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Abstract

We study an initial-boundary-value problem for a quasilinear thermoelastic plate of

Kirchhoff & Love-type with parabolic heat conduction due to Fourier, mechanically

simply supported and held at the reference temperature on the boundary. For this

problem, we show the short-time existence and uniqueness of classical solutions under

appropriate regularity and compatibility assumptions on the data. Further, we use

barrier techniques to prove the global existence and exponential stability of solutions

under a smallness condition on the initial data. It is the first result of this kind

established for a quasilinear non-parabolic thermoelastic Kirchhoff & Love plate in

multiple dimensions.
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Chapter 1

Introduction

1.1 Literature Review

Let Ω ⊂ Rd (d = 2 or 3) be a smooth bounded domain representing the mid-plane of

a thermoelastic plate. With w and θ denoting the vertical deflection and an appropri-

ately weighted thermal moment with respect to the plate thickness, both depending

on a scaled time variable t > 0 and the space variable (x1, x2) or (x1, x2, x3) ∈ Ω, the

nonlinear Kirchhoff & Love thermoelastic plate system reads as

wtt − γ4wtt +42w + α4θ + b4
(
(4w)3

)
= 0 in (0,∞)× Ω, (1.1a)

βθt − η4θ + σθ − α4wt = 0 in (0,∞)× Ω (1.1b)

along with the boundary conditions (hinged mechanical/Dirichlet thermal)

w = 4w = θ = 0 in (0,∞)× ∂Ω (1.1c)

and the initial conditions

w(0, ·) = w0, wt(0, ·) = w1, θ(0, ·) = θ0 in Ω. (1.1d)
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Here, α, β, γ, η, σ, a are positive constants. For thin plates, γ behaves like h3 as h→ 0

(cf. [13, Equation (2.16), p. 13]), where h stands for the uniform thickness of the

plate, and is, therefore, neglected in some literature. In Chapter 2, we present a

short physical deduction of Equations (1.1a)–(1.1d). In particular, the nonlinearity

in (1.1a) arises from a nonlinear material response law (2.4) and (2.11), which also

motives a treatment of the local well-posedness for a more general system in Chapter

3.

After the thermoelastic Kirchhoff-Love plate systems were introduced, there have

been many papers in the past three decades devoted to this field. In the 90’s, a lot

of work was done for the linear thermoelastic plate theory. For instance, Kim in

[11] studied the one-dimensional case with homogeneous Hinged/Dirichlet boundary

conditions and proved the exponential decay of the energy. Lasiecka and Triggiani,

through a series of papers, achieved the analyticity of the s.c. contraction semigroup

when γ = 0 under five different types of boundary conditions, including the challen-

ging Free B.C. [17, p. 202–203]. Furthermore, they proved the lack of analyticity in

certain cases when γ > 0, which gave the initial guidance to the work presented in

this thesis (see their book [18]).

Meanwhile, the nonlinear thermoelastic plate was also studied in various settings.

Lasiecka et al. [14] studied a quasilinear PDE system similar to (1.1a)–(1.1d) in a

smooth, bounded domain Ω of Rd with d ≤ 3 given by a Kirchhoff & Love plate with
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parabolic heat conduction

wtt +42w −4θ + b4
(
(4w)3

)
= 0 in (0, T )× Ω, (1.2a)

θt −4θ +4wt = 0 in (0, T )× Ω (1.2b)

together with boundary conditions (1.1c) and initial conditions (1.1d) for an arbitrary

T > 0. For the initial-boundary-value problem (1.2a)–(1.2b), (1.1c)–(1.1d), they

proved the global existence of weak solutions (w, θ) and their uniform decay in the

norm for {w,wt, θ} of

(
W 1,∞(0, T ;L2(Ω)

)
∩ L∞(0, T ;W 2,4(Ω)

))
× L∞

(
0, T ;W 1,2(Ω)

)
.

The existence proof was based on a Galerkin approximation and compactness theo-

rems, while the exponential stability was obtained with the aid of energy techniques.

In their monograph [3], Chueshov and Lasiecka give an extensive study on the von

Kármán plate system both in pure elastic and thermoelastic cases. With w : Ω→ R

denoting the vertical displacement and v : Ω→ R standing for the Airy stress function

of a plate with its mid-plane occupying in the reference configuration a domain Ω ⊂

R2, the pure elastic version of Kármán plate system reads as

utt − α4utt +42u− [u, v + F0] + Lu = p in (0,∞)× Ω, (1.3a)

42v + [u, u] = 0 in (0,∞)× Ω, (1.3b)

where [v, w] := vx1x1wx2x2 + vx2x2wx1x1 − 2vx1x2wx1x2 , L is a first-order differential

operator and F0, p : Ω → R are given “force” functions. Imposing standard initial
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conditions, under various sets of boundary conditions, Chueshov and Lasiecka proved

that Equations (1.3a)–(1.3b) possess a unique generalized, weak or strong solution

depending on the data regularity. The proof was based on a nonlinear Galerkin-

type approximation. Further, they studied the semiflow associated with the solution

to Equations (1.3a)–(1.3b), in particular, they analyzed its long-time behavior and

the existence of attracting sets. Various damping mechanisms, thermoelastic effects,

structurally coupled systems such as acoustic chambers or gas flow past a plate were

studied. An extremely detailed and comprehensive literature overview was also given.

Denk et al. [4] considered a linearization of (1.2a)–(1.2b), which corresponds to

letting b ≡ 0, in a bounded or exterior C4-domain of Rd for d ≥ 2 subject to the

initial conditions from Equation (1.1d) and the clamped boundary conditions

w = ∂νw = θ = 0 on (0, T )× ∂Ω, (1.4)

where ∂ν = (∇·)Tν and ν denotes the outer unit normal vector to Ω on ∂Ω. By proving

a resolvent estimate both in the whole space and in the half-space and employing

localization techniques, they showed that the C0-semigroup for (w,wt, θ) on the space

W 2,p
D (Ω)× Lp(Ω)× Lp(Ω) with W 2,p

D (Ω) = {u ∈ W 2,p(Ω) |u = ∂νu = 0 on ∂Ω}

is analytic. In case Ω is bounded, they also proved an exponential stability result for

the semigroup.

Lasiecka and Wilke [15] presented an Lp-space treatment of Equations (1.2a)–

(1.2b) (γ = 0), (1.1c)–(1.1d) in bounded C2-domains Ω of Rd. By proving the maxi-



6

mal Lp-regularity for the linearized problem, they adopted the classical approach to

prove the existence and uniqueness of strong solutions satisfying

(4w,wt, θ) ∈
(
Lpµ
(
0, T ;W 2,p(Ω)

)
∩W 1,p

µ

(
0, T ;Lp(Ω)

)
∩BUC

(
0, T ;W 2µ−2/p,p(Ω)

))3

for p > 1 + d
2
, where Lpµ(Ω) is the space of strongly measurable functions u for which

t 7→ t1−µu(t) lies in Lp(Ω) and W 1,p
µ (Ω) stands for the space of weakly differentiable

functions from Lpµ(Ω) whose first-order weak derivatives also lie in Lpµ(Ω). For T ≤ ∞,

they showed a global strong solvability result for sufficiently small initial data in the

interpolation space

(4w0, w1, θ0) ∈
((
Lp(Ω),W 2,p(Ω) ∩W 1,p

0 (Ω)
)
µ−1/p,p

)3

.

They pointed out that similar arguments can be used to obtain a short-time existence

for arbitrarily large initial data. Finally, they studied the first- and higher-order

differentiability as well as analyticity of solutions under appropriate assumptions on

the data.

Recently, Denk and Schnaubelt [5] considered a structurally damped elastic plate

equation

wtt +42w − ρ4wt = f in (0,∞)× Ω (1.5)

in a domain Ω ⊂ Rd, being either the whole space, a half-space or a bounded C4-

domain, subject to inhomogeneous Dirichlet-Neumann boundary conditions

w = g0, ∂νw = g1 on (0,∞)× Ω
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and the initial conditions

w(0, ·) = w0, wt(0, ·) = w1 in Ω,

with the data coming from appropriate Lp-Sobolev spaces for p ∈ (1,∞)\{3/2, 3}. By

showing the R-sectoriality of the operator driving the flow t 7→
(
w(t), wt(t)

)
both in

the whole space and the half-space scenarios, they proved the Lp-maximum regularity

for the generator on any finite time horizon T > 0. In case of bounded C4-domains,

a standard localization technique was adopted to deduce the maximum Lp-regularity

for any time horizon T ∈ (0,∞].

1.2 Main Results

In this thesis, I study the quasilinear PDE system associated with Equations (1.1a)–

(1.1d). In contrast to earlier works, to deal with a quasilinear system without maximal

Lp-regularity property, it is technically beneficial to look for classical rather than

weak or strong solutions. The necessity of studying smooth solutions results in a

much higher complexity of the existence and uniqueness proof as it has to be carried

out at a higher energy level, which, in turn, is based on a Kato-type approximation

procedure rather than a Galerkin scheme.

In this section, we state the main results on the well-posedness and long-time

behavior of Equations (1.1a)–(1.1d). While the local result assumes smoothness of

the boundary of the domain, regularity of the initial data and nonlinearities as well

as certain compatibility conditions, the global results rely additionally and critically



8

on some further smallness assumption on the initial data. Recall Ω ⊂ Rd (d = 2

or 3) is a bounded domain throughout this paper. In addition, as mentioned above,

even though the local well-posedness results below are according to Equations (1.1a)–

(1.1d), the proof is however done on a more general system (Equations (3.1a)–(3.1b)

in Chapter 3) for both mathematical and modeling reasons.

Definition 1.1. Let s ≥ 2. By a classical solution to Equations (1.1a)–(1.1d) on

[0, T ] at the energy level s, we understand a function pair (w, θ) : [0, T ]× Ω̄→ R×R

satisfying

w ∈
( s−1⋂
m=0

Cm
(
[0, T ], Hs+2−m(Ω) ∩H1

0 (Ω)
))
∩ Cs

(
[0, T ], H2(Ω) ∩H1

0 (Ω)
)
,

θ ∈
( s−2⋂
k=0

Ck
(
[0, T ], Hs+1−k(Ω) ∩H1

0 (Ω)
))
∩ Cs−1

(
[0, T ], H1

0 (Ω)
)

such that it satisfies pointwise Equations (1.1a)–(1.1d). Classical solutions on [0, T )

and [0,∞) are defined correspondingly.

Definition 1.2. Let wm, m ≥ 2, and θk, k ≥ 1, denote the “initial values” for

∂mt w and ∂kt θ formally and recursively computed in terms of w0, w1 and θ0 based on

Equations (3.5a)–(3.5d) (cf. [9, p. 96])

To proceed with our well-posedness result, we first perform a short calculation on the

nonlinear term in (1.1a) to achieve an equivalent equation

wtt − γ4wtt +
[
1 + 3b(4w)2

]
42w + α4θ + 6b(4w)|∇4w|2 = 0 in (0,∞) (1.6)

Now, we require the following assumptions.
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Assumption 1.3. Let s ≥ 3 be an integer and let ∂Ω ∈ Cs.

1. Let the initial data satisfy the regularity

w0,4w0 ∈ Hs(Ω) ∩H1
0 (Ω), w1,4w1 ∈ Hs−1(Ω) ∩H1

0 (Ω),

θ0 ∈ Hs+1(Ω) ∩H1
0 (Ω)

as well as compatibility conditions

wm,4wm ∈ Hs−m(Ω) ∩H1
0 (Ω) for m = 2, . . . , s− 1 and ws ∈ H2(Ω) ∩H1

0 (Ω),

θk ∈ Hs+1−k(Ω) ∩H1
0 (Ω) for k = 1, . . . , s− 2 and θs−1 ∈ H1

0 (Ω).

2. Further, assume the “initial ellipticity” condition for [1 + 3b(4w0)2]42w, i.e.,

min
x∈Ω̄

[
1 + 3b(4w0)2

]
> 0,

where 4w0 ∈ C0(Ω̄) by virtue of Sobolev’s imbedding theorem.

Now, we can formulate our local well-posedness result.

Theorem 1.4 (Local Well-Posedness). If Assumption 1.3 is satisfied for some s ≥ 3,

Equations (1.1a)–(1.1d) possess a unique classical solution (w, θ) at the energy level

s on a maximal interval [0, Tmax) 6= ∅ additionally satisfying

∂s−1
t θ ∈ L2

(
0, T ;H2(Ω) ∩H1

0 (Ω)
)

and ∂st θ ∈ L2
(
0, T ;L2(Ω)

)
along with

min
x∈Ω̄

[
1 + 3b(4w(t, x))2

]
> 0. for any t ∈ [0, Tmax).
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Unless Tmax =∞, we have min
x∈Ω̄

a
(
4w(t, x)

)
→ 0 as ↗ Tmax or/and

s∑
k=0

∥∥∂kt w(t, ·)
∥∥2

Hs+2−k(Ω)
+

s−2∑
k=0

∥∥∂kt θ(t, ·)∥∥2

Hs+1−k(Ω)
+
∥∥∂s−1

t θ(t, ·)
∥∥2

H1(Ω)
→∞

as t↗ Tmax.

Let ‖(w, θ)‖Zs×Ts ≡ ‖(∂
≤s
t w, ∂≤s−1

t θ)‖2
L2(Ω), with ∂≤kt = (1, ∂t, . . . , ∂

k
t ), denote the

standard norm associated with the solution space in Definition 1.1 (a rigorous defini-

tion is given in Equation (4.2)). We now present our global results.

Theorem 1.5 (Global Well-Posedness). Let Assumption 1.3 be satisfied for s = 3.

Then, there exists a positive number ε (defined in Theorem 4.5 of Chapter 4) such

that for any initial data (w0, w1, θ0) satisfying

‖(w0, w1, θ0)‖Zs×Ts ≡ ‖(w0, w1, . . . , ws, θ0, . . . , θs−1)‖2
L2(Ω) < ε, (1.7)

(which roughly means the smallness of ‖w0‖2
H5(Ω)+‖w1‖2

H4(Ω)+‖θ0‖2
H4(Ω) when s = 3),

the unique local solution of system from Theorem 1.4 exists globally, i.e., Tmax =∞.

Theorem 1.6 (Exponential Stability). When s = 3, under the conditions of Theorem

1.5 and assuming additionally

‖(w0, w1, θ0)‖Zs×Ts ≡ ‖(w0, w1, . . . , ws, θ0, . . . , θs−1)‖2
L2(Ω) < ε̃ (1.8)

for some small positive ε̃ (to be defined in Corollary 4.6 of Chapter 4), there exist

positive constants C and k such that

∥∥(∂≤st w, ∂≤s−1
t θ)(t, ·)

∥∥
Zs×Ts

≤ Ce−kt‖(w0, w1, θ0)‖Zs×Ts for any t ≥ 0.
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This thesis is structured as follows. After the short introduction in Chapter 1,

we present in Chapter 2 a brief physical deduction of the Kirchhoff & Love plate

from Equations (1.1a)–(1.1d). In Chapter 3, an existence and uniqueness result for

Equations (1.1a)–(1.1d) in the class of classical solutions is shown. The long-time

behavior of Equations (1.1a)–(1.1d) is studied in Chapter 4. Under a collection of

smallness assumptions on the initial data, the global existence and uniqueness of

solution is proved using energy estimates and the barrier method. Further, this

global solution is shown to decay at an exponential rate to the zero equilibrium state.

Finally, in the Appendix, we present a well-posedness theory along with higher energy

estimates for a linear wave equation with time- and space-dependent coefficients as

well as the homogeneous isotropic heat equation.
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Chapter 2

Model Description

Consider a prismatic solid plate of uniform thickness h > 0 and constant material

density ρ > 0 occupying in a reference configuration the domain Bh := Ω× (−h
2
, h

2
) of

R3, where Ω ⊂ R2 is bounded. The underlying material is assumed to be elastically

and thermally isotropic. Further, we restrict ourselves to the case of infinitesimal

thermoelasticity with both stresses/strains and temperature gradient/heat flux being

small. Additionally, we assume the strains linearly decompose into elastic and ther-

mal ones. Despite of these linearity assumptions, a nonlinear (hypo)elastic law will

be postulated allowing for materials with genuinely nonlinear response such as rub-

ber, liquid crystal elastomers, etc. Figure 2.1 below (adopted from [22, Chapter 1])

displays a prismatic plate together with its mid-plane in the reference configuration.

We start by interpreting the plate as a 3D body. Let U = (U1, U2, U3)T be the

displacement vector in Lagrangian coordinates, T stand for the absolute temperature

and q = (q1, q2, q3)T be the associated heat flux. Denote by T0 > 0 a reference

temperature for which the body occupies the reference configuration and is free of
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Br
Ω

h

x2

x1

x3

Figure 2.1: Prismatic plate

any stresses or strains. Further, let S denote the entropy and

σ = (σij)
j=1,2,3
i=1,2,3 and ε = 1

2

(
∇U + (∇U)T

)
(2.1)

stand for the first Piola & Kirchhoff stress tensor and the infinitesimal Cauchy strain

tensor. In contrast to the theory of Finite Elasticity, the latter relation in Equation

(2.1) ignores the so-called geometric nonlinearity. Parenthetically, replacing this li-

nearization with its original quadratic version [20, Equation (17a)] and following the

streamlines of [20] would lead to a fully nonlinear hypoelastic plate model. As the

geometric nonlinearity is topologically of lower order compared to the one originating

from the nonlinear elastic response in Equation (2.4), the former one was neglected

for the sake of simplicity.

We assume the total stress tensor decomposes into elastic and thermal stresses

according to

σ = σelast − σtherm. (2.2)

In the absence of external body forces and heat sources, the momentum and energy
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balance equations (cf. [1, p. 142] and [13, Chapter 1]) read then as

ρUtt + divσ = 0 in (0,∞)× Bh, (2.3a)

TSt + div q = 0 in (0,∞)× Bh. (2.3b)

Similar to Ilyushin [8, p. 42], we define the elastic strain intensity εint as a properly

scaled second invariant of the elastic strain deviator tensor by means of

εelast
int =

√
2

3

(
(tr εelast)2 − tr

(
(εelast)2

))
.

Similarly, we can define the elastic stress intensity via

σelast
int =

√
2

3

(
(trσelast)2 − tr

(
(σelast)2

))
.

Within the classical hypoelasticity, a relation between these two quantities needs to

be postulated. Here, we consider a general material law given by

σint = κ(εint), (2.4)

which generalizes power-law-type materials

σint = aεint − bεmint for a > 0, b ∈ R and m > 1 (2.5)

considered by Ambartsumian et al. [1, Equation (6)]. The response function κ(·)

is often referred to as a stress-strain curve and determined experimentally. Ignoring

for simplicity the existence of yield and fracture points, natural assumptions on κ(·)

are κ(s) ≥ 0 for s ≥ 0 and κ(s) = 0 if and only if s = 0. Obviously, if b > 0 –
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which is the case for copper (cf [1, p. 144]) – Ambartsumian et al.’s [1] power-law

response functions in Equation (2.5) do not satisfy these conditions since κ(s)→ −∞

as s→∞. Hence, they are only meaningful in a neighborhood of zero.

For the thermal stresses and strains, we select a linear material law

σtherm = E
1−2µ

εtherm, (2.6)

where E and µ play the role of Young’s modulus and Poisson’s ratio and can be

reconstructed from the Hooke’s law resulting from linearizing equation (2.4) around

zero.

With τ = T − T0 denoting the relative temperature, the thermal linearity and

isotropy assumptions imply

εtherm = ατI3×3, (2.7)

where α > 0 is the thermal expansion coefficient (cf. [13, p. 29]). According to

Nowacki [21, Chapter 1], a linear approximation for the entropy reads as

S = γ tr
(
εelast

)
+ ρc

T0
τ, (2.8)

where c > 0 is the heat capacity and γ = Eα
1−2µ

. Plugging Equations (2.2), (2.6), (2.7)

and (2.8) into Equations (2.3a)–(2.3b) and linearizing with respect to τ around zero,

we get

ρUtt + divσelastic + γ∇τ = 0 in (0,∞)× Bh, (2.9a)

ρcτt − λ04τ + γT0 tr
(
εelast
t

)
= 0 in (0,∞)× Bh. (2.9b)
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Together with Equation (2.4), Equations (2.9a)–(2.9b) constitute the PDE system

of 3D thermoelasticity. In the following, we exploit these equations to deduce our

thermoelastic plate model.

As it is typical for most plate theories, we postulate the hypothesis of undefor-

mable normals, i.e., the linear filaments being perpendicular to the mid-plane before

deformation should also remain linear after the deformation. Since we are interested

in obtaining a Kirchhoff & Love-type plate model, we additionally assume these de-

formed filaments remain perpendicular to the deformed mid-plane. The in-plane

displacements are assumed negligible. Mathematically, these structural assumptions

can be written as

U1(x1, x2, x3) = −x3wx1(x1, x2), U2(x1, x2, x3) = −x3wx2(x1, x2),

U3(x1, x2, x3) = w(x1, x2),

(2.10)

where w is referred to as the bending component or the vertical displacement. Thus,

the elastic behavior of our plate can fully be described merely by w. Figure 2.2 is

self-describing and illustrates these structural assumptions.

As for the thermal part of the system, a properly weighted momentum of the

relative temperature τ with respect to x3 given by

θ(x1, x2) =
12α

h3

∫ h/2

−h/2
x3τ(x1, x2, x3)dx3

will play a crucial role. Proceeding as Lagnese and Lions [13, pp. 29–31], Equation

(2.9b) can be reduced to

ρcθt − λ04θ + 12λ0

ρch2

(
hλ1

2
+ 1
)
θ + αγ

ρc
4wt = 0 in (0,∞)× Ω,
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Ω

x1

x2

x1

w(x1, x2)

cross-section x2 = 0

wx1

Figure 2.2: Mid-plane of a plate as well as plate cross-sections x2 = 0 before and after

the deformation

where λ1 ≥ 0 is the parameter from the Newton’s cooling law applied to the lower

and upper faces of the plate.

Returning to the elastic part and assuming for a moment the material response

κ(·) from Equation (2.4) is an analytic function possessing a Taylor expansion with

the vanishing constant term

κ(s) =
∞∑
n=1

ans
n for some an ∈ R,

we combine the approaches of Ambartsumian et al. [1] and Lagnese & Lions [13,

Chapter 1] to deduce

ρhwtt − ρh3

12
4wtt +4K(4w) +D 1+µ

2
4θ = 0 in (0,∞)× Ω,

where D = Eh3

12(1−µ2)
denotes the flexural rigidity and K(·) is obtained from κ(·) by
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means of

K(s) =
∞∑
n=1

2
(

2√
3

)n+1 hn+2

n+2
ans

n.

Obviously, K(·) is also analytic and its Taylor series has the same absolute conver-

gence region as κ(·). Taking into account

K(s) =
∞∑
n=1

2
(

2√
3

)n+1 hn+2

n+2
ans

n = s−2

∞∑
n=1

2
(

2√
3

)n+1 hn+2

n+2
ans

n+2

= s−2

∞∑
m=1

2
(

2√
3

)−1
an

(
2√
3
hs
)n+2

n+2
= h2

(
2√
3
hs
)−2( 4√

3

) ∞∑
n=1

an

(
2√
3
hs
)n+2

n+2

= 4h2
√

3

(
2√
3
hs
)−2

∞∑
n=1

an

(
2√
3
hs
)n+2

n+2
= 4h2
√

3

∞∑
n=1

an
[
I
(
(·)n
)](

2√
3
hs
)

with the linear operator

(
If
)
(s) = s−2

∫ s

0

ξf(ξ)dξ for s ∈ R\{0},

the function K(·) can equivalently be written as

K(s) = 4h2
√

3
[Iκ]

(
2√
3
hs
)

for s ∈ R\{0}. (2.11)

By density and continuity, I(·) can uniquely be extended to a mapping from the set of

continuous functions differentiable and vanishing at 0 with the following norm being

bounded

‖f‖ = max
{

sup
x∈R
|f(x)|, |f ′(0)|

}
into itself.
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Summarizing, our thermoelastic plate system reads as

ρhwtt − ρh3

12
4wtt +4K(4w) +D 1+µ

2
4θ = 0 in (0,∞)× Ω, (2.12a)

ρc∂tθ − λ04θ + 12λ0

ρch2

(
hλ1

2
+ 1
)
θ + αγλ0

ρc
4wt = 0 in (0,∞)× Ω. (2.12b)

In contrast to [1], the 4wtt-term is not neglected here allowing for an adequate

description of thicker plates than those accounted for by the standard theory. Various

boundary conditions can be adopted. We refer to [2, Chapter 2], [8, Chapter 4] and

[13, Chapter 1] for further details. Here, we consider a simply supported plate held

at the reference temperature at the boundary:

w = 4w = θ = 0 in (0,∞)× ∂Ω.
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Chapter 3

Proof of Theorem 1.4: Local
Well-Posedness

As mentioned in the Introduction, the local well-posedness result, Theorem 1.4, will

be proved on a more general system below.

wtt − γ4wtt + a(−4w)42w + α4θ = f(−4w,−∇4w) in (0,∞)× Ω, (3.1a)

βθt − η4θ + σθ − α4wt = 0 in (0,∞)× Ω (3.1b)

along with the boundary conditions (hinged mechanical/Dirichlet thermal)

w = 4w = θ = 0 in (0,∞)× Ω (3.1c)

and the initial conditions

w(0, ·) = w0, wt(0, ·) = w1, θ(0, ·) = θ0 in Ω. (3.1d)

It is clear that Equations (1.1a)–(1.1d) is a special case of (3.1a)–(3.1d). Indeed,

if we consider the following specific functions:

a(z) = 1 + 3bz2 and f(z,∇z) = 6bz|∇z|2 (3.2)
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where (as before) the operator A denotes the negative Dirichlet-Laplacian (cf. Equa-

tion (3.3)) and z = −4w = Aw. This choice is motivated by [6], [14] and [15] (cf.

Equation (1.2a)), where the same cubic nonlinearity

4
(
K(4w)

)
= 4

(
w + (4w)3

)
= 42w + 3(4w)242w + 6(4w)|∇4w|

= Az + 3z2Az − 6z|∇z|2

originating (up to positive constants) from the material response function κ(s) = s+s3

according to Equation (2.11) is considered. This choice of κ(·) is inasmuch physically

meaningful as it corresponds (up to physical constants) to nonlinear power-type ma-

terials considered by Ambartsumian et al. [1, Equation (6)] while ignoring geome-

tric nonlinearity by adopting the infinitesimal Cauchy’s stress tensor. In contrast to

Ambartsumian et al.’s example of cubic nonlinearity κ(s) = s − s3 on [1, p. 144]

characterizing the elastic response of copper (and violating the positivity condition

as s → ∞), for the sake of consistency with earlier works [6], [14] and [15], we let

κ(s) = s+ s3. It should though be pointed out that the sign of the nonlinear term in

κ(·) and K(·) is not essential for our approach since we are interested in small classical

solutions. Parenthetically, it should be mentioned that cubic terms may also result

from the geometric nonlinearity as observed in [20]. In contrast to 4K(4w) coming

from the elastic response, the geometric nonlinearity is a lower-order term reading

as div
(
N(∇w)∇w

)
with a matrix function N(·) being a second-order polynomial in

∇w.

To facilitate the analytical treatment of (1.1a)–(1.1d), we first reduce the order
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in space from four to two. To this end, let A denote the L2(Ω)-realization of the

negative Dirichlet-Laplacian, i.e.,

A := −4, D(A) :=
{
u ∈ H1

0 (Ω) |4u ∈ L2(Ω)
}

= H2(Ω) ∩H1
0 (Ω). (3.3)

Assuming ∂Ω is of class C2, the elliptic regularity theory yields D(A) = H2(Ω) ∩

H1
0 (Ω). Moreover, A is an isomorphism between D(A) and L2(Ω), A−1 is a compact

self-adjoint operator and (−∞, 0] is contained both in the resolvent set of A and A−1.

Letting

z := Aw = −4w, (3.4)

which lead to wtt = A−1ztt. Apply these identities and we rewrite Equations (3.1a)–

(3.1d) as an initial-boundary value problem for a system of partial differential equa-

tions given by

(
A−1 + γ

)
ztt + a(z)Az − αAθ = f(z,∇z) in (0,∞)× Ω, (3.5a)

βθt + ηAθ + σθ + αzt = 0 in (0,∞)× Ω, (3.5b)

z = θ = 0 in (0,∞)× ∂Ω, (3.5c)

z(0, ·) = z0, zt(0, ·) = z1, θ(0, ·) = θ0 in Ω, (3.5d)

where z0 := −4w0 and z1 := −4w1. Note that, for any s ≥ 0, the operator A−1 + γ

restricted onto Hs(Ω) is an automorphism of Hs(Ω). Therefore, Definition 1.1 is

equivalent to the following one in the new variable z:

Definition 3.1. Let s ≥ 2. By a classical solution to Equations (3.5a)–(3.5d) on

[0, T ] at the energy level s, we understand a function pair (z, θ) : [0, T ]× Ω̄→ R×R



23

satisfying

z ∈
( s−1⋂
m=0

Cm
(
[0, T ], Hs−m(Ω) ∩H1

0 (Ω)
))
∩ Cs

(
[0, T ], L2(Ω)

)
,

θ ∈
( s−2⋂
k=0

Ck
(
[0, T ], Hs+1−k(Ω) ∩H1

0 (Ω)
))
∩ Cs−1

(
[0, T ], H1

0 (Ω)
)

such that it satisfies pointwise Equations (3.5a)–(3.5d). Classical solutions on [0, T )

and [0,∞) are defined correspondingly.

Remark 3.1. The choice s = 2 in Definition 3.1 is standard for the linear situation,

i.e., when a(·) is constant and the function f(·, ·) is linear. In this case, by virtue of

the standard semigroup theory, for any initial data (z0, z1, θ0) ∈
(
H2(Ω) ∩H1

0 (Ω)
)
×

H1
0 (Ω)×

(
H3(Ω)∩H1

0 (Ω)
)

with 4θ0 ∈ H1
0 (Ω), there exists a unique classical solution

at the energy level s = 2.

On the contrary, if a(·) and f(·, ·) are both genuinely nonlinear, one usually can

not expect of obtaining a classical solution for the initial data at the energy level

s = 2 (cf. [10, Remark 14.4]). Therefore, taking a higher energy level is inevitable to

obtain classical solutions in the general nonlinear case. Unfortunately, this not only

amounts to putting an additional Sobolev regularity assumption on the initial data

and smoothness conditions on a(·) and f(·, ·), but also makes it necessary to postulate

appropriate compatibility conditions.

To better understand the nature of compatibility conditions, we make the following

observation. Assuming there exists a classical solution at an energy level s ≥ 2, we
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can use the smoothness in t = 0 and Equations (3.5a)–(3.5b) to compute

ztt =
(
A−1 + γ

)−1
(
f(z,∇z)− a(z)Az + αAθ

)
,

θt = − 1
β

(
ηAθ + σθ + αzt

)
.

(3.6)

Evaluating these equations at t = 0, we obtain

ztt(0, ·) =
(
A−1 + γ

)−1
(
f(z0,∇z0)− a(z0)Az0 + αAθ0

)
,

θt(0, ·) = − 1
β

(
ηAθ0 + σθ0 + αz1

)
.

Assuming both a(·) and f(·, ·) are sufficiently smooth, we can differentiate Equation

(3.6) with respect to t and repeat the procedure to explicitly evaluate ∂mt z(0, ·) or

∂kt θ for m = 2, . . . , s or k = 1, . . . , s − 1, respectively. Thus, Definition 1.2 and

Assumption 1.3 are equivalent to the following ones:

Definition 3.2. Let zm, m ≥ 2, and θk, k ≥ 1, denote the “initial values” for

∂mt z and ∂kt θ formally and recursively computed in terms of z0, z1 and θ0 based on

Equations (3.5a)–(3.5d) (cf. [9, p. 96]).

Assumption 3.3. Let s ≥ 3 be an integer and let ∂Ω ∈ Cs.

1. Let a ∈ Cs−1(R,R).

2. Let f ∈ Cs−1(R× R2,R).

3. Let the initial data satisfy the regularity

z0 ∈ Hs(Ω) ∩H1
0 (Ω), z1 ∈ Hs−1(Ω) ∩H1

0 (Ω), θ0 ∈ Hs+1(Ω) ∩H1
0 (Ω)
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as well as compatibility conditions

zm ∈ Hs−m(Ω) ∩H1
0 (Ω) for m = 2, . . . , s− 1 and zs ∈ L2(Ω),

θk ∈ Hs+1−k(Ω) ∩H1
0 (Ω) for k = 1, . . . , s− 2 and θs−1 ∈ H1

0 (Ω).

4. Further, assume the “initial ellipticity” condition for a(z0)A, i.e.,

min
x∈Ω̄

a
(
z0(x)

)
> 0, where z0 ∈ C0(Ω̄) by virtue of Sobolev’s imbedding theorem.

We can reformulate our local well-posedness result Theorem 1.4 in terms of z as

follows:

Theorem 3.4. If Assumption 3.3 is satisfied for some s ≥ 3, Equations (3.5a)–(3.5d)

possess a unique classical solution (z, θ) at the energy level s on a maximal interval

[0, Tmax) 6= ∅ additionally satisfying

∂s−1
t θ ∈ L2

(
0, T ;H2(Ω) ∩H1

0 (Ω)
)

and ∂st θ ∈ L2
(
0, T ;L2(Ω)

)
along with

min
x∈Ω̄

a
(
z(t, x)

)
> 0 for any t ∈ [0, Tmax).

Unless Tmax =∞, we have

min
x∈Ω̄

a
(
z(t, x)

)
→ 0 as t↗ Tmax (3.7)

or/and

s∑
k=0

∥∥∂kt z(t, ·)
∥∥2

Hs−k(Ω)
+
s−2∑
k=0

∥∥∂kt θ(t, ·)∥∥2

Hs+1−k(Ω)
+
∥∥∂s−1

t θ(t, ·)
∥∥2

H1(Ω)
→∞ as t↗ Tmax.

(3.8)
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Proof. First, exploiting the second Hilbert’s resolvent identity

(
A−1 + γ

)−1
= 1

γ
− 1

γ
A−1

(
A−1 + γ

)−1
,

we rewrite Equations (3.5a)–(3.5d) as

ztt + 1
γ
a(z)Az − α

γ
Aθ = F (z, θ) in (0,∞)× Ω, (3.9a)

θt + η
β
Aθ = − 1

β

(
αzt + σθ

)
in (0,∞)× Ω, (3.9b)

z = θ = 0 on (0,∞)× ∂Ω, (3.9c)

z(0, ·) = z0, zt(t, ·) = z1, θ(0, ·) = θ0 in Ω, (3.9d)

where the nonlinear operator F is given by

F (z, θ) = 1
γ
(1−K)f(z,∇z) + 1

γ
K
(
a(z)Az

)
− α

γ
KAθ

with the compact linear operator

K := A−1
(
A−1 + γ

)−1

continuously mapping Hs(Ω) to Hs+2(Ω) ∩H1
0 (Ω) for any s ≥ 0 (cf. proof of Theo-

rem A.12). Now, Equations (3.9a)–(3.9d) are a pseudo-differential perturbation of a

second-order hyperbolic-parabolic system constituted by a quasi-linear wave equation

coupled to a linear heat equation.

Step 1: Modify the nonlinearity a(·). Since no global positivity assumption is imposed

on the nonlinearity a(·), the ellipticity condition for a(z)A can be violated at any time

t > 0. To (preliminarily) rule out this possible degeneracy, the following construction

is performed.
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Taking into account the continuity of z0 and the connectedness of Ω, we have

z0(Ω̄) =
[

min
x∈Ω̄

z0(x),max
x∈Ω̄

z0(x)
]

=: J0. (3.10)

By Assumption 3.3.4, a(·) is strictly positive on J0. Consider an arbitrary closed set

J such that

J0 ⊂ int(J) and a(z) > 0 for z ∈ J, (3.11)

which must exist due to the continuity of a(·). By standard continuation arguments,

there exists a Cs-function â(·) such that

â(ζ) = a(ζ) for ζ ∈ J and inf
ζ 6∈J

â(ζ) > 0.

Now, we replace Equation (3.9a) with

ztt + 1
γ
â(z)Az − α

γ
Aθ = F (z, θ) in (0,∞)× Ω (3.12)

and first consider Equations (3.12), (3.9b)–(3.9d). To solve this new problem, we

transform it to a fixed-point problem and use the Banach fixed-point theorem. Our

proof will be reminiscent of that one by Jiang and Racke [9, Theorem 5.2] carried out

for the quasilinear system of thermoelasticity.

Step 2: Define the fixed-point mapping. Here and in the sequel, H0
0 (Ω) ≡ H0(Ω) :=

L2(Ω). For N > 0 and T > 0, let X(N, T ) denote the set of all regular distributi-

ons (z, θ) such that (z, θ) together with their weak derivatives satisfy the regularity
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conditions

∂mt z ∈ C0
(
[0, T ], Hs−m(Ω)

)
for m = 0, 1, . . . , s,

∂kt θ ∈ C0
(
[0, T ], Hs+1−k(Ω)

)
for k = 0, 1, . . . , s− 2, ∂s−1

t θ ∈ C0
(
[0, T ], H1

0 (Ω)
)
,

∂s−1
t θ ∈ L2

(
0, T ;H2(Ω) ∩H1

0 (Ω)
)

and ∂st θ ∈ L2
(
0, T ;L2(Ω)

)
the boundary

∂mt z = ∂kt θ = 0 in [0, T ]× ∂Ω for m, k = 0, 1, . . . , s− 1

and the initial conditions

∂mt z(0, ·) = zm for m = 0, 1, . . . , s and ∂kt θ(0, ·) = θk for k = 0, 1, . . . , s− 1 in Ω

(3.13)

as well as the energy inequality

max
0≤t≤T

‖D̄sz(t, ·)‖2
L2(Ω) +

s−2∑
k=0

max
0≤t≤T

‖∂kt θ(t, ·)‖2
Hs+1−k(Ω) + max

0≤t≤T
‖∂s−1

t θ(t, ·)‖2
H1(Ω)

+

∫ T

0

(
‖4∂s−1

t θ(t, ·)‖2
L2(Ω) + ‖∂st θ(t, ·)‖2

L2(Ω)

)
dt ≤ N2.

(3.14)

Here, for n ≥ 0, we let

D̄n :=
(
(∂t,∇)α | 0 ≤ |α| ≤ n

)
.

For any T0 > 0 and sufficiently large N > 0, the set X(N, T ) is not empty for any

T ∈ (0, T0]. Indeed, if N is sufficiently large, any pair (z, θ) of Taylor polynomials

z(t, ·) =
s∑

k=0

zktk

k!
+ Pz(t, ·)ts+1, θ(t, ·) =

s−1∑
k=0

θktk

k!
+ Pθ(t, ·)ts,
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is contained in X(N, T ), where Pz, Pθ are arbitrary C∞0
(
Ω)-valued polynomials w.r.t.

t.

For (z̄, θ̄) ∈ X(N, T ), consider the linear operator F mapping (z̄, θ̄) to a function

pair (z, θ) such that θ is the unique classical solution to the linear heat equation

θt(t, x)− η
β
4θ(t, x) = ḡ(t, x) for (t, x) ∈ (0, T )× Ω,

θ = 0 for (t, x) ∈ (0, T )× ∂Ω,

θ(0, ·) = θ0(x) for x ∈ Ω

(3.15)

with

ḡ(t, x) = − 1
β

(
αz̄t(t, x) + σθ̄(t, x)

)
for (t, x) ∈ [0, T ]× Ω̄ (3.16)

and, subsequently, define z to be the unique classical solution to the linear wave

equation

ztt(t, x)− āij(t, x)4z(t, x) = f̄(t, x) for (t, x) ∈ (0, T )× Ω,

z(t, x) = 0 for (t, x) ∈ (0, T )× ∂Ω,

z(0, x) = z0(x), zt(0, x) = z1(x) for x ∈ Ω

(3.17)

with

āij(t, x) := 1
γ
â
(
z̄(t, x)

)
δij and

f̄(t, x) := 1
γ

(
(1−K)f(z̄,∇z̄)

)
(t, x) + 1

γ

(
K
(
â(z̄)Az̄

))
(t, x)− α

γ

(
(1−K)Aθ

)
(t, x)

(3.18)

for (t, x) ∈ [0, T ]×Ω. Note that the right-hand side f̄ depends on Aθ and not Aθ̄ as

the standard procedure would suggest.
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We prove F is well-defined. By the definition of ḡ in Equation (3.16) and the

regularity of (z̄, ḡ) ∈ X(N, T ), we trivially have

∂kt ḡ ∈ C0
(
[0, T ], Hs−1−k(Ω)

)
for k = 0, 1, . . . , s− 1.

By virtue of Theorem A.12, Equation (3.15) possesses a unique classical solution θ

satisfying

∂kt θ ∈ C0
(
[0, T ], Hs+1−k(Ω) ∩H1

0 (Ω)
)

for k = 0, 1, . . . , s− 2,

∂s−1
t θ ∈ C0

(
[0, T ], H1

0 (Ω)
)
∩ L2

(
0, T ;H2(Ω) ∩H1

0 (Ω)
)

and ∂st θ ∈ L2
(
0, T ;L2(Ω)

)
.

Now, taking into account the regularity of z̄ and θ, exploiting Assumption 3.3 and

applying Sobolev’s imbedding theorem, we can verify that Assumption A.9 is satisfied

with

γi = max
0≤t≤T

γ̄i
(∥∥z̄(t, ·)

∥∥
Hs−1(Ω)

)
for i = 0, 1, (3.19)

where γ0, γ1 : [0,∞) → (0,∞) are continuous functions. Here, we used the Sobolev

imbedding ∇z̄(t, ·) ∈ H2(Ω) ↪→ L∞(Ω) along with the estimate

∥∥K(â(z̄)Az̄
)∥∥

Hm+2(Ω)
≤ C

∥∥â(z̄)Az̄
∥∥
Hm(Ω)

for m = 0, 1, . . . , s− 2.

Here and in the following, C > 0 denotes a generic constant. Hence, by Theorem

A.10, Equation (3.17) possesses a unique classical solution

z ∈
s−1⋂
m=0

Cm
(
[0, T ], Hs−m(Ω) ∩H1

0 (Ω)
)
∩ Cs

(
[0, T ], L2(Ω)

)
implying (z, θ) ∈ X(N, T ). Therefore, the mapping F is well-defined.
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Step 3: Show the self-mapping property. We prove that F maps X(N, T ) into itself

provided N is sufficiently large and T is sufficiently small. We define

E0(T ) :=
s∑

m=0

‖zm‖2
Hs−m(Ω) +

s−2∑
k=0

‖θk‖2
Hs+1−k(Ω) + ‖θs−1‖2

H1(Ω).

Recalling the definition of ḡ in Equation (3.16), applying Theorem A.12 and using

Equation (3.14), we can estimate

s−2∑
k=0

max
0≤t≤T

‖∂kt θ(t, ·)‖2
Hs+1−k(Ω) + max

0≤t≤T
‖∂s−1

t θ(t, ·)‖2
H1(Ω)

+

∫ T

0

(
‖4∂s−1

t θ(t, ·)‖2
L2(Ω) + ‖∂st θ(t, ·)‖2

L2(Ω)

)
dt ≤ CN2 + CE0.

(3.20)

Further, taking into account Equations (3.13), (3.14) and (3.18) and applying Sobolev

imbedding theorem and [9, Theorem B.6], we obtain

∫ T

0

‖∂s−1
t f̄(t, ·)‖2

L2(Ω)dt ≤ C(N)(1 + T ) (3.21)

and

s−2∑
m=0

max
0≤t≤T

‖∂mt f̄(t, ·)‖2
Hs−2−m(Ω)

≤
s−2∑
m=0

max
0≤t≤T

∥∥∂mt ( 1
γ
(1−K)f(z̄,∇z̄) + 1

γ
K
(
â(z̄)Az̄

)
− α

γ
(1−K)Aθ

)
(t, ·)

∥∥2

Hs−2−m(Ω)

≤
s−2∑
m=0

∥∥∂mt ( 1
γ
(1−K)f(z̄,∇z̄) + 1

γ
K
(
â(z̄)Az̄

)
− α

γ
(1−K)Aθ

)
(0, ·)

∥∥2

Hs−2−m(Ω)

+
s−2∑
m=0

∫ T

0

∥∥∂mt ( 1
γ
(1−K)f(z̄,∇z̄) + 1

γ
K
(
â(z̄)Az̄

)
− α

γ
(1−K)Aθ

)
(t, ·)

∥∥2

Hs−2−m(Ω)
dt

≤C(E0) + C(N)(1 + T ), (3.22)
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where the fundamental theorem of calculus was employed. Plugging Equations (3.21)

and (3.22) into the energy estimate in Theorem A.10, we obtain

max
0≤t≤T

‖D̄sz(t, ·)‖2
L2(Ω) ≤ K̄(E0, γ0, γ1)ζ(N, T ) (3.23)

with positive constants γ0, γ1 defined in Equation (3.19), a positive constant K being

a continuous function of its variables and

ζ(N, T ) =
(

1 + C(N)T 1/2

5∑
i=0

T i/2
)

exp
(
T 1/2C(N)(1 + T 1/2 + T + T 3/2)

)
.

Combining the estimates in Equations (3.20) and (3.23), we obtain

max
0≤t≤T

‖D̄sz(t, ·)‖2
L2(Ω) +

s−2∑
k=0

max
0≤t≤T

‖∂kt θ(t, ·)‖2
Hs+1−k(Ω) + max

0≤t≤T
‖∂s−1

t θ(t, ·)‖2
H1(Ω)

+

∫ T

0

(
‖4∂s−1

t θ(t, ·)‖2
L2(Ω) + ‖∂st θ(t, ·)‖2

L2(Ω)

)
dt ≤ K̄(E0, γ0, γ1)ζ(N, T ),

(3.24)

possibly, with an increased constant K̄.

We now select N such that

N2 ≤ 1
2
K̄(E0, γ0, γ1).

Due to continuity of ζ(N, ·) in T = 0 and ζ(N0, 0) = 1, there exists T > 0 such that

ζ
(
N, (0, T ]

)
⊂ [1, 2]. Hence, the estimate in Equation (3.24) is satisfied with N2 on

its right-hand side. Therefore, (z, θ) ∈ X(N, T ) and F maps X(N, T ) into itself.

Step 4: Prove the contraction property. We consider the metric space

Y :=
{

(z, θ)
∣∣ z, zt,∇z ∈ L∞(0, T ;L2(Ω)

)
and θ ∈ L∞

(
0, T ;H1(Ω)

)}
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equipped with the metric

ρ
(
(z, θ), (z̄, θ̄)

)
=
(

ess sup
0≤t≤T

∥∥D̄1
(
z − z̄

)
(t, ·)

∥∥2

L2(Ω)
+ ess sup

0≤t≤T

∥∥(θ − θ̄)(t, ·)
∥∥2

H1(Ω)

)1/2

for (z, θ), (z̄, θ̄) ∈ Y . Obviously, Y is complete. Further, X(N, T ) ⊂ Y . Moreover,

X(N, T ) is closed in Y . Indeed, consider a sequence
(
(zn, θn)

)
n∈N ⊂ X(N, T ) such

that it is a Cauchy sequence in Y and, thus, converges to some (z, θ) ∈ Y . With

the uniform energy bound in Equation (3.14) being valid for
(
(zn, θn)

)
n∈N, it must

possess a subsequence which weakly-∗ converges to some element (z∗, θ∗) ⊂ X(N, T )

in respective topologies. Since strong and weak-∗ limits coincide, we have (z, θ) =

(z∗, θ∗) ∈ X(N, T ).

We now prove that F : X(N, T ) → X(N, T ) is a contraction mapping w.r.t. ρ.

For (z̄, θ̄), (z̄∗, z̄∗) ∈ X(N, T ), let (z, θ) := F
(
(z̄, θ̄)

)
, (z∗, θ∗) := F

(
(z̄∗, θ̄∗)

)
. With

(z̄, θ̄), (z̄∗, θ̄∗), (z, θ), (z∗, θ∗) all lying in X(N, T ), Equation (3.14) along with Sobolev

imbedding theorem imply

ess sup
0≤t≤T

∥∥(D̄1(z̄, z̄∗, z, z∗)
)
(t, ·)

∥∥
L∞(Ω)

≤ CN. (3.25)

Recalling Equations (3.9a)–(3.9b), we can easily see that (z̃, θ̃) := (z − z∗, θ − θ∗)

satisfies

z̃tt + 1
γ
â(z)Az̃ − α

γ
Aθ̃ = F (z̄, θ̄)− F (z̄∗, θ̄∗)−

(
â(z̄)− â(z̄∗)

)
Az∗, (3.26)

θ̃t + η
β
Aθ̃ = −α

β
(z̄t − z̄∗t )− σ

β
(θ̄ − θ̄∗) (3.27)
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in (0, T )× Ω. Further, we have

z̃ = θ̃ = 0 on (0,∞)× ∂Ω, (3.28)

z̃(0, ·) ≡ 0, z̃t(t, ·) ≡ 0, θ̃(0, ·) ≡ 0 in Ω. (3.29)

Multiplying Equation (3.27) in L2(Ω) with Aθ̃, using Young’s inequality and integra-

ting w.r.t. t, we obtain

‖A1/2θ̃(t, ·)‖2
L2(Ω) + η

β

∫ t

0

‖Aθ̃(τ, ·)‖2
L2(Ω)

≤ ε

∫ t

0

‖Aθ̃(τ, ·)‖2
L2(Ω)dτ

+ CεT ess sup
0≤τ≤t

(∥∥D̄1
(
z̄ − z̄∗

)
(τ, ·)

∥∥2

L2(Ω)
+
∥∥(θ̄ − θ̄∗)(τ, ·)

∥∥2

L2(Ω)

)
.

Hence, by Poincare-Friedrichs’ inequality, selecting ε > 0 sufficiently small, we obtain

‖θ̃(t, ·)‖2
H1(Ω) ≤ −

η
2β

∫ t

0

‖Aθ̃(τ, ·)‖2
L2(Ω)dτ

+ CT ess sup
0≤τ≤t

(∥∥D̄1
(
z̄ − z̄∗

)
(τ, ·)

∥∥2

L2(Ω)
+
∥∥(θ̄ − θ̄∗)(τ, ·)

∥∥2

L2(Ω)

) (3.30)

Similarly, multiplying Equations (3.26) in L2
(
0, T ;L2(Ω)

)
with z̃t, applying Green’s

formula, using chain and product rules, taking into account Equation (3.28), exploi-

ting the local Lipschitz continuity of â(·) and f(·, ·), using Equations (3.14) and (3.30)

as well as exploiting Young’s and Poincaré-Friedrichs’ inequalities, we can estimate

for any t ∈ [0, T ]

∥∥D̄1z̃(t, ·)
∥∥2

L2(Ω)
≤ η

2β

∫ t

0

‖Aθ̃(τ, ·)‖2
L2(Ω)dτ + CT ess sup

0≤τ≤t

∥∥(θ̄ − θ̄∗)(τ, ·)∥∥2

L2(Ω)

+ C(N)
(

(1 + T−1/2)

∫ t

0

∥∥D̄1z̃(τ, ·)
∥∥2

L2(Ω)
dτ

+ T 1/2(1 + T ) ess sup
0≤τ≤t

∥∥D̄1
(
z̄ − z̄∗

)
(τ, ·)

∥∥2

L2(Ω)

)
.

(3.31)
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Adding up Equations (3.30)–(3.31), using Gronwall’s inequality, taking into account

Equation (3.29) and selecting T sufficiently small, we can estimate

ρ
(
(z, θ), (z∗, θ∗)

)
≤ λρ

(
(z̄, θ̄), (z̄∗, θ̄∗)

)
for some λ ∈ (0, 1). Hence, F is a contraction on X(N, T ) in the metric of space

Y . With X(N, T ) being closed, Banach fixed-point theorem implies F has a unique

fixed point (z, θ) ∈ X(N, T ). Finally, due to the smoothness of (z, θ), we can easily

verify (z, θ) is a unique classical solution to Equations (3.12), (3.9b)–(3.9d) at the

energy level s.

Step 5: Continuation to the maximal interval. Observing that z(T, ·), zt(T, ·) and

θ(T, ·) satisfy the regularity and compatibility assumptions and carrying out the

standard continuation argument, we obtain a maximal interval [0, T ∗J ) for which the

classical solution (uniquely) exists. Due to the interval’s maximality, unless T ∗J =∞,

we have

s∑
k=0

∥∥∂kt z(t, ·)
∥∥2

Hs−k(Ω)
+

s−2∑
k=0

∥∥∂kt θ(t, ·)∥∥2

Hs+1−k(Ω)
+
∥∥∂s−1

t θ(t, ·)
∥∥2

H1(Ω)
→∞ as t↗ T ∗J .

(3.32)

Step 6: Returning to the original system. By virtue of Sobolev’s imbedding theorem,

the function a ◦ z is continuous on [0, T ∗J )× Ω̄. Hence, the number

Tmax,J :=


T ∗J , if â ◦ z ≡ a ◦ z in [0, T ∗)× Ω̄,

min
{
t ∈ [0, T ∗)

∣∣ a(t, x) 6∈ int(J)
}
, otherwise

is well-defined and positive by Equation (3.11). Denote by (zJ , θJ) the unique classical

solution to (3.12), (3.9b)–(3.9d) restricted onto [0, Tmax,J). Consider now an increasing
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sequence (Jn)n∈N of closed sets satisfying Equation (3.11) such that

Tmax,Jn ↗ Tmax := sup
{
Tmax,J

∣∣ J satisfies Equation (3.11)
}

as n→∞. (3.33)

By construction, (zJn , θJn) solves the original problem (3.9a)–(3.9d) on [0, Tmax,Jn)

and

(zJm , θJm) ≡ (zJn , θJn) on [0, Tmax,Jm) for m,n ∈ N with m ≤ n.

Hence, letting for t ∈ [0, Tmax),

(z, θ)(t) := (zJn , θJn)(t) for any n ∈ N such that Tmax,Jn > t,

we observe (z, θ) uniquely defines a classical solution to (3.9a)–(3.9d) on [0, Tmax).

Moreover, unless Tmax = ∞, we have Equation (3.8) and/or Equation (3.7). Indeed,

if neither was the case, we could redefine J0 from Equation (3.10) via

J0 :=
[

min
x∈Ω̄

a(z(Tmax, x)),max
x∈Ω̄

a(z(Tmax, x))
]

and repeat Step 5 to obtain a classical solution (zJ , θJ) existing beyond Tmax, which

would contradict Equation (3.33). The overall uniqueness follows similar to Step

4.

Remark 3.2. Equation (3.8) is equivalent to

∥∥z(t, ·)
∥∥2

Hs(Ω)
+
∥∥z(t, ·)

∥∥2

Hs−1(Ω)
→∞ as t↗ Tmax.

Indeed, arguing by contradiction, if the norms in Equation (3.8) are bounded, Equa-

tions (3.9a), (3.5b) suggest the derivatives of z and θ as well as θ itself are bounded

in respective topologies, which contradicts the maximality of Tmax.
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Chapter 4

Proof of Theorem 1.5 and 1.6:
Global Well-Posedness and
Exponential Stability

In this chapter, we will show the global well-posedness and the exponential stabi-

lity of the local solution to Equations (1.1a)–(1.1d) (or, equivalently, (3.5a)–(3.5d))

established in Theorem 3.4 provided the initial data are ‘small.’

Recall that the system we study in (z, θ) is

(
A−1 + γ

)
ztt + Az − αAθ = −3z2Az + 6z|∇z|2 in (0,∞)× Ω, (4.1a)

βθt + ηAθ + σθ + αzt = 0 in (0,∞)× Ω, (4.1b)

z = θ = 0 in (0,∞)× ∂Ω, (4.1c)

z(0, ·) = z0, zt(0, ·) = z1, θ(0, ·) = θ0 in Ω. (4.1d)

Under Assumption 3.3, Theorem 3.4 establishes the local existence of a unique clas-
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sical solution to Equations (4.1a)–(4.1d) at the energy level s ≥ 3:

z ∈
( s−1⋂
m=0

Cm
(
[0, Tmax), Hs−m(Ω) ∩H1

0 (Ω)
))
∩ Cs

(
[0, Tmax), L2(Ω)

)
=: C0

(
[0, Tmax),Zs

)
,

θ ∈
( s−2⋂
k=0

Ck
(
[0, Tmax), Hs+1−k(Ω) ∩H1

0 (Ω)
))
∩ Cs−1

(
[0, Tmax), H1(Ω)

)
=: C0

(
[0, Tmax), Ts

)
,

(4.2)

where [0, Tmax) is the maximal existence interval (in time) with Tmax ≤ ∞. Unless

Tmax =∞, either the solution norm explodes or the hyperbolicity of Equation (4.1a)

is violated at Tmax, the latter of which can never be the case for the specific form of

nonlinearity in our model.

For the solution pair (z, θ), we introduce the squared norm functionals Ek(t) for

k = 1, 2, 3 and 0 ≤ t < Tmax

E1(t) := 1
2

∥∥A−1
2 zt(t, ·)

∥∥2

L2(Ω)
+ γ

2

∥∥zt(t, ·)∥∥2

L2(Ω)
+ 1

2

∥∥A1
2 z(t, ·)

∥∥2

L2(Ω)
+ 1

2

∥∥A1
2 θ(t, ·)

∥∥2

L2(Ω)

(4.3)

E2(t) := 1
2

∥∥zt(t, ·)∥∥2

L2(Ω)
+ γ

2

∥∥A1
2 zt(t, ·)

∥∥2

L2(Ω)
+ 1

2

∥∥Az(t, ·)
∥∥2

L2(Ω)
+ 1

2

∥∥Aθ(t, ·)∥∥2

L2(Ω)
,

(4.4)

E3(t) := 1
2

∥∥ztt(t, ·)∥∥2

L2(Ω)
+ γ

2

∥∥A1
2 ztt(t, ·)

∥∥2

L2(Ω)
+ 1

2

∥∥Azt(t, ·)∥∥2

L2(Ω)
+ 1

2

∥∥Aθt(t, ·)∥∥2

L2(Ω)

(4.5)

and define the natural energy at level s = 3 by means of

X(t) ≡
∥∥(z, zt, ztt, θ, θt)(t, ·)

∥∥2

X
:= E2(t) + E3(t). (4.6)
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Note that E1(t) represents the basic ‘natural’ energy of the system. For the sake of

brevity – and slightly abusing the notation – we will write in the following:

∥∥(z, θ)
∥∥
X

instead of
∥∥(z, zt, ztt, θ, θt)

∥∥
X

and ∥∥(z, θ)
∥∥
Zs×Ts

instead of
∥∥(∂≤st z, ∂≤s−1

t θ)
∥∥
X

where ∂≤kt := (1, ∂t, . . . , ∂
k
t ).

Remark 4.1. In order to prove the system is globally well-posed, we first seek for an

a priori estimate for the solution and then prove Tmax =∞. To capture the essential

decay of the energy, we work with ‖(z, θ)‖X , instead of ‖(z, θ)‖Zs×Ts, for most part

of this chapter. Although all main results in this chapter are presented in terms of

X(t), their equivalence with the statements in Section 1.2, given the smallness of the

initial data, is shown in Lemma 4.7.

We start by an observation that, for small data, z has one extra order of hidden

regularity in space encoded in the definition of E2.

Lemma 4.1 (z-energy boost). For any t ∈ (0, Tmax), if (z, θ) satisfies

E2(t) < ε1 := 1

2
√
C′

for some constant C ′ > 0 (defined in (4.11)), (4.7)

there holds

‖z(t)‖2
H3(Ω) ≤ C

(
X(t) +X3(t)

)
for some C > 0.
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Proof. From Equation (4.1b), −ηA3/2θ = αA1/2zt + βA1/2θt + σA1/2θ. Hence,

∥∥A3/2θ
∥∥2

L2(Ω)
≤ C

(∥∥A1/2zt
∥∥2

L2(Ω)
+
∥∥A1/2θt

∥∥2

L2(Ω)
+
∥∥A1/2θ

∥∥2

L2(Ω)

)
≤ C

(
E2(t) +E3(t)

)
.

(4.8)

Using Hölder’s inequality

‖a · b‖2
L2(Ω) ≤ ‖a‖2

L6(Ω) · ‖b‖2
L3(Ω)

and Sobolev imbedding theorem H1(Ω) ↪→ L6(Ω) ↪→ L4(Ω) ↪→ L3(Ω), we arrive at:

∥∥A1/2(6z|∇z|2)
∥∥2

L2(Ω)

≤ C
∥∥A1/2z · |∇z|2

∥∥2

L2(Ω)
+ C

∥∥z(∇z · ∇A1/2z)
∥∥2

L2(Ω)

≤ C‖A1/2z‖2
L6(Ω)‖∇z|‖4

L6(Ω) + C ′‖Az‖2

L2(Ω)
‖A3/2z‖2

L2(Ω)

∥∥Az∥∥2

L2(Ω)

≤ CE3
2(t) + C ′E2

2(t)‖A3/2z‖2
L2(Ω)

(4.9)

and

∥∥A1/2(1 + 3z2) · Az
∥∥2

L2(Ω)
≤ C

∥∥zA1/2z · Az
∥∥2

L2(Ω)

≤ C‖z‖2
H2(Ω)‖A1/2z‖2

H2(Ω)

∥∥Az∥∥2

L2(Ω)

≤ C ′‖Az‖4
L2(Ω)‖A3/2z‖2

L2(Ω)

≤ C ′E2
2(t)‖A3/2z‖2

L2(Ω) for some C,C ′ > 0.

(4.10)
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Now, to estimate ‖A3/2z‖2
L2(Ω), we successively transform Equation (4.1a) to obtain:

(1 + 3z2)Az = −
[
A−1ztt + γztt − αAθ − 6z|∇z|2

]
,

A1/2[(1 + 3z2)Az] = −A1/2
[
A−1ztt + γztt − αAθ − 6z|∇z|2

]
,

A1/2(1 + 3z2) · Az + (1 + 3z2)A3/2z = −A1/2
[
A−1ztt + γztt − αAθ − 6z|∇z|2

]
,

(1 + 3z2)A3/2z = −A1/2
[
A−1ztt + γztt − αAθ − 6z|∇z|2

]
,

−A1/2(1 + 3z2) · Az,

A3/2z = − 1
1+3z2

[
A−1/2ztt + A1/2γztt − αA3/2θ

−A1/2(6z|∇z|2) + A1/2(1 + 3z2) · Az
]
.

Taking into account 1
1+3z2 ≤ 1, Equations (4.8), (4.9) and (4.10) yield

∥∥A3/2z
∥∥2

L2(Ω)
≤
∥∥ 1

1+3z2

∥∥2

L∞(Ω)

[∥∥A−1/2ztt
∥∥
L2(Ω)

+ γ
∥∥A1/2ztt

∥∥
L2(Ω)

+ α
∥∥A3/2θ

∥∥
L2(Ω)

+
∥∥A1/2(6z|∇z|2)

∥∥
L2(Ω)

+
∥∥A1/2(1 + 3z2) · Az

∥∥
L2(Ω)

]2

≤ C
[∥∥A−1/2ztt

∥∥2

L2(Ω)
+
∥∥A1/2γztt

∥∥2

L2(Ω)
+
∥∥A3/2θ

∥∥2

L2(Ω)

+
∥∥A1/2(6z|∇z|2)

∥∥2

L2(Ω)
+
∥∥A1/2(1 + 3z2) · Az

∥∥2

L2(Ω)

]
≤ C

[
E3(t) + E3(t) + [E2(t) + E3(t)]

+ CE3
2(t) + C ′E2

2(t)‖A3/2z‖2
L2(Ω) + C ′E2

2(t)‖A3/2z‖2
L2(Ω)

]
. (4.11)

Hence, ∥∥A3/2z
∥∥2

L2(Ω)
≤ C

1−2E2
2(t)C′

[
E2(t) + E3(t) + E3

2(t)
]
.
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By the assumption in Equation (4.7), 1− 2E2
2(t)C ′ > 1

2
and, therefore,

∥∥A3/2z
∥∥2

L2(Ω)
≤ C

[
E2(t) + E3(t) + E3

2(t)
]
≤ C

[
X(t) +X3(t)

]
,

which finishes the proof.

Lemma 4.2 (A priori estimate). Let Assumption 3.3 and the smallness assumption

of E2(t) in Lemma 4.1 be satisfied for some s = 3, and a positive time T such that

0 < T < Tmax with Tmax > 0 denoting the maximal existence time from Theorem 3.4

and let

X(0) < 1. (4.12)

Then,

Xs(T ) +

∫ T

0

Xs(t)dt ≤ C1Xs(0) + C2

∑
i∈I

Xαi
s (T ) + C3

∑
j∈J

∫ T

0

Xβj
s (t)dt (4.13)

where Ck ≥ 0, k = 1, 2, 3 are constants, both I, J ⊂ N are finite sets, αi > 1 for any

i ∈ I and βj > 1 for any j ∈ J .

Proof. The proof mainly consists of energy estimates at the energy levels s = 1, 2 and

3. Estimates for higher energy spaces (s ≥ 4) follow similarly. Throughout this proof,

〈·, ·〉 denotes the standard L2(Ω)-inner product. Moreover, without loss of generality,

we assume

X(t) < 1 for t ∈ [0, T ]. (4.14)

If not, by continuity of X(t), we can find a smaller T so that (4.14) holds true.

Equations (4.12) and (4.14) are critical in Step 4.2 of this proof. The dimension of

the domain is also important by virtue of, for instance, Equation (4.36).
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Step 1: Level 1 energy identity. Multiplying Equation (4.1a) with zt in L2(Ω) and

integrating by parts, we get

1
2
∂t
∥∥A−1/2zt

∥∥2

L2(Ω)
+ γ

2
∂t
∥∥zt∥∥2

L2(Ω)
+ 1

2
∂t
∥∥A1/2z

∥∥2

L2(Ω)
− α 〈Aθ, zt〉 ,= 〈F, zt〉 (4.15)

where F (z,∇z, Az) = −3z2Az + 6z|∇z|2 from (3.2). Similar actions on (4.1b) mul-

tiplied by Aθ lead to

β
2
∂t
∥∥A1/2θ

∥∥2

L2(Ω)
+ η
∥∥Aθ∥∥2

L2(Ω)
+ σ
∥∥A1/2θ

∥∥2

L2(Ω)
+ α 〈zt, Aθ〉 = 0. (4.16)

From Equations (4.15) and (4.16), we get the E1-identity:

E1(T ) +

∫ T

0

(
η
∥∥Aθ∥∥2

L2(Ω)
+ σ
∥∥A1/2θ

∥∥2

L2(Ω)

)
dt = E1(0) +

∫ T

0

〈F, zt〉 dt. (4.17)

Step 2: Level 2 energy estimate. Recalling from Equation (4.4)

E2(t) = 1
2

∥∥zt(t, ·)∥∥2

L2(Ω)
+ γ

2

∥∥A1/2zt(t, ·)
∥∥2

L2(Ω)
+ 1

2

∥∥Az(t, ·)
∥∥2

L2(Ω)
+ 1

2

∥∥Aθ(t, ·)∥∥2

L2(Ω)

and using Equation (4.17) along with Poincaré-Friedrichs inequality, we get:

E1(T ) ≤ E1(0) +

∫ T

0

〈F, zt〉 dt ≤ C

[
E2(0) +

∫ T

0

〈F, zt〉 dt
]
. (4.18)
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Similarly, ∫ T

0

∥∥A1/2θ
∥∥2

L2(Ω)
dt ≤ C

∫ T

0

∥∥Aθ∥∥2

L2(Ω)
dt ≤ C

[
E2(0) +

∫ T

0

〈F, zt〉 dt
]
,

(4.19)∫ T

0

∥∥Aθ∥∥2

L2(Ω)
dt ≤ C

∫ T

0

∥∥Aθ∥∥2

L2(Ω)
dt ≤ C

[
E2(0) +

∫ T

0

〈F, zt〉 dt
]
,

(4.20)

max
{∥∥zt(t, ·)∥∥2

L2(Ω)
,
∥∥A1/2z(t, ·)

∥∥2

L2(Ω)

}
≤ CE1(T ) ≤ C

[
E2(0) +

∫ T

0

〈F, zt〉 dt
]
.

(4.21)

In order to estimate E2(t) and

∫ T

0

E2(t)dt, we employ a set of higher energy

multipliers. We first start by multiplying Equation (4.1a) with Azt and recalling

(4.18) to observe that

1
2

∥∥zt(T )
∥∥2

L2(Ω)
+ γ

2

∥∥A1/2zt(T )
∥∥2

L2(Ω)
+ 1

2

∥∥Az(T )
∥∥2

L2(Ω)
− α

∫ T

0

〈Aθ,Azt〉 dt

≤ C

[
E2(0) +

∫ T

0

〈F, zt〉 dt
]

+

∫ T

0

〈F,Azt〉 dt.
(4.22)

Second, in order to estimate
∥∥Aθ(T )

∥∥2

L2(Ω)
, we multiply (4.1b) by Aθt to get

η

2

∥∥Aθ(T )
∥∥2

L2(Ω)
+
σ

2

∥∥A1/2θ(T )
∥∥2

L2(Ω)
+ β

∫ T

0

∥∥A1/2θt
∥∥2

L2(Ω)

=
η

2

∥∥Aθ(0)
∥∥2

L2(Ω)
+
σ

2

∥∥A1/2θ(0)
∥∥2

L2(Ω)
− α

∫ T

0

〈A1/2zt, A
1/2θt〉. (4.23)

We apply Young’s inequality to the inner product term, we get the following estimate

η

2

∥∥Aθ(T )
∥∥2

L2(Ω)
+ β

∫ T

0

∥∥A1/2θt
∥∥2

L2(Ω)

≤ E2(0) +
σ

2

∥∥A1/2θ(T )
∥∥2

L2(Ω)
+ α

β

α

∫ T

0

∥∥A1/2θt
∥∥2

L2(Ω)
+ C

∫ T

0

∥∥A1/2zt
∥∥2

L2(Ω)
(4.24)
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After performing cancellations, employing (4.18), and rescaling, the estimate becomes

C
∥∥Aθ(T )

∥∥2

L2(Ω)
≤ C

[
E2(0) +

∫ T

0

〈F, zt〉 dt
]

+ ε

∫ T

0

∥∥A1/2zt
∥∥2

L2(Ω)
. (4.25)

Last, by Equation (4.1a), ztt = −BAz + αBAθ + BF , where B = (A−1 + γ)−1.

Multiplying Equation (4.1b) by Azt, we get

−η
∫ T

0

〈Aθ,Azt〉 dt = α

∫ T

0

∥∥A1/2zt
∥∥2

L2(Ω)
dt+ β 〈θ, Azt〉

∣∣∣T
0

+ β

∫ T

0

〈Aθ,BAz〉 dt

− αβ
∫ T

0

〈Aθ,BAθ〉 dt− β
∫ T

0

〈Aθ,BF 〉 dt+ σ

∫ T

0

〈θ, Azt〉 dt.

(4.26)

Recall from the proof of Theorem 3.4 that B is a continuous operator. Therefore,

‖B‖ ≤ Cγ. Adding (4.25) and a multiple of Equation (4.26) to (4.22), we have:

E2(T ) + α2

η

∫ T

0

∥∥A1/2zt
∥∥2

L2(Ω)
dt ≤ C

[
E2(0) +

∫ T

0

〈F, zt〉 dt
]

+

∫ T

0

〈F,Azt〉 dt

+ Cε
∥∥A1/2θ(T )

∥∥2

L2(Ω)
+ ε
∥∥A1/2zt(T )

∥∥2

L2(Ω)

+ C

∫ T

0

∥∥Aθ∥∥2

L2(Ω)
dt+ Cε

∫ T

0

∥∥A1/2θ
∥∥2

L2(Ω)
dt+ ε

∫ T

0

∥∥Az∥∥2

L2(Ω)
dt

+ Cε

∫ T

0

∥∥θ∥∥2

L2(Ω)
dt+ ε

∫ T

0

∥∥Az∥∥2

L2(Ω)
dt+ αβ

η

∫ T

0

〈Aθ,BF 〉 dt.

(4.27)

After merging respective terms and applying Equations (4.18) and (4.19), (4.27) be-
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comes

(1− ε)E2(T ) + α2

η

∫ T

0

∥∥A1/2zt
∥∥2

L2(Ω)
dt

≤ C

[
E2(0) +

∫ T

0

〈F, zt〉 dt+

∫ T

0

〈F,Azt〉 dt+

∫ T

0

〈BF,Aθ〉
]

dt

+ 2ε

∫ T

0

E2(t)dt, where C = C(ε, α, β, γ, η, σ).

(4.28)

Third, to estimate

∫ T

0

∥∥Az∥∥2

L2(Ω)
dt, we multiply(4.1a) by Az and, again, use (4.18)

to get∫ T

0

∥∥Az∥∥2

L2(Ω)
dt ≤ α2

2ηCγ,Ω

∣∣∣∣∫ T

0

〈F,Az〉 dt
∣∣∣∣+ ε′

∫ T

0

E2(t)dt+ ε′E2(T )

+ Cε′

[
E2(0) +

∫ T

0

〈F, zt〉 dt
]

+
α2

2η

∫ T

0

∥∥A1/2zt
∥∥2

L2(Ω)
dt.

(4.29)

Finally, after combining Equations (4.19), (4.28) and (4.29), we arrive at

E2(T ) + C1

∫ T

0

E2(t)dt ≤ C2E2(0) + C3

{∣∣∣∣∫ T

0

〈F, zt〉 dt
∣∣∣∣+

∣∣∣∣∫ T

0

〈F,Az〉 dt
∣∣∣∣

+

∣∣∣∣∫ T

0

〈F,Azt〉 dt
∣∣∣∣+

∣∣∣∣∫ T

0

〈BF,Aθ〉 dt
∣∣∣∣} .

(4.30)

Step 3: Level 3 energy estimate. The 3rd level energy space (E3) is one order higher in

time than the 2nd level space (E2). Hence, after differentiating Equation (4.1a)–(4.1b)

in time

A−1zttt + γzttt + Azt − αAθt = ∂tF (z,∇z,4z) in (0,∞)× Ω, (4.31a)

βθtt + ηAθt − σθt + αztt = 0 in (0,∞)× Ω, (4.31b)

z = zt = θ = θt = 0 in (0,∞)× ∂Ω, (4.31c)
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a procedure similar to Step 2 can be employed. Denote the right-hand side of (4.31a)

by

G(z) ≡ ∂tF = ∂t[−3z2Az + 6z|∇z|2] = −6zztAz− 3z2Azt + 6zt|∇z|2 + 12z(∇z · ∇zt)

(4.32)

and calculate

∂tG(z) = −6z2
tAz − 6zzttAz − 12zztAzt − 3z2Aztt

+ 6ztt|∇z|2 + 24zt(∇z · ∇zt) + 12z|∇zt|2 + 12z(∇zt · ∇ztt).
(4.33)

Letting z̃ = zt and θ̃ = θt, we have

E3(t) = 1
2

∥∥z̃t∥∥2

L2(Ω)
+ γ

2

∥∥A1/2z̃t
∥∥2

L2(Ω)
+ 1

2

∥∥Az̃∥∥2

L2(Ω)
+ 1

2

∥∥Aθ̃∥∥2

L2(Ω)
.

Therefore, in a fashion similar to Equation (4.30), we get the following 3rd level energy

estimate:

E3(T ) + C1

∫ T

0

E3(t)dt ≤ C2E3(0) + C3

{∣∣∣∣∫ T

0

〈G(z), z̃t〉 dt
∣∣∣∣+

∣∣∣∣∫ T

0

〈G(z), Az̃〉 dt
∣∣∣∣

+

∣∣∣∣∫ T

0

〈G(z), Az̃t〉 dt
∣∣∣∣+

∣∣∣∣∫ T

0

〈
BG(z), Aθ̃

〉
dt

∣∣∣∣} .
(4.34)

Recalling X(t) = E2(t) + E3(t), combine (4.30) and (4.34):

X(T ) + C1

∫ T

0

X(t)dt ≤ C2X(0) + C3

{∣∣∣∣∫ T

0

〈F, zt〉 dt
∣∣∣∣+

∣∣∣∣∫ T

0

〈F,Az〉 dt
∣∣∣∣

+

∣∣∣∣∫ T

0

〈F,Azt〉 dt
∣∣∣∣+

∣∣∣∣∫ T

0

〈BF,Aθ〉 dt
∣∣∣∣+

∣∣∣∣∫ T

0

〈G, z̃t〉 dt
∣∣∣∣

+

∣∣∣∣∫ T

0

〈G,Az̃〉 dt
∣∣∣∣ +

∣∣∣∣∫ T

0

〈G,Az̃t〉 dt
∣∣∣∣+

∣∣∣∣∫ T

0

〈
BG,Aθ̃

〉
dt

∣∣∣∣} .
(4.35)
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Step 4: We now need to estimate the integrals on the right-hand side (r.h.s.) of

Equation (4.35) (eight terms in the brackets) to get (4.13) for s = 3. We will be using

the fact that

H2(Ω) ↪→ L∞(Ω) and H2(Ω) ↪→ W 1,4(Ω) for d ∈ {2, 3}. (4.36)

Step 4.1: The first four terms on the r.h.s. of (4.35). The embeddings in Equation

(4.36) together with Young’s inequality lead to an estimate of the first term:∣∣∣∣∫ T

0

〈F, zt〉 dt
∣∣∣∣ ≤ ∣∣∣∣∫ T

0

〈
3z2Az, zt

〉
dt

∣∣∣∣+

∣∣∣∣∫ T

0

〈
6z|∇z|2, zt

〉
dt

∣∣∣∣
≤ Cε

∫ T

0

X3(t)dt+ ε

∫ T

0

X(t)dt.

(4.37)

Here, we noted H2(Ω) ↪→ W 1,4(Ω). In general, W 2,p(Ω) ↪→ W 1,4(Ω) for p > 4d
4+d

.

Since d = 2 or 3, we chose p = 2. Similar arguments apply to the next two terms

with the following inequalities:∣∣∣∣∫ T

0

〈F,Az〉 dt
∣∣∣∣ ≤ C

∫ T

0

∥∥Az∥∥3

L2(Ω)

∥∥Az∥∥
L2(Ω)

dt ≤ C

∫ T

0

X2(t)dt, (4.38)∣∣∣∣∫ T

0

〈F,Azt〉 dt
∣∣∣∣ ≤ Cε

∫ T

0

X3(t)dt+ ε

∫ T

0

X(t)dt. (4.39)

Again, by a similar argument, using the continuity of the operator B and Equation

(4.37), we can estimate the 4th term:∣∣∣∣∫ T

0

〈BF,Aθ〉 dt
∣∣∣∣ ≤ C

∣∣∣∣∫ T

0

∥∥B(3z2Az + 6z|∇z|2)
∥∥2

L2(Ω)
dt

∣∣∣∣+ C

∣∣∣∣∫ T

0

∥∥Aθ∥∥2

L2(Ω)

∣∣∣∣
≤ C

∫ T

0

∥∥Az∥∥6

L2(Ω)
dt+ C

[
E2(0) +

∣∣∣∣∫ T

0

〈F, zt〉 dt
∣∣∣∣]

≤ CX(0) + Cε

∫ T

0

X3(t)dt+ ε

∫ T

0

X(t)dt.

(4.40)
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Step 4.2: The highest order terms on the r.h.s. of (4.35). In order to estimate the

remaining four terms containing G (cf. (4.32)), we rewrite G = G1 +G2, where

G1 = −6zztAz − 3z2Azt + 6zt|∇z|2 and G2 = 12z(∇z · ∇zt).

Therefore, the 7th term can be bounded as follows (after two integrations by parts):∣∣∣∣ ∫ T

0

〈G,Az̃t〉 dt
∣∣∣∣ ≤ ∣∣∣∣∫ T

0

〈G1(z), Aztt〉 dt
∣∣∣∣+

∣∣∣∣∫ T

0

〈G2(z), Aztt〉 dt
∣∣∣∣

≤
∣∣∣∣〈G1(z), Azt〉

∣∣∣T
0

∣∣∣∣+

∣∣∣∣∫ T

0

〈∂tG1(z), Azt〉 dt
∣∣∣∣+

∣∣∣∣∫ T

0

〈G2(z), Aztt〉 dt
∣∣∣∣

≤ 1
2

∥∥G1(z(0))
∥∥2

L2(Ω)
+ 1

2

∥∥Azt(0)
∥∥2

L2(Ω)
+ Cε

∥∥G1(z(T ))
∥∥2

L2(Ω)

+ ε
∥∥Azt(T )

∥∥2

L2(Ω)
+

∣∣∣∣∫ T

0

〈∂tG1(z), Azt〉 dt
∣∣∣∣+

∣∣∣∣∫ T

0

〈G2(z), Aztt〉 dt
∣∣∣∣ .

(4.41)

Step 4.2.1: The first four terms on the r.h.s. of (4.41).

∥∥G1(z(0))
∥∥2

L2(Ω)

≤ 6
∥∥z(0)zt(0)Az(0)

∥∥2

L2(Ω)
+ 3
∥∥z(0)2Azt(0)

∥∥2

L2(Ω)
+ 6
∥∥zt(0)|∇z(0)|2

∥∥2

L2(Ω)

≤ C
{
‖z(0)‖6

H2(Ω) + ‖zt(0)‖6
H2(Ω) +

∥∥Az(0)
∥∥6

L2(Ω)
+ ‖z(0)‖8

H2(Ω)

+
∥∥Azt(0)

∥∥4

L2(Ω)
+ ‖zt(0)‖4

H2(Ω) + ‖z(0)‖8
H2(Ω)

}
(4.42)

≤ C
{
‖z(0)‖2

H2(Ω) + ‖zt(0)‖2
H2(Ω) +

∥∥Az(0)
∥∥2

L2(Ω)
+ ‖z(0)‖2

H2(Ω) +
∥∥Azt(0)

∥∥2

L2(Ω)

+ ‖zt(0)‖2
H2(Ω) + ‖z(0)‖2

H2(Ω)

}
≤ CX(0).

Here, we used the ‘smallness’ assumption X(0) < 1 from Equation (4.12). An argu-
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ment similar to Equation (4.42) yields

Cε
∥∥G1(z(T ))

∥∥2

L2(Ω)
≤ Cε

∥∥(−6zztAz − 3z2Azt + 6zt|∇z|2)(T )
∥∥2

L2(Ω)

≤ Cε

{
‖z(T )‖6

H2(Ω) + ‖zt(T )‖6
H2(Ω) +

∥∥Az(T )
∥∥6

L2(Ω)
(4.43)

+ ‖z(T )‖8
H2(Ω) +

∥∥Azt(T )
∥∥4

L2(Ω)
+ ‖zt(T )‖4

H2(Ω) + ‖z(T )‖8
H2(Ω)

}
≤ Cε

[
X4(T ) +X6(T ) +X8(T )

]
.

Trivially,

1
2

∥∥Azt(0)
∥∥2

L2(Ω)
≤ X(0) and ε

∥∥Azt(T )
∥∥2

L2(Ω)
≤ εX(T ). (4.44)

Step 4.2.2: The 5th terms on the r.h.s. of (4.41). Estimating

∣∣∣∣∫ T

0

〈∂tG1(z), Azt〉 dt
∣∣∣∣

with G1 = −6zztAz − 3z2Azt + 6zt|∇z|2 and

∂tG1(z) = −6z2
tAz−6zzttAz−12zztAzt−3z2Aztt+6ztt|∇z|2 +12zt(∇z ·∇zt) (4.45)

amounts to dealing with each of the respective six terms.

(a) First, we use Young’s inequality to write∣∣∣∣∫ T

0

〈
z2
tAz,Azt

〉∣∣∣∣ ≤ C

∫ T

0

‖zt‖2
H2(Ω)

(∥∥Az∥∥2

L2(Ω)
+
∥∥Azt∥∥2

L2(Ω)

)
≤ C

∫ T

0

X2(t).

(4.46)

(b) By Hölder’s inequality, choose p = 3, q = 3/2, we get

‖a · b‖2
L2(Ω) ≤ ‖a‖2

L6(Ω) · ‖b‖2
L3(Ω). (4.47)

In bounded domains of Rd for d = 2, 3, we have H1(Ω) ↪→ L6(Ω) ↪→ L4(Ω) ↪→

L3(Ω), i.e.,

‖a‖L6(Ω) ≤ C‖a‖H1(Ω), ‖a‖L4(Ω) ≤ C‖a‖H1(Ω), ‖a‖L3(Ω) ≤ C‖a‖H1(Ω).
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Hence,

∣∣∣∣ ∫ T

0

〈zzttAz,Azt〉 dt
∣∣∣∣ ≤ C

∫ T

0

‖z‖H2(Ω)

(
‖ztt‖2

H1(Ω) · ‖Az‖2
H1(Ω) +

∥∥Azt∥∥2

L2(Ω)

)
dt

≤ C

∫ T

0

(
‖Az‖L2(Ω)‖A1/2ztt‖2

L2(Ω)‖A3/2z‖2
L2(Ω) + ‖Az‖L2(Ω)

∥∥Azt∥∥2

L2(Ω)

)
dt

≤ C

∫ T

0

‖Az‖3
L2(Ω)dt+ C

∫ T

0

‖A1/2ztt‖6
L2(Ω)dt+ C

∫ T

0

‖A3/2z‖6
L2(Ω)dt

+ ε

∫ T

0

‖Az‖2
L2(Ω)dt+ Cε

∫ T

0

∥∥Azt∥∥4

L2(Ω)
dt (4.48)

≤ C

∫ T

0

‖Az‖3
L2(Ω)dt+ C

∫ T

0

‖A1/2ztt‖6
L2(Ω)dt+ C

[
X(t) +X3(t)

]3

dt

+ ε

∫ T

0

‖Az‖2
L2(Ω)dt+ Cε

∫ T

0

∥∥Azt∥∥4

L2(Ω)
dt

≤ C

∫ T

0

X3/2(t)dt+ C

∫ T

0

X3(t)dt+ ε

∫ T

0

X(t)dt+ Cε

∫ T

0

X2(t)dt.

Here, we used (4.12) and assumption in Equation (4.14) implying Xk(t) ≤ X(t)

for k ≥ 1.

(c) By Hölder’s inequality,∣∣∣∣∫ T

0

〈zztAzt, Azt〉 dt
∣∣∣∣ ≤ C

∫ T

0

‖z‖L∞(Ω)‖zt‖L∞(Ω)

∥∥Azt∥∥2

L2(Ω)
dt

≤ ε

∫ T

0

X(t)dt+ Cε

∫ T

0

X3(t)dt.

(4.49)

(d) Since

∂t
〈
z2Azt, Azt

〉
= 〈2zztAzt, Azt〉+

〈
2z2Azt, Aztt

〉
,
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we have∣∣∣∣ ∫ T

0

〈
z2Aztt, Azt

〉
dt

∣∣∣∣ =

∣∣∣∣12 ∫ T

0

∂t
〈
z2Azt, Azt

〉
dt−

∫ T

0

〈zztAzt, Azt〉 dt
∣∣∣∣

≤ C
∣∣〈z2Azt, Azt

〉
(T )
∣∣+ C

∣∣〈z2Azt, Azt
〉

(0)
∣∣+ C

∣∣∣∣∫ T

0

〈zztAzt, Azt〉 dt
∣∣∣∣

≤ C‖z(T )‖2
H2(Ω)

∥∥Azt(T )
∥∥2

L2(Ω)
+ C‖z(0)‖2

H2(Ω)

∥∥Azt(0)
∥∥2

L2(Ω)

+ C

∫ T

0

‖z‖L∞(Ω)‖zt‖L∞(Ω)

∥∥Azt∥∥2

L2(Ω)
dt (4.50)

≤ CX2(0) + CX2(T ) + C

∫ T

0

‖Az‖2

∥∥Azt∥∥3

L2(Ω)
dt

≤ CX(0) + CX2(T ) + ε

∫ T

0

X(t)dt+ Cε

∫ T

0

X3(t)dt.

Here, X2(0) ≤ X(0) by Equation (4.12).

(e) Again, using Equation (4.47), we get∣∣∣∣∫ T

0

〈
ztt|∇z|2, Azt

〉
dt

∣∣∣∣ ≤ Cε

∫ T

0

‖ztt‖2
L6(Ω)‖|∇z|2‖2

L3(Ω) + ε

∫ T

0

∥∥Azt∥∥2

L2(Ω)
dt

≤ Cε

∫ T

0

X2(t)dt+ Cε

∫ T

0

X4(t)dt+ ε

∫ T

0

X(t)dt.

(4.51)

(f) Similarly,∣∣∣∣∫ T

0

〈zt(∇z,∇zt), Azt〉 dt
∣∣∣∣ ≤ C

∫ T

0

X3/2(t)dt+ C

∫ T

0

X3/2(t)dt+ C

∫ T

0

X3(t)dt.

(4.52)

Now, collecting Equations (4.46)–(4.52) and recalling (4.45), we get∣∣∣∣∫ T

0

〈∂tG1(z), Azt〉 dt
∣∣∣∣ ≤CX(0) + CX2(T ) + ε

∫ T

0

X(t)dt

+ Cε

∫ T

0

[
X3/2(t) +X2(t) +X3(t) +X4(t)

]
dt.

(4.53)
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Step 4.2.3: The 6th (last) term on the r.h.s. of (4.41). The estimate is produced in

a similar fashion to Equation (4.52):∣∣∣∣∫ T

0

〈G2(z), Aztt〉 dt
∣∣∣∣ ≤ C

∣∣∣∣∫ T

0

‖z‖H2(Ω)‖|∇z|‖H2(Ω)

〈
Azt, A

1/2ztt
〉

dt

∣∣∣∣
≤ C

∫ T

0

X3/2(t)dt+ C

∫ T

0

X3/2(t)dt+ C

∫ T

0

X3(t)dt.

(4.54)

Step 4.3: The 5th and 6th term on the r.h.s. of (4.35). These are lower-order terms

compared to those from Step 4.2. Hence, we skip the details and just state the final

results:

∣∣∣∣∫ T

0

〈G, z̃t〉 dt
∣∣∣∣ ≤ ε

∫ T

0

X(t)dt+ Cε

∫ T

0

[
X3/2(t) +X3(t) +X4(t) +X6(t)

]
dt,

(4.55)∣∣∣∣∫ T

0

〈G,Az̃〉 dt
∣∣∣∣ ≤ ε

∫ T

0

X(t)dt+ Cε

∫ T

0

[
X3/2(t) +X3(t) +X4(t) +X6(t)

]
dt.

(4.56)

Step 4.4: The 8th (last) term on the r.h.s. of (4.35). By an argument similar to

Equation (4.19), we get

∫ T

0

∥∥Aθt∥∥2

L2(Ω)
dt ≤ E3(0) +

∫ T

0

〈G, ztt〉 dt. (4.57)

Therefore,∣∣∣∣ ∫ T

0

〈
BG,Aθ̃

〉
dt

∣∣∣∣ ≤ C

∫ T

0

∥∥G∥∥2

L2(Ω)
+ CE3(0) + C

∫ T

0

〈G, ztt〉 dt

≤ ε

∫ T

0

X(t)dt+ CX(0) + Cε

∫ T

0

[
X3/2(t) +X2(t) +X3(t) +X4(t) +X6(t)

]
dt.

(4.58)
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Step 5: Plugging Equations (4.37)–(4.40), (4.54)–(4.56) and (4.58) into (4.35), we

finally estimate

(1− ε)X(T ) + (C1 − 8ε)

∫ T

0

X(t)dt

≤ CεX(0) + Cε

∫ T

0

[
X3/2(t) +X2(t) +X3(t) +X4(t) +X6(t)

]
dt

+ Cε
[
X2(T ) +X4(T ) +X6(T ) +X8(T )

]
,

that is,

X(T ) +

∫ T

0

X(t)dt

≤ C1X(0) + C2

[
X2(T ) +X4(T ) +X6(T ) +X8(T )

]
dt

+ C3

∫ T

0

[
X3/2(t) +X2(t) +X3(t) +X4(t) +X6(t)

]
,

(4.59)

which finishes the proof.

Remark 4.2. With Equation (4.59) at hand, we can now apply the standard ‘barrier

method’ (cf. [7, Lemma 5.1, p 485]) to deduce the globality of the local solution, whose

existence is guaranteed by Theorem 3.4 (or Theorem 1.4) – not in the energy space

(endowed with ‖ · ‖X), but in the phase space (endowed with ‖ · ‖Zs×Ts) instead. Appa-

rently, max0≤t≤T ‖ · ‖X ≤ max0≤t≤T ‖ · ‖Z3×T3 for any 0 < T < Tmax. In Lemma 4.3,

we will show a ‘reverse’ inequality, which is sufficient for a contradiction proof (see

the proof of Theorem 4.5). After the exponential stability of the energy is established,

a second lemma, i.e., Lemma 4.7, will be presented to show the equivalence over the

whole time half-line [0,∞). In the spirit of Remark 4.1, we have:

Lemma 4.3 (Controlling max0≤t≤T ‖ · ‖Z3×T3 in terms of max0≤t≤T ‖ · ‖X). Assume

a classical solution (z, θ) to Equations (4.1a)–(4.1d) over a time interval [0, Tmax)
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satisfies the smallness condition E2(t) < ε1 from Equation (4.7), then, there holds for

any T ∈ (0, Tmax):

max
0≤t≤T

‖(z, θ)‖2
Z3×T3 ≤ C max

0≤t≤T

(
‖(z, θ)‖2

X + ‖(z, θ)‖6
X

)
for some C = C(T ) > 0.

Proof. It suffices to consider the four highest energy terms:
∥∥A3/2z

∥∥
L2(Ω)

,
∥∥zttt∥∥L2(Ω)

,∥∥A2θ
∥∥
L2(Ω)

and
∥∥A1/2θtt

∥∥
L2(Ω)

. The first one, as shown in Lemma 4.1, is bounded by

C
(
‖(z, θ)‖X+‖(z, θ)‖3

X

)
for any t ≥ 0. Using Equations (4.1a)–(4.1b), the second and

the third term can be controlled by appropriate lower order terms. Indeed, applying

∂t and A to Equations (4.1a) and (4.1b), respectively, and exploiting the bounded

invertibility of (A−1 + γ), we estimate

∥∥zttt∥∥L2(Ω)
≤ C

(∥∥Azt∥∥L2(Ω)
+
∥∥Aθt∥∥L2(Ω)

+
∥∥F ′∥∥

L2(Ω)

)
≤ C

(
‖(z, θ)‖X + ‖(z, θ)‖3

X

)
,

(4.60)

∥∥A2θ
∥∥
L2(Ω)

≤ C
(∥∥Aθt∥∥L2(Ω)

+
∥∥Aθ∥∥

L2(Ω)
+
∥∥Azt∥∥L2(Ω)

)
≤ C‖(z, θ)‖X (4.61)

for any t ≥ 0, which remains true after passing to supremum. The last term is treated

in the same fashion as in the proof of Theorem A.12. Estimating

‖zttt‖2
L2(0,T ;L2(Ω)) ≤

∫ T

0

(
X(t) +X3(t)

)
dt ≤ T

(
1 + max

0≤t≤T
X2(t)

)
max

0≤t≤T
X(t) (4.62)

via (4.60) and exploiting the maximal L2-regularity of A on (0, T ) applied to Equation

(4.1b) differentiated twice in time, the desired estimate follows.

After achieving the super-linear energy inequality (4.13) (equivalently, (4.59)) in

Lemma 4.2, we are now in the position to prove the global well-posedness. Let’s start

with the following technical lemma.
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Lemma 4.4. With the same constants C1, C2, C3, αi, and βj as in (4.13) of Lemma

4.2, all of which are independent of t, we define

k(x) = x− C2

∑
i∈I

xαi

and

h(x) = x− C3

∑
j∈J

xβj .

Furthermore, given a constant T > 0, assume the following inequality holds for any

T̃ ∈ [0, T ],

k(x(T̃ )) +

∫ T̃

0

h(x(t)) dt ≤ C1x(0), (4.63)

where x(t) is a continuous function of t ∈ [0, T ]. Then there exists a small number

ε > 0 such that, if 0 < x(0) <
ε

C1

, then

h(x(t)) > 0 for any t ∈ [0, T ]

.

Proof. Step 1: To make the presentation easier, let’s start by some notations and

several related observations. We will make five smallness assumptions of ε in this

step.

It is easy to see that the graphs of k(x) and h(x) look like the ones in Figure 4.1

and Figure 4.2.

In particular, we observe from the graphs that, since αi > 1 for any i ∈ I in the

definition of k(x) (recall (4.13)), the (algebraic) function k(x) has a unique positive
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x

C1x(0) • •

δ1 δ2

•
η

k(x)

Figure 4.1: Graph of k(x)

x
•
ξ

h(x)

Figure 4.2: Graph of h(x)
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solution denoted by η, and there also holds k(x) > 0 for x ∈ (0, η). In addition,

maxx{k(x)} is a finite positive number.

Similarly, h(x) has a unique positive solution denoted by ξ. Besides, h(x) > 0 for

x ∈ (0, ξ).

Step 2:

Smallness Assumption of ε #1: ε < max
x
{k(x)}, (4.64)

which induces C1x(0) < maxx{k(x)}. Under this assumption, there are two different

positive solutions of the equation k(x) = C1x(0), which we call δ1 and δ2, respectively.

In addition, k(x) < C1x(0)(< ε) implies x ∈ [0, δ1) ∪ (δ2,∞).

It is also clear that, as ε goes to 0, δ1 goes to 0 and δ2 goes to η, which makes the

following assumptions valid.

Smallness Assumption of ε #2: ε < C1δ2, (4.65)

which induces x(0) <
ε

C1

< δ2.

Smallness Assumption of ε #3: ε is small enough to make δ1 < ξ (4.66)

Smallness Assumption of ε #4: ε is small enough to make δ1 < ε1, (4.67)

where ε1 is the condition in Lemma 4.1 in order for the z-energy boost hold.

Step 3: Now we want to prove, by contradiction, the claim that h(x(t)) > 0 for any

t ∈ [0, T ]. If not, by the continuity of h ◦ x, let T ∗ be the smallest number in the

interval (0, T ] such that h(x(T ∗)) = 0. Hence,

x(T ∗) = ξ. (4.68)
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Here we have the last smallness assumption:

Smallness Assumption of ε #5: ε < C1ξ, (4.69)

which means x(0) <
ε

C1

< ξ. Therefore, h(x(0)) > 0. Since T ∗ the smallest positive

number to make h(x(T ∗)) = 0, it suggests that h
[
X(t)

]
≥ 0 for any t ∈ [0, T ∗].

Step 4: The above inequality, together with (4.63), suggests that k(x(t)) ≤ C1x(0) < ε

for any t ∈ [0, T ∗]. Then, by the Smallness Assumption #1, x(t) ∈ [0, δ1]∪ [δ2,∞) for

any t ∈ [0, T ∗]. Furthermore, by the Smallness Assumption #2, we can eliminate the

second interval, otherwise h(x(t)) will be greater than C1x(0) for some t ∈ (0, T ∗).

Hence,

x(t) ∈ [0, δ1] for any t ∈ [0, T ∗].

More specifically, x(T ∗) ≤ δ1 < ξ by (4.66) in Smallness Assumption #3 , which

contradicts (4.68). Therefore, the original claim is true that h(x(t)) > 0 for any

t ∈ [0, T ].

Theorem 4.5 (Global Well-posedness). Let Assumption 3.3 be satisfied for some

s ≥ 3. Then, there exists a positive number ε such that for any initial data satisfying

X(0) < ε (which roughly means the smallness of ‖z0‖2
H3(Ω) + ‖z1‖2

H2(Ω) + ‖θ0‖2
H4(Ω)),

the associated unique local solution of system (4.1a)–(4.1d) from Theorem 3.4 exists

globally, namely, Tmax =∞.

Proof. We choose ε so that Smallness Assumptions #1–5 in Lemma 4.4 are all satis-
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fied. Moreover, without loss of generality, assume 0 < X(0) < 1. Indeed, if X(0) = 0,

the only solution to (4.1a)–(4.1d) is the trivial one and, therefore, exists globally.

In order to show that Tmax = ∞, it suffices to show that the energy X(t) is

bounded by a constant independent of time t. Indeed, the contraposition is part of

what have been shown for the local solution in (3.8) of Theorem 3.4.

Notice that by Smallness Assumption #4, the condition in Lemma 4.1 is satisfied

at least over a non-trivial time interval [0, T ). We will show below that δ1 is indeed

the uniform bound mentioned above. A short argument of contradiction will deduce

that Lemma 4.1 truly holds for any positive time t. The argument is very similar as

the one in Step 3 of Lemma 4.4 and is, therefore, omitted here.

For the reason stated above, the superlinear energy inequality (4.59) holds and

satisfies all conditions in Lemma 4.4. Therefore,

k(X(T )) +

∫ T

0

h(X(t)) dt ≤ C1X(0), (4.70)

and

h(X(t)) > 0 (4.71)

for any T ∈ [0, Tmax]. Exploiting Equations (4.71) and (4.70), we get k
[
X(t)

]
≤

C1X(0) for any t ≥ 0, which leads to the global bound on X(t)

X(t) ≤ δ1 for any t ≥ 0 (4.72)

by a similar argument as above. Hence, after a possible rescaling, Assumption 3.3 is

satisfied by (z, zt, θ)(Tmax, ·). Therefore, Theorem 3.4 implies the solution exists on
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[Tmax, T
′) for some T ′ > Tmax, which contradicts the maximality of [0, Tmax).

Corollary 4.6 (Exponential Stability). Under the assumptions of Theorem 4.5 with

X(0) < ε̃ for some positive number ε̃ (possibly smaller than the ε from Theorem 4.5),

there exist positive constants C and k such that

X(t) ≤ e−ktCX(0) for t ≥ 0. (4.73)

Proof. Let k(x) and h(x) be defined as in Lemma 4.4. Define k̂(x) =
k(x)

x
and

ĥ(x) =
h(x)

x
. Notice that, since αi, βj > 1, both k̂(x) and ĥ(x) contain terms of

non-negative power of x, only.

We can then rewrite Equation (4.13) again as follows:

X(T ) · k̂(X(T )) +

∫ T

0

X(t) · ĥ(X(t)) dt ≤ C1X(0). (4.74)

Choosing a bound ε3 on X(0) small enough, we can make the global bound δ1 of X(t)

satisfy

k̂(δ1) ≥ 1
2

and ĥ(δ1) ≥ 1
2
.

These lower bounds hold for any k̂(x(t)) and ĥ(x(t)) as these two function are both

decreasing with respect to x. Together with Equation (4.74), it implies

X(T ) +

∫ T

0

X(t)dt ≤ 2C1X(0), (4.75)

which gives X(T ) ≤ 2C1X(0) for any T > 0. Now we impose the final assumption

on X(0). Recall the number ε from The Smallness Assumptions #1–5, and let

ε̃ = min
{
ε, ε

2C1
, ε3

}
. (4.76)
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Since X(0) < ε̃ ≤ ε
2C1

, then X(t) ≤ ε for any t > 0. Thus, Equation (4.75) can be

extended to

X(T ) +

∫ T

s

X(t)dt ≤ 2C1X(s) (4.77)

for any s ∈ (0, T ]. Hence,

X(t) ≥ 1
2C1

X(T ) for t ∈ [0, T ]. (4.78)

Combining Equation (4.78) with (4.75), we get X(T ) + T
2C1

X(T ) ≤ 2C1X(0). There-

fore,

X(T ) ≤ 1

1 + T
2C1

X(0) for any T > 0. (4.79)

By choosing T large enough, we get

X(T ) ≤ κX(0) for some κ < 1. (4.80)

Repeating the procedure on [T, 2T ], [2T, 3T ], etc., we arrive at

X(t) ≤ κdt/T eX(0) ≤ κt/TX(0) ≤ e−
(
| ln(κ)|/T

)
tX(0) for t ≥ 0,

which finishes the proof.

We have now proved all main results stated in Section 1.2 in the energy space

associated with sup0≤t<∞X(t) from Equation (4.6). As announced in Remark 4.1

and stated in Lemma 4.7, the Banach space generated by the energy (supremum)

sup0≤t<∞X(t) is isomorphic to the solution space in Equation (4.2) from our Theorem

3.4 for s = 3 when the initial data are sufficiently small.
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Lemma 4.7 (Equivalence of sup0≤t<∞ ‖ · ‖Z3×T3 and sup0≤t<∞ ‖ · ‖X). If a classical

solution (z, θ) to Equations (4.1a)–(4.1d) is global, satisfies the smallness condition

E2(t) < ε1 from Equation (4.7) and decays exponentially as in Equation (4.73), both

norms mentioned above are equivalent:

c1 sup
0≤t<∞

‖(z, θ)‖X ≤ ‖(z, θ)‖Z3×T3 ≤ c2 sup
0≤t<∞

‖(z, θ)‖X for some c1 and c2 > 0.

(4.81)

Proof. The former inequality is trivial. For the latter one, in contrast to Lemma 4.3,

all superlinear terms are linearly dominated because they are bounded by 1, and we

are only left to show Equation (4.62) with a constant independent of T . However,

due to the exponential decay of X(t) (Equation (4.73)), (4.62) becomes

‖zttt‖2
L2(0,∞;L2(Ω)) ≤ C̃

∫ ∞
0

X(t)dt ≤ C̃C

∫ ∞
0

e−ktX(0)dt ≤ c2X(0) ≤ c2 sup
0≤t<∞

X(t).

(4.82)

With A’s maximal L2-regularity on (0,∞), the estimate for sup0≤t<∞
∥∥A1/2θtt

∥∥
L2(Ω)

follows.

Since the Smallness Assumption #1–5 are satisfied in both Theorem 4.5 and

Equation (4.76) of Corollary 4.6, we resubstitute w = A−1z and conclude with the

desired results Theorem 1.5 and 1.6.



Appendix: Existence Theory for

Linear Evolution Equations

Let Ω ⊂ Rd be a bounded domain with a Cs-boundary ∂Ω for some s ≥ bd
2
c+ 2 and

let T > 0 be arbitrary, but fixed. The following well-posedness results are based on

Kato’s solution theory [10] for abstract time-dependent evolution equations and its

improved version presented by Jiang and Racke in [9, Appendix A] as well as maximal

Lp-regularity theory (see, e.g., [12]).

Thoughout this appendix and in the proof of Theorem 3.4, we employ the following

notation. For n ≥ 0, we define

D̄n :=
(
(∂t,∇)α | 0 ≤ |α| ≤ n

)
and H0

0 (Ω) ≡ H0(Ω) := L2(Ω).

Let φδ : R→ [0,∞) denote the one-dimensional Friedrichs’ mollifier with a ‘band-

width’ δ > 0. For an L1-function z : [0, T ]× Ω→ R, we let

zδ(t, ·) =

∫ T

0

φδ(t− s)z(s, ·)ds for t ∈ [0, T ] in Ω.

For details on approximation properties of mollifiers, we refer to [23, Chapters 8 and

64
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9]. The following result is known from [9, Lemma A.12].

Lemma A.8. Let a ∈ C1
(
[0, T ], L∞(Ω)

)
, v ∈ C0

(
[0, T ], L2(Ω)

)
,

and w ∈ L2
(
0, T ;H−1(Ω)

)
. Then, for any sufficiently small ε > 0, there holds∫ T−ε

ε

∥∥∂t((av)δ(t, ·)− avδ(t, ·)
)∥∥2

L2(Ω)
dt→ 0 and∫ T−ε

ε

‖wδ(t, ·)‖2
H−1(Ω)dt→

∫ T−ε

ε

‖w(t, ·)‖2
H−1(Ω)dt as δ → 0.

A.1 Linear Wave Equation

We consider a general linear wave equation with time- and space-dependent coeffi-

cients:

ztt(t, x)− āij(t, x)∂xi∂xjz(t, x) = f̄(t, x) for (t, x) ∈ (0, T )× Ω, (A.1a)

z(t, x) = 0 for (t, x) ∈ [0, T ]× ∂Ω, (A.1b)

z(0, x) = z0(x), zt(0, x) = z1(x) for x ∈ Ω. (A.1c)

Assumption A.9. Let s ≥ bd
2
c+2 be a fixed integer and let γ0, γ1 be positive numbers.

Assume the following conditions are satisfied.

1. Coefficient symmetry: āij(t, x) = āji(t, x) for (t, x) ∈ [0, T ]× Ω̄.

2. Coefficient regularity: āij ∈ C0
(
[0, T ]× Ω̄

)
and

∂xk āij ∈ L∞
(
0, T ;Hs−1(Ω)

)
, ∂mt āij ∈ L∞

(
0, T ;Hs−1−m(Ω)

)
for m = 1, 2, . . . , s− 1.
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3. Coercivity: For z ∈ H1
0 (Ω) and t ∈ [0, T ],

‖z‖2
H1(Ω) ≤ γ0

(
〈āij∂xiz, ∂xjz〉L2(Ω) + ‖z‖2

L2(Ω)

)
.

4. Elliptic regularity: For m = 0, 1, . . . , s− 2, z(t, ·) ∈ H1
0 (Ω)

and āij(t, ·)∂xi∂xjz(t, ·) ∈ Hm(Ω) for a.e. t ∈ [0, T ] implies u(t, ·) ∈ Hm+2(Ω)

and for a.e. t ∈ [0, T ],

‖z(t, ·)‖Hm(Ω) ≤ γ1

(
‖āij(t, ·)∂xi∂xjz(t, ·)‖Hm(Ω) + ‖z(t, ·)‖L2(Ω)

)
.

5. Right-hand side regularity: For m = 0, 1, . . . , s− 2,

∂mt f̄ ∈ C0
(
[0, T ], Hs−2−m(Ω)

)
, ∂s−1

t f̄ ∈ L2(0, T ;L2(Ω)
)
.

6. Compatibility conditions: For m = 0, 1, . . . , s− 1,

z̄m ∈ Hs−m(Ω) ∩H1
0 (Ω), z̄s ∈ L2(Ω),

where z̄m is recursively defined by

z̄0(x) = z0(x), z̄1(x) = z1(x),

z̄m(x) =
(m−2∑
n=0

(
m− 2

n

)
∂nt āij∂xi∂xj z̄

m−2−n + ∂m−2
t f̄i

)
(0, x) for m ≥ 2

for x ∈ Ω.

Note that Assumption A.9.2 differs from [9, Assumption A.2.1.1]. This extra regula-

rity for āij will enable us to prove our a priori estimate at an energy level which is

one order lower than in [9, Theorem A.13].
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Theorem A.10. Under Assumption A.9, the initial boundary value problem (A.1a)-

(A.1c) possesses a unique classical solution, which satisfies

z ∈
s−1⋂
m=0

Cm
(
[0, T ], Hs−m(Ω) ∩H1

0 (Ω)
)
∩ Cs

(
[0, T ], L2(Ω)

)
.

Moreover, for d ∈ {2, 3}, letting

φ0 = ‖āij(0, ·)‖L∞(Ω) + ‖∂xk āij(0, ·)‖Hs−1(Ω),

φ = sup
0≤t≤T

(
‖āij(t, ·)‖L∞(Ω) + ‖∂xk āij(t, ·)‖Hs−1(Ω) +

s−1∑
m=1

‖∂mt āij(t, ·)‖Hs−1−m(Ω)

)
,

there exists a positive number K1, which is a continuous function of φ0, γ0 and γ1,

and a positive number K2, which continuously depends on φ, γ0 and γ1, such that

sup
0≤t≤T

‖D̄sz(t, ·)‖2
L2(Ω) ≤ K1Λ0 exp

(
K2T

1/2(1 + T 1/2 + T + T 3/2)
)
,

where

Λ0 :=
s∑

m=0

‖z̄‖2
Hs−m(Ω) +(1+T ) sup

0≤t≤T

∥∥D̄s−2f̄(t, ·)
∥∥
L2(Ω)

+T 1/2

∫ T

0

‖∂s−1
t f̄(t, ·)‖2

L2(Ω)dt.

Proof. Our proof is based on an abstract well-posedness and regularity result [9,

Theorems A.3 and A.9].

Existence and uniqueness at basic regularity level. Similar to the proof of [9, Theorem

A.11], we define for t ∈ [0, T ] a bounded linear operator

A(t) :=

 0 −1

−āij(t, ·)∂xi∂xj 0

 : Y1 −→ X0, (A.2)
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where the Hilbert space X0 := H1
0 (Ω) × L2(Ω) is equipped with the standard inner

product induced by the product topology, whereas the inner product on the Hilbert

space Y1 := H2(Ω) ∩H1
0 (Ω) reads as

〈V, V̄ 〉t :=
〈
āij(t, ·)∂xiz, ∂xj z̄

〉
L2(Ω)

+ 〈y, ȳ〉L2(Ω) (A.3)

for V = (z, y) and V̄ = (z̄, ȳ) ∈ X0. Due to uniform coercivity of āij and by virtue of

Poincaré-Friedrichs’ inequality, each of the norms induced by 〈·, ·〉t for any t ∈ [0, T ]

is equivalent to the standard norm on X0. With this notation, letting V := (z, ∂tz),

Equations (A.1a)–(A.1c) can be rewritten as an abstract Cauchy problem

∂tV (t) + A(t)V (t) = F (t) in (0, T ), V (0) = V 0 (A.4)

with F = (0, f̄) and V 0 = (z0, z1).

We want to show that the triple
(
A;X0, Y1

)
is a CD-system in sense of [9, Section

A.1]. For t ∈ [0, T ], consider the elliptic problem

(
A(t) + λ

)
V = F with F ∈ X0.

Recalling Assumption A.9.3, Lemma of Lax & Milgram implies the resolvent estimate

∥∥(A(t) + λ
)−1∥∥

L(X0)
≤ 1

λ−C for λ > β for some constants β, C > 0, (A.5)

where we used Assumption A.9.2 and Sobolev’s imbedding theorem to deduce

aij(t, ·) ∈ W 1,∞(Ω) for any t ∈ [0, T ].

The continuity of the bilinear form follows similarly. By standard elliptic regularity

theory applied to A(t), which is possible because of Assumption A.9.2 and A.9.4 as
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well as Cs-smoothness of ∂Ω, the maximal domain of A(t) coincides with Y1. Hence,

the operator A(t) is closed. This along with Equation (A.5) implies (β,∞) ⊂ ρ
(
A(t)

)
.

Therefore,
(
A(t); t ∈ [0, T ]

)
is a stable family of infinitesimal negative generators of

C0-semigroups on X0 with stability constants 1, β. Taking into account regularity

conditions from Assumption A.9.5, we can apply [9, Theorem A.3], we get a unique

classical solution

V ∈ C0
(
[0, T ], Y1

)
∩ C1

(
[0, T ], X0

)
at the at basic regularity level, which is equivalent to

z ∈ C2
(
[0, T ], L2(Ω)

)
∩ C1

(
[0, T ], H1

0 (Ω)
)
∩ C0

(
[0, T ], H2(Ω) ∩H1

0 (Ω)
)
.

Higher regularity. For the proof of higher solution regularity, we consider the following

increasing double scale (Xj, Yj) of Hilbert spaces

Xj =
(
Hj+1(Ω) ∩H1

0 (Ω)
)
×Hj(Ω) for j ≥ 1,

Y j =
(
Hj+1(Ω) ∩H1

0 (Ω)
)
×
(
Hj(Ω) ∩H1

0 (Ω)
)

for j ≥ 1, Y0 = X0.

By virtue of Equation (A.2), the condition

∂tA ∈ Lip
(
[0, T ], L(Yj+r+1, Xj)

)
for j = 0, . . . , s− r − 1 and r = 0, . . . , s− 2

is equivalent to

∂rt āij(t, ·)∂xi∂xj ∈ Lip
(
[0, T ], L

(
Hj+r+2(Ω) ∩H1

0 (Ω), Hj(Ω)
))

(A.6)

for j = 0, . . . , s− r − 1 and r = 0, . . . , s− 2, while the latter is a direct consequence

of Assumption A.9.2 and Sobolev imbedding theorem due to the fact Hbd/2c+1(Ω) ↪→
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L∞(Ω). Similarly, exploiting Assumption A.9.4, one can easily verify for j = 0, . . . , s−

2 and φ ∈ Y1 and a.e. t ∈ [0, T ] that A(t)φ ∈ Xj implies

φ ∈ Yj+1 and ‖φ‖Yj+1
≤ K

(
‖A(t)φ‖Xj

+ ‖φ‖X0

)
for some constant K > 0,

which does not depend on φ. Further, Assumption A.9.5 yields

∂tF ∈ C0
(
[0, T ], Xs−1−k

)
for k = 0, . . . , s− 2 and ∂s−1

t F ∈ L1(0, T ;X0).

Finally, Assumption A.9.6 implies compatibility conditions in sense of [9, Equations

(A.8) and (A.9)]. Hence, applying [9, Theorem A.9] at the energy level s − 1, we

obtain additional regularity for the classical solution satisfying

V ∈
s−1⋂
m=0

Cm
(
[0, T ], Ys−1−m

)
.

Rewriting z in terms of V , this yields the desired regularity for z.

Energy estimates. For n = 1, . . . , s − 1, applying the ∂n−1
t -operator to Equation

(A.1a), we obtain a linear wave equation for ∂n−1
t z reading as

∂2
t

(
∂n−1
t z

)
− āij∂xi∂xj

(
∂n−1
t z

)
= hn−1 in (0,∞)× Ω, (A.7)

where we used Leibniz’ rule to compute

hn−1 = ∂n−1
t f̄ +

n−1∑
m=1

(
n− 1

m

)(
∂mt āij

)
∂xi∂xj∂

n−1−m
t z. (A.8)

Multiplying Equation (A.7) in L2(Ω) with ∂nt z, applying Green’s formula and
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using Young’s inequality, we obtain the estimate

1
2
∂t
(
‖∂nt z(t, ·)‖2

L2(Ω) + ‖ā(t, ·)∇∂n−1
t z(t, ·)‖2

L2(Ω)

)
≤ 1

2

∥∥(∂xi āij(t, ·))∂xjz(t, ·)‖2
L2(Ω) + ‖∂nt z(t, ·)‖2

L2(Ω) + 1
2
‖hn−1(t, ·)‖2

L2(Ω).

Integrating w.r.t. to t over [0, T ], exploiting Assumption A.9.3 and recalling the

definition of φ0, we get

‖∂nt z(t, ·)‖2
L2(Ω)+‖∂n−1

t z(t, ·)‖2
H1(Ω) ≤ C(γ0, φ0)

(
‖z̄n‖2

L2(Ω) + ‖z̄n−1‖2
H1(Ω)

)
+ C(γ0, φ)

∫ t

0

(
‖∂nt z(τ, ·)‖2

L2(Ω) + ‖∂n−1
t z(τ, ·)‖2

H1(Ω)

)
dτ

+ C(γ0)

∫ t

0

‖hn−1(τ, ·)‖2
L2(Ω)dτ,

(A.9)

where we used Sobolev imbedding theorem to estimate

max
0≤t≤T

‖∂xi āij(t, ·)‖L∞(Ω) ≤ C max
0≤t≤T

‖∂xi āij(t, ·)‖Hs−1(Ω) ≤ φ.

Here and in the sequel, C denotes a positive generic constant which does not depend

on the unknown function z.

To derive an estimate for ∂st z and ∇∂s−1
t z, we need to employ a molifier technique

similar to [9, Section A.2]. First, we select 0 < δ < ε < T . Convolving Equations

(A.7) for n = s− 1 with φδ, we obtain for t ∈ [ε, T − ε]

(∂st z)δ − āij
(
∂xi∂xj∂

s−2
t z

)
δ

= (hs−2)δ + ηs(·, ·; δ) (A.10)

with a correction term

ηs(t, ·; δ) =
(
āij∂

s−2
t ∂xi∂xjz

)
δ
− āij

(
∂s−2
t ∂xi∂xjz

)
δ

for t ∈ [0, T ].
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Differentiating Equation (A.10) w.r.t. t

∂t(∂
s
t z)δ − ∂t

(
āij
(
∂xi∂xj∂

s−2
t z

)
δ

)
= ∂t(h

s−2)δ + ∂tη
s(·, ·; δ),

multiplying the resulting equation in L2(Ω) with ∂st zδ, applying Green’s formula and

using Young’s inequality, we estimate

1
2
∂t
(
‖(∂nt z)δ(t, ·)‖2

L2(Ω) + ‖ā(t, ·)∇(∂n−1
t z)δ(t, ·)‖2

L2(Ω)

)
≤ 1

2

∥∥(∂xi āij(t, ·))∂xjzδ(t, ·)∥∥2

L2(Ω)
+ 1

2
(2 + T−1/2)‖(∂nt z)δ(t, ·)‖2

L2(Ω)

+ 1
2
T 1/2‖∂ths−2

δ (t, ·)‖2
L2(Ω) + 1

2
‖ηs(t, ·; δ)‖2

L2(Ω).

(A.11)

Here, we exploited the fact (∂tz)δ = ∂tzδ if w is once weakly differentiable w.r.t. t,

zδ|∂Ω = z|∂Ω and (∂xiz)δ = ∂xizδ if w is once weakly differentiable w.r.t. xi. Now,

integrating Equation (A.11) w.r.t. t over [ε, T − ε], letting δ and then ε go to zero,

exploiting the regularity of z, applying Lemma A.8 and using Assumption A.9.3 , we

get

‖∂st z(t, ·)‖2
L2(Ω) + ‖∂s−1

t z(t, ·)‖2
H1(Ω) ≤ C(γ0, φ0)

(
‖z̄s‖2

L2(Ω) + ‖z̄s−1‖2
H1(Ω)

)
+ C(γ0, φ)(1 + T−1/2)

∫ t

0

(
‖∂nt z(τ, ·)‖2

L2(Ω) + ‖∂n−1
t z(τ, ·)‖2

H1(Ω)

)
dτ

+ C(γ0)T 1/2

∫ t

0

‖hs−2(τ, ·)‖2
L2(Ω)dτ.

(A.12)

Combining Equations (A.9) and (A.12) leads to
s∑

n=1

(
‖∂nt z(t, ·)‖2

L2(Ω) + ‖∂m−1
t z(t, ·)‖2

H1(Ω)

)
≤ C(γ0, φ0)Λ0

+ C(γ0, φ)(1 + T−1/2)

∫ t

0

‖D̄sz(τ, ·)‖2
L2(Ω)dτ

+ C(γ0)
s−1∑
n=1

∫ t

0

‖hn−1(τ, ·)‖2
L2(Ω)dτ + C(γ0)T 1/2

∫ t

0

‖∂ths−2(τ, ·)‖2
L2(Ω)dτ.

(A.13)
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Using Sobolev imbedding theorem

W 1,2(Ω) ↪→ L6(Ω) ↪→ L4(Ω) for d ≤ 3,

we can estimate

n−1∑
m=1

‖(∂mt āij)∂n−1−m
t ∂xi∂xjz

∥∥2

L2(Ω)
≤

min{n−1,1}∑
m=1

‖∂mt āij‖2
L∞(Ω)‖∂n−1−m

t z‖2
H2(Ω)

+
n−1∑

m=min{n,2}

‖∂mt āij‖2
L4(Ω)‖∂n−1−m

t z‖2
W 2,4(Ω)

≤ C(φ)‖D̄nz‖2
L2(Ω) + C

n−1∑
m=min{n,2}

‖∂mt āij‖2
H1(Ω)‖∂n−1−m

t z‖2
W 3,2(Ω)

≤ C(φ)‖D̄nz‖2
L2(Ω) + C

n−1∑
m=min{n,2}

‖∂mt āij‖2
Hs−1−m(Ω)‖D̄n−m+2z‖2

L2(Ω)

≤ C(φ)‖D̄s−1z‖2
L2(Ω).

Recalling Equation (A.8), we obtain∫ t

0

‖hn−1(τ, ·)‖2
L2(Ω)dτ ≤ t max

0≤τ≤t
‖∂n−1

t f̄(τ, ·)‖2
L2(Ω)

+ C(φ)

∫ t

0

‖D̄s−1z(t, ·)‖2
L2(Ω)dτ

(A.14)

for n = 1, . . . , s− 1 and t ∈ [0, T ]. Similarly, for t ∈ [0, T ],

∫ t

0

‖∂ths−2(τ, ·)‖2
L2(Ω)dτ ≤

∫ t

0

‖∂s−1
t f̄(t, ·)‖2

L2(Ω)dτ + C(φ)

∫ t

0

‖D̄sz(τ, ·)‖2
L2(Ω)dτ.

(A.15)

Now, combining Equation (A.13) as well as Equations (A.14) and (A.15), we arrive
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at
s∑

n=1

(
‖∂nt z(t, ·)‖2

L2(Ω) + ‖∂n−1
t z(t, ·)‖2

H1(Ω)

)
≤ C(γ0, φ0)Λ0 + C(γ0, φ)(1 + T 1/2 + T−1/2)

∫ t

0

‖D̄sz(τ, ·)‖2
L2(Ω)dτ for t ∈ [0, T ].

(A.16)

To finish the proof, we need to establish estimates for the remaining derivatives.

For n = 1, . . . , s − 1, consider Equation (A.7). Application of the elliptic regularity

(viz. Assumption A.9.4) with m = s− n− 1 yields

‖∂n−1
t z(t, ·)‖2

Hm+2(Ω) ≤ γ1

(
‖∂n+1

t z(t, ·)‖2
Hm(Ω) + ‖hn−1(t, ·)‖2

Hm(Ω)

+‖∂n−1
t z(t, ·)‖2

Hm(Ω)

)
for t ∈ [0, T ].

(A.17)

Using Assumption A.9.1, Sobolev imbedding theorem and Jensen’s inequality and

applying the fundamental theorem of calculus to the second term on the right-hand

side of Equation (A.17), we obtain

‖hn−1(t, ·)‖2
Hm(Ω) ≤

≤ C(φ0)Λ0 + CT
n−1∑
k=1

∫ t

0

∥∥∂t((∂kt āij)∂n−1−k
t ∂xi∂xjz

)∥∥2

Hm(Ω)
(τ, ·)dτ

≤ C(φ0)Λ0 + C(φ)T

∫ t

0

‖D̄sz(τ, ·)‖2
L2(Ω)dτ.

(A.18)

Note that this estimate is only true if s ≥ 3, which is trivially satisfied due to

Assumption A.9. Combining Equations (A.16), (A.17) and (A.18) finally yields

‖D̄sz(t, ·)‖2
L2(Ω) ≤ C(γ0, γ1, φ0)Λ0

+ C(γ0, γ1, φ)(1 + T 1/2 + T + T−1/2)

∫ t

0

‖D̄sz(τ, ·)‖2
L2(Ω)dτ

for any t ∈ [0, T ]. The claim is now a direct consequence of Gronwall’s inequality.
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Remark 4.3. It should be pointed out that our proof differs from that of Jiang and

Racke [9] as we can carry it out at the energy level s ≥ [d
2
]+2 whereas Jiang and Racke

[9] require s ≥ [d
2
] + 3. This “improvement” is possible since Theorem A.10 is applied

to a quasilinear wave equation with the quasilinearity depending on the function itself

and not its gradient. A comment on this issue can also be found in [10, Remark 14.4].

A.2 Linear Heat Equation

In this appendix section, we consider an initial-boundary-value problem with Dirichlet

boundary conditions for the linear homogeneous isotropic heat equation reading as

θt(t, x)− a4θ(t, x) = ḡ(t, x) for (t, x) ∈ (0, T )× Ω, (A.19a)

θ(t, x) = 0 for (t, x) ∈ [0, T ]× ∂Ω, (A.19b)

θ(0, x) = θ0(x) for x ∈ Ω. (A.19c)

We present a well-posedness result for Equations (A.19a)–(A.19c). In contrast to [9,

Chapter A.3], our proof is based on the operator semigroup theory, in particular,

the maximal L2-regularity theory, which is equivalent to analyticity of the semigroup

generated by Dirichlet-Laplacian. A different technique is employed here to obtain a

higher solution regularity needed for the fixed-point iteration in Theorem 3.4. Besides,

the topologies used for the data (θ0, ḡ) and the solution θ differ from those in [9,

Chapter A.3].
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Assumption A.11. Let s ≥ 2 and a > 0. Assume the following assumptions are

satisfied.

1. Right-hand side regularity: For k = 0, . . . , s− 1, ∂kt ḡ ∈ C0
(
[0, T ], Hs−1−k(Ω)

)
.

Recall H0
0 (Ω) ≡ H0(Ω) := L2(Ω).

2. Regularity and compatibility conditions: For k = 0, 1, . . . , s− 2, let

θ̄k ∈ Hs+1−k(Ω) ∩H1
0 (Ω) and θ̄s−1 ∈ H1

0 (Ω),

where θ̄k’s are given by

θ̄l(x) = al4lθ0(x) +
l−1∑
n=0

an4nθ0(x) ∂l−1−n
t ḡ(0, x) for x ∈ Ω and l = 0, . . . , s− 1.

Theorem A.12. Under Assumption A.11, the system (A.19a)–(A.19c) possesses a

unique classical solution satisfying

∂kt θ ∈ C0
(
[0, T ], Hs+1−k(Ω) ∩H1

0 (Ω)
)

for k = 0, . . . , s− 2,

∂s−1
t θ ∈ C0

(
[0, T ], H1

0 (Ω)
)
∩ L2

(
0, T ;H2(Ω) ∩H1

0 (Ω)
)

and ∂st θ ∈ L2
(
0, T ;L2(Ω)

)
.

Moreover, there exists a constant C > 0 such that

s−2∑
k=0

max
0≤t≤T

‖∂kt θ(t, ·)‖2
Hs+1−k(Ω) + max

0≤t≤T
‖∂s−1

t θ(t, ·)‖2
H1(Ω)

+

∫ T

0

(
‖4∂s−1

t θ(t, ·)‖2
L2(Ω) + ‖∂st θ(t, ·)‖2

L2(Ω)

)
dt ≤ CΘ0,

where

Θ0 = (1 + T )
( s−2∑
k=0

‖θ̄k‖2
Hs+1−k(Ω) + ‖θ̄s−1‖2

H1(Ω) +
s−1∑
k=0

max
0≤t≤T

‖∂kt ḡ(t, ·)‖2
Hs−1−k(Ω)dt

)
.
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Proof. Let A := 4D denote the L2-realization of the Dirichlet-Laplacian with the

domain

D(A) :=
{
θ ∈ H1

0 (Ω)
∣∣4θ ∈ L2(Ω)

}
= H2(Ω) ∩H1

0 (Ω),

where the latter identity follows by standard elliptic regularity theory. (Note the

difference in sign over Chapters3 and 4.) Using Lax & Milgram lemma to prove the

resolvent identity

sup
λ∈C\(−∞,0]

∥∥λ(λ− A)−1
∥∥
L(L2(Ω))

<∞,

we conclude that aA generates a bounded analytic semigroup of angle π
2

on L2(Ω).

Due to the Hilbert space structure, [12, 1.7 Corollary] further implies aA has the

maximal Lp-regularity property.

Consider the solution map S sending (θ̃0, g̃) to the (mild) solution θ̃ of

θ̃t − aAθ̃ = g̃ in (0, T ), θ̃(0, ·) = θ̃0. (A.20)

By classic C0-semigroup theory and the maximal Lp-regularity theory, we have:

• The mapping

S : H1
0 (Ω)× L2

(
0, T ;L2(Ω)

)
→ H1

(
0, T ;L2(Ω)

)
∩ L2

(
0, T ;H2(Ω) ∩H1

0 (Ω)
)

(A.21)

is well-defined as an isomorphism between the two spaces.

• The mapping

S :
(
H2(Ω) ∩H1

0 (Ω)
)
×C1

(
[0, T ], L2(Ω)

)
→

C1
(
[0, T ], L2(Ω)

)
∩ C0

(
[0, T ], H2(Ω) ∩H1

0 (Ω)
) (A.22)
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is well-defined and continuous in respective topologies.

Existence and uniqueness at basic level: On the strength of Assumption A.11, we (in

particular) have θ0 ∈ H2
0 (Ω) ∩ H1

0 and ḡ ∈ C1
(
[0, T ], L2(Ω)

)
. Hence, there exists a

unique classical solution

θ ∈ C1
(
[0, T ], L2(Ω)

)
∩ C0

(
[0, T ], H2(Ω) ∩H1

0 (Ω)
)

(A.23)

to Equations (A.19a)–(A.19c).

Higher regularity in time: We argue by induction over k = 1, . . . , s − 2 starting at

k = 1. Applying ∂kt to Equation (A.19a) and using Assumption A.11.2, we obtain

(in distributional sense)

∂t(∂
k
t θ)− aA(∂kt θ) = ∂kt ḡ in (0, T ). (A.24)

This motivates to consider Equation (A.20) with

θ̃0 = θ̄k ∈ H2(Ω) ∩H1
0 (Ω) and g̃ = ∂kt ḡ ∈ C1

(
[0, T ], L2(Ω)

)
. (A.25)

By Equation (A.22),

θ̃ ∈ C0
(
[0, T ], H2(Ω) ∩H1

0 (Ω)
)
∩ C1

(
[0, T ], L2(Ω)

)
.

We now show the function

θ̄(t, ·) =
k−1∑
l=0

tl

l!
θ̄l +

∫ t

0

∫ t1

0

· · ·
∫ tk−1

0

θ̃(τ, ·)dτdtk−1 . . . dt1

coincides with ∂kt θ. By construction, θ̄ satisfies

∂t(∂
k
t θ̄)− aA(∂kt θ̄) = ∂kt ḡ in (0, T ). (A.26)
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Subtracting Equation (A.26) from Equation (A.24), multiplying with ∂k−1
t (θ̄−θ)(t, ·)

in L2(Ω) and using Green’s formula, we get

1
2
∂t
∥∥∂k−1

t (θ̄ − θ)(t, ·)
∥∥
L2(Ω)

+ a
∥∥∇∂k−1

t (θ̄ − θ)(t, ·)
∥∥
L2(Ω)

= 0. (A.27)

This along with the fact ∂ltθ̄(0, ·) ≡ θ̄l ≡ ∂ltθ(0, ·) for l = 0, . . . , k − 1 enables us to

use the Gronwall’s inequality together with the fundamental theorem of calculus to

deduce θ̄ ≡ θ. Therefore, we have shown

∂kt θ ≡ ∂kt θ̄ ≡ θ̃ ∈ C0
(
[0, T ], H2(Ω) ∩H1

0 (Ω)
)
∩ C1

(
[0, T ], L2(Ω)

)
. (A.28)

For k = s− 1, a slightly modified argument needs to be utilized. In this case, we

only have

θ̃0 = θs−1 ∈ H1
0 (Ω) and g̃ = ∂s−1

t ḡ ∈ C0
(
[0, T ], L2(Ω)

)
↪→ L2

(
0, T ;L2(Ω)

)
to plug into Equation (A.20). Instead of Equation (A.22), we use (A.21) to infer

θ̃ ∈ H1
(
0, T ;L2(Ω)

)
∩ L2

(
0, T ;H2(Ω) ∩H1

0 (Ω)
)
. (A.29)

Defining

θ̄(t, ·) =
s−2∑
l=0

tl

l!
θ̄l +

∫ t

0

∫ t1

0

· · ·
∫ ts−2

0

θ̃(τ, ·)dτdts−2 . . . dt1,

by the same kind of argument, we have θ̄ ≡ θ and, therefore,

∂s−1
t θ ≡ θ̃ ∈ H1

(
0, T ;L2(Ω)

)
∩L2

(
0, T ;H2(Ω)∩H1

0 (Ω)
)
↪→ C0

(
0, T ;H1

0 (Ω)
)
. (A.30)

Higher regularity in space: For k = 0, . . . , s− 2, applying ∂kt to Equation (A.19a), we

observe

A∂kt θ = − 1
a
∂k+1
t θ + 1

a
∂kt ḡ. (A.31)
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Hence, using the fact A is an isomorphism between Hs+1−k(Ω)∩H1
0 (Ω) and Hs−1−k(Ω)

along with Assumption A.11.1 and Equations (A.28), (A.30), we inductively obtain

(beginning at k = s− 2 and going downward to k = 0)

∂kt θ ∈ C0
(
[0, T ], Hs+1−k(Ω) ∩H1

0 (Ω)
)

for k = 0, 1, . . . , s− 2.

The ‘remaining’ case k = s− 1 has already been treated in the previous step so that

∂s−1
t θ ∈ C0

(
[0, T ], H1

0 (Ω)
)
∩H1

(
0, T ;L2(Ω)

)
∩ L2

(
0, T ;H2(Ω) ∩H1

0 (Ω)
)
.

Energy estimate. The energy estimate easily follows from the solution operator con-

tinuity.
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[22] M. Pokojovy. Zur Theorie wärmeleitender Reissner-Mindlin Platten. PhD thesis.

University of Konstanz, 2011.

[23] T. Schuster, B. Kaltenbacher, B. Hofmann, and K. S. Kazimierski. Regularization

Methods in Banach Spaces, volume 10 of Radon Series on Computational and

Applied Mathematics. Walter de Gruyter, Berlin/Boston, 2012.


	Abstract
	Acknowledgment
	Introduction
	Literature Review
	Main Results

	Model Description
	Proof of Theorem 1.4: Local Well-Posedness
	Proof of Theorem 1.5 and 1.6: Global Well-Posedness and Exponential Stability
	Appendix: Existence Theory for Linear Evolution Equations
	Linear Wave Equation
	Linear Heat Equation


