




Demystifying secure computation:

Familiar abstractions for efficient protocols

A dissertation

Submitted to the department of Computer Science

Of University of Virginia

In fulfillment of the requirements

For the degree of

Doctor of Philosophy

Samee Zahur

April 2016



Abstract

Over the past few years, secure multi-party computation (MPC) has been transformed from a research tool

to a practical one with numerous interesting applications in practice. MPC is a cryptographic technique

that allows two or more parties to collaboratively perform a computation without revealing their own private

inputs to each other (other than what can be inferred from the output result). Example uses include private

auctions where all the participants keep their bids private, private aggregation of corporate-internal data for

economic analysis, and private set intersection.

However, efficiency of MPC protocols have remained a persistent challenge for many applications. One

particular issue that we examine in this dissertation is input-dependent memory accesses. It is difficult to

efficiently access a memory location without revealing which element is being accessed, which in turn makes

it very difficult to efficiently implement certain programs. This dissertation solves the problem by separately

considering two different cases. First, we construct efficient circuit structures for cases where the access

pattern is known to follow certain constraints, such as locality. The second case involves a new Oblivious

RAM (ORAM) construction that provides general random access. The ORAM construction is slower than

the specialized circuit structures, but faster than existing ORAM constructions for MPC for a large range of

parameters. To help in implementing and evaluating these constructions, we also designed a new extensible

programming language for MPC called Obliv-C, which we believe can be a useful contribution in its own

right. We hope that these components will make it easier for programmers to write efficient MPC programs

for many interesting applications.

ii



Acknowledgments

This work was supported in part by grants from the NSF Award CNS- 1111781), the Air Force Office of

Scientific Research, Google, and the UVa SEAS Teaching Internship Program.

In addition, I would like to thank William Melicher, Natnatee Dokmai, Jack Doerner and Xiao Wang

for helping with the implementation of various portions of this work. Frequent discussion with Benjamin

Kreuter provided valuable resources and citations that helped shape this work in its early stages. Jonathan

Dorn also lent me his time with discussions and with setting up experiments. I thank abhi shelat for helping

us find several further opportunities for optimizations, and thank Yan Huang, Gabriel Robins, Mohammad

Mahmoody, Denis Nekipelov, Bryan Parno and Westley Weimer for their helpful comments and suggestions

on this work. It was also a very rewarding experience to work with my collaborators, which includes Craig
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Chapter 1

Introduction

Consider the following situation: say a hospital is trying to investigate a particular symptom among its pa-

tients, and suspects that they all recently underwent a complex procedure in some other hospital. This inves-

tigation would require comparison of patient records from both hospitals, which they might be reluctant to

do if there is no affiliation between them. In fact, they might be legally barred from exporting health data to

another institution. This is the sort of conundrum secure multi-party computation (MPC) promises to solve.

MPC is a cryptographic technique that allows two or more parties to collaboratively perform computation

on private data. In the end, the parties will learn the agreed upon outputs of the function, but nothing else

about the inputs or any intermediate result. Sometimes this involves a specialized cryptographic protocol that

has been hand-tuned for a given function to be computed [30, 84, 86], but generic protocols also exist that

can compute any function [6, 11, 41, 106].

While these protocols have been actively studied in the literature since the 1980s [11, 41, 106], it is only

in the last decade or so that these techniques have become feasible in practice [22, 24, 50, 62, 63, 73, 76,

89, 103, 110]. This is both the result of improved hardware capabilities [1, 2, 59] and improvements in the

underlying protocol and cryptography [50, 61, 83, 90]. Even after a decade of excitement, however, MPC

has failed to gain widespread adoption.

One of the persistent problems in writing efficient MPC programs has been the inefficiency of random

memory access. Simple array accesses are extremely fast in ordinary programs, but are extremely slow in

the MPC world if the access pattern also depends on secret data we are trying to hide. This, in turn, makes

it harder to write efficient data structures (such as stack and queue) and write programs that depend on such

data-dependent access patterns.

1.1 Thesis

We argue that new algorithms can substantially improve the efficiency of data-dependent memory accesses

in MPC, which in turn improves the efficiency of many applications previously discussed in MPC literature.

1
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1.2 Contributions

This dissertation makes three main contributions to the area of MPC. First, we designed a C-based pro-

gramming language that provides fast MPC primitives. It also allows us to add new constructions to the

language without having to modify the compiler each time. Second, we present constructions of various

circuit structures that can efficiently perform data-dependent memory accesses when the application follows

certain simple access patterns. Last, we present a new oblivious RAM (ORAM) construction that provides

fast, general random access, albeit not as fast as the specialized structures. Throughout the dissertation, we

show how these three components can be used together to efficiently implement various applications that

have been previously proposed in the literature.

Language for oblivious computation. Even with efficient algorithms and cryptographic protocols, MPC

will still remain outside mainstream use until it is packaged in a way that programmers can write their own

apps in an intuitive way. To this end, we developed Obliv-C — an extension of standard C, with extra

keywords to determine which variables should stay secret. It features one of the fastest runtimes for secure

computation today, and won an award at the recent iDASH secure genome analysis competition in 2015 for

being the fastest at a genomics challenge. Moreover, one of the reference implementations by the organizers

of this competition also used Obliv-C.

The purpose of Obliv-C is to help users write efficient secure applications without cryptographic expertise,

while at the same time allowing researchers to easily test out new techniques. It provides easy hooks at the

protocol level that can be swapped out in case a researcher wants to test out a new technique or a protocol.

If the researcher wants to test out new algorithms that are protocol-agnostic (such as our circuit structures),

they should be able to write the code just once and test it on multiple protocols, with different security

models. We demonstrated in this work how the Obliv-C framework allows us to implement features as

simple libraries where they previously required rewriting the compiler or redesigning the language. Our

framework effectively decouples the tasks of protocol design, algorithm design and application writing, so

that experiments in one can be done independently of the others.

The language system itself is designed as a preprocessor on top of C, along with custom cryptographic

libraries for executing protocols. This way, Obliv-C programs are compiled into plain C, which are then

compiled and linked with traditional C compilation tools (e.g. GCC). This supports reusing existing tools

(e.g. valgrind, perf) and system libraries (e.g. pthreads, libgcrypt) designed for C. No other

framework for secure computation provides such compatibility.

Circuit structures. Even simple tasks like sorting require specialized algorithms [9, 100] in the circuit-

world. Unlike regular programs, those written for secure computation cannot efficiently use features such

as pointers or input-dependent memory lookups since they need a circuit representation. For instance, how

would we push or pop into a stack if the parties executing the program do not even know how many items

have been pushed onto it? In a given application, the number of elements in a data structure may depend

crucially on input data, so we cannot reveal the element count to either party.



CHAPTER 1. INTRODUCTION 3

The underlying problem is that programs efficient in ordinary contexts can suddenly become inefficient

if they are naı̈vely converted into a circuit for secure computation. Everyday features such as pointers and

random array lookups are missing in the circuit world, and are expensive to emulate. Our approach was to

devise algorithmically-generated circuit structures that can efficiently emulate array accesses at least when it

is known to have certain special access patterns. For example, our stack construction has Θ(logn) amortized

access cost with very low constant overheads. These structures are made available in an intuitive library that

can be dropped in as a replacement for their non-secure counterparts.

Oblivious RAM (ORAM). Other programs, however, have no such predictable access patterns to exploit.

The typical solution is to use oblivious RAM, which hides the address being accessed. Previously, all im-

plementations opted for tree-based ORAMs. They stood in contrast with older hierarchical ORAMs, which

were not used because they required secure evaluation of expensive hash functions. However, previous ap-

proaches were completely unusable in practice in all but extremely long-running applications, where the high

initialization cost could be amortized.

Our work revisited a particularly simple version of hierarchical ORAM, namely the square-root ORAM

proposed by Goldreich and Ostrovsky [40]. We developed a way to replace expensive hash evaluations using

techniques from tree-based ORAMs, but retain the extremely simple shuffle-based initializations. Chapter 4

shows this can provide bandwidth savings for as little as 144 bytes of data, and initialization cost is around

10x better over almost every size. This allows us to perform random memory accesses in secure computation

fast enough to make previously intractable benchmarks like scrypt feasible.



Chapter 2

Obliv-C1

2.1 Introduction

A requirement for generic multi-party computation is that the program to be executed has to be represented

in a data-oblivious fashion, where the control flow of the program does not depend on the secret program

inputs in any way. Such a program can be executed on encrypted data without leaking any information about

intermediate results, since the control flow is the same for all executions and does not depend on the data.

A common data-oblivious program representation is a Boolean logic circuit: every logic gate (e.g., AND,

OR) is specified before the secret inputs are even known. Another popular representation uses addition or

multiplication gates that operate directly on finite field elements (instead of just Boolean values). Given

a circuit that describes the desired computation, the protocol specifies how to execute the circuit without

revealing any inputs or intermediate results.

While many previous languages and frameworks for MPC have been developed (see Section 2.8), none

are sufficiently expressive to allow programmers to implement even simple library abstractions. The rea-

son is that these languages have been designed to provide traditional programming abstractions that hide

the data-oblivious nature of secure computation from the programmer. Our approach provides high-level

programming abstractions while exposing the essential data-oblivious nature of such computations.

Motivating Example. Consider this simple C example of a dynamically resized array:

x = ...;

DynVec ∗vec = dynVecNew();

for (i = 0; i < n; i++) {
if (cond) {

dynVecAppend(vec,x);

1This chapter is an adaptation of:
Samee Zahur and David Evans. Obliv-C: A Lightweight Compiler for Data-Oblivious Computation. Cryptology ePrint Archive, Report
2015/1153.

4
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}
...

Implementing a library like this for standard computation is trivial. The DynVec object just needs to keep

track of the current size of the vector, and resize an internal buffer when more space is needed to complete an

operation.

Writing something similar for a data-oblivious computation, requires the compiler to implement an ap-

pend under an unknown condition: the internal memory buffer must be resized regardless of the now unknown

semantic value of cond, whereas the value of x should be appended into that buffer (which is now encrypted)

using a conditional write that depends on the value of cond specified outside of the function.

This problem is exacerbated for more complex library abstractions. For example, an Oblivious RAM

(ORAM) structure that allows random access to a memory bank without revealing anything about the ac-

cess pattern. On every read or write operation it needs to do things like network transfers, pseudo-random

shuffling, and cryptographic operations. Defining a simple oramWrite() function is problematic if we want to

allow it to be called from inside a conditional block: the function needs to specify a whole series of opera-

tions, some of which need to be done conditionally while others are done unconditionally. Indeed, it is not

clear how a traditional programming language could even be adapted to express the situations that commonly

arise in data-oblivious computation.

Contributions. We show how a language can be designed to support extensible secure programming intro-

ducing control structures that expose the data-oblivious nature of secure computation. To make it easier for

programmers to develop and reason about data-oblivious programs, we provide a type system that incorpo-

rates oblivious data.

Our Obliv-C language is a strict extension of C that supports all C features (including struct, typedef,

pointers, recursive calls, and indirect function calls), along with new data types and control structures to sup-

port data-oblivious programs. Section 2.3 introduces our language and describes how its language constructs

and type system support data-oblivious computation.

We describe the architecture of our Obliv-C compiler in Section 2.7, showing that our language can

be implemented on top of a traditional language and in a way that provides high confidence that security

properties of the underlying protocol are preserved.

Obliv-C is designed to enable practitioners to more easily develop scalable secure protocols, and to allow

researchers to easily implement and test new features or techniques by simply writing a new libraries rather

than having to modify or build a new compiler. To demonstrate how our approach supports exploration at

many levels, Section 2.5 shows how Obliv-C could be used to easily implement various library-based features

including range-tracked integers and multi-threading that could not be done with existing languages, and

Section 2.6 shows how Obliv-C supports experimentation with protocols. Later, in Chapter 4 we also design

an ORAM library written in Obliv-C. We will now provide a brief introduction to multi-party computation

before delving into the description of the language Obliv-C.
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2.2 Background — Multi-Party Computation (MPC)

Obliv-C is designed for writing secure multi-party computation (MPC) programs. MPC [39, 106] enables two

or more parties to collaboratively evaluate a function that depends on secret inputs from all parties, while re-

vealing nothing but only the result of the function. In most generic constructions of multi-party computation,

the function to be evaluated is represented as a circuit (either Boolean or arithmetic). Numerous circuit-based

multi-party computation protocols have been developed for different scenarios. In this dissertation, we focus

on using our ORAM design with Yao’s garbled circuit protocol. However, much of our language and algo-

rithms will also works with other MPC protocols in general, and does not depend on any specifics of Yao’s

protocol.

Garbled circuits protocols involve parties, denoted the generator and evaluator. Given a publicly known

function f , the generator associates each input bit with two garbled keys k0,k1, and computes a “garbled”

circuit representation of the function f , GC f . Given garbled keys corresponding to inputs x and y, the evalu-

ator can obliviously evaluate GC f to learn garbled keys for output f (x,y). The generator generates and sends

GC f and the input keys for its own input. The generator and evaluator execute an oblivious transfer protocol

to enable the evaluator to learn the input keys corresponding to its input without revealing that input to the

generator. After obtaining its input keys, the evaluator can obliviously evaluate GC f to obtain the output keys

which are decoded in the final step.

2.3 Design of Obliv-C

Obliv-C is a strict extension of C that provides data-oblivious programming constructs. Next, we provide an

overview of the design and philosophy behind the language. Section 2.3.2 presents a concrete example of an

Obliv-C program. We provide details on the type system in Section 2.4. Our implementation compiles an

Oliv-C program into standard C, as described in Section 2.7.

2.3.1 Overview

Obliv-C is designed to guarantee that all security properties provided by the underlying protocol are main-

tained, while exposing aspects of data-oblivious computation to the programmer. Our design emphases safety,

guaranteeing that no information can be leaked by program executions (assuming the underlying protocol is

secure) while giving programmers enough control (including the ability to circumvent type rules) to do things

that would not be possible with other high-level languages.

The main construct we introduce is an oblivious conditional. For example, consider the following state-

ment where x and y are secret data:

obliv if (x > y) x = y;

Since the truth value of the x > y condition will not be known even at runtime, this code cannot be executed

normally. Instead, every assignment inside the if statement will have to use “multiplexer” circuits in much the
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same way Boolean logic circuits use multiplexers to choose between two different values. We could translate

this code into something like:

cond = (x > y); // 0 or 1

x = x + cond ∗ (y − x);

This removes any explicit control flow dependency on unknown values by using conditional assignments.

Obliv-C extends C in the following ways:

• Every basic data type (e.g., int, char, etc.) has an obliv-qualified counterpart (e.g., obliv int, obliv char,

etc.) which is represented using an encrypted value.

• Every if statement with a condition that depends on obliv-qualified data is explicitly indicated as

obliv if. An obliv if statement executes in a way that prevents control dependencies from leaking the

condition value.

• Type rules related to obliv if are enforced across function boundaries at compile time by using two

different function families: ones that can be invoked from inside obliv if, and ones that cannot.

• Special unconditional segments allow library writers to perform actions unconditionally, which allow

them to write various library abstractions. By being unconditional, these segments can avoid control

dependecy restrictions, while executing inside an obliv if scope.

Next, we walk through a simple example illustrating the general structure of Obliv-C programs and how the

programmer uses it.

2.3.2 Millionaires’ Problem

Figure 2.1 shows an Obliv-C implementation of Yao’s classic millionaires’ problem [106]. It simply outputs

which of two integers is greater (purportedly, to enable two millionaires to decide who should pay for dinner

without disclosing their actual wealth).

When the program executes, both parties (in this protocol, although our design can support any number

of parties) execute the same program. By convention, we will call them Alice (Party 1) and Bob (Party 2).

The a, b, and res variables are declared using the obliv keyword to indicate that their values may depend on

secret inputs.

The program obtains secret inputs using:

obliv int feedOblivInt (int value, int p)

This function is executed synchronously by both parties to introduce the input into obliv int variables of the

shared computation. It converts a value from one of the parties (party p) into a new cryptographic obliv int

value that can no longer be deciphered by either party on its own. The value provided by the other party is

simply ignored. Since both parties have their own copy of each variable each party can use the myinput field
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typedef struct {
int myinput;

bool result;

} ProtocolIO;

void millionaire (void ∗args);

(a) File “million.h”

#include <million.h>

#include <obliv.oh>

void millionaire (void ∗args) {
ProtocolIO ∗io = args;

obliv int a, b;

obliv bool res = false;

a = feedOblivInt (io−>myinput, 1);

b = feedOblivInt (io−>myinput, 2);

obliv if (a < b) res = true;

revealOblivBool (&io−>result, res, 0);

}

(b) File “million.oc”

#include <million.h>

int main (int argc, char ∗argv[]) {
ProtocolDesc pd;

ProtocolIO io;

int p = (argv[1] == ’1’ ? 1 : 2);

sscanf(argv[2], ”%d”, &io.myinput);

// ... set up TCP connections

setCurrentParty (&pd, p);

execYaoProtocol (&pd, millionaire, &io);

printf (”Result: %d\n”, result);

// ... cleanup

}

(c) File “million.c”

Figure 2.1: Code for the Millionaires’ Problem.
Figure (a) shows the header file that defines the datatype, (b) describes the secure computation in a protocol-neutral manner in Obliv-C
and (c) shows code in plain C that invokes the former with a specific protocol with appropriate inputs, outputs and options.
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to hold their own inputs. Thus, in Figure 2.1, the first invocation of feedOblivInt() only reads Party 1’s copy

of myinput into the shared variable a, while the second one reads only from Party 2. These variables can still

be manipulated using ordinary C operators, and even mixed with ordinary ints in expressions, but the results

are all obliv-qualified and only accessible as encrypted values.

The only way any values derived from secret data can be converted back to a semantic value is by using

a reveal function, such as:

void revealOblivInt(int ∗dest, obliv int src, int p)

When this function is invoked by both parties on the same variable src, the value is decrypted and stored into

the integer pointed to by dest. If p == 0, all parties receive the result; otherwise p specifies a single party

who receives it. This ensures that only the values that both parties agree to reveal are actually revealed by

the execution. The underlying protocol ensures that a reveal function only succeeds if both parties provide

consistent parameters to the function (e.g., it will fail if they provide different values for src or p).

To run the program, both the files in Figure 2.1 are compiled with the oblivcc command provided by our

tool. It is a simple wrapper that provides a familiar command-line interface. It preprocesses any input file

with an “.oc” extension to a plain C file before passing it on to gcc and links with additional runtime libraries

required for Obliv-C code. Once compiled, the two parties simply execute the program with appropriate

inputs like any other program: the end user does not need to know about Obliv-C or even need to install it

separately.

2.4 Type System

The Obliv-C type system builds from a traditional information-flow based type system [99] with two levels of

security. Variables declared using obliv are considered sensitive, and the type system ensures that information

from these variables never flows into the non-sensitive ones through either explicit data dependencies or

implicit control dependencies.

We add several rules beyond standard information-flow to support data-oblivious computation. First,

we want programmers to be able to easily estimate the relative computation cost of their code, and to help

programmers avoid writing unscalable code. This is why, for instance, we do not allow pointers with obliv

addresses, or loops directly using obliv conditions. Obliv-C provides other means for accomplishing the same

goals which make the costs more explicit and controllable.

Second, we account for the fact that control flow is not actually sensitive in our system. Any apparent

control dependency indicated by our obliv if structures is not really a control dependency since it is imple-

mented by converting it into a data dependency. Statements inside an obliv if become conditionally-executed

statements that will be executed regardless of whether the controlling condition is true or false, which which

have no semantic effect when the condition is false. Control flow is always public information in our system.

This is what ultimately allows us to define features such as unconditional segments, which are very useful in

writing libraries.
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The purpose of our type rules is different from the normal purpose of information-flow type systems. The

security of the obliv values is enforced at runtime by cryptographic means: even inspecting memory dumps

or network logs should not provide any useful information. Hence, our type system is not used for preventing

information leaks, it only exists to help the programmers avoid mistakes by providing compile time errors for

code that would cause runtime errors or meaningless results. For example, this is legal Obliv-C code:

obliv int x; ...; int y = ∗((int ∗) &x);

Although our compiler will allow casts like this, the resulting code will not leak any information. At runtime,

y will just contain gibberish bits of ciphertext. Obviously we do not recommend writing code like this, but

it will not leak any information about x. The only way to reveal values is through the proper use of reveal

family of functions on mutually agreed upon values.

In true C fashion, we allow programmers to shoot themselves in the foot, but provide a type system to

help programmers avoid doing this accidentally.

2.4.1 Oblivious Data

The first four type rules explain how oblivious data is declared and used in programs.

Rule 1. Only basic C types (such as obliv int, obliv char, etc.) can be obliv-qualified. An obliv-qualified

type represents a variable whose value may be unknown at runtime.

This excludes types such as structures, and pointers, although we do support structures with obliv fields

or pointers to obliv variables. We excluded structures simply because, in our experience, it was not very

common to have structures with all fields declared obliv. It was almost always a mix of obliv and non-obliv

fields (storing e.g. sizes, counters). Functions may be qualified with obliv, although it has a somewhat

different purpose that we will discuss in Section 2.4.3.

The following two rules provide a flow-sensitive type system that prevents sensitive data flowing into

non-obliv variables:

Rule 2. Any expression that combines obliv values and non-obliv values results in an obliv value.

Rule 3. Non-obliv variables cannot be assigned to obliv values. Non-obliv values can be implicitly converted

to obliv values and assigned to obliv variables.

The next rule limits where obliv values can be used, primarily to encourage programmers to avoid surprisingly

expensive operations:

Rule 4. An obliv value may not be used as an array index, offset in pointer arithmetic, or as a shift amount

in a bitwise shift expression. All other operators can freely mix both types of operands.

Note that we do allow ints to index into arrays of obliv ints, but not vice versa. Although we could have

avoided Rule 4 and added support for oblivious array indexes using circuits such as full multiplexers, but
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they are notoriously slow in practice. Instead, we want to encourage developers to explicitly weigh the trade-

offs between various other mechanisms of indirect access, such as those using circuit structures [107] or

oblivious RAM (Chapter 4), all of which can be implemented as library modules in Obliv-C. Similarly, it

is a deliberate decision to not support pointers whose addresses can be unknown at runtime, or bitwise shift

operators with unknown shift amounts. Such pointers would make it very easy to write inefficient programs

that would need to multiplex over the entire heap at every pointer dereference.

2.4.2 Conditional Constructs

Rule 5 ensures that control flow never depends on obliv values, except as used in the new obliv if construct:

Rule 5. A condition expression of a traditional control structure (e.g. while, for, switch, etc.) may not be

obliv. An if statement using obliv values must be explicitly marked as obliv if.

The obliv if statement has the following syntax:

obliv if (cond) { ... } [else { ... }]

Marking obliv if explicitly helps the programmer (and code readers), since it has implications both in the

type system and in the runtime. Since the condition may not be known at runtime, both the consequent and

alternative branches will be executed (possibly using conditional instructions) no matter what the condition

actually was. As a result, execution always incurs the runtime overhead of both branches.

An obliv if statement introduces an obliv context, where certain operations are restricted. Non-obliv

variables declared outside an obliv context cannot be modified inside it. Locally declared non-obliv variables,

however, can be modified since they are not visible outside the obliv context. This allows us to run loops

inside obliv if constructs:

obliv if (cond) {
for (int i = 0; i < n; ++i) {

// ...

}
}

Without this exception for locally declared variables, we would not be able to modify i for the loop counter.

But here, this is not a problem since i will go out of scope once we exit the conditional branch. Thus, this

exception for locally declared variables does not violate the requirements for data obliviousness.

As we explain in Section 2.4.3, this also allows us to safely invoke functions from inside an obliv if even

if they modify some non-obliv variables. Our rules for preventing such control dependencies are slightly

complex since we want them to work across function boundaries, without actually inlining functions.

The restriction on oblivious values in conditional expressions for other control structures appears dra-

conian, but is consistent with our goals to provide programmers with a clear view of the costs of different

programming constructs. The amount of computational resources used by a program, such as CPU time or
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memory usage, would leak information about the loop condition if the number of executions varies. Hence,

loop conditions in secure programs must not depend on secret values. Instead, a data-oblivious program

needs to impose a predetermined conservative upper limit to the number of iterations, and iterate that many

times regardless of the condition. Within the loop body, we can use an obliv if statement to limit the effective

number of iterations. For example, if n is an obliv variable, the loop:

for (i = 0; i < n; i++) { ... }

could be rewritten as:

for (i = 0; i < MAX BOUND; i++) {
obliv if (i < n) { ... }

}

In practice, the restriction on oblivious values in loop conditions is necessary, because whatever a loop con-

dition is, the parties executing it will have to somehow know when to terminate the loop. Which means, it

can always be written in a way such that the condition is a non-obliv value.

2.4.3 Functions

Not all functions can be allowed inside obliv if, since they may modify non-obliv global variables. To handle

this, we introduce a second family of functions called obliv functions. These functions can be invoked from

anywhere, but may not modify global non-obliv variables or invoke other non-obliv functions.

Here is an example of an obliv function:

void writeArray (obliv int∗ arr, int size,

obliv int index, obliv int value) obliv {
for (int i = 0; i < size; ++i) {

obliv if (i == index) {
arr[i] = value;

}
}

}

The obliv suffix after the parameters denotes that writeArray is an can be called from inside a conditional

context. The compiler checks the body of an obliv function indeed adheres to the restrictions on modifying

global state.

As for writing to arrays at an obliv index, note that we cannot do much better than this in general. The

standard practice is to create a linear-sized multiplexer circuit to perform the write, which is essentially what

writeArray does. Each assignment inside the obliv if is a conditional assignment (i.e., a multiplexer between

old and new values), which is controlled by a different condition for each value of i.

The type rules for obliv functions are:

Rule 6. Non-obliv functions may not be invoked from inside obliv if or other obliv functions.
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Rule 7. Inside obliv functions, all non-obliv global variables are frozen. Moreover, they may not invoke

other non-obliv functions.

2.4.4 Frozen State

The frozen qualifier allows us to safely pass variables by reference and store them in structures, as well as to

reason about obliv if contexts more precisely.

A frozen variable is similar to a const-qualified variable. The frozen qualifier follows the same rules for

type propagation and conversion as const in C. This includes the fact that a frozen-qualified L-value cannot

be modified, as expected. In addition to the standard C rules for const, the meaning of frozen is defined by

the following four rules:

Rule 8. All non-obliv variables defined outside an obliv if become frozen-qualified inside it (as well as in

the body of the associated else clause). Freezing an already frozen variable has no effect.

Rule 9. Similarly, all non-obliv global variables defined outside an obliv function become frozen in the body

of the function.

Rule 10. Dereferencing any pointer of type T ∗ frozen, for any type T , produces an L-value of type T frozen.

Rule 11. On obliv data, frozen qualifiers are ignored.

The reason we had to introduce a new qualifier (along with Rule 10) instead of just reusing const is that we

frequently need to handle situations like this:

struct Value { int ∗p; } v;

obliv if (cond) { // v is frozen inside conditional context

v−>p = 5; // error

}

Here, if we used const instead, f−>p would have been of type int ∗ const, which freezes only the pointer,

not the referenced value. This is not what we want, since we need all variables reachable through pointers

declared outside the conditional context to be frozen.

2.4.5 Unconditional Blocks

Obliv-C provides a way to escape the normal type rules by using an unconditional block:

∼obliv(varname) { ... }

This is only meaningful inside an obliv if or an obliv function, where code is running in a conditional context

controlled by some oblivious condition. That condition is assigned to a new obliv bool variable named

varname.

Code within an unconditional block may modify frozen variables:
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typedef struct {
obliv int∗ arr;
obliv int sz;
int maxsz;

} Resizeable;

void writeArray (Resizeable ∗r, obliv int index,
obliv int val) obliv;

// obliv function, may be called from inside obliv if
void append (Resizable ∗r, obliv int val) obliv {
∼obliv( c) { // condition unused here

r→arr = reallocateMem (r→arr, r→maxsz + 1);
r→maxsz++;

}
writeArray (r, r→sz, val);
r→sz++;

}

Figure 2.2: Example use of an unconditional block.

Rule 12. All frozen qualifiers are ignored directly in the scope of an unconditional segment.

Code inside an unconditional block is executed unconditionally. Note that this does not risk any information

leak, however, since the code in the unconditional block always executes, regardless of the value of the

oblivious condition that would normally control its execution.

An example of its use is shown in Figure 2.2, which shows part of the implementation of a simple resizable

array. It is implemented as a struct as shown at the top of the figure. While the current length of the array is

unknown (since we might append() while inside an obliv if), we can still use an unconditional block to track

a conservative upper bound of the length. We use this variable to allocate memory space for an extra element

when it might be needed.

2.5 Extensible Data-Oblivious Programming

This section presents several examples of how the Obliv-C system supports extensible programming for data-

oblivious computation. They highlight how having access to the full C language and libraries allows an

Obliv-C programmer to add features to Obliv-C that would not possible in any other framework.

The first two show ways data structures can be implemented in Obliv-C that enable performance im-

provements that could not be done without exposing data-oblivious computation to the programmer: range-

tracked integers and oblivious RAM. The next shows how programmers can incorporate special techniques

into Obliv-C programs, in this case taking advantage of secret random numbers. Finally, we show how POSIX

threads can be integrated into Obliv-C to produce protocols with multithreading support, demonstrating some

of the advantages of seamless integration with standard C.
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for (i = 1; i <= n1; ++i) {
for (j = 1; j <= n2; ++j) {

obliv int temp = omin(dp[i][j−1], dp[i−1][j]);

obliv int d = 1;

obliv if (temp >= dp[i−1][j−1]) {
temp = dp[i−1][j−1];

d = (s1[i−1] != s2[j−1]);

}
dp[i][j] = temp + d;

}
}

(a)

for (i = 1; i <= n1; ++i) {
for(j = 1; j <= n2; ++j) {

Accum temp = acMin (dp[i][j−1], dp[i−1][j]);

obliv bool d = true;

obliv if (acLessEq(dp[i−1][j−1], temp)) {
acCopy(&temp, &dp[i−1][j−1]);

d = (s1[i−1] != s2[j−1]);

}
dp[i][j] = acAdd(temp, acFromBoundedOInt (0, 1, d));

}
}

(b)

Figure 2.3: Computing edit distance with ordinary integers, vs. range-tracked integers

2.5.1 Range-Tracked Integers

Programs often do not need full 32-bit wide integers for all their variables, so it is possible to make arithmetic

operations cheaper by using integers of limited bit-width. This can achieve significant speedups for applica-

tions that use lots of small integers, for example when counting or accumulating values. Here, we show how

to write a library to support range-tracked integers that automatically maintain a conservative upper bound

for a value, and resize their bit-widths accordingly.

Figure 2.3 shows an example of how it may be used. The example we use is that of computing edit

distance between two strings. If the strings are of length n, we know that the results can never exceed n, and

can then use appropriate widths for each integer. As shown in Table 2.1, range-tracking integers can lead to

significant performance improvements.

To implement this abstraction, we define the type accum as a struct with fields for maintaining the actual

value (which is oblivious, so not semantically known) and the conservatively-estimated maximum value:

typedef struct {
obliv unsigned value;

100 x 100 characters 200 x 200 characters
Normal int Range-tracked Improvement Normal int Range-tracked Improvement

Total time 7.28 s 4.28 s 41.2% 23.19 s 12.04 s 48.08%
OT time 1.95 s 1.88 s — 1.98 s 1.94 s —
Gate execution time 5.33 s 2.40 s 55.0% 21.21 s 10.10 s 52.4%
Number of gates 1,669,010 668,429 60.0% 6,678,412 2,835,763 57.5%

Table 2.1: Improvements obtained from integer range-tracking in edit distance calculation
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unsigned maxValue;

} accum;

Note that maxValue is not obliv-qualified — it is a publicly known upper bound that depends on the program

the two parties are executing, not on their private values. It must be public so both parties may calculate the

width of the circuits needed for each operation.2

Here is an example how a function operating on a range-tracked accumulator could be used:

accum x = ...;

obliv if (y > 0) { accumAddInt(&x, 1); ... }

Since we expect accumAddInt to be used inside obliv scopes, we need to make this function an obliv function.

Moreover, we will not know, even at runtime, if the condition y > 0 was actually satisfied. To hide the

condition, the protocol will require executing accumAddInt() regardless of the condition.

While the implementation can conditionally modify the oblivious value, x.value, the value of x.maxValue

must be conservatively adjusted regardless of the (unknown) condition. In other words, it is publicly known

that the value might have increased, and so the upper bound has to increase accordingly.

Here is the implementation of accumAddInt:

void accumAddInt (accum ∗dest, int x) obliv

{
∼obliv(en) { dest→maxValue += x; }
int mask = (1<<width(dest→maxValue)) − 1;

dest→value = (dest→value + x) & mask;

}

We use an unconditional segment to unconditionally modify the upper bound. When the actual addition is

performed, we mask out the higher-order bits beyond the current maximum size to zero. This clears out any

ciphertext produced for the higher order bits by the carry-out bits of addition, and allows simple bit-level

constant propagation to emit fewer gates during the later arithmetic operations. Functions for min, max,

addition, and copying are implemented similarly.

At this point the reader might wonder why we are implementing something so simple in a library rather

than having it as built-in optimizations. Indeed, while we might add such optimizations to the compiler in

the future, this example demonstrates that the programmer can go ahead and implement such optimizations

as a high-level library without needing to modify the compiler. Further, even if range-tracking integers were

provided by the compiler, there will always be special cases where the compiler will not be able to detect

opportunities for optimization that are apparent to a programmer with understanding of deeper properties

of the application. Compiler optimizations are not powerful enough to substitute for enhanced language

expressiveness and control.

2In our implementation we also have a similar field for tracking the lower bound, but we omit that here to simplify our discussion
and assume that the lower bound is always zero.
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obliv unsigned ocRandomOblivInt(void)
{

obliv unsigned res = 0;
int p, pc = ocCurrentProto()−>partyCount;
unsigned x;

gcry randomize(&x, sizeof(x),
GCRY STRONG RANDOM);

for (p = 1; p <= pc; ++p) {
res ˆ= feedOblivInt(x,p);

}
return res;
}

Figure 2.4: Generating secret random integers.

2.5.2 Generating Secret Randomness

Generating randomness is very common operation in cryptographic protocols. There are well known exam-

ples [21] of how being able to generate secret random numbers (unknown to any party) can lead to signifi-

cantly faster computation. In this section we describe how we can generate such randomness in Obliv-C and

can be used as an optimization strategy.

Figure 2.4 shows a possible implementation for generating random integers. It just XORs random inputs

from all parties, but does not reveal the result.

One example of its usefulness is the computation of modular inverses modulo a publicly known prime

number, common in cryptography. Ordinarily, computing modular inverses require the extended Euclid’s al-

gorithm, which involves Θ(n) divisions and multiplications do be done securely in a circuit for n-bit numbers.

A faster approach would use secret randomness (similar to the techniques by Damgård et al. [21]). To

compute a−1 mod p, we first generate a secret random number r. We then securely compute ar mod p and

reveal it to everyone. Masking by a secret randomness prevents any semantic information leak.

The parties can then locally compute x = (ar)−1 mod p, and use another secure multiplication obtain

rx = r(ar)−1 = a−1. Thus, we obtain the modular inverse by using just two secure multiplications and

inexpensive local computation. Similar techniques can also be used to find inverses of matrices and group

elements.

We ran some experiments with 32-bit integers, and found that this technique reduces runtime for inverse

computation in semi-honest Yao protocols for 100 integers from 24.7 s to just 9.1 s.

This provides another demonstration of how simple Obliv-C library functions can allow users to easily

write their own primitives that work seamlessly work with the rest of the language. No existing framework

that provides a high-level language allows programmers to invent such primitives and perform optimizations.

Compatibility. This function would work in any protocol any protocol that supports input/output in the

middle of a running protocol (e.g., semi-honest Yao as done here). However, other protocols such as the
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dual-execution version of Yao will not support this because it requires all outputs to be revealed at the very

end (or else it risks leaking one bit of private inputs for each round of output). If we want to help the

programmer with this, for instance, it is easy to have the system refuse further computation once some output

has been revealed.

2.5.3 Multithreading

Despite the prevalence of multicore processors today, no existing secure computation frameworks provide

full multithreading support.3 The reason is simply that full support requires a fairly extensive library for

managing threads and providing synchronization primitives. Instead, our Obliv-C design enables users to

take advantage of existing C libraries. Compared to ordinary computation, however, for threading to provide

useful parallelism, two-party protocols need coordination between threads of both parties.

We implemented some threading support library to help us write the dual-execution protocol (Section 2.6.2),

but we did not implement a full thread-enabled Yao yet (i.e., we have not yet implemented a user-exposed

thread create() function that can be launched during a protocol).

Implementing a protocol using multiple threads requires paying attention to three important properties,

discussed below.

Network Channels. We need to set up separate TCP connections to avoid interference between data transfers

for gates executing in different threads. We implemented a simple newsock=sockSplit(oldsock) function that

creates a new TCP socket between parties that are already connected by an old socket. In particular, the server

starts listening to a new unused port, sends the port number to the client using the old socket, after which the

client connects. At this point, we can use POSIX functions to create new threads and have each thread use a

different socket so that they do not interfere.

Nonces. Any gate-specific nonce value must be carefully chosen to avoid duplicates across threads. In case of

Yao’s protocol, this is just the gate-specific “tweak” value, or serial number used in garbling. So, for instance,

if we have two threads, we should make sure that one thread is only using even numbers while the other is

using odd numbers, so that they do not accidentally use the same tweak and compromise security.

Synchronization. The final point is just a general concern for all multi-threaded programs, although we

should take care to use synchronization that works in a distributed fashion. While there are many synchro-

nization primitives that are useful in programs, we just discuss mutexes as an example of how they can be

wrapped for our protocols. The challenge here is to make sure that the same thread wins the lock on all

relevant parties (there could be more than two in some protocols).

Figure 2.5 shows one way to implement the mutex locking function. The idea here is that only one

party keeps an actual mutex, while others wait on a network signal to know that it is safe to proceed. This

way, only the thread that wins the lock for party 1 will actually proceed. The unlock function simply calls

3There are many implementations of multiparty computation protocols that do use multithreading for executing various protocol
stages [29, 53], but none of these allow application programmers to take advantage of multiple threads at the application level.
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void obliv mutex lock(pthread mutex t∗ m) {
if (ocCurrentParty() != 1) {

recvDummy(1);
} else {

pthread mutex lock(m);
for (int i = 2; i <= partyCount; ++i) sendDummy(i);

}
}

Figure 2.5: Mutex implementation

pthread mutex unlock() for party 1, and does nothing for other parties. Note that this is probably not the

most efficient way to implement a mutex. If thread i is running ahead in party 1, it will win even though

other parties are still catching up. It is possible that in the meantime, some other thread became ready for all

parties, and could have executed. Our proposed implementation does not take this into account, although it is

possible to fix that by using another round of communication.

2.6 Implementing Protocols

So far we have focused on using Obliv-C with Yao’s garbled circuits protocol for semi-honest adversaries.

However, Obliv-C is designed to enable easy experimentation with any protocol that operates on individual

bits for most of the computation (although other types may also be used for specific parts). This section

presents two simple examples to illustrate how Obliv-C can be used to execute different protocols. Beyond

these examples, there are many other protocols that could be implemented as functions for use with Obliv-C.

This includes the cut-and-choose based protocols [68, 94], those in the LEGO family [28, 80], as well as those

not using garbled circuits such as NNOB [79], Sharemind [15], and those based on the SPDZ family [22]

(either as a full protocol restricted to Boolean gates, or as a sub-protocol for parts with many arithmetic

operations). We have not yet implemented these other protocols for Obliv-C, but all of them execute in ways

that fit well with our design.

2.6.1 Debugging Applications

The easiest way to discuss adding new protocols is to discuss one that performs no cryptography at all. All

it does is that it provides a new function execDebugProtocol() which replaces the usual execYaoProtocol().

It simply executes the Obliv-C computation in plaintext. This speeds up the execution and makes it easier

to debug Obliv-C programs. No further changes in code are necessary. After testing the program using

execDebugProtocol(), we can just change that one line to execYaoProtocol() (or any other protocol launcher)

to make it a secure computation.

It is easy to write new execProtocol() functions like this for launching custom protocols for use with Obliv-

C. Implementing a new protocol is just a matter or defining functions for various protocol-level runtime hooks
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void execDebugProtocol (ProtocolDesc ∗pd,
protocol run start, void ∗arg)

{
pd−>currentParty = ocCurrentPartyDefault;
pd−>feedOblivInputs = dbgProtoFeedOblivInputs;
pd−>revealOblivBits = dbgProtoRevealOblivBits;
pd−>setBitAnd = dbgProtoSetBitAnd;
pd−>setBitOr = dbgProtoSetBitOr;
pd−>setBitXor = dbgProtoSetBitXor;
pd−>setBitNot = dbgProtoSetBitNot;
pd−>flipBit = dbgProtoFlipBit;
pd−>partyCount= 2;
currentProto = pd;
start(arg);
}

Figure 2.6: Implementation of the debug protocol

void dbgProtoSetBitAnd(ProtocolDesc∗ pd,
OblivBit∗ dest,const OblivBit∗ a,const OblivBit∗ b)

{
dest−>value = (a−>value && b−>value);
}

Figure 2.7: Debugging protocol callback for an AND gate.

that we provide. These hooks are called do input, output, and compute a single Boolean logic gate. They

simply call the user-provided Obliv-C callback function. We have already defined the various operations in

terms of Boolean logic gates, so to implement a new protocol we just need to provide new implementation of

these operations.

For example, Figure 2.6 shows the implementation for execDebugProtocol(). All of the first eight lines

are simply setting callback functions that define various aspects of the protocol. Figure 2.7 shows how one of

these callbacks could be implemented (our own implementation also keeps track of stats such as gate count

etc.). OblivBit is just a C struct that represents a single obliv bool value. For secure computation protocols,

this function would also perform other initializations like setting up pseudo-random seeds and executing base

OTs. After all the initializations, the last line simply invokes the Obliv-C function provided by the user as a

parameter.

We also allow developers switch out TCP/IP with their own custom transport mechanism. For example, in

our experience, we often did not want to have to worry about networking issues when writing code, especially

when writing a new protocol. So, when running both parties locally on the same machine, we would just pipe

the data through standard input and output. In fact, even when running over a network, we can just pipe over

SSH. To support this, we also provide hooks for the primitive send() and recv() functions used by various

protocols, which can be replaced with arbitrary functions. This could also be used to easily inspect the
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network traffic for debugging purposes or to package transmissions to improve efficiency.

Note that implementing the new protocols did not require any changes to the Obliv-C compiler. In fact,

the compiler does not even need to know which protocol we are planning to execute: that can be determined

later at runtime in the main() function written in C. This design makes is very easy to conduct experiments

that run the same benchmark with different protocols.

2.6.2 Dual Execution Protocol

Another protocol we have implemented for Obliv-C is the dual execution variant of Yao’s protocol [75,

105]. It provides stronger security than semi-honest versions in that it provides some guarantees even against

malicious adversaries. It allows at most one bit of private data to be leaked to a malicious adversary, but

requires twice the total computation since the base Yao’s protocol is executed twice. Although there are even

stronger protocols that provide complete privacy against malicious adversaries [41, 55, 66, 68, 79, 80, 94],

they all require substantially more expensive techniques.

The basic idea for dual execution is to execute a secure computation by running Yao’s garbled circuits

protocol twice, but having the parties swap roles for the two executions which are run simultaneously. This

way, each party gets to be the circuit generator for one execution and the evaluator for the other one. The

results of the executions are tested for equality to ensure that both circuits computed the same result.

Changes to the application code needed to use dual execution are minimal. It is only necessary to swap out

execYaoProtocol() with execDualexProtocol(), and have two TCP connections instead of just one, for which

we provide convenient wrappers (this enables dual execution to use separate threads for circuit generation

and execution that proceed in parallel).

This new function execDualexProtocol() works the same way as before, but this time it starts two threads

before registering protocol-level hooks. It can now perform additional tasks like swapping roles for one

thread and configuring each threat to use different TCP connections. The Obliv-C code to be executed is now

launched once from each thread until it is time to perform output. During output, it needs to make sure that

the output is only revealed to the evaluator side of each thread. At the same time, it accumulates a hash of the

garbled wire labels, joins the two threads, performs an equality check, and returns an error to the user if the

check failed.

Ideally, we want all application code to be portable across protocols. In reality, however, protocols often

involve some quirks and users will have to write code carefully to achieve portability. Every protocol is

expected to document its rules of usage. For example, some features like ORAMs are protocol-specific, and

will not be supported in dual execution protocols. On the other hand, purely circuit-based optimizations such

as integer range-tracking (Section 2.5.1) can be used with any protocol.

Other rules involve input/output timing and thread-safety. Since dual execution uses two threads, care

needs to be taken when using shared memory. Dual execution has a simple restriction: the computation

needs to strictly follow the “input, then compute, then output” execution model. For a semi-honest protocol,

it is perfectly acceptable to reveal outputs or feed additional inputs in the middle of the protocol, interacting
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with the protocol as it runs. This is not supported in the stronger protocol: in general, if we want a party to

obtain an output, process it locally, and then feed it back, it is quite hard to ascertain if the data was tampered

with. In theory, one could do zero knowledge proofs, but it usually is easier (and faster) to just execute the

whole computation inside the secure computation protocol. Moreover, the possibility of early outputs opens

the door for leaking additional information through selective failure attacks. This is a general theme for all

protocols against stronger adversaries, not specific to Obliv-C, but an example of the kind of protocol-specific

issue that must be adhered to when implementing applications with Obliv-C.

2.7 Implementation

The Obliv-C compiler is implemented as a modified version of CIL [78], which transforms Obliv-C code to

plain C. Our source code is available under an open source license at <http://oblivc.org/>.

We make some changes to the CIL front-end parser to support the new language keywords and control

structures. Some additional changes also were made to keep track of additional information such as the

lexical depth at which a variable was declared (the default version of CIL discards this information order to

simplify internal representation and processing).

Once the type-checker has completed successfully, code generation is straightforward. Figure 2.8 shows

a simple example. An internal header file, “obliv bits.h” is automatically included in the generated output

files which provides the function prototypes and type declarations for the auto-generated function calls will

be available during the later stages of compilation. The generated files can then be compiled normally by a

standard C compiler (our oblivcc wrapper uses gcc for this).

Because of the way we implemented Obliv-C as a preprocessor on top of C, all of the normal C constructs

are still available including structures, pointers, and indirect function calls. We also can trivially support

separate compilation—two separate files can be independently transformed and then compiled and linked as

usual. This allows us to have a feature-rich language without having to design the whole development tool

chain from scratch.

Implementing obliv types. The code generator replaces obliv types with corresponding types that are defined

as C structs that represent the ciphertext for data bits, the operators get replaced with corresponding function

calls. For example, the obliv int type is replaced with obliv c int which is defined as:

typedef struct { OblivBit bits[32]; } obliv c int;

Operations involving obliv types are replaced with corresponding function calls implemented by the provided

library. For example, c = a + b is transformed into obliv c setAdd(&c, &a, &b).

Functions like obliv c setAdd() obliv c setLessThan() are defined in a runtime library that is linked with

the generated C files. These functions are all defined in terms of bit operations (e.g., AND, OR, NOT). The bit

operations, in turn, are implemented in some protocol-specific way, which means these back-end functions

are usually written in plain C. To change the protocol, all we need to do is provide new implementations of
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void millionaire (void ∗args) {
ProtocolIO ∗io = args;
obliv int a, b;
obliv bool res = false;

a = feedOblivInt(io−>myinput, 1);
b = feedOblivInt(io−>myinput, 2);

obliv if (a < b) res = true;

revealOblivBool(&io−>result, res, 0);
}

(a)

void millionaire (void ∗args) {
ProtocolIO ∗io = args;
obliv c int a, b;
obliv c bool res;
memset (&a, 0, sizeof(obliv c int));
memset (&b, 0, sizeof(obliv c int));
memset (&res, 0, sizeof(obliv c bool));

a = feedOblivInt(io−>myinput, 1);
b = feedOblivInt(io−>myinput, 2);

obliv c bool cond;
obliv c setLessThan(&cond, &a, &b);
obliv c condAssign(&cond, &res, &obliv c true);

revealOblivBool(&io−>result, res, 0);
}

(b)

Figure 2.8: Transformation of Obliv-C code. Obliv-C code for the millionaires’ problem, before and after it
is transformed to plain C by our compiler (reformatted for readability).
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these operations (Section 2.6 presents an example).

Transforming conditional code. Code generation is done differently inside an obliv if or obliv function,

since all assignments now must be done conditionally. To ensure that uninitialized garbage values to not

interfere with conditional assignments, all local obliv variables are initialized to zero.

Nested if conditions are handled by AND-ing the new condition with the current, enclosing one. When-

ever an obliv function is called, the current condition simply gets passed in as a hidden parameter, so that the

function can continue to perform proper conditional assignments. When an obliv function is called outside

of any obliv scope (that is, not under the control of any condition), the hidden parameter is just set to true,

effectively making it unconditional. This is why obliv functions and non-obliv functions have different sig-

natures in our language: internally, they accept different parameters. Similarly, Obliv-C supports two flavors

of function pointers corresponding to these two flavors of functions. Thus, this transformation eventually

removes all control dependencies related to obliv if structures.

None of these transformations interfere with the usual control structures of C (if, for, while, etc.). All

behave as expected without any transformation. For example,

obliv if (cond) writeArray (arr, size, index);

is compiled to:

writeArray (cond, arr, size, index);

Something more complicated like:

obliv if (x < y) {
for (int i = 0; i < n; ++i) {

if (i % 2 == 0) {
a[i] = b[i];

}
}

}

compiles to:

obliv c setLessThan (&cond, &x, &y);

for (int i = 0; i < n; ++i) {
if (i % 2 == 0) {

obliv c condAssign (&cond, &a[i], &b[i]);

}
}

Note that the conditional assignment is needed only for obliv variables and ++i did not need any change. This

works because any code that attempts to make problematic modifications to non-obliv variables inside an

obliv scope will be rejected in our type-checking phase. Moreover, the conditional assignment only uses the
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conditions of enclosing obliv ifs. We do not need to separately account for non-obliv conditions like i < n or

i % 2 == 0 since those control structures are not oblivious and will execute normally.

Since loops and function calls remain in code as is, we never need to unroll or inline them into full circuits

for execution, unlike other systems [48, 73]. Hence, we can run programs involving billions of gates without

worrying about running out of memory. Memory management is not different in our system, since we still

have full access to the usual C runtime library functions (although sometimes protocol-specific restrictions

can apply, as seen in Section 2.6).

The last new feature we need to support is unconditional segments. Code written inside such a segment is

simply rewritten as if it appeared outside any conditional context. Inside an unconditional segment, all code

is executed unconditionally. Before this block is executed, however, the new variable of type obliv bool is

simply initialized with a copy of the current condition so that it is available to the code in the body of this

segment.

Security argument. Our design makes it easy to provide a strong argument that an Obliv-C program never

leaks any secret information (so long as the underlying secure computation protocol is secure). Since obliv

variables are encrypted data, there is no risk that they will be leaked or used in a way that leads to an implicit

leak since the semantic value is not even visible to the executing program. The only way a semantic value is

produced is through a call to a reveal() function that can convert from obliv variables to the non-obliv ones.

The code generator never generates a reveal() function, except where the corresponding function was used

in the input program. So, we can never accidentally leak information from obliv variable if the type system

is flawed. An error in the type system can result in incorrect code and surprising behavior, but never an

information leak. For example, if the type system mistakenly allows an externally visible non-obliv variables

to be modified in an obliv if, the resulting program would modify the variable regardless of the obliv condition

(without branching). This emphasizes that our system relies on cryptography at runtime to provide security;

the type rules are designed only to prevent programming mistakes.

2.8 Related Work

Many frameworks for secure computation have been published in recent years. Broadly speaking, they

can be classified into two categories. First is the family of low-level frameworks that provide a library of

cryptographic primitives that can be used to develop arbitrary protocols. Examples include FastGC [50],

SCAPI [24], and L1 [92]. The advantage of using these frameworks is that they provide a high degree of

customizability over the actual protocol execution. On the downside, however, users are generally expected

to be experts either in cryptography, or in circuit structures, or both. The frameworks provide little or no type

safety to prevent semantic errors, and it is difficult (or in some cases, impossible) to write applications in a

way that it is portable across different protocols. In comparison, applications programmed in Obliv-C are

fully portable across all protocols that work on Boolean circuits (unless they are written to deliberately use

protocol-specific extensions). Moreover, the Obliv-C type system prevents accidental mistakes on the part of
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the programmer, without being so restrictive that it prevents programmers from writing useful functions.

The second family of frameworks entail high-level languages that try to completely abstract away the

cryptographic parts, and allow the user to code in a special language as if it was ordinary programming.

Examples include Fairplay [73], CMBC-GC [48], KSS [63], PCF [62], Wysteria [89] and PICCO [110].

Unlike Obliv-C, these languages provide little opportunity for users to extend or alter protocols short of

modifying the compiler directly. For example, none of these would allow a user to write custom ORAM

protocols (since they manage all network traffic) or implement custom data structure libraries (since they

manage all memory allocation) as we demonstrated was straightforward with Obliv-C. Some like Wysteria,

though, provides very strong static type system that we do not — our type system is only intended to prevent

mistakes, and relies on the underlying cryptography for security.

Thus, we consider Obliv-C to be somewhere in between the two previous families of secure computation

frameworks, obtaining the best of both worlds. It provides sufficient control to enable rich extensibility,

without requiring a programmer to design low-level circuits or understand the underlying cryptography.

Although our current implementation provides fairly good performance, it still does not incorporate all

the optimizations that have been proposed recently. This includes using AES-NI instructions [63, 90] to

garble each gate, or OT-extension for malicious adversaries [54] (our current dual execution implementation

does not use OT-extension). The design of Obliv-C makes it easy to incorporate those optimizations, and any

newly discovered ones, without making any changes to the compiler.

Holzer et al. [48] attempted to leverage C in secure computation, but did not support most of the C

language, while Obliv-C is a strict extension of C. Finally, since their approach generates a full circuit repre-

sentation before actually executing it, it cannot scale to large circuits.

Finally, there are many other implementations that use a custom designed intermediate language to ad-

dress memory issues such as PAL [76] and PCF [62]. These frameworks do not support custom sub-protocols

the way we do. In this respect, they are closer to the other high-level languages that we have mentioned pre-

viously, since they abstract away the data-oblivious nature of computation and provide something closer to

ordinary computation. Without a full static type system, they had to take draconian measures such as not

allowing function calls within an if statement that depends on secret input, for example. This greatly limits

the general applicability of these systems, and requires programmers to build applications in unnatural and

tool-specific ways.

2.9 Conclusion

Multi-party secure computation is a vibrant and rapidly advancing research area, but progress is impeded

by the difficulty in experimenting with protocols, applications, and implementation techniques with current

systems. Researchers with new ideas for implementing secure computation protocols, or for optimizing

applications, tend to find it necessary to implement a new protocol from basic primitives since previous

frameworks lack the necessary expressiveness to experiment with new ideas at multiple levels of abstraction.
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Obliv-C provides an extensible programming tool for secure computation that provides a new option by

exposing the important aspects of data-oblivious computation, while providing a high-level language and the

ability to seamlessly integrate with standard C code.



Chapter 3

Circuit Structures4

3.1 Introduction

Generic secure computation protocols and symbolic execution both require arbitrary algorithms to be con-

verted into static circuits, and their efficiency depends critically on the size of the circuit. Therefore, we

can improve the speed of these applications by finding efficient circuit constructions for various common

programming constructs.

We show efficient constructions for three common data structures: stacks, queues and associative maps.

Our constructions are general enough to be used in both the applications. Our stack and queue provide

conditional update operations using only amortized Θ(logn) gates for each operation, while associative map

uses amortized Θ(log2 n) gates for each access or update (where n is the maximum number of elements in

the structure). We then show how various common array usage patterns can be rewritten using these data

structures, thus obtaining far more efficient circuits for those cases (Section 3.4). Finally, we demonstrate

that the use of these circuits indeed leads to significant speedups in practice (Section 3.6). We do this by

manually replacing standard arrays with our circuit structures in various interesting applications of secure

computation and automatic test-input generation (Section 3.5).

In the next section, we present the motivation for our work emphasizing the commonality of static cir-

cuits across applications, followed by background on how programs are typically converted into circuits.

Section 3.7 discusses related work more broadly.

4This chapter is an adaptation of:
Samee Zahur and David Evans. Circuit Structures for Improving Efficiency of Security and Privacy Tools. In 34th IEEE Symposium on
Security and Privacy, 2013, San Fransisco.
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3.2 Motivation

There has been a long history of work designing efficient hardware implementations of Boolean circuits,

starting with Shannon’s work in the 1930s [93]. Hardware circuit designers typically have to worry about

circuit depth, gate delay, and power consumption, but view reuse as a design goal. Circuits used in several

security applications are quite different. In these applications, each wire in the circuit holds a constant

value during the entire execution. This is essential for privacy for secure computation applications, and

necessary for test input generation where the goal is to find inputs that lead to a particular output. We call

such static-value circuits, static circuits. For most applications, including the ones we focus on here, the cost

of evaluating a static circuit follows directly from the number of gates in the circuit.

Static circuit structures are radically different from typical hardware circuits. A hardware circuit for

adding a million integers, for instance, can fetch them one-by-one from memory, accumulating the sum

using a single two-integer adder circuit. Describing the same computation with a static circuit requires a

giant structure that includes a million copies of the adder circuit. One particular problem that stems from

this difference is that random array access is horrendously expensive in static circuits. Each access of an

n-element array requires a circuit of Θ(n) size where the entire array is multiplexed for the required element

by the index being accessed (Figure 3.1). If the array access is performed in a loop, the corresponding circuit

blows up in size extremely rapidly since static circuits cannot be reused. Of course, there are simple cases

where this is not a problem, particularly when the access is at positions known in advance (e.g., Figure 3.2).

It is often not the case, however, that all access positions can be determined without knowing the input data.

We concentrate on making efficient circuits for the cases in between these extremes: where we know that the

array is accessed in some simple pattern, but the indices do depend to some degree on the input data. The

overall insight is that most programs do not access arrays in ways that require the general linear multiplexer

structure because the actual array accesses are limited in predictable ways. Here, we show how to amortize

the cost of multiple accesses when the application either makes multiple accesses that can be performed in a

batch, or has some locality in the indices accessed.

In the following subsections, we describe our two target applications: generic secure computation proto-

cols, and automated test-input generation using SAT solvers. We describe their typical use cases, their current

state of the art, and how these applications depend on static circuits. Both applications require arbitrary pro-

grams to be expressed as static circuits, so efficient circuit constructions yield immediate efficiency gains for

both applications.

i==0

a[0] x

a′[0]

i==1

a[1] x

a′[1]

i==2

a[2] x

a′[2]

i==3

a[3] x

a′[3]

a[i] := x

Figure 3.1: A single array access requiring n multiplexers.
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a[0] a[1] a[2] a[3] a[4]

+1 +1 +1 +1 +1
for (i = 0; i < n; ++i)

    a[i]++;

Figure 3.2: Input-independent memory accesses. The index value becomes plain constants once the loop is
unrolled. Since the index does not depend on unknown inputs, array access is much cheaper.

3.2.1 Generic Protocols for Secure Computation

Secure computation allows two (or more) parties to compute a function that depends on private inputs from

both parties without revealing anything about either party’s private inputs to the other participant (other than

what can be inferred from the function output). While there are many application-specific protocols for per-

forming specific tasks securely [30, 77], recent advances in generic protocols enable arbitrary algorithms to

be performed as secure computations. To execute any given program securely under such a protocol, it is first

converted into a Boolean circuit representing the same computation. After this, the generic protocols specify

mechanical ways in which any circuit can be converted into a protocol between parties to perform the same

computation securely. The fastest such protocol currently known is Yao’s garbled circuits protocol [67, 106].

Recent implementations have demonstrated its practicality for many interesting applications including secure

auctions [16, 60], fingerprint matching [52], financial data aggregation [15], data-mining [84], approximate

string comparison, and privacy-preserving AES encryption [50].

The static circuits needed for these secure computation protocols do not support fast random access to

array elements. This is inherent, since the circuit must be constructed before the index being accessed is

known. Any arbitrary array access requires a Θ(n)-sized multiplexer circuit in the general case. While recent

work by Dov Gordon et al. [45] has improved the situation for large arrays by with a hybrid protocol using

oblivious RAM (ORAM), that approach still has a very high overhead. On the other hand, our approach can

be orders of magnitude faster whenever it is applicable, which covers many common cases. (Section 3.7

provides a more detailed discussion.)

Other generic secure computation protocols such as fully homomorphic encryption [33, 98], GMW [41],

and NNOB [79] also use static circuit representations of the computation. Therefore our circuit structures are

useful in all such protocols, although we only consider garbled circuits in our evaluation.

3.2.2 Symbolic Execution on Programs

Another common application of static circuits is in symbolic program execution. Several recent works use

symbolic execution to automatically derive properties about program behavior [20, 58, 88]. Several tools are

able to analyze legacy programs without requiring any modification to their source code [18, 19, 37].

The particular use of symbolic execution that we consider is automatic test-input generation. The goal

here is to analyze a given program and automatically come up with input cases that would drive the program
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execution along a given path. By exploring all paths to find ones that end in “bad” program states (e.g., a

crash or buffer overflow), these tools either obtain concrete test cases that expose program bugs or provide

assurance that no such bad paths exist (at least within the explored space).

Test-input generation works by first converting the relevant part of the program into a query for a con-

straint solver (such as Z3 [23] or STP [32]). This solver is then used to solve for the inputs that will drive

program execution to the desired state (or undesired state, as the case may be). Rapid advances in heuristic

solvers over the last decade have made it possible to use these tools in many interesting new applications. It

turns out that these queries are also equivalent to static circuits [97] in the sense that they also define relation-

ships between variables in a program. Thus, if we can create optimized circuits for programs we also speed

up test-input generation, increasing the scale and depth of programs that can be explored.

Since the literature in symbolic execution typically does not refer to circuits, but instead talks solely in

terms of constraints, we clarify the relationship between them with an example. Consider the code fragment:

x := 5+y; if (x > a) then x := x/a;

The goal of the symbolic execution is to check if a division by zero can arise for any particular values of

y and a. Normally, the code path to division would be translated into the following constraints: x=5+y, x>a,

a=0. If all these constraints can be satisfied for some x, y, and a, we have a possible bug. Solving the constraint

is done by feeding it into a SAT solver (as is often needed). The addition and greater-than operations need

to be defined using primitive Boolean gates such as AND, OR, etc. much the same way hardware logic gates

are used to form addition and comparison circuits. So, whenever we say that the “wires” for p and q are fed

into an AND gate to produce the output wire r, what we really mean is that we are adding a new constraint of

the form r = p∧q. This in turn gets translated into (p∨¬r) ∧ (q∨¬r) ∧ (¬p∨¬q∨ r) which is the input to the SAT

solver. Thus, our optimized circuit constructions will be used to produce smaller constraint sets for encoding

various programming constructs.

Since arrays can rapidly drive up costs, SMT solvers used in test-input generation tend to put a lot of

effort into handling them properly. Some approaches rely on complicated under-approximation strategies

that that use a simplified, but less accurate, circuit for quickly discarding obviously unreachable code paths.

More accurate circuits are then generated only for the remaining paths. In our evaluation, we do not use

any such approximations — instead we generate completely faithful circuits and show how they can be

optimized in various cases. We hope that this will enable faster generation of test-inputs by allowing SMT

solvers to use fewer, simpler approximation circuits, thereby completing analysis using fewer invocations of

computationally expensive SAT solvers. We discuss this further in Section 3.4.2.

An important characteristic of constraint solvers is that they support cyclic circuits. In the end, their input

is just a set of logical constraints on a set of variables. Hence, it is perfectly acceptable to have constraints

such as a = b ∨ c and c = a ∧ ¬d even though that may seem like circular definition — it is just a set of

constraints on the values of the variables a, b, c and d. We will see later that this allows us to optimize random

array access in the general case, something we could not do in the case of secure computation.
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3.3 Background

When programs are compiled into static circuits, conversion for most simple statements and conditionals is

fairly intuitive. First, statements such as x := x + 5 are converted into single assignment form x2 = x1 + 5, so

that each variable is assigned a value only once. This way, we can now allocate separate wires in the circuit

to represent the values of x before (x1) and after (x2) the assignment.

Conditional branches are done by separately converting each branch into a circuit. At the end of the

branch, any variable modified along either path is multiplexed at the end according to the branch condition.

For example,

if (a == 0) x = x + 5

is converted to

x2= x1+ 5; x3= mux(a == 0, x1, x2);

where mux(p, a, b) uses its first argument as control bits to select between its second and third arguments.

Such multiplexers are actually never emitted by older symbolic execution tools, since they only explore

a program one path at a time. However, this often led them to face the exponential path explosion problem.

Modern tools, therefore, often explore paths at the same time using techniques such as path joining [46, 65]

and compositional symbolic execution [4], which require such multiplexers (the literature also refers to them

as if-then-else clauses).

Loops and Functions. Loops and functions pose particular challenges for static circuits. Loops are com-

pletely unrolled for some number of iterations, and functions are entirely inlined (see Section 3.7 for details).

Since all values are static, and we cannot reuse the same loop body circuit for different iterations. Instead,

we instantiate many copies of the same circuit. In test-input generation, there are a wide variety of heuristics

for determining an unrolling threshold, which can be as simple as always unrolling just once. In such cases,

checking tools simply do not explore paths that require multiple loop iterations, ignoring bugs that depend

on such paths [8, 27]. Finding loop bounds is orthogonal to our work, and we do not address it here. In

our evaluation, however, we use programs with known loop bounds, and those loops are completely unrolled

when converted to circuits.

In secure computation, the practice is a little different. The loop bounds are known based on the given

input data size even before the computation begins. An upper bound to input data sizes is publicly revealed

even though the data itself is private. For this, they describe circuits in custom languages [47, 73, 92] where

inputs known at circuit generation time are treated differently from inputs to the circuit wires itself. Even if

the computation is written in a traditional language such as C [48], constraints are placed on what kinds of

variables can define loop bounds.
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if (x != 0) {
  a[i] += 3;
  if (a[i] > 10) i++;
  a[i] = 5;
}

t = stk.top();
t += 3;
                                  (x != 0, t);

                                  (x != 0, 5);condModifyTopstk.

condModifyTopstk.
condPushstk. (x != 0 && t > 10, NULL);

Figure 3.3: Using stacks instead of arrays. This is possible when program changes i only in small increments.
We assumed that the stack top has already moved to the position corresponding to a[i] using condPush during
previous increments.

3.4 Circuit Structures

In this section we present circuit structures that provide efficient constructions for stacks, queues and asso-

ciative maps. The stack and queue have quite similar structures, and are therefore discussed together. In each

case, we discuss the operations we support, the circuit size required for each, and when these more efficient

constructions can be used in place of general arrays.

3.4.1 Stack and Queue

We replace arrays with stacks and queues whenever we can determine that the array index only changes

in small increments or decrements. In other words, we use them to exploit locality whenever possible.

Figure 3.3 shows an example of code transformations required for this. The operations needed to support

the transformation are simply conditional variants of standard stack and queue operations. Each conditional

operation takes an extra Boolean input that either enables or disables the corresponding modification to the

stack. So, for example, stk.condPush (c,v) would push v onto the stack if c is true. Otherwise, the stack passes

through unmodified.

Therefore, we now need to implement such operations efficiently. The operations we support for stack

are condPush, condPop, condModifyTop, and readTop (no conditional read is needed since it has no side effects).

The queue operations are identical, except that we use the word Front instead of Top. Figure 3.4 shows a naive

implementation of the condPush operation, which still suffers from the expected Θ(n) cost per operation. We

first describe the efficient circuits for stacks; then, we summarize the differences for queues.

In terms of array access patterns, we can use these two structures to optimize any case where the index

moves in small increments or decrements. For example, if it is only incremented (or only decremented) in a

true

2 7 53

2 7 53

Figure 3.4: A naı̈ve circuit for condPush, using a series of multiplexers. Since the condition is true, a new
element is pushed. Had it been false, the stack would passed through unmodified.
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code fragment, we use the pattern in Figure 3.3. If it moves in both directions, we just need two stacks “head-

to-head”, so that a pop from one is matched by a push into the other. If we need multiple array indices, we

can use queues. For example, if i and j are both scanning through the same array, the space between them can

be modeled as a queue, while the other segments of the array can still be stacks. This can be generalized to

multiple index variables in the obvious way by using multiple queues for parts between any two consecutive

index variables.

Hierarchical Stack Implementation. The key idea is to split up the stack buffer into several pieces and

have empty spaces in each of those, so that we do not have to slide the entire buffer on each operation. This

is illustrated in Figure 3.5. This idea was inspired by the “circular shifts” idea described in Pippenger and

Fischer’s classic paper on oblivious Turing machines [87]. However, our construction, which we describe

now, is significantly modified for our purposes since we do not want to incur the overhead of a general circuit

simulating an entire Turing machine. Section 3.7 explains the differences between Pippenger and Fischer’s

construction and ours in more detail.
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Figure 3.5: The stack buffers separated into levels, with five blocks each. A level 0 shift circuit is generated
after every two conditional push operations.

The buffers of the stack are now in chunks of increasing size, starting with size 5, and then 10, 20, 40

etc. In general, the buffer at level-i has 5×2i data slots, where the levels are numbered from the top starting

at 0. The left side in the figure at level-0 represents the top of the stack. We also maintain the invariant that

the number of data slots actually used in the buffer at level-i is always a multiple of 2i. So, for example, the

level-1 buffer only accepts data in blocks of two data items. To keep track of the next empty block available,

we also maintain a 3-bit counter at each level, t. At any given state, the counter can have values in the range

0–5, and if the one at level-i reads p, then it means that the next data block pushed in to this buffer should
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Figure 3.6: Circuit for a single conditional push operation into level-0 buffer.

go to position p. Finally, we maintain a single-bit “present” flag associated with each data block to indicate

whether or not it is currently empty. We do not explicitly show this bit in our figures, other than indicating it

with the color of the data block (gray indicates occupied).

Conditional Push Operations. For simplicity, let us start with a “nice” state, where we assume that the

counter at each level starts no higher than 3. The top row in Figure 3.5 depicts such a state. This means

every level currently has enough empty slots to accept at least two more blocks of data. So, for the first

two condPush operations, we know we have an empty space at level-0 to store the new element as needed

if the input condition is true. This circuit will simply be the naı̈ve array write operation. In addition, we

conditionally increment the counter t, to reflect the change in position of the stack top. This circuit is a series

of 5 multiplexers, each of which chooses between the new incoming data being pushed on the stack and the

old data stored in the corresponding slot at level-0. The multiplexer control lines are the outputs of a decoder

driven by the counter, so that only the appropriate data slot gets written to, while the other items pass through

with their values unchanged. Finally, since we are implementing a conditional push, the input condition feeds

into the enable bit of the decoder, and conditionally increments the counter at level 0. The wires for the deeper

levels (not shown in the figure) are passed through unchanged to the output. This construction is shown in

Figure 3.6.

After two conditional push operations it is possible that the level 0 buffer is now full, and we have to

generate some extra circuitry for passing blocks into the next level. For this, we simply check the counter

to see if it is greater than 3. The result of this comparison is used to conditionally right-shift the contents of

the buffer by 2 slots, while the elements ejected from the right are pushed into level 1 by a conditional push

circuit for the deeper level. At the same time, the counter on buffer 0 is decremented by 2 if necessary. Of

course, if the counter is already less than or equal to 3 (e.g., if the previous two conditional push operations

had false conditions and did not actually do anything), the stack state is not modified in any way and the

circuit simply passes on the current values (Figure 3.7). After all this is done, we can now be sure that the

level-0 buffer once again has at least two empty slots for the next two push operations to succeed. The circuit

for conditional push into deeper levels is the same as the one for level 0, except that the circuit that shifts to

level-i is only generated every 2i condPush operations.

Conditional Pop. The conditional pop circuit is designed analogously to the conditional push. Normally, it
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Figure 3.7: Emptying out data blocks from level i to (i+1).

reads from the level-0 buffer and then decrements t. After every 2i conditional pop operations we add extra

circuits to check if the counter at level i is less than 2, and if so, pop 2i+1 items from the deeper level (that

is, from level (i+ 1) to level i). Whenever we pop from level i, we decrement the counter at that level, and

add 2 to the counter at level (i−1) (unless i−1 < 0). That way, the topmost item on the stack is always in

the level-0 buffer. The read top and modify top operations, therefore, just need to use the level-0 counter to

determine which of the five elements in the buffer is actually the top, and requires a constant-sized circuit,

such as a multiplexer. In this case we do not even need to check all 5 data slots, since some are always kept

empty by construction (they are used only in transient states just before a shift).

Since we want to support push and pop operations interleaved arbitrarily, we have to make sure that e.g.,

a shift from level 0 to level 1 after some conditional push still leaves enough elements at level 0 for any

subsequent pops, so that they do not interfere with each other. We only shift two blocks at a time, and only

do this when t ≥ 4, so that after a shift we still have at least two blocks left for any pops that may follow.

Similar logic also holds for shift after pop, when we must leave enough empty spaces for push operations,

while populating this level for pops. This also explains our choice of using 5 blocks on each level: in the

worst case we need 2 empty spaces for push, 2 filled blocks for pop, and one extra space since the deeper

levels only take an even number of blocks.

Analysis. From this point we will use the term cost of a circuit to mean the number of gates. This is the most

important metric for our target applications, and the depth of the circuit is mostly unimportant.

For every two push operations of the stack, a level-1 push circuit is generated only once. This will in

turn cause a level-2 push circuit on every four operations of the stack, and so on. In general, for a finite-

length stack known to have at most n elements at any given time, k operations access level i at most bk/2ic
times. However, the operations at the deeper levels are also more expensive since they move around larger

data blocks — each circuit at level i has Θ(2i) logic gates per operation. So when k is large, we generate

Θ(2i× k/2i) = Θ(k)-sized circuits at level i. And since we have Θ(logn) levels, the total circuit size for k

operations is Θ(k logn). Thus, the amortized code for each conditional stack operation is Θ(logn). If no
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Figure 3.8: Hierarchical queue construction.

upper-bound to the stack length is known in advance (at circuit generation time), we can simply assume that

after k conditional push operations, the length is at most k. Following similar reasoning, the amortized cost

of a conditional pop is also Θ(logn). Operations condModifyTop and readTop only involve the level-0 buffer,

and therefore have fixed costs.

Hierarchical Queue Implementation. The queue structure is essentially equivalent to a push-only stack

and a pop-only stack, juxtaposed together (Figure 3.8). Each uses 3×2i data slots at level i, exactly half the

buffer we have that level. The head and tail buffers individually are smaller than in the case of stack (3×2i

instead of 5×2i) since we know it is either push-only or pop-only. Every level now has two counters, one for

head and the other for tail. Each is represented by three bits, with values in the range 0–6, representing the

head and tail position of the queue in the current buffer, respectively. If their values are h and t in the buffer

for level i, it represents the fact that buffer slots 2it,2it +1, . . . ,2ih−1 are currently occupied. The invariant

t ≤ h is always maintained. If t = h, it represents the condition where the corresponding buffer is empty. In

such cases, we will always reset t and h to the value 3, so that they both point to the middle of the buffer.

Here, we are using the convention that pop operations occur at the head, while push operations occur at the

tail.

Conditional push and pop operations still work at level-0 as in the stack. After every 2i push operations,

we check level-i and shift two blocks to level-(i+1) if t < 2. Similarly, after 2i pop operations, we resupply

the head buffer with new elements from the next level if h < 5. So far, this is exactly the same scenario as

in the stack. But we now need to add some extra circuitry to transfer elements between the two halves. In

particular, when a level-i pop occurs, it is possible that level-(i+ 1) is empty, or that it does not even exist

(that is, we have no wires representing that buffer). So we need to add extra circuits to check for this case.

When it occurs, the next few pop operations will supply data straight out of the level-i tail buffer (instead of

popping from the empty buffer at the deeper level). Similarly, after a level-i push, if the tail buffer is getting

full and the next level is empty, the circuit also checks to see if the head buffer in the current level is also

empty. If so, it simply shifts data blocks from the tail buffer directly to the head buffer in the same level,

skipping the next-level buffer. All these conditional data movements add extra multiplexers, but increase the
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Figure 3.9: Circuit for batch-updating an associative key-value map.

circuit-size only by a constant factor. So, we can still provide conditional queue push and pop operations at

Θ(logn) cost. As we will see later in our evaluation, the constant factors are still quite small, and the total

cost of our queue construction is only slightly higher than that of our stack.

Finally, this design ensures that the queue head is always found at the level-0 buffer. So, the read/modify

operations for the queue head can still be done at constant cost.

3.4.2 Associative Map

The circuits for associative maps are quite different since in this case we cannot rely on any locality of

access. Instead, here we amortize the cost whenever we have multiple (read or write) operations that can be

performed in a “batch”. The only constraint here is that none of the keys or values used in batched operations

may depend on the result of another operation in the same batch since this would lead to a cyclic circuit.

Many applications do have batchable sequences of array accesses, such as those that involve counting or

permuting of array elements (see Section 3.6 for examples). We start with the construction for performing

batch writes on an associative map, and then show how it can be tweaked to perform other operations. Here,

we define an associative map in a circuit as simply a collection of wires representing a set of key-value pairs

where the keys all have unique values. We support batched update and batched lookup operations; inserting

new values can be done simply by performing updates on non-existent keys.

The circuit for performing a batch of update operations is shown in Figure 3.9. The circuit takes in
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two sets of inputs: the old key-value pairs and a sequence of write operations. The write operations in the

sequence are themselves also represented as key-value pairs: the key to update and the new value to be

written. However, the sequence can have duplicate keys, and the order of writes among those with the same

key matters. The output of the circuit is simply the new key-value pairs for the map. The idea is inspired by

the set-intersection circuit used by Huang et al. [49]. We first perform a stable sort on all the key-value pairs,

which is then passed through a linear scan that marks for removal all but the latest value for each key. Finally,

another sort operation is performed, but this time with a different comparison function — this allows us to

collect together only the values not marked for removal.

The cost of this cicuit is just the cost of two sorting operations plus a simple linear scan in the middle.

Empirically, we found that it works best when the batch size is between approximately n and 2.5n, where n is

the number of key-value pairs in the map. If the batch size gets larger, we can split it up into smaller batches.

If the batch is too small, we can still use this method, but the amortized cost may be higher in that case.

The sort operations each require Θ(n logn) comparisons, and the linear scan requires Θ(n) operations.

So, the circuit size should be simply Θ(n logn)5, providing n operations each with an amortized cost of

Θ(logn). However, there is a problem. We need an oblivious sorting algorithm, where compare and swaps

are hardcoded in the circuit. But, the known efficient oblivious sorting algorithms [9, 42] are not stable —

they do not preserve the order of elements in input that compare equal. So to make the sorting stable, we

need to pad each element with extra wires feeding them with their sequence number in the input ordering,

so that even equal elements no longer compare equal during the sort. The downside of this is that we added

a Θ(logn) cost to our comparison functions, increasing our amortized cost to Θ(log2 n) per write operation.

Obviously, this is not necessary if, in our application, we know all the keys in the write are unique. In that

case the entire operation is reduced to the simple union operation for associative maps commonly found in

many programming languages.

It is now easy to see how this technique can be used to perform other operations. For example, if we

wanted to add to old values instead of overwriting them (e.g., if the values are integers), we just need to

replace the linear scan in the middle. Even better, since addition is commutative and associative, we do not

need a stable sort, allowing us to construct the complete circuit with just Θ(n logn) gates.

If we want to perform read operations, the input will be the map key-value pairs and keys to be read.

Assuming we have k keys to be read, they are all padded with sequential serial numbers 0, 1, . . . , k−1, which

will be used later in the final sorting operation to order the output wires. But for now, they are all sorted by

just the keys as before. The next step will now be filling in values for the requested keys, with a very similar

linear scan. Finally, a sorting step reorders the values and presents them in the order in which they were

requested (by comparing the extra serial numbers initially padded in), so that we know which output wire

corresponds to which requested key. All this requires Θ(n log2 n) logic gates.

In the case of automatic test-input generation, one special observation is that cyclic circuits are allowed

in its constraint sets (Section 3.2.2). So we can actually have circuits where some of the input keys or values

5As we note in Section 3.5, more popular Θ(n log2 n) algorithms actually perform faster for the small data sizes used in our evaluation
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depend on some of the output wires of the circuit. This allows us to represent arbitrary random array access

such as where one write depends on a previous read. In fact, it is quite easy to make small tweaks in the

structure described to make a single, unified (but more expensive) circuit that accepts an arbitrary mix of read

and write commands to be applied in sequence. Since each circuit can do n operations using just Θ(n log2 n)

gates, the amortized cost for each array access now becomes just Θ(log2 n).

3.5 Implementation

Figure 3.10 depicts the system we use to implement and evaluate our circuit structures. We start with a

program, which is then manually converted into the corresponding circuit generator. For this step, we use

a custom circuit component library written in Haskell that includes all our data structures (Figure 3.11).

This circuit generator is then executed to produce either a description of a secure computation protocol or

a SAT query for test-input generation. For secure computation, we generate circuits in the intermediate

representation designed by Melicher et al. [74]. For test-input generation, we generate standard DIMACS

queries that is accepted by nearly all SAT solvers. We used a fast and popular off-the-shelf solver called

Lingeling [12]. The following paragraphs describe various details of the implementation that efficiently

realize the designs presented in the previous section. Our implementation and code for all the data structures

presented here is available for download from http://mightbeevil.org/netlist/.

Multiplexing in Stacks and Queues. Since most of the data movement in the stack and queue circuits is

done by generating multiplexers, they are the most expensive parts of our circuit. Hence, we focused on

reducing the number of multiplexers needed.

Consider the conditional shift operations used to move data blocks between consecutive buffer levels.

Figure 3.12 (a) shows what happens when a shift occurs after a pop. Observe that the leftmost two data

blocks do not change regardless of whether shifting actually occurred or not. Thus, the input wires can just

pass through for these blocks without needing any muxers. We take advantage of similar opportunities for

the right shift needed after push operations (Figure 3.12 (b)), when the output is always a blank block.

This provides substantial benefits by itself, but also enables further reductions that take advantage of

knowing blocks are blank at circuit generation time. Figure 3.13 shows how we can reduce a wide multiplexer

Source Program

Custom Circuit

Structure Library

Rewritten

Program

Garbled 

Circuits

SAT

Solver

Execute

Figure 3.10: System for testing circuit efficiency.
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if (x != 0) {
    a[i] += 3;
    if (a[i] > 10) i++;
    a[i] = 5;
}

t = stk.top();

t += 3;

stk.condModifyTop (x != 0, t);

stk.condPush (x != 0 && t > 10, NULL);

stk.condModifyTop (x != 0, 5);

top stk

add t (constInt 3)

netNot =<< equal x (constInt 0)

condModTop xnz t stk

netAnd xnz =<< greaterThan t (constInt 10)

condPush c2 (constInt 0) stk

condModTop xnz (constInt 5) stk

t ←

t ←

xnz ←

stk ←

c2 ←

stk ←

stk ←

...

Figure 3.11: Steps needed to convert code to circuit. First we simply replace arrays with appropriate data
structures whenever possible (Section 3.4). Then everything is systematically replaced with library calls
for generating corresponding circuits e.g. ‘+’ becomes ‘add’. Our custom library automatically handles
everything internal to the data structure (e.g., condPush automatically decides if it also needs to perform an
internal shift etc.). Both these steps are currently done manually (and often combined into a single step).
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Figure 3.12: Removing muxes for shifting by determining outputs when generating circuits.
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Figure 3.13: Reducing multiplexers to a single AND gate if one input is known to be blank. If the “present”
flag associated with a data block is 0, then the value in the data wires is never used. So, if the blank option is
selected by the control bit c, we zero out just the present flag. Note that simple constant propagation would
have produced an AND gate for every output wire.

into a simple 1-bit AND gate if we know that one of the input data blocks is empty. In secure computation,

we have to be careful not to do this if the wires immediately lead to the final output, since this may reveal

extra information. Inside our stack and queue constructions, though, this is not a problem. Together, these

techniques produce about 28% improvement for the stack circuits, while a more modest 12% for the queue.

Sorting for Associative Maps. Our associative maps require keeping the elements in key-sorted order us-

ing a data-oblivious sorting algorithm — one where the order of comparison and exchange operations does

not depend on the actual values being sorted, since the circuits must be static. Standard sorting algorithms

(e.g., Quicksort) are not data-oblivious since the comparisons they do depend on the data. Goodrich’s data-

oblivious randomized Shellsort algorithm [42] requires Θ(n logn) compare and exchange operations. How-

ever, the classical algorithm of Batcher’s odd-even mergesort [9] produces smaller circuits when we have

fewer than about 300,000 elements6 in the array, even though the latter algorithm has Θ(n log2 n) complexity.

All the array sizes we use in our evaluation are small enough for Batcher’s algorithm, which is the one we

use.

We also take advantage of knowledge about which parts of the input are already known to be sorted. For

example, if the associative map is being used as an array, the old data elements (top-left of Figure 3.9) are

already sorted by their index. So, we only sort the command part, and then merge the two sorted parts in a

single merge operation. This reduces the overall cost of the batch operation by another 20%. Furthermore,

during array operations the keys associated with the old values are just sequential integers that are known at

compile time, so basic constant propagation provides another small speedup.

3.6 Evaluation

Our evaluation is divided into three parts: first, we compare the size of our three circuit structures with

the ones used in practice for various data lengths; next, we use them in garbled circuits and measure the

6The threshold apparently rises to 1.2 million elements when performing secure computation in the fully malicious model, since
using randomized Shellsort then requires an extra shuffle network. Thanks to abhi shelat for pointing this out.
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Figure 3.14: Stack/queue circuit size. The x-axis shows the maximum capacity of each data structure in
number of 16-bit elements. The y-axis is the number of gates.

protocol execution time; finally, we show improvements in test-input generation by automatically producing

an input that exposes a buffer overflow bug in an example function. For both secure computation and test-

input generation, we were able to obtain at least an order of magnitude speedup for large cases. All the timing

measurements were made on a desktop machine running Ubuntu 12.04 on an Intel i7 2600S CPU at 2.8 GHz

with 8 GB of memory.

3.6.1 Circuit Size Comparison

The graphs in Figure 3.14 show how the size of our stack and queue circuits scale with increasing data

sizes. We report the total number of binary logic gates used.7 The baseline structures that we compare

against are implemented using conventional circuits whose cost scales as Θ(n) for each operation. We made

simple optimizations to the baseline implementation to provide a fair comparison. For example, for the

first few operations of a stack, we know that the top of a stack can lie within a small range of indices, and

therefore require smaller multiplexers. The stack and queue circuits were generated using random push and

pop operations. As expected, the stack and the queue structures have very similar characteristics, and we

reduced circuit size by over 11 times for 512 elements. Thus, when converting programs to circuits, these

structures can easily replace arrays even for small sizes whenever the access pattern permits.

Figure 3.15 shows the benefits of our associative map construction. The baseline in the figure shows the

cost of a normal read access by using a multiplexer. We compare that against the size of a batch read circuit

on an integer-to-integer associative map. Our structures are worse than the baseline implementation for small

sizes, but become beneficial for modest sizes. For 1000-element arrays, our associative map design reduces
7The literature in secure computation often excludes XOR gates in circuit sizes since many protocols, including garbled circuits [61],

can be implemented in ways that enable XOR to be computed without any cryptographic operations or communication. While we do not
show separate graphs plotting only non-XOR binary gates, we note that they show very similar trends — the y-axes simply gets scaled
across the board by a factor of approximately one-third.
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Figure 3.15: Batched read circuit size. Per-element cost of performing n read operations on an array of n
elements. Baseline uses a simple multiplexer, while the “batched” circuit uses an associative map. All maps
are integer-to-integer maps, values being 16-bit integers and keys (log2 n)-bit integers.

the circuit size by 3.2x. We performed similar experiments for write operations and integer add operations.

The trends are quite similar, although batched integer add has much smaller circuits since stable sorting is

not required (Section 3.4.2).

3.6.2 Secure Computation Using Garbled Circuits

Here we demonstrate how much speedup our circuit structures can provide in a garbled circuits protocol

execution. For this, we use two simple example programs that we executed in garbled circuits: a simple

statistical aggregation program, and a data clustering algorithm.

Histogram of Sums

Consider a scenario where companies want to aggregate financial data and generate a report that provides a

broad picture of the economy that all the companies can use to make better decisions. However, such data is

obviously considered sensitive, and nobody wants to reveal their data to a consortium member who might be

from a rival company. This is an example where secure multi-party computation was actually used in practice,

as described by Bogdanov et al. [15]. Instead of directly sending their data, they send out cryptographic shares

of the data to multiple servers which are then aggregated securely to form a report.

We consider one simple example of such an analysis: histogram generation. Suppose the numbers in the

actual data have each been divided into two additive shares A and B, such that the ith data element is simply

the sum A[i] +B[i]. All we want to do now is compute the frequency of each data element inside a secure

computation protocol so that no party learns the actual unaggregated data. The code is shown in Figure 3.16.

To execute this algorithm as a garbled circuits protocol, the code first needs to be converted into a circuit.

In our case, both the arrays are of equal length n. Once the loop is unrolled n times to be converted into a

circuit, it is easy to see that i values will all become constants that do not depend on input data. So the only
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Input: A[i] 1st share of i-th data item
Input: B[i] 2nd share of i-th data item
Output: H[d], frequency of d in data set

1: H← /0
2: for i← 1,n do
3: H[A[i]+B[i]]← 1+H[A[i]+B[i]]

Figure 3.16: A simple aggregation of data from secret shares for computing histograms. Output is a sim-
ple frequency distribution of the component-wise sums. All elements are 16-bit integers, with sums being
modulo-216.

Figure 3.17: Execution time for the histogram-of-sums protocol for financial data aggregation. All inputs are
16-bit numbers.

array access that will be slow is the one on line 3 — the sums are not known ahead of time and depend on

input values. Since we are performing addition on the elements of H, we can take advantage of our batch

element addition circuit here. The speedup we achieve just by making this one single change is shown in

Figure 3.17. For the largest test cases we tried (with n = 512), we reduced runtime from 1 minute 18 seconds

to just under 7 seconds — a 6.7x speedup.

DBSCAN Clustering

Clustering algorithms are often used to uncover new patterns in a given database. For instance, insurance

companies could perform clustering to find out how many demographic categories they have in their customer

base in order to offer insurance plans accordingly. While it is common for a single company to perform such

analyses on their own database, companies might sometimes want a more complete picture by collaborating

and running a clustering analysis on their combined databases. Directly sharing such data, however, may not

be desirable with rivals, or even possible because of their customer agreements. Thus, it would be desirable

to perform this over a secure computation protocol. Here we will show how our stack structure can help

construct efficient circuits for a popular such clustering algorithm, DBSCAN [25].

The input is simply an array of multi-dimensional data points. Some of its elements come from one
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Input: P: an array of data points
Input: minpts,radius
Output: cluster: cluster assignment for each point
Output: c: number of clusters

1: n← |P|
2: c← 0
3: s← emptyStack
4: cluster← [0,0, . . .]
5: for i← [1,n] do . (A)
6: if cluster[i] 6= 0 then
7: continue
8: V ← getNeighbors(i,P,minpts,radius)
9: if count(V )< minpts then

10: continue
11: c← c+1 . Start a new cluster
12: for j← [1,n] do
13: if V [ j] = true∧ cluster[ j] 6= 0 then
14: cluster[ j]← c
15: s.push( j)
16: while s 6= /0 do . (B)
17: k← s.pop()
18: V ← getNeighbors(k,P,minpts,radius)
19: if count(V )< minpts then
20: continue
21: for j← [1,n] do . (C)
22: if V [ j] = true∧ cluster[ j] 6= 0 then
23: cluster[ j]← c
24: s.push( j)

Figure 3.18: DBSCAN implementation.
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while c1 do
{loopBody1}
while c2 do
{loopBody2}ww�

selector← outerLoop
while selector 6= outerLoop∨ c1 do

if selector = outerLoop then
{loopBody1}

if c2 then
selector← innerLoop
{loopBody2}

else
selector← outerLoop

Figure 3.19: Flattening two nested loops into one. This produces smaller unrolled circuits if a strong bound
can be obtained for the total number of iterations of the inner loop.

party, while the rest from the other. The output is the number of clusters found, and optionally, the cluster

assignment of each data point (where cluster[i] = j iff the ith data point was assigned to cluster j). This

assignment could then either be directly revealed to the respective parties, or be used in further computation

(e.g. to calculate the size, centroid, or variance of each cluster).

The DBSCAN algorithm, shown in Figure 3.18, is a density-based clustering algorithm that runs a recur-

sive search through the input data set for regions of densely clustered points. If any input point p in the input

has at least minpts points within a distance of radius, all these points are assigned to the same cluster. The

code shown here proceeds in a depth-first search, and has execution time in Θ(n2). Efficiently converting it

into a circuit, however, poses a number of challenges, which we discuss next.

The first problem we face concerns loop unrolling. Lexically, we see that the code has loops nested up

to three levels deep (labelled in the figure as (A), (B) and (C)). Therefore, if we naı̈vely unroll it, the circuit

automatically becomes Θ(n3)-sized, even though we know only Θ(n2) iterations will actually be executed.

We know this because loop (B) will be skipped if loop (A) is currently at a point that has already been

assigned a cluster (this check occurs at line 6). So, we know that the body of loop (B) is executed at most

only n times total, even though it is nested inside another loop. To avoid generating n2 copies of this loop in

the unrolled circuit, we simply flatten the loops (A) and (B) as shown in Figure 3.19. This allows us to unroll

the flattened version just 2n times. The other loops (e.g., loop (C) or the one at line 12) were not flattened,

since we do not have such strong lower bounds on how often they are skipped. Generally, such flattening

tends to help only if the number of iterations taken by the inner loop can be substantially different for each

iteration of the outer loop, depending on the private inputs.

However, this comes at a small additional cost: the value of the variable i can no longer be determined at
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Figure 3.20: Execution time for DBSCAN clustering protocol over garbled circuits. Data size is in number
of data points, where each data point is simply an (x,y) pair of two 16-bit integers, and the distance metric
used is Manhattan distance.

the time of circuit generation. So, the array accesses at line 6 and line 8 will now be expensive, requiring full

multiplexers. This does not occur at the innermost loop levels, and the asymptotic complexity is therefore

unaffected. Most other array accesses in the program involve indices known at the time of circuit generation,

and are therefore trivially implemented (e.g., unrolled version of loop (C) will have constant values for j in

each copy of the loop body).

The only remaining trouble will be the stack push operation inside loop (C). Without the use of our stack

construction, there is no simple way of avoiding yet another Θ(n) complexity factor here. Simply substituting

a naive construction of the stack with our data structure reduces the complexity of the generated circuit from

Θ(n3) to Θ(n2 logn). The effect of this one simple change is shown in Figure 3.20. All other optimizations

are identical in the compared versions to isolate the impact of just using our stack circuit constructions. In

the case of 480 data points, the runtime drops from almost 10 hours to less than 1 hour.

3.6.3 Test Input Generation

To evaluate the impact of our structures on symbolic execution, we use the merging procedure of the merge

sort algorithm. A version of this code is shown in Figure 3.21. However, the code shown has a bug: in the

last loop, it uses the array elements without first checking if the index is already out of bounds. While the

bug is quite simple, most popular automated tools today have a hard time detecting this bug. This is because

of the well known path explosion problem, where the number of possible paths that can be taken through the

code is exponential in MAXSIZE. We tried using a state-of-the-art symbolic execution tool, KLEE [18], on this

example. However, it simply enumerates every single one of these paths, creating a new constraint set for

each of them. As a result, it never actually generates a path that exposes the bug.

Instead, we converted the entire computation into a circuit (which is the same as fully joining all the paths

together into a large constraint, as described in Section 3.3), and added constraints to let a SAT solver find an
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1 #define MAXSIZE 100

int merge (int ∗arr1, int ∗arr2, int n, int ∗dest) {
int i , j , k;

5 if (n > MAXSIZE) return −1;
for ( i = 1; i < n; ++i)

if (arr1[ i−1] > arr1[i ]) return −1;
for ( j = 1; j < n; ++j)

if (arr2[ j−1] > arr2[j ]) return −1;
10 i = j = 0;

for (k = 0; k < 2 ∗ n; ++k) {
if (arr1[ i ] < arr2[ j ]) dest[k] = arr1[ i ++];
else dest[k] = arr2[ j ++];
}

15 return 0;
}

int main() {
int a[MAXSIZE], b[MAXSIZE], dest[2∗MAXSIZE];

20 int n;
fromInput (a, b, &n);
merge (a, b, n, dest);
}

Figure 3.21: A C program fragment for the merge procedure of merge sort. It has a bug since it does not
check if i or j are already out of bounds in the last loop body.

Figure 3.22: Time taken to solve for an input that triggers a buffer overflow. The scale for the y-axis is
logarithmic. For the largest case, the speedup is over 30x.



CHAPTER 3. CIRCUIT STRUCTURES 50

input that exposes an out-of-bounds access. We solve the same problem through the SAT solver twice: in one

run we change the array access on lines 12 and 13 to use our stack structure, while in the other case we leave

it unchanged. The timing results are shown in Figure 3.22. The circuit structures reduce the time to find the

bug from over 3 hours to just 6 minutes when the array size is 200 elements.

In practice, programs often have buffer overflow errors like these that are not triggered unless the data

size is large and has a particular pattern of values. However, most complicated access patterns involving

such large arrays are considered impractical for symbolic execution systems in use today. Our example here

clearly shows the value in thinking of the constraint sets in terms of static circuits, and using that abstraction

to create more optimized queries.

Although in our experiments we manually wrote a program that generates queries for this particular func-

tion, we expect that this process can be more automated in future. At least for the common cases described

in Section 3.4, it should not be too hard for an automated tool to replace array uses with the stack and queue

structures that we describe here, obtaining the same speedups we show here.

3.7 Related Work

While we include cyclic circuits in our notion of static valued circuits, the special case of acyclic circuits

have been extensively studied in the past. Classical results from circuit complexity provides bounds for the

sizes of many interesting families of functions. Examples of such families include symmetric functions [57],

monotonic functions [5], and threshold functions [17]. Such functions tend to be too simple or restrictive for

our purposes. The result most relevant to our work is Pippenger and Fischer’s classical paper on oblivious

Turing machines [87], where they show how any Turing machine with sequential access to a tape can be

simulated in a combinatorial circuit of Θ(n logn) size where n is the number of steps to simulate. While a

sequential tape can be immediately used as a stack, it is not obvious how to extend their result to a FIFO

queue, which is why we do not use their circuit. Moreover, we optimize our designs to better suit our

application targets. For example, Pippenger and Fischer’s design needs to support only one general operation

— simulating a single Turing machine time step. This is far too general for our needs, and we generate much

less expensive specialized push and pop circuits.

Besides results for circuit complexity, the two application targets that we focus on in this chapter have

seen rapid improvements in speed in recent years. Below we summarize some of the important ideas that

made this possible, and how they relate to our work.

3.7.1 Secure Computation — Garbled Circuits

Much of the recent work enabling fast execution of garbled circuits actually work at the level of the underlying

protocol, and does not necessarily change the circuit being simulated. This includes the free XOR trick [61]

that almost eliminates the cost of executing XOR gates, garbled row reductions that reduce communication

overhead by 25% [83], and pipelined execution that overlaps the various phases of execution for scalability
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and reduced latency [50]. Since our techniques do not depend on any of the specifics of the underlying

protocol, they can be used in combination with all of these popular optimizations.

While traditionally most garbled circuit execution systems were considered practical only against an

honest-but-curious adversary, execution of billion gate circuits against a fully malicious adversary has also

been demonstrated recently by Kreuter et al. [63] by extensive use of parallelism. They used the cut-and-

choose technique outlined by Lindell and Pinkas [68] to make their execution resistant against malicious

parties. Another, more efficient, technique for fully secure execution of garbled circuits that have been

proposed recently by Huang et al. is based on dual execution of the protocol [51, 75]. Since our optimization

only impact the circuits, they can be used with any of these flavors of garbled circuit protocols.

Gordon et al. [45] recently demonstrated a hybrid secure computation protocol involving garbled circuits

and oblivious RAM that provides general random access to arrays in sublinear time. However, their protocol

still has a very high overhead due to the use of Oblivious RAM (ORAM) structures. Our purely circuit-based

solutions, on the other hand, are much faster whenever they are applicable. In terms of absolute performance,

the fastest they reported was about 9.5 seconds per element access, and that for an array of 218 elements.

Because of such high overheads, it was actually still faster to naively multiplex over the entire array unless

the array is big (in their implementation, they break-even at arrays of approximately 260,000 elements). Our

circuit-structures are orders of magnitude faster in the cases we can handle, and as shown in Section 3.6 we

breakeven for much smaller data sizes.

Finally, many of the recent frameworks and compilers such as Fairplay [73] and CMBC-GC [48] provide

ways to produce garbled circuit protocols starting from high-level programs. Although we have not focused

on automatic circuit compilation in this work, we hope that in future such tools will be able to automatically

detect which circuit structure is applicable a given situation. This would allow programmers to write code

naturally using standard data structures like arrays, but generate circuits that automatically implement array

accesses using appropriate less expensive data structures to achieve reasonable performance.

3.7.2 Symbolic Execution

The development of symbolic execution as a tool for static analysis has, in large part, been aided by the

concurrent improvements in constraint solvers. With modern constraint solvers, symbolic execution systems

such as KLEE [18] and EXE [19] are able analyze a program and solve for inputs that drive execution of the

given program along a certain path. We hope that our methods would make it easier for such tools to handle

far more complicated programs than they are currently able to.

More recent advances in this field mostly focused on improving scalability of these tools and on solving

the exponential path explosion problem. Path explosion is a notorious problem where the number of paths

to be explored is exponential in the number of branches along that path. Solutions recently proposed include

compositional methods and state merging. Compositional approaches (e.g., [4, 36, 38]) attempt to keep the

paths shorter by analyzing one function at a time and composing the results together later, often lazily. In

practice, however, state joining [46, 65] seems to provide better results where several paths are merged into
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one larger query the way we did here. Some researchers have also noted how this method can be seen as a

strict generalization of the compositional methods [65].

Something we did not delve into in this paper is how to determine loop bounds. Since current systems

require loops to be completely unrolled, tools need to establish a reasonable upper bound for how many

iterations of the loop should be explored. There has been a lot of recent work in this area, all of which com-

plements our work on arrays. For example, Obdržálek and Trtı́k [81] recently showed how integer recurrence

equations can sometimes be used to solve for an upper bound. Saxena et al. demonstrated how using input

grammar specification can sometimes help determine loop bounds [91]. Given how loops are often used

in conjunction with arrays, we believe our work will further broaden the scope of their techniques to more

complicated coding patterns.

3.8 Conclusion

We showed how a common set of ideas can be used to speed up common programming patterns in generic

secure computation and symbolic execution of programs, two previously unrelated applications. Both of

these applications depend on static circuits. We devised circuit structures that lead to large speedups for

several common data structures. Further, we demonstrated how slow array access operations in programs

can often be replaced by more specialized data structures like stack, queue, and associative map, achieving

asymptotic improvements in runtime. We are optimistic that similar approaches can be taken with other data

structures to provide similar gains for a wide range of applications. Although our work focused on manual

implementation, we believe such transformations could be automated in many cases, and our results point to

future opportunities for automatically generating efficient static circuits for secure computation and symbolic

execution.



Chapter 4

Oblivious RAM8

4.1 Introduction

So far, in Chapter 3, we have only seen techniques for efficiently performing memory accesses when there

is a specific, known access pattern that we can take advantage of. For general random access, however, we

need to make use of Oblivious RAM (ORAM). The naı̈ve approach for hiding access location would be to

linearly scan the entire array. However, in native computation, such accesses take constant-time. To fill

this gap, researchers have investigated secure computation in the random access machine (RAM) model of

computation [26, 34, 45, 56, 70–72, 103, 108]. These suggest various methods for constructing ORAMs that

provide sub-linear access time while hiding access patterns.

ORAM protocols were originally proposed for a client-server setting where a client stores and manipulates

an array of length n on an untrusted server without revealing the data or access patterns to the server. Gordon

et al. adapted ORAM to the setting of secure computation [45], where parties collectively maintain a memory

abstraction that they can jointly access access, while hiding the access patterns from everyone. In essence,

the parties run a secure-computation protocol to store shares of the state of the underlying ORAM protocol,

and then use circuit-based secure computation to execute the ORAM algorithms.

Although there is a rich literature devoted to developing ORAM protocols with improved performance [13,

43, 44, 64, 85, 95, 96, 104], most of this literature focuses on optimizing performance in the client-server

setting, and most work on RAM-based secure computation (RAM-SC) uses existing ORAM protocols (to a

first approximation) as black boxes. We highlight, however, that there are a number of differences between

applications of ORAM in the two settings:

1. In the client-server setting the client owns the data and performs the accesses, so the privacy require-

ment is unilateral. In the RAM-SC setting none of the parties should be able to learn anything about

8This chapter is an adaptation of:
Samee Zahur, Xiao Wang, Mariana Raykova, Adrià Gascón, Jack Doerner, David Evans, Jonathan Katz. Revisiting Square-Root ORAM
Efficient Random Access in Multi-Party Computation. In 37th IEEE Symposium on Security and Privacy, 2016, San Jose.
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the data or access patterns.

2. In the client-server setting the client’s state should be sublinear in n or else the problem is trivial; for

RAM-SC, however, the linear state is stored across both parties.

3. In the client-server setting the most important metric is the total communication complexity. In the

RAM-SC setting other measures of efficiency become more important. Specifically, the algorithmic

complexity is important because the algorithms will be emulated using generic secure computation.

4. In the client-server setting, the initialization step (when the client outsources its data to the server) is

“free” because it is a local action on the part of the client. In the RAM-SC case, the parties must use a

distributed protocol for initialization and the cost of doing so may be prohibitive.

Existing work on ORAM has focused entirely on asymptotic performance; we are not aware of any prior

work whose aim is to improve performance for concrete values of n. Indeed, prior work in the RAM-SC

setting has found that a linear scan over the data (i.e., a trivial ORAM construction) outperforms more-

complicated ORAM constructions until n becomes quite large [45, 101, 102] (in practice, n is often small

even when the inputs are large since n may denote the length of a single array rather than the entire memory

being used by the computation, and each memory block may contain many individual data items). This

means that for practical sizes, the entire body of research on ORAM has had little impact as far as RAM-SC

is concerned.

Contributions. We re-visit the classical square-root ORAM of Goldreich and Ostrovsky [40], and propose a

number of modifications to that construction with the goal of obtaining an ORAM scheme suitable for secure

computation in the semi-honest setting:

1. In the original scheme, the client uses a hash function to compute the position map (i.e., the mapping

from semantic addresses to physical addresses). We replace this with a shared array storing the position

map explicitly. This is particularly beneficial when the underlying ORAM algorithms are computed

using generic circuit-based secure computation.

2. Because the position map is stored explicitly, initialization and reshuffling (expensive operations per-

formed sporadically) can be made much more efficient than in the original construction, as they can be

based upon Waksman shuffling networks [100] rather than oblivious sorting.

3. As observed in prior work [96] the position map is a constant factor smaller than the original memory

array. We use ORAMs recursively to enable oblivious access to the position map, and develop a number

of optimizations in order to obtain a secure and efficient protocol.

We implement and evaluate our construction (code available at http://oblivc.org/) and show that

for small-to-moderate values of n our scheme offers more efficient data access than Circuit ORAM [101]. In

fact, our scheme outperforms even the trivial ORAM (i.e., linear scan) for n as small as 8 (the exact crossover
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point depends on the block size used as well as the underlying network and processor). Our construction

also significantly outperforms prior work in terms of initialization time. To understand how the properties of

different applications impact ORAM performance, and demonstrate the general applicability of our design,

we implement and evaluate several benchmark application, including secure two-party computations of the

Gale-Shapley stable matching algorithm, breadth-first search, binary search, and the Scrypt hash function.

The resulting protocols are more efficient than prior approaches by an order of magnitude or more in some

cases.

4.2 Background

This section provides a brief introduction to oblivious RAM (ORAM) and RAM-based secure computation

(RAM-SC), and closely related protocols.

4.2.1 Oblivious RAM

Oblivious RAM provides a memory structure that hides access patterns [40]. An ORAM scheme consists

of two protocols: an initialization protocol that takes as input an array of elements, initializes a new obliv-

ious structure in memory; and an access protocol that implements each logical access to the ORAM with a

sequence of physical accesses to the underlying structure.

To be secure, an ORAM must satisfy two properties: 1) the physical access pattern of the initialization

protocol is indistinguishable when initializing different input arrays of the same size; 2) for any two sequences

of semantic accesses of the same length, the physical access patterns produced by the access protocol must be

indistinguishable. Note that it is always possible to implement a secure initialization protocol by performing

the access protocol iteratively on all input elements, and this is the approach taken by previous ORAM designs

used in RAM-SC. It can be, however, very inefficient to initialize the ORAM through repeated accesses.

Goldreich and Ostrovsky [40] introduced two ORAM constructions with a hierarchical layered structure:

the first, Square-Root ORAM, provides square root access complexity; the second, Hierarchical ORAM, re-

quires a logarithmic number of layers and has polylogarithmic access complexity. A recent series of ORAM

schemes, beginning with the work of Shi et al. [95], adopted a sequence of binary trees as the underlying

structure. While, asymptotically, the most bandwidth efficient ORAM constructions known use the hierarchi-

cal paradigm [64], tree-based ORAMs are considered more efficient for practical implementations especially

when used in MPC protocols. This is primarily because classical hierarchical constructions use hash func-

tions or pseudorandom functions (PRFs) to shuffle data in the oblivious memory. In an MPC context these

functions must be executed as secure computations with large circuits.
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4.2.2 RAM-Based Secure Computation

In traditional MPC, general input-dependent array access incurs a linear-time overhead since all elements

need to be touched to hide the position of interest. RAM-based secure computation (RAM-SC) combines

ORAMs with circuit-based MPC protocols, to enable secure random memory accesses [45]. In RAM-SC,

the bulk of the computation is still performed by a circuit-based protocol as in traditional MPC, but memory

accesses are performed using an ORAM that is implemented within the MPC protocol. For each access,

the circuit now emulates an ORAM access step to translate a secret logical location into multiple physical

locations that must be accessed. The physical locations are then revealed to the two parties, which pass the

requested elements back into the circuit for use in the oblivious computation. Finally, the circuit produces

new data elements to be written back to those physical positions, hiding which elements were modified and

how they were permuted. One such structure is maintained for each array that needs input-dependent general

random access.

Two-party RAM-SC was first implemented by Gordon et al. [45] with based on a tree-based ORAM

scheme proposed by Shi et al. [95]. Subsequent works [26, 34, 56, 103] presented improved protocols, all

based on tree-based ORAM constructions. Wang et al. [101] proposed Circuit ORAM, which yields the

best known circuit size both in terms of asymptotic behavior and concrete performance. In Section 4.5, we

provide performance comparisons between our new ORAM scheme and Circuit ORAM, showing orders of

magnitude improvement for access and initialization across a wide range of parameters and applications.

4.2.3 Variations

In addition to the RAM-SC model we focus on, there are other uses for ORAMs in secure computation

protocols. Some of the ORAM innovations produced in these settings have been applied to the RAM-SC

designs in Section 4.2.2. Although it is beyond the scope of this work, we believe our ORAM design may

likewise yield benefits in other contexts.

Gentry et al. [34] proposed several optimizations for tree-based ORAMs and considered briefly how to

build a HE-over-ORAM system. A system based on Path ORAM [96] was built in their subsequent work [35].

They showed a per-access time of 30 minutes for a database with 4 million 120-bit records, excluding the

cost of initialization.

Lu and Ostrovsky [72] designed an ORAM algorithm based on two non-colluding servers. When applied

to a two-party secure RAM computation setting, these servers become parties engaging in an MPC protocol.

Their construction achieves O(logN) overhead, but suffers from huge concrete costs because it requires

oblivious evaluation of Θ(logN) cryptographic operations per access, which is prohibitively expensive in an

MPC protocol.

Afshar et al. [3] discussed how to extend RAM-SC with malicious security, where both parties can arbi-

trarily deviate from the protocol. They proposed efficient consistency checks that avoid evaluating MAC in

circuits. In this chapter, we only consider semi-honest adversaries, and hope that future work will extend our
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protocol to be secure against malicious adversaries.

4.3 Revisiting Square-Root ORAM

In this section we revisit Goldreich and Ostrovsky’s square-root ORAM design [40] and adapt it to the RAM-

SC setting. Section 4.3.1 introduces notations used to describe ORAM algorithms; Section 4.3.2 provides

a brief description of the original scheme; Section 4.3.3 introduces a basic (but inefficient) construction by

making some key changes to the original scheme; Section 4.3.4 shows how to improve its efficiency with a

recursive construction which is our final design.

4.3.1 Notation

We use 〈x〉 to denote a variable x secretly shared by the two parties. In our garbled circuit implementation,

〈x〉 means the generator knows (k0,k1) and the evaluator knows kx. Since the actual value of x is not known

to either party, we interchangeably use the terms “private”, “garbled”, and “oblivious” to describe it.

The length of an array is always public, although padding can be used to hide its exact length when

necessary. An array containing private elements is denoted using angle brackets (e.g., 〈Array〉). We denote

the ith element of an array using a subscript (e.g., 〈Array〉i). The index may be oblivious (e.g., 〈Array〉〈i〉), in

which case the array access is performed via linear scan.

The structure blocks represents an array of block objects. Each block contains private data, block.〈data〉,
and a private record of its logical index, block.〈index〉. Thus, i is the physical index of blocksi, and blocksi.〈index〉
is the logical index of the same block. Neither changing the contents of a block nor moving it from one struc-

ture to another alters its logical index, unless explicitly noted.

In pseudocode, ordinary conditional statements will use the keyword if , while conditionals on secret

values will use 〈if〉. The bodies of secret conditionals are always executed, but the statements in them are

executed conditionally, becoming no-ops if the condition is false.

We use 〈a〉 $←− B to denote random choice of a secret element a from a public set B.

Figure 4.1 shows how the access algorithm for a naı̈ve linear scan ORAM is written in our notation. The

algorithm Access takes three parameters as inputs:

• Oram: the main data structure storing the payload.

• 〈i〉: the private, logical index of the block we want to access.

define Access(Oram,〈i〉,Φ):
for j from 0 to Oram.n−1:
〈if〉 〈i〉= j: Φ(Oram j)

Figure 4.1: Access algorithm for the linear scan ORAM.
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define Write(Oram,〈i〉,〈val〉):
define Φ(block):

block.〈data〉 ← 〈val〉
Access(Oram,〈i〉,Φ)

define Read(Oram,〈i〉):
〈val〉 ← ⊥
define Φ(block):
〈val〉 ← block.〈data〉

Access(Oram,〈i〉,Φ)
return 〈val〉

Figure 4.2: Read and write wrappers defined using Access()

• Φ(): a function that is invoked during access to read, write or modify the desired block.

The ORAM hides index 〈i〉 by performing a linear scan over all elements. Note that we use 〈if〉 for the

conditional, so the body of the conditional statement will actually be executed n times, although only one

will take effect. Both parties will see the garbled keys representing 〈val〉 or 〈data〉 change n times inside Φ();

they just won’t know if the associated plaintext has also changed, since that depends on secret index 〈i〉.
Users will not typically use ORAMs by directly invoking Access, but by using the wrapper functions

shown in Figure 4.2. These wrappers are exactly the same across all ORAM constructions we consider; the

essential logic is in Access.

4.3.2 Square-Root ORAM

Figure 4.3a shows the original square-root ORAM proposed by Goldreich and Ostrovsky [40]. The ORAM

structure consists of following components:

1. Shuffle: an array of blocks, also referred to as “permuted memory” in the original paper.

2. Stash: an array of blocks, termed the “shelter” in the original paper.

3. π: a pseudorandom function (PRF) mapping indices to random strings. Note that π needs to be evalu-

ated securely using MPC protocols, which is why previous RAM-SC designs dismissed the square-root

ORAM construction.

To initialize an ORAM from an array of blocks, we first append
√

n dummy blocks to the input array and

obliviously permute all n+
√

n blocks according to the pseudorandom permutation π(i). Once the blocks are

shuffled, their physical locations and semantic indices are uncorrelated, and so each block may be accessed

once (and only once) without revealing anything about the access pattern. But, if a location in the shuffled

array is accessed multiple times that would leak information, revealing that the access sequence contains a

repeated access.
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define Initialize(blocks,T )

n← |blocks|

〈π〉 ← pseudorandom function

append
√

n dummy blocks to Shuffle

Shuffle← ObliviousSort(blocks,〈π〉)
Oram← (n, t← 0,T,〈π〉,Shuffle,Stash←∅)

return Oram

define Access(Oram,〈i〉,Φ)

〈found〉 ← false
for j from 0 to Oram.t:

〈if〉 Oram.Stash j.〈index〉= 〈i〉:
〈found〉 ← true
Φ(Oram.Stash j)

〈if〉〈found〉 :

〈k〉 ←Oram.n+Oram.t

〈else〉 : 〈k〉 ← 〈i〉

p← reveal(π(〈k〉))

〈if〉 not 〈found〉 :

Φ(Oram.Shufflep)

append Oram.Shufflep to Oram.Stash

Oram.Shufflep← dummy

Oram.t←Oram.t +1

if Oram.t = Oram.T :

blocks← real blocks in

Oram.Shuffle∪Oram.Stash

Oram← Initialize(blocks,Oram.T )

(a) The original square-root ORAM scheme [40]

define Initialize(blocks,T )

n← |blocks|

〈π〉 ← random permutation on n elements

Shuffle← ObliviousPermute(blocks,〈π〉)
Oram← (n, t← 0,T,〈π〉,Shuffle,

Used←∅ ,Stash←∅)

return Oram

define Access(Oram,〈i〉,Φ)

〈found〉 ← false
for j from 0 to Oram.t:

〈if〉 Oram.Stash j.〈index〉= 〈i〉:
〈found〉 ← true
Φ(Oram.Stash j)

〈if〉〈found〉 :

〈p〉 $←− {0, . . . ,(Oram.n−1)}\Oram.Used

〈else〉 : 〈p〉 ←Oram.〈π〉〈i〉

p← reveal(〈p〉)

〈if〉 not 〈found〉 :

Φ(Oram.Shufflep)

append Oram.Shufflep to Oram.Stash

Oram.Used←Oram.Used∪{p}

Oram.t←Oram.t +1

if Oram.t = Oram.T :

for j from 0 to |Oram.Used|−1:

p′←Oram.Used j

Oram.Shufflep′ ←Oram.Stash j

Oram← Initialize(Oram.Shuffle,Oram.T )

(b) Our basic square-root ORAM scheme.

Figure 4.3
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To access logical index 〈i〉, we first linear scan the blocks in Stash. If the block is not found, we compute

its physical location, 〈p〉 ← π(〈i〉); otherwise, we find the physical location of the next unaccessed dummy

blocks, 〈p〉 ← π(n+Oram.t). The value 〈p〉 is then revealed to both parties, but leaks no information about

the logical index. The block at the physical location referred to by p is accessed, by doing a binary search

over the π(i) values, and moved to Stash.

After T accesses have been performed, we obliviously remove all dummy blocks in Oram.Stash and

Oram.Shuffle and re-initialize the whole structure. The complete protocol is shown in pseudocode in Fig-

ure 4.3a. In Goldreich and Ostrovsky’s original protocol, Oram.T is set to
√

n, resulting in O(
√

n log2 n)

amortized cost per access.

The original scheme was not designed for a RAM-SC setting, and suffers from two key problems that

make it very expensive to implement in an MPC:

1. It evaluates the PRF π(x) for each access; in the initialization algorithm, n+
√

n evaluations of π(i)

are needed. This is inefficient, especially in MPC protocols since evaluating each PRF requires tens of

thousands of gates.

2. It requires a Θ(n log2 n) oblivious sort on the data blocks in two different places: to shuffle data blocks

according to the PRF results, and to remove dummy blocks before initialization.

Next, we discuss how to adapt the scheme for efficient use in RAM-SC by eliminating these problems.

4.3.3 Basic Construction

Figure 4.3b presents our basic construction, a step towards our final scheme. The construction is similar to

the original scheme, with a key difference: instead of using PRF to generate a random permutation, it stores

the permutation π explicitly as a private array. This enables several performance improvements:

1. Storing the permutation π as a private array enables us to replace oblivious sorting during the initial-

ization with a faster oblivious permutation. In addition, the value p revealed during the access refers to

the real location, which avoids using binary search to find the location for p. Section 4.3.4 shows how

to recursively implement π for better efficiency.

2. We eliminate the need of dummy blocks. When a dummy access is needed, we instead access a random

location for real blocks that is not accessed before and append the block to the Stash.

3. By using a public set Used, we avoid the oblivious sorting needed when moving blocks from the Stash

to Shuffle. This is efficient since Used is maintained in the clear and is secure because all elements in

Used have already been revealed.

Security. Assuming the MPC protocol itself is secure and does not leak any information about oblivious

variables, this protocol satisfies the ORAM requirement that no information is revealed about the logical
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access pattern. On each access, a uniform unused element from Shuffle is selected, regardless of the semantic

index requested. Subsequently, the entire Stash is always scanned. Finally, the entire structure is reshuffled

at a fixed interval, in a manner independent of the access pattern. The only values revealed are the permuted

physical indices p; the set Used, which contains no information about the semantic indices; and the counter

t, which increments deterministically.

Asymptotic cost. Now we analyze the average cost of accessing a block in this basic scheme. We represent

the combined cost of accessing 〈π〉 and Used as c(n), some value that only depends on the number of blocks,

n, but not block size. We use B to denote the cost of accessing a single block (this could be bandwidth,

time, or energy cost). The augmented cost, B′ = B+Θ(log2 n), includes the additional cost of accessing the

metadata containing the block’s logical index. For an ORAM of size n, each logical index requires log2 n bits,

so it incurs Θ(log2 n) cost to retrieve or compare an index.

Since our construction is a periodic algorithm that performs a shuffle every T accesses, we obtain the

amortized per-access cost by computing the average over T accesses. This is the cost of the shuffle plus the

cost of B′ for each block touched thereafter until the next shuffle.

The cost of shuffling is approximately B′W (n) using a Waksman network [100]. Here, W (n) = n log2 n−
n+ 1 is the number of oblivious swaps required to permute n elements. On each access, the entire Stash,

comprising t blocks, must be scanned. Thus, the total cost of the T accesses and one shuffle which constitutes

a full cycle is given by

B′W (n)+
T

∑
t=1

(
B′t + c(n)

)
≤ B′n log2 n+

1
2

B′T (T +1)+T c(n)

= T
(

1
T

B′n log2 n+
1
2

B′(T +1)+ c(n)
)

= T F(n)

where F(n) is the amortized per-access cost we are after.

If reshuffle period T = Θ(
√

n log2 n), the asymptotic cost is F(n) = Θ(B′
√

n log2 n), assuming the block

size is large enough to make c(n) negligible compared to B.

Concrete cost. This design is less expensive than linear scan, even for reasonably small block sizes and

for block counts as low as four. With linear scan, the cost is nB per access, ignoring smaller terms that are

independent of B. With four blocks, the cost of a linear scan is 4B. Using a shuffling period of T = 3, we get

a cost of B(W (4)+ 1+ 2+ 3) = 11B for three accesses, again ignoring smaller terms that are independent

of B. This is slightly better than the linear scan cost for three accesses, 3×4B = 12B. Thus, for four blocks

of a large enough size, the simplified one-level square-root ORAM is less expensive than a linear scan, even

after accounting for the cost of initialization. However, in the case of small blocks, the terms independent of

B (which we have ignored) become significant enough that linear scan has a slight advantage.
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define Initialize(blocks)
n← |blocks|
〈π〉 ← random permutation on n elements
Shuffle← ObliviousPermute(blocks,〈π〉)
T ← d

√
W (n)e

Oram1← InitializePosMap(〈π〉,1,T )
Oram0← (n, t← 0,T,Oram1,Shuffle,

Used←∅,Stash←∅)
return Oram0

define Access(Oram0,〈i〉,Φ,)
〈found〉 ← false
for j from 0 to Oram.t:
〈if〉 Oram0.Stash j.〈index〉= 〈i〉:
〈found〉 ← true
Φ(Oram0.Stash j)

p← GetPos(Oram0.Oram1,〈i〉,〈found〉)
〈if〉 not 〈found〉:

Φ(Oram0.Shufflep)
append Oram0.Shufflep to Oram0.Stash
Oram0.Used← Oram0.Used∪{p}
Oram0.t← Oram0.t +1
if Oram0.t = Oram0.T :

for j from 0 to Oram0.T −1:
p′← Oram.Used j
Oram0.Shufflep′ ← Oram0.Stash j

Oram0← Initialize(Oram0.Shuffle)

Figure 4.4: Our recursive square-root ORAM scheme. W (n) is the number of swaps needed in a n-sized
Waksman permutation network.

In our experiments, we observed the square-root scheme to be more efficient in terms of bandwidth for

four blocks of just 36 bytes each (see Section 4.5.2 for details). For larger block sizes, we found that the cost

ratio reaches 11 : 12, as expected.

4.3.4 Scalable Construction

So far, we have not discussed how to implement the structure 〈π〉more efficiently than linear scan, aside from

claiming that its costs do not depend on the block size. For small values of n, linear scan is good enough, as

in the four-block example above. At this size, π comprises just four records of two secret bits each. However,

for larger values of n, it may seem natural to build these structures upon recursive ORAMs of decreasing size.

As we discuss next, however, this method is unacceptably costly. Our solution is to specialize the structure

for position maps.

The position map structure, 〈π〉, is common to most existing tree-based constructions [95, 96, 101]. It

is usually implemented atop recursive ORAMs of decreasing size, each level packing multiple indices of the

previous into a single block, and the whole thing is updated incrementally as elements of the main ORAM

are accessed. In these constructions, each ORAM lookup requires a single corresponding lookup in each

recursive position maps. However, in our scheme, a naı̈ve recursive structure for 〈π〉 would require n+T

position lookups for every T accesses to the main ORAM (where T is the number of accesses between

shuffles) since each of the T main accesses would require an access to the position map, and additional n

accesses would be required to store the regenerated permutation π ′ when the ORAM is shuffled.
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define InitializePosMap(〈π〉,k,T )
n← |〈π〉|
if n/pack≤ T :〈

Used0···(n−1)
〉
← (false, . . . , false)

Oramk← (n, t← 0,T,〈π〉,〈Used〉)
else:

for i ∈ {0 . . .dn/packe−1}:
〈data〉 ← (〈π〉pack·i, . . . ,〈π〉pack·(i+1)−1)

blocksi← (〈data〉,〈index〉 ← i)
〈π ′〉 ← random permutation on dn/packe elements
Shuffle← ObliviousPermute(blocks,〈π ′〉)
Oramk+1← InitializePosMap(〈π ′〉,k+1,T )
Oramk← (n, t← 0,T,Oramk+1,Shuffle,

Stash←∅)
return Oramk

define GetPosBase(Oramk,〈i〉,〈fake〉)
〈p〉 ← ⊥
〈done〉 ← false
for j from 0 to (Oramk.n−1):
〈s1〉 ← (not 〈fake〉 and 〈i〉= j)
〈s2〉 ←

(
〈fake〉 and not Oramk.〈Used〉 j

and not 〈done〉
)

〈if〉 〈s1〉 or 〈s2〉:
〈p〉 ←

〈
π j
〉

Oramk.〈Used〉 j← true
〈done〉 ← true

p← reveal(〈p〉)
return p

define GetPos(Oramk,〈i〉,〈fake〉)
if Oramk.n/pack≤ Oramk.T :

p← GetPosBase(Oramk,〈i〉,〈fake〉)
else:
〈found〉 ← false
〈h〉 ← 〈i〉/pack
〈l〉 ← (〈i〉 mod pack)
for j from 0 to Oramk.t−1:
〈if〉 Oramk.Stash j.〈index〉= 〈h〉:
〈found〉 ← true
block← Oramk.Stash j
〈p〉 ← block.〈data〉〈l〉

p′← GetPos(Oramk+1,〈h〉,〈fake〉 or 〈found〉)
append Oramk.Shufflep′ to Oramk.Stash
Oramk.t← Oramk.t +1
〈if〉 〈fake〉 or not 〈found〉:

block← Oramk.Stash(Oramk.t−1)

〈p〉 ← block.〈data〉〈l〉
p← reveal(〈p〉)

return p

Figure 4.5: Implementation of the recursive position map.

This is a serious problem: each level of the recursive structure would need to store pack indices of the

previous level in a single block, which would be traversed by linear scan. Thus, each subsequent level

decreases in element count by a factor of pack, but all levels require pack time to linear scan the relevant

block. We can multiply by (n+T )/T to amortize the cost over T accesses, where T =
√

n log2 n, the shuffle

period (as computed in Section 4.3.3). If the amortized cost per access to level i of this map is ci(n), we have:

ci(n)≥
n+T

T
(ci+1(n/pack)+pack)

≥ n√
n log2 n

ci+1(n/pack)

≥
√

n
log2 n

ci+1(n/pack).



CHAPTER 4. OBLIVIOUS RAM 64

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4

0 1 2

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4

0 Data Block with
logical index 0 1

2 3 Mapping Block with
logical index 1, referencing
physical indices 2 and 3

Stash (empty)

Legend

(a) Physical layout before shuffling

0 1 23 4 5 6789

1 34

0 1 2

9 1 8 72 0

2 0 4 3 1

2
4 5

0
3 6

(b) Physical layout after shuffling

0 1 23 4 5 6789

1 34

0 1 2

9 1 8 72 0

2 0 4 3 1

2
4 5

0
3 6

1

2

3

5

6

4

(c) Temporal control flow for all requests

2

0 1 23 4 5 6789

1 34

0 1

9 1 8 72 0

2 0 4 3 1

2
4 5

0
3 6

4
2 0

8

Legend

Real request �ow Fake request �ow
Movement of data
from Shu� to Stash

4=⌊8/2⌋

2=⌊8/4⌋

8

(d) First request: logical index 8

1

43
8 7

8 0 1 23 4 5 679

1 3

0

9 1 8 7

2 0 4 3

2
4 5

0
3 62 0

9

4=⌊9/2⌋

random

9

(e) Second request: logical index 9

3
8 7

0 1 23 4 5 67

1

0

9 1

2 0

2
4 5

0
3 6

4
2 0

89

0
3 6

0

random

8

(f) Third request: logical index 8

Figure 4.6: Illustration of data flow for one full cycle of an example ORAM. In subfigures (d), (e), and (f) we
present the logical dependencies for three sequential accesses.

This is a super-polynomial function with Θ(logn) levels of recursion, which is unacceptable for our efficiency

goals. Fixing this involves three changes to our basic construction.

The first change is to take advantage of our ability to initialize quickly from an oblivious array. On each

shuffle, we regenerate π , and, instead of writing it into the recursive structure element by element, we re-

initialize the recursive structure using π ′ as the seed data. This eliminates the extra n accesses to the position

map on each cycle.

Second, we lock all levels of the recursive structure to the same shuffle period, T =
√

n log2 n, where

n is the number of blocks in the main ORAM (the level that contains the original data). We terminate the

recursion at the first level with fewer than T blocks, and access this final level using linear scan. Using this

arrangement, we can initialize the entire ORAM in Θ(Bn logn) bandwidth and time.

This second modification has a downside. All levels of the recursive ORAM shuffle in synchronization
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with one another, based on a shuffle period determined by the largest level. This shuffle period will be

significantly suboptimal for levels with fewer blocks. We pay a time and bandwidth cost of Θ(T ) at each level

of the ORAM (for linearly scanning the Θ(T ) blocks in each level’s Stash). An ORAM instantiated with n

elements will have logn levels, which brings the cost per access to Θ(T logn) = Θ(
√

n log3 n). However, the

linear scan overhead incurred by using a global shuffling period is compensated for by gains in the efficiency

of Used which it enables.

Constructing an efficient mechanism for keeping track of used and unused physical blocks poses a chal-

lenge. Used contains inherently public data — both parties are aware which physical locations in Shuffle

have already been accessed — yet, they must obliviously check whether it contains a secret logical index

〈p〉. Moreover, they must be able to sample a secret, uniform element from S = {0, . . . ,n− 1} \Used. The

simplest method would be to sample an integer from {0, . . . , |S|−1} and then obliviously map it to the set S,

an expensive operation.

The third change removes the need to obliviously check Used for secret index 〈p〉. Instead of using an

explicit data structure, our choice of a global shuffle period allows us to implicitly represent a superset of

Used in the recursive structure 〈π〉, by tracking which blocks the smallest recursive level have been used. We

use the notation Oramk.Stash, Oramk.Shuffle, and Oramk.Used to represent the corresponding structures in

recursive ORAM at level k. Oram0 is the main ORAM that holds the data blocks; Oram1 is the top level of

the position map 〈π〉; Oram2 and so on indicate deeper levels of the recursive position map structure.

We maintain the invariant that if a block has already been moved from Oramn.Shuffle to Oramn.Stash,

the corresponding block in Oramn+1 has also been moved from Oramn+1.Shuffle to Oramn+1.Stash. The

converse is not necessarily true: it is possible for Oramn+1.Stash to contain blocks that map to unaccessed

blocks in Oramn. This can happen, for example, if logical block i of Oram0 has been accessed and block

i+1 has not, but mapping information for both blocks resides in the same block of Oram1.

Randomly sampling an unused block with this construction is simple. At the smallest level the blocks are

linearly scanned, so we just pick the first unused element. This is guaranteed to point to a random unused

position. At the next recursive level, we can use any element in the block referred to by the index from the first

level, since they are all random and unused. The process continues to ripple upward until an unused block in

the required ORAM level has been selected. This method excludes from the set to be randomly sampled any

block referred to by a block that has been accessed at a lower level. Nonetheless, blocks sampled randomly

remain indistinguishable from genuine accesses, as, for each top level access, exactly one unused block is

accessed at each lower level.

The final construction is presented in Figures 4.4 and 4.5, and the life-cycle of the ORAM is illustrated in

Figure 4.6.
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4.4 Techniques and Optimizations

This section presents some of the lower-level techniques used in our implementation.

Shuffling. We employ a Waksman network [100] for shuffling. The network executes many oblivious swap

operations, each controlled by a secret bit determined by the permutation π . Let B be the number of bytes

transferred when obliviously swapping two blocks of data. Since a Waksman network for shuffling requires

W (n) = n log2 n−n+1 swap operations, it is expected that the two parties will transfer BW (n) bytes during

a shuffle, excluding the secret control bits.

The control bits pose a problem: neither party can learn anything about the randomly sampled permutation

π , but we do not know an efficient oblivious algorithm for computing the corresponding control bits. To solve

this problem, we perform two shuffles: the parties locally a pick secret permutation each and compute their

corresponding control bits in the clear. Each party’s local permutation constitutes its share in the final secret

permutation π , which is the composition of the two permutations. So long as at least one party behaves

honestly, the result is a uniformly random permutation, discoverable to neither. They can jointly shuffle the

data by running two consecutive shuffling networks, one for each permutation.

Performing a shuffle in this way is quite inexpensive. The bandwidth cost of 2W (n) swaps is comparable

to W (n) AND gates, using the oblivious shuffle design from Huang et al. [49] and half-gates technique from

Zahur et al. [109]. However, each time we perform a shuffle, we incur the latency of a network round-trip,

since the evaluator retrieves new garbled labels for control bits via oblivious transfer extension [7].

Computing the permutation. Whenever the data in Shuffle is shuffled, we must reinitialize the recursive

position map so that it contains the new secret permutation, π . The first time we perform a shuffle obliviously

computing π is straightforward. Because the shuffle was performed with the composition of two Waksman

networks as described previously, we can run the same network backwards using (0, . . . ,n− 1) as inputs to

obtain π .

On subsequent shuffles, the process becomes complicated. The blocks in Shuffle are no longer in logical

order because they have previously been shuffled and moved from Shuffle to Stash and back. Obtaining the

permutation by the same method as above would require us to run both shuffles (four Waksman networks

in total) in reverse, along with any other swaps that may have happened due to ordinary ORAM access.

Each additional shuffle requires two more Waksman networks, and the number continues to increase without

bound.

Instead, we augment each data block with a secret record of its logical index. When the blocks are shuf-

fled, the logical indices are shuffled with them through the Waksman networks, and these indices comprise

π−1, the mapping from physical to logical index. To find π , the mapping from logical to physical, we simply

invert π−1.

To invert π−1 efficiently without allowing either party to learn anything about it, we adopt a technique

from Damgård et al. [21]. The first party (Alice) locally samples a new random permutation πa and computes

the corresponding Waksman control bits. This is then used to jointly permute the elements of the secret



CHAPTER 4. OBLIVIOUS RAM 67

permutation π−1, producing π−1 ·πa = πb. Next, πb is revealed to the second party, Bob (but not to Alice).

Bob does not learn anything about π−1 because it is masked by πa. Bob now locally computes π
−1
b , and the

two parties jointly execute another Waksman network to compute πa ·π−1
b = π .

4.5 Evaluation

To evaluate our design, we implemented our Square-Root ORAM design and Circuit ORAM, the best-

performing previous ORAM design, using the same state-of-the-art MPC frameworks, and measured their

performance on a set of microbenchmarks. We also wanted to understand the impact of different ORAM

designs on application performance, and how close we are to enabling general-purpose MPC. To this end, we

implemented several application benchmarks representing a wide range of memory behaviors and evaluated

their performance with different ORAM designs.

4.5.1 Experimental Setup

We implemented and benchmarked RAM-SC protocols based on our ORAM as well as Circuit ORAM, using

the Obliv-C [108] framework executing a Yao’s garbled circuit protocol. Obliv-C provides a C-like language

interface, and it incorporates many recent optimizations [10, 50, 109].

All code was compiled using gcc version 4.8.4, with the -O3 flag enabled. Unless otherwise specified, all

reported times are wall-clock time for the entire protocol execution. Our benchmarks were performed with

commercially available computing resources from Amazon Elastic Compute Cloud (EC2). We used compute-

optimized instances of type C4.2xlarge running Amazon’s distribution of Ubuntu 14.04 (64 bit). These notes

provide four physical cores (capable of executing eight simultaneous threads in total), partitioned from an

Intel Xeon E5-2666 v3, and 15 GiB of memory Our benchmarks are all single-threaded and cannot saturate

the processing power available. We selected C4.2xlarge nodes on the basis of the greater bandwidth and

memory they offer. Each benchmark was executed between two separate nodes within the same datacenter.

We used iperf to measure the inter-node bandwidth, and found it to be about 1.03 Gbps.

In addition to square-root ORAM, we benchmarked a simple linear scan and an implementation of Circuit

ORAM, the best previously reported ORAM construction for MPC. Our implementation of Circuit ORAM

is much more efficient than the original implementation described in Wang et al. [101]. For example, while

executing benchmarks on an Amazon C4.8xlarge EC2 instance for an ORAM of one million 32-bit blocks,

they reported an access time of two seconds. On a less powerful, more bandwidth-constrained C4.2xlarge

EC2 instance, our implementation requires only 0.16 seconds per access for an ORAM with the same param-

eters. This reduction by a factor of roughly twelve is mostly due to the efficiency advantages of the Obliv-C

framework over the ObliVM [71] framework used by Wang et al.’s implementation. For all performance re-

ported in the following, we let Circuit ORAM and square-root ORAM pack 8 entries in each recursive level.

Circuit ORAM stops recursion when there are fewer than 28 entries.
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Figure 4.7: Per-access cost crossover points between ORAM schemes. Below the green line, linear scan is
most efficient. Above the red line, Circuit ORAM is most efficient. Between the two, Square-Root ORAM is
most efficient.

4.5.2 Microbenchmarks

We performed several microbenchmarks to assess the granular performance of different ORAM designs. We

observed single-access execution time for block counts varying from 4 to 1024 and block sizes varying from 4

to 1024 bytes. This is the region of parameter space where the efficiencies of Square-Root ORAM and linear

scan overlap. Figure 4.7 shows the efficiency crossover points derived from this data, ignoring initialization

cost. Due to the nature of the Square-Root ORAM algorithm, each access is more expensive than the previous

one, until a shuffle occurs and resets the cycle. To ensure our averages truly are representative, we collected

a number of samples for each ORAM configuration equal to a multiple the shuffle period that is greater than

thirty, except in the case of linear scan, for which exactly thirty samples were collected.

Breakeven points. Linear scan is preferred to Square-Root ORAM only for very small numbers of blocks.

Circuit ORAM is orders of magnitude more expensive for similar parameters, due to its high fixed access

cost. Our Square-Root ORAM implementation achieves a very low break-even point with linear scan. When

using 4096 or fewer blocks, Circuit ORAM never wins over. And at a block size of 4 bytes, Circuit ORAM

remains a suboptimal choice until we have more than 500,000 blocks. But that, in turn, increases initialization

cost.

Comparison to Circuit ORAM. In comparing our Square-Root ORAM scheme to Circuit ORAM, we con-

sider initialization and access costs separately since the number of accesses per initialization will vary across

applications. Figure 4.8 shows the per-access wall-clock time for both designs, as well as for linear scan,

ignoring initialization.

As expected, Circuit ORAM has the best asymptotic performance, but it also has a very high fixed cost per

access, independent of the number of blocks. As a result, Square-Root ORAM performs better than Circuit
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Figure 4.8: Cost per access omitting initialization. Solid lines are for block size of 16 bytes, dashed lines are
for block size of 32 bytes. We collected a number of samples for each ORAM configuration equal to a multiple of the
Square-Root ORAM shuffle period that is greater than thirty, except in the case of linear scan, for which exactly thirty
samples were collected.

ORAM for all block counts up to 216, even ignoring initialization costs. In fact, for block counts less than ˜211

linear scan also outperforms Circuit ORAM. These results are consistent with our analysis in Section 4.3.4

that Square-Root ORAM has worse asymptotic behavior, but smaller hidden constants.

For any application where the number of accesses is not significantly larger than the number of blocks in

the ORAM, initialization cost must be considered. Figure 4.9 shows the initialization wall-clock times for

Square-Root and Circuit ORAM, with parameters matching those in our access-time comparison. For this

benchmark, we assume each ORAM must be populated using data already stored in an array of oblivious

variables. In such a scenario, a linear scan ORAM requires only that the data be copied; the reported linear

scan initialization speed is therefore equivalent to the time required to copy the data.

Initializing Square-Root ORAM is approximately 100 times faster than initializing Circuit ORAM, re-

gardless of block count or block size. The standard way to populate Circuit ORAM is to insert each data

element individually, using standard ORAM access operations; thus, the cost scales linearly with the number

of blocks to be populated. We hypothesize that most of this speed improvement comes from having fewer

network round trips in our initialization process. Circuit ORAM therefore requires Θ(N logN) round trips for

initialization, while our scheme requires only Θ(logN).

4.5.3 Oblivious Binary Search

Unlike our other application benchmarks, binary search performs very few accesses relative to the ORAM

size. An equivalent search can be performed using a single linear scan, and if only one search is to be per-

formed, the linear scan is always more efficient. Consequently, we varied the number of searches performed

for this benchmark, rather than the block size or block count. We benchmarked binary search using a block
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Figure 4.9: Cost of initialization. Solid lines are for block size of 16 bytes, dashed lines are for block size of 32 bytes.

size of 16 bytes and element counts of 210 and 215. For arrays of 210 elements, we averaged the running time

over 30 samples, and for 215 elements we use 3 samples. A few representative combinations for 215 elements

are reported in Table 4.1.

Initialization dominates execution time unless many searches are performed on the same data. As a result,

Square-Root ORAM is more than two orders of magnitude better than Circuit ORAM when only one search

is performed. For searches of 210 elements, the linear scan method is more efficient than a binary search

regardless of the ORAM type or the number of searches performed. Linear scan is initially faster for searches

of 215 elements as well, but Square-Root ORAM becomes more efficient than the linear scan method at 25

searches. Accesses to a Circuit ORAM of 215 elements are more expensive than accesses to a Square-Root

ORAM of the same size, so at this array size, Circuit ORAM will never be more efficient regardless of the

number of searches performed.

4.5.4 Oblivious Breadth-First Search

Natively-oblivious formulations of Breadth-First Search (BFS) and other graph algorithms have been ex-

plored in the past [14]; however, we use a variant of the standard algorithm optimized for use in an oblivious

context. It has complexity in Θ((V +E)CAccess), where CAccess is the complexity of accessing an element in

the underlying ORAM construction. We allow our ORAM implementations to apply arbitrary functions to

modify the blocks they access, as opposed to the simple read and write functions shown in Figure 4.2. This

reduces the total number of ORAM accesses by, for example, permitting combined read and update opera-

tions. Rather than use an ORAM to house the queue, we use the oblivious queue data structure from Zahur

and Evans [107].

We benchmarked our BFS implementation using linear scan, Circuit ORAM, and Square-Root ORAM.



CHAPTER 4. OBLIVIOUS RAM 71

Benchmark Parameters Linear Scan Square-Root ORAM Circuit ORAM

Binary Search
1 search 1.00 10.41 3228.69

25 searches 31.87 26.25 3282.40
210 searches 1019.77 824.81 5040.82

Breadth-First Search
n = 22 0.09 0.34 4.28
n = 25 4.77 4.08 42.66
n = 210 4569.31 679.63 3750.57

Gale-Shapley
23 pairs - 0.51 6.57
26 pairs - 145.13 1328.50
29 pairs - 119405. 188972.

Scrypt

N = 25 4.11 3.43 34.47
N = 210 1678.16 293.79 1453.85
N = 214 about 7 days 1919.92 2846.51
Litecoin 210.92 40.29 247.29

Table 4.1: Summary of benchmark results. All benchmark results are average measured wall-clock time in
seconds for full protocol execution (see individual benchmark sections for details).

We took 30 samples for experiments of n vertices and γ×n edges, with n ranging from 4 to 1024 and γ as 8.

For each sample, a fresh set of edges were generated randomly among the chosen number of vertices. A few

representative combinations are shown in Table 4.1.

The results of the BFS benchmark roughly follow the pattern established by the microbenchmarks in

Section 4.5.2. Small numbers of vertices and edges yield small ORAMs, and linear scan proves to be best

in these cases. As the number of vertices or edges begins to rise, Square-Root ORAM quickly becomes

more efficient than linear scan. Our BFS implementation uses blocks of only a few bytes each; as a result,

Circuit ORAM eventually becomes more efficient than linear scan, but it does not approach the efficiency of

Square-root ORAM before the upper bound of our testing range is reached at n = 210. Beyond that point the

benchmarks would have required several hours to complete.

4.5.5 Oblivious Stable Matching

To explore a benchmark representative of a complex algorithm, we implemented an oblivious version of

the Gale-Shapley stable matching algorithm [31]. We followed the textbook algorithm closely. Although

we believe there are significant optimizations available in adapting the algorithm for use in MPC, they are

beyond the scope of this work.

As a result, our implementation requires Θ(n2) accesses of an ORAM with n2 elements. It also uses of

several ORAMs of length n. The most efficient arrangement may be to mix ORAM schemes, but we have

not done this. As in our BFS implementation, we used function application to reduce the number of ORAM

accesses.

We benchmarked our implementation of Gale-Shapley with both Circuit and Square-Root ORAMs as the
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underlying structure, but not linear scan since it is clear linear scan cannot be competitive for this benchmark

and the expense of executing it on non-trivial sizes would be considerable. The number of pairs to be matched

ranged from 4 to 512. When the pair count was less than 128, we collected 30 samples; for pair counts of

128 and 256 we collected 3 samples; for 512 pairs, we collected one sample. Results for few representative

configurations are included in Table 4.1.

Square-root ORAM proved more efficient over the entire range we benchmarked, although for sufficiently

large sizes Circuit ORAM will eventually do better. For 64 pairs, Square Root ORAM is over 9 times faster

(finishing in 145 seconds); for 512 pairs, stable matching requires just over 33 hours using Square-Root

ORAM and 52.5 hours with Circuit ORAM.

4.5.6 Oblivious Scrypt

To explore the possibility of using ORAMs in a challenging cryptographic application, we implemented the

key derivation function scrypt [82]. Scrypt was originally intended to be difficult to parallelize, and therefore

difficult to break by brute force, even with custom high performance hardware. It achieves this goal by

repeatedly enciphering a single block of data, retaining each intermediate result in memory. It then performs

a second round of encipherment, mixing the block with an intermediate result from the first round selected

according to the current value. In an oblivious context, scrypt requires the use of an ORAM of some sort,

as the indices of the memory accesses in the second phase depend upon oblivious data generated in the first

phase. Due to its unpredictable memory access pattern, the scrypt algorithm is designed to require sequential

execution with no significant shortcuts.

With typical parameters, scrypt requires a relatively small ORAM element count. For instance, Litecoin,

which uses scrypt as a cryptocurrency proof-of-work, specifies N = 210 elements [69], and Colin Percival,

the designer of scrypt, recommends a minimum of N = 214 elements for normal use [82]. On the other hand,

Percival recommends that each element be 1KB in size — much larger than required by any of our other

application benchmarks. In the course of execution, scrypt performs exactly one access per element.

We tested scrypt using the recommended parameters and test vectors from the scrypt specification [82],

r = 8 and p = 1, and we varied N from 4 to 214. In addition, we benchmarked the parameters used by

Litecoin, (r = 1, p = 1, N = 210). A few representative combinations are presented in Table 4.1. As in

the other benchmarks, linear scan is marginally more efficient when the number of blocks (N) is small.

Otherwise, Square-Root ORAM is preferred; it exceeds the performance of linear scan by approximately one

order of magnitude when N = 210, and this ratio improves as N increases.

The largest parameters we benchmarked are Percival’s recommended minimum parameters (r = 8, p = 1,

N = 214), which he originally chose on the basis that they required less than 100ms to execute on contempo-

rary hardware, this being what he considered a reasonable threshold for interactive use [82]. On our EC2 test

node, the reference (non-oblivious) scrypt implementation requires 35ms with the same parameters. With

Square-Root ORAM as the underlying primitive, execution took 32 minutes, compared with 47 minutes for

Circuit ORAM. The large block size required by scrypt causes block access time to form a greater portion
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of the total cost than in our other application benchmarks. As a result, Circuit ORAM becomes competitive

earlier than in the other cases. We did not benchmark linear scan for the recommended parameters; we es-

timated that it would require roughly 7 days to complete, well beyond what could reasonably be considered

useful in practice.

Even with Square-root ORAM, scrypt requires 55,000 times longer to execute with real-world parameters

as an MPC protocol than it does to execute conventionally. This is almost certainly too expensive to be

practical for any interactive application today, but shows that even complex algorithms designed intentionally

to be expensive to execute are not beyond the capabilities of general-purpose MPC today.

4.6 Conclusion

The success of MPC depends upon enabling developers to create efficient privacy-preserving applications,

without requiring excessive effort, expertise, or resources. It is important that MPC protocols be compatible

with conventional programming techniques and data structures with depend on random access memory. Our

Square-Root ORAM design provides a general-purpose oblivious memory that can be used anywhere a pro-

grammer would normally use an array. We have presented a new approach for designing ORAMs for MPC,

which demonstrates how hierarchical ORAM designs can be implemented efficiently, and how they can over-

come the high initialization costs and parameter restrictions of previous ORAM designs. This represents a

step towards a programing model for MPC in which standard algorithms can be efficiently implemented as

MPCs, using oblivious memory just like conventional memory is used today.
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Conclusion

The purpose of this work is to present new constructions that allow MPC programs to efficiently perform data-

dependent memory accesses, allowing efficient implementations of various interesting applications in MPC.

Part of this was also facilitated by a new programming language to support the development of efficient

protocols.

5.1 Summary

We developed a new programming language, Obliv-C, that allows programmers to easily write MPC pro-

grams without any cryptographic expertise. In particular, the design takes special care to integrate with

existing ecosystem of C libraries, profiling and debugging tools. We have further demonstrated the versatil-

ity of our approach by implementing ORAM, some of the circuit structures, and several utility libraries and

benchmarks. This approach also allows researchers to easily try new protocols and techniques across many

benchmark applications without requiring them to modify the compiler.

We note that in the past, most demonstrations of MPC had to be limited to simple applications like matrix

multiplication or AES encryption, where memory access pattern never depended on sensitive inputs. We

resolve this problem by designing an ORAM scheme that provides concrete efficiency at reasonable sizes.

We also provide efficient constructions for primitive data structures that can be easily used by application

developers without being experts in circuit design.

5.2 Conclusion

Let’s consider once again the example that we started with: two hospitals wishing to jointly analyze their

patient records. Today, we are at a point where such programs can be written by developers without any

cryptographic expertise. MPC execution speed has improved to the stage where we can find intersection
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between sets of a million records in a matter of minutes. In the past, there was no way to perform such

computation in a privacy-preserving manner. If a developer is looking for ways to incorporate MPC into their

applications, they now have a body of work that they can use.

We still have many challenges remaining in this area. There are important questions still open about

how MPC will be used in practice. For example, given a function being computed securely, there is no easy

way to gauge if the output by itself is revealing “too much” about private inputs. In other words, in general

it is hard to know if an adversary can use the output to learn sensitive information. Additionally, most of

our experiments are still in the honest-but-curious model, where we assume that the other parties faithfully

follow the protocol. Fully malicious protocols are still about an order of magnitude slower. There is also the

big question of whether the rapid performance improvements we have witnessed over the last decade will

continue. It is possible that we are reaching performance limits and it will become increasingly difficult to

make orders of magnitude improvements in future.

Finally, there is a very serious question of how much we trust developers of MPC applications. The entire

premise of MPC is that, for some applications, it is too difficult to find a third party trusted by all entities

interested in the computation. Currently, however, we are implicitly placing our trust in a single cohort of

compiler writers. In the future, we need to find ways to have frameworks independently verified, or at even

have independently developed MPC frameworks interoperate, so that no single party is trusted by everyone.

In spite of these challenges, we are already starting to see the use of MPC in practice. We have already

seen its use in auctions and statistical applications — and it’s only been six or so years that large MPC

applications have become feasible. So we are confident that the trend of widespread MPC will continue,

and that we will see the development of new kinds of applications that were not previously considered. At

the same time, we expect to see a corresponding interest from the research community in reducing MPC

performance overheads. Hopefully this symbiotic relationship will accelerate the widespread adoption of

MPC as a standard tool in the development of everyday applications that work on private data.
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[21] Ivan Damgård, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and Tomas Toft. Unconditionally

secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In

Shai Halevi and Tal Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 285–304. Springer, March

2006.



BIBLIOGRAPHY 78
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