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Abstract

According to the U.S. Federal Highway Administration, outdated traffic signal

timing currently accounts for more than 10 percent of all traffic delays. On av-

erage, adaptive signal control technologies improve travel time by more than

10 percent in comparison with traditional signal timing methods. In areas with

particularly outdated signal timing, improvements can be 50 percent or more.

With the emergence of connected and automated vehicles and the recent ad-

vancements in Intelligent Transportation Systems, Autonomous Traffic Man-

agement has garnered more attention. Cooperative Intersection Management

(CIM) is among the more challenging traffic problems that pose important

questions related to safety and optimization in terms of vehicular delays, fuel

consumption, emissions and reliability.

This dissertation proposes two solutions for urban traffic control in the pres-

ence of connected and automated vehicles. First a centralized platoon-based

controller is proposed for the cooperative intersection management problem

that takes advantage of the platooning systems and V2I communication to

generate fast and smooth traffic flow at a single intersection. Two cost func-

tions are proposed to minimize total delay and delay variance.

Simulated experiments show that the proposed controller produces schedules

that minimize travel delay and variance while increasing intersection through-

put and reducing fuel consumption, when compared to traffic light policies.
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The simulations also verify the positive effect of platooning on fuel consump-

tion and intersection throughput.

Second, a data-driven approach is proposed for adaptive signal control in the

presence of connected vehicles. The proposed system relies on a data-driven

method for optimal signal timing and a data-driven heuristic method for esti-

mating routing decisions. It requires no additional sensors to be installed at

the intersection, reducing the installation costs compared to typical settings of

state-of-the-practice adaptive signal controllers.

The proposed traffic controller contains an optimal signal timing module and

a traffic state estimator. The signal timing module is a neural network model

trained on microscopic simulation data to achieve optimal results accord-

ing to a given performance metric such as vehicular delay or average queue

length. The traffic state estimator relies on connected vehicles’ information

to estimate the traffic’s routing decisions. A heuristic method is proposed to

minimize the estimation error. With sufficient parameter tuning, the estimation

error decreases as the market penetration rate (MPR) of connected vehicles

grow. Estimation error is below 30% for an MPR of 10% and it shrinks below

20% when MPR grows larger than 30%.

Simulations showed that the proposed traffic controller outperforms Highway

Capacity Manual’s methodology and given proper offline parameter tuning, it

can decrease average vehicular delay by up to 25%.
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Chapter 1

Introduction

Traf�c Signal Control (TSC) is an important, effective and most widely used

method for traf�c control in urban settings. TSC systems have gone through

various improvements over the past century and yet, intersections are still

known to be a major contributor to traf�c accidents. According to National

Highway Traf�c Safety Administration (NHTSA), [2] 40 percent of all crashes

that occurred in the United States in 2008 were intersection-related. Moreover,

traf�c ef�ciency is reported to be closely correlated with traf�c safety on inter-

sections [3].

Traf�c congestion is also among the more important contributors of CO2

emissions [4] which is the largest constituent of transport's greenhouse gas

emissions. Vehicle stop times at intersections also contribute to carbon monox-

ide (CO) emissions. The international energy agency reports that when ve-

hicles are idle at an intersection they emit about 5�7 times as much CO as

vehicles traveling between 5�10 mph [5].

TSC methods can be divided into three main categories of �xed-time (pre-

timed) control, traf�c-responsive control, and intelligent control. Fixed-time

control method relies on predetermined cycle times and splits and is known to

produce stable and regular traf�c �ows. Webster [6] and Miller [7] introduced a
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traf�c signal model and analytical formulas for calculation of optimal settings

with regard to average vehicular delay.

Macroscopic traf�c simulation and signal timing optimization programs have

been introduced that build on the pre-timed signal control and utilize search

algorithms to optimize cycle length, phasing sequence, splits, and offsets for

single intersections or a network. Examples of such programs include, TRAN-

SYT [8], Synchro [9] and PTV Vistro [10]. The issue with such methods, how-

ever, is that traf�c systems are dynamic, therefore, �xed-time signal control

cannot adequately respond to real traf�c conditions.

With the advancement of sensing technologies such as Piezoelectric sensors

and inductive loop systems and more recently, camera systems, real-time

traf�c-responsive control has become a popular choice for intersection con-

trol [11].

Actuated control (AC) is the most widely used traf�c-responsive method in

practice. Actuated control regulates traf�c signal timings according to sens-

ing of traf�c �ows by detectors such as piezoelectric, magnetic sensors and

camera systems that are installed in the network. An AC system performs

phase selection and extension based on traf�c demands. It is known that an

AC system is suitable for traf�c scenarios that involve relatively high random-

ness and low to medium average traf�c levels, e.g. under 80% traf�c satura-

tion. However, AC systems are not suitable for higher traf�c levels and cannot

achieve optimal usage of time and space since they disregard the queues of

vehicles on the other phases when performing phase extension and selection.

Sydney coordinated adaptive traf�c system (SCAT) [12] is a plan-selection con-

trol system in which a time plan for each intersection is chosen by the overall

need of subsystems. Split cycle offset optimization technique (SCOOT) [13] is

an adaptive real-time plan-generating control system, which makes real-time

adjustments of splits, cycles, and time offset parameters with a small-step in-
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cremental optimization approach.

Traditional signal control strategies based on mathematical traf�c-�ow mod-

els provide many useful ideas and new methods for traf�c control applica-

tions, but their calculations are often computationally complex. This complex-

ity makes it challenging to meet real-time requirements, and the assumptions

of mathematical models of traf�c �ow are too strict to account for generality

of TSC algorithms [11].

As a response to these issues, intelligent control methods have been intro-

duced. These methods have used technologies in computational intelligence,

such as Arti�cial Neural Networks (ANNs) [14], Fuzzy Systems [15] and Rein-

forcement Learning (RL) [16].

This dissertation introduces two novel approaches to the problem of cooper-

ative intersection management. The �rst method proposes leveraging the au-

tonomy and communication capabilities of connected and automated vehicles

for more ef�cient traf�c control at urban intersections; the second contribu-

tion of this dissertation is a novel technique for signal timing optimization that

leverages the precision and ubiquity of traf�c data provided by microscopic

traf�c simulators to build computational models that serve as signal timing

optimizer.

These models can be customized for a single intersection or a network for

various objectives such as average vehicular delay, queue size, etc. Moreover,

the complexity of the model is not a function of traf�c level or the size of the

intersection, hence, eliminating the computational overhead problem of some

of the previous work. The proposed method is complemented with a heuristic

approach to dynamic routing decision estimation that relies on information

received from Connected Vehicles (CVs).

The rest of this dissertation is organized as follows. Chapter 2 provides an
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overview of the problem's background, motivations and challenges. Chapter 3

introduces a platoon-based approach to Cooperative Intersection Manage-

ment (CIM). The proposed data-driven approach for optimal signal timing is

presented in Chapter 4. Chapter 5 introduces a novel traf�c state estimation

technique in the presence of CAVs. In Chapter 6, the proposed traf�c state es-

timator and the proposed optimal signal timing model are integrated into a

novel data-driven adaptive signal controller. And �nally, Chapter 7 provides a

summary of contributions, future work and conclusions to this dissertation.

18



Chapter 2

Problem Background, Motivations

and Challenges

2.1 Traf�c Signal Timing

The introduction of traf�c lights has helped improve the traf�c condition at

intersections. Moreover, in recent decades, a number of adaptive traf�c light

systems have further improved the performance of traf�c signals. These sys-

tems rely on traf�c estimation techniques to adapt the traf�c signal settings

according to the traf�c conditions. Most notable examples of those systems

are SCOOT [13], the Sydney Coordinated Adaptive Traf�c (SCAT) system [12],

and RHODES [17].

With the emergence of autonomous ground vehicles and the recent advance-

ments in Intelligent Transportation Systems, Autonomous Traf�c Management

has garnered more and more attention. Autonomous Intersection Manage-

ment (AIM), also known as Cooperative Intersection Management (CIM) is

among the more challenging traf�c problems that pose important questions

related to safety and optimization in terms of delays, fuel consumption, emis-

sions and reliability.
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2.1.1 Motivations & Challenges

The motivations and challenges for the CIM problem can be divided into two

classes of societal and technical. What follows is a general description of the

motivations and challenges of the problem.

2.1.1.1 Societal Motivations

As bottlenecks of traf�c �ow, intersections are known to be a major contribu-

tor to traf�c accidents. According to National Highway Traf�c Safety Adminis-

tration (NHTSA), 40% of all crashes and 21.5% of the corresponding fatalities

that occurred in the United States in 2008 were intersection-related [2]. More-

over, traf�c ef�ciency is reported to be closely correlated with traf�c safety on

intersections [3].

Traf�c congestion is also among the more important contributors of CO2

emissions [4] which is the largest constituent of transport's greenhouse gas (GHG)

emissions. Vehicle stop times at intersections also contribute to carbon monox-

ide (CO) emissions. International energy agency reports that when vehicles

are idle at an intersection they emit about 5�7 times as much CO as vehicles

traveling between 5�10 mph [5].

According to several studies, traf�c safety and ef�ciency are closely corre-

lated. [18] and [3] report that accident frequency increases with congestion

level for intersections. Studies also show that for intersections with low con-

gestion level, possibilities of severe crashes with casualties are higher be-

cause of head-on crashes and involvement of vulnerable road users (VRUs).

For high congestion intersections, on the other hand, accidents are less se-

rious due to lower speeds but the frequency of accidents are much higher.

Therefore, traf�c safety and ef�ciency need to be jointly considered.
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Transportation systems today rarely utilize the advantages of autonomous

and coordinated driving, however the future of transportation belongs to au-

tonomous driving and if used properly, it can optimize traf�c �ow, reduce GHG

emissions, reduce the number and/or the severity of accidents and as a result

reduce the number of fatalities.

2.1.1.2 Non-Technical Challenges

ˆ People & Culture: Proposing a new solution to a problem with societal

aspects will require convincing and training the people that will interact

with the system. In the context of intersection control, people have devel-

oped habits over a century and any attempt to make drastic changes to

the system has to be studied and analyzed from a psychological and so-

cial sciences perspective. Steps have to be carefully planned to address

society's skepticism, habits and attitude. More speci�cally, researchers

must not forget the important role of human beings as a part of the en-

tire system. This research provides a solution to the CIM problem that

requires minimal changes in terms of the interactions of users with the

system. This choice will ease the transition from the traditional traf�c

signals to a new system.

ˆ Time & Money: There are also challenges regarding the implementation

costs of a new solution in terms of money and time. "Can we afford to

buy and install the required equipment to implement the new system?",

"How long would it take to implement?", "What would be the costs of

transitioning from the old system to the new system?". These are just

some examples of very important questions that have to be answered in

order to decide about the feasibility of implementation of a new system

in the real-world.
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2.1.1.3 Technical Challenges & Motivations

Utilizing Connected and Automated Vehicles (CAVs) abilities in the context

of transportation systems has also introduced an array of technical problems

and challenges to the industry. This proposal will address challenges that are

speci�cally important for the Cooperative Intersection Management (CIM)

problem.

ˆ Legacy Systems: Intersections today are controlled by traditional tech-

niques such as traf�c signals and stop signs. New solutions to the CIM

problem need to be carefully designed to require minimal changes to the

systems that are already installed at intersections. This proposal will ad-

dress this problem with a strategy that is completely compatible with

legacy systems.

ˆ Coordination Architecture: From a control theory perspective, the liter-

ature on CIM can be divided into two categories of centralized and dis-

tributed methodologies [19]. Centralized CIM involves a coordination

unit that communicates with the vehicles, receives information about

vehicles' routing decisions and gives instructions to vehicles on how

and when to pass through the intersection. Distributed CIM relies on

the communications between vehicles through Vehicular Ad-Hoc Net-

work (VANET) to negotiate and agree on vehicle priorities to pass through

the intersection.

The centralized methodology has attracted more research in the past,

due to its simplicity, lower risk factors and compatibility with traf�c lights

methodology, compared to the distributed methodology. A major chal-

lenge in designing scheduler algorithms for centralized CIM is scala-

bility with respect to size of the intersection and level of traf�c. Meta-

heuristics and Mathematical methods such as Linear Programming (LP),

22



Integer Linear Programming, dynamic programming have been widely

applied to centralized CIM. These methods usually de�ne space tile and

time slot allocations for individual vehicles as the decision variables in

their formulation, ignoring optimal vehicle maneuvers through braking,

throttle, etc.

Distributed methodologies of�oad computation onto the vehicles' com-

puter systems. While distributed CIM eliminates the computational prob-

lems of the centralized CIM, it relies entirely on the performance of the

communication channel and the negotiation protocol, which has brought

up serious questions and concerns about its performance and safety

guarantee. With the absence of a central coordination unit, distributed

CIM is also not desirable for mixed-traf�c scenarios, i.e. the presence of

human-driven vehicles, pedestrians and cyclists among fully autonomous

vehicles. Due to the above issues, this proposal does not consider dis-

tributed control architectures as a candidate for mixed human-driven and

autonomous traf�c management.

ˆ Human-Driven Vehicles: One of the more challenging issues for future

CIM strategies is mixed-traf�c scenarios. This issue has been left unan-

swered for the most part in the literature as the focus has been on lever-

aging the autonomy related features of the CAVs to optimize the traf�c

throughput. Dresner et. al. [20] proposed a two-phase strategy that in-

volves a traf�c light phase to handle human-driven vehicle traf�c at an

intersection. Simulation results showed that the proposed mechanism

provides little or no improvement over today's traf�c signals when less

than 90% of the vehicles are autonomous.

More recently, in [21] Sharon proposed another mechanism that comple-

ments Dresner's original method to handle mixed traf�c scenarios. While

simulation results showed signi�cant improvements over the original ap-

proach, there are still questions regarding guarantee of safety and the
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requirement for expensive equipment that need to be addressed.

ˆ Communications: VANETs are a subclass of mobile Ad-Hoc networks

(MANETs), that is a promising approach for the future of intelligent trans-

portation system (ITS). These networks have no �xed infrastructure and

instead rely on the vehicles themselves to provide network functionality.

Since the CIM problem is a safety application, connectivity of the net-

work must be maintained and certain required performance guarantees

have to be de�ned with respect to network performance metrics such as

coverage and latency. The issues regarding communication are out of

scope of this research and will not be further discussed.

2.2 Proposed Methods

Chapter 3 proposes a platoon-based approach to CIM that addresses the ex-

isting scalability issues in the CIM literature. This is achieved through the uti-

lization of vehicle platoons which results in improvements in terms of average

vehicular delay, intersection throughput, fuel consumption and computational

and communication overhead.

However, the proposed method still has issues with respect to human accep-

tance, strict assumptions about the traf�c and applicability. Therefore, chap-

ters 4, 5 and 6 build towards an architecture and a set of algorithms that lever-

age the advancements in connected vehicles technology that relies on the ex-

isting infrastructure with minimal requirements for new infrastructure. This

results in a scalable signalized approach that is cost effective and accounts

for human driving. The proposed method offers signi�cant improvement in

system performance over the current state of the practice.
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Chapter 3

Platoon-Based Cooperative

Intersection Management

3.1 Introduction and Related Work

Traf�c Lights and stop signs are the major methods for traf�c control used at

intersections. While traf�c lights have helped improve traf�c �ow at intersec-

tions, they are still considered inef�cient and a contributor to traf�c conges-

tion and accidents. Statistically a majority of intersection-related accidents

occur in the presence of traf�c lights [2].

In the past two decades, adaptive and smart traf�c light controllers have been

introduced and deployed, with signi�cant improvements in terms of delay and

congestion. It has been shown that the performance of traditional traf�c lights

can be improved through machine learning based approaches such as Fuzzy

logic [14], neural networks [15] and Reinforcement Learning [16], and mathe-

matical models such as Mixed-Integer Linear Programming (MILP) [22]. How-

ever, traf�c lights have remained a major contributor to congestion and traf-

�c accidents. Moreover, while signalized intersections work well with human

drivers, they don't necessarily leverage the advantages associated with au-
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tonomous vehicles.

Recent advancements of Information Technology and the emergence of Ve-

hicular Adhoc Networks (VANETs) that support Vehicle to Vehicle (V2V), Vehi-

cle to Infrastructure (V2I) and Vehicle to Pedestrian (V2P) communications

have brought forth opportunities for further advancements of intersection

management infrastructure. This includes new non-signalized approaches

for the intersection management problem, commonly known as Cooperative

Intersection Management (CIM), where road users, i.e. vehicles communicate

with the infrastructure and/or other users to cooperatively coordinate the traf-

�c �ow.

In 2014, the Institute of Electrical and Electronics Engineers (IEEE) published

the Wireless Access for Vehicle Environments (WAVE) [23] speci�cation. The

standards de�ne architectures based on Dedicated Short Range Communica-

tions (DSRC) for which the Society of Automotive Engineers (SAE) has speci-

�ed message types and data elements through various standards. Due to the

limited capacity of current V2X communications, the communication complex-

ity is one of the critical issues for CIM [19].

The introduction of V2V communications has led to a new interest in vehicle

platooning, i.e. a group of vehicles that can travel very closely together, safely

at a set speed. Vehicle platooning is usually achieved through cooperative

adaptive cruise control (CACC) systems. In CACC, communication between

vehicles provides enhanced information so that vehicles can follow their pre-

decessors with higher accuracy, faster response, and shorter gaps. This will

result in an enhanced traf�c �ow.

In [24] Lioris et al. study the effects of platooning on a network of signalized

intersections with �xed time control. The results showed that the network

will support an increase in demand by a factor of two or three if all saturation

�ows are increased by the same factor, while maintaining the same average
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delay and travel time per vehicle.

This chapter proposes a method to take the �ndings in [24] further to take ad-

vantage of V2I communications and utilize information received from platoon

leader vehicles to achieve optimal intersection control policies.

3.2 Cooperative Intersection Management

Several methods have been proposed to leverage autonomous and connected

vehicles for the intersection management. The new methodologies for CIM

can be categorized into two classes of Centralized and Distributed methods [25].

In centralized methods, a central intersection manager unit receives real-time

information and requests from road users and decides how to coordinate the

traf�c �ow, e.g. instruct vehicles how, when and if to pass the intersection.

Distributed methods, on the other hand, do not rely on a central control unit.

Instead, all vehicles collaboratively plan their trajectories. These methods usu-

ally involve negotiation protocols to make decisions on a high level and each

user/vehicle makes decisions based on shared objectives given local informa-

tion from its sensors on a lower level.

3.2.1 Centralized Methods

In [26], Dresner et al. propose a centralized resource reservation algorithm

based on First Come First Serve (FCFS) policy. The control unit receives re-

quests from all vehicles approaching the intersection, simulates the vehicle's

movement through the intersection, given the information in the request, and

con�rms the request if there is no con�ict with previously accepted trajecto-

ries, otherwise the request would be rejected and the vehicle has to request at

a later time. The authors assume constant speed at the intersection and per-
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form simulations comparing results with a traf�c light and an overpass.

It was shown that the proposed method outperformed traf�c light in terms of

average vehicle delay. The authors further developed their work in [27] to add

several methods to improve the performance and overcome major disadvan-

tages of the previous work. Moreover, they improved the work in [20] and [21]

by adding support for human drivers, considering emergency vehicles that

generally have higher priority, and communication schemes for vehicles with

different levels of autonomy.

In [28], a case of two merging roads (one lane) is modeled as a polling system

with two queues and one server. The polling system determines the sequence

of times assigned to the vehicles on each lane to enter the merging road. The

arrival times along with the trajectories of the leading vehicle are then used in

a coordination algorithm to generate optimal trajectories for each vehicle in

the queue.

Lee and Park [29] derive a nonlinear constrained optimization problem to en-

hance the performance a traf�c signal controller in presence of fully autonomous

vehicles. A phase con�ict map of the traf�c signal is used as part of the opti-

mization problem.

3.2.2 Decentralized Methods

In [30] a controller model has been proposed along with different V2V-based

intersection management protocols to enhance traf�c throughput and safety.

Each vehicle runs a collision avoidance algorithm that takes in all safety mes-

sages that are being broadcast by surrounding vehicles and detects possi-

ble collision. Estimations are then used to generate alternative trajectories to

avoid collisions.

Wu et al. [31] proposed a decentralized stop-and-go based algorithm that relies
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on wireless shared information among all approaching vehicles. The vehicle

with a shorter estimated arrival time will cross the intersection, while others

will need to come to a complete stop until the con�ict zone is cleared. Vehi-

cles with non-con�icting turning movements can cross simultaneously.

3.2.3 Motivation and Contributions

The existing approaches are limited with respect to at least one of the follow-

ing factors:

ˆ unrealistic or infeasible bandwidth requirements for communication

ˆ no performance guarantees, i.e. no guarantee that the intersection will

behave better than signalized intersections

ˆ no formal safety guarantee

ˆ scalability with respect to number of cars and lanes

ˆ unrealistic assumptions about vehicle behavior

Any solutions for the CIM problem has to be compatible with real world com-

munication capacity of vehicular networks, otherwise such solutions will not

be feasible. To address this issue I propose a platoon-based approach where

vehicles request a pass as a platoon. The intersection manager utilizes an op-

timization based policy to allocate slots in time and space for any platoon ap-

proaching the intersection. Communicating with platoon leaders, instead of

every approaching vehicle, decreases the amount of communication needed.

This approach also takes advantage of recent advances in platooning and

connected vehicle control.

The performance of the solution has to be veri�ed with respect to various per-

formance metrics such as average delay, intersection throughput, average
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speed, fuel consumption, etc. Microscopic simulations are conducted to ver-

ify the performance of the proposed method in comparison to a pre-timed 4-

phase traf�c light controller. Table 3.1 shows the performance metrics used in

this work.

The solution has to be scalable to growing number of roads/lanes and vehi-

cles. A scalable solution is achieved by only taking the information from the

closest platoons to the intersection at each iteration. This guarantees that the

computational complexity of the algorithm remains relatively unchanged as

the size of the input grows.

Most of the previously published papers make simplistic assumptions about

vehicle dynamics, e.g. second order dynamics where the control input gener-

ates instant accelerations, disregarding disturbance forces, and oversimplify-

ing the driving force, which is a function of throttle and brake positions among

other factors. In this chapter, A model for vehicle dynamics is utilized to gen-

erate more realistic results when compared to the relevant literature. These

assumptions help design control strategies that are more feasible for use in

the real world.
Table 3.1: Performance Measure Index

Performance Measure Index

Performance Index Unit

Average Delay s

Delay Standard Deviation s

Intersection Throughput veh/hour

Fuel Consumption ml/veh

3.3 Platoon-based Intersection Management

In [32] I proposed that platooning in the vicinity of intersections could reduce

communication overhead by allowing platoon leaders to negotiate with the
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infrastructure and other platoons on behalf of the followers. Moreover, it can

help improve the ef�ciency of any scheduling policy by enabling smooth tra-

jectories in the con�ict zone. The simulation results showed that the proposed

stop-sign based controller outperformed a regular stop sign by 50%in terms of

average delay per vehicle and40%in variance of delay. The proposed policies

decrease computational complexity by only including one platoon per lane into

the schedule.

3.3.1 Modifying the Policies to Enhance the Traf�c Flow

[32] introduced a reservation-based policy that utilizes cost functions that

minimize delay, or a combination of delay and variance, to derive optimal sched-

ules for platoons of vehicles. Such schedules would decrease average de-

lay per vehicle while decreasing the variance in delay due to the fairness of

the cost functions and as a result increase intersection throughput and de-

crease the average fuel consumption in the vicinity of an intersection. The

proposed policy guarantees safety by not allowing vehicles with con�icting

turning movement to be in the con�ict zone at the same time.

In this work, the policies in [32] have been modi�ed, a communication protocol

is designed and some of the simplistic assumptions about vehicle dynamics

have been removed to achieve the following goals:

1. Achieve a solution under realistic assumptions

2. Improve ef�ciency in terms of delay and fuel consumption

3. Design a communication protocol that hides the algorithm from the vehi-

cle agents
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3.3.1.1 Communication Protocol

A protocol is designed to ease the Vehicle to Vehicle (V2V) and Vehicle to In-

frastructure (V2I) communications. Using this protocol, the intersection man-

ager only has to communicate with the leader of a platoon. Each vehicle is

broadcasting its state on a 10Hz frequency, while receiving incoming packets

on the same frequency. There are four types of packets designed for the pla-

toon leaders and two types for the infrastructure as follows.

Vehicle Message Types:

ˆ Request

ˆ Change-Request

ˆ Acknowledge

ˆ Done

Infrastructure Message Types:

ˆ Acknowledge

ˆ Con�rm

ˆ Reject

Approaching platoon leaders send a Requestmessage once they are in a pre-

de�ned proximity of the intersection, and await the response from the man-

ager. Both Requestand Change-Requestmessages consist of the unique Ve-

hicle Identi�cation Number (VIN) of the leader, current position, velocity and

acceleration of the leader, estimated arrival time at the con�ict zone and the

size of the platoon, e.g. number of followers.

Upon receiving a request, the manager sends anAcknowledge message to

the sender, runs the scheduler and responds with either an Con�rm or a Re-
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ject message. The manager expects to receive an Acknowledge from the cor-

responding vehicle and if such message is not received, it re-sends the mes-

sage until the acknowledgement is received. The vehicles can send a Change-

Requestmessage to the manager if they need to update information in their

previous request. Once a vehicle has �nished crossing the con�ict zone, it

is required to send a Donemessage to the manager, which lets the manager

know it can remove the corresponding vehicle's platoon from the schedule.

This protocol is designed to hide the scheduling policy from the vehicle agents,

therefore allowing for online changes to the policy without requiring any changes

in communications.

3.3.1.2 Policy

The scheduling problem is formulated as the following minimization problem.

arg min
s

� (s) = f s j s 2 S ^ 8 s0 2 S : � (s) � � (s0)g (3.1)

Wheres is a schedule of vehicles (platoons), � is a cost function designed to

penalize total delay and variance in delay, given a schedule, as in Equations 3.2

and 3.3.
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� 2(s) =
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i =1

tc(pi )

!

(3.3)

In the above equations, N is the number of platoons in the schedule, j is the

platoon's turn, d is a function that returns the sum of the current delay of the

vehicles within a given platoon, and again s is the given schedule. This delay, d,

is the difference between the vehicle's original expected arrival time and its

expected arrival time assuming it will be the next platoon going through. tc is

33



a function that computes the additional delay caused by the platoons that are

given higher priorities than the j th platoon in the schedule.

The scheduler in Equation 3.1 essentially simulates all possible schedules

given the set of platoons in the queue, and returns a schedule that has the

lowest score in terms of the cost function � 1(s) or � 2(s). For the rest of this

chapter, � 1(s) and � 2(s) will be referred to as Platoon-based Variance Minimiza-

tion (PVM) and Platoon-based Delay Minimization(PDM), respectively.

The scheduling procedure will be called by the controller every time a change

is detected in the set of platoons in the schedule. For example, the procedure

is called when a platoon �nishes crossing the con�ict zone and as a result is

removed from the schedule, or when a new platoon enters the communication

zone.

The controller keeps a record of the most recent schedule and sends a mes-

sage to the platoon that is at the top of the queue. The controller also checks

for non-con�icting turning movements in the schedule with that of the platoon

at the top of the queue, and lets them cross the intersection simultaneously.

The clearance time of the intersection is then updated by the maximum esti-

mated clearance time of the platoons that are crossing the con�ict zone.

Algorithm 1 shows the intersection management algorithm in pseudo code.

The algorithm considers at most one platoon for each lane that is in the com-

munication range of the central controller, i.e. the leading platoon in each lane.

Such design makes the policy scalable, in that the computational complexity

of the scheduler remains suitably low as the number of incoming lanes grow.
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Algorithm 1 Autonomous Intersection Manager

1: function IntersectionManager
2: while T rue do
3: P = getRequests() a

4: sort(P)b

5: pool= selectCandidates(P)
6: if !pool:isUpdated() then
7: continue c

8: end if
9: [platoons; schedule] = getSchedule(pool)

10: i = 1
11: for platoon in platoonsdo
12: update(platoon; schedulei )
13: i + +
14: end for
15: end while
16: end function

aWhere P is a map of platoons paired with their respective request information
bSort the platoon list based on their expected arrival time to make the candidate selection run
faster

cSkip this iteration if the selection pool has not changed

3.3.1.3 Computational Complexity

The algorithm considers all permutations of the set of platoons, including

possible non-con�icting trajectories in which case simultaneous crossing

is considered. These permutations can be modeled as a permutation prob-

lem to pick from K elements without replacement and placing them in sets

of f K; K � 1; :::; 1g placeholders. Therefore, the worst case computational

complexity of such algorithm would be equal to the number of possible per-

mutations, given in Equation 3.4.

T =
NX

r =1

r � 1X

i =0

(� 1)i

�
r
i

�
(r � i )N (3.4)

In the above equation, T is the total number of possible schedules, N is the

number of lanes, r and i are index counters. One may note that the exponen-

tial nature of this complexity can only be acceptable for small number of in-
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coming lanes. It can be shown that the algorithm will have the worst case

computational complexity of O(N N ). For example, the 4-way intersection con-

sidered in this work would only require 75 possible schedules to be considered

in the worst case. Due to space constraints, the details and proof of computa-

tional complexity are omitted.

A heuristic is proposed for larger intersections to reduce computational com-

plexity. The proposed heuristic does not consider non-con�icting trajectories

and therefore reduces the complexity to the number of possible permutations

which is exactly N !, i.e. computational complexity of O(N !). After a schedule

is selected, the controller allows those platoons with non-con�icting trajecto-

ries with regard to the selected platoon to cross the intersection simultane-

ously.

Fig. 3.1 demonstrates how the proposed heuristic ignores the platoons be-

hind the closest platoon to reduce the computational complexity. The pla-

toons/cars in red represent the ignored input to the algorithm. This �gure also

serves as a visual aid to represent the geometry and turning policy of the inter-

section that was used for the simulations.

Figure 3.1: 4-way Intersection Geometry
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3.3.1.4 Simulations

A �xed-time 4-phase traf�c light controller is tuned for the 4-way intersection

shown in Fig. 3.1. The phase plan and timing diagram of the baseline traf�c

light policy are shown in Figs 3.2 and 3.3 respectively.

Figure 3.2: Phase Plan

Figure 3.3: Timing Diagram

To compare the performance of the two proposed methods against the base-

line policy, 20 scenarios are designed by choosing different parameter set-

tings in terms of incoming traf�c �ow and maximum platoon size. Each pol-

icy is evaluated for every variation of the two parameters in table 3.2. The in-

coming traf�c �ow is equal on all approaches with 70%of the traf�c going

straight, 20%turning right and 10%turning left. To minimize the in�uence of

randomness, each simulation is run for 60 minutes.
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Table 3.2: Simulation Parameters

Parameter Name Set of Values unit

Traf�c Level {300,400,500,600} veh/hour/lane

Simulation Time {3600} s

Maximum Platoon Size {1,2,3,4,5} veh

Recorded videos of simulation for PVM1 and PDM2 are available.

Figs 3.4, 3.5, 3.6 and 3.7 demonstrate the results in terms of delay per vehicle,

delay standard deviation, intersection capacity and fuel consumption, respec-

tively. To conserve space and promote readability, the results are aggregated

over the set of values for the traf�c level parameter.

According to Fig. 3.4, the proposed methods signi�cantly outperform the traf-

�c light controller in terms of average delay per vehicle. Fig. 3.5 shows the

computed standard deviation of delays throughout the entire simulations for

each policy and the set of maximum platoon sizes. It can be seen that the PVM

method signi�cantly decreases the standard deviation compared to the traf�c

light, while as expected, PDMdoes not show a meaningful improvement in

terms of delay variance as its cost function is designed to solely decrease to-

tal delay.

1https://youtu.be/RtN0f7BlFyg
2https://youtu.be/qHGv9LF72NA
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Figure 3.4: Average Delay Per Vehicle

Figure 3.5: Delay Standard Deviation

Figure 3.6: Intersection Traf�c Flow

Figure 3.7: Fuel Consumption
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One may also note that the maximum platoon size and the PVM and the traf�c

light performance are negatively correlated, which con�rms the positive effect

of platooning on the performance of any type of traf�c controller.

Fig. 3.6 shows that platoon size and intersection capacity are positively corre-

lated for all policies. For the traf�c light policy, larger platoons result in more

smooth trajectories with shorter headways, and as a result increases the out-

going traf�c �ow. Larger platoons also help the proposed policies select bet-

ter schedules in terms of total delay and variance, which ultimately will in-

crease the outgoing traf�c �ow. In the simulations, PVM policy outperformed

traf�c light for all incoming traf�c �ows and platoon sizes.

Fig. 3.7 shows fuel consumption per vehicle as a function of platoon size. As

expected, platoon size and fuel consumption are strongly correlated. PVM

and PDMpolicies outperform traf�c light by 8%and 13%on average, respec-

tively. This result can be explained by the shorter idle times generated by PVM

and PDMcompared to the traf�c light policy. According to the fuel consump-

tion model adopted in the simulations, the vehicles consume fuel at a rate

of 0:15ml=s when idle.

Table 3.3: Aggregated Results

Traf�c
Light

PVM PDM PVM-
Improvement

PDM-
Improvement

Delay(s) 43:26 6:56 22:71 6:6� 1:9�
Capacity(veh/h) 1388 1617 1426 13:8% 2:7%
FCPV(ml/v) 84 77 73 8% 13%
STDEV(s) 31:44 6:37 30:48 4:9� 3%

To compare the overall performance of the policies, results from all con�gu-

rations are aggregated into table 3.3. All the metrics in this table are averaged

over the set of incoming traf�c �ows that range from 500to 800v=h=l. Traf�c

�ows are identical for each approach.

The PVM method outperforms the traf�c light policy on all four metrics. More

notably, it decreased average delay per vehicle by factor of 6:56� and decreases
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the standard deviation to 4:9� , resulting in faster and more reliable traf�c

�ows. The PVM policy also increased the intersection capacity by 13:8%com-

pared to traf�c light.

The PVM and PDMpolicies both outperform the traf�c light in terms of fuel

consumption by 8%and 13%respectively [33].

3.4 Conclusions

In this chapter, a centralized platoon-based controller was proposed for the co-

operative intersection management problem that takes advantage of the pla-

tooning systems and V2I communication to generate fast and smooth traf�c

�ow at a single intersection. A simple communication protocol was designed

for V2I communication and two policies were introduced for the controller to

minimize total delay and delay variance according to the cost functions tai-

lored for platoons of vehicles.

According to the simulation results, the proposed controller minimizes travel

delay and variance while increasing intersection throughput and reducing fuel

consumption, when compared to traf�c light policies. The simulations also

verify the positive effect of platoon size on fuel consumption and intersection

throughput.

There are several limitations to the proposed method that became a motiva-

tions for the research leading to the methods proposed in the next chapters.

The main limitation is the assumption of market penetration rate of CAVs be-

ing at 100% which is unrealistic at least for the next few decades. The pro-

posed method cannot adapt to the presence of human-driven vehicles or other

vehicle road users incapable of communicating to the controller.

Other limitations of this work include the simplistic assumptions about pla-
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toon formation/merging and vehicle dynamics and control, lack of consider-

ation for emergency situations such as accidents or communication issues,

and no formal guarantee for safety. The latter is addressed in the next chap-

ter by adapting a traf�c signal approach to the problem which is known to be

formally safe by not granting the simultaneous entrance to vehicles with con-

�icting trajectories.
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Chapter 4

Optimal Signal Timing

This chapter will focus on the optimal signal timing problem. We identify the

main limitations of previous work and discuss how the proposed data-driven

method addresses each of these concerns.

4.1 Motivations

As mentioned in the previous chapter, CIM methods (including the proposed

method in Chapter 3) have several limitations:

ˆ Unrealistic or infeasible bandwidth requirements for communication

ˆ No performance guarantees, i.e. no guarantee that the intersection will

behave better than signalized intersections

ˆ No formal safety guarantee

ˆ Scalability with respect to number of cars and lanes (High Computa-

tional Complexity)

ˆ Unrealistic assumptions about vehicle behavior
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Another issue with the CIM approach is the long transition period within which

autonomous and human-driven vehicles will co-exist on the roads, which calls

for introduction of novel methods that can handle mixed-traf�c situations,

while leveraging autonomy and communication.

This chapter proposes a traf�c signal based approach to guarantee safe tra-

jectories with no con�ict of paths. It is based on realistic assumptions about

v2I communications, relying on basic safety messages (BSM) as de�ned in

SAE J2735 message set dictionary [34]. BSMs convey basic vehicle state in-

formation necessary to support vehicle safety applications. The proposed

method is capable of adopting BSMs to improve its traf�c state estimations.

The proposed method trains a learning model based on data generated through

VISSIM, an industry standard traf�c simulation software that uses detailed

and realistic vehicle dynamics and driver behavior models. Microscopic mod-

els provide further detailed information about individual vehicles in traf�c

when compared to macroscopic models that rely on aggregating individual

vehicle state information.

Moreover, the complexity of the proposed model is not a function of traf�c

level or the size of the intersection, hence, eliminating the scalability issues of

some of the previous work in the CIM literature.

4.2 Data-Driven Signal Timing

To achieve optimal signal timing plans, we propose a data-driven method that

relies on building a model utilizing recorded traf�c data from the network. As

a traf�c signal based method, it provides the safety measures inherent to a

traf�c signal; namely no vehicles with con�icting trajectories will be allowed

to cross the intersection simultaneously. It relies on Vissim's vehicle dynam-

ics and driving agent model, which are more realistic compared to the macro-
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scopic models and second order dynamics models in the literature. Moreover,

the proposed signal timing model's computational complexity is agnostic to

the level of traf�c or the size of the network, making it a suitable for large and

busy urban networks.

The proposed method consists of three stages of Scenario Design, Data col-

lection and Preparation, and Model training. The entire source code of this

approach is available online1. The data generation process is described in

pseudo code in algorithm 2.

Algorithm 2 Data Generation Algorithm

T  getT raf f icV alues ()
C  getCycles()
L  getLostT imes()
for all t 2 T do

for all c 2 C do
for all l 2 L do

G  genGreenT imes(t; c; l)
for all g 2 G do

result  simulate(t; c; l; g)
save(result )

end for
end for

end for
end for

4.2.1 Scenario Design

Scenario design is the process of developing scenarios to cover traf�c con-

ditions that the network is expected to experience. The �rst step in designing

scenarios is to identify all the variables that affect the traf�c controller's per-

formance. Incoming traf�c �ows, cycle length, green times and intersection

lost time were considered as the main variables contributing to the intersec-

tion controller's performance. Scenarios were designed for three isolated 4 �

way intersections to cover traf�c �ows in the range of under-saturated condi-

1source code
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tions to saturated conditions, various total lost times in the range of (4s;24s)

and all combinations of the scenario variable values. The interactions between

traf�c �ow variables were designed to cover a range of scenarios from highly

unbalanced to completely balanced with regards to lane group traf�c volumes.

The value ranges used in the simulations are presented in table 4.1.

Table 4.1: Data collection scenario settings

Input Variables

Notation Range of Values Number of Values unit

Total traf�c F (0:3; 1) � s � w 7 veh/hour

Lane group traf�c �ow f i (0:1; 0:7) � F;
P

f i = F 296 veh/hour

Total lost time L 8 1 s

Cycle length C {40, 50, ..., 190, 200} 17 s

Effective Green time gi f 1
4 ; f i

F ; rnd1; rnd2g � (C � L) 4 s

Simulation Settings

Parameter Notation Value Unit

Simulation time T 60 Minutes

Saturation �ow rate (ideal) s 1900 veh/hour/lane

Intersection width (# of lanes) w {4,4,6} lane

# of Scenarios Sc 140896 -

# of optimal scenarios (dataset size) nopt 2072 -

4.2.2 Intersection Model

Three intersection models were designed for this work. Figs. 4.1, 4.2, 4.3, 4.4, 4.5

and 4.6 demonstrate the intersection models in PTV Vissim [35] and the phase

diagrams of the signal controllers for the three intersections respectively.

The �rst intersection is controlled by a 4-stage signal controller, where each

stage is dedicated to one leg of the intersection. The second intersection is

a larger network with a different setup in terms of vehicle routes and is con-

trolled by a 3-stage signal controller as depicted in Fig. 4.4. The third intersec-

tion is controlled with a 4 � phasesignal controller with two protected phases

for the left turn movements.
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Figure 4.1: Intersection Model
1 in Vistro

Figure 4.2: Phase Diagram of
the Signal Controller 1

Figure 4.3: Intersection Model
2 in Vistro

Figure 4.4: Phase Diagram of
the Signal Controller 2
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Figure 4.5: Intersection Model
3 in Vistro

Figure 4.6: Phase Diagram of
the Signal Controller 3

4.2.3 Data Collection

All scenarios were simulated in Vissim through the Component Object Model

(COM) interface. Vissim reports various performance metrics at the end of

each simulation. All reported metrics along with the con�gurations were recorded

for each of the simulation scenarios. The collected data would later be �ltered

to contain only best results with regard to a selected performance metric and

be set up as the training set for the learning model.

4.2.3.1 Filtering

The �nal step of data collection is to �lter the raw data to only include best set

of variables in terms of the selected objective. In this work, average vehicular

delay is selected as the performance metric to optimize. However, one has the

choice to select other performance metrics that are reported for any simula-

tion in the Vissim software.

Table 4.2 lists the predictor variables and possible target variables (metrics).

One should note that the choice of recording multiple target variables makes
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it possible to build multiple optimal cycle models based on one or a combina-

tion of these variables.

Table 4.2: Predictor variables and possible target variables.

Predictor Variables
Variable Name Notation Unit

Lane Group Traf�c Flow f i 1/sf
Lost Time L s

Total Traf�c Flow F 1/sf
Target Variables

Delay Per Vehicle d s
Stop Delay Per Vehicle ds s

Fuel Consumption per Vehicle fc liter
Intersection Throughput t veh/s
Delay Standard Variation dstd s

4.2.4 Signal Timing Model

The next step is to build a model that estimates appropriate green times given

the estimated values of the predictor variables, i.e. the traf�c �ows and total

lost time of the intersection. This problem is known as multi target regres-

sion (MTR).

It should be noted that while the predictors and target variables above are well

established as the input/output variables to a signalized intersection con-

troller, one could restructure the problem de�nition and establish a different

set of predictor and target variables. For example, an end-to-end solution to

the problem could consider the predictor variables to be total incoming traf�c

and some type of sensor readings or communicated information from vehi-

cles. However, this dissertation adopts a modular design where traf�c �ow es-

timation and signal timing are divided into two separate modules. The choice

of modular design offers several bene�ts compared to a monolithic design.

The bene�ts include minimizing safety-related issues, reducing costs to de-

ploy and maintain and fewer resource requirements.

49



Reinforcement learning (RL) is among popular approaches in the CIM liter-

ature where an intersection or a network of intersections are controlled us-

ing reinforcement learning technique. The intersection controllers learn value

functions with the aim of choosing policies that optimize metrics such as the

average delay and congestion.

[36] proposed a method that utilises the Q-Learning algorithm [37] with a feed-

forward neural network for value function approximation. A two ring struc-

ture is assigned to each of the intersections with each ring consisting of four

phases. The policies enable the controller to select an action among the eight-

phase combination schemes.

The above approach has proved to be effective in simulations; however, de�n-

ing the problem as selecting optimal policies makes the solution hard to inter-

pret and as a result does not provide much insight to a traf�c engineer. Fur-

thermore, real-time selection of phase-combinations could cause confusion

making the approach unappealing to drivers. The proposed approach in this

dissertation however, provides a signal timing model that is easy to gain in-

sights from and makes no sudden changes to the policy.

Given the problem de�nition and the fact that all input and output variables are

scalars, a fully connected neural network is a natural candidate for the learn-

ing model. However, to ensure the performance, several models were built

using techniques such as linear regression [38], gradient boosting decision

trees [39] and deep neural networks [40]. After comparing the accuracy and ro-

bustness of the trained models, a neural network (Multi Layer Perceptron) was

selected to build the model.
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4.2.4.1 Learning Model

To select the exact structure of the multi-layer perceptron we compared sev-

eral models with an emphasis on maximizing the convergence rate and mini-

mizing the computational overhead in the training phase.

Fig. 4.7 compares the convergence rate of different model structures for the

�rst intersection. The graph represents logarithmic loss values (as de�ned in

Equation 4.1) throughout 1000epochs. According to Fig. 4.7 the model with 7

hidden layers and 32neurons in each layer has the highest convergence rate,

however, we picked the model with the second fastest convergence due to its

lower computational complexity and the fact that it achieves similar perfor-

mance when compared using the test set.

Similar learning models were selected for the other two intersections, with the

exception of the second model's number of neurons in the output layer that

was set to 3 to represent the three phases of the signal controller.

Figure 4.7: Model's training loss

Fig. 4.8 demonstrates the structure of the selected multi layer perceptron

(MLP) that was designed as the learning model. It should be noted that while

the general structure of the network and the chosen activation functions re-
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main the same regardless of the intersection model, the exact number neu-

rons at the output layer are different for a given intersection, e.g. they match

the number of phases designed for the intersection that the network is de-

signed for. The numbers shown in this �gure represent the parameters opti-

mized for the �rst intersection's signal timing model.

Furthermore, the number of epochs for training was separately determined

based on the early stopping method for each intersection. Each intersection's

data set was divided into 70% training set and 30% validation set. The network

was trained with the training set and evaluated with the hold out validation set

until the network's performance (MSE) stopped improving. The epoch at which

the model stops improving (stuck in minima) was selected as the number of

epochs to train on the entire dataset for �nal simulations.

Figure 4.8: Schematic Diagram of the Training Model

The network consists of an input layer with �ve neurons that feed the input

variables into the network, an output layer with four neurons that output the

four estimated optimal green times, and �nally �ve hidden layers of 32 neu-

rons. The number of hidden layers and the number of neurons in each layer

was carefully chosen to avoid an unnecessarily complex structure while pre-
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serving an acceptable performance in terms of the training loss. In addition,

the selection of a shallower model is less likely to result in over�tting.

Recti�ed linear unit (ReLU) was selected for activation of hidden layer neu-

rons. The choice of ReLU helps with the sparsity of the activation of neurons

but mapping negative values to zero. This will help in decreasing the number

of neurons �ring, especially when compared to sigmoid type activation func-

tions such as tanh that cause almost all neurons to �re.

Since the objective is to build a regression model, mean squared error (Equa-

tion 4.1) was selected as the loss function. Furthermore, the input variables

are normalized, and linear activation (a.k.a. no activation) is utilized on the

output layer.

MSE =
1
n

� n
i =1 (yi � ~yi )2 (4.1)

In the above equation, yi and ~yi represent ground truth and predicted values

for the i th phase's green time.

4.2.4.2 Computational Complexity of The Model

We divide the computational complexity of the proposed model into two cat-

egories of training complexity and testing complexity. The training complexity

refers to the computational complexity of training the model which involves

the complexity of the feed-forward pass algorithm and the back-propagation

algorithm. The combined computational complexity can be written as:

O(nt �
L � 1X

i =1

kl i k � k l i +1 k) (4.2)

Where,n is the number of epochs, t is the number of training samples, L is

the number of layers, and kl i k refers to the number of neurons in the i th layer.
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Omitting the constants in equation 4.2 results in:

O(nt) (4.3)

One should note that the time complexity calculated above is for the training

of the model and will not affect the performance of the model when deployed.

The time complexity of the model in testing and deployment phase, here re-

ferred to as the testing complexity can be written as the following:

O(
L � 1X

i =1

kl i k � k l i +1 k) (4.4)

Equation 4.4 shows that the proposed model has a linear time complexity in

deployment phase, i.e. it is real-time responsive.

4.2.5 Handling Input Noise

An important aspect of a regression model is its robustness against input

noise. We specially care about this because the input to our model will be esti-

mates of the traf�c's state through sensor readings and communications from

CAVs as will be discussed in the next chapter.

We perform variance-based sensitivity analysis [41] on the �rst intersection's

trained model to understand how the uncertainty in the model's predictions

can be apportioned to the uncertainty in the predictors. Same analysis was

performed on the other intersection models that yielded similar results. Variance-

based sensitivity analysis allows full exploration of the input space, which in

the case of our model includes the estimations of incoming traf�c �ows as

well as the estimated total lost time.
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4.2.5.1 First Order and Total Order Indices

Given a model of the form Y = f (X 1; X 2; :::; X k), with Y a scalar, a variance

based �rst order effect for a generic factor X i can be written as:

VX i (EX � i (Y jX i )) (4.5)

In equation 4.5, X i is the i � th factor and X � i denotes all factors but X i . The

inner expectation operator can be interpreted as the mean of output Y taken

over all possible values of X � i , while keeping X i �xed; and the outer variance

is taken over all possible values of X i . The associated sensitivity measure

called �rst-order sensitivity index, is written as equation 4.6. First-order index

measures the main contribution of an input parameter to the output without

considering its interaction with the other input parameters.

Si =
VX i (EX � i (Y jX i ))

V(Y)
(4.6)

To understand the total contribution of each input variable, we also study the

total effect index de�ned in equation 4.7.

ST i =
EX � i (VX i (Y jX � i ))

V(Y)

= 1 �
VX � i (EX i (Y jX � i ))

V(Y)

(4.7)

The total effect index captures the contribution of all terms in the variance de-

composition which do include X i .

4.2.5.2 Analysis Results

Input samples were generated to cover the range of values that were consid-

ered in the data generation phase. Since all input and output values were nor-
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malized before used in training, a range of (0,1) was selected for each of the

input variables. Since the output of the trained model is a vector of size four,

representing the four green times, sensitivity indices were averaged over the

output scalars.

Fig. 4.9 demonstrates the contributions of input variables to the uncertainty

in the predicted optimal green times in the form of �rst-order and total-order

index as de�ned in equations 4.6 and 4.7. The �rst-order sensitivity index for

Figure 4.9: Sensitivity analysis results of the model.

traf�c �ows is signi�cantly low which suggests low sensitivity to error in esti-

mations of incoming traf�c. Moreover, cycle lost time is the main contributor

to the variance in estimated green times. This makes intuitive sense, since

green times are expected to grow as the lost time increases. The sensitivity

analysis results verify the model's robustness against noisy traf�c �ow esti-

mations which is the case in real-world scenarios. It should be noted that high
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sensitivity to the lost_time input variable will not take away from the model's

robustness since this variable is a part of the design of the intersection and its

controller and does not include any variable noise in practice.

4.3 HCM Analysis and Comparisons

A set of scenarios were designed to compare the performance of the trained

models with that of the HCM methodology. The scenarios were designed to

re�ect different levels of traf�c volume and the imbalance of the incoming

traf�c. The results show that the trained models were able to outperform the

HCM model in terms of average vehicular delay.

4.3.1 HCM Methodology and Analysis of its Optimal Cycle Length Formula

The proposed model's performance was compared to that of the HCM anal-

ysis procedure [42] which provides estimates of saturation �ow, capacity, de-

lay, level of service (LOS), and back of queue by lane group for each approach.

PTV Vistro macroscopic simulator offers a selection of analysis methodolo-

gies such as the Highway Capacity Manual (HCM) 2000, 2010 and 6th Edition.

HCM 6th edition was used as the compared methodology. Fig. 4.10 demon-

strates the HCM intersection analysis model structure that consists of �ve

modules.

Module 1 (Input) considers parameters such as traf�c, geometric and signal-

ization conditions. Module 2 is concerned with conversion of hourly demand

volumes to peak 15-min �ow rates and establishing the lane groups. Module 3

estimates saturation �ow rates (si ) for each of the established lane groups.

Volume to saturation �ow ratios (v=s) i and capacities (ci ) for lane groups are

computed in Module 4 to determine critical lane groups. Signal timings are

modi�ed according to the computed v=sratios of the critical lane groups. The
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Figure 4.10: HCM Model Structure

last module estimates performance metrics such as individual and aggre-

gated control delays for each lane group.

HCM offers two objective functions for analysis of the signalized intersection;

(1) balancing volume to capacity ratio and (2) minimizing critical movement

delay. The latter was selected for the comparisons, since it yielded better re-

sults in terms of average delay.

The HCM method utilizes Webster's Formula [6] to estimate the optimal cycle

length (equation 4.8):

Copt =
1:5L + 5

1 �
P n

i =1 (v=s)ci
(4.8)

In the above equation, C is the estimated optimum cycle length to minimize

average control delay. L and (v=s)ci are total lost time per cycle and �ow ratio

for critical lane group i , respectively.Moreover,v is the estimated �ow rate for

critical lane group i and s is saturation �ow rate.

The average control delay experienced by all vehicles that arrive in the analysis
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period (T) can be determined by equation 4.9:

d = d1(PF) + d2 + d3 (4.9)

where PF is uniform delay progression adjustment factor and d1; d2; d3 indi-

cate uniform control delay, incremental delay, and initial queue delay, respec-

tively. The uniform delay and incremental delay can be estimated as:

d1 =
0:5C(g=C)2

1 � [min(1; 1=X)g=C]
(4.10)

d2 = 900T
h
(X � 1) +

r

(X � 1)2 +
8klX
cT

i
(4.11)

Whereg denotes effective green time for lane group, and X = v=cis ratio or

degree of saturation for lane group, where c shows the approach capacity. k

and l are incremental delay and upstream �ltering/metering adjustment fac-

tors.

The third term of lane group control delay refers to the delay due to a residual

queue identi�ed in a previous analysis period and persisting at the start of the

current analysis period. This delay can be estimated as the following general

form:

d3 =
1800Qb(1 + u)t

cT
(4.12)

where

t =

8
>><

>>:

0 Qb = 0

minf T; Qb
c[1� min(1 ;X )] g o:w:

u =

8
>><

>>:

0 t < T

1 � cT
Qb[1� min(1 ;X )] o:w:

Qb, t and u are initial queue, duration of unmet demand and delay parameter,

respectively.

In the following, an analytical study of HCM's formula for estimating the opti-
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mal cycle length (i.e. equation 4.8) is presented. This analysis formally studies

the sensitivity of HCM's formula for optimal cycle length to its parameters.

We build our analysis based on the assumption that the values set for satu-

ration �ow rate parameter s for each lane group have been included with a

margin of safety (i.e. saturation �ow rates are underestimated). The margin

of safety is shown by � and the measured parameters are:

si = (1 � � )sr
i ; 0 < � < 1; 8i 2 f 1; : : : ; ng (4.13)

sr is the actual measured values in the �eld.

Theorem 1. Involving margin of safety � in s will cause an over-estimation in

cycle length.

Proof. Based on the assumption, the estimated cycle length can be written as:

C =
1:5L + 5

1 � 1
1� �

P n
i =1 (v=sr )ci

(4.14)

and because, 1
1� � > 1, it is concluded that

C > C r =
1:5L + 5

1 �
P n

i =1 (v=sr )ci
(4.15)

Theorem 2. Involving margin of safety � in s will increase the cycle length over-

estimation rate with respect to critical lane group's volume, vci .

Proof. To calculate the rate of change in cycle length over-estimation with re-
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spect to critical lane group volume, we need to obtain @
@vci

(C � Cr ):

@
@vci

(C � Cr ) = (1 :5L + 5)
�

1=sci

(1 �
P n

i =1 (v=s)ci )2
�

1=sr
ci

(1 �
P n

i =1 (v=sr )ci )2

�
=

�
1=((1 � � )sr

ci )
(1 � 1

1� �

P n
i =1 (v=sr )ci )2

�
1=sr

ci

(1 �
P n

i =1 (v=sr )ci )2

�
(4.16)

where 1 � 1
1� �

P n
i =1 (v=sr )ci < 1 �

P n
i =1 (v=sr )ci and a

(1� � )sr
ci

> 1
sr

ci
.

These inequalities result in @
@vci

(C � Cr ) > 0:

We conclude from 1 and 2 that any underestimation of lane group saturation

�ow rates will result in an over-estimation of the optimal cycle length. More-

over, as shown in proof 4.3.1, the overestimated cycle length values grow at a

larger rate compared to an ideal estimation with the increase of the incoming

traf�c �ows.

In the following section, the above claims are validated using microscopic

simulation of multiple scenarios under the assumption of a �xed estimation

of saturation �ow rate (s = 1900v
h ).

4.3.2 Comparisons

Nine scenarios were designed for comparisons. The scenarios include three

levels of traf�c with respect to volume (low, medium, high) and three levels

of traf�c with respect to the imbalance of the incoming traf�c (low, medium,

high). Tables 4.3, 4.4 and 4.5 depict the details of designed comparison sce-

narios for intersection 1, intersection 2 and intersection 3 respectively.

Figs. 4.11, 4.12 and 4.13 demonstrate the estimated cycle lengths from the pro-

posed method and the HCM model for the three intersections.
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Table 4.3: First intersection comparison scenarios

Scenario # Total Traf�c (veh/h) Phase 1 Phase 2 Phase 3 Phase 4 Traf�c Level Traf�c Imbalance

1
2000

500 500 500 500 Low Low

2 600 600 400 400 Low Medium

3 200 200 400 1200 Low High

4
3000

750 750 750 750 Medium Low

5 900 900 600 600 Medium Medium

6 300 300 600 1800 Medium High

7
4000

1000 1000 1000 1000 High Low

8 1200 1200 800 800 High Medium

9 400 400 800 2400 High High

Table 4.4: Second intersection comparison scenarios

Scenario # Total Traf�c (veh/h) Phase 1 Phase 2 Phase 3 Traf�c Level Traf�c Imbalance

1
4000

2400 1200 400 Low Low

2 2000 1600 400 Low Medium

3 1600 1600 800 Low High

4
6000

3600 1800 600 Medium Low

5 3000 2400 600 Medium Medium

6 2400 2400 1200 Medium High

7
7600

4560 2280 760 High Low

8 3800 3040 760 High Medium

9 3040 3040 1520 High High

Table 4.5: Third intersection comparison scenarios

Scenario # Total Traf�c (veh/h) Phase 1 Phase 2 Phase 3 Phase 4 Traf�c Level Traf�c Imbalance

1
5000

1250 1250 1250 1250 Low Low

2 1000 1500 1000 1500 Low Medium

3 500 1000 500 3000 Low High

4
7500

1875 1875 1875 1875 Medium Low

5 1500 2250 1500 2250 Medium Medium

6 750 1500 750 4500 Medium High

7
12000

3000 3000 3000 3000 High Low

8 2400 3600 2400 3600 High Medium

9 1200 2400 1200 7200 High High
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Figure 4.11: First Intersection: Estimated Cycle Lengths

Figure 4.12: Second Intersection: Estimated Cycle Lengths
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Figure 4.13: Third Intersection: Estimated Cycle Lengths

Figs. 4.14, 4.15 and 4.16 compare the two models' suggested phase splits for

the three intersection models.
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Figure 4.14: Phase Split Comparisons for Intersection 1

(a) Low Traf�c Volume

(b) Medium Traf�c Volume

(c) High Traf�c Volume
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