
Adding Context to Theoretical Computation: A Proposed New Unit to UVA’s Theory of
Computation Course

A Technical Report
presented to the faculty of the

School of Engineering and Applied Science
University of Virginia

by

Megan Bishop

date submitted in May 10, 2021

On my honor as a University student, I have neither given nor received unauthorized aid
on this assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

Megan Bishop

Technical advisors: Anil Vullikanti and Yonghwi Kwon, Department of Computer Science

M. Bishop

Adding Context to Theoretical Computation
A Proposed New Unit to UVA’s Theory of Computation Course

Megan Bishop
University of Virginia

Charlottesville, VA, USA
mb9qm@virginia.edu

ABSTRACT
In spending the last year as a teaching assistant for the
UVA Theory of Computation class, it has become clear that
students struggle to understand concepts they don’t know
how to apply practically. Dense theoretical topics in
particular are no exception to this rule, as students have a
much easier time conceptualizing earlier topics in the class
that they can fit into what they’ve learned in previous CS
courses. As the class moves on, topics move away from the
courseworks students have already done, so it takes much
more effort for them to visualize where this new knowledge
can fit in. They would have a much easier time applying the
newer concepts if they were provided with the context of
how these theoretical topics are actually used in the
software development field.

To fix this issue, I’m proposing a new unit to the Theory of
Computation curriculum - applications of nondeterminism
and finite state machines in software testing. One of the
topics that students take the longest to understand
conceptually is nondeterminism, introduced in the context of
nondeterministic finite automata. Students have little
motivation to learn this concept when they know that,
logically, multiple choices in a decision cannot be made at
once, so they don’t see how it may apply in their future
careers. In this unit, they will be introduced to
non-determinism - specifically, methods of preventing
non-determinism - in software testing, getting a glimpse into
fields that use the theoretical topics they’re studying now.

With the integration of this new unit, students will have a
real world context in which to analyze nondeterminism of a
system, and a motivation for creating finite state automata
for the code they write and systems they help create.

INTRODUCTION
From both the perspective of a student taking a course, and
as a teaching assistant helping to teach a course, it is
obvious that there’s a gap in motivation when a student is

not given context, or a reason to care about why they need
to learn the given curriculum. This can be as simple as
knowing a certain part of the material will be on an
upcoming exam, but long term retention of concepts is
generally reliant on a broader application of the material. If a
student does not think they will use the material they’re
learning in either a future class or in their eventual career,
the chance of carrying that knowledge past the final exam is
drastically lowered. With theoretical computation, this
problem is especially prevalent, as the material is so
different from much of what is taught in other courses. Many
students have expressed the feeling that they are wasting
their time in the class because they have no context for how
they might use the material they study in the course, and
simply get it over with for a requirement.

If students were aware that many of the topics that come up
in the theory of computation course are actually relevant in
the field of software development, they may be more eager
to take the course, and learn the material more readily.
Currently, engagement in the class is encouraged through
the use of group work and examples that contextualize the
topics in examples from everyday life. While having a group
to participate in may motivate certain students to take the
curriculum more seriously, other students are at a detriment
from this setting, as they have their group mates to fall back
on when they don’t understand the material. Those students
prone to using the success of their team to carry their own
grade are even less likely to retain the topics taught after
the end of the course.

As far as simplified examples of the topics, while these
anecdotes used to teach the basics of a concept may help
the student’s original grasp on the information, they don’t
really contribute to long-term retention of the knowledge. In
addition, some students find these examples frustrating, as
they can be unrealistic or even impossible applications, so
they do little to contextualize the material in their future
career.

mailto:email@email.com

M. Bishop

By implementing a unit directly identifying how the topics
they’ve learned in the class may arise in their careers as
software developers, these students will be motivated to get
a better understanding of the information presented to them,
as well as holding onto that knowledge for longer. When
students can see that the curriculum of a course actually
matters or will matter in the future, the interest will
automatically rise to fit that perceived importance of the
information.

BACKGROUND
As the UVA Theory of Computation class is currently taught,
students are organized into working groups called “cohorts”.
Students in the same cohort collaborate on each problem
set, and present their solutions to their TA leader on a
weekly basis. This model of the theory of computation
classroom creates lots of room for students to discuss the
topics at hand more deeply than they might if they simply
learned the material from lectures and completed problem
sets on their own.

This class model also does not implement exams, so there
is very little assessment outside of the team setting.
Instead, the group model is utilized to motivate learning for
the purpose of contribution to the cohort. Each student is
asked to explain at least one randomly selected problem
from the set each week, so students are encouraged to fill
in the gaps in one another’s knowledge, as they are all
expected to have a good understanding of each group
solution.

RELATED WORK
The best attempt at contextualizing difficult theoretical topics
as the course is currently taught is the previously mentioned
use of simplified real-life examples. For example, a common
explanation for non-determinism in the course describes
taking a drive to a friend’s house, and how you might be
able to arrive faster if you were able to non-deterministically
take both turns at a fork in the road simultaneously. While
this does help to simplify the material, as it stands these can
decrease motivation to retain the material, as this is not an
application that is possible to replicate in real life. These
examples would not be a problem if they were followed by
examples within the field of software development, but it is
harder for students to stay motivated when their only
examples are either very theoretical or unrealistic. They
simply don’t provide enough reasoning for why the material
matters to the student in the long run.

Similar problems arise with the use of the cohort model of
the class to keep students engaged. While there is not an
exam for which the students retain the material and then
forget soon after, once a student no longer holds
responsibility to their group to assist with problem sets, their
understanding of the material no longer matters as much to
them. Even more, there is no reason given to the student to
expand on their learning beyond the group setting, so
extensions on the material that do not get addressed in the
group discussion go unexplored by the student. A future
motivation to retain the material may spark more of an
interest in the material for a student, and encourage
individual exploration on deeper facets of the subject.

DESIGN
To encourage deeper understanding and longer retention of
the theory of computation curriculum, a proposed new unit,
exploring uses of several different theoretical concepts
discussed in the class was added. Referred to in the lecture
material as “Non-Determinism in the Real World of Software
Development”, this unit dives into the practical application of
the concept of non-determinism, as well as the use of finite
state machines in the field of software testing. Drawing on
material from the UVA software testing course, it explains
first how some broad testing methods are based on the
material learned through theory of computation, then gives
an example of a commonly used testing structure in modern
software development that builds on the integrated material
from both courses.

Work on this new unit was started from the connection of
course material from theory of computation and software
testing, and ensuing research on how these topics could
build together to new information not introduced in either
course. The effects of non-determinism when testing
software were explored, adding context to a rather broad
theoretical topic introduced in the theory of computation
course. From here, a relevant unit of the software testing
curriculum was selected to bridge the gap between the two
courses. Finally, a real world example of how these
concepts come together in testing of actual software
implementations was studied, using the context established
by existing topics from the courses to break down the more
complicated concepts of this new testing method.

Alongside the lecture material, a problem set in the style of
existing theory of computation assignments was designed,
aiming to have students apply their knowledge from the new
unit to example implementations. A variety of proofs,

Adding Context to Theoretical Computation

discussion questions, and testing procedure
implementations were included in the assignment to
reinforce students’ understanding of all concepts covered in
the applications unit.

1 Lecture Material Development
As this unit is planned to be implemented as the final unit in
the theory of computation course, the lecture material
begins with a brief review of the relevant topics - finite state
automata and non-determinism - which are introduced
much earlier in the semester. The differences between
deterministic and non-deterministic state machines are
highlighted to freshen the concept in the students’ minds,
then a simple example is used to demonstrate the
differences in practice.

With non-determinism refreshed, the students are then
introduced to new topics for theory of computation. The
current version of the course explains the concept of
nondeterminism without showing how it really applies in
software development - specifically, it doesn’t show the
problems caused by non-determinism when testing a
system. The new lecture material acknowledges that
non-determinism cannot be realistically applied to daily life,
but gives examples of types of software that can be
negatively affected by non-determinism, as well as where
non-determinism can be intentionally implemented in a
system.

After the discussion of real world software non-determinism,
these concepts are contextualized in the field of software
testing, introducing the concept of a non-deterministic
software test, and explaining how this can be detrimental to
a system. These topics are discussed in detail to show
students how the material is applied outside of the
classroom, and how they may run into non-determinism in
their future career, therefore providing motivation to engage
with the lecture and retain the information longer.

Next, the lecture discusses a method of software testing
they may not have been introduced to: model-based
software testing. This unit of the software testing curriculum
is specifically chosen to help students with their
understanding of topics introduced later in the material. A
description of model-based testing and the various
approaches to it is given. A simple example of model-based
testing is used to demonstrate how this testing approach
uses their knowledge of finite state machines to create more
comprehensive tests for a system, and overall reinforce
understanding. Some more complicated implementations of
model-based testing are briefly acknowledged to give

students some direction to further their learning on their own
time before moving on from the topic.

To finish out the lecture material, Petri-Nets are introduced
to the students at a high level. This topic was chosen as an
example of a real world testing procedure used for a variety
of systems that any student may eventually work on. It also
implements and provides a real software development
context for each of the theoretical topics discussed earlier in
the lecture. The differences between data flow graphs and
the structure of Petri-Nets are discussed in the context of
what students have already learned, and a small example is
provided to show students how these testing models are
used in larger, non-deterministic systems.

2 Problem Set Development
This unit works with the current cohort model of the course
to create a collaborative problem set for each group to work
on together. It seeks to both check the student’s
understanding of the material introduced in the unit, as well
as give students a chance to expand on their learning
through group discussion.

The assignment starts with a review problem to ensure that
students have retained their learning on deterministic and
non-deterministic finite state automata, as well as reinforce
the connection between determinism and non-determinism
by asking students to build and then convert the machines
between the two types.

The problems then ask the students to apply their new
knowledge of model-based testing, building on what they
already know about finite state machines. They are asked to
replicate the example from the lecture with a different code
segment to check their understanding of the model-based
testing process. They must evaluate the model they create
from both the node coverage and edge coverage criteria so
they may observe for themselves the difference between
the approaches.

The next question is an expansion opportunity, asking
students to examine a feature of model-based testing that
wasn’t explicitly discussed in the lecture. This is done to
ensure that the students can go beyond a surface level
understanding of this testing procedure.

The assignment’s next few questions aim to connect the
major concepts from the theory of computation and software
testing halves of the unit. First, they are asked to apply
non-determinism to the model they have created, or explain
why this is an impossible task, if that is found to be the

M. Bishop

case. Following this, they are asked to update the given
code to reflect changes made to their model (if they were
able to make the specified changes at all). This question
ensures that students understand how non-determinism can
present itself in a system they implement, and reinforces a
greater understanding of how to avoid this problem when
writing code in the future. Finally, students are asked to
provide a proof as to why it would be impossible to use
complete path coverage on any code/data flow graph that
uses a loop. Students should be able to identify that the
path can always be expanded so long as there is a loop, so
there is an infinite number of larger and larger (mostly
redundant) paths that would need to be traversed in order to
complete the criteria. This question checks both the
student’s proof writing skills and their understanding of
criteria fulfilment when using model based testing
procedures.

The assignment ends with a series of discussion questions,
meant to spark deeper conversations within their cohort
about the topics they have been introduced to. They are
asked to identify potential real-world applications of
non-determinism beyond those mentioned in the lecture,
encouraging them to think critically about the functions of a
system that may cause it to run differently at different times.
Next, they are asked to analyze the two types of model
based testing introduced, and connect them with the
concept of non-determinism, encouraging more connections
between the two topics. Finally, they must analyze the new
version of transitions introduced when discussing Petri-nets,
and how this can help a system to test deterministically,
even if the system is by nature non-deterministic. This last
discussion drives home the main theme of the unit, bringing
the wider context of applications in to reinforce or expand
their learning of theoretical topics.

3 Connection of Theory of Computation and
Software Testing Course Materials

Since students currently taking theory of computation may
not have taken the software testing elective yet (or may
never plan to take that course), the lecture material
thoroughly follows the surface level introduction of model
based testing, and how it is used to develop test cases.
However, it is introduced somewhat differently than it would
be in the software testing elective alone. To emphasize the
connection of the two courses, it introduces this testing
method in the context of a theory of computation topic: finite
state automata. A careful note is made, highlighting the
differences between the finite state machines as they have
learned them, and the implementation of finite state
machines (data flow graphs) used for model based testing.

Only after this connection is established does the material
explain how to use model based testing as a testing
medium.

This connection is further reinforced by the problem set,
particularly the later model-based testing questions, which
ask the students to apply the theory of computation topics of
non-determinism as well as proof techniques to the newly
introduced topic of model based software testing. This goes
even further with the discussion questions at the end of the
assignment, as each asks the students to apply their
knowledge of non-determinism to the context of software
testing, and make sure they understand how these two
concepts connect in the software development field.

IMPLEMENTATION
The unit is intended to be implemented as one of the final
units in the course, concluding the study of theoretical
computation with the motivation to maintain their
understanding of what they’ve just learned. Currently, the
final unit of the course is a wrap-up/review unit, in which the
students put together some sort of creative project to
display their understanding of one of the topics discussed in
the course. While creativity can be a good thing to
encourage students to apply their knowledge outside of the
theoretical context, many students end up taking this unit to
simply create something entertaining, not delving any
deeper than surface level into the concepts of the course.
This new unit could be used as a wrap-up that fully
encourages the students to apply and contextualize their
knowledge, reinforcing it in their mind for future use. It
provides a slightly larger challenge to a student, but
ultimately a challenge that pays off in motivation of further
learning.

CONCLUSIONS
The proposed new unit to the UVA theory of computation
course was designed to provide students with a deeper
understanding for the context of theoretical concepts. This
new unit aims to solve the problem of students being
unmotivated to learn and retain certain concepts from the
course by showing them how they can apply in the greater
context of software development, as well as where they
might encounter them in their future careers. With the
integration of elements from the software testing course,
students will be able to frame their learning in realistic
development scenarios, closer to what they experience in
other, non-theoretical courses. With successful
implementation, this unit could provide students with the

Adding Context to Theoretical Computation

motivation to extend their learning beyond what they need
to pass the class, and explore further applications of the
topics they have learned about in the course.

FUTURE WORK
Beyond implementing the application unit to theory of
computation, students’ learning could be further enhanced
by implementing small context examples throughout the
course, expanding on more than just non-determinism and
finite state automata. While these are some of the most
important topics to provide students with context, as they
are some of the more theoretical rather than practical
topics, other units, such as uncomputability and turing
machines could use some practical extensions to round out
their units of the course. This way, students could be
introduced to practical applications little by little throughout
the learning process rather than wait until the end to find out
the context of the topics they’ve been studying. This could
be somewhat more effective at helping students to retain
their knowledge of these theoretical concepts at their first
introduction, rather than fortify them with a reintroduction
weeks later. It could also help to make the whole course feel
more practical to the students as they build an
understanding of theoretical computation.

REFERENCES
[1] Donald Firesmith, 2017. The Challenges of Testing in a

Non-Deterministic World. SEI Blog, Carnegie Mellon University.
[2] Donald Firesmith, 2017. Seven Recommendations for Testing in a

Non-Deterministic World. SEI Blog, Carnegie Mellon University.
[3] Mustafa Bozkurt, Mark Harman, Youssef Hassoun. Testing Web

Services: A Survey. Centre for Research on Evolution, Search, and
Testing. King’s College London. Technical Report: TR-10-01.

