
Cloud System Reliability: Expanding the Infrastructure to Support a
Commercial Login Service

CS4991 Capstone Report, 2024

Sidhardh Burre

Computer Science
The University of Virginia

School of Engineering and Applied Science
Charlottesville, Virginia USA

ssb3vk@virginia.edu

ABSTRACT
A major American bank holding company, with
over 100 million customers, launched a two-
factor authentication system that was prone to
untraceable crashes and overloaded
components. To improve the service, I utilized
Splunk and New Relic to construct new tooling
and Spring WebFlux to prototype a higher
throughput component. Splunk was used to
trace individual customers and New Relic
monitored system health with service-
encompassing dashboards. Java’s Spring
WebFlux library was used to prototype an async
component of the service, enabling greater
throughput. The developed tools and
dashboards improved crash detection and
diagnosis time by 2-3x, while the prototype
resulted in a >7x increase in supported
concurrent users. Moving forward, the
dashboards could be streamlined to focus on
high-priority components and automatically
generate actionable alerts. The prototype could
undergo further testing and a production
deployment to ensure more efficient SSE
communications.

1. INTRODUCTION

In the summer of 2023, I began an internship
with a team that launched two-factor
authentication (2FA) method for customers
logging into the browser application called the
Browser Notification Service (BNS). The goal
for the service was to become the de facto 2FA
method for all customer-facing endpoints.
Therefore, it needed to be highly reliable and

have the capacity to support (potentially) the
entire user-base simultaneously. But, as the
service was in its infancy, it lacked monitoring
capabilities and performant implementations,
preventing it from meeting reliability and
throughput standards.

Cloud system monitoring is a key tool in an
incident manager’s toolbox. According to a
Microsoft study on Cloud production incidents,
“quick detection of an incident is crucial to limit
its impact” (Ghosh, et. al., 2022). Such quick
detection is “achieved with automated
monitors.” At the time, the team was using
rudimentary process monitors. Splunk was used
to query across numerous JSON records emitted
by every component of the BNS to isolate failed
components. But Splunk would take a
significant amount of time to run the queries and
generate the corresponding visuals. Combined
with the fact that there were four versions of this
service (one on each coast, as well as a
blue/green deployment scheme), the total time
taken to run the Splunk query, generate the
graphic, and find the source of failure was
unacceptably high. Further, the lack of low-
level visibility such as hardware utilization,
AWS auto-scaling functionality, and more
requited a new approach to monitoring the BNS
service.

A key part of BNS is a Server-Sent-Events
(SSE) stream to a customer’s desktop
application. This ensures that the moment a
customer approves a log-in on their phone, the
browser application reflects the authentication.
The existing implementation used a Thread Pool

to support synchronous, blocking SSE requiring
many resources and providing relatively little
throughput in return. Therefore, re-
implementing this service more efficiently
could reduce hardware utilization and increase
scalability, ensuring that the service could scale
with user needs.

2. RELATED WORKS

While it is difficult to find related works that
properly encapsulate the process at hand, the
seminal work by Leners, et. al. (2011) provides
an understanding of the problem landscape. In
the past, cloud systems were applications
executed on bare metal hardware, modern cloud
systems are an application running within an
OS, which is running on some virtualization
software (VMM), which is running on bare
metal. Each of these layers of abstraction
presents a new opportunity for failure and a new
subject of observation. Further, when numerous
sub-systems are tied together, as seen in Huang
(2018), it becomes difficult to localize the cause
of a failure rendering fault assignment and issue
resolution difficult.

In a traditional threading model, a new
thread is used to support each new request. This
causes performance overhead and issues with
scalability. Filipchenko (2023) a Google
Engineer, explains how Spring WebFlux is a
framework that decomposes requests into
asynchronous tasks. These tasks are executed in
a non-blocking manner enabling the “thread to
move on to handle other requests while the tasks
are executed in the background.” This
framework makes efficient use of CPU
resources, enabling high throughput I/O
dependent tasks such as SSE.

3. PROJECT DESIGN
This section is structured to offer an
understanding of the system in focus. It
describes the system's architecture and
operational framework, highlighting its
deployment strategy and components.
Following this foundational overview, the
discussion shifts to the implemented monitoring

mechanisms, detailing both the challenges
solutions applied. Then it transitions into a deep
dive into the API re-design efforts, elaborating
the strategies employed to enhance system
efficiency. It concludes with the results of the
changes.

3.1 System Description

The BNS is a 2FA service for a web
application. It has four deployments and is
hosted via AWS’ Elastic Container Service
(ECS) with auto-scaling capabilities. Each
microservice is composed of an Auto-Scaling
Group (ASG) and an Elastic Load Balancer
(ELB) enabling complete automation of the
allocation and deallocation of compute
resources.

The BNS is composed of twelve
microservices and five API endpoints. These
services are responsible for the management of
users, management of user devices, and the
authentication for user login. Yielding seven
unique workflows.

While each service produces individual
logs, it is difficult to stitch together these logs
for a holistic view of the health of the system.
Further, the platform on which these logs are
hosted, Splunk, is unsuitable for the large scale,
repeated log digestion required to analyze the
system from a log-based approach. The solution
for this problem will be explored in the System
Monitoring subsection.

A component of the BNS service is the SSE
API. This API is responsible for initializing and
maintaining the SSE streams to deliver
authorization to the user’s browser. The original
implementation of the SSE API was recognized
as a bottleneck of the overall service. Despite
being the primary microservice, it was highly
resource intensive and unable to serve the
requisite volume of users efficiently, driving
AWS costs in provisioning and maintaining
additional compute. The solution for this
problem will be explored in the API Re-Design
subsection.

3.2 System Monitoring

3.2.1 Monitoring Requirements
One of the earliest steps of any

debugging process is fault localization. Without
this, it is difficult to determine where and how
to allocate resources to effectively address the
problem at hand. As the BNS was in its infancy,
it lacked the mature monitoring capabilities
required for a high-reliability system.

To properly understand the state of the
system, the following service metrics must be
tracked: the number and health of the allocated
Docker containers, the throughput and latency
of each microservice, and the quantity and
distribution of error codes. Further, the state of
the supporting infrastructure must also be
known. This includes the hardware resources
and the health of the allocated Docker
containers.

Prior to the completion of this project, the
team would use AWS CloudWatch to monitor
the above metrics. While AWS CloudWatch is
capable, the UI and latency left much to be
desired. Further, the lack of consolidation of
CloudWatch information meant that a new tab
for each micro-service was required. This left
the team seeking a consolidated view of the
system’s health.

The BNS has seven unique workflows.
Monitoring and tracing users through each
workflow is essential to understanding the
health of the system as well as isolating points
of failure from a results-oriented perspective. As
such, the final solution must include the
capabilities to monitor workflows and track the
service metrics listed above.

3.2.2 Monitoring Solutions

As the existing service monitoring software,
Splunk was the obvious first candidate. Despite
the extensive hours sunk into the Splunk
monitoring solution, it was relegated. Splunk
queries frequently took minutes to complete, if
ever. While this response time may be
acceptable in a data analysis setting, it is
unacceptable for real-time system health

monitoring. Further, the lack of hardware health
metrics left Splunk lacking. Due to Splunk’s
weaknesses, the need for an alternate
monitoring tool became apparent.

Splunk was restructured to create a
workflow tracing dashboard. Within this
dashboard, an engineer could query for a unique
transaction ID, readily available in debug logs,
to obtain a workflow-length trace of the
transaction. This trace provided significant
metadata, enabling engineers to debug the
workflow and gain a results-oriented view of the
system’s health. This approach played greatly
into Splunk’s strengths of high-specificity log
parsing.

Yet, we still required monitoring
capabilities for the system’s hardware, Docker
containers, and high level metrics. New Relic
was selected as tool of choice for this problem
due to its existing integrations with AWS ECS.
By injecting the New Relic agent into each and
every service, it was possible to forward AWS
CloudWatch metrics directly into New Relic
dashboards. From that point, it was a process of
isolating the specific AWS service and
integrating the service into the dashboard’s
display.

As a result, a New Relic dashboard was
created with seven tabs, each targeting a specific
component of the service. Three primary tabs
will be discussed: the ELB tab, the ASG tab, and
the SSE-API tab.

The ELB tab was used to assess the flow of
traffic between the various instances within
each ASG. It reported on the number and health
of the down-stream docker containers as well as
the quantity and distribution of error codes. This
provided a view of the health of the ELB and
redundant monitoring of the underlying Docker
containers. With this method, even if the ASGs
failed to report their health, it would still be
possible to assess the health of the ASGs via the
ELB.

The ASG tab provided a high-level
overview of each service. It reports the CPU,
Memory, Disk, and Networking usages for each
of the Docker containers within the ASG. In the

case of aggressive demand, it is possible for the
ASG to fall behind in allocating further
instances. In this case, load could be shed
(requests are automatically denied) if they time
out. Therefore, analyzing the ASG dashboard
became crucial to assessing the effectiveness of
ASG auto-scaling policies.

Finally, each of the four copies of the BNS
service featured its own tab of the SSE-API tab.
Within each tab were throughput and latency
graphs for each microservice component. These
tabs are essential in garnering an at-a-glance
assessment of each system’s health.

3.3 API Re-Design

3.3.1 API Requirements

The BNS-API made use of SSE streams
between the server and client. Yet, due to the
CPU load requisite for supporting such streams,
the existing implementation of the service
demanded high resources for relatively poor
throughput. The source of this issue was isolated
to the programming paradigm used in
implementing this service.

The existing implementation used a
synchronous threading model. Each SSE stream
was processed synchronously forcing each
thread to occupy CPU resources for the duration
of the SSE connection, bottlenecking the
maximum number of SSE. To rectify the issue,
an asynchronous programming paradigm was
explored. In asynchronous programming, the
CPU is free to dedicate its resources elsewhere,
only handling the thread when action is
required. With this approach, it was possible to
increase the concurrent throughput of the
service while utilizing the same quantity of
resources.

3.3.2 API Solutions

To redesign the SSE API, the Spring
WebFlux library was used. This library
implemented asynchronous approaches to SSE,
message queues, and more. On the backend, this
enabled the async monitoring of a Kafka
message queue for user approval. On the front
end, this implementation enabled the immediate

return of a SSE stream promise to the user.
When a Kafka message for approval,
disapproval, or otherwise was detected, the
message was passed to the user via the SSE
stream in a asynchronous fashion. This way,
waiting for the Kafka message nor maintaining
the SSE stream occupied CPU resources (except
for keep-alive actions for the SSE stream). To
test the efficiency of the new SSE API, an
Apache JMeter test bench was configured. Due
to time constraints, all testing was performed
locally as opposed to deploying and testing the
API when hosted within AWS.

4. RESULTS

The monitoring solutions proved highly
effective in improving incident resolution
latency for the BNS service. This was due to the
improved workflow for detecting errors within
the service. Prior to the end of the internship,
there was an issue with the BNS service. Before
Capital One’s internal teams could detect the
issue, a New Relic alert pinged the entire team
about excessive response latency for the “GET
Device” API endpoint. By the time the Capital
One incident response team contacted the BNS
team, the BNS team had already begun to triage
the situation. A fix for the service was delivered
by the end of the day and according to the
manager, the incident was resolved 2-3 times
quicker solely due to the newly developed
Splunk and New Relic dashboards.

On the SSE API side, it was found that the
new implementation of the SSE API could
support over eight times as many concurrent
users as the prior implementation. Upon
presentation of these results to upper
management, a request for an abstraction of this
service to be used on other teams was
communicated. Approximately seven months
after the end of the internship, the new SSE API
service was deployed into production.

5. CONCLUSION

This project demonstrates the
transformative power of utilizing advanced
monitoring tools and asynchronous

programming paradigms in improving the
reliability and scalability of a critical two-factor
authentication service. By integrating Splunk
and New Relic for enhanced system monitoring
and utilizing Java's Spring WebFlux for
redesigning a bottleneck component, we
achieved improvements in crash detection and
diagnosis time as well as in the system's
capacity to handle concurrent users. The
monitoring tools facilitated a much quicker
response to incidents, thereby enhancing the
service's reliability, while the prototype using
Spring WebFlux enabled a more than sevenfold
increase in supported concurrent users. These
outcomes not only improved the immediate
performance and reliability of the Browser
Notification Service but also laid the
groundwork for future enhancements. Looking
ahead, focusing on the automation of alerts
based on monitoring data and the potential
wide-scale implementation of the asynchronous
service component could offer further
improvements in service reliability and
efficiency. This project exemplifies how
technological innovation, when strategically
applied, can significantly enhance system
performance and user experience in a high-
stakes banking environment.

6. FUTURE WORK

Future work includes monitoring the New
Relic log management feature for further
maturity to port over Splunk functionality into
New Relic. Further, the existing automated New
Relic monitors need to be fine-tuned to reduce
the number of false positives, potentially with
AnomalyBERT or a similar ML model.

7. ACKNOWLEDGMENTS
I would like to thank my team, Tarundeep
Sodhi, Daniel Kreuger, and Matt Daytner. As
well as my co-interns Connor Walters and
Patrick Lin.

REFERENCES
Ghosh, S., Shetty, M., Bansal, C., & Nath, S.

(2022, November 1). How to Fight Production

Incidents? An Empirical Study on a Large-
scale Cloud Service. SoCC 2022.
https://www.microsoft.com/en-
us/research/publication/how-to-fight-
production-incidents-an-empirical-study-on-
a-large-scale-cloud-service/

Huang, P., Guo, C., Lorch, J. R., & Zhou, L.

(n.d.). Capturing and Enhancing In Situ
System Observability for Failure Detection.

Leners, J. B., Wu, H., Hung, W.-L., Aguilera,

M. K., & Walfish, M. (2011). Detecting
failures in distributed systems with the Falcon
spy network. Proceedings of the Twenty-Third
ACM Symposium on Operating Systems
Principles, 279–294.
https://doi.org/10.1145/2043556.2043583

Filipchenko, F. (2023). An Intro to Spring

WebFlux Threading Model. Retrieved
February 17, 2024, from
https://hackernoon.com/an-intro-to-spring-
webflux-threading-model

