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Abstract

Speculative Software Modification (SSM) is an engineering approach for modifying software

for which either minimal or no software development information and/or artifacts are available.

Software of this form is commonly referred to as Software Of Uncertain (or Unknown) Pedigree

(or Provenance) (SOUP). SOUP raises many doubts about the existence and adequacy of desired

dependability properties (e.g., security or safety) motivating some users to apply software modi-

fications to improve or enhance the software with respect to these properties. Without necessary

development artifacts, however, modifications are made in a state of uncertainty and risk. Lack of

artifacts and associated uncertainties motivating users to modify software also present uncertainties

about how to effectively apply a modification: i.e., a modification might not be effective, break

program semantics, or not meet other user-defined constraints.

SSM is an assurance-based engineering model instantiated by engineers to alter SOUP and

address modification risks and uncertainties. The model consists of two primary components: (1) a

process architecture, and (2) an assurance case. The process architecture provides general guidelines

and activities for generating SOUP modifications. The SSM process architecture is described as an

iterative process of selecting and validating hypotheses about how to modify a specimen of SOUP.

The assurance case is used as an acceptability model to justify that any modification produced by

the SSM process will be acceptable to the system stakeholders. The assurance case is a rigorous

and comprehensive argument about the acceptability of SOUP modifications. Engineers instantiate

both the process architecture and assurance case for their particular operating environment. Once

instantiated, the process can be reused to modify any number of programs.
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This dissertation presents the rationale, components, guiding principles and activities of the

SSM model. Modifying software to enhance software security is currently an area of active research

and presents many unique challenges. In this dissertation, I focus the application of SSM to enhance

software security for illustration. Security is a composite dependability property, typically described

in terms of integrity, confidentiality and availability.

SSM is evaluated through a series of case studies examining the feasibility and practicality

of the SSM concept. In particular, feasibility and practicality is examined first by a case study

exploring the utility and form of the SSM process architecture. A subsequent case study assesses

the feasibility and practicality of applying assurance cases in SSM. A final case study examines how

engineers can determine the applicability of SSM and apply SSM concepts from “first principles”.

These case studies are based on examination of two specimen security-enhancing modification

technologies.
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Chapter 1

Introduction

“If he says profoundly, ‘I never speculate’, he is an ignorant speculator, and probably

an unsuccessful one.” — Carret, The Art of Speculation [1]

This dissertation introduces Speculative Software Modification (SSM), an engineering approach for

modifying software to establish one or more desired properties where either minimal or no software

development artifacts are available. Development artifacts include the software source code and

virtually any kind of design, development and testing documentation. Software of this form is

commonly referred to as Software Of Uncertain (or Unknown) Pedigree (or Provenance) (SOUP).

Lack of software development information about SOUP raises many doubts about the existence

and adequacy of desired dependability properties (e.g., security or safety), motivating some users to

apply software modifications to improve or enhance the software with respect to these properties.

Without necessary development artifacts, however, modifications are made in a state of uncertainty

and risk. Lack of information necessary to apply an effective modification can result in modifications

that:

• partially or completely fail to establish the desired property (e.g., failure to establish the

desired level of safety or security),

• deviate substantially from desired or expected program behavior, or

1
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• fail to meet other user-defined constraints and requirements (e.g., run-time or memory

consumption efficiency requirements).

Ideally, users of SOUP would prefer a predefined process of SOUP modification that can be

applied to a large corpus of SOUP repeatedly. If the risks of using SOUP are sufficiently high,

users might be able to justify engineering such a process themselves. In practice, the uncertainties

involved with SOUP modification necessitate some flexibility in how modifications are applied:

some approaches are more or less applicable depending on the characteristics of the software being

modified. Consequently, a predefined modification process must support generating hypotheses

about how to modify the SOUP adequately, and then assess and refine these hypotheses as deemed

necessary; i.e., engineers must sometimes speculate about how to best apply software modifications.

When engineers find themselves in a situation where modifications require speculation, they are

often unaware that they are speculating and therefore address speculation in an ad hoc manner. Some

engineers might be adamantly unwilling to accept and/or admit that they take part in speculation

as a point of pride or reputation. They might believe speculation is nothing more than guesswork

based on minimal and generally unreliable evidence. Further, they might hold that being associated

with speculation would give the impression of participating in pseudoscience and generally being

misinformed and unprofessional. Consequently, discussion about how to handle speculation properly

is easily ignored and marginalized. The premise of this dissertation is the following:

Speculation is often inevitable when modifying SOUP and a structured engineering ap-

proach is necessary to provide guidance, both in realizing that speculation is occurring

and how to engineer speculative software modifications.

Speculative Software Modification explicitly addresses speculation when modifying SOUP

to establish desired dependability properties. Resulting modifications are made with assurance

sufficient to meet the needs of the system’s stakeholders. To provide focus, this dissertation targets

applying SSM to establish/enhance software security properties specifically. This dissertation

presents the guiding principles and general mechanics of SSM.
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1.1 Disambiguating the Concept of Speculation

The term speculation is overloaded, and is associated with different concepts. In the most general

and widely applicable concept, speculation is defined as follows:

Definition 1.1. Speculation: Ideas or guesses about something that is not known [2]. The forming

of a theory or conjecture without firm evidence [3].

Another common use of the term occurs with respect to business and finance:

Definition 1.2. Financial Speculation: Assumption of unusual business risk in hopes of obtaining

a commensurate gain [2]. Investment in stocks, property, etc. in the hope of gain but with the risk of

loss [3].

Within the scope of computer science, speculation is often associated with the concept of

speculative execution of instructions performed by CPUs:

Definition 1.3. Hardware-based Speculation: A processor optimization technique in which the

processor attempts to execute instructions that are dependent on the outcome of a branch before

it is known what branch should be taken. A branch is selected and executed as if the selection is

correct. If the branch prediction is later invalidated, the speculatively executed instructions are

abandoned, and the correct branch is then executed [4].

In the context of this dissertation, the concept of speculation refers to speculative decisions in

modifying software to establish dependability properties (security, for example), and is defined as a

combination of the above definitions:

Definition 1.4. Speculative Software Modification (SSM): An engineering model for modifying

software to effect one or more dependability properties (e.g., security, safety, reliability) but with

a risk that the modified software will later be found to be unacceptable. Modifications might be

unacceptable because they are based on potentially unreliable yet necessary information to produce
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the modification. SSM selects an approach for analyzing and modifying the software speculated to

be correct, and assesses and refines the selection iteratively.

1.2 Security and SOUP

The general principles of SSM are likely applicable to various fields of study, and for enhancing

software with respect to various dependability properties; however, modifying software to enhance

software security is currently an area of active research and presents many unique challenges. As

such, this dissertation focuses on the engineering principles of SSM for which the intent of software

modification is to enhance software security specifically.

A software system is said to be secure if key assets of value are defended adequately from

malicious attacks. Typically, security attacks seek to corrupt the confidentiality, integrity, and

availability (CIA) of valued assets. No single and universally accepted definition of security exists.

Instead, the definition of adequate security is context-specific, based on the perceived value of

security-critical assets, the properties of CIA that are applicable for each asset, and, fundamentally,

the needs and opinions of the software stakeholders [5].

Comprehensive information-system security is a desirable although elusive goal. Despite

extensive research and the deployment of new technology, successful attacks against high-value

targets continue to take place with alarming frequency. For example, recent successful software

attacks on major US retailers Target, Neiman Marcus, and Michaels led to compromised customer

credit card information [6, 7, 8]. Generally, software security attacks can lead to loss of:
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• service,

• private/sensitive assets,

• customers/revenue, and

• reputation.

The ripple effect from a successful security attack may even have broader impacts, affecting

individuals and organizations that were not the direct targets of attack. For example, a successful

attack could lead to lower stock prices, affecting shareholders and potentially the stock value of

similar companies. An attack could also endanger the environment or general public safety, such as

an attack on a nuclear power facility.

1.2.1 Traditional SOUP Characteristics

A major security concern in modern software systems is the use of software for which minimal

information is available about the development of the software [9]. At the heart of this issue is

uncertainty about where the software came from and what standards were used in its development;

hence, this software is often referred to as Software Of Unknown (or Uncertain) Provenance (or

Pedigree), or SOUP [10]. Without supporting information and development artifacts, users of

SOUP might question the quality of the software and, consequently, ask whether the software is

appropriate to use.

SOUP is increasingly prevalent because of offshore software development and the widespread

use of third party software components that are developed all over the world. These practices

can lower software costs and potentially improve software quality by taking advantage of a vast

talent pool; however, the scale and complexity of globalized software development typically makes

tracking and documenting the development process difficult.

SOUP comes in a wide variety of forms, from individual code fragments, functions and libraries

to entire applications and services. SOUP often takes the form of third-party libraries, open source
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Figure 1.1: The SOUP spectrum

projects, legacy applications and commercial-off-the-shelf (COTS) software. The availability of

development information for SOUP is variable, resulting in a spectrum of SOUP “flavors.” Bishop

et al. divide the spectrum into two primary flavors [11]:

Thick SOUP: Limited or no access to software development artifacts, such as source code and

design documentation. Information about the development methodologies used to produce

the SOUP might also be unknown (e.g., COTS software).

Clear SOUP: Source code is available but all other information and documentation might be

limited or missing entirely (e.g., open source software).

Because source code facilitates easier understanding and alteration of the SOUP, the dividing

line between clear and thick SOUP is the availability of source code (see Figure 1.1). At one

extreme, absolutely no development information or artifacts are available about the software other

than the binary form of the software (extremely thick or opaque SOUP), and, at the other extreme,

most artifacts are available (extremely clear or near transparent SOUP).

1.2.2 A New SOUP Concept

The historic distinction between SOUP and any other kind of software arises from the intuition that

if users have significant doubts about the quality of the software, they might rely on knowledge of

where the software came from to address their concerns. That is, the provenance or pedigree of the

software might provide users with sufficient confidence about the software’s quality.
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For example, a user might question if the software is adequately secure—was security considered

during development of the software and to what extent? The user might consider the software

adequately secure despite the lack of information about the software if he or she knows it came

from a trusted source. For instance, the user might consider software from Microsoft acceptably

secure even without adequate development information. The assumption is that a trusted source

would use appropriate engineering practices to produce high-quality (in this case high-security)

software. If, however, the source is unknown, then the software is referred to as SOUP.

This notion of SOUP suggests that unknown provenance is the defining characteristic, yet

the term SOUP has been applied to software for which the developer is known but necessary

development artifacts are still lacking or missing altogether [11]. Hence, the term SOUP can lead to

some confusion and debate because of the use of “pedigree” and “provenance” in the acronym. For

example, a user might know their software came from Microsoft but does not trust Microsoft. In

this case, it is not clear if the software would be considered SOUP. To address this confusion, the

remainder of this dissertation uses the following altered SOUP concept:

Definition 1.5. Software Of Unacceptable Properties (SOUP): Software for which users desire

one or more necessary properties (either functional or non-functional properties), but either (1)

cannot determine reliably whether the properties exist and therefore the users consider the software

unacceptable, or (2) the software has definitively been shown to lack the necessary properties and

is unacceptable by definition.

The intuition in this altered concept of SOUP is that the fundamental problem facing users of

SOUP is not provenance or pedigree; rather, it is that users lack necessary information to determine

if the software is acceptable for their use. If information allowing users to determine the acceptability

of the software is not available, the software is likely to be considered unacceptable by a skeptical

user. Software Of Unacceptable Properties includes the traditional concept of SOUP, but also

includes any software for which missing information from the development process has led users to
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find the software unacceptable, regardless of whether the pedigree or provenance of the software is

known.

While all software systems have residual doubts and uncertainties, software is considered SOUP

in the context of this dissertation only when the unknowns or uncertainties make the use of the

software unacceptable to the system stakeholders. This concept also includes the possibility that the

software has been definitively shown or proven to be inadequate.

1.2.3 Targeted SOUP Users

Because SOUP is practically ubiquitous and can take various forms, users of SOUP can can also

come in a variety of forms, such as:

• Individuals using SOUP for private purposes,

• Developers using SOUP as a component of a product to be sold or used internally within an

organization, or

• Organization, companies or government agencies in which SOUP is a component within a

large software system consisting of numerous software applications and services.

All users of SOUP are confronted by the same concerns about the SOUP’s quality; however, the

target scenario for this dissertation is primarily for security-critical organizations, and potentially

also for developers of security-critical software. These users encounter large quantities of SOUP,

and the impacts of SOUP with poor security can be substantial. As such, these users can justify

spending engineering resources to address security concerns themselves. The work presented in this

dissertation is motivated by the need for and the challenges associated with using SOUP within a

security-critical organization.
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1.3 Making SOUP Acceptable

The potential impact of using Software Of Unacceptable Properties often motivates users to take

proactive measures to establish adequate assurance that critical dependability properties are present

in SOUP prior to deployment. This is especially the case when using SOUP in security-critical

settings (as is the focus of this dissertation). In security-critical software, critical assets of the

software (e.g., essential services or sensitive personal/financial information) must be defended

adequately against attacks on confidentiality, integrity and availability. If the software cannot be

shown to defend these assets adequately, or has been shown not to defend them, the software cannot

be used in its original form.

1.3.1 Build, Buy, Examine or Modify?

One way to avoid the uncertainties associated with using SOUP is to develop the necessary software

in-house from scratch. In practice, this is usually impractical because of the required engineering

effort and costs. Further, the necessary algorithms to recreate the software might not be publicly

available nor easily reverse engineered from the original software.

A second option is to seek acceptable alternative software, i.e., non-SOUP alternatives that have

the desired properties, but this approach is also problematic. A non-SOUP alternative might not

exist, might lack the necessary functionality, or might raise its own set of uncertainties about its

security properties. Users might be able to find alternatives in some scenarios; however, SOUP is

extremely common and might be unavoidable.

A third option is to conduct an appropriate set of analyses (testing, static analysis, etc.) on

the subject program to determine if the desired property is present. If analysis can show that the

software is acceptable, then the software can be used in its original form. Unfortunately, analysis

might fail to show that the software is acceptable for several reasons:

1. suitable analysis techniques and tools might not exist,

2. suitable analysis techniques might not provide conclusive results,
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3. the resources required to conduct the analyses might not be available, or

4. the time required to conduct the analyses might delay use of the SOUP unreasonably.

Further, even if an analysis did exist, the software might be found to be devoid of the desired

property.

If users have no other recourse than to use SOUP, rather than abandoning a software solution

altogether, they could attempt to achieve suitable security in the software either by:

1. altering the operating environment in which the software executes (e.g., the hardware or the

operating system), or

2. directly modifying the software itself.

Software modification has the benefit of being localized to an individual program, potentially

decreasing the complexity of a modification and minimizing the impact of an incorrect modification.

In addition, diverse modifications are likely to be more easily deployed than using diverse hardware

or operating systems. Although the techniques presented in this dissertation might generalize to

modifications of the operating environment, the scope of this dissertation is the direct modification

of the SOUP itself.

1.3.2 Modification Challenge 1: Sources of Uncertainty

The unknown and uncertain software characteristics motivating the need for SOUP modification

also present significant challenges to modification development. There are two general categories of

uncertainties and unknowns affecting the successful application of security modification techniques:

1. Uncertain SOUP: Lack of prior knowledge about which programs will need to be modified.

2. Analysis Limitations: Limitations of chosen SOUP analysis methods that lead to potentially

unreliable data upon which a modification is based.
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Uncertain SOUP

Prior knowledge about SOUP characteristics might be unavailable and uncertain as result of the

need within an organization to apply modifications across a range of software, which might change

daily. For example, an organization using hundreds of applications cannot anticipate the form of

updates and upgrades that will be needed in the future. Additionally, as an organization evolves,

their software needs might also evolve, requiring the use of completely new software.

Attempting to modify software in settings such as these by engineering a modification technique

on an individual program basis might be impractical due to the number of applications and updates.

Instead, a few modification techniques must be chosen and applied throughout the organization;

however, without knowing the precise details of the software to modify, it is difficult to anticipate

how effective chosen modifications will be beforehand. In essence, the issue is a potential for SOUP

to have characteristics that might violate necessary assumptions for a given set of modifications to

be successful. Example SOUP characteristics affecting modification include:

• Size and complexity

• Purpose

• Compilers idioms

• Testability (i.e., the extent to which the given SOUP can be tested)

• Analyzability (i.e., the ability for chosen analyses to recover data about the SOUP)

• Modifiability (i.e., the extent to which a given modification approach will be applied to the

SOUP)

Analysis Limitations

Limitations in analyses occur as a result of either computational limits in what can be recovered from

SOUP (i.e., analyses run up against undecidability limitations), or as a result of the practicality and
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feasibility of performing a set of analyses (e.g., an analysis might require too many computational

resources to produce reliable data, and therefore cannot be reasonably applied).

In essence, to generate a “perfect” modification might require perfect recovery of certain kinds

of data about the software, which is often impractical or impossible. For example, without access to

the source code, altering the software can be extremely difficult because high-level abstractions,

such as the majority of control flow information and data structure abstractions, are lost/obscured

irrevocably after compilation [12]. Even disassembly of a binary program to identify the instructions

is potentially unsound [13]. Other example data that might not be reliably recovered include:

• Program architecture and organization

• Location, size, type, and purpose of data structures

• Location, size, and purpose of functions and instructions

• Control and data flow information

1.3.3 Modification Challenge 2: Risk Redistribution

Fundamentally, SOUP modifications that are designed to establish useful dependability properties

and thereby reduce the risk of using the software often have their own significant risks. In essence,

users of these modifications must accept risk to counter risk. The claim and purpose of SSM is that

this apparent paradox can be resolved by using software modifications to redistribute risk such that

the redistribution is considered acceptable whereas use of the original, unprocessed software would

be unacceptable.

There are three primary software qualities of acceptability that are at risk and require balancing

when modifying SOUP:

Efficacy Software modification is performed to establish one or more desired properties (e.g.,

security); therefore, a modification should establish these properties to the desired (acceptable)

degree.
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Correctness Modifications should preserve the intended (not necessarily original) program seman-

tics (some modifications are made with the explicit intent of modifying program semantics;

hence, these semantics alterations are “intended”). This implies modifications should be

made (1) precisely, i.e., all components that need to be modified are modified and no others,

and (2) accurately, i.e., what is modified is modified in an appropriate manner.

Efficiency The modified software should be developed and should operate using acceptable levels

of resources (i.e., time, memory, hardware, etc.).

Other qualities of importance may exist but are dependent on the type of modification used and

any additional constraints system stakeholders may place on the modification (e.g., modification

complexity or compliance with laws and company regulations).

Stakeholders wishing to modify SOUP must assess risks to these dimensions of quality and

determine an acceptability model that documents explicitly how the modification will balance these

risks and that the balance of the risks is acceptable. Acceptability is a subjective concept and will

therefore need to be tailored to the application, the modification, and the stakeholders’ requirements.

1.3.4 Unique Challenges

Many of the presented motivations for and challenges of SOUP modification overlap with concepts

found in traditional software maintenance activities [14]. Nevertheless, engineering SOUP modifi-

cations to establish dependability properties presents unique engineering challenges. The distinction

arises for the following reasons:

• A SOUP modification is designed to establish properties throughout the SOUP that will

enhance the dependability of the software. Usually, maintenance is concerned either with a

local issue such as fixing a bug or enhancing a feature, or with a software-wide issue such as

rehosting or accommodating an operating system upgrade.
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• Maintenance is usually undertaken by a system’s original developers whereas a SOUP

modification is carried out by developers not connected with the SOUP’s original development.

Clearly, the original developers will usually have far more information than the SOUP users.

• Typically, maintenance is performed by developers as an engineering effort for one program.

Conversely, developers modifying SOUP might need to alter numerous programs, both known

and unknown a priori. Modifications by their very nature must be tailored to individual

programs, but the purpose of SOUP modification is to establish a common property or

properties for perhaps several programs leading to an acceptable software system.

Performing individualized maintenance activities on all SOUP encountered is an option, but

the number of programs to modify might make traditional maintenance activities infeasible or

impractical. Instead, stakeholders desire modification methods that are predefined and can be

applied to software in an automated or semi-automated fashion.

1.4 The Speculative Software Modification Approach

Speculative Software Modification (SSM) is an engineering approach for generating SOUP modifi-

cations for which the challenges and uncertainties of SOUP modification are addressed through

the cyclic generation, evaluation, and refinement of hypotheses. A hypothesis is a supposition

about how the SOUP should be modified and is based upon information that might be unreliable,

uncertain, fragmented or absent. Assessments are performed to determine the quality of hypotheses.

The quality of hypotheses is assessed by an examination of the characteristics of the SOUP, the

results generated by analyses, and the distribution of risks (see Sections 1.3.2 and 1.3.3). Hypothe-

ses determined to be of sufficient quality, as defined by the system stakeholders, are considered

validated and used to modify the subject program. Hypotheses can be invalidated as more data

becomes available through assessment activities. An invalidated hypothesis triggers refinement of

the modification.
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The SSM process can be conceptualized as asking the following questions when attempting to

modify a given piece of SOUP:

• What modification approach is preferred?

• What evidence would be convincing that the modification approach is acceptable?

• What alternative approaches should be considered if sufficient evidence is not available?

The SSM process is instantiated by engineers for a particular operating context as defined by system

stakeholders. Once instantiated, the process can be applied to any SOUP for which modification is

desired.

The term speculation primarily refers to the iterative process of generating, validating, and

refining hypotheses about SOUP modifications; however, a validated hypothesis does not necessarily

imply it is proven accurate, reliable, sound, precise, etc. nor proven to possess desired dependability

properties. Residual doubts about the final modification might be unavoidable. In this sense, the

purpose of validation is to reduce doubts As Low As Reasonably Practicable (ALARP) [15], not

necessarily to eliminate them. As such, the term speculation also refers to the resulting validated

modification, i.e., the resulting modification is speculated to be acceptable based on all available

evidence.

While speculation implies a lack of definitive evidence to prove the acceptability of SSM

modifications, stakeholders can still define specific conditions for which residual doubts are consid-

ered acceptably low. To provide the stakeholders with a basis for judgment about the utility and

acceptability of an SSM-derived modification, SSM includes the creation of an assurance case [16]

(described in Chapter 2). The SSM assurance case governs the manner in which acceptable modifi-

cations are produced, and provides a rationale for the acceptability of those modifications. In this

respect, the SSM assurance case acts as a model of acceptability and is the core concept and driver

of SSM. The construction and form of the assurance case dictates how the general SSM process is

instantiated, and provides the basis for how to determine both if SSM is appropriate and why any

modification produced by SSM can be considered acceptable.
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The key contribution of SSM is that, to our knowledge, SSM is the first engineering approach

for generating and reasoning about (i.e., analyzing and evaluating) SOUP modifications from the

perspective of system stakeholders and not the original developers when essential information is

unavailable. The principle benefits of SSM are:

• Modifications are designed to customize risks to allow for stakeholder-defined acceptability.

• The assurance case facilitates structured reasoning about the acceptability of produced modi-

fications.

• Stakeholders can choose which software properties are desired, and devise custom methods

for choosing, assessing and refining hypotheses in order to achieve the desired properties.

• SSM can be used to enhance and unify existing software analysis and modification tech-

niques, as well as new sophisticated and heuristic approaches. Stakeholders can select how

these methods should be applied and how they should be configured to achieve acceptable

modifications.

1.5 Dissertation Thesis and Goals

In this dissertation, SSM is applied and evaluated as a method for generating security-enhancing

software modifications. The main thesis of this work is that SSM is a useful approach for SOUP

modifications, or more specifically:

Thesis: Speculative Software Modification is a feasible approach to produce practical

SOUP modifications for establishing desired dependability properties in software.

Feasibility refers to the realistic/reasonable application of the SSM approach and practicality

refers to the ability of the approach to provide real benefits for engineers of software modifications.

To test this hypothesis, I conducted three case studies to answer the following three questions:

1. What are the general motivation, form, rationale, and potential utility of SSM?
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2. How would engineers determine if SSM is appropriate solution for a given modification

technique, i.e., how would engineers find areas of weakness to enhance with SSM?

3. Once engineers determine modification weaknesses that might benefit from SSM, how are

these results integrated into the SSM model?

Over the course of each case study, the concepts and guiding principles of SSM are discovered and

refined. Subsequent studies exercise/illustrate and further refine discovered principles.

Case Study 1

To answer the first question, I performed an exploratory case study of SSM to expose and demon-

strate the major process components and utility of SSM. The target security modification was

developed and conceived for this project and is referred to as Stack Layout Transformation (SLX).

The aim of this study was to investigate the feasibility and practicality of SSM by investigating the

process mechanics of the SSM approach realized by SLX. This case study revealed the need for

explicit models of acceptability in SSM, further investigated in the second study.

Case Study 2

Answering the second and third questions first requires an answer to the following question:

How can engineers rationalize and understand the acceptability of modifications an

instantiation of SSM produces?

I performed a second case study to answer this question by examining SLX with respect to its model

of acceptability. This case study explores applying assurance cases to SSM as an acceptability model

for SSM. The results of this case study expose the benefits and limitations of traditional assurance

case techniques when applied to SSM. I further proposed and illustrated extensions to traditional

assurance case methods to address the discovered limitations, referred to as selection argumentation.

By applying assurance cases to SSM, an explicit justification for SSM modifications can be

documented and examined, thus supporting the practical application of SSM. The construction of
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an SSM assurance case can therefore serve as a means for reasoning about software modifications

to determine if SSM is an appropriate framework to apply, further examined in the third case study.

Case Study 3

An important result from the second case study is that an SSM assurance case not only serves to

expose areas of weakness with security modifications, but also serves as a specification for an SSM

process. The application of selection argumentation specifies the general SSM process mechanics

within the argument itself. Hence, the development of an SSM assurance case can be used to answer

the second and third research questions.

For this study, a security modification technique developed independently from this dissertation

was the target of evaluation. This modification technique, referred to as S3, is a protection mech-

anism for OS command injections for binary programs. In this study, I used the development of

an assurance case for S3 as the primary engineering driver for SSM. In developing the assurance

case, engineers not only expose weaknesses they must address, but also find concerns that must

be addressed using SSM concepts. This case study demonstrates a general means for determining

the applicability of SSM and how selection argumentation can be used to specify the general

SSM mechanics within the argument. Engineers can then use the resulting assurance case as a

specification for development of a fully implemented SSM process, thereby supporting practical

application of SSM.

1.6 Dissertation Outline

The organization of chapters is as follows:

• Chapter 2 provides an overview of the rationale and notations used for assurance arguments,

which serves as a fundamental driver for the SSM model.

• Chapter 3 defines the core concepts of the SSM model. A thorough description of the rationale,

and general form and mechanics of the SSM model are described in terms of the SSM process
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and the SSM assurance case. Subsequent chapters further address challenges associated with

applying assurance cases to SSM.

• Chapter 4 defines a specific form for the SSM assurance case for examination and evaluation.

Specifically, this chapter defines the structure and mechanics for developing a fitness argument

for security. A fitness argument is one of two necessary arguments within an SSM assurance

case.

• Chapter 5 defines a novel security metric based on the evaluation of argument confidence.

This framework is presented to describe how confidence can be expressed within an assurance

argument and how confidence arguments could be evaluateded to assess the quality of software

(in this instance, security is used as a target quality for illustration).

• Chapter 6 defines novel extensions to traditional argument notation and mechanics to support

the use of assurance cases for SSM.

• Chapters 7, 8, and 9 each present a case study evaluation of SSM. The details and purpose of

each case study are described in the previous section.

• Chapters 10 and 11 discuss the related work and conclusions of this dissertation.



Chapter 2

Assurance Arguments

SSM makes extensive use of assurance arguments both as a method for justifying the adequacy

of SOUP modifications and as a method for governing the mechanics of how modifications are

generated. Before a further discussion of the concepts and mechanics of SSM are provided, this

chapter presents an overview of traditional assurance argument technologies by describing:

• the general motivation and need for assurance arguments,

• a common method for documenting and structuring arguments, and

• how arguments are used to explain evidence and build assurance in software systems.

2.1 The Need for Assurance Arguments

When engineering software systems, developers are left with the burden of demonstrating assurance

that the software establishes properties and characteristics desired by the system stakeholders. For

example, stakeholders might require assurance that the software is adequately safe, secure, reliable,

etc. for its use (i.e., for its operating context). A software system is said to be acceptable for its

operating context if adequate assurance is demonstrated that the system has the stakeholder-desired

property or properties.

20
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The complexity and size of modern software, however, makes providing definitive, complete,

and irrefutable proof that any given software system is acceptable impractical for all but the most

basic and trivial software. In practice, developers rely on any available evidence to demonstrate that

the existence of desired properties is “highly probable”, although quantification of such probabilities

is often impossible. Consequently, interpretation of what constitutes highly probable assurance is

left to intuition.

Evidence alone does not provide a justification that a given software system is acceptable for

its specific operating context. Rather, evidence must be explained and interpreted to demonstrate

assurance. There are essentially two approaches for explaining evidence:

Prescriptive Standards: Evidence can be used to demonstrate compliance with a standard. A

prescriptive standard specifies a set of required procedures and practices developers must

follow and evidence developers must produce. A prescriptive standard can be conceptualized

as a recipe that when followed is interpreted as demonstrating a software system is acceptable

for its operating context.

Goal-Based Approaches: In a goal-based approach, evidence is used to support stakeholder-

defined claims (in the form of goals) about the system’s properties. Unlike prescriptive

standards, the content and number of goals are not necessarily prescribed nor is the manner

in which goals are justified by evidence. This freedom supports flexibility for developers

to define assurance as they deem appropriate. A goal-based structure is interpreted as

demonstrating adequate assurance that a software system has stakeholder-defined properties

based on a thorough examination of the goal structure, the operating context, and the specific

needs of the system stakeholders.

Prescriptive standards are often developed and reviewed by numerous experts and therefore

capture a wealth of knowledge about building acceptable systems. Developers can use the standard

as a checklist and simply provide the specified evidence. Consequently, prescriptive standards are
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somewhat easier to understand and verify than goal-based approaches. The primary limitations of

prescriptive standards are that:

• Standards are inflexible. The specific needs of stakeholders are not addressed, i.e., standards

do not take into consideration the characteristics of a specific software system and its operating

context.

• Standards rarely contain explicit rationales explaining why they demonstrate acceptable

assurance, and therefore prohibit deeper understanding of the assurance any given standard is

meant to provide.

• Standards rely upon the assumption that adherence to a given standard results in an acceptable

system in all uses of the standard.

A goal-based approach to explaining evidence allows developers to overcome the limitations of

prescriptive standards. In a goal-based approach, claims about the properties of a software system

are made based on the needs specific to the system stakeholders. Evidence is then used to support

the specified claims. The key benefit of this approach is that assurance is tailored to a specific

software system. Consequently, developers must take a more active role in defining what evidence

should be collected and rationalizing how that evidence supports claims. Assurance arguments are

one method for explaining evidence using a goal-based approach.

An assurance argument is a structured decomposition of a general claim about a software

system, referred to as a top-level goal or claim. The top-level goal of an argument specifies a general

property the software system has and is essentially the conclusion that the argument is meant to

support. The top-level goal is subdivided into sub-goals recursively. Eventually, a goal is no longer

subdivided and supported directly by evidence. The premise of an assurance argument is that if

the subdivision of goals (i.e., the argument structure) and evidence in support of goals is complete,

trustworthy, and appropriate (i.e., valid), then the system has the property specified in the top-level

goal.
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2.2 Assurance Cases

In system safety, the construction of a rigorous safety case is gaining popularity. A safety case is

defined as follows [17]:

Definition 2.1. Safety Case: A Safety Case consists of a structured argument, supported by a body

of evidence, that provides a compelling, comprehensible and valid case that a system is safe for a

given application in a given environment.

The concept underlying a safety case is the creation of a compelling argument, which justifies a

claim that a system is adequately safe for its operating context. Since definitive proof that a system

is adequately safe is impractical, the goal of the safety case is to show how all available evidence

about a system supports claims that the system is adequately safe. Safety cases are required by law

for certain military systems, including those used by the U.K. Ministry of Defence [17].

The safety case concept is not restricted to safety, and can be generalized and applied for

the purposes of generating an explicit rationale for belief in any system characteristic of interest.

This generalization of a safety case is referred to as an assurance case. In this dissertation, the

illustrated application of SSM is for security modifications. Assurance cases are used to demonstrate

the resulting modified software is adequately secure. Assurance cases adopted for security are

commonly referred to as security cases.

2.3 Documenting Arguments

While in principle an assurance argument can be documented in any form, including natural language

and tables [18], an increasingly popular and effective documentation method is to structure the

argument using a graphical notation. In a graphical notation, components of the argument, such as

claims and evidence, are represented as nodes in a graph. The connections/relationships between

these nodes illustrate how evidence supports claims and thereby forms an assurance argument.
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Figure 2.1: Core GSN elements

Currently, there are two commonly used graphical notations: the Goal Structuring Notation

(GSN) [18, 19] and the Claims, Arguments and Evidence notation (CAE) [20, 21]. The distinction

between these notations is not important in the scope of this dissertation, and only one notation is

needed. As such, GSN is chosen as the notation of preference for the remainder of this work. The

following subsections describe the core concepts of the GSN notation; however, a more complete

and thorough description can be found in the GSN community standard [19].

2.3.1 Goal Structuring Notation (GSN)

The core GSN elements, shown in Figure 2.1, are:

Goals Depicted as a rectangle, a goal documents a claim about a property or a characteristic

that a software system is said to have. Each assurance argument contains a top-level goal,

which is the conclusion the argument is meant to support. The top-level goal is subdivided

hierarchically into sub-goals. Sub-goals are refinements/simplifications of higher-level goals,

and represent claims about a more specific sub-system or property of the larger software

system.

Contexts Depicted as an oval, a context provides a reference to contextualizing information and

documentation. For example, a context can refer to limitations about the scope of a goal. A



2.3 Documenting Arguments 25

SupportedBy  

InContextOf  

Figure 2.2: GSN relationships

context is linked to the argument element requiring contextualization, and all sub-arguments

from that element inherit the context.

Assumptions Depicted as an oval with the letter ‘A’ at the bottom-right, an assumption is a

specialized context element used to present intentionally unsubstantiated statements.

Justifications Depicted as an oval with the letter ‘J’ at the bottom-right, a justification is a special-

ized context element used to provide a rationale for a component of the argument.

Strategies Depicted as a parallelogram, an argument strategy describes the inference between a

goal and its sub-goals.

Solutions Depicted as a circle, a solution is used to reference evidence in direct support of a goal.

Undeveloped Entities Depicted as a hollow diamond, the undeveloped entity symbol is directly

placed on any of the above argument elements to indicate that the element is intentionally left

undeveloped by argument engineers. Undeveloped argument entities signify further review

and examination of the undeveloped element is necessary.

GSN argument elements are connected to each other through relationships depicted as arrows

shown in Figure 2.2. The direction and style of the arrow indicates the type of relationship, and can

take one of two forms:

SupportedBy Relationships Depicted as a solid arrow, a SupportedBy relationship indicates in-

ferential and evidential support, i.e., relationships between strategies, goals, and evidence.

The arrow points to the supporting argument element. For example, evidence is connected

to a goal by a SupportedBy relationship pointing to the supporting evidence (i.e., a solution

element).
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Figure 2.3: Example GSN argument fragment — figure taken from the GSN community stan-
dard [19]

InContextOf Relationships Depicted as a hollow arrow, an InContextOf relationship indicates

a contextualizing relationships where the arrow points to the argument element providing

the contextualization, i.e., a context, a justification, or an assumption. For example, a goal

that relies on an assumption uses an InContextOf relationship to point to the contextualizing

assumption element.

Figure 2.3 illustrates an example argument structure using the GSN notation taken from the

GSN community standard [19]. In this example, the top-level, labeled G1, is justified through a

structured decomposition of sub-goals. Ultimately, the top-level goal is supported by four items

of evidence (labeled Sn1, Sn2, Sn3, and Sn4). The argument structure shows how these items of

evidence relate to and justify the top-level claim.
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Figure 2.4: GSN pattern notation elements — figure taken from Habli and Kelly [22]

2.3.2 GSN Pattern Extensions

Arguments vary between software systems, however, similar argument structures can be found in

different arguments. Reuse of general argument patterns is common, therefore documenting these

patterns facilitates easier argument development. Instead of having to create an argument with no

guidance whatsoever, argument developers can consult published pattern libraries to find common

methods of argument that have been previously studied and applied.

GSN supports the documentation of argument patterns through a set of pattern notation exten-

sions, shown in Figure 2.4 (this figure is taken from Habli and Kelly [22]). These extensions allow

for documenting general argument structures not tied to any particular implementation through

abstractions about the argument structure (structural abstraction) and the entities referenced in

argument elements (entity abstraction):

Structural Abstraction: Represented by the multiplicity and optionality extensions in Figure
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2.4, these extensions express n-ary, optional, or alternative relationships between argument

elements. Structural abstraction is used when the exact number or form of argument structures

can vary depending on the specific use of the pattern. For example, an argument structure

might repeat, but the number of repetitions depends on the context in which the argument

is used. An n-ary relationship (a solid ball on an arrow) can be used to indicate that the

argument will repeat an undetermined number of times.

Entity Abstraction: Represented by entity abstraction extensions in Figure 2.4, these extensions

are attached to argument elements to indicate the element is either not instantiated or requires

further development not described in the pattern. Entity abstraction allows generalization

and specialization of argument elements. For example, a goal within a pattern can make a

claim about a general property. The specific property depends on the instantiation of the

pattern; hence, the uninstantiated entity notation would be connected to this goal to indicate

developers must select a specific property.

When GSN abstractions are applied within the argument, the result is an argument pattern that can

be instantiated for various uses. The pattern is instantiated by removing abstractions and replacing

them with concrete structures or entities specific to a given software system.

An example argument pattern from the Assurance Based Development (ABD) pattern li-

brary [23] is shown in Figure 2.5. This pattern is called the “correct use of correct tool” pattern and

is used to make an argument that a given artifact in the argument has some defined property. Note

that all entities within curly braces, including the concept of an artifact and a property, are entity

abstractions. Using this pattern requires instantiating these entities. The premise of this pattern

is that if the tool used to generate the artifact is correct and the tool was used correctly, then the

artifact would have the specified property.
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Figure 2.5: Correct use of correct tool argument pattern — figure taken from the Assurance Based
Development (ABD) pattern library [23]

2.4 Understanding Argument

Using GSN, an argument is constructed as a graphical and hierarchical structure, where a top-

level goal is subdivided recursively until a goal can be directly justified by available evidence,

as illustrated in Figure 2.3. When a goal is subdivided, justified by evidence, or contextualized,

an inference is made about the relationship between argument elements. Ideally, all inferences

within an argument would be based on deductive reasoning. In deductive logic, if the premises are

true, then the conclusion is necessarily true. In this manner, the argument could serve as a proof

supporting the top-level goal. In practice, however, application of deductive logic in support of

claims about real-world software systems is not always possible. Consequently, arguments about

software system properties rely primarily on inductive reasoning.

In inductive logic, if the premises are true, the conclusion is “likely” true. The argument does

not offer irrefutable proof that a top-level goal is valid. The likelihood that the top-level goal is

valid is based on a careful and systematic examination of all risks and available evidence. Because
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arguments must be constructed carefully and then thoroughly examined, these arguments are often

referred to as rigorous arguments.

The use of inductive logic means assurance arguments are provisional and subject to revision as

new information becomes available. An assurance argument is said to be defeasible since evidence

can become available in the future refuting a top-level claim (such evidence is typically referred

to as a defeater). The defeasibility of an assurance argument stems from two primary sources of

doubt [24]:

Logical Inference Doubt: Doubts about the accuracy of the reasoning used in the argument, i.e.,

doubt that each step of logical inference follows to justify a top-level goal. These are doubts

about the validity of relationships between argument elements. For example, to subdivide a

goal into three sub-goals, there might be doubts that the subdivision is complete, i.e., perhaps

more than three sub-goals are necessary. Similarly, the appropriateness of the subdivision

might be questioned, i.e., do the sub-goals logically follow to provide justification of the goal.

Epistemic Doubt: Doubts about the completeness and accuracy of the knowledge about the soft-

ware system. This knowledge takes the form of evidence, supporting documentation, and

generally any information referenced within the argument. For example, evidence in the form

of testing results might be questioned because the testing procedure might be flawed or those

performing the tests are unqualified or untrustworthy. For example, the test results might be

mishandled and consequently corrupted during and/or after testing. Any use of this evidence

would therefore result in a misleading argument.

Some individuals might question the benefit and the precise purpose of assurance arguments if

the argument is potentially defeasible: i.e., without definitive guarantees about the top-level goal,

what use (if any) do assurance case technologies offer? Although an assurance argument cannot

typically be used as proof about a top-level claim about a software system, the primary benefit of

assurance arguments is the explicit documentation of reasoning and rationale for why a system is

considered acceptable.
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All software systems determined to be acceptable for use rely on some form of argument, even

if that argument is implicit. By making the argument explicit, assurance arguments open up the

software system for active scrutiny and criticism. The argument can be challenged and reviewed

exhaustively, supporting a more structured approach for finding flaws/weaknesses in the software

system (an example argument evaluation mechanism is defined in Chapter 5). As the system is

updated, either in response to a found flaw or new functional needs, the argument is also updated,

allowing developers and stakeholders to understand the impact of alterations and to determine if

further changes to the software are necessary.

While an assurance argument provides exhaustive and transparent justification of a top-level

goal, the complexity and size of the argument can make determining if the top-level goal is indeed

adequately justified challenging. Although the explicit documentation of the argument allows for

review and discovery of flaws in the argument itself [25], there are always residual doubts about

whether all risks are mitigated adequately. The adequacy of the argument is context specific and is

ultimately determined by the needs and opinions of the system stakeholders.
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Speculative Software Modification

This chapter defines the core concepts and components of Speculative Software Modification (SSM),

an engineering model for generating SOUP modifications under uncertainty [26]. Modifications

generated using the SSM model are intended to improve the dependability (e.g., safety or security)

of SOUP, but successful application of a SOUP modification is often predicated upon unknown and

uncertain data (see Chapter 1). To address the uncertainties of SOUP modification, the SSM model

defines a process architecture for modifying SOUP to be instantiated by engineers.

The SSM process is defined as an abstract architecture. Engineers instantiate the architecture to

meet the needs of specific system stakeholders. Conceptually, the instantiated process accepts an

instance of SOUP as an input and produces a SOUP modification as an output. In this manner, an

instantiated process can be reused to modify any given instance of SOUP thereby facilitating the

modification of a large corpus of software.

To provide a rationale for why generated modifications are acceptable, the SSM model also

mandates the construction of an assurance case. The SSM assurance case argues the acceptability

of any modification produced by the SSM process. The SSM assurance case specifies and justifies

the activities performed in the SSM process. The remainder of this chapter further describes the

motivation, form and mechanics of the SSM process and assurance case.

32
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3.1 Overview and Core Concepts

The SSM model is comprised of two fundamental and abstract components that are instantiated by

engineers applying the model:

The SSM Process: A SOUP modification process where given an item of SOUP, the process

generates a dependability-enhanced SOUP modification. The process, once instantiated, can

be applied repeatedly to modify any provided SOUP.

The SSM Assurance Case: An argument supported by evidence providing an explicit rationale

for why a SOUP modification produced by the SSM process is considered acceptable.

In principle, the process and assurance case have an interdependent and supporting relationship:

• the SSM process is a realization of the argument in the SSM assurance case, and

• the SSM assurance case provides an explicit rationale for the activities performed in the SSM

process.

Figure 3.1 provides a high-level illustration of the SSM process and the interaction with the

SSM assurance case. This section provides an overview of the goals and general mechanics of the

SSM model and its components as illustrated in Figure 3.1.

3.1.1 SSM Process Overview

To address the uncertainties and variability associated with SOUP modification, the SSM process

prescribes the development of hypotheses about how to apply SOUP modifications. A hypothesis

is a supposition based on potentially unreliable information about how to effect a modification.

Assessments are performed to validate hypotheses throughout the modification process. Hypotheses

that fail assessment trigger the generation of new and refined hypotheses. Hypotheses passing all

assessments (i.e., valid/acceptable hypotheses) are then used to effect a final modification. Iterative

assessment and refinement occurs both within and between two primary sub-processes (referred to

as phases), shown in Figure 3.1:
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Figure 3.1: Abstract speculative software modification process architecture

Speculative analysis: The subject SOUP (i.e., the SOUP input) is analyzed to recover the informa-

tion about the software necessary to design and apply a modification that enables the desired

dependability properties. The recovered information might be unreliable and is therefore

referred to as a hypothesis. Hypotheses are generated and then assessed to determine the

likely quality of a modification that would result from their use. This process occurs iter-

atively until assessment has determined that a hypothesis has the potential to facilitate the

desired modification (and hence the dependability properties of interest). Once a hypothesis

is validated, speculative analysis is suspended.

Speculative modification synthesis: The hypothesis produced by speculative analysis is used

to modify the software. Software modification can introduce new uncertainties affecting

the quality of the modification, therefore necessitating modification assessment prior to

deployment. Modification generation and assessment can occur iteratively if assessment

reveals alternative modifications or configurations would be better applied. If assessment

determines that the modification effects the property of interest, modification synthesis is

terminated. If assessment reveals that the synthesized modification does not effect the property

of interest with sufficient assurance (i.e., invalidates the hypothesis generated in speculative

analysis), speculative analysis is resumed and the entire SSM process is repeated.
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In generating and assessing the modified program (modification synthesis), assessment might

reveal inadequacies about the hypothesis upon which the modification is based. As a result,

speculative analysis is re-initiated in order to refine/reconfigure the hypothesis, referred to as SSM

iteration. SSM iteration continues until either:

1. a modification is generated that is considered acceptable (acceptability is dictated in the SSM

assurance case — see Section 3.1.2), or

2. no acceptable modifications can be produced.

Internally, each phase also performs iterative assessments and refinements (further described in

Section 3.2). In this manner, modifications are tailored and customized based upon how hypotheses

are validated. The SSM process shown in Figure 3.1 is used for a general discussion and overview.

Consequently, the illustration intentionally belies much of the internal process complexity. A more

detailed description of the internal mechanics of the SSM process is given in Section 3.2.

3.1.2 SSM Assurance Case Overview

An instantiation of the SSM process provides no explicit rationale for why generated modifications

should be considered acceptable for use. Presumably, the SSM process is instantiated with care to

meet the needs of the system stakeholders. If so, the process itself might imply an acceptability

argument; however, implicit arguments and rationales are difficult to understand and review. To

support an explicit model of modification acceptability, the SSM model mandates the construction

of an assurance case. The SSM assurance case is implemented by engineers in addition to the SSM

process.

Traditionally, an assurance case provides an argument that a single software system is acceptable

for use. This approach, however, does not provide sufficient support for the SSM model. The SSM

process can produce numerous and varying SOUP modifications. Consequently, the acceptability

of each modification might be argued differently. To support variability in the argument, the SSM

assurance case extends traditional argument techniques by providing:
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1. the specification of all valid software analysis and modification options along with their

acceptable configurations (referred to as the acceptable solution space),

2. the criteria for making decisions, i.e., generating hypotheses and navigating the acceptable

solution space,

3. the criteria for validating decisions (i.e., for validating hypotheses), and

4. the argument justifying why a produced modification is acceptable.

By including how decisions are made and validated, the argument specifies the configuration and

mechanics of the SSM process. Configuration information can then be used to alter the configuration

(i.e., reconfigure) the process at run-time; therefore, the assurance case is depicted as an input to the

SSM process in Figure 3.1. For example, the criteria for validating a hypothesis are documented in

the assurance case. The validation criteria might be prone to alteration over time as the operating

context and needs of the system stakeholders evolve. Instead of hard coding the criteria in the

instantiation of the SSM process, the current validation criteria, as found in the assurance case,

can be referenced dynamically. Use of the assurance case as an input for reconfiguration is at the

discretion of SSM engineers.

Section 3.3 provides a more detailed description of the motivation and goals of the SSM

assurance case. Section 3.3 also describes the challenges of applying assurance cases to support SSM.

These challenges necessitate complex and detailed solutions thoroughly addressed in subsequent

chapters.

3.1.3 SSM Goals

The goal of an instantiation of the SSM model is to produce SOUP modifications that establish

stakeholder-defined dependability properties (e.g., security or safety) in the software. The motivation

for using SSM and the target users of SSM are described in Chapter 1.

Modifications generated by the SSM process are intended to be acceptable, practical and

proactive even though they were developed in the absence of reliable, yet critical, information:
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Acceptable Intuition might suggest that a modification is “reasonable” in spite of any associated

risks (see Chapter 1). Rather than rejecting what could be a useful modification because of

uncertainty, SSM speculates on whether the proposed modification is acceptable for target

stakeholders, i.e., whether there is sufficient assurance that the modified software will remain

useful.

Practical A practical modification establishes properties addressing real concerns and does so in a

manner that addresses the associated modification risks. SSM makes risk assessment explicit

during development of modifications. Practical software modifications are also produced

using available and/or easily developed methods that are cost effective to produce and use.

Proactive Modifications are made without necessarily witnessing an event suggesting the need

for modification, i.e., they are proactive. For example, a modification to provide protections

against a security threat could be applied in response to witnessing an attack on the system;

however, security enhancements are best applied proactively, prior to an initial attack. Further,

modifications are validated proactively, i.e., prior to releasing the modified software.

In principle, SSM is predicated on the premise that generally there is not one idealized method

for modifying SOUP to establish dependability properties; rather, there are various acceptable

solutions, forming an acceptable solution space. Through iterative assessment and refinement

mechanisms (see Section 3.2), SSM allows stakeholders to perform a structured exploration of the

acceptable solutions space for each piece of SOUP requiring modification.

Definition 3.1. Acceptable Solution Space: The space of modification solutions (modification

variations) that will be considered acceptable/tolerable to the stakeholders.

Modifications within the acceptable solution space might not provide the same benefits or

consequences. As such, some solutions might be better than others. If preferable options are not

possible, however, stakeholders will accept or tolerate other modification solutions so long as they

are within the scope of the acceptable solution space.
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While the ultimate goal of SSM is to produce acceptable (e.g., secure) software modifications,

an instantiation of the model does not provide any guarantees that SOUP will always be modified

successfully. The process can fail to find an acceptable method for modifying the software and

instead produce an error message output. A failure to produce acceptable modifications can occur

for a variety of reasons, further discussed in Section 3.2.

3.1.4 Instantiating the SSM Model

An instantiation of the SSM model is a defined process for modifying SOUP. An instantiated

SSM process is intended to modify numerous pieces of SOUP based upon a predefined model

of acceptable modifications (i.e., the assurance case). The repetition of applying modifications

therefore makes the process amenable to automation. Whether or not the process is automated or

applied manually is at the discretion of the system stakeholders.

In practice, the structure of an instantiation of the SSM model is determined by the inputs to the

process:

1. the kinds of programs stakeholders wish to modify, and

2. the stakeholders’ acceptability requirements defined in the assurance case.

The details of the instantiated SSM process structure might involve substantial internal complexity

within each of the two SSM phases (i.e., speculative analysis and modification synthesis). Addition-

ally, there might be more complex interactions between the phases than described in this chapter.

The SSM model defines a set of general principles and guidelines, and should be considered flexible

to meet any implementation-specific needs.

The remainder of this chapter delves deeper into the concepts and mechanics of the SSM process

and the SSM assurance case.
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Figure 3.2: Detailed SSM process

3.2 The Detailed SSM Process

The detailed SSM process consists of four sub-processes (referred to as phases), illustrated in Figure

3.2:

• Preprocessing

• Speculative Analysis

• Speculative Modification Synthesis

• Finalization

Figure 3.2 describes the internal control flow between SSM phases when generating a SOUP

modification. The figure also describes the flow of data into and out of the SSM process. SOUP

enters the process and initiates the preprocessing phase. Control flow transitions through the process

phases ultimately to the finalization phase where the modified SOUP is released. The SSM assurance

case can be used to configure any phase within the process, and therefore is depicted as a process

input for configuration purposes (further discussion of the purpose and mechanics of the assurance

case is given in Section 3.3).
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Each phase can access and record data that is later used or altered by subsequent phases or used

for general bookkeeping, logging, etc. To support any kind of internal process communication,

logging, storage/retrieval of analysis results, etc., that is not otherwise made explicit in the model, a

common data storage mechanism is specified, i.e., the modification data repository. The manner

with which the data repository is accessed is entirely dependent on the implementation of the SSM

process and is therefore not prescribed in the model. The remainder of this section describes the

detailed concepts and mechanics with respect to the internal SSM phases.

3.2.1 Preprocessing

The preprocessing phase is the first phase of the SSM process performed prior to generating and

refining any SOUP modifications. The purpose of the preprocessing phase is to generate any data

that will be useful for the remainder of the SSM process. Example preprocessing activities include:

Generating baseline information and statistics about the SOUP and its characteristics. For ex-

ample, the SOUP disassembly might be referenced repeatedly by many different analyses

in the SSM process. In this scenario, preprocessing can generate the SOUP disassembly in

order to have it available prior to performing any analyses. Additionally, preprocessing can

collect any relevant characteristics and statistics about the disassembly, such as the types of

instructions, a subdivision of instructions per function, the libraries the software depends

upon, and cyclomatic complexity [27].

Performing common or likely needed operations on the baseline data. Certain uses of the base-

line data might require that the data undergo sanity checks, pattern filtering, normalization,

etc. For example, disassembly of a binary program is often unsound [13], i.e., parts of the

disassembly of the SOUP might be incorrect. Preprocessing can be used to attempt to locate

and filter erroneous disassembly instructions or functions prior to any further modification

generation.
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Generating or retrieving test inputs. If dynamic analyses are used within the SSM process, pre-

processing can be used to automatically generate these inputs (e.g., by means of concolic test

input generation [28]), or retrieve inputs from pre-existing databases.

Verifying the SSM process is applicable. The principles of SSM allow for variations in how a

modification is applied, but certain key assumptions might be necessary for any modification

to be successfully generated. If these assumptions can be shown to be invalid in preprocessing,

the entire SSM process can be terminated and an error message generated without wasting

any additional resources in modification generation.

Preprocessing essentially allows for the optimization of the SSM process by producing any

crucial data that can be generated prior to modification generation. Because the detailed process

mechanics of preprocessing are highly dependent on the particular instantiation of SSM, no further

sub-processes are described. Information generated by preprocessing is made available to all SSM

phases through the modification data repository. Once preprocessing has completed, the speculative

analysis phase is initiated.

3.2.2 Speculative Analysis

Any modification designed to enhance SOUP with some crucial property begins with development

of a concept of how the property might be effected. For example, for a security-critical application,

a concept might be to identify the relevant software vulnerabilities and develop a modification

that either eliminates the vulnerabilities or makes them inaccessible. For vulnerabilities that might

lead to buffer-overflow attacks, the concept might be to intercept all buffer write instructions and

check them before they are executed. No matter what the concept is, if it is to be turned into a

practical modification of the subject software, then the information about the program upon which

the concept relies has to be determined. Determining this information is the role of speculative

analysis.
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Figure 3.3: Detailed speculative analysis phase

The analysis is termed “speculative” because the information returned from a set of analyses

might be incomplete or inaccurate (see Chapter 1). The rationale of speculative analysis is that

chosen modifications, their configurations, and recovered data about the program might be deemed

to be either “acceptable” or “unacceptable” as determined by the stakeholders. The potentially

unacceptable data is treated as a hypothesis that is assessed, and if needed, refined, reconfigured,

or discarded. The iterative generation and assessment of hypotheses within speculative analysis is

referred to as hypothesis iteration.

The detailed internal process of the speculative analysis phase is illustrated in Figure 3.3. This

figure describes both the control flow and data flow within the speculative analysis phase. The

data flow within the phase describes key data structures generated and consumed by sub-phases;

however, generally all sub-phases can access any necessary data through the modification data

repository (see Figure 3.2). The following subsections describe the mechanics of the speculative

analysis sub-phases in more detail.
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Hypothesis Strategy Selection

The purpose of the first sub-phase of speculative analysis (hypothesis strategy selection) is to select a

strategy for generating and assessing a hypothesis, referred to as a hypothesis strategy. A hypothesis

strategy consists of:

1. methods for analyzing the software to produce a hypothesis, and

2. metrics for assessing the corresponding software analysis results (i.e., the generated hypothe-

sis).

Implicit in the strategy is a set of modification techniques that can use the hypothesis to effect the

desired dependability properties. The manner by which an initial strategy is selected is based on

preferences specified by the stakeholders. Hypothesis strategy selection is re-entered if a hypothesis

is later invalidated through assessment. The nature of the invalidation is used to govern selection of

the next hypothesis strategy.

Hypothesis Generation

Hypothesis generation applies (i.e., performs) the set of analyses selected in hypothesis strategy

selection. Any data necessary to perform the set of analyses (e.g., the SOUP, the SOUP disassembly,

or test inputs) are accessed through the modification data repository. By performing the selected

analyses, a hypothesis is generated.

The hypothesis can be assessed directly or indirectly. If assessed directly, the hypothesis is sent

to the hypothesis assessment sub-phase. In some cases, hypothesis assessment can be performed on

a partially completed hypothesis. In this scenario, partial hypotheses can be sent to the assessment

sub-phase in sequence and assessed in parallel to hypothesis generation. If the hypothesis is

assessed indirectly, assessment does not require access to the hypothesis (discussed in the following

subsection).
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Hypothesis Assessment

The hypothesis assessment sub-phase determines the utility of a generated hypothesis based on

either direct assessment of the hypothesis or an indirect assessment through assessment of the

SOUP itself. Note that in the latter scenario, assessment does not directly evaluate the hypothesis to

determine its utility.

For example, an analysis might depend on key assumptions about the characteristics of the

SOUP. Failure to have these characteristics will produce unreliable analysis results (i.e., an invalid

hypothesis). Assessment can be used in this case to validate that these assumptions are met. If so,

the hypothesis might be vetted without direct assessment, i.e., the analysis results are considered

valid if the assumptions about the applicability of the analyses are valid.

Assessment computes quality metrics about the hypothesis and compares the results to accept-

ability requirements. The acceptability requirements are specified by the system stakeholders and

are documented within the SSM assurance case. These requirements can be hard coded within the

assessment sub-phase or the assurance case can be consulted dynamically.

Hypothesis assessment produces a report summarizing the acceptability of the produced hypoth-

esis. If the hypothesis is determined to be unacceptable, the hypothesis strategy selection sub-phase

is re-initiated. The hypothesis and the assessment summary are used to reconfigure the next strategy

selection. This iteration is referred to as hypothesis iteration. If the hypothesis is validated, it is

speculated to be acceptable. Speculative analysis is then suspended and the assessment summary

and hypothesis are provided as input to the next phase of SSM, speculative modification synthesis.

3.2.3 Speculative Modification Synthesis

Modifications are generated, i.e., synthesized, once speculative analysis generates an acceptable

hypothesis. In essence, modification synthesis is the practical application of the hypothesis to

generate a modified program. Modification synthesis is also termed “speculative” because generating

a modification might introduce new doubts. Additionally, the modification is built upon a hypothesis,

which might be invalidated by assessment of the modification.
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Figure 3.4: Detailed speculative modification synthesis phase

The detailed internal process of the speculative modification synthesis phase is illustrated in

Figure 3.4. The internal process shown in Figure 3.4 describes both the control flow and data flow

of key data structures within the speculative modification synthesis phase. Any data required by

sub-phases but not explicitly provided as an input are accessible through the modification data

repository. The following subsections describe the sub-phases of speculative modification synthesis

in more detail.

Modification Strategy Selection

The first sub-phase, modification strategy selection, reviews the hypothesis and assessment summary

produced by speculative analysis in order to determine how a modification should be applied and

assessed. In principle, a hypothesis might be usable for multiple modification approaches. The

purpose of modification strategy selection is:

1. to choose a specific approach for using the hypothesis to generate a modification, and

2. to choose how a produced modification is assessed.
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The chosen modification approach and modification assessment metrics are referred to as a modifi-

cation strategy.

Because multiple modification approaches can use the same hypothesis, iteration might be

required to find the most applicable modification approach. In this scenario, modification assessment

invalidates the modification approach but not the general hypothesis upon which the modification is

based. Modification strategy selection is then re-initiated and a new strategy is selected based upon

how the modification was invalidated.

Modification Generation

The modification generation sub-phase applies the selected modification approach. Modification

generation accesses any data required to effect the modification (e.g., the SOUP, and the hypoth-

esis produced by speculative analysis) through the modification data repository. The produced

modification is referred to as a candidate modification.

A candidate modification can be assessed either directly or indirectly. If directly assessed, the

candidate modification is sent to the modification assessment sub-phase. Indirect assessments,

however, do not require access to the candidate modification. Indirect assessment of a candidate

modification is described in the next subsection.

Modification Assessment

Modification assessment uses chosen assessment metrics (e.g., static or dynamic analyses) to either

directly assess a candidate modification or to assess a candidate modification indirectly. One

approach we propose for indirect modification assessment is the use of an error amplification. An

error amplification is an exaggerated/distorted modification designed to increase the visibility of

errors (i.e., to amplify errors) when the modification is assessed. An “error” in this context refers to

any properties of a modification that could render the modification ineffective, incorrect, inefficient,

or, more generally, unacceptable in any way (i.e., a user would be in error to apply the modification).

Error amplifications are not intended for final use and are therefore discarded after assessment.
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For example, if stakeholders are concerned about run-time and memory efficiency, a modification

can be generated that intentionally consumes large amounts of CPU and memory resources. The

intuition is the desired modification would not consume as many resources as the error amplified

modification. The error amplification is therefore intended to act as a worst case scenario for

resource consumption. If, when assessed, the error amplified modification is determined to be

adequately efficient, then stakeholders might consider the intended modification adequately efficient.

Definition 3.2. Error Amplification: An error amplification is a software modification developed

with the intent of determining whether a modification approach will be successful. An error

amplification is only meant for assessment purposes. Hypotheses about how to modify software

might have errors. An error amplification increases the visibility of potential errors (i.e., amplifies

errors) through a modification that either (1) exaggerates characteristics of the software, (2)

exaggerates characteristics of the hypothesis or modification approach, or (3) adds extensive

instrumentation.

Metrics computed by modification assessment are compared with acceptability requirements in

the assurance case, and an assessment summary is produced documenting assessment results. The

assessment summary can report that the candidate modification is invalid in two ways:

1. assessment has revealed new evidence invalidating the hypothesis generated by speculative

analysis, or

2. the hypothesis is still valid, but the modification approach itself was invalidated.

In the former case, speculative analysis is re-entered to produce another hypothesis based on the

results of assessment, referred to as SSM iteration. In the latter case, the assessment results are used

to reconfigure modification strategy selection, referred to as synthesis iteration. Synthesis iteration

is intended for scenarios where the hypothesis can be reused by different modification approaches.

For example, if assessment determines that the run-time overhead exceeds a specified threshold, the

modification can be reconfigured and applied less extensively to increase efficiency. These changes

in the modification do not require generating a completely new hypothesis.
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Modifications can be performed in SSM on the entire program at once, or modifications can

be applied to components of the program in a specified order. If the candidate modification is

acceptable, the modification is not released until all modifications and components of the SOUP

have been processed. SSM iteration continues for the next modification or component until a

termination condition is reached (see Section 3.2.4).

3.2.4 Termination of SSM Iteration

Iteration within the SSM process continues until a termination condition is reached. Implicitly,

iteration will terminate when all components of the software have been modified or no additional

hypotheses can be generated. These conditions are referred to as the implicit termination conditions.

Definition 3.3. Implicit Termination Conditions: Termination of the SSM process due to arriving at

an acceptable modification or having exhausted all acceptable options for producing a modification.

Other explicit termination conditions can be specified at the discretion of the system stakeholders

and the SSM engineers. Explicit termination conditions are primarily intended to restrict the

resources consumed when generating modifications (e.g., time and memory); however, other uses

of explicit termination conditions might be possible. Generally, SSM does not restrict where, for

what purpose, how, and how often these additional termination checks can be applied.

Definition 3.4. Explicit Termination Conditions: Termination of the SSM process for reasons not

defined in the implicit termination conditions. Uses of explicit termination conditions are at the

discretion of engineers implementing the SSM process.

3.2.5 Finalization

When a termination condition is reached, whatever modification has been produced up to that point

represents a best effort modification, i.e., the best modification that could be produced with the
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instantiated SSM process. Thus, modifications might be minimally applied, or, in the worst case,

not applied at all.

Some stakeholders might require additional assessments to determine if the best effort modifica-

tion is acceptable for use. Additionally, modifications can be produced and assessed at a component

level (e.g., function-by-function). Consequently, termination of the process necessitates combining

all modified components and assessing the composite modification. A modification finalization

phase is defined in the SSM model, both to package the complete modification into a single modified

program and to perform any final assessments.

Conceptually, assessments performed in the finalization phase are used to determine if the

acceptability of the modified software can be argued adequately. The SSM assurance case specifies

how an acceptability argument is constructed for SOUP modifications. Finalization verifies that all

necessary evidence is present to support the argument in the SSM assurance case. If the modification

cannot be supported by an argument, then finalization will report failure. Otherwise, the modified

software is released for use. The details of the SSM assurance case are further discussed in Section

3.3

3.2.6 SSM Outputs

Ideally, the SSM process would always produce modified SOUP; however, the SSM process makes

no guarantees that an acceptable modification will be produced. For example, no acceptable

modification may be found, or the modification is rejected during assessments performed in the

preprocessing or finalization phases. This leads to three possible outputs of SSM:

1. An acceptable SOUP modification.

2. An error message indicating no acceptable modification could be produced given the current

SSM instantiation.

3. A warning message indicating further manual review is necessary to determine if the modified

software is acceptable.
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In the second case, the process has reached a conclusion that no modification can be generated

given the acceptability requirements specified in the SSM assurance case. In the third case, the

acceptability of the modification cannot be demonstrated nor invalidated. In both the second and

third scenarios, a manual review is performed on the SSM instantiation and the conditions leading

to the error or warning message. The process and the assurance case are then repaired/amended as

deemed necessary by the SSM engineers. Maintenance activities performed on the SSM process

and assurance case are out of the scope of this dissertation and not discussed further.

3.2.7 Engineering Considerations

The SSM process architecture is conceptualized as a linear process for the purposes of explanation;

however, an instantiation of the process is not limited to linear execution. The process can be

parallelized using multi-threading, cloud services, etc. to improve the speed by which SSM produces

modified SOUP. For example, a MapReduce [29] paradigm can be used at the discretion of the

engineers implementing the SSM process. Map and reduce operations can be performed on the

entire process, individual phases, or internally to each phase. Mapping operations would essentially

choose numerous hypothesis and modification strategies at once, and reducing operations would

perform a post mortem assessment of the resulting acceptable approaches. Frameworks for the

parallel execution of the SSM process are out of the scope of this dissertation, and not discussed

further.

The process also involves some complex implementation considerations that are not specified

by the model. Consider the assessment sub-phases in both speculative analysis and speculative

modification synthesis. Based on the type of assessment, assessments can be performed before, dur-

ing or after a hypothesis or candidate modification is produced. The order by which an assessment

occurs depends on the kind of assessment activity and therefore can differ for each iteration. Simi-

larly, assessment might not be necessary and omitted in either speculative analysis or modification

synthesis for some iterations.
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The presented SSM process is intended to provide general guidelines and principles for instanti-

ating a process for SOUP modification. More complex interactions between phases and sub-phases

are dependent on how the process is engineered and the needs of the system stakeholders; hence,

these interactions are not specified within the model, and are left to the discretion of SSM engineers.

3.3 The SSM Assurance Case

Ostensibly, users applying any software modification have some form of rationale that the approach

achieves some technical goal. This rationale can be ad hoc, even implicit, when all necessary

information is available and the modification is based on appropriate analyses. When uncertainties

remain about the software, an informal or ad hoc acceptability rationale is not sufficient. Risk

remains when using the software, and that risk must be properly managed.

Uncertainties about the software force stakeholders to make implementation decisions about the

modification that might affect effectiveness, correctness, efficiency, etc. in an effort to balance risks

with potential advantages. The more decisions are made to distribute modification risks, the more

complex and customized the acceptability rationale becomes. Consequently, implicit rationales

become difficult and impractical to understand necessitating an explicit, systematic and structured

rationale.

The structure used by SSM to model acceptability is an assurance case. The SSM assurance

case uses expanded argumentation techniques (described in Chapter 6) to provide the following

support for SSM:

1. A specification of the acceptable solution space (i.e., all acceptable modifications SSM can

produce).

2. The criteria by which the acceptable solution space is to be explored (i.e., the techniques and

configurations by which the SOUP is analyzed, modified, and assessed).

3. An argument as to why stakeholders should believe a produced modification is acceptable.
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While the SSM process mechanically provides a means to search the acceptable solution space,

the SSM assurance case explicitly governs the search and documents why a produced modification

is within the solution space. The SSM assurance case is conceptualized as an input to the SSM

process (see Figure 3.2), used to configure all decisions, analyses, modifications, evaluations, etc.;

however, whether or not these decisions are configured dynamically from the assurance case is an

implementation decision. The key relationship of the assurance case to the SSM process is that all

decisions made in the SSM process are specified in the assurance case.

This section describes the motivation, goals, and challenges of applying assurance cases to SSM.

The described challenges are then addressed in subsequent chapters.

3.3.1 Goal-Based Assurance

When a modification is produced by SSM, a reasonable user would naturally question its accept-

ability: e.g., is the modification adequately effective1, efficient and correct? Achieving an ideal or

perfectly acceptable modification is rarely possible, necessitating trade-offs in terms of the benefits

and consequences a modification provides. SSM is intended for balancing these trade-offs.

The concept of an acceptable software modification is highly subjective. What is considered

an acceptable modification is entirely dependent upon the context of its use and the needs of the

system stakeholders. For example, one organization might be willing to accept considerable risks of

having incorrect and highly inefficient software in order to have effective security defenses. Other

organizations, however, might value correctness and efficiency over security properties. A model

of modification acceptability, therefore, cannot be based on any prescriptive standard, since no

universally accepted standard exists. Instead, acceptability must be based on a set of goals defined

by the system stakeholders.

In a goal-based acceptability model, stakeholders define goals applicable for their context (i.e.,

what characteristics the modified must have for their operating environment) and demonstrate that

1With respect to our focus of applying SSM to enhance software security, an effective modification is one that
provides the desired security benefit, i.e., adequately mitigates a defined set of attacks.
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these goals are satisfied. There are two abstract approaches for applying goal-based acceptability

models for SSM:

Product-Driven Goals: Stakeholders define goals about the characteristics the product of SSM

(the modified software) must have to be considered acceptable.

Process-Driven Goals: Stakeholders define goals about the characteristics the SSM process must

have in order to generate an acceptable modification.

In a product-driven approach, goals directly support the claim that a given software modification

meets the stakeholders’ concept of acceptability. In a process-driven approach, the acceptability of

a modification is implied by the acceptability of the process: i.e., the process is shown to meet its

acceptability goals implying anything the process produces is also acceptable.

Fundamentally, there is some overlap between the product (the modified software) and the pro-

cesses used to generate it (the SSM process); however, the questions typically posed by stakeholders

are centered on the quality of the modified software itself. Arguments should be explicit about what

the modified software provides, not implicit (or indirect) through arguments about its construction.

Therefore, the approach put forward in SSM is to model acceptability using product-driven goals.

To support a product-driven goal approach to SSM assurance, stakeholders require a comprehen-

sive view of the benefits (and weaknesses) of a generated software modification. More specifically,

stakeholders require support for structured reasoning, discussion, and analysis to allow for:

• development of a basic rationale for belief in a dependability (e.g., security) claim,

• development of confidence in that belief, and

• determination of whether the planned modifications should be applied.

Assurance-argument technologies (described in Chapter 2) provide much of this support; hence,

our approach is to exploit the use of assurance cases to act as the acceptability model for SSM. In

particular, assurance cases are used to:
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1. Ascertain the adequacy of modifications in terms of the desired dependability properties.

2. Identify modification weaknesses and benefits.

3. Identify trade-offs in modification configurations.

4. Provide a structure that can be reviewed, searched, and updated, thereby allowing others to

consider using the modified software or building on to the modification approach.

3.3.2 SSM Assurance Case Form

The general SSM assurance case form is predicated on two types of risks that an instantiated SSM

process balances and mitigates when generating SOUP modifications:

Operational Risks: Risks corresponding to using (i.e., executing) a generated software modifica-

tion, e.g., risks to modification effectiveness, correctness, and efficiency.

Developmental Risks: Risks corresponding to the development resources used in the generation of

a SOUP modification, e.g., risks to the modification development time, memory consumption

and budget.

SSM assurance cases therefore consist of two separate arguments to justify that each risk is

adequately mitigated, as illustrated in Figure 3.5:

The Fitness (or Fit-For-Use) Argument: The fit-for-use argument, also referred to as a fitness

argument, demonstrates that operational risks are mitigated for any given SOUP modification

generated by SSM. A SOUP modification is fit for use if it adequately establishes desired

dependability properties while balancing stakeholder-defined fitness constraints.

The Success Argument: The success argument demonstrates that developmental risks are miti-

gated when the SSM process generates a SOUP modification. The success argument demon-

strates how an instantiated SSM process will be successful in producing a SOUP modification

using acceptable developmental resources (e.g., time and money).
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Figure 3.5: The general SSM assurance case form

The fit-for-use argument demonstrates the acceptability of generated modifications. Since the

SSM model allows for variability in how acceptable modifications are generated, this argument must

express a range of modification variability as well as the conditions under which these variations

are restricted (i.e., the argument must document the acceptable solution space and how to navigate

it). The success argument, however, justifies that the instantiated SSM process will use acceptable

developmental resources. Restrictions on development resources act as a competing constraint

affecting variability in the fit-for-use argument, but there is only one SSM process; hence, there is

no variability in the success argument.

In essence, the success argument is based on claims and evidence about an implemented SSM

process. Because the SSM process is in the control of the developers, all necessary evidence is

available once the process is implemented. The fit-for-use argument, however, is based largely on

claims and evidence about specific instances of SOUP. Such data is often not be available prior to

modifying the software or developing the SSM assurance case.

3.3.3 Assurance Challenges

The concepts underlying the SSM assurance case presents significant research challenges. These

challenges are motivated in the following subsections and discussed in further detail in subsequent

chapters.
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1.1: Top-Level Claim 
Software modifications are generated 
using acceptable development resources.  

 
1.2: Context 
Enumeration of development 
resources documented in 
{Deve_Res_Path}. 

 

2.1: Risk Claim 
All credible risks to development 
resources have been mitigated.  

3.1: Strategy 
Argue over all credible development risk.  

 
2.2: Context 
Enumeration of credible 
development risks documented in 
{Cred_Dev_Risks_Path}. 

 

4.1: Risk Claim 
Risks to {Riski} have been 
adequately mitigated.  

n 

Figure 3.6: Example success argument pattern

Challenge 1: The Fit-For-Use Argument Form

The fit-for-use and success argument within the SSM assurance case are concepts originally pro-

posed in Assurance Based Development (ABD) [23, 30, 31]. The ABD pattern library [23] provides

suggested argument patterns for the construction of both the success and fitness arguments. Adap-

tation of the success argument patterns for SSM is relatively simple and is illustrated in Figure

3.6. The fit-for-use argument, however, depends largely on the kinds of dependability properties

stakeholders wish to establish, and can become far more complicated than the success argument.

In this dissertation, SSM is illustrated as a means for improving SOUP security; hence, Chapter

4 presents a detailed description of the form and rationale of a fit-for-use argument for security

modifications.

Challenge 2: Arguing Confidence

The assessments within the SSM process can be conceptualized as generating/validating evidence

within the SSM assurance case. Such evidence is used to support that:

• A given modification is effective (e.g., secure).
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• A given modification will be effective within defined operational constraints, such as correct-

ness and efficiency.

• A given modification can be generated within the developmental constraints specified within

the success argument.

• Sufficient confidence exists that a given modification is fit for use.

Of particular interest is the latter issue of confidence: what exactly does confidence mean, how

can confidence be expressed within an SSM assurance case, and what is the purpose of arguing

confidence?

For simplicity, presented argument structures throughout this dissertation omit arguments

typically associated with confidence (i.e., arguments of trustworthiness, appropriateness, and

sufficiency). For example, the success argument structure in Figure 3.6 does not consider doubts

about whether all development risks have been identified. Instead, confidence arguments are

assumed to be present throughout the argument in separate confidence argument structures. In

particular, we adopt and extend the concept of confidence arguments originally proposed by Hawkins

et al. [32].

Fundamentally, the purpose of arguing confidence is to justify the quality of an argument, and by

extension, the quality of the associated software system. A discussion of how to address argument

confidence necessitates a discussion of how confidence can be used to measure software quality.

Chapter 5 describes how confidence arguments can be constructed in the context of a novel argument

metric framework. The metric framework is presented as a general concept, agnostic to the concepts

of SSM; however, some potential uses for SSM are also discussed.

Challenge 3: Extending Assurance Argumentation

Traditional assurance argument notation methods are somewhat limited in providing the necessary

support for SSM. Specifically, the purpose of the SSM fitness argument is to justify any generated

modification is fit for use, not simply a single software system. Modification fitness can vary
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Figure 3.7: Detailed SSM assurance case concept

depending on the assessment and refinement mechanics of the SSM process; therefore, in principle,

each modification produced by an SSM process will be justified by an individualized fitness

argument.

The challenge of the SSM fitness argument is to express the range of all individualized fitness

arguments that are possible in addition to the constraints governing how an individualized fitness

argument is selected, as illustrated in Figure 3.7. Chapter 6 presents the structure and mechanics

of selection argumentation, a set of argument notation concepts and techniques to allow the SSM

fitness argument to express both the acceptable solution space of modifications (in this context the

space of arguments that can be selected), and the criteria by which the solution space is navigated.



Chapter 4

Fitness Argument Structure for

Security Modifications

“If we cannot understand the system well enough to build an assurance case, then we

are not in a position to say that it is secure.” — Alexander et al., Security Assurance

Cases: Motivation and the State of the Art [33]

Software modifications for security, either currently in use or in academic publications, are typically

accompanied by some form of rationale and evidence to suggest that the given approach is useful.

Rationales and evidence can be based on expert opinion, intuition, experimental results, mathemati-

cal proofs, etc. While this information might provide a general justification that a given software

modification method has some utility, this justification is often informal, generalized and/or ad hoc.

Users lack specific justification for their particular operating context. Consequently, users wish-

ing to apply these modification methods themselves require a reasoning structure for determining

how a given modification method is useful for their specific goals and how the method should be

applied. To provide an explicit and rigorous rationale for a set of specific system stakeholders, SSM

mandates the construction of an argument in the form of an assurance case. Assurance cases used to

argue system security are referred to as security cases.

59
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Fit-for-Use 
Argument 

Level 1 

Argument Over Attack Classes Level 2 

Argument Over Decomposed Attack Classes Level 3 

Attack Class Mitigation Argument 
Level 4 

Figure 4.1: Abstract argument structure for security-enhancing software modifications

While uses of assurance cases for safety (safety cases) have been studied extensively and used

over the past 20 years, applications for security have been explored minimally [33]. Consequently,

applying security cases to argue the acceptability of security-enhancing software modifications,

irrespective of SSM principles (i.e., iterative strategy selection, assessment, and refinement), is

fundamentally challenging. Specifically, there are no widely accepted argument structures and

guidelines for argument construction.

In order to facilitate the practical application of the SSM model for security modifications,

this chapter presents a general argument structure for security-enhancing software modifications.

With a general argument structure established, it can then be applied within the SSM assurance

case; however, the structure is not limited to support SSM only. The argument structure might be

applicable for other uses, and is therefore described for general purpose.

4.1 Structure Overview and Rationale

The purpose of modifying software for security is to mitigate possible attacks against the confi-

dentiality, integrity and/or availability of valued assets. With this purpose in mind, the argument

structure presented in this chapter is organized into four levels of abstraction (illustrated in Figure

4.1):
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Level 1 - Fit for Use: The top-level argument structure organizing what assets should be protected

and how. In addition, the fit-for-use argument specifies pragmatic and other stakeholder-

defined constraints and restrictions.

Level 2 - Attack Classes: An argument structure based on a taxonomy of classes of vulnerabilities,

referred to as attack classes. Each attack class defines a general vulnerability that malicious

adversaries can exploit to achieve a successful attack. A taxonomy of attack classes is

specified for every asset identified in Level 1.

Level 3 - Decomposed Attack Classes: A structure for further attack class decomposition and

refinement. Decomposed attack classes are necessary to bridge the gap between general

security requirements and limitations of selected mitigation techniques.

Level 4 - Attack Class Mitigation: Arguments demonstrating how the software is mitigated against

each defined attack class. In this context, methods for mitigating attacks are software modifi-

cations.

Because the top-level argument structure presents a fit-for-use claim, the entire argument structure

is referred to as a fit-for-use (or fitness) argument. The triangular structure in Figure 4.1 illustrates

how each subsequent level of argument refines, and consequently expands the argument. Within

Level 1, the argument is relatively compact and simple. Proceeding through each subsequent level

of argument adds more detail.

Generally, the four levels of the argument involve defining:

1. assets to protect (i.e., to secure),

2. threats against defined assets, and

3. the methods for mitigating defined threats.

While the use of assurance cases for security is at present minimally explored [33], argument

structures with similar organizations have been discussed. Weinstock, Lipson and Goodenough [34,
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35] provide an abstract argument structure for security cases and some general advice for building

security cases where a similar decomposition of the argument is proposed. Courtney et al. [36]

illustrate the application of a security case where the argument decomposition is based on attack

classes. Security threats have a similar relationship to safety hazards. Consequently, there are

similar argument patterns found within safety cases, discussed in the SafeSec standard [37, 38]

While these existing approaches provide some basis for initial investigation, they are used

typically for system development and do not address issues specific for software modifications. The

rationale of the argument structure presented in this chapter is based on:

1. elaborating and extending existing assurance argument structures for security,

2. adopting assurance argument structures from the safety community, and

3. presenting new argument structures where we are unable to find useful guidance.

The structure described in this chapter is not meant to be a definitive standard, but instead serves as a

basis for discussion. The aim is (1) to increase the corpus of work on the topic of security cases, (2)

to promote further discussion and debate as to how to effectively argue security, and fundamentally,

(3) to present an argument structure with sufficient fidelity to support SSM. The remainder of this

chapter describes the four levels of the argument structure individually in more detail.

4.2 Level 1 - Fit For Use

Security is not an isolated property. Consider a computer that is never turned on. Such a system

would be highly secure, but fail to meet necessary functional correctness to be useful. Similarly,

consider a software modification that requires gigabytes of additional memory or significantly alters

original functionality. Even if the modification establishes desired security properties, stakeholders

are unlikely to consider the software acceptable.

Instead of focusing just on security to determine acceptability of a software modification,

stakeholders must also consider all competing constraints. In essence, the modified software must
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provide adequate1 security within pragmatic and other stakeholder-defined constraints. This concept

of acceptability as is referred to as fit for use [23]:

Definition 4.1. Fit For Use: A system is fit for use if and only if it acceptably addresses a balance

of stakeholder concerns.

The fit-for-use concept is an adaptation of the “appeal to requirements pattern” introduced by

Graydon [23] and is used as the top-level argument goal of the argument structure. The goal structure

of the fit-for-use argument structure (i.e., Level 1) is illustrated in Figure 4.2. The remainder of this

section further describes the rationale and components of this structure in more detail.

4.2.1 Argument Over Requirements

The top-level Goal (Goal 1.1) provides the fit-for-use claim. The remainder of the argument heavily

depends upon the characteristics of the software that will be modified and in what environment the

software will execute (referred to as an operating context). Context 1.2 references any documentation

describing the operating context.

The strategy for arguing the fit-for-use claim is to argue over all requirements (Strategy 2.1),

which includes security requirements, and requirements for all other competing constraints. Stake-

holders might have these requirements specified in a separate document, which is referenced in

Context 2.2. The types of requirements argued over are:

Goal 3.1 Security Requirements: Security requirements correspond to the ability for the modified

software to thwart attacks to identified assets of importance. Adequately mitigating attacks to

all defined assets constitutes meetings the security requirements. How mitigation is argued is

heavily dependent upon key assumptions about what malicious adversaries might or might not

have access to. These assumptions are referred to as the threat model, which are referenced in

Context 3.2. All sub-arguments from Goal 3.1 therefore present security claims within the

context of the threat model.
1The concept of “adequate” is intentionally vague, since it is entirely dependent on the stakeholder as to what

constitutes adequacy within any particular context.
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1.1: Top-Level Claim 
The modified software provides adequate security within 
pragmatic and other stakeholder-defined constraints.  

6.1: Strategy 
Argue over security properties. 

5.1:  Security Asset Claim 
The modified software provides 
adequate {Asseti} security.  

7.2:  Composition Claim 
The mitigation of attacks to all 
security properties are synergistic. 

1 to n 

0 to n 

3.1:  Security Requirements Claim 
The modified software meets all 
security requirements. 

5.2:  Composition Claim 
The protection mechanisms 
used for all security assets are 
synergistic. 

2.1: Strategy 
Argue over all requirements.  

4.1: Strategy 
Argue over all security requirements.  

2.2: Context 
The modified software 
requirements documented 
in {RequirementsPath}. 

 

1 to n 

3.4:  Efficiency Requirements Claim 
The modified software meets all 
efficiency requirements. 

3.3:  Correctness Requirements Claim 
The modified software meets all 
correctness requirements. 

3.5:  {Requirementi} Requirement Claim 
{RequirementStatementi}. 

3.2: Context 
The threat model 
documented in {Path}. 

 

1.2: Context 
The modified software operating 
context documented in 
{OperatingContextPath}. 

 

7.1:  Property Claim 
All credible attacks to 
{SecurityPropertyi} are mitigated. 

(To Level 2) 

Figure 4.2: Argument level 1 — the Fit-For-Use argument structure
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Goal 3.3 Correctness Requirements: Correctness requirements correspond to the ability of the

modified software to operate as intended. Security requirements are often in competition with

correctness requirements. For example, often to provide the most convincing security claims

requires highly precise modifications, but high precision often negatively affects soundness.

When a modification is precise but not sound, the functionality of the software might deviate

too much to be considered fit for use by the stakeholders. Correctness requirements restrict

the degree to which the intended operation of the modified software can deviate.

Goal 3.4 Efficiency Requirements: Efficiency requirements correspond to the ability of the modi-

fied software to operate within bounds of specified resource consumption overhead. Often

security requirements are in direct competition with efficiency. In many cases, a highly

effective security modification will increase consumption of memory or CPU cycles. Be-

yond a defined threshold, stakeholders might consider the software unfit for use. Efficiency

requirements therefore restrict the resource consumption of the modified software.

Goal 3.5 Additional Requirements: Additional requirements correspond to any other require-

ments specified by the system stakeholders. Correctness and efficiency requirements are

specifically identified in Figure 4.2 as they are the most common competing constraints;

however, stakeholders can define any number of additional requirements. For example,

stakeholders might have requirements corresponding to policies such as laws, regulations,

internal/company policies, best practices, and standards.

The manner by which correctness, efficiency and other stakeholder-defined constraints are

argued can vary greatly. Consequently, further structural decomposition of these goals is not

specified. Instead, the remainder of the argument structure focuses on expanding on the security

requirements claim (Goal 3.1).



Chapter 4 Fitness Argument Structure for Security Modifications 66

4.2.2 Argument Over Assets

The need for security-enhancing software modifications stems from the threat that one or more

software assets are at risk of being attacked. In Goal 5.1 of the fit-for-use argument structure (Figure

4.2), stakeholders define one or more security assets they wish to protect. A security asset is a

software entity identified to have a security risk necessitating software modification. Assets can

be data structures in a running program, or stored data on disk. Assets can also be services. The

concept of a security asset is intentionally left generic to facilitate any interpretation. Example

assets include:

• Credit card numbers

• Email messages

• Personal, financial, or medical records

• Web hosting or ftp services

• Data critical to system operation (e.g., in a medical device this could be data associated with

dosage quantity and frequency)

The manner in which stakeholders determine which assets they want to protect can vary. In

general, assets are chosen because there is a perceived threat of attack to the asset, and the asset has

an inherent value. The value associated with each asset can vary, and consequently, how the assets

are protected can also vary: i.e., the concept of “adequate” security is based partially on the value of

the asset. Some example asset identification techniques include:

• Using a prescribed security requirement or standard, i.e., stakeholders might have previously

documented the security-critical assets requiring protection.

• Responding to a perceived security threat to critical assets. For example, consider the recent

series of attacks to US retailers Target, Neiman Marcus, and Michaels [6, 7, 8]. These attacks
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targeted customer credit card numbers. Consequently, similar companies might perceive an

increased threat to their customer’s financial information.

• Analyzing common vulnerabilities. In this approach, users analyze vulnerabilities to deter-

mine what data is exploited by attackers. The information used to exploit the vulnerability

becomes a security-critical asset.

• Traditional risk assessment, audits, and requirement elicitation techniques to expose security

critical assets.

Each asset will eventually be protected using one or more mitigation techniques (software

modifications). Because there can be variability in the types of techniques used to protect assets,

there is a risk that chosen techniques will conflict/interfere. Goal 5.2 addresses this concern by

arguing that the composition of protection mechanisms between assets does not interfere or result

in any other undesirable effects, i.e., they are synergistic. While conceptually a single composition

argument can be made for the entire collection of mitigation techniques, the remainder of the

argument structure uses compositions arguments extensively to facilitate a more structured and

rigorous approach to examining synergistic composition.

Definition 4.2. Synergistic Composition: Mitigation techniques have the quality of synergistic

composition if all combined techniques do not interfere with each other or produce any emergent

undesirable effects.

4.2.3 Argument Over Security Properties

For each identified asset, stakeholders define what security properties must be established (Strategy

6.1). Security is traditionally described as a composite of three sub-properties: confidentiality,

integrity, and availability (CIA), although other security properties might also be considered [39, 40].

Stakeholders are not restricted from defining their own security properties irrespective of existing

concepts of security. The stakeholders are responsible for determining precisely what combination



Chapter 4 Fitness Argument Structure for Security Modifications 68

of security properties is relevant for each asset. Security properties are specified in Goal 7.1.

Mechanisms used to assure different security properties might conflict, hence, Goal 7.2 argues the

composition of protection mechanisms between security properties is synergistic. The argument

structure proceeds to Level 2 from Goal 7.1.

4.3 Level 2 - Attack Classes

Fundamentally, the objective of modifying software for security is to reduce and preferably eliminate

successful attacks to important security properties of identified software assets. The argument

structure leading up to and including Goal 7.1 in Figure 4.2 precisely identifies critical security

assets and security properties. To demonstrate that attacks are adequately mitigated, however,

requires an understanding of the various methods by which the asset(s) can be attacked [41]. The

purpose of Level 2 of the argument structure is to further elaborate Goal 7.1 in Figure 4.2 by arguing

that a set of credible attack classes are mitigated.

Definition 4.3. Attack Class: The set of all attacks that can exploit a specific software vulnerability.

Definition 4.4. Credible Attack Class: A subset of an attack class consisting of all attacks for

which there is a perceived and/or realistic threat of vulnerability exploitation.

This level of argument can be thought of as arguing mitigation of threats or vulnerabilities;

however, we explicitly choose the term “attack class” to focus the argument on the ultimate purpose

of the modification, i.e., to mitigate attacks. The rationale for this strategy of argument is based

partially on the security argument structure suggested by Courtney et al. [36] and the analogous

structure of arguing over all credible safety hazards used extensively in safety cases [37].

This level of argument necessitates the development of a taxonomy of attack classes. A

taxonomy of attack classes can be generated by the system stakeholders, for example by applying

modified hazard analysis methods; however, generating a comprehensive taxonomy can be a
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Figure 4.3: Example attack tree — figure taken from Schneier [41]

daunting challenge. Established taxonomies and attack patterns, such as Mitre’s Common Weakness

Enumeration (CWE) [42], the taxonomy of attack patterns described by Hoglund and McGraw [43],

and the security flaws taxonomy of Landwehr et al. [44], can be used either to supplement an

independently generated taxonomy, or as a complete and standalone taxonomy.

In principle, a chosen taxonomy can be organized into numerous sub-levels to reflect hierarchical

relationships. Such relationships can describe an attack tree [45, 41]. An attack tree is a fault

tree [46] for security, where the root of the tree documents a goal of an attacker, and the branches

and leaves document different attack techniques that can be used to achieve the goal.

Figure 4.3, taken from Schneier [41], illustrates a basic example of an attack tree for attacks to

open a safe. Nodes in the attack tree can be analyzed to determine how much of a danger the attack

poses. In the given figure, a basic threat analysis is used to mark credible attacks with P (possible)

and incredible attacks with I (impossible). Attack trees can also use AND nodes and OR nodes to

indicate the relationship of attacks that must occur for the goal to be achieved.
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8.1: Strategy 
Argue over all credible attack classes. 

1 to n 

9.2:  Composition Claim 
The mitigation of all attack 
classes are synergistic. 

9.1:  Attack Class Claim 
{AttackClassi} attacks are mitigated.  

7.1:  Property Claim 
All credible attacks to {SecurityProperty} are mitigated. 

8.1.N: Strategy 
Argue over all credible attack classes. 

1 to n 

9.2.N:  Composition Claim 
The mitigation of all attack 
classes are synergistic. 

9.1.N:  Attack Class Claim 
{AttackClassi} attacks are mitigated.  

… 

10.1: Strategy 
Argue over all decomposed attack classes 

1 to n 

11.2:  Composition Claim 
The mitigation of all decomposed  
attack classes are synergistic. 

11.1:  Decomposition Claim 
{Decompositioni} attacks are mitigated.  

10.2: Justification 
The rationale for the attack 
class decomposition 
documented in {path}. 
 
 

J 

Attack Class  
Argument Pattern 

Decomposed 
Attack Class  

Argument Pattern 

10.1.N: Strategy 
Argue over all decomposed attack classes 

1 to n 

11.2.N:  Composition Claim 
The mitigation of all decomposed 
attack classes are synergistic. 

11.1.N:  Decomposition Claim 
{Decompositioni} attacks are mitigated.  

10.2.N: Justification 
The rationale for the attack 
class decomposition 
documented in {path}. 
 
 

J 

… 

12.1: Strategy 
Argue over mitigation techniques. 

1 to n 

13.2:  Composition Claim 
All mitigation techniques are 
synergistic. 

13.1:  Mitigation Technique Claim 
{TechniqueClaimi}. 

Mitigation 
Argument Pattern 

Level 1:  
Fit For use 

Level 2: 
Attack Classes 

Level 3: 
Decomposed 
Attack Classes 

Level 4: 
Mitigation Argument 

Figure 4.4: Argument structure for Level 2 (attack classes), Level 3 (decomposed attack classes),
and Level 4 (mitigation argument)



4.4 Level 3 - Decomposed Attack Classes 71

The general argument structure used to document attack class taxonomies is shown in Level 2 of

Figure 4.4. To express hierarchical attack class structures (attack tree structures), this structure can

be composed with itself in a hierarchically recursive fashion (also illustrated in Level 2 of Figure

4.4). Goal 9.1 documents a mitigation claim for a given attack class.

4.4 Level 3 - Decomposed Attack Classes

Finding a mitigation technique that completely mitigates an entire attack class can be difficult. All

mitigation techniques have benefits and weaknesses, not only in terms of the technique as a whole,

but also with respect to trade-offs made during implementation and issues that occur as a result of

applying techniques within the given operating context. In practice, a fundamental interplay exists

between the details of a software security enhancement and the details of an attack.

As software modifications are examined by engineers, weaknesses or limitations (essentially

“holes”) in the defenses provided by chosen software modification techniques are often discovered.

These limitations arise from a combination of characteristics of the subject system, the subject

attack class, the subject asset and security properties, and the modification techniques to mitigate

the attack class. These weaknesses often imply a further subdivision of the argument:

• one subdivision where the mitigation technique convincingly supports an attack mitigation

claim, and

• the other where the technique fails to be convincing and will require additional support or an

altered claim to be considered adequately mitigated.

In principle, a subdivision is necessary because the argument lacks sufficient specificity to justify

the acceptability of a given mitigation technique.

As an example, consider a simple buffer overflow vulnerability. One way to protect data

vulnerable to an overflow is to insert padding between the buffer and the vulnerable data. This

protection works for naı̈ve attacks in which the attacker is unaware of the padding. The protection
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Figure 4.5: Construction process for decomposed attack class enumeration

does not work if the attacker floods the space following the buffer with a malicious value, because

the flooding is bound to overwrite the vulnerable data eventually. This weakness of padding exposes

a potential argument subdivision: one subdivision for attacks that flood memory and another for

attacks that do not.

Argument Level 3 serves as a location for refinement of argument. Because level three is

underneath the attack class level, Level 3 is said to “decompose” the above attack class enumeration.

As weaknesses are exposed, and further subdivision of attack classes are identified, this level of

argument is updated, i.e., the argument is repaired. Construction of the decomposed attack class

enumeration is, in essence, performed by an iterative combination of top-down and bottom-up

argument development. Analysis is performed on both the attack class that has to be mitigated and

selected mitigation approaches. Analysis of attack classes drives the choice of mitigation methods,

and analysis of mitigation methods potentially suggests new decomposed attack classes. These

new decomposed attack classes must in turn be analyzed and mitigated. The iterative argument

refinement cycle is shown in Figure 4.5.
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While a decomposed attack class can refine an attack class from Level 2, a decomposed attack

class is defined as any refinement to the argument as a result of limitations in chosen mitigation

techniques. For example, a decomposed attack class can express a refinement of assets to defend.

Definition 4.5. Decomposed Attack Class: A refinement of the argument following the enumeration

of attack classes in Level 2. The refinement is based on any limitations of chosen mitigation

techniques.

The primary benefit of Level 3 is that it makes explicit what selected mitigation approaches

provide and, perhaps more importantly, do not provide. As new decomposed attack classes are

argued using the structure shown in Level 3 of Figure 4.4, which closely resembles the attack

class argument structure in Level 2. The key difference is the addition of a justification element

(Justification 10.2) explaining why the subdivision was necessary. The justification highlights that

the limitations of chosen mitigation techniques for easier review.

Instead of repairing the argument with decomposed attack classes, stakeholders can choose to

discard a software modification technique if it does not completely mitigate a given attack class.

Whether or not a given modification technique should be discarded or the attack tree refined is up to

the stakeholders.

The key importance of decomposed attack classes is that engineers cannot be expected to know

ahead of time that the given attack class taxonomy and general definition of assets will be sufficient.

Further argument refinement might be necessary based on the characteristics of chosen mitigation

techniques. Whichever modification approaches are finally chosen, Level 3 facilitates the clear

and explicit documentation of the gap between stakeholder expectations and requirements, and the

limitations of chosen mitigation techniques.

4.5 Level 4 - Mitigation Argument

Levels 2 and 3 primarily organize attack classes into hierarchical argument structures. Once the

argument is sufficiently refined for a given attack class, an attack mitigation argument is constructed.
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The final level of the argument structure, Level 4, provides the detailed mitigation argument for

each attack class. In the context of this dissertation, mitigation techniques are analogous to software

modifications. To argue an attack class is mitigated requires:

1. a precise determination of which configurations and combinations of mitigation techniques

constitute adequate mitigation of the subject attack class, and

2. a clearly specified security claim for each selected mitigation technique.

The argument structure for arguing attack class mitigation is shown in Level 4 of Figure 4.4.

For each “leaf” within the attack class hierarchy, Goal 13.1 is used make a mitigation claim. The

precise wording for this claim cannot be specified generally. How an attack is mitigated can vary

widely, and it is up to the stakeholders to define what claim is appropriate. In principle, one or

more mitigation approaches can be used to mitigate any given attack class; hence, Goal 13.1 can be

repeated under an attack class (once for each mitigation approach).

Determining which mitigation techniques should be applied necessitates a detailed analysis of

which approaches are available and the benefits and weaknesses of each approach. As with deriving

a taxonomy of attack classes, determining which mitigation techniques are appropriate can be a

daunting challenge. While stakeholders can choose mitigation techniques in an ad hoc fashion until

a convincing mitigation argument is made, another strategy is to organize mitigation needs into

abstract categories. For example, mitigation methods can be classified as attack avoidance, removal,

tolerance and forecasting [47]. These general categories could be further subdivided into more

specific mitigation classes. Example detailed classes of mitigation include:

Increased attacker effort: Artificially diversifying a program can substantially increase the time

required to achieve a successful attack. Evidence to support these mitigation claims would

include the expected number of attempts required to achieve a successful attack together with

the time required for each attempt.

Intrusion detection: Periodically checking for conditions indicating that an attack has occurred or

is currently in progress can be used to effect a defense. Evidence to support these mitigation
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claims would include the checking frequency, the probability of successful detection, and the

probability of attacks occurring between detection.

Constrained asset access: Limiting or constraining how, where, and why an asset of interest is

accessed can reduce the effectiveness of an attack. For example, data of interest can be made

immutable or unreadable except by specific instructions. Evidence to support these mitigation

claims would include probabilistic models of the expected reduction in the potential for attack.

Vulnerability removal: In some cases, the vulnerability leading to an attack can be removed by

modifying the program. Evidence to support this mitigation claim would include program

analysis showing that the vulnerability has been completely removed together with evidence

showing that all attacks within the given attack class rely entirely on the fixed vulnerability.

While developing a general structure to organize attack mitigation techniques is outside the

scope of this dissertation, Fægr and Hallsteinsen [48] provide a detailed taxonomy of security

mitigation methods shown in Figure 4.6. This taxonomy can provide the basis for initial guidance

and further research. In their taxonomy, mitigation methods are referred to as solutions which are

organized into tactics and patterns. Tactics represent abstract mitigation methods while patterns

are concrete and prescriptive security solutions. Tactics can hierarchically specialize other tactics,

and the same specialization relationship exists for patterns. The specialization relationship is

represented by a white triangle. Because patterns represent concrete solutions, patterns have

associated documentation describing the problem, the solution and the impact the solution has on

the system.

If the Fægr and Hallsteinsen taxonomy were expanded to include SOUP modifications, stake-

holders would still have to determine:

• what combination of mitigation methods is appropriate,

• what mitigation claims are appropriate for each mitigation method, and

• find approaches to meet defined goals.
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Figure 4.6: Example attack mitigation taxonomy – figure taken from Fægr and Hallsteinsen [48].

The key benefit is that a comprehensive and organized taxonomy allows stakeholders to elicit and

examine their mitigation requirements. Further, by encoding the impacts of mitigation methods in

the taxonomy, stakeholders can also determine what other areas of the argument would need to be

reviewed if the approach is selected. For example, if a given approach is known to impact run-time

overhead, arguments corresponding to the run-time efficiency will need to be reviewed.

Regardless of how stakeholders define mitigation techniques, each chosen mitigation technique

must adhere to the threat model specified in Context 3.2 in Figure 4.2. Decisions as to which claim
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to make for each mitigation technique must be made in consideration to the value of and perceived

threat to the asset. Additionally, chosen mitigation techniques must adhere to constraints and other

requirements defined in Goals 3.3, 3.4, and 3.5 in Figure 4.2.

Because of the wide variability in how an attack class can be shown to be mitigated, this level of

argument is the limit of what can be specified in a general argument structure. Further subdivision

of the argument structure is entirely dependent upon the mitigation methods used and the mitigation

claim.

4.6 Considerations

Structure Flexibility

The fitness argument structure presented in this chapter provides a basic template and set of general

guidelines for building arguments for security modifications. Stakeholders are free to alter the

structure as necessary to meet their specific needs. For example, modified software might be used

within a larger system and consequently, the assurance argument must fit into a larger assurance

case, requiring some alteration to top-level claims and structures.

Argument Confidence

There are some additional considerations not specified in the given argument structure. The most

apparent is the concept of confidence. Confidence refers to the degree of belief in the top-level

argument claim; however, belief in a top-level claim is a summarization of belief in all sub-goals,

which in turn is a belief in all contexts, argument strategies, and evidence throughout the argument.

Example confidence concerns within the argument include:

• Were all appropriate software assets, security properties, attack classes, and mitigation

techniques considered?
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• Are all mitigation techniques appropriate, i.e., do they all abide by the assumptions within the

threat model?

• Is the threat model appropriate and sufficient?

• Were all mitigation techniques implemented correctly, i.e., can all evidence in support of

mitigation claims be trusted?

• Does a given item of evidence provide the necessary support for the given claim?

These issues can be summarized as concerns about the appropriateness, trustworthiness, and

sufficiency of the argument. A further discussion of how to address confidence within the argument

is given in Chapter 5.

Introduction of Vulnerabilities

Another concern not addressed explicitly in the argument structure is the potential for a software

modification to add new vulnerabilities. Adding vulnerabilities can occur in one of two ways:

Faulty Implementation: The implementation of a mitigation technique contains exploitable vul-

nerabilities. For example, if a mitigation technique requires new buffers within memory but

the buffer bounds are not checked, there is a potential for buffer overflow within the mitigation

technique itself.

Emergent Vulnerabilities: The properties of one or more mitigation techniques can be exploited

to achieve meaningful attacks. A simplistic example would be if a mitigation technique

detects attacks and terminates the program upon detection. Attackers could use the mitigation

technique for denial of service attacks.

Faulty implementation is a trustworthiness concern about the implementation which can be ad-

dressed using the confidence argument techniques discussed in Chapter 5. Emergent vulnerabilities

are far more difficult to reason about and to prevent, except for trivial cases like the example given



4.6 Considerations 79

above. The issue becomes more complicated when considering the possibility for emergent vulnera-

bilities resulting from the interactions between various mitigation techniques. We cannot provide an

example of this behavior, neither can we demonstrate that such interactions are impossible.

Because emergent vulnerabilities are not well understood, no explicit goal arguing the absence

of emergent vulnerabilities is given within the presented argument structure. To provide initial

guidance, stakeholders could specify their own goal about the absence of emergent vulnerabilities

using Goal 3.5 in Figure 4.2, or argue the absence of emergent vulnerabilities under the synergistic

composition goals used throughout the argument.

For the purposes of this dissertation, expert opinion can serve as sufficient evidence about the

non-existence of emergent vulnerabilities. Further investigation into mitigation interactions and

side effects is left for future work.
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Assurance Assessment

In practice, assurance arguments include confidence arguments, e.g., arguments about sufficiency,

appropriateness and trustworthiness [32, 49, 50, 51]. Argument structures that are presented

throughout this dissertation (see for example Chapter 4) intentionally do not address confidence.

Instead, we make the observation that confidence is a systemic and repeated concern throughout

any assurance argument. To simplify and compartmentalize the argument, confidence arguments

are extracted into separate arguments structures. In particular, we adopt and extend the concept of

confidence arguments originally proposed by Hawkins et al. [32].

Fundamentally, the purpose of confidence arguments is to justify that an argument is valid

(i.e., adequately supports a top-level claim). A top-level argument claim is statement about the

general quality of the software system. Consequently, an assessment of argument confidence is

both an assessment of the validity of an argument and also an assessment of the quality a given

software system is claimed to have. As such, a discussion of how to document and address argument

confidence also begs a discussion of how confidence can be used to assess software quality.

This chapter presents the rationale and structure of confidence arguments and a novel software

quality metric framework based on assessment of confidence arguments [52]. Since security is the

dependability property used for illustration in this dissertation, the metric framework is illustrated

using security-critical systems specifically, i.e., the framework provides a metric of security. The

80
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presented security metric framework, referred to as the Measurement Based on Security Argument

(MBSA) framework, is a generic concept, exceeding the scope of this dissertation; however, MBSA

motivates the rationale and form of confidence arguments, which are referred to throughout this

dissertation and provides a direction for future research.

5.1 Overview

The goal of a security metric is to enable stakeholders of software systems to answer questions such

as:

• How secure is my system?

• Is the software adequately secure for its use?

• How has a series of modifications affected my system’s security?

Security metrics can facilitate enterprise-level design and operational decision making about

software, but are difficult to capture [53, 54, 55, 56]. Without effective security metrics, software

deployment decisions, upgrade decisions and so on cannot be addressed in an informed way for

security-critical systems.

Measuring software security (i.e., the degree to which software copes with relevant security

issues) presents a unique challenge because malicious action is difficult to model. Motivated

adversaries actively seek to cause a failure, and typically attackers only need to find one vulnerability

to be successful. Thus, an effective security metric must synthesize systemic data; a difficult task

since software security is a complex and multi-dimensional property that includes interdependent

sub-properties such as correctness, efficacy, and efficiency [55, 57, 58]. Further, security goals

tend to differ from one organization to another and even among software systems within the same

organization depending on the software’s functionality and use [55].

Many methods for measuring software security have been proposed (for example, Herrmann [59]

has consolidated over 900); however, stakeholders face a formidable challenge in applying use-



Chapter 5 Assurance Assessment 82

ful/appropriate metrics that capture their requirements. In dealing with this challenge, stakeholders

must answer four questions:

1. which facets of the software system require measurement,

2. what kinds of measurements are appropriate,

3. how extensive should chosen metrics be applied, and

4. how should individual measurements be combined to provide a meaningful overall measure

of security?

Of these four questions, the fourth is the most difficult to answer and most crucial, because there

has to be a link between chosen metrics and stakeholder security requirements. In other words, for

a metric to provide useful information to stakeholders, measurements must be linked explicitly to

stakeholder security goals [56, 55]. Few existing security metrics are based on an explicit theory for

this linkage.

We introduce the MBSA, a security metric framework in which security is measured in terms

of degree of belief (i.e., confidence) in a security claim. The approach is to define a claim about

the practical security of a system based on stakeholder requirements, such as freedom from one or

more defined classes of vulnerabilities, and estimate the degree to which the claim can be believed.

Typically, security-critical systems will be built with appropriate technologies, and various analyses

and audits will have been undertaken on the system. Belief in the security claim depends upon the

degree to which the development technologies, the analyses and the audits support that belief.

The key contribution of MBSA is that, to our knowledge, MBSA is the first framework for

measuring security through measuring confidence (i.e., belief) in a security claim, based on analysis

of the security argument for that system.

The remainder of this chapter further motivates the insight/rationale of the MBSA approach to

security metrics (Section 5.2), and provides an overview of the problems with confidence in security

arguments (Section 5.3). The mechanics of MSBA are described in Section 5.4, and an illustrative

example of MBSA is presented in Section 5.5.
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5.2 Metric Approach

Principle

The underlying principle of the MBSA approach to measuring security is to state a security claim

about a system, develop an argument about why that claim should be believed, and then construct a

metric based on the argument designed to assess confidence in the argument. More specifically, the

metric is based on the following general principles:

Claim: The security requirement of the system’s stakeholders is stated precisely as a security

claim about the system. This claim is stated in terms of a particular context that defines the

system itself, the system’s operating environment, and the threat model to which the system

is subjected. The claim is established carefully to document the stakeholders’ fundamental

security requirement. By beginning with a security requirement, MBSA does not need to

measure security adequacy: adequacy is the basis of the security claim.

Evidence: The system is engineered to meet the stated requirement. The technology employed in

the engineering and assessment of the system generates a body of evidence about the systems

security properties. This evidence includes information about system tests, system analyses,

vulnerability avoidance techniques employed, and so on.

Argument: In principle, the engineering of the system should ensure that the system meets the

stated security claim. Doubts arise, however, in terms of the adequacy and completeness of

the engineering and assessment, and so belief in the claim might not be warranted. Thus, in

practice the critical issue facing the stakeholders is whether they can believe that the security

requirement is met. Construction of a rigorous argument documents the rationale for belief in

the claim based on the available evidence.

Metric: In practice, residual doubts in an argument are inevitable (see Chapter 2). For example,

the argument might not have taken into account all possible circumstances or some elements

of the argument might be based on invalid or corrupted data. MBSA computes a metric based
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on the argument that reflects confidence in belief in the security claim, i.e., confidence in

the argument. The metric is therefore an assessment of security: if the claim is true, the

system is adequately secure. Any doubt about the claim is a reflection of possible insecurity,

and stakeholders can make decisions about system deployment and operation based upon

the degree of disbelief that they are prepared to accept. Stakeholders can also direct further

analysis of the system based on exposed areas of doubt.

Metric Form

The metric computed to assess confidence in the security claim has to meet two goals:

1. The metric must take account of all of the factors that could influence belief in the security

claim, i.e., the metric must be complete. Since the metric is derived from an argument, the

metric would be incomplete if either the argument itself was incomplete or the argument,

though complete, was not fully considered.

2. The metric must present all of the factors that could influence belief in the security claim in a

way that enables a properly informed judgment of belief in the security claim, i.e., the metric

must be valid. This goal requires that the metric present all aspects of possible doubt in the

claim in a form that can be examined, judged, and acted upon by the stakeholders.

The MBSA framework addresses these goal using a two-step process:

1. The system security argument is annotated with confidence information about the various

elements of the argument.

2. A function is computed with the annotations as input. The function produces a presentation

of information that constitutes the metric.
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5.3 Argument Confidence

In general, belief in the top-level goal (claim) of an argument, whether for safety, security or another

property is important. The premises upon which the MBSA framework is based are:

1. The top-level goal in the security argument defines the stakeholders’ security requirement

adequately.

2. The belief in the truth of the top-level goal is justified by the argument.

Thus, security depends on the adequacy of the argument, and so meaningful security metrics are

measurements of confidence in the argument. The MBSA framework is designed to measure

argument confidence in a practical way, and present the results of the measurement to stakeholders

in a manner that allows them to make deployment decisions about security-critical software systems.

Although belief in the top-level goal rests on confidence in the associated argument, confidence

in an argument is an elusive concept. Dictionaries do not give a definition that can be used in an

engineering context, deferring instead to the use of synonyms such as “trust” or “faith”.

The U.K. Ministry of Defence definition of a safety case (see Chapter 2) requires a compelling

argument, yet no definition of “compelling” is given. Graydon et al. have proposed a suitable

practical definition [25]. Their definition is termed operational since they equate a “compelling”

argument to an argument having a set of established and measurable properties.

Hawkins et al. have introduced the notion of confidence arguments to supplement safety and

security arguments in order to capture confidence assessment [32]. A confidence argument sup-

plements a traditional argument and supplies the rationale for belief in the quality of each of the

argument’s items of evidence, context definitions, and inferences. When these elements are added

to an argument, there is an assertion that the element is valid and correct, i.e., the element serves the

intended purpose to support a claim. Assertions in the argument are linked via an Assurance Claim

Point (ACP) to the relevant confidence argument where confidence in the assertion is argued.
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Top Claim 
The system is secure in its 
intended environment. 

 
 Context 1 
Description of the system 
operation environment. 

 

Argument Strategy 1 
Argue over all vulnerabilities. 

Sub-Claim 1 
The system is protected 
against vulnerability type 1. 

Sub-Claim 2 
The system is protected 
against vulnerability type 2. 

Evidence 1 

ACP1 

ACP2 

ACP3 

Figure 5.1: Example argument fragment in Goal Structuring Notation (GSN) annotated with with
Assurance Claim Points (ACP)

The GSN extension to document ACPs is a black square, illustrated in Figure 5.1. For each ACP

there is a corresponding confidence argument. The three points shown are associated with a context

item (ACP1), an inference (ACP2), and an evidence item (ACP3).

In order to avoid the difficulties that arise with terms such as “compelling”, we have adopted

the concept of an operational definition from Graydon et al. [25], i.e., a definition that defines

confidence in a practical way based upon measurable or estimable argument characteristics. The

operational definition begins with the adoption of the confidence arguments as defined by Hawkins

et al. [32] and then elaborates this concept to provide an operational framework suitable for use in

security metrics.

5.3.1 Sources of Doubt

Lack of confidence in arguments and associated doubt in the top-level goal arises primarily from

inevitable doubt about the truth of the goals within the argument. Any goal within an argument

might or might not be true, and belief in a goal is usually a matter of judgment. A goal thought to

be true might not be true because:
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• The inference upon which a goal depends is invalid, i.e., the argument strategy for justifying

a goal might be inappropriate or incomplete.

• The evidence upon which the goal depends is invalid or inaccurate.

• The goal might be invalid for the defined context or the context definition might be inaccurate

for the system of interest

When an argument inference is used to connect one claim to another claim or an item of evidence

or a context is added to an argument to support or contextualize a claim, there is an assertion about

the validity and accuracy of that element of argument. These assertions are in essence the sources

of argument doubt.

As an example of how doubt can arise in an argument, consider a goal within a security argument

which states that a given application is adequately protects against buffer overflow attacks. One

form of evidence upon which the truth of this goal might rest could be the results of testing the

application whereby the program is probed for buffer overflows. To support the truth of the goal

with the results of testing is an assertion that:

1. the test results were correctly documented,

2. the test suite had sufficient coverage,

3. the tests were performed correctly,

4. the tests actually demonstrate an ability to thwart buffer overflow attacks,

5. the test conditions are within the intended operating conditions,

6. the test conditions represent realistic operating conditions, and so on.

5.3.2 Operational Definition of Confidence

In order to develop the operational definition of confidence that we require, we define confidence

with respect to three properties:
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Top Confidence Claim 
Sufficient confidence exists in the given assertion 

Trustworthiness Claim 
Credible support exist for the 
trustworthiness of data 
associated with the assertion. 

Appropriateness Claim 
Credible support exists 
for the assertion 
appropriateness. 

Sufficiency Claim 
Credible support exist 
for the assertion 
sufficiency. 

Confidence Argument Strategy 
Argument over confidence properties. 

Figure 5.2: Confidence argument structure

Appropriateness Does the argument element perform the intended purpose (i.e., goal support or

contextualization) and is it realistic?

Sufficiency Does the argument element achieve its purpose sufficiently, i.e., have all considerations

that might affect the efficacy of the argument element negatively been considered and have

all relevant concerns been handled?

Trustworthiness If the argument element relies on data of any kind, can the integrity or accuracy

of the data be trusted, i.e., believed?

In our approach, we adopt the use of confidence arguments, based on the concept introduced by

Hawkins et al. [32]. A confidence argument is constructed for each ACP in the security argument,

i.e., for each assertion associated with contexts, items of evidence, and inferences. Each confidence

argument demonstrates sufficient confidence in a given assertion by arguing the existence of our

defined properties of confidence, illustrated in Figure 5.2. The strategy for how to argue each

property is a topic of current research, and not defined here.

Confidence arguments are used by MBSA to generate confidence metrics for any claim or set of

claims in the argument, discussed in the following section.
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5.4 MBSA

The Measurement Based on Security Argument (MBSA) framework is in two parts that operate

sequentially:

Confidence Assessment: Given a security argument where all assertions have corresponding

confidence arguments, each confidence argument is annotated with a vector of measurements.

Each measurement vector, referred to as a Confidence of Assertion Vector (CAV), contains

a set of measures, the collection of which is meant to capture the quality/strength of the

corresponding confidence argument. Each measurement in a CAV corresponds to a particular

property of confidence and is derived from expert judgment in almost all circumstances.

Interpretation: Confidence metrics are presented to decision makers by interpreting the results

of confidence assessment (i.e., CAVs). Given a security argument annotated with CAV data,

interpretation contextualizes, simplifies, and presents CAV data at the request of decision

makers to best facilitate decision making. Interpretation of CAVs is performed by a sequence

of interpretation functions.

The remainder of this section describes the underlying form and mechanics of confidence

assessment and interpretation.

5.4.1 Confidence Assessment

During confidence assessment, each confidence argument is evaluated by one or more technical

experts, illustrated in Figure 5.3. The figure depicts a security argument where each confidence

argument (represented by black squares) is sent to technical experts to evaluate based on their

informed judgment. Confidence arguments are used to support belief in an assertion. Consequently,

experts are chosen for their expertise in the type of assertion associated with the confidence argument

as well as their expertise in the component of the software affected by the assertion.

Experts derive a vector of measurements to quantify the quality/strength of the confidence

argument, referred to as a Confidence of Assertion Vector (CAV). CAVs are the basic unit within
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Figure 5.3: Confidence assessment

the MBSA framework from which all metrics presented to decision makers are derived. At the

completion of confidence assessment, each confidence argument is annotated with a CAV.

The general form of a CAV is represented as:

~Ca type =< µm type
1 , µm type

2 , ..., µm type
n >

Each CAV, ~C, has an associated assertion type, a type, the primary assertion types being: inference,

context or evidence (see Section 5.3). Similarly, measurements within the vector, µ, also have a

corresponding type, m type, indicating what property of confidence the measurement is meant

to capture, e.g., sufficiency. All CAVs of the same a type contain the same number of type of

measurements. Each individual µ can be a single value or vector themselves, potentially containing

further sub-vectors.
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The general CAV form is intentionally left abstract and flexible to facilitate any custom imple-

mentation; however, we propose an implementation based on a direct mapping to the confidence

argument. Our proposed confidence argument structure is to argue over three primary confidence

properties, i.e., appropriateness, sufficiency, and trustworthiness (see Figure 5.2). A correspond-

ing CAV structure for ~Ccontext, ~Cinference and ~Cevidence would map measurements to confidence

properties as follows:

< µappropriate, µsufficient, µtrustworthy >

While this implementation of the CAV concept provides a structure for what measurements

should represent, the precise form of values each measurement should take is not specified. Fun-

damentally the value produced for each measurement should be based on further examination of

the strategy of argument used to demonstrate the confidence property. For example, an approach

to argue the sufficiency of an assertion is to argue that all assurance deficits have been considered,

and that all relevant deficits have been adequately handled. This kind of argument lends itself to

measures of confidence in terms of Baconian probability [49].

Generally, measurements can take any form, which can be, in addition to Baconian probability,

Bayesian probability, expert judgment, checklists, or even some combination of these measurements.

Since the precise strategy of argumentation in confidence arguments is a topic of current research

and debate (see Section 5.3) the exact form is not well established. Consequently, the precise form

of each measurement type should take is also not currently established.

Finally, any measure of confidence will have residual doubts about the measure itself (i.e.,

meta-confidence); however, measuring confidence in this manner can be used to reduce residual

doubts to be As Low As Reasonably Practicable (ALARP) [15]. Section 5.4.3 provides a discussion

for potentially addressing meta-confidence concerns using MBSA.
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Figure 5.4: Interpretation of confidence assessment

5.4.2 Interpretation

When confidence assessment is completed, the security argument is annotated with CAVs for

each confidence argument. Interpretation functions are then applied to CAVs to allow decision

makers to derive various “views” (i.e., metrics) of the state of confidence in the security argument.

Interpretation functions come in three forms that are applied in the following sequence (illustrated

in Figure 5.4):

Normalization: Normalization functions standardize or contextualize each measurement stored

within a given CAV. For example, security arguments frequently require amendments as

concepts of security or the operating environment evolve over time. In response to these

inevitable context changes, a normalization function can be developed to apply weights to

(i.e., scale) affected CAVs to keep the results relevant within the new context. Other examples

of normalization include standardizing the scale of measurements (e.g., between 0 and 1),

filtering pertinent data, and contextualizing measurements with respect pass/fail thresholds.

Summarization: Summarization functions are used to distill CAVs into simpler and more easily

comprehended forms. For example, to determine how much confidence there is in a given

claim would require examination of all CAVs stemming from that claim and all its sub-claims.

Instead of evaluating all CAVs individually, summarization can be applied to provide a simpler

measurement of confidence for the given claim, such as an average, dot product, magnitude,
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min, max, standard deviation, etc. Summarization functions can operate on individual CAVs,

a collection of CAVs, or a collection of previously summarized data. The data resulting from

summarization can take almost any form, including individual scalar values, a single CAV, or

a collection/matrix of CAVs.

Visualization: Once CAVs have been normalized and summarized, one or more visualization

functions can be applied to display the results to decision makers. Visualization can be used

to produce graphs, charts, tables, annotated assurance cases, raw numbers, etc.

Generally, all CAVs are processed by these functions in the given order; however, decision

makers might choose not to implement one or more of these interpretation functions. For example,

decision makers could choose to view all raw CAV results without any interpretation, view raw

summarizing numbers without visualization, view normalized CAVs without summarization, etc.

No single method for implementing and combining interpretation functions is defined. Deci-

sion makers are given the freedom to choose dynamically how to generate metrics. By altering

interpretation functions, decision makers can alternate between very abstract and highly detailed

measurements. Decision makers can also alter the parameters of interpretation functions to observe

how hypothetical alteration to the software might affect overall security. As such, a practical

implementation of MBSA would require users to define a database of interpretation functions. Once

defined, decision makers can quickly switch between views.

5.4.3 Meta-Confidence

Even with a measure of confidence, there are always remaining doubts about the confidence one

should have in that measurement, i.e., meta-confidence. Much like doubts in a given security

argument, confidence measurement doubts arise out of assertions made in measuring confidence.

An attempt to measure meta-confidence results in further assertions; hence, one could attempt to

measure confidence about confidence ad infinitum.
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A potential solution to infinite regress is to assign an additional team of experts to construct

a meta-confidence vector which captures the residual doubts. The primary doubts about metrics

produced by MBSA are:

1. doubts about the correctness of the framework implementation (e.g., the interpretation func-

tions),

2. doubts about the qualifications of experts and

3. doubts the integrity of the measurement data.

Experts could therefore evaluate these doubts in the following meta-confidence vector:

~Cmeta =< µimplementation, µexpert, µdata >

This concept of meta-confidence can serve as an initial operational definition of meta-confidence

and can be supplemented as other doubts are discovered to meet the needs of those implementing

the framework.

The concept of this approach is to provide decision makers with a value a metric where all

doubts have been reduced to As Low As Reasonably Practicable (ALARP) [15]. Decision makers

could doubt the meta-confidence vector, but to continue measurement beyond this point will require

measuring the same general characteristics. Hence, while confidence metrics to this point have

been beneficial in reducing the problem into a smaller and more manageable set of concerns, the

concerns of meta-confidence cannot be further reduced and consequently the benefit of continued

measurement is minimal or non-existent. We use this concept of irreducible or non-simplifiable

doubt as an operational definition of ALARP as a potential solution meta-confidence concerns. The

precise nature of the form of individual meta-confidence metrics is left for future work, and we omit

discussion of meta-confidence from the remainder of this dissertation.
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5.5 Illustrative Example: The Stoplight Metric

We illustrate the general mechanics and uses of the MBSA framework with an example security

metric that we call the stoplight metric. In this scenario, a decision maker must decide if a given

software system is adequately secure to ship, and if not, needs to make recommendations as to

what components of the software system need to be improved. The decision maker has at his or her

disposal a security argument for the software system that is complete with confidence arguments.

For this example, the exact nature of the given software system is not important and is therefore not

specified.

The decision maker requires a means to evaluate the security argument systematically using a

series of measurements of confidence. By selecting alternative views of the state of the system, the

decision maker can affirm their decision and also isolate areas of highest concern. As such, the

decision maker first uses a very terse and cursory metric to get an idea of the general confidence of

the entire argument, referred to as the stoplight metric.

The premise of the stoplight metric is that each goal (claim) in the security argument can be

described in terms of three levels of confidence, corresponding to three colors:

Green: “Pass”; acceptable confidence

Yellow: “Pass Pending”; provisionally acceptable confidence

Red: “No Pass”; unacceptable confidence

While the stoplight metric can be used to provide a single color for any given claim, the decision

maker desires an overview of the entire argument to understand the systemic security strengths and

weaknesses.

5.5.1 Application of MBSA

To implement the stoplight metric using MBSA, first every confidence argument is assessed and

assigned a CAV by teams of experts. For purposes of this illustrations, CAVs will have the
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form proposed in Section 5.3, i.e., provide measurements of trustworthiness, appropriateness, and

sufficiency. As mentioned in Section 5.4, the form of these measurements is a topic of further study,

so for this example, each measurement is in the form of a number between 1 and 10, inclusive.

With CAVs for every confidence argument, we define a stoplight algebra for assigning confidence

status (Green, Yellow, Red) to a claim through the use of interpretation functions. The sequence of

interpretation functions is defined as follows:

Normalization: For each CAV, a threshold is applied to each individual measurement within

a CAV to translate numeric measurements into one of the three stoplight colors. The choice of

thresholds is entirely up to the decision maker. For this example, measurements greater than or equal

to 7 are colored Green, measurements above 4 but below 7 are colored Yellow, and measurements

that are less than or equal to 4 are colored Red. For example a CAV with values < 8, 2, 5 > would

be normalized into a new CAV with values < Green,Red, Y ellow >.

Summarization: Summarization is accomplished through first summarizing each CAV into a

single color (referred to as a CAV summary color) and then percolating CAV summary colors up

through the argument to each claim (i.e., from leaf goals up to the top-level claim). Percolation is

another type of summarization function in which a claim is assigned color based on summarizing all

CAV summary colors from that claim and all its sub-claims. Both summarizing functions operate

using the same color algebra:

• When all values being summarized are Green, the result is also Green.

• If the values being summarized contain a mixture of Yellow and Green, but no Red, the

summarized value is colored Yellow.

• If any values being summarized are Red, regardless of the color of the other values, the

summarized value is colored Red.
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Figure 5.5: Stoplight metric example

For example, a CAV with normalized values < Green,Red, Y ellow > would be summarized as

Red. The CAV summary color Red would then be used in the percolation summarization function

with other summarized CAV colors.

Visualization: The visualization chosen for the stoplight metric is to present a miniaturized view

of the security argument, where the argument has been stripped of all elements except for claims,

and each claim has been colored. A claim is colored based on the summarized color value from that

claim and all its sub-arguments. An example visualization is shown in Figure 5.5.

5.5.2 Uses of the Stoplight Metric

The stoplight metric provides a quick method to assess the entire state of security of a software

system. For example, in Figure 5.5, the top-level claim is colored Red, hence, sufficient confidence

in the primary security claim does not exist. The claims on the left side of the argument can be seen

to be unacceptable and therefore requiring immediate attention.

The stoplight metric provides a initial view of the security of a software system, not a definitive

measurement. For example, if the top-level claim were colored Green, a skeptical decision maker

would be unwilling to accept that result without first posing some additional questions such as:
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• What if a claim’s color was changed from Green to Red, or vice versa?

• What if the color thresholds were altered?

• What if portions of the argument were considered higher priority than others?

MBSA facilitates these answering questions by allowing decision makers to switch between different

metrics, or change the parameters of a single metric by using different interpretation functions: i.e.,

MBSA facilities performing a “what if?” analysis.

5.6 Scope of MBSA

The uses of MBSA far exceed the scope of SSM. In fact, the principles likely extend beyond the

scope of measuring security to measuring any property for which an assurance case is provided.

The potential power and use of the concepts of MBSA is compelling and raises many research

questions such as:

• Are trustworthiness, appropriateness and sufficiency the correct properties to measure?

• Can measuring confidence be standardized?

• Does the approach facilitate making more secure systems (i.e., a longitudinal study is needed

across many different systems, both using the metric and not using the metric)?

• Can experts be expected to provide meaningful and repeatable measurements?

• Can confidence be measured by means other than expert opinion?

• Can measuring confidence be used to address the issue of determining compositional correct-

ness of arguments in an automated or semi-automated sense?

Not only does the scope of these questions lead to a field of research beyond the scope of this

dissertation, this concept of measurement would require a shift in how confidence is addressed

within systems already using assurance cases. The issue within security is that presently security
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cases are minimally explored. The success of assurance case technologies in the safety community

would indicate the applicability and feasibility of the use of assurance cases for security is likely.

Many of the questions posed about MBSA cannot be answered with empirical data until more

organizations adopt the use of security cases for their products, and make their data public.

Within the scope of SSM, there are many potential uses of MBSA, such as:

• A metric to find weaknesses in a security argument demonstrating the need for SSM principles

(i.e., to determine the applicability of SSM).

• A means for assessing an assurance case instance (see Chapter 3). In this context, MBSA can

serve as a means for assessment within the finalization phase of SSM.

• A means for assisting strategy selection during the SSM process. For example, instead of

selecting strategies based on predefined approaches, the selection can be based on selecting

strategies for which the corresponding argument has the highest confidence.

Addressing each one of these uses of MBSA also exceeds the scope of this dissertation. We leave

further exploration into the MBSA concept for future research.

5.7 Related Work

Many security metrics have been proposed. For example, Hermann [59] discusses over 900 different

security metrics. The MBSA framework is based on argument confidence, a completely different

concept from those used previously. Metrics have inherent assumptions and abstractions that have

led some to conclude the need for a meta-metric to measure these risks [54]. MBSA addressing this

issue.

The key to providing meaningful metrics is the linkage of evidence to a security goal [56, 55].

MBSA utilizes security arguments to structure security goals for the purpose of a security metric.

The key benefit of this approach is the flexibility that it provides stakeholders to choose what

constitutes adequate security for their purposes.
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Other approaches that link metrics to goals have been proposed in which metrics are defined

that focus on a set of desired security-critical properties [56, 53]. These approaches have to consider

multiple forms of measurement to justify that the software has a desired security property. Such

metrics rely on implicit arguments about why a security property should be measured, and what

measurements will show that the desired property is present. MBSA does not necessarily obviate

the need for these metrics, but provides a framework in which justification for a metric is made

explicit.

Denney et al. have proposed an approach to quantifying confidence in assurance arguments using

Bayesian Belief Networks (BBN) [60]. In this approach, confidence is measured by identifying

components of the argument and measuring the confidence in those components probabilistically.

The probabilities are percolated through the argument using the mechanics of BBNs. A BBN

confidence metric prescribes a single approach to modeling and measuring confidence. The

approach relies on belief in the various probabilities used and might abstract too much information

for decision makers. MBSA is a more general framework that does not prescribe methods for

assessing and percolating confidence data. Hence, probablistic confidence measurements and the

use of BBNs to interpret and percolate those metrics is one potential implementation of MBSA.



Chapter 6

Selection Argumentation

Traditionally, an assurance case documents the rationale for belief in the acceptability of a single

software system. To support the SSM process, however, the assurance case must express a range of

modification variability as well as the conditions restricting which variations are acceptable (i.e.,

the argument must document the acceptable solution space—Chapter 3—and how to navigate it). In

essence, the SSM assurance case must serve as a “blueprint” of acceptability that specifies how a

fit-for-use argument is constructed for every software modification generated by the instantiated

SSM process. When the SSM process generates a modification, the assurance blueprint is used to

govern how an acceptable modification is constructed.

This chapter introduces the concept selection argumentation, a set of argument notation enhance-

ments and techniques used to express within the SSM assurance case a fitness argument blueprint.

Selection argumentation is used to capture the mechanics of the SSM process within an argument

structure. Specifically, selection argumentation expresses a selection process for constructing a

fitness argument that is tailored to a specific instance of SOUP, referred to as an assurance case

instance. This chapter describes the core concepts and mechanics of selection argumentation,

guidelines for the application and interpretation of selection argumentation, and an illustrative

example.

101
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Figure 6.1: SSM assurance case mechanics

6.1 Overview

Because of the variation in how modifications are applied, the fitness argument within the SSM

assurance case expresses a range of acceptable arguments and the constraints for selecting between

argument alternatives. Modification variability is a result of the inability to produce an adequate

argument that a modification will be fit for use. More specifically, some evidence necessary to

justify a fitness argument alternative is not known prior to applying a modification. SSM argument

developers must often assume (i.e., speculate) key evidence will be available and be of sufficient

quality when a modification is generated. Assessments are performed within the SSM process

to validate that the evidence exists and is of the desired quality. Assessments also determine if

necessary evidence can be generated within developmental limits as specified within the success

argument (see Chapter 3). How each fitness argument alternative is selected and assessed are

described within the fitness argument in the form of selection constraints.

The SSM process is a realization of the fitness argument selection constraints. As a software

modification is generated, an individualized fit-for-use argument is dynamically selected for the

given modification, illustrated in Figure 6.1. The selected fitness argument is referred to as an
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assurance case instance.

Definition 6.1. An Assurance Case Instance: An assurance case instance is a single assurance

argument (i.e., a single fitness argument) selected from potentially many arguments. Selection is

based on a set of predefined selection constraints and decision models.

An assurance case instance can be supplied with any generated SOUP modification to justify

the modification’s acceptability; however, whether or not an assurance case instance is actually

generated as an output by an instantiated SSM process is at the discretion of those implementing

the model.

Of key importance is that SSM generated modifications are based on the selection of an

assurance case instance.

Generally, the number of possible assurance case instances can be large, prohibiting a simple

enumeration of all individual fitness arguments that are possible, as suggested in Figure 6.1. Instead,

we propose the construction of a single argument structure that expresses variability in how argument

elements and fragments are instantiated and combined.

Traditional assurance case technologies, however, do not sufficiently express the necessary

argument variability and selection mechanics described within the SSM process. To address this

challenge, this chapter introduces the concept of selection argumentation. Selection argumentation

is used within a SSM fitness argument (see for example Chapter 4) to expresses the acceptable

solution space and the criteria used by the SSM process to navigate the solution space.

6.1.1 General Mechanics

The mechanics of selection argumentation are based on the interactions between three fundamental

concepts within the SSM model, illustrated in Figure 6.2:

The Acceptable Solution Space: The range of modification variations (i.e., SOUP modifications)

that users are willing to accept or tolerate (i.e., the range of fit-for-use modifications).
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Figure 6.2: Fundamental SSM concepts

Solution Space Exploration Criteria: Decision models describing how the solution space is nav-

igated. Because the exploration criteria govern how an acceptable modification is generated,

the exploration criteria define the acceptable solution space.

Constraints: Evidence that must be generated and/or validated to justify a modification is fit for

use. The decision models in the exploration criteria are defined based on the possibility of not

generating necessary evidence (i.e., not meeting necessary constraints).

In context of a fitness argument, the solution space is a set of predefined argument structures for

constructing an assurance case instance. The solution space is navigated based on the evidence

that must be generated and/or validated within the fitness and success arguments. Selection

argumentation expresses the above concepts within a fitness argument. As a result, the argument

defines a selection process for constructing an assurance case instance.

Conceptually, selection argumentation describes the selection/development of an assurance

case instance in terms of a tree traversal process. The intuition of this approach is that typically

an argument documented in Goal Structuring Notation (GSN — see Chapter 2) is developed by

a systematic and recursive traversal and development of the argument starting from the top-level

claim down through all sub-claims. Traditionally, argument development is an iterative process, in

which developers perform the following activities:

• choose one or more undeveloped claims,

• determine a set of alternatives to support these claims,

• assess alternatives, and
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• proceed to construct the argument as preferred alternatives are deemed acceptable.

As a branch of argument is completed, developers traverse back up through the argument to the next

undeveloped goal and perform the above activities again.

The development of an assurance case instance involves the same argument development

activities, with one key exception:

Acceptable alternatives, how to choose between them, and constraints affecting the

validity of each alternative are all predefined.

Generating an assurance case instance is therefore based on predefined rules. Selection argu-

mentation expresses predefined development activities explicitly within the argument structure

itself.

6.1.2 Components

Selection argumentation consists of three primary concepts and techniques used in the construction

of a fit-for-use argument:

Product Line Argumentation: Variability in how an assurance case instance is constructed can

be expressed by adopting and extending a proposed GSN argument notation for software

product lines [22]. The proposed notation (referred to as product line argumentation) provides

support for capturing the acceptable solution space within an argument.

Argument Guards: An argument guard expresses within a GSN argument the criteria that must be

valid (i.e., the form of evidence that must be generated) in order for a sub-argument or other

argument element to be included in an assurance case instance. Guards capture the constraints

that affect how the solution space is explored (i.e., constraints restricting the selection of

arguments).

Decision and Refinement Models: SSM involves the concept of making decisions about how

to analyze and modify software, and then refining decisions if these decisions cannot be
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fully supported (i.e., necessary evidence could not be generated). These decisions directly

correspond to structures within the fit-for-use argument. To express decision and refinement

mechanics within the argument requires that the argument encode decision and refinement

models. Selection argumentation combines the use of product line argumentation with

decision and refinement models to capture the solution space exploration criteria.

The remainder of this chapter describes the motivation, syntax, and semantics of each selection

argumentation concept followed by general guidelines for the application and interpretation of

selection argumentation within an argument. This chapter concludes with a brief illustrative

example.

6.2 Product Line Argumentation

As methods for analyzing and modifying the software are selected in the SSM process, the result is a

range of variability in the manner in which the software is modified. The modification variability is

reflected in the variability in which claims are used to support a fit-for-use argument. The granularity

of variability is classified into two general types:

External Variability Variation in the methods of analysis and modification and how extensively

they are applied. This kind of variability is outside (external to) any given analysis or

modification approach. For example, speculative analysis could have an option to choose

static analysis or dynamic analysis, but not both. The use of one analysis technique rather

than the other might depend on how well each analysis performs and therefore will vary

depending on the nature of the software being analyzed.

Internal Variability Variation in how a single analysis or modification technique is configured

and applied. This kind of variability is within (internal to) a single analysis or modification

method. For example, a modification technique could involve checking data structures for

corruption at run time to detect an attack. Frequent corruption checks might increase run-time
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overhead to an unacceptable degree for some pieces of SOUP but not others; hence, the

frequency of checks might vary, although the general approach is the same.

To allow an SSM assurance case to encode either kind of variation, selection argumentation

adopts notation techniques applied to software product line engineering. This section provides a

brief overview of the concept of product lines before describing product line assurance cases in

more detail.

6.2.1 Product Line Overview

Often when a developer releases a software product, the product shares many characteristics (for

example the architecture, core functionality, and risk mitigation methods) with other products

offered by the same developer. Software product line engineering (SPLE), also called product

family engineering, is a paradigm intended to improve productivity and decrease development

time and costs in this scenario [61, 62, 63]. The premise of SPLE is to make maximum reuse

of preexisting core assets, such as common architectures and software components. A software

product line specifies not only what core assets can be used in development, but also the manner in

which the assets can be composed. A software product generated by a product line is referred to as

a variation.

Definition 6.2. Software Product Line Engineering (SPLE): A software engineering paradigm

for producing software-intensive systems that share a common, managed set of features satisfying

the specific needs of a particular market segment or mission and that are developed from a common

set of core assets in a prescribed way [61].

Software product lines have also been proposed for developing software with variable depend-

ability properties, specifically security [48]. In this context, a product variant is constructed by

developing a software system using different property establishing mechanisms and configurations

(e.g., varying attack mitigation techniques).

The principles of SSM share some characteristics in common with SPLE:
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• SSM reuses the same SOUP analysis and modification techniques to effect a modification for

any given SOUP. These analyses and modification approaches can be thought of as reusable

core assets.

• SSM applies analyses and modification techniques in different ways depending on the char-

acteristics of the SOUP being modified. Since each produced modification is different but

shares some similar characteristics, modifications are analogous to the concept of variations

in software product lines.

SSM and traditional SPLE differ in terms of their respective goals and uses:

• The ultimate goal of a SPLE is to improve development productivity [62]. While SSM

principles might also improve productivity, the primary goal of SSM is to account for

uncertainties in modifying software and produce software modifications within a range of

tolerability.

• SPLE is typically used to generate new software products, where SSM is used to modify

existing software.

• SPLE typically defines the mechanics to produce variations for different stakeholders and/or

operating contexts. Conversely, an instantiation of SSM produces variations (modified

software) for the same operating context and stakeholders.

• A product line captures and restricts the variability in software products; however, a variation

is always meant to meet the needs of the stakeholders fully. In this sense, variations are

intended to be equally acceptable for use. SSM differs in that modified software might not

be equally acceptable, e.g., a given modification might provide better security guarantees

than another. This can occur when assessments within SSM invalidate a preferred strategy,

resulting in selecting a less preferred strategy. Hence, SSM not only captures and restricts

variability in modifications and the dependencies associated with each variation, but SSM
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also includes the dependencies of assessment failures necessary to arrive at modifications that

might not be ideal but are considered tolerable.

Despite the differences between SSM and product line engineering, both approaches produce

solutions with variability as specified by a process. This major similarity allows SSM to exploit a

new argumentation technology for product lines, discussed in the following section.

6.2.2 Product Line Assurance Cases

In a recent publication, Habli and Kelly [22] investigate the application of assurance cases to

SPLE. The premise of their work is that SPLE might be beneficial for generating safety-critical

software. The use of assurance cases for safety (i.e., safety cases) is a common and sometimes

mandatory practice [17] to demonstrate that a software system is adequately safe. As a result, a

safety case for all variations produced by the product line is a valuable and sometimes necessary

asset; however, constructing an assurance case for each variation from scratch or in an ad hoc

manner could undermine the productivity benefits that a product line provides. Instead, SPLE

should support construction of an assurance case for each variation.

The intuition of assurance cases for product lines is that since SPLE produces software with

common architectures, software components, failure modes, risk mitigation approaches, and so on,

the assurance case for each variation will also share a similar form of argumentation. As there are

reusable software components used to generate software in a product line, there are also reusable

argument structures that can be similarly composed.

To provide an assurance case for any variation produced by a product line, Habli and Kelly

define a single assurance case that uses a special notation to indicate points of variability. As a

product line generates a variation, decisions are made corresponding to these points of variability.

Once a decision is made, a corresponding argument is selected and concretized. In this manner, the

software product line assurance case acts as a blueprint that is concretized and pruned based on

decisions made during the product line engineering process.
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Figure 6.3: GSN pattern notation elements — figure taken from Habli and Kelly [22]

Habli and Kelly adopt GSN pattern extensions to facilitate assurance cases for product lines.

GSN pattern extensions are described in Chapter 2, but for ease of reference, these extensions are

illustrated in Figure 6.3. Pattern extensions provide two types of abstraction [22]:

Structural Abstraction: Represented by the multiplicity and optionality extensions in Figure

6.3, these extensions express n-ary, optional, or alternative relationships between argument

elements.

Entity Abstraction: Represented by entity abstraction extensions in Figure 6.3, these extensions

are attached to argument elements to indicate the argument element is either not instantiated

or requires further development. Entity abstraction allows generalization and specialization

of argument elements.

The structural and entity abstraction provided by these extensions allow the argument to capture

and restrict variability in the argument. A key difference with the traditional use of GSN pattern

extensions is that within a product line assurance case, every multiplicity or optionality element
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Figure 6.4: Product line argumentation example — figure taken from Habli and Kelly [22]

has an attached GSN obligation element (depicted as an octagon symbol) to indicate the criteria by

which optional arguments or alternatives are chosen1.

Figure 6.4, taken from Habli and Kelly [22], demonstrates the use of GSN pattern extensions to

support variability in a product line assurance case. This example argument fragment is used to

demonstrate the improbability of an inadvertent deployment of reverse thrust for an aircraft in flight.

Goal R5, ‘Throttle interlocks shall be provided’, is optional, as indicated by the optional multiplicity

element (depicted as a hollow circle). Some manufactures do not require throttle interlocks; hence,

the inclusion of goal R5 is dependent upon the kind of engine used. Obligation 13 is used to indicate

the dependency under which the inclusion of R5 is based, referring to the dependency as variation

point ‘D22’.

1Obligation elements are not typically used within argument patterns. Obligation elements are extensions to the
GSN pattern notation and are therefore not shown in Figure 6.3.
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Figure 6.5: Argument guard element

6.3 Argument Guards

The unknowns and uncertainties of SOUP modification (see Chapter 1) make the construction of an

SSM assurance case difficult. Specifically, evidence to support an argument might depend on the

characteristics of the software, which are not known during the development of the assurance case.

Instead of abandoning argument construction, developers can base the argument on hypothesized

evidence, i.e., evidence assumed to be available.

When the software is modified, assessments are required to determine if hypothesized evidence

is actually available. The purpose of the assessment activities within the SSM process is to validate

hypothesized evidence. Failure to generate necessary evidence means that certain portions of the

argument cannot be used to justify the fit-for-use claim. To express a summary of necessary evidence

that affects the validity of argument structures, selection argumentation introduces the concept of

guarded arguments.

Guarded arguments are similar in concept to guarded commands [64]; however, instead of

guarding the execution of a command, an argument guard restricts inclusion of components of

an argument within an assurance case instance. A guard is depicted as a GSN criterion element

(Figure 6.5), further referred to as a guard element. Guard elements are connected by a solid line

to restricted argument elements. Typically, a guard indicates evidence that must be generated to

support claims found throughout the assurance case (in both the fitness argument and success

argument). For example, the use of a sub-argument might be restricted by:

• Evidence corresponding directly to the sub-argument, i.e., found within a given sub-argument.
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Figure 6.6: Example of explicit and implicit argument guards

• Evidence corresponding to competing constraints such as correctness and efficiency (Chapter

4).

• Evidence corresponding to confidence arguments (Chapter 5).

• Evidence corresponding to development constraints found within the success argument

(Chapter 3).

6.3.1 Explicit vs. Implicit Guards

Entity abstraction used by product line argumentation can also serve as a form of implicit argument

guard. Entity abstraction indicates some entity (e.g., data used as evidence within the argument)

must be generated and have a specific form. Failure to generate the necessary data would imply the

associated argument is not valid. We therefore make the distinction between implicit and explicit

argument guards, illustrated in Figure 6.6:

Definition 6.3. Implicit Argument Guards: The use of product line entity abstraction alone to

restrict the use of an argument entity in the generation of an assurance case instance.
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Definition 6.4. Explicit Argument Guards: The explicit documentation of restrictions affecting

the use of an argument element in the generation of an assurance case instance. Explicit guards are

documented using guard elements, shown in Figure 6.5.

The key benefits of using explicit guards instead of relying entirely on entity abstraction (i.e.,

implicit guards) are:

• Explicit guards highlight the exact constraints restricting the use of an argument element in

an assurance case instance.

• Explicit guards can express crosscutting constraints corresponding to other arguments spread

through the SSM fitness and success arguments.

• Explicit guards can be placed at any position in the argument to better clarify how an argument

is restricted, instead of relying on reviewers to traverse the argument to find all implicit guards.

• Explicit guards always document argument restrictions. Entity abstraction can be used as a

placeholder for identifiers, file locations, etc. that are not known a priori. These uses of entity

abstraction do not necessarily restrict the use the argument.

• Explicit guards can document any kind of restriction, including restrictions based on evi-

dence that must be validated and not generated. Entity abstraction, however, only provides

restrictions when the exact form of some entity (e.g., evidence) will have to be derived later.

While the use of explicit guards over implicit guards is at the discretion of the argument

developers, for simplicity, further discussion of guards is with respect to explicit guards. The same

general semantics and mechanics for explicit guards also apply to implicit guards.

6.3.2 Guard Format

An explicit guard is documenting using a guard element illustrated in Figure 6.5. Each guard

element specifies one or more validation criteria, referred to as a constraint. To allow auditors of the
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argument to understand the rationale for all constraints within a guard, each constraint has one or

more corresponding justifications, in the following form:

< constraint identifier > < constraint > :< justifications >

In many cases, the justification for a constraint is found elsewhere in the assurance case (i.e., the

constraint corresponds to evidence in support of some goal in the assurance case). In this case,

justification is documented as a reference to applicable goals, contexts, evidence, etc.

For example, the guard in Figure 6.6 describes a restriction on a security claim. In this case,

not only must testing be performed to validate the associated claim, but testing must also terminate

within a time constraint. The justification for the time constraint is found within the success

argument. When selecting a modification approach, crosscutting competing constraints/restrictions

such as these are often not immediately apparent. By placing constraints within a guard, the

argument more easily conveys when modification techniques can be acceptably applied. The

justification for why these constraints are necessary is found elsewhere within the assurance case as

referenced by each constraint’s justification. Further illustration of the use of guards is described in

Section 6.6.

6.3.3 Guard Semantics

A guard, G, is valid if each constraint, C, within the guard is valid (i.e., each constraint is met):

V alid(G) ⇐⇒ V alid(C1) ∧ ... ∧ V alid(Cn)

A guard is placed in relation to an argument element, E, (i.e., a goal, context, justification, assump-

tion, etc.) to restrict the use of E in selecting an assurance case instance. An argument element is

selected for use within an assurance case instance if is permissible to use (denoted Perm(E)):

Perm(E) ⇐⇒ (∀G : GuardsOf(E) • V alid(G)) ∧ PermPath(E)
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As indicated in the above predicate, valid guards directly associated within an argument element

(GuardsOf(E)) are a necessary but not always a sufficient condition for Perm(E). If E is a goal

element, guards might be present within the sub-argument for that goal. Hence, for Perm(E) to

be true, a path through the sub-argument of E must exist where all guards are valid. This path is

referred to as a permissible path (denoted PermPath):

PermPath(E) ⇐⇒ ∃P : Paths(E) • (∀G : PathGuards(P ) • V alid(G))

A guard only restricts the use of an argument element in constructing an assurance case instance.

Ultimate selection of an argument element might depend upon one or more decision models

(discussed in Section 6.4). Thus, we use the term permissible because the element’s use might be

predicated on a decision process.

A path through the argument is therefore a single and complete traversal of the argument in

which all decisions between alternatives have been resolved. The set of all argument paths stemming

from specific argument element E is denoted Paths(E). If E is the top-level goal, Paths(E) is

the set of all assurance case instances that can be constructed. PathGuards(P ) refers to all guards

that restrict the use of argument elements on a given path, P .

Constraints within each guard correspond to assessment activities performed during the SSM

process. If during the SSM process the constraints within the guard cannot be validated, the guard

is said to be invalidated, triggering the decision refinement mechanics discussed in Section 6.4.

6.4 Decision and Refinement Models

By using product line argument notation within a fitness argument, the argument can specify choices

between alternatives within the argument elements (e.g., alternative goals, contexts, evidence, etc.).

These alternative argument structures can correspond to methods for analyzing and modifying the

SOUP in SSM; hence, these alternatives also correspond to hypotheses about the manner by which

a SOUP modification is generated.
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Within SSM, decision processes can be more complex than originally intended in product line

engineering. Decisions within an SSM argument do not merely codify the need for engineers to

choose between alternatives, and relationships/conditions affecting the choice. Rather they are more

mechanized and further indicate how decisions are readdressed (i.e., refined) as a previous choice is

invalidated. At each decision point, an obligation element is attached to model the decision and

refinement process.

The decision process can be modeled in any number of ways, such as:

A maximizing operation: The maximum number of alternatives under a decision point should be

chosen.

A fitness operation: A fitness function specifies a set of characteristics that must be maximized.

The alternative with the highest fitness (the maximized characteristics) is chosen.

Probabilistic models: Selection between alternatives is determined by calculating a probability of

success based on characteristics of the SOUP being modified.

Predefined preference: A preference between alternatives is known a priori. Selection is codified

as a linear progression between alternatives to find the first valid option.

Regardless of how decisions are made, the model must support refinement of the decision if a

choice is later invalidated. In SSM, a decision is invalidated if the argument guards associated with

a selection are later invalidated. To address the possibility of decision invalidation, each decision

model should preserve the state of the previous decision, and have an explicit method by which a

new decision is made. For example:

• Decisions based on maximizing operations can choose to drop/ignore invalidated choices,

and simply use the remaining validated options.

• Decisions based on fitness functions can choose the next most fit alternative.
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• Probabilistic models can update probability distributions based on observed events, e.g., using

a Bayesian probability, and then choose the next alternative based on the updated probability

of success.

• In a predefined approach, the next option is selected in the chain of preferences.

The field of decision theory is vast, and many decision models are potentially useful within SSM.

We do not restrict which models are applied, and further exploration of various decision models is

outside the scope of this dissertation; however, the next section provides an example decision model

based on finite-state machines for illustration.

6.4.1 Modeling Decisions using Finite-State Machines

To provide an illustration of a decision and refinement model for discussion, this section presents

the mechanics of an example model. In many cases, an SSM decision process can be described

is a progressive (linear) selection between a predefined preference of alternatives. As a preferred

alternative is invalidated, the manner in which the alternative was invalidated governs selection of

the next preferred option.

This style of decision process is amenable to modeling with a finite-state machine (FSM), also

referred to as finite-state automata. The intuition is that each selection between argument alternatives

is a state. When a choice is later invalidated, the invalidation triggers a transition to another state,

where a new choice is made.

Mathematically, an FSM is expressed as the 5-tuple (Σ, Q, q0, δ, F ) where these elements have

the following meanings:

• Σ is the set of input symbols (i.e., the alphabet of inputs that trigger state transitions).

• Q is the set of states within the FSM.

• q0 ∈ Q represents the start state of the FSM (i.e., the state from which transitions in the FSM

begin).
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• δ represents the state transition function of the FSM, expressed as δ : Q × Σ → Q for

deterministic FSMs and δ : Q× Σ→ P (Q) for non-deterministic FSMs.

• F represents the set of final states (accepting states) of the FSM.

Within selection argumentation, an initial preference between argument options is the FSM start

state. If the initial choice is latter invalidated through assessment, the precise nature of the failure

(further referred to as a failure condition) can be used as an input symbol to the FSM, triggering a

transition to another state (another argument option) based on the conditions of the failure. The

concept of an accepting state corresponds to any selected alternative that is not invalidated, i.e.,

each state is a final/accepting state. Acceptance is triggered when no additional assessments are

preformed to validate the choice, i.e., all guards associated with the selection have been validated.

In traditional FSMs, when an input symbol is not recognized (the FSM does not specify a

transition for the input symbol), the FSM is said to be in an undefined state. In our FSM decision

model, if a choice (i.e., a state) is invalided by means not documented explicitly in the transition

function, the FSM transitions to an implicit rejection state. The mechanics of how rejection is dealt

with are further discussed in subsequent sections.

6.4.2 FSM Illustration

Figure 6.7 illustrates an argument excerpt in which a decision is required between three sub-

argument alternatives. In this example, each sub-argument corresponds to methods for arguing

adequate mitigation of an attack class. The decision model for selection between these alternatives is

found in document D1 (referenced within the obligation O1) and is modeled as a finite-state machine.

For simplicity of the illustration, no detailed argument structure is given for each alternative, but we

assume each alternative has associated argument guards.

The graphical representation for the decision process FSM is illustrated in Figure 6.8. For

illustration purposes, the precise failure conditions are not given and are important for the example.

The key concept of the illustration is that each alternative has associated guards, and those guards
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O1: Obligation 
Mitigation selection 
policy specified in 
document D1. 

13.1.2 Alternative 2 
The vulnerability is removed 
40% of the time.  

13.1.1 Alternative 1 
Attacks are detected 50% 
of the time.  

12.1: Strategy 
Argue mitigation over mitigation techniques. 

13.1.3 Alternative 3 
The vulnerability is 
sufficiently obfuscated.  

11.1 Attack Class Claim 
The attack class is 
adequately mitigated.  

Figure 6.7: Argument decision example

Alternative 1 

Alternative 2 

Alternative 3 

Failure  
Condition A 

Failure 
Condition B 

Failure  
Condition C 

Start 

Figure 6.8: Example finite-state machine decision process for Figure 6.7

can be invalidated. While predefined preference between approaches can be a simple linear chain of

states, this diagram illustrates a slightly more complicated decision model. Under a certain chain of

failure conditions, the choice between alternatives would proceed in a linear sequence, i.e., from

alternative1, then alternative2 and finally alternative3; however, it is possible to bypass alternative2

altogether under the right failure conditions, and skip directly to alternative3.

State machines are also amenable to representation as transition tables, shown in Table 6.1.
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Failure Condition Current Choice 

Alternative 1 Alternative 2 Alternative 3 

Failure Condition A Alternative 2 - - 

Failure Condition B Alternative 3 - - 

Failure Condition C - Alternative 3 - 

Table 6.1: Transition table example of the finite-state machine diagram illustrated in Figure 6.8

Given a state and a transition, a transition table indicates the next state. Transition tables are easily

represented in text-based forms obviating the need for graphical tools, and facilitating documentation

of these decision processes within the argument itself.

6.4.3 Decision Mechanics and Conditional Tolerability

Regardless of how decisions are modeled, the decision mechanics within selection argumentation

behave in the same manner. When a decision is made, guards associated with the select argument

are validated. If any guards are not valid, the evaluated failure condition guides a traversal back up

through the argument to the nearest decision point. The decision model at that point is consulted

and the next choice is made.

If the nearest decision model cannot reach another decision, the failure condition continues to

propagate hierarchically up through the argument to the next decision point. For example, using

the transition table described in Table 6.1, if a failure condition occurs for any alternative that is

not accounted for in the transition table, all alternatives are rejected. Since no decision can be

made, the failure condition continues to traverse up through the argument to next decision point.

If no valid alternatives can be found through back propagation, the entire argument is considered

invalid. Within a fully instantiated SSM process, invalidation of the entire argument would result in

a modification error/failure message (see Chapter 3).

A consequence of making other choices as preferred choices are invalidated is that SSM

modifications can have a range of tolerability, e.g., one modification might be preferred initially

over another, yet both can be considered tolerable for use in certain scenarios. The decision and
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refinement process can be used to dictate how to “back off” progressively until a tolerable solution

is found. We refer to this concept as conditional tolerability.

Definition 6.5. Conditional Tolerability: The conditions for which a chosen configuration or

strategy for analysis or modification is considered tolerable. A conditional tolerability defines a

dependency chain of necessary conditions (i.e., necessary failures of other approaches) that must

occur in order for a given approach to be used and tolerated. Failure to meet these necessary

conditions would mean the approach is not tolerated.

6.5 Guidelines for Application and Interpretation

The intent of selection argumentation is essentially to describe an argument development process

within a fitness argument. The SSM process, and those manually reviewing the argument, would

then proceed by traversing the documented development process.

A challenge of this approach is that a fitness argument contains separate argument branches

for the efficacy of establishing the desired property (e.g., security or safety), and the ability of

the modification to meet stakeholder-defined constraints (e.g., correctness, efficiency, confidence).

These argument branches are not independent. If branches of the argument are dependent on each

other and also express a complex decision process, there is no clear indication of the order in which

branches should be traversed. Further, the interaction becomes difficult to understand. To provide a

simpler and comprehensible argument selection mechanics, we therefore choose a single argument

branch where selection argumentation is applied. Selection argumentation mechanics are then

interpreted by traversing the chosen argument branch.

We observe that the primary purpose of constraints within the SSM assurance case is to place

restrictions on the branch of argument that justifies the efficacy of the modification, i.e., the argument

that demonstrates desired dependability properties are present in the modified software. For example,

in the security fitness argument illustrated in Chapter 4, the efficacy branch would be the security

requirements branch.
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Domain-Specific  
Properties 

Correctness Efficiency Confidence 

Budget 
Computing 
Resources 

Effort 

Operational (Fitness) Constraints 

Developmental (Success) Constraints 

Efficacy a 

Figure 6.9: Constraints of modification efficacy

Arguments in all other branches of the fitness argument, and all arguments within the success

argument, serve to restrict choices corresponding to modification efficacy, illustrated in Figure

6.9. We therefore stipulate that the efficacy branch of the fitness argument is where selection

argumentation should be primarily applied. Interpretation of the selection argumentation mechanics

proceeds by traversing the efficacy branch and resolving selection argumentation concepts (i.e.,

making decisions, validating guards and refining decisions) as they are encountered.

The general guideline for focusing the use of selection argumentation is to restrict argument

guards and intricate decision models to the efficacy branch. As arguments are constructed for the

efficacy branch, if any component of sub-argument is dependent on evidence that must be generated

or assessed (from any part of the success or fitness argument) a guard is placed in the efficacy

branch. Product line argumentation is applied to express variability and decision models are applied

to express preference between alternatives and decision refinement procedures.

All other areas of the fitness argument might lack data or have some variability in a purely

product line sense, in which case product line argumentation is still permissible. For example, a

correctness argument based on testing a modification will need to be produced when the modification

is generated. Any associated correctness argument will therefore not have the testing results a priori.

The missing evidence would be indicated in the argument using entity abstraction. Somewhere



Chapter 6 Selection Argumentation 124

in the efficacy branch, a guard is placed to restrict selection based on generating sufficient testing

evidence to suggest the approach is adequately correct.

The only exception to the use of guards is for cases for which evidence cannot be generated

until the modification is completed. For example, a correctness claim could be made about the

whole modification, not just one of its components. If the claim is based on testing the completed

modification, testing data will have to be generated during modification finalization. Missing

evidence corresponding to finalization activities such as these does not serve to restrict decision

in the efficacy branch. Rather, the primary purpose is to determine if the argument as a whole is

sufficient. To highlight evidence of this form, the use of guards is permitted anywhere in the fitness

argument.

6.5.1 Limitations and Assumptions

Figure 6.9 intentionally belies any complex relationships between constraints. In principle, con-

straints can constrain other constraints. For example, an analysis to validate correctness might be

constrained by confidence that the approach will produce reliable results. Further, the analysis

can be constrained by the time allowed for generating data. The application and interpretation of

selection argumentation is based on the assumption that all constraints ultimately serve to restrict

efficacy decisions, either directly or indirectly. Additionally, by focusing the use of selection

argumentation within the efficacy branch, there is an assumption that no other branches of the fitness

argument will require complex decision processes, i.e., all SSM decision processes are based on

efficacy.

These assumptions and uses of selection argumentation limit where variability is allowed

within the fitness argument. Specifically, variability is not permitted in how correctness, efficiency,

confidence, or any other constraints are argued. We make this stipulation to promote simplicity

of SSM assurance cases, and to focus and simplify the content of this dissertation. Selection

argumentation can be expanded to allow for variability in other areas of the argument through more
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complex guard mechanics; however, investigation into extending the use of selection argumentation

for more complex decision processes is left for future research.

6.5.2 Relationship to the SSM Process

The SSM assurance case is interpreted by traversing the fitness argument through the efficacy branch.

Decision models indicate how choices between alternative argument structures are made, and guards

indicate all evidence that must be generated and validated for an alternative to be acceptable. Failure

to validate the constraints within a guard results in failure propagation up through the argument

(towards the top-level claim) to the nearest decision model. Reviewers must also consult the

success argument for global resource consumption constraints, in addition to constraints that affect

individual decisions. For example, a timeout condition on the SSM process is part of the success

argument, but does not directly influence any individual decision.

Traversal continues until all decisions are processed, or the process is terminated based on ex-

ceeding acceptable levels of resource consumption (as specified in the success argument). Whatever

path has been traversed constitutes an assurance case instance. A final review of the argument

is necessary to generate any remaining missing evidence, and to verify that the argument is not

missing any necessary components.

The SSM process is an instantiation of this kind of argument traversal; however, there is no

direct mapping from the argument mechanics to the process components of SSM. Manual review of

the argument is necessary to determine how the SSM process should be implemented. Ultimately,

how the SSM process instantiates the mechanics of the SSM assurance case are subjective; however,

some general guidelines for mapping the argument mechanics to an SSM process are provided

below.

Preprocessing: Preprocessing allows for the optimization of the SSM process by generating or

validating data that will be useful for the remainder of the SSM process. SSM developers should

examine all decisions and guards within the fitness argument to find any data that could be generated
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or assessed in preprocessing. For example, a guard that is unconditionally assessed (i.e., the

guard is not associated with any decision) represents a fundamental restriction on the entire fitness

argument and it should be assessed in preprocessing. If the guard is invalid, no modification will

be valid; hence, there is no reason to continue with the SSM process. Similarly, if a large number

of alternatives are guarded based on the same constraint, the SSM process might be optimized by

performing the assessment in preprocessing.

Speculative Analysis and Modification Synthesis: Decision models within the argument

structure correspond to strategy selection in both the speculative analysis and modification synthesis

phases. Each alternative that can be chosen by a decision process is an analysis or modification

approach. The exact analysis or modification approaches to perform are expressed within the se-

mantics of all claims associated with each argument alternative. Guards associated with alternatives

correspond to assessment metrics. The distinction between speculative analysis and modification

synthesis is based on if a modification must be synthesized to perform the assessments or not. As-

sessment summaries in the SSM process express either that associated guards have been validated,

or the guard constraints that were invalidated.

Termination: The SSM process will terminate when either an explicit or implicit termination

condition is reached. An implicit termination condition corresponds to fully generating an assurance

case instance, i.e., processing all decisions and arriving at a complete traversal of the argument. An

explicit termination condition is the result of not being able to find any acceptable alternatives or if

the resources consumed by the modification process (as specified in the success argument) exceed

some defined limit. The former case is a failure to produce an acceptable modification, resulting in

the SSM process producing an error message. In all other cases, the SSM finalization process is

initiated.

Finalization: Finalization involves a last assessment of an assurance case instance. Assessment

of the assurance case instance involves verifying that the argument is complete by verifying
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necessary arguments are present and that necessary evidence has been generated. Some evidence

cannot be generated until finalization. All guards with constraints that can only be verified at

finalization are assessed during finalization. Failure to validate the assurance case instance results

in SSM producing an error message. Otherwise, the modification was successfully generated.

6.6 Illustrative Example

Figure 6.10 illustrates the combined use of the selection argumentation concepts within a fitness

argument for security. This example is based upon our first target for SSM evaluation, described

in Chapter 7. In this example, a set of modification techniques are applied to individual functions

within a binary program (binary SOUP) to mitigate security risks. The selected argument justifies

that the modified software adequately mitigates a specific set of attacks. For the sake of illustration,

the exact nature of the attack class and the type of mitigation techniques applied are not important;

however, a more detailed description of this example is provided in Chapter 8.

In this example, decision and refinement models are relatively simple and are described in

plain text within each obligation element. The first decision, specified in obligation O1, indicates a

maximizing decision process associated with a multiplicity element (a black dot). A multiplicity

element indicates the argument structure below will repeat. In this case, the decision process in

obligation O1 specifies the number of argument repetitions corresponds to the number of functions

that are mitigated from attack. While ideally all functions will adequately mitigate an attack, some

might fail to be fully mitigated. The decision process at Obligation O1 specifies a maximizing

operation, and no more complex refinement activities. As such, if a function fails to be mitigated,

the failure does not invalidate the entire argument.

To address the risk that too few functions will be adequately mitigated, goal 13.3 argues that a

minimum number of functions are mitigated. Exactly how many functions are mitigated cannot be

known prior to generating the modification; hence, guard G2 is used to indicate the dependency of
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11.1.2:  Decomposition Claim 
Function pointer attacks are 
mitigated.  

G1: Well-Formed Function Guard 
1) The function must not contain 

patterns document in P1: 
justified by correctness goal C21. 

2) The function is mitigated within 5 
minutes : justified by success 
argument goal S15. 

13.1: Function Mitigation Claim 
{Functioni} is adequately mitigated. 

14.1: Strategy 
Argue mitigation over mitigation techniques. 

13.3: Function Coverage Claim 
The number of total functions 
modified meets minimum 
requirements. 

12.1: Strategy 
Argue over mitigation techniques per function. 

O3 
Select the maximum number 
of valid mitigations but 
choose at least one. 

15.1.1 Detection Claim  
Boundary violations beyond inferred 
variable bounds are adequately likely to 
be detected by canaries prior to the attack 
succeeding, and execution is terminated 

All call instructions are 
instrumented with 
canary checks prior to 
execution of the call.   

Canary values are 
random 32 bit integers.  

Canary Assumption 2 
This claim is based on the 
assumption that attackers 
cannot use a confidentiality 
vulnerability to first read the 
canary before corrupting it.  
 
 

A 

Canary Assumption 1 
Function pointers are only 
used in call instructions, and 
no other kinds of instructions.  
 
 

A 

O2 
Attempt strategy 14.2 
first. If it fails, use 
strategy 14.1. 

14.2: Strategy 
Argue no mitigation required. 

(Other Mitigation Goals) G3: Detection Guard 
1) The function does not contain 

compiler idioms specified in 
document 
PaddingAssessmentIdioms : 
justified by correctness goal C23 

2) The function does not contain 
compiler idioms specified in 
document 
CanaryAssessmentIdioms: 
justified by correctness goal C24. 

G2: Comprehensiveness Guard 
1) At least 85% of all functions 
should be mitigated from attack : 
justified by sub-argument of Goal 
13.3. 

16.2 Canaries  Entropy Claim 
The probability a canary 
violation is not detected is 1 in 
2^32.  

16.1 Remediation Claim 
All detected canary violations 
result in program termination 
prior to a successful attack.  

Module1 
 Intra-Frame Variable 
Precision Module 
 

O1 
Attempt Goal 13.1 on all program 
functions. Ignore argument for 
the function  a failure is observed.  

Figure 6.10: Example application of selection argumentation within a fitness argument

goal 13.3 on evidence about the completed modification (i.e., evidence that will be generated and

assessed in the finalization phase of the SSM process).

Each function can mitigate the attack using one of two general strategies:

1. Sufficient evidence exists that the function not at risk and does not require mitigation (strategy

14.2).

2. The function is considered at risk and attack mitigation techniques are applied (strategy 14.1).
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The next decision point, document in obligation O2, describes the decision model to select between

these two strategies. In this case, the preference is to attempt to argue that no mitigation is

necessary (strategy 14.2). If strategy 14.2 is not validated, then strategy 14.1 should be attempted.

For simplicity, the sub-arguments and further details corresponding to strategy 14.2 are omitted;

however, it is assumed that strategy 14.2 uses guards within its sub-argument.

If strategy 14.2 is selected, the function in question is modified using a set of mitigation

techniques. In this example, all mitigation approaches rely on a set common assumptions and guard

G2 makes these key assumptions explicit as constraints restricting the use of strategy 14.1:

1. All functions must have a common and expected form in terms of how the function accesses

memory, the instructions the function uses and the overall patterns of instructions. Certain

function forms are known to be problematic when modified, i.e., functions of the specific

form can negatively influence the correctness of the modified software.

2. Each function must be modified within a specific time limit (5 minutes). In some cases,

mitigation techniques require additional assessments and testing to derive necessary evidence

to support the argument. The SSM success argument is used to constrain development

resource consumption, yet these constraints have a direct impact on the choice of mitigation

techniques.

The last decision point, documented in obligation O3, indicates how mitigation techniques

are selected. The selection policy is to choose as many mitigation techniques that are valid, but

choose at least one. For the purposes of illustration, we focus on a particular mitigation technique

for detecting attacks (goal 15.1.1). Use of the detection mitigation technique is guarded by the

constraints specified in guard G3. Much like guard G2, the constraints in G3 indicate specific

patterns of instructions that can negatively affect correctness. If these patterns are found, goal 15.1.1

cannot be used within an assurance case instance.



Chapter 7

Case Study: Exploring the SSM

Process

This chapter presents the the first in a series of three case studies to evaluate and examine the SSM

model. For all three studies, we sought to test the hypothesis that the SSM model is both feasible

and practical by applying the model to SOUP modifications for security. Feasibility refers to the

realistic/reasonable application of the SSM approach and practicality refers to the ability of the

approach to provide real benefits for engineers of software modifications for security. Over the

course of each case study, the concepts and guiding principles of SSM were discovered and refined.

Subsequent studies exercise/illustrate and further refine discovered principles.

7.1 Case Study Overview and Goals

This chapter presents a case study designed to answer the research questions:

What are the general motivation, form, rationale, and potential utility of SSM?

Since each study performed in this dissertations builds upon discoveries and observations in se-

quence, we did not begin this study with a complete concept/understanding of the SSM model.

Instead, we began with a basic security problem, and our solution to that problem yielded obser-

vations leading to the concept and mechanics of the SSM process. We first present the SOUP

130
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security problem and our modification technique to address this problem, referred to as Stack Layout

Transformation (SLX). A primary result of this study was the identification of the need for explicit

models of acceptability in SSM model (i.e., the SSM assurance case), further studied in the next

chapter.

The goal of this case study is to evaluate the feasibility and practicality of the SSM process

by investigating the process mechanics of the SSM approach found in SLX. Specifically, this case

study addresses the following research questions:

Question 1 Is the SSM process feasible?

• Can the principles of the SSM process be implemented to solve real-world security

issues?

Question 2 Is SSM process practical?

• Can the SSM process be used to generate software modifications that achieve stakeholder-

defined levels security within defined constraints?

• Does the process present challenges that would affect or limit how or when SSM can be

applied?

Question 3 Is the model of SSM complete?

• Are there limitations not addressed by the SSM model?

7.2 Targeted Vulnerability

In this case study, software modifications are designed to protect against stack-based buffer overflow

attacks. Despite efforts by both researchers and practitioners, stack-based buffer overflow attacks

remain a common and serious threat [65]. Stack-based buffer overflow can be avoided if the software

is engineered with this risk in mind, such as using memory safe programming languages (e.g., Java),

and memory safe libraries (e.g., libsafe [66, 67]). Overflows remain a considerable security risk
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today since not all engineers consider security or buffer overflow vulnerabilities during development,

and therefore stack-based buffer overflow represent a relevant concern for users of SOUP.

If the program source code were available, protection mechanisms against stack-based buffer

overflow would be relatively simple to apply, because high-level program abstractions and semantics,

e.g., variable location and type, are directly specified [68, 69, 70, 71]. Unfortunately, precise

recovery of source-code level abstractions and semantics is not feasible once a program is compiled

into its binary form [12]. As a result, existing methods to protect against buffer overflow in binary

programs typically apply only limited (but sound) protection mechanisms, e.g., by randomizing

the base address of the stack region or by transforming an entire stack frame [72, 73, 74, 75]. Such

coarse-grained protections do not protect against buffer overflows between local variables and

non-control data attacks [76].

Rather than rejecting potentially useful but unsound protection mechanisms because of the

associated risks, our approach is to apply SSM in order to allow stakeholders to take considered

risks to protect binary programs against stack-based buffer overflow attacks. Our SSM instantiation,

referred to as Stack Layout Transformation (SLX) [77, 78], adds properties to the stack frame of

each individual function in a program at the level of individual variables. SLX establishes defenses

against buffer overflow by making alterations to the layout of each function’s stack frame through

the application of a combination of protection mechanisms.

7.3 SLX Overview

SLX applies transformations to individual function stack frames of a binary program by:

1. randomizing the order of local variables within the frame,

2. adding random-length padding between variables, and

3. placing canaries (random values that are checked periodically at run-time to detect overflows)

between variables.
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func(char *pwd, int i) 

{ 

  int auth = 0; 

  char buf[16]; 

 

  auth = authenticate(pwd); 

 

  buf[i] = pwd[i]; 

 

  if (auth) 

    grant_access(); 

  … 

} 

buf[] 
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Figure 7.1: Stack layout transformations

SLX individually applies these modifications function-by-function. For defense in depth, SLX

attempts to compose all three modifications for each function’s stack frame (see Figure 7.1).

This choice of transformations was based on similar approaches applied to source programs

or minimally applied to binary programs [70, 79, 69, 71, 72, 73] and Address Space Layout

Randomization (ASLR) [75]. Reordering and padding variables diversifies stack layouts, thereby

perturbing the predictable layout of data upon which an attacker might rely. Padding can also

serve to allow for continued execution during an attack, i.e., attacks corrupting only the padded

memory are essentially inert. Canaries also transform the layout of the stack by adding “tripwires”

allowing for run-time detection and remediation of some stack-based attacks. For this case study,

the remediation policy for a detected overflow is program termination.

Implementing SLX modifications on binaries presents many challenges. High-level structural

and semantic information needs to be recovered, including:

• The layout of variables in each stack frame.

• The instructions that access the stack have to be modified.

In addition, a determination needs to be made of:

• Which modifications can be applied safely.



Chapter 7 Case Study: Exploring the SSM Process 134

• How to configure chosen modifications.

This information is not necessarily recoverable with complete accuracy from a binary program.

Thus, SLX generates hypotheses for the necessary information, and then assesses and refines the

hypotheses using the SSM process architecture. SLX is implemented based on the mechanics of the

SSM process, i.e., SLX is based on predefined analysis techniques, modification techniques, and

assessments.

7.4 Motivating Use Case

Before discussing the instantiation of SLX in detail, we emphasize that SSM is intended to produce

modifications that are acceptable, practical and proactive (see Chapter 1). Of key importance is the

practicality component. Engineers have to work with available methods that are cost effective to

use and produce. Often these methods are imperfect, but can be acceptable within certain contexts.

The chosen transformations used in SLX do not represent new advances in the state of the

art of buffer overflow protections; rather they are based largely on previously studied and applied

approaches. Each of the chosen transformation has considerable risks in applying the method

(especially applied to programs without source code), and each transformation also has its own

security vulnerabilities, potentially allowing attacks to bypass the mechanism. Nevertheless, each

transformation provides some security benefits. Additionally, each transformation is easy to generate

and can be tuned to have acceptably low run-time overhead.

The novelty of SLX lies in the practical application of these existing transformation techniques

to protecting binary programs using SSM principles. Readers who choose to consider other

transformation methods are encouraged to consider the risks and unknowns associated with those

methods, and how engineers would deal with those concerns. SLX represents an instance of how

these problems can be addressed with SSM.

The variability in how each SLX transformation is applied and combined can also lead to debate

and controversy. The presented example is neither the only nor a “definitive” SLX implementation.
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SLX, as an instantiation of SSM, is used to distribute risks in a manner considered acceptable by a

targeted set of stakeholders (see Chapter 1). The selected modifications, configurations, acceptability

model and the approaches used to produce and assess hypotheses and modifications are all chosen

based on concepts of acceptability specific to a target set of stakeholders.

To provide clarity of the intent of our instantiation of SLX, we target a set of hypothetical

stakeholders derived from the following use case:

1. The stakeholders identify utility programs used throughout their organization as being at

significant risk of stack-based buffer overflow. We use a set of Linux utilities (coreutils) as a

representative set of the targeted programs.

2. The source code of the targeted utility programs is not available.

3. The stakeholders can easily derive the functionality that the targeted software provides and

how to use the software, facilitating development of a test suite for these programs (either

through manual or automated means). We use the regression tests provided for Linux core

utilities as a representative test suite.

4. The stakeholders wish to apply SLX transformations, and to minimize the costs of engineering

SLX using relatively simple analyses and heuristics in the implementation.

5. While stakeholders prefer a completely comprehensive modification, they are willing to

accept the best effort modification that their implementation of SLX can provide.

7.5 SSM Process Decomposition

This section provides a detailed description of SLX by dividing the mechanics of SLX into the four

primary SSM phases:

• Preprocessing

• Speculative Analysis
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Figure 7.2: Detailed SSM process

• Speculative Modification Synthesis

• Finalization

These phases are illustrated and described in detail in Chapter 3; however, for ease of reference, the

general SSM process model is repeated in Figure 7.2.

7.5.1 Preprocessing

Starting with a piece of SOUP, SLX preprocessing generates five items of information to be used by

the remainder of the SLX process:

• the program disassembly,

• the control flow graph,

• identified function boundaries,

• an input test suite for the program, and
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• execution coverage of the instructions in each function produced by testing the SOUP using

the input test suite.

Inputs are used to guide dynamic analysis later in the SLX process. Preprocessing generates

these inputs using a combination of concolic test case generation (similar in concept to klee [28]) to

automatically generate inputs, and a database search to find appropriate pre-existing test inputs if

they are available. The database search involves generating a signature of the program based on the

strings found in the executable. If the signature closely matches a program for which a test suite is

already available, the corresponding the suite is used.

Preprocessing also performs sanity checks to remove functions from consideration for modi-

fication that appear to be malformed and could result in bad SLX modifications. By malformed,

we mean functions whose stack frames deviate from the expected format, probably as a result of

disassembly recovery failures or unusual compiler optimizations and idioms.

7.5.2 Speculative Analysis

To effect an SLX modification, hypotheses for a binary program are generated function-by-function;

hence, our initial implementation of SLX involved a repetition between speculative analysis and

modification synthesis for each function. After each individual function is modified, the process

will repeat for the next function until all functions have been processed (optimization of this process

to modify numerous functions at once is discussed further in Section 7.6). An SLX hypothesis for a

function contains:

1. the location and size of the variables in the stack frame (i.e., the stack-frame variable layout),

2. the instructions in the function that access variables in the stack (i.e., the instructions requiring

modification in order for the program to execute with the modified stack layout) and,

3. the modifications to apply (i.e., the set of SLX modifications that are applicable to the subject

function).
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Algorithm 1 HypothesisStrategySelection(DB,A(H(func)))

Input: DB: database of analysis preprocessing results and
A(H(func)): assessment summary of a hypothesis for func

1: if A(H(func)) = NULL then
2: func← DB.getNextUnprocessedFunction()
3: //termination condition check
4: if func = NULL then
5: Finalize modification and terminate SLX
6: end if
7: if DB(func).coverage() ≥ THRESHOLD then
8: strategy ← AGGRESSIV E STRATEGY
9: else

10: strategy ← CONSERV ATIV E STRATEGY
11: end if
12: else
13: func← func from A(H(func))
14: strategy ← GetNextStrategy(A(H(func)))
15: end if
16:
17: //If no strategy for func, continue to the next function.
18: //Else, generate and assess a hypothesis for func using strategy
19: if strategy = NULL then
20: HypothesisStrategySelection(DB,NULL)
21: else
22: HypothesisGen&Assess(func, strategy)
23: end if

Fundamental to speculative analysis is selecting a strategy for generating the SLX hypothesis

for each function. A hypothesis strategy consists of:

• analysis methods to produce the SLX hypothesis, and

• metrics for assessing the resulting hypothesis.

The remainder of speculative analysis performs the chosen strategy. Details of strategy selection in

SLX are documented in Algorithm 1.

The database produced during analysis preprocessing, referred to as DB in Algorithm 1, is an

input to every instance of strategy selection. In SSM, the hypotheses that are generated after strategy

selection are assessed both in speculative analysis and speculative modification synthesis. For SLX,

the result of these assessments are recorded in the hypothesis assessment summary, referred to as

A(H(func)) (read as assessment of the hypothesis for function func). A(H(func)) is a second
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input if strategy selection has to be reentered because the previous hypothesis was found to be

unacceptable and has to be refined.

In SLX, the initial strategy selection for each function is based on the instruction coverage that

the function achieved during execution of the test suite (recorded in DB). If instruction coverage

is above a stakeholder-defined threshold, SLX will select an aggressive strategy to generate a

hypothesis. We define an aggressive strategy as:

• attempting to recover data necessary to apply all three SLX modifications, and

• recovering the most variables in the stack frame.

A conservative strategy is selected if the coverage does not exceed the threshold. A conservative

strategy uses analyses that recover fewer variables. In our implementation, the instruction coverage

threshold is adjustable by the stakeholder. The justification for this approach to strategy selection is

that, once a function modification is produced (in speculative modification synthesis), the modified

SOUP will be executed to further assess/evaluate the hypothesis.

If strategy selection has to be repeated for a function, the assessment summary (i.e.,A(H(func)))

becomes the second input to that selection, indicating an invalid hypothesis was generated for the

function. The summary is then used to aid in choosing the next strategy. In our implementation of

SLX, a new strategy is selected only if A(H(func)) indicates

• one or more of the SLX modifications was assessed to be unacceptable, or

• the variable layout was considered unacceptable.

If any other component of the hypothesis is invalidated, no method for refining strategy selection is

defined. Thus in that case, an unacceptable hypothesis will result in the function being excluded

from further analysis and modification.

The metrics to assess hypotheses used by SLX are too numerous to enumerate here; however,

most metrics involve examining the SOUP disassembly for instruction patterns. For example,

some instruction patterns indicate a violation of assumptions upon which SLX relies to locate
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canary values at run-time. In that case, adding canaries is an unacceptable modification. If one

or more of the SLX modifications cannot be acceptably applied, the next strategy is to apply the

remaining acceptable SLX modifications. If all three are invalidated, the function is excluded from

modification. If the variable layout is unacceptable, the next strategy will use a different variable

layout recovery approach.

Variable Layout Inference

All existing methods of variable layout recovery have benefits and weaknesses, and can produce

erroneous and/or incomplete results [12, 80]. Many are not publicly available and difficult to

engineer. Further, the stakeholders might be unwilling or unable to spend resources on developing

these methods. For the purposes of this SSM case study, using the most sophisticated variable

recovery approaches is not necessary nor even desirable for our use case. The important concept is

how SSM works to balance risks of any selected variable recovery approaches. As such, SLX uses

a simple layout recovery heuristic based on stack memory accesses (i.e., offsets into stack memory)

seen in a function’s disassembly.

For simplicity, SLX uses a total of four variable layout recovery inferences, three of which are

characterized by the type of memory accesses:

1. All Offsets Inference (AOI)

2. Scaled Memory Offsets Inference (SOI)

3. Direct Memory Offsets Inference (DOI)

The fourth inference simply treats the entire stack frame as a single “variable”, i.e., no internal

structure of the stack frame is hypothesized. This fourth inference is referred to as the Entire Stack

Inference (ESI). Figure 7.3 illustrates the results of these inferences for a sample disassembly.

SLX favors inferences that produce the most variables, and progressively backs off to infer-

ences producing fewer variables as hypotheses are invalidated. If all layout inferences have been

invalidated, the function is excluded from modification.
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(0) push   %ebp 

(1) mov    %esp,%ebp 

(2) sub    $0x38,%esp                                   # stack allocation 

(3) movl   $0x0,-0xc(%ebp)           ; auth = 0         # direct offset 

(4) … 

(5) mov    %dl,-0x1c(%ebp,%eax,1)    ; buf[i] = pwd[i]  # scaled offset 

(6) cmpl   $0x0,-0xc(%ebp)           ; if (auth)        # direct offset 

(7) … 

(8) leave                                               # stack deallocation 

(9) ret  

Function Disassembly Source Code Semantics Types of Memory Access 

Figure 7.3: Disassembly code fragment for the source code shown in Figure 7.1

7.5.3 Speculative Modification Synthesis

The hypothesis and the associated assessment summary generated by speculative analysis support

strategy selection for modifying the function. The strategy specifies:

1. the manner in which the modification is produced, and

2. how the modification is assessed using a set of SLX-specific assessment metrics.

In the current instantiation of SLX, all modifications specified in the hypothesis are implemented

using Software Dynamic Translation (SDT) [81]. SDT inserts a virtualization mechanism into the

binary program, and this mechanism effects the changes necessary for the modifications during

execution. Thus, the primary focus of modification strategy selection is to choose one or more

assessment metrics.

Dynamic analysis is the primary mechanism used to determine assessment metrics. Synthesized

modifications are executed using the test suite generated in preprocessing. If the behavior (i.e.,

the observed output of the program) deviates from the behavior of the unmodified program, the

modification is invalidated.

SLX specifies three dynamic analysis assessment metrics, one of which is chosen by modification

strategy selection:

• No assessment: If the function has no instruction coverage when executed, dynamic analysis

provides no meaningful assessment. In this case, speculative analysis generates a conservative

hypothesis that stakeholders accept without further validation through dynamic analysis.
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• Execution of an error amplification: Canaries can help expose a variable layout error,

but some functions cannot safely apply canaries. In that case, error amplification (see

Section 3.2.3) is applied by randomizing the variables without padding and then testing, and

repeating this process several times. If the variable layout hypothesis is incorrect, multiple

randomizations might expose deviations in behavior.

• Execution of the candidate modification: If canaries can be applied, the modification is

generated as specified in the hypothesis, and this modification is assessed.

If the modification is valid, SSM iteration will continue until all functions have been processed.

If the modification is invalidated through assessment, SLX generates an assessment summary

rejecting the hypothesis for the function. The assessment summary is sent back to speculative

analysis to re-initiated SSM iteration in order to reconfigure the hypothesis. In our current SLX

implementation, the variable layout is assumed invalid, and a less aggressive layout is chosen (i.e.,

layouts with fewer variables).

In this implementation, iteration within speculative modification synthesis, i.e., synthesis iter-

ation, is part of a process optimization, further described in Section 7.6. Future implementation

of SLX could enhance synthesis iteration, if, for example, overhead was a significant concern.

Modification assessments that indicate excessive run-time overhead could result in re-configuring

the modification (e.g., placing fewer canaries), or using only a subset of SLX modifications (e.g.,

removing canaries).

7.5.4 Termination of SSM Iteration and Finalization

Modification ends when a termination condition is reached (see Section 3.2.4). The implicit

termination condition is when hypothesis generation and modification has been completed on all

functions (lines 3-6 of Algorithm 1).

SLX is also implemented with an adjustable timeout termination condition, i.e., when the time

to modify a given piece of SOUP elapses beyond a defined threshold (the default timeout value is
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12 hours). For the target programs of the SLX use case, the timeout condition was never reached

since modification never took more than a few hours. Timeout checks occur asynchronously during

execution of the SLX process.

When the termination condition is reached, SLX initiates a modification finalization process in

order to package all modified functions into a single program. Additionally, finalization runs any

generated test suites against the entire modification to validate that the composition of modified

functions is acceptable. If this final test of the modification fails, the entire modified program is

rejected, i.e., considered unacceptable, and an error message is produced as an output.

7.6 Process Optimization

In Chapter 3, a brief discussion is given about the potential to optimize the SSM process: the general

process is described linearly, but engineers could choose to perform any manner of optimizations,

such as parallelizing or using cloud computing resources. Initially, SLX was implemented as a

simple linear SSM instantiation; however, to improve the time required to produce a modification, an

SSM optimization was applied. Instead of modifying each function sequentially, we altered/refined

the SLX process to produce a hypothesis for numerous functions simultaneously. Modification

synthesis then applies each hypothesis to the associated functions simultaneously, thereby generating

a single candidate modification for the binary.

If the candidate modification fails assessment, synthesis iteration is initiated. The set of functions

to modify is cut in half, and each half is modified and assessed independently. Synthesis iteration

continues, in a binary-search-like manner until the hypothesis or hypotheses causing the assessment

failure are found. The invalid hypotheses are sent back to speculative analysis for refinement,

through SSM iteration.
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7.7 The Assurance Case Acceptability Model

The SSM model as described in Chapter 3 prescribes the use of an assurance case. In this case

study, however, the necessity of an assurance case was not immediately apparent and therefore

not a part of the initial SSM model concept. As such, SLX was initially implemented without any

consideration for explicit models of acceptability.

This case study revealed that, as decisions were accumulated affecting the acceptability of

SLX for a specific stakeholder, unstructured arguments were insufficient. Explicit rationales

are necessary to understand SLX processes and the effect these processes have on the security,

correctness, efficiency, etc., of generated modifications. While we had these rationales in mind in

the construction of the SLX implementation, the complexity inherent to SSM processes made it

increasingly difficult to defend and justify SLX modifications as being adequately secure, correct,

efficient, etc.

In principle, the SLX acceptability model is a complex collection of arguments and items of

evidence to justify the acceptability of generated SOUP modifications. It includes acceptability

criteria such as the instruction coverage threshold, risky instructions patterns, and configuration

criteria such as the adequacy of the amount of padding used between variables. The form of

acceptable inputs are also included, because an argument is need that these inputs exercise the

program adequately and represent normal, i.e., non-malicious, execution adequately.

We then investigated the use of assurance cases as an acceptability model within the general SSM

model to facilitate understanding of what the implementation provides the stakeholder. Examination

of the SLX assurance case proved to be a complex investigation in its own right. As such, we

performed a separate case study examining the utility and form of assurance cases in SLX and in

SSM in the next chapter (Chapter 8).
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7.8 Results

To assess SSM, SLX was evaluated with respect to produced modifications in terms of security

efficacy, correctness, and efficiency. This assessment is performed on an early and simplified

version of SLX. SLX has since been altered continuously to account for new operating context

and stakeholder demands. We also provide some observations about the implementation, use, and

maintenance/alteration of SLX to account changing demands.

We note that our results were obtained to assess SSM, not to assess our implementation of SLX.

Those who might consider our implementation of SLX unacceptable can alter the implementation

and acceptability model to fit their needs. The important concept is how SSM works with respect

to a given use case. Data presented about SLX demonstrates the potential of SLX, the range of

flexibility stakeholders have in implementing SLX, and how stakeholders might use SSM to effect

trade-offs in order to balance risks to suit their needs.

7.8.1 Efficacy

Thwarting Attacks

The security efficacy of the three modification techniques used by SLX (variable padding, variable

reordering, and canaries) have been studied extensively in the literature [72, 70, 71, 79, 69]; hence,

part of the argument for the security efficacy of SLX is based on this prior work. To provide some

empirical evidence of the potential security efficacy, we also applied SLX to a suite of sample

vulnerable functions of relevance for our stakeholders, specifically the Wilander overflow suite [82].

The Wilander suite contains twelve stack-based buffer vulnerabilities. Table 7.1 provides the

summary results of ten separate applications of SLX for each of the twelve attacks (classified by

the targeted data). The result of Wilander attacks after applying SLX is classified as one of the

following for each attack attempt:

Successful: The attack was unaffected by the modification, i.e., SLX provided no defense.
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Attack Targeted Data # Successful # Detected # Prevented # Segfaulted
1) Local Function Pointer 0 10(100%) 0 0
2) Parameter Longjmp 0 10(100%) 0 0
3) Local Function Pointer 0 1(10%) 6(60%) 3(30%)
4) Parameter Longjmp 0 1(10%) 8(80%) 1(10%)
5) Return Address 0 10(100%) 0 0
6) Base Pointer 0 10(100%) 0 0
7) Local Function Pointer 0 10(100%) 0 0
8) Local Longjmp 0 4(40%) 6(60%) 0
9) Return Address 0 4(40%) 4(40%) 2(20%)
10) Base Pointer 10(100%) 0 0 0
11) Local Function Pointer 0 5(50%) 4(40%) 1(10%)
12) Local Longjmp 0 0 8(80%) 2(20%)

Table 7.1: Results of SLX applied to Wilander buffer overflow attacks classified by targeted data of
attack

Detected: The canaries used by SLX detected a buffer overflow violation and terminated the

program prior to the attack succeeding.

Prevented: Randomization of variables placed the target data of the attack out of the path of the

attack. Hence, the form of the altered program no longer allows the attack to succeed in its

original form.

Segfaulted: The attack crashed the program but did not succeed in achieving its purpose.

SLX was able to stop or detect the attack in all but one case. One attack succeeded because SLX

was unable to infer variable boundaries with sufficient granularity for the vulnerable function (i.e.,

the hypothesis was sound but insufficiently precise).

Precision

While the security efficacy of the three modifications adopted by SLX can be a topic of debate, the

SLX modifications can only provide a security benefit when they are applied to functions and they

are most effective when the precision of detected variables is maximized. For example, in the above

experiment with Wilander, one attack was able to succeed because the precision by which variables

were detected was not sufficient.

To provide some indication of the potential efficacy of SLX on the targeted programs of our

use case (Section 7.4), SLX was also applied to binary programs compiled with gcc and -O3
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Table 7.2: SLX statistics on CoreUtils

optimization for eleven of the Linux core utilities on Ubuntu 10.04 LTS, shown in Table 7.2. Only

statically-linked functions were considered for transformation. We omit dynamically linked libraries

both to simplify the experiment and since libraries should be transformed and evaluated separately.

Libraries only need to be transformed once, after which they can be reused by any number of

binaries. The suite of eleven Linux core-utility programs comes with a comprehensive set of test

cases provided by the developers, and these were used for the validation step in SLX. Such a set of

tests provides a more desirable situation than SLX is likely to encounter in practice. Nevertheless,

the test suite is representative within the defined use case.

Table 7.2 illustrates both the characteristics of the modified programs in terms of size and

functions, and the precision of variable detection. On average, 195 functions per program were

found in the eleven sample programs. SLX determined that 53% of the functions were candidate

transformable functions, meaning that SLX found patterns indicating that the function had local

variables as well as stack allocation and deallocation patterns. Of the candidate functions, only one

function, term proc, could not be transformed (i.e., any modification of the function resulted in

failing assessments). The failure to transform term proc was due to the inability of our analyses to

identify the stack deallocation point in the function.

AOI, the most aggressive variable layout inference, was used to transform 94% of the candidate

functions successfully, with an average of four variables per stack frame. SOI was used on 4%, with

an average of 1.8 variables found per stack frame. ESI was used on the remaining 2%. Previous

work by Balakrishnan and Reps [12] suggest that using an AOI inference can successfully detect
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variable boundaries 83% of the time1. The extensive use of AOI for these programs suggests that

SLX is providing adequate precision most of the time.

The ability of SLX to use different variable layouts for each function illustrates the use of SSM

process principles. Functions that cannot or should not be transformed are filtered through the

preprocessing phase. Additionally, as modifications are generated, SLX refines hypotheses about

how the program should be modified. While in some cases this resulted in a decrease in precision,

the refinement was able to balance concerns of correctness.

7.8.2 Correctness

For a modification to be correct it should preserve the intended (not necessarily original) program

semantics (some modifications are made with the explicit intent of modifying program semantics;

hence, these semantics alterations are “intended”). This implies modifications should be made:

1. precisely, i.e., all components that need to be modified are modified and no others, and

2. accurately, i.e., what is modified is modified in an appropriate manner.

Modification correctness is in direct conflict with the security efficacy. Attempting to maximize

the number of functions modified, the number of modifications performed per function, and the

number of variables detected will increase the ability for SLX protections to provide a security

benefit, but it also increases the risk that the modified program will no longer behave as intended.

Observations of Correctness Complexity

Correctness in the context of SLX corresponds to what instructions should be modified, how, and

the variable boundaries detected. We know of no method at present to fully represent the correctness

of SLX modifications with respect to these three characteristics.

1At present, we know of no study where variable recovery mechanisms in binary programs are compared with what
the compiler actually intended. Most approaches rely on debugging information which corresponds to source code, and
can be misleading. Therefore, the measurement of 83% variable recovery cannot be taken as an absolute fact, but a
rough figure.
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To illustrate the complexity of determining the correctness of SLX modifications, consider

variable layout in isolation. Even if the variable layout can be determined to be 100% correct,

correctness of the modification that uses the layout is not guaranteed. The modification itself might

break expected program behavior. For example, adding padding between variables might result in a

stack overflow.

Even if variable layout alone was the single issue affecting correctness, at present no analyses

exist that provide 100% precise and sound recovery of stack frame layouts in a binary program.

Most methods rely on debugging information produced by a compiler to determine layout accuracy

(see for example, see previous work by Balakrishnan and Reps [12]). This notion of accuracy is

with respect to the source code and not to what the compiler actually produced. A compiler can

alter the sizes and number of variables, as well as add empty space and temporary variables not in

the source code. Basing variable layout correctness on this concept can therefore be misleading.

Finally, comparing layouts against compiler generated layouts can be problematic since cor-

rectness of variable layout can be subjective. For example, a single buffer in the source program

might be used to encoded a multi-dimensional array. Is it correct to infer this data structure is one

variable, or multiple variables? Similarly, a developer might declare a struct within a function. Is

it correct to consider the struct as one variable, or can each field within the struct be considered

an independent variable? Answers to these questions depend on how the software is used and the

nature of the modification.

Justifying Correctness

Because of the complexity of determining correctness, the initial implementation of SLX established

confidence in correctness primarily by the ability for modified software to pass a series of regression

tests. All programs modified with SLX for this study continued to operate after modification when

tested against a given test suite; hence, the modification is believed to be correct.

Subsequent refinements of the SLX implementation added more assessments to verify inputs

meet a stakeholder-defined standard, e.g., a threshold of instruction coverage was defined. Further,
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SLX was altered to check for patterns in the binary program and in the structure of functions

that are known or are believed to be problematic, i.e., cannot be successfully modified without

breaking expected program behavior. As subsequent versions of SLX added more assessments for

correctness, additional methods for addressing assessment failure were also added. For example,

in addition to changing the variable layout inference, the configuration of modifications can also

change (e.g., how much padding to use), or the combination of modifications that are applied can

vary (e.g., canaries might risk breaking the program for some functions and therefore not applied in

these cases). With each additional kind of variation added to SLX, the complexity in what SLX

can produce increased, as well as the complexity for the rationale for believing the modification is

correct.

The primary result from attempting to evaluate correctness for SLX is that SLX (and therefore

SSM) must be supported by a more structured and explicit acceptability model/rationale. Because

of the interactions and complexities of correctness concerns, this information led to the motivation

to include an assurance case as part of the SSM model to organize and simplify the rationale for

correctness.

7.8.3 Efficiency

The efficiency of SLX can be examined from two points of view:

1. Developmental Efficiency: The resource consumption SLX uses to generate modified SOUP.

2. Operation Efficiency: The resource consumption of the generated SOUP modifications.

These two concepts of efficiency are discussed in the following subsections.

Developmental Efficiency

In the initial implementation, SLX modified functions one at a time; hence the processing time

required is linear with respect to the number of functions to modify. The primary factor in processing

time for each function is the time required to test the modified function. Our latest implementation
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Table 7.3: SPEC 2006 overhead results

uses a binary-search-like optimization to allow multiple function modifications to be transformed

and tested simultaneously (Section 7.6). We have observed many cases where this approach is more

efficient than modifying and testing one function at a time, but, as the number of invalid hypotheses

increases, processing time can become greater than assessing one function modification at a time.

For our use case (Linux coreutils), modifications took on the order of a few minutes to a few

hours. We considered this level of resource usage to be acceptable, because testing modified

functions is conducted before deployment and is only done once (provided the modification is

determined to be acceptable). If SLX were extended to modify programs with thousands of functions

and test suites requiring minutes to process, modification development time would probably exceed

acceptable limits with the current implementation (e.g., modifying a program takes several days,

weeks, or longer). In this case, other optimizations can be applied to the SLX process. For

example, instead of modifying each function one at a time, or in a batch, all functions could be

modified and assessed in parallel (e.g., using cloud resources, one computer for each function),

and/or modifications can be tested with a subset of the test suite that actually executes the modified

function.

Operational Efficiency

The operational efficiency depends largely on the associated stakeholder demands. For example,

if stakeholders require a claim that the residual risk of a successfully attack be very low, then

the modification will have to include more countermeasure thereby increasing the computational

resources required (e.g., software run-time).
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The principles of SSM allow stakeholders to assess modifications based on any competing

constraint, including efficiency. For the initial SLX prototype, efficiency was not considered in the

assessment of modifications; however, to illustrate the potential range stakeholders can select from,

SLX was applied to a set of SPEC 2006 benchmarks [83] of comparable size to the target software

of our use case (6 programs in total) to evaluate potential run-time overhead. The statistics about

the characteristics of these programs and the overhead results are summarized in Table 7.3.

To illustrate the range of efficiency trade-offs, SLX was applied with and without canaries.

The run-time overhead incurred by the modified programs ranged from approximately 9% without

canaries to approximately 44% with all SLX modifications including canaries. The reported

overhead of the software dynamic translator used by SLX is 7%. Acceptability of overhead is for

the stakeholders to decide, but, given the protection that SLX offers, these levels of overhead seem

reasonable.

These overhead results also indicate the flexibility stakeholders have. By limiting how canaries

are placed and checked or how much padding is used, stakeholders can expect to achieve somewhere

between 7% and 44% overhead. Stakeholders can expect to see higher overheads if canaries are

placed and checked more frequently or if variables are not aligned on cache boundaries. Stakeholders

can alter their acceptability model to find an appropriate balance between benefits and efficiency

to fit their needs, or attempt inefficient modifications, and back-off to more efficient modifications

through synthesis iteration (see Chapter 3).

7.8.4 Observations

The development, use, and maintenance of SLX led to several general observations about SLX and

SSM. Some of the most important observations are described in the following subsections.

Assurance Models

The most profound result from this case study is the need for an explicit model of SSM assurance.

Initially, the SSM model did not include the concept of an assurance case, or any explicit model
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of assurance. As more and more assessment and strategy selection criteria were added to SLX, an

explicit and structured approach became increasingly necessary.

Further, while we can provide some evidence that SLX provides some utility (as presented

throughout Section 7.8), without a structured assurance argument, it is not clear what the evidence

actually supports. An assurance case provides a succinct and rigorous justification of the acceptabil-

ity of SSM modifications. For SSM to be practical, an assurance case is fundamentally necessary

(further exploration of the assurance case is given in Chapter 8).

Expert Opinion

In developing SLX, we observed that SSM modifications might require substantial technical

expertise and insight. For example, the SLX modifications require a detailed understanding of:

1. how memory is managed on target machines, and

2. how target compilers (gcc) can optimize and alter stack memory.

The inclusion of assurance cases into the model also necessitates assurance case experts to develop

and structure a rigorous argument that refers to complex evidence derived from the operation of the

SSM process.

The mechanics of the SSM model are also fundamentally tied to a detailed understanding of

the problem domain. Experts are required for determining suitable hypotheses, and deciding how

to assess and refine them. A primary challenge in developing SLX was finding metrics to assess

hypotheses, and in developing SLX these metrics were developed by trial and error. A test coverage

metric was needed, for example, when running tests to determine whether the modification had

affected program semantics. Test coverage metrics for binary programs are few, and no thresholds

are generally accepted. SLX development required several judgments such as these, highlighting

the importance/need for a structured assurance case to organize these judgments, and to expose

these judgments for further assessment.
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Maintenance

SSM provides no guarantees that a final modification will not fail at some point in the future.

Programs modified by an SSM process might be left in a state where necessary/expected semantics

have been changed, or the desired dependability property might be absent with no indication. We

have observed SLX modifications fail post development either by allowing a buffer overflow attack

to succeed or by causing the executing program to crash. In these cases, the cause of the failure is

reviewed, and the SSM process corrected.

In our observed use of SLX over time, the need to adjust the process is essential to the practicality

of SSM. For example, SLX modifications are partially based on assumptions about how the compiler

generates executables, i.e, compiler idioms. As new compilers are released, these idioms change and

require maintenance of the SLX process. Additionally, SLX was used for other projects, requiring

continuous alterations to adjust concepts of acceptable modification.

While not present in the SSM process model, SSM can be thought of as a component in a larger

modification engineering life cycle. In essence, SSM can have a post deployment maintenance

component, to correct/reconfigure an implementation and reapply it to software when failures are

observed.

Essentially, the SSM process is never finished, but instead evolves constantly to adjust to new

programs and new demands by stakeholders. The need for continued maintenance further supports

the need for the SSM assurance case. As we attempted to alter the implementation of SLX to allow

for more variability in how modifications are applied, determining what to alter, how to alter it,

and what effects the alteration might have on other components of the process became intractable.

If an assurance case were generated for SLX, we could focus on applying the modification in the

argument first to determine the proposed change improves the quality of modified software before

implementing the solution.
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7.9 Results Summary

The goal of this case study was to answer the questions presented in Section 7.1. The answers to

these questions are summarized as follows:

Answer to Question 1: SSM is Feasible

SLX was implemented as an instantiation of the SSM process to protect against a real-world class

of vulnerabilities within a very specific operating context. By applying SSM to the circumstances

of the case study demonstrates the potential feasibility of the concept.

As stakeholders define more alternative modification techniques and configuration and assess-

ment techniques, the process becomes increasingly difficult to engineer requiring more development

resources (i.e., increased SSM development risk) and the resources required to produce software

modifications also increases (i.e., increased modification development risk). If engineers carefully

consider SSM concepts early and often in development, we anticipate that SSM development risks

can be mitigated through careful organization and documentation of the SSM implementation.

Modification development risk can be handled by either one or both of the following options:

1. The SSM implementation considers the possibility of modification development exceeding

acceptable thresholds, i.e., the process will assess modification development risks, and choose

alternatives that are more feasible.

2. The SSM implementation can take advantage of optimization techniques, such as parallel

and cloud computing, to attempt a large number of modification alternatives and perform

associated assessments simultaneously.

We therefore conclude that the SSM process appears feasible. Generalizing this conclusion is

not possible from a single instance, but we do not anticipate any other limitations affecting SSM

feasibility.
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Answer to Question 2: SSM is Practical

There are two concerns about the practicality of the SSM process:

• First, can SSM be used to generate modifications of practical value, i.e., modifications that

achieve some technical goal within defined constraints? SLX, as a implementation of SSM,

was shown to produce software modifications with some security value. Previous publications

on the modifications SLX uses also indicate the potential for the modifications applied by

SLX. Of key importance, however, was the ability for the SLX implementation to directly and

explicitly account for concerns typically overlooked in the literature. Specifically, assessment

and refinement activities, as specified in SSM, allow SLX to balance constraints and adjust

modifications to meet the specific needs of the system stakeholders. This concept in particular

is necessary to make SOUP modifications practical, regardless of the security benefits any

modification provides. The use of the SSM process in this study allowed us to balances

constraints as necessary, and therefore, allowed for practical application of SLX modifications.

• The second concern affecting the practicality of the SSM process is the difficulty of imple-

menting and maintaining an SSM process. SLX, while developed to defend against a very

specific class of attacks within a very specific operating context, presented unexpected com-

plexity in balancing security with other constraints. The initial version of SLX intentionally

minimized this complexity by narrowing the operating context and needs of the stakeholders.

Over time, these needs have been altered necessitating additional assessment and refinement

loops, increasing the complexity of the implementation, the interactions between decisions,

and the space of acceptable software modifications. Using an SSM process, we were able to

accommodate alternative operating contexts. Although the complexity of SLX developed to a

level that was increasingly difficult to maintain and understand, we did not develop SLX from

a finalized concept of SSM. Not developing with SSM concepts early on can therefore limit

the practicality of the SSM approach; hence, engineers should start developing with SSM

concepts early (discussed further in Chapter 9).
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The results of this case study suggest that SSM allows stakeholders to configure modifications

to meet there needs and manage risks as they see fit, which makes the SSM process practical.

We observe that the practicality of the process is primarily limited by the stakeholder’s ability to

understand what the process is providing (i.e., understanding their choices, configurations, etc.),

and highlights the need for structured, rigorous, and explicit SSM assurance cases.

Generalizing this result is not possible from a single instance of the SSM process, but we

observe that the kinds of security problems addressed by SSM, i.e., how and when to apply

software modifications, are likely applicable for other operating contexts (i.e., other stakeholders,

organizations, kinds of programs, etc.) and security concerns. Further exploration of the general

applicability/practicality of SSM for a different security modification is described in Chapter 9.

Answer to Question 3: The SSM Model Requires Assurance Cases

The SSM process model was continually refined during the implementation and assessment of SLX;

hence, process mechanics of SLX are completely captured by the SSM process model. To avoid

over fitting the model to SLX, the model was also developed and scrutinized analytically and then

assessed using SLX. This study suggest the process component of SSM captures the necessary

activities of speculative modifications.

The model, however, in the form discussed in this case study has been shown to be incomplete.

The model fails to represent SSM modifications in a form that permits adequate comprehension.

Additionally, it did not provide mechanisms to reconfigure decision processes in a clear way.

A fundamental result of this study was that the SSM process is used to justify the acceptability

of a SOUP modification; however, the process by itself does not provide any explicit justification.

In practice, an explicit justification is not only useful but would likely be required.

The solution we have adopted in the SSM model is to document the rationale of SSM decisions

in the form of an assurance case. An examination of the utility of assurance cases applied to SSM is

discussed in the next chapter (Chapter 8).



Chapter 8

Case Study: Exploring the SSM

Assurance Case

The previous chapter (Chapter 7) presented an exploratory case study to illustrate and evaluate the

process mechanics of SSM. A major result of that study was the need for more explicit assurance

models to justify the acceptability of SSM modifications to make the SSM model practical. This

chapter presents an extension exploratory case study of Chapter 7, targeting the same software

modification for evaluation, SLX; however, the focus is to address the research question:

How can engineers rationalize and understand the acceptability of modifications an

instantiation of SSM produces?

This case study evaluates the form and utility of assurance cases applied to SSM by constructing an

assurance case for SLX. For a review of the motivation and description of SLX, refer to Chapter 7.

8.1 Case Study Goals, Overview and Scope

The goal of this study is to determine if assurance cases can be used as an acceptability model for

the SSM process. To understand the form and utility of assurance cases for SSM, assurance cases

are applied to SLX to answer the following research questions:

Question 1 Can assurance cases be feasibly applied with the SSM model?

158
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• Can assurance case technologies be extended for SSM?

• Can an SSM assurance case be constructed?

Question 2 Does the SSM assurance case enable the practical application of SSM?

• Does the SSM assurance case facilitate understanding the acceptability of SSM modifi-

cations?

The motivation of applying assurance cases to SSM is to provide a single argument that will

justify why any given modification produced by SSM is acceptable (this rationale is further discussed

in Chapter 3). The form and mechanics of how the assurance case would meet this requirement was

part of the experiment of this case study.

Initially, the SSM assurance case concept consisted only of a fitness argument. The fitness

argument structure defined in Chapter 4 was developed and applied as part of this case study. The

initial goal was to generate a traditional assurance case for SLX based on the a fitness argument

structure. The construction of the argument led to the discovery of the fundamental limitations in

traditional argumentation methods, e.g., the inability for the argument to capture to variability of

SSM modifications. The addition of a success argument and selection argumentation to the SSM

assurance case is a key result of this case study.

The scope of this study was to develop an assurance case for SLX to a point where the goals

of this study were met (i.e., where the above research questions are be answered), not to develop

a complete assurance case. Since no assurance case was developed prior to implementing SLX,

full recovery of the assurance case would require both reverse engineering out of the SLX source

code the implied arguments, and fully developing those arguments that were not fully rationalized.

This is beyond the scope of this research. Concerns of confidence (described in Chapter 5) are also

omitted to simplify the study.
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8.2 Applying the Security Fitness Argument

This section provides an overview of the application of the fit-for-use argument structure for

security from Chapter 4 to SLX. The general structure consists of four levels of argument, and also

involves an iterative argument repair mechanism as “weaknesses” in the argument are discovered. A

weakness in this context refers to a lack of specificity in the argument resulting in an inadequately

supported claim. This section discusses the construction of the SLX argument using the principles

of these four levels and the iterative repair mechanism.

8.2.1 Argument Level 1 - Fit For Use

The top-level argument structure is illustrated in Figure 4.2 of Chapter 4. The instantiation of this

pattern for SLX is shown in Figure 8.1. The pattern is instantiated by identifying the following

(further described in subsequent subsections):

• The operating context.

• The threat model in which mitigation techniques will be applied.

• The assets to protect.

• The security properties of the identified assets that the software modification should provide.

• Any additional constraints on the modification.

Operating Context

The operating context describes any information about the environment in which the SLX mod-

ifications will execute as well as the general characteristics of the software to be modified (i.e.,

characteristics of the SOUP). The operating context of SLX (referenced within Context 1.2 as D1)

is summarized as follows:

• SLX was developed to modify SOUP in raw binary form, compiled to machine code.
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1.1: Top-Level Claim 
The modified software provides adequate security within 
pragmatic and other stakeholder-defined constraints.  

6.1: Strategy 
Argue over security properties. 

5.1:  Security Asset Claim 
The modified software provides 
adequate stack memory security.  

7.1.1:  Confidentiality Claim 
All credible attacks to 
confidentiality are mitigated. 

7.2:  Composition Claim 
The mitigation of attacks to all 
security properties are synergistic. 

3.1:  Security Requirements Claim 
The modified software meets all 
security requirements. 

5.2:  Composition Claim 
The protection mechanisms 
used for all security assets are 
synergistic. 

2.1: Strategy 
Argue over all requirements.  

4.1: Strategy 
Argue over all security requirements.  

3.4:  Efficiency Requirements Claim 
The modified software meets all 
correctness requirements. 3.3:  Correctness Requirements Claim 

The modified software meets all 
correctness requirements. 

3.2: Context 
The threat model 
documented in D2. 

 

1.2: Context 
The modified software operating 
context documented in D1. 

7.1.2:  Integrity Claim 
All credible attacks to integrity are 
mitigated. 

Figure 8.1: Top-level SLX fitness argument structure
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• Development information, especially program source code, and debugging information are

presumed not available.

• SLX is intended for SOUP compiled using common compilers for common architectures and

operating systems. In particular, SLX targets SOUP compiled by the GNU C Compiler (gcc)

as well as the 32-bit x86 architecture and Linux operating system.

Threat Model

The threat model captures all assumptions about the system upon which mitigation techniques will

rely. For SLX these assumptions (referenced within Context 3.2 as document D2) are:

• The adversary might have access to the unmodified SOUP and the program source code.

• The adversary can provide malicious inputs to the SOUP.

• The adversary does not have direct access to the hardware or the modifications SLX produces.

• The SOUP is free of self-modifying code and malicious software (e.g., intentionally planted

backdoors and trojans).

Security Asset Identification

A security asset is a component of the software for which there is a credible threat of attack.

Identifying appropriate assets was a subtly difficult challenge. For the purposes of this case study,

SLX is used within the context of a hypothetical use case described in Chapter 7. The challenge

in identify assets is the pull between demonstrating the benefits of SLX and demonstrating the

practical application of SLX. These two goals are in opposition in that:

• If assets are defined out of the scope of SLX, then we will quickly find SLX has no benefit at

all.

• Narrowing the assets too much would cherry-pick a scenario where SLX would be most

beneficial, and therefore give a contrived and false impression of security.
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SLX was primarily envisioned as a defense mechanism against buffer overflows that occur on

the stack. This description is characteristic of a type of vulnerability, and not an asset. Abstracting

the intent of SLX further, SLX can be described as a mechanism to protect the execution stack

memory of a program. We could identify arbitrary assets within the stack for illustration; however,

SLX is meant to modify arbitrary programs. We therefore decided to consider the entire execution

stack the asset to protect (shown in Goal 5.1).

Security Property Identification

Relevant security properties depend on the needs of the stakeholders and the identified software

assets. For example, had mission critical data been chosen as an asset to protect, the security

properties of interest appear biased towards integrity and availability. Similarly, if sensitive or

private data had been identified, such as credit card numbers, confidentiality appears to be of most

importance. In this case study, a general concept of a security asset is identified, i.e., the execution

stack, which can contain various kinds of data; hence, we chose both confidentiality and integrity

(Goals 7.1.1 and 7.1.2) as the targeted security properties.

Additional Constraints

There are various assessments performed throughout the SLX process designed to validate that

the modification will provide desired functionality (i.e., that the modification is correct). These

assessments include:

1. assessment of the behavior of the executing program, and

2. assessments that examine the form of the SOUP.

For this case study, we included a goal for correctness (Goal 3.3) but left it undeveloped until we

further examined how to argue security.

Efficiency is another constraints of practical concern; however, SLX was not designed to meet

any specific efficiency requirement. Evidence presented in the previous case study suggests there
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Heap-Based Overflow 
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Out of Bounds  
Read 

Stack-Based Buffer Overflow 

Stack-Based Buffer Underflow 
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Stack Pointer Corruption 
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Expired Pointer Dereference 

Uninitialized Pointer 

Untrusted Pointer Dereference 

Figure 8.2: Stack memory attack classes

is a range of potential run-time overhead of SLX modifications, but, without a specific efficiency

goal, the evidence does not provide any useful support. An efficiency goal, Goal 3.4, is included but

left undeveloped until stakeholders define precisely what the limits of acceptable overhead are. If

efficiency becomes a pressing concern, stakeholders can alter the SLX process to balance efficiency

in the same manner in which correctness is balanced, i.e., through assessment and refinement.

8.2.2 Argument Level 2 - Attack Classes

For each security property, stakeholders must define the credible threats, i.e., the credible attack

classes, that must be mitigated. An attack-class enumeration was constructed by consulting the

Mitre Common Weakness Enumeration (CWE) [42]. Based on our judgment of credible attacks, a

subset of attacks was selected from CWE-633 (Weaknesses that Affect Memory). These attacks

were refined into two general classes, out-of-bounds write (attacks against stack integrity), and

out-of-bounds reads (attacks against stack confidentiality). Further subdivision of attack classes

under both of these general categories were identical. For simplicity, the attack class enumeration

hierarchy is shown in Figure 8.2 out of context of the argument structure.
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Intra-Object 
Data 

Stack-Based 
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Inter-Object 
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Decomposed Attack Class Enumeration  
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Figure 8.3: Example of two iterations of the decomposed attack class enumeration process on the
attack class taxonomy shown in Figure 4.5. The first iteration subdivides the stack-based buffer
overflow attack class. The second iteration further subdivides the “current frame data” decomposed
attack class.

8.2.3 Argument Levels 3 and 4 - Iterative Argument Development

Refinement of the argument could not continue in a sequential decomposition from this point

because of the interplay between the argument and analysis of the security protection mechanisms.

The argument construction continues as an iterative process in which argument refinement drives

analysis (see Figure 4.5 from Chapter 4). The initial attack-class enumeration was further subdivided

as mitigation methods were assessed and mitigation arguments were constructed. In essence, the

argument drove selection and evaluation of low-level security techniques to mitigate attacks in a

process similar to Assurance Based Development (ABD) [23] (ABD is described further in Chapter

10). Subsequent analysis then suggested ways in which the argument should be further expanded

(i.e., new decomposed attack classes were added).

In the first iteration of this process for SLX, assessment exposed several limitations requiring

further subdivisions in the argument. For example, in SLX:

• There is no protection against buffer overflows within data objects (i.e., C structs).
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• Local variables are protected by a different degree of protection from other bookkeeping data

structures on the stack (e.g., the frame pointer and return address).

• Data within the currently executing stack frame is protected differently than data outside the

frame.

The top of Figure 8.3 (iteration 1) illustrates how these issues were used to further subdivide the

attack classification hierarchy for “stack-based buffer overflow attacks” affecting stack integrity

(see Figure 8.2). For SLX, most decomposed attack classes were used indicate a lack of specificity

in the originally identified software asset because of fundamental weaknesses specific to SLX.

For a given attack class, the general mitigation argument approach was to:

• expose the characteristics that SLX provides which might support an attack class mitigation

claim,

• organize modification approaches into these mitigation technique categories, and

• recover the claim (or claims) that can be strongly argued for a given mitigation technique.

For example, consider developing a mitigation argument for the stack-based buffer overflow attack

class that targets data within the currently executing stack frame (the specific enumeration leading

to this attack class is shown in iteration 1 of Figure 8.3). In SLX, the use of canaries was the first

mitigation approach examined. Canaries can potentially detect attacks for this attack class; hence,

we attempted to recover a strong argument about what level of attack detection canaries can provide.

In the original version of SLX, canaries are checked at function call and return. This sparse

placement of canary checks was justified to keep run-time overhead acceptable. Analyzing this

decision to produce a convincing argument reveals that the efficacy of canaries depends on the type

of data targeted by the attacker. Specifically, function pointers are protected more convincingly than

other forms of data.

Attacks in which function pointers are corrupted with a malicious address are assumed to

succeed only if used in a subroutine call. Since canaries are checked prior to call instructions, a
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claim can be made that all function pointer attacks will fail for this particular attack class (provided

canaries are completely and correctly applied).

For other non-function pointer data, the attack might be detected prior to the attack succeeding

but detection depends on the frequency of canary checks. The frequency of canary detection is not

set within the current SLX implementation. The difference between security claims that can be

made between these two classifications of data results in the addition of two decomposed attack

class, shown at the bottom of Figure 8.3. The revision of the “current frame data” decomposed

attack class is further subdivided into attacks targeting function pointers and non-function pointers.

8.3 Results of Argument Benefits

Attempting to construct the security argument in the manner described above revealed a number

of weaknesses in SLX [58], a significant result of the use of an assurance argument for SSM.

The weaknesses cover a variety of topics, and their composition together with the details of the

remainder of the argument show the substantial value of applying rigorous argument to software

security enhancements, and by extension SSM. A summary of exposed weaknesses is provided in

Table 8.1. Below, we provide a description of these revealed weaknesses, and describe the ways in

which argument aided in their discovery.

8.3.1 Essential Trade-offs

Security, like many system properties, is not isolated. Frequently, trade-offs have to be made in

which security might actually have to be weakened in order to make it practical. Exposing the need

for trade-offs and what they imply is facilitated greatly by the security argument. An important

example revealed in SLX is the use of canaries.

Canaries can incur substantial run-time overhead as a result of added functionality to set up and

check canary values. To curb run-time overhead, the original implementation of SLX only checks

canary values at function return and call instructions. As noted above, the structured reasoning
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Result Summary Section Containing
Further Details

Argument develop-
ment exposes modi-
fication trade-offs.

Discovery that argument development aids
in exposing the trade-offs within the config-
uration of a modification between security,
correctness, efficiency, etc.

Section 8.3.1

Argument develop-
ment exposes weakly
mitigated attack
classes.

Discovery that development of the argu-
ment aids in identifying mitigation techniques
that are not well-suited for mitigating attack
classes.

Section 8.3.2

Argument devel-
opment exposes
reliance on qualita-
tive evidence.

Discovery that development of the argument
aids in highlighting where the argument is
based on qualitative evidence, such as expert
judgment and intuition, which might be con-
sidered unacceptable.

Section 8.3.3

Argument develop-
ment exposes alter-
native modification
configurations.

Discovery that development of the argument
raises doubts about the configuration of anal-
yses and mitigation techniques and further
aids in eliciting alternative configurations.

Section 8.3.4

Argument develop-
ment exposes unhan-
dled attack classes.

Discovery that development of the argument
forces stakeholders to consider all credible at-
tack classes, including those that might have
otherwise been overlooked.

Section 8.3.5

Argument develop-
ment exposes unan-
ticipated benefits.

Discovery that development of the argument
forces reasoning about the benefits of mitiga-
tion techniques exposing benefits that might
not have been originally considered or re-
ported.

Section 8.3.6

Table 8.1: Summary of results of assurance case benefits

provided by the argument exposed the implicit impact of this trade-off. Specifically, function

pointers are strongly protected, whereas other kinds of data are not.

Exposing trade-offs enables analysis and explicit consideration of their (potentially unintended)

effects. In this example, a solution that better protects non-function pointer data might be sought.

One approach is to check canaries after a set number of instructions. Including regular canary

checks allows a stronger arguments to be constructed at the cost of having to execute the additional

checks.
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8.3.2 Weak Mitigation

Attempting to argue a security claim frequently reveals weaknesses in the underlying technique

that might not have been considered. An example in SLX is the use of padding between variables.

Previous work using padding as a security enhancement provides some quantification of the security

efficacy [72], but only for a very limited number of attack classes. Examining padding within the

argument structure exposes this limitation, because producing a convincing, general and quantifiable

argument for padding for many attack classes is not possible.

Confronted with a potentially weak modification might suggest that the approach should be

abandoned; however, to do so might ignore other benefits. Instead, an argument can be constructed

to show exactly to what extent and under what circumstances a particular technique should be

applied.

Intuitively, using padding might increase the number of attack attempts required to succeed,

depending on the nature of the attack class. If this increase in attacker effort either defeats the

attack or can be shown to make attacks highly detectable (perhaps combined with canaries), a

compelling argument might be made in favor of padding. The key benefit of using argument in this

case within SLX was to highlight a potentially weak mitigation approach and to aid in exposing

what the approach can fully provide, before abandoning it as a protection mechanism.

8.3.3 Qualitative Evidence

Quantifiable performance measurements frequently offer strong evidence to support an argument

claim. In some cases, however, qualitative evidence is all that is available. Decisions concerning

the adequacy of qualitative evidence are left to experts and ultimately to the system stakeholders.

Before judgment can be applied, stakeholders must be made aware of what claims are affected

and how. Without a comprehensive argument, the effect of qualitative evidence cannot be easily

assessed. By applying security arguments to software security enhancements, details of the claims

supported by qualitative evidence are revealed and can be reviewed.
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An example in SLX is the adequacy of variable randomization, i.e., the reordering of variables

on the stack as a mitigation technique. Randomization forces the attacker to perform a state-space

search in order to find a variable of interest. Requiring a search is a useful deterrent in its own right,

but a sophisticated attacker might be able to launch an attack that includes a search. In that case, the

success of the search depends upon the entropy introduced by the randomization, and that can be

quantified statistically.

Nevertheless, a significant benefit of variable randomization derives from the kind of data being

randomized. If a variable is placed in the path of a buffer overflow, an attacker might be forced to

corrupt that variable to effect an attack. If the program relies on a specific value of the variable, then

the attacker will have to recover this value or face program termination.

Intuitively, there is a potential increase in attack effort, but exactly how often this occurs and

to what extent such attacks are typically thwarted has no quantification. A decision is required as

to whether this intuition is sufficient, or if additional research is needed to generate quantitative

evidence.

8.3.4 Alternative Configurations

As arguments are constructed for an attack class mitigation claim, the process reveals characteristics

of the mitigation techniques that could be altered to potentially improve belief in mitigation claims.

Configuration options discovered as a result of this case study include:

• Where canaries are placed

• The size of canaries

• How often canaries are checked

• Remediation policies when attacks are detected

• The content of padded memory regions

• The size of the padding
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• The algorithm used for variable randomization

Rather than claiming any particular configuration is weak or determining optimal configurations,

we emphasize the benefit of argument to aid in exposing these configuration decisions.

8.3.5 Unhandled Attack Classes

One of the primary benefits of the argument structure and iterative attack class refinement process is

the ability to reveal credible attack classes for which a given set of modifications are not well suited

or possibly completely ineffective. The argument is essentially a comprehensive view of precisely

what security claims can be made and where additional support is needed. Stakeholders can then

use the argument to provide structured guidance as to how go about fully protecting the software.

An example of this argument benefit arose in the analysis of SLX as a defense against attacks

on confidentiality. While SLX does provides some data diversity in the stack frame structure that

could make confidentiality attacks more difficult, the evidence was found not to be compelling.

Additionally, canaries provide absolutely no protection against attacks on confidentiality. In

examining the claim about the composition of mitigation methods for integrity and confidentiality

(i.e., arguing the chosen methods do not conflict), a serious weakness with canaries was discovered.

Since the canary is in a predictable location, attackers could use a confidentiality attack to recovery

the canary, potentially allowing the attacker to overwrite the its value (i.e., bypass the canary)

without detection.

Finding that SLX canaries can be subverted by a combination of confidentiality and integrity

attacks suggests the possibility of reconfiguring canaries, such as encrypting canary values, or

placing canaries in unpredictable locations.

8.3.6 Unanticipated Benefits

Applying argument to security enhancements can reveal unanticipated benefits that a modification

provides. These benefits would not necessarily be revealed by ad hoc (as opposed to argument
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based) analysis. The failure to understand the power provided by a modification is, in a sense, a

weakness in the understanding of the stakeholders. Fully exposing these benefits provides a much

clearer and comprehensive view of the claims that can be made for software security enhancement.

We observe that while uncovering unknown benefits is inherently difficult, applying our argument

approach focuses a systematic discussion which aids in revealing unanticipated benefits.

For example, SLX is not designed to provide buffer overflow protections within a complex data

structures (i.e., buffer overflows within C structs). This deficiency was known and expected, but

in trying to find if any argument can be made for intra-structure buffer overflow, some potential

benefits were uncovered. C compilers frequently flatten structure data types, which essentially

makes the structure semantically non-existent as long as the structure is not passed to other functions

by address. SLX can therefore mitigate attacks within structures in these scenarios.

In other words, while SLX is not designed to mitigate intra-structure overflows, SLX can still

provide some security protections in certain scenarios. How often these scenarios occur is an area

for further study.

8.4 Results of Argument Limitations

The observed assurance case benefits described in the previous section were primarily the result of

the systematic decomposition of the stakeholders’ needs and the properties SLX is meant to provide.

These observations suggest that the fitness argument provides necessary support for SSM at least in

terms of the argument form, and in the ability to expose modification weaknesses and benefits.

The applicability of traditional assurance cases to SSM was limited, however, when considering

the manner in which attack class mitigation is argued. The primary negative result was:

The variability in how SLX will modify software was difficult, if not impossible, to

express with traditional argument structures.

This result is a consequence of the general approach used in the case study for argument

development: recall that a single argument was developed to describe the acceptability of any SLX
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modification. Traditionally, to construct an argument for a single instance of modified software, we

would have to know exactly how the modification was applied. For example, for SLX modifications

we would need to know exactly how many functions had been modified, and with what kind of

protection mechanisms and configurations.

The issue with an SSM process is that during argument development, how SLX modifications

will be applied is not known and can vary. To resolve the limitations of traditional assurance argu-

mentation techniques, the concept of selection argumentation (Chapter 6) was invented. Application

of selection argumentation is described in the next section.

8.5 Applying Selection Argumentation

This section describes example applications of selection argumentation within the SLX argument.

To illustrate the use of selection argumentation, we limit the illustration to the two attack classes

resulting from division of the “current frame data” attack class shown at the bottom of Figure 8.31.

We also limit our illustration specifically to the SLX canaries for these attack classes. The primary

argument used for illustration is shown in Figure 8.4.

8.5.1 Function Variability

SLX modifications not only vary in how they are applied for each instance of SOUP, they also

vary for individual functions within the same program. To development of the SLX argument, the

argument must express the variability of modifications per function and the mechanics for selecting

functions to modify.

In Figure 8.4, Goal 13.1 expresses a general function claim using entity abstraction (part of

selection argumentation). The sub-argument for Goal 13.1 contains further variability described in

subsequent sections. Obligation O1 expresses the general decision process for selecting functions

1Although the subdivision of attack classes increases the complexity and size of the argument, each attack class is
mitigated using the same SLX mitigation techniques. While each mitigation argument can be subtly different, the same
general approach for constructing the argument is used.



Chapter 8 Case Study: Exploring the SSM Assurance Case 174

11.1.2:  Decomposition Claim 
Function pointer attacks are 
mitigated.  

G1: Well-Formed Function Guard 
1) The function must not contain 

patterns document in P1: 
justified by correctness goal C21. 

2) The function is modified within 5 
minutes : justified by success 
argument goal S15. 

13.1: Function Mitigation Claim 
{Functioni} is adequately mitigated. 

14.1: Strategy 
Argue mitigation over mitigation techniques. 

13.3: Function Coverage Claim 
The number of total functions 
modified meets minimum 
requirements. 

12.1: Strategy 
Argue over mitigation techniques per function. 

O3 
Select the maximum number 
of valid mitigations but 
choose at least one. 

O2 
Attempt strategy 14.2 
first. If it fails, use 
strategy 14.1. 

14.2: Strategy 
Argue no mitigation required. 

(Other Mitigation Goals) 

O1 
Attempt Goal 13.1 on all program 
functions. Ignore argument for 
the function  a failure is observed.  

G2: Comprehensiveness Guard 
1) At least 85% of all functions 
should be mitigated from attack : 
justified by sub-argument of Goal 
13.3. 

10.1.x: Strategy 
Argue over all decomposed attack classes 

11.2:  Composition Claim 
The mitigation of all attack 
classes are synergistic. 

11.1.1:  Decomposition Claim 
Attacks to non-function pointers are 
mitigated.  

10.2.x: Justification 
Division necessary because 
SLX checks canaries only at 
function return and function 
call.  
 
 

J 

15.1.1 Detection Claim  
Boundary violations beyond inferred 
variable bounds are adequately likely to 
be detected by canaries prior to the attack 
succeeding, and execution is terminated 

All call instructions are 
instrumented with 
canary checks prior to 
execution of the call.   

Canary values are 
random 32 bit integers.  

Canary Assumption 2 
This claim is based on the 
assumption that attackers 
cannot use a confidentiality 
vulnerability to first read the 
canary before corrupting it.  
 
 

A 

Canary Assumption 1 
Function pointers are only 
used in call instructions, and 
no other kinds of instructions.  
 
 

A 

G3: Detection Guard 
1) The function does not contain 

compiler idioms specified in 
document 
PaddingAssessmentIdioms : 
justified by correctness goal C23 

2) The function does not contain 
compiler idioms specified in 
document 
CanaryAssessmentIdioms: 
justified by correctness goal C24. 

16.2 Canaries  Entropy Claim 
The probability a canary 
violation is not detected is 1 in 
2^32.  

16.1 Remediation Claim 
All detected canary violations 
result in program termination 
prior to a successful attack.  

Module1 
Intra-Frame Variable 
Precision Module 
 

Figure 8.4: Example use of selection argumentation
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to modify at this level in the argument. In this case, the decision process is to attempt to modify

every function. If modification is not possible, the function is ignored. Criteria for when a function

should not be modified are expressed through argument guards in the sub-argument for Goal 13.1

and the selection argumentation mechanics.

8.5.2 Minimum Acceptability Requirements

The original implementation of SLX performs a “best effort modification”, i.e., SLX modifies

as many functions as possible, and no consideration is given as to whether the result is tolerable.

While stakeholders could accept a best effort approach, the argument becomes less compelling.

For example, in the worst case, stakeholders must consider no modification whatsoever as an

acceptable choice. The lack of a compelling argument forces us to consider the minimum acceptable

modification requirements (i.e., the weakest acceptable modification). These requirements must be

assessed when a modification is finalized.

In Figure 8.4, Goal 13.3 is added arguing that minimum modification requirements are met.

SLX was not originally developed with minimum modification requirements in mind, so this goal

is left undeveloped; however, for illustration, Guard G2 is applied to Goal 13.3. The premise of

G2 is at some point the minimum modification requirements must be vetted, and conceptually

these requirements guard Goal 13.3. For illustration, we invented a threshold number of functions

that must be modified (85%). G2 indicates that determining if the modified program meets the

85% function modification threshold is not known a priori, and will require assessment for Goal

13.3 to be valid. Vetting minimum modification requirements specified in the guard would best be

performed during the SSM finalization phase when a complete modification can be reviewed.

8.5.3 Mitigation Without Modification

A function can be adequately mitigated if the attack class does not pose a credible risk for the

function or SLX modifications have adequately neutralized the threat. In practice, modifying the
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software is risky; hence, arguing mitigation without performing any modification is preferable. The

argument must therefore express a selection between these two alternatives.

In Figure 8.4, Strategy 14.1 corresponds to arguing mitigation by modifying the software

and Strategy 14.2 argues mitigation because there is no credible threat. Obligation O2 expresses

the preference between these two strategies (i.e., to prefer attempting Strategy 14.2). In our

implementation of SLX, we did not explicitly consider the scenarios justifying no mitigation is

necessary; hence Strategy 14.2 is undeveloped.

One potential check could involve determining if the number of variables detected for the

function is 0 or 1. For an attack within the given attack class to be successful, there must be a

vulnerable buffer and a target to exploit within the stack frame (specifically a function pointer).

The minimum number of variables on the stack for the attack to be relevant is therefore 2. Only if

Strategy 14.2 is not possible is an argument developed based on SLX modifications2.

8.5.4 General Mitigation Restrictions

To decrease the risk of generating a modification that breaks expected program behavior, SLX

performs several assessments to verify if a function is “well-formed”. A well-formed function is a

function that does not appear to have instructions that are known to result in incorrect SLX modifi-

cations and can be modified within a set amount of time. The rationale for these restrictions would

be found elsewhere in the SSM assurance case; however, to make these crosscutting restrictions

clear within the argument, the general well-formed function restrictions are expressed as in a guard

(Guard G1) restricting the selection of Strategy 14.1.

8.5.5 Mitigation Variability

Strategy 14.1 argues mitigation by arguing over all for each function all three of the SLX mitigation

techniques (canaries, variable padding, and variable reordering). The assessment mechanisms in

2Because the argument includes mitigation arguments for many attack classes, the lack of an SLX argument for one
attack class does not necessarily suggest SLX modifications have not been applied to mitigate other attack classes.
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SSM can invalidate any of the SLX mitigation techniques meaning any combination of mitigation

techniques is possible. The argument must therefore express this variability and the process for

selecting mitigation techniques. Additionally, stakeholders must consider the ramifications of

limited or partial application of mitigation techniques. For example, stakeholders might tolerate

a few functions not having canaries applied, but if all functions do not have canaries, they might

consider this unacceptable.

In Figure 8.4, Obligation O3 documents how invalidating any of a mitigation techniques

should be handled. In the latest implementation of SLX, the approach is to simply combine as

many mitigation techniques that can be validated for each function, i.e., the maximum number

of mitigation techniques that can be applied is considered valid. If no mitigation techniques are

validated, O3 will not be able to choose a valid alternative, resulting in failure propagation described

by the selection argumentation mechanics (see Chapter 6).

To restrict the overall variability of modifications, stakeholders can use Goal 13.3 (as described

above) to specify minimum modification requirements for each function.

8.5.6 Canary Restrictions

The application of canaries allows for the detection of attacks at run-time; however, canaries cannot

be reasonably applied in all cases. SLX performs assessments to verify if canaries can be applied

without resulting in unintended program behavior. The assessments restricting the use of guards

are specified in Guard G3. G3 specifies two assessments that must be performed. Both of these

assessment reference compiler idioms that the function must not have in order to safely apply

canaries. Rationales for these restrictions would be found elsewhere in the assurance case in a

correctness argument.

8.5.7 Alternative Detection Argument

The mitigation argument for canaries in Figure 8.4 (Goal 15.1.1) is relatively simple because of

the nature of the given attack class decomposition. The simplicity of constructing the argument
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15.1.1 Detection Claim  
Boundary violations beyond inferred 
variable bounds are adequately likely to 
be detected by canaries prior to the attack 
succeeding, and execution is terminated. 

O4 
Selection based on padding 
applied (see decision model 
for padding D22). 

G4: Detection Guard2 
1) The function does not contain compiler idioms 

specified in document 
PaddingAssessmentIdioms : justified by 
correctness goal C23 

2) The function does not contain compiler idioms 
specified in document 
CanaryAssessmentIdioms: justified by 
correctness goal C24. 

3) Canaries must be checked at a frequency of 
greater than or equal to 1 check in TBD 
instructions: justified by sub-argument 16.1. 

Canary Assumption 2 
This claim is based on the 
assumption that attackers 
cannot use a confidentiality 
vulnerability to first read the 
canary before corrupting it.  
 
 

A 

16.3 Canaries  Entropy Claim 
The probability a canary 
violation is not detected is 1 in 
2^32.  

Canary values are 
random 32 bit integers.  

16.1 Detection/Remediation  Frequency Claim 
Canary violations are detected with acceptable 
frequency.  

17.1 Inert Overflow Claim 
Overflows prior to a canary check are 
inert up to an average of 1000 bytes.  
 

17.2 Inert Overflow Claim 
Overflows prior to a canary check are 
inert up to an average75,000 bytes.  
 

16.2 Canary Check Interim Claim 
Overflows prior to a canary check are 
adequately inert.  
 

Figure 8.5: Canary argument for attacks targeting data other than function pointers

for this attack class lead to differentiating attacks to function pointers from attack to all other data

within the stack frame (i.e., attacks to non-function pointers argued under Goal 11.1.1). Figure 8.5

illustrates the mitigation argument for canaries that would appear under Goal 11.1.1.

Because of how SLX was implemented, no argument can be made that guarantees a canary

check will occur before data that are not function pointers are accessed. Instead, the detection of

corrupted canaries occurs based on the frequency at which the canaries are checked. Goal 16.1 in

Figure 8.5 expresses a claim about the frequency of canary checks, but the argument is undeveloped

because we have yet to determine what will constitute an acceptable frequency.

Since the frequency cannot be known until an instance of software is provided, the frequency

will need to be determine/assessed during modification. Guard G4 specifies (in addition to the

general canary constraints) a constraint to validate the frequency is acceptable when the function is

modified. Since we have not established what the acceptable frequency is, the frequency constraint

is “To Be Determined” (TBD).

Even if the frequency of canary checks is tolerable, a claim can be made that the combined

use of padding with the canary will render some linear buffer overflows inert until the canary
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violation is detected, i.e., if the overflow does not exceed the boundary of the padding added by

SLX. Goal 16.2 is added to address this scenario. The SLX mechanism for adding padding will

choose a different padding amount depending on characteristics of the software, indicated by Goals

17.1 and 17.2. Obligation O4 references the decision process (found elsewhere) for choosing the

amount of padding. The exact decision model for padding could be repeated in O4; however, in

this instance we chose to use semantics of product line argumentation. Specifically, the decision

affecting padding can be found in the mitigation argument for padding. Obligation O4 makes

references to that more elaborate decision process, and states that the result of that decision will

affect the decision between Goal 17.1 and 17.2.

8.5.8 Variable Boundary Precision

All SLX mitigation techniques rely on the precision of detected variable boundaries. SLX chooses

between four naı̈ve methods to derive variable layout based on accesses into stack memory: AOI,

SOI, DOI, and ESI (see Chapter 7). The choice between these alternatives have an affect on

assurance claims but the choice between these alternatives varies from function to function. In

Figure 8.4, the variable boundary precision argument is extracted into a reusable argument module3.

The detailed argument for Module1 is shown in Figure 8.6.

Selection argumentation allows the argument to express the selection process between the

variable inference alternatives. Obligation O5 expresses the preference between alternatives. In

this case, the preference is to begin with AOI then to proceed to the next inference containing the

most variables. For the given attack class, at least 2 variables must be detected to make any security

claims4; hence, ESI is not a valid alternative in this module. Each variable inference is guarded by

identical testing procedures, specified in Guard G5.

3GSN module extensions are further described in the GSN community standard [19].
4The decomposition of attack classes makes the distinction between data targeted by an attacker that is within the

currently executing stack frame (intra-frame attacks), and data that is outside an executing stake frame (inter-frame
attacks). The decomposed attack class used for this illustration focuses on attacks to data within an executing stack
frame. If one or fewer variables are found, the given attack class decomposition cannot be mitigated.
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Module1: Intra-Frame Variable Precision Module 
Variable boundaries are detected with sufficient 
precision.  

O5 
Choose AOI first. If AOI 
fails, choose the other 
two in sequence, the 
sequence is determined 
by the approach with the 
most variables detected.  

Precision1.1: AOI Claim 
AOI provides sufficient 
boundary detection. 

Precision1.2: SOI Claim 
SOI provides sufficient 
boundary detection.  

G5: Testing Procedure Guard 
1) The function meets minimum 

testing requirements in test 
procedure T1: justified by 
correctness argument C1.  

2) The modified function passes all 
tests in test procedure T1: 
justified by correctness argument 
C1.  

Variable Inference Justification 
The methods used to generate variable 
boundary inferences are consider sufficient 
because they are easily engineered, and 
other approaches are difficult to engineer., 
or do not provide sufficient granularity.  
 
 

J 

Variable Inference Assumption 
If the variable inference is not 
found to be associated with all 
offsets, we have observed that 
usually the correct inference is a 
subset of all offsets.  
 
 

A 

Precision1.3: DOI Claim 
DOI provides sufficient 
boundary detection.  

G5: Testing Procedure Guard 
1) The function meets minimum 

testing requirements in test 
procedure T1: justified by 
correctness argument C1.  

2) The modified function passes all 
tests in test procedure T1: 
justified by correctness argument 
C1.  

G5: Testing Procedure Guard 
1) The function meets minimum 

testing requirements in test 
procedure T1: justified by 
correctness argument C1.  

2) The modified function passes all 
tests in test procedure T1: 
justified by correctness argument 
C1.  

Figure 8.6: Module1: intra-frame variable boundary detection precision

The argument does not proceed further as we lack a convincing argument for any one of the

variable recovery mechanisms. The lack of a compelling argument does not suggest we did not

have intuition as to why any one of these techniques might work. Rather, trying to make a definitive

and compelling argument based upon our intuition and ad hoc evidence was not possible without a

significant research activity on variable boundary recovery.

8.6 Selection Argumentation Results

This section describes the results of applying selection argumentation. These results are summarized

in Table 8.2 and further described in the following subsections.
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Result Summary Section Containing
Further Details

A success argument is
necessary.

Discovery that a fitness argument is not
sufficient for an SSM assurance case. A
success argument is also required.

Section 8.6.1

Selection argumentation
specifies SSM.

Discovery that selection argumentation no-
tation and mechanics can be used as a spec-
ification for an SSM process.

Section 8.6.2

SSM assurance cases
raise serious engineer-
ing challenges.

Discovery that SSM assurance case devel-
opment raises questions about acceptabil-
ity and completeness of the SSM imple-
mentation, e.g., the completeness and va-
lidity decisions and alternatives.

Section 8.6.3

Assurance case in-
stances might require
further assessment.

Discovery that assurance case instances
derived from the mechanics of selection ar-
gumentation might require further assess-
ment outside the SSM model.

Section 8.6.4

The criteria for which
variable arguments are
applicable.

Discovery of when the use of variable ar-
gument structures is appropriate within the
argument.

Section 8.6.5

Readability of the argu-
ment is negatively af-
fected.

Discovery that the visual complexity of the
argument increases with the use of selec-
tion argumentation, potentially affecting
readability.

Section 8.6.6

Table 8.2: Summary of selection argumentation results

8.6.1 The Success Argument

The constraints limiting the resources consumed by the SSM process have a direct impact on how

modifications are produced. These constraints must therefore be made explicit within argument

guards; however, the fitness argument does not provide any justification or rationale for these

constraints. Initially, the justifications for resource consumption constraints were either not given

explicitly or referenced within ad hoc documentation.

This approach did not provide a clear indication about how the SSM process restricts resource

consumption when generating modifications. To provide better clarity, we adopted the use of success

arguments from Assurance Based Development [31] within our concept of the SSM assurance case.

Success arguments explicitly and rigorously document the resource consumption limitations of the
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SSM process. By including success arguments in the SSM assurance case, all guards constraints are

justified by components of the SSM assurance case, either in the success argument or the fitness

argument.

8.6.2 Implementation Specification

As the SLX argument was constructed, the SLX process was conceptually abstracted into its

underlying specification. The specification indicates:

• where decisions need to be made,

• the alternatives associated with each decision,

• how decisions are made and validated, and

• why each alternative is acceptable.

If developers were to begin by building the SSM assurance case, not only would they have identified

weaknesses requiring attention before implementation, the developers would also have a road map

to guide the development of the SSM process.

The mechanics of selection argumentation provide a general specification for the implementation

of an SSM process. The exact manner by which the argument mechanics are realized in an

instantiated SSM process are not restricted. Fundamentally, the exact implementation is not

important so long as the mechanics within the argument are fully realized. The SSM process model

is beneficial to developers to interpret and filter the mechanics in the SSM assurance case specified

by selection argumentation.

8.6.3 Engineering Concerns

A benefit of selection argumentation is that once developers have specified decision models, alterna-

tives, and guards, reviewers can easily understand the mechanics for generating a modification, and
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recover an assurance case instance by obeying the argument mechanics. The SSM assurance case

does not, however, answer the following questions:

• Are all decision models appropriate?

• Are there sufficient alternatives under each decision point?

• Are all possible assurance case instances acceptable?

• Will the mechanics specified by the argument produce acceptable modification (a complete

assurance case instance) with a sufficiently high probability of success (i.e., are the selection

mechanics appropriate for the given operating context)?

These questions are assurance concerns relating to high-level development concerns about

the engineering and instantiation of the SSM model. An instantiated SSM model is the result of

an engineering process of some kind, and can therefore be conceptualized as a software product.

We can therefore apply any traditional engineering paradigm to assess and mitigate high-level

developmental concerns, as described above.

High-level development concerns are important to address but exceed the scope of this disser-

tation. The main focus and scope of this dissertation is based the “product” an SSM instantiation

is meant to generate (i.e., SOUP modifications), and the costs and constraints associated with

generating that product. Regardless of what development paradigms are used in instantiation of

SSM, the development activity should center around the construction of the SSM success and fitness

arguments and using those arguments to realize the SSM process. In this dissertation, we assume

that high-level development concerns have already been addressed in some manner, and instead

focus on the form and mechanics of components within SSM. We leave further investigation into

larger SSM engineering principles for future work (see Chapter 11).

8.6.4 Assurance Case Instance Assessment

Individual decisions within the argument can be easily understood and scrutinized. As more

decisions are added, however, and the complexity of interactions between decisions increases,
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we cannot easily understand the argument as a whole. For example, because of the fallacy of

composition, we cannot always rely on our understanding of the components of the argument to

translate into an understanding about the composition of all argument components. Without a

complete understanding of all arguments that can be generated (all assurance case instances), we

must consider the possibility that an assurance case instance is generated that is unacceptable.

Compositional correctness of arguments is an area of future research and might be addressed in

the instantiation of the SSM model; however, a key result of this case study is:

Doubts about an assurance case instance are the same as doubts about any assurance

case for any software system.

Residual doubts about arguments always remain, and might require assessment on an individual

argument bases. Additional review and assessment of individual assurance case instances might

therefore be unavoidable.

Argument assessments can be performed manually by experts or assessment can be performed

through automated mechanisms. In Chapter 5, an argument assessment framework is proposed that

could be adopted for the automatic assessment of assurance case instances. Using the framework,

confidence would first be assessed by experts for individual assertions within the SSM fitness

argument. When an assurance case instance is generated and argument components are combined

and validated, the confidence metrics associated with chosen argument structures would be combined

and computed using stakeholder-defined confidence arithmetic. Failure to meet defined confidence

thresholds would invalidate the assurance case instance.

Extending our assessment framework for automated argument assessment is an area for future

work. Automated or manual assessment of assurance case instance could be considered as part

of the SSM process finalization phase. For simplicity of this dissertation, however, we consider

the assessment of assurance case instances a separate activity performed within a larger SSM

deployment cycle and is left for future work (see Chapter 11).
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8.6.5 Applicability of Variable Arguments

Initially in this study, a fitness argument was constructed to intentionally hide the variability

of SLX modifications, i.e., the argument did not prescribe any variability or complex decision

processes. The intuition was to make a single yet general argument that would applicable to all

SLX modifications in its original and unaltered form. The problem with an argument of this form

is that the argument would have to express the weakest acceptable argument (i.e., the minimum

modification requirements stakeholders will accept).

While developing a weakest acceptable argument is a valid approach for arguing about software

modifications, SSM is applied to produce modifications within a space of acceptable solutions. If

a weakest acceptable argument is used, there is no indication where any given modification falls

within the acceptable solution space. Further, there is no indication or rationale as to why SSM

generates and assesses modifications at all. Selection argumentation provides a much more detailed

view of SSM activities, to an extent that allows the assurance case to serve as a specification for

implementation.

In principle, selection argumentation should be used if stakeholders care about differentiating

between weaker modifications and stronger modifications. Argument developers must use their

own judgment to determine when an argument can be made in a general sense, or if selection

argumentation is best applied.

8.6.6 Readability

Selection argumentation clarifies the mechanics of constructing an assurance case instance, but also

negatively influences the readability of the argument. Additional guard and obligation elements

clutter the argument structure and can be visually unappealing. While readability is a detractor to

the use of selection argumentation, readability can be improved with proper argument development

tools. With tool support, guards and obligations can be hidden when not required, and organized

into tabular structures and databases for ease of reference.



Chapter 8 Case Study: Exploring the SSM Assurance Case 186

8.7 Results Summary

The goal of this case study was to answer the questions presented in Section 8.1. The answers to

these questions are summarized in the following subsections.

Question 1: Feasibility Results

For an SSM assurance case to be feasible, it must provide sufficient expressive capability for SSM

and be possible for engineers to develop. Using traditional assurance case methods alone does not

provide sufficient expressive capabilities to support SSM; however, the use of a success argument

and the application of selection argumentation allows the SSM assurance case to overcome this

limitation. Specifically, the use of the success argument with selection argumentation allows the

assurance case to express both the solution space and the criteria for navigating the solution space

within the argument structure itself.

While selection argumentation and the use of a success argument does increase the complexity

of the argument, we did not observe that the added complexity unreasonably increased the difficulty

of constructing the argument. In fact, the added complexity was trivial compared to the larger

development challenges of:

• reverse engineering an argument from a completed SSM process,

• producing a compelling argument structure, and

• generating evidence when sufficient evidence is lacking or nonexistent.

These more significant challenges are known challenges in applying assurance cases generally.

The first challenge can be addressed by developing the argument prior to or in parallel with the

development of the SSM model [23]. The latter challenges are fundamentally necessary to overcome

in order to provide assurance for any software system. Although developing a complete assurance

case can require a significant engineering effort, to date, many successful production-level assurance

cases have been produced [17]. We therefore conclude that the construction of the SSM assurance

case is feasible.
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Question 2: Practicality Results

In order for the SSM assurance case to be practical, it must allow reviewers to understand the

acceptability of SSM modifications. In this study, we have demonstrated how the development

of assurance case can expose the benefits and weaknesses of modification techniques. Further,

by including within the SSM assurance case a success argument and selection argumentation, we

have demonstrated how the SSM assurance case captures the desired mechanics for developing

acceptable software modifications.

The SSM assurance case serves as an assurance blueprint for constructing acceptable SOUP

modifications. Reviewers can traverse the selection argument mechanics and the corresponding

arguments to understand the decision, validation and refinement processes and why these activities

are performed. In this respect, the SSM assurance case does facilitate understanding of SSM

modifications.

Individual decisions and validation procedures can be easily scrutinized but it is fundamentally

challenging to understand if the sum of all decisions will result in an acceptable modification, i.e.,

will any produced assurance case instance be acceptable? While additional assessments might

be required, either on the entire SSM assurance case or a generated assurance case instance, the

practicality of the SSM assurance case is not invalidated. The SSM assurance case provides

the general assurance structure for software modification. Without the SSM assurance case, no

further assurance assessment would be possible. While additional research is necessary to address

compositional correctness of arguments and other developmental concerns mentioned Section 8.6,

the SSM assurance case provides the structure for further assurance assessment. We therefore

conclude the SSM assurance case is practical.



Chapter 9

Case Study: Exploring the Applicability

of SSM

The previous two case studies have evaluated and scrutinized the feasibility and practicality of SSM

with respect to:

1. the process mechanics and

2. the SSM assurance case.

While the results of these studies were positive, both evaluations were limited to a single specimen

instantiation of the SSM model (i.e., SLX). Based on only one target of evaluation, there is no

clear indication that the SSM model will be applicable in other scenarios or how engineers would

determine if the SSM model were an appropriate solution.

Ideally, further evaluation of SSM would investigate the broader practicality and feasibility of

the SSM concept. A rigorous evaluation would require a statistically valid set of replicated trials

across a range of operating contexts, stakeholders, and methods of modifying the software. Multiple

characteristics about the general applicability of SSM could then be examined, such as:

• The general conditions where SSM is applicable and inapplicable.

188
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• The benefits of applying SSM in terms of desired properties the software is meant to maintain

(especially security).

• The effort in instantiating SSM.

• The performance of SSM modifications in real-world contexts over time.

• The effort in maintaining and updating SSM over time, and the conditions leading to the need

to update SSM.

• The guidelines for applying SSM.

The scope of the above evaluation is not feasible within this dissertation. Instead, this chapter

provides a more limited and simplified evaluation of SSM. This chapter evaluates the practicality of

SSM by addressing the research question:

Can SSM be applied to other modification approaches and how?

To limit the scope of this study, the applicability of SSM is examined for a new security modification

technology developed by others independently of this research. Further, the development an

assurance case is assessed as a means for both examining and demonstrating the applicability of

SSM.

9.1 Case Study Overview

The goal of this study, as mentioned above, is to evaluate the practicality of SSM with respect

to the applicability of the SSM model. In this study, applicability is not examined by creating

and evaluating multiple instantiations of SSM; rather, this study addresses the following research

questions for a single target of evaluation (i.e., a single modification technique):

1. Can the development of an assurance case be used to determine the applicability of the SSM

model?
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Figure 9.1: SSM instantiation concept

2. How is selection argumentation applied within the assurance case to specify SSM process

mechanics?

The rationale for focusing on the development of an assurance case is based on the results of the

previous case studies. The previous studies suggested that:

• the development of an assurance case provides benefits in reasoning about software modifica-

tions, and

• selection argumentation can be used to specify desired SSM process mechanics within the

assurance case.

Based on these observations, this study uses the development of an assurance case as a method for

examining and demonstrating the applicability of SSM for a single modification technique.

9.1.1 Preliminary Strategy and Results

The general strategy used in this case study for determining the applicability of SSM was to

isolate areas within the assurance case that cannot be developed unless selection argumentation
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Result Summary
Acceptability of a modifica-
tion technique is based on its
application.

An assurance case cannot be developed for a modifi-
cation technique itself but rather the assurance case
is developed for the software system that has been
modified.

Variability and uncertainty
about software systems might
inhibit assurance case devel-
opment.

Evidence to support an assurance claim might be based
on data about a specific software system. Since that
data might be unavailable and uncertain, development
of an assurance case might be restricted.

Table 9.1: Preliminary results summary

is applied. Since selection argumentation specifies an SSM process, demonstrating the need for

and application of selection argumentation also demonstrates the need for and application of SSM.

Further development of an SSM could then be accomplished by interpreting the resulting SSM

assurance case, as illustrated in Figure 9.1.

Determining the precise conditions where selection argumentation is applicable is part of the

experiment of this case study. In preparation for this study, we discovered two additional results

that were used to focus the experiment. These results are summarized in Table 9.1.

In practice, a modification technique will be applied across a range of software (as illustrated

in Figure 9.2). To develop a single assurance case to describe the acceptability of all modified

software systems is inherently problematic since the assurance case must be sufficiently general

to be applicable for all modified software systems. The goal of this case study is to develop a

sufficiently general assurance case, but we anticipated that some evidence necessary to complete

the assurance case will be based on the characteristics of a specific software system. Such evidence

is missing, uncertain, and likely to vary for each software system. For this study, examination of

missing, uncertain and variable evidence was used as the driver for determining the applicability of

SSM.

9.1.2 Case Study Characteristics

This case study is based on the following premises:
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Figure 9.2: Application of software modifications in practice

• We take the position of stakeholders of an organization using a large amount of software.

• The stakeholders consider their software at risk of attack and look to apply defensive tech-

nologies in the form of security-enhancing software modifications.

• The stakeholders have already identified their specific security threats and have already chosen

a target defense technology.

• All software currently in use and any software that will be used in the future will be modified

using the target defense technology.

• Development of an assurance case is used primarily to understand how the target defense

technique will be practically applied.

• Development of the assurance case proceeds without knowing if SSM is applicable.

• The experiment of this study is to determine the applicability of SSM by assessing and

developing the assurance case.

For simplicity, the stakeholders have already identified a need for applying software modifi-

cations and have also identified the specific security threat. To avoid bias, a target modification

technology is chosen that was invented, developed, and put into practice independently of this
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research. The targeted modification technique is designed to defend against operating system (OS)

command-injection attacks and is referred to as Software DNA Shotgun Sequencing (S3) [84].

This study begins primarily as an evaluation of S3 through the development of an assurance

case. Software modifications (like S3) are intended to improve the quality of the software. The

development of an assurance case provides a rigorous justification as to why the modifications

are acceptable. Assurance case development therefore provides a common and reasonable (i.e.,

practical) starting point for engineers regardless of their particular operating context and needs or

whether the SSM model is applicable.

9.1.3 Scope

This study focuses on the initial pragmatics of applying SSM. The target of evaluation (S3) was out

of our direct control for this study. Evidence necessary to complete the assurance case was often

limited or unavailable. Additionally, S3 was implemented prior to our study and not developed with

respect to the SSM model or an assurance case. To complete the S3 assurance case would require

co-development between argument engineers and the S3 development team.

This study demonstrates the first iteration of an SSM co-development activity (i.e., the first

iteration of an Assurance Based Development (ABD) activity1 [30, 31, 23]). The assurance case is

developed to provide a compelling argument justifying the use of S3 for any given software system.

Since S3 was not developed to meet the needs specified in an assurance case, a compelling argument

might specify claims about S3 that are not yet supported. Further development iterations of S3

would then be required to complete the argument. These development activities are not examined in

this case study.

Since SSM can be arbitrarily complex (i.e., stakeholders can specify any number of alternatives

and validation activities), this case study is limited to demonstrating the initial activities in applying

SSM. This case study highlights within the assurance case where SSM might be applicable and

could be further developed. The result of this approach is a partial SSM assurance case with initial

1The concept of Assurance Based Development (ABD) is further described is given in Chapter 10.



Chapter 9 Case Study: Exploring the Applicability of SSM 194

SSM mechanics specified (i.e., initial application of selection argumentation). This study assumes

the connection of the SSM assurance case mechanics to an SSM process is apparent (see Chapters 6

and 8). Further development of the SSM assurance case and instantiation of an SSM process are

left for future work.

9.2 Target of Evaluation: S3

Software DNA Shotgun Sequencing (S3) [84] is a novel approach to thwarting command-injection

security attacks. S3 is designed to operate with no information about the software other than the

binary form. The concept is to make transformations to the binary program to prevent exploitation

of vulnerabilities that might be present but are unknown.

Vulnerabilities that can result in operating system (OS) command injection attacks (a special

case of command injection attacks) are the second entry in MITRE’s 2011 CWE/SANS list of

top 25 most dangerous software errors [65]. Operating system commands are the means whereby

programs make requests for operating system services, including file and network operations. If an

attacker can compromise an application and issue arbitrary commands to the underlying operating

system, the damages could be extensive. A network-facing server running with high privileges

could be attacked, for example, with the potential for the loss or leakage of extensive sensitive data.

The OS commands of interest are those that contain parameters derived from outside the

software. For example, an application can issue an OS command to output the contents of a file

identified by the user:

char[MAX_LEN] cmd = "/usr/bin/cat";

fgets(file, BUFFERSIZE, stdin);

...

strcat(cmd,file);

system(cmd);
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If instead of providing a file name, the user provides “; rm -rf /”, the cat command will

execute with no file, and consequently fail, followed by the rm command. The rm command would

proceed to delete the entire root partition of the file system if the software were running with

administrator privileges2.

Clearly, the solution cannot be to deny all OS commands. Instead, many modern defenses rely

upon taint analysis, i.e., determination of whether information to be used in an OS command can be

trusted. Prior to issuing a security-sensitive OS command, the command is first checked against its

taint markings to ensure that critical parts of the command are not tainted.

Taint analysis can be based upon either (1) positive taint in which trusted data is analyzed or (2)

negative taint in which untrusted data is analyzed. Analysis is performed either by (1) tracking the

flow of data (and hence taint) from an external source as the data propagates through a program to a

security-sensitive operation, or by (2) inference in which the taint is inferred in some way.

Applying existing taint tracking techniques to binary programs is problematic, because the

execution-time overhead can be prohibitive [85]. The goal for S3 is to provide effective, low

overhead taint analysis that can be applied to binary programs. The approach used by S3 is positive

taint via inference. Prototype implementations of S3 have been developed for binary programs

running on Intel’s X86 architecture for both OS command injection attacks and SQL injection

attacks. In this case study, the focus application of S3 is for OS command injections specifically.

9.3 The S3 Approach

The S3 approach is summarized here. Full details about the approach and experimental results are

available from Nguyen-Tuong et al. [84].

The S3 attack detection architecture is summarized in Figure 9.3. S3 is structured as five

major components. The DNA Fragment Extraction component extracts string literals, i.e., DNA

2We note that the dangerous and common SQL injection attacks in which malicious parameters from outside the
software are included in a command to an SQL database are non-OS command injection attacks. The techniques
described here have been adapted for SQL injection attacks.
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Figure 9.3: S3 architecture — figure taken from Nguyen-Tuong et al. [84])

fragments, from the binary program and the associated libraries. This analysis is done once, prior to

program execution, and the analysis time is not part of the execution-time overhead. The Command

Interception component intercepts security-critical commands generated by the subject program

during execution so that the commands can be examined.

By matching the command against the extracted DNA string fragments, the Positive Taint

Inference component determines which characters in the intercepted command should be trusted.

Any unmatched character is deemed untrusted. Using DNA fragments native to the software to infer

taint is a novel form of taint inference and one of the key contributions of the S3 architecture.

The Command Parsing component parses an intercepted command to identify critical tokens

and keywords (i.e., components of the command that can be used to achieve a malicious purpose).

The Attack Detection component combines the output of the Positive Taint Inference and Command

Parsing components to determine whether an attack has occurred. A command is deemed an attack

if a critical token or keyword is not marked as trusted (i.e., the critical token or keyword is not found

within the extracted set of fragments).

If S3 detects an attack, the command is either rejected outright or altered before being passed to

the operating system. The current prototype implementation simulates a failed command invocation

by substituting an error code in place of the actual command.
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S3 meets the goal of operating with low overhead, but what about S3’s efficacy? The detection

of malicious commands is based on inference, and two types of failure are possible:

1. a benign command could be inferred to be an attack, i.e., a false positive, or

2. a malicious command could be inferred to be benign, i.e., a false negative.

S3 uses a positive taint inference based on the set of strings recovered from the subject binary

program. The two types of failure noted above arise because the inferences and assumptions in S3

are imperfect. The rate of false positives and false negatives depends upon the algorithms used in

S3 and on the specific program to which they apply.

The crucial importance of the assurance case for S3 is to provide a framework for judgment

about assumptions, inferences, the applicability of analyses, etc. For example, there is no way

to guarantee the absence of false positive or false negative of failures. Thus the assurance case

for S3 documents the rationale for belief that S3’s efficacy is adequate to meet the needs of the

stakeholders of a system to which S3 has been applied.

9.4 Assurance Case Development

Recall that the development of the assurance case is used as an experiment in this study to determine

if the applicability of SSM can be derived from the development of the assurance case. This section

presents key concepts and aspects of the development of the S3 assurance case.

9.4.1 Prerequisites

Our approach to beginning with the development of an assurance case is predicated on the conclusion

that a fit-for-use and success argument must be constructed. This conclusion is based on the

following prerequisites:

• Engineers must understand the concept of assurance arguments and the Goal Structuring

Notation (GSN).
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• Engineers must understand the concepts of fit-for-use and success arguments.

• Engineers must determine that multiple instances of SOUP will need to be modified.

In principle, engineers primarily need to concentrate on the development of the fit-for-use

argument; however, once engineers determine they will need to modify multiple instances of SOUP,

some justification is necessary to demonstrate resources used to modify each instance are acceptable.

Consequently, a success argument is also necessary. Since in practice modifications are meant to be

applied to a range of software (see Figure 9.2), we anticipate the need for a success argument is

common.

The need to modify a large corpus of software also necessitates development of a “prototype”

assurance case (discussed in Section 9.1). Rather than develop an assurance case for a specific

system, the assurance case is developed to express the application of the modification in all cases.

This approach is beneficial in that the resulting assurance case reveals the complete spectrum of

issues associated with S3 and provides a framework for developing instantiations of S3 for specific

systems.

The argument structure and general claims within the success and fit-for-use arguments are

identical to those discussed in Chapters 3 and 4. Engineers then proceed to construct the success

and fit-for-use arguments using traditional argument methods (i.e., without selection argumentation).

For this study, we assume that engineers are at least aware of selection argumentation and the SSM

model as presented in this dissertation.

9.4.2 Security Argument Structure

Development of the assurance case for S3 primarily focuses on the development of fitness argument

structure described in Chapter 4. Recall that the argument structure is deconstructed into four

abstract levels:

• Level 1 - Fit for Use

• Level 2 - Attack Classes
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• Level 3 - Decomposed Attack Classes

• Level 4 - Attack Class Mitigation

Here we summarize the top levels of the argument mostly in text form for brevity.

The fit-for-use level of the security argument argues over the security requirements for the

subject system and other constraints. The general approach to argument development was to focus

on the development of the security requirements argument. As the security requirements argument

was developed, any constraints affecting security claims were questioned, such as:

• Fitness constraints (e.g., correctness and efficiency).

• Success constraints (e.g., the resources required to produce a modification).

• Confidence constraints (i.e., confidence in all argument assertions).

Both the success and fitness arguments were developed in response to provide assurance that the

above concerns were addressed.

In the case of S3, there is only one attack class of interest, OS command injections, and so level’s

1 and 2 of the argument are simplified to that effect. The taxonomy used to determine the known

attack details was the Common Weakness Elaboration (CWE) [42]. For OS command injections,

the CWE of interest is CWE 78.

Level 3 of the argument structure (decomposed attack classes) separates the arguments for

statically- and dynamically-linked binaries. For purposes of security analysis, these two cases are

distinct, and the vulnerabilities are completely different because of implementation details specific

to S3. In modern information systems, dynamic linking is much more common, and so the prototype

S3 argument is developed for this case only.

Recall that the basic taint inference in S3 assumes that strings within the binary can be trusted

and that OS command injection attacks will originate from externally supplied strings. Neverthe-

less, attacks could originate from internal strings, e.g., strings that were corrupted by a previous

preparatory attack. Level 3 of the S3 argument argues over these two cases although only the former
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Figure 9.4: Detection and remediation argument structure

is developed. Finally, the level 4 sub-argument for this element of the S3 argument begins with the

claim (shown in Figure 9.4): All maliciously crafted command strings are adequately

detected and remediated prior to execution of the OS command.

The argument structure used for this goal contains two sub-goals:
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1. Malicious commands are adequately detected prior to command execution.

2. All detected malicious commands are rendered inert.

The argument structure used for the first of these two sub-goals is itself subdivided into two

sub-goals:

1. Malicious commands are detected prior to execution with sufficiently low rates of false

negative failures.

2. Malicious commands are detected prior to execution with sufficiently low rates of false

positive failures.

The details of the sub-arguments for each these two goals are discussed in the following subsections.

9.4.3 False Negative Failures

Recall that, for S3, a false negative is a failure to recognize a malicious OS command when a binary

program protected by S3 is executing — an extremely serious situation.

ALARP

Ideally, the false negative argument in the S3 assurance case would compel belief that either:

• a false negative failure is not possible, or

• that the probability of a false negative failure occurring is below some prescribed threshold.

Clearly false negatives can occur with S3, and so we cannot argue that a false negative failure cannot

occur.

The S3 technology prohibits comprehensive probability quantification, because several elements

of the technology rely upon distributions that are completely unknown. We therefore can only argue

that the risk associated with false negatives is acceptably low by arguing that risks are reduced As

Low As Reasonable Practicable (ALARP) [15]. Determination of whether the level achieved is
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Figure 9.5: False negative argument summary
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acceptable is then the responsibility of the stakeholders. The false negative ALARP argument in the

S3 assurance case is summarized3 in Figure 9.5.

The false negative argument structure depends extensively on terminology specific to S3. The

original publication by Nguyen Tuong et al. [84] presents all of the S3 terminology. Some of the

key S3 concepts are:

Critical Token: An OS command contains one or more tokens (in the sense of a language defini-

tion) that are considered critical, because they could be used maliciously. More specifically,

S3 defines command names, options, delimiters, and the setting of environment variables as

critical tokens.

Fragment Set: The fragment set is a set of string literals, referred to as fragments, that are

considered trusted if found within an intercepted OS command.

S3 infers taint by matching tokens in an intercepted OS command to fragments. If the OS command

contains critical tokens that are not matched to a fragment, the OS command is considered tainted.

And tainted commands are interpreted as attacks.

Argument Granularity

The first strategy in the argument for false negative failures argues over all locations from which

OS commands are issued. An argument about false negatives must demonstrate that, for all such

locations within the application, the rate of false negatives have been reduced ALARP. This element

of the argument is both important and subtle.

The essence of the issue is that the mechanics of an exploit and the associated cost of an OS

command injection attack depend upon the memory location from which the OS command is issued,

i.e., the circumstances of the command. For example:

• How a command is parsed might differ at different locations, i.e., what is considered a critical

token might differ depending on the particular OS call.

3Arguments in this dissertation are summarized because the complete arguments are quite large.
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• The contents of the fragment set should be customized to each location. For example, the files

to which a call might need access might depend on the location from which the OS command

is issued.

If the strategy were to argue about all locations that issue OS commands at once, the argument

would assume the same command parser and fragment set in all instances. The lack of specificity

presents more opportunities for false negatives. For example, fragments that might never be

legitimately used at one location would have to be part of the fragment set if the fragment serves a

legitimate purpose at any other location.

In principle, arguing about all locations from which OS commands are issued at once might be

possible (or at least considered), but to do so would require that one determine that the associated

argument is, in fact, identical for each location. Prior to completing the S3 argument, we cannot

be certain that a single argument is applicable to all locations, and that determination is program

dependent. Thus, the S3 false negative argument argues over all locations that issue OS commands,

each with an individual false negative goal. If the argument were found to be identical for some

subset (or indeed all) locations, the argument could be repaired later. In practice (as described

below), we concluded that, for the most part, the argument at each location should differ.

The strategy that argues over each site that issues an OS command has to be in the form of a

GSN pattern. We do not know prior to applying S3 how many OS commands will be issued or their

locations in any given application. Instead, we must use structural and entity abstractions typically

used within GSN argument patterns [19] and within product line arguments [22] (see Chapters 2

and 6). In the S3 argument, a black dot is used to indicate a repetition of the argument structure,

and text within curly braces refers to entities that are dependent on the specific application of S3.

Arguing over OS command locations requires the definition of relevant locations. Stakeholders

might consider applying S3 to all OS commands in an application, or they might trust some

entities such as libraries like libc. In the current prototype implementation of S3, the system trusts

some libraries, and they are identified using a white list. In principle, there might be entities

that stakeholders always prefer to trust across all applications, and this possibility is provided for
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within the S3 argument as a context item (see Figure 9.5). Similarly, all locations from which OS

commands are issued within the target software must be identified, and this set is also referenced

within a context.

For each of these contexts, strong confidence must be demonstrated that the context is appropri-

ate, sufficient, and trustworthy. In the S3 argument, separate confidence arguments are assumed

(see Chapter 5). Confidence in the white list might be supported by evidence in the form of expert

judgment. Confidence in locating all locations issuing OS commands might include some form of

static analysis of the application.

False Negative Functional Hazards

At the next level of the argument, we argue that, for each injection location (of which there could be

many), the associated rate of false negative failures is ALARP by arguing over four goals derived

from the basic S3 mechanism. These four goals are:

Command Interception Adequacy: OS commands at a given location are intercepted. If not, any

associated attack(s) might not be detected.

Command Parsing Correctness: Given an intercepted OS command, command parsing identifies

all critical tokens correctly. Since detection of attacks is based on analysis of critical tokens,

failure to identify a crit-ical token could allow an attacker to inject a malicious command.

Fragment Set Adequacy The fragment set must have specific character-istics in order to properly

imply trust. Fragments within the fragment set are compared to critical tokens in intercepted

OS commands, and the parts of an OS command that match fragments are considered trusted.

Detection Algorithm Correctness As with the previous goal, the frag-ment set and the parsed

critical tokens are used to infer taint, and so the associated algorithm must work correctly.

The sub-arguments for these four goals are summarized in Figure 9.5. Compelling evidence has

not been obtained for the prototype implementation of S3, and so we hypothesize feasible types



Chapter 9 Case Study: Exploring the Applicability of SSM 206

of evidence. The first and fourth goals could be solved by verification evidence. For example,

the adequacy of command interception might be solved by evidence from static analysis of the

transformation of the binary and the associated insertion of the necessary probes. Similarly,

algorithm correctness might be shown by evidence from testing, static analysis, proof, or some

combination.

The second goal, Command Parsing Correctness, is decomposed in the argument into two

sub-goals:

1. Command Parsing Validation, and

2. Command Parsing Verification.

The first sub-goal refers to the need to identify the necessary set of tokens and the second to the need

to identify the critical tokens in a specific intercepted OS command. In general, the evidence for

the solution of each of these goals could derive from expert judgment, testing of similar programs,

taxonomies developed separately, and so on.

The third goal is the most difficult of the three for which to develop a compelling sub-argument

because of the speculative basis of the fragment set. The goal in its entirety is “Fragment set for OS

command location {issue location} is adequate to minimize false negatives.” where adequate is a

practical manifestation of accurate. The sub-argument associated with this goal is discussed in the

next subsection.

Fragment Set Adequacy

Many different approaches to the sub-argument for the fragment set adequacy goal could be

developed. The approach we use in our S3 assurance case is summarized in Figure 9.6. We argue

the following two sub-goals:

The Constituent Fragment Goal: The fragment set should only containing constituent fragments.

A constituent fragment is a string containing a sequence of one or more critical command

tokens for the given location in an acceptable order.
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Figure 9.6: Fragment set adequacy sub-argument summary

The Minimal Fragment Set Goal: Even if the fragment set is shown to contain only constituent

fragments, some fragments might not be effective (single characters for example). Such

fragments can be thought of as “junk” DNA. In the limit, if there were too many such

fragments, few or no attacks would be detected. We therefore stipulate that the fragment set

must be adequately “minimal”. How best to identify ineffective fragments is not presently

known.
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Evidence for these goals could take many forms. First, we note that acceptable order in the

definition of constituent fragment might be defined to be one or more of the following:

• Any order.

• The order that the tokens appear in a legitimate command.

• An order deemed acceptable by expert judgment.

• An order determined by analysis of strings used in practice by similar programs.

• An order that could occur as a result of the control flow of the program that leads to the

generation of an OS command.

Thus, the evidence used for determination of the constituent fragments might derive from a

process as simple as referring to a taxonomy of tokens to a process as complex as complete control

and data flow analysis of the subject program.

The evidence for the fragment set being of minimal size depends upon many factors. Again,

expert judgment could be elicited, but testing a wide variety of programs and sampling the OS

command contents of the programs when operated in a benign environment might provide a more

compelling body of evidence.

9.4.4 False Positive Failures

A compelling false negative argument could be constructed for a security defense that identified

all OS commands as malicious. Every malicious command would be detected, but the rates of

false positive failures would be unacceptable. Thus, the S3 defense attempts to determine the

difference between malicious and benign OS commands. The false negative argument discussed

above provides the rationale for belief that attacks are detected. Here we discuss the argument that

benign OS commands are not identified as attacks.
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Similarities to the False Negative Argument

In developing the false positive argument, we use the same initial strategy that we used for the false

negative argument, i.e., argue over all relevant OS command locations that false positives failures

are reduced ALARP.

For each relevant OS command location, false positives are demonstrated to be reduced ALARP

using the same general goals that were used in the false negative argument:

1. Command Interception Adequacy,

2. Command Parsing Correctness

3. Fragment Set Adequacy, and

4. Detection Algorithm Correctness.

Each goal within the false positive argument is used to balance the corresponding goal within the

false negative argument. For example, to reduce false negatives, each relevant OS command location

must be intercepted. To reduce false positives, we must demonstrate that only relevant OS command

locations are intercepted when an OS command is actually executed.

Most of the false positive goals could be supported by evidence in the form of expert judgment.

For example, experts could conclude that command interposition is not known to intercept functions

spontaneously when the function is not actually called. We note that such evidence for false positives

does not rely on the location of the OS command as heavily as false negatives do. Many claims

might therefore be argued generally over all locations in a single argument.

Fragment Sources and Fragment Alteration

An important difference between the false positive and the false negative arguments is that the

false positive argument depends heavily on characteristics of the particular piece of software that is

modified, especially within the fragment set completeness sub-argument. For the fragment set to be
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Figure 9.7: Fragment set completeness sub-argument summary

complete (see Figure 9.7), all possible sources of fragments must be identified, and then fragments

must be adequately extracted from each source.

The present prototype implementation of S3 relies on the source of fragments being the binary

program and relevant libraries. There is an assumption that fragments either do not originate from

other locations or can be easily extracted from other sources. For the purposes of building a strong

argument, we cannot rely on this assumption. Instead, we must demonstrate how application of S3

accounts for the possibility of fragments in alternative locations. In principle, fragments might exist

in any of the following:

• The binary program.

• Libraries references by the binary program.
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• Files used for configuration of the programs OS commands.

• Environment variables.

• Command line arguments.

The argument must therefore show that all fragment sources have been identified and properly

considered in the argument. Each of the above sources is an example of a fragment source that

could be overlooked easily.

The success of identifying fragment sources and the success of fragment extraction are therefore

dependent on the specific characteristics of the subject application. In our S3 assurance case, we

include a goal to that effect but note here that the associated evidence would probably be limited

to control and data flow analysis of the binary program to detect possible input sources, expert

judgment, or some kind of evolving taxonomy.

The prototype implementation of S3 also relies on the assumption that fragments, once extracted,

are never altered. Since fragment extraction occurs only once, if the fragments were altered after

extraction, all fragment sets might be invalidated. Some users might be willing to accept the

assumption that fragment alteration does not occur, but a generalized fragment set completeness

argument (shown in Figure 9.7) requires a goal to this effect together with the associated sub-

argument. Evidence in support of this goal might include data flow analysis of fragments, instruction

analysis of string manipulation operations, or expert judgment.

Constituent Fragment Set Completeness

The final goal in support of fragment set completeness demonstrates that of all extracted fragments,

the constituent fragment set for the specific OS command location is complete. In the prototype

implementation of S3, only one fragment set was developed for the entire program. The fragment

set was considered complete if all fragments were extracted. For our argument, however, since

fragment sets might differ for each OS command issue location, we must reevaluate the concept of

a complete fragment set.
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To produce a complete fragment set, we could also use all extracted fragments as the fragment set

for each OS command location; however, such a policy conflicts with the false negative argument.

In the false negative argument, our goal was to narrow the fragment set as much as possible.

Specifically, we required that a fragment set at an OS command issue location must contain

“constituent” fragments (defined in Section 9.4.3). Based on the concept of a constituent fragment,

for a given fragment set to be complete, the argument must:

1. show that all possible fragments have been extracted (discussed above) and

2. show that a given fragment set has all the fragments that are also constituent fragments (a

subset of all extracted fragments).

As with the false negative argument, evidence used for determination of the constituent fragments

could be derived from a process as simple as referring to a taxonomy of tokens or a process as

complex as complete control and data flow analysis of the subject program.

9.5 Addressing Argument Incompleteness

One challenge in developing the S3 assurance case was that the argument does not mirror the

prototype implementation of S3. Instead, the argument was developed to be compelling generally.

As a result, areas of the argument are undeveloped because S3 would require further alteration and

study before the argument can be completed. Argument development continued in an abstract sense

by reasoning about:

1. the general form of a completed S3 argument,

2. the kinds of issues likely to be encountered, and

3. the kinds of data that will be required.

Even when reasoning about the argument hypothetically, development of the argument was

fundamentally limited. Some crucial information necessary to complete the argument is simply



9.5 Addressing Argument Incompleteness 213

unavailable until S3 is applied to a specific software system. To allow the assurance case to be

completed, missing evidence was hypothesized to be available. The assurance case was then

repaired using selection argumentation to express the need to validate the missing data.

This section describes several example arguments taken from the S3 assurance case. For

each example, an argument was found to be based on evidence that cannot be provided during

development of the argument because the evidence is based on characteristics of a specific software

system. For each example, we describe the form of the data hypothesized to be available, and the

use of selection argumentation. Section 9.6 summarizes the discovered results from this activity.

9.5.1 The Command Location Confidence Argument

Recall that our approach to arguing false positives and false negatives was to argue over each OS

command location. For example, Context 2.2 in Figure 9.5 references all OS command locations

for a given piece of software. The locations are not known ahead of time, hence, to complete

the argument, a confidence argument is necessary to demonstrate that all OS command locations

have actually been identified. Failure to identify any locations would invalidate the false negative

argument.

A static analysis of the software would be necessary to find all OS command locations. Therefore,

the confidence in Context 2.2 is largely based the given static analysis. The confidence argument

would argue that hazards that could negatively affect the static analysis are mitigated.Regardless of

which analysis is used, identification of OS command locations could fail for the following reasons:

• No relevant OS command locations are identified.

• The software is obfuscated beyond what the static analysis can handle.

• The development resources necessary to locate OS command locations and to determine if

the software is obfuscated exceeds a defined threshold.

All of the above failure conditions depend on the characteristics of a given software system. To

complete the confidence argument for Context 2.2 would require hypothesizing that all the above
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G1: Command Location 
Confidence Guard 
1) At least one OS command issue 

location is identified: justified by 
conf arg for context 2.2. 

2) The software must not be 
obfuscated: justified by conf arg 
for context 2.2. 

3) TBD: development restrictions 

Figure 9.8: Prototype guard for Context 2.2

hazards are mitigated, but each hypothesis cannot be validated until the modification is applied. All

of the above hypotheses restrict Context 2.2; hence, we placed a guard on Context 2.2 summarizing

the hypothesized data as constraints that will require validation (see Figure 9.8)4.

Alternative arguments to address invalidated guards are not explored in this study; however, if

no relevant OS command locations are identified and the software is not obfuscated, an immediately

apparent alternative might be to argue the security threat is adequately mitigated without the

application of S3 .

4For the example, the exact constraints for determining if the software is obfuscated are not provided. Additionally,
developmental constraints are not specified, but left for the system stakeholders to make a decision about what constraints
are appropriate.
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G2: Interposition Confidence Guard 
1) The software does not have SUID 

permissions set: justified by conf 
arg for solution 6.1. 

2) {issue_location} is not a command 
internal to a library:  justified by 
conf arg for solution 6.1. 

Figure 9.9: Prototype guard for Solution 6.1

9.5.2 The Function Interposition Confidence Argument

In Figure 9.5, the solution element 6.1 uses function interposition as evidence to support that

commands issued at a given OS command location are intercepted. By mandating that attack

detection differs for each OS command location, function interposition (as originally used in the

prototype implementation of S3) might no longer be applicable as a solution. For example, the

address of the OS command might be a necessary parameter for attack detection, but function

interposition does not add additional parameters to function calls. For simplicity of the example, we

assume the S3 engineers can find a way to continue to use function interposition and also identify

the precise OS command location. Instead, we focus on other applicability concerns of function

interposition.

A confidence argument for the solution element 6.1 in Figure 9.5 must demonstrate that hazards

to the applicability of function interposition are mitigated. Example hazards include:

• If the software has SUID permissions, traditional function interposition (using LD PRELOAD)

will not work.
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• If the software has a copy internally of an OS command library, function interposition is not

possible.

When constructing the confidence argument, we cannot assume that these hazards are mitigated

(i.e., that the hazard is non-existent). Instead, we hypothesize the hazards are mitigated to complete

the confidence argument. A guard is placed to summarize the hypothesized data. In this instance,

the guard is placed on solution element 6.6 (see Figure 9.9).

9.5.3 The Remediation Correctness Argument

When an attack is detected by the S3 approach, there are three prescribed options for attack

remediation:

• Terminate execution of the software.

• Repair the command by removing malicious components from the command string.

• Return an error code specific to the OS command type.

A potential risk with remediation is that the behavior after the attack is remediated might violate the

stakeholders’ concept of correctness.

For example, returning an error code would stop a malicious OS command from being executed.

Continued execution of the software, however, might be considered too divergent from expected

behavior since continued execution might be based on successful execution of the command.

Depending on how the stakeholders define correctness of execution, the same remediation policy

might not be applicable for all OS command locations.

If an appropriate remediation policy is dependent on the location of the OS command in the

program, then the remediation argument must argue over all individual OS command locations.

Further, a selection is required to determine the best remediation policy for each location, illustrated

in Figure 9.10.

While excluded from the figure for simplicity, since the strategy of argument is based on each

OS command location, Strategy 2.1 would require the same contexts and guards as described above
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1.1 Attack Remediation 
All detected malicious 
command are rendered inert.  

2.1 Strategy 
Argue over all relevant OS 
command issue locations.  

Remediation Preference 
 
To Be Determined 

3.1 Location Remediation 
All attacks detected at 
{issue_location} are 
rendered inert.  

4.1 Error Code Remediation 
The error code for {issue_location} is  
returned, and the command is  
never executed.  

(other remediation alternatives) 

G3: Error Code Guard 
1) TBD: correctness testing 

procedure. 
2) TBD: development restrictions 

on testing procedure 

Figure 9.10: Remediation argument prototype

in Section 9.5.1. Because of space limitations, the figure only highlights the remediation policy

of returning an error code specifically. Since preference between remediation policies is based on

the needs of the system stakeholders, no particular decision model is specified to select between

remediation policies. Instead, the decision model indicates that a choice is available among the

alternatives and stakeholders will have to supplement the decision model later.

Evaluating correctness in this scenario requires an evaluation of the characteristics of a given

instance of software. For example, stakeholders might require testing to demonstrate remediation

will result in acceptable execution behavior. A correctness argument based on testing would require

the following evidence:

• Demonstration that all tests successfully “pass”, i.e., do not unacceptably change program

behavior (correctness argument evidence).
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• Demonstration that test inputs are available and/or easily generated (success argument evi-

dence).

• Demonstration that the test inputs provide sufficient “coverage” for the testing procedure

(confidence argument evidence).

• Demonstration that testing is completed within a reasonable amount time (success argument

evidence).

Static analyses might also provide support for a correctness argument; however, the results of all

analyses would be based on a subject instance of software and the data is not known a prori nor

guaranteed to be available in the future.

Correctness must first be validated to choose an appropriate remediation policy, which is not

known when developing the argument. Each remediation policy is therefore guarded by the above

evidence that would demonstrate that the remediation policy is adequately correct. Figure 9.10

provides a stubbed out guard based on testing, but the guard cannot be completed until a testing

procedure is defined (this is a topic for future work).

9.5.4 The File Identification Argument

To reduce false positives, an argument is necessary to demonstrate all sources containing fragments

have been identified (under Strategy 4.1 in Figure 9.7). To argue that all file sources have been

identified, a file identification goal was added under Strategy 4.1 stating:

“All file fragment sources have been identified.”

Further development of the file identification argument was not possible because the S3 prototype

does not provide any justification for how to deal with fragments from files. We instead examined

the general methods that could be used to justify the file identification argument.

There are essentially two general approaches to file identification:

1. Intercept all file open operations at run time and identify files containing fragments during

execution (i.e., dynamic file identification).
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Approach Benefits Consequences
Dynamic File
Identification

All files that are opened will be ex-
amined.

Increased complexity of the S3 im-
plementation and the assurance case

Fragment sets will not contain frag-
ments from files unless the file is
opened.

Increased run-time overhead.

Static File
Identification

No increased complexity in the S3

implementation and the assurance
case.

Fragment sets will contain frag-
ments from files even if the file is
not opened.

No increased run-time overhead. Static analysis increase development
resource consumption and might fail
to find all file sources.

Table 9.2: Benefits and consequences of dynamic and static file identification

2. Identify all files containing fragments prior to execution the software (i.e., static file identifi-

cation).

The ultimate choice between a dynamic or static approach to file identification is at the discretion

of the system stakeholders. The benefits and consequences of both approaches are summarized in

Table 9.2. The implications of both approaches in terms of argument development are described in

the following subsections.

Dynamic File Identification

The fundamental limitation of a dynamic approach is that it will drastically increase the complexity

of the S3 implementation, the assurance case, and the run-time overhead of the modified software,

for the following reasons:

• All file open operations will be analyzed to (1) determine if the file contains fragments, (2)

extract fragments if necessary, (3) determine what fragment sets should be updated, and (4)

assess the quality of altered fragment sets.

• Dynamically updating fragment sets can have broader affects throughout the assurance case,

requiring a complete review and revision of the assurance case.
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In terms of assurance case development, the file identification argument would be based on

successful interception and analysis of all file open operations. The primary limitation to assurance

case development is the potential for unacceptable increases in run-time overhead of the modified

software system.

Analyses could be performed on a statistically relevant set of programs to show that generally

dynamic file identification is acceptably efficient; however, assessments about a given application

of S3 might still be necessary. Example assessments include:

• running the modified software against a serious of test inputs (similar to that described in

Section 9.5.3), or

• static analysis of the expected frequency of file interception.

The results of efficiency assessments such as these are not known when developing the efficiency

argument. We would therefore have to hypothesize that the efficiency results are acceptable to

complete the assurance case. The file identification argument would be guarded based on efficiency

assessments.

Further, the manner in which file open operations are intercepted might also require guarding

constraints, similar to the constraints described above for OS command interposition (see Section

9.5.2).

Static File Identification

While dynamic file identification relies on one fundamental approach, i.e., interposition of file

open operations, static file identification approaches can be much more diverse. Example static file

identification strategies are summarized in Table 9.3.

For each static file identification approach in Table 9.3, uncertainties and limitations are pro-

vided. Without a specific software system, we cannot determine that these limitations are properly

addressed; hence, for each of these methods development of the argument would require hypoth-

esizing that each limitation has been addressed. While the table only presents a partial list for
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Identification
Strategy

Summary Uncertainty/Limitation

Demonstrate
the software
does not open
files.

The simplest approach is determine
that the software does not have file
open operations, thereby obviating
the need to extract fragments from
file sources.

Most applications likely open
files.

Extract all file
names from
the software.

Analyze all strings in the soft-
ware and all file open operations.
Use data flow analysis to find the
name/location of all opened files.

The software could be obfus-
cated or sufficiently complex
such that there unacceptable
doubt that the analysis is com-
plete.

Identify files
based on
heuristics.

Assume that files are found in fixed
locations and/or with fixed file ex-
tensions.

This approach depends on as-
sumptions about the software
behavior and the operating
context.

Identify files
based on ex-
pert judgment.

Experts examine the software and
determine what files (if any) the soft-
ware uses that contain fragments.

Experts might be unavailable
or might not have sufficient ex-
pertise about a given instance
of software.

Table 9.3: Example static file identification techniques

illustration, we anticipate that any approach to static file identification will have similar failure

limitations/uncertainties. Any hypothesized data can be expressed as a guard restricting the file

identification argument.

Further, static file identification is performed when the modification is generated. There might

be a significant risk of using too many development resources. Hypotheses about development

resources consumed might also be necessary and therefore might also be expressed within a guard.

9.5.5 The Fragment Extraction Confidence Argument

Once file fragment sources are identified (either dynamically or statically), all fragments must then

be extracted from each file. To argue successful fragment extraction, a goal is added under Strategy

4.2 in Figure 9.7 stating:

“All file fragments in file fragment sources are extracted.”



Chapter 9 Case Study: Exploring the Applicability of SSM 222

This goal is ultimately supported by evidence about the efficacy of a fragment extraction

algorithm. The prototype implementation of S3 does not specify a method for extracting fragments

from files. However, regardless of which extraction algorithm is eventually used, the algorithm

will likely depend on an assumption about file format. For example, a file could contain one string

containing thousands of characters. OS command fragments might be found within a substring, but

the fragment extraction algorithm would need to know how to isolate fragments.

The applicability of the extraction algorithm would likely be argued in a confidence argument.

In that argument, evidence must be provided that all files have the expected format. Since the file

formats cannot be guaranteed when developing the argument, argument development requires a

hypothesis that the file format has been shown to be acceptable.

We therefore anticipate the need for a guard for the fragment extraction goal (under Strategy

4.2), where the guarding constraint specifies the format of each file must be shown to have.

9.5.6 Fragment Set Arguments

Fundamentally, any goal stating characteristics of a fragment set will likely be supported by data that

cannot be determined until the fragment sets have been computed. In the prototype implementation

of S3, the quality of fragment sets was not derived based on each OS command location, nor was the

quality/characteristic of acceptable fragment sets rigorously assessed. Goals based on the fragment

set qualities will require further research and development in terms of the data that will adequately

support these goals.

The fragment alteration goal in Figure 9.7 will likely be supported by an analysis demonstrating

a specific instance of software does not alter fragments once they are extracted. The analysis could

perform data-flow analysis on fragments or look for idioms suggesting alteration has occurred.

Regardless of what the analyses are used, the fragment alteration argument cannot be developed

until the analysis is performed.

Similarly, the fragment set constituency and minimization goals, shown in Figures 9.6 and 9.7,

are also dependent on the characteristics of each fragment set. Constituency could be justified based
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on data-flow analyses and expert judgment. Minimization might also be determined by data-flow

analyses and heuristics.

While further development and study of S3 is required to better reason about how these goals

might be supported, we anticipate all of these goals will be based on data that is hypothesized to

be available. We therefore anticipate the need for guards on all of the above goals to express all

hypothesized data as constraints on the validity of each sub-argument.

9.6 SSM Results

This section presents the results of our examination of assurance case development as a method to

assess and demonstrate the applicability of SSM. These results are summarized in Table 9.4, and

described in further detail in each subsection.

9.6.1 SSM Applicability: Identifying SSM Hypotheses

The fundamental purpose of SSM is to validate iteratively hypotheses about modifications (see

Chapter 3). For an assurance case to reveal the applicability of SSM, the characteristics of SSM

hypotheses within the assurance case must be defined. A fundamental result of this study was

deriving this definition.

Development of some arguments within the assurance case was not possible unless we hypoth-

esized that necessary data would be available and of the proper form when the modification is

applied. Hypothesized data represents fundamental uncertainties associated with a modification

that directly affect assurance claims within the assurance case. Examination of this approach to

argument development yielded the following results:

• An SSM hypothesis is defined as an argument that is predicated on the availability data that is

hypothesized, but not guaranteed to be present.

• The hypothesis assessment activities of SSM correspond to validating the hypothesized data

is indeed available.



Chapter 9 Case Study: Exploring the Applicability of SSM 224

Result Summary Section Containing
Further Details

The definition of SSM
hypotheses.

Discovery and definition of the fundamen-
tal characteristics of the assurance case
that demonstrate the applicability of SSM
(i.e., arguments based on hypothesized
data).

Section 9.6.1

Argument guards spec-
ify SSM.

Discovery that the use of argument
guards provide the basis for specify-
ing SSM within the argument. Fur-
ther SSM/argument development can use
guards as a driver.

Section 9.6.2

The definition of SSM
uncertainty.

Discovery and clarification of the uncer-
tainty SSM is meant to address, i.e., un-
certainty about necessary but unavailable
information.

Section 9.6.3

The distinction between
assumptions and SSM
hypotheses.

Discovery that GSN assumptions and
SSM hypotheses are distinct and the dis-
tinction is based on the desires of the sys-
tem stakeholders.

Section 9.6.4

SSM can be made artifi-
cially applicable.

Discovery that SSM could be applicable in
all cases if stakeholders demand extreme
restrictions on resources used in modifica-
tion generation.

Section 9.6.5

Table 9.4: Development results summary

Data is hypothesized to be available if:

1. evidence necessary to support a fitness claim is not known until a modification is applied, or

2. evidence necessary to support a fitness claim might not be generated within developmental

constraints specified within the success argument.

In the former case, hypothesized data corresponds to missing evidence within the fitness argument.

In the latter case, evidence is not necessarily missing within either the fitness or success arguments;

however, there is a hypothesis that an instantiation of the SSM process will be able to generate

necessary evidence within stakeholder-defined development constraints. For example, stakeholders

could terminate any analysis that takes longer than 10 minutes to execute. Within the success

argument, a claim is made that all analyses terminate within 10 minutes, which is justified with
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evidence about the instantiation of the SSM process. If an analysis necessary to generate evidence

for a fitness claim takes longer than 10 minutes to execute, the data will not be available (i.e., the

analysis will be prematurely terminated). Hence, all arguments that rely on the results of analyses

that are subject to premature termination are based on an underlying hypothesis that each analysis

will complete within 10 minutes.

9.6.2 The Principle of Specifying SSM: Argument Guards

Identifying SSM hypotheses (i.e., arguments based on hypothesized data) indicates the potential

applicability of SSM. To apply SSM, the argument must express SSM process mechanics through

the use of selection argumentation. We discovered during this case study that argument guards are

fundamental in specifying SSM process mechanics.

Recall that selection argumentation expresses a selection process to derive an assurance case

instance, consisting of three fundamental concepts:

1. product line argumentation,

2. argument guards, and

3. decision models.

Decision models combined with product line argumentation can be used to specify complex selection

processes; however, a selection process does not necessarily imply that the process is speculative

(i.e., that the process is an SSM process). The fundamental difference between a selection process

and speculation is that speculation includes the possibility of making a bad selection.

Argument guards express constraints requiring further assessment and indicate situations that

might invalidate a selection. Arguments based on hypothesized data (i.e., SSM hypotheses) might

exist throughout the fitness argument. Guards summarize hypothesized data as constraints restricting

the selection of key components of the fitness argument. Since the fundamental purpose of S3 is to

improve security, all guards in the S3 were expressed as restrictions to components of the security

requirements argument (see Chapter 6 for a more detailed discussion of this approach).
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When a guard is invalidated, the argument that is guarded is invalidated, i.e., the guarded

argument cannot be used to support an assurance claim. This property of guards implies a selection

process even if no other alternatives are specified. This observation leads to the following key

results:

• Guards are the fundamental concept of selection argumentation for specifying a speculative

selection process (i.e., SSM).

• By reviewing guards, developers can determine how to proceed in SSM development, i.e., by

finding alternative arguments in case a guard is invalidated. Alternatives can then be included

through the use of product line argumentation and decision models.

9.6.3 Differentiating Uncertainty from SSM Hypotheses

Assurance cases are defeasible, i.e., there is always uncertainty about the argument and software

system the argument supports. While the purpose of SSM is to reduce uncertainties about software

modification, not all uncertainties are reduced by SSM. Based on the above definition of SSM

hypotheses, we were able to clarify the uncertainty SSM is meant to address. Specifically:

SSM addresses uncertainties about the existence

of data necessary to support an assurance claim.

Some data might be uncertain or even unavailable prior to applying a software modification, but

unless the data directly affects an assurance claim, SSM is not applicable.

For example, structural abstraction is used in the S3 argument to argue over every OS command

location. Entity abstraction is used to reference OS command location identifiers within argument

goals (denoted as {issue location}). The OS command location identifier, while uncertain when

the argument is developed, can be generated by using the address of each OS command location in

memory. There is no question that the identifier can be generated, just uncertainty about the exact

form of the identifier. This uncertainty is therefore not an SSM hypothesis because it does not affect

the validity of any assurance claims.
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9.6.4 Assumptions vs. SSM Hypotheses

This study has revealed an overlap between the concept of an assumption and our definition of an

SSM hypothesis.

An assurance case can be based on assumptions. If stakeholders determine an assumption

is appropriate, the assumption can be expressed in a GSN assumption element (see Chapter 2).

Generally assumptions are considered acceptable as long as there is sufficient confidence (see

Chapter 5) that the assumption will always hold. In many cases, the development of the assurance

case in this study highlighted assumptions made by the S3 implementation. For example, the

S3 prototype relies on the assumption that the software being modified is not obfuscated and the

assumption that fragments do not originate from files.

Stakeholders must determine whether or not an assumption requires validation. If validation is

required, the properties of the assumption are essentially data hypothesized to be available. The

argument based on the hypothesized data is therefore an SSM hypothesis. If, however, sufficient

confidence exists that an assumption will always be valid, then a GSN assumption element is

specified in the argument.

Fundamentally, distinguishing between SSM hypotheses and argument assumptions is at the

discretion of the stakeholders.

9.6.5 Artificial Applicability

Another result of this study was the discovery that SSM hypotheses can always be identified if

the system stakeholders place extreme restrictions on the development resources used to generate

software modifications. The applicability of SSM could therefore be demonstrated artificially if we

were to demand such restrictions.

For example, analyses necessary to produce a modification can be restricted by the amount

of time allowed for the analyses to execute. These restrictions are expressed within the success

argument. Even if there is proof that the analyses will not exceed some upper bound, stakeholders

could always demand greater restrictions than can be proven. Any argument that relies on the results
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of these analyses is consequently identified as an SSM hypotheses: the argument is based on the

hypothesis that the analysis time will be within a defined threshold of acceptability.

To avoid artificially demonstrating the applicability of SSM, we did not place specific develop-

mental restrictions on the S3 modification. Instead, we noted developmental restrictions that appear

non-trivial (based on our judgment) and might reasonably qualify as an SSM hypothesis.

9.7 S3 Results

Building an assurance case for any system requires a detailed understanding/analysis of the system

in question, which can often expose important observations/results. These results can be used to

further guide system development and research. Consequently, while the primary intent of this study

is to evaluate the SSM approach (see Section 9.6), some results can also be reported about S3 itself.

The study yielded the following general results about S3:

• The argument affirmed the importance of known issues originally reported by the S3 au-

thors [84], such as:

– the need for more advanced data flow analyses to prune fragment sets,

– the risk of fragments originating from sources outside of the binary program, potentially

increasing false positive attack detection,

– the risk of binary obfuscation thwarting fragment recovery algorithms,

– the risk of alteration of strings at run time thwarting fragment recovery based on static

analysis, and

– the risk of fragment extraction recovering too many fragments leading to increased false

negative attack detection.

• The argument required a detailed analysis of the design minutia of S3 suggesting alterations

to the design and the need for further research:
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• The argument exposed elements of the design of S3 for which the use ad hoc methods of

analysis are questionable.

• The argument forced the consideration of all assumptions (either explicitly stated or implicit)

of the approach.

The original S3 prototype and publication were intended to demonstrate a proof of concept and

motivate continued research. Consequently, the original prototype relied on reasonable assumptions

for the purpose of demonstration, and the scope of the original evaluation is necessarily narrow

and preliminary. By no means is this a criticism of their work; however, there is a distinction

between demonstrating a proof of concept and demonstrating high assurance of production software.

Development of an assurance case is by its nature focused on developing high assurance about

critical properties of a system. Narrow results and seemingly reasonable assumptions must be

questioned and justified to produce a high-quality assurance argument.

Below is an itemized list of specific key results about S3 discovered as a result of developing

the assurance case:

• The efficacy of S3 string recovery relies on two ad hoc recovery algorithms: one that recovers

strings that are found statically in the binary, and another approach that recovers strings

that are assembled by the program during execution. The argument revealed the need for

additional evidence about the efficacy of these algorithms to justify the completeness of

fragment sets.

• A formal specification of the algorithm used to parse strings, especially to parse formatted

strings, would be beneficial in bolstering assurance claims about the completeness of fragment

sets.

• All analyses used by S3 should have explicitly defined failure semantics. The argument

revealed that freedom of analysis warnings was found to be necessary evidence to justify

confidence that fragment sets are adequately complete and correct.
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• The argument revealed the need for additional analyses (either automatic or manual) to justify

assumptions used for the initial prototype. Specifically, analyses are necessary to determine

if the given program is obfuscated or if the program processes strings abnormally during

execution. Obfuscation or abnormal string manipulation can affect the efficacy of fragment

recovery, yet there is no justification that these issues can be ignored or assumed away.

• More evidence is necessary about the role of S3 in the context of other similar attack classes.

Attackers might be able to inject OS commands that are already blessed. Further, attackers

might be able to manipulate actual blessed fragments without any form of injection through

the program semantics. While these issues are somewhat out of scope for S3, the argument

revealed that these larger concerns must be considered to determine if S3 will be generally

effective.

• The published S3 results cannot be reasonably used with an assurance case. Confidence

concerns (i.e., are the results complete, appropriate, and correct) could not be resolved with

the current data. Future evaluation of S3 should be engineered to provide evidence in support

of specific assurance claims, thereby producing a strong argument for practical deployment

of software modified by S3.

• The argument revealed that a single attack remediation policy for all injection locations might

unnecessarily increase performance overhead or potentially result in unexpected program

behavior. In some cases, a desired policy might not be applicable for a specific location

(e.g., returning an error code is only valid if the error code is known). Remediation policies

should be customized per injection location. Additional analyses are therefore necessary to

providence evidence in support of assurance claims that the appropriate remediation was

chosen for each injection location.

• The argument revealed that the possibility of fragments originating outside of the program is a

more serious concern than originally proposed. Configuration files, environment variables and

command line arguments might reasonably have legitimate (i.e., blessed) fragments. Further
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support for fragment recovery from these sources is crucial to support assurance goals that

false positive rates are adequately minimized5.

• Verification of the implementation, specifically verification of the algorithms for fragment

parsing, fragment extraction, critical token identification and attack detection would provide

valuable evidence supporting assurance goals related to false positive and false negative attack

detection.

• The argument forced further evaluation of the efficacy of command interposition. Command

interposition was found to not be applicable for all injection locations. Further evidence of

the efficacy of command interposition for S3 is necessary to justify assurance claims that no

relevant injection locations are missed.

• The argument revealed that false negatives and false positives can be further reduced by

customizing fragment sets per injection location. Producing an argument for this technique

was difficult because of the use of command interposition. Command interposition appears to

be better suited when using a single attack detection and remediation policy for all injection

locations. Consequently, command interposition might not be the best option of OS command

interception for S3. Other approaches should be researched and considered.

• The argument revealed the need for a precise description of the characteristics of “ideal”

fragment sets (i.e., fragment sets that adequately minimize false negatives and false positives).

For example, fragment sets might be ideal if they contain a number of fragments under a

certain threshold or fragments of a certain type, etc. The argument revealed that justifying

assurance claims about acceptable false positives and false negatives relies on knowing the

fragment sets have these yet to be determined ideal characteristics.

• False positive detection negatively impacts correct program behavior, but the argument

revealed it is not the only cause of incorrect program behavior. Remediation policies might

5Subsequent discussions with the S3 developers revealed they were aware of this issue and had already partially
addressed the issue in the latest prototype
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negatively affect correctness depending on the semantics of individual injection locations.

For example, returning an error code might send subsequent execution down undesirable

execution paths. While the impact of remediation on correctness is implied by the argument,

establishing the different ways remediation can negatively impact correct behavior requires

additional research and new analyses.

9.8 Case Study Results Summary

This case study evaluated SSM to determine the practicality of applying SSM. Specifically, this case

study evaluated the development of an assurance case to answer the question “Can SSM be applied

to other modification approaches and how?” (see Section 9.1). The results of this evaluation are

summarized below.

9.8.1 SSM Applicability for S3

This case study has revealed the potential applicability of SSM to another modification approach

(i.e., S3). The term “potential” is used because the applicability of SSM ultimately depends on the

needs of specific stakeholders (which is subjective) and also depends on further development of S3

(which is out of scope for this study). This case study has highlighted practical concerns of applying

S3 (see Section 9.5), i.e., concerns that fundamentally affect the acceptability of software systems

modified using S3. Practical application of S3 cannot ignore these concerns, but simultaneously,

many issues cannot be resolved until S3 is applied.

We have proposed how to address these scenarios through the development and validation of

hypotheses about data that will be generated. Selecting and validating hypotheses describes an SSM

process. This case study has demonstrated how the argument can be built both to reveal and express

hypotheses within the argument structure, i.e., through the use of guards. This study has therefore

exposed concerns about the application of S3 that can be resolved through the use of SSM.
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While determining the applicability of SSM is a stakeholder decision, the results of this study

suggest many concerns within S3 that could be resolved with SSM. Practical application of S3

would have to address these concerns in some manner; hence, we conclude that the applicability of

SSM for S3 is likely.

9.8.2 Argument Development Defines SSM Applicability

The novelty and importance of this case study is the demonstration of how SSM can be applied from

first principles. The primary focus was to provide a general approach and guidelines engineers can

adopt to apply SSM for their own purposes. The primary result of this study is that the development

of an assurance case can be used to assess the applicability of SSM and to apply SSM concepts.

Development of an assurance case therefore facilitates repeatability of SSM and consequently

development of an assurance case supports the practical application of the SSM model.

Through development of the assurance case, hypotheses requiring assessment can be identified.

Hypotheses are identified as arguments based on evidence that cannot be known during the devel-

opment of the assurance case. Argument development continues by hypothesizing that the data is

available. By applying selection argumentation (specifically guards), the dependency of arguments

on hypotheses is highlighted and the mechanics for validating hypotheses are specified. Further

review of argument guards can drive further development of the argument, and further development

of more complex decision processes.

This case study was limited to an initial iteration of assurance case development; however,

development of the argument has exposed concerns requiring further research and development in

terms of the S3 technology, the assurance case and acceptable alternatives for addressing invalidated

guards. We anticipate that further development iterations will expose further potential applications

of SSM. The results of this study therefore suggest that development of an assurance case can serve

as the guiding principle by which SSM is practically applied.
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Related Work and Current Practices

10.1 Software Product Line Engineering

As discussed in Chapter 6, there are some similarities between SSM and the principles of software

product line engineering. Software product line engineering is general engineering paradigm based

on the concept of customization of software products through the reuse of a set of existing software

platforms [62]. The goal is to provide software solutions that are tailored as much as possible to the

needs of any particular consumer, but to develop the software using already developed software

subsystems and interfaces (i.e., software platforms).

The key motivations for software product lines are to [62]:

• support increased demand by consumers for software customization,

• reduce complexity of supporting increased customization demands,

• reduce development costs and time to market through maximum reuse of available software

platforms,

• enhance software quality by using software platforms that have been widely reviewed and

tested, and

• improve development cost and effort estimates.

234
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Software product line engineering consists of two fundamental activities:

Domain Engineering: The commonality of and variability the product line can offer are defined

and realized.

Application Engineering: A specific software system is constructed using the reusable compo-

nents defined during domain engineering.

SSM shares some similarities with software product line engineering concepts. Specifically,

SSM involves selecting a method to modify software from potentially many alternatives. This activ-

ity is similar to product line application engineering, and involves similar selection activities: i.e.,

assessments are performed to determine what selection is best based on the predefined alternatives.

A fundamental difference, however, is that SSM prescribes variability and selection to account

for unknowns/uncertainties involved with modifying software. Software product lines use variability

and selection fundamentally to make maximum reuse of available components to decrease engineer-

ing costs and effort. SSM can be thought of as reactive where software product line are proactive.

That is, selection and variability in SSM is a consequence of uncertainty and not ideally desired,

whereas in software product lines, variability is desired and the product line is built to maximize

reuse of software artifacts. Another key difference is that SSM bases selection and validation of

alternatives based on an assurance case. The assurance case is therefore the driver in SSM. Previous

work on product line assurance cases serve primarily as a supporting document [22].

Despite the key differences, the similarities of SSM and software product line engineering might

in the future be shown to provide mutual benefits. For example, our assurance based approach

of finding uncertainties within an assurance case (see Chapter 9), and using SSM assessments to

validate these uncertainties might be a beneficial approach for domain engineering in software

product lines. Similarly, the SSM process of finding an acceptable modification might be beneficial

to and benefit from the software product line concept of application engineering. We leave further

investigation into the concept of assurance based product line engineering for future work.
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10.2 Assurance Based Development

Many of the concepts used in SSM take advantage of concepts originally proposed in Assurance

Based Development (ABD) [23, 30, 31]. ABD is a software development paradigm prescribing the

development of a software system in parallel to the development of an assurance case. The key

concept of ABD is that assurance goals should be considered early and often in the development

of software. In this manner, assurance goals drive development activities, and the end result of

development is a software system that is considered adequately fit for use as demonstrated in the

co-developed assurance case.

ABD is in contrast to previous approaches where assurance cases are developed after a software

system is implemented. Developing an assurance case after the development of the software is

problematic. After the software has been developed, it is difficult to recover exactly how the

implementation realizes an assurance goal. Further, even if an assurance case is recovered, it might

indicate the software system is not fit for use (e.g., the argument might be unconvincing or highlight

assurance concerns that were never addressed). Altering and re-engineering a software system after

primary development is often costly and inefficient.

For a software system to be fit for use, it must provide adequate functionality within any

stakeholder-defined operational constraints (e.g., efficiency). In ABD, development of the software

is predicated on the development of a fit-for-use (i.e., fitness) argument. The development of the

fitness argument is limited by development constraints, i.e., costs and schedule restrictions. ABD

accommodates developmental constraints by mandating the construction of a separate success

argument. The success argument justifies that the development activities will result in a software

system that is fit for use within the defined cost and schedule constraints.

The development of both the success and fitness arguments drive the development of the software

system. This symbiotic development of the assurance case and the software involves two primary

activities, illustrated in Figure 10.1:

Process synthesis: Unsupported goals, referred to as assurance obligations, within the fitness and
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Figure 10.1: The ABD approach – figure taken from Graydon [23]

success argument are used to develop a process description also referred to as a planned

process. The process description defines a set of activities to perform in order to support

assurance obligations.

Process Execution: The activities specified in the process description are then performed, i.e.,

executed. Process execution can either be successful, generating evidence necessary to

support assurance obligations, or unsuccessful, in which case a new process description must

be synthesized.

Process synthesis and process execution are iterative activities. Process synthesis and process

execution continues until a complete fitness assurance case (and consequently a completed software

system) is constructed. In each round of process synthesis, illustrated in Figure 10.2, the developer:

1. selects one or more assurance obligations to address

2. assembles a set of candidate options to address the selected assurance obligations

3. assesses each candidate option and then selects one

4. updates the planned process (process description) to reflect the activities associated with the

selection option.
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Figure 10.2: ABD process synthesis — figure taken Graydon [23]

5. updates the fitness and success arguments to reflect expected evidence that will be generated

by the new planned process.

When executing the planned process, developers might find the process fails to address assurance

obligations adequately. In this case, the planned process must be altered, and by extension, the

associated arguments must be repaired. ABD defines a repair mechanism to address the possibility

of an unsuccessful planned process. Conceptually, the ABD argument repair mechanism involves:

• removing elements of the success and fitness arguments that are associated with approaches

that failed to address any given assurance obligations, and

• assuring the removal of argument elements leaves the argument in a consistent state, i.e., the

repaired argument no longer makes reference to removed elements of the argument.

10.2.1 Comparison of ABD and SSM

SSM is in essence an extension of the ABD concept. In SSM, the development of software

modifications by an instantiated SSM process is predicated on assurance arguments in the SSM

assurance case. The interdependence of the SSM process on the assurance case makes an SSM an

ABD-like process. ABD and SSM therefore share many similarities. Specifically, both ABD and

SSM:

• define a development process
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• prescribe the use of success and fitness arguments

• take into consideration multiple options by which assurance goals can be met

• prescribe mechanisms by which alternative options are selected if found to be invalid

Despite the similarities, SSM and ABD are distinct, and have several differences:

• The SSM development process is predefined and can it itself be instantiated using any

software development paradigm. ABD, however, is an engineering paradigm to develop a

single software system.

• The ABD success argument is moot and disregarded once engineering of the software system

is complete. In SSM, the success argument is an artifact that must be generated and supplied

to the stakeholders, much like the SSM fitness argument and instantiated SSM process.

• SSM allows for argument construction when evidence is missing using the argumentation

mechanics discussed in Chapter 6. In ABD, if evidence cannot be generated, the approach is

excised from the argument using the ABD argument repair mechanism.

The key difference is that SSM is a predefined process and can itself be the insantiated using

any software development paradigm, including ABD. This characteristic allows us to draw the

distinction between the general SSM model and an SSM instantiation. The SSM model is a

development process, but developers instantiate the model to define a reusable process to modify

any relevant SOUP. In Chapter 9, we adopted a development methodology for instantiating SSM

based on an ABD-like process in which development of the assurance case drives development of

SSM.
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10.3 Assurance Driven Design

Assurance Driven Design (ADD) [86] is an extensions to the Problem-Oriented Software Engineer-

ing (POSE) framework [87]. POSE is a framework for engineering design, based on three basic

elements:

Problem statements: a description of a problem engineers must solve which describes the contexts,

requirements, and solutions.

Problem transformations: a series of transformations used to convert problems into problems

that are easier to solve.

Justifications: Each transformation is accompanied by a justification that guards the problem

transformation. The transformation must be shown to be adequate (based on the justification).

POSE involves a similar cyclic exploration and validation structure as prescribed by both ABD

and the SSM process model. The key difference is that POSE is not guided by an assurance case.

Also, POSE has been primarily used to find and validate system designs and not complete software

systems including their implementation and other development concerns.

In ADD, the justifications of accepted POSE transformations are used as an argument that the

solution solves the intended problem. Because justifications are reviewed and validated, ADD

justifications are also similar in concept to SSM guards. The difference is that in ADD, justifications

are used to construct an argument, and selection argumentation guards are restrictions to existing

GSN arguments. Also, SSM guards are explicit about the characteristics that must be validated.

ADD justifications are based on an unspecified assessment performed by problem-owning and

solution-owning stakeholders.

10.4 Justifying the Use of SOUP

Adelard (a dependability consulting agency) has developed a comprehensive report for justifying

the use of SOUP in safety-critical software systems [11]. In their report, they propose an approach
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for the justification of safe SOUP by linking safety justification activities and evidence to the safety

life cycle specified in the standard IEC 61508 [88]. The report provides general overview of the

issue with SOUP is safety critical systems, and the general kinds of evidence that might be used to

support/justify various dependability characteristics. This report could serve as a starting point to

determine what kinds of evidence would adequately justify an assurance claim in an SSM assurance

case.

10.5 The Common Criteria

The Common Criteria is a security standard whereby general security requirements for a class of

similar products are specified in protection profiles [89]. A software user can specify a protection

profile in order to locate acceptable software solutions, or software vendors can specify protection

profiles in order to make claims about the security offered by their products. For example, a

user might require that all software used in their organization meets all the requirements specified

in a defined protection profile. A vendor must demonstrate that their software conforms to the

requirements specified by the protection profile before use of the software is permitted.

A target of evaluation (TOE) is a specific piece of software that is evaluated with respect to a

protection profile. A security target documents how the TOE conforms to the requirements of a

given protection profile. For example, a security target documents the security-critical assets and

threats to those assets and the security objectives, i.e., the countermeasures to defend against defined

threats. Third parties then evaluate the protection profiles and security targets. These evaluations

are used as evidence in support that the TOE has the desired security properties.

Conceptually, protection profiles and security targets form an implicit assurance argument, i.e.,

if the TOE is validated to have the specified properties, then the TOE is secure. Assessment of the

validity of this implicit argument is at the discretion of the stakeholders and not defined within the

common criteria.
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Adopting the Common Criteria to SSM might be possible and beneficial; however, a full

assurance case is still necessary to provide a comprehensive assurance claim. The systematic

and explicit decomposition of the argument from a top-level goal forces stakeholders to consider

all relevant threats to security that could otherwise be overlooked. The Common Criteria might

therefore be applicable within the SSM model but as a supplement to (not a replacement of) the

SSM assurance case.

10.6 Contracts for Modularity and Software Reuse

Argument guards used by selection argumentation share many characteristics in common with the

general concept of contracts that are used to enable modularity in developing software systems [90,

91, 92]. In this use of the term, a contract specifies general characteristics that are required for a

specific component of a software system. Developers either implement a solution or find a reusable

component that satisfies the contract. In this respect, a contract and an argument guard serve the

same general purpose, i.e., a solution must be found that satisfies or validates its contract or guard.

Contracts have also been applied within assurance cases. To simplify the development and

management of assurance cases, modularity extensions to GSN arguments have been proposed [93,

19]. Large and complex arguments are grouped into modules yet some interdependencies remain.

For example, a goal in a module might be supported by an argument found in another module.

Rather than copying the supporting argument fragment (which would undermine the purpose of

modularizing the argument), interrelationships are expressed using GSN contract elements.

GSN contracts specify how a goal is supported by arguments and evidence found in other mod-

ules. Argument guards also express interrelationships within the argument, but the interrelationship

is with respect to selection restrictions. The restrictions on selection may or may not have any

relationship to supporting a given goal. Argument guards are therefore fundamentally distinct from

GSN contracts as they serve a completely different purpose.
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10.7 Search-based Software Engineering

For each stage of the software engineering life cycle, engineers must generate solutions that balance

competing constraints and, in doing so, engineers must choose between many potential solutions.

The field of Search-based Software Engineering (SBSE) [94, 95, 96, 97] is based on the observation

that most software engineering problems are essentially optimization problems. By reformulating

software engineering problems as search-based problems, search-based optimization algorithms

(i.e., metaheuristics) can be applied [98], such as simulated annealing [99], genetic algorithms [100],

and tabu search [101], to find optimal solutions from a potentially large solution space.

A key principle in formulating problems as search-based problems is the definition of a fitness

function [98]. A fitness function characterizes a “good solution”, and is applied to solutions to

impose an ordinal scale for solution comparison. While the SSM model does involve a search

process, SSM does not necessarily use a traditional fitness function and therefore is not necessarily

described in terms of SBSE. Selecting between alternatives in SSM fundamentally involves selection

between alternative arguments. An argument is considered “fit for use” if all guarding constraints

are valid. This concept of fitness does not prescribe an ordinal comparison between solutions as is

necessary for SBSE.

In SSM, preference between alternatives are represented using decision and refinement models.

If stakeholders do not have a preconceived notion of preference between alternatives, these decision

could be represented using search-based decision models. In this case, a selected argument must

demonstrate that all guarding constraints are valid and that the selected argument represents the

most optimal solution as defined by the fitness function. The construction of an assurance case

for SSM, however, lends itself to the development of a predefined preference between alternatives.

That is, engineers would likely choose the most desirable alternative initially when constructing an

SSM argument and only specify alternatives when the possibility of failure becomes evident (as

described in the case study in Chapter 9).
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Conclusion

This dissertation has defined and evaluated Speculative Software Modification. SSM prescribes

an iterative process of selecting and validating hypotheses about how to modify a specimen of

SOUP. By altering SOUP to improve dependability, SSM facilitates the practical use of SOUP in

dependability-critical operating environments. SSM also allows for the practical use of software

modification technologies by explicitly assessing/validating potential hazards affecting the accept-

ability of generated modifications. Assessments are based on uncertainties about applying a SOUP

modification and the needs of the system stakeholders, both of which are expressed within the

assurance case. If an assessment fails to validate a method for modifying the SOUP, SSM prescribes

an iterative selection process based on the assessment results. A key novelty of SSM is the iterative

selection process is defined in and driven by an assurance case.

This work presents a number of contributions:

• The SSM model and mechanics, defined in Chapter 3, a novel assurance-based approach for

practical SOUP modifications under uncertainty to improve software dependability.

• The general SSM assurance case form, consisting of a fitness and success argument, which

supports SSM process mechanics and is the fundamental driver of all SSM activities, defined

in Chapter 3.
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• The fitness argument for security development methodology and general structure, defined in

Chapter 4. This structure facilitates structured and rigorous reasoning about the acceptability

of security-enhancing SOUP modifications.

• The argument-based security metric framework, described in Chapter 5, a novel framework for

measuring software security based on the assessment of confidence in an assurance argument.

• Selection argumentation notation and mechanics, which allow an assurance case to support

the SSM process mechanics, defined in Chapter 6.

• Argument guards, a novel component of selection argumentation that express argument

selection restrictions based on assessments that must be performed.

• Stack Layout Transformation, a novel approach for protecting binary programs against buffer

overflow attacks, defined in Chapter 7.

• An assurance driven approach for applying SSM from first principles, described and ex-

plored in Chapter 9. This approach provides developers a practical method to determine the

applicability of SSM and engineer SSM incrementally.

• Two case study assessments of the benefits of assurance cases for software modifications for

security described in Chapters 8 and 9. These case studies suggest that assurance cases for

security are crucial and should be further studied and applied.

• Case study assessments of SSM through the examination of the SSM process mechanics, the

SSM assurance case, and the applicability of the SSM model, described in Chapters 7, 8, and

9. These studies indicate the potential feasibility and practicality of SSM.

This dissertation presents a body of work that supports the conclusions described in the following

sections.
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11.1 Arguments are Essential for Practical Software Mod-

ification

A recurring result from this dissertation is that arguments are crucial to the practical application of

software modifications, regardless of the applicability of SSM. In this dissertation, two specimen

modification approaches were analyzed through the development of assurance cases (see Chapters 8

and 9). In both instances, unsupported goals were found extensively through the argument. These

goals were essential to supporting the top-level assurance claim, yet minimal or no evidence was

available to support these claims.

While in some cases missing evidence was a result of uncertainty about the characteristics

of the software being modified, in many cases, goals were unsupported because of a lack of

knowledge about the modification approach in general. Development of an assurance case therefore

exposes fundamental limitations in SOUP modification approaches requiring further research and

development.

Without an explicit assurance argument, hazards that affect modification assurance negatively

are easily overlooked. The current practice of evaluating software modification techniques in an

ad hoc manner has a tendency to obscure the claims that are supported by any available evidence.

Additionally, some evaluations tend to focus on very specific characteristics of a software modifica-

tion, like run-time efficiency, whereas other practical concerns affecting overall acceptability are

minimally addressed.

While ad hoc evaluations and implicit arguments might provide a proof of concept or initial

evidence of the utility of a modification technique that is appropriate for academic publication, to

apply these approaches in practice requires a comprehensive and explicit argument.

This dissertation has demonstrated that:

Development of an assurance case forces a systematic exploration of all hazards

affecting modification acceptability, thus promoting the practical application of

software modifications. .
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11.2 SSM is Feasible and Practical

The main thesis of this work is:

Thesis: Speculative Software Modification is a feasible approach to produce practical

SOUP modifications for establishing desired dependability properties in software.

This work provides evidence from three case studies that suggests the thesis is true:

Process Model Results: Chapter 7 evaluated the feasibility and practicality of the SSM process

model described in Chapter 3. This study suggested that the process model can be feasibly

instantiated and provide practical benefits. Additionally, the study suggested the need for a

more rigorous and comprehensive model of acceptability.

SSM Assurance Results: Chapter 8 evaluated the feasibility and practicality of applying assurance

cases to the SSM concept. This study demonstrated the benefits of assurance cases for

SSM but also exposed fundamental limitations with traditional assurance case techniques in

support of SSM. As a result, selection argumentation was invented and applied. Combining

selection argumentation with an assurance case was shown to feasibly and practically facilitate

documentation of an explicit and comprehensive acceptability model for SSM. By providing a

method for modeling SSM assurance, the SSM assurance case further supports the practicality

of SSM.

Applicability Results: Chapter 9 addressed the feasibility and practicality of SSM in terms of the

applicability of the SSM model. We examined how engineers could determine if SSM is

applicable from “first principles”, i.e., how can engineers determine if SSM is applicable

and develop the SSM model. The development of an assurance case was used as the driver

for determining the applicability of SSM for a specimen modification approach. The results

of this study demonstrate a method in which engineers can systematically and iteratively

develop SSM. Further, this study provides evidence of the applicability of SSM for a second

modification approach.



Chapter 11 Conclusion 248

The conclusion of the feasibility and practicality of SSM is limited by the scope of each case

study. Ideally, a statistically valid set of specimen SSM implementations would be evaluated across

a range of modification techniques and dependability properties. In practice, fully implementing and

evaluating SSM would involve cooperative development and review from stakeholders, software

developers and assurance case developers.

Each case study was primarily conducted and evaluated by the author; hence, evaluation of SSM

was limited to two specimen modification approaches and to the three above targeted evaluations

of SSM. Each study was therefore limited in the extent to which SSM processes and assurance

cases were developed (described in each case study chapter). Additionally, since the author both

conducted and evaluated each case study, there is a potential for bias in any conclusions about

SSM. While any doubt about conclusion bias cannot be completely removed, each case study was

conducted systematically to the best of our effort to record both positive and negative results.

Despite the limitations of the evaluations of SSM, the results provide initial evidence suggesting

SSM is both feasible and practical. As an initial evaluation, we anticipate that further evaluations of

SSM will result in further SSM model refinements and more detailed examinations of the benefits

and applicability of SSM.

11.3 Future Work

This work has exposed many potential directions for future SSM research as well as research into

related topics:

The SSM Development Life Cycle: A more detailed SSM development approach has yet to be

explored. Questions still remain about (1) how engineers determine the adequacy of their

SSM implementation and SSM assurance case, (2) when SSM engineering should terminate

in specifying alternatives, (3) the specific mechanics for using an SSM assurance case as a

specification for implementation, and (4) how the SSM model is updated and altered (i.e.,

maintained) post deployment.
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The SSM Deployment Life Cycle: The results of each case study suggest that SSM might exist

within a larger SSM deployment cycle. SSM would therefore be one module in a pipeline

of activities. For example, prior to executing an SSM process, stakeholders might first

select the specific kind of acceptability model that is appropriate. Additionally, after SSM

terminates, further assessment of produced modifications and the assurance case instance

might be necessary.

Selection Argumentation Tool Support: In this dissertation, SSM assurance cases were devel-

oped with minimal tool support. Currently, no assurance case tools provide any support

for selection argumentation. To support practical application of SSM, assurance case tools

should be created that both display selection argumentation and also organize and manage the

potentially complex interactions and processes described in selection argumentation.

Complex Selection Processes: The mechanics and use of selection argumentation were purpose-

fully simplified for this dissertation to decrease the complexity in introducing and evaluating

the concept (described in Chapter 6). Future work could further explore how selection

argumentation can be used to handle arbitrarily complex selection processes.

Modification Assurance Case Templates: This work has suggested that research into software

modification approaches should always be based on the development of a rigorous argument.

A potential direction for future work would be how researchers can develop assurance

case templates/prototypes for their modification technologies. The original developers and

researchers should have a much deeper knowledge of their technology and are therefore

best suited for developing the initial assurance case. Then, when practitioners apply these

approaches, they are not burdened with developing the argument independently. Instead,

practitioners can focus on the finer details of how to adapt the technology for their use.

Software Quality Metrics Based on Argument Confidence: In Chapter 5, a security metric frame-

work is proposed based on argument confidence. In this dissertation, the concept was included

as a potential direction for examining the quality of arguments but further evaluation of the
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approach is necessary. Another potential direction for future work is the use of confidence

assessments in SSM for making selections between alternatives and more formal definitions

of the acceptable solution space in terms of a confidence space.

Assurance-Based Software Product Line Engineering: The overlap of SSM and software prod-

uct line engineering requires more evaluation and study. A potential novel direction for future

work suggested by SSM is the development of product lines based on development of an

assurance case. Such an approach would be a generalization of SSM and of Assurance Based

Development (described in Chapter 10).
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