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 Abstract  

This dissertation presents a unified framework for proactive risk analysis and systems 

management across critical lifeline infrastructures, specifically for the domains of 

transportation safety and environmental resilience. With advances in connected vehicle 

(CV) technologies, machine learning, and geospatial analytics, this research introduces 

scalable, data-driven methodologies to identify, predict, and mitigate risks in both human 

mobility and agricultural systems. There are three component methods as follows. (i) The 

first component of this research addresses pedestrian safety in high-risk school zones by 

applying clustering techniques (DBSCAN) and hotspot analysis (Getis-Ord Gi*) to CV 

data capturing harsh braking and acceleration events. These techniques enable proactive 

identification of hazardous driving patterns before crashes occur, supporting Vision Zero 

initiatives and equitable infrastructure planning. (ii) The second component explores the 

information management systems required to use such insights at scale. Through the 

development and implementation of a geospatial, model-based application, this study 

demonstrates how digital twins and centralized knowledge repositories can support data 

governance, multi-criteria decision-making, and lifecycle infrastructure planning. (iii) The 

third component expands the geospatial risk modeling framework to environmental 

systems, focusing on the impact of extreme heat on agricultural productivity. Using 

machine learning models (XGBoost, SVR, Random Forest) alongside spatial interpolation 

methods (Kriging and IDW), the study generates heat-based risk indices to assess 

vulnerability in food systems and human health under changing climate conditions. With 

the above synthesis of geospatial anomalies, or hot spots, methodologies across 

transportation and environmental sectors, this dissertation thus contributes a 

comprehensive, systems approach to risk management with real-time data, spatial 
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intelligence, and predictive analytics. The results support scalable, cross-sector solutions 

that enhance resilience and safety in the face of evolving threats to infrastructure and public 

well-being.   

  

Keywords: Hotspots, resilience, civil engineering, machine learning, predictive 

analytics, risk ranking  
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Chapter 1 | Introduction  
  

  

  

  

1.1. Introduction   

This chapter provides the foundational context for the dissertation. Section 1.2 outlines the 

motivation for this study, rooted in the growing need for proactive, data-informed 

approaches to transportation safety and environmental resilience. Section 1.3 presents the 

problem statement, highlighting the philosophical underpinnings of the research and 

introducing the integration of data-driven geospatial analysis and machine learning 

applications to identify and assess risk and safety factors. This section also discusses the 

use of IDEF modeling to structure and formalize the research process. Section 1.4 defines 

the purpose and scope of the dissertation, detailing the objectives and boundaries of the 

study. Finally, Section 1.5 provides an overview of the dissertation structure, guiding the 

reader through the organization and progression of the subsequent chapters.  



Rayshaun Wheeler | Ph.D.  Dissertation | April 2025  

  

Page 2 of 156  

  

1.2. Motivation   

The ongoing and latest emergence of intelligent transportation systems, coupled 

with advancements in in-vehicle networking, sensors, and communication technologies, 

has enabled the collection of high-volume, near-real-time data on both vehicle and driver 

behavior (1). Analyzing this data presents significant opportunities to gain deeper insights 

into driving behavior analysis (DBA). Understanding driver behavior is essential in 

numerous transportation research domains, including traffic safety, connected vehicle 

development, energy efficiency, fuel consumption, risk evaluation, and driver profiling (2). 

Progress in DBA techniques, such as detecting driver distraction or impaired driving. Holds 

promise to reduce severe and fatal crashes. Moreover, identifying driving styles, whether 

eco-conscious or aggressive, can support fuel optimization strategies and risk management 

(3). As a result, there is a growing research focus on addressing the complexities and 

opportunities within DBA. Current research methodologies within traffic engineering often 

prioritize infrastructure investments and safety improvements based on locations with a 

high volume of recorded road traffic crashes, rather than utilizing intelligent transportation 

systems to take a proactive approach to predicting and preventing future incidents (4). The 

growing complexity of transportation systems demands innovative approaches to 

improving safety, efficiency, and resilience. In the face of rapid urbanization, climate 

change, and evolving mobility patterns, traditional engineering methods often fail to 

capture the dynamic nature of transportation networks. As a result, data-driven 

decisionmaking has emerged as a critical tool in modern transportation engineering, 
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offering the ability to analyze vast amounts of real-time data to identify risks, optimize 

infrastructure, and inform proactive strategies (5).  

This dissertation is motivated by the potential of integrating IDEF (Integrated 

Definition) models, machine learning algorithms, and geospatial analysis to address 

pressing challenges in transportation safety and system resilience. IDEF models offer a 

structured way to represent complex processes, making them ideal for understanding and 

improving transportation workflows. Machine learning enables predictive insights into 

crash likelihood, traffic patterns, and driver behavior, while geospatial analysis enhances 

our ability to detect high-risk locations and visualize the impact of interventions.  

Together, these methodologies provide a powerful framework for advancing 

transportation research and practice. By combining these tools, this dissertation aims to 

contribute to a more intelligent, adaptive, and data-informed approach to transportation 

planning and risk management ultimately supporting the goals of Vision Zero and  

sustainable infrastructure resilience.  Table 1 describes a comprehensive breakdown of how 

emerging technologies and methodologies intersect with key components of transportation 

risk and safety analysis. Categorizing each research function across three strategic 

dimensions risk analysis, safety analysis, and data-driven decision-making, highlights 

potential of integrating intelligent systems into transportation planning and operations. For 

example, IDEF modeling enhances traditional risk assessment by identifying potential 

failure points and mapping critical safety components in transportation workflows while 

supporting data pipeline structuring for connected vehicle (CV) and environmental data.   
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Connected vehicle data provides real-time insights into hazardous driving behaviors 

and supports predictive modeling that informs timely interventions. Geospatial analysis 

complements these approaches by visualizing spatial risk exposure, such as in school zones, 

and enhancing the granularity of safety dashboards. Environmental factors, like extreme 

heat, add another layer of analysis by informing both human vulnerability and infrastructure 

resilience. Machine learning and predictive analytics amplify this framework by modeling 

crash likelihood and driver behavior trends, contributing to a proactive safety posture. 

Lastly, information management systems centralize diverse data inputs, integrate historical 

and real-time crash information, and support digital decision-making tools such as digital 

twins. Collectively, the matrix illustrates how the convergence of these technologies and 

methodologies can transform transportation systems into adaptive, datainformed networks 

capable of anticipating and mitigating safety and risk challenges.  

    

  

Table 1 - Framework for Data-Driven Decision Making in Safety and Risk Analysis. This table 

outlines the integration of various research components, from data modeling to predictive analytics, 

to enhance safety analysis and inform decision-making processes.  

Research  

Function/Component  

Risk Analysis  Safety Analysis  Data Driven  

Decision Making  

IDEF Modeling  Identifies failure 

points in process 

flows.  

Maps 

safetycritical 

systems in 

workflows.  

Structures data 

pipelines for  

CV/environmental 

data.   

Connected Vehicle 

Data  

Supports risk 

detection via 

event-based data.   

Detects 

hazardous 

behavior in 

realtime.  

Enables predictive 

modeling for 

interventions.   
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Geospatial  

Information Systems  

(GIS) Analysis  

Assesses spatial 

risk exposure.   

Visualizes 

highrisk zones 

(school zones 

etc.)  

Enhances location-

specific insights 

and dashboards.  

Environmental  

Factors  

(Climate/Heat)  

Reveals 

highimpact 

weather scenarios.   

Informs 

pedestrian and 

worker safety 

measures.  

Predicts 

agricultural stress 

using ML and 

Kriging.   

Machine Learning/ 

Predictive Analytics  

Models future 

risk probability.   

Identifies 

behavioral 

trends before 

crashes.  

Drives proactive 

planning and 

decision support.   

Information  

Management Systems  

Centralizes risk 

data inputs.   

Integrates crash 

reports and 

studies.  

Powers tools like 

VDOT P4P and 

digital twins.   

  

1.3. Problem Statement   

One of the most critical gaps in the current civil engineering body of knowledge is the 

integration of data-driven decision-making into planning, design, and operations. Recent 

studies have shown leveraging big data and predictive analytics can improve infrastructure 

performance by up to 20%, enabling engineers to make more informed, proactive decisions 

that reduce costs and increase resilience (6). With the rapid pace of global urbanization, 

urban traffic volumes have experienced a dramatic surge, leading to increasingly severe 

congestion challenges. Persistent traffic disruptions significantly reduce transportation 

efficiency and contribute to the overall decline in system performance.   

In addition, congestion is closely linked to a rise in traffic accidents and increased 

environmental pollution. As a result, addressing urban traffic congestion has become a 

pressing issue that demands effective and innovative solutions in the evolving landscape of 

transportation systems, managing complexity and scale demands structured methodologies 
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that align data, processes, and decision-making tools. The use of IDEF (Integrated 

DEFinition) modeling and robust information management systems, as demonstrated in 

this paper, provides a vital bridge between conventional traffic engineering practices and 

emerging Intelligent Transportation Systems (ITS).  

IDEF modeling contributes to the structured analysis of business processes within 

transportation agencies by explicitly identifying inputs, controls, mechanisms, and outputs 

(7). In the VDOT case, these models were enhanced to include risk identification, which is 

crucial for transportation systems where performance can be influenced by dynamic and 

uncertain variables (e.g., weather, policy changes, infrastructure failures). This enriched 

IDEF framework allows traffic engineers and planners to visualize how project components 

interrelate, assess vulnerabilities in workflows, and embed safety and risk considerations 

directly into the planning and operational lifecycle.  

However, the information management system, specifically VDOT’s Pathways for 

Planning platform, operationalizes these models by integrating geospatial analytics, 

temporal data, and multiple data sources (such as crash data, weather, and traffic volume) 

into a single, interactive platform. This system acts as a digital twin for Virginia’s 

transportation infrastructure, enabling real-time situational awareness, performance 

monitoring, and predictive modeling. The integration of more than 130 geospatial data 

sources and advanced filtering tools (such as the Linear Referencing System) exemplifies 

how traffic operations data can be curated, visualized, and transformed into actionable 

insights.  
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Together, these tools enable data-driven decision making that aligns with the 

principles of ITS. Such as system interconnectivity, automation, and adaptive response. 

Instead of relying solely on historical crash data or post-event analysis, transportation 

stakeholders can now proactively identify at-risk corridors, optimize resource allocation, 

and simulate the impact of potential interventions before implementation.  

Ultimately, by embedding IDEF modeling into the broader framework of 

information management, this approach enhances system resilience, safety analysis, and 

operational efficiency. It allows agencies to move beyond siloed, reactive methodologies 

toward integrated, proactive strategies that are the hallmark of intelligent transportation 

systems.  

1.4. Purpose and Scope    

With the above motivation, the purpose of this dissertation is to develop and 

evaluate an integrated framework that leverages data-driven methodologies, geospatial 

analytics, and system modeling to enhance risk management and safety strategies within 

transportation and environmental systems. Specifically, this research investigates how 

connected vehicle  

(CV) data, when combined with predictive analytics and intelligent transportation systems 

(ITS), can be utilized to proactively identify risk-prone areas and inform decision-making 

processes at both the operational and strategic levels.  

This approach addresses critical gaps in current traffic engineering practices, which 

have relied on retrospective crash data and reactive infrastructure investments. By 

incorporating Integrated DEFinition (IDEF) modeling, machine learning algorithms, and 
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geospatial analysis, the research provides a forward-looking approach to understanding and 

mitigating transportation risks particularly in urban areas experiencing rapid development 

and mobility challenges. The integration of environmental data further expands the scope, 

offering insights into how external stressors such as climate and extreme heat influence 

both infrastructure performance and user safety.   

The scope of this study encompasses the analysis of large-scale connected vehicle 

datasets, including event-based records (e.g., harsh braking, acceleration, and speeding), 

and their spatial-temporal relationship to crash occurrences, pedestrian safety concerns, and 

roadway conditions. The study also includes the development and demonstration of a 

digital information management system that synthesizes these data sources to support 

planning, risk assessment, and resilience strategies. By focusing on the intersection of 

emerging technologies and traditional infrastructure management, this dissertation 

contributes to the growing body of knowledge on proactive transportation safety and 

environmental resilience. It offers a replicable framework that can inform state and federal 

agencies, metropolitan planning organizations, and policymakers in advancing Vision Zero 

and climate adaptation goals.   

  

1.5. Structure of Dissertation   

Table 2 provides an overview of the dissertation structure, outlining the organization and 

purpose of each chapter. The table serves as a roadmap for the reader, illustrating how the 

research progresses from foundational concepts to applied case studies and synthesis. It 

begins with the introduction and literature review, which establish the research problem, 
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theoretical grounding, and gaps in existing practice. The methodology chapter presents the 

conceptual framework, including the integration of IDEF modeling, geospatial analysis, 

and machine learning. Subsequent chapters detail three distinct case studies that 

demonstrate the application of these methods across real-world transportation and 

environmental challenges. The final chapters synthesize key findings, identify best 

practices, and compare the proposed framework against traditional approaches to 

transportation safety and risk analysis. Together, these chapters provide a comprehensive 

and logical progression of inquiry, culminating in a set of actionable insights and 

contributions to the field.  

   

    

  

Table 2. Overview of dissertation structure  

    

CHAPTER TITLE DESCRIPTION 

1 Introduction Introduces the research problem, motivation, 

significance, purpose, scope, and organization of 

the dissertation. 

2 Problem Definition Definition current practices in transportation 

safety, risk analysis, intelligent transportation 

systems, connected vehicle data, geospatial 

analytics, and machine learning. Identifies 

knowledge gaps and research opportunities 

3 Conceptual 

Framework and 

Methodology 

Describes the theoretical basis for integrating risk 

analysis, geospatial methods, and datadriven 

decision-making into transportation engineering. 

Introduces the use of IDEF modeling, digital 

twins, and information management systems. 
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4 Chapter 4 Case Study: 

Risk 

Mapping with 

Geospatial and 

Environmental Data 

Applies geospatial analysis, kriging, and 

environmental datasets to identify and visualize 

transportation vulnerabilities, particularly in 

relation to extreme climate conditions. 

5 Chapter 5 Case Study: 

Classification Model 

for Connected Vehicle 

Event Data 

Demonstrates the development of a machine 

learning classification model to analyze harsh 

events (e.g., braking, acceleration, turning) using 

connected vehicle data to predict and classify 

risky driving behavior. 

6 Chapter 6 Case Study: 

Information 

Management and 

IDEF Modeling for 

VDOT Planning 

Applies IDEF modeling and information systems 

to streamline risk-informed transportation project 

planning, using the VDOT Pathways for Planning 

system as an example. 

7 Synthesis of 

Methodologies and 

Best Practices 

Summarizes key takeaways across the case 

studies. Proposes a generalized framework that 

integrates machine learning, geospatial analysis, 

and information management in transportation 

safety and resilience planning. 

8 Comparative 

Evaluation and Future 

Applications 

Benchmarks the proposed methods against 

traditional approaches. Evaluates performance, 

scalability, and potential for broader deployment 

across agencies and regions. 

9 Conclusion Summarizes findings, discusses the implications 

for practice and research, and outlines 

contributions, limitations, and future work. 

 

   

   

   

   

    

  



Rayshaun Wheeler | Ph.D.  Dissertation | April 2025  

  

Page 11 of 156  

  

  

  

  

  

  

  

  

  

  

  

  

Chapter 2 | Problem Definition  
  

  

  

  

2.1. Introduction   

This chapter outlines the foundations in literature for the dissertation by reviewing key 

research areas relevant to geospatial and data-driven risk management strategies and 

provides a guiding philosophy for the subsequent chapters. Section 2.1 introduces the 

chapter and outlines its structure. Section 2.2 examines the application of geospatial 

analysis techniques in transportation and environmental risk, highlighting spatial modeling 
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approaches, including hotspot analysis and interpolation methods. Section 2.3 reviews the 

use of connected vehicle data and surrogate safety measures to detect risky driving 

behaviors and enhance proactive safety assessments. Section 2.4 discusses machine 

learning and predictive modeling techniques used to analyze crash patterns and 

climaterelated risks. Section 2.5 explores the role of information management systems and 

digital twins in supporting integrated risk-informed decision-making. Finally, Section 2.6 

identifies gaps in the existing literature and presents opportunities for advancing 

interdisciplinary research at the intersection of transportation safety, environmental 

resilience, and predictive analytics.  

  

2.2. Applications of Geospatial Analysis in Transportation and 

Environmental Risk  

Traffic safety remains a critical challenge in rural areas across the United States. 

Although only 19% of the U.S. population resides in rural regions, these areas account for 

a disproportionate 43% of all roadway fatalities (8, 9). This alarming disparity underscores 

the need for advanced, data-driven approaches to identify and mitigate transportation risks 

in vulnerable communities. Road traffic crashes impose significant global health and 

economic burdens, resulting in more than 1.3 million fatalities each year (10). In addition 

to the loss of life, millions sustain serious injuries that contribute to long-term disability 

and reduced quality of life. Economically, these incidents are estimated to result in a 3% 
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loss of gross domestic product for many countries, with low- and middle-income nations 

bearing the most significant impact (11).  

Spatial analysis methods are increasingly recognized as vital for examining the 

spatial dimensions of traffic crashes and understanding underlying patterns (12). These 

techniques facilitate the synthesis and mapping of multiple data sources, enabling the 

identification of location-based risk factors and clusters. By doing so, geospatial 

approaches enhance the precision of road safety strategies and support more effective, 

evidence-based decision-making (13).   

The National Oceanic and Atmospheric Administration (NOAA) and others have 

highlighted record-breaking climate extremes over the past two years (14). An increase in 

both the frequency and severity of extreme weather events, such as heat waves, which are 

becoming more prevalent as a result of ongoing climate change (15). Heat waves are 

particularly dangerous due to their capacity to significantly impact public health, often 

placing the greatest burden on vulnerable groups, including the elderly, individuals with 

limited financial resources, and those with underlying health conditions (16). Numerous 

studies have shown a direct relationship between prolonged exposure to extreme heat and 

elevated rates of heat-related illnesses and fatalities (17).  

If there are accelerating features of climate change, it is increasingly critical to 

evaluate population vulnerability to heat stress and to identify high-risk geographic areas. 

Such assessments are essential for informing the development of effective mitigation 

strategies and public health interventions. The Intergovernmental Panel on Climate Change 

characterizes vulnerability as the degree to which individuals or systems are likely to 
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experience harm, encompassing both their sensitivity to climate impacts and their capacity 

to adapt or respond (18).   

Figure 1 illustrates the conceptual integration of transportation, environmental, and 

geospatial data to support predictive analysis and decision-making within the domains of 

transportation safety and environmental risk. The diagram highlights three core data 

sources: Connected Vehicle Data, Environmental Data, and Geospatial Data. These sources 

are increasingly available through modern sensing technologies, spatial databases, and 

transportation networks, and offer unique insights into dynamic conditions on roadways 

and across ecosystems.  

At the center of the diagram is the Integrated Geospatial and Environmental Data 

node, which represents the integration of these datasets through advanced analytical 

techniques. This integration allows for spatially and temporally resolved insights that are 

essential for understanding context-sensitive risk factors. For example, combining 

connected vehicle data with environmental variables such as extreme temperatures or 

precipitation can help reveal patterns of hazardous driving behavior during adverse 

conditions. Similarly, geospatial mapping of environmental exposure and population 

vulnerability allows for the creation of spatial risk indices.  

The two output nodes reflect practical and actionable outcomes of this integrated 

data framework. Transportation Safety Clustering Analysis enables researchers and 

policymakers to identify high-risk zones for crashes or near-misses using methods like 

DBSCAN or hotspot analysis. This supports proactive infrastructure and policy responses, 

particularly in sensitive areas such as school zones or rural corridors. On the other side, the 
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Environmental Risk Index for Policy Decisions provides a spatially informed metric that 

highlights regions most susceptible to climate-related health risks, such as extreme heat. 

This index can guide resource allocation, emergency response planning, and long-term 

adaptation strategies. Overall, the diagram encapsulates a systems-thinking approach to 

data-driven decision-making. Demonstrating how disparate datasets can be synthesized 

through geospatial and machine learning techniques underscores a key theme of the 

dissertation: Integrating data across disciplines will be key to understanding the anomalies 

and hotspots of disparate systems, focused here on cases of safety and risk in transportation 

and environmental domains.  

      

  

Figure 1. Integrated framework for data-driven transportation safety and environmental risk 

analysis  
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2.3. Connected Vehicle Data and Safety Measures  

A significant proportion of vehicle crashes, nearly half, occur at roadway intersections and 

access points, with studies showing elevated crash rates along highways that experience 

high traffic volumes and dense access spacing (19). Traditional aggregated transportation 

performance metrics, however, often mask critical localized variations in system behavior, 

making it difficult to identify specific areas of concern (20). Limitations in data availability 

and granularity further complicate performance assessment, particularly during 

timesensitive operations. For instance, school arrival and dismissal periods involve brief 

but critical windows of high activity, sometimes accompanied by temporary speed limit 

changes, that are not captured in daily or hourly averages. Aggregated datasets from sources 

such as GPS or probe vehicles may fail to reflect these localized and temporal variations in 

travel behavior.   

The growing availability of connected vehicle (CV) data introduces new 

possibilities for gaining detailed insights into transportation system performance. With its 

high-resolution spatial and temporal attributes, CV data allows for more precise analysis 

but it also demands thoughtful data management strategies to ensure efficient processing 

and resource allocation. As explored in this research, CV data enables enhanced risk 

detection and performance evaluation along corridors by providing a more nuanced 

understanding than traditional datasets. Vision Zero, a globally adopted traffic safety 

strategy first introduced in Sweden in 1997, aspires to eliminate all roadway fatalities and 

serious injuries (21). The initiative is grounded in the belief that while human errors in 

traffic are unavoidable, the transportation system should be designed in a way that prevents 
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these mistakes from resulting in severe harm. This is typically accomplished through 

infrastructure improvements, vehicle speed regulation, and technological innovations. The 

present research contributes to this proactive safety paradigm by applying predictive 

analytics to identify hazardous locations based on patterns of harsh braking and 

acceleration surrogate indicators of elevated crash risk. Leveraging high-resolution 

connected vehicle (CV) data and machine learning techniques, this study identifies 

potential risk zones before crashes occur, allowing agencies to deploy targeted 

interventions such as traffic signal timing adjustments, signage enhancements, or roadway 

redesigns. This proactive, data-driven approach aligns directly with the goals of Vision Zero 

by focusing on injury prevention rather than reactive solutions.  

Despite efforts to improve roadway safety, national data shows that the goal of zero 

fatalities remains distant. While there has been modest progress, with overall traffic deaths 

declining, pedestrian fatalities have surged rising by 14.1% compared to 2019 and by 77% 

since 2010 (22). These troubling statistics highlight the persistent vulnerability of 

nonmotorized road users and underscore the need for renewed attention to equitable safety 

strategies. Systemic challenges in roadway design, enforcement, and accessibility remain 

barriers to true progress, and addressing these requires better data, smarter analysis, and 

informed investment in high-risk areas.  

Traditional traffic data collection methods, such as fixed-location sensors, have 

served an important role in understanding roadway conditions but come with notable 

limitations. Typically, these systems monitor traffic volumes or speeds during predefined 

windows, such as peak or off-peak periods. As a result, they may miss key behavioral trends 
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occurring during non-peak hours or in less predictable conditions like school zone arrival 

and dismissal periods (23). Additionally, the cost and complexity of deploying and 

maintaining these sensors restricts their scalability, especially on extensive highway 

networks or in rural regions. Many widely used vehicle trajectory datasets, such as the 

FHWA’s NGSIM program, only capture short roadway segments and limited durations, 

which constrains their usefulness for comprehensive behavior modeling (24). Similarly, 

emerging technologies like drones and LiDAR offer high-resolution data but are 

constrained by spatial coverage and context, often lacking critical information like weather, 

lighting, or roadway characteristics (25).  

Connected vehicle data offers a compelling alternative to these legacy approaches. 

With the growing adoption of vehicle-to-infrastructure and vehicle-to-vehicle 

communication technologies, CV data provides real-time, wide-area traffic insights that are 

both spatially and temporally rich. This allows researchers to move beyond isolated 

snapshots of roadway performance and instead monitor dynamic traffic behavior 

continuously across diverse operating conditions. Additionally, CV data supports the 

analysis of surrogate safety measures like rapid deceleration events that can signal risk even 

in the absence of crash reports. As such, CV data enables a shift toward predictive, 

preventive safety planning that is more aligned with modern transportation system 

management goals and Vision Zero’s emphasis on eliminating preventable harm.  

Road traffic crashes remain a major public health and economic concern  

worldwide, contributing to a significant number of fatalities, injuries, and financial losses 

each year. In response, countries across the globe have adopted various strategies and 
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interventions aimed at enhancing traffic and roadway safety (26). The economic burden of 

road traffic injuries is considerable, with estimates indicating that such incidents can cost 

nations between 1% and 5% of their Gross Domestic Product (GDP) annually. According 

to the World Health Organization (WHO), road traffic incidents are the foremost cause of 

death among children and young adults globally (27).  

Recognizing the gravity of this issue, the United Nations (UN) incorporated road 

safety into its Sustainable Development Goals. These include two primary targets:  

Reducing global road traffic fatalities and injuries by 50% by the year 2030, and ensuring 

equitable access to safe, affordable, and sustainable transportation systems. To support 

these goals, the Second Decade of Action for Road Safety (2021–2030) promotes the 

implementation of the Safe Systems approach an initiative rooted in the Vision Zero 

philosophy. This framework acknowledges the inevitability of human error while 

emphasizing a system design that minimizes the likelihood of fatal or serious outcomes 

through layered safety protections (28).  

  

2.4. Machine Learning and Predictive Modeling in Safety and 

Environmental Systems  

Climate change is a widely acknowledged global challenge with profound 

implications for both ecological systems and human society. In recent years, its impacts 

have become increasingly visible, marked by the rising intensity and frequency of extreme 

weather events. These phenomena, including hurricanes, floods, wildfires, and droughts, 
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have caused extensive damage to critical infrastructure, disrupted economic activity, and 

imposed significant financial and environmental costs (29).  

If there is acceleration of these risks, it is essential that the private sector proactively 

evaluates its exposure to climate-related disruptions and implements strategies to enhance 

operational resilience. Businesses, which are deeply embedded in social, environmental, 

and economic systems, face multifaceted threats from climate change. These range from 

rising input costs and supply chain interruptions to shifts in consumer demand and 

increasing regulatory pressures (30). Empirical evidence suggests that global economic 

output may decline significantly as temperatures rise; for example, each 1°C increase in 

average global temperature is associated with an estimated 1.2% reduction in global GDP 

(31). Additionally, agricultural productivity, especially in regions like the United States, is 

expected to suffer due to changing climatic conditions, jeopardizing food security and rural 

economies.  

To respond effectively, businesses must integrate climate science into their decision-

making frameworks. This integration is crucial for assessing exposure, forecasting potential 

disruptions, and crafting strategies to build long-term resilience. However, leveraging 

climate data in business contexts is inherently complex. The spatial and temporal variability 

of climate models, along with the uncertainty of future scenarios, often makes this data 

difficult to interpret and apply directly to corporate planning.  

To bridge this gap, advanced technologies such as artificial intelligence (AI) and 

deep learning have emerged as valuable tools. AI enables machines to replicate human 

reasoning by learning from data and making autonomous decisions (32). Within this 
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domain, deep learning uses multilayered neural networks to identify intricate relationships 

in large datasets and has already demonstrated success in areas such as image processing, 

language modeling, and increasingly, climate science (33).  

The application of AI in climate risk management presents a promising avenue for 

enhancing business resilience. By harnessing large-scale climate datasets, AI algorithms 

can identify vulnerabilities, simulate potential impacts, and forecast adverse events with 

improved accuracy (34).  These insights allow businesses to make informed decisions in 

areas such as supply chain logistics, capital investment, and risk mitigation planning. 

AIpowered decision support systems also play a critical role in optimizing operations amid 

uncertain environmental conditions. Notably, deep learning techniques are increasingly 

used to predict specific climate hazards, such as floods, droughts, and tropical cyclones, 

based on historical and real-time data, enabling earlier warnings and more precise responses 

(35).  

  

2.5. Information Management Systems and Digital Twins  

A digital twin provides an interactive virtual representation using multidimensional, 

multiscalar, multidisciplinary, and multiphysical parameters, effectively simulating the 

attributes, behaviors, and operational rules of real-world entities, making it especially 

valuable for traffic engineering applications (36). By thoroughly incorporating lifecycle 

data, digital twins can precisely mirror the performance, operations, environmental 

interactions, geometry, and current state of transportation systems (37). Nevertheless, 

realizing these digital twins for enhanced traffic management and planning is complicated 
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by significant challenges such as ensuring reliable real-time communication, accurate data 

analysis, and managing extensive data storage requirements (38).   

In recent years, the exponential growth in data generation and sharing across 

businesses, governmental institutions, industrial sectors, nonprofit entities, and academic 

research has significantly impacted the development of information management systems 

and digital twins (39). Although advancements have improved data availability, many 

sectors now face the critical issue of data saturation characterized by vast amounts of data 

coupled with insufficient analytical resources and limited time for proper assessment. This 

proliferation complicates data-driven decision-making, as organizations are increasingly 

burdened by the necessity to allocate additional resources for extracting relevant and 

actionable insights (40). Essential operations such as data management, integration, and 

processing have become increasingly complex, with over 65% of organizations reporting 

an inability to efficiently analyze their accumulated data (41).  

Several challenges necessitate the careful management and curation of data, 

particularly within the context of information management systems and digital twins. Issues 

related to high dimensionality and large-scale datasets result in heightened computational 

costs and increased risk of algorithmic instability. Moreover, large datasets in the realm of 

Big Data frequently originate from diverse sources spanning multiple temporal domains 

and utilize varied technologies, often incompatible and prone to obsolescence (42).  

As detailed by the Data Management Body of Knowledge, information 

management encompasses the collection, management, and dissemination of data across 

multiple sources to various stakeholders (43). The intrinsic value of data is contingent upon 
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structured processing, necessitating substantial resource investments to pinpoint 

meaningful information. A notable threat to effective information management is entropy, 

characterized by increasing disorder or unpredictability within data sets. This threat is 

amplified when spatial and temporal dimensions are integral parts of the data schema (44, 

45).  

The design process of a Digital Twin (DT) within the transportation domain closely 

mirrors that of developing a physical transportation component, typically involving stages 

such as concept exploration, preliminary design, detailed design, implementation, testing 

and evaluation, as well as ongoing operations and maintenance (46). However, the DT 

design diverges notably from traditional physical designs by emphasizing comprehensive 

data collection and sophisticated analytical processes.  

A standardized methodology for DT design, outlined by previous research, 

highlights essential decision-making processes relevant to transportation applications. This 

methodology explicitly addresses key high-level considerations, particularly the choice of 

input and output parameters and the technologies necessary for robust DT functionality 

(Fig. 2). Decision-making aspects, including the selection of suitable technologies, 

identifying essential inputs, and defining critical outputs, precede and directly inform the 

practical implementation of the DT. For example, decisions about DT usage frequency  

(whether continuously monitored or intermittently activated) and operational dynamics 

(static versus dynamic responsiveness to changing conditions) significantly influence 

design specifications.  
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Relevant DT technologies in transportation include machine learning and artificial 

intelligence (AI) for predictive analytics, experimental design methodologies, and 

knowledge-based systems, such as ontologies, for enhanced decision-making support.  

Precise characterization of inputs and outputs encompassing unit measures, data types 

(historical or real-time), and update frequencies is critical. The explicit documentation of 

these characteristics ensures that transportation DTs remain transparent, easily 

comprehensible, and reusable across different transportation-related scenarios.  

This dissertation recognizes a gap in existing DT standardization methods by 

exploring the decision-making processes in greater depth within transportation 

applications. Specifically, it subdivides broader technology identification steps into finer, 

more detailed considerations such as geometric modeling decisions, the selection of 

appropriate simulation solvers, and the determination of suitable physics parameters.   

Figure 2 describes a systematic framework developed to guide the design and 

deployment of Digital Twins (DTs) for transportation systems, specifically focused on 

applications that support proactive risk management and decision-making through 

integrated data-driven methods. This framework aligns with the core objective of the 

dissertation by incorporating key elements of geospatial analytics, connected vehicle data, 

and predictive modeling to create an adaptive and resilient transportation management tool. 

At the outset, the framework begins with the definition of a transportation objective. This 

objective sets the foundation for all subsequent steps and must be clearly aligned with 

measurable goals such as improving roadway safety, reducing travel time variability, or 

enhancing system efficiency. These objectives are context-sensitive and depend on the 
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unique challenges faced by transportation networks under study, whether urban arterials, 

rural corridors, or school zones vulnerable to pedestrian-vehicle conflicts. In the context of 

this dissertation, safety and resilience are emphasized, especially through the lens of 

minimizing crash risks and mitigating environmental disruptions like extreme weather 

events.  

Once the objective has been established, the DT design process is initiated. The left-

hand section of the framework outlines the hierarchical steps necessary to develop a Digital 

Twin that is both representative of real-world conditions and scalable for broader 

application. The process begins with identifying the infrastructure or system to emulate. 

This could include intersections, corridors, roundabouts, or entire regional networks 

depending on the scope of the analysis. Notably, in this research, particular emphasis is 

placed on intersections and access points, which have been identified as frequent locations 

for crash occurrences and erratic vehicle maneuvers based on connected vehicle event data.  

The DT design then proceeds with the definition of both input and output 

parameters. Input parameters refer to observable variables that can be captured through 

sensor technologies or derived from connected vehicle telemetry. Examples include vehicle 

speed, location, acceleration or deceleration values, and lateral movement, all of which 

serve as proxies for driver behavior and potential risk. Output parameters represent the 

modeled or predicted outcomes derived from the DT, such as estimated crash risk, travel 

time, delay, or exposure to heat stress in vulnerable environments. These parameters form 

the basis for predictive analytics and surrogate safety assessment models developed in later 

sections of this dissertation.  
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To ensure consistency and data integrity across simulations, it is critical to define 

the characteristics of each parameter. This includes setting the appropriate units of 

measurement, determining sampling frequency, and specifying temporal or spatial 

resolution. The fidelity of the Digital Twin is directly tied to how well these characteristics 

mirror real-world dynamics, and inaccuracies or inconsistencies at this stage can propagate 

through the model, leading to flawed conclusions.  

Once the digital model design is complete, the right-hand side of the framework 

guides the implementation and evaluation of the DT. Using modeling environments such 

as SUMO or VISSIM, the DT is developed with the capability to simulate the defined 

infrastructure and input-output dynamics. These tools provide the computational backbone 

for evaluating how changes in behavior, infrastructure, or policy affect the modeled 

transportation system.  

The next phase involves performance measurement, where the effectiveness of the 

DT is assessed based on its ability to replicate real-world phenomena or meet the predefined 

transportation objectives. If the Digital Twin does not achieve performance agreement 

defined here as the alignment between modeled outputs and empirical data or policy goals 

the design loop is reinitiated. This iterative process ensures that the model evolves and 

adapts based on new data or revised objectives, an essential feature when dealing with 

complex and dynamic systems influenced by environmental, behavioral, and infrastructural 

variability.  

If performance agreement is achieved, the DT is deployed in real-time or batch 

applications for continuous monitoring, scenario analysis, or strategic decision-making. 
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The deployment stage signifies the transition of the Digital Twin from a conceptual tool to 

a practical asset for transportation planners and policymakers. In the context of this 

research, DT deployment can support a variety of applications, including the real-time 

identification of crash-prone segments, the proactive adjustment of traffic signal timing to 

prevent vehicle-pedestrian conflicts in school zones and the spatial overlay of 

transportation risk with environmental hazards such as extreme heat.  

By offering a structured and repeatable methodology for creating and 

operationalizing Digital Twins, the framework in Figure 2 supports the broader goals of 

this dissertation. It operationalizes the integration of diverse data sources from connected 

vehicles, environmental variables, and geospatial information within a modeling 

architecture that is capable of supporting predictive and preventive decision-making. This 

structured approach underscores the interdisciplinary nature of the work, bridging 

transportation engineering, data science, environmental resilience, and risk analysis into a 

cohesive and practical modeling strategy.  

In summary, the framework provides a blueprint for translating theoretical concepts 

into actionable digital systems that enhance the safety, efficiency, and resilience of 

transportation networks. It demonstrates how the Digital Twin concept can be tailored to 

specific risk management objectives using a systematic and data-informed approach, 

making it a critical component of the proposed solution in this dissertation for modern 

transportation challenges.  
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Figure 2. Digital Twin design and deployment framework for transportation systems  

  

2.6. Research Gaps and Opportunities  

A persistent challenge in developing an effective and reliable Digital Twin for 

transportation systems lies in the physical dimension of the infrastructure itself. The 

accuracy and dependability of digital representations are deeply influenced by the 

capabilities and limitations of the underlying sensor technologies used to capture realworld 

data. In the context of connected vehicle systems and environmental monitoring, current 

sensor technologies face multiple constraints that directly hinder the precision and 
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effectiveness of data collection. These limitations often stem from the susceptibility of 

sensors to environmental variability, hardware degradation, and the complex dynamics of 

transportation environments. For example, sensors are frequently affected by varying levels 

of noise, which can originate from fluctuations in ambient conditions such as temperature, 

humidity, or the presence of particulate matter. These forms of noise degrade signal quality 

and impair the measurement accuracy of critical environmental and operational variables. 

Cameras used in transportation networks are susceptible to changes in lighting throughout 

the day and across seasons, which can result in inconsistent image quality and a reduced 

ability to detect and classify objects or events reliably.  

In addition to visual sensors, technologies such as LIDAR and RADAR, which are 

integral for three-dimensional spatial awareness, often encounter problems due to 

occlusion. When objects obstruct the direct line of sight, these sensors may either fail to 

detect entities or produce incomplete spatial models. Over time, sensor calibration can drift, 

leading to further inaccuracies and necessitating periodic maintenance to maintain 

measurement integrity. This need for ongoing recalibration introduces another layer of 

logistical and financial complexity. A significant operational challenge in deploying digital 

twin systems for transportation is the inherently dynamic nature of mobile agents such as 

vehicles, cyclists, and pedestrians. These entities exhibit unpredictable and non-linear 

movement patterns, making them particularly difficult to track accurately in real-time. 

Although advancements in real-time tracking algorithms and object detection models have 

shown promise, the current state of technology still leaves room for substantial 

improvement, especially in congested or unpredictable urban settings.  
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Moreover, the financial cost associated with widespread sensor deployment remains 

a formidable barrier to full-scale implementation. Comprehensive coverage of 

transportation networks demands the installation of a large number of fixed and mobile 

sensors, and the associated expenses for hardware acquisition, installation, calibration, and 

ongoing maintenance can escalate rapidly. These deployments also generate vast quantities 

of raw data, often in real-time, which places a heavy demand on data transmission 

infrastructure. High bandwidth requirements pose challenges for both wired and wireless 

communication networks, particularly in remote or underserved regions. To mitigate this 

issue, strategies such as Compressed Sensing have been proposed as effective methods for 

reducing data transmission burdens. Compressed Sensing enables the reconstruction of full 

signals from fewer samples by leveraging the inherent sparsity present in many types of 

transportation and environmental data. However, for such approaches to be viable, sensors 

must be supported by adequate edge computing capabilities that can perform real-time 

filtering and compression before transmitting data to centralized repositories or cloud 

platforms.  

Beyond the limitations of hardware and communication systems, integrating 

heterogeneous data sources into a coherent digital twin framework introduces additional 

complexities. Transportation-focused digital twin systems must increasingly incorporate 

data from external and non-transportation sources such as weather forecasts, emergency 

response notifications, and public health records. These data streams often exist in disparate 

formats and with varying levels of resolution and temporal granularity. Ensuring 

interoperability between these sources and transportation-specific datasets is essential to 
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support predictive analytics and risk modeling. Furthermore, external data streams often 

contain uncertainties or inaccuracies that can propagate through analytical models, 

resulting in flawed predictions or assessments. For example, weather reports may vary 

significantly in accuracy depending on the source or the forecasting model used, and traffic 

incident reports may contain inconsistencies in spatial tagging or time of occurrence. These 

uncertainties present a significant challenge to transportation risk management efforts that 

rely on high-confidence data to inform decision-making and proactive intervention  

strategies.  

Advancing sensor technology and data integration methods is therefore crucial to 

overcoming current limitations in digital twin development. Innovations such as 

multispectral cameras offer a promising avenue by enabling the capture of a wider range of 

electromagnetic wavelengths within a single device. Unlike traditional RGB or infrared 

cameras, multispectral sensors can detect variations in surface materials, thermal patterns, 

and environmental conditions, allowing for more robust and resilient sensing across 

different lighting or weather conditions. These sensors can help fill existing gaps by 

compensating for the weaknesses of individual sensor types. As research into transportation 

resilience and predictive analytics continues to evolve, the development and deployment of 

smarter, more adaptive sensing and computing architectures will be essential to enable real-

time, high-fidelity modeling of complex transportation systems. Such advancements will 

enhance the ability of transportation agencies and researchers to conduct proactive risk 

assessments, optimize mobility strategies, and ultimately improve the safety of 

infrastructure and resilience of environmental systems that support daily life.  
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2.7. Summary   

Chapter 2 provides a comprehensive review of the interdisciplinary research that forms the 

foundation of this dissertation, emphasizing the integration of geospatial analysis, 

connected vehicle data, machine learning, and digital twin technologies to support 

datadriven risk management in transportation and environmental contexts. The chapter 

begins by exploring spatial modeling techniques, including hotspot analysis and 

interpolation, to identify geographic clusters of transportation risk and environmental 

vulnerability. It then discusses the potential of connected vehicle data to improve proactive 

safety assessments through the detection of surrogate indicators like harsh braking and 

acceleration. The review extends to predictive modeling methods that leverage machine 

learning to anticipate crash patterns and climate-related disruptions. In examining digital 

twins and information management systems, the chapter highlights the technical and 

operational challenges of integrating high-resolution data across dynamic and complex 

systems. Finally, it identifies key research gaps related to sensor limitations, data 

interoperability, and the high cost of implementation, while also presenting opportunities 

for sensors, hotspots/anomalies analytics, and associated decision-making frameworks.  
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Chapter 3 | Methods  
  

  

  

  

   

3.1. Introduction   

Chapter 3 presents the foundational methodology used to support the integrated risk 

management framework developed in this dissertation. This chapter describes the 

theoretical underpinnings, analytical techniques, and modeling tools applied throughout the 

research to analyze transportation and environmental risks using geospatial and connected 

vehicle data. The goal is to provide a general methodological foundation that informs the 

more context-specific analyses found in the subsequent case study chapters.  
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Section 3.1 introduces the chapter and situates the methodology within the broader 

research objectives of the dissertation. This section emphasizes the interdisciplinary nature 

of the framework, which integrates transportation engineering, geospatial science, data 

analytics, and environmental modeling.  

Section 3.2 presents the overall research design and data sources, describing how 

connected vehicle data, environmental datasets, and spatial information were selected and 

prepared to support the study. This section also outlines the criteria used for selecting tools 

and techniques for modeling risk across diverse scenarios.  

Section 3.3 introduces the IDEF (Integrated Definition) modeling methodology, 

which is used to represent transportation processes and identify system-level risk points. 

IDEF modeling provides a structured way to break down transportation workflows, 

stakeholder roles, data flows, and points of potential failure. It plays a critical role in 

helping design and evaluate Digital Twin systems later discussed in this research.  

Section 3.4 details the spatial clustering and hotspot detection techniques used for 

identifying concentrations of risky behavior in transportation systems. Specifically, this 

section describes the application of Density-Based Spatial Clustering of Applications with 

Noise (DBSCAN) to detect clusters of harsh driving events, as well as the Getis-Ord Gi* 

statistic to identify statistically significant safety hotspots. These tools support proactive 

safety planning by highlighting areas where interventions may be needed even in the 

absence of crash data.  

Section 3.5 focuses on spatial interpolation methods used to estimate environmental 

and transportation-related variables across space. This section compares and applies 



Rayshaun Wheeler | Ph.D.  Dissertation | April 2025  

  

Page 35 of 156  

  

Inverse Distance Weighting (IDW) and Kriging interpolation techniques to analyze spatial 

patterns in heat exposure, environmental risk, and transportation data gaps. These methods 

are particularly useful for estimating conditions in rural or underserved areas where sensor 

coverage may be limited.  

Section 3.6 outlines the machine learning models used for predictive analytics and 

feature interpretation. It highlights the use of eXtreme Gradient Boosting (XGBoost) to 

build robust prediction model outputs and rank the influence of different features on 

predicted outcomes. These tools are critical for understanding the driving factors behind 

crash risk and climate vulnerability.  

Section 3.7 concludes the chapter with a summary of the methodological 

components and explains how they come together to support the overall goals of the 

dissertation. It also offers a transition into the case study chapters by explaining how each 

methodological tool will be applied in specific contexts whether analyzing school zone 

safety, agricultural vulnerability, or digital twin design for infrastructure resilience.  

Together, these methodological components provide a comprehensive and 

adaptable framework that supports data-driven decision-making and risk mitigation across 

multiple domains within transportation and environmental systems.  

  

3.2. Research Design and Theoretical Approach   

This dissertation employs a mixed-methods research design that integrates geospatial 

analysis, data science, and systems engineering to develop a comprehensive framework for 

transportation and environmental risk management. The research is grounded in a 
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systemsthinking perspective, acknowledging the interconnectedness of infrastructure 

performance, human behavior, and environmental conditions. This approach supports the 

development of predictive and preventive strategies that can be applied across diverse use 

cases, from identifying risky driving patterns in school zones to assessing heat-based 

vulnerability in agricultural systems and designing digital twins for critical infrastructure. 

The methodological framework developed in this research is operationalized through three 

independent but thematically linked case studies, each of which applies the broader 

framework to a distinct domain of interest.  

The foundation of this work lies in the integration of multiple high-resolution 

datasets that capture the spatial, temporal, behavioral, and environmental dimensions of 

risk. The primary data source for transportation risk analysis is connected vehicle (CV) 

data, which includes detailed Basic Safety Messages (BSMs) capturing vehicle speed, 

acceleration, location, heading, and time at sub-second intervals. These data allow for the 

detection of surrogate safety events such as harsh braking and rapid acceleration, which 

serve as proxies for crash risk without actual collision reports.   

Connected vehicle (CV) data represents a transformative advancement in assessing 

transportation system performance and safety. Unlike traditional data sources that rely on 

aggregated or static measurements, CV data is derived from individual vehicles equipped 

with embedded communication systems that collect and transmit real-time information 

about vehicle speed, location, acceleration, braking, and other critical performance metrics. 

These vehicles operate as mobile sensors, generating rich streams of data at high temporal 
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and spatial resolution, often every 1 to 3 seconds, thereby enabling granular insights into 

mobility patterns, safety behavior, and environmental conditions (48, 49, 50).  

Historically, transportation agencies have relied on metrics such as Annual Average 

Daily Traffic (AADT) or fixed-location detectors, which provide coarse, time-insensitive 

information that obscures important variations in driver behavior and roadway 

performance. For example, aggregated probe vehicle data or GPS-based averages often fail 

to capture critical conditions near school zones during specific times of the day, such as 

student arrival or dismissal. CV data addresses this limitation by capturing dynamic driving 

behaviors including harsh braking, sharp acceleration, and speed fluctuations at specific 

locations and times. These observations provide surrogate safety indicators that can be used 

to infer crash risk in the absence of direct collision data.  

The Federal Highway Administration (FHWA) distinguishes CV data from  

connected and automated vehicle systems, clarifying that CVs refer specifically to vehicles 

equipped with communication technologies such as cellular modems or vehicle-

toinfrastructure (V2I) modules. These systems have evolved significantly since the 

introduction of OnStar in 1996, and their adoption continues to expand. Although current 

penetration rates are still modest, averaging around 5% across U.S. highway systems, they 

are comparable to traditional probe vehicle datasets and sufficient for meaningful pattern 

recognition and risk modeling when supported by appropriate sampling strategies and 

infrastructure (51).  

One of the primary advantages of CV data lies in its spatial and temporal granularity. 

In contrast to segment-level reporting over kilometers, CV data can identify critical 



Rayshaun Wheeler | Ph.D.  Dissertation | April 2025  

  

Page 38 of 156  

  

roadway features such as access points, school entrances, intersections, and midblock 

crossings. This level of detail is particularly valuable for conducting hotspot analysis, 

which aggregates vehicle behaviors across fine-grained geographies and temporal windows 

to prioritize areas of concern.  

Moreover, CV event data, including harsh braking and harsh acceleration, has been 

increasingly validated as a meaningful surrogate for crash prediction. In this dissertation, 

CV event data will be used to inform the detection of risk-prone segments and to support 

predictive modeling strategies using machine learning.  

To fully harness the potential of CV data, this research also considers the data 

architecture and processing requirements needed to work with datasets of this magnitude. 

For instance, the sample size used to demonstrate this architecture comprises approximately 

55 billion CV observations, amounting to more than two terabytes of data provided by the 

Virginia Department of Transportation (VDOT). This dissertation adopts similar practices, 

integrating Extract-Transform-Load (ETL) pipelines, spatial indexing, and columnar 

storage solutions to ensure that CV data can be analyzed efficiently and reproducibly.  

The incorporation of CV data into this research framework is a shift in how 

transportation risk is measured and modeled. By enabling proactive detection of safety 

hazards, continuous performance monitoring, and context-sensitive analysis, CV data 

allows transportation agencies and researchers to go beyond static, reactive approaches and 

toward predictive, adaptive, and data-informed decision-making.  

In parallel, environmental data such as ambient temperature, solar radiation, and 

relative humidity are sourced from weather stations, remote sensing platforms, and publicly 
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available climate repositories to assess exposure to heat and other hazards. Geospatial 

datasets provide the spatial reference framework and include roadway networks, land use 

layers, school zone boundaries, agricultural regions, and other physical infrastructure 

layers.  

To ensure interoperability and temporal alignment, all datasets are standardized to 

a common spatial reference system and synchronized based on a timestamp or  

observational period. Noise filtering, projection transformation, and unit normalization are 

applied during preprocessing. Event detection algorithms are used to extract relevant 

behavioral signals from raw CV data, while environmental records are geocoded and 

interpolated to estimate exposure at unsampled locations. These preprocessing steps enable 

a unified and scalable dataset that serves as the foundation for the modeling and analysis 

stages described in later chapters.  

A technical strategy applied in the cases that follow is built upon a modular 

analytical framework, where each method contributes a specific dimension of insight. The 

IDEF (Integrated Definition) modeling approach is first used to represent key processes, 

actors, data flows, and risk points across the transportation system. This structured 

modeling tool supports the formalization of process-based risks and is particularly useful 

for developing digital twin systems in infrastructure management. For safety-related spatial 

analysis, clustering techniques such as Density-Based Spatial Clustering of Applications 

with Noise (DBSCAN) are applied to detect dense groupings of harsh events, while the 

Getis-Ord Gi* statistic is used to perform statistically significant hotspot analysis of spatial 
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risk concentrations. These methods are employed to identify hazardous areas that may not 

be apparent through traditional crash data alone.  

To analyze environmental conditions across space, spatial interpolation methods are 

applied, including both Inverse Distance Weighting (IDW) and Kriging. These 

geostatistical methods are used to generate continuous surfaces of environmental risk 

indicators, such as heat index values, across the study area. These interpolated surfaces 

support the identification of high-risk regions that may suffer from under-monitoring or 

sparse sensor coverage. In conjunction with geospatial techniques, predictive modeling is 

conducted using machine learning algorithms, focusing on eXtreme Gradient Boosting 

(XGBoost) due to its high performance on tabular data and ability to capture nonlinear 

relationships.   

The implementation of these analytical methods is supported by a comprehensive 

suite of software tools and computational resources designed to facilitate large-scale data 

processing, spatial analysis, and machine learning applications. Python is used for most 

machine learning, data preprocessing, and statistical analysis, leveraging packages such as 

scikit-learn, XGBoost, and Pandas. Geospatial analysis and visualization are conducted 

using ArcGIS Pro, while spatial data storage and querying are managed through 

PostgreSQL with the PostGIS extension. In cases requiring large-scale simulation and 

modeling, environments such as SUMO and VISSIM are used to support the development 

of digital twins. These tools provide the computational infrastructure necessary for 

processing large datasets and running scenario-based risk assessments.  



Rayshaun Wheeler | Ph.D.  Dissertation | April 2025  

  

Page 41 of 156  

  

In addition to the technical methods, ethical considerations are addressed with 

respect to data privacy and responsible analysis. Connected vehicle data used in this 

research is anonymized and aggregated to prevent individual identification, and no 

personally identifiable information (PII) is used. The analysis framework emphasizes 

transparency, reproducibility, and policy relevance, ensuring that findings can be used to 

support equitable and evidence-based decision-making.  

To ensure alignment between research goals and methodology, Table 3 provides a 

mapping of the dissertation’s key research questions to the corresponding analytical 

techniques:  

Table 3. Alignment of research questions with analytical methods used in the dissertation  

Research Question  Analytical Methods  

How can connected vehicle data be used to 

identify and mitigate risky driving zones?  

DBSCAN, Gi* Hotspot Analysis  

How can environmental risk exposure be 

estimated across agricultural regions?  

Kriging, IDW, XGBoost,   

What process models can support the design of 

digital twins for infrastructure safety?  

IDEF Modeling, System Mapping, 

Simulation Integration  

  

This methodological framework provides a flexible and comprehensive platform 

for addressing complex transportation and environmental risk questions. It supports the 

application of advanced analytics to real-world problems while maintaining relevance to 

policy, planning, and engineering practice.  

3.3. IDEF Process Modeling for System and Risk Representation  

Integrated Definition (IDEF) modeling is a systematic, graphical method designed to 

represent complex systems and processes clearly and comprehensively (52). Initially 
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developed for defense applications, IDEF modeling has been widely adopted across 

multiple engineering domains due to its robust ability to depict detailed processes, system 

relationships, and the various components involved. Within the context of this dissertation,  

IDEF modeling is employed to provide a structured approach for visualizing and analyzing 

transportation and environmental resilience systems, specifically emphasizing the 

representation of system dynamics, data flows, and potential risk points.  

IDEF models systematically illustrate system activities by decomposing processes 

into their fundamental components: inputs, outputs, controls, mechanisms, and sources of 

risk. Inputs represent data or resources that initiate or are required for system activities  

(53). Outputs indicate the products, results, or information generated from these activities. 

Controls describe constraints, policies, or conditions governing the activities, whereas 

mechanisms specify tools, technologies, or procedures enabling their execution. 

Importantly, sources of risk highlight areas or conditions within the system where 

uncertainty or potential failure could occur, emphasizing the critical need for proactive 

management strategies.  

IDEF modeling offers a structured means to pinpoint where and how data-driven 

analytics can be most effectively implemented in transportation and environmental risk 

management systems, such as those investigated in this dissertation. By mapping complex 

interactions between connected vehicle data streams, environmental variables, and 

geospatial information, IDEF diagrams enable researchers and practitioners to identify 

critical junctures at which risks emerge or intensify. These risk points are typically linked 
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to uncertainties associated with data accuracy, sensor reliability, dynamic environmental 

conditions, or variations in human behavior.  

As illustrated conceptually, the generalized IDEF modeling framework includes an 

"activity" or system process central to the analysis. Inputs for such models can generically 

include raw data from sensors, vehicle telematics, or environmental measurements.  

Outputs are often presented as predictive risk scores, safety evaluations, or other 

decisionsupport indicators. Transportation scenarios' control commonly includes 

regulatory frameworks, safety protocols, or established performance thresholds. 

Mechanisms encompass computational methods, analytical algorithms, geospatial tools, 

and machine learning techniques utilized to analyze data and produce outputs. Finally, the 

explicit identification of risk sources within this model supports targeted interventions and 

refined system designs to enhance resilience and performance.  

Methodologically, developing an IDEF model for system and risk representation 

involves several iterative steps: step 1 clearly defines system boundaries and activities of 

interest, step 2 identifies relevant inputs, outputs, controls, and mechanisms, step 3 

systematically maps data and process flows, and step 4 explicitly marks potential sources 

of uncertainty or system failure points. These steps facilitate a comprehensive 

understanding of complex interactions, ensuring transparency, reproducibility, and ease of 

communication among interdisciplinary stakeholders.  

 IDEF  modeling's  systematic  structure  ensures  consistency  in  process  

representation, making it an ideal foundational tool for digital twin development, predictive 

analytics integration, and geospatial risk assessments (54). By providing clear 
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visualizations of system processes and associated risks, IDEF models serve as effective 

decision-making tools, supporting risk-informed, proactive management strategies in 

transportation safety, environmental resilience, and infrastructure planning.   

3.3 Clustering and Hotspot Detection Techniques (DBSCAN, Gi*)  

Identifying areas of elevated risk in transportation systems necessitates spatial analytical 

techniques capable of isolating clusters and significant concentrations of high-risk events, 

such as harsh braking incidents or environmental stressors. Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN) and the Getis-Ord Gi* hotspot analysis 

are powerful and complementary spatial techniques used to identify and visualize locations 

of significant risk within geographic data (55, 56, 57). These methods offer robust, 

datadriven mechanisms for detecting and quantifying risk patterns that may not be evident 

through traditional data aggregation approaches.  

DBSCAN is a density-based clustering algorithm particularly suited to identifying 

clusters within large datasets containing noise and spatially irregular shapes. Unlike 

traditional clustering methods, DBSCAN does not require the specification of a predefined 

number of clusters. Instead, the algorithm operates based on two key parameters: the 

minimum number of points required to form a cluster (MinPts) and the radius (ε) within 

which points are considered neighbors (58). DBSCAN classifies data points into three 

categories: core points, border points, and noise, based on density thresholds, making it 

highly effective in identifying clusters of traffic events, such as harsh braking or rapid 

acceleration, often occurring in localized and irregularly shaped zones (59). The 
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densitybased nature of DBSCAN ensures that clusters reflect accurate spatial patterns 

rather than imposed geometric assumptions.  

The Getis-Ord Gi* statistic, often referred to as hotspot analysis, is employed to 

statistically determine areas where the spatial concentration of events is significantly higher 

or lower than would be expected by random chance. The Gi* method calculates z-scores 

for each spatial feature (such as roadway segments or geographic grids), indicating areas 

of statistically significant spatial clusters of high (hotspot) or low (coldspot) values (60). 

This technique considers both the location and attribute value of each feature in relation to 

its neighbors, making it particularly suitable for pinpointing precise hotspots of risk activity 

such as crash-prone zones, environmentally vulnerable regions, or localized operational 

issues within transportation networks.  

Recent studies underscore the efficacy of combining spatial clustering and hotspot 

techniques for transportation risk assessment (61). For instance, DBSCAN has been 

effectively applied to aggregate harsh braking events to detect clusters correlated strongly 

with crash occurrences in highway construction zones. This approach demonstrated that 

clusters of abrupt braking events often correspond directly to locations of increased 

collision risk. Moreover, these analyses confirmed that high-density braking zones 

frequently overlapped with areas of known infrastructural issues, such as narrow lanes or 

uneven pavement surfaces, highlighting DBSCAN's practical utility in proactive risk 

identification and management.  

Similarly, the Gi* statistic offers an additional layer of statistical validation, 

quantifying the significance of identified clusters to ensure that interventions target areas 
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of statistically validated risk. Its application enables transportation planners and 

decisionmakers to prioritize areas most urgently requiring attention, efficiently guiding 

resource allocation and infrastructure improvements. By statistically validating risk 

clusters, the hotspot analysis facilitates data-driven decision-making beyond anecdotal 

evidence or raw incident counts.  

This dissertation integrates DBSCAN and hotspot analysis within the 

methodological framework to systematically identify and validate risk hotspots across 

diverse transportation contexts. Utilizing connected vehicle data, environmental 

measurements, and geospatial attributes, these techniques are leveraged to proactively 

manage and mitigate risks. The combined application of DBSCAN for exploratory spatial 

pattern detection and Gi* for statistical confirmation ensures robust and actionable insights. 

Thus, the deployment of these clustering and hotspot methodologies significantly advances 

the capacity for predictive and preventive interventions, aligning with broader 

transportation safety goals and resilience strategies.  

3.4 Spatial Interpolation (IDW, Kriging) and Predictive Modeling 

(XGBoost)  

Spatial interpolation and predictive modeling are fundamental analytical components 

within the methodological framework of geospatial and data-driven risk management. 

These methods enable researchers and decision-makers to estimate risk-related variables 

across geographic spaces where empirical observations are incomplete or sparse, thereby 
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enhancing the understanding of spatial variability in transportation and environmental 

systems.  

Spatial interpolation techniques, such as Inverse Distance Weighting (IDW) and  

Kriging, address gaps inherent in geographic datasets by estimating unknown values based 

on measured data points (62). IDW is a deterministic interpolation method that calculates 

unknown values as a weighted average of neighboring points, where the weighting factor 

decreases with increasing distance from the interpolated location (63). IDW is 

straightforward to apply and computationally efficient, making it particularly suitable for 

datasets with a relatively uniform distribution of measurement points and minimal spatial 

complexity.  

In contrast, Kriging is a geostatistical interpolation technique that considers both 

the distance and the spatial correlation among data points. Unlike IDW, Kriging 

incorporates statistical models of spatial autocorrelation, making it more flexible and 

typically more accurate for complex spatial patterns, especially where underlying spatial 

processes are non-uniform or anisotropic. Kriging techniques, such as Ordinary Kriging or 

Universal Kriging, can produce spatially explicit uncertainty estimates in addition to 

predictions, providing valuable insights into confidence intervals and the reliability of 

interpolated surfaces (64). These qualities make Kriging particularly useful in 

environmental applications, such as estimating exposure levels to extreme heat or other 

climate-related risks, as well as transportation analyses where risk factors like vehicle event 

density may vary spatially in complex ways.  
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Predictive modeling is another essential methodological tool employed in this 

dissertation, with eXtreme Gradient Boosting (XGBoost) serving as a primary predictive 

modeling algorithm. XGBoost is a robust, decision-tree-based ensemble algorithm 

recognized for its high performance and computational efficiency, particularly suited for 

handling large and diverse datasets characteristic of connected vehicle data and 

environmental observations (65). This method iteratively builds a sequence of models, 

where each successive model corrects errors from previous iterations, effectively capturing 

complex nonlinear relationships and interactions among predictive features. As such, 

XGBoost significantly enhances predictive accuracy and model reliability when 

forecasting events like traffic incidents, environmental vulnerabilities, or infrastructure 

risks.  

Combining spatial interpolation and predictive modeling techniques enhances the 

methodological robustness and applicability of this dissertation. Spatial interpolation 

addresses data gaps and spatial uncertainties, while predictive modeling quantifies 

relationships and forecasts risk conditions. XGBoost, ensures that risk models are both 

highly accurate and transparent, thus facilitating informed decision-making and proactive 

management strategies. Collectively, these advanced analytical tools form the backbone of 

a robust, data-driven framework aimed at enhancing transportation safety, environmental 

resilience, and overall infrastructure reliability.  

3.5 Model Validation and Evaluation Metrics  

Ensuring the reliability and accuracy of analytical models is crucial when applying 

geospatial and predictive techniques for transportation and environmental risk 
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management. Validation procedures and clear evaluation metrics provide confidence in the 

models' predictive capability, helping to ensure their effectiveness in real-world 

decisionmaking contexts. This dissertation systematically employs robust model validation 

and evaluation methods to assess performance and guarantee the validity of insights derived 

from connected vehicle data, environmental indicators, and spatial analyses.  

Model validation involves assessing how well a predictive or spatial model 

performs on previously unseen data, providing a realistic measure of its generalizability 

and applicability. A commonly employed validation strategy is k-fold cross-validation, a 

resampling procedure that partitions data into k subsets or "folds." In this approach, models 

are iteratively trained on k-1 subsets and tested on the remaining subset, averaging results 

across multiple iterations to ensure unbiased performance estimates. Cross-validation 

ensures that predictive models, such as XGBoost models applied in risk predictions, avoid 

issues related to overfitting and can generalize effectively to new or unseen data scenarios.  

Evaluation metrics used in this dissertation vary depending on the modeling context. 

For predictive modeling applications involving continuous outcomes such as estimating the 

magnitude or probability of risk metrics such as Root Mean Squared Error (RMSE), Mean 

Absolute Error (MAE), and the coefficient of determination (R²) are employed. RMSE 

provides a measure of the average prediction error magnitude, giving greater weight to 

larger errors, while MAE offers a straightforward measure of average absolute error 

without such weighting. The R² metric quantifies the proportion of variance explained by 

the model, indicating how well the model predictions fit observed data.  

Collectively, these metrics offer a comprehensive assessment of predictive accuracy.  
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For classification-based risk analyses, such as identifying locations with high or low 

risk, metrics like accuracy, precision, recall, and the F1 score are more appropriate. 

Precision measures the proportion of correctly predicted positive observations among all 

positive predictions, whereas recall assesses the proportion of correctly identified positive 

cases among actual positive observations. The F1 score balances precision and recall, 

providing an integrated measure particularly useful when classes are imbalanced, as often 

encountered in transportation and environmental risk scenarios.  

Additionally, spatial models, including DBSCAN clustering and Gi* hotspot 

analyses, require spatially explicit validation methods. Spatial validation methods include 

evaluating the consistency of clustering patterns through silhouette scores, assessing spatial 

randomness using methods such as Moran's I, or leveraging known historical risk patterns 

as benchmarks. These spatial metrics confirm whether detected clusters and hotspots reflect 

significant spatial patterns rather than random chance.  

In summary, the model validation and evaluation metrics employed in this research 

are selected for their ability to provide robust, reliable, and transparent assessments of 

model performance across diverse contexts. These validation procedures and metrics 

collectively ensure that the integrated geospatial and predictive analytical framework 

developed in this dissertation effectively supports evidence-based decision-making, 

enhancing transportation safety, environmental resilience, and overall infrastructure 

management.  
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3.6 Summary  

Chapter 3 has established the methodological foundation underpinning this dissertation, 

providing a structured, interdisciplinary framework for analyzing transportation safety and 

environmental resilience using geospatial and connected vehicle data. The chapter outlined 

the theoretical rationale, practical applications, and systematic approaches adopted to 

manage risk proactively in diverse and complex scenarios. By integrating methods from 

transportation engineering, geospatial analytics, data science, and environmental modeling, 

the research design offers robust and comprehensive tools for effective risk analysis.  

Beginning with the overall research design, the chapter emphasized the importance 

of high-resolution datasets, including connected vehicle data and environmental 

observations. The transformative capabilities of connected vehicle data, characterized by 

high spatial and temporal resolution, were highlighted for their unique ability to capture 

detailed driving behaviors and surrogate safety events, critical for precise risk detection and 

predictive modeling.  

Section 3.3 introduced IDEF process modeling, demonstrating its utility for 

representing complex transportation and environmental systems. This structured approach 

facilitates clear visualization and understanding of inputs, outputs, controls, mechanisms, 

and potential risk sources within these systems, essential for systematic risk assessment and 

proactive decision-making. Spatial clustering and hotspot detection techniques, detailed in 

Section 3.4, further strengthened the analytical framework by enabling the identification 

and statistical validation of high-risk locations through methods such as DBSCAN and 

Getis-Ord Gi*. These techniques provide a scientifically rigorous  
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foundation for prioritizing interventions and resource allocation.  

Section 3.5 presented spatial interpolation techniques (IDW, Kriging) alongside 

predictive modeling methodologies, highlighting their importance in accurately estimating 

unobserved values across spatial domains and forecasting risk scenarios. The integration of 

machine learning models, ensures transparency and practical usability of predictions, 

crucial for informed decision-making.  

Finally, the chapter described rigorous model validation and evaluation strategies in 

Section 3.6. Techniques such as k-fold cross-validation and specific evaluation metrics like 

RMSE, MAE, precision, recall, and F1 score were identified as critical components for 

ensuring the reliability, accuracy, and robustness of analytical outcomes. Collectively, the 

methodologies described in Chapter 3 provide a comprehensive, transparent, and scalable 

analytical foundation, forming the basis for detailed explorations within subsequent case 

studies. These methodological tools collectively support proactive risk management, 

aligning closely with the overarching goals of improving transportation safety and 

enhancing environmental resilience.  
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Chapter 4 | Case Study: Information 

Management for Lifeline Infrastructure  
  

  

  

  

4.1. Introduction   

Chapter 4 presents a detailed case study on Information Management for Lifeline 

Infrastructure, focusing on the systematic integration and management of data to enhance 
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infrastructure resilience. Section 4.2 introduces the application of a Modified IDEF 

Modeling approach specifically tailored for comprehensive project risk assessment, 

providing structured insights into potential failure points and interactions within 

infrastructure systems. Section 4.3 discusses the role and importance of geospatial features 

and Linear Referencing Systems (LRS) in accurately locating, analyzing, and managing 

infrastructure assets. Section 4.4 explores the integration of crash data, previous safety 

studies, and analytical dashboards, emphasizing their combined use for improving 

decision-making and operational safety outcomes. The benefits of maintaining a centralized 

knowledge repository to streamline information sharing, enhance data accessibility, and 

support efficient risk management processes are outlined in Section 4.5. Section 4.6 

discusses practical applications of these methodologies for the development and 

operationalization of digital twins, highlighting their potential to proactively manage and 

optimize lifeline infrastructure. Finally, Section 4.7 provides a summary, synthesizing key 

insights and contributions from this case study.  

4.2. Modified IDEF Modeling for Project Risk Assessment   

Effective information management is a critical component within transportation agencies, 

mainly when supporting operations and strategic planning through geospatial model-based 

frameworks. This section explores a modified version of Integrated Definition (IDEF) 

modeling, specifically adapted to enhance traditional business process models (BPM) 

utilized during various phases of transportation projects such as initiation, scoping, 

preliminary and detailed design, procurement, construction, and operational maintenance.  
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Originally, IDEF modeling is employed as a structured graphical language to 

systematically visualize business processes, clearly defining inputs, outputs, controls, and 

mechanisms involved in various activities (66). Building upon this foundational model, 

recent research introduced the integration of risk factors as a distinct category within the 

IDEF framework. This addition significantly enhances the capacity to proactively identify, 

evaluate, and manage potential risks associated with project processes, as depicted 

conceptually in Figure 3.  

Figure 3 presents the enhanced IDEF modeling structure, adapted from prior 

research, illustrating the explicit incorporation of risk identification elements into 

traditional IDEF models (67). The inputs to project development processes typically 

encompass diverse reports, engineering calculations, design models, and a wide variety of 

documentation drawn from multiple data sources and stakeholders. Due to the complexity 

and dynamic nature of transportation projects, these inputs are inherently subject to various 

risks, including data inaccuracies, inconsistencies arising from multiple contributors, policy 

fluctuations, funding volatility, and ongoing updates from operational feedback.  

  

  

Figure 3. Integrating risk identification into IDEF  
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The inclusion of risk sources within the modified IDEF model explicitly 

acknowledges these uncertainties and threats. By doing so, the model enables stakeholders 

to systematically evaluate the quality, reliability, and criticality of information used in each 

process activity. Such evaluation is essential for advancing effective risk management 

strategies that rely on accurate and timely information.  

To mitigate identified risks, robust information management systems are employed, 

providing stakeholders with high-quality, current, and trusted data. These systems facilitate 

disciplined data curation and proactive risk control, thus supporting the continuous 

monitoring and management processes necessary for optimal operational performance and 

informed decision-making.  

Conceptually extending beyond traditional project boundaries, transportation 

agencies increasingly pursue the establishment of comprehensive digital twins for 

largescale, statewide infrastructure. For instance, a transportation agency might aim to 

digitally replicate a vast network comprising thousands of kilometers of roadway, extensive 

personnel resources, multiple concurrent projects, and substantial operating budgets. The 

concept of a digital twin originally developed by NASA in the context of space missions 

entails continuously updating digital representations of physical assets to maintain accurate 

and timely reflections of current conditions, thus ensuring ongoing relevance and 

operational effectiveness.  

Recently, digital twin applications have scaled beyond isolated assets to encompass 

extensive urban and regional infrastructure systems. Such city-scale or region-scale digital 
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twins integrate multiple interconnected sectors, including transportation, buildings, energy 

systems, communication networks, and environmental monitoring frameworks. Although 

these expansive digital twins hold substantial potential for enhancing decision-making 

capabilities, they also present significant challenges concerning technological 

infrastructure, data quality and confidence, privacy concerns, security vulnerabilities, and 

substantial data processing demands.  

Nevertheless, the strategic adoption of modified IDEF modeling within robust 

information management frameworks significantly contributes to overcoming these 

challenges. By ensuring data integrity, effective risk identification, and proactive 

management capabilities, transportation agencies can fully realize the benefits of digital 

twins, resulting in improved operational resilience, strategic planning efficacy, and 

informed decision-making across extensive infrastructural and organizational domains.   

Transportation agencies consistently encounter challenges related to the 

management, integration, and reliability of data throughout the various phases of project 

development. State-level departments of transportation manage expansive infrastructure 

networks and complex operational frameworks requiring precise and reliable information 

for informed decision-making. In response to these challenges, a modified Integrated 

Definition (IDEF) modeling methodology has been developed and applied to 

systematically represent, assess, and mitigate risks inherent in transportation project 

planning and operational activities.  

Figure 4 exemplifies the use of this modified IDEF approach during the scoping 

phase of transportation project development. This phase is particularly critical, as 
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inaccurate or inaccessible data can significantly compromise subsequent project outcomes, 

including cost overruns, schedule delays, and deviations from the defined scope. By 

explicitly incorporating incorrect or inaccessible data as a source of risk within the IDEF 

framework, transportation agencies can proactively recognize and mitigate potential threats 

that may impact the scoping process and subsequent project phases.  

  
Figure 4. Modified IDEF representation highlighting data risk in project scoping  

  

In practice, transportation agencies like VDOT leverage information management 

systems to address these challenges. These systems act as centralized repositories that 

aggregate, validate, and disseminate essential transportation-related data to stakeholders. 

For instance, VDOT employs a comprehensive geospatial analytics architecture within 

their information management platform, facilitating detailed spatial and temporal analyses. 

The system integrates diverse geospatial data sets such as crash records with extensive 

attributes, infrastructure inventories, and performance metrics ensuring that transportation 

stakeholders have reliable, current, and actionable information.  
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Analytical functions within these information management systems further enhance 

their value. Techniques such as data fusion allow agencies to integrate multiple datasets 

concurrently, enabling a comprehensive understanding of transportation conditions and 

performance. Geospatial visualization tools play an essential role by offering intuitive, 

map-based interfaces that stakeholders can use to interpret complex data, communicate 

findings effectively, and inform decision-making processes.  

Moreover, modules designed within these systems enable precise referencing to 

specific transportation network elements, in-depth analysis of spatial and temporal asset 

characteristics, and the integration of operational reports and studies linked explicitly to 

geographic regions. These capabilities are essential for identifying areas requiring 

intervention, planning infrastructure enhancements, and optimizing operational efficiency.  

The methodological framework provided by the modified IDEF model thus serves 

as a robust basis for information and risk management, offering transportation agencies a 

structured approach to systematically address data-related uncertainties. By embedding risk 

assessment directly into the process models used for transportation planning and 

management, agencies like VDOT ensure greater data integrity, improved decision 

confidence, and enhanced operational effectiveness, ultimately contributing to safer, more 

efficient transportation systems.  

4.3 Geospatial Features and Linear Referencing System   

Effective transportation system management necessitates precise and efficient management 

of extensive and dynamic geospatial data (68). Departments of transportation (DOTs) 

regularly encounter the challenge of managing vast quantities of geographic data associated 
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with transportation infrastructure, including roadway alignments, intersection points, mile 

markers, and related linear features. To systematically address these challenges, agencies 

commonly employ Linear Referencing Systems (LRS), which enable the precise spatial 

referencing of transportation assets and events along linear network structures.  

A Linear Referencing System is an established method of spatial referencing 

designed specifically for transportation networks, allowing agencies to identify locations 

using linear measures relative to defined reference points rather than absolute coordinates 

(69). The principal advantage of an LRS is its ability to simplify the representation and 

referencing of linear infrastructure, such as highways and railways, into manageable, 

logically segmented entities. By capturing location information relative to defined 

reference markers, such as mileposts or roadway segments, LRS streamlines the spatial 

management and analysis of linear assets, simplifying data integration and exchange across 

diverse datasets and improving overall data consistency and quality (70).  

In combination with Integrated Definition (IDEF) models, which explicitly detail 

business processes, activities, data flows, and points of risk, LRS significantly enhances 

the capabilities of information management systems utilized by transportation agencies. 

IDEF modeling methods establish a structured representation of workflow processes, 

clearly defining the types of data inputs, the processes required to transform inputs into 

outputs, and the inherent risks or uncertainties involved in transportation infrastructure 

projects. When paired with geospatial referencing provided by an LRS, IDEF models gain 

additional context and depth, as the spatial dimension of data flows and risk sources can be 

precisely visualized and analyzed within a geographical context. Such integration improves 
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transparency, facilitates clear communication among stakeholders, and supports informed 

decision-making regarding infrastructure planning, operation, and risk mitigation.  

From a practical standpoint, transportation agencies employ these integrated 

methods to ensure data management efficiency and accuracy. For example, roadway assets 

such as signage, pavement conditions, guardrails, and incident occurrences can all be 

dynamically located through linear referencing. When data from numerous independent 

sources such as crash reports, maintenance records, and environmental conditions are 

integrated within an LRS, transportation managers and planners gain comprehensive 

insights about the status, condition, and performance of transportation assets. Moreover, 

this geospatial data integration allows for sophisticated analytical capabilities, such as 

hotspot identification, proximity analysis, and corridor-level assessments, thus supporting 

targeted intervention strategies.  

Visualization is another essential benefit derived from the integration of LRS and 

IDEF methodologies. By representing transportation infrastructure data visually, agencies 

can intuitively communicate complex relationships and critical risks to diverse stakeholder 

groups. Such visualizations support intuitive risk assessment, spatial trend identification, 

and the tracking of asset conditions and performance metrics. Geographic Information 

Systems (GIS) software platforms often facilitate the visualization and analytics processes 

inherent in an LRS-based framework, thereby enhancing the effectiveness of 

communication among agency personnel, planners, public stakeholders, and policy 

decision-makers.  
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Furthermore, the incorporation of an LRS within an overall information 

management framework ensures scalability and adaptability. Transportation networks 

regularly undergo expansion, modification, and improvement. Linear Referencing Systems 

inherently support dynamic updates to asset inventories and spatial relationships, thereby 

accommodating continuous modifications in the transportation infrastructure. This 

adaptability is especially critical for departments of transportation, whose project portfolios 

are expansive and constantly evolving.  

In summary, integrating Linear Referencing Systems and IDEF modeling 

methodologies within a transportation agency's information management framework offers 

robust capabilities for geospatial data management, spatial analysis, and visualization. Such 

integrated frameworks streamline data integration, improve consistency and accuracy of 

infrastructure information, enable effective identification and mitigation of project-level 

risks, and ultimately enhance the agency's decision-making capacity. By adopting such 

methodologies, transportation agencies significantly strengthen their operational 

effectiveness, infrastructure planning processes, and overall risk-informed strategic 

decision-making.  

4.4. Integration of Crash Data, Studies, and Analytical Dashboards  

Effective transportation management increasingly relies upon comprehensive and timely 

data integration to inform operational decisions and mitigate potential risks. Transportation 

agencies, regularly aggregate diverse data sources such as crash records, infrastructure 

studies, traffic performance metrics, and safety evaluations into centralized analytical 

dashboards. These dashboards play a critical role in translating raw data into actionable 
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insights, enhancing decision-making capabilities across different project development 

phases.  

The process of integrating transportation data poses inherent risks related to 

accuracy, completeness, timeliness, and interoperability. Particularly in the context of crash 

data, incomplete or inaccurate information can lead to flawed analyses, ineffective safety 

strategies, and suboptimal resource allocation. This dissertation emphasizes the importance 

of explicitly identifying and managing these risks through structured methodologies. 

Leveraging the modified IDEF framework described previously (see Figure 4), this section 

systematically identifies and categorizes risk sources throughout data integration and 

management lifecycle stages, from initial data collection to visualization and ongoing 

maintenance.  

Table 4 outlines critical risk sources that transportation agencies like VDOT 

encounter in the integration of crash data, related studies, and analytical dashboard systems. 

Each listed source of risk is systematically associated with relevant lifecycle stages, 

highlighting key points at which errors or vulnerabilities might emerge. For instance, the 

risk of "Inaccurate Data Entry" (R1) is notably critical during the initial data collection 

stage and continues to pose challenges during data visualization and maintenance. 

Similarly, the risk of "Data Incompatibility" (R3) emerges prominently during integration 

and dashboard development stages, potentially compromising analytical modeling 

accuracy and consistency across systems.  
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Furthermore, effective analytical dashboards require reliable integration of spatial 

and temporal data attributes to visualize critical patterns, trends, and hotspot locations 

effectively. Spatial referencing errors particularly those associated with Linear Referencing  

Systems (LRS) represent a significant and ongoing concern. Misalignments or incorrect 

referencing of crash incidents, asset locations, or project boundaries can severely limit the 

effectiveness of analytical dashboards, potentially leading to incorrect risk assessments or 

ineffective management strategies.  

VDOT's analytical dashboard infrastructure exemplifies a successful integration 

strategy, incorporating over one million crash records with frequent data updates and 

approximately 150 unique attributes, including incident location, severity, contributing 

factors, roadway characteristics, and environmental conditions. The system employs robust 

data fusion methodologies to reconcile and analyze diverse data streams, ensuring 

consistent and accurate representations of transportation network performance. Advanced 

visualization tools embedded in these dashboards support the clear communication of 

transportation conditions, risk hotspots, and infrastructure performance across 

jurisdictional boundaries and administrative divisions. Figure 5 illustrates the spatial 

visualization capabilities of the Virginia Department of   

Transportation’s (VDOT) Pathways for Planning platform, which serves as a 

comprehensive digital interface for monitoring both physical infrastructure assets and 

realtime performance metrics displayed in figure 5. The interface allows users to explore a 

variety of interactive map layers, such as crash data categorized by severity (e.g., fatal, 

severe, visible, minor, and property damage only), STARS study areas, and traffic volume 
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represented by Annual Average Daily Traffic (AADT). Each dataset is visually encoded 

using distinct color schemes and symbols, enhancing the user's ability to identify patterns 

and assess infrastructure conditions at both macro and corridor levels. This geospatial 

functionality plays a critical role in supporting data-driven transportation planning, 

enabling engineers, planners, and policymakers to visualize risks, prioritize improvements, 

and align projects with safety and congestion mitigation goals.  

  

  

Figure 5. VDOT Pathways for Planning, geospatial viewer of multiple information layers, stylized 

by feature attributes.  

  

Ultimately, the structured identification and management of data integration risks, 

as illustrated in Table 4, strengthen transportation agencies' decision-making processes. 

Explicitly recognizing potential risk points and addressing them through disciplined data 

governance, quality control procedures, and robust information management systems 
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enhance agencies' abilities to proactively mitigate risks. This structured approach ensures 

that analytical dashboards and associated studies deliver actionable and reliable insights, 

fundamentally contributing to the overarching goals of transportation safety, operational 

efficiency, and risk-informed decision-making.  

  

Table 4. Sources of risk across data integration and management lifecycle stages for transportation 

agencies  
Sources of Risk Data 

Collection 

Data 

Integration 

Dashboard 

Development 

Analytical 

Modeling 

Visualization & 

Reporting 

Maintenance & 

Updating 

R1 - Inaccurate Data Entry +    + + 

R2 - Data Loss or Corruption + + + + + + 

R3 - Data Incompatibility 

(format/systems) 

 + + +   

R4 - Unauthorized Data Access  + +  + + 

R5 - Network or Infrastructure 

Failures 

 + + +  + 

R6 - Incorrect Spatial Referencing 

(LRS errors) 

+ +  + + + 

R7 - Software Bugs or Defects   + + +  

R8 - Data Misinterpretation 

(analytical errors) 

   + +  

R9 - Incomplete or Missing 

Attributes 

+ +  + + + 

R10 - Timeliness and Latency Issues + +  + + + 

R11 - Changes in Reporting 

Standards or Regulations 

   + + + 

R12 - Visualization Errors 

(misleading maps/charts) 

  +  +  

 

  

4.5. Benefits of a Centralized Knowledge Repository  

A centralized knowledge repository provides significant advantages for transportation 

agencies and organizations responsible for large-scale transportation management, project 

implementation, and operational risk mitigation (71). In the context of transportation 



Rayshaun Wheeler | Ph.D.  Dissertation | April 2025  

  

Page 67 of 156  

  

agencies, the volume, complexity, and dynamic nature of data generated by projects and 

operations necessitate an organized and integrated approach to knowledge management.  

Centralized knowledge repositories offer structured and streamlined access to 

comprehensive data, which enhances the ability of transportation agencies to make timely 

and informed decisions. Unlike fragmented or isolated data storage methods, centralized 

systems provide stakeholders across multiple jurisdictions and project phases the ability to 

easily retrieve and utilize critical information. This integrated data structure is particularly 

valuable for supporting decisions related to project scoping, resource allocation, safety 

management, and operational improvements.  

A centralized repository supports consistent and standardized data management, 

reducing redundancies and minimizing inconsistencies that commonly occur when multiple 

stakeholders manage their own independent data systems (72). The standardized data 

structures improve interoperability and information sharing, enabling smoother 

collaboration among different divisions or jurisdictions within a transportation agency. 

Such uniformity also significantly reduces the likelihood of misinterpretations or errors, 

which could otherwise lead to costly project delays or ineffective operational responses.  

Moreover, transportation projects involve numerous stakeholders across diverse 

teams including planners, engineers, emergency response personnel, and policymakers. A 

centralized knowledge repository allows these diverse groups to interact more efficiently 

by providing a common reference point and ensuring all parties have access to the same 

accurate, timely, and relevant information. As a result, these systems facilitate improved 
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communication, coordination, and cooperation, fostering a collaborative environment that 

enhances overall organizational effectiveness.  

One of the crucial benefits of centralized knowledge management systems is their 

capability to support proactive risk identification and mitigation. These systems can 

integrate and analyze vast amounts of historical and real-time data, helping transportation 

agencies detect emerging risks or patterns early, often before significant impacts manifest. 

With centralized repositories, transportation agencies can leverage historical data to 

identify trends, predict future conditions, and proactively address potential safety hazards 

or operational inefficiencies.  

Centralized repositories also facilitate continuity in knowledge retention and 

transfer, significantly enhancing institutional memory (73). Projects in transportation 

agencies are typically executed over extended periods and often involve shifting project 

teams. Without effective knowledge management, valuable insights and experiences are 

frequently lost during project transitions. Centralized repositories ensure knowledge gained 

throughout project lifecycles is systematically captured and retained, enabling the seamless 

transfer of knowledge across different project phases and to future projects. This approach 

mitigates the risk associated with turnover of key personnel and helps maintain consistent 

project performance.  

Finally, analytical dashboards and geospatial visualization integrated within 

centralized knowledge repositories enhance decision-making by presenting complex 

information clearly and intuitively. Visual analytics capabilities assist stakeholders in 

interpreting intricate datasets and support quicker, data-driven decision-making processes. 
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By centralizing geospatial and operational data, transportation agencies can employ 

advanced visualization techniques to illustrate spatial and temporal patterns, effectively 

highlighting critical issues or priority areas for intervention.  

In summary, centralized knowledge repositories are foundational for modern 

transportation agencies managing extensive networks, complex projects, and multifaceted 

operational responsibilities. Through standardized data management, proactive risk 

detection, effective communication, and continuity of knowledge transfer, such repositories 

substantially enhance organizational efficiency, safety outcomes, and strategic decision-

making capabilities.  

 4.6 Applications for Digital Twin Development  

Digital twin technology presents a transformative capability for transportation 

agencies, enabling the detailed, dynamic representation of real-world transportation assets 

and operational conditions within a digital environment (74). Within the context of 

transportation risk management, digital twins offer transportation agencies the ability to 

proactively simulate, monitor, and optimize their extensive networks of infrastructure, 

spanning thousands of kilometers of roadway, numerous bridge structures, tunnels, and 

associated infrastructure assets. The deployment of digital twins allows agencies to forecast 

and evaluate various operational scenarios, improving planning effectiveness, enhancing 

safety, and mitigating risks associated with infrastructure management and maintenance.  

The development and effective implementation of digital twin technology 

fundamentally rely upon structured modeling frameworks, such as the Integrated Definition 

(IDEF) methodology. IDEF models facilitate systematic decomposition of complex 
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transportation processes, capturing the intricate interplay of data flows, operational 

constraints, decision points, and the critical identification of risk sources. By establishing 

clearly defined relationships between various system components including inputs, outputs, 

mechanisms, controls, and associated risks IDEF models provide essential foundational 

structures necessary for digital twin construction. Specifically, these models clarify the 

logical architecture and data requirements essential for representing physical infrastructure 

digitally, enabling accurate and reliable digital twins that reflect real-world operational 

contexts and risks.  

Transportation agencies leverage digital twins in numerous practical applications, 

each significantly benefiting from integration with IDEF modeling frameworks. One 

primary application includes real-time monitoring and predictive analysis of asset 

conditions and operational performance. By continuously integrating sensor data, 

environmental measurements, and asset conditions into a digital twin, transportation 

agencies can proactively detect anomalies or potential risks, such as infrastructure 

deterioration, environmental vulnerabilities, or operational inefficiencies. Through the 

structured processes outlined by IDEF models, transportation agencies ensure that digital 

twins are systematically updated with accurate data streams, thereby enhancing their 

reliability as decision-support tools.  

Furthermore, digital twins provide powerful capabilities for scenario analysis and 

planning. Transportation agencies frequently encounter uncertainties related to extreme 

weather events, changes in traffic patterns, or infrastructure expansions. A digital twin, 

grounded in the systematic process modeling of IDEF frameworks, supports sophisticated 
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simulations and "what-if" analyses to understand potential outcomes under varying 

operational conditions or environmental scenarios. These analyses allow transportation 

agencies to identify and evaluate risks proactively, enabling informed strategic planning 

and optimized allocation of resources.  

Digital twin applications are also notably effective in emergency response planning 

and crisis management. In situations such as severe weather events or large-scale incidents, 

digital twins, integrated with geospatial data and real-time sensor information, facilitate 

rapid assessment of infrastructure conditions, traffic congestion, and potential safety 

hazards. Leveraging the clarity and structured representation provided by IDEF process 

models, agencies can more effectively coordinate resources, prioritize interventions, and 

mitigate risks in real-time during emergencies.  

In addition to operational and emergency management applications, digital twins 

significantly enhance transportation infrastructure lifecycle management. Infrastructure 

projects involve complex interactions between multiple stakeholders, data streams, and 

evolving operational conditions. Digital twins developed through systematic IDEF 

modeling practices facilitate effective management of infrastructure throughout its 

lifecycle, from initial design and construction to long-term maintenance and eventual 

decommissioning or replacement. These digital representations ensure consistency in 

project information, improve communication among stakeholders, and support 

comprehensive risk management at every lifecycle phase.  

Ultimately, the integration of digital twin technology and structured IDEF modeling 

frameworks enables transportation agencies to manage complex infrastructure networks 
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with unprecedented accuracy, efficiency, and foresight. The digital twin serves not merely 

as a static digital replica but as a dynamically evolving representation of infrastructure 

assets, continuously updated through structured data integration processes. As 

demonstrated throughout this dissertation, the strategic deployment of digital twins, 

informed by robust IDEF process models, fundamentally enhances transportation system 

resilience, safety, operational efficiency, and overall risk-informed decision-making 

capacity.  

4.7 Summary   

Chapter 4 of the dissertation provides a comprehensive case study on Information 

Management for Lifeline Infrastructure, emphasizing how structured data integration can 

significantly enhance infrastructure resilience. The chapter introduces a modified 

Integrated Definition (IDEF) modeling approach tailored for project risk assessment within 

transportation projects. This enhanced model explicitly incorporates risk identification 

elements, helping agencies systematically identify, evaluate, and manage potential threats 

such as data inaccuracies, inconsistencies, policy fluctuations, and funding volatility. By 

integrating these risk factors, the model improves decision-making, supports proactive risk 

mitigation, and fosters effective project management throughout various phases, including 

scoping, design, procurement, and maintenance.  

The chapter further explores the significance of Geospatial Features and Linear 

Referencing Systems (LRS), detailing their role in managing spatially extensive and 

dynamic transportation data. It discusses how LRS simplifies asset management by 

enabling precise referencing of assets and incidents along linear networks, significantly 
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enhancing data consistency, integration, and analytical capability. Additionally, the 

integration of crash data, historical safety studies, and analytical dashboards within 

centralized knowledge repositories demonstrates substantial improvements in operational 

safety, data reliability, and decision-making efficiency. Practical applications of digital twin 

technology are also discussed, highlighting their potential for real-time monitoring, 

predictive analytics, emergency response planning, and lifecycle management of 

transportation infrastructure, all systematically guided by the structured processes outlined 

in the modified IDEF modeling framework.  
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Chapter 5 | Case Study: School Zone Safety 

Using Connected Vehicle Data   
  

  

  

  

5.1. Introduction   

Chapter 5 presents a case study focused on school zone safety by leveraging connected 

vehicle data to identify high-risk driving behaviors near educational institutions. This 

chapter illustrates how event-based data, specifically harsh braking and acceleration 

incidents, can be used to understand traffic conditions, assess risk patterns, and inform 

proactive safety improvements in alignment with Vision Zero goals. Through a geospatial 

and data-driven methodology, the study applies clustering and hotspot analysis techniques 

to uncover spatial trends and safety-critical zones. The results are used to generate 

actionable insights for improving infrastructure and traffic operations around school zones.  

The chapter begins by introducing the relevance of connected vehicle data for 

school zone safety (Section 5.1) and describes the selected study area and datasets used  

(Section 5.2). It then details the process for detecting harsh braking and acceleration events 

(Section 5.3), followed by the application of the DBSCAN clustering algorithm to identify 

spatial clusters of these events (Section 5.4). Section 5.5 outlines the hotspot analysis 

methodology, which enhances spatial understanding of where the most critical events occur. 

Section 5.6 demonstrates the combined approach in action, showcasing key findings. Based 
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on the analysis, Section 5.7 provides targeted safety recommendations and discusses the 

broader implications for Vision Zero initiatives. The chapter concludes with a summary of 

key insights and contributions (Section 5.8).  

5.2. Study Area and Data Description  

The case study presented in this chapter focuses on a school zone in Northern 

Virginia, strategically situated at the midway point between two of the region’s most 

significant transportation hubs: Reagan National Airport and Dulles International Airport. 

This location is not only representative of a typical high-traffic urban-suburban interface 

but also presents a unique mix of transportation dynamics influenced by local commuter 

traffic, school operations, and transient flows associated with airport-bound travel. The 

integration of connected vehicle (CV) data in such a complex environment offers 

unprecedented opportunities to study safety conditions in real time, providing granular 

insights into risk patterns that traditional traffic monitoring systems often overlook.  

To support this analysis, Table 4 presents a curated selection of connected vehicle 

data attributes that are particularly relevant to this project’s objectives. These variables were 

extracted from the broader CV data architecture provided by the Virginia Department of 

Transportation (VDOT) and selected based on their utility in geospatial modeling, risk 

detection, and event classification. Each attribute supports a unique analytical lens through 

which behavioral and environmental factors impacting school zone safety can be evaluated. 

Collectively, these variables facilitate a robust framework for risk analysis, cluster 

detection, and decision support.  
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The spatial components latitude, longitude, and heading are essential to geolocating 

and interpreting vehicle behaviors within the school zone’s defined boundaries. These 

parameters allow for the visualization of vehicle trajectories and the identification of high 

density conflict zones, particularly around key infrastructure such as school entrances, 

pedestrian crossings, and signalized intersections. In the context of Northern Virginia’s 

dense and often congested roadways, accurate spatial positioning becomes even more 

critical for capturing the dynamic nature of school zone interactions.  

Recent advancements in transportation safety research have increasingly 

emphasized the use of high-resolution, data-driven methodologies, with connected vehicle 

(CV) data emerging as a critical resource for evaluating driving behavior and system 

performance. This dissertation builds upon that momentum by utilizing multiple clustering 

analysis techniques and machine learning approaches to examine harsh braking and 

acceleration events. By analyzing objective sensor-based measurements collected from CV 

systems, this methodology enables spatial visualization of high-risk driving behavior and 

supports the identification of hazardous zones based on empirical evidence rather than 

subjective reporting.  

These techniques facilitate the detection of meaningful geospatial patterns in 

vehicle dynamics, allowing researchers and practitioners to uncover areas where dangerous 

driving behavior is more likely to occur. The ability to map and interpret these patterns 

provides a valuable foundation for developing targeted safety strategies and interventions 

aimed at reducing crash risk and improving roadway performance.  
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To further support the analysis of driving behavior, Figure 6 presents a conceptual 

illustration of the two primary acceleration axes captured in the dataset. Longitudinal 

acceleration (AccelerationX) corresponds to forward and backward motion, such as rapid 

acceleration or harsh braking, while lateral acceleration (AccelerationY) captures side-

toside movement, often associated with abrupt lane changes or sharp turns. Together, these 

variables offer a multidimensional view of vehicle behavior, contributing to a more 

comprehensive understanding of risk and system performance in real-world driving 

conditions.  

  

  
Figure 6. Illustration of AccelerationX (Forward/Backward) and AccelerationY (Lateral) 

movement in vehicle dynamics  

  

The speed attribute is also critical in evaluating compliance with reduced school 

zone speed limits. Combined with acceleration patterns, speed can differentiate between 

typical deceleration due to traffic congestion and deliberate harsh braking in response to 

unexpected conditions such as pedestrian movement or erratic driving behavior. Moreover, 

captured date/time attributes enable fine-grained temporal segmentation of events, 

facilitating analysis across morning arrival, mid-day lull, and afternoon dismissal windows. 

This time-sensitive analysis is essential in school zone studies, where traffic conditions 

AccelerationX AccelerationY 
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fluctuate significantly over short time frames and are often misrepresented in aggregate 

data.  

Additionally, environmental and driver state variables, such as exterior temperature, 

windshield wiper speed, seat belt status, and ABS activation, provide supplementary 

context for interpreting risky events. For example, poor weather conditions inferred from 

active wipers and low temperatures could increase the likelihood of brakingrelated 

incidents. Similarly, activation of anti-lock braking systems (ABS) serves as an automated 

proxy for abrupt deceleration on potentially slick or uneven surfaces an important factor 

when assessing safety near school entrances, where pavement conditions and stop-and-go 

behavior are more pronounced.  

The journey ID and ignition state are used to filter out non-movement data and 

analyze complete trip patterns that pass through or originate near the school zone. This is 

particularly helpful for longitudinal studies aimed at tracking patterns in recurring 

behaviors, such as habitual speeding or frequent harsh braking by the same vehicle across 

multiple days. These identifiers also support the segmentation of trip stages, such as entry 

into and exit from the zone, allowing for localized analysis of behavior change in response 

to posted signage or traffic calming infrastructure.  

Finally, turn signal and seat occupancy data add interpretability to vehicle behavior 

patterns, especially in the context of parent drop-offs, school bus movements, and 

pedestrian conflict areas. For example, inconsistent use of turn signals at critical access 

points may suggest confusion or poor visibility, while high seat occupancy may infer 
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student transport trips, aligning with the overall objectives of school zone safety 

evaluations.  

Taken together, the data elements outlined in Table 4 provide the methodological 

foundation for the spatial analysis, machine learning, and hotspot detection techniques 

discussed in this chapter. They enable a multi-dimensional exploration of school zone 

operations, blending vehicle behavior, environmental context, and spatial distribution of 

risk into a cohesive analytical approach. This level of granularity is crucial for proactive 

transportation planning, particularly in vulnerable contexts such as school zones where the 

margin for error is small and the consequences of unsafe behavior are severe.  

In summary, Table 4 serves as more than a list of connected vehicle attributes it is 

the scaffolding upon which the risk assessment framework is constructed. By leveraging 

this diverse and high-resolution dataset, the case study is able to identify, interpret, and 

address safety risks in a complex transportation environment where children, caregivers, 

and commuters converge. The use of CV data in this Northern Virginia school zone 

exemplifies the future of data-driven transportation safety management, showcasing the 

value of integrated digital systems in enhancing public safety and operational resilience.  

  

  

Table 5. Relevant connected vehicle data attributes for transportation risk analysis  

Attribute 

Name 

Description Source Application in 

Dissertation 

Longitude Geographic coordinate for 

vehicle location (X-axis) 

 Movement & Event 

Data 

Spatial mapping of vehicle 

location. 

Latitude Geographic coordinate for 

vehicle location (Y-axis) 

Movement & Event 

Data 

Supports hotspot detection 

and spatial clustering. 
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By analyzing key vehicle dynamics such as acceleration, this study offers a detailed 

view into patterns of risky driving behavior within the vicinity of a designated school zone. 

These patterns support the identification of localized safety concerns and inform the 

development of targeted interventions aimed at reducing risk in these sensitive areas. Figure 

6 displays a histogram of longitudinal acceleration (AccelerationX) values recorded within 

a 1.609 km (1-mile) radius surrounding the selected school zone. The data reveal a 

Speed Vehicle speed at time of record 

(mph) 

Movement Data Detection of risky behaviors 

(e.g., speeding, sudden 

deceleration). 

Heading Direction of vehicle movement 

in degrees (0–360) 

Movement Data Analyzing trajectory and 

turning behavior. 

AccelerationX Longitudinal acceleration, 

negative for braking, positive 

for acceleration 

Event Data Used to identify harsh 

braking and acceleration 

events. 

AccelerationY Lateral acceleration, useful 

for detecting sharp turns or 

swerving 

Event Data Detection of lateral risk 

behaviors (lane changes, 

turning risk). 

Captured 

Date/Time 

Timestamp of the observation Movement & Event 

Data 

Enables temporal analysis 

and time-of-day risk 

patterns. 

Journey ID Unique identifier for each 

vehicle journey 

Event Data Supports analysis of vehicle 

behavior across trip 

segments. 

Ignition State Indicates whether the vehicle 

is turned on or off 

Event Data Filters out stationary 

vehicles; ensures active 

driving observations. 

Exterior 

Temperature 

Measured ambient 

temperature from vehicle 

sensors 

Event Data Useful for correlating 

weather conditions with 

driving behavior. 

Seat Belt 

Status 

Indicates whether driver seat 

belt is engaged 

Event Data Contributes to safety 

compliance analysis. 

ABS Activation Indicates if anti-lock braking 

system was triggered 

Event Data Correlation with harsh 

braking and loss of traction. 

Windshield 

Wiper Speed 

Reflects whether the vehicle is 

operating under precipitation 

Event Data Environmental condition 

inference (e.g., rain during 

events). 

Turn Signal Indicates if a turn signal was 

active during the event 

Event Data Important for determining 

intentional vs. unintentional 

lane maneuvers. 

Seat 

Occupancy 

Detects number of seat 

positions occupied 

Event Data Contextualizes risk 

depending on vehicle load. 
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distribution that skews slightly toward deceleration, with a mean value near -0.70 m/s². The 

median of -0.16 m/s² suggests that many of the recorded events involve minor braking or 

low-level acceleration, while a standard deviation of 2.23 indicates a broad range of values, 

encompassing both aggressive acceleration and severe braking.  

Two notable peaks emerge in the histogram. One, centered around -3.9 m/s², reflects 

a concentration of harsh braking events; another, near 3.7 m/s², corresponds to episodes of 

rapid acceleration. These extreme values may be indicative of sudden driver reactions, 

possibly triggered by unexpected obstacles, congested traffic flow, or poor visibility and 

signage. Previous research has associated such behaviors with aggressive or inattentive 

driving, driver misjudgment, or infrastructural challenges that may contribute to abrupt 

vehicle maneuvers (33). These results underscore the importance of investigating the root 

causes of such behaviors in school zones, where vulnerable road users like children and 

pedestrians are present. Interventions guided by this type of analysis whether infrastructure 

redesign, signage enhancement, or speed regulation can help mitigate these risks and 

improve overall roadway safety.  
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Figure 7. Histogram of AccelerationX displays the distribution of acceleration values in the 

dataset, highlighting the count of events at different acceleration levels with the mean, median, 

and standard deviation  

  

5.3. Detection of Harsh Braking and Acceleration Events  

The identification of harsh braking and acceleration events is a critical component of 

modern transportation safety analysis, particularly in sensitive areas such as school zones. 

These events serve as surrogate indicators of elevated crash risk, reflecting abrupt driver 

responses to traffic conflicts, pedestrian activity, or insufficient infrastructure design. In 

this study, connected vehicle (CV) data is leveraged to detect such behaviors in real time 

and with a level of detail that far exceeds the capabilities of traditional traffic monitoring 

systems.  
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Conventional data collection methods such as loop detectors, fixed-location 

cameras, or manual traffic counts are inherently limited in spatial and temporal resolution. 

These systems typically record aggregated traffic volumes or average speeds over fixed 

intervals, offering only a high-level perspective of roadway conditions. Moreover, they are 

constrained to specific locations and often fail to capture the nuanced behaviors that occur 

between monitoring points. As a result, traditional data sources may obscure the variability 

in driving behavior, particularly during short-duration, high-risk events such as sudden 

braking or aggressive acceleration.  

In contrast, CV data offers a highly granular and continuous stream of vehicle 

performance information, capturing attributes such as longitudinal and lateral acceleration, 

speed, heading, and position at sub-second intervals. This level of precision allows for the 

identification of individual driving maneuvers and the exact locations where they occur. 

For the purposes of this case study, harsh events were defined using thresholds derived 

from acceleration in the X-axis (AccelerationX), where significantly negative values 

represent rapid braking and high positive values reflect sudden acceleration. These 

thresholds were applied to a dataset of Basic Safety Messages (BSMs) collected within a 

one-mile radius of a Northern Virginia school zone.  

Unlike crash data, which is often retrospective and reliant on police reports or 

selfreporting, CV data allows for proactive safety analysis. It enables the detection of 

conflictprone areas before crashes occur, offering transportation agencies a powerful tool for 

early intervention. By applying spatial clustering techniques such as DBSCAN or other 

densitybased algorithms clusters of harsh braking and acceleration events were identified in 
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close proximity to school entrances, intersections, and mid-block crossings. These clusters 

represent zones of elevated driving volatility and potential danger to pedestrians, particularly 

during school arrival and dismissal periods when traffic volumes and behavioral 

unpredictability are highest.  

The integration of harsh event detection with geospatial analysis provides a more 

complete understanding of safety conditions than has been traditionally possible. Not only 

can transportation professionals identify specific locations where risky behavior is 

concentrated, but they can also evaluate the likely contributing factors, such as signal 

timing, signage placement, or crosswalk visibility. This data-driven approach supports the 

development of targeted safety countermeasures, including traffic calming infrastructure, 

improved signage, or enhanced crossing treatments designed specifically for the school 

environment.  

In summary, the use of CV data in detecting harsh braking and acceleration events 

offers a transformative advantage over traditional traffic monitoring methods. It enables a 

continuous, high-resolution, and behaviorally informed view of roadway risk, supporting 

proactive safety planning and helping to protect vulnerable users in school zones. This 

methodology sets the foundation for further predictive modeling and intervention 

prioritization in the chapters that follow.  
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5.4. DBSCAN-Based Clustering Methodology  

To identify spatial patterns of harsh vehicle maneuvers, we employed the Density-Based 

Spatial Clustering of Applications with Noise (DBSCAN) algorithm, a widely accepted un- 

supervised learning method well-suited for discovering clusters of varying shapes and 

densities, particularly in spatial datasets. The algorithm was applied to filtered connected 

vehicle datasets that recorded acceleration data along with corresponding latitude and 

longitude coordinates.  

Data Preparation and Filtering  

The input dataset consisted of geolocated vehicle events, including time-stamped 

acceleration values on the x-axis (longitudinal acceleration), recorded in meters per second 

squared (m/s2). Two subsets of the dataset were created based on thresholds designed to 

identify critical safety events:  

• Harsh Braking Events (HBE): Events where longitudinal acceleration ax ≤  

−4 m/s2, reflecting significant deceleration.  

• Harsh Acceleration Events (HAE): Events where longitudinal acceleration ax 

 4 m/s2, indicating rapid forward motion.  

  

These threshold values were selected based on established safety literature and prior 

empirical studies of connected vehicle telemetry, which suggest that such accelerations are 

indicative of potentially dangerous driving behaviors.  
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DBSCAN Model Application  

DBSCAN was chosen for its ability to classify spatially dense regions without requiring a 

predefined number of clusters. The algorithm groups closely packed points together while labeling 

isolated points as noise.  

Let X = {x1, x2, ..., xn} be the set of input data points, each represented as a vector 

xi = [longitudei, latitudei]. DBSCAN uses two key parameters: 

• ε: The maximum distance between two points for them to be considered neighbors. 

• MinPts: The minimum number of points required to form a dense region. 

The ε-neighborhood of each point xi is defined as: 

 (1) 

   

where the distance function is typically Euclidean: 

(2) 

A point xi is classified as: 

• A core point if |Nε(xi)| ≥ MinPts 

• A border point if it is reachable from a core point but has fewer than MinPts neighbors 

• Noise if it does not meet either condition 

In this study, the DBSCAN parameters were tuned based on domain knowledge and 

visual inspection of spatial distributions. Specifically, ε was set to 0.0002 degrees 

(approximately 20 meters), and MinPts was set to 10 to avoid overfitting to transient noise 

or isolated points.  
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Output and Post-Processing The DBSCAN model's output was a labeled dataset in 

which each data point was assigned a cluster ID or marked as noise (-1). These cluster 

assignments were appended to the original dataset for further spatial analysis and 

visualization.  

Let Ci denote the set of points in cluster i, and yˆi be the predicted cluster label. The 

final output dataset can be described as:  

Y = {(xi, yˆi ) | xi  X}  (3)  

Points labeled yˆi = −1 were excluded from further cluster-based spatial hotspot 

analyses, as they represent non-dense or isolated events. The processed data were exported 

in CSV  format, preserving the geographic coordinates and cluster labels for integration 

into  

ArcGIS Pro for mapping and visual pattern detection.  

5.5. Hotspot Analysis Methodology  

Transportation improvements differ from policy or procedural changes in that they are 

inherently spatially rooted in physical location. This spatial characteristic provides a unique 

opportunity to examine system resilience through geospatial analytical techniques. One 

such technique is spatial autocorrelation, which assesses whether patterns of a variable, 

such as risky driving behaviors, occur in clusters or are randomly distributed across a 

geographic area.  
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To analyze where concentrations of harsh braking and acceleration events occur, the 

Getis-Ord Gi* statistic is commonly used. This spatial statistical method evaluates the 

intensity of attribute values within a spatial context to identify statistically significant 

clusters, known as hot spots (areas with high values) and cold spots (areas with low values). 

In this study, attribute values represent the frequency or severity of harsh vehicle 

maneuvers, and locations are defined by their associated GPS coordinates.  

The Gi* statistic is expressed mathematically as:  

 𝐺𝑖
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∑ 𝑤𝑖,𝑗𝑥𝑗
𝑛
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       (4) 

 

Here, xj refers to the attribute value (count of harsh braking or acceleration events) for 

location j, wi, j, is the spatial weight between features i and j, and n is the total number of 

spatial features (all observed events). The terms 𝑋 and S represent the global mean and 

standard deviation of the attribute values, respectively, calculated as:  

 

X̅ =
∑ xj
n
j=1

n
 

        (5) 
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      (6) 

This methodology allows for the detection of spatial clusters in the harsh event data. 

A significant hot spot indicates an area where a high frequency of harsh braking or 
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acceleration occurs in proximity to other high-frequency locations. Conversely, cold spots 

reflect areas with consistently low event intensity, while locations without statistical 

significance suggest spatial randomness.  

The use of Gi* analysis in this context can highlight zones of elevated driving risk, 

where harsh maneuvering behaviors are geographically concentrated. Identifying these 

zones can inform targeted interventions, such as traffic calming measures or infrastructure 

upgrades.  

It is important to note that Gi* analysis assumes a minimum number of spatial 

observations (generally 30 or more) to ensure statistical robustness. Additionally, 

meaningful spatial relationships depend on the assumption that nearby features are more 

likely to share similar characteristics in this case, aggressive driving behaviors. When such 

assumptions are met, the method can be used not only to detect clusters, but also to guide 

investment decisions by highlighting areas in need of safety improvements.  

In broader research, similar spatial techniques have been successfully applied to 

detect clustering in crash data, crime incidents, and other urban phenomena. In this study, 

these principles are extended to connected vehicle data, emphasizing geospatial patterns in 

driving behavior as a proxy for roadway risk.  

By interpreting spatial association or disassociation within this dataset, planners and 

policymakers can make more resilient decisions. If harsh driving behaviors are 

geographically concentrated, then interventions can be localized for greater effectiveness. 

If, on the other hand, such behaviors are widespread and unclustered, a broader systemic 
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approach may be necessary. Either outcome contributes valuable insight into how driver 

behavior and infrastructure interact spatially.  

   

  

  

5.6. Demonstration of Approach  

Figure 8 illustrates the spatial distribution and clustering outcomes of harsh 

acceleration events (HAE) based on the Density-Based Spatial Clustering of Applications 

with Noise (DBSCAN) algorithm. The visualized data represents connected vehicle events 

mapped across the School area in Fairfax County, Virginia, and surrounding arterials. Each 

point in the figure corresponds to an individual event characterized by a longitudinal 

acceleration value of at least 4 m/s², which meets the threshold for harsh acceleration 

defined in this study.  

The symbology in Figure 7 reflects the DBSCAN-assigned cluster designations. 

Events marked in green correspond to cluster = -1, representing noise or outliers according 

to DBSCAN’s classification criteria. These are points that do not belong to any highdensity 

cluster and typically exist in spatial isolation or in areas with low event density. In contrast, 

events highlighted in orange correspond to cluster = 0, which DBSCAN identified as a 

distinct spatial cluster of harsh acceleration behaviors. The presence of this cluster along 

Lake Braddock Drive adjacent to the school campus and key intersections suggests a 

repeated pattern of aggressive acceleration maneuvers that may be tied to congestion, poor 
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traffic signal timing, or driver behavior influenced by school-related activity such as pick-

up/drop-off operations.  

This visualization confirms the applicability of DBSCAN in differentiating between 

significant spatial concentrations of harsh events and more isolated occurrences.  

The presence of a well-defined cluster (cluster 0) supports the notion that certain roadway 

segments demonstrate consistent high-risk driving behaviors. Such insights are 

foundational to transportation resilience planning and can inform targeted interventions 

such as speed management strategies, signage improvements, or signal adjustments. 

Furthermore, the use of ArcGIS for spatial representation provides an intuitive and 

interpretable medium for communicating complex data mining outputs to planning 

agencies and stakeholders.  

The results of this analysis not only demonstrate the feasibility of the proposed 

clustering approach but also underscore the importance of geospatial methods in 

understanding behavior-based risk patterns in connected vehicle environments.  
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Figure 8. : DBSCAN of Harsh Acceleration Events in a Northern Virginia school zone.  

  

Figure 9 provides a detailed spatial representation of clustering results for harsh 

braking events (HBE) within the same study area as previously shown centered around 

Lake Braddock Secondary School in Fairfax County, Virginia. These events were extracted 

from connected vehicle data based on the threshold  , signifying abrupt  

deceleration behaviors that may reflect driver overreactions, signal changes, or inadequate 

roadway design.  

The figure displays the results of the Density-Based Spatial Clustering of 

Applications with Noise (DBSCAN) algorithm, applied to the filtered harsh braking 

dataset. The resulting cluster labels range from -1 (noise) to 12, each depicted with a distinct 

color. Unlike Figure 7, which only yielded a single significant cluster for harsh acceleration, 
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the DBSCAN analysis of harsh braking events produced a much more complex spatial 

distribution, revealing thirteen distinct cluster groups as well as noise points.  

Clusters are prominently concentrated along Lake Braddock Drive, Burke Lake 

Road, and Rolling Road particularly at key intersections and entrance/exit points around 

the school. Notably, clusters labeled 3, 4, 6, and 10 appear along corridors where vehicular 

congestion and school-related activities such as drop-offs or traffic signal transitions likely 

contribute to abrupt stopping patterns. The presence of numerous smaller clusters suggests 

that harsh braking events are not isolated to a single risk zone, but rather dispersed 

throughout the broader school zone area.  

The -1 cluster (depicted in dark cyan) again represents noise, capturing spatially 

isolated braking events that were not part of any dense grouping. However, these may still 

be relevant when considered individually, particularly if they occur near pedestrian zones 

or unsignalized crossings.  

The spatial variability in clustering outcomes for HBE, as shown in Figure 8, 

demonstrates the utility of DBSCAN in capturing both macro-level and micro-level 

patterns in driving behavior. The ability to detect multiple distinct zones of high braking 

activity provides transportation planners and engineers with actionable insights into areas 

where traffic calming interventions, updated signage, or signal timing adjustments may be 

needed.  

Furthermore, this figure highlights how localized behavior patterns can vary 

between braking and acceleration events, reinforcing the need for tailored countermeasures 

for each behavior type. The map-based visualization serves not only as an analytical output 
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but also as a communication tool to engage stakeholders, support risk assessment, and 

prioritize infrastructure investments that address aggressive or unsafe driving behavior near 

sensitive land uses like schools.  

    

  

  
Figure 9. DBSCAN of Harsh Braking events in a northern Virginia school zone.  

  

Figure 9 presents the results of a Getis-Ord Gi* hot spot analysis applied to 

connected vehicle events recorded near a Northern Virginia school zone. This method was 

used to identify statistically significant clusters of harsh braking and acceleration behaviors 

that could pose elevated safety risks to both motorists and pedestrians, particularly in a 

school-centric environment. The spatial distribution of events shown in the figure 

represents the combined outcome of previous preprocessing and DBSCAN filtering steps, 
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which ensured only qualifying events (e.g., ax≤−4 m/s2a_x \leq -4 \, \text{m/s}^2ax 

≤−4m/s2 for braking and ax≥4 m/s2a_x \geq 4 \, \text{m/s}^2ax≥4m/s2 for acceleration) 

were included.  

Each point in the figure is symbolized based on its assigned Gi_Bin value, 

representing confidence levels for statistical significance:  

• Red (Bin = 3): 99% confidence hot spot  

• Orange (Bin = 2): 95% confidence hot spot  

• Yellow (Bin = 1): 90% confidence hot spot  

• Green (Bin = 0): Not statistically significant  

• Light to dark blue (Bins = -1 to -3): Cold spots at varying levels of confidence • 

 Purple (Bin = -3): 99% confidence cold spot  

The results show a prominent concentration of hot spots along Burke Lake Road,  

Lake Braddock Drive, and Rolling Road, which are key arterials providing access to Lake  

Braddock Secondary School. These areas correspond closely to previously identified 

DBSCAN clusters and provide additional inferential evidence that aggressive driving 

behaviors are not randomly distributed but spatially associated with specific road segments 

and intersections.  

The aggregation of high Gi_Bin values around school access points such as the 

school driveway, adjacent traffic signals, and pedestrian crosswalks points to operational 

concerns that may be influenced by high vehicle volumes during student arrival and 

dismissal times. The presence of cold spots along secondary neighborhood roads suggests 

that traffic calming or lower speed limits in residential areas may be contributing to safer 

driving behaviors in those zones.  
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This analysis underscores the value of spatial inferential methods such as the Gi* 

statistic in transportation safety analytics. Unlike clustering methods that group based 

solely on proximity and density, the Gi* hot spot method incorporates both attribute 

intensity and spatial relationships, allowing for a statistically robust identification of critical 

safety zones. These results can directly inform targeted engineering and policy responses 

such as signal re-timing, crossing guard placement, signage improvements, or 

reconfiguration of pick-up/drop-off zones.  

Incorporating spatial autocorrelation metrics into connected vehicle analysis 

enhances situational awareness for planners and helps ensure that resource allocation is 

both data-driven and equity-conscious. As seen in Figure 9, visualizing statistically 

significant concentrations of harsh events offers a practical framework for prioritizing 

interventions in high-risk school environments.  

  
Figure 10. Hot spot analysis of Northern Virginia school zone.  
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5.7. Safety Recommendations and Vision Zero Implications  

The results from the spatial clustering and hotspot analysis conducted in Figures 7, 8, and  

9 highlight critical areas of concern related to driver behavior near school zones. Both the 

DBSCAN and Getis-Ord Gi* methodologies revealed consistent geographic patterns of 

harsh acceleration and braking events, with significant clustering occurring along high-

volume corridors such as Lake Braddock Drive, Rolling Road, and Burke Lake Road. 

These findings have direct implications for advancing Vision Zero goals, which aim to 

eliminate traffic-related fatalities and serious injuries through data-driven, system-level 

interventions.  

The DBSCAN clustering of harsh acceleration events (Figure 7) indicated a 

concentration of rapid vehicle movements near school access points, suggesting that drivers 

may be speeding up aggressively after delays caused by congestion or signal timing. These 

behaviors increase the likelihood of collisions, particularly in environments with high 

pedestrian activity such as student drop-off and pick-up zones. Conversely, the clustering 

of harsh braking events (Figure 8) was more spatially dispersed but also exhibited clear 

concentrations along the same corridors, pointing to a combination of unpredictable traffic 

patterns, limited sight distances, or poorly timed signals that compel drivers to stop 

abruptly.  

The hot spot analysis (Figure 9), which integrates both attribute intensity and spatial 

association, confirmed that several of these clustered areas are statistically significant at 

the 90%, 95%, and 99% confidence levels. This further supports the assertion that 
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aggressive or erratic driving behavior is not random, but rather geographically linked to 

infrastructural or operational deficiencies.  

Based on these findings, the following safety recommendations are proposed:  

(1) Traffic Calming Measures: Implement speed tables, raised crosswalks, and 

bulbouts along key corridors where clusters of harsh acceleration and braking 

events overlap. These treatments are known to reduce vehicle speeds and improve 

pedestrian safety in school zones.  

(2) Signal Timing Optimization: Adjust signal phase and timing plans, particularly 

along Burke Lake Road and Rolling Road, to reduce start-stop conditions and 

mitigate the need for sudden acceleration or braking.  

(3) School Zone Redesign: Reconfigure access points to the school to reduce conflict 

points. Consider implementing a dedicated student pick-up/drop-off loop that 

minimizes the mixing of through-traffic with school-related traffic.  

(4) Enhanced Signage and Enforcement: Deploy flashing school zone signage with 

dynamic speed displays and expand automated enforcement (e.g., speed and 

redlight cameras) in areas identified as high-risk through hotspot analysis.  

(5) Public Awareness Campaigns: Develop targeted driver education campaigns aimed 

at modifying driver behavior near schools. Emphasize the risk associated with 

aggressive driving and promote awareness of pedestrian presence during peak 

hours.  

The integration of connected vehicle data with geospatial analytics offers a scalable 

and proactive approach to traffic safety that aligns with Vision Zero principles. By 

identifying specific locations where driver behavior increases risk, agencies can move 

beyond reactive crash-based analysis and toward preventative design and operational  
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strategies. Moreover, these insights support equitable investment by directing resources to 

infrastructure that directly impacts vulnerable road users, such as children walking or 

biking to school.  

This case study demonstrates how transportation agencies can leverage real-time 

vehicle data and spatial statistics to better understand behavioral risk patterns and develop 

localized, evidence-based interventions. In doing so, they take meaningful steps toward 

realizing a transportation system where safety is prioritized for all users.  

5.8. Summary  

Chapter 5 presents a comprehensive case study focused on enhancing school zone safety 

through the application of connected vehicle (CV) data analytics. The chapter demonstrates 

how high-resolution, sensor-based vehicle data can be used to detect and map risky driving 

behaviors specifically harsh braking and acceleration within the vicinity of a Northern 

Virginia school zone. By leveraging data attributes such as longitudinal acceleration, speed, 

heading, and environmental conditions, the study builds a multidimensional understanding 

of vehicle behavior under real-world traffic conditions. Using clustering methods like  

DBSCAN, the analysis identifies concentrated zones of aggressive maneuvers, while  

Getis-Ord Gi* hot spot analysis validates the statistical significance of these clusters. 

Together, these methods provide an evidence-based framework for detecting spatial 

patterns of concern and assessing the role of contextual variables such as congestion, 

weather, and roadway design.  

The findings from this chapter offer critical insights for proactive safety interventions 

in school environments. Consistent clustering of harsh events along arterial roads and near 
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school entrances underscores the need for targeted engineering, enforcement, and educational 

strategies. Recommendations such as traffic calming measures, signal timing optimization, 

and enhanced signage are presented in alignment with Vision Zero goals to eliminate 

fatalities and serious injuries. This case study exemplifies how connected vehicle data, when 

combined with spatial analytics, can support a shift from reactive crash-based planning to 

preventive, data-driven decision-making. As such, Chapter 5 not only advances the 

methodological contributions of this dissertation but also offers practical implications for 

agencies seeking to protect vulnerable road users particularly children in complex, high-

conflict urban-suburban environments.  
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Chapter 6 | Case Study: Environmental 

Risk in Agricultural Systems  
  

  

  

  

6.1. Introduction   

Chapter 6 explores environmental risk within agricultural systems, with a particular 

focus on the role of extreme temperature events in shaping vulnerability and resilience. The 

case study presented in this chapter integrates geospatial analysis, statistical interpolation, 

and machine learning techniques to develop a comprehensive risk assessment framework. 

This chapter supports broader goals of enhancing food security and environmental systems 

under changing climate conditions by identifying heat-based environmental stressors and 

modeling their potential impact on agricultural productivity.  

The chapter begins by introducing the motivation for assessing agricultural risk in 

the context of environmental change (Section 6.1) and providing an overview of observed 

temperature trends and their implications for crop viability and rural economies (Section 

6.2). Section 6.3 outlines the development of a heat-based risk index, while Section 6.4 

compares spatial interpolation methods Inverse Distance Weighting (IDW) and Kriging to 

model temperature variations across agricultural regions. Section 6.5 applies machine 

learning models, including XGBoost, Random Forest (RF), and Support Vector Regression 

(SVR), to predict risk levels based on spatial and climatic variables. Section 6.6 focuses on 
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the evaluation of these predictive models and the visualization of risk layers using GIS. 

The chapter concludes with a discussion on the implications of the findings for improving 

agricultural resilience and informing food security strategies in the face of environmental 

stress (Section 6.7).   

  

6.2. Overview of Agricultural Risk and Temperature 

Trends  

Global agriculture is increasingly vulnerable to the intensifying impacts of extreme heat, 

driven by persistent shifts in climate patterns and record-breaking temperature events. The 

rise in global mean temperatures has led to more frequent and prolonged heatwaves that 

directly affect crop growth, soil moisture, and overall farm productivity. In temperate 

climates, optimal plant development typically occurs between 20°C and 30°C, with 

nighttime temperatures playing a critical role in maintaining plant immunity. When 

temperatures exceed these optimal ranges, crops experience physiological stress, reduced 

yields, and heightened susceptibility to disease. For example, mango cultivars require a 

safe range of 10°C to 12°C to avoid irreversible damage. The heatwave of July 2023, which 

recorded the hottest days in Earth’s history, highlights a growing trend that threatens not 

only agricultural productivity but also the resilience of food systems around the world.  

Agricultural risk is further amplified by variations in regional climate conditions 

and population exposure. Densely populated agricultural zones face greater challenges in 

mitigating and responding to extreme temperatures, as more people and infrastructure are 

affected. To address these risks, this study employs a heat-based risk index that integrates 
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temperature thresholds and population density, enabling targeted spatial analysis of 

vulnerability. With climate volatility expected to increase, traditional farming strategies are 

no longer sufficient. Advanced tools such as Geographic Information Systems (GIS), 

supported by spatial interpolation and machine learning, offer the precision needed to 

identify and respond to risk hotspots. These innovations provide essential support for 

policymakers, farmers, and planners seeking to adapt agricultural practices to the realities 

of a warming world.   

This begins the development of the Heat-Based Risk Index. To construct the heat-

based risk index, population density was first calculated using the Calculate Field tool in 

ArcGIS. This involved dividing population values by the area of a circle with a 100-

kilometer radius, yielding an estimate of individuals per square kilometer for each location 

in the dataset. These population density figures were then integrated with temperature data 

using the expression: (Temperature – 30) × Population  

Density. This index with Table 6 enabled the identification of areas where both high 

temperatures and high population exposure intersect, highlighting regions most vulnerable 

to heat-related impacts.  

Following the creation of the risk index, geostatistical interpolation techniques 

namely Kriging and Inverse Distance Weighting (IDW) were applied to generate 

continuous surface layers representing spatial variations in heat-related risk across the 

study area. IDW offered a computationally efficient approach based on proximity 

weighting, while Kriging provided a more advanced method that incorporates spatial 

autocorrelation and quantifies prediction uncertainty. These resulting geospatial surfaces 



Rayshaun Wheeler | Ph.D.  Dissertation | April 2025  

  

Page 104 of 156  

  

offered valuable insight into regional risk patterns and enabled the identification of 

highpriority zones for mitigation.  

These geostatistical outputs are instrumental for agricultural and climate resilience 

planning. By visualizing areas where extreme temperatures overlap with dense populations, 

decision-makers can better allocate resources, implement targeted adaptation strategies, 

and prioritize interventions. Including demographic exposure in the risk index also 

increases its relevance for public health and policy applications. Engaging stakeholders 

such as farmers, urban planners, and health officials in interpreting these spatial layers 

ensures the usability and relevance of the outputs. Ultimately, this integrated approach 

strengthens efforts to mitigate the impacts of extreme heat and improve resilience in 

vulnerable communities, particularly as heat continues to be a leading cause of climate 

related mortality.  

Table 6. Field calculator for heat-based risk index  
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6.3. Interpolation Techniques: IDW vs Kriging  

Inverse Distance Weighing  

Inverse Distance Weighting (IDW) is a commonly used spatial interpolation method that 

estimates unknown values by leveraging the values of surrounding, known data points. The 

core assumption of IDW is that data points exert greater influence the closer they are to the 

location being estimated. In other words, nearby values carry more weight than those 

farther away. To generate predictions, the method calculates a weighted average of known 

values, assigning weights based on the inverse of their distances from the target location.  

In the context of environmental risk modeling, IDW can be applied to create a 

continuous surface that visualizes spatial patterns of heat exposure. For instance, when 

using a heat-based risk index formulated as (Temperature - 30) multiplied by population 

density IDW can interpolate the values across a region to identify areas where populations 

are more vulnerable to elevated temperatures. While IDW is praised for its ease of use and 

computational speed, it does have limitations. The method assumes a consistent 

relationship between proximity and similarity, which may not hold in areas with sparse or 

uneven data distribution, potentially leading to distorted outputs. Nonetheless, its 

straightforward implementation and repeatability make it a valuable tool for preliminary 

spatial analyses and GIS-based assessments.   

The value at the unknown location x0 is calculated as a weighted sum of the known 

values: Where  is the estimated value are the known values at  locations and  

λi are the weights calculated from the distances.    
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(7)  

Kriging  

Kriging is a geostatistical interpolation method that enhances spatial analysis by accounting 

for both the distances between observed data points and the spatial relationships, or 

autocorrelation, among them. Unlike deterministic techniques such as Inverse Distance 

Weighting, Kriging not only estimates unknown values at unsampled locations but also 

provides a measure of the associated prediction uncertainty. This dual output prediction and 

confidence makes Kriging especially valuable for applications that require both spatial 

accuracy and statistical reliability.  

The process begins by constructing a variogram, which characterizes how the 

similarity between data points diminishes over increasing spatial separation. This spatial 

model is then used to solve a set of equations that assign optimal weights to known data 

points, enabling the estimation of values at unknown locations. In the context of a heatbased 

risk index, Kriging generates a continuous surface that spatially represents varying levels 

of heat-related agricultural risk. This results in a risk map that captures thermal stress's 

intensity and distribution across a given region. Its strength lies in producing highly detailed 

environmental maps, particularly useful for variables such as temperature, allowing 

agricultural stakeholders to better anticipate areas of concern and implement proactive 

resilience strategies. However, it should be noted that Kriging demands more 

computational resources and specialized knowledge in spatial statistics due to the 

complexity of variogram modeling and its sensitivity to data quality.  
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The semivariogram is a key component of Kriging, describing the spatial  

autocorrelation of the data. It is defined as:    

(8)  

Where γ(h) is the semivariance at distance h, N(h) is the number of pairs of 

observations separated by h, and z(xi) is the observed value at location xi. Once the 

semivariogram is modeled, Kriging uses it to estimate the value at an unknown location x0 

as a weighted sum of the known values:    

(9)  

(10)  

Techniques for Layer Development  

Figure 10 presents the heat-based risk index visualized using the Kriging interpolation 

method, a probabilistic geostatistical approach that incorporates spatial autocorrelation to 

generate a smooth, continuous surface. This technique effectively captures spatial 

dependencies between known data points, allowing for the estimation of risk levels in areas 

without direct measurements. The use of an exponential variogram model supports the 

accurate representation of localized heat variations, making Kriging particularly suitable 

for identifying subtle gradients and patterns in regions prone to thermal stress.  

In contrast, Figure 11 displays the same risk index derived through Inverse Distance 

Weighting (IDW), a deterministic technique that places greater emphasis on nearby data 
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points. This results in a less refined, more segmented surface when compared to Kriging. 

While IDW offers a faster and more straightforward approach, it may lack the detail 

necessary to reveal nuanced spatial trends. Nonetheless, both mapping techniques offer 

valuable perspectives: the Kriging output provides in-depth insights into microclimatic 

differences and their implications for agricultural productivity, while the IDW map clearly 

pinpoints zones that may require urgent intervention. Together, these visualizations support 

strategic decision-making in environmental risk management, aiding efforts to enhance 

working conditions and bolster the resilience of agricultural systems under increasing 

climate stress.  

  

  
Figure 11. Illustrates a heat-based risk index map for multiple countries in West Africa, generated 

using Kriging, a geostatistical technique that utilizes spatial autocorrelation and an exponential 

variogram to provide a continuous and detailed representation of Crop Yield. 
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Figure 12. A heat risk index map for São Tomé, Africa, created using Inverse Distance Weighting 

(IDW), a deterministic method that emphasizes the influence of nearby data points, resulting in a 

less smooth and more segmented representation of heat risk variations  

6.4. Evaluation and Visualization of Risk Layers   

This section outlines a structured methodology for evaluating multiple regression models 

used to predict a heat-based risk index. As illustrated in Table 7, the workflow encompasses 

data preparation, model training, performance evaluation, and comparison of several 

machine learning algorithms. The models tested include Linear Regression, Random Forest  

Regression, Support Vector Regression (SVR), and Extreme Gradient Boosting  

(XGBoost), each assessed using key performance metrics Mean Squared Error (MSE), 

Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and the Coefficient of 

Determination (R²). These metrics provide a comprehensive view of each model's 

predictive accuracy and reliability.  
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To enhance robustness and minimize overfitting, cross-validation techniques are 

incorporated, ensuring model performance is consistent across various data subsets. This 

entire modeling process is designed with automation in mind, enabling seamless execution 

of data cleaning, model fitting, and validation without manual intervention. Automating 

these steps not only improves efficiency and reduces the potential for human error, but also 

supports regular updates to the heat-based risk index as new data becomes available. 

Furthermore, the ability to systematically compare model outputs accelerates the selection 

of the most effective model, streamlining decision-making for heat risk assessment and 

management.  

The comparative analysis of regression models revealed that Extreme Gradient 

Boosting (XGBoost) outperformed the other methods in predicting the heat-based risk 

index. XGBoost achieved the most favorable evaluation metrics, including the lowest Mean 

Squared Error (MSE) of 0.0516, Root Mean Squared Error (RMSE) of 0.2271, and Mean 

Absolute Error (MAE) of 0.0749. Additionally, it produced a positive R² score of 0.076, 

indicating a modest yet meaningful ability to explain variance within the dataset. In 

contrast, more traditional approaches such as Linear Regression and Support Vector 

Regression (SVR) underperformed, as evidenced by higher error values and negative R² 

scores, highlighting their limited suitability for this particular application.  

Despite being more computationally intensive, Kriging also showed competitive 

performance, with an MSE of 0.053, RMSE of 0.230, and MAE of 0.090, further validating 

its value in geospatial modeling. The results are visually summarized in Figure 12, which 

illustrates the predicted spatial distribution of heat-related risk using the XGBoost model. 
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Its ability to capture localized variations with a high degree of accuracy underscores its 

potential for improving predictive capacity in environmental risk assessments. 

Implementing XGBoost in this context enhances both the precision and reliability of risk 

estimation, thereby informing more effective strategies for mitigating the impacts of 

extreme heat on agriculture and vulnerable populations.  

  

Table 7. Evaluation of various machine learning models (Linear Regression, Random Forest 

Regression, Support Vector Regression, XGBoost, and Kriging).  

  

  

6.5. Machine Learning for Risk Prediction   

The implemented code in Table 8 outlines a systematic approach for evaluating 

multiple regression models aimed at predicting a heat-based risk index. As detailed in Table 

7, the workflow includes data preprocessing, model training, and performance assessment 

across a range of machine learning algorithms namely Linear Regression, Random Forest, 

Support Vector Regression (SVR), and Extreme Gradient Boosting (XGBoost). The models 

are compared using standard evaluation metrics such as Mean Squared Error  

(MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and the 

Coefficient of Determination (R²), which collectively offer insights into prediction 

accuracy and model robustness.  
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To enhance the reliability of results, cross-validation is applied to ensure each model 

is tested across multiple data partitions, reducing the risk of overfitting and increasing 

generalizability. The entire pipeline from data input to model evaluation can be automated, 

allowing for streamlined updates and reducing human error. This automation ensures that 

as new data becomes available, the risk index can be efficiently recalculated using the most 

accurate model. Ultimately, this framework accelerates model selection and supports data-

driven decision-making for identifying and managing regions at risk from extreme heat.  

A high level of automation can be achieved when implementing Kriging and Inverse 

Distance Weighting (IDW) techniques, streamlining the entire workflow from data 

preprocessing to final output generation. Tasks such as data cleaning, normalization, and 

transformation can be efficiently handled using Python libraries like pandas and scikitlearn. 

For Kriging, key geostatistical operations such as analyzing spatial autocorrelation and 

fitting variogram models can be automated using tools like pykrige, ensuring consistency 

and repeatability across datasets. Similarly, IDW computations can be scripted within 

ArcGIS using the arcpy library, allowing for uniform application of proximity-based 

weighting methods.  

Once the preprocessing stage is completed, both Kriging and IDW can be executed 

programmatically with predefined parameters, removing the need for manual intervention. 

The automated workflow can also handle the generation of geospatial layers, including 

raster surfaces and risk maps. Additional scripting components can be implemented for 

error-checking, logging, and exception handling, thereby increasing the robustness and 

reliability of the process. Visualization tasks such as plotting spatial data and creating maps 
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can also be automated using Python libraries like matplotlib and seaborn, or integrated 

within GIS platforms like ArcGIS. These workflows can be scheduled to run periodically, 

ensuring that heat-based risk assessments remain current and reflective of incoming data.  
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Table 8. Pseudocode for model evaluation and risk index prediction  
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Following the identification of the most suitable regression model for predicting the 

heat-based risk index, the final step involves visualizing the predicted values on a 

geographic map. This visualization is crucial for conveying spatial variations in risk and 

supporting interpretation for decision-makers. Table 9 outlines the methodology used to 

generate the risk index map, which begins by extracting latitude and longitude coordinates 

from the dataset. Risk index values are then used to color-code each point on a scatter plot, 

with longitude and latitude serving as the horizontal and vertical axes. The ‘coolwarm’ 

color scale is applied to visually distinguish levels of risk, and a color bar is included to 

improve readability. Titles and axis labels are added to provide clear context, including the 

identification of the predictive model used, such as XGBoost. The resulting visualization 

highlights spatial hotspots and supports more targeted and informed mitigation strategies.  

  

Table 9. Pseudocode for Plotting Predicted Risk Index Map  

  

Figure 13 visually represents the Predicted Risk Index using XGBoost, highlighting 

the model's superior performance. Overall, XGBoost was the most effective model for 

predicting the heat-based risk index, demonstrating superior accuracy and better variance 
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explanation than Linear Regression, Random Forest Regression, and Support Vector 

Regression.    

  
Figure 13. Demonstrates the spatial distribution of the Predicted Risk Index  

  

6.6. Implications for Agricultural Resilience and Food  

Security  

The findings from this study underscore the urgent need to integrate data-driven 

approaches into agricultural planning and climate-resilience strategies. As global 

temperatures continue to rise, heat-related stress is expected to increase in frequency and 

severity, posing a direct threat to crop yields, soil quality, and water availability. Developing 

a heat-based risk index combined with geostatistical techniques such as Kriging and IDW 

provides a robust framework for identifying spatial patterns of vulnerability. These tools 

allow for detecting high-risk zones where crops and farming communities are most exposed 
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to extreme heat. Such spatial insights enable stakeholders to prioritize adaptation efforts, 

such as implementing shade structures, altering planting schedules, or deploying 

droughtresistant crop varieties in critical areas. By forecasting where agricultural systems 

are most at risk, this methodology promotes proactive rather than reactive responses to 

climateinduced threats.  

Furthermore, the integration of machine learning models into environmental risk 

assessment enhances the precision and scalability of decision-making tools for agricultural 

resilience. Models like XGBoost demonstrated strong predictive performance in 

identifying areas where heat exposure and population density intersect, a key factor in 

assessing not just environmental impact but also socio-economic vulnerability. These 

insights are critical in regions where food insecurity is already prevalent and where 

smallholder farmers lack the resources to adapt effectively. By automating the analysis and 

visualization processes, this framework allows for real-time updates as new data becomes 

available, ensuring dynamic monitoring and early warning capabilities. Ultimately, this 

research contributes to the broader goal of strengthening food systems against climate 

variability by equipping policymakers, farmers, and development agencies with the spatial 

intelligence needed to allocate resources efficiently and equitably.  

6.7. Summary   

Chapter 6 presented a comprehensive case study on assessing environmental risk 

in agricultural systems, with a particular emphasis on the influence of extreme heat events. 

The chapter introduced the development of a heat-based risk index that integrates 
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temperature thresholds with population density to identify regions most vulnerable to 

thermal stress. Using geospatial analysis techniques namely Inverse Distance Weighting  

(IDW) and Kriging the study generated continuous surface layers to visualize risk patterns. 

Kriging’s incorporation of spatial autocorrelation offered greater precision in identifying 

microclimatic variations, while IDW provided a simpler, more computationally efficient 

alternative. The comparison of these interpolation methods provided valuable insights into 

how spatial modeling can inform climate adaptation strategies in agriculture.  

To enhance predictive capabilities, machine learning models, including XGBoost, 

Random Forest, Support Vector Regression (SVR), and Linear Regression, were evaluated 

using key performance metrics. XGBoost emerged as the most accurate and reliable model, 

effectively predicting risk based on climatic and spatial variables. The process was further 

strengthened through automation of data preprocessing, model training, and visualization 

tasks, supporting continuous monitoring of agricultural risk. These combined approaches 

geostatistical and machine learning demonstrated the potential of data-driven tools to 

inform targeted adaptation, improve resource allocation, and support long-term agricultural 

resilience. The findings highlight the importance of integrating advanced spatial analytics 

with predictive modeling to address food security challenges in the face of ongoing climate 

variability.  
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Chapter 7 | Conclusions & Future Work   
  

  

  

  

  

7.1. Introduction   

Chapter 7 provides a comprehensive conclusion to this dissertation, synthesizing 

the research findings and highlighting their broader implications. The chapter begins with 

Section 7.2, which summarizes the key findings from each case study and outlines how 

they collectively address the research objectives. In Section 7.3, cross-case insights and 

thematic connections are explored, revealing patterns and commonalities that emerged 

across different scenarios and geographic contexts. Section 7.4 presents a critical reflection 

on the dissertation’s contributions to theory, methodology, and application, offering a 

philosophical perspective on how this work advances the field of risk analysis in 

transportation and environmental resilience.  

Section 7.5 outlines the value of this research to scholars, practitioners, and 

policymakers, demonstrating the practical, academic, and policy-relevant benefits of 
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leveraging connected vehicle data for proactive safety strategies. This is followed by 

Section 7.6, which highlights methodological contributions made through novel geospatial 

techniques, predictive modeling, and the integration of big data sources for risk assessment. 

Section 7.7 discusses the limitations of the research, addressing constraints related to data 

availability, generalizability, and model assumptions. Building on this, Section 7.8 offers 

clear and actionable recommendations for future research, identifying opportunities to 

expand the scope, test new use cases, and deepen the theoretical foundation.  

Finally, Section 7.10 details the practical and policy implications of the research, 

emphasizing how these findings can inform safer infrastructure planning and targeted 

policy interventions. The chapter concludes with Section 7.10, a set of final reflections that 

reaffirm the importance of this work and envision a continued interdisciplinary effort to 

optimize transportation systems through data-driven approaches.  

7.2. Summary of Key Findings  

This dissertation developed and demonstrated a comprehensive, geospatial, and datadriven 

framework for proactive risk management in transportation and environmental systems. 

The findings across the three major case studies reflect how the integration of connected 

vehicle (CV) data, machine learning, geospatial analytics, and information management 

can significantly enhance the ability to detect, model, and mitigate risks before adverse 

events occur.  

In chapter 4 the case study focused on the research focused on the implementation 

of an information management system, applying IDEF modeling to represent and 

streamline risk-informed transportation planning. This study showed how modified IDEF 
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diagrams, when integrated with a digital twin approach, enable transportation planners to 

identify critical decision points and enhance the visualization of systemic risk. The 

development of centralized data repositories and geospatial dashboards further 

demonstrated the value of structuring largescale data for multi-criteria decision-making and 

long-term infrastructure resilience.  

The Chapter 5 Case Study explored the application of clustering techniques 

(DBSCAN) and hotspot analysis (Getis-Ord Gi*) to analyze harsh braking and acceleration 

events in school zones. The results highlighted that surrogate safety measures derived from 

connected vehicle data can effectively identify high-risk zones in the absence of crash 

records. These findings support proactive interventions aligned with Vision Zero goals by 

revealing risky driving behavior patterns that would otherwise go undetected. The case 

study also produced actionable safety recommendations, such as adjustments to signage, 

speed controls, and enforcement strategies to protect vulnerable users like children and 

pedestrians.  

In the Case Study of Chapter 6, the framework was extended to assess 

environmental risks, particularly the impacts of extreme heat on agricultural systems in 

West Africa. This study used Kriging and IDW interpolation methods along with machine 

learning models  

(XGBoost, SVR, and Random Forest) to generate spatial risk indices that quantified heat 

vulnerability across regions. The findings demonstrated that geospatial risk modeling can 

provide critical insights for food security and climate adaptation planning. The ability to 

predict and visualize environmental stressors with high resolution confirmed the utility of the 
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proposed methods for decision-makers operating in resource-constrained or climatesensitive 

areas.  

Across all three case studies, the research confirmed that integrating real-time data, 

spatial intelligence, and predictive modeling leads to more effective, proactive, and scalable 

risk mitigation strategies. These results validate the interdisciplinary framework proposed 

in this dissertation as a practical, replicable approach for advancing transportation safety 

and environmental resilience.  

7.3. Cross-Case Insights and Thematic Connections  

The three case studies presented in this dissertation—spanning transportation planning, 

school zone safety, and environmental resilience—share several unifying themes and 

insights that reinforce the value of a geospatial and data-driven approach to risk 

management. While each study applied distinct methodologies tailored to its context, 

together they demonstrate a cohesive framework rooted in systems thinking, predictive 

analytics, and the strategic use of emerging data sources such as connected vehicle (CV) 

data.  

A primary cross-case insight is the importance of proactive risk detection. In 

contrast to traditional, reactive approaches that rely heavily on historical crash data or 

disaster response, each case study leverages real-time or high-frequency data to anticipate 

future risk conditions. In the school zone safety study, CV-based surrogate safety measures 

such as harsh braking and acceleration successfully identified risky driver behavior before 

crashes occurred. Similarly, the environmental risk analysis in West Africa provided early 

indicators of vulnerability due to extreme heat, using spatial models that forecast exposure 
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even in data-sparse regions. Across all cases, this predictive orientation facilitated more 

timely and targeted decision-making.  

Another key theme is the integration of diverse data sources and analytic techniques 

into unified, actionable frameworks. The digital twin-based information management 

system developed in partnership with VDOT incorporated over 130 geospatial datasets, 

enabling a layered understanding of risks, infrastructure, and performance. This integrated 

data environment mirrors the environmental study’s combination of remote sensing, 

weather data, and machine learning, as well as the school zone study’s fusion of CV data 

and spatial statistics. These cases illustrate how interdisciplinary data fusion when managed 

systematically can enhance insight, reduce uncertainty, and support datainformed planning.  

A third thematic connection lies in the use of geospatial intelligence and 

visualization to communicate complex risk patterns. Whether through DBSCAN clustering 

in school zones, Kriging-based heat maps in agricultural regions, or geospatial dashboards 

in transportation planning, each case study underscores the utility of spatial tools in 

enhancing transparency and accessibility. Visualization was not only instrumental in 

technical analysis but also served as a bridge between research outputs and practitioner 

needs, reinforcing the relevance of spatial analytics in both research and policy contexts.  

Moreover, the transferability and scalability of methods used in each case affirm 

the framework’s applicability across sectors. Techniques such as hotspot analysis, machine 

learning, and IDEF modeling proved effective in both transportation and environmental 

domains, suggesting that this integrated risk management framework can be adapted to 

other infrastructure systems, including energy, public health, and emergency management.  
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Lastly, each case study emphasized equity and resilience as core pillars. The school 

zone analysis supported safer infrastructure for vulnerable road users, particularly children 

in underserved communities. The environmental study provided insight into food insecurity 

risks in resource-constrained areas, and the digital twin development at VDOT enabled 

more inclusive planning through data democratization. Together, these efforts contribute to 

a broader vision of resilient, just, and sustainable systems.  

In summary, the thematic connections across the case studies illustrate the strength 

of a unified framework that combines advanced analytics, real-time data, and geospatial 

intelligence. This approach offers a replicable model for anticipatory risk management and 

provides a foundation for cross-sector innovation in transportation and environmental 

systems.  

7.4. Contributions to Theory, Methodology, and 

Application  

This dissertation contributes meaningfully to the theoretical, methodological, and 

applied understanding of risk analysis in transportation and environmental systems. By 

integrating connected vehicle (CV) data, geospatial analytics, and predictive modeling into 

a systemsengineering framework, this work advances the field across three critical 

dimensions: theory, method, and practice.  

Theoretical Contributions  

At the theoretical level, this research reframes risk analysis as a proactive, 

interdisciplinary process that leverages surrogate safety indicators and real-time data 

sources to anticipate and mitigate hazards before they manifest in the form of crashes or 
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system failures. Traditional transportation safety theory has historically been reactive 

relying on crash histories and aggregated data—but this work positions CV-based  

behavioral indicators (e.g., harsh braking, acceleration) as valid proxies for latent risk. This 

shift represents a philosophical evolution in how safety and risk are conceptualized and 

operationalized within engineering systems.  

Additionally, the dissertation builds a conceptual bridge between transportation and 

environmental resilience theory, recognizing both as components of a broader  

infrastructure risk landscape. Through its application to agricultural heat vulnerability in 

West Africa, the research demonstrates how risk management strategies developed in 

transportation contexts can be extended to environmental domains expanding theoretical 

discourse into global development, and climate adaptation frameworks.  

Methodological Contributions  

Methodologically, this dissertation offers a novel, integrated framework that 

combines IDEF modeling, digital twins, clustering algorithms (e.g., DBSCAN), spatial 

statistics (Getis-Ord Gi*), interpolation techniques (Kriging, IDW), and machine learning 

(e.g., XGBoost, SVR, Random Forest) within a unified risk assessment pipeline. This 

multi-method approach addresses key limitations in current practice, including the siloed 

nature of data sources and the lack of scalable, replicable analytical workflows.  

The modification and application of IDEF models to include data governance, risk 

identification, and system-level performance analysis represent a unique extension of 

process modeling in transportation planning. The framework’s adaptability to VDOT’s 
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Pathways for Planning (P4P) platform illustrates how structured modeling can support 

enterprise-wide information management and decision-making.  

Equally innovative is the use of CV event data to detect behavioral risk in school 

zones, demonstrating that high-resolution mobility data can uncover safety issues in 

contexts where crash data is sparse or unavailable. The methodological integration of 

hotspot analysis and surrogate indicators contributes to more granular, equity-focused 

transportation analysis and supports Vision Zero goals.  

The inclusion of machine learning for environmental heat risk modeling contributes 

to climate analytics by offering scalable tools for estimating vulnerability in data-poor 

regions. The use of Kriging and IDW for creating continuous spatial risk surfaces and the 

evaluation of predictive models with explainable outputs further establish this work as 

methodologically rigorous and adaptable.  

Applied Contributions  

Practically, the dissertation presents three robust, real-world applications of its 

framework—each with direct implications for practitioners and policymakers. The VDOT 

case study informs how agencies can structure large-scale information systems to support 

digital twin deployment and long-term infrastructure planning. The school zone safety 

analysis offers actionable insights for municipal planners and DOTs seeking to improve 

child pedestrian safety without waiting for crash data to accumulate. The environmental 

risk case study supports international development and agricultural policy planning, 

providing spatial tools to assess vulnerability to extreme heat.  
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Across all applications, the research emphasizes equity, early detection, and 

actionable insight. It empowers agencies to move from reactive to proactive management 

of transportation and environmental risks, thus aligning with national safety, resilience, and 

crop yield goals. The scalability and transferability of the framework demonstrate its 

potential for deployment across different jurisdictions and sectors.  

  

7.5. Value to Scholars, Practitioners, and Policymakers  

This dissertation provides distinct value to academic researchers, transportation 

practitioners, and policymakers by offering a replicable, data-driven framework that 

bridges theoretical innovation with real-world application. Through its interdisciplinary 

approach, the research delivers meaningful contributions to the fields of risk analysis, 

transportation safety, environmental resilience, and intelligent infrastructure planning.  

Value to Scholars  

For scholars, this work contributes to academic discourse by advancing the 

theoretical foundations of proactive risk assessment through the use of surrogate safety 

measures, spatial intelligence, and machine learning. It broadens the existing literature on 

connected vehicle (CV) data by demonstrating its efficacy beyond conventional crash 

analysis, offering novel applications in predictive safety modeling, environmental risk 

assessment, and digital twin design. The integration of IDEF modeling with geospatial 

analytics and predictive algorithms creates a theoretical bridge between systems 

engineering and data science. Furthermore, the dissertation identifies key research gaps in 
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sensor integration, data fusion, and real-time modeling—establishing a strong foundation 

for future studies in resilient infrastructure and intelligent transportation systems (ITS).  

Value to Practitioners  

Transportation engineers, planners, and infrastructure managers will find practical 

utility in the methodological tools and case study applications presented. The framework’s 

ability to process and analyze billions of connected vehicle observations to detect high-risk 

driving behaviors provides a powerful approach for proactive safety interventions. 

Practitioners can apply the clustering and hotspot detection techniques demonstrated in 

school zone environments to other high-risk areas—enabling data-informed decisions 

without the long delays required for crash data collection.  

Additionally, the digital twin and centralized knowledge repository developed for 

the State departments of Transportaiton, exemplifies how agencies can streamline project 

planning, enhance risk visibility, and improve coordination across departments. These tools 

can be readily adapted to support planning, asset management, and emergency response, 

especially in jurisdictions seeking to align with Vision Zero and environmental systems 

goals.  

Value to Policymakers  

For policymakers, the dissertation offers a framework for evidence-based policy 

development rooted in real-time data and predictive insight. The ability to identify and 

visualize risk—both behavioral and environmental—enables the design of more equitable 

and effective transportation policies. For example, the school zone safety case demonstrates 

how connected vehicle data can be used to prioritize interventions in underserved 
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communities before crashes occur, supporting fair resource distribution and public safety 

initiatives.  

The environmental risk modeling applied to agricultural regions in West Africa 

further supports international development policy, climate adaptation planning, and food 

security assessments. These findings can guide funding allocation, regulatory oversight, 

and cross-agency coordination on global resilience initiatives.  

By connecting predictive analytics with actionable outcomes, this dissertation 

empowers policymakers to move from reactive, post-incident interventions to proactive 

strategies that address systemic risk across transportation and environmental sectors. In 

doing so, it supports broader societal goals, including reduced injury and fatality rates, 

increased infrastructure resilience, and improved quality of life.  

7.6. Methodological Contributions to Risk Analysis  

This dissertation introduces a novel, interdisciplinary methodological framework that 

significantly advances risk analysis practices within transportation and environmental 

systems.   

Traditionally, risk analysis has relied on historical crash data, simplified statistical 

models, and siloed datasets. By contrast, the methodology presented in this research 

integrates connected vehicle (CV) data, machine learning, geospatial analytics, and systems 

modeling to support proactive, data-driven, and scalable risk assessment.  

One of the core methodological contributions is the integration of IDEF modeling 

with risk-informed digital twin development. While IDEF (Integrated DEFinition) 

modeling is traditionally used for process analysis, this research extends its use to identify 
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system-level vulnerabilities and support the design of digital twins for transportation 

planning. By explicitly modeling inputs, outputs, controls, mechanisms, and sources of 

risk, the IDEF diagrams developed in this work allow practitioners to visualize not only 

transportation processes but also the points at which data-driven interventions can be 

embedded. This modeling approach has been operationalized in collaboration with the 

Virginia Department of Transportation (VDOT), where it guided the structuring of a 

centralized knowledge repository and geospatial dashboard to support lifecycle planning 

and multi-criteria decision-making.  

Another significant contribution is the use of spatial clustering (DBSCAN) and 

hotspot analysis (Getis-Ord Gi*) to detect and quantify surrogate safety measures. These 

techniques were applied to billions of connected vehicle observations, allowing for the 

identification of high-risk driving patterns—such as harsh braking and rapid acceleration— 

in school zones. The use of DBSCAN (Density-Based Spatial Clustering of Applications 

with Noise) allowed for the identification of naturally occurring clusters of risky behavior 

without needing to predefine the number of clusters or impose geometric constraints. This 

was further enhanced by Getis-Ord Gi*, which statistically validated the significance of 

detected hotspots. Together, these tools offer an advanced, replicable methodology for 

identifying risk-prone areas even in the absence of crash data, thereby improving on 

traditional reactive approaches.  

The dissertation also contributes to environmental resilience modeling through the 

application of spatial interpolation methods—Kriging and Inverse Distance Weighting  
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(IDW)—to develop continuous surfaces of heat-based risk. These methods allowed for the 

spatial estimation of environmental vulnerability across West Africa, especially in rural and 

data-sparse regions. The comparison of Kriging and IDW demonstrated how choice of 

interpolation method can influence spatial outputs, and validated Kriging’s superior ability 

to capture spatial autocorrelation and provide uncertainty measures. These interpolation 

techniques represent a methodological enhancement over coarse, region-level risk models 

used in conventional environmental studies.  

Further methodological innovation lies in the use of machine learning algorithms 

such as XGBoost, Random Forest, and Support Vector Regression (SVR) for risk 

prediction. These models were trained on integrated datasets combining environmental 

variables, CV data, and spatial indicators. The use of XGBoost, in particular, enabled the 

identification of key predictive variables and allowed for scalable, high-performance 

modeling of risk indices. The models supported both transportation safety and 

environmental vulnerability use cases, highlighting their versatility and generalizability.  

Lastly, the research presents a unified, modular framework that connects all these 

methodologies within a broader decision-support system. This system is capable of 

ingesting real-time data, visualizing spatial patterns of risk, and generating predictive 

outputs to guide proactive interventions. By embedding these analytical capabilities into a 

digital twin environment, the research transitions from traditional, descriptive risk analysis 

to an adaptive, intelligent approach that supports ongoing monitoring, evaluation, and 

improvement of transportation and environmental systems.  
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In sum, this dissertation contributes a flexible, replicable, and interdisciplinary 

methodology that enhances both the rigor and the relevance of risk analysis. It equips 

scholars, practitioners, and policymakers with tools to better understand complex systems, 

forecast emerging risks, and deploy timely, equitable, and effective interventions.  

7.7. Limitations   

While this dissertation offers valuable insights and methodological advancements in 

transportation safety and environmental risk management, several limitations must be 

acknowledged. These limitations primarily stem from data availability, model assumptions, 

and practical constraints related to implementation.  

One of the primary limitations lies in the availability and coverage of connected 

vehicle data. Although the datasets used were extensive and included billions of 

observations, they represent only a subset of all vehicles on the road. Vehicle participation 

in connected data networks is still limited by technology adoption rates and coverage varies 

geographically. This can lead to incomplete representations of traffic conditions, especially 

in less urbanized areas or during periods of low vehicle activity. Furthermore, not all 

vehicle events are recorded with the same frequency or quality, which may introduce 

sampling bias or underreporting in certain locations or time frames.  

Another limitation is associated with the use of surrogate safety measures. While 

indicators such as harsh braking and rapid acceleration provide meaningful proxies for 

potential crash risk, they do not guarantee that a crash will occur. These events may reflect 

unsafe behavior, but they can also result from necessary defensive driving in unpredictable 

traffic environments. As a result, caution must be exercised when interpreting clusters of 
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surrogate events as definitive indicators of high risk without supporting observational or 

contextual data.  

From a methodological perspective, the interpretation of spatial patterns and 

predictive models is influenced by assumptions inherent to the tools used. For instance, 

clustering results from DBSCAN are sensitive to parameter selection, which can affect how 

many clusters are detected and their size. Similarly, interpolation techniques such as 

Kriging and IDW rely on the assumption that nearby values are spatially correlated, which 

may not always hold true in areas with sharp environmental or behavioral transitions. 

Machine learning models, though powerful, are influenced by the quality and balance of 

the training data and may not generalize well in areas or time periods with different 

characteristics than those used during model development.  

Another limitation is the challenge of real-time integration and operational 

deployment. While the research demonstrates the feasibility of integrating diverse datasets 

into a digital twin and centralized information management system, deploying such 

systems at scale requires significant coordination across agencies, investment in digital 

infrastructure, and staff capacity to interpret and act on model outputs. This can be 

particularly challenging in regions where digital transformation in transportation agencies 

is still emerging.  

Additionally, environmental data used in the analysis of heat-based agricultural risk 

was limited in spatial and temporal resolution. Despite the use of interpolation to estimate 

continuous surfaces, actual ground truth data in many of the rural regions studied remains 
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scarce. This restricts the ability to validate predictive models with high confidence and may 

limit the applicability of findings outside the studied regions.  

Lastly, while the dissertation presents a unified risk analysis framework, its 

implementation was focused on selected case studies, including a school zone in Northern 

Virginia and agricultural regions in West Africa. These case studies were chosen to 

demonstrate the flexibility of the framework across domains, but they do not capture all 

possible contexts or challenges that might emerge in other regions or infrastructure 

systems.  

In summary, the research is constrained by data availability, modeling assumptions, 

and implementation feasibility. These limitations do not undermine the contributions of the 

work but instead highlight important areas for future refinement and continued 

development.  

 7.8. Recommendations for Future Research  

This dissertation has laid the foundation for a data-driven and geospatially informed 

approach to risk analysis in both transportation and environmental contexts. While the 

results demonstrate promising outcomes across multiple domains, there remain several 

opportunities for further exploration and enhancement of the methods and applications 

introduced.  

One key area for future research is the expansion of connected vehicle data sources. 

As participation in connected vehicle networks increases and data quality improves, 

researchers will be able to conduct more comprehensive and granular analyses. Future 

studies should explore how the integration of additional vehicle metrics, such as steering 



Rayshaun Wheeler | Ph.D.  Dissertation | April 2025  

  

Page 135 of 156  

  

angles, lane positioning, and pedestrian detection events, can improve the understanding of 

complex driving behaviors. These enhancements could lead to more refined indicators of 

near misses and unsafe maneuvers, especially in urban corridors and pedestrian-heavy 

areas.  

Another recommendation involves the application of the framework across a wider 

variety of locations and conditions. While this research focused on specific case studies in 

Virginia and West Africa, future work should test the transferability of the models in 

different geographic, economic, and infrastructure settings. Expanding the framework to 

rural, suburban, and high-density urban environments across various regions can validate 

the adaptability and robustness of the risk indicators and predictive models. Doing so would 

help identify how infrastructure layout, cultural differences in driving behavior, and climate 

conditions influence risk patterns.  

The integration of additional data streams and sensors presents another valuable 

opportunity. Incorporating data from mobile devices, roadside units, weather monitoring 

systems, and crowdsourced reports could offer a more complete picture of the 

transportation ecosystem. Multimodal datasets, including those capturing bicycle and 

pedestrian movements, could also be incorporated into future risk assessments to support 

more inclusive mobility planning.  

There is also an opportunity to further advance predictive modeling techniques.  

While this research applied established machine learning models such as XGBoost and 

Random Forest, future research could explore the use of deep learning architectures that 

can capture temporal and spatial dependencies more effectively. Recurrent neural networks, 
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graph neural networks, and hybrid models could be tested to model the evolving nature of 

risk in both transportation systems and environmental conditions. Additionally, explainable 

artificial intelligence methods should be further developed to ensure that model outputs 

remain transparent and actionable for planners and decision-makers.  

Future research should also continue to refine digital twin capabilities. This includes 

building more dynamic and automated linkages between real-time data feeds and decision 

support dashboards. Greater automation in updating geospatial layers, integrating sensor 

inputs, and triggering alerts would allow digital twins to become more operational and 

responsive tools. This would be particularly beneficial in time-sensitive contexts such as 

school zone monitoring, evacuation planning, or weather-related disruptions.  

Lastly, future research should place increased emphasis on evaluating the impact of 

interventions informed by this framework. While the current work focuses on detection and 

prediction, additional studies should explore how data-driven interventions affect realworld 

outcomes. Pilot programs that implement safety countermeasures based on hotspot 

analysis, for example, could be evaluated to measure reductions in risk-related behaviors 

or incidents. Similarly, testing the effectiveness of agricultural adaptation 

recommendations in areas predicted to face extreme heat can help validate model utility 

and guide future improvements. These recommendations aim to expand the scope, 

precision, and impact of the research introduced in this dissertation. By pursuing these 

directions, future studies can continue to bridge the gap between advanced analytics and 

real-world risk mitigation across diverse sectors.  
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7.9 Schedule and Timeline   

  

  

Figure 14. Timeline of conference presentations and publications. Annotations above the timeline 

represent conference presentations, and annotations show journal and conference publications.  
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