrastructure must also be 
known. This includes the hardware resources 
and the health of the allocated Docker 
containers.  

Prior to the completion of this project, the 
team would use AWS CloudWatch to monitor 
the above metrics. While AWS CloudWatch is 
capable, the UI and latency left much to be 
desired. Further, the lack of consolidation of 
CloudWatch information meant that a new tab 
for each micro-service was required. This left 
the team seeking a consolidated view of the 
system’s health.  

The BNS has seven unique workflows. 
Monitoring and tracing users through each 
workflow is essential to understanding the 
health of the system as well as isolating points 
of failure from a results-oriented perspective. As 
such, the final solution must include the 
capabilities to monitor workflows and track the 
service metrics listed above.  
 
3.2.2 Monitoring Solutions 

As the existing service monitoring software, 
Splunk was the obvious first candidate. Despite 
the extensive hours sunk into the Splunk 
monitoring solution, it was relegated. Splunk 
queries frequently took minutes to complete, if 
ever. While this response time may be 
acceptable in a data analysis setting, it is 
unacceptable for real-time system health 

monitoring. Further, the lack of hardware health 
metrics left Splunk lacking. Due to Splunk’s 
weaknesses, the need for an alternate 
monitoring tool became apparent.  

Splunk was restructured to create a 
workflow tracing dashboard. Within this 
dashboard, an engineer could query for a unique 
transaction ID, readily available in debug logs, 
to obtain a workflow-length trace of the 
transaction. This trace provided significant 
metadata, enabling engineers to debug the 
workflow and gain a results-oriented view of the 
system’s health. This approach played greatly 
into Splunk’s strengths of high-specificity log 
parsing.  

Yet, we still required monitoring 
capabilities for the system’s hardware, Docker 
containers, and high level metrics. New Relic 
was selected as tool of choice for this problem 
due to its existing integrations with AWS ECS. 
By injecting the New Relic agent into each and 
every service, it was possible to forward AWS 
CloudWatch metrics directly into New Relic 
dashboards. From that point, it was a process of 
isolating the specific AWS service and 
integrating the service into the dashboard’s 
display.  

As a result, a New Relic dashboard was 
created with seven tabs, each targeting a specific 
component of the service. Three primary tabs 
will be discussed: the ELB tab, the ASG tab, and 
the SSE-API tab.  

The ELB tab was used to assess the flow of 
traffic between the various instances within 
each ASG. It reported on the number and health 
of the down-stream docker containers as well as 
the quantity and distribution of error codes. This 
provided a view of the health of the ELB and 
redundant monitoring of the underlying Docker 
containers. With this method, even if the ASGs 
failed to report their health, it would still be 
possible to assess the health of the ASGs via the 
ELB.  

The ASG tab provided a high-level 
overview of each service. It reports the CPU, 
Memory, Disk, and Networking usages for each 
of the Docker containers within the ASG. In the 



 

case of aggressive demand, it is possible for the 
ASG to fall behind in allocating further 
instances. In this case, load could be shed 
(requests are automatically denied) if they time 
out. Therefore, analyzing the ASG dashboard 
became crucial to assessing the effectiveness of 
ASG auto-scaling policies.  

Finally, each of the four copies of the BNS 
service featured its own tab of the SSE-API tab. 
Within each tab were throughput and latency 
graphs for each microservice component. These 
tabs are essential in garnering an at-a-glance 
assessment of each system’s health.  
 
3.3 API Re-Design 

 
3.3.1 API Requirements 

The BNS-API made use of SSE streams 
between the server and client. Yet, due to the 
CPU load requisite for supporting such streams, 
the existing implementation of the service 
demanded high resources for relatively poor 
throughput. The source of this issue was isolated 
to the programming paradigm used in 
implementing this service.  

The existing implementation used a 
synchronous threading model. Each SSE stream 
was processed synchronously forcing each 
thread to occupy CPU resources for the duration 
of the SSE connection, bottlenecking the 
maximum number of SSE. To rectify the issue, 
an asynchronous programming paradigm was 
explored. In asynchronous programming, the 
CPU is free to dedicate its resources elsewhere, 
only handling the thread when action is 
required. With this approach, it was possible to 
increase the concurrent throughput of the 
service while utilizing the same quantity of 
resources.  
 
3.3.2 API Solutions 

To redesign the SSE API, the Spring 
WebFlux library was used. This library 
implemented asynchronous approaches to SSE, 
message queues, and more. On the backend, this 
enabled the async monitoring of a Kafka 
message queue for user approval. On the front 
end, this implementation enabled the immediate 

return of a SSE stream promise to the user. 
When a Kafka message for approval, 
disapproval, or otherwise was detected, the 
message was passed to the user via the SSE 
stream in a asynchronous fashion. This way, 
waiting for the Kafka message nor maintaining 
the SSE stream occupied CPU resources (except 
for keep-alive actions for the SSE stream). To 
test the efficiency of the new SSE API, an 
Apache JMeter test bench was configured. Due 
to time constraints, all testing was performed 
locally as opposed to deploying and testing the 
API when hosted within AWS.  
 
4. RESULTS  

The monitoring solutions proved highly 
effective in improving incident resolution 
latency for the BNS service. This was due to the 
improved workflow for detecting errors within 
the service. Prior to the end of the internship, 
there was an issue with the BNS service. Before 
Capital One’s internal teams could detect the 
issue, a New Relic alert pinged the entire team 
about excessive response latency for the “GET 
Device” API endpoint. By the time the Capital 
One incident response team contacted the BNS 
team, the BNS team had already begun to triage 
the situation. A fix for the service was delivered 
by the end of the day and according to the 
manager, the incident was resolved 2-3 times 
quicker solely due to the newly developed 
Splunk and New Relic dashboards.  

On the SSE API side, it was found that the 
new implementation of the SSE API could 
support over eight times as many concurrent 
users as the prior implementation. Upon 
presentation of these results to upper 
management, a request for an abstraction of this 
service to be used on other teams was 
communicated. Approximately seven months 
after the end of the internship, the new SSE API 
service was deployed into production. 
 
5. CONCLUSION 

This project demonstrates the 
transformative power of utilizing advanced 
monitoring tools and asynchronous 



 

programming paradigms in improving the 
reliability and scalability of a critical two-factor 
authentication service. By integrating Splunk 
and New Relic for enhanced system monitoring 
and utilizing Java's Spring WebFlux for 
redesigning a bottleneck component, we 
achieved improvements in crash detection and 
diagnosis time as well as in the system's 
capacity to handle concurrent users. The 
monitoring tools facilitated a much quicker 
response to incidents, thereby enhancing the 
service's reliability, while the prototype using 
Spring WebFlux enabled a more than sevenfold 
increase in supported concurrent users. These 
outcomes not only improved the immediate 
performance and reliability of the Browser 
Notification Service but also laid the 
groundwork for future enhancements. Looking 
ahead, focusing on the automation of alerts 
based on monitoring data and the potential 
wide-scale implementation of the asynchronous 
service component could offer further 
improvements in service reliability and 
efficiency. This project exemplifies how 
technological innovation, when strategically 
applied, can significantly enhance system 
performance and user experience in a high-
stakes banking environment. 
 
6. FUTURE WORK 

Future work includes monitoring the New 
Relic log management feature for further 
maturity to port over Splunk functionality into 
New Relic. Further, the existing automated New 
Relic monitors need to be fine-tuned to reduce 
the number of false positives, potentially with 
AnomalyBERT or a similar ML model.  
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