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Abstract

The effort to provide accurate location based services has increased with the use

of mobile devices. But there is no standard method for indoor localization and

navigation services. Previous solutions in the literature are hard to implement

in real life situations because they need modifications on the receiver. In this

study, a visible light based indoor positioning–tracking method suitable for non–

diffusing and diffusing lamp models is proposed. The received power from the light

emitting diodes (LEDs) is used as sensor input, and then an extended Kalman

filter is used for state estimation. We propose a method based on a map of power

intensities in the room that is robust to low SNR, nonuniform power distributions,

and intermittent measurements, and it does not require any modifications on the

receiver side or on existing lighting structures. The results show that tracking

errors around the resolution of the power map can be achieved using a non–

diffusing lamp model.



Contents

Acknowledgments 1

Abstract 2

1 Introduction 1

1.1 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Visible Light Communication Channel and Transmitter Models 7

2.1 Indoor Visible Light Communication Channel Model . . . . . . . . 7

2.2 Transmitter Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 The 25-LED Bulb Model . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Diffusing Lamp Model . . . . . . . . . . . . . . . . . . . . . 13

2.3 Indoor Channel and Power Distribution Maps . . . . . . . . . . . . 14

3 Indoor Localization Methods Using Visible Light Communica-

tions 20

3.1 Advantages of Visible Light Positioning (VLP) . . . . . . . . . . . . 21

3.2 Measurement Types in Visible Light Positioning . . . . . . . . . . . 21

i



3.3 Positioning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Lateration and Angulation . . . . . . . . . . . . . . . . . . . 22

3.3.2 Scene Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.3 Proximity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Positioning Method 30

4.1 The Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1 Derivation of Kalman Filter . . . . . . . . . . . . . . . . . . 32

4.1.2 The Extended Kalman Filter (EKF) . . . . . . . . . . . . . 34

4.2 Dynamic Model for Mobile User Motion . . . . . . . . . . . . . . . 36

4.3 Signal-to-Noise Ratio Analysis and Uncertainties in the System . . 37

4.3.1 Shot Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.2 Thermal Noise . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.3 Uncertainties in the System . . . . . . . . . . . . . . . . . . 39

4.3.4 Signal to Noise Ratio . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Average Floor Map . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Implementation of Method . . . . . . . . . . . . . . . . . . . . . . . 42

4.5.1 Kalman Filter Tuning . . . . . . . . . . . . . . . . . . . . . 44

4.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5.3 Comparison of Trilateration and EKF Approaches . . . . . . 60

5 Conclusion and Future Work 64

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

ii



List of Figures

1.1 Electromagnetic spectrum. . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Optical intensity modulation, direct detection communications chan-

nel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Simplified model of communications channel. . . . . . . . . . . . . . 8

2.3 Line-of-sight and diffusion components of rays of light. . . . . . . . 9

2.4 Geometry of LOS propagation model. . . . . . . . . . . . . . . . . . 10

2.5 Illumination pattern of a conventional LED lamp. . . . . . . . . . . 12

2.6 Illumination pattern of a 25-LED lamp. . . . . . . . . . . . . . . . . 13

2.7 Illumination pattern of a diffusing lamp. . . . . . . . . . . . . . . . 14

2.8 Power distribution on the floor for 25-LED, LED semiangle 10˝. . . 15

2.9 Power distribution on the floor for the deterministic 25-LED, LED

semiangle 30˝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.10 Power distribution on the floor for the deterministic 25-LED, LED

semiangle 60˝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.11 Power distribution on the floor for the diffusing lamp model, LED

semiangle 10˝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.12 Power distribution on the floor for the diffusing lamp model, LED

semiangle 30˝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

iii



2.13 Power distribution on the floor for the diffusing lamp model, LED

semiangle 60˝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.14 Normalized impulse response of the deterministic 25-LED lamp

with semiangle 60˝ at the room center. . . . . . . . . . . . . . . . . 18

2.15 Normalized impulse response of the diffusing lamp model with semi-

angle 60˝ at the room center. . . . . . . . . . . . . . . . . . . . . . 19

3.1 Circular lateration. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Hyperbolic lateration. . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Angulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Scene analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Closest Light Source or Proximity. . . . . . . . . . . . . . . . . . . . 28

4.1 Kalman Filter Recurison. . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 The power distribution matrix. . . . . . . . . . . . . . . . . . . . . 36

4.3 Signal-to-noise ratio, (a) 15 dB, (b) 25 dB, (c) 45 dB , (d) 65 dB. . 41

4.4 Positioning method process by EKF in Visible Light Positioning

(VLP) system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Mobile user true trajectory, (a) Straight motion, (b) S–shaped motion. 43

4.6 Root mean square of positioning error for the deterministic 25-LED

lamp with LED semiangle 60˝ using EKF. . . . . . . . . . . . . . . 44

4.7 Tracking results of a linear trajectory when 25-LED lamp is used

for SNR, (a) 15 dB, (b) 25 dB, (c) 45 dB, (d) 65 dB. . . . . . . . . 46

4.8 Tracking results of a S–shaped trajectory when the deterministic

25-LED lamp is used for SNR, (a) 15 dB, (b) 25 dB, (c) 45 dB, (d)

65 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

iv



4.9 Tracking results of a linear trajectory when the diffusing lamp

model is used for SNR, (a) 15 dB, (b) 25 dB, (c) 45 dB, (d) 65

dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.10 Tracking results of a S–shape trajectory when the diffusing lamp

model is used for SNR, (a) 15 dB, (b) 25 dB, (c) 45 dB, (d) 65 dB. 49

4.11 RMSE of position over time for SNR=15 dB (a) S–shaped motion,

(b) Straight motion. . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.12 RMSE of position over time for SNR=25 dB (a) S–shaped motion,

(b) Straight motion. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.13 RMSE of position over time for SNR=45 dB (a) S–shaped motion,

(b) Straight motion. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.14 RMSE of position over time for SNR=65 dB (a) S–shaped motion,

(b) Straight motion. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.15 Instantaneous error of position over time for SNR=15 dB (a) S–

Shaped motion, (b) Straight motion for one realization. . . . . . . . 53

4.16 Instantaneous error of position over time for SNR 25=dB, (a) S–

shaped motion, (b) Straight motion. . . . . . . . . . . . . . . . . . . 54

4.17 Instantaneous error of position over time for SNR=45 dB, (a) S–

shaped motion, (b) Straight motion. . . . . . . . . . . . . . . . . . . 54

4.18 Instantaneous error of position over time for SNR=65 dB, (a) S–

shaped motion, (b) Straight motion. . . . . . . . . . . . . . . . . . . 55

v



4.19 Velocity RMSE results of a S–shaped trajectory when the diffusing

lamp model is used for SNR, (a) 15 dB, (b) 25 dB, (c) 45 dB, (d)

65 dB in x–direction and (a) 15 dB, (b) 25 dB, (c) 45 dB, (d) 65

dB in y–direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.20 Velocity RMSE results of a S–shaped trajectory when the deter-

ministic lamp model is used for SNR, (a) 15 dB, (b) 25 dB, (c) 45

dB, (d) 65 dB in x–direction and (a) 15 dB, (b) 25 dB, (c) 45 dB,

(d) 65 dB in y–direction. . . . . . . . . . . . . . . . . . . . . . . . . 57

4.21 Velocity RMSE results of a straight trajectory when the diffusing

lamp model is used for SNR, (a) 15 dB, (b) 25 dB, (c) 45 dB , (d)

65 dB in x–direction and (a) 15 dB, (b) 25 dB, (c) 45 dB, (d) 65

dB in y–direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.22 Velocity RMSE results of a straight trajectory when the determin-

istic lamp model is used for SNR, (a) 15 dB, (b) 25 dB, (c) 45 dB,

(d) 65 dB in x–direction and (a) 15 dB, (b) 25 dB, (c) 45 dB (d)

65 dB in y–direction. . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.23 Comparison of trilateration and EKF when grid resolution is 1 cm. 60

4.24 Comparison of trilateration and EKF when grid resolution is 1 dm. 61

4.25 Comparison of diffuser and extreme diffuser. . . . . . . . . . . . . . 62

4.26 The RMSE of velocity when grid resolution is 1 cm. . . . . . . . . . 63

4.27 The RMSE of velocity when grid resolution is 1 dm. . . . . . . . . . 63

vi



List of Tables

3.1 Comparison of previously published work . . . . . . . . . . . . . . . 29

4.1 Shot and Thermal Noise Parameters . . . . . . . . . . . . . . . . . 40

4.2 95 % Confidence interval results for 100 Monte Carlo simulations . . 50

vii



List of Acronyms

AOA Angle of Arrival

cm Centimeter

dB Decibel

DC Direct Current

dm Decimeter

EKF Extended Kalman Filter

FET Field–Effect Transistor

FOV Field of View

GPS Global Positioning System

IMU Inertial Measurement Units

KF Kalman Filter

LBS Location Based Services

LED Light Emitting Diode

LOS Line of Sight

MAP Maximum A Posteriori

NN Nearest Neighbor

PD Photodetector

RSS Received Signal Strength

RSSI Received Signal Strength Indicator

viii



SNR Signal to Noise Ratio

TOA Time of Arrival

RF–ID Radio Frequency Identification

RMSE Root Mean Square Error

UKF Unscented Kalman Filter

UWB Ultra Wide Band

VLC Visible Light Communications

VLP Visible Light Positioning

Wi–Fi Wireless Fidelity

σ Standard Deviation

ix



Chapter 1

Introduction

Global positioning system (GPS) signals are subject to attenuation and losses in

indoor environments since the signals cannot penetrate through buildings, walls or

other obstacles. Indoor environment areas are smaller than outdoors, which makes

the accuracy of GPS another concern; we need a higher accuracy for indoor areas.

In this thesis we propose a highly accurate wireless user tracking and positioning

system using visible light communications (VLC) based on an extended Kalman

filter.

There is an increasing demand for location based services (LBS). The need for

high accuracy indoor localization techniques is becoming essential to the increased

connectivity capacity of mobile devices. Museums, warehouses, hospitals or malls

are the potential areas where we need reliable positioning-navigation services.

There are many solutions proposed to solve the indoor positioning-navigation.

In 1960, R. E. Kalman published his work which describes the solution to the

discrete data linear filtering [1]. Since then the Kalman filter has probably become

the most widely used method for autonomous, assisted navigation and sensor
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Figure 1.1: Electromagnetic spectrum [2].

fusion. The state estimation problem can be solved by using his mathematical

framework in a recursive way. The Kalman filter minimizes the mean of the

squared error.

Visible light is defined as the light that can be perceived by the human eye,

which has a wavelength from 380 nm to 780 nm. The visible light is a small

interval of the light spectrum. Figure 1.1 shows the visible light spectrum. It is

in turn a small percent of the electromagnetic spectrum.

The emerging technology of visible light communication has led to develop-

ments in communications. It is a novel system that uses light emitting diodes

(LEDs) for illumination and communication.

1.1 Research Motivation

In the last decade, research on indoor localization has become very popular. There

are many different methods proposed to offer a solution for indoor localization.

Especially, smart devices are in the center of the indoor positioning problem [3].
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The proposed solutions are based on technologies such as wireless fidelity (Wi–

Fi), ultra–wideband (UWB), radio-frequency identification (RF–ID), Bluetooth,

inertial measurement units (IMUs) and visible light.

In the Wi–Fi approach, the received signal strength indicator (RSSI) is sent to

a central processor. The processor tries to match the RSSI with the signal strength

indicator map (fingerprints). This method may result in inaccurate estimations

due to multipath errors in the measurements. The Wi–Fi approach is low cost,

but it requires a database and it has low accuracy [4].

UWB indoor localization estimates the range or angle from multiple fixed

points to a mobile target. Multilateration or multiangulation is used to process

the measurements and find the position of the mobile user [5]. Time of arrival

(TOA) and angle of arrival (AOA) measurements are not robust to noise. During

sensor fusion, the noise in the measurements may lead to inaccurate estimates.

RF-ID based methods can be categorized into two: tag–oriented and reader–

oriented. The tag–oriented approach tries to find the RF–ID tags. The reader–

oriented approach finds the position of the reader. The advantages of RF-ID are

simplicity, low-cost, portability, and high penetration capability [6]. The disad-

vantages are multipath effects, unstable RSSI and inaccuracy caused by one tag

per location.

The Bluetooth approach compares the Bluetooth device signal strength to

other Bluetooth devices. The measurements are sent to a central database to

achieve indoor localization [7].

Inertial measurement units process the information from sensors like gyroscope,

accelerometer. The drawback of this approach that is the initial position of the
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mobile user has to be known [4].

Visible light offers another solution for location based services (LBS). The effort

to combine VLC and LBS has become popular since the emergence of visible light

communications. Visible light communication based location services (VLC–LBS)

can use all of the measurement types used above or can combine them.

The biggest advantage of using VLC instead of other approaches is electromag-

netic interference. RF–ID, Wi–Fi and UWB create electromagnetic (EM) inter-

ference. EM interference is a limiting factor in areas like hospitals where sensitive

devices are used. VLC is safer for human health. The competition for bandwidth

between communication and positioning purposes causes a problem. Visible light

can be used for both communication [8] and positioning [9]. Already installed il-

lumination sources can be used without causing any electromagnetic interference,

without side effects on communication services and installation costs.

In this thesis, a combination of Kalman filtering and VLC is proposed to solve

the indoor positioning-navigation problem. The Kalman filter is used to fuse the

measurements and estimate the state of the mobile user. Since the VLC power is

a nonlinear function of the position, the extended Kalman filter (EKF) is chosen.

We propose a solution to the indoor positioning and navigation problem using

VLC and EKF.

1.2 Literature Review

In literature, there are three well known approaches to the indoor positioning prob-

lem: angulation - lateration, scene analysis and proximity [10]. The most com-

monly used measurement types in these approaches are received signal strength
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indicator (RSSI), time of arrival (TOA) and angle of arrival (AOA) measurements

[9].

In [11] the RSSI is used to calculate the distance between reference and user.

Later a circular lateration is used to get the position of the mobile user. In [12]

angulation is used. Sensors that can sense signal strength, azimuth and elevation

are combined to compensate the angulation errors. In [13], multiple and unco-

ordinated light sources are used for angulation. User involvement is investigated

when there are ambiguities caused by uncoordinated light sources.

Scene analysis approach is used in [14], where the known reference points are

matched with RSSI. The positioning problem is solved by matching RSSI to the

closest reference point. The drawback of this approach is pre–calibration. If the

power distribution in the room changes, it will take time to calculate and calibrate

the new distribution.

The proximity approach requires a dense grid of illumination and probably is

the most expensive approach. This approach is used in [15].

In [16], unique frequency addresses are assigned to each of the LEDs on the

lamps, and the phase difference measurements, a variation of time difference of

arrival (TDOA) are used. However this study requires two sensors with known

distances between them.

In [17], a Kalman filter is used for state estimation using VLC. The perfor-

mance of extended and unscented Kalman filters is compared for handover between

luminaries. In this study, it is assumed that the geometry between the transmitter

and the receiver is known, so that they can linearize the channel model.

Angle of arrival (AOA) relies on the precise design of the lenses. According
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to [9], this method is the most promising one. Tilted multiple photodetectors

and a single transmitter are used in [18]. The study is based on gain difference, a

function of RSSI and AOA. A real time study, which combines AOA measurements

and image processing is [19]. In [20], AOA and RSSI are combined again.

Although AOA measurements are thought to be the future standard in [9], we

can see that RSSI measurements are involved or combined in almost every study

in the literature.

1.3 Thesis Outline

In this thesis, we first introduce the VLC channel model, and then we introduce a

diffusing lamp model with random angles to imitate the behavior of a chandelier.

Then we discuss the existing indoor visible light positioning approaches and com-

mon measurement types. We propose a new approach with the extended Kalman

filter for indoor positioning. Finally, we compare the performance of EKF and the

performance of trilateration with different lamp models.

The rest of the thesis is organized as follows: in Chapter 2, we analyze the

channel and transmitter characteristics and evaluate the performance using simu-

lations. Chapter 3 is about the indoor localization methods using VLC. A detailed

review of different approaches is presented. Chapter 4 introduces the Kalman filter

approach and we give information about the noise sources in the system, and how

we obtain the floor power distribution when we use a diffusing lamp. In Chapter 4,

we also show the simulation performance results of our approach and compare the

results with the trilateration approach. Chapter 5 summarizes the entire thesis

and discusses future work and applications.



Chapter 2

Visible Light Communication

Channel and Transmitter Models

Visible light communication is the backbone of the indoor positioning algorithm.

In this chapter, the relationship between transmitter and receiver, and the channel

gain is explained. One goal of this study is to show the effect of the transmitter

on positioning performance. The channel model and transmitter models give us

the floor power distributions and the impulse response.

2.1 Indoor Visible Light Communication Chan-

nel Model

This section discusses indoor VLC channel model and the derivation of the channel

model with a 25-LED lamp model. Understanding the VLC channel will lead

us to design better indoor positioning systems. In this study, white LEDs are

transmitters (sources). The photodetector on a mobile platform is the receiver.
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Since the visible light is incoherent, intensity modulation and direct detection are

employed in VLC systems. The signal on receiver side can be depicted as shown

in Figure 2.1.

Figure 2.1: Optical intensity modulation, direct detection communications channel [2].

Figure 2.1 represents an optical intensity modulation and direct detection channel.

The input signal is modulated with signal mptq. Signal xptq has varying optical

intensities as a result of modulation. The carrier signal xptq is detected by a

photodetector. The optical output signal is yptq.

Figure 2.2: Simplified model of communications channel.

Figure 2.2 shows a simplified communication channel model. yptq is the received

signal. xptq is the transmitted optical intensity, R is the detector responsivity and

nptq is the additive noise. hptq is the indoor channel impulse response. hptq can

be modeled from ray tracing. Mathematically, the system can be written as

yptq “ xptq˙Rhptq ` nptq, (2.1)
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where,

hptq “
N
ÿ

n“1

anδpt´ tnq, (2.2)

an and tn are the path gains and transmission delay times, respectively of the

various rays. They depend on the path of light rays between transmission and

receiver. N is the number of multipath components.

There are two kinds of light rays in VLC channel. The line-of-sight (LOS) ray

is the main component, and diffused ray that are weaker. In this study we only

consider the LOS; otherwise no tracking can be achieved. The multipath effect in

indoor VLC is a result of these rays. The indoor VLC channel transfer function

is given by [2]

F rhptqs “ Hpfq “ HLOSpfq `Hdiff pfq. (2.3)

HLOS is the line of sight component. Hdiff is the diffused component. The con-

tribution of diffused rays of light is less than line-of-sight component.

Figure 2.3: Line-of-sight and diffusion components of rays of light [21].

We assume that HLOS is independent of the frequency flat channel, it depends

only on the distance between transmitter and receiver.
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The rays of light travel through the air, according to the Lambertian law.

Lambert’s law states that the radiant intensity depends on angle φ between the

direction of the incident light and the surface normal. Lambertian radiant intensity

is given by [22]

m “
ln2

lnpcosΦ1{2q
, (2.4)

R0pφq “

$

’

’

’

&

’

’

’

%

m`1
2π
cospφq, for φ P r´π{2, π{2s,

0, for |φ| ě π{2,

(2.5)

m is the Lambertian mode of the light source, R0pφq is the Lambertian radiant

intensity, φ is the radiation angle relative the transmitter boresight. Φ1{2 is the

semi angle of the LED. When φ “ 0, the radiated power is at a maximum. Aeff

is the detector effective area:

Aeff pψq “

$

’

’

’

&

’

’

’

%

Arcosψ, if ´π{2 ě ψ ě π{2,

0, if |ψ| ą π{2,

(2.6)

The detector effective area is a function of the incident angle, ψ. The detector has

a field of view (FOV) angle, Ψc. Beyond Ψc, the detector does not detect light.

Figure 2.4: Geometry of LOS propagation model [2]



11

The line-of-sight link gain is given by

HLOS “

$

’

’

’

&

’

’

’

%

Ar
m`1
2πd2

cosmpφqcospψq, if ´Ψc ě ψ ě Ψc,

0, elsewhere,

(2.7)

The received power on the receiver pPrq is a function of the line–of–sight link,

pHLOSq and the transmitted power from the luminary pPtq and is given by

Pr “ HLOS ˆ Pt. (2.8)

For completeness, the impulse response of the LOS component and the reflected

components are given by

hLOSptq “ Ar
m` 1

2πd2
cosmpφqcospψqδ

ˆ

t´
d

c

˙

, (2.9)

h
pkq
diff ptq “ ArL0L1L2 . . . Lkγδ

ˆ

t´
d0 ` d1 ` . . . dk

c

˙

, (2.10)

L0 “
pm` 1qcosmpφ0qcospψ0q

2πd2
0

, (2.11)

L1 “
cosmpφ1qcospψ1q

πd2
1

, (2.12)

... (2.13)

Lk “
cosmpφkqcospψkq

πd2
k

, (2.14)

L0, L1, . . . , Lk are the link attenuations, γ is the reflection coefficient. d0 is the

distance between the transmitter and receiver for LOS. dk is the distance of the

kth bounce link. φ and ψ are the irradiation and incidence angles, respectively,

and c is the speed of light [23]. In this study, we only consider the LOS.

2.2 Transmitter Models

The transmitter model plays an important role in VLC. The transmitter is the

LED light bulb in this study. The received power depends on the transmitter as
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much as the channel. One previous transmitter model, the deterministic 25-LED

lamp proposed in [21] and a modification of the deterministic 25-LED lamp are

used. The purpose of the modification on the 25-LED lamp is to imitate the

behavior of a diffusing lamp. Diffusing lamps like chandeliers are used in large

areas, especially museums and conference halls.

In a conventional LED bulb, the LEDs are facing downwards. As a result, a

small area, where the bulb points, is illuminated. A large array of LEDs may be

needed to cover larger areas.

Figure 2.5: Illumination pattern of a conventional LED lamp [21].

2.2.1 The 25-LED Bulb Model

The 25-LED lamp model has three layers of LEDs. This lamp model is deter-

ministic. The layers consist of 1, 8, and 16 LEDs, respectively. Each LED has

individual inclination angles. The purpose of this layout is to illuminate more area

[21]. The DC channel gain for a LOS link between ith LED and the kth receiver

can be rewritten as

Hik “ Ar
cos

@

~rik, ~nk
D

2πd2
ik

pm` 1qcosm
@

~rik,~li
D

, (2.15)
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Figure 2.6: Illumination pattern of a 25-LED lamp [21].

In p2.15q, dik is the distance between the ith LED and kth receiver. ~rik is the unit

vector from tth LED to kth receiver. ~nk is the kth receiver’s normal unit vector.

~li is the radiation unit direction vector for ith LED.
@

~rik, ~nk
D

is the angle between

the direction of ith LED and receiver k.

2.2.2 Diffusing Lamp Model

The diffusing model is based on the 25-LED lamp model. Each LED has a random

inclination angle. These angles imitate the diffuser. This model assumes the

random refraction of light as it travels through a diffuser like the crystal prisms

of a chandelier. We try to model the propagation of light after the diffuser. As

a result of random angles, the power distribution on the floor is significantly less

uniform than without a diffuser. Figure 2.7 shows the random irradiance angles

of rays of light. With this modification, the channel gain formula p2.15q becomes

Hik “ Ar
cos

@

~rik, ~nk
D

2πd2
ik

pm` 1qcosmp
@

~rik,~li
D

` θq, (2.16)

The random inclination angle is denoted as θ. θ is a Gaussian random variable

with zero mean and variance σ.
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Figure 2.7: Illumination pattern of a diffusing lamp.

2.3 Indoor Channel and Power Distribution Maps

The performance of the deterministic 25-LED lamp and the random 25-LED lamp

model is shown for different LED semiangles. The standard illumination level at

a height of 0.8 m is 220 lux [24].

For positioning purposes, we would like to illuminate as much area as possible.

If the illumination is concentrated under the light bulbs, this set up will decrease

the positioning performance, as the signal–to–noise ratio will be low in the non-

illuminated areas and corners. Figures 2.8–2-10 show the relationship between

the LED semiangle and illuminated area coverage. The simulations parameters

for the room conditions is given in Table 4.1, we see that the larger semiangle

yields better illumination levels on the room floor. The highest illumination level

is achieved when the LED semiangle is 10˝. The light is concentrated under the

light bulbs in this scenario. For communication privacy purposes, this model is

acceptable, but as you move away from the source, the positioning and communi-

cation performance decreases. When the LED semiangle is 30˝, the illumination

coverage will be increased, but it will still not cover the room. Therefore we choose
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a 60˝ semiangle.
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Figure 2.8: Power distribution on the floor for 25-LED. LED semiangle 10˝.
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angle 30˝.
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Figure 2.10: Power distribution on the floor for the deterministic 25-LED. LED semi-

angle 60˝.

Figures 2.11–2.13 show the illumination distribution when the diffusing lamp

model, for example, a chandelier, using a standard deviation pσq of 30˝. The

random inclination angles of LEDs result in a unique distribution. If the LED

semiangles are 10˝ and 30˝ respectively, the same illumination performance as the

25-LED lamp is observed. Although the illumination is high in the middle, the cor-

ners are not well illuminated. For the 60˝ semiangle, the difference of illumination

contours is not as high as other semiangle values.
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Figure 2.11: Power distribution on the floor for the diffusing lamp model. LED

semiangle 10˝.
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Figure 2.12: Power distribution on the floor for the diffusing lamp model. LED

semiangle 30˝.
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Figure 2.14: Normalized impulse response of the deterministic 25-LED lamp semiangle

60˝ at the room center.
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Figure 2.15: Normalized impulse response of the diffusing lamp model semiangle 60˝

at the room center.

For the 25-LED lamp the impulse response with a semiangle 60˝ for a receiver in

the center of the room is shown in Figure 2.14. The size of the room is 5ˆ5ˆ3 m3.

The impulse response of a diffusing lamp with the same LED semiangle is shown

in Figure 2.15. We observe that the dispersion is more than the deterministic 25-

LED lamp model. This results in a stronger multipath effect than the deterministic

25-LED lamp case.



Chapter 3

Indoor Localization Methods

Using Visible Light

Communications

Positioning or localization is the process of finding the most accurate location of

an object. The increasing computational capacity of mobile devices such as cell

phones and tablets has created an opportunity for indoor positioning methods. If

we enter a building and look up, we will see the lighting fixtures. The advances in

VLC make it one of the best candidates for solving location based problems. The

installation cost is lower than Wi–Fi or RF–ID methods.

The target market for visible light positioning (VLP) consists of areas where

a large number of people and items are available. The aim is to find the accurate

location of the user and try to navigate the user to the target, just like a Global

Positioning System (GPS). Large warehouses, museums, shopping malls, hospi-

tals, hotels and conference halls are areas where people need location knowledge.
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According to [25], the market for location based services (LBS) has tripled since

2012. In this chapter, the advantages of VLP, positioning approaches for VLP and

challenges will be discussed.

3.1 Advantages of Visible Light Positioning (VLP)

GPS is the best solution for outdoor positioning for now, but the radio waves of

GPS are subject to multipath effects because radio waves reflect from humans

or other kind of obstacles. The accuracy of GPS is also another concern, for an

indoor area an inaccuracy of a couple of meters is big. But indoor VLP signals do

not suffer any power loss, unless there is an obstacle blocking the LOS.

Bandwidth is also another concern for communication purposes. Visible light

users do not compete for bandwidth like in Wi–Fi. The light waves cannot pen-

etrate through solid materials generally, which makes VLC a reliable and secure

network medium. So there will be no interference with neighboring rooms. Since

there is no interference and there are less multipath effects, VLP systems give

more accurate results than other methods.

3.2 Measurement Types in Visible Light Posi-

tioning

In this section, we will briefly talk about measurement types used in VLP for a

broader understanding of the topic. The advantages and disadvantages of the type

of measurement will also be discussed.

The most used measurement type is the received signal strength (RSS). The
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received power on the receiver is measured. RSS knowledge may help us to calcu-

late the distance between the transmitter and the receiver. RSS may also be used

to map the target area, for example a room floor. This method is also known as

fingerprinting [26]. The RSS may be used in a nearest neighbor (NN) algorithm

to locate the object. Common assumptions for this kind of measurement are that

the transmitted optical power is known, and that the transmitter and receiver

relationships are known [9].

Time of arrival (TOA) is the measurement type used in GPS but it is hard to

measure for a VLP system. The synchronization must be perfect between trans-

mitters. Time difference of arrival (TDOA) is a modified method that eliminates

the requirement for synchronization [27]. However, the indoor environments are

small and the speed of light is huge. TDOA requires very precise equipment for

accurate positioning. Low signal-to-noise ratio may lead to big errors.

Angle of arrival (AOA) is meaningful if only LOS is unblocked and clear.

The lenses used in mobile devices are precise and accurate, which reduces any

uncertainty.

3.3 Positioning Algorithms

3.3.1 Lateration and Angulation

Triangulation method takes advantage of geometrical equations and least square

method to solve the positioning problem. Almost all types of measurements are

used. Angulation is the method when AOA measurements are used. In lateration,

RSS, TOA and TDOA are used [28]. At least three intersecting spheres are needed
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Figure 3.1: Circular lateration [10].

for positioning.

RSS based lateration methods assume that the geometric relationship between

the transmitter and receiver is known. The reference points are LED luminaries

with known positions. The channel model is used to calculate the distance between

the source and the user. The distance calculation for RSS is given in the following

equation [11]

Pr “ PtAr
m` 1

2πd2
cosmpφqcospψq, (3.1)

dxyz “

c

PtAr
m` 1

2πPr
cosmpφqcospψq, (3.2)

dxy “
b

d2
xyz ´ d

2
z, (3.3)

cospφq “ cospψq. (3.4)

Pr is the RSS on the receiver, Pt is the transmitted power from the source. cospφq

is the angle of irradiance and cospψq is the incidence angle. dxyz is the three

dimensional distance between source and receiver. dxy is the two dimensional

distance.
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Given the distance from light sources, the trilateration problem is solved as a least

squares problem. The equation of a circle is the starting point for trilateration.

Figure 3.1 depicts how circles are used for lateration. The solution of lateration is

given as

pXi ´ xq
2
` pYi ´ yq

2
“ R2

i , (3.5)

R2
i ´R

2
1 “ px´Xiq

2
` py ´ Yiq

2
´ px´X1q

2
´ py ´ Y1q

2, (3.6)

“ X2
i ` Y

2
i ´X

2
1 ´ Y

2
1 ´ 2xpXi ´X1q ´ 2ypYi ´ Y1q. (3.7)

(Xi, Yi) is the position of the ith transmitter in a 2D plane. (x, y) are the position

of the receiver. If Ri is the distance between transmitter and receiver, a circle

with radius of Ri is a possible solution where (x, y) can be. i “ 1, 2, . . . , n and n

is the number of transmitters. Now the least squares solution of the above is as

follows:

AX “ B, (3.8)

X “ rx ysT , (3.9)

A “

»

—

—

—

—

—

—

–

X2 ´X1 Y2 ´ Y1

...
...

Xn ´X1 Yn ´ Y1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (3.10)

B “
1

2

»

—

—

—

—

—

—

–

pR2
1 ´R

2
2q ` pX

2
2 `X

2
2 q ´ pX

2
1 ` Y

2
1 q

...

pR2
1 ´R

2
nq ` pX

2
n `X

2
nq ´ pX

2
1 ` Y

2
1 q

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (3.11)

X “ pATAq´1ATB. (3.12)

Hyperbolic lateration is an extension of lateration. TDOA measurements are

used in this approach. At least two light sources are needed. We may begin the
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Figure 3.2: Hyperbolic lateration [10].

solution from a hyperbola equation

dij “ Ri ´Rj (3.13)

“
a

pXi ´ xq2 ` pYi ´ yq2 ´
b

pXj ´ xq2 ` pYj ´ yq2, (3.14)

pR1`Di1q
2
“ R2

i , (3.15)

X2
i ` Y

2
i ´X

2
1 ´ Y

2
1 ´ 2xpXi ´X1q ´ 2ypYi ´ Y1q ´Di1 ´ 2Di1R1 “ 0, (3.16)

AX “ B, (3.17)

X “ rx y R1sT , (3.18)

A “

»

—

—

—

—

—

—

–

X2 ´X1 Y2 ´ Y1 D21

...
...

Xn ´X1 Yn ´ Y 1 Dn1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (3.19)

B “
1

2

»

—

—

—

—

—

—

–

pX2
2 ` Y

2
2 q ´ pX

2
1 ` Y

2
1 q ´D

2
21

...

pX2
n ` Y

2
n q ´ pX

2
1 ` Y

2
1 q ´D

2
n1q

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (3.20)

X “ pATAq´1ATB. (3.21)
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Figure 3.3: Angulation[10].

In the angulation method, intersection of lines is used to find the receiver’s posi-

tion. High quality imaging sensors make it easier to detect the angular information

compared to methods that use antennas [9]. The least squares approach is used

to solve the angulation equations.

tanαi “
y ´ Yi
x´Xi

, (3.22)

px´Xiq sinαi “ py ´ Yiq cosαi, (3.23)

AX “ B, (3.24)

X “ rx ysT , (3.25)

A “

»

—

—

—

—

—

—

–

´ sinα1 cosα1

...

´ sinαn cosαn

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (3.26)

B “

»

—

—

—

—

—

—

–

Y1 cosα1 ´X1 sinα1

...

Yn cosαn ´Xn sinαn

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (3.27)

X “ pATAq´1ATB. (3.28)
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3.3.2 Scene Analysis

In this approach, the previously defined points are used as reference (anchor)

points. The RSS is not the only measurement type used, but generally RSS is

easier to match with anchor points. The biggest advantage is that the computation

time required for the matching process is less than angulation and lateration. It

is a simple method, which does not require much computation. However, scene

analysis requires the entire RSS information and information of anchor points. If

there is a change in the scene, then the whole scene needs to be analyzed and

anchors need to be recalculated. A preparation phase is needed to use the system

in an effective and accurate way.

Figure 3.4: Scene analysis [10].

Figure 3.4 shows how the scene analysis approach works. The fingerprints are

collected in the calibration phase. Then some of these fingerprints are used as

reference points. The measurement is matched with the closest reference point.
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3.3.3 Proximity

Proximity or closeness is an approach that requires light sources with known ID

and position. The received signal is matched with the closest source. The accuracy

of this approach depends on the number of light sources, on a dense grid of sources.

If the density of the grid is high, then interference of signals may occur, which

is prevented by either using a small LED semiangle or averaging of the received

signals.

Figure 3.5: Proximity [10].

Figure 3.5 depicts the proximity approach; the received information from the

transmitter is matched with the closest light source.

Table 3.1 is a comparison of the previous work published in the VLC positioning

context. The measurement types used, the advantages and disadvantages are

listed. Table 3.1 shows that the most of the methods use lateration–angulation

approaches.
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Table 3.1: Comparison of previously published work

Algorithm Measurement Reference Accuracy Advantages Disadvantages

Trilateration RSS [10] 6 cm Easy to implement
Susceptible to noise,

Geometry between source and receiver must be known

Triangulation RSS- AOA [11] 14 cm
Two step approach to increase

accuracy

Complicated system architechture,

Geometry

Triangulation RSS [12] 0.4 m Can work with a single LED Inaccuary

Proximity RSS [13] 4.38 cm Easy to implement Requires a dense grid of illumination

Hybrid AOA [14] - Hybrid system Complexity

Trilateration RSS [15] 0.5 mm Can be used for 3-D positioning
Susceptible to noise,

First order Lambertian emission assumed

Scene Analysis RSS [16] 4 cm Easy to implement Calibration needed

Trilateration TDOA [17] 1 cm High accuracy Susceptible to noise

State Estimation RSS [18] 5-10 cm Easy to implement Initial conditions must be well defined

Hybrid AOA - RSS [19] 6 cm 3D positioning Computationally expensive

Triangulation AOA [20] 10 cm - Complexity

Triangulation TDOA [29] 1.8 mm Early TDOA application Complexity

Triangulation AOA [30] 4.6 cm Early AOA application Complexity



Chapter 4

Positioning Method

In this chapter, the proposed positioning method is explained. A thorough expla-

nation of building blocks for our method is discussed. First, the Kalman filter,

which is the heart of the positioning method, is described. Then, the dynamic

model for mobile user motion is explained. The noise and uncertainty sources in

the VLC system and their effect on the system are examined. Finally, possible

contributions of this study are discussed.

4.1 The Kalman Filter

Kalman filter is a powerful mathematical tool for stochastic estimation of noisy

measurements. It is a recursive solution for the discrete-linear time data filtering

problem [31]. The filter has two steps: predict and correct. The process evolves

according to a linear stochastic difference equation, and measurements are given
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as

xk “ Axk´1 `Buk `wk´1, (4.1)

zk “ Hxk ` vk, (4.2)

where x P Rn denotes the state of the process, and z P Rm is the observation

of the state. A is an n ˆ n matrix that drives the state from time k ´ 1 to k.

B is n ˆ l is the control input matrix that relates to control input u P Rl. H

is m ˆ n measurement matrix. wk´1 and vk are the random noise for process

and measurement, respectively. For optimality to hold, they must be normally

distributed and independent of each other.

ppwk´1q „ Np0, Qk´1q, (4.3)

ppvkq „ Np0, Rkq. (4.4)

Qk´1 “ Erwk´1w
T
k´1s is the process noise covariance matrix, and Rk “ ErvkvTk s is

the measurement noise covariance matrix.

The mean square value of the estimation error is minimized in Kalman filtering.

The objective function to be minimized is Epxk ´ x̂kq
2, where x̂k is the estimate

of the state. This is equal to minimizing the sum of diagonal elements of the error

covariance matrix of the estimate,

Pk|k “ Erpxk ´ x̂k|kqpxk ´ x̂k|kq
T
s. (4.5)

In this study, x and z denotes states and measurements vectors, respectively.

For one time step k, the states xk are the position and velocity of the mobile user

that is according to a piecewise constant velocity model and the measurement zk

is the RSS that depends on the user position and the angles between the source
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and receiver. Since the measurement function is nonlinear, it is defined by (4.6)

instead of (4.2)

zk “ hkpxkq ` vk (4.6)

When Gaussianity conditions are violated, the KF still solve for the least–squares

sequential solution.

4.1.1 Derivation of Kalman Filter

The Kalman filter recursion can be described in two steps. The initial conditions

of states x0 and covariance P0 are chosen according to previously known properties

of the states.

We let x̂k|k´1 represent the a priori state estimate at step k given the infor-

mation about the process prior to step k, and x̂k represents the a posteriori state

estimate at step k given measurement zk. The related errors and their covariances

are defined as

ek|k´1 “ xk ´ x̂k|k´1, (4.7)

ek “ xk ´ x̂k, (4.8)

Pk|k´1 “ Erek|k´1e
T
k|k´1s, (4.9)

Pk “ ErekeTk s. (4.10)

The objective of Kalman filter is to find the maximum a posteriori (MAP) esti-

mate of the state as a linear combination of an a priori estimate and a weighted

difference between an actual measurement and a measurement prediction. The

correction function is given as

x̂k “ x̂k|k´1 `Kkpzk ´Hx̂k|k´1q. (4.11)



33

K is the n ˆ m the Kalman gain matrix that minimizes the a posteriori error

covariance. Furthermore, if the measurement error covariance R approaches zero,

the gain depends on the residual; if the a priori estimate error covariance Pk|k´1

approaches zero, the gain goes to zero:

Kk “ Pk|k´1H
T
pHPk|k´1H

T
`Rq´1 (4.12)

The most important points are;

• As RÑ 0, the measurement zk is trusted more than the predicted measure-

ment Hx̂k|k´1,

• As P Ñ 0, Hx̂k|k´1 is trusted more than zk [32].

pzk´Hx̂k|k´1q is the measurement innovation which shows the difference between

the predicted measurement and the actual measurement. In this study, A is the

Time Update (Prediction)
Project the state ahead

x̂−
k = Ax̂k−1

Project the error covariance
ahead

P−
k = APk−1A

T +Q

Measurement Update (Correction)
Compute the Kalman Gain

Kk = P−
k HT (HP−

KHT +R)−1

Update estimate with measurement

x̂k = x̂−
k +Kk(zk −Hx̂−

k )

Update the error covariance

Pk = (I −KkH)P−
k

Initial Estimates for x̂k−1and Pk−1

Figure 4.1: Kalman filter recursion.

kinematic motion model of the user, x is the state of the user, position and velocity
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in x and y directions. zk is the RSS measurements from each lamp. In this study,

there are four lamps in the room. Each lamp is coded with orthogonal codes. So

the receiver can distinguish and measure the optical power intensity from all of

the lamps. The measurement vector is denoted by,

zk “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

RSSLamp1

RSSLamp2

RSSLamp3

RSSLamp4

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

` vk (4.13)

4.1.2 The Extended Kalman Filter (EKF)

The process or the measurements are not linear in many applications. The ex-

tended Kalman filter is an approach where nonlinearities are linearized at the

current estimate. Given below are a nonlinear stochastic difference equation and

a set of nonlinear measurements, respectively

xk “ fpxk´1,wk´1q (4.14)

zk “ hpxkq ` vk (4.15)

The variables denote the same as in Section 4.1. The linearization process is

carried out by calculating the Jacobian matrices of A, H, respectively.

Ari,js “
δfris
δxrjs

px̂k´1q, (4.16)

Hri,js “
δhris
δxrjs

px̃k´1q. (4.17)
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x̃ is an approximation of state without w in (4.12).

x̂´k “ fpx̂k´1q (4.18)

P´
k “ AkPk´1A

T
k `WkQk´1W

T
k (4.19)

Kk “ P´k H
T
k pHkP

´
kH

T
K `VkRkV

T
k q
´1 (4.20)

x̂k “ x̂´k `Kkpzk ´ hpx̂
´
k qq (4.21)

Pk “ pI ´KkHkqP
´
k (4.22)

The EKF recursions are given in (4.18)–(4.22). The EKF has some serious limi-

tations in application, since it depends on the linearization of nonlinear functions.

Calculations of the Jacobians are not easy and prone to errors. Furthermore,

the Jacobian matrices must exist and the error propagation must be able to be

represented by a linear or a quadratic function.

The VLC channel equation given in (2.7) is a nonlinear function. As a result,

the measurements are nonlinear. EKF relies on the linearization of nonlinear

functions. The derivative of the channel equation is hard to evaluate without

angle information. So H is difficult to define.

In our problem, we calculate the derivatives using the finite difference method

for linearization. This method is a generalized and flexible approach. The algo-

rithm consists of an online phase and an offline phase. In the offline phase the

expected power distribution in the room is calculated. The grid in Figure 4.2

represents the expected power distribution matrix P “ rPi,js, where i “ 1, . . . , N

and j “ 1, . . . , J are the dimensions of the room. The dimension of the room is

divided by N or J , that sets the grid resolution in centimeters or decimeters. We

calculate the predicted state x̂, and it is represented by ‹. We take the RSS in
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this grid as the predicted power P̂px̂q. Finally, we calculate the difference between

the upper Ppi,j´1q, down Ppi,j`1q, left Ppi´1,jq and Ppi`1,jq grids.

Figure 4.2: The power distribution matrix.

Hpxq «

„

Pi`1,j´Pi´1,j

∆x

Pi1,j`1´Pi,j´1

∆x



. (4.23)

where i and j is the indices of the power of the predicted state vector, and ∆xj is

the granularity of the power map. In (4.21), we replace hpx̂´k q with the predicted

RSS which depends on the predicted position Hx´k .

4.2 Dynamic Model for Mobile User Motion

The success of the Kalman filter depends on the choice of the dynamic model. The

previous studies on human motion modeling showed that one of the best models

is the piecewise constant white acceleration model [33].

The mobile user is assumed to be moving in a Cartesian coordinate system.

The state is xk “ rxk yk 9xk 9yks
T . The transition matrix and the covariance
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of process noise of a piecewise constant acceleration motion is given below, where

w is zero mean normal distributed noise with covariance E “ rwk´1w
T
k´1s and v

is the spectral density of the noise [32],

xk “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

xk

yk

9xk

9yk

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

xk´1

yk´1

9xk´1

9yk´1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

`wk´1, (4.24)

Ervk´1v
T
k´1s “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1
3
∆t3 0 1

2
∆t2 0

0 1
3
∆t3 0 1

2
∆t2

1
2
∆t2 0 ∆t 0

0 1
2
∆t2 0 ∆t

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

σ2
v (4.25)

4.3 Signal-to-Noise Ratio Analysis and Uncer-

tainties in the System

Signal-to-noise ratio (SNR) defines the quality of a sensor system. There are two

main factors defining SNR on the receiver side, shot noise and thermal noise.

4.3.1 Shot Noise

Shot noise was first investigated by Schottky. It is caused by the random motions

of electrons. When a photon falls on a photodiode, the generated current can be

expressed as

Iptq “ Ip ` isptq, (4.26)

Ip “ RPr. (4.27)
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where Ip is the average current, R is the responsivity of the photodetector and

Pr is the received power. isptq is the random current fluctuations. The spectral

density of shot noise is constant and Sspfq “ qIp. The shot noise variance is [34]

σ2
s “ Rpi2sptqq “

ż 8

´8

qIpdf “ 2qIp∆f. (4.28)

The dark current Id is also a contributing factor in the shot noise. If we add dark

current Id and rewrite the shot noise variance,

σ2
shot “ 2qpIp ` Idq∆f “ 2qRPinB ` 2qIbgI2B, (4.29)

q is the electronic charge, B is the modulation bandwidth, Ibg is the background

current, I2 the noise bandwidth factor. Pin is given as

Pin “
n
ÿ

i“1

Hip0qPi, (4.30)

n is the number LEDs in the room, Hip0q is the LOS channel gain and Pi is the

instantaneous emitted power from ith LED.

4.3.2 Thermal Noise

The random motion of electrons in a conductor generates a current. It is in-

dependent of voltage. It depends on the absolute temperature [34]. Rewriting

(4.25)

Iptq “ Ip ` isptq ` iT ptq, (4.31)

iT ptq is the thermal noise and its variance is given as [8]

σ2
thermal “

8πkTK
G0

ηAI2B
2
`

16π2kTKΓ

gm
η2I3B

3 (4.32)



39

k is Boltzmann’s constant, TK is the temperature in Kelvin, G0 is the open loop

voltage gain, η is the capacitance of photodetector, Γ is the FET channel noise

factor, gm is the FET transconductance and I3 “ 0.0868.

4.3.3 Uncertainties in the System

Shot and thermal noises are effectively on the receiver side. However, in a real

system, there are other uncertainties that degrade the SNR. In this study, these

uncertainties are addressed as additional measurement noise. These may be caused

by

• Blocking of LOS

• Shadowing effects

• Random changes on the tilt angle of the mobile device

• The lay-out of the room

• Changes in the average power distribution map.

4.3.4 Signal to Noise Ratio

Signal to noise ratio is calculated when shot, thermal and uncertainty noises are

present in the system. The SNR is given as

SNR “
R2P 2

r

σ2
shot ` σ

2
thermal ` σ

2
uncertainty

(4.33)

Figure 4.3 shows the SNR levels for the deterministic 25-LED lamp positioned at

p3.75, 3.75, 3q m.
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Table 4.1: Shot and Thermal Noise Parameters

Parameter Value

Electron Charge, q 1.602 ˚ 10´19C

PD Responsivity, R 0.54 A{W

Total Received Power, Prectot
řN
i“1HLOSi

Pi

Noise Bandwidth, B 640 KHz

Background Current, Ibg
740µA indirect sunlight

5100µA direct sunlight

Noise Bandwidth Factor, I2 0.562

Boltzmann’s Constant, k 1.3806488 ˚ 10´23

Absolute Temperature, Tk 295 K

I3 0.0868

FET channel noise factor, Γ 1.5

Capacitance of PD, µ 112 pF {cm2

Open loop gain, G0 10

Fet transconductance, gm 30 mS

Photo detector area, A 1 cm2

Room dimension pxˆ y ˆ zq 5 m ˆ 5 m ˆ 3 m

Transmitted power max. 25 ˚ 20 mW {bulb

Codes used by LED bulbs

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Field of view Ψc 70˝

Optical filter gain 1.0

Refractive index of opt. concentrator 1.5
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Figure 4.3: Signal-to-noise ratio, (a) 15 dB, (b) 25 dB, (c) 45 dB , (d) 65 dB.

4.4 Average Floor Map

The diffusing lamp model is assumed to be slowly time varying like the move-

ments of the crystal prisms on a chandelier. The movement of the crystals causes

changes in the power distribution map in the room slowly. We find the average

power distribution map by averaging pre–defined time intervals. The room floor

is divided into equal size sections using a rectangular grid. The power received

in the each grid is computed as the average expected power over the area of the

rectangular portion of the floor. The best update frequency depends on the air
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flow or the interference of light with the moving people in the room. Later on,

this averaged power distribution is provided to the mobile user.

4.5 Implementation of Method

The extended Kalman filter is implemented on an empty room with dimension

of 5 ˆ 5 ˆ 3 m3. There are four lamps on the ceiling. Each lamp has 25 LEDs.

The performance evaluation criterion is the root mean squared error (RMSE). The

uncertainties mentioned in Section 4.3.3, may change the SNR, and the thermal

and the shot noises are not enough to model the noise in the system.

The room is divided into equal size grids. The receiver area is assumed as one

grid position. There are two grid resolutions tested in this study. Grid areas are 1

cm2 or 1 dm2. The states x and y are the Cartesian positions and 9x and 9y are the

velocities. We assume that the mobile user speed is 10 cm{sec in the x direction

and 30 cm{sec in the y direction.

Figure 4.4: Positioning method process by EKF in Visible Light Positioning (VLP)

system.

Figure 4.4 shows the positioning method, the power distribution on the room floor
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is collected in the offline phase. The online phase measurements and the power

distribution map are combined in the online phase.

Angulation and lateration methods are commonly used. Almost every study

cited in the literature review section uses trilateration for positioning. However,

angulation and lateration is susceptible to the noise, and the positioning error

gets bigger as the uncertainty in the system increases. We also compare the

performance of the trilateration method with the Kalman method.

In the trilateration method, it is assumed that the LEDs are facing downwards

and the geometry between the lamp and the receiver is known. This is not true

when a diffuser is used. We cannot model the geometry of refraction of light

through a diffuser. It is a random process. That is why we argue that one cannot

use the trilateration method for a diffusing lamp and obtain accurate positioning.
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Figure 4.5: Mobile user true trajectory, (a) Straight motion, (b) S–shaped motion.

The performance of the proposed method is evaluated for two kinds of trajectories:

a non-linear trajectory which we call ‘S–shaped’ and a linear trajectory called

‘Straight’. Figure 4.5 shows the true trajectories.
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4.5.1 Kalman Filter Tuning

The Kalman filter’s performance depends on an accurate description of the pro-

cess and its noise. In general, before implementation, an optimal process noise

covariance R can be found. The process noise covariance Q is harder to obtain,

because we cannot observe the process that is estimated. The simple model with

a measurement noise covariance R gives accurate results as the measurements are

reliable.

Figure 4.6: Root mean square of positioning error for the deterministic 25-LED lamp

with LED semiangle 60˝ using EKF.

Figure 4.6 shows the effect of the choice of process noise on the RMSE. We sim-

ulated the model and ran the EKF for different SNR levels. For different SNR

levels the optimum value of the process noise we should use is the minimum point

of the curves.
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4.5.2 Results

The tracking results for different SNR levels are shown in this section. The initial

position is chosen with reference to a known point like a door, window or light

source. The initial position error in the error covariance matrix is chosen as 30

centimeters away from this point and the initial velocity error may not exceed the

velocity of the mobile user. The initial state and initial error covariance are given

as:

x0 “ r30 30 10 30sT , (4.34)

P0 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

50 0 0 0

0 50 0 0

0 0 10 0

0 0 0 30

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(4.35)
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Figure 4.7: Tracking results of a linear trajectory when the deterministic 25-LED lamp

is used for SNR, (a) 15 dB, (b) 25 dB, (c) 45 dB, (d) 65 dB.

Figure 4.7 shows tracking results for a mobile user following a straight trajectory

when the deterministic 25-LED lamp is used. The process noise and transmitted

power from LEDs are kept the same for each scenario, but the measurement noise

is changed. In the worst case scenario the SNR is 15 dB. Figure 4.7–(a) shows

the tracking result for the worst case, where the RMSE is about 10 cm. As SNR

increases, the filter trusts the measurement, and the RMSE decreases. Figure

4.7–(d) shows the best case scenario; The SNR is 65 dB and the RMSE is 0.6 cm.
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Figure 4.8: Tracking results of a S–shaped trajectory when the deterministic 25-LED

lamp is used for SNR, (a) 15 dB, (b) 25 dB, (c) 45 dB, (d) 65 dB.

Figure 4.8 shows the tracking results for the S-shaped motion when the determin-

istic 25-LED lamp is used. The process noise and transmitted power from the

LEDs are the same as for Figure 4.7. The results show the estimated trajectory

for different noise levels. The worst case scenario RMSE is 10 cm and the best

case scenario RMSE is 1 cm.
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Figure 4.9: Tracking results of a linear trajectory when the diffusing lamp model is

used for SNR, (a) 15 dB, (b) 25 dB, (c) 45 dB, (d) 65 dB.

The results for a diffusing lamp model are shown in Figure 4.9. The process noise

and transmitted power from the LEDs are the same. The measurement noise is

changed for each scenario. In the Figure 4.9–(a), the worst case scenario is shown,

the RMSE in this case is 28 cm. The best case scenario shown in Figure 4.9–(d),

the RMSE is 10 cm.
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Figure 4.10: Tracking results of a S–shape trajectory when the diffusing lamp model

is used for SNR, (a) 15 dB, (b) 25 dB, (c) 45 dB, (d) 65 dB.

The diffusing lamp model is used for the tracking result in Figure 4.10. The same

conditions are present as the previous tracking results. The worst case scenario

RMSE is 39 cm and the best case scenario RMSE is 11 cm.

The results from these experiments are summarized in Table 4.2. Although

the results for a diffusing lamp model is worse than the deterministic lamp, the

results are acceptable, in sense that in this study we assume that one human step

is 30 cm.
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Table 4.2: 95 % Confidence interval results for 100 Monte Carlo simulations

25-LED lamp S–shaped motion 25-LED lamp linear motion Diffusing lamp S–shaped motion Diffusing lamp linear motion

SNR (dB) RMSE (cm) SNR (dB) RMSE (cm) SNR (dB) RMSE (cm) SNR (dB) RMSE (cm)

15 9.8788 15 9.6664 15 38.8225 15 27.2620

25 4.3112 25 3.8284 25 32.9171 25 23.5954

45 1.2101 45 0.8942 45 23.9651 45 22.9732

65 0.7872 65 0.6323 65 10.4804 65 10.1293
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Figure 4.11: RMSE of position over time for SNR=15 dB (a) S–shaped motion, (b)

Straight motion.

Figure 4.11–(a) shows the RMSE positioning error over time for S–shaped trajec-

tory. Figure 4.11–(b) shows the RMSE positioning error for the straight trajectory.

The results show that the positioning error is higher for the same noise and target

motion when the diffusing lamp model is used. The error gets higher between

fifth and eighth seconds and twelfth to fifteenth seconds. These are the time in-

tervals where the mobile user starts the turning motion. Figures 4.12–4.14 show

the positioning error for the S–shaped trajectory on subfigure (a) and the linear
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trajectory in the subfigure (b). The same conclusions can be made for different

SNR.

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

Time (seconds)

R
M

S
E

 (
cm

)

 

Diffusing     
25−Led

0 2 4 6 8 10 12 14 16 18
0

20

40

60

Time (seconds)

R
M

S
E

 (
cm

)

 

Diffusing     
25−Led 

a)

b)

Figure 4.12: RMSE of position over time for SNR=25 dB (a) S–shaped motion, (b)

Straight motion.
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Figure 4.13: RMSE of position over time for SNR=45 dB (a) S–shaped motion, (b)

Straight motion.
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Figure 4.14: RMSE of position over time for SNR=65 dB (a) S–shaped motion, (b)

Straight motion.

Figures 4.15–4.18 show the instantaneous position error of the deterministic
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and the diffusing lamp models for the motion models. The results show that the

tracking performance of the deterministic 25–LED lamp is better than the random

25–LED lamp. This results from the fact that the finite difference between two

RSS measurements for the random lamp is not as small as the deterministic lamp.

Figures 4.19–4.22 show the RMSE for velocity in x and y directions for the

deterministic and the diffusing lamp models. The results show that as the SNR

increases the tracking error decreases.
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Figure 4.15: Instantaneous error of position over time for SNR=15 dB (a) S–shaped

motion, (b) Straight motion.
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Figure 4.16: Instantaneous error of position over time for SNR=25 dB, (a) S–shaped

motion, (b) Straight motion.
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Figure 4.17: Instantaneous error over of position time for SNR=45 dB, (a) S–shaped

motion, (b) Straight motion.
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Figure 4.18: Instantaneous error over of position time for SNR=65 dB, (a) S–shaped

motion, (b) Straight motion.
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Figure 4.19: Velocity RMSE results of a S–shaped trajectory when the diffusing lamp

model is used for SNR, (a) 15 dB, (b) 25 dB, (c) 45 dB, (d) 65 dB in x–direction and

(a) 15 dB, (b) 25 dB, (c) 45 dB, (d) 65 dB in y–direction.
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Figure 4.20: Velocity RMSE results of a S–shaped trajectory when the deterministic

lamp model is used for SNR, (a) 15 dB, (b) 25 dB, (c) 45 dB, (d) 65 dB in x–direction

and (a) 15 dB, (b) 25 dB, (c) 45 dB, (d) 65 dB in y–direction.
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Figure 4.21: Velocity RMSE results of a straight trajectory when the diffusing lamp

model is used for SNR, (a) 15 dB, (b) 25 dB, (c) 45 dB, (d) 65 dB in x–direction and

(a) 15 dB, (b) 25 dB, (c) 45 dB, (d) 65 dB in y–direction.
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Figure 4.22: Velocity RMSE results of a straight trajectory when the deterministic

lamp model is used for SNR, (a) 15 dB, (b) 25 dB, (c) 45 dB, (d) 65 dB in x–direction

and (a) 15 dB, (b) 25 dB, (c) 45 dB, (d) 65 dB in y–direction.
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4.5.3 Comparison of Trilateration and EKF Approaches

The performance comparison of trilateration and EKF approaches are presented in

this section. Figure 4.23 gives the performance of trilateration and EKF methods.

The room is divided into equal sized grids of 1 cm2. The 25-LED lamp model

has the lowest RMSE. The diffuser model is second compared to the trilateration

method. The performance of trilateration depends on the channel propagation

loss as discussed in Section 3.3.1. If we introduce noise to the channel then the

RMSE increases for trilateration. The trilateration models are accurate when we

take into account the thermal and shot noise. However, as discussed before this

is not applicable to real life situations. The dynamics of the environment change

almost every second if we think of a museum or a hotel lobby.
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Figure 4.23: Comparison of trilateration and EKF when grid resolution is 1 cm.
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Figure 4.24: Comparison of trilateration and EKF when grid resolution is 1 dm.

The grid resolution is 1 dm in the simulations for Figure 4.24. The RMSE of the

25-LED lamp model and chandelier model is close to each other. This is a result of

the quantization error. The grid size is ten times larger than the results in Figure

4.23. The accuracy of the positioning decreases. The trilateration approach gives

better results after a certain SNR level.
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Figure 4.25: Comparison of diffuser and extreme diffuser.

In Figure 4.25, we compare an extreme diffuser scenario to regular diffuser sce-

nario. Extreme diffuser means that there are tiny prisms that diffuse the light; an

example of this can be the lamps that are used in the offices. The result shows

that if we increase the diffusion, the tracking error will decrease.

Figures 4.26 and 4.27 show the comparison of RMSE for velocity for different

SNR when the grid resolutions are 1 cm and 1 dm. From Figure 4.26, it can be

seen that the lowest RMSE is achieved when the normal (deterministic) lamp is

used. Figure 4.27 shows the RMSE of the velocity gets closer between the diffusing

and the deterministic lamp when the grid resolution is increased.
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Figure 4.26: The RMSE of velocity when grid resolution is 1 cm.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

High-speed indoor optical communication using LEDs is becoming more popular

in the recent years. They have advantages like low power consumption, safety and

they reduce the competition for bandwidth. Another contribution of VLC is in

the field of indoor positioning. The summary of our research is as follows.

• We propose a new lamp model which imitates a chandelier. We modify

previously proposed 25-LED lamp [21]. We compare the performance of two

lamps for positioning purposes.

• Signal strength based methods store the RSS in the whole room as finger-

prints, then matching is done between the RSS on the receiver and fin-

gerprints. We use an EKF for processing RSS and fingerprints instead of

matching.

• Previous studies generally covered the noise only caused by the receiver, in

our work we not only take receiver noise but also system noise into account.

64



65

• In our simulations, we showed that the EKF approach performs better than

the trilateration approach. The results show that even in random illumina-

tion maps due to the use of a diffuser, the EKF position errors are around

40 cm.

• We explained the accurate positioning is not possible with the trilateration

approach when a diffusing lamp is used.

5.2 Future Work

The extension of our research is possible for future work. We do not have an accu-

rate model for the noise in the system. A future investigation of the noise sources

in the room environment is possible. We also can investigate the performance of

other state estimation tools like unscented Kalman filter (UKF) and particle fil-

ter. An extension of this study may be with image processing; we will investigate

the possible solution to match between the power distribution map and captured

images with a camera placed at the transmitters. Another possible study is to

investigate the effects of multiple receivers.
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