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Abstract7

Birdsong is a complex vocalization that bears important similarities to8

human speech. Critical to recognizing speech or birdsong is the ability to9

discriminate between similar sequences of sound that may carry di↵erent10

meanings. The caudal mesopallium (CM) is a secondary area in the11

auditory system of songbirds that is a potential site for song identification,12

displaying both between-category selectivity and within-category tolerance13

to conspecific song. Electrophysiological studies of CM have identified a14

population of neurons with intrinsically phasic firing patterns in addition to15

the more typical tonic and fast-spiking neurons. The function of these16

phasic neurons in processing spectrotemporally complex conspecific17

vocalizations is not known. We investigated the auditory response18

properties of phasic and tonic neurons using computational modeling with19

particular focus on the selectivity and entropy of the simulated responses to20

birdsong. When biophysical models of phasic and tonic neurons were21

presented with identical inputs, the phasic models were more selective22

among syllables and more robust to noise-induced variability, potentially23

providing an advantage for song identification. Additionally, the overall24

responsiveness of a model to the stimulus set determined which decoding25

metric better captured the coding strategy of the model’s response. The26

relationships between measures of decodability found in the model27

simulations are consistent with extracellular data from zebra finch CM.28
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Introduction29

Auditory Processing30

The auditory processing of speech presents a challenging problem that the31

human auditory system solves with ease. Noisy acoustic environments and32

speaker-to-speaker variability are just a few of the complications involved in33

decoding a speech stream. Mammalian models of audition have uncovered34

key features of auditory cortex such as tonotopic organization [1],35

feedforward inhibition to sharpen the fine temporal structures of sound [2],36

and even evidence for harmonic connections across octaves [3]. The ability37

to extend rodent models to the processing of vocalizations with the38

temporal and spectral complexity of speech, however, is limited due to the39

relatively simple and innate vocalizations produced by rodents. In fact,40

with the exception of cetaceans and bats, mammalian vocalizations do not41

require auditory experience to produce. The songbird (Passeriformes),42

while a very distant relative of humans and possessing a di↵erent vocal43

apparatus called a syrinx, nevertheless displays many of the vocal traits44

characteristic of human speech, including complex, learned vocalizations.45

Songbird models46

Songbirds have generated substantial interest as a model for studying the47

vocal production and auditory processing of speech. Singing is used to48

attract mates, strengthen pair bonds, and defend territory [4]. Although49
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many songbirds inherit a template of their species-appropriate song, which50

may help juveniles identify suitable tutors, the songs themselves must be51

learned by memorizing the song of an adult tutor and subsequently52

practicing vocalizations in an attempt to match the memorized tutor53

song [5]. In zebra finches (Taeniopygia guttata), a popular model for54

studying language, juveniles deafened prior to song exposure or raised in55

isolation from a tutor fail to acquire an organized song [6], and juveniles56

raised with a heterospecific tutor will often attempt to incorporate the57

content of the tutor’s song into their inherent template [7].58

Like humans, zebra finches exhibit a critical period for acquiring song,59

from around 15 days post-hatch (dph) when brainstem auditory responses60

mature [8] to 60-90 dph [5]. A number of factors can extend the closure of61

the critical period, including isolation from a suitable tutor [9]. Zebra62

finches learn a single song, and after the closure of the critical period, this63

song is crystalized and will not change throughout their life [5]. Other64

songbirds, like European starlings (Sturnus vulgaris), are open-ended65

learners who can add to their repertoire of songs even in adulthood [10].66

The development of song production is the most studied aspect of the67

critical period, but there is also concomitant development of the auditory68

system as juveniles learn to hear and identify song. In humans, infants go69

through well-defined stages of auditory learning including statistical70

learning of sound patterns leading to categorical perception of71

language-specific sounds and reduced discrimination of sounds not in their72
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language [5]. Research in starlings has shown that they are capable of73

statistical learning of regularities in continuous sound streams [11].74

Evidence for categorical perception has been shown for conspecific song75

notes in zebra finches [12] and for learned vowel sounds in starlings [13].76

Auditory experience in development also influences the responses of77

auditory neurons to song in adulthood [14]. Further research will be78

necessary to fully explain the developmental stages of the auditory system79

in juvenile songbirds.80

Songbird auditory pathways81

The songbird auditory system from the cochlea to the auditory thalamus82

(nucleus ovoidalis; Ov) is highly consistent with the mammalian auditory83

pathway [15]. The avian brain lacks a six-layered cortex; the pallium is84

instead organized into clusters of neurons forming nuclei. The homology of85

the pallial auditory regions to mammalian auditory cortex has been a86

matter of debate, although recent studies have identified genetic and87

functional similarities. Dugas-Ford et al. (2012) [16] found conserved cell88

types among mammals, birds, and reptiles for the layer 4 input and layer 589

output cells of the cortex despite the di↵erent architecture of avian and90

reptilian brains. There is evidence of laminar and columnar organization91

within the avian auditory forebrain along the dorsorostral-ventrocaudal92

plane [17]. The avian auditory pallium also shows a marked preference for93

natural stimuli such as birdsong over artificial stimuli like white noise and94
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pure tones. The mesencephalicus lateralis dorsalis (MLd), a midbrain95

auditory nucleus akin to the inferior colliculus in mammals, responds96

robustly to pure-tone stimulation [18], but at the level of the auditory97

forebrain the preference for natural sounds or synthetic sounds with98

statistics that mimic natural sounds emerges [19] [20]. The mammalian99

auditory system shows a similar emergence of a preference for natural100

stimuli from midbrain to cortex [21].101

Field L2a is the primary thalamorecipient area in the avian auditory102

forebrain, with downstream areas L1, L3, and L2b. These areas have103

reciprocal connections with each other and also with the higher-order areas104

caudomedial nidopallium (NCM) and caudal mesopallium (CM) [22].105

Although all of these areas communicate either directly or indirectly with106

each other, two primary streams emerge from Field L. L3 to NCM is one,107

and L1 and L2b to CM is the other. More research is needed to determine108

the functional di↵erences between these two streams of information. NCM109

and CM are the highest areas in the songbird auditory pathway and may be110

analogous to supragranular layers of A1 or secondary auditory areas in111

mammals [23]. Given their position in the auditory hierarchy, it is likely112

that these areas are responsible for song learning and recognition, and113

recent research has supported this idea.114

NCM is a potential location for the memory of the tutor song that115

juvenile birds base their own songs on. Immediate early gene expression in116

NCM when zebra finches are presented with their tutor song is correlated117
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with the degree of copying between the bird’s own song and the tutor118

song [24]. The strength of song learning is also correlated with the119

familiarity of the tutor song in NCM as measured by the rate of120

accommodation of a neural response to auditory stimulation [25]. CM is121

not involved in the tutor song memory but does play a role in the learning122

of other conspecific songs. Jeanne et al. (2011) [26] showed that learned123

songs are more e↵ectively encoded by CM neurons than novel songs and124

that rewarded songs were better encoded than unrewarded songs, indicating125

not just a bias toward learned songs but toward behaviorally-relevant126

songs. Meliza and Margoliash (2012) [27] found that the response to127

within-song variability is an important di↵erence between NCM and CM;128

NCM shows sensitivity to performance-to-performance di↵erences in a song,129

while CM is tolerant to these di↵erences.130

Current study and its motivation131

The tolerance of CM for within-song variability and its preferential132

response to behaviorally relevant stimuli make it a potential site for the133

decoding of song identity. In human language, there are meaningful134

di↵erences between words that can completely change the meaning of an135

utterance as well as non-meaningful di↵erences in the pronunciation of a136

single word. The same is true of birdsong: there are variations between137

performances of a song that a bird must recognize as coding for the same138

identity, and there are also birds with highly similar songs (e.g., siblings or139
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a tutor and pupil). Based on its position in the auditory system and its140

response properties, CM is well positioned to produce this kind of141

discrimination. The ultimate goal of a birdsong model of language is to142

explain not only what higher-order areas do but how they do it, and a143

mechanistic explanation must start at the cell level.144

Electrophysiological studies of the broad-spiking, putatively excitatory,145

cell class within CM by Chen and Meliza (2017) [28] has revealed three146

distinct cell types within this class based on response properties to current147

stimulation: tonic, intermediate, and phasic. Tonic neurons are similar to148

the regular-spiking neurons seen in auditory cortex but show less regularity149

and higher adaptation rates. Phasic neurons fire only once or a few times150

regardless of the level and extent of stimulation and are the result of a151

4AP-sensitive low-threshold potassium current. This type of firing pattern152

is not seen in adult mammalian auditory cortex, though it has been153

observed in juveniles [29] and lower levels of the mammalian auditory154

system [30]. Intermediate neurons respond tonicly at some levels of155

stimulation and phasicly at others.156

The presence of a phasicly responding neuron in an area of the avian157

auditory forebrain involved in decoding song identity has interesting158

implications about the role such neurons might play in addressing some of159

the complications of auditory processing like noisy acoustic environments160

and song-to-song variability. In this study, we explore the functional161

significance of phasic neurons in CM using a modeling approach and test162
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the hypothesis that phasic neurons may possess an encoding advantage over163

tonic neurons that make them more informative and less a↵ected by the164

presence of noise, thereby enhancing the ability of CM to determine the165

identity of a song stimulus. We then assess the validity of our model’s166

predictions by comparing the results of our model to extracellular data167

from zebra finch CM. Identifying the functional roles of the cell types of168

CM is the first step toward understanding the circuit and being able to169

model the computations required to go from sequences of frequencies to an170

identifiable, meaningful vocalization.171

Methods172

Animals173

All animal use was performed in accordance with the Institutional Animal174

Care and Use Committee of the University of Virginia. Adult zebra finches175

were obtained from the University of Virginia breeding colony. Thirty male176

zebra finches provided song recordings that were used as stimuli in the177

simulation experiments. During recording, zebra finches were housed in a178

soundproof auditory isolation box (Eckel Industries) with ad libitum food179

and water and were kept on a 16:8h light:dark schedule. A mirror was180

added to the box to stimulate singing. A typical recording session lasted181

2-3 days. Birds were returned to the main colony after song recording.182
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Simulation183

Neuron model. The model used in this study is a conductance-based,184

single-compartment model of CM neurons. The model, based on the ventral185

cochlear nucleus model of Rothman and Manis (2003) [31], relates the186

voltage dynamics of a single neuron to currents associated with ion187

channels. The model used in this study includes 4 voltage-gated potassium188

and sodium currents, a leak current, and a hyperpolarization activated ion189

current [28]. The model neuron exhibits a depolarization block to strong190

currents and a sustained response to weak currents. The model parameter191

values follow Rothman and Manis (2003) [31] with a few adjustments for192

resting potential and spike threshold for CM neurons. The calculations193

presented here used the consensus model parameters from Chen and Meliza194

(2017) [28] for tonic and phasic cells.195

Auditory response simulation. To simulate an auditory response,196

I
stim

(t) becomes the convolution of a spectrotemporal receptive field (RF)197

with a spectrogram of an auditory stimulus. I
noise

(t) is randomly generated198

pink noise (1/f distribution) low-pass filtered at 100Hz and scaled relative199

to the signal to achieve a set signal-to-noise ratio (SNR).200

Auditory stimuli are 30 zebra finch songs recorded from our colony.201

All songs were cut to 2.025s long with 50ms of silence at the beginning to202

pad the convolution, high-pass filtered at 500Hz with a 4th order203

Butterworth filter, and scaled to a consistent RMS amplitude. Start and204

end times of syllables were identified by visual inspection. Repeated205
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syllables were grouped in the decoding analyses.206

RFs were constructed with a Gabor filter based on Woolley et al.

(2009) [32]:

RF(t, f) = H(t) ·G(f),

H(t) = e�0.5[(t�t0)/�t]2 · cos(2⇡ · ⌦
t

(t� t0) + P
t

),

G(f) = e�0.5[(f�f0)/�f ]2 · cos(2⇡ · ⌦
f

(f � f0)),

where H is the temporal dimension of the RF, G is the spectral dimension207

of the RF, t0 is the latency, f0 is the peak frequency, �
t

and �
f

are the208

temporal and spectral bandwidths, ⌦
t

and ⌦
f

are the temporal and spectral209

modulation frequencies, and P
t

is the temporal phase. Parameter values210

were randomly drawn from distributions set so as to match the modulation211

transfer function (MTF) of the RF ensemble to the MTF of zebra finch212

song [33] [32] (Figure 1). The integral of each RF was normalized to one.213

In the context of this simulation, a model neuron is a combination of214

one RF and one model dynamic (phasic or tonic). 60 RFs were generated215

to produce paired phasic and tonic simulations, and 15 of the RFs were216

excluded due to MTF values outside the reported distribution of RFs in217

zebra finch neurons [32] (N = 90 neurons or 45 pairs). The 30 zebra finch218

songs were presented 10 times each to each neuron with random pink noise219

producing trial-to-trial variability. Pink noise sets were identical between220

paired phasic and tonic neurons. The total amplitude of the convolution221
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Figure 1: Receptive field parameter distributions. A, Combinations of the temporal
modulations and spectral modulation parameters used to construct the RFs used in this
study. The parameter values were drawn randomly from parameter distributions inferred
from experimental data. Values outside the range of reported RFs (temporal modulation
> 100Hz or spectral modulation > 2 cycles/kHz) were excluded. The points colored in
green are the RFs shown in B. B, Examples of 4 of the 45 RFs used in this study.
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was normalized by the bandwidth of the RF on the frequency axis (�
f

) to222

account for the di↵erences in amplitudes between narrowband and223

broadband RFs. The output of the model was a simulated voltage trace224

from which spike times were extracted.225

Data analysis. Spike times were extracted from the simulated226

responses. The classification analysis was performed by computing the van227

Rossum distance [34] (as implemented in neo:228

http://neo.readthedocs.io/en/0.5.2/) between every pair of spike trains for229

a model neuron (n = 300). We considered multiple time-scales for the ⌧230

parameter of the van Rossum distance from 5 to 45ms. A k-means231

clustering algorithm assigned spike trains to clusters based on their232

proximity in high-dimensional space. Cluster identity was assigned by a233

voting scheme as described in Schneider and Woolley (2010) [35] with each234

spike train casting a vote for its corresponding song. The proportion of235

correctly clustered spikes for each neuron determined its percent correct236

value.237

We calculated spike rate, r
i,j

, as the number of spikes evoked by

syllable i in trial j, divided by the duration of the syllable. Selectivity was

quantified using activity fraction [36] [27], a nonparametric index defined as:

A =
1� (⌃r

i

/N)2/⌃r2
i

/N

1� 1/N

where r
i

is the rate for syllable i averaged across trials, and N is the total238
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number of syllables.239

Mutual information (MI), response entropy, and noise entropy were240

calculated following Jeanne et al. (2011) [26]. Response rates were241

discretized into 15 bins between 0 Hz and the maximum rate of the model.242

Response (total) entropy was calculated as H(R) = �⌃p(r) log2 p(r), noise243

entropy as H(R|S) = �⌃p(s)⌃p(r|s) log2 p(r|s), and mutual information as244

I(R;S) = H(R)�H(R|S), where r is the rate and s is the syllable.245

Because of the large number of stimuli and trials, and because we were246

interested in di↵erences between models presented with exactly the same247

stimuli, we did not correct entropy or MI for sample size bias.248

Extracellular data249

Analyses based on extracellular data were performed on the publicly250

available dataset from Theunissen et al. [37] on CRCNS.org. Neural251

recordings were collected from adult male zebra finches as described in Gill252

et al. [38]. Only cells from CM stimulated with conspecific song were used253

these analyses (n = 37). Selectivity and MI analyses were performed as254

described above with the exception that 10 response bins were used for MI255

instead of 15 due to a smaller stimulus set.256
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Results257

To explore the consequences of the intrinsic membrane properties giving258

rise to phasic and tonic response dynamics in terms of the functional role of259

the neurons in the auditory processing of song, we use the neuron model260

described in Chen and Meliza (2017) [28], which replicates the observed261

phasic and tonic behaviors through the adjustment of the low-threshold262

potassium current parameter of the model. Auditory response is simulated263

by setting the current stimulation parameter (I
stim

) to the normalized264

convolution of the spectrogram of a zebra finch song and a receptive field265

constructed from Gabor filters (Figure 2A). Variability in the response is266

achieved by adding pink noise (1/f spectrum) to the convolution with a267

signal-to-noise ratio of 4.268

Input-matched phasic and tonic neurons produce distinct spiking269

responses. In general, phasic neurons show reduced variation in spike times270

and spike numbers to a given syllable of a song (Figure 2B-C). The271

increased consistency of the responses of phasic neurons indicates an272

advantage for the decodability of the neural signal. We quantified this273

e↵ect using several di↵erent measures of coding e�ciency.274

Temporal-based coding. A temporal code uses the pattern of spike275

times to encode the identity of a signal. An e�cient temporal code276

represents di↵erent stimuli with distinguishable patterns of spikes and has277

high temporal precision across multiple trials of the same stimulus. Because278
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Cm dV
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Figure 2: Data simulation and analysis pipeline. A, Auditory responses can be sim-
ulated through the convolution of a spectrotemporal receptive field (upper left) with a
spectrogram (upper right) of an auditory stimulus, in this case a zebra finch song. The
resulting convolution (black line) provides the driving current (I

stim

) of the biophysical
model used in this study (right). Low-pass filtered pink noise (pink line) adds variabil-
ity to the driving current (I

noise

). The output of the model is a simulated voltage trace
(lower left) which can have either phasic (red line) or tonic (blue line) response properties
depending on the conductance of a low-threshold potassium channel parameter (g

KLT : 0
nS or 100 nS for tonic and phasic respectively). B, Raster plots of the full simulation for
the stimulus-RF pair in A across 10 trials for phasic (red) and tonic (blue) model. The
example demonstrates the increased variability in spike number and decreased temporal
precision for the tonic model as compared to the phasic model. C, Full response distribu-
tion for the example neuron. Response rates are calculated per syllable in each song and
divided into 15 bins. The black line indicates the average response rate across the syllables
and the spread of response rate bins around that line show the trial-to-trial variability of
the response rate.
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the timescale used in the decoding of a temporal code substantially a↵ects279

the results, we considered multiple timescales when analyzing the temporal280

decodability of the simulated neural responses. Figure 3 shows the results281

of a classification analysis using a k-means clustering approach on the van282

Rossum distance of each pair of spike trains, calculated at multiple time283

constants.284

Although both groups perform well above chance, the phasic neuron285

models show clear separation from tonic models in terms of discriminability286

of temporal codes at all time constants examined, indicating that the287

neural signal produced by phasic neurons is more temporally precise and288

distinct than that produced by tonic neurons. Phasic responses are also less289

sensitive to the time constant used, showing high discriminability at both290

short and long time constants, in contrast to tonic responses, which show291

much steeper drop-o↵s on either side of their ideal time constant.292

Rate-based coding. A rate-based code uses the average firing rate293

across a stimulus to encode identity. The precise timing of spikes matters294

less than the total excitation of the neuron across a given period of time.295

Two of the most widely applied rate-based decoding methods in sensory296

neuroscience are mutual information and selectivity, and these are the297

metrics we use in this study to assess the decodability of neural simulations.298

Selectivity measures the tendency of a neuron to respond robustly only to a299

small subset of all stimuli. Mutual information measures the ability of a300

neuron to convey information about the identity of multiple stimuli by301
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Figure 3: Classification analysis of temporal coding. The classification accuracy of the
phasic models (red line) is significantly higher than the tonic models (blue line) at all time
constants considered (5-45ms). Classification accuracy is based on a k-means clustering
analysis of the van Rossum distances between each simulated spike train of a given neuron
model. Gray ribbons show the standard error.
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using di↵erent firing rates to encode di↵erent stimuli. There are two302

components of mutual information: the response (total) entropy, which303

represents how much information the neuron can carry based on its range304

of firing rates, and noise entropy, which represents how much information is305

lost due to the variability of a neurons firing-rate response within a306

stimulus. A neuron with high mutual information will have high response307

entropy and low noise entropy.308

In our mutual information (MI) analysis, phasic neuron models309

showed a higher decodability than their tonic counterparts (paired t-test;310

p < 1e� 6). Phasic neurons had a mean MI of 1.636 bits of information,311

and tonic neurons had a mean MI of 1.414 bits. The di↵erence in MI is due312

to a reduction in noise entropy in the phasic models relative to the tonic313

models (phasic: 1.083 bits; tonic: 1.517 bits; paired t-test, p < 1e� 15).314

The response entropy is, in fact, slightly higher in the tonic models (tonic:315

2.932 bits; phasic: 2.720 bits; paired t-test, p = 0.0003), but the large316

amount of noise entropy in the tonic signal more than cancels out that317

advantage (Figure 4).318

The selectivity analysis shows a similar advantage for phasic model319

neurons (Figure 5). Phasic models are able to encode song with a higher320

degree of selectivity than tonic models (tonic: 0.170; phasic: 0.258; paired321

t-test: p < 1e� 5) with some phasic models showing very high levels of322

selectivity (0.60 and 0.78).323
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Figure 4: Mutual information analysis. A, Phasic models (red) have higher mutual
information between firing rate and syllable identity than tonic models (blue) based on a
paired t-test (p < 1e�6). B, One component of mutual information is response (total) en-
tropy which represents the maximum information capacity of the model. Phasic and tonic
models have comparable response entropy, though tonic models have a slight advantage
(p = 0.0003). C, The second component of mutual information is noise entropy, which
represents variability between repeated trials and decreases the amount of information
conveyed from the theoretical maximum. Phasic models have much lower noise entropy
than tonic models (p < 1e� 15) which accounts for their higher mutual information.
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showing very high levels of selectivity (p < 1e� 5).
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Discussion324

Relationship between decoding measures325

Measures of mutual information (MI) and classification accuracy based on326

the van Rossum distance are positively correlated. This is because these327

two measures address similar decoding strategies on di↵erent timescales; as328

the time constant of the van Rossum distance increases, the analysis329

approaches a rate-based analysis.330

The relationship between the two rate-based measures used in this331

study, MI and selectivity, is more complex. There is a general negative332

correlation (Figure 6A) between the two measures, but there are also333

models that score low on both measures. The models with low decodability334

on both measures are overwhelmingly tonic, but there are no models with335

high decodability on both measures, indicating that these measures are336

di↵erent yet mutually exclusive. This is consistent with extracellular data337

from zebra finch CM [37] when the same analyses were applied (Figure 6B).338

This relationship between MI and selectivity has also been previously been339

shown in starling CM [26].340

Overall responsiveness mediates decoding strategy341

When considering only the phasic models, the negative correlation between342

MI and selectivity becomes more pronounced. The overall responsiveness of343

the model, which we define as the average spiking rate (in Hz) of the model344
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Figure 6: Relationship between MI and selectivity is mediated by responsiveness. A,
MI and selectivity are inversely related, especially among phasic models (red). Tonic
models (blue) tend to rate poorly on both decoding measures. B, CM neurons of zebra
finches recorded extracellularly show a similar pattern of inverse correlation between MI
and selectivity. C, Responsiveness is defined as the average response rate of the model
to the entire stimulus set in spikes/sec. MI is positively correlated with responsiveness,
and the groups of phasic and tonic models are clearly separable along these dimensions.
D, CM neurons show a similar positive relationship between MI and responsiveness. E,
Selectivity and responsiveness are negatively correlated in a non-linear fashion. F, CM
neurons show the same non-linear correlation between selectivity and responsiveness.

23



over the entire stimulus set, is a strong predictor of whether a model is345

likely to have high MI or high selectivity. MI is positively correlated with346

responsiveness, i.e. models with higher responsiveness also tend to have347

higher MI (Figure 6C). Similarly, selectivity is negatively correlated with348

responsiveness with the most selective models showing very low average349

firing rates (Figure 6E). The relationships between these measures in the350

extracellular neural data are very consistent with the predictions of the351

simulations, indicating that the model is capturing population-level352

behavior of zebra finch CM (Figure 6D,F).353

Figure 7 shows the pairs of phasic and tonic simulations with arrows354

indicating the phasic part of each pair. Consistent with previous results355

that show that MI and selectivity are negatively correlated, phasic models356

tend to increase in decodability relative to the tonic pairs in only one of the357

two dimensions of MI and selectivity. The direction of increase is358

determined by the responsiveness of the phasic model. Phasic models with359

high responsiveness show an increase in MI but not selectivity as compared360

with the tonic pair; phasic models with low responsiveness show an increase361

in selectivity but not MI. This relationship is independent of the MI,362

selectivity, or responsiveness of the tonic model.363

Phasicness as slope detection364

Because the tonic models are not predictive of whether the phasic models365

will show increased MI or increased selectivity, we examined the details of366

24



1.0

1.5

2.0

0.2 0.4 0.6 0.8
Selectivity

M
I (

bi
ts

)

2

4

6

8

R
es

po
ns

iv
en

es
s 

(H
z)

Figure 7: Phasic models increase in either MI or selectivity relative to tonic models.
Connecting phasic and tonic pairs (arrows pointing toward the phasic model) shows that
the phasic models tend to increase in decodability along only one of the two decoding
measures examined here. The location of the tonic model on the measures of MI and
selectivity does not seem to determine whether the phasic model will increase in MI or
selectivity, but the responsiveness of the phasic model (arrow color) is strongly related.
Phasic models with low responsiveness tend to increase in selectivity but not MI relative
to tonic models. Phasic models with high responsiveness tend to increase in MI but not
selectivity.
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the simulations that gave rise to di↵erent outcomes. Figure 8 shows two367

pairs of examples that led to di↵erent outcomes. In Figure 8A, the tonic368

model has MI of 1.60 bits and selectivity of 0.20; the phasic model has369

similar MI (1.42 bits) but selectivity increases to 0.45. In Figure 8B, the370

tonic model has MI of 1.39 bits and selectivity of 0.07; the phasic model’s371

selectivity remains similar (0.13) but the MI increases (2.02). The example372

convolutions in Figure 8 show why this happens.373

In Figure 8A, the phasic model responds only to parts of the374

convolution where the slope increases sharply. This is true not only of the375

upslope of a peak but also the return to baseline of a negative deflection376

(black arrow). Because these slope increases are relatively infrequent in this377

convolution, the phasic model spikes sparsely and therefore shows increased378

selectivity. The tonic model, on the other hand, responds to the absolute379

excitation of the signal, treating the sharp peaks and the slower increases of380

excitation similarly, and this results in broad firing across many of the381

syllables of the song, reducing the model’s selectivity.382

In Figure 8B, the convolution contains primarily peaks and not the383

slow increases in excitation present in Figure 8A. This results in the two384

models responding similarly to the convolution with the exception of the385

increased variability of the tonic model as expected from the much higher386

noise entropy present in the tonic models. In this case, the phasic model387

acts solely as a noise reducer, thus increasing the MI of its response with388

only a slight increase in selectivity.389
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Figure 8: Examples of phasic responses with high selectivity or MI.A, A simulated neural
response in which the phasic response had higher selectivity (0.45) than the tonic response
(0.20). Upper panels show the RF, stimulus spectrogram, and convolution. Middle panels
show simulated voltage traces (red: phasic; blue: tonic) and the bottom panels show the
spike times across 10 trials of the stimulus. The phasic model responded only to sharp
upward deflections of the convolution, including a rebound to baseline from a negative
deflection (red arrow). The tonic model responded to all increases in excitation including
the slow increases that the phasic model did not respond to (blue arrow). The sparseness
of the phasic response boosts selectivity. B, A simulated neural response in which the
phasic response had higher MI (2.02 bits) than the tonic response (1.39 bits). The phasic
and tonic models responded at similar times but the increased temporal precision and
decreased variance in spike number increased the MI of the phasic response relative to the
tonic.
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Ultimately, these simulations point to phasic and tonic neurons390

responding to fundamentally di↵erent features of the signal they receive391

from upstream neurons. Tonic neurons respond primarily to the level of392

excitation present in the signal whereas phasic neurons respond to the rate393

of increase of the excitation. The role of phasic neurons as a slope detector394

has been shown before, both in vivo and in silico [39], but these simulations395

suggest a potential function of that slope-detection property. By396

responding to the slope rather than the absolute level of excitation, phasic397

neurons can create selectivity from a signal that is otherwise non-selective,398

as Figure 8A demonstrates.399

Chen and Meliza (2017) [28] found that tonic and phasic neurons400

di↵er in their response to high-frequency stimulation as measured by the401

coherence of their firing to a complex current injection. Phasic neurons402

were able to follow frequencies up to 30Hz, while tonic neurons had403

di�culty above 10Hz. They also found that the neuron model used in this404

simulation produces similar di↵erences in coherence between phasic and405

tonic models. The ability of phasic neurons to follow higher frequencies406

may be important to their role in slope detection. Smoothing one of the407

convolutions used in this simulation with a 10Hz running average filter408

eliminates the sharpest peaks in the signal, but a 30Hz running average409

preserves them (Figure 9A). Di↵erencing the 30Hz running average shows410

that smoothing at that frequency preserves the most important signal411

deflections (Figure 9B), while the 10Hz running average removes them. In412
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Figure 9: Simple transformations of the convolution predict phasic and tonic responses.
A, Convolution smoothed with a 10Hz running average (blue) and 30Hz running average
(red) based on the frequencies that tonic and phasic neurons are able to follow. 10Hz
smooths out the majority of the peaks, but 30Hz preserves the largest ones. B, Di↵erenced
30Hz smoothed convolution with a threshold of 1.5 standard deviations highlights the
largest upward deflections in the signal. C, 10Hz smoothed convolution matches closely
the spike-time histogram of the tonic model’s response to this convolution (gray bars). D,
Di↵erenced 30Hz smoothed convolution predicts very accurately the spike-time histogram
of the phasic model’s response to this convolution (gray bars).
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fact, the convolution smoothed with the 10Hz running average fits very well413

to the spike-time histogram of the tonic model’s response to that414

convolution (Figure 9C), and the di↵erenced 30Hz running average is highly415

predictive of the spike times of the phasic model (Figure 9D). The higher416

peak coherence of the phasic neurons may be an important part of their417

enhanced ability to produce a selective response to song.418

Limitations of this model419

There are a number of limitations of this model to keep in mind when420

interpreting these results. The first is that the neuron model used is not421

specifically a model of a CM neuron but rather a model that reproduces422

many of the behaviors seen in CM neurons (e.g., response to current steps423

and coherence to chaotic currents). This model also does not consider a424

third type of putatively excitatory neuron found in CM, called an425

intermediate-spiking neuron which shows firing patterns between those of426

phasic and tonic neurons [28], because we could not arrive at a stable427

model of this type of neuron using the Rothman-Manis base model.428

As described in the methods, the receptive fields used in this analysis429

were based on a thorough characterization of Field L receptive fields by430

Woolley et al. (2009) [32]. We felt that this was a reasonable approach431

given that CM is immediately downstream of Field L and that no such432

comprehensive characterization has been done for CM receptive fields. This433

is in part due to the fact that receptive fields for CM are di�cult to434

30



estimate due to the sparseness of the neurons’ firing. We also do not know435

whether phasic and tonic neurons have a similar distribution of receptive436

fields. Given the di↵erences in dendritic morphology reported by Chen and437

Meliza (2017) [28], it is possible that phasic and tonic neurons have438

systematic di↵erences in their receptive fields. This simulation examined439

the e↵ect of changing the neural dynamics of a model while keeping the440

receptive field constant, but that comparison might not completely capture441

the di↵erences.442

This is also a very simple, single-neuron model that lacks lateral443

connections or feed-forward inhibitory inputs. The auditory system, of444

course, is much more complex, and there are certainly many additional445

influences on the behavior of a neuron. It was not our intent to capture all446

of these complexities in our model, and in fact, the ability of our model to447

produce selective responses to song syllables despite its simplicity is a448

strength. There may be other ways to arrive at selectivity, but the fact that449

selectivity can be created merely by the introduction of phasic neurons into450

the population may explain, at least in part, the increase in selectivity from451

Field L to CM [23].452

Conclusions453

A biophysical neuron model can reproduce the relationship between mutual454

information and selectivity seen in zebra finch CM. The model predicts that455
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a decrease in the overall responsiveness of the neuron shifts decoding456

performance toward selectivity and away from mutual information, and457

that prediction is supported by evidence from extracellular measurements458

of CM neurons. The results suggest that phasic neurons represent an459

advantage for the decoding of stimulus identity and that advantage is due460

to the precision and selectivity generated by their sensitivity to the rate of461

increase of excitation. The addition of phasic neurons to the CM462

population should improve the ability of CM to identify stimuli beyond463

what tonic neurons could do alone owing to their heightened selectivity and464

their tolerance to noise.465
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