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Abstract

The vibration problem on wind turbine blades is, at times, unavoidable. The

unpredictable effects of blade vibrations on the modern high-capacity and large size

wind turbine can harm the efficiency of wind power generation, as well as the safety

operation on the wind farm. The objective of this research is to deal with the aeroe-

lastic dynamics of the spinning blade with dynamic load, which means we need to

deal with the time-varying parameters in the wind turbine system model. The system

nonlinearities could limit the performance of the feedback control.

In this research, we develop an adaptive backstepping control design for single-

input and single-output wind turbine dynamic systems with the control input as

the gurney flap which is deployed in the trailing-edge of the wind turbine blade. Our

control scheme has the capacity to guarantee the desired system tracking performance

in the presence of blade vibrations causing system parameters to be time-varying.

The model of an NACA0012 airfoil is presented for situations where two scenar-

ios are studied: the nominal model with constant parameters and the actual model

with time-varying parameters. The wind turbine dynamic system model used in our

study is based on data taken from this airfoil model. We will first demonstrate with

simulation results that an existing adaptive model reference control design can han-

dle the scenario of the nominal model with constant parameters, but cannot achieve

the desired system performance for the actual model with the time-varying system

parameters. We will then show by both an analytic and simulation results that our de-

veloped adaptive backstepping control design effectively can handle the time-varying

parameters, ensuring tracking the desired system output (pitch angle), despite large

system parameter variations.
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Chapter 1

Introduction

1.1 Research Motivation

Wind turbine control problems

Wind energy has been one of the fastest-growing energy sources in the world with

its characteristics of inexhaustible feature and cleanness. Therefore, some recent re-

search work has been done in the wind turbine system control designs to make turbine

devices more efficient [2]. Nowadays, the wind turbines have become larger and more

flexible. When the turbines need to be applied in more complicated environment,

they will meet a myriad of control problems. No matter what types of wind turbines

are, variable-speed or fixed-speed, they always have the complex inner control systems

and have been studied by several research groups [12], [13].

Wind turbine systems with time-varying parameters

In [3], the authors develop a new version of control design on the turbine blades

vibration problem. The vibration problem has been a big issue, which can harm the

large-size wind turbine operation and decrease the efficiency of the wind power gener-

1
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ation. Furthermore, the vibration problem can cause unsteady loads with fluctuation

of the flow over the rotating blade. Due to the problem of blade vibration, it is nec-

essary to develop a new adaptive control design on this problem in order to achieve

the vibration suppression purpose. In order to fix this problem, in this thesis, we will

present a new approach of adaptive control design, which our controller can solve the

vibration problem with time-varying wind turbine systems. Our adaptive backstep-

ping control design is much more powerful to obtain the desired system performance,

which means the wind turbine pitch angle can track the ideal reference signal.

1.2 Literature Review

Control problems in wind turbine systems. In [5], [6], [7], the nonlinear

aeroslastic system has been presented. The aeroelastic two-dimensional wing section

is investigated with trailing-edge and leading-edge parts. The governing equation of

motion of the aeroelastic model was also be demonstrated in these papers. The results

from these papers showed that their designed controller and adaptive laws were effec-

tive for the flutter suppression, and the considered damping uncertainty had positive

effect on their control design.

Smart actuators in wind turbine systems. As the control input, one of the

smart actuators, Gurney flap, has been illustrated in [31], [32], [33]. A slightly differ-

ent in turbine dynamics is presented with this smart actuator. In order to take stock

of recent research and development of Gurney flap, to be more effective, the Gurney

flap should be mounted at the trailing edge perpendicular to the chord line of airfoil

or wing. The flap height is related to the order of local boundary layer thickness.

Similarly, in [34], based on the formal research study of Gurney flap, the deployment

of another smart actuator, microtab, is also illustrated. For more different types of
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airfoils, an additional Gurney flap increases the pressure on the upstream surface

of the airfoil, which increases the total pressure of the lower surface. Furthermore,

due to the constrains of the materials in smart actuators, there were some hysteresis

characteristics existing, which could cause the result of system oscillation or some un-

desirable inaccuracy. Therefore, in [28], [29], [41], [42], [43], authors developed several

adaptive control designs to decrease the negative influences of hysteresis phenomenon

in these smart actuators.

Specific problems in wind turbine systems. There has been little research

study on solving the problem of the control of the blade rotation of wind turbine

systems. Most research direction is mainly on the integral control of the whole wind

turbine system, due to the difficulties of the modeling on the time-varying parameter

in the wind turbine system. Basically, blade vibration is a big issue of wind turbine

systems, in [3], the authors develop a method of output feedback control design for

fixing this problem with several assumptions and the K-Y lemma in order to achieve

the objective of vibration suppression. The simulation results show that the desired

output, pitch angle, could track the chosen ideal reference signal.

Numerical simulations in wind turbine systems. Some other research focused

on the numerical simulations in wind turbine systems in [18], [27], they provide the

results that the efficiency of the wind turbine can be ideally achieved to nearly 60%,

which testify that the higher hypothesis on wind turbine power generation can’t be

realized in any control design situations. By presenting the results in numerical

simulation way, we find that wind turbine systems would work normally under some

conditions in [10], [15], [17]. There are three working regions which are referred as

Region 1, Region 2 and Region 3, all the test simulations on the wind turbine airfoils

should be finished in Region 2. In Region 1, there is no enough wind energy to
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supply the motivation to make the wind turbine systems start to work normally and

in Region 3, the wind energy is so powerful that will destruct the wind turbine devices.

1.3 Thesis Outline

Our thesis is presented as follows. Chapter 2 provides the background needed to

discuss about the adaptive output tracking and adaptive backstepping algorithms.

Modeling of the control system, system stability and the adaptive control are going

to be presented. In Chapter 3, we will discuss the wind turbine systems, in this

chapter, basic components of wind turbine system, dynamics models and the gurney

flap will be presented. Chapter 4 will present that the limitations of the state tracking,

output tracking control design. Chapter 5 will present the basic adaptive backstepping

control design, the application on wind turbine systems and the comparison with [3].

Chapter 6 will discuss the conclusions and some future work.

1.4 Contributions in This Thesis

In this section, we list the main contributions of this thesis.

1. We start a new research version in studying control problems of wind turbine

systems, few papers have talked about control of the wind turbine systems with

time-varying parameters. More advanced adaptive control design is introduced

to make this new version more potential for wind turbine systems application.

2. We present a comprehensive study of adaptive control design for wind turbine

systems, which is mainly focusing on solving the problem of time-varying system

parameters. Compared with an existing adaptive control design, we study a



5

new approach of applying adaptive backstepping control design to wind turbine

systems.

3. Our adaptive backstepping control design can achieve the desired wind turbine

system performance. The simulation results show that our new adaptive control

design can obtain the desired asymptotic tracking, which means the system out-

put, the pitch angle, can track a chosen reference signal having certain practical

meaning.

4. As verified by extensive simulation results, our new adaptive backstepping con-

trol design can achieve the desired control objective, based on which, we can

conclude that our study provides a desirable foundation for solving the problem

of controlling wind turbine systems with time-varying parameters.

5. Besides, we generate some control problems in wind turbine systems with smart

actuators. It is a new research area that we can improve the performance of

those smart actuators, in order to make wind turbine systems more efficient,

such as adaptive compensation of nonlinearities of smart actuators caused by

hystereses of smart materials used in actuators.



Chapter 2

Background

Before going further to discuss about wind turbine systems and our control de-

signs, some background information should be introduced. In this chapter, modeling

of control systems, control system stability, and the adaptive control are will be dis-

cussed.

2.1 Modeling of Control Systems

In [44], two approaches are presented to illustrate the analysis and design of feed-

back control systems. Here, we mainly discuss the state-space model method, which

can be considered as the modern control modeling or time-domain approach. It is a

specific way for modeling, analyzing, and designing more complex control systems,

such as the nonlinear systems with backlash, saturation or dead-zone. The general

state-space model is designed as

ẋ = Ax(t) +Bu(t), y = Cx(t) +Du(t), (2.1)

6
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where x(t) ∈ Rn×1 is taken as the state vector, A ∈ Rn×1 is the system matrix,

B ∈ Rn×m is considered as the input matrix. u(t) ∈ Rm×1 is the control input,

respectively, C ∈ Rr×n is the output matrix, and y(t) ∈ Rr×1 is the system output.

Plus, some control systems consider the D ∈ Rn×m as the feed-forward matrix. In

our control design, D matrix is always considered as zero.

For a time-varying system modeling, we still can consider a state-space equation,

ẋ = A(t)x(t) +B(t)u(t), (2.2)

y = C(t)x(t) +D(t)u(t)

where A(t), B(t), C(t), D(t) have the same appropriate dimensions with some time-

varying parameters. We will present the our adaptive control method by applying the

modeling of the system in a state-space form to demonstrate the new control design

procedure.

2.2 System Stability

In the control design strategy, it is crucial to make the system stable, an unstable

control system is usually harmful and useless. Originally, to check the stability of

a control system, the system transfer function is always introduced, which can be

considered as the classical control of modeling [44]. But how to choose the control

design method depends on the actual system model. It is general to demonstrate the

modern control modeling strategy for most system models.

It is also possible to analyze the eigenvalues of matrix A to see whether the system

is stable, marginally stable or unstable.
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Lyapunov Stability. However, in the adaptive control design, these matrices pa-

rameters like A,B,C are always unknown. So it is necessary to do the work with

Lyapunov functions, which is also considered as the Lyapunov candidates, that are

to deal with the problem of the system stability, which do not need to directly solve

the results of the system. Generally, a Lyapunov candidate is chosen as some positive

definite function, which can be V (x, t). This Lyapunov function candidate is positive

for any x and t and V (0, t) = 0 for any t ≥ 0, and evaluates the time derivative of

V (x, t). If V̇ , as a function of the time t, does not increase as t increases, the equilib-

rium state of the system has the certain stability properties, where we can consider

that the designed system is stable, V (x, t) becomes a Lyapunov function.

Furthermore, some stability theories relevant to adaptive estimation and control

designs are introduced: Signal norms, Gronwall-Bellman Lemma, Barbalat Lemma

and Lefschetz-Kalman-Yakubovich Lemma.

Signal Norms. For a vector signal x(t) ∈ Rn, the L1, L2, and L∞ norms are

defined as follows:

‖x(·)‖1 =

∫ ∞
0

||x(t)||1d(t) =

∫ ∞
0

(|x1(t)|+ · · ·+ |xn(t)|)dt (2.3)

‖x(·)‖2 =

√∫ ∞
0

||x(t)||22dt =

√∫ ∞
0

(x21(t) + · · ·+ x2n(t))dt (2.4)

‖x(·)‖∞ = sup
t≥0
||x(t)||∞ = sup

≥0
max
1≤i≤n

|xi(t)|. (2.5)
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The signal spaces L1, L2, and L∞ are defined as

L1 = {x(t) ∈ Rn : ‖x(·)‖1 <∞} (2.6)

L2 = {x(t) ∈ Rn : ‖x(·)‖2 <∞} (2.7)

L∞ = {x(t) ∈ Rn : ‖x(·)‖∞ <∞} (2.8)

And these are linear spaces which only contain elements with finite norms speci-

fied. The conclusion can be got if x(t) ∈ L1
⋂
∈ L∞ ⇒ x(t) ∈ L2.

Gronwall-Bellman Lemma. Let f(t), g(t), and k(t) be continuous and g(t) ≥ 0,

k(t) ≥ 0, ∀t ≥ t0 and for some t0 ≥ 0. If a continuous function u(t) is given by

u(t) ≤ f(t) + g(t)

∫ t

t0

k(τ)u(τ)d(τ) (2.9)

Then u(t) can be written in the form:

u(t) ≤ f(t) + g(t)

∫ t

t0

k(τ)f(τ)e
∫ t
τ k(σ)g(σ)d(σ)d(τ) (2.10)

Gronwall-Bellman Lemma can bound the signals in a certain interval. It is difficult

to find the signal bounded for a system, and harder to write a form like Gronwall-

Bellman Lemma. So, it is necessary to know the content of Barbalat Lemma, which

will be more powerful for signal boundedness.

Barbalat Lemma. Barbalat Lemma is very useful for the signal boundedness and

its derivatives. It is also very crucial for the system stability analysis. The following

descriptions are known as Barbalat lemma.

Lemma 2.1 [Barbalat] If a scalar function f(t) is uniformly continuous such that
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limt→∞
∫ t
0
f(τ)dτ exists and is finite, then limt→∞ f(t) = 0.

Sometimes, it is not easy for us to check the uniform continuity of the signal, so

the following lemma is more convenient for us to see the stability analysis, which is

given by

Corollary 2.1 If ḟ(t) ∈ L∞, f(t) ∈ L2, then limt→∞ f(t) = 0.

Lefschetz-Kalman-Yakubovich Lemma. The following lemma is for the Lefschetz-

Kalman-Yakubovich Lemma. The matrix A such that det(sI − A) has only zeros in

the open left half plane, with δ > 0, a real b such that (A, b) is completely controllable,

a real vector c, a scalar d, and a real symmetric positive definite matrix L. Then a

real vector q and a real matrix P = P T > 0, which satisfies that

ATP + PA = −qqT − δL, Pb− cT =
√

2dq. (2.11)

when δ is small enough.

2.3 Adaptive Control

Adaptive control, as the name implies, applies physical adaptation dynamics that

matches a controller for a system with the unknown system parameters to reach the

goal which is the desired system performance. Differing from the classical control

method, an adaptive control system can achieve more possible system operation that

is much more flexible than the classical control.
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Parameter 
adjustment

Controller Plant

Controller 
parameters

r y

Control Signal

Figure 2.1: Adaptive control system.

Direct adaptive control

There are two ways to determine the adaptive control design. One is considered

as the direct adaptive control and is to generate the updated system parameters

with adaptive controller and adaptive laws without thinking the initial conditions

of the target plant and possible disturbances. In a direct adaptive control system,

the controller parameters, which are estimates of some unknown ideal plant-model

controller matching parameters, are directly updated from adaptive laws, based on

our defined tracking error.
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Reference model
ym(t)

Adaptive law
_

( )t

Controller
C(s; θ(t))

( )t

r(t)
Plant

u(t) y(t)

Figure 2.2: Direct adaptive control system [4].

Indirect adaptive control

The other one is called indirect adaptive control, this method is to estimate plant

parameters with the possible disturbances, and update the adaptive controller with

the designed adaptive laws. In an indirect adaptive control system, the controller

parameters, which are also estimates of some unknown ideal plant-model matching

parameters, are simultaneously calculated from a design equation using the on-line

estimates of the unknown plant parameters, updated from a parameter estimator

based on an estimation error presenting the mismatch between the plant output and

its estimated version generated from the parameter estimation.
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Design
equation

ym(t)

Parameter estimator

Controller Plantu(t) y(t)

( )p t

( )p t

( )c t

*( ; )pG s ( ; ( ))cC s t

Figure 2.3: Indirect adaptive control system [4].

In either a direct or an indirect adaptive control design, it is important to use the

estimates of some unknown parameters of an ideal controller as if they are the true

values of those unknown parameters. The parameter estimates are obtained from an

adaptive updated law driven by system performance error, and used in implementing

an adaptive controller either directly or through a design equation to map the plant

parameter estimates to the controller parameters.



Chapter 3

Wind Turbine Systems

In this chapter, we will introduce the wind turbine systems. Many research groups

are being studying the related topics about the wind turbine systems. In [12], the

wind turbine is described as a machine that can convert the power from the wind

to electricity. Some energy institutions have shown their statistics that the United

States may receive 20% of its electrical power from wind energy by 2030 [13]. The

number of this target is about 300GW installed capacity. Since the energy crisis of

the 1970s, a large-scale wind power plant has become a popular topic to all over the

world [14]. A typical modern wind turbine of a large-scale wind power plant, in a

wind farm configuration, which is related to a utility network, is shown in Figure 3.1.

Today, the most general design of the wind turbine is the horizontal axis wind

turbine (HAWT) [15]. To understand well how the wind turbines are used, it is

necessary to know some fundamental parts which compose the wind turbine systems.

The mathematical modeling of the wind turbine systems provides a physical process

to illustrate that the airfoil lift first will produce a pure positive torque on a rotating

shaft, then the production of mechanical power will be transferred to electricity by a

generator. In this chapter, we will also talk about smart actuators in wind turbine

14
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Figure 3.1: Modern utility-scale wind turbine [48].

systems. With the development of the wind turbine field, there are a variety of

methods on actuators of wind turbine blade, which mainly focus on how to improve

the efficiency of the wind turbine systems. At the end of this chapter, we will present

the dynamic modeling of the wind turbine systems, which will be utilized in our

adaptive control designs.

3.1 Basic Components of Wind Turbine Systems

As shown in Figure 3.2, the principal subsystems of HAWT are presented. And

they include following elements [12]:
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Figure 3.2: Components of a horizontal axis wind turbine.

• blades: horizontal, vertical and savonius;

• rotor: downwind and upwind types;

• hub: rigid, teetering, or hinged;

• power control by aerodynamic control (stall control) or variable-pitch blades (pitch

control);

• synchronous or asynchronous generator (squirrel cage or doubly fed);

• drive train.

A compact summary will be done to overview some main components.

3.1.1 Rotor

There are two parts for the wind turbine rotor, which are the hub and blades.

Nowadays, most turbines have upwind rotors with three blades and several downwind
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rotors are using under some certain conditions. The material of turbine blades are

always composites, fiberglass or carbon fiber reinforced plastics.

3.1.2 Drive Train

The other rotating parts of the wind turbine downstream of the rotor make up of

the drive train. They include a low-speed shaft(on the rotor side), a gearbox, and a

high-speed shaft(on the generator side). The support bearings, one or more couplings,

a brake, and the rotating parts of the generator are the other components of the drive

train. The function of the gearbox is to increase the speed rate of the rotor rotation

from a low value(tens of rpm) to a rate suitable for driving a generator(thousands

of rpm). Parallel shaft and planetary are normally used in the wind turbine design.

Fluctuating winds and the dynamics of large rotating rotors impose varying loads on

drive train.

3.1.3 Generator

Most wind turbines use the induction or synchronous generators, when the power

electronic converters are used with the generator, this kind of turbine is the type of

the so-called variable-speed wind turbine [17].

Squirrel cage induction generators are installed in the most wind turbines. A

squirrel cage induction generator operates within a narrow range of speeds slightly

higher than its synchronous speed. This type of induction generator is rugged, cheap

and easy to operate with an electrical network. The other type is called doubly fed

induction generator. It is always used in the variable-speed wind turbine design.

An increasingly popular option for utility-scale electrical power generation is the

variable-speed wind turbine. There are a number of profits that such a configuration

offers, including the reduction of wear and tear on the wind turbine and potential op-
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eration of the wind turbines at maximum efficiency over a wide range of wind speeds,

yielding increased energy capture. When using with suitable power electronic con-

verters, either synchronous or induction generators of either type can run at variable

speed.

3.2 Modeling of Wind Turbine Systems

As we know, a wind turbine device can transfer kinetic energy from the wind to

mechanical energy. The key point in this process depends on the extraction between

the rotor and the wind. The mean power output is determined by the mean wind

speed, thus only steady-state aerodynamics have been considered to be important in

this project and turbulence has been ignored. So it is important to understand some

major aspects of wind turbine performance, such as power output and loads, which

are influenced by the forces generated by the wind [19].

It is important to notice that we must focus on integrating wind power into the

power systems. In above the section, we know that there are several important

components in the wind turbine systems. So we present the rotor blade modeling,

drive train modeling and induction modeling in this part.

3.2.1 Modeling of Wind Turbine Rotor Blade

In [20,21], the original aerodynamic analysis of wind turbines was carried by Betz

and Glauert from 1920s to 1930s. The wind power production equation is like

Pwind =
1

2
ρAV 3

wind (3.1)

where ρ is air density, A is the area swept by blades, Vwind is the wind speed.
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From [20], it is known the maximum power which can be extract by an ideal

wind turbine rotor with certain number blades from wind under ideal conditions is

59.26% of the power generated by wind. Generally, in practice, this number is closer

to 50%, limited by the number of blades and some constraints in economic cost or

rapid changes of external environment. We definite the ratio of the extractable power

to available power is the rotor power coefficient Cp. (3.1) can be rewritten as

Pwind =
1

2
CpρAV

3
wind (3.2)

Generally, equation (3.2) is given by as follows [18]

Protor =
1

2
Cp(λ, β)ρAV 3

wind (3.3)

where λ is called tip-speed ratio(TSR) and β is the blade pitch angle, the blade pitch

angle is defined as the angle between the plane of rotation and the blade cross-section

chord. The TSR is defined as

λ =
ωrotor ×Rrotor

Vwind
(3.4)

where ωrotor is the rotor angular speed(rad/s), Rrotor is the rotor radius of the blade

length.

So the rotor torque can be derived as

Trotor =
1
2
ρCpAV

3
wind

ωrotor
(3.5)

where A = πR2
rotor.

Normally, modern utility-scale wind turbines use airfoils, such as NACA0012, and



20

so on, to utilize the kinetic energy from the wind. There are two forces acting on

the airfoil:lift and drag. Wind turbines depend on lift force to apply torque to rotor

blades, and also some torque caused by the drag force. Figure (3.3) shows lift and

drag force on the airfoil model and some relevant angles which will be applied in the

following sections. In Chapter 2, we consider a state-space model like

ẋ = A(t)x(t) +B(t)u(t), (3.6)

y = C(t)x(t)

where the system output y can be found from Figure (3.3), which is the blade pitch

angle.

Figure 3.3: Cross section of wind turbine blade airfoil and angles [18].

The lift force is vertical to the effective airflow direction, which is directly applied

on the torque that rotates for the rotor. The drag is perpendicular to the lift force

on the cross section of the airfoil.
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3.2.2 Modeling of Drive Train

The drive train is the part of mechanical process of the wind turbine system. It

consists of a rotor shaft, a blade pitching mechanism, a hub with blades, generator

shaft and a gearbox. The shafts and the gearbox are using a two-mass inertia. In

a rotational system [22], it is made up with a disk with a moment of inertia J on a

shaft. We assume that the viscous friction coefficient, as damping coefficient, is D

and the shaft torsional spring constant, which is stiffness, is K. So the torque acting

on the disk can be obtained by the following equation, which is like

TD = J
d2θ(t)

dt2
+D

dθ(t)

dt
+Kθ(t) (3.7)

Next, we present two systems are connected through a gear train, and TD is the

external torque on the disk of system 1, which is shown in Figure 3.4a.

J1

J2

System 1

System 2

Gear train

D1, K1

D2, K2

T1 

N1

N2

TD, ϴ1

T2, ϴ2

a)

b)
Jequiv

TD

Kequiv

Dequiv

Figure 3.4: Rotational system with a gear train.
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The defined torque T1, T2 are transmitted torques. N1 and N2 are the number of

teeth of gear 1 and gear 2.

Using equation (3.7), the torque equation at J1 is

TD = J1
d2θ1
dt2

+D1
dθ1
dt

+K1θ1 (3.8)

Similarly, the torque at J2 is

T2 = J2
d2θ1
dt2

+D2
dθ1
dt

+K2θ2 (3.9)

where T1 = N1

N2
T2, θ2 = N1

N2
θ1, we can connect the quantity relationship between gear

1 and gear 2 [22], which T1 can be written as

T1 = (
N1

N2

)(J2
d2θ1
dt2

+D2
dθ1
dt

+K2θ2) (3.10)

T1 = (
N1

N2

)[J2(
N1

N2

)
d2θ1
dt2

+D2(
N1

N2

)
dθ1
dt

+K2(
N1

N2

)θ1]

Then with (3.8)-(3.10), we can generate the equivalent system in Figure 3.4b as

TD = Jequiv
d2θ1
dt2

+Dequiv
dθ1
dt

+Kequivθ1 (3.11)

where

Jequiv = J1 + J2(
N1

N2

)2

Dequiv = D1 +D2(
N1

N2

)2

Kequiv = K1 +K2(
N1

N2

)2
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3.2.3 Modeling of Induction Generator

As we mentioned, there are two types of the wind turbine device: fixed-speed and

variable-speed. For the fixed-speed type, most wind turbines will apply the squirrel-

cage induction generators. In [23], users may develop third or fifth-order algebraic

models for induction machines. And for the variable-speed type, The doubly-fed in-

duction generators are always used. The doubly-fed induction generator model can

be expressed in the stationary stator reference frame, the reference frame rotating

at rotor speed and the synchronously rotating reference frame. In [24, 25], the au-

thors explained the synchronously rotating reference frame in order to simplify the

controller design according to the fact that all the currents and voltages expressed

under this reference frame will be of a DC nature. While, in [26], both stator and

rotor variables were referred to their corresponding natural reference frames, and

the machine model expressed in such reference frame is called the Quadrature-Phase

Slip-Ring model. Figure 3.5 shows the whole working process of doubly-fed induction

generator(DFIG).

Figure 3.5: Doubly-fed induction generator in wind turbine from Mathworks.
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3.3 Wind Turbine Systems with Gurney Flap

Typically, the wind turbine blade model is an aeroelastic model, which has two-

dimensional wing section with both trailing-edge(TE) and leading-edge(LE). This

model is discussed in [5], furthermore, in [3], the authors develop a new model with the

actuator, gurney flap, which can provide the control force. It is always being put on

the position of TE on the wind turbine airfoil. The effect of this nonlinear aeroelastic

system is difficult to analyze since the fluid motion is generated by equations where

analytical solutions are non-existent [6,7]. A full-nonlinear aerodynamic code solving

the Euler equations has been coupled to a structural model for a two-dimensional

flow case by Djayapertapa et al. [8, 9].

Figure 3.6: Gurney flap in airfoil [47].

From both [5, 6], we generate the data on the effects of the vibration with the

parameters of the wind turbine systems in different blade rotation situations. It is

generally from the parameter of the system based on the airfoil NACA0012, which is

obtained by Thomas W. Strganac, Jeonghwan Ko, David E. Thompson [1] and some

numerical study is done in [27].

As mentioned at the beginning of this chapter, [3] illustrates that an actuator
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called gurney flap provides the control input, so next, the application of gurney flap

will be presented which includes the enhancement and mechanism in wind turbine

systems. Also, as one of the smart material in wind turbine control, the phenomenon

of hysteresis, which is in [28,29], will also be introduced.

3.3.1 Gurney Flap Applications

Over the years, high-lift devices have attracted the attention of wind turbine de-

signers and engineers as they can improve the efficiency of power production econom-

ically [30, 31]. Flow over flaps can be very complicated, it involves boundary layers,

main wind wakes, potential flow outside the boundary layer and flow in the flap shot.

Here, we just illustrate some general idea about the Gurney flap characteristics.

The gurney flap is usually applied on the active flow control(AFC) process and

this device involves small tabs located near the TE of an airfoil. The tabs are al-

ways put nearly perpendicular to the airfoil surface to a height on the order of the

boundary layer thickness (1-2 % chord). This trivial move can cause an effect on the

aerodynamics of the airfoil by changing the Kutta condition [32], which is the point

of flow separation, altering the TE flow conditions and changing the shape of the flow

near the airfoil. The possible lift enhancement is achieved by deploying the tab on

the lower surface and lift mitigation is obtained by deploying the tab on the upper

surface.

The concept of the deployment of the gurney flap was conducted by researchers

at UC Davis, they did both computational and experimental studies on lower sur-

face, the effects of flap height, flap location and flap spacing were investigated for

3-D applications. The simulation results show that the flap of 1% of chord in height,

located at x/c = 95% on the lower surface can achieve the best performance for lift

enhancement, drag mitigation, and volume constraints [33, 34]. In [35], the authors
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developed more comprehensive 2-D computational experiments for testing flap height

and location on both upper and lower surface on the different wind-tunnel experi-

mental airfoils, which are S809 and GU25-5(11)8. The optimal location for the lower

surface was also 95% of chord with a height on the order of the boundary layer thick-

ness, nearly 1% of chord. These different computational studies were testified on the

airfoil S809.

3.3.2 Hystereses in Smart Actuators

As one of the most effective smart actuators in wind turbine applications, gurney

flap has been studied by different methods. In last section, researchers did a lot of

work on the deployment position of the gurney flap on the testing airfoils, such as

NACA0012, S809 and so on. These studies prove that the gurney flap can avoid

the flow separation and move stall occurrence to higher angles of attack. However,

the gurney flap itself has the characteristics of the piezoelectric and electromagnetic

materials [40]. In this chapter, we will present the hysteresis characteristics and a

brief introduction of the adaptive control design for hysteresis phenomena.

The hysteresis phenomenon appears in smart materials, such as piezoelectrics,

shape memory alloys, and magnetostrictives. When these phenomena become strong

in these materials hinders, there will be a serious influence on the effective use in

actuators [36] and they often limit system performance, which can cause the inaccu-

racy or oscillations of the working process. The hystereses can be caused by stiction,

magnetism or gears with backlash exist in physical systems [37]- [39]. The hysteresis

characteristics are non-differentiable nonlinearities and unknown.

It is a hard task to develop an adaptive control scheme for systems with these

unknown nonlinearities. In [41], the controlled plant is made up with a linear part

precede by a hysteresis characteristic, which means, the hysteresis part is at the ac-



27

tuator of a linear part. This linear part can be known or unknown, and the hysteresis

is an unknown part. The authors would like to achieve the objective that with this

unknown hysteresis part, the system can be stabilized and tracked. The control de-

sign is called the ”adaptive inverse” method [42,43]. In [42,43], the adaptive control

of plants with non-differentiable nonlinearities, such as backlash, was applied. The

authors presented an adaptive hysteresis inverse cascaded with the plant to cancel

the effects of hysteresis so that the remaining part of the controller can keep its linear

structure. The simplified model is also presented in [41], which contains most hys-

teresis characteristics. It is very effective to cancel the effects of hysteresis phenomena

by using the adaptive hysteresis inverse control.

3.4 Dynamic Equation of Wind Turbine Systems

The dynamic blade model to be discussed is an aeroelastic model, which is given

by [5, 6]. It is also a pitch and plunge system coupled with unsteady aerodynamic

loads. In our study, the actuator is gurney flap, which provides the control force and

the system dynamic motion is down-forward plunging, which is referred as plunge

displacement h and nose-down pitching, defined as pitch angle θ.

Basic Equation for Aeroelastic Model

The basic equation of the model is given by

 m mxθb

mxθb m


 ḧ

θ̈

+

 Kh 0

0 Kh


 h

θ

 =

 −L
M

 (3.12)

where m is the mass of blade section, Iθ is pitch moment of inertial about elastic axis,

b is semi-chord, xθ is distance from elastic axis to mass center, Ch, Cθ, are plunge and
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pitch damping coefficients, and Kh, Kθ are plunge and pitch spring stiffness. The lift

aerodynamics L , and the moment M with trailing-edge gurney flap are defined as

L = ρU2bC1,θ(θ +
ḣ

U
+ (

1

2
− a)b

θ̇

U
) + ρU2bC1,gg (3.13)

M = ρU2b2Cg,θ(θ +
ḣ

U
+ (

1

2
− a)b

θ̇

U
) + ρU2b2Cg,gg

where ρ is air density, U is wind velocity, a is distance from mid-chord to elastic axis,

g is the gurney flap which provides the control force, and C1,θ, Cg,θ, C1,g, Cg,g are lift

and moment coefficients, angle of attack and gurney flap.

Most data of the system model based on the airfoil NACA0012, which has been

mentioned in Chapter 3, can be found in Table I [5]. The system parameters C1,θ

and Cg,θ are corresponding to the periodical change of angle of attack when the blade

is spinning. So the these two system parameters are supposed to be known as the

sinusoid part with the same frequency of the blade rotation [3]: C1,θ = 3.375 +

3.375 sin(ωrt) and Cg,θ = (0.5 + a)C1,θ. The units are per radian.

Table 3.1: System Parameters

.

Symbol Description Value
a distance from airfoil mid-chord to elastic axis −0.6847 m
b airfoil semi-chord 0.135 m
m mass of the airfoil model 12.387 kg
ρ air density 1.225 kg/m3

Iθ mass moment of inertia of the wing about elastic axis 0.065 m2kg
xθb distance between elastic axis and mass center 0.033 m
Ch plunge structural damping coefficient 27.43 kg/s
Cθ pitch structural damping coefficient 0.18 m2kg/s
Kh plunge structural spring coefficient 2844.4 N/m
C1,g lift coefficient for gurney flap 18.45 /rad
Cg,g moment coefficient for gurney flap 3.25 rad
Kh plunge stiffness 6.833 N ·m/rad

In this part, with the governing equations (3.12) and (3.13), we can get the state-
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space equation for this model and it is reasonable to get the numerical value from the

Table 1 to get the system parameters. Indeed, we can see that the system parameter

includes time-varying parts, which are C1,θ and Cg,θ.

NACA0012 Airfoil State Space Model

In this part, we present the state space of the NACA0012 airfoil with the generated

parameters in Table I.

To begin, the state variables are defined as

x =



h

θ

ḣ

θ̇


(3.14)

The state space model of the NACA0012 airfoil is written in the from:

ẋ = Ax+Bu (3.15)

y = Cx

where A =

 02×2 I2×2

−M−1K −M−1N

 , B =

 02×1

M−1R

 , C =

[
0 1 0 0

]
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which M,K,R,C matrices are in the following structure:

M =

 m mxθb

mxθb m

 , (3.16)

K =

Kh ρU2bC1,θ

0 Kθ − ρU2b2Cg,θ

 ,

R =

 ρU2bC1,g

ρU2b2Cg,g

 ,

N =

 Ch + ρUbC1,θ ρUb2C1,θ(
1
2
− a)

−ρUb2Cg,θ Cθ − ρUb3Cg,θ(12 − a)


The control input u = g , which is considered as gurney flap, and y = θ denotes

the system output.

Based on the existed control design which will be introduced in Chapter 4, we

will generate the system matrix parameters in two cases with Table I. First, the

blade rotation parameter C1,θ is constant which means the ωr part is equal to zero.

Second, the blade rotation parameter includes the time-varying parts, which the time

frequency ωr is equal two [3].
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A nominal model with constant parameters

In this case, we generate the blade rotation by assuming the ωr = 0. Then we can

use the existed control design in next chapter.

A1 =



0 0 1.0000 0

0 0 0 1.0000

−229.8782 −2.8663 −2.5774 −0.0572

7.5865 −0.5289 0.0761 −0.0141


(3.17)

B =



0

0

15.7941

0.8901


C =

[
0 1 0 0

]

An actual model with time-varying parameters

In this case, we generate the actual model with some time-varying parameters,

which will be applied in Chapter 5. In Chapter 5, we will present our new adaptive

control design using this state space model parameters.
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A2 = A20 + ∆A2(t) (3.18)

A20 =



0 0 1.0000 0

0 0 0 1.0000

−229.8782 3.4308 −2.6673 −0.00067

7.5865 −232.9684 0.0891 −0.0171



∆A2(t) =



0 0 0 0

0 0 0 0

0 −4.5096 sin 2t −0.451 sin 2t −0.0067 sin 2t

0 0.911 sin 2t 0.0151 sin 2t −0.0021 sin 2t



B =



0

0

15.7941

0.8901


C =

[
0 1 0 0

]

From the above parameters we generated, we see that our control matrix and

output matrix B and C are the same in two cases, the difference between matrices A1

and A2 will lead us to the following chapters, we will present our simulation results

to see that our new adaptive control design can solve the problem of time-varying

system parameters.
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3.5 Summary

In this chapter, we discuss the wind turbine systems in several parts. First,

some basic components of the wind turbine device are introduce. After that, the

physical modeling of the wind turbine is presented in electrical and mechanical part

respectively. It is helpful to fully understand the working principle of the main parts

in the wind turbine. Then we illustrate a smart material actuator, gurney flap, which

supplies the control input in our control design system. And the phenomenon of the

hysteresis are talked about in a new perspective of improving the efficiency of the

power production of the wind turbine system. But the control design of decrease

the effect of hysteresis is not including in this thesis. In last section, we present the

dynamic model of the wind turbine systems which is referred as NACA 0012 airfoil

model. Furthermore, we also generate the system matrices into two parts, which are

the nominal model with constant parameters part and the actual model

with time-varying parameters part. We would like to see that whether we can

achieve our control objective with these different system matrices by using the existed

control design in next chapter.



Chapter 4

Study of Adaptive Model

Reference Control Designs

Adaptive state feedback control designs will be applied in this chapter. In this

part, we will introduce two adaptive state feedback control designs, which are state

tracking and output tracking. Before the algorithms are utilized, we need to check

whether our control designs satisfy the assumptions. Then we will present our control

design procedure, which includes the controller form, adaptive laws and stability

analysis.

4.1 State Tracking Control Design

Either state tracking or output tracking is designed to improve the system perfor-

mances, it is necessary to ensure two prior conditions to be satisfied. First, all signals

in the closed-loop system should be bounded. Second, the state vector xp(t) should

make an asymptotic tracking to a given reference signal.

34
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4.1.1 State Tracking Controller Structure

Consider a plant described by a differential equation

ẋp(t) = Apxp(t) + bpu(t) (4.1)

where the system state vector xp ∈ Rn, the control input is u(t) ∈ R, with the initial

state is xp(0) = xp0. And the system matrix Ap ∈ Rn×n, the control input matrix

Bp ∈ Rn is unknown constant matrix, and the state vector xp(t) is available for

measurement.

The control objective is to design a feedback control u(t) that in the closed-loop

system all signals are bounded and the state vector xp(t) asymptotically tracks a given

a reference state vector xm(t) which can be generated from the reference system

ẋm(t) = Amxm(t) + bmr(t) (4.2)

with the initial reference state condition xm(0) = xm0, where the reference state vector

xm ∈ Rn, the reference input is r(t) ∈ R, the reference system matrix Am ∈ Rn×n

and reference input matrix Bm ∈ Rn are known and constant.

To achieve the design objective, several assumptions are given by

A4.1 All the eigenvalues of Am are in the open left-half complex plane;

A4.2 r(t) is bounded and piecewise continuous;

A4.3 There exist a constant vector k∗1 ∈ Rn and a non-zero constant scalar k∗2 ∈ R

such that the following equations are satisfied:

Ap + bpk
∗T
1 = Am, bpk

∗
2 = bm (4.3)
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A4.4 sign[k∗2], the sign of the parameter k∗2 is known.

The assumption A4.1 and A4.2 are needed for the stabilization of a well-defined

reference system with a bounded output ym(t). Assumption A4.3 is a matching

condition if the parameters Ap(t) and bp(t) are known, there is a control law that

u(t) = k∗T1 xp(t) + k∗2r(t), (4.4)

So the control objective can be achieved by

ẋp(t) = Apxp(t) + bp(k
∗T
1 xp(t) + k∗2r(t)) = Amxm(t) + bmr(t) (4.5)

where the system state vector xp(t) is bounded, the defined tracking error e(t) =

xp(t)− xm(t) is defined as follows:

ė(t) = Ame(t) (4.6)

where the initial condition e(t) = xp0 − xm0, shows that the tracking error goes to

zero exponentially.

4.1.2 Limitations of State Tracking Control Design

In order to apply the method of state tracking control design, we need to testify

the assumptions from last section. After calculating the matching condition (4.3),

there is no solution for k∗1 applying for any models. Since k∗1 does not exist, adaptive

state tracking design is not accessible. There is no ideal controller existing that can

generate Ap to Am. If an ideal controller does not exist for state tracking then an

adaptive controller will not exist because there are no possible values for k1 and k2

for the system to calculate with this configuration.
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4.2 Output Tracking Control Design

Due to the limitations of state tracking control design, in this section, we will

present the output tracking design to apply the system parameters in Section 3.4, the

constant blade rotation part, which will be used in this part. To design an adaptive

state feedback model reference controller for generating the system input u(t) which

ensures closed-loop signal boundedness and asymptotic tracking of an independent

reference signal ym(t) by the system output y(t). Stability properties as well as

performance objectives are important to consider in the design process and needy to

be examined. First we consider a linear time-invariant state space model like

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) (4.7)

where x(t) ∈ Rn, u(t) ∈ R, and y(t) ∈ R. The matrices A ∈ Rn×n, B ∈ Rn×1, and

C ∈ R1×n. So the transfer function of the system is written in the form:

y(s) = C(sI − A)−1Bu(s) =
Z(s)

P (s)
u(s). (4.8)

where Z(s) = zms
m + zm−1s

m−1 + · · ·+ z1s+ z0, zm 6= 0. The degree of P (s) is n.

Matching conditions for output tracking. In order to achieve the control de-

sign objective, some assumptions are needed

(A4.5) (A,B,C) is stabilizable and detectable;

(A4.6) Z(s) is a stable polynominal;

(A4.7) Degree of Z(s), m is known;

(A4.8) The sign of zm is known.
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The assumption A4.6 ensures that system output y(t) is going to track the ref-

erence system output ym(t). Assumption A4.7 provides a choice of reference model

for the adaptive control, meanwhile A4.8 is needed for an adaptive parameter up-

dated law [4]. Furthermore, with (4.8) and above assumptions, the reference model

of the nominal model with constant parameters above can be chosen. So the

reference model is independent of the dynamics of the system, which is chosen

ym(t) = Wm(s)[r](t),Wm(s) =
1

Pm(s)
. (4.9)

where Pm(s) is the desired closed-loop characteristic polynomial, its degree is n−m.

When Pm(s) chosen, we need to guarantee that the ideal gains K∗ and k∗r exist,

which can be calculated from the following matching equation:

det(sI − A−BK∗) = PmZ(s)
1

zm
, k∗r =

1

zm
. (4.10)

So for the nominal model with constant parameters, we can get the ideal

gains from our control input to output,

K∗ =

[
0.5801 5.5046 −0.2953 1.2902

]T
, (4.11)

k∗r = −1.1235. (4.12)

4.2.1 Output Tracking Controller Structure

After we calculate the ideal gains for the suitable case, the fixed version of the

adaptive controller is

u(t) = K∗x(t) + k∗rr(t), (4.13)
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which would lead to the desired closed-loop system: y(s) = Wm(s)r(s). Since A,B

and Zm are all unknown parameters, the desired control gains K∗ and k∗r are also

unknown. So an adaptive law is needed to update parameter estimates K(t) and

kr(t). The controller form will become

u(t) = K(t)x(t) + kru(t) (4.14)

with the adaptive controller form (4.14), the system (3.15) becomes

ẋ(t) = Ax(t) +B(K(t)x(t) + kr(t)r(t))

= (A+BK∗)x(t) +Bk∗r(t) +B((K(t)−K∗)x(t) + (kr(t)− k∗r)r(t)),

y(t) = Cx(t). (4.15)

4.2.2 Adaptive Law Design

From (4.9), it follows that

C(sI − A−BK∗)−1Bk∗r =
Z(S)k∗r

det(sI − A−BK∗)
=

1

Pm(s)
= Wm(s). (4.16)

In view of (4.9), (4.15) and (4.16), the closed-loop tracking error equation becomes

e(t) = y(t)− ym(t) = ρ∗Wm(s)[(K −K∗)x+ (kr − k∗r)r](t) +Ce(A+BK
∗)tx(0). (4.17)

where ρ∗ = zm, and Ce(A+BK
∗)tx(0) will go to zero exponentially. We note that the

reference output ym(t) = Wm(t)[r](t) is derived from an (n−m)th order state variable

equation which depends on the parameters of Wm(s) only and is defined to have zero

initial conditions.
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Estimation error. In order to get the estimation error equation, we introduce

several elements as follows:

θ(t) = (K(t), kr(t))
T , (4.18)

θ∗ = (K∗, k∗r)
T , (4.19)

ω(t) = (xT (t), r(t))T , (4.20)

ζ(t) = Wm(s)[ω](t), (4.21)

ξ(t) = θT (t)ζ(t)−Wm(s)[θTω](t). (4.22)

and the estimation error is

ε(t) = e(t) + ρ(t)ξ(t), (4.23)

where ρ(t) is an estimate of ρ∗ = zm. Then, substituting (4.18)-(4.22) in (4.24), and

ignoring the initial part of Ce(A+BK
∗)tx(0), we have

ε(t) = ρ∗(θ(t)− θ∗)T ζ(t) + (ρ(t)− ρ∗)ξ(t). (4.24)

Adaptive laws. In order to determine the adaptive laws to update the estimated

parameters θ(t) and ρ(t), the normalized gradient algorithm will be used [4]. So this

error equation suggests the following adaptive laws

θ̇(t) = − Γsign(zm)ζ(t)ε(t)

1 + ζT (t)ζ(t) + ξ2(t)
, (4.25)

ρ̇(t) = − γξ(t)ε(t)

1 + ζT (t)ζ(t) + ξ2(t)
. (4.26)
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where sign(zm) is the sign of the parameter zm, Γ = ΓT > 0 and γ > 0 are adaption

gains. And the signal m(t) is such that

m(t) =
√

1 + ζT (t)ζ(t) + ξ2(t). (4.27)

where the boundedness of ε(t)
m(t)

is ensured when θ(t) and ρ(t) are bounded [4].

4.2.3 Stability Analysis

We employ a Lyapunov candidate function to generate some properties which

bases on the adaptive output tracking design, consider a positive definite function

V (θ̃, ρ̃) =
1

2
(|ρ∗|θ̃TΓ−1θ̃ + γ−1ρ̃2), (4.28)

where

θ̃(t) = θ(t)− θ∗, ρ̃(t) = ρ(t)− ρ∗. (4.29)

The time derivative of (4.28), with respect of (4.25) and (4.26), is to be

V̇ = − ε2(t)

m2(t)
. (4.30)

which we can get that (4.30) is negative definite, the adaptive law (4.25) and (4.26)

guarantees that θ(t) ∈ L∞, ρ(t) ∈ L∞, ε(t)
m(t)
∈ L2 ∩ L∞, θ̇(t) ∈ L2 ∩ L∞, and ρ̇(t) ∈

L2 ∩ L∞ [4].

With the above properties obtained from the stability analysis, all signals in the

closed-loop system are bounded. Therefore, the tracking error, e(t), satisfies the
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following properties

lim
t→∞

(y(t)− ym(t)) = 0, (4.31)∫ ∞
0

(y(t)− ym(t))2dt <∞. (4.32)

4.2.4 Simulation Study

Simulation conditions

We present our simulation work in several scenarios. With (4.11) and (4.12), we

present the results of the nominal model with constant parameters part in

fixed version of (4.13). Fixed gain controllers were simulated to compare their perfor-

mance to that of the designed adaptive controllers. In order to show our simulation

results, we need some initial conditions, the reference input is chosen as r(t) = 1.

Simulation Results
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Figure 4.1: Tracking error (Scenario I: nominal control, ωr = 0)

Next, we present the simulation results when we apply the designed adaptive laws.

In this scenario, the initial conditions will change, which will be chosen as the 75%

of (4.11) and (4.12).
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Figure 4.2: Tracking error (Scenario II: adaptive control, θ(0) = 75% θ∗, Γ = 5 )
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Figure 4.3: Parameter errors for θ1, θ2, θ3, when θ(0) =75%θ∗
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Figure 4.4: Parameter errors for θ4, θ5, ρ, when θ(0) =75 %θ∗

The results show that in the case of the nominal model with constant pa-

rameters part, the output tracking control design can achieve the objective that the

output pitch angle θ can follow the reference signal which is chosen to satisfy the phys-

ical meaning. However, what about the case the actual model with time-varying

parameters part by using the output tracking control design?
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Figure 4.5: Scenario III: nominal control, ωr = 2

0 100 200 300 400 500 600 700
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Time (s)

T
ra

c
k
in

g
 e

rr
o

r 
e

(t
) 

(r
a

d
)

Figure 4.6: Tracking error (Scenario IV: adaptive control, ωr = 2, Γ1 = 0.5)
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Figure 4.7: Parameter errors for θ1, θ2, θ3, θ(0) = 90% θ∗
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Figure 4.9: Tracking error (Scenario V: adaptive control, ωr = 2, Γ2 = 5)
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Figure 4.10: Tracking error (Scenario VI: adaptive control, ωr = 2, Γ3 = 15)

From simulation results, the adaptive output tracking design is not appropriate

for the case of the actual model with time-varying parameters part. In next

chapter, we will present the adaptive backstepping control design to fix this problem.



Chapter 5

Adaptive Backstepping Control

In this chapter, adaptive backstepping control design will be introduced based

on the specific case of the state space equation of the wind turbine systems. In our

adaptive output tracking design, the controllers designed employ static strict feed-

back, the controllers will, in addition, present a form of nonlinear integral feedback.

It is a way to deal with uncertain time-varying systems with some unknown bounded

disturbances. In this specific case, we don’t consider the disturbance terms, but need

to deal with the nonlinear part in the control design procedure. It is necessary to

use a well-defined control design scheme. The adaptive backstepping control design

can overcome the control problems, such as over-parametrization, which means there

are more estimated unknown parameters. So this recursive design procedure from

parametric strict state feedback will be developed.

48
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5.1 A Basic Adaptive Backstepping Scheme

First, we present a backstepping control design procedure for a second-order non-

linear system in a standard form, which is given by

ẇ1 = w2, (5.1)

ẇ2 = ϕ0(w1, w2) + θ∗T (t)ϕ1(w1, w2) + b0u, y = w1.

where ϕi, i = 0, 1, are known functions which are differentiable with respect to w1, w2,

b0 is unknown constant and θ∗ is an unknown parameter vector with some known

time-varying part, which is chosen

θ∗(t) = θ∗0 + θ∗1 sinωrt (5.2)

where θ∗0 ∈ Rnθ and θ∗1 ∈ Rnθ are unknown constant parameter vectors, the time

frequency ωr = 2 is referred to the blade rotation, it is for the case of the actual

model with time-varying parameters.

The control objective is to design a state feedback control u(t) using w1 and w2,

such that all closed-loop signals are bounded and the system output y(t) tracks a

given reference output ym(t) asymptotically, where ym(t), ẏm(t), and ÿm(t) are all

bounded functions of time t.

5.1.1 Adaptive Backstepping Control Design

The following procedure is for the adaptive control scheme of backstepping de-

signed for this basic case, assuming that b0 is unknown.

Step 1: Introducing z1 = w1−ym and z2 = w2−α1, where α1 is a design function



50

to be determined, and the z1 equation is chosen

ż1 = ẇ1 − ẏm = z2 + α1 − ẏm (5.3)

At this step, (5.3) can be viewed as a first-order system to be stabilized by α1 with

respect to the error measure

V1 =
1

2
z21 (5.4)

The time-derivative of V1 is

V̇1 = z1(z2 + α1 − ẏm) (5.5)

Choosing the stabilizing function as follows:

α1 = −c1z1 + ẏm (5.6)

where c1 > 0 and from (5.3) and (5.5),

ż1 = z2 − c1z1 (5.7)

V̇1 = −c1z21 + zT1 z2 (5.8)

Step 2: Using (5.1) and z2 = w2 − α1,

ż2 = ẇ2 − α̇1 (5.9)

= ϕ0(w1, w2) + θ∗Tϕ1(w1, w2) + b0u− α̇1

Now, (5.3) and (5.9) can be viewed to be stabilized by α1 given in (5.6) with

respect to the Lyapunov function V2 = V1 + 1
2
z22 + 1

2
(θ− θ∗)Γ−1(θ− θ∗) + |b0|

2γ
ρ̃2, where
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Γ = ΓT > 0, γ is a positive constant, θ(t) is the estimate of θ∗, respectively, and

ρ̃ = ρ̂− ρ, ρ̂ is the estimate of ρ = 1
b0
.

So the time derivative of V2 is

V̇2 =− c1z21 + z1z2 + z2ż2 + (θ − θ∗)Γ−1(θ̇ − θ̇∗) +
|b0|
γ
ρ̃ ˙̂ρ (5.10)

=− c1z21 + z2(w1 − ym + ϕ0(w1, w2) + θϕ1(w1, w2) + b0u+ c1(ẇ1 − ẏm)− ÿm)

+ (θ − θ∗)Γ−1(θ̇ − Γz2ϕ1(w1, w2)) +
|b0|
γ
ρ̃ ˙̂ρ

Choose adaptive laws for θ(t) as

θ̇ = Γz2ϕ1(w1, w2) (5.11)

Then the derivative of V2 can be expressed as

V̇2 = −c1z21 + z2(b0u− χ(t)) +
|b0|
γ
ρ̃ ˙̂ρ (5.12)

= −c1z21 + z2b0(u− ρχ+ ρc2z2 − ρc2z2) +
|b0|
γ
ρ̃ ˙̂ρ

= −c1z21 + z2b0(ρ̂− ρ)(χ(t)− c2z2)− c2z22 +
|b0|
γ
ρ̃ ˙̂ρ

where c2 > 0 and χ(t) = −(w1 − ym + ϕ0(w1, w2) + θϕ1(w1, w2) + c1(ẇ1 − ẏm)− ÿm).

Adaptive backstepping controller. Since this system is nonlinear, the form of

controller u(t) is also nonlinear and it should cancel the effect of the time-varying

part, so to be stabilized , the controller u(t) as

u(t) = ρ̂(χ(t)− c2z2) (5.13)
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Then choose adaptive laws for ρ̂(t)

˙̂ρ = −γsign(b0)z2(χ(t)− c2z2) (5.14)

Then we can rewrite V̇2 as

V̇2 = −c1z21 − c2z22 (5.15)

Stability analysis. After generating the desired result of derivative of the V2 func-

tion, we will present the stability analysis in this part. Since V̇2 ≤ 0, the error measure

V2 = 1
2
z21 + 1

2
z22 + (θ − θ∗)Γ−1(θ − θ∗) + |b0|

2γ
ρ̃2 does not increase as a function of t,

that is, z1(t) = w1(t) − ym(t), z2(t) = w2(t) − α1(t) and θ(t) − θ∗ are bounded, and

so are x1(t) and θ(t). From (5.6), α1(t) is bounded, so is x2(t). From the version

of u(t) form in (5.13), it shows that u(t) is also bounded. So that all signals in the

closed-loop system are bounded.

To generate the tracking measurement, that

c1

∫ t

0

z21(τ)dτ + c2

∫ t

0

z22(τ)dτ = V2(0)− V2(t) (5.16)

Since V2 as a function of t is bounded, it says that
∫∞
0
z21(τ)dτ <∞ and

∫∞
0
z22(τ)dτ <

∞. In (5.3), ż1(t) is bounded, so it shows that limt→∞ z1(t) = 0, it means that

limt→∞(y(t)− ym(t)) = 0.

In summary, we have the following conclusion.

Theorem 5.1 The controller in (5.13) with adaptive laws (5.11) and (5.14) applied

to the chosen system guarantees that all closed-loop signals are bounded and the

tracking error e(t) = y(t)− ym(t) goes to zero when t goes to infinity.
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5.1.2 Simulation Study

Simulation conditions

In this part, we will do the simulation work for a basic adaptive backstepping

control design. In our simulation process, ϕ0(w1, w2) = w1 and ϕ1(w1, w2) = w2. From

the simulation study, we would like to present that the basic adaptive backstepping

control design can deal with the time-varying parameters in our system, in order to

so we assume that θ∗0 = 2.5, θ∗1 = 2.5, b0 = 5. In different scenarios, we present several

results when the reference signals are 1 and sin(ωpt), which ωp = 1, 0.5. First, we

would like to present the simulation result of the nominal control design case, which

uses the values we choose, then we will show our adaptive control design simulation

results to see that the basic adaptive backstepping control design can achieve the

control objective which our system output can track the desired reference signals.

Simulation results
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Figure 5.1: Tracking error (nominal control, ωr = 2, ym = 1, θ(0) = θ∗, Γ = 0)
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Figure 5.2: Tracking error (adaptive design, ωr = 2, ym = 1, θ(0) = 75%θ∗, Γ = 5)
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Figure 5.3: Tracking error (ωr = 2, ym = 1, θ(0) = 85%θ∗, Γ = 5)
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Figure 5.4: Tracking error (ωr = 2, ym = sin(t), θ(0) = θ∗, Γ = 0)
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Figure 5.5: Tracking error (ωr = 2, ym = sin(t), θ(0) = 75%θ∗, Γ = 15)
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Figure 5.6: Tracking error (ωr = 2, ym = sin(t), θ(0) = 85%θ∗, Γ = 12)
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Figure 5.7: Tracking error (ωr = 2, ym = sin(0.5t), θ(0) = θ∗, Γ = 0)
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Figure 5.8: Tracking error (ωr = 2, ym = sin(0.5t), θ(0) = 75%θ∗, Γ = 10)
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Figure 5.9: Tracking error (ωr = 2, ym = sin(0.5t), θ(0) = 85%θ∗, Γ = 10)
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From the above simulation results, we can see that our system output can track

the reference signals which are 1 and sin(t), sin(0.5t), the system tracking error will

converge to zero in about 30 seconds. Both the nominal control design and adaptive

control design can achieve our control objective, it shows that basic adaptive back-

stepping control design can cancel the effect of the system nonlinearity, so in next

section, we will apply this method on our wind turbine system to see that we can still

solve the problem of the system nonlinearity with time-varying parameters.

5.2 Adaptive Backstepping Control for Wind Tur-

bine System Model

In this part, we continue presenting our adaptive backstepping control design

with the wind turbine system model. The state space model has been introduced in

Chapter 3, which can be written in the form:

ẋ1 = x3 (5.17)

ẋ2 = x4

ẋ3 = φ0(x1, x2, x3, x4) + θ∗10(t)φ1(x1, x2, x3, x4) + b1u

ẋ4 = φ2(x1, x2, x3, x4) + θ∗20(t)φ3(x1, x2, x3, x4) + b2u

y = x2,

where φi, i = 0, 1, 2, 3 are some functions which are also differentiable with respect to

x1, x2, x3, x4, the system state variables, θ∗11, θ
∗
22 are similar to the form of θ∗ and b1, b2

are some unknown constant with known signs. The output of this wind turbine system

is x2, which refers to the pitch angle of the system. x1 is the plunge displacement

and x3, x4 are the derivatives of x1 and x2. In this wind turbine system, our control
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input u can be considered as the ‘elevator’ angle deployed in the trailing edge of wind

turbine blade, which can manipulate the pitch angle of this wind turbine system

Before we present our adaptive backstepping control design, we first do a simple

analysis for this wind turbine system. We notice that in this wind turbine system,

there are four system variables, and the output is x2. So in our state space equation,

we will pick out the main equation for our adaptive backstepping control design,

which is given by

ẋ2 = x4 (5.18)

ẋ4 = φ2(x1, x2, x3, x4) + θ∗20(t)φ3(x1, x2, x3, x4) + b2u,

Then we find out that there are still two equations, which are as follows:

ẋ1 = x3 (5.19)

ẋ3 = φ0(x1, x2, x3, x4) + θ∗10(t)φ1(x1, x2, x3, x4) + b1u,

Piecewise zero dynamics In our adaptive backstepping control design, (5.19) can

be considered as zero dynamics of this wind turbine system. From the state space

model in Chapter 3, we generate several system parameters by choosing some certain

number of sin(ωrt), when sin(ωrt) = −1,−0.5, 0, 0.5, 1, the zeros of the system are all

stable. Therefore, we conclude that these two equations are stable when they are con-

sidered as the piecewise zero dynamics of this wind turbine system. We generate the

system transfer functions with parameters of the nominal model with constant

parameters. Therefore, with the chosen parameters sin(ωrt) = −1,−0.5, 0, 0.5, 1,

we can generate the system zero equations which can be found in Table 5.1. From

the Table 5.1, we can see that all the system zeros are in the open left-half of the
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complex plane, which means these equations can be considered as the piecewise zero

dynamics. According to their boundedness, we can apply a similar adaptive control

design in our wind turbine system.

Table 5.1: System Zero Polynomials

.

Value of sin(ωrt) System Zero Polynomials
-1 −0.8901s2 − 0.7957s− 84.7926

-0.5 −0.8901s2 − 0.8346s− 84.7926
0 −0.8901s2 − 1.0922s− 84.7926

0.5 −0.8901s2 − 0.8525s− 84.7926
1 −0.8901s2 − 0.8170s− 84.7926

Next, we will present the adaptive backstepping procedure for this wind turbine

system model to achieve the desired system performance.

5.2.1 Adaptive Backstepping Control Design

Step 1: Introducing z1 = x2 − ym and z2 = x4 − β1, where β1 is also a design

function to be determined, and the z1 is written in the form:

ż1 = z2 + β1 − ẏm (5.20)

And then, we will consider the first step Lyapunov function, which is given by

V3 =
1

2
z21 (5.21)

Then the derivative of (5.21) is

V̇3 = z1(z2 + β1 − ẏm) (5.22)
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Choosing the stabilizing function as follows:

β1 = −c3z1 + ẏm (5.23)

where c3 > 0, from (5.20) and (5.22), we can get the equation

ż1 = z2 − c3z1 (5.24)

V̇3 = −c3z21 + zT1 z2 (5.25)

Step 2: In this step, the time derivative of z2 is given by

ż2 = ẋ4 − β̇1 (5.26)

= φ2(x1, x2, x3, x4) + θ∗20(t)φ3(x1, x2, x3, x4) + b2u− β̇1

Based on the state space model from Chapter 3, we can rewrite the form of (5.26),

which is as follows:

ż2 = φ2(x1, x2, x3, x4)+sin(ωrt)θ
∗
21x2+sin(ωrt)θ

∗
22x3+sin(ωrt)θ

∗
23x4+b2u− β̇1 (5.27)

where θ∗2j, j = 1, 2, 3 are some unknown constant parameters.

Then, (5.20) and (5.27) can be viewed to be stabilized by β1 with respect to the

Lyapunov function, which is given by

V4 =V3 +
1

2
z22 +

1

2
(θ21 − θ∗21)Γ−11 (θ21 − θ∗21) +

1

2
(θ22 − θ∗22)Γ−12 (θ22 − θ∗22) (5.28)

+
1

2
(θ23 − θ∗23)Γ−13 (θ23 − θ∗23) +

|b2|
2γ1

ρ̃21,

where Γi = ΓTi > 0, i = 1, 2, 3, γ1 is a positive constant, θ2j, j = 1, 2, 3 are the
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estimates of θ∗2j, j = 1, 2, 3, and ρ̃1 = ρ̂1 − ρ1, ρ̂1 is the estimate of ρ1 = 1
b2

.

The time derivative of V4 is

V̇4 =− c3z21 + z1z2 + z2ż2 + (θ21 − θ∗21)Γ−11 (θ̇21 − θ̇∗21) + (θ22 − θ∗22)Γ−12 (θ̇22 − θ̇∗22)

(5.29)

+ (θ23 − θ∗23)Γ−13 (θ̇23 − θ̇∗23) +
|b2|
γ1
ρ̃1 ˙̂ρ1

=− c3z21 + z2(x2 − ym + φ2(x1, x2, x3, x4) + sin(ωrt)(θ21x2 + θ22x3 + θ23x4) + b2u

+ c3(ẋ2 − ẏm)− ÿm) + (θ21 − θ∗21)Γ−11 (θ̇21 − Γ1z2 sin(ωrt)x2)

+ (θ22 − θ∗22)Γ−12 (θ̇22 − Γ2z2 sin(ωrt)x3) + (θ23 − θ∗23)Γ−13 (θ̇23 − Γ3z2 sin(ωrt)x4)

+
|b2|
γ 1

ρ̃1 ˙̂ρ1

The adaptive laws for θ2j, j = 1, 2, 3 are given by

θ̇21 = Γ1z2 sin(ωrt)x2 (5.30)

θ̇22 = Γ2z2 sin(ωrt)x3

θ̇23 = Γ3z2 sin(ωrt)x4

Then the time derivative of V4 can be rewritten in the form:

V̇4 = −c3z21 + z2(b2u− χ1(t)) +
|b2|
γ1
ρ̃1 ˙̂ρ1 (5.31)

= −c3z21 + z2b2(u− ρ1χ1 + ρ1c4z2 − ρ1c4z2) +
|b2|
γ1
ρ̃1 ˙̂ρ1

= −c3z21 + z2b2(ρ̂1 − ρ1)(χ1(t)− c4z2)− c4z22 +
|b2|
γ1
ρ̃1 ˙̂ρ1

where c4 > 0 and χ1(t) = −(x2 − ym + φ2(x1, x2, x3, x4) + sin(ωrt)(θ21x2 + θ22x3 +

θ23x4) + c3(ẋ2 − ẏm)− ÿm).
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Similarly, the controller for this wind turbine system is given by

u(t) = ρ̂1(χ1(t)− c4z2) (5.32)

Then the adaptive laws for ρ̂1(t) is as follows:

˙̂ρ1 = −γ1sign(b2)z2(χ1(t)− c4z2) (5.33)

So the V̇4 eventually becomes

V̇4 = −c3z21 − c4z22 (5.34)

Stability analysis

Since V̇4 ≤ 0, we have that the error measure V4 doesn’t increase as a function of t,

z1 and z2 and θ2j(t)−θ∗2j are bounded, and so are x2 and θ2j(t). Then, φ2(x1, x2, x3, x4)

is bounded, and so is β1. From z2, we see that x4 is bounded. Since x1 and x3 are

zero dynamics of the system, they are also bounded. It follows from (5.32) that u(t)

is bounded so that all signals in the closed-loop system are bounded.

We have the conclusions from (5.34) that

c3

∫ t

0

z21(τ)dτ + c4

∫ t

0

z22(τ)dτ = V4(0)− V4(t) (5.35)

Since V4 as a function of t is bounded, it follows that
∫∞
0
z21(τ)dτ <∞ and

∫∞
0
z22(τ)dτ <

∞. From
∫∞
0
z21(τ)dτ <∞ and the boundedness of ż1(t), we can show that limt→∞ z1(t) =

0, where z1(t) = y(t)− ym(t).
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In summary, we have the following conclusion.

Theorem 5.2 The controller in (5.32) with adaptive laws (5.30) and (5.33) applied

to the wind turbine system model guarantees that all closed-loop signals are bounded

and the tracking error e(t) = y(t)− ym(t) goes to zero when t goes to infinity.

5.2.2 Simulation Study

Simulation conditions

In this part, we present our simulation results with the parameters of our wind

turbine system generated from Chapter 3. The physical meaning of the system out-

put is pitch angle, therefore, the reference signal is chosen as same as what we do in

the basic adaptive backstepping control design. In this simulation study, we chose

φ0(x1, x2, x3, x4) = −229.8782x1, θ
∗
10(t)φ1(x1, x2, x3, x4) = (3.4308−4.5096 sin(ωrt))x2−

(2.6673+0.451 sin(ωrt))x3−(0.00067+0.0067 sin(ωrt))x4, φ2(x1, x2, x3, x4) = 7.5865x1,

θ∗20(t)φ3(x1, x2, x3, x4) = −(232.9684−0.911 sin(ωrt))x2+(0.0891+0.0151 sin(ωrt))x3−

(0.0171 + 0.0021 sin(ωrt))x4, and b1 = 15.7941, b2 = 0.8901. Also, in our simulation

results, we chose different numbers of ωr, which are 2, 3, 4, to see that our adaptive

control design can still achieve our control objective under different blade rotation

cases. The simulation results of our wind turbine system are as follows. For the

adaptive control case, when the reference signal ym = 1, our Γi, i = 1, 2, 3, is 3, when

ym = sin(t), Γi, i = 1, 2, 3, is 10, when ym = sin(0.5t), Γi, i = 1, 2, 3, is 8. When we

present the results of our nominal control design, Γi = 0.
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Simulation results
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Figure 5.10: Tracking error (nominal control, ωr = 3, ym = 1)
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Figure 5.11: Tracking error (adaptive control, ωr = 3, ym = 1, θ(0) = 75%θ∗)
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Figure 5.12: Tracking error (ωr = 4, ym = 1, θ(0) = 85%θ∗)

We can see that when the reference signal is chosen as 1, which is a constant, the

tracking error of the system will go zero in about 20 seconds. We also change the

value of the blade rotation frequency, the tracking error still goes to zero in about

20 seconds, the simulation results show that when the reference signal is constant,

our adaptive control design can get the desired system performance, which means the

desired pitch angle will be obtained.

When the reference signals are chosen as the sin(t) and sin(0.5t), there are some

vibrations in simulation results, but as the time goes to ∞, the tracking error will go

to zero eventually.
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Figure 5.13: Tracking error (nominal control, ωr = 3, ym = sin(t))
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Figure 5.14: Tracking error (adaptive control, ωr = 3, ym = sin(t), θ(0) = 75%θ∗)
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Figure 5.15: Tracking error (ωr = 4, ym = sin(t), θ(0) = 85%θ∗)
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Figure 5.16: Tracking error (nominal control, ωr = 3, ym = sin(0.5t))
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Figure 5.17: Tracking error (adaptive control, ωr = 3, ym = sin(0.5t), θ(0) = 75%θ∗)
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Figure 5.18: Tracking error (ωr = 4, ym = sin(0.5t), θ(0) = 85%θ∗)
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From our simulation results, we can see that our control design can successfully

reach our control objective, which means the system output, pitch angle, can track

the chosen reference signal. We can conclude that our adaptive backstepping control

design can make the pitch angle of this wind turbine system track the reference

signal to suppress the effect of blade rotation. Compared with the basic adaptive

backstepping control design, simulation results of the wind turbine system are much

more smooth. It takes less time to make our tracking error go to zero, which the

desired system performance can be achieved.

5.3 Comparison Study

In this part, we first introduce a method of adaptive control design in [3], then we

will make a comparison analysis between the way in [3] and our adaptive backstepping

control design to see that why our adaptive control design is more advantageous and

powerful.

5.3.1 An Existing Adaptive Control Design

System model. In [3], based on the state space equation of the NACA0012 airfoil

model from Chapter 3, they present the system with input disturbance uD, which is

written in the form:

ẋ = A(t)x+Bu(t) + Γ(t)uD (5.36)

y = C(t)x, y(0) = y0

where y is the pitch angle, the system output, A(t) is the state matrix, B(t) is the

control input matrix, C(t) is the output matrix and uD is the disturbance input,
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which is from a disturbance generator. The disturbance input can be written in the

form:

uD = ΘzD (5.37)

zD = LφD

where zD is the disturbance state, φD is considered as a step input which is referred

to a disturbance input, matrices L and Θ both have appropriate dimensions. The

authors assume that the disturbance input φD = 1, which is applied in this model.

Control design. Their control objective is to make the system output, y, converge

to the desired pitch angle, y∗. Then, they demonstrated their controller form as

follows:

u = Gey +GDφD (5.38)

where Ge and GD are adaptive gain matrices with appropriate dimensions. The

adaptive laws are given by

Ġe = −eyeTy γe (5.39)

ĠD = −eyφTDγD

where ey is the tracking error between system output and reference output, γe, γD are

arbitrary, positive definite matrices.

Design conditions. In their control design, they assume that there is a pertur-

bation between system trajectory (x, y, u) and the ideal system trajectory (x∗, y∗, u∗)
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as ∆x = x− x∗, ∆y = y − y∗, ∆u = u− u∗, the system can be written in the form:

∆ẋ = A∆x+B∆u (5.40)

∆y = C∆x

In order to reject the input disturbance, they assume that there is a matrix called

G∗D, it is satisfied that B(t)G∗D + Γ(t)ΘL = 0. Then the equation in (5.38) is given

∆u = ∆Geey +G∗eey + ∆GDφD = G∗ey + w

w = ∆Gη (5.41)

∆ = [∆Ge ∆GD]

η = [ey φD]

So they substitute the equation (5.41) into (5.40), the new equations are as follows:

∆ẋ = Ac∆x+Bw

∆y = C∆x = ey

Ac = A+BG∗eC (5.42)

The authors use Kalman-Yacubovic(K-Y)Lemma to present their stability analysis

with the chosen Lyapunov candidate function, which is like

V (t, x) = xTP (t)x (5.43)
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where P (t) is a symmetric positive definite matrix, which satisfies the condition

Ṗ (t) + ATc (t)P (t) + P (t)Ac(t) = −Q(t) (5.44)

P (t)B(t) = CT (t)

whereQ(t) is also a symmetric positive definite matrix, andAc(t) = A(t)+B(t)G∗eC(t),

A(t), B(t), C(t) are all their system matrices. And they still need several assumptions:

1. There exist several positive constants pmin, pmax, qmin

2. pmin||x||2 ≤ V (t, x) = xTP (t)x ≤ pmax||x||2 and qmin ≤ xTQ(t)x.

Then they present the stability analysis results as follows:

V̇ (t, x) = xTPx+ 2xTPẋ

= xT (Ṗ + ATc P + PAc)x+ 2xTPBw

= xTQx+ 2 < y,w >

V (∆G) = tr(∆γ−1∆GT )

V̇ (∆G) = −2 < y,w >

Then they let V (t, x,∆G) = V (t, x) + V (∆G), so they have the result like

V̇ (t, x,∆G) = −xTQx+ 2 < y,w > −2 < y,w >

= −xTQx ≤ −qmin||x||2 ≤ 0
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5.3.2 Discussion

Although our control design doesn’t include the part of the disturbance, we will

see that several assumptions are needed in order to achieve their control objective.

In their control design procedure, we don’t see any control design steps to deal with

the time-varying parameters, it is not appropriate to chose the controller type in a

linear form, in our adaptive backstepping control design, the controller type should be

nonlinear, therefore, this nonlinear controller can cancel the negative effect brought

by time-varying parts in the system.

In their adaptive stability theorem, several assumptions are made to ensure their

boundedness of their signals, compared to our adaptive backstepping design, we don’t

need such assumptions and we still can ensure the boundedness of input or our signals.

Because when we face the problems which are referred to some certain applications,

some strict conditions can’t be satisfied and to deal with time-varying parts, [3] only

says that their (A(t), B(t), C(t)) should satisfy K-Y lemma and be bounded, but

adaptive backstepping control design can solve the problem when the system includes

the time-varying part. It is very hard to say that some certain system matrices must

satisfy K-Y lemma, then the adaptive control design is too limited to achieve our

desired control objective. When they do the system stability analysis, their Lyapunov

candidate function is xTPx, there is no system error in their candidate function, which

they mention in their control design procedure. So their system matrices can’t satisfy

the K-Y lemma condition, which means they can’t prove that their control design can

achieve their control objective.
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5.4 Summary

In this chapter, we demonstrate a new adaptive control design which is an exten-

sion of the adaptive backstepping control design. We achieve the control objective

which the output pitch angle, θ, can track the ideal reference signal. Since our system

is in a nonlinear form, our designed controller is also nonlinear which can cancel effect

of the system nonlinearity. We also make a comparison with the control design in [3],

our control design is more powerful and advantageous which has less assumptions and

limitations.



Chapter 6

Conclusions and Future Work

6.1 Summary and Conclusions

Summary

In this thesis, we develop a new approach of control design, adaptive backstepping

control design, to solve the problem of blade vibration of wind turbine systems. We

present our simulation results in two cases. First, the blade rotation parameter is

constant. Based on the existed adaptive output tracking control design, we see that

our control design can generate the desired output, blade pitch angle. Second, the

blade rotation parameter is time-varying. At the beginning, we still apply the same

adaptive control design using in the first case. But we can’t get the results which we

want, the defined tracking error will become so far away and it is definitely harmful to

the system. So we develop a new control design, which is the adaptive backstepping

control design. There are two steps in our design procedure, which we notice that the

controller is also nonlinear. In our simulation study, the defined tracking error will

go to zero finally with the satisfied reference signal, which are constant, sin(t) and

sin(0.5t).

76
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In our control design, the disturbance is neglected in order to get the control ob-

jective. It is disappointing that the disturbance, such as gust or other environmental

influences, is also a serious factor which can harm the efficiency of the wind turbine

power generation. It needs to be done for the wind turbine design with disturbance

rejection. In [3], the assumed disturbance model is from a disturbance generator

which can be used in the further study.

Conclusions

In this thesis, there are several conclusions we can obtain as follows:

1. The blade vibration problem can be a new version in studying the control problem

of wind turbine systems. It is crucial that we can improve the efficiency of the

power generation by realizing the vibration suppression.

2. The model reference adaptive control designs can’t solve the problem that there

are time-varying parameters in our desired systems. But we can see that if our

system matrices are constant, the model reference adaptive control can obtained

the desired system performance with the appropriate gains successfully.

3. Our adaptive backstepping control design can cancel the effect of the nonlinear-

ity of wind turbine system with time-varying parameters, before applying this

adaptive control method, we should know the form of the nonlinear functions

in the systems, such as the function of sin(ωrt).

4. There are several factors which can be regarded as the disturbances in the wind

turbine systems. Besides the gusts or mechanical problem, the hystereses in

smart actuators also should be concerned. We can apply the adaptive inverse

control design to solve such a problem.
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6.2 Future Work

In our future work, first, we need to fix the accuracy of the wind turbine models.

It is impossible to generate the control design without the disturbance. We need

do a lot of work on the systems with disturbances, which is much more closer to

the real system. Therefore, we need to develop new adaptive control design with the

disturbance rejection. Then, we can focus on the control design on the hysteresis of the

smart materials. Although, in our thesis, the adaptive inverse control design against

hysteresis characteristics is not included in our control design, it is need to be done in

our future work. Adaptive inverse control design can make the smart actuators more

efficient and this control design can solve the problem of the actuator imperfections.

Furthermore, there are a lot of control problems in wind turbine systems, besides the

control issue of the blade pitch angle, like the blade attack angle or the turbine yaw

adaptive control design. In the future work, there are many potential topics in wind

turbine systems which we can focus on.
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