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Abstract

For performance-critical systems, such as aircraft flight systems, structural dam-
age, actuator failures, actuator nonlinearities, sensor uncertainties, and environmental
disturbances may lead to severe accidents if not promptly and properly mitigated,
since adverse conditions can cause large unknown variations of system dynamics, in-
troduce undesired disturbance inputs, and limit the performance of feedback control.

In this research, we will develop novel adaptive fault-tolerant control and fault-
detection schemes for multi-input and multi-output (MIMO) systems with structural
damage and component failures (such as actuator failures, actuator nonlinearities,
and sensor uncertainties) to guarantee desired and safe system performance.

To handle complexities and uncertainties of nonlinear system dynamics, we use
linearization-based design methods, where control schemes are developed for lin-
earized system models, with both continuous-time and discrete-time control designs
being considered. To accommodate uncertain damage and failures for the MIMO
systems, the multivariable model reference adaptive control (MRAC) design method
is employed. A key design condition—system infinite zero structure is investigated
for both continuous-time linearized models and discrete-time linearized models be-
fore and after the adverse conditions occur, and invariance of this essential condition
can be concluded under realistic failure and damage conditions. With such an in-
variance property, some novel fault-tolerant state feedback for output tracking and
output feedback for output tracking multivariable MRAC schemes, whose plant-model
matching conditions are much less restrictive than that of the state feedback for state
tracking design, are developed to ensure stability and asymptotic output tracking for
systems in the presence of parametric and structural uncertainties caused by damage

and component failures.



IT

Equipped with the developed feedback adaptive fault-tolerant control to ensure
system signal boundedness requirements, novel adaptive fault detectors are con-
structed based on system dynamic coupling features and different failure patterns
to identify and isolate damage and failures in order to enhance situational awareness
for control personnel.

The developed adaptive fault-tolerant control and fault detection designs have
been evaluated on a high-fidelity aircraft Matlab/Simulink model-the nonlinear NASA
generic transport model (GTM), which offers a realistic representation of the aircraft.
Extensive simulation studies have been conducted and simulation results have demon-

strated the desired performance of our developed designs.
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Chapter 1

Introduction

System faults may cause large deterioration of system performance and even lead to
catastrophic accidents. In order to avoid and mitigate the severe consequences of
system faults, system onboard techniques of fault-tolerant control, fault detection,
and diagnosis, are urgently required to enhance system reliability and safety. So it is
of great importance to develop powerful and effective feedback control algorithms to
accommodate and diagnose the system faults for performance-critical systems such
as aircraft flight systems. In this research, some novel and effective adaptive con-
trol and adaptive estimation techniques will be derived to compensate and detect
adverse conditions, such as structural damage, actuator failures, actuator nonlinear-
ities, environmental disturbances, and sensor uncertainties. The developed adaptive
fault-tolerant and fault detection schemes can guarantee system stability and enhance
situational awareness of control personnel in the presence of system faults, which will
be verified and validated on a high-fidelity aircraft model-the NASA generic transport

model (GTM) with different fault conditions.



1.1 Research Motivation

Adverse onboard conditions of the aircraft flight system, such as airframe damage,
actuator failures, actuator nonlinearities, sensor uncertainties, can largely deterio-
rate flight performance, since the airframe damage causes uncertain structural and
parametric variations of the aircraft system dynamics, the failed actuators introduce
undesired control inputs, and the actuator nonlinearities and sensor failures can have
severe impacts on the feedback control performance. In the aviation history, it has
been shown that the airframe damage and component failures are some significant
contributors to accidents and fatalities, such as accidents of A330 Air France 2009
and A330 Qantas Flight 2008 due to sensor malfunctions, accident of Convair 580
Air Tahoma 2008 due to elevator system failure, accident of Embraer 120 American
Eagle 2000 due to jammed stabilizer, accident of B747 Japan Air Lines 1985 due to
airframe damage, etc. [12].

Reliable fault-tolerant control and fault detection schemes are required to guar-
antee the safety of aircraft systems and enhance the situational awareness ability of
the pilots or flight control personnel. A challenge of successful fault compensation
and detection is the large structural and parametric uncertainties caused by unknown
component failures and damage, whose onset time instants, patterns and severity are
all unforeseen. Adaptive methodologies are capable of autonomously compensate and
detect system fault conditions when unknown changes in the system dynamics occur.
These unique features provide potential to improve flight safety when component
failures and airframe damage occur. In this research, we will develop new adaptive
control and adaptive detection schemes for aircraft flight systems with large structural
and parametric uncertainties. Besides considering continuous-time adaptive control

designs, we will further develop discrete-time adaptive fault-tolerant control schemes



used for constructing digital control system frameworks, since the digital control is
widely used in safety-critical systems due to certain advantages over conventional
analog control, such as capability of implementing complicated control algorithms
and no degradation of performance caused by wear or aging.

Another important aspect of the fault-tolerant control and fault detection designs
is verification and validation of the developed schemes on an aircraft flight system
under adverse onboard conditions. Since flight test of a full scale manned transport
aircraft in adverse flight conditions is difficult and dangerous, we may use a subscale
high-fidelity aircraft model to assess our proposed designs. The NASA GTM is a 5.5%
dynamically scaled twin-turbine powered test aircraft for NASA’s Airborne Subscale
Transport Aircraft Research flight test facility [64], which can play an important role
in testing research control laws in adverse flight conditions including damage and
failures. In this research, we will implement our designs to a high-fidelity aircraft
Matlab/Simulink model of the NASA GTM, which can represent realistic flight sce-
narios under some uncertain failure and damage conditions, to verify the effectiveness

of our adaptive fault-tolerant and fault detection designs.

1.2 Background and Literature Overview

In this section, we will present an overview of research on fault-tolerant control,
fault detection, adaptive control, and digital control, which provides solid technical

foundations for this research.

1.2.1 Fault-Tolerant Control and Fault Detection

Considerable effort has been devoted to development of fault-tolerant control and fault
detection algorithms for performance-critical applications, particularly aircraft flight

systems. For systems with actuator failures, typical control design methodologies



include multiple model, switching and tuning schemes [8,9,30, 32, 70] and adaptive
schemes [1,6,7,78,98]. Reconfigurable flight control designs using neural networks for
aircraft systems with failures have been developed in [10,13,49,52,74,91] and [15,96,97]
presented the reconfigurable control designs based on fault conditions detected by
adaptive estimators. For systems with parametric and structural uncertainties caused
by airframe damage, [41] developed a robust control scheme, and several adaptive
compensation designs have been proposed in [11,37,54,55,57,72,80]. Adaptive control
designs without explicitly detecting faults have also been derived to compensate the
actuator failures [19, 56, 85,87].

In this research, we will develop multivariable model reference adaptive control
schemes for the aircraft system with both actuator failures and structural damage to
guarantee that the aircraft can track a desired trajectory before and after hazardous
conditions occur. For sensor failure accommodation, most methods need to detect
and isolate the failed sensors first, before the healthy sensor signals can be used
in feedback control. One open problem is that many existing detection algorithms
require the control system remains stable in the presence of failures. Therefore, in
this research, we will develop adaptive sensor failure compensation schemes to ensure
the signal boundedness requirement.

Fault detection and diagnosis problems have also been studied intensively for
safety-critical systems. One of the common approaches is to use model-based method
[45,47], where detectors are established to estimate the system signals. By observ-
ing residuals between the detector model and the system, detection criteria can be
derived to identify the faults. A lot of effort has been devoted to the model-based
aircraft actuator and sensor failure detection and diagnosis, for example, [4,92] de-

veloped aircraft actuator and sensor failure detection and isolation schemes based



on an adaptive unknown input observer approach, [31] used a hierarchy of tech-
niques to detect and isolate system faults based on a jet aircraft model, [63] used
H, optimization-based method to make the observer-based actuator fault detection
scheme robust, [17,95] built adaptive state observers based on the known system pa-
rameters to detect actuator faults, and [16, 28, 66,94] were based on neural networks
and analytical sensor redundancy. Some effort has been work on the model-based
damage detection problem, for example, [51] developed a structural damage monitor-
ing scheme by exploiting the analogy between residual force due to stiffness change
and input error. For the damage detection problem, others used data-based method
by analyzing response of external stimulation signals, such as acoustic analysis [21],
vibration-based method [79,86], etc. Since the model-based method only requires
signals from the aircraft flight control system such as state and control input signals,
while the data-based method needs additional signal excitation equipments, in this
research, we apply the model-based method for the aircraft component failure and
structural damage detection.

The construction of the model-based detector models requires that the aircraft
signals are bounded. Unlike most fault detection schemes operating under the system
signal boundedness assumption before and after faults occur, the detection schemes in
this research are equipped with fault-tolerant controllers accommodating the adverse

onboard conditions and ensuring all the signals of the closed-loop system are bounded.

1.2.2 Model Reference Adaptive Control

Model reference adaptive control (MRAC) is an important adaptive control approach
that provides feedback controller structures and adaptive laws for control of systems
with parametric and structural uncertainties to ensure signal boundedness of the

closed-loop system and asymptotic tracking of desired reference signals. Such adaptive



control designs are desirable for the aircraft flight system to achieve a safe flight and
track a desired trajectory in the presence of adverse onboard conditions.
Considerable effort has been devoted to the development of MRAC (e.g., [2, 20,
24,44, 46, 53,58, 65,73, 76,84,90]). While MRAC theory has evolved into a mature
branch of control theory, refinements and new designs of MRAC schemes are still
needed for many applications, especially, for multi-input and multi-output (MIMO)
systems, such as aircraft systems. Several important issues are still open in this area.
Both state feedback and output feedback control designs can be applied to the
MRAC scheme. In many applications such as flight control systems, state signals
are available for measurement, so that state feedback control design is used due to
its simpler structure (as compared with compensator-based output feedback design).
State feedback control systems can be designed for either state tracking or output
tracking. To develop an adaptive state feedback controller, it is necessary to first
solve the related nonadaptive control problem assuming the plant parameters are
known, so that an ideal fixed state feedback controller can be obtained. This ideal
(nominal) controller will be used as a part of the prior knowledge in the design of the
adaptive control scheme. The existence of such a nominal controller is equivalent to
a set of matching equations. The state feedback for state tracking design has restric-
tive matching conditions, which are difficult to be satisfied in the presence of system
uncertainties. State feedback for output tracking, on the other hand, while keeping
the simple controller structure, needs less restrictive matching conditions. Therefore,
adaptive state feedback control for output tracking has a high potential for the aircraft
system with parametric and structural uncertainties, where the matching conditions
can be satisfied under system parametric and structural uncertainties caused by com-

ponent failures and structural damage. Research in adaptive state feedback control



for output tracking has been reported in the literature. In [48], the state feedback for
output tracking control is studied for certain classes of nonlinear systems. In [84], a
state feedback for output tracking MRAC scheme for single input single output sys-
tems is derived. However, the multivariable state feedback for output tracking MRAC
problem still needs to be solved. In this research, the adaptive fault-tolerant control
designs will be mainly developed based on the multivariable state feedback for output
tracking MRAC scheme. A key design condition for the multivariable MRAC-infinite
zero structure is investigated for both continuous-time MIMO systems and discrete-
time MIMO systems before and after the adverse conditions occur, and invariance
of this essential condition can be concluded under realistic failure and damage con-
ditions. With such an invariance property, some novel fault-tolerant state feedback
for output tracking and output feedback for output tracking multivariable MRAC
schemes, whose plant-model matching conditions are much less restrictive than that
of the state feedback for state tracking design, are developed to ensure stability and
asymptotic output tracking for systems in the presence of parametric and structural

uncertainties caused by damage and component failures.

1.2.3 Digital Control Design Frameworks

Digital control is widely used in safety-critical systems such as aircraft flight systems
due to certain advantages over conventional analog control. For fault-tolerant control,
a digital control scheme may be constructed either by discretizing a continuous-time
control law or by designing a discrete-time control law based on a discretized system
model. In this research, besides developing continuous-time adaptive control schemes,
we will also design direct discrete-time adaptive control algorithms for constructing
the digital control frameworks.

Much effort has been devoted to developing discrete-time control schemes for non-



linear systems. [93] studied discretized nonlinear models of continuous-time nonlinear
systems and zero dynamics of the discretized nonlinear models. [25,26,29] investigated
the dynamic decoupling problems for the discrete-time nonlinear systems and [27]
analyzed feedback linearizability for discretized models of continuous-time nonlinear
systems. In [69, 71], stabilization conditions of discretized nonlinear systems are an-
alyzed. In [5,60,61], feedback linearization control schemes were investigated for
the sampled-data nonlinear systems. However, the feedback linearization control de-
signs may not be suitable for dealing with highly complicated nonlinear dynamics,
especially systems with parametric and structural uncertainties, such as the nonlin-
ear aircraft flight systems under structural damage conditions. In this research, to
deal with complexities and uncertainties of the discrete-time nonlinear dynamics ob-
tained by discretizing the continuous-time nonlinear system with damage, we employ
a linearization-based control design. Due to system parametric and structural un-
certainties caused by damage, equilibrium points are not available for linearization.
Thus, an arbitrary operating point is chosen to linearize the discrete-time nonlinear
model before and after damage occurs, which leads to a linearized discrete-time model
with unknown system parameters and dynamics offset.

The key design condition for the multivariable MRAC scheme-invariance of the
infinite zero structure needs to be satisfied for the linearized discrete-time model be-
fore and after damage occurs. In this research, a new investigation of the infinite
zero structure of the linearized discrete-time system will be conducted. Based on a
thorough study of generic structures of the linearized discrete-time model, we will con-
clude that, when the discretization sampling period is sufficiently small, the infinite
zero structure of the linearized discrete-time model is invariant, no matter what the

relative degrees of the continuous-time nonlinear systems are. This property suggests



10

that even if the damage changes the relative degree of the continuous-time nonlinear
system, the infinite zero structure of the linearized discrete-time model is invariant
before and after damage occurs. Based on such an invariance property, we can develop
a discrete-time multivariable MRAC scheme to ensure asymptotic output tracking of
a common reference system chosen according to the invariant infinite zero structures
before and after damage occurs. Hence, we can build a digital control system frame-
work, consisting of the developed linearization-based discrete-time adaptive control

law, zero-order holds, and samplers, for the continuous-time nonlinear systems.

1.3 Dissertation Outline

This dissertation is organized as follows, where the major results have been docu-
mented and published in the journal and conference papers :

In Chapter 2, the fault-tolerant control and fault detection problems for MIMO
nonlinear aircraft systems with structural damage, actuator failures, actuator nonlin-
earities, and sensor uncertainties are formulated. Moreover, some important adaptive
control design preliminaries are presented.

In Chapter 3, the multivariable state feedback for output tracking MRAC scheme,
which is a foundation of the adaptive fault-tolerant control designs in this research,
is developed for MIMO linear time-invariant systems with parametric uncertainties,
where the plant-model matching condition is much less restrictive than that of the
state feedback for state tracking design.

In Chapter 4-Chapter 8, continuous-time and discrete-time adaptive fault-tolerant
control designs are developed to compensate the structural damage, actuator failures,
actuator nonlinearities, and sensor uncertainties, which are designed based on the

multivariable state feedback and output feedback MRAC design frameworks.
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In Chapter 9 and Chapter 10, we will deal with the uncertain disturbance rejection
problems, where an adaptive state feedback disturbance rejection scheme is developed
for MIMO linear time-invariant systems and an adaptive output feedback disturbance
rejection scheme is developed for MIMO piecewise linear systems.

In Chapter 11 and Chapter 12, adaptive fault detection schemes are developed for
diagnosing the structural damage and sensor uncertainties, where the aircraft flight
system is equipped with developed fault-tolerant control to stabilize the system before
and after hazardous conditions occur.

These adaptive fault-tolerant control and fault detection algorithms have been ap-
plied to the high-fidelity nonlinear GTM Matlab/Simulink model, and the simulation
results, which are presented in corresponding chapters, can verify the effectiveness of
the proposed designs on the aircraft flight systems.

In Chapter 13, we make a conclusion of this dissertation work and provide some

recommendations for future research.



Chapter 2

Problem Formulation and
Preliminaries

In this chapter, we will formulate the fault-tolerant control and fault detection design
framework including essential technical issues of aircraft systems with structural dam-
age, actuator failures, actuator nonlinearities, and sensor uncertainties, basic ideas of

how to address these issues, and some key design preliminaries.



13

2.1 The Aircraft Flight Systems with Adverse On-
board Conditions

The dynamic model of a nonlinear aircraft flight system [11,77] is constructed by

force, moment and kinematic equations:

w, = (X+T)/m—gsind+ryw, — gy + Afy, (2.1.1)

wy, = Z/m+ gcosfcosd+ quup — ppvy + Afo, (2.1.2)

Lg, = M— (I, — L)pyry + L.(p} —13) + Afs, (2.1.3)

0 = gy COS G — T3, 81N @, (2.1.4)

Oy, = Y/m+ gcosOsing — ryup + pywy + Afy, (2.1.5)

Liy+ Lopp = N+ Laqery + (L. — 1)@y + Afs, (2.1.6)

Lipy + L.t = L+ (L — 1)@ — Leqopy + Afe, (2.1.7)

¢ = p,+tand(gsing + r,cos ), (2.1.8)

b = qbsinaio%;;’bcosgb’ (2.1.9)

where Af;,i=1,2,...,6, characterize the structural variations under airframe dam-

age conditions, u, v, and w;, are the body-axis velocity components of the origin
of the body-axis frame, py,, ¢, and r, are the body-axis components of the angular
velocity, ¢, 8 and 1 are the Euler roll, pitch and yaw angles of the aircraft body axes
with respect to the reference axes, m is the mass of the aircraft, I, I, and I, are
the moments of inertia about body axes, I, is the cross-product of inertia, X, Y, Z,
L, M, N, and T are the aerodynamic forces, moments, and engine thrust, which are
functions of the state signals and the control surface deflections (elevator d., aileron

dy, and rudder d,.), and the engine throttle d;. We can denote the nonlinear dynamics
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(2.1.1)-(2.1.9) as

#(t) = f(2@t) + g(x(t))u(t),y(t) = Cx(t), (2.1.10)

where the state signal is z(t) = [uy, Wy, b, 0, vy, T, Db, @, |7, the control input signal
is u(t) = [de, ds, dg, d,)T, and the output signal y(t) is chosen as a linear combination

of the state signals.

Uncertain changes under damage conditions. When damage occurs, the
functions of aerodynamic forces X, Y, Z, moments L, M, N, and engine thrust T’
undergo uncertain parametric and structural variations. Furthermore, for the aircraft
dynamics model (2.1.1)—(2.1.9), when there is no damage, Af; = 0,7 = 1,2,...,6;
after asymmetric damage occurs, the center of mass [Azy, Ayy, Az)T and the cross-
products of inertial I, and I, become non-zero, which result in uncertain structural

changes for the dynamics model (2.1.1)—(2.1.9), such that [11,57]

Afi = (g +r3)Azxy — (g — 75)Ayy — (pors + Go) A2s, (2.1.11)
Afy = (G — pors)Azy — (B + @rs) Ay + (pf + 47) Az, (2.1.12)
Afs = =Ly — Lyats — Lyqers + Lyppqy — mAzy (qpus — Wy — ppos)

—mAzy (U — Tyvp + @wp) — mg(sin Az, + cos 0 cos pAxy) — Az T,
Afy = —(poa + 7o) Az, + (ph +75) Ay — (@ry — Do) Az, (2.1.13)
Afs = =14, (pi—qz? )Ly DT Axy (D — pyws -+ Ty )

—mAYy (ryvs—t—quws +Hmg cos 0 sin pAxy+mg sin O Ay+T Ayy,  (2.1.14)
Afe = =Ly + Loypers — 1y (qg - Tg) — mAY, (W — gup + Pyvs)

—mAzy(—Vy—rpurtppywy +mg cos 0 cos Ay,—mg cos O sin pAz,.  (2.1.15)

Uncertain actuator failures. The actuators of the aircraft system may undergo

some uncertain displacements when they are failed at some unknown time instants.
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The failed actuator control input can be modeled as
u(t) = (I, — o)v(t) + ou(t), (2.1.16)

where v(t) is the commanded control input signal, @(¢) is the unknown failed actuator
input signal, and elements of the failure index o = diag{oy,09,...,0,} are g; = 1
if the ith actuator fails or o; = 0 otherwise, for « = 1,2,...,m. It is worth noting
that redundant actuators are widely employed in the aircraft flight control system,
e.g., the GTM has a group of two rudder segments, a group of four elevator segments,
etc.. This actuation redundancy provides us a potential tool to compensate the failed

actuators by the remaining redundant healthy actuators.

Uncertain sensor failures. The sensor uncertainty model can be expressed as

2(t) = ksp(t) +bez (2.1.17)

where z(t) is the sensor measurement, ¢(t) is the actual signal, which is the state
signal z(t) or the output signal y(t), ks > 0 and b;, i = 1,2, ..., ¢, are some unknown
constant sensor uncertainty parameters, and f;(t), 7 =1,2,...,q, are known bounded
signals. The sensor model (2.1.17) can represent a class of practical sensor uncertain-
ties such as sensor gain variations and measurement errors. If the individual sensor
measurement cannot be modeled as (2.1.17), we can use a set of redundant sensors to
measure the same signal ¢(t) and take the weighted sum of the sensors’ output sig-
nals z;(t) as the signal measurement z(t): z(t) = > " | a;2/(t), such that >_."  a; = 1.
With such a redundant sensor structure, the signal measurement z(t) can still be
modeled as (2.1.17): when there are no failures for all the sensors, the measurement
z(t) = p(t); when uncertain sensor failures occur, e.g., the i;th,isth,.. . i,th sensors
are failed, the measurement is z(t) = a,p(t) + ds(t), where ay =37, . o is un-

known and dy(t) = > ", 3iZ(t) with some of f; being zero (for the unfailed sensors)
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while others being «;, and Z;(t) being the measurement of each sensor.

Uncertain actuator nonlinearity models. When the actuators have non-
linearities, the system input vector signal u(t) = [u1(t),us(t), ..., un(t)]T can be
expressed as

u(t) = N(v(t)), (2.1.18)

where N(-) = [Ni(+), No(-)T, ..., Nyu(-)]* represents the actuator nonlinearities for
some nonlinear functions N;(-) such as deadzone, back-lash, or hysteresis. Consider

the cases when N;(-) can be parameterized as

ui(t) = Ni(vs(t)) = —03Ewi (1) + al(t) (2.1.19)
for some unknown parameter vectors 6%, € R, n; > 1,4 = 1,..., M, and some

unknown regressor vector signals wi,;(f) € R™ and scalar signals af(t). Such a
parametrization has been established for N;(-) being a dead-zone, backlash, hysteresis,
or other characteristic [83], [84]. To cancel the effects of such actuator nonlinearities,

we use a multivariable nonlinearity inverse model

o(t) = NI(ug(t)), (2.1.20)
where ug(t) = [uagi(t), ..., ua(t)]? is a design vector signal from a feedback control
law, that is,

vi(t) = NI (ug(t), i = 1,..., M. (2.1.21)

Then, each N1 i(+) can be parametrized as
ugi(t) = =08, (Owni(t) + a;(t), i=1,..., M, (2.1.22)

where fy; € R™ is an estimate of 0%, and wy;(t) € R™ and a,(t) are some known

signals, as in the case of an inverse for a dead-zone, backlash, or hysteresis [83], [84].
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The uncertainties in N;(+) cause a control error
wi(t) — ugi(t) = 0%, (Dwni(t) + dni(t),i=1,..., M (2.1.23)
where 9~N,- = On; — 0}, and the unparameterized error is
di(t) = O; (wrilt) — wii(t)) + af (1) — ai(?), (2.1.24)

which should satisfy that conditions that dy;(t) is bounded, ¢ > 0, and dy;(t) = 0,
t > to, if Oni(t) = Oy, t > to, and N\IZ() is correctly initialized: dy;(tp) = 0. In
vector form, the control error is

u(t) — ug(t) = O8 (Hwn(t) + dn(t), (2.1.25)
where wy(t) = [wk, (1), ..., wky (®)]F and
O (t) = diag{0L, (1), 0%y (1), ..., 0%, (1)}, (2.1.26)

The benchmark aircraft model-the NASA GTM. The proposed adaptive
compensation and detection schemes will be verified and evaluated by the NASA
GTM, which is shown in Fig. 2.1. The GTM is a 5.5% dynamically scaled twin-
turbine powered test aircraft. Since the subscale GTM test results can be applied for
the full-scale aircraft design, it is used to test flight research control designs in adverse
conditions such as upsets, damage and failures [64]. In this research, the proposed
designs will be applied to the Matlab/Simulink model of GTM. The Simulink model
developed by the NASA contains engine dynamics, actuator dynamics, sensor dynam-
ics, etc, which is a high-fidelity representative of the general nonlinear aircraft flight
dynamics (2.1.1)—(2.1.9). Moreover, the GTM Simulink model provides some damage
scenarios such as rudder off, vertical tail off, left outboard flap off, left wing-tip off,
left elevator off, and left stabilizer off, and the actuator failures and the sensor fail-

ures can also be simulated. Hence, simulation offers a realistic representation of the
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aircraft under hazardous conditions and simulation results would provide a credible

assessment of our proposed design.

The NASA Generic Transport Model (GTM)

—1 Actuator dynamics

—— Engine dynamics

Various Nonlinear GTM dynamics Selected
designs outputs

X —— Sensor dynamics

—  Aerodynamic force

Damage: tail off, wing-tip off, stabilizer off, etc.
Actuator failures: lock-in-place failure, etc.
Sensor failures

Figure 2.1: A benchmark aircraft model: the NASA GTM.

2.2 Linearization-Based Design

To handle the complicated nonlinear dynamics with uncertainties, a linearization-
based control design will be applied to the nonlinear aircraft flight system (2.1.10).
Since there are uncertainties of the aircraft system with damage, the equilibrium point
is not available. Therefore, an arbitrarily chosen operating point (xg, 1), which may
not be an equilibrium point, is used to linearize the nonlinear system (2.1.10) with

damage and actuator failures:
Atz = AAx + BAu + fy, Ay=CAx, Au= (I, —o)Av+ cAu, (2.2.1)

where Ax = x — x9, Ay = y — Cxg, Au = u — ug, Av = v — ug and Au = u — ug

are perturbation signals, and A = df /0x , B=0f/0u ) fo = f(xg,up) are

(xo,u0) T0,U0

unknown piecewise constant parameters and dynamics offset due to different damage
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conditions, and the failure index ¢ is also an uncertain piecewise constant function due
to different failure patterns. Since the linearized model (2.2.1) is an approximation
of the nonlinear aircraft system around a small neighborhood of the chosen operating
point (zg, ug), we will develop fault-tolerant control and fault detection schemes based
on the linear model (2.2.1) with large system uncertainties. Figure 2.2 shows the

linearization-based adaptive control and detection for the nonlinear aircraft system.

Av(t) | Detector p for Az (t) ~ Ael) (t)

»| unhealthy system N g
Ax(t)
Ax(t)
Av(t) ,| Detector 1 for A:L’&,}L)(t) N Aeﬁlb) (1) -
» healthy system '\“J_ g
Ax(t)

v(t) | Nonlinear GTM with x(t) x(t)

e R A R
\T/_I_ damage and failures \T_
Ug 0

Av(t) | Adaptive [+ 7(t) Ax(t) /Ayzf)

control law

A

Figure 2.2: Linearization-based fault-tolerant control and fault detection.

2.3 Linear System Preliminaries

To proceed the multivariable model reference adaptive control (MRAC) design, some

preliminaries are given as follows.

2.3.1 Infinite Zero Structure

For the MRAC of multi-input and multi-output (MIMO) systems, the system infinite
zero structure characterized by its interactor matrix and high frequency gain matrix

plays an important role.
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Lemma 2.3.1. [84], [82] For any M x M strictly proper and full rank rational matriz
G(s), there exists a lower triangular polynomial matriz &,(s), defined as the modified

left interactor matriz of G(s), of the form

dy(s) 0 .o . 0
Enl(s) = 21:(8) dz:(s) (:) o (:) , (2.3.1)
hin(s) --- - hlpara(s) du(s)

where b} (s), j = 1,...,M — 1, i = 2,..., M, are polynomials, and di(s), i =
1,..., M, are any chosen monic stable polynomials of degrees l; > 0, such that the

associated high frequency gain matrix

K, = lim &,,(s)G(s) (2.3.2)

5—00

1s finite and nonsingular.

From Lemma 2.3.1, we can see that the interactor matrix &, (s) and its high
frequency gain matrix K, capture essential characteristics of the zero structure of the
system transfer matrix G(s) at infinity (s = co). For our multivariable MRAC design,
we will choose the reference system as W,,(s) = £..'(s). Based on the knowledge of
the infinite zero structure, i.e., the interactor matrix and the high frequency gain
matrix, output matching control schemes (to be shown next), which will be used as
plant-model matching conditions for the adaptive control designs, can be established

to achieve output tracking of a chosen reference signal y,,(t) = W, (s)[r](t).

2.3.2 Gain Matrix Decomposition

For multivariable MRAC control design, certain knowledge of the system high fre-
quency gain matrix K, is important for adaptive law construction. Under the con-
dition that all leading principal minors of K, are nonzero, several decompositions of

K, exist and can be used to reduce the knowledge of K.
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LDU decomposition of K, [23]. Let A;, i =1,2,..., M, be the leading principal
minors of K, € RM*M and assume that A; # 0, i = 1,2,..., M. Then, K, has a

unique LDU decomposition:

K, = LDU (2.3.3)

for some M x M unit (that is, with all diagonal elements being 1) lower triangular
matrix L and unity upper triangular matrix U, and

Ay ANY;

D = diag{d],d5, ..., dy,} = diag{Aq, AU AL

1. (2.3.4)

For the LDU decomposition of an unknown K, we also assume that the signs
of A;,i=1,2,..., M, are known. Then, in view of (2.3.4), sign[d}], the sign of dJ,
is also known, ¢ = 1,2,..., M, and it will be used in constructing stable adaptive
parameter estimation schemes.

LDS and SDU decompositions of K. Similar to its LDU decomposition, the
gain matrix K, € RM*M with all its leading principal minors A; # 0, =1,2,..., M,

also has a non-unique LDS decomposition:
K, = L,D,S, (2.3.5)

where S € RM*M with S = ST > 0, L, is an M x M unity lower triangular matrix,

and

_ : * ¥ *
Ds - dlag{817827’”7sM}

Ay
Apr-a

. . . A .
= diag{sign[Ai]m, SIgn[A—z]%, ..., sign]
1

Jar} (2.3.6)

such that v, > 0,7 =1,..., M, may be arbitrarily chosen.
This LDS decomposition of K, follows from the LDU decomposition of K, with
L, = LD,UTD;! and S = UTD;'DU. The choice of Dy is not unique, which

provides certain flexibility in designing stable adaptive laws.
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A similar SDU decomposition of K, is: K, = SD,Us, for S = ST = LDDs_lLT >0
and Uy = D;7'L=T DU unity upper triangular.

Based on its LDU, LDS or SDU decomposition, the uncertainties of K, can be
further dealt with using stable estimation schemes to estimate the unknown param-
eters in L and U, while the knowledge of S and D either is not needed (because

S = 8T > 0) or can be specified in terms of sign[A;].

2.4 Output Plant-Model Matching Control

An important control objective of our designs in this research is to achieve system
output signal tracking of a chosen reference signal, while the system dynamics have
parametric and structural uncertainties. Here, we will present two nominal con-
trol designs with state feedback and output feedback respectively for known system
dynamics to achieve exact plant-model matching, where the plant-model matching
conditions will be used for developing multivariable MRAC schemes in the following
chapters to accommodate the system uncertainties.

Consider a general multi-input and multi-output linear time-invariant system
x(t) = Az(t) + Bu(t),y(t) = Cx(t), (2.4.1)

where A € R™", B € RVM and C € RM*" (A, B) is stabilizable and (A, C) is
detectable, the transfer matrix G(s) = C(sI — A)™' B has full rank, and all zeros of

G(s) are stable.

2.4.1 State Feedback Control Design

The objective is to design a state feedback control law

u(t) = KiTa(t) + Kir(t), (2.4.2)
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for some constant matrices K; € R™M and K3 € RM*M to make the closed-loop

system transfer matrix

C(sI — A— BK")'BK; = W,,(s), Wn(s) = &, (s), (2.4.3)

m

with &, (s) being the modified interactor matrix of G(s).

Design with a diagonal ¢,,(s). We first consider the case, where the modified

interactor matrix &,,(s) is of diagonal form

Em(s) = diag{di(s),da(s), ..., dn(s)}, (2.4.4)

where d;(s), i = 1,2,..., M, are some monic stable polynomials of degrees I; > 0,
such that lims o &n(s)G(s) = K, is finite and nonsingular. Furthermore, from the

expression of G(s):

_ 11 1 1
G(s) = C(sI — A) IB:C(I;+A?+A25+A3E+~~) B, (2.4.5)

it follows that the associated high frequency gain matrix can be calculated as

ClAll_lB
02A12_1B

K, = : , (2.4.6)
CMAl;”_lB

which is nonsingular, with ¢;, ¢ = 1,2,..., M, denoting the ith row of C.

From the system equations @ = Ax + Bu, y; = ciz, for y = [y1, 92, ..., yml?,
denoting the jth order time-derivative of y;(t) as yi(j )(t), we have
; CZA]LU(T,> fOI'j:O,l,...,li—l
yI(t) = | - o (2.4.7)
c;Ax(t) + ;A" 'Bu(t) for j =1,.

Considering the last equations

y (1) = e Alva(t) + A Bult), i =1,2,..., M (2.4.8)
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we first choose a control law
u(t) =K, o(t), v=[v,vs,...,0m]" (2.4.9)
to make (2.4.8) to the individual equations controlled by wv;(¢):
y (1) = G Alz(t) +vi(t), i =1,2,..., M. (2.4.10)
Then, based on a choice of the modified interactor matrix
Em(s) = diag{di(s),da(s),...,dn(s)} (2.4.11)

where d;(s) = st + a; 851 4+ -+ ag,_15 + ay, is stable, i = 1,2,..., M, we choose

the feedback control law

vi(t) = —cAla(t) — anyi(li_l)(t) — = aui—lygl)(t) — aq,yi(t) +ri(t)
= —CZAlll’(t) — aﬂciAli_lx(t) — s — aili_lciAx(t)
—ay,c;x(t) + ri(t) (2.4.12)

for some reference input signals r;(t), i = 1,2,..., M, to make (2.4.10) into the

decoupled equations:
y () + anyl V@) + -+ any D () + anyit) = (), (2.4.13)
fori =1,2,..., M. The control law (2.4.12) can be written as
v(t) = Koz(t) +rt), r=[ri,r2,...,7:]", (2.4.14)
where the ith row of K is

]{fg; = —CiAli — CLich’Ali_l — e aili_lciA — A1, G4,y (2415)

fori=1,2,..., M.
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Hence, it follows from (2.4.9) and (2.4.14) that

u(t) = K, 'Kox(t) + K, 'r(t)

KiTx(t) + Kr(t), (2.4.16)

where

K" = K,'Ky, € R™*", K = K, ' € RM*M. (2.4.17)

Therefore, when applying the state feedback control law u(t) in (2.4.16) with K7} and

K in (2.4.17) to the system (2.4.1), we have the closed-loop system as

y(t) = C(sI — A= BET") "' BEG[r](t) = &, ' (s)[r] (1), (2.4.18)

m

where &,,(s) is of the diagonal form (2.4.4). That is the plant-model matching condi-
tion (2.4.3) holds for the diagonal &,,(s).

Design with a non-diagonal ¢,,(s). For G(s) = C(sI — A)~'B with a non-
diagonal interactor matrix £(s), there also exist K7 € R™M and K; € RM*M guch
that C(sI — A — BK;T)"'BK; = &,'(s) [59], [62], that is, for the state feedback
control law u(t) = K;Tx(t) + Kjr(t), the closed-loop system matches the reference
system y(t) = &' (s)[r](£).

Here, as an illustrative example: we consider a direct calculation of K7 and K for
a 2-input and 2-output system G(s) with a non-diagonal modified interactor matrix

Em(s). Let G;(s) be the ith row of G(s) and p; be the unique integers such that

lim s"G;(s) =7 (2.4.19)

5—00

is finite and nonzero, for i = 1,2, and set & (s) and £9(s) as

£1(s) = [s",0], &9(s) = [0, s"2]. (2.4.20)
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Since the interactor matrix is non-diagonal, 7 is linearly dependent of 7, such that

Ty = ad; 7y for some ad; # 0. We let
EX(s) = s (E3(s) — abi€i(s)) = s [—abs™, 5] (2.4.21)
for some unique integer 3 > 0 such that

lim &(s)G(s) = 75 (2.4.22)

5—00
is finite and nonzero. If 7 is linearly independent of 71, then we set & (s) = &3(s). If
75 is linearly dependent of 71, such that 75 = a3,7; for some constant a3, # 0, then

we let
(5) = #4E4(s) — aBi6x(s) = [y AT — ot gt ) (2429)
for some unique integer p3 > 0 such that
lim &3(s)G(s) = 73 (2.4.24)

is finite and nonzero. If 77 is linearly dependent of 7{, one can repeat the above proce-
dure until getting a £§(s) with a 4§ > 0 for some k > 2 such that lim,_,, &¥(s)G(s) =
7¥ is linearly independent of 7. Then we can set &y(s) = £5(s). The formation of the
linearly independent &;(s) and & (s) is based on a construction procedure in [89]. For
this illustrative example, we assume that & (s) and &i(s) are linearly independent,

such that there exists an interactor matrix

Bl 0
=[50 [ ] oo
to make
lim £(s)G(s) = K, = { S ] , (2.4.26)
S5—00 2

which has full rank. Then, we will show the calculation of K7, K3, and the modified

left interactor matrix &,,(s).
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Without loss of generality, we assume p; > po. With ¢; being the ith row of C|

the definition of p; implies that
T =AM B # 0100, GATB = 0100, j=0,1,..., 5 —2, i=1,2. (2.4.27)
In terms of the output signals y;(¢) and yo(t), we have

(2.4.28)

0)(p) = c; Al (t) for j=0,1,..., 0 — 1
Yi | @AIx(t) + ¢ AT Bu(t) for §j = .

Different from the case with a diagonal £(s) where both y;(t) and ys(t) equations
are used for feedback control design, we will only use those y(t) equations, plus
a combination of the y;(¢) equations and y»(t) equations, for the case with a non-

diagonal &£(s). The definition of u} implies that
T3 = —abc AMTIR B 4 oy AR B (2.4.29)
—ag, AT e AR — 0y, k=010, pd — 1. (2.4.30)

In view of these relationships, we introduce the new output variable

2a(t) = —ab (W O+B O+ Byl @)+ Byl (1))

s (04 81y O+ o (1) 4+ Baa(8), (24.31)
which can be also expressed as
2(t) = —ayha(s)[y1]() + dar (5)[1o) (1), (2.4.32)
where the polynomials hy(s) and dy (s) are

h2(3) = M 4 515M1—1 + 528’“_2 4+t 5u2_18u1—u2+1 + Buzsm—uz (2433)

dor(s) = s+ B8 4 Bos® 2 oo+ B 18+ By (2.4.34)
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with some chosen f3;, i = 1,2, ..., jta, to make da;(s) stable. Then, from the expres-
sions of the derivatives of the output signals y;(¢) and y»(t) as given in (2.4.28), we
have z(t) in (2.4.31) as

w(t) = —ab (A" T() + AP Bu()) + (caAP2a(t) + e AP Bu(t)
_oél (ﬁlclAul—l 4 5201Au1—2 + -4 ﬁmclAm—uz) x@)

+ (Brea A 4 Baca AT 4 oo Bu00) a(t). (2.4.35)
In view of (2.4.30) with k =0, i.e., —ag;c; A"~ 'B 4 ¢ A"~ B =0, it follows

2(t) = (—ad (A" + Brer AT 4 Boci AT 4 o B AT

4o AP 4 Breg AP By AP ~+Bﬂ2c2) x(t). (2.4.36)
By taking derivative on both sides of (2.4.36) and from & = Az + Bu, we have

40t = (—ag, (L AT 4 Broy AP + Boct AT 4 - B, AR
+C2Au2+1 + 510214‘u2 + ﬁgCgA‘w_l 4+ 4 /B;LQC2A) flf(t)
+ (_O‘él(clAulB‘i‘ﬁlClAm_lB + B2t AP TEB 4+ B, AP B)

_'_CQA'LLQB + ,810214”2_13 + ﬁQCQAu2_2B + - '+ﬁu2023) u(t),
in view of (2.4.30) with £ =0, 1, i.e.,
—0y, AT B 4 AP TIB =0, —ag,1AM B + ;AP B = 0,

and (2.4.27) with ¢;A7B = 0 for i = 1,2, j < u; — 2, the coefficient of u(t) is 0, so

that zgl) (t) is

Zél)(t) = (—Oéél (ClA’”—H + prel AP + 526114’“_1 4+t ﬁmclAm—uz—i-l)

+ CQAM2+1 + 5162/1“2 + 520214“2_1 + 4 ﬁMZCQA) l’(t) (2437)
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Similarly, for the jth order derivative of 2o(t) with j = 2,..., us — 1, we have

) = (—ab (AP £ Bie AT g Boel AMTHI L B, e Amhet)
4+ e A 4 ﬁlczA#Q—H-j + 5202Au2—2+j S ﬁmczAj) (t)
+ (—Oz%l (ClAﬂl—l—i-jB + ﬁlclAM1—2+jB S ﬁugﬁz‘l“l_m_l“B)

+ CQAuQ_H_jB + 5102AH2—2+jB + -+ ,BuQCQA_H_jB) u(t),
and from (2.4.27) and (2.4.30), the coefficient of u(t) becomes 0, that is

Zéj)(t) = (_@1(0114“1“ + Brer AT 4 Boey AR o B e AP
+ AT 4 Bl AP 4 Baeg AF2 T2 4L ﬁchAj) x(t). (2.4.38)
Then, by taking derivative on both sides of (2.4.38) for j = ui — 1 and from & =
Az + Bu, we obtain the pith order derivative of z5(t):
AV = (—ad (A4 Bo AT o AR 4 g o A )
AP L By AP - Bacy APTRHS 4y B cQA“%) 0
+ (—aél(clA’“_”“%B+5101A"1_2+“5B 4t BuzclA“l_“z_”“%B)
+ ARTHRRBL B AR 4 g c2A‘1+”5B> u(t),
from (2.4.27), (2.4.29), and (2.4.30), the coefficient of u(t) becomes
7‘% = —a%lclA’“_H”%B + CQAM2_1+M%B,
it follows that
zé"é)(t) _ <—a51(01 AP |8 o AT 4 B e AR L By Ap—nztub)
g AP 4 B g AFEHIS 4 B AHERHS -—l—ﬁuzczA“%) r+7ou. (2.4.39)
In summary, from (2.4.36), (2.4.37), (2.4.38), and (2.4.39), we have
{Dja:(t) for j=0,1,...,us—1

(1) = (2.4.40)

D;x(t) + myu(t) for j = pd,
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where the matrices D;, j =0,1,...,u3, are

Dj = —Oéél (ClAM1+j + ﬁlclAul_:H_j + ,820114“1_2—” + -+ BMQClAul_uz—i_j)

Feg APRHIL B 0y AP2 144 By 00 AM22HI ._|_5“2_102A1+j—|—ﬁmc214j. (2.4.41)

We now derive the feedback control design. From the last equation of (2.4.28), for

the first output signal y;(¢), we have
Yy (1) = A () + (). (2.4.42)
Then, with the choice of a stable polynomial
di(s) = 8" + aps™ N+ a8 + A, (2.4.43)
we choose the feedback control law component
nu(t) = —c, A a(t) — any" V@) — - — an 1y (€)= ag () + i (t), (2.4.44)
for some reference input signal (), to make (2.4.42) into the decoupled equation:
g @)+ any? V(@) + - a1yt (1) + g,y (t) = (). (2.4.45)

Moreover, from equations of (2.4.28), the control law (2.4.44) can be realized using

the state feedback structure:

nu(t) = —ciAMa(t) — ay e A () — -

—a1y,—101Ax(t) — ayy, c12(t) + (1), (2.4.46)
From the last equation of (2.4.40), we have
49(t) = Daa(t) + ru(t). (2.4.47)
With the choice of a stable polynomial

day(s) = sh2 4 agls”%_l ot g 1S+ Ggu, (2.4.48)
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we choose the second feedback control law component

mu(t) = —Dar(t) —anzy* (1) -
— a1 1257 (1) = ag 2 (t) + 1a(t), (2.4.49)
for some reference input signal r5(t), to make (2.4.47) to a decoupled equation in

terms of the new output variable zy:

(n3—1)

1
Zqu)(t) + a9 28 )+ -+ azué—lzél)(t) + a2uéz2(t) = ro(t). (2.4.50)

Furthermore, from equations of (2.4.40), the control law (2.4.49) can be realized using

the state feedback structure:

ru(t) = —Dux(t) —anDyy_qz(t) — - -

_a2ué_1D1x(t) — CLQM%DOSU(t) + TQ(t). (2451)

From (2.4.46) and (2.4.51), we obtain

Kyu(t) = Koz(t) +r(t), (2.4.52)
where r(t) = [ri(t), r2(t)]", K, = { 77_-11 ]a and
2
o[ erdn - anc AT = —ay, 0 A = a0 (2.4.53)
0 _Du% _a21Du%_1_...—a2“%_1D1—a2“%D0 : A

Since K, is nonsingular, we have the state feedback control law as
u(t) = K, ' Kox(t) + K, 'r(t) = Ki7a(t) + Kir(t), (2.4.54)

where K7 = K 'Ky and K5 = K.
Applying the control law (2.4.54), the closed-loop system is decoupled into two

subsystems given by (2.4.45) and (2.4.50), which can be expressed as

di(s)[yil(t) = m(t), (2.4.55)

CZQQ(S)[ZQ](t) = T’Q(t). (2456)
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Substituting (2.4.32) in (2.4.56), we have

Em(s)[y](t) = 7 (1), (2.4.57)

where y(t) = [y1(t), y2(t)]", and the modified left interactor matrix &,,(s) is

. dl(s) O
&m(s) = { hm(s) da(s) ] : (2.4.58)

with da(s) = dyi(s)doa(s) and hJi(s) = —ad ha(s)daa(s). Hence, the closed-loop

system becomes

y(t) = Win(s)[r](t), (2.4.59)
where
1
1 di(s) 0
Wil(s) =& ()= | pme 1 | (2.4.60)
di(s)da(s)  da(s)

which is stable as d;(s) and ds(s) are chosen to be stable. Note that this design proce-
dure also defines a suitable modified left interactor matrix &,,(s) from the knowledge

of a1, 1, pg and pd of the interactor matrix £(s).

Remark 2.4.1. [t is important to note that for internal stability of the closed-loop
system, that is, all eigenvalues of A+ BK;T are stable, we need the assumption that
(A, B,C) is stabilizable and detectable, in addition to the assumption that all zeros
of the system transfer matriz G(s) = C(sI — A)™'B are stable (in the open left-half
complex plane) (in other words, two assumptions together, all system zeros should be
stable). Such conditions are for stable pole-zero cancelations in both the open-loop

system (A, B, C) and the closed-loop system transfer matrizc Wy, (s). O
2.4.2 Output Feedback Control Design
For the MIMO linear system (2.4.1), we employ an output feedback controller

o Als) 1 A(s) * %
u(t) = O] ) [u](t) + ©3 @[y] () + O30y(t) + O3r (1), (2.4.61)
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where A(s) is a monic stable polynomial of degree v — 1 for the observability index
v of the open-loop system, A(s) = [Ins, 8y, ..., 8" 21y]7, and ©F € RMW=DxM
Q5 € RM—1xM s e RM*M and O3 € RM*M are some parameter matrices. It
has been shown in [84] that there exist OF, 03, 03, and O} satisfying the following

plant-model matching condition:
107" Fls)~(03" Fls)+ 03 ) G(s)=03 W, (5)Gls), O3 = K, ', W =6, (s), (2.4.62)

with F(s) = Agz). Then, operating both sides of (2.4.62) on u(t), from the system

model y(t) = G(s)[u](t), and the matching condition (2.4.62), we have

>

y(t) = Win(s)lr](t) = &' (s)[r](t)- (2.4.63)

That is the output feedback controller (2.4.61) can achieve plant-model matching.



Chapter 3

Multivariable State Feedback
Output Tracking MRAC

This chapter presents a novel multivariable model reference adaptive control (MRAC)
design using state feedback for achieving output tracking for uncertain multi-input
and multi-output (MIMO) systems. Several key technical issues of the multivariable

MRAC are addressed:
e analysis of restrictiveness of plant-model matching conditions;
e design of stable adaptive laws;
e closed-loop system stability and output tracking analysis; and
e design verification using the high-fidelity aircraft model-GTM.

State feedback control design is widely used for applications with measurable state
signals, such as within aircraft flight control systems, due to its simple controller struc-
ture. For the state feedback state tracking MRAC design, the crucial plant-model
matching condition is restrictive with respect to system uncertainties. In this chapter,
for the state feedback output tracking MRAC design, a less restrictive matching condi-

tion, which can be satisfied under system parametric and structural uncertainties, will
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be derived. With such a less restrictive plant-model matching condition, a parameter-
ized error model, based on a high frequency gain matrix decomposition that reduces
a priori system knowledge, will be developed for design of stable adaptive laws. The
state feedback controller updated by the adaptive laws can ensure closed-loop system
stability and asymptotic output tracking. This multivariable MRAC scheme with
the less restrictive matching condition provides a foundation for development of the

adaptive fault-tolerant control.

3.1 Problem Statement

Consider the MIMO linear time-invariant (LTI) system described by
x(t) = Az(t) + Bu(t), y(t) = Cx(t) (3.1.1)

where the system matrices A € ™", B € R™M and C € RM*" have parameter
uncertainties, and z(t) € R™, u(t) € RM and y(t) € RM are the state, input and
output vector signals. The control objective is to design a state feedback control law
u(t) to make all signals in the closed-loop system bounded and the output signal y(t)

asymptotically track a given reference signal y,,(t) generated from a reference system
Ym(t) = W (8)[r)(t), Win(s) = &, (5), (3.1.2)

where 7(t) € R™ is a bounded reference input signal, and &,,(s) defined in Lemma
2.3.1 is the modified left interactor matrix of the system transfer matrix G(s) =

C(sI — A)7'B , which has a stable inverse, i.e., W,,(s) is stable.

3.1.1 Motivation

The motivation of studying the multivariable MRAC with state feedback for output

tracking come from the fact that, for many important applications, there are some
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shortcomings in the two existing types of multivariable MRAC schemes, namely, state

feedback state tracking and output feedback output tracking designs.

State feedback for state tracking. For state feedback state tracking design,

the adaptive control law is given as
u(t) = Ki(t)z(t) + Ka(t)r(t), (3.1.3)

where K;(t) € R™M and K,(t) € RM*M are the adaptively updated estimates of
nominal parameters K; and K. Applying the adaptive control law (3.1.3) to the
system (3.1.1), the state signal z(¢) can asymptotically track a reference state signal

Zm(t) generated from

Tm(t) = Apxm(t) + Bpr(t), (3.1.4)

where A,, € R™"™ is stable. For such an adaptive control design, the nominal param-

eters K7 and K; must be existed to satisfy the matching condition:
A+ BK;T = A,,, BK} = B,,. (3.1.5)

However, when the system matrices A and B have uncertainties, i.e. entries of A and
B are unknown, the nominal parameters K; and K are hard to be solved from the
matching condition (3.1.5) with the chosen reference system (A,,, B,,). That is the
matching condition (3.1.5) is restrictive for the system with parameter uncertainties.
Then, we use an aircraft flight control example to show the restrictiveness of the

matching condition (3.1.5).

Example 3.1.1. Consider a linearized lateral-directional dynamic model of a large

transport airplane [85] described by

&= Az + Bu, x = [vy, pp, 73, 0, V|7, u = [ds, d,]". (3.1.6)
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The system matrices A and B have uncertainties due to variations of the operating

conditions, where the structures are given as

aj; aiz a1z apg 0 bir b1z
a1 Gy agz agy 0 bor Do
A= a31 Qg a33 asq 0 y B= b31 632 y (317)
0 1 0 00 0 O
0 O 1 0 0 0 O

with a;5,¢ = 1,2,3,7 = 1,2,3,4, and b;;,5 = 1,2,3,j = 1,2, being the unknown

*

parameters. Denote kj;;, i = 1,2,...,5,7 = 1,2, as the (i, j) component of Kj and

ki, i =1,2,7=1,2, as the (4, j) component of K3. It follows that

Qc11 Ge12 Ge13 Qel4 Qels
Ac21 (22 (e23  Ac24  Ae25
A+ BKT=|aw1 a2 a3 aess aess | (3.1.8)
0 1 0 0 0
0 0 1 0 0

Where ac,-j = aij + bilkrjl + bingjQ,Z' = 1, 2, 3,] = 1, 2, 3, 4, Qeis = bilki—’,l + bigk‘fm, and

bi1k3yy + Dokl D11kgy5 + bi2kdo
bo1k31y + book3sy  bork3yo + bagksyy

BKG = | bauksy, + bsokiay  baikiyy + bsokiny | - (3.1.9)
0 0
0 0

In view of (3.1.8) and (3.1.9), with the given matrices A,, and B,,, there may not

exist the solutions of K} and K3 for the matching condition (3.1.5). O

When A and B are known, we may use LQR or pole placement designs to derive
the controller parameters K7 and KJ. Meanwhile, the reference system matrices A4,,
and B,, can be obtained. However, when A and B have parameter uncertainties, such
as (3.1.7), it is hard to apply LQR or pole placement designs to obtain A,, and B,,,
and K7 and KJ may not exist for some chosen A,, and B,, as shown in Example 3.1.1.
Thus, the matching condition (3.1.5) is restrictive, which requires exact knowledge of

A and B to obtain K and K. Hence, in the presence of uncertainties of A and B,
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the unsolvable (restrictive) matching condition (3.1.5) makes it difficult to design an
adaptive state feedback for state tracking control law (3.1.3). On the contrary, the
matching condition of the state feedback for output tracking (to be developed) is less

restrictive and needs less system parameter information.

Output feedback for output tracking. If the control objective is to make the
output signal y(t) of the system (3.1.1) track the reference signal y,,(t) generated
from (3.1.2), we can apply the output feedback multivariable MRAC scheme to avoid
the restrictive matching condition. It is well-known that such an output feedback

controller is given as

u(t) = 07 ()wy(t) + O3 (t)wa(t) + O20(t)y(t) + Os(t)r (1), (3.1.10)

where wy(t) = ’LX)(S;) [u](t) and wy(t) = ’?\O((,:)) [y](t) for a monic and stable polynomial
A(s) of degree v—1 and Ag(s) = I, slns, - - ., 8¥ 21" with v being the observability
index of the system G(s) = C'(sI—A)™' B. The adaptively updated parameters O (t),
©s(t), O9(t) and O3(t) are the estimates of the nominal parameters ©F, ©5, 03, and

%, which satisfy the matching equation (2.4.62). However, such an output feedback
controller with filter %S) is more complex than the state feedback controller structure
(3.1.3). A comparison of complexity of output feedback for output tracking and state
feedback for output tracking will be presented in Section 3.3.1.

In many applications, the system state variables are available and the control
objective is to achieve output tracking (e.g., aircraft flight control). For such ap-
plications, an effective and simple controller structure is desirable. It is the goal of
this chapter to develop a new multivariable MRAC with state feedback for output

tracking, which can avoid both the strict matching conditions and the complicated

output feedback controller structure.
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3.1.2 Design Assumptions

To proceed the design, we make the following assumptions about the system:

(A3.1) all zeros of G(s) have negative real parts;
(A3.2) G(s) has full rank and its modified left interactor matrix &,,(s) is known;

(A3.3) all leading principal minors A;,i = 1,2,..., M, of the high frequency gain

matrix K, are nonzero and their signs are known; and

(A3.4) (A, B) is controllable and (A, C) is observable.

Assumptions (A3.1) and (A3.4) are needed for stable plant-model matching, as-
sumption (A3.2) is used to obtain the reference model (3.1.2), and assumption (A3.3)

is used for designing adaptive laws.

Remark 3.1.1. Although the parameters in A, B, and C have uncertainties, the
interactor matriz £,(s) and signs of leading principal minors of K, may be obtained
from the structure knowledge or physical meanings of matrices A, B, and C. Next,
we will use a generic aircraft model to show that &,,(s) and signs are accessible for the
aireraft flight system in the presence of parametric uncertainties. Hence, the design

assumptions are not restrictive for the aircraft flight control system. O

3.2 Controller Structure

We employ a state feedback controller:
u(t) = Ki (t)x(t) + Ko(t)r(t) (3.2.1)

where K7 and K are estimates of the unknown constant matrices K7 and K3, which

satisfy the following plant-model matching condition (2.4.3):

C(sI — A— BK")'BK; = W, (s), Win(s) = £.1(s). (3.2.2)

m
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The existence of K7 and K has been shown in Section 2.4.1. This result is also stated
in [59] in terms of H(s) =&, (s) = W,,(s), the Hermite form of G(s). In particular,
when the interactor matrix &,,(s) of G(s) is in a diagonal form, the matching condition
can be treated as a solution to a decoupling problem for multivariable systems, which

is stated and solved in [22]. When the interactor matrix &, (s) is in a lower triangular

form, [62] gives a method to solve K} and K for the matching condition (3.2.2).

3.2.1 Robustness to Parameter Uncertainties

In each matching condition (3.1.5) and (3.2.2), there are three components: the
system (A, B,C), the reference system (A, By) or &, (s), and (K7, K3). A key
point of comparing these two matching conditions is to see whether the reference
systems (A, B,,) and £.'(s) can be obtained under system parameter uncertainty
condition to ensure the existence of K and K.

When the parameters in A and B have uncertainties, it is hard to obtain (A,,, By,)
using LQR or pole-placement design, and K7 and KJ may not exist for some cho-
sen (A, Bn), since the matching condition (3.1.5) requires strict matrix matching
condition, as explained in Section 3.1.1. On the contrary, we will show that, when
the parameters in A, B, and C have uncertainties, under some structural matrix
non-singularity conditions, the reference system £!(s) can be obtained, that is the
matching condition (3.2.2) can be satisfied when (A, B, C) has uncertainties.

To proceed for the system transfer matrix G(s) = C(sI — A)~! B, denoting C;,i =
1,2,..., M, as the ith row of C, the ith row of G(s) is given as

Gi() = o (Buays™ + -+ + Eus + E), (3.2.3)

B(s)
where ((s) = det(s] — A) = 5"+ 18"+ -+ Bis+ B, Eigna) = CiB, Ejna) =
C;AB+ B_1C;B, . .., Ejg=C;A" B4 - +B,C; AB+5,C; B. We define a set of indices
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{p1,p2,...,pa}, such that C;AP~1B # 0 and C;A*B =0,k =0,1,...,p; — 2.

Proposition 3.2.1. If the matrix

ClApl_lB
C2Ap2—lB
pd = : (3.2.4)
CMA[')M_IB
has full rank, then the diagonal matrix
Em(s) = diag{di(s),da(s),...,dn(s)}, (3.2.5)

where d;(s),i = 1,2,..., M, is a monic stable polynomial of degree p;, is the left

modified interactor matriz, and the high frequency gain matriz is K, = K,q.

Proof: From (3.2.3) and the definition of index p;, it can be easily shown that
limg oo & (8)G(s) = Kpq. Since Kpq has full rank, from the definition in Lemma

2.3.1, &,(s) is the interactor matrix, and K,q is the high frequency gain matrix. V

Under the uncertainties of A, B, and C, if the matrix K,; defined in (3.2.4)
is nonsingular, the diagonal &,,(s) (3.2.5) is the system interactor matrix and the
reference system W,,(s) = &.!(s) is available for solving the matching condition
(3.2.2). Therefore, such a matrix non-singularity requirement is much less restrictive

than the strict matching condition required in the state matching equation (3.1.5).

Proposition 3.2.2. If the matriv K,q defined in (3.2.4) is singular, then the inter-

actor matriz &, (s) is of lower triangular form (2.5.1) [89].

Reference [89] gives a constructive procedure to build such a lower triangular
interactor matrix. To obtain the &,,(s), we may need more prior structural knowledge,
but the conditions used in [89] may be still less constrained than knowing exact A

and B for strict matrix matching condition (3.1.5).



42

Robustness of interactor matrix. In real life applications, the structures of A,
B, and C may be known (some elements may be zeros), and the uncertain parameters
may have bounds. Based on such structural knowledge of the system, we could obtain
the interactor matrix &, (s), which may be of diagonal form if K4 has full rank or lower
triangular form if K4 is singular, then the nonsingular high frequency gain matrix
K, can also be obtained. When parameters change within the physical bounds, the
probability of K, being singular is very small, since the parameters which makes the
determinant of K, be zero lies in a low-dimensional manifold. Hence, the chosen
&m(s) is still the system interactor matrix.

Next, we will use an aircraft model with parameter uncertainties to show that
the interactor matrix &,,(s) can be obtained and the high frequency gain matrix K,

remains nonsingular with the chosen &, (s).

3.2.2 An Aircraft Example
Recall that the linear aircraft lateral-directional dynamic model is
t(t) = Az(t) + Bu(t), y(t) = Cx(t), (3.2.6)

where the generic structures of A and B are given in (3.1.7). Here, we choose the roll

angle ¢ and the yaw angle v as the outputs, so the C' matrix is

00010
C‘l00001}' (3.2.7)
From (3.2.3), we have the transfer matrix is G(s) = [G1(s), Ga(s)]T, with
1
Gl(S) = %(Elgsg + -4 E118 + E10)>
1
GQ(S) = %(Eggsg + -+ E218 + EQQ), (328)

where E13 = ClAB = [b21 + tan90b31,622 + tal’leobgg] §£ 0 and E23 = CQAB =

[ﬁbgl, ﬁbgg] = 0, since boy, bag, b3y, and b3y are control gains from the corre-
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sponding control surfaces to the state accelerations and the signs are known: by < 0,
bas > 0, b3; < 0, and b3y < 0. So the determinant of

d:{ClAB}

K CyAB

p

b21 + tan 90[?31 b22 + tan 90[)32
Cos1 6o b31 Cos1 6o b32

is given as det(K,q) = ﬁ(ngbgl — b31b92) # 0. From Proposition 3.2.1, the interac-
tor matrix for the system (3.2.6) can be chosen as &,,(s) = diag{(s+1)?, (s+1)?} and
the high frequency gain matrix K, = K,4. Thus, for the generic lateral-directional
aircraft model (3.2.6) with parameters changing within the physical range, the refer-
ence transfer matrix can be chosen as W,,(s) = &, !(s), and the matching condition

(3.2.2) can be satisfied. On the other hand, the matching condition (3.1.5) cannot be

satisfied for the generic lateral-directional aircraft model (3.2.6) as in Section 3.1.1.

3.3 Parameter Adaptation Scheme

In this section, we present the design and analysis of an adaptive scheme for the

control law wu(t) in (3.2.1). Substituting the control law (3.2.1) in (3.1.1), we have
i(t) = (A+ BE")a(t) + BE;r(t) + B((K{ () — Ki)x(t) + (Ka(t) — K)r(t)),
y(t) = Cuz(t). (3.3.1)

In view of the reference model (3.1.2), matching condition (3.2.2) and (3.3.1), the
output tracking error e(t) = y(t) — ym(t) is

e(t) = Wi (s)K,[0Tw](t) + CeATBEI D (0), (3.3.2)
where Ce(A+BEI z(0) converges to zero exponentially due to the stability of A +
BKTT> é(t) =0(t) — 0", 0(t) = [KlT(t)a K2(t)]T’ O = [KTT’ K;]T’ w(t) = [xT’TT]T'
If the control law (3.2.1) is implemented with K (¢) = K and Ky(t) = K}, we would

have limy,o0 (y(t) — ym(t)) = 0 . However, K} and K are unknown, we need to use

the K;(t) and K,(t) updated from some adaptive laws to be developed next.
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3.3.1 Design Based on the LDS Decomposition

To design adaptive parameter update laws, it is crucial to develop an error model in

terms of some related parameter errors and the tracking error e(t).

Error model development. From the tracking error (3.3.2), ignoring the expo-

A+BET2(0), we obtain

nentially decaying term Ce!
En(s)[e](t) = K07 ()w(t). (3.3.3)

To deal with the uncertainty of K, we use its LDS decomposition defined in (2.3.5):
K, = L;D,S. Substituting (2.3.5) in (3.3.3), we obtain

L6 (8)[e)(t) = DSOT (t)w(t). (3.3.4)
To parameterize the unknown matrix Ly, we introduce
Op=L'—1={0}}, (3.3.5)
where 0, =0 for i =1,2,..., M and j > i. We have
Em(5)[e] () + Om(5)[e](t) = D.SOT (t)a(?). (3.3.6)

We introduce a filter h(s) = 1/f,(s), where f,,(s) is a stable and monic polynomial

whose degree equals the degree of &, (s). Operating (3.3.6) by h(s)Iys leads to

e(t) 4 [0, 05T 0o (1), 05 ns(t), ..., 0 mar(8)])" = D, S h(s)[07w](t), (3.3.7)

where
et) = &u(s)h(s)le](t) = [ (t), ... em(®)], (3.3.8)
ni(t) = [et),....,a ()] €e RYi=2,..., M, (3.3.9)

0 = [6;,-.05]", i=2,..., M (3.3.10)
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Based on this parameterized error equation, we introduce the estimation error
e(t) = (0,05 (t)(t), 05 (s (2), - ... Oa (B)mae (O] + T(DER) +e(t),  (3.3.11)
where W(t) is the estimate of U* = D, S, and
£(t) = ©T(1)C(t) — h(s)[OTw](2), ((t) = h(s)[w](t). (3.3.12)
From (3.3.7)(3.3.12), we can derive the following equation:
e(t) = [0,65 (1) (1), 05 () (D), - - 03, (O)mar (1)] T+ D SO TC(1) +V(H)E(T) (3.3.13)

where 0;(t) = 0;(t) — 07, i = 2,3,..., M, and U(t) = U(t) — ¥*.
Adaptive laws. With the estimation error (3.3.13), we choose the adaptive laws

Poiei(@ni(t)

0;(t) TP 2.3,..., M, (3.3.14)
o7 (t) —%é)(t), (3.3.15)
U(t) = —%i)(t), (3.3.16)

where the signal e(t) = [€,(t), e2(t), . . ., ear(t)]T is computed from (3.3.11), Tg; = '}, >

0,i=2,3,...,M,and I' =I'" > 0 are adaptation gain matrices, and
M

m(t) = (L4 ¢ (6)C() + €7 OEWD) + > nl (Omi(8),
i=2

Complexity analysis. First, we note that the state feedback controller structure
(3.2.1) is less complex than the output feedback controller structure (3.1.10). Since
a matrix filter F'(s) is used in the output feedback controller (3.1.10), it is necessary
to use additional integrators. Another comparison is based on number of updated

parameters and number of filtered signals.

Number of updated parameters. The number of parameters updated in the

state feedback for output tracking adaptive laws (3.3.14)—(3.3.16) is N, = M22_M +
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(n+M)M 4+ M?, and the number for the output feedback for output tracking adaptive

laws is N, = M22_ M 4 (2v 4+ 1)M?. From the observability index v definition [84], we

have vM > n. Then, we can derive that
N, — N, =2vM? —nM — M* > (n — M)M > 0. (3.3.17)

That is, the state feedback for output tracking design has fewer parameters to be
updated than the output feedback for output tracking design (note that N, = Nj

only when v =1 and n = M).

Number of filtered signals. Letting n} = deg(fx(s)), the number of integrators
in construction of the filtered signals £(¢) and ((t) used in state feedback for output
tracking is nj (2M +n), and the number of integrators for é(t) is n% that is related to
the filter &,,(s)h(s). So the total number of integrators for the state feedback output
tracking is given by Ny, = nj(2M + n) 4+ n}. Similarly, the number of integrators
used in output feedback for output tracking is given by Ny, = nj(2vM + M) + n?.

From vM > n, we have
Nyo— Nys =np(2vM —n— M) > nj(n— M) > 0. (3.3.18)

That is, the state feedback for output tracking design has fewer integrators than the
output feedback for output tracking design (as in the case of number of parameters
to be updated, Ny, = Ny; only when v =1 and n = M).

Based on the above analysis, we have the state feedback for output tracking scheme

is simpler than the output feedback for output tracking scheme.

3.3.2 Stability Analysis

For the adaptive laws (3.3.14)—(3.3.16), we have following desired properties.

Lemma 3.3.1. The adaptive laws (3.3.14)—(3.3.16) ensure that
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(i) 6:(t) € L, i =2,3,..., M, ©(t) € L*, W(t) € L, and

m(t)

€ L?NL*>;
(ii) O;(t) € L*NL>®, i=23,...,M, O(t) € L* N L, and ¥(t) € L> N L*®.
Proof: Consider the positive definite function
1L o~ ~
V= 5(2 077,10, + tr[UTT 0] + tx[©.507)). (3.3.19)
i=2

From (3.3.14)—(3.3.16), we derive the time-derivative of V'

M =

v=-%" Oletym(t) T ()UTe(t) (T(1)OSD.e(t) € (t)e(t)

= m() m2(t) m2(t) T m2(t) <0. (3.3.20)

From (3.3.20), we have 6;(t) € L™, i = 2,3,..., M, O(t) € L=, U(t) € L=, 2 ¢

m(t)

L2N L=, 6;(t) e LPNL>®, i=2,3,....,M,0(t) € L*NL>®, and ¥(¢) € L*°NL>®. V

Based on Lemma 3.3.1, we can prove the following system stability property.

Theorem 3.3.1. The multivariable MRAC scheme with the state feedback controller
(3.2.1) updated by the adaptive laws (3.53.14)-(3.5.16), when applied to (3.1.1), guar-
antees the closed-loop signal boundedness and asymptotic output tracking: lim;_, .. (y(t)—

Ym(t)) =0, for any initial conditions.

The proof of Theorem 3.3.1 can be carried out by using a similar way as described
in [46] and [84] for multivariable MRAC using output feedback (see (3.1.10)). A key
step of such an analysis procedure is to express a filtered version of the plant output
y(t) in a feedback framework which has a small gain due to the L? properties of O(t),

0;(t) and ;(8) Since the state feedback control signal u(¢) depends on the state x(t),

we need to express it in terms of the output y(¢) (and the input u(t) itself through a
dynamic block). This can be done using a state observer representation = Az+ Bu,
y=Cuz: ©=(A—LC)x+ Bu+ Ly for a gain matrix L € R™M such that A — LC is
stable (which is possible because (A, C) is observable). Then, the analysis procedure

in [84] can be used to conclude the closed-loop signal boundedness and asymptotic
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output tracking: lim; . (y(t) —ym(t)) =0 for the state feedback case. The detailed

proof has been shown for the discrete-time adaptive control design in Chapter 7.

3.4 Control Issues of Nonlinear Systems

The commonly used method of control design for nonlinear systems (such as aircraft
flight control systems) is based on linearization of the nonlinear systems. In this sec-
tion, we will present the procedure of applying the state feedback for output tracking

MRAC design to the nonlinear systems.

3.4.1 Control Design

The nonlinear system can be denoted as

#(t) = fulz(t),u(t)), y(t) = h(z(t)), (3.4.1)

where € R", u € R™ and y € RM are the state, input and output signals.

Linearization. Applying the Taylor series expansion at an equilibrium point

(20, uo) (fnl(xo,up) = 0), we have the nonlinear system as

Ax(t) = @(t) = AAz(t) + BAu(t) + R, (Az, Au),

Ay(t) = CAz(t) + Rp(Azx), (3.4.2)

where Ax(t) = x(t) — zo, Au(t) = u(t) — ugp, Ay(t) = y(t) — h(xg), R.(Ax,Ay) and

R (Ax) are the higher-order terms, and

A0 g 0k Ok

_  B= o=, 3.4.3
83: (zo,u0) 8u (zo,u0) 8x o ( )

In a small neighborhood of (xg,u), we approximate the nonlinear system as

Ai(t) = AAz(t) + BAu(t), Ay(t) = CAx(t). (3.4.4)
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U u(t) y(t)

Nonlinear system —

Y

control law

x(t)l
Au(t) Adaptive ‘A‘T(t) \J:_ Lo
(t)

«— 7

Figure 3.1: Closed-loop system with nonlinear system.

Design objective. The output perturbation Ay(¢) should track a given reference
signal Ay,,(t)
Ay (t) = Win(s)[r](t), Win(s) = &' (s), (3.4.5)

where 7(t) is a bounded reference input signal, and &,,(s) is a modified left interactor

matrix of the transfer matrix G(s) = C(sI — A)™'B.

Linear control law design. Based on the linearized system (3.4.4), we generate

the MRAC signal Au(t) as
Au(t) = KT (t)Az(t) + Ky(t)r(t), (3.4.6)

where K;(t) and Ky(t) are updated from (3.3.14)—(3.3.16).

Control law for the nonlinear system. We add the equilibrium signal ug with
Au(t) to obtain the controller signal u(t) = Au(t) + up and apply it to the nonlinear

system (3.4.1). Figure 3.1 shows the closed-loop system.

Compensation of approximation errors. The developed adaptive control de-
sign is based on the linearized system without the approximation errors R,, and Ry,.
When applied to the nonlinear system, the approximation errors could be compen-
sated when they are small and approximate output tracking could be achieved in an
average sense. However, the exact asymptotic output tracking might not take place,

even if the perturbations are small, since the perturbations could lead to some resid-
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ual errors, or even parameter drift or instability. To avoid parameter drift, standard
robust modifications of the adaptive laws can be used.

For a comparison study, we will also apply a fixed controller, which is the nominal
controller Au(t) = K;TAz(t) + K;Ar(t), to the nonlinear system. The simulation
result will show that, for a same reference input r(t), the adaptive controller can com-
pensate the approximation errors to achieve approximate output tracking, while the
fixed controller cannot compensate the errors. Thus, we may conclude that operation

range of the linearization-based adaptive controller is larger than the fixed controller.

3.4.2 System Infinite Zero Structure

Consider a control-affine nonlinear system

p(t) = fa(t)) + Zgi(x(t))ui(t% y(t) = h(z(t), (3.4.7)

where h(z(t)) = [hi(x(t)), ho(x(t)), ..., har(z(t))]?. Assume that the system (3.4.7)
has a relative degree {p1, pa, ..., par} at a neighborhood of z, such that (i) Ly, Lihi(z) =
0,V1<j<Mk<p —1,1<i<M, and (ii) the matrix

Lglel 1h1( ) Y LgMLp1 1h1(I)

L, L” 'h o L L”2 tha(a

Oz({l?): 2( ) ' 9m 2( ) (3.4.8)

LglL;;M—th(x) LgML;iM—th(g;)

is nonsingular, for Vz in the neighborhood of z¢ [43]. Here, L, Lkhi(x),z' =1,2,...,M,j =

1,2, M,k =0,1,..., p—1, denotes Ly, Lihy(x) = 22" g, where Lkh; = Lp(Lk~'h;) =
8L’Ji*1h 0
oty Loh = b

Linearization. We now linearize the system (3.4.7) at an equilibrium (zo, uo),
such that f(zo) = 0 and ug = [u1,, g, - - -, uag,]” = 0. From (3.4.4) and (3.4.3), we

obtain the linearized system of (3.4.7) as

Az(t) = AAx(t) + BAu(t), Ay(t) = CAx(t), (3.4.9)
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where Ax(t)=x(t)—xo, Au(t)=u(t), Ay(t)=y(t)—h(x),

_of

ax 1‘0’

om
ox

Ohy
v Ox

A 7. (3.4.10)

o

B = [g1(x0), ..., 9m(z0)],C = |

Theorem 3.4.1. If the relative degree of nonlinear system (3.4.7) is {p1,...,pm},
then the interactor matriz of the linearized system (3.4.9) is of the diagonal form:
Em(s) = diag{di(s),da(s),...,dy(s)}, where d;i(s),i = 1,2,..., M, are monic stable

polynomials of degrees l; = p;.

The above result is derived for the case when the nonlinear system (3.4.7) has
a set of well-defined relative degrees p;, i = 1,2,..., M, for z in a neighborhood of
xy, which leads to a diagonal interactor matrix (or Hermite form) of the linearized
system obtained at xy. This implies that the interactor matrix of the linearized
system obtained in a neighborhood of xy does not change. This is an important
system invariance under linearization. This property is crucial for application of

multivariable MRAC to nonlinear systems.

3.5 Application to the GTM

In this section, we apply the linearization-based multivariable MRAC design to the
NASA generic transport model (GTM), to assess its effectiveness for the nonlinear

aircraft system.

3.5.1 The NASA Generic Transport Model (GTM)

To test the MRAC scheme, we will use the nonlinear Simulink model of the GTM
developed by NASA, which represents realistic flight scenarios, to perform simulation

studies of our adaptive control scheme. The GTM is a nonlinear system denoted as

g (t) = flag(t), ug(t)), yo(t) = h(zy(2)), (3.5.1)
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where the output y, is a part of the state z,, and the state and the input are
Tg= [Ub, Wy, qb, 9) Vb, P, Tv, ¢a ¢]T’ Ug= [dea daa dra dt]T~

Under a wings-level flight condition, the aircraft can be decoupled into lateral-directional

and longitudinal dynamics.

3.5.2 Control of the GTM

In this simulation study, we will apply the developed linearization-based design to
the linearized and nonlinear GTMs. After linearizing the GTM model (3.5.1) at
an equilibrium point (steady straight wings-level flight at 90 knots) (240, ug0), the
longitudinal and the lateral-directional dynamics are decoupled, and we only consider

the linearized lateral-directional dynamics:
Az(t) = AAx(t) + BAu(t), Ay(t) = CAx(t), (3.5.2)
where Az(t) = z(t) — xo, Au(t) = u(t) — uo, Ay(t) = y(t) — Cxy, x(t) and u(t) are
2 (t) = [vy, Dy, 70, 0, 0)", w(t) = [da, d,]", (3.5.3)

and we choose ¢ and ¢ as the output signals

y(t) = [o, 9] = Ca(t), (3.5.4)
such that
00010
C‘looooﬂ‘ (3.5.5)
For the lateral-directional dynamics (3.5.2), the structures of A and B are
ap;  ap a3z ayg 0 bii b2
a1 Qg2 az 0 0 ba1 b
A= as; as2 as3 0 0 s B = b31 b32 y (356)
0 1 tan6y 0 O 0 0
0 0 o 00 0 0

where 6 is the equilibrium point of the pitch angle.
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Remark 3.5.1. Since the linearized model of the nonlinear system (3.5.1) is obtained
for a neighborhood of (x40,ug), the lateral-directional dynamics of the GTM model
can be treated as decoupled from the longitudinal dynamics around (x4, ug). Then,

the nonlinear lateral-directional dynamics equation may be expressed as

&= fi(x) + gu (), go(x)]u, y = [¢,¥]", (3.5.7)

around its equilibrium (zo,0), whose linearized system is (3.5.2). Based on Theorem
3.3.1, for the lateral-directional dynamics, the system infinite zero structure is in-
variant. This implies that the linearization-based design is meaningful in terms of the
design condition of the invariant infinite zero structure, when applied to the nonlinear

GTM for its lateral-directional dynamics control. O

Verification of design conditions. The transfer matrix of the system (3.5.2)

is G(s) = [Gi(s),Ga(s)]", where Gy(s) = B(ls) (E138% + -+ + Eis + Ei),Go(s) =

B(ls) (E2383 + -+ Eos+ Ezo), with

E13 = ClAB = [b21 + tan 90()31, 622 + tan ‘90[?32] §£ 0,

1 1
o bs2] # 0.

Eas = CzAB:[cosH 3 cos
o

Based on the values of A and B obtained from the GTM model, it can be verified
that all zeros of G(s) have negative real parts and G(s) has full rank, and the matrix

[EL, EL]T is nonsingular. From Proposition 3.2.1, we choose
Em(s) = diag{(s +1)* (s + 1)}, (3.5.8)
then the high frequency gain matrix is given as

C1AB ]:{ battan Gobss - byptan Gobss | (3.5.9)

K= {C’QAB

1
cos g b31 cos Og b32
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which has full rank. From (3.5.9), the first and second leading principal minors are

Al = b21 + tal’le(]bgl % O, AQ = det(Kp) =

ba1b32 — baob
COSHO( 21032 — baabs1) # 0,

since baq, bo, b3y, and bgy are control gains from the corresponding control surfaces
to the state accelerations and the signs are known: bg; < 0, bes > 0, b3; < 0, and
bso < 0. Moreover, the equilibrium point of the pitch angle is 6y = 0.067 rad. Then,

we obtain the sign information of the principal minors:
sign(Ap) = —1, sign(Ay) = 1. (3.5.10)
Reference model. The reference model is chosen as
Ay, (t) = Wi (s)[r](2), (3.5.11)

where W,,(s) = £1(s) = diag{1/(s + 1)%,1/(s + 1)?}.

Design parameters. Since the degree of &, (s) is 2, the filter is chosen as
h(s) = 1/(s + 8)% For the adaptive laws (3.3.14)—(3.3.16), we choose ['py = 10,
I' = diag{10, 10}, and D, = diag{sign[A]1, sign[52]72} = diag{—30, —30}.

Adaptive state feedback controller. We apply the control law Au(t) =
KT (t)Ax(t) + Ky(t)r(t) with K, (t) and K5(t) being updated from (3.3.14)—(3.3.16)
to the linearized GTM first. Then, we apply u(t) = uo+ Au(t) to the nonlinear GTM
around the equilibrium point (xg, uo).

Simulations of linearized and nonlinear GTMs. In the simulation study,
the initial values of the gain parameters Ki(t) and K,(t) in the adaptive laws are
chosen not far from the nominal values. We use two cases to assess the validation of

our linearization-based control design:

(i) constant reference input r(t)=r(t)=[4r/180,107/180]%;
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(ii) varying reference input 7(t)=ro(t)=[57/180sin(0.02t),107 /180 sin(0.015¢)]”.

The simulation results of the linearized GTM and nonlinear GTM are given as follows.

Case I: 7(t) = ri(t). In Figure 3.2, the dotted lines represent the reference Ay,,(t),
the dashed lines represent the output signal Ay(t) of the linearized GTM (3.5.2), and
the solid lines represent the GTM output perturbation Ay(t). From Figure 3.2, we
can see that the linearized GTM outputs track the reference signals, and the nonlinear
GTM output perturbations track the reference signals as well. That is the output
signal y(t) of the nonlinear GTM can track the signal yo + Ay,,(t), which is not far

from the equilibrium yj.

---linearized GTM

O* —nonlinear GTM|
! reference
—2r | | | | | | | | ]
0 20 40 60 80 100 120 140 160 180

Output perturbation A (deg) and reference A(pm (deg) vs. time (sec)

ok ---linearized GTM| |
—nonlinear GTM
reference
_5 _
| | | | | | | |
0 20 40 60 80 100 120 140 160 180

Output perturbation Ay (deg) and reference Awm (deg) vs. time (sec)
Figure 3.2: System responses vs. reference (r(t) = r(t)).

Case II: r(t) = ro(t). From Figure 3.3, the output signals of the linearized and
nonlinear GTMs can track given reference signals.
Summary of the simulation results. For the linearized GTM simulations in

Case I and Case II, the output tracking is achieved, which is ensured by Theorem
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0;/} _
! ---linearized GTM
—nonlinear GTM
reference
-5 | | | | | | |
0 50 100 150 200 250 300 350 400
Output perturbation A (deg) and reference A(pm (deg) vs. time (sec)
10F I I I I I ]
5 ---linearized GTM| |

—nonlinear GTM
reference

! ! ! ! \ S
0 50 100 150 200 250 300 350 400
Output perturbation Ay (deg) and reference AL|Jm (deg) vs. time (sec)

Figure 3.3: System responses vs. reference (r(t) = ra(t)).

3.3.1. From the nonlinear GTM simulation results in Case I and Case 11, we conclude
that this linearization-based control design can compensate the approximation errors
and parameter uncertainties for the nonlinear system in a small neighborhood of the
equilibrium point.

Applying fixed controller to the nonlinear GTM. To further show the ad-
vantage of the adaptive control scheme, we apply a linearization-based fixed controller
u(t) = ug + Au(t) to the nonlinear GTM, such a fixed controller Au(t) is chosen as
the nominal controller Au(t) = K;TAx(t) + K;r(t). The reference input is chosen
as r(t) = [47/180,107/180]7 the same with the one in Case I, where the adaptive
controller achieves output tracking (Figure 3.2) for the nonlinear GTM. From Figure
3.4, we can see that the output tracking errors of the fixed control design are large.
Thus, we may conclude that the linearization-based fixed controller may not be able

to compensate the approximation error.
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0 =
_50 -
—fixed control design
-100 - --adaptive control design|
reference
-150 | | | | | | |
0 20 40 60 80 100 120 140 160 180

Aircraft output perturbation Ag (deg) and reference Atpm (deg) vs. time (sec)

—fixed control design
- --adaptive control design
reference

| | | | | | |
0 20 40 60 80 100 120 140 160 180
Aircraft output perturbation Ay (deg) and reference AL|Jm (deg) vs. time (sec)

Figure 3.4: GTM outputs (adaptive and fixed) vs. reference.

Summary

In this chapter, we present the development of the state feedback output tracking mul-
tivariable MRAC scheme and the application to linear and nonlinear aircraft flight
systems. Such schemes need less restrictive plant-model matching conditions than the
state tracking scheme, while offering a simpler controller structure than the output
feedback scheme. This state feedback for output tracking method represents an ad-
dition to the currently available collection of multivariable MRAC designs, and has a
high potential for output tracking applications such as aircraft flight control in which
system states are available but the state tracking matching conditions cannot be sat-
isfied. The state feedback output tracking MRAC scheme design is based on the LDS
decomposition of the plant’s high frequency gain matrix, which needs much relaxed

condition on K,. Relaxed plant-model matching conditions and desired stability and
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asymptotic tracking properties have been established in theory and demonstrated via
simulation results from application to a linearized GTM models. This linearization-
based design was subsequently applied to the nonlinear model of the GTM. The
simulations have shown that such a linearization-based design is applicable to the

nonlinear aircraft flight system in a small neighborhood of the equilibrium point.



Chapter 4

Adaptive Structural Damage
Compensation for MIMO Systems

This chapter develops a linearization-based adaptive control technique for control of
the nonlinear aircraft flight systems with large parametric and structural uncertainties

caused by damage. Some key technique issues are addressed:
e linearization of nonlinear aircraft systems with damage conditions;
e investigation of generic structures of linearized aircraft models; and
e invariance of infinite zero structures before and after damage.

Then, a state feedback multivariable model reference adaptive control (MRAC) scheme
is developed to ensure stability and asymptotic output tracking for the aircraft flight
system in the presence of damage. Simulation studies of this linearization-based adap-
tive control of the nonlinear aircraft system—the NASA GTM demonstrate the desired

performance in a small neighborhood of the chosen operating point.

4.1 Problem Statement

The nonlinear aircraft flight system model constructed by force equations, moment

equations, and kinematic equations, has been presented in Section 2.1, where the
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uncertain variations caused by damage are also investigated. We denote the nonlinear

aircraft system model with two output signals pitch angle 6 and yaw angle 1 as

i(t) = f(a(t), ult)), y(t) = Ca(t) = [0,¥]", (4.1.1)

where z(t) = [uy, Wy, Gv, 0, Vy, T, Po, &, ¥]T and u(t) = [de, d,, da, dy, dy]T. The first four
state elements uy, wy, ¢y, @ represent the longitudinal motion of the aircraft, while the
last five elements vy, 1y, Py, ¢, 9 represent the lateral-directional motion. To capture
essential system structure features before and after damage occurs, we will analyze

the linearized aircraft model at a given operating point (xg, ug).

Operating point for linearization-based design. The operating point (¢, ug)
is important for the linearization-based design, since it connects the state, output,
and control input signals between the nonlinear system and its linearized model in

the following way:
Ax(t) = x(t) — zo, Ay(t) = y(t) — Cxo, Au(t) = u(t) — o,

where Ax(t), Ay(t), and Au(t) are the linearized perturbation state, output, and
input signals, and z(t), y(¢), and u(t) are the nonlinear aircraft system signals.

For the linearization-based feedback control design, the measurements of signals
Ax(t) or Ay(t) are required. If (zg,uo) is unknown, the signals Az(t) and Ay(t)
cannot be obtained from z(¢) and y(t). Moreover, the designed linearization-based
control law Au(t) cannot be applied to the nonlinear system, since ug is unknown in
the nonlinear controller signal u(t) = Au(t)+ug. Therefore, to employ a linearization-
based design, the system should be linearized at a known operating point.

Damage causes uncertain system structure changes, equilibrium points are not
accessible. In this research, a given point (xg, ug) is chosen as the linearization oper-

ating point for the aircraft system (4.1.1) before and after damage occurs to ensure
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that the linearization-based design can be applied to the nonlinear aircraft system
with damage. It is worth noting that the non-equilibrium operating point (xg, uo)

may introduce a dynamics offset term for the linearized system model.

Linearized aircraft system model. The linearized model of the nonlinear

aircraft system (4.1.1) at (xo, ug) is given as

Az(t) = AAx(t) + BAu(t) + fo, Ay(t) = CAx(t), (4.1.2)
where fo = f(xo,uo) may not be 0, A:% , B:% , and
(z0,u0) (z0,u0)
c_ 00 01TO0O0O0O0O® O
N 000O0O0OO0OTO0T1]|"

Since there exists uncertain damage, the system parameters (A, B, fy) are unknown
and different before and after damage occurs. Assuming that the uncertain damage

happens at t = Ty with unknown Ty, it follows that

(Am Bm fOn)a t S Td

(4B, fo) = { (Ad, Ba, foa), t>1y ° (4.1.3)

where (A,,, By, fon) denotes the uncertain nominal system parameters and (Ag, By, foq)

denotes the uncertain damaged system parameters.
Sequential linear system with dynamics offset. In this paper, a sequential

linear system with an unknown constant dynamics offset is used to represent the

linearized aircraft models before and after damage, such a system is described as
Az(t) = AAx(t) + BAu(t) + fo, Ay(t) = CAx(t), (4.1.4)

where Az(t) € RM, Au(t) € RM, and Ay(t) € RM, A € R B € RVM and
C € RM*" are unknown piecewise constant matrices with a finite number of unknown
jumps (A;, B;, Cy), i=1,2,...,N, and fy € R™! is an unknown piecewise constant

offset with a finite number of unknown jumps fo;, ¢ = 1,2,..., N, such that A =
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A,y B=B;, C =0, fo= fo, forte [ti_l,ti),i =1,2,...,N, with t = 0 and
tny = oo. This system description implies that there are up to N — 1 damages which

may occur in the system.

Control objective. The objective is to develop an adaptive control law Aw(t)
for (4.1.4) to make all the closed-loop system signals bounded and the system output

signal Ay(t) track a given reference signal Ay, (t) generated from a reference model:
Ayp(t) = Wi (s)[r](t), Win(s) = &' (5), (4.1.5)

where W,,(s) is a stable transfer matrix and r(t) is a bounded reference input signal.

Control of the nonlinear aircraft system. It is worth noting that, to design an
adaptive feedback control scheme for (4.1.4), the dimensions of control input Au(t) €
RM and system output Ay(t) € RM should be the same. For the linearized aircraft

system (4.1.2), the control input signal is
Au(t) = [Ad.(t), Ad, (1), Ady(t), Ady(t), Ady,(1)]" € R, (4.1.6)

while output signal is Ay(t) = [AO(t), Ay (¢)]T € R?. In this research, we only manip-
ulate the control input signal [Ad,(t), Ad,(t)]T, while we set [Ad,, Ady, Ady,]T = 0.
Therefore, the linearized aircraft system (4.1.2) becomes a 2-input and 2-output sys-
tem with the control input signal Au(t) = [Ad.(t), Ad,.(t)]T and the output signal
Ay(t) = [AO(t), Ay(t)]T. Then, after deriving the adaptive state feedback control
scheme for Au(t) = [Ad.(t), Ad,(t)]T, the control law

U(t) - [Ade (t) + d60> Adr (t) + drOa da0> dtha dtrO]Ta (417)

can be applied to the original nonlinear aircraft system (4.1.1) in a small neighborhood
of the operating point (g, ug), where ug = [deo, dyo, dao, dio, diro)” is the control input

operating point. Figure 4.1 shows the closed-loop nonlinear aircraft system structure.
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U u(t) Nonlinear system y(t)

with damage

Au (t) Linear

control law —— T(t)

Figure 4.1: Closed-loop nonlinear aircraft control system with damage.

In the simulation studies, we will see that such a control law (4.1.7), with aileron d,(t)
and throttles dy(t), d.(t) fixed at the operating point values and elevator d.(t) and
rudder d,.(t) controlled by the linearization-based design, can efficiently achieve some

longitudinal and lateral-directional maneuvers.

Assumptions. To design a multivariable state feedback MRAC scheme for
the sequential linear system (4.1.4), the following assumptions are required: (A1)
All zeros of Gi(s) = Ci(sI — A)™'B;,i = 1,2,..., N, have negative real parts;
(A2) Gi(s),i = 1,2,..., N, have full rank, the modified left interactor matrix &,,(s)
is known and invariant for all G;(s),i = 1,2,...,N; (A3) All leading principal
minors A;j,¢ = 1,2,...,N,j = 1,2,..., M, of the high frequency gain matrices
K, = limy_,o0 & (5)Gi(s) are nonzero and their signs are known, such that sign[A,;] =
sign[Ayl,p,q=1,2,...,N,j=1,2,..., M, ie. the signs are invariant when damage
occurs; (A4) (A;, B;) is controllable and (A;, C;) is observable.

Assumptions (A1) and (A4) are needed for stable plant-model matching, assump-
tion (A2) ensures that the aircraft systems can track a same reference system (4.1.5)
before and after damage occurs, and assumption (A3) is used for designing adaptive
parameter update laws. The invariance of interactor matrix (assumption (A2)) and
signs of high frequency gain matrix (assumption (A3)) will be investigated for the

linearized aircraft systems before and after damage occurs in the next section.
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4.2 System Invariance of the Aircraft Model

In this section, the linearized system invariance of infinite zero structure and signs
of high frequency gain matrix before and after damage occurs will be studied from
two directions: one is to investigate the generic structures of the linearized aircraft
systems before and after damage; the other one is to investigate the relationship of
the infinite zero structures between the nonlinear system and the linearized system to

derive the invariant properties of linearized aircraft systems before and after damage.

Invariance analysis based on generic linearized models. The operating

point is chosen as a wings-level flight condition
(l’(), UO) = ([ubOa Wy, Oa 907 07 Oa 07 Oa ¢0]T7 [d807 drOa da07 dtha dtrO]T)~ (421)

After linearizing the aircraft system (4.1.1) at (zg,uo) and setting the control in-
put [da(t), dq(t), de()]F = [dao, dao, diro)”, the systems before and after damage are
denoted as

Ax(t) = AAx(t) + BAu(t) + fo, Ay(t) = CAz(t), (4.2.2)
where Au(t) = [Ad.(t), Ad,.(t)]T and
00 01O0O0O0O0OQ 0
C_[OOOOOOOOI} (4.2.3)
When there is no damage, the longitudinal and lateral-directional dynamics are cou-

pled, so that the parameters A and B are given as

A§4X4) ((4x5)
0(5%4) A515x5)

B£4X 1) 04x1)

A= 5x1
0(5><1) Bz(l x1)

B = , (4.2.4)

Y
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where
- - ass as6 asy asg 0
aix Q2 a1z Qa4 0
Gy gy g3 Ggg Qg5 Ag6 Qg7 Ay
A = Us1 Gm Qg G JAr= | ars aze arr arg 0 |,
S 8 i?’ 8 0 tan 0 1 0 0
- - 0 1/cosp O 0 O
r b b52
11 b
b21 62
Bl = b 7B2 = b72
31
0 0
L 0

When damage occurs, the longitudinal and lateral-directional dynamics are coupled.

The parameters A and B become to be

(4x4) (4x5) (4x1) (4x1)
A= Adl Ad2 B = Bdl Bd2 (4 2 5)
— A(5><4) A(5><5) ) - B(5><1) B(5><1) ) e
d3 d4 d3 d4
where
QAdyy  Qdyp  Qdyz Qdyy Adys  Qdyg  QAdyy  Qdyg 0
A _ QAdyy  Qdyy  Qdpz  QAdyy A Adys  Qdyg  Adyy  Qdyg 0
dl — s {1d2 — 0 )
Qdgy  Qdzy  Qdgz  Qdgy Qdgs  Qdgg  Adsy  Qdss
0 0 1 0 0 0 0 0 O
bdll bd12
B _ bd21 B — bd22
dl — b y Dd2 — b )
d31 d32
0 0
Qds;  Qdsy  Qdsz  Qdsy Qdgs  Qdgg  Ads;  Qdsg 0
Adgy  Qdgy  Adgz  Adgy Qdgs  Qdgg  Adgy  Adgs 0
Ags = Ad7y Qdzy  Qdrz Qdyy >Ad4: QAdzs  Qdrg  Qdyy  Qdrg 0 s
0 0 0 0 0 ag, 1 0 0
1
- 0 0 0 0 0 cosfg 0 0 0
bd51 bd52
bdGl bd62
Bd3 = bd71 7Bd4: bd72
0 0
0 0
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To determine the infinite zero structure for the system, relative degrees of entries of
the transfer matrix G(s) need to be investigated, which can be calculated as

1

C) = TG —A)

(Ep18" '+ By 98" 2 + -+ Eys + Ey), (4.2.6)

where det (sI — A) £ s" + 18" '+ -+ a5+ ag, By = OB, E,_y = CAB +
an_1CB, ...,and By = CA" 'B+ «a,,_1CA" 2B + ... 4+ a;CB.

For the nominal aircraft system without damage, the parameters A and B are
given as (4.2.4) with the matrix C' given as (4.2.3), so the coefficients F,,_; and E,,_»

for G(s) are given as

Byn1=CB=0, E,_,=CAB = diag{bs1, ﬂ}.
cos 6y

Based on Lemma 2.3.1, the interactor matrix of G(s) can be chosen as &,(s) =

diag{(s + 1), (s + 1)?}, it follows that the high frequency gain matrix is K, =

limg o & (8)G(s) = CAB = diag{bs, Cé’:b@}. Since the parameters b3, and bg, are
the control gains from elevator to pitch acceleration and rudder to yaw acceleration,
the signs of these parameters can be obtained: b3; < 0 and bg; < 0. So, the signs of the
leading principal minors are sign(A;) = sign(bs;) = —1, sign(Aq) = sign(l?ols—bg;) = 1.

After damage occurs, the matrices A and B change to the damaged values given

as (4.2.5). So the coefficients E,,_; and FE,_» are calculated as

E,1=CB=0, E, o=CAB= lbdﬂ 1%

cos 6y dé1  cos 6o bd62

The interactor matrix of G(s) can be chosen as &,,(s) = diag{(s + 1)?, (s + 1)?}, and
the high frequency gain matrix K, = lims_,o &m(s)G(s) = CAB. If the shift of center
of gravity is small, the signs of b,,, and by, may still be negative, and the coupling
terms may be very small. That is sign(A;) = —1,sign(Ay) = 1.

From the above generic structure analysis, it follows that the infinite zero structure

is invariant before and after damage, which is &,,(s) = diag{(s + 1)?, (s + 1)?}, and
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the signs of the leading principal minors of high frequency matrix are invariant when
the shift of center of gravity is small, which are sign(A;) = —1 and sign(A,) = 1.
Similar generic invariance analysis for the linearized aircraft systems with different

output signals and control input signals can be found in [57].

Invariance analysis of linearization. In this part, the relationship between
interactor matrix &,,(s) of the linearized system and relative degree of the nonlinear
system will be studied. The nonlinear aircraft model (4.1.1) before and after damage

can be denoted as

2

() = f(a() + Y gla()us(t), y(t) = [ ((t)), ha(a())]" = Ca(t) = [0, ¢]",

- (4.2.7)
where u; = d,, uy = d,, and the other control input signals [dq, dy, di ] = [dao, dio, diro]” -
The nonlinear aircraft model (4.2.7) has a set of relative degrees {py, p2} defined at

the operating point (g, ug), such that (i) ngLl}hi(x) =0,i=1,2,7=1,2,k < p; — 1,

for Va in the neighborhood of x¢, and (ii) the matrix

Lo, LP " 'ha(z) L

L hy(x)
— f 1
a\r) = _
( ) {LglL? 1h2(x) L

L7 hy(x)

9mMm

(4.2.8)

9mMm

is nonsingular at « = x, [43,84]. The linearized system at (zo, ug) is given as

Ax(t) = (f(xo) + Zgi(xo)uw) + AAz(t) + BAu(t), Ay(t) = CAz(t), (4.2.9)

1=1

where Ax(t) = x(t) — zo, Au(t) = u(t) — uy, Ay(t) = y(t) — Czy, and

dg1 g2
, AA=— Uy + — Usp,
T=x( 8x T=x( 10 8x T=x( 20

A = A+ AA, A:ﬁ
ox

B = [g1(20), g2(20)]- (4.2.10)

From the definition of the nonlinear system relative degree {p1, p2} in (4.2.8) and the

matrices A and B, and C' in (4.2.9), the following results can be established to show
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the connections between the interactor matrix of the linearized system &,,(s) and the
nonlinear system relative degree {pi, p2}: (i) The interactor matrix of the linearized
system (4.2.9) is of diagonal form: &,,(s) = diag{s+ a1, s+ as}, where a; > 0,as > 0,
if and only if the relative degree of the nonlinear system is {py, p2} = {1, 1}; (ii) If the
relative degree of the nonlinear system is {p1, po} = {1, 2}, then the interactor matrix
of the linearized system (4.2.9) is of diagonal form: &,,(s) = diag{s + a, (s + a)?},
where a > 0; (iii) If the relative degree of the nonlinear system is {p1, p2} = {2,2},
then the interactor matrix of the linearized system (4.2.9) is of diagonal form: &,,(s) =
diag{(s + a)?, (s + a)?}, where a > 0.

For higher relative degree case, similar results may also be derived. The above
results build the connections between the interactor matrix &, (s) and the nonlinear
system relative degree. In the multivariable MRAC design, the invariance property
of &, (s) before and after damage is a crucial condition. To determine the invariance
of &, (s) before and after damage, the relative degrees of the nonlinear aircraft model
before and after damage can be studied. Assuming that the relative degree {p1, p2}
of the nonlinear aircraft model at the operating point (xg, up) is invariant before and
after damage, the linearized systems before and after damage at such an operating
point (zg, up) have the same interactor matrix &,,(s).

Based on the above analysis, the design conditions: the invariance of infinite zero
structure (assumption (A2)) and the invariance of signs of leading principal minors
(assumption (A3)) can be satisfied for the aircraft system. In the next section, a state

feedback for output tracking MRAC scheme will be developed.
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4.3 The Multivariable MRAC Scheme

In this section, the multivariable state feedback model reference adaptive control
design for the sequential linearized system (4.1.4) will be developed to accommodate

the unknown dynamics offset f, and the uncertainties of system parameters (A, B, C).

State feedback controller design. To compensate the constant offset term fy

in (4.1.4), the state feedback controller structure is chosen as
Au(t) = KT (t)Ax(t) + Ko(t)r(t) + ks(t), (4.3.1)

where k3(t) € RM is the adaptive estimate of an unknown constant compensation
term k3 (to be derived next) for canceling the effect of the constant offset fy, and
K;(t) and K5(t) are the estimates of the nominal piecewise constant parameters K;

and K which satisfy the plant-model matching condition (2.4.3):
C(sl — A— BK;")"'BK; = W, (s), K; ' = K, (4.3.2)

for each damage scenarios, where K, is a piecewise constant, for each jump, K, =
Km‘ = hms_,oo gm(S)Gl(S>, 1= 1, 2, ey N.

To derive the nominal value k3, the nominal controller
Au(t) = KT Ax(t) + K3r(t) + k3 (4.3.3)

is applied to the system (4.1.4) to achieve exact plant-model matching. Consider a
particular set of constant values of the system parameters (A, B, fo). Then, substi-
tuting (4.3.3) in the system (4.1.4), the closed-loop system in the frequency s-domain
is given as

Ay(s) = C(sI — A— BK;T) ' BK;r(s) + A(s), (4.3.4)

where

A(s) = C(sl — A— BK;T)™! (Bg + @) : (4.3.5)

S S



70

From the reference system (4.1.5) and the matching conditions (4.3.2), the output

tracking error in the frequency s-domain is
e(s) = Ay(s) — Aym(s) = A(s). (4.3.6)
Applying the Laplace final value theorem, it has

lim e(t) = lim sA(s) = Dk} + d (4.3.7)

t—00 5—0
where D = —C(A+ BK;) !B and d = —C(A+ BK})™! fo. For offset rejection, k3 is
given as

ki = —D7d, (4.3.8)
and then from (4.3.7)-(4.3.8) with §(t) = L7[A(s)], it follows that

lim (Ay(t) — Ay,(t)) = lim 8(t) = 0. (4.3.9)

oo t—00
Since the system parameters (A, B, fy) are piecewise constant, the nominal matching
parameter kj is also piecewise constant, as defined above for each set of (A, B, fo).
Robustness of matching conditions. For the assumption (A2) (which holds
for the aircraft flight systems before and after damage occurs), all the uncertain
systems (A;, B;,C;),i = 1,2,..., N, have the same interactor matrix &, (s). Then,
based on the matching conditions (4.3.2) and (4.3.8), it follows that there exists a
nominal controller (4.3.3) to make the output signals of all the systems (A;, B;, C;), i =
1,2,..., N, track some reference signals generated from a common reference system
Win(s) = &1 (s)-
Tracking error equation. Substituting the control law (4.3.1) in the system

(4.1.4), the system dynamics is given as

Ai(t) = (A+BEKT) Azt +BEKr(O+BliAforBKT (6) Az (K (8)r (t)+ks (t))

Ay(t) = CAx(t), (4.3.10)
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where KT (t) = KT (t) — K7, Ky(t) = Ky(t) — K3, and ks(t) = ks(t) — k. In view
of the reference model (4.1.5), matching conditions (4.3.2), (4.3.8), and (4.3.10), the

output tracking error is given as
e(t) = Ay(t) — Ayp(t) = Win(s) K, [0Tw](t) + 8(2), (4.3.11)

where é(t) = @(t) -0, @(t) = [K?(t)a K2(t)> k?»(t)]T’ O = [KTT>K§’ kg]T> w(t) =

[AzT(t),rT(t),1]". To deal with the uncertainty of K,, the LDS decomposition 2.3.5
K, = L,D,S (4.3.12)

is used, where S € RM*M with S = ST > 0, L, is an M x M unit lower triangular

matrix, and

Ay
AM—l

D, = diag{s], s3, ..., sy} = diag{sign[A]y1,...,sign] 1y} (4.3.13)

such that v; > 0,¢2=1,..., M, may be arbitrarily chosen.

Remark 4.3.1. In the adaptive law design, Dy matriz will be used as a gain matrix.
Although K, is a piecewise constant, based on the Assumption (A3), a uniform Dy

can be chosen for all the high frequency gain matrices to derive the adaptive laws. [

Tracking error parametrization. To obtain the adaptive laws for K (t), Ks(t),
and k3(t), a well parameterized tracking error model is needed. Substituting the
LDS decomposition (4.3.12) of K, (with a uniform Dy) in (4.3.11), and ignoring the

exponentially decaying term (), the error equation can be parameterized as
L7 (s)[e](t) = D,SOT (t)w(t). (4.3.14)

Since &,,(s) is not proper, the signal &,,(s)[e](t) is not accessible. So, a filter h(s) =

1/ fn(s), where f(s) is a stable and monic polynomial of degree equals to the degree
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of &,(s), is introduced. Operating both sides of (4.3.14) by h(s)Iy, leads to
e(t) 4 (0,05 (), 05 ns (1), . . ., 0: nar (1)]F = DySh(s)[0Tw|(t), (4.3.15)

where ©f = L' — I = {6} with 65, = 0 for i = 1,2,...,M,j > i, e(t) =
En(s)h(s)e](t) = [er(t),....ex®)]T, mi(t) = [er, ..., e&4]", and 07 = [0%,...,05_ ],
i=2,..., M. It is worth noting that é(¢) can be obtained from e(t), since &,,(s)h(s) is
strictly proper. In (4.3.15), there are unknown parameters DS and 0f,i =2,..., M,
which are still needed to be estimated. So, an estimation error model containing

estimates of D,S and 67,7 = 2,..., M, is established.

Estimation error. Introduce an estimation error signal as

e(t) = [0, 02 ()na(t), 05 (t)s(t), -, O, (e (O] + T(1)E(2) + E(t), (4.3.16)

where 6;(t),i = 2,3,..., M, are the estimates of 0, and W(¢) is the estimate of

U* =D, S, and

§(t) = O (1)¢(t) — h(s)[O"w](t), ¢(t) = h(s)[w](t). (4.3.17)

From (4.3.15) and (4.3.16), the estimation error €(¢) can be parameterized as

e(t) = [0,05 (£ (1), 03 (£)s (D), - . 037 ()mas (8)] "+ Dy SOT ()¢ () +V(R)E(D), (4.3.18)

where 0;(t) = 6;(t) — 6

7

i = 2,3,...,M, and ¥U(t) = ¥(t) — U* are the related
parameter errors.

Adaptive laws. With the estimation error model (4.3.18), adaptive laws are

chosen as
6i(1) = —%()g’m,i:z?),...,M (4.3.19)
olt) = —%é)(t) (4.3.20)
_Te®)E™ (1)

ey (4.3.21)
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where the signal €(t) = [e1(t), ex(t), . . ., ear(t)]T is computed from (4.3.16), Tg; = %, >

0,i=2,3,...,M,and I' = I'" > 0 are adaptation gain matrices, and

M
m(t) = \l L+ T (C(8) + €70 + DT (Dmi(2) (4.3.22)
=2
is a standard normalization signal.

Stability analysis. From the adaptive laws (4.3.19)—(4.3.21), the following sta-

bility properties can be derived.

Lemma 4.3.1. The adaptive laws (4.3.19)-(4.3.21) ensure that

Doe 12N L>;

(i) 0,(t) € L=, i =2,3,...,M, O(t) € L, W(t) € L, and

(i) 0;(t) € L*NL>®, i =23,...,M, O(t) € L* N L, and ¥(t) € L> N L*®.

Proof: Consider the positive definite function

1 (- < - - ~ =
V=3 (Z 077,10, + tr[ U T 1] +tr[@S@T]> : (4.3.23)
i=2
which is continuous over each interval (¢;_1,%;),i = 1,2,..., N, with {; = 0 and
ty = oo, and has a finite jump at ¢;,0 =1,2,..., N — 1, i.e.,
V) - V() <oo,i=1,2,...,N — 1. (4.3.24)

From the adaptive laws (4.3.19)—(4.3.21), the time-derivative of V' in each (t;_1,t;) is

obtained as

N~ Oatn(t)  ETOUTe(t)  (T(H)OSDe(t) | M (t)e(t)
V== 2(0) (1) ) =0 (432)

i=2
This means that V(¢;) < V(¢ ;). From (4.3.24) and (4.3.25), V(t) is bounded for
[0,00), so that 6;(t) € L™, i =2,3,...,M, O(t) € L*, and ¥(t) € L>. Then, the

integration of both sides of (4.3.25) is given as

/°° eT(T)E(T)dT —V(0)+ Z_I[V(tj) — V()] = V(o). (4.3.26)

m3(7)
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Since V' is bounded for [0, 00), it follows that

©e(nelr)
/0 T dr < o0, (4.3.27)

n() ¢T()

from which % € L?>N L™ can be concluded. Since the normalized signals nig), FTOR

% € L*, it can be concluded that 6;(t) € L2NL>, i =2,3,..., M, O(t) € L>NL>,
and W(t) € L> N L. O

Based on these properties, the desired closed-loop system properties can be proved:
Theorem 4.3.1. The multivariable MRAC' scheme with the state feedback control
law (4.8.1) updated by the adaptive laws (4.3.19)—(4.3.21), when applied to the system

(4.1.4), guarantees the closed-loop signal boundedness and asymptotic output tracking:

limy oo (Ay(t) — Ay, (t)) = 0, for any initial conditions.

The proof of Theorem 4.3.1 can be carried out by using a similar way as described
in [46] for multivariable MRAC using output feedback. A key step of such an analysis

procedure is to express a filtered version of the plant output Ay(t) in a feedback

e(t)
m(t) "

The state feedback control signal Au(t) is required to be expressed in terms of the

framework which has a small gain due to the L? properties of O(t), 6;(t) and

output Ay(t). This can be done using a state observer representation of the plant
Az(t) = AAz(t) + BAu(t) + fo, Ay(t) = CAx(t): Az(t) = (A — LC)Ax(t) +
BAu(t) + LAy(t) + fo for a gain matrix L € R™M such that A — LC is stable.
Then, the analysis procedure in [46] can be used to conclude the closed-loop signal

boundedness and output tracking: lim;, (Ay(t) —Aym(t))=0.

4.4 Simulation Study for the GTM

In this section, the developed linearization-based adaptive control design is applied
to the NASA generic transport model (GTM) with damage to assess its effectiveness

for the nonlinear aircraft system.



75

Damage scenario. The GTM model contains several damage scenarios. In
this study, the damage case with loss of outboard left wing-tip is selected, which is

approximate 25% semi-span of the left wing.

4.4.1 Control of the Linearized GTM Model

The nominal and damaged GTMs are linearized at an operating condition (wings-
level flight at 90 knots) (g, ug), where xg = [, wyo, 0, 6o, 0,0,0,0, )7, to ensure
the invariance of the infinite zero structure and the signs of principal minors of the

high frequency gain matrices. The linearized piecewise system is described as
Ax(t) = AAx(t) + BAu(t) + fo, Ay(t) = CAx(t). (4.4.1)

The numerical parameter values used for building the aircraft simulation models and
verifying the design assumptions are given as follows. When there is no damage,
A = A, B = By, and fy = 0, after the loss of wing-tip damage occurs, A = A,,
B = By, and fy = [0.04,—0.93, —0.09, 0, 0.21, 0, 0.48, 0.02, 07, where

[ —0.0380 0.2807 —7.4780 —32.10 —0.0037 —0.0005 0 0 0]
—0.2460 —3.4110 146.2 —2.1750 0.0004 0 0.0005 —0.0069 0
0.0130 —0.3579 —4.4020 0 0.0085 0.0377 —0.0016 0 0

0 0 1 0 0 —0.0002 0 0.0002 0
Ay = | —0.0004 0.0017 0 —0.0005 —0.6868 —151.5 7.9150 32.10 O |,
0 —0.0009 —0.0293 0 0.2735 —1.6850 —0.2679 0 0
0 —0.0001  0.0020 0 —0.7289 1.8910 —6.7690 0 0
0 0 0 —0.0002 0 0.0678 1 0 0

0 0 0.0002 0 0 1.0020 0 0.0002 0 |
[ —0.0361 0.1460 —8.3640 —32.09 0.0099 —0.2118 0 0 0]
—0.1531 —3.1150 146  —2.337 0.5486 0 0.2118 0.7877 0
0.0162 —0.1789 —4.2230 0 —0.0046 —0.4568 0.1079 0 0

0 0 0.9997 0 0 0.0245 0 0.0082 0

A, = | 0.0050 —0.5134 0 0.0574 —0.6777 —151.4 886  32.08 0 |,
0.0003 —0.0438 0.2999 0 0.2803 —1.7270 —0.3438 0 0
—0.0201 —0.8670 0.7788 0 —0.8383 2.3290 —6.1570 0 0
0 0 —0.0018 —0.0083 0 0.0728 1 0.0070 0

0 0 —0.0246 —0.0006 0 1.002 0 0.0962 0 |
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[—0.0011 —0.0098] [ 0.0007  —0.0086]
—-0.8699 —0.1217 —0.8875 —0.1349
—1.0860 0 —1.0690 —0.0015

0 0 0 0
B, = 0 0.6157 |, Bo= 0 0.6269 |.
0 —0.5951 0.0056 —0.6114
0 0.3826 0.1264  0.4697
0 0 0 0
0 0 | 0 0 |
- 0001O0O0O0O0QO
000O0O0OO0O0OTO0OT1

Verification of design conditions. The invariant properties of interactor ma-
trix and signs of leading principal minors have been shown by the generic linearized
models. Here, the numerical values of the system parameters will be used to further
verify the design conditions. It can be verified that all zeros of G (s) = C(sI—A;) ™' B,
and G(s) = C(sI—A;) ™! By have negative real parts, and G (s) and Gy(s) are strictly
proper, and have full rank. It can also be verified that a common interactor matrix for
both G1(s) and Ga(s) is &, (s) = diag{(s + 1)?, (s + 1)?}, such that the high frequency

gain matrix for the nominal case is

: —1.086 0
K, = Sli)rgogm(s)Gl(s) = [ 0 0.596 ] , (4.4.2)
and the high frequency gain matrix for the damage case is
: —1.069 0.032
Ko = lim &n(s)Ga(s) = { ~0.017 —0.612 ] ‘ (4.4.3)
The signs of first leading principal minor of K,; and K, are
sign(All) = SigH(Agl) = —1, (444)

and the signs of second leading principal minor are

sign(Agl) = Sign(Agg) = 1, (445)
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which verifies there is no sign change of the principal minors.

Reference model. From the common interactor matrix &,,(s) for both nominal
and damage cases, the transfer matrix of the reference model (4.1.5) is chosen as
W(s) =& (s) = diag{1/(s+ 1)%,1/(s + 1)*}.

Design parameters. Since the degree of &, (s) is 2, the filter is chosen as h(s) =
1/(s + 8)%. For the adaptive laws (4.3.19)—(4.3.21), the gain matrices are chosen as
[go = 10, I' = diag{10, 10}, and D, = diag{—30, —30} because of the no sign change
property of the principal minors.

Simulation results. To make a reasonable aircraft flying trajectory, a constant
reference input is chosen as r(t) = r,(t) = [87/180,157/180]". By applying the
control law (4.3.1) with the adaptive laws (4.3.19)—(4.3.21), the output signal Ay(¢)
(solid) tracks the reference signal Ay,,(t) (dotted) after damage occurs at 200 second
from Fig. 4.2.

i ]

—pitch perturbation A8 | |
- - -reference signal Aem

| | | | | |
- 100 150 200 250 300 350 400
Linearized GTM output AB (deg) and reference Aem (deg) vs. time (sec)

\ \ \ \ \ \
—
—yaw perturbation Ay | |
- - -reference signal Ay
0 \ \ \ \ \ \ \
0 50 100 150 200 250 300 350 400

Linearized GTM output A (deg) and reference Aqu (deg) vs. time (sec)

Figure 4.2: Linearized GTM output Ay(t) (solid) vs. Ay,,(t) (dotted) (r(t) = ri(t)).
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Moreover, when the reference inputs are varying, the similar simulation results
can be obtained as well. A varying reference input is chosen as r(t) = ry(t) =
[8m/180in(0.015¢), 87 /180sin(0.015¢)]T. From Fig. 4.3, the output signals (solid)

track the reference signals (dotted) after damage happens at 500 second.

10 I I
—pitch perturbation A8

- - -reference signal Aem

_ | | | | | | | | |
100 100 200 300 400 500 600 700 800 900 1000
Linearized GTM output A8 (deg) and reference Aem (deg) vs. time (sec)
10 \ \ \ \ \ \ \

—Yyaw perturbation Ay
- - -reference signal AL|Jm

| | | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000
Linearized GTM output A (deg) and reference Al]Jm (deg) vs. time (sec)

Figure 4.3: Linearized GTM output Ay(t) (solid) vs. Ay,,(t) (dotted) (r(t) = ro(t)).

4.4.2 Control of the Nonlinear GTM

In the previous subsection, the linear control law Awu(t) (4.3.1) is obtained. Then,
u(t) = [Ade(t) +deo, Ad,(t) + dyo, dao, dyo, diro]” can be applied to the nonlinear GTM
around the operating point (xg,up). In addition to show the aircraft output signal
y(t) = Ay(t) + Cxo = [0(t) + 6o, 1(t) + o], the lateral-directional motion-roll angle
o(t) = Ag(t)+ po, control positions d.(t) = Ad,(t) +deo and d,.(t) = Ad,(t)+d,9, and
control gains K (t), K3(t), and k3(t), will be illustrated to verify that the aircraft can

execute the maneuvers around the chosen operating condition (g, ug). Two operating



79

conditions are considered: for case I, (xg,ug) is obtained by trimming the nominal
GTM to a wings-level flight condition with equivalent airspeed as 90 knots and roll
angle as 0 radian; for case II, (xg,ug) is obtained with equivalent airspeed as 100

knots and roll angle as 0 radian.

Case I. In the simulation, the wing-tip damage occurs at 200 second. From Fig.
4.4, it can be seen that the GTM output signals—pitch angle 6(t) and yaw angle
¥(t) track the reference output signals 6,,(t) and v,,(t), and the GTM state signal-
roll angle ¢(t) is bounded before and after damage occurs. Moreover, the controller
positions—d,(t) and d,(t) are within the GTM limits as shown in Fig. 4.5, while
aileron and throttles are set as operating values. Fig. 4.6 gives time histories of some

elements of K;(t), Ky(t), and ks(t).

—pitch 8
- — -reference 8
m

| |
0 50 100 150 200 250 300 350 400
Pitch angle 8 (deg) and reference em (deg) vs. time (sec)

110 I
100 /
~ —vyawy
90 - - -reference v,
| | | | | |
%% 50 100 150 200 250 300 350 400
Yaw angle (deg) and reference W (deg) vs. time (sec)
I I I I I I I
- 1
_207 —
-40r ! ! ! ! ! ! ! l
0 50 100 150 200 250 300 350 400

Roll angle @(deg) vs. time (sec)

Figure 4.4: Responses of the GTM: pitch 6(t), yaw 1 (t), and roll ¢(t) (Case I).

Case II. To further demonstrate the effectiveness of the proposed linearization-

based design, it is applied to the GTM with damage around another operating point
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4
—elevatord
e
2, —
0, —
_2 | | | | | | |
0 50 100 150 200 250 300 350 400
Elevator position de(t) (deg) vs. time (sec)
I I I I
Oir— |
—rudder dr
_107 ]
_20 | | | | | |
0 50 100 150 200 250 300 350 400

Rudder position dr(t) (deg) vs. time (sec)

Figure 4.5: Control surface positions: elevator d.(t) and rudder d,(t) (Case I).

0.2
01H |

| | | | | | |
O0 50 100 150 200 250 300 350 400
The (1,1)th element of Kl(t) vs. time (sec)

I

_ | | | | | | |
1'6320 50 100 150 200 250 300 350 400
The (2,2)th element of Kz(t) vs. time (sec)

-1.631

-0.05 \ \ \
-0.061 *
A
-0.07 | | | | | |
0 50 100 150 200 250 300 350 400

The (1,1)th element of k3(t) vs. time (sec)

Figure 4.6: Elements of controller parameters K;(t), K5(t), and k3(t) (Case I).
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(x0, up) obtained by trimming the nominal GTM to a wings-level flight condition with
equivalent airspeed as 100 knots and roll angle as 0 radian. In the simulation, the
wing-tip damage occurs at 200 second. Fig. 4.7 shows the GTM output signals 0(t)
and 1 (t), which follow the desired reference signals, and the GTM state signal ¢(t),
which is bounded within a reasonable boundary. The control surface positions d.(t)
and d,.(t) are shown in Fig. 4.8, which can be achieved by the GTM. In Fig. 4.9,

some elements of the controller parameters K (t), Ky(t), and k3(t) are illustrated.

10 -
— pitch 6
e g - — —reference em

5- / =
0 i | | | | | | |
0 50 100 150 200 250 300 350 400
Pitch angle 0 (deg) and reference em (deg) vs. time (sec)
120 \ \ \ \ \ :
—vyaw o
- — —reference U
100 \fv
80 | | | | | | |
0 50 100 150 200 250 300 350 400

Yaw angle Y (deg) and reference v (deg) vs. time (sec)

20 \ \ \ \ \
L% =l

-40¢ | | | \ | | |

0 50 100 150 200 250 300 350 400
Roll angle @(deg) vs. time (sec)

Figure 4.7: Responses of the GTM: pitch 0(t), yaw (), and roll ¢(t) (Case II).

Summary. From the simulation results in Case I and Case I, it can be concluded
that the proposed linearization-based adaptive control design is applicable for the
nonlinear aircraft system around a small neighborhood of the operating point (zg, ug).
Furthermore, the results in Case I and Case II indicate that one adaptive control
design is effective around different operating conditions, so that the future research

will address the expansion of operating domain for the proposed linearization-based
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The (1,1)th element of k3(t) vs. time (sec)
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Figure 4.8: Control surface positions: elevator d.(t) and rudder d,(t) (Case II).
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Figure 4.9: Elements of controller parameters K(t), K3(t), and k3(t) (Case II).
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control scheme.

Summary

In this chapter, a linearization-based multivariable adaptive control design for the
nonlinear NASA Generic Transport Model (GTM) with damage has been developed.
The nonlinear GTM with damage is linearized at a given operating point, and a se-
quential linear model with parameter uncertainties and a dynamics offset is obtained
to represent the linearized aircraft system with damage. Based on the invariant prop-
erties of the system infinite zero structures and signs of high frequency gain matrices
of the linearized aircraft system before and after damage, the multivariable model
reference adaptive control (MRAC) scheme using state feedback has been developed.
Due to the achievable plant-model matching conditions, the proposed MRAC design
can reject the dynamics offset and make the signals of the close-loop system bounded
and the output signals track some chosen reference signals before and after damage
occurs. Both the stability analysis and the simulation results from the linearized and

nonlinear GTMs have demonstrated certain desired system performance.



Chapter 5

Adaptive Simultaneous Actuator
Failure and Structural Damage
Compensation for MIMO Systems

This chapter studies design and evaluation of a multivariable model reference adap-
tive control scheme for aircraft systems under simultaneous actuator failures and

structural damage, where we

e obtain the invariance properties of the infinite zero structure for the linearized

aircraft system under actuator failures and structural damage;

e derive a less restrictive plant-model matching condition that can be satisfied

under actuator failures and structural damage;

e develop a multivariable MRAC scheme using output feedback to guarantee the
closed-loop system stability and asymptotic output tracking before and after

failures and damage occur;

e verify the effectiveness of this adaptive linearization-based control design on the
nonlinear aircraft system by extensive simulation studies on the high-fidelity

nonlinear GTM Simulink model.



85

5.1 Problem Statement
Consider the nonlinear aircraft flight system denoted as

#(t) = flt),u(t), y(t) = Ca(t), (5.1.1)

which is constructed by force equations, moment equations and kinematic equations
as shown in Section 2.1 from (2.1.1)—(2.1.9). When damage occurs, the structure
and parameters of the system dynamics function f(x,u) are under unknown changes.
When actuators fail, the control input signal u(¢) undergoes undesired performance,

which can be described as
u(t) = (I, — o)v(t) + oul(t), (5.1.2)

where v(t) is a commanded control input vector signal, @(¢) is an unknown input
vector signal due to actuator failures, and the elements of the failure index o =
diag{oy1,09...,0,} are o; = 1 if the ith actuator fails or 0; = 0 otherwise, i =
1,2,...,m with m being the dimension of the control signal u(¢). In this chapter,
we only consider the lock-in-place failures, that is @(t) = @ with u being a constant

unknown failure vector.

Linearization-based design. To compensate the damage and actuator failures,
a linearization-based control design will be applied to the nonlinear aircraft flight
system (5.1.1). Since there are uncertainties for the aircraft system with damage,
the equilibrium point is not available for the damaged system. Therefore, a chosen
operating point (zg, ug), which may not be an equilibrium point, is used to obtain the

linearized system for the system (5.1.1) with damage and actuator failures (5.1.2):

Az(t) = AAz(t) + BAu(t) + fo, Ay(t) = CAx(t),

Au(t) = (In—o)Av(t) + oAa, (5.1.3)
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where Ax = x — 9, Ay =y — Cxg, Au = u — ug, Av = v — ug and Au = u — ug

are perturbation signals, and A = 0f /0x ) B =0f/ou

; fo = f(xo,up) are
(zo,uo0 )

0,10
unknown piecewise constant parameters and dynamics offset(due to different damage
conditions, and the failure index o is also an uncertain piecewise constant due to
different failure patterns. The detailed structures of parameters A, B, o, and some
important properties of the linearized aircraft system will be studied later. After
deriving the adaptive control law Aw(t) for the linearized aircraft system (5.1.3), the
control law v(t) = Av(t) + up can be applied to the original nonlinear system (5.1.1)

with damage and actuator failures in the small neighborhood of (zg, ug).

Sequential linear model. Since the design is based on the linearized aircraft
system (5.1.3), in this chapter, a sequential linear model with the structural damage

and actuator failures is considered:

@(t) = Ax(t)+ Bu(t) + fo, y(t) = Cx(t),

u(t) = (I, —o)v(t) + oa, (5.1.4)

where z(t) € R, y(t) € RM and u(t) € R™ are state, output and input vector signals
with m > M (actuation redundancy), v(t) € R™ is a commanded control input vector
signal, and « is an unknown constant failure vector. Assume that, within each time
interval [ty_1,%x), with tg = 0, txy = 00, and t,k = 2,..., N — 1, being unknown, the
damage and failure pattern is fixed, such that (A, B,C, fo) = (A, Bk, C, for) with
Ay, By, Ck, and fo, being unknown constants and o = diag{og1, oxo, . . ., Opm } With
or; = 1 if the jth actuator fails or o;; = 0 otherwise.

Actuation redundancy and grouping. The m actuators are divided into M
groups, within which the actuators have the same physical characteristics. We apply a
proportional actuation scheme for the commanded input signals v;;(t), i =1,..., M

and j = 1,...,n; within each group: wv;;(t) = a;vi0(t), where vo(t) € R is the
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designed input signal for the corresponding group. Then, the commanded control

input vector signal v(¢) can be expressed as
v(t) = Hup(t), (5.1.5)

where the designed input vector signal vy(t) is vo(t) = [v10, Vo, - - -, Va0 € RM and
H = diag{H,, Hy, ..., Hy} with H; = a1, o, . . ., i, | fori = 1,..., M. Applying
(5.1.5) to the system (5.1.4), we have

y(t) = Gals)[wo] () + 5(t), (5.1.6)

where G,(s) = C(sI — A)"'B, with B, = B([l,, — ¢)H is the unknown transfer
matrix (due to damage and failures) from the healthy actuators to the output, and
y(t) = C(sI — A)~'Bolul(t) + C(sI — A)~' folhs](t) with hy(t) being a unit step
signal is the uncertain output due to the actuator failures and the dynamics offset.
It is worth noting that, to compensate the damage and actuator failures, we assume
that there is at least one working actuator in each group and columns of B matrix
corresponding to the working actuators in each group are not 0 (since a column of
B with all entries being 0 means that the corresponding actuator is lost caused by

airframe damage).

Control objective. The control objective is to design an output feedback con-
trol law vo(t) = [v10, Va0, - - -, Varo]? for the system (5.1.6) to compensate the system
uncertainties caused by damage and actuator failures and make all the closed-loop

system signals bounded and the output signal y(¢) track a reference signal:
Ym () = Win(s)[r](t), (5.1.7)

where W,,,(s) € RM*M is a stable transfer matrix and r(t) € RM is a bounded

reference input. For our multivariable MRAC design, we choose the reference system

Win(s) = &1(s). (5.1.8)
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Based on the knowledge of the infinite zero structure, i.e., the interactor matrix and
the high frequency gain matrix, the plant-model matching condition (2.4.3) can be

established to achieve output tracking of y,,(t) from (5.1.7).

Design assumptions. To proceed the design, for the system (5.1.6) with all pos-
sible damage and failure patterns (A, B, C, fo,0) = (A, B, Ck, foxs0%), k=1,..., N,
the following assumptions are required: (A1) G,(s) has full rank and all zeros of G,(s)
have negative real parts; (A2) an upper bound 7y of the observability indices of all
Go(s) is known; (A3) for Gu(s) = P7'(8) Ziu(s), C(sI — A)"*Bo = P 1(s)Zy(s), and
C(sI—A)"Lfy = P '(5)Z;(s), the transfer matrices Z;,'(s) Zy(s) and Z;," (s)Z;(s) are
proper; (A4) there is a known modified left interactor matrix &,,(s) for all G,(s), which
is invariant for all the damage and failure patterns; (A5) all leading principal minors
At =1,2..., M, of the high frequency gain matrix K,, = limy_,o &,,(s)Ga(s) are
nonzero and the signs are known and invariant for all the damage and failure patterns.

Assumptions (Al), (A2), and (A3) ensure the existence of plant-model matching
between the system and the reference model. The assumption (A4) ensures that there
is a uniform reference system W,,(s) = &,'(s) for all uncertain adverse conditions,
and (Ab) ensures that the uncertainties of K, can be handled for all different damage
and failure conditions when developing the adaptive control scheme.

Before developing adaptive control to compensate the failures and damage, in the
next section, we will investigate invariance of the interactor matrix &,,(s) and signs
of the leading principal minors of K, of linearized aircraft models to show that the

aircraft system can satisfy the design conditions.
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5.2 System Invariance of An Aircraft Model

The operating point for linearization of the aircraft system (5.1.1) is chosen as a

wings-level flight condition (xg, ug) with
Lo = [uboawb()a079070a090a09w0]Ta (521)

which may not be an equilibrium due to damage. For the aircraft system (5.1.1), we

choose the output as

y(t) = Cx(t) = [0(1), ()] (5.2.2)

and the control input as
u(t) = [d; (1), d7 (1], (5.2.3)
where d.(t) = [dell,delz,derl,derz]T is the elevator group with d., , de,,, d.,, and de,,

being deflections of elevator left outboard, left inboard, right outboard and right
inboard segments, and d,.(t) = [d,,,d,,]" is the rudder group with d,, and d,, being
deflections of rudder upper and lower segments. Then, for the linearized aircraft
system (5.1.3) applying the proportional actuation scheme (5.1.5): Av(t) = HAwy(t),
where H = diag{H,, Ho} with H, = [1,1,1,1]7 and Hy = [1,1]7 to the elevator and

rudder groups, we have
Ay(t) = Ga(s)[Avo](t) + Ay(?), (5.2.4)

where G,(s)=C(sl — A)™'B, with A€ R®*°| B,=[Ba1, Ba2])=B(I —o)H € R°** and

0 0
¢ 1

0 0
1000

o O

1 000
0 00 0 (5.2.5)
In the following, we will investigate the invariance of infinite structure of G,(s) under

actuator failure and damage conditions based on generic structures of A and B,.
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5.2.1 Generic Structures of the System Parameters

From the generic nonlinear aircraft model under damage as in (2.1.1)—(2.1.9) and the
possible actuator failure pattern o, the generic structures of

A=0f/dz]  ,B.=B(I-o)H, (5.2.6)

(wo,u0)

with B = 0f/0u of the linearized system (5.2.4) can be derived for the following

(w0,u0)

four damage and failure cases.

A and B, for the healthy case. When there is no damage, according to [57],

generic structures of A and B of the linearized aircraft model (5.1.3) are

B§3X4) 0(3><2)
0(1><4) 0(1><2)
0Bx4) BL(13><2) ’
0(2><4) 0(2><2)

A§4x4) ((4x5)

A= 5%5
0(5x4) AE; x5)

, B= (5.2.7)

with A; and A4 possessing the following structures:

55 Q56 asy asg 0
ajx Q2 a1z Qa4 0

Gy gy g3 Ggg Qg5 Qg6 Qg7 Ay
A= , Ay= | ars 76 ar; arg 0

agyp azz az3 as4
0 tan 0 1 0 0
0 0 1 0

0 1/cosp O 0 O

Since no failures happen (o = 0), we have B, = BH.

A and B, for the failure but no damage case. When there is no damage, the
matrices A and B are given as (5.2.7). We assume that there are ¢, healthy elevators

with 0 < ¢, < 4 and ¢, healthy rudders with 0 < ¢, < 2, that is
B, =B(I —0)H, 0 = diag{0c,, 0c,, Ocy, Tcys Oryy Ory } (5.2.8)

where o, =0 with i € {j1,....7,.} € {1,2,3,4} and 0., = 1 otherwise, and o,, =0

with i € {l1,1,,} € {1,2} and o,, = 1 otherwise.



91

A and B, for the damage but no failure case. When damage occurs, the

longitudinal and lateral-directional dynamics are coupled. A and B become [57]

with elements

m p(3x4) (3x2)
(4x4)  4(4x5) Bdfl Bdfxz
A= Af% 4) Aflsz 5 | B= 0((3X 4)) 0((3X 2)) (5.2.9)
AVXE AN B BYXE Y o
d3 d4 0(d23>< 4) 0(d24>< 2)

and structures undergoing uncertain changes:

QAdyy  Qdip  Qdys Qdyy QAdys  Qdyg  Qdi;  Qdyg 0
Ad _ | Qdyy  Qdyy  Qdyg  Qdyy Ad _ | Qdos  Qdys  Qdyr  Qdag 0
1 o —
Qdgy  Qdzy  Odgz  Qdgy Qdgs  Qdgg  Ads;  Qdss 0
0 0 1 0 0 0 0 0 0
Qdsy  Qdsy  Qdsz  Qdsy Qdss  Qdsg  Ads;  Qdsg 0
QAdgy  Qdgy  Adgz  Qdgy Qdgs  Qdgg  Adgy  Qdgs 0
Ad3 = | Qdyy  Qdgy Qdrg  Qdpy Ad4: Qdzs  Qdrg  Qdyr  Qdzg 0.
0O 0 0 0 0 ag, 1 0 0
1
L 0 0 0 0 . 0 cosly 0 0 O_

In this case, no actuator lock-in-place failure happens, that is control input u(t) =
v(t). However, some actuators may be partially or totally lost due to the structural
damage. Such a loss can be represented by variations of entries of B matrix from
the nominal values to the damaged values. Particularly, if an actuator is totally lost,
the corresponding column of B matrix becomes 0, that is such an actuator has no
control effect on the aircraft system at all. Hence, the loss of effectiveness of actuators
can be treated as a damage case. To compensate the damage, assume that not all

the actuators in each group are totally lost to ensure that the column vectors of B,

matrix are not 0. Since no failure occurs, the index ¢ = 0, it follows that B, = BH.

A and B, for the both damage and failure case. In this case, the remain-
ing actuators after damage still suffer from the lock-in-place failures. Since damage
occurs, A and B become the damaged values (5.2.9). To compensate the damage
and failures, we assume that there are g, working elevators with 0 < ¢. < 4 and g,

working rudders with 0 < ¢, < 2. The working actuator in this case means that it is
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not totally lost due to damage (so that the corresponding column of B matrix is not
0) and does not suffer from the lock-in-place failure. With such an actuator failure

and damage pattern, parameter B, is given as
B,=B(I — 0)H, o=diag{o,, 0cy, Tey, Ocys Orys Opy (5.2.10)

where o, = 0 with i € {j1,....7,.} € {1,2,3,4} and 0., = 1 otherwise, and o,, =0
with i € {l1,1,,} € {1,2} and o,, = 1 otherwise.
Then, we can investigate the two invariance properties for G,(s) based on the

structures of A and B,.

5.2.2 Invariance of Infinite Zero Structure

From Lemma 2.3.1, to determine the infinite zero structure of G,(s) = C(sI—A)™' B,,

we need to study relative degrees of entries of G,(s), which is calculated as

1
Ga(s) = E(En_lsn_l—FEn_gSn_z—'—' . '+E18—|—E0), (5211)

where a(s) = det (s — A) £ s" + 18" '+ -+ a5+ ag, Eny = OB,, E,_y =
CAB, + a, 1CB,,..., Ey=CA" 'B, + a, |CA" 2B, + -+ a;CB,.

Infinite zero structure of the nominal case. The parameters A and B are
given as (5.2.7) and B, = BH. With the matrix C' given as (5.2.5), we have coeffi-

cients for G,(s) as

1

4
E, 1=0, E,_s=dia b3ei, ber1+ber2) |, 5.2.12
1 2 g{; 3 COSHO(Gl 62)} ( )

with bse;, @ = 1,...,4, and bg,;, © = 1,2, being elements of the 3rd and 6th rows of
the matrix B corresponding to the elevators and rudders. Therefore, we can choose
an interactor matrix for G,(s) as &,(s) = diag{(s + 1)?, (s + 1)?}, so that the high

frequency gain matrix can be obtained as K, = lim,_, &,,(s)Go(s) = E,_2. Since
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the parameters bse1, ..., 034, bgr1, and bg.o are the control gains from elevators to
pitch acceleration and rudders to yaw acceleration, the signs of these parameters
can be obtained: bseq,...,b3.4 < 0, bgr1 < 0, and by2 < 0. The operating point is
chosen as 0y € (—n/2,7/2). That is the signs of the leading principal minors are
sign(A;) = —1,sign(Ay) = 1.

Case I: failures occur before damage happens. When failures occur, the
matrix A is still the nominal value given in (5.2.7), but the matrix B, changes to
(5.2.8) with certain failure patterns. FE,_; and E,_» for G,(s) are calculated as

. 1
E, 1=0, E,_y=diag{ Z b3ei, cos0o Z beri }-

=1y Jge i=l1, lg,

Therefore, we can choose &,,(s) as &,(s) = diag{(s + 1)?, (s + 1)?}, so that K,, =

limg o0 & (8)Ga(s) = CAB,. Since there is no damage, the parameters bs.; < 0,4 €

{J1s- -, Jq} and bg; < 0,7 € {ly,1,,.}, it follows that sign(A;) = —1,sign(As) = 1.
After damage happens, the aircraft suffers from the simultaneous failures and

damage condition. The matrices A and B, become the damaged values (5.2.9) and

(5.2.10), while the failure patterns {ji,..., 7, } and {li,l, } for B, do not change.

The coefficients are calculated as E,_; = 0 and

B, = lzizjl,...,jqe Dasei lzz':h, 1y, Dasri . (5.2.13)
cos By £4i=j1,.-,jqe Dasei o b0 Zi:llv lay Dasri

Therefore, the interactor matrix can still be &,(s) = diag{(s + 1), (s + 1)?}, and
K, = E,_5. It can be seen that the signs of principal minors of K, would change
if the signs of bys.; and bgg,; changed. The physical meaning of such sign changes is
that the elevators and rudders generate totally opposite angular accelerations after
damage. Such a situation is unlikely to occur unless the shift of center of gravity is
very large. For certain damage scenarios, such as loss of wing-tip and loss of stabilizer,

the shift of center of gravity is small, the signs of bg3.; and bgg,; remain the same with



94

the ones before damage, and the coupled terms in K, are not large enough to change
the sign of the second leading principal minor. That is sign(A;) = —1,sign(Ay) = 1
after damage occurs.

Case II: damage occurs before failures happen. When damage occurs first,
the matrices A and B change to the damaged values given as (5.2.9) and B, = BH.

So, we have the coefficients F,,_; = 0 and

4

E _—CAB.— > i1 basei bazr11+bazro
T e S basei oy (b hae) |

cos 0 =1 Ydbei cos 0o d6r1TVd6r2

Then, we can choose &, (s) as &,(s) = diag{(s + 1), (s + 1)?}, and K,, = E,_».

(5.2.14)

Similar to the analysis in case I, for certain damage scenarios, such as loss of wing-tip
and loss of stabilizer, the signs are invariant: sign(A;)=—1, sign(As)=L.

Then, after failures happen, some of the remaining actuators are locked. So the
matrix B, with certain failure patterns {ji,...,j, } and {li,l, } becomes (5.2.10).
The coefficients are calculated as E,,_; = 0 and E,,_ = CAB, as in (5.2.13). We can
conclude that the interactor matrix is &,,(s) = diag{(s + 1)2, (s + 1)?}, and the signs
are invariant: sign(A;) = —1,sign(A,) = 1.

Summary. For these two patterns, the interactor matrix &,,(s) is invariant before
and after hazardous conditions occur, and the signs of leading principal minors of K,
are invariant as well, for certain damage scenarios, such as wing-tip off and stabilizer
off, which may cause small shift of the center of gravity. These invariance properties

will be further verified by the GTM simulation study.

5.3 Adaptive Control Scheme

For the control design of the linear system (5.1.6), the invariant interactor matrix
&m(s) for all possible failure and damage patterns ensures that we can choose a com-

mon reference system W,,(s) = £1(s). To achieve the desired output tracking and
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closed-loop system stability before and after hazardous conditions occur, we develop
the following output feedback adaptive control scheme.

The controller vy(t) for the system (5.1.6) is chosen as

vo(t) = O7F (twi(t) + O3 (H)wa(t) + O20(t)y(t) + Os(t)r(t) + Ou(t), (5.3.1)

where wy (£) = F(s)[vo] (t), wa(t) = F(s)[) (), F(s) =32, Ao(s)=[I,sI,...,s°21]T,
A(s) is a monic stable polynomial of degree 7y — 1 with the upper bound 7, on
the observability indices of G,(s), and ©1(t), O2(t), O(t), O3(t), and O4(t) are the
estimates of the nominal piecewise parameters 07, 03, 03, O3, and ©}. In particular,
the term O,(¢) is for compensation of the actuator failures and the unknown dynamics
offset fy. The existence of the nominal parameters ©7, ©3, O3, O35 and ©} are

guaranteed by the following plant-model matching condition.

Lemma 5.3.1. There ezist ©F, O3, ©%,, O} and O}, such that, when ©,(t) = O7,
Oy(t) = O3, Og(t) = ©F,, O3(t) = OF, and O4(t) = OF, the controller (5.5.1) ensures

signal boundedness and output tracking limy o (y — ym) = 0 for the system (5.1.6).

Proof: Substituting the system y(t) = G.(s)[v§](t) + y(t) in the nominal control law:
vg(t) =07 wi (1) + 03" wa(t) + O35y (1) + O (t) + 07, (5.3.2)
we have

v(t) = (I—O7"F(s) — 05" F(s)Ga(s) — ©3Ga(s)) ™"

(O3 F(s)[7](t) + ©37(1) + O3r(t) + 03). (5.3.3)

As shown in Section 2.4.2; there exist ©F, 03, 03y, and ©5 = K !, such that

pa >

-0 F ()03 F(5)4035,)Go(s)=05 W1 (5)Ga(5). (5.3.4)
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Then, in view of (5.3.3), we have

y = Wa(s)[r](tHWon(s) Kpa((1 =07 F(s))G, " () [5)()+07)

£ W ())(0) + fylt). (5:8.5)

From the reference (5.1.7), we have e(t) =y(t) —y.(t) as

A(s)T — O3T Ag(s)
A(s)

A(S)T — O Ag(s) . *
A(s) Zy, (8)Zy(s)[hyHOI(2).

e(t) = Wi(s)Kpl Zi,' (5) Z(s) 1]

From (A3) where Z;,'Zy(s) and Z;,'Z;(s) are proper, it can be concluded that
A(“")+ST)TAO(S)Zlgl(s)Zlb(s) and A(s)+§)TAO(S)Zl;l(s)Zf(s) are proper. Since u(t) and
hy(t) are step signals, W,,,(s) and A(s) are stable, and G,(s) is minimum phase, there

exists a O} to make lim;_,, e(t)=0. \Y

Remark 5.3.1. The parameters O7, O3, ©3,, O3 and O} are piecewise constant ma-
trices for different damage and failure patterns (Ay, By, C, for,o1), k = 1,2,..., N.

Since the interactor matrix &,,(s) is invariant under different damage and failure con-

-1
m

ditions, there exists a common reference system W, (s) = &1 (s) for all damage and

failure conditions. O

Since the parameters are unknown due to uncertain damage and failures, the

adaptive control law (5.3.1) is employed.

Tracking error equation. Operating both sides of (5.3.4) on vy(¢) and from the

system transfer function (5.1.6), we obtain

vo(t) = O wi(t) + O3 wa(t) + Oy(t) — O3 F(s)[7](t)

—O504(t) + O3Em(5) [yl (1) — O38m (s)[5](%). (5.3.6)
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Substituting (5.3.1) in (5.3.6), we obtain the tracking error as

et) = y(t) = ym(t) = Win(5) I5a[O7 0] (1) + f,(8), (5.3.7)
where © = © — 0%, © = [0], 07, 0,03,0,]", ©* = [0;7, 037, 0%, 05, 0;]7, and
w = [wl Wl yT T 1T,

To deal with the uncertainty of K,,, we use its LDS decomposition (2.3.5):
Ky, = LiD,S, where S = ST > 0, L, is a unit lower triangular matrix, and
D, = diag{sign[Ai]y1, ..., sign[%hM} with arbitrarily chosenv; > 0,7 =1,..., M
[84]. Since the signs of the leading principal minors A;,7 = 1,2,..., M, are invariant,
we can choose a uniform Dj for the possible damage and failure patterns as a gain
matrix which will be used in the adaptive laws.

Ignoring the decaying term f,, and substituting the LDS decompensation in (5.3.7)
and operating both sides of (5.3.7) by h(s)Iys, where h(s) =1/ fn(s) with f5(s) being

a stable and monic polynomial of degree equals to the degree of &,,(s), we have
L7Y60(s)h(s)[e](t) = Dy S h(s)[©Tw](t). (5.3.8)
To parameterize the unknown matrix Ly, we introduce O = Ly — I = {6};}, where
07; =0fori=1,2,..., M and j > 4. Then we have
E(tH0,057ma(t), - - 031 mu ()] = DuSh(s)[0"w(t), (5.3.9)
where é(t) = &,.(s)h(s)[e](t) = [e1(t), ..., en(®)]T, m:(t) = [e1(t),..., &1 ()]F, OF =
05, ...,05 )T i=2,..., M.
Estimation error. We introduce the estimation error
e(t)=[0,05 ()na(t).. .. Oar (t)mar () +T ()& (E)+e(2), (5.3.10)
where 6;(t),7 = 2,3,..., M are the estimates of 6}, and W(t) is the estimate of U* =
DS, and
E(t)=0"(1)¢(t) —h(s)[O"w](t), C(t)=h(s)[w](1). (5.3.11)
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From (5.3.9)—(5.3.11), we can derive that
e(t) = [0,65 (£)a(t), 05 (£)ns (D), - . 037 ()mas (8)] "+ Dy SOT ()¢ () +V(H)E(E), (5.3.12)

where 0;(t)=6;(t)—07, i = 2,3,..., M and U(t)=W(t)—U*,
Adaptive laws. With the estimation error model (5.3.12), we choose

Toies(t)ni(t)

0;(t) = W,z:z,z&,...,M (5.3.13)
o7 (t) —%é)(t), (5.3.14)
b(t) = —%ft)(t), (5.3.15)

where the signal €(t) = [e1(t), e2(t), . . ., ear(t)]T is computed from (5.3.10), Tg; = TF, >

0,i=2,3,...,M,and I' =I'" > 0 are adaptation gain matrices, and

M
m(t) = (1+ () + €M) + Y nf (mi(t)'.
i=2
From the adaptive laws (5.3.13)—(5.3.15), the stability properties can be derived.

Lemma 5.3.2. The adaptive laws (5.3.18)—(5.3.15) ensure that
(i) 0;(t) € L, i=2,3,...,M, O(t) € L=, ¥(t) € L™, and €(t)/m(t) € L*> N L>;
(i) 0;(t) € L2NL>®, i=2,3,...,M, O(t) € LN L>°, and U(t) € L2 N L™,

Proof: Consider a positive definite function

13 . . -
V= 5(2 0T T, 0; + tr[UTT 1] + tr[©S67]), (5.3.16)
i=2
which is continuous at each interval (t;_1,%;),k =1,2,..., N, with t, = 0 and ty =

0o, and has a finite jump at t;, k=1,2,...,N — 1, i.e.,

V() - V() < oo k=1,2,...,N — 1. (5.3.17)
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From the adaptive laws (5.3.13)—(5.3.15), the time-derivative of V' in each (t;_1, %), k =
1,2,..., N is obtained as

. € (t)e()
V= R 0. (5.3.18)

That is V(t;) < V(¢;_,). From (5.3.17) and (5.3.18), V(¢) is bounded for [0, c0), so
that 0;(t) € L>*, i =2,3,..., M, ©(t) € L™, and ¥U(t) € L*. Then, integration of
both sides of (5.3.18) is given as
= (1)e(7) T
———=dr =V (0) + V(th) = V()] — V(o).
| S O+ SV ) = V)] - V(oo

Since V' is bounded for [0, 00), it follows that

/OO L(T)E(T)df < 00, (5.3.19)

m?(7)
from which €(t)/m(t) € L?* N L™ can be concluded. Since the normalized signals
ni(t)/m(t) € L=, (T(t)/m(t) € L>® and £T(t)/m(t) € L™, it can be concluded that
0:(t) e LPNL® i=23,...,M,0(t) € L*N L>®, and ¥(t) € L> N L. v

Based on these properties, the desired closed-loop system properties can be proved:

Theorem 5.3.1. The multivariable MRAC scheme with the output feedback control
law (5.3.1) updated by the adaptive laws (5.3.18)—(5.3.15), when applied to the plant

(5.1.6), guarantees the closed-loop signal boundedness and asymptotic output tracking:

hmt—)oo (y(t) - ym(t)) =0.

The first step of this theorem is to express a filtered version of the plant output
y(t) in a feedback framework which has a small gain due to the L? properties of
O(t),6;(t), and €(t)/m(t). This step leads to the closed-loop signal boundedness. The
asymptotic tracking property follows from the complete parametrization of the error

equation (5.3.10), the L? properties, and the signal boundedness.
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5.4 Application to the NASA GTM

In this section, the proposed linearization-based MRAC design is applied to the NASA

GTM to assess its effectiveness for the nonlinear aircraft system.

Damage and Actuator Failure Scenarios. The GTM Simulink model provides
some structural damage scenarios such as rudder off, vertical tail off, left outboard
flap off, left wing-tip off, left elevator off, and left stabilizer off. Two damage and

failure patterns are considered in this study:

e lock-in-place failures of actuator segments occur first, then the damage with a

loss of the entire left stabilizer happens;

e the damage with a loss of the entire left stabilizer happens first, then failures

of actuator segments happen.

Design Conditions. Based on the analysis of Section 5.2, to ensure the invari-
ance properties of the infinite zero structure, the operating point for the nonlinear
GTM is chosen as a wings-level flight condition (xg,ug) obtained by trimming the
nominal GTM with equivalent airspeed as 90 knots, the output signal is chosen as
y(t) = [0(t),v(t)]*, and the control input signal is chosen as u(t) = [dL(¢),dT (t)]?.

Hence, the reference system Ay, (t) = W, (s)[r](t) is
Win(s) = &1(s) = diag{(s +2) 7%, (s + 1)7?} (5.4.1)

with Ay, (t) = ym(t) — Cxg, where y,,(t) is the GTM’s reference signal. The design
conditions (A1), (A2), and (A3) can be verified by the numerical parameter values of

the different failure and damage scenarios obtained from the GTM.
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5.4.1 Control of the Linearized GTM

Before assessing the performance of the developed linearization-based design on the

nonlinear GTM, the adaptive control design will be verified by applying
Avg(t) = 07 () Awy (t) + OF (1) Awa(t) + O (t) Ay(t) + Os(t)r(t) + O4(t), (5.4.2)

to the linearized GTM given as (5.2.4). The simulation results are present as follows.

Fig. 5.1 shows the result of the first damage and failure pattern: after 300 seconds,
lock-in-place failures of the left elevator outboard segment, the right elevator inboard
segment, and upper rudder segment occur, such that the corresponding actuator
perturbation signals are fixed at some uncertain values: Ad;(t) = Ady; = 3deg,
Adyo(t) = Adgyy = —6deg, and Ad,,(t) = Ad,., = 4deg; then after 600 seconds, the
entire left stabilizer is lost. From Fig. 5.1 , it can be seen that the linearized GTM’s
output Ay = [Af, AT (solid) tracks the reference Ay, = [Ab,,, Av,]T (dotted)
after failures and damage occur. The second damage and failure pattern is shown in
Fig. 5.2: after 300 seconds, the left stabilizer is lost; then after 600 seconds, the right
inboard elevator is locked at Ad,,o = —6deg, and after 650 seconds, the upper rudder
is locked at Ad,, = 4deg. From Fig. 5.2, it can be seen that the linearized GTM’s

output Ay (solid) tracks the reference Ay, (dotted).

5.4.2 Control of the Nonlinear GTM

Since the control law Av = HAwg(t) with Awvg(t) in (5.4.2) for the linearized GTM
(5.1.3) has been obtained, the control law v(t) = Av + uy can be applied to the
nonlinear GTM (5.1.1) to assess the effectiveness of this linearization-based design.
Fig. 5.3, Fig. 5.4 and Fig. 5.5 show the simulation result of the first damage
and failure case: after 200 seconds, the left elevator outboard segment is locked at

denn = 5deg and after 230 seconds the upper rudder segment is locked at d,,, = —2deg
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Figure 5.1: Linearized GTM outputs vs. reference signals (case I).
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Figure 5.2: Linearized GTM outputs vs. reference signals (case II).
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(as shown in Fig. 5.4 and Fig. 5.5); then after 500 seconds, the entire left stabilizer
is lost. From Fig. 5.3, it can be seen that the GTM output y(¢) (solid) tracks the

reference output signal y,,(t) (dotted).

—pitch 6 (deg) 7
- - -reference 6 (deg)

| | | | | | |
2O 100 200 300 400 500 600 700 800
Pitch angle 6 (deg) and reference em (deg) vs. time (sec)
1
1101 —vyaw | (deg)
- - -reference de
1001 U, (deg)
90f"
80~
70 | | | | | | |
0 100 200 300 400 500 600 700 800

Yaw angle Y (deg) and reference v, (deg) vs. time (sec)
Figure 5.3: GTM outputs (solid) vs. reference outputs (dotted) (case I).

The second damage and failure case is that after 200 seconds, the left stabilizer
is lost; then after 400 seconds, the right inboard elevator is locked at de,o = —4deg,
and after 420 seconds, the lower rudder is locked at d,; = 2deg. Fig. 5.6 shows the
output tracking performance and Fig. 5.7 and Fig. 5.8 illustrate the responses of the
control surface segments.

Thus, it can be concluded that this linearization-based design is applicable for
the nonlinear GTM with damage and actuator failures around a neighborhood of the

operating point (g, ug).

Remark 5.4.1. During the transient period after the hazardous condition occurs,

the adaptive controller automatically adjusts its parameters to accommodate the large
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Figure 5.4: Deflections of four elevator segments (case I).
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Figure 5.5: Deflections of two rudder segments (case I).
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Figure 5.6: GTM outputs (solid) vs. reference outputs (dotted) (case II).
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Figure 5.7: Deflections of four elevator segments (case II).
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Figure 5.8: Deflections of two rudder segments (case II).

unknown system dynamics variations due to damage and to reject the uncertain dis-
turbances due to actuator failures. Hence, before the adaptive controller can make the
damaged or failed system go to steady state, i.e., the output tracking errors converge
to zero, there may exist oscillations (as shown in the simulation output responses)

introduced by the large system uncertainties. 0

Summary

In this chapter, the modeling and control of aircraft under simultaneous failure and
damage conditions have been studied and evaluated. An extensive generic analysis
of the linearized aircraft models under failures and damage has been conducted. It
has been shown that two essential conditions for multivariable model reference adap-
tive control designs, namely, the interactor matrix and the signs of leading principal

minors of the high frequency gain matrix, can remain invariant under realistic failure
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and damage conditions for the linearized aircraft system. A multivariable model ref-
erence adaptive control scheme has been developed for aircraft under the hazardous
conditions, without the need of explicit detection of actuator failures and structural
damage. The stability analysis has shown that the proposed adaptive control scheme
is capable of ensuring closed-loop stability and asymptotic output tracking in the
presence of uncertain failures and damage. A thorough evaluation study for the non-
linear NASA generic transport model has been conducted to show the effectiveness

of the proposed adaptive compensation scheme.



Chapter 6

Adaptive Sensor Uncertainty
Compensation for MIMO Systems

This chapter develops a multivariable MRAC scheme for linear systems with parame-
terized sensor uncertainties. For sensor failure detection, a typical method is based on
neural networks and analytical sensor redundancy, such as [16,28,66,94]. Specific ap-
plications have also been developed in the field of flight control, such as [14,40,67,68|.
They all need to detect and isolate the failed sensors first, before the sensor signals
can be used in feedback control. Using the feedback control based sensor uncertainty
compensation approach (to be developed in this chapter), an adaptive sensor failure

compensation scheme can be constructed without explicit failure detection, where
e sensor uncertainty compensators are designed to estimate actual signals;
e state feedback controller is constructed using sensor compensator signals;

e stable adaptive laws are derived to update the controller parameters to achieve

system stability and output tracking performance; and

e simulation results on a linear aircraft model show the desired performance.
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6.1 Problem Statement

Consider a MIMO linear time-invariant system
x(t) = Az(t) + Bu(t), y(t) = Cx(t) (6.1.1)

with A € R¥", B € R™M and C € RM*" being unknown constant parameter
matrices, and z(t) € R", u(t) € RM and y(t) € RM being the system state, input
and output vector signals.

For feedback control, we need sensors to obtain the state signal z(¢) or the output
signal y(t) to construct the controller signal u(t). Often sensors may have uncer-
tainties so that the senors signals are not the actual measured signals, which can
result in deterioration of the performance of control systems. For sensor uncertainty

compensation, we also need some sensor uncertainty models.

Sensor uncertainty model. A sensor uncertainty model may be represented by

2(t) = S(e(t) = file(t)) + ds(), (6.1.2)

where ¢(t) is the actual signal, and d,(t) is a noise signal.
In this chapter, we will consider the static and parameterized sensor uncertainty

characteristic described as

2(t) = kap(t "‘bez (6.1.3)

where kg and b;,i = 1,2,...,q, are unknown constants, and f;(t),i = 1,2,...,q, are
known bounded signals.

The sensor model (6.1.3) can represent a class of practical sensor uncertainties
such as sensor gain variations and measurement errors, as well as sensor failures

when a set of redundant sensors are used. We may use several sensors to measure
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the same signal ¢(t), and take the weighted sum of the sensors’ output signals z;(t)
as z(t) = >, a;z(t), where oy > 0,4 = 1,...,m, such that > " a; = 1. When
there is no failure for all the sensors, the summed sensor signal z(t) is the exact
measured signal ¢(t). When there are some sensors failed, e.g., the iy, is,...,i,th
sensors fail and generate some random signals Z;(t), the summed sensor signal is
2(t) = asp(t) + ds(t), where ag = 37, o aq, and dy(t) = 3o, 0 aiZi(t).
Since the indexes 41,19, ...,17, and the signals z;(t) for iy, i, ...,%, are unknown, we
may express dg(t) =Y .0, 5:Zi(t), where some of 3; are zero (for the unfailed sensors)
while others are a;. Thus, the sensor failures can be characterized by the sensor

uncertainty model (6.1.3) using redundant sensors.

Sensor uncertainty compensation problem. In this chapter, we will use state
feedback control for output tracking. There exist two sets of sensors: state sensors
and output sensors. We will consider the systems with both state sensor uncertainties
and output sensor uncertainties.

As described in Fig. 6.1 where sensors are used to measure the state vector
x(t), the state sensor vector signal is z(t). Since the state sensors have uncer-
tainties, the output signal z,(t) = [2,1(f), ze2(t), - . ., zzn(t)]T is not equal to the ac-
tual state signal z(t) = [z1(t), 2(t),...,2,(t)]T. With (6.1.3), the output signal

20(t) = [221(1), 2e2(t), - . ., 22n(t)]T of the state sensors can be described as
qi
j=1

where k;; and by;;,1 =1,2,...,n,7 =1,2,..., ¢, are unknown constants, and f,;;(t), i =
1,...,n,5=1,...,q, are known bounded signals.

Since the parameters k,; and b,;;,i=1,2,...,n,j=1,2,...,¢, in (6.1.4) are un-
known, we cannot retrieve the state signals x;(¢),7 = 1,2,...,n, from (6.1.4) directly.

To overcome this difficulty, we propose to use sensor compensators, which are also
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shown in Fig.6.1, to derive a compensation vector signal #(t) = [Z1(¢), 22(t), . . ., 2 (t)]"
from z,(t) to estimate the actual state signal z(¢). Then, we can use the estimate
signal (t) to construct a state feedback controller, instead of the unavailable actual

state signal x(t).

r(t) u(t) y=Cx
— Control Law T = Ax + Bu

Y
Y

(1) (1)
2 (1)

Compensator Sensors

A

Figure 6.1: Control system with sensor uncertainties.

Control objective. The control objective is to construct a feedback control law
for u(t) (as shown in Figure 6.1) using the state sensor compensation signal Z(t), for
the plant (6.1.1) with state and output sensor uncertainties, to make all the closed-
loop signals bounded and the plant output y(¢) track a given reference vector signal

ym(t) € RM generated from the reference model system
Ym(t) = W (8)[r)(t), Win(s) = &,'(s) (6.1.5)

where r(t) € RM is a bounded reference input signal.

Assumptions. To design a multivariable state feedback MRAC scheme, we make
the standard assumptions: (A1) all zeros of G(s) have negative real parts; (A2) G(s)
is strictly proper, has full rank and its modified left interactor matrix &,,(s) is known;
(A3) there exists a known matrix S, € RM*M such that T}, = KI'S;' = I'T > 0,
where K, = lim,_, &, (s)G(s) is the high frequency gain matrix of G(s); (A4) (A4, B)

is controllable and (A, C) is observable.
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When the output sensors do not have uncertainties, the actual output tracking
error e(t) = y(t) — ym(t) can be obtained. The adaptive compensation design can be
simplified. However, in this chapter, we mainly focus on the case when output sensors
have uncertainties, that is, the actual output signal y(¢) cannot be obtained. Thus,
we need to generate an output compensation signal ¢(t) to estimate y(¢). Then, we

will develop an adaptive control scheme based on the compensation tracking error

et) = g(t) = ym(t).
6.2 Adaptive Compensation Scheme

Since the state sensors have uncertainties, we need to design the state sensor uncer-
tainty compensators first.
State sensor compensator design. From (6.1.4), we can retrieve the state

signals x;(t),7 = 1,...,n, by using the inverse SI,;(-) of S.;(-), which are given by

2i(t) = Slui(2ai) = O Vai(t), (6.2.1)
where 63, = [0}, i1 - - gmqi]Ta Vi (t) = [22i(t), farr (t), - - ., faig: (£)]F, with 0f,, =
Ukais Ofpij = —buij/kuis 1 = 1,2,...,n,j = 1,2,...,¢; being unknown constant pa-

rameters. Thus, the state vector x(t) is expressed as
w(t) = [z1(t), ..., 2 ()] = OF (1), (6.2.2)

where ©:7 = diag{0:1, 03, ..., 00}, ¥u() = W5 (2), ..., 0L, (D]

Since the parameters of (6.2.1) are unknown, we can not obtain the actual state
signal (). To compensate such sensor uncertainties, we use the adaptive inverse com-
pensator S1 +i(+) to generate the estimates of the unaccessible state signals x;(t),i =

1,...,n, which are given as

#i(t) = STai(z0) = 07, ()uilt), (6.2.3)
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where 0,;(t) = [Orai(t), Opwir (), - - -, Oveig, (1)]7, @ = 1,2,...,n, are the adaptive esti-
mates of the unknown constant parameters %,. The estimate of the state vector

signal z(t) can be expressed as
#(0) = [i(0), .. (D] = OT (B 1), (6.2.4)
where ©7 (t) = diag{0]; (t), 03(t). ..., 07, (1) }.

Controller structure. Since the matrices (A, B,C) of the plant (6.1.1) are

unknown and the state sensors are with uncertainties, we choose u(t) as
u(t) = K (8)2(t) + Ka(t)r(t), (6.2.5)

where Z(t) is the state sensor uncertainty compensation signal, which is defined in
(6.2.4), and K;(t) € R™M | Ky(t) € RM*M are adaptive estimates of the unknown
constant parameters K; € RVM and K; € RM*M  which satisfy the plant-model

matching equation (2.4.3)
C(sl — A— BK")'BK; = W,(s), K;™' = K,,. (6.2.6)

Remark 6.2.1. The parametrization of the controller signal u(t) in (6.2.5) is not
suitable for adaptive design, because both the parameter ©L(t) in the compensator
2(t) = ©L(t)y,(t) and the parameter K (t) in (6.2.5) need to be adaptively updated.
We need to combine these two parameters together and derive a newly parameterized

controller signal u(t) to obtain an error equation suitable for adaptive law design. O

New controller parametrization. From the state sensor compensator signal

(6.2.4), we can have the new parameterized controller structure as
u(t) = KL (E)a(t) + Ka(t)r(t), (6.2.7)

where KT (t) = K{(t)OI(t) is the estimate of KT = K;70!T directly updated from

an adaptive law.
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Remark 6.2.2. Although ©(t) is a sparse matriz, we need to update all the compo-

nents of the matriz KX (t), since the matriz KT (t)©L(t) is not sparse. O

Substituting the newly parameterized controller signal (6.2.7) in the plant (6.1.1),
and from (6.2.2), we have

i(t) = (A+ BK;T)x(t)+ BKir(t) + BOT (t)w(t)

y(t) = Ca(t), (6.2.8)

where (:j(t) = O(t) — ©5,0(t) = [KI(t), Ko(t)]T,0* = [KT, K37, and w(t) =
CAGRO)

Since the output sensors have uncertainties, we can not obtain the exact output
signal y(t). But the adaptive laws would need the output tracking error information.
Hence, we need to use the output sensor compensator to generate (t), which is similar
to the state sensor compensation signal z(t), to estimate the output signal y(¢) and
obtain the compensation output tracking error é(t) = §(t) —y(t) instead of the exact
tracking error e(t) = y(t) — y(t) for adaptive law design. Moreover, since (A, B, C)

is unknown, a new parametrization scheme is needed.

Output sensor compensator design. The model of the output sensors with

uncertainties can be expressed as

2i(t) = kyivi(t) + Zby”fy,] i=1,..., M, (6.2.9)
where ky;, byij,i = 1,...,M,j = 1,...,p; are unknown constants, and f,;;(t),7 =
1,...,M,j=1,...,p; are known bounded signals. Then from (6.2.9), we can retrieve

the output signals, which are given as

yi(t) = Q*T@bzﬂ( ), (6.2.10)



115

* __[p*
where 6,=[0} .,

eg)kyil’ Tt eg)kyipi]T and ¢y2(t) = [Zyi (t)’ fyil (t)’ T fyipi (t)]T with 91:3;@ =
1/kyi, 05,5 = —byij/kyi being unknown constant parameters for i = 1,2,...,M,j =

1,2,...,p;. Then, the vector y(t) is

y(t) = (), ..., yu(@®)]" = @ZTqby(t), (6.2.11)
where ©;7 = diag{6;1,0:7,...,0:1,} and ¥, (t) = [} (t),..., ), (t)]". The output
compensation signals ;(t),i =1,2,..., M, are

(1) = B0 1) (6:2.12)

where 6,;(t) is the estimate of ;,. Then the output compensation signal y(t) is

gt) = [G1(t), ..., g (8)]" = O ()0, (1), (6.2.13)

where O] (t) = diag{6], (t), 0%,(t),..., 07, (t)}.

Parameter projection. The parameter vectors 0,;(t) = [Oryi, Opyit, - - - Ovyip;]

Y

1=1,2,..., M, are to be updated from some adaptive laws. It is important to ensure
that the parameters 6, (t) do not get close to 0, in order to guarantee closed-loop
signal boundedness. This will be ensured by using parameter projection based algo-

rithms [84], using the knowledge of 6},; > 0 such that 6} ; < 0; ;, fori =1,2,..., M,

to modify the adaptive laws so that ngi < Opyi(t), for i =1,2,..., M, is ensured.

A parameter projection modification for an adaptive law: 6y,;(t) = gi(t), is to

add a signal fy;(t) (such that fy(t) = 0 if 69

hyi < Oryi(t) or if 6}

kyi

= Okyi(t) and
gi(t) > 0, and fy;(t) = —g;(t) otherwise, that is, if 6} ; = Or,i(t) and gi(t) < 0) to the

adaptive law to form the new one: y,i(t) = gi(t) + fyi(t), with the condition on the

initial estimate 6y,;(0): 67

hyi < Oryi(0). Such a modified adaptive law has the desired

properties: (i) 67, < Ory(t) for all t > 0, and (ii) (Oryi(t) — b5,:) foi(t) < 0.
While it is not necessary (but may help) to use parameter projection for other

components of 0,;(t) = [Oxyi(t), Opyir (t), - - -, Opyip, (1)]7, i = 1,2,..., M, the adaptation
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gain matrix in the adaptive law for a parameter vector 6,,(¢) should be chosen to be

a diagonal one [84].

Compensation tracking error. We introduce the compensation output track-

ing error signal
et) = g(t) — ym(t) = e(t) + (4(t) — y(t)), (6.2.14)
where e(t) = y(t) — yu(t) is the actual output tracking error.

In view of the reference model (6.1.5), the matching equations (6.2.6), the plant

(6.2.8), the output signal (6.2.11), and the compensation output (6.2.13), we have

En(s)[E)(t) = KO (w(t) + En(s)[O) 1) (8), (6.2.15)

where ©,(t) = ©,(t) — ©:.
We introduce a filter h(s) = ﬁ with f(s) being a stable and monic polynomial

of degree equal to that of &,,(s). Operating h(s)I); on both sides of (6.2.15), we have
é(t) = K,h(s)[O7w](t) + &m(s)h(s)[0F 1y (1), (6.2.16)
where é(t) = &,.(s)h(s)[é](t).

Remark 6.2.3. This error equation has the output sensor uncertainty related term
Sm(s)h(s)[éggby](t) which needs specific treatments, especially, in the presence of an
uncertain gain matriz K, which introduces additional technical difficulties. In the
absence of fm(s)h(s)[égwy] (t), the knowledge of K,, can be relazed, using LDU, LDS
and SDU decomposition based designs, for multivariable MRAC [84]. Such designs
for sensor uncertainty compensation are still not yet available. For example, it was
found that an LDS based design, directly applied to the error equation (6.2.16), may
lead to an overparametrization problem (in deriving a linear error model) undesirable
for system tracking. An SDU based design may be able to overcome such a problem

and is currently under investigation. O
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Estimation error. Based on (6.2.16), we introduce the estimation error signal

E(t)=e(t)+W (L)€ () HEyri () Z Eyai(1) Z Eynri ()] (6.2.17)

where U(t) is the estimate of ¥* = K, and

() = 01 (1)) — hs)[e"w](1), (6.2.18)
C(t) = h(s)wl(®), (6.2.19)
&iii(t) = 0,5(t)Cyii (1) — heij(5)[05043] (2), (6.2.20)
Cuig(t) = i (s)[thy] (1), (6.2.21)

with hg;j(s) being the ijth component of &,,(s)h(s), fori=1,...,M, j=1,...,1.

Substituting the filtered error é(¢) (6.2.16) in (6.2.17), we have

29T( )Gyn (t)
é(t) = W(tE(t) + K07 (1)C(t) + 2 y’( Sailt) | (6.2.22)
Ziwl yz( )CyMZ( )

where W(t) = W(t) — U*, O(t), and 0,(t) = 0,:(t) — 0

st = 1,2,..., M, are the

corresponding parameter errors.

Adaptive laws. With the estimation error (6.2.22), we choose the adaptive laws

U(t) = —%ﬁw(t), (6.2.23)
or(t) = —%@j@), (6.2.24)
0,i(t) = F“Zmz(g)g’ﬂ(),zzl,z,...,M, (6.2.25)

where é(t) = [¢1(t), €x(t), . .., én(t)]T is computed from (6.2.17), in which é(t) is com-

puted from é(t) = &m(s)h(s)[I — yml(t) = &m(9)h(5)[Oy vy — yml(t), T' = T > 0,

and I'y, = F; > 0,7 = 1,2,..., M, are adaptation gain matrices, S, satisfies the
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Assumption (A3), and

M i

m?(t) = 1+ (&) + "¢ + DD GG ()- (6.2.26)

i=1 j=1

Lemma 6.2.1. The adaptive laws (6.2.23)-(6.2.25) ensure that

(i) W(t) € L, ©O(t) € L=, ,(t) € L>*,i=1,2,. NL>; and

(it) U(t) € L2 N L>®, O(t) € L*N L™, and 0,,(t) € L>*N L™, i = 1,2, M.
Proof: Consider the positive definite function
1
V= 2tr[\IfTF 1\11]+ tr[Or,07]+ Z OLT 10,0 (6.2.27)

From (6.2.23)—(6.2.25) and (6.2.22), we derive the derivative of V' as

o €W COBWETAY
RO m2(t)
M M T ~
B ZZ Qyz Cyﬂ &(t) _ _E:S;)(z()t) <o (6.2.28)
=1 j=t
From (6.2.28), we can conclude the properties in Lemma 1. \Y

Based on Lemma 6.2.1, we can have the following theorem.

Theorem 6.2.1. The sensor uncertainty compensation scheme with the control law
(6.2.7) updated by the adaptive laws (6.2.23)-(6.2.25), when applied to the plant
(6.1.1), guarantees the closed-loop signal boundedness and asymptotic compensation

output tracking: limy_,o(9(t) — ym(t)) = 0.

The convergence of the actual tracking error e(t) = y(t) — y,,(t) to zero is still
under investigation and it may need some additional conditions in the adaptive control
system, as similar to an adaptive observer case where the adaptive state estimation
error converges to zero under some persistent excitation conditions in the case when

the system matrix (A, B) are unknown.
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6.3 Simulation Study

In simulation study, we will consider an aircraft flight control example with system

dynamics unknown and the output signals are a part of the state signals.
Aircraft model. We choose a linearized aircraft lateral model obtained by lin-
earizing the NASA Generic Transport Model (GTM) at 70 knots trim condition,

which is described as #(t) = Az(t) + Bu(t), y(t) = Cxz(t), where x = [vy, pp, 15, ¢]7,

U = [dm dr]Ta
[—0.5395 11.5510 —117.4354 32.0436
A — —0.5955 —4.8871 2.0548 0
o 0.2076 —0.2891 —1.3130 0
i 0 1 0.0903 0
[ -0.0431  0.3774
—0.5705  0.2181 1000
B = —0.0045 —0.3569 |’ C_{ 0001 } (6.3.1)
0 0

The four state variables are the lateral velocity vy (ft/sec), the roll rate p, (rad/sec),
the yaw rate r, (rad/sec), and the roll angle ¢ (rad). The output variables are the
lateral velocity v, and the roll angle ¢, which are two of the state signals. The control

inputs are the aileron position d, (deg) and the rudder position d, (deg).

Sensor uncertainty models. We consider the state sensor uncertainties as

le(t> = ngl(t)+02, zmg(t):09x2(t), ng(t)zxg(t>,

Zoa(t) = 0.924(t)+0.01sin(0.03t). (6.3.2)

Since the output signals y;(t) and ya(t) are the state signals x;(f) and x4(t), the

output sensor models are

22(t) = 24(t) =0.9y5(t)+0.01 sin(0.03t). (6.3.3)
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Reference model. The modified left interactor matrix ,,(s) of G(s) = C(sl —
A)7' B can be chosen as &,,(s) = diag{(s+1), (s+1)?}. Therefore, the transfer matrix
of the reference model (6.1.5) is W,,(s) = diag{1/(s +1),1/(s + 1)?}.

Verification of design conditions. The zero of G(s) = C(s] — A)"'Bis z =
—118.33 which is stable, and G(s) is strictly proper and has full rank. The high

frequency gain matrix of G(s) is

) —0.0431 0.3774
K, = lim &,(s)G(s) = 05709 0.1859 | ° (6.3.4)

S§—00

which has full rank.

Design parameters. Since the degree of ,,(s) is 2, we choose the filter h(s) =
1/(s + 1)2. For the adaptive laws (6.2.23)-(6.2.25), we choose I' = ')y = Ty =

diag{1,1}, and
—0.2155 —2.8545

So =1 37740 1.8590 |

(6.3.5)

which satisfies the Assumption (A3).

To prevent 6,1 (t) and 6,2(t), which are updated in (6.2.25), getting close to 0,
we need to use parameter projection described in the “parameter projection” part
after equation (6.2.13). From the output uncertainty models (6.3.3), we have 0}, =
0, = 1/0.9. Then, we choose 6}, = 1 < 6; , and 6, = 1 < 6}, as the lower
bound of 6,1(t) and Oy(t). For simulation, we choose the initial conditions as
O (0) = 1.2 > 60, Op(0) = 12> 62,

Simulation results. To make a realistic aircraft flying path, we choose the
reference input r(¢) as in Case I the constant input r(¢) = [5,0.1]7, and Case II
the varying reference input 7(¢t) = [5sin(0.01¢),0.1sin(0.01¢)]”. By applying the
compensation scheme using the adaptive laws (6.2.23)—(6.2.25), we can obtain the

following simulation results.
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In Figure 6.2 and Figure 6.4, the dotted lines represent the reference output signal
Ym(t) and the solid lines represent the actual output signal y(¢) which are not available
exactly because of the sensor uncertainties. From Figure 6.2 and Figure 6.4, we can
see that, in Case I and Case II, the output signals are bounded and the tracking error
e(t) = y(t) — ym(t) converges to small values.

Figure 6.3 and Figure 6.5 show that the compensator output signals ¢(t) (solid)
asymptotically converge to the reference output signals y,,(t) (dotted) for both Case
I and Case II.

| | | | | | | |
0 20 40 60 80 100 120 140 160 180 200
Aircraft output A (ft/sec) and reference Vom (ft/sec) vs. time (sec)

or | | | | | | | ]

| |
0 20 40 60 80 100 120 140 160 180 200
Aircraft output @ (deg) and reference 9, (deg) vs. time (sec)

Figure 6.2: Aircraft output y(¢) (solid) vs. reference y,,(t) (dotted) (Case I).

Summary

In this chapter, we have developed an adaptive sensor uncertainty compensation
control scheme for the multi-input and multi-output systems with system dynamics

unknown, using state feedback for output tracking. The critical step for an adap-
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0 20 40 60 120 140 160 180 200

80 0
Aircraft compensator output A (ft/sec) and reference Vom (ft/sec) vs. time (sec)

| | | | | | | |
0 20 40 60 80 100 120 140 160 180 200
Aircraft compensator output @ (deg) and reference 9, (deg) vs. time (sec)

Figure 6.3: Compensator output () (solid) vs. y,,(t) (dotted) (Case I).

-5 ! ! ! ! I | | | i
0 100 200 300 400 500 600 700 800 900
Aircraft output A (ft/sec) and reference Vom (ft/sec) vs. time (sec)
10

| | | | | |
0 100 200 300 400 500 600 700 800 900
Aircraft output @ (deg) and reference 9, (deg) vs. time (sec)

Figure 6.4: Aircraft output y(t) (solid) vs. reference y,,(t) (dotted) (Case II).
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Figure 6.5: Compensator output ¢(t) (solid) vs. y,,(t) (dotted) (Case II).

tive compensation design is the development of a properly parameterized error model
in terms of the system and sensor parameter errors and the output tracking errors.
We have developed such error model. Based on a suitable error model, stable adap-
tive laws have been derived for updating the parameters of the feedback controller.

Simulation results have verified the desired performance.



Chapter 7

Discrete-Time Multivariable
Adaptive Control of MIMO
Systems with Structural Damage

In this chapter, a discrete-time multivariable MRAC framework is developed for con-
trol of continuous-time nonlinear systems with structural damage, addressing several
key technical issues. New technical contributions of this chapter in developing such

digital control design techniques include

e obtaining a relationship of infinite zero structure between the continuous-time

nonlinear system and its linearized discrete-time model;

e deriving invariance properties of infinite zero structure of the a linearized discrete-

time aircraft system model before and after damage occurs;

e developing a discrete-time multivariable MRAC scheme to compensate para-
metric and structural uncertainties due to damage and guarantee closed-loop

system stability and asymptotic output tracking; and

o verifying effectiveness of the developed linearization-based discrete-time adap-
tive control framework for control of the continuous-time nonlinear system with

damage by extensive simulation studies of the nonlinear GTM Simulink model.
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7.1 Problem Statement

Consider a continuous-time MIMO nonlinear system

#(t) = f(2(t) + g(x(t))u(t), y(t) = Ca(t), (7.1.1)

where z(t) € R" and u(t) € RM are state and control input vector signals, output
vector signal y(t) € RM is chosen as a linear combination of the state signals, and f
and g;, 7 =1,2,..., M, (with g; being the ith column of g) are smooth (i.e., C*°) vector
fields defined on R™. When structural damage occurs, the system dynamics f and g in
(7.1.1) may undergo uncertain parametric and structural variations. In this chapter,
we will design a discrete-time adaptive control scheme to construct a digital control
system framework with the addition of samplers and zero-order holds (ZOHs) for
control of the nonlinear system (7.1.1) to compensate its possible structural damage.

For the digital control system with ZOHs, elements of the control input signal

u(t) = [ug(t), uz(t), ..., up(t)]" of the nonlinear system (7.1.1) are
wi(t) = u;(kT), kT <t <(k+1)T, (7.1.2)

fori=1,2,..., M, ie. within each sampling interval T', control input signals remain
constant. We expand the state signal z(¢) in a Taylor series about x(kT) within

t € [kT,(k+1)T), it follows that [5,50,60]

o((k+ 1)T) = a(kT) + Y %itx

(7.1.3)

(=kT

By taking successive partial derivatives of the right-hand side of (7.1.1) with control

input signal as in (7.1.2), we can obtain a discrete-time nonlinear model denoted as
x(k+1) = fa(z(k),u(k)). (7.1.4)

Since damage causes unknown variations for the nonlinear system (7.1.1), the dis-

cretized nonlinear model (7.1.4) also undergoes uncertain changes. To deal with the
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uncertainties and complexities of the discrete-time nonlinear model (7.1.4), in this

chapter, we will employ a linearization-based discrete-time adaptive control design.

Linearization-based adaptive control. Block diagram of the closed-loop con-
trol system framework is illustrated in Fig. 7.1, where the linearization-based adap-
tive control design is applied. We linearize the discrete-time nonlinear model (7.1.4)
at a chosen operating point (xg,up). The chosen operating point may not be an
equilibrium point, since the equilibrium points may not be accessible due to system
uncertainties. Then, a sequential discrete-time linear model with an unknown con-
stant dynamics offset fy (introduced by the non-equilibrium operating point) can be

used to characterize the linearized discrete-time system with damage:
Ax(k + 1)=AAz(k)+ BAu(k)+ fo, Ay(k)=CAx(k), (7.1.5)

where perturbation signals are Az(k)=z(k)—x, Ay(k) =y(k)—Cx, and Au(k)=

u(k) —uo, and system matrices and offset are A = 1 , B =9 , and

O (20,u0) ou (z0,u0)

fo= fa(xo, ug)—x0, which are unknown piecewise constants: (A, B, fao) = (As, Bi, fao,),

1=1,...,N, for N different damage conditions.

discretized nonlinear maodel

U u(k u(t nonlinear system y(t
—() (&) > ZOHs ) > with darr%;ge ) >
A
Au(k) z(1)
Zo T
discrete-time Az (k) — xz(k)

adaptive controller r(k)

Figure 7.1: Digital control of a nonlinear system with damage.

Control objective. The objective is to develop a discrete-time adaptive control

law Au(k) for the sequential linearized discrete-time system (7.1.5) with uncertainties
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to make all the signals of the closed-loop system bounded and the system output signal

Ay(k) asymptotically track a reference signal Ay,,(k):
Ay (k) = Wi (2)[r](k), Win(2) = .1 (2), (7.1.6)

where W,,(z) is stable and r(k) is a bounded reference input signal. The symbol z is
used to denote the advance operator: z[r](k) = r(k + 1).

To proceed the multivariable MRAC design, for the sequential linearized discrete-
time system (7.1.5) with (A, B, fao) = (4i, Bi, fao,), @ = 1,2,..., N, representing
different damage conditions, following assumptions are required: (A1) all zeros of
G(z) = C(zI — A)™'B lie within the unit circle in the z-plane; (A2) (A, B) is con-
trollable and (A, C') is observable; (A3) G(z) = C(2I —A)~'B has full rank, for all
damage scenarios, G(z) has a common modified left interactor matrix &, (2); (A4)
all leading principal minors A;, i =1,2,..., M, of K, are nonzero, the sign of each
principal minor is known and invariant for different damage scenarios.

(A1) is needed for stable zero-pole cancelations in plant-model matching (see
(7.3.2)) (of making the closed-loop system be W,,(z)). (A2) is needed for ensuring
system internal stability (based on observability of (A, C'), that is, a bounded output
y(k) implies a bounded state z(k)) and for plant-model matching (see (7.3.2)) (based
on controllability of (A, B)). (A3) is for the existence of an interactor matrix &,,(z)
used for constructing a common reference model transfer matrix (7.1.6) for all possible
damage scenarios. In next section, we will investigate the modified left interactor
matrix &,(z) for the linearized discrete-time model (7.1.5) based on a detailed generic
structure study. (A4) ensures that there exists a common matrix D, (a matrix of the
LDS decomposition of K, defined in (7.3.12)) for all possible damage scenarios, which

is used for design of the adaptive law (7.3.23).
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7.2 System Infinite Zero Structures

For discrete-time multivariable MRAC, knowledge of infinite zero structure is crucial
for existence of plant-model matching (to be shown in Section 4), since the inverse
of the interactor matrix &,,(z) is chosen as the reference system (7.1.6). In this
section, system infinite zero structures will be investigated to obtain a relationship
between the continuous-time nonlinear system (7.1.1) and its linearized discrete-time
model (7.1.5), based on which the invariance design conditions (A3) and (A4) may
be obtained before and after damage (to be demonstrated by a generic study of an
aircraft model in Section 7.4.1). In order to obtain a relationship of the infinite zero
structures between the nonlinear system and its linearized discrete-time model, we

first investigate the generic structure of the linearized discrete-time model (7.1.5).

7.2.1 Linearized Discrete-Time System Model

By taking successive partial derivatives of the right-hand side of (7.1.1) with the
control input signals remaining constant in one sampling interval as in (7.1.2), the

discretized nonlinear model (7.1.3) can be denoted as [5,50, 60]

w(k+1) = fa(x(k), u(k))

= fdo(x(k))JrZgdi(f(k))ui(k)

M

+Z<Z : Z(gdil,,,h(m(k))ﬂ W(k))). (7.2.1)

=
Relative degrees of the discretized nonlinear model (7.2.1) can be defined [5,61,93],
but, in this chapter, we only study the infinite zero structure of the linearized discrete-
time model for the discrete-time multivariable MRAC design.

We choose the operating point as (xg,ug) = (29,0) to linearize the discretized

nonlinear system (7.2.1) to obtain the linearized discrete-time model (7.1.5). It follows
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that system matrices A and B, and the offset fj of the linearized discrete-time model

(7.1.5) are of the forms:

_ 0fa _%
A= % (xo, 0)_ ox 900’ (722)
B = 80];6[ (20, 0) [gdl (1'0), gdz(l’o), . ,ng(l’o)], (723)
fO = fd(xo’o)_xozde(IO)_l'o. (724)

In order to obtain the expressions of A, B, and f; in terms of the continuous-time
nonlinear system (7.1.1) vector fields f and g¢;, we further investigate fg and gy in

the discrete-time model (7.2.1), which can be expressed as
— T
Jao(x(k)) = x(k) + Z Ly f(a(k)) (7.2.5)

gala(k) = Tg(a +Z )

l1
+ZZ'L gi(w(k))
[e'e) ll2

+Z , ZL?LgiLif‘p‘zf(x(k»), (7.2.6)

with 7" denoting the sampling period, g;(x), ¢ = 1,2,..., M, being the ¢th column

of g(x) of the nonlinear system (7.1.1), and the Lie derivatives defined as LZ'Jrl f=

Ly(Lif) = 2 f and L9f = f. Substituting (7.2.5) and (7.2.6) in (7.2.2) (7.2.4),
we have
_ Ofw|
A= 28 =1, +Z: g a (7.2.7)
B = [ga(%0), gaz(70), - ”7ng( 0)]; (7.2.8)
fo = faolzo) — w0 = Z .LZ ' f (o). (7.2.9)

Remark 7.2.1. If the operating point ug is non-zero, we can use a transformation

u = u — ug to transfer the nonlinear system (7.1.1) to an equivalent system & =
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f(z)+g(z)u, where f(z) = f(x)+g(x)ug, and then conduct analysis of the discretized
nonlinear model and linearized discrete-time model for the system @ = f(x) + g(x)u

with the operating point (xg,0). O

When (x¢,0) is an equilibrium point of the nonlinear system (7.1.1), the system

matrices and offset structures can be further simplified.

Proposition 7.2.1. If the operating point (xq,0) is an equilibrium point of the continuous-
time nonlinear system (7.1.1), then (xo,0) is an equilibrium point of the discretized
nonlinear system (7.2.1) as well, and the linearized discrete-time system matrices A
and B as in (7.2.2) and (7.2.8), and the offset fo as in (7.2.4), are further reduced
to

T

A=etT B= / e B.dr, fo =0, (7.2.10)
0

where A, = af|gcO and B, = g(x).

Proof: Substituting (zo,0) in the right-hand side of the discretized nonlinear model

(7.2.1) and in view of (7.2.5), we obtain that
fa(w0,0) = fao(wo) = 20 + Z Lz tf (o)

= 2o+ T f(zg +Z—— (Lh|,

(o). (7.2.11)

Since (xg,0) is the equilibrium point of the continuous-time nonlinear system & =

f(z) + g(x)u, we have that f(x¢)=0. From (7.2.11) and f(x)=0, it follows that

fa(w0,0) = o, (7.2.12)

so that the operating point (xg, 0) is the equilibrium point for the discretized nonlinear

model (7.2.1). Then the offset f; as in (7.2.4) becomes

fo = fa(o,0) —z0 = 0. (7.2.13)
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With the condition f(z() = 0, we have

9 i—1 _ ﬁ ﬁ -2\
S = o (ax@f ) f) }
_ a i—2 af
N al'(L f) xo% )
a0 ([&wenly) |
. .

1) ([ 0))
O, o, O
= )|, o

(o
_(%

xo 8,1'
where [%(L;_zf)]j, j = 1,2,... n, denotes the jth row of the matrix %(L;_zf).

o

o

) L i=2.3,... (7.2.14)
x0

Hence, from (7.2.14), the matrix A in (7.2.7) can be further calculated as
of
A = Li+T Lt
* a$mo+;Z'8£€ /)
= I,
* ZZ (8:6

In view of (7.2.6), (7.2.3), (7.2.14), and the condition f(xy) = 0, we have the ith

zo

) (7.2.15)

column of matrix B as

bi = gai(zo)

o l
) !

gi(l"o)

x0

f(x0)

o0 Tl -2 P - pes
+Z i Z% (15" L2 ) | Sl
=

xo) ) gi(xg), (7.2.16)
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with b;, i = 1,2,..., M, denoting the ith column of B. The matrices A as in (7.2.15)

and B with the ith column b; as in (7.2.16) can be expressed as more compact forms:
T
A=eT B= / e <™ B.dr, (7.2.17)
0
where we define A, = %\xo and B. = g(xo) = [g1(x0), g2(x0), - - -, g (20)]- \V4

Remark 7.2.2. There are two methods to obtain a linear discrete-time model as in
(7.1.5) from the continuous-time nonlinear system (7.1.1): one is discretizing the
nonlinear system (7.1.1) first, and then linearizing the discretized model, which is
used in this chapter; the other one is linearizing the nonlinear system (7.1.1) first,
and then discretizing the linearized model. It is worth noting that A and B in (7.2.10)
are actually system matrices of the discrete-time linear model obtained from the second
method with the operating point as (xo,0). That is only if (x¢,0) is an equilibrium
point, system matrices A and B obtained from these two methods are the same. When
(20, 0) is an arbitrary operating point, A and B from the first method as in (7.2.7) and
(7.2.8) contain more information than the second method as in (7.2.10). Therefore,
in this chapter, we use the linearized discrete-time model from the first method to do

the linearization-based design. 0

7.2.2 Interactor Matrix of Linearized Discrete-Time Model

We use the following calculation of G(z) = C(zI,, — A)"' B to determine the infinite

zero structure of the linearized discrete-time system (7.1.5):

1

= n_l o ..
G(Z)—det(zln_A) (Bpaz" 4+ Erz+Ep) (7.2.18)

with det (21, — A) £ 2" +ay, 12"+ - - -+ and coefficients being E,,_1 =CB, E,_5=
CAB-'-Oén_lCB, ey EOICAn_lB+OKn_1CAn_2B+' : '+&1CB.
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From expressions of matrices A and B in (7.2.7) and (7.2.8), which are related
to the continuous-time nonlinear system (7.1.1) at the operating point z,, we obtain

following properties about the infinite zero structures.

Theorem 7.2.1. For the nonlinear system (7.1.1):

M
i=1
with the relative degree {p1,pa,...,pum} at the point xo, there exist small constants

To > 0 and f, > 0, such that, if T < Ty, i.e., the sampling period is sufficiently
small, and ||f(xo)|| < fn, i.e., the operating point (xo,0) is sufficiently close to the

equilibrium point, the linearized discrete-time system (7.1.5) at the (x0,0):
Ax(k+1)=AAx(k)+ BAu(k)+ fo, Ay(k)=CAx(k), (7.2.20)
with A, B, and fo, asin (7.2.7)-(7.2.9), has a diagonal modified left interactor matriz:
Em(2) = diag{z+a1, z+aq, ..., z+ay}, (7.2.21)
with |a;| < 1, fori=1,2,..., M.

Proof: For the nonlinear system (7.2.19) with the relative degree {p1, pa,...,pn} at
the point o, we have Ly Lihi(z) =0,j=1,...,. M, k=0,...,p;—=2,i=1,..., M,

in a neighborhood of xy, and the matrix

Ly, L?‘ihl (zo) -+ Lgy, L;’J‘ihl(xo)
Ly L " ho(xg) -+ Ly, L ho(x
afae)=| Tt ) R hato) (7.2.22)
L, L3 by (o) -+ Ly, L by (o)
. . . . o & k1 oLy ™k,
is non-singular, with the Lie derivatives defined as Lih; = Ly(L7 ™ h;)) = —5—f,

L?phi = h,, and ngL';hi = %(Lljhi)gj [43,84] . For the Lie derivative ngL']ihi(:z),
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k > 1, we can express it as

Ly, Lih; = o (L5hi) g;
Oh; 0 0 (0
~ o S DL 0 (G,

+Z <Ll (L’f 2 pyr. 0 @Z )) f)) 9- (7.2.23)

Since the output is a linear combination of the states, i.e. h;(x) = C;x, we can

simplify Ly, Lhi(x) as

Oh;
oh; 0 _
Ly Lihi(w) = o (L) g5(a)
0 _
= Oi%(Ll; 'f) gi(x)
CiLg, Ly f(x), k> 1. (7.2.25)

Then, we have that Vz in a neighborhood of z
Cigj(x) =0, CiLy, Ly f(x) =0,1<k < p—1, (7.2.26)

and the non-singular «(z) is reduced to

Cl glel—zf .. Cl oar LP1—2f
CyL, Lp2_2 e Oy Lp2_2

alz)=| / o g”f Tl (7.2.27)
Cu Ly, L;M_Zf o Culy,, LpM_2f

To derive the interactor matrix for G(z), we investigate the first coefficient F, ; =CB

of the equation (7.2.18). For the ith row Eq,1y; = [C;B1,C;By,...,CiBy], from
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(7.2.3) and (7.2.26), we obtain each element C;B;, j =1,2,..., M as

Tri a > T! _
CiBj = —'C'ZLQJL?Z 2f(l’0)—|— Z TCZngLlf 2f(5(70>
Pi: Epitl

[e's) Tl -2
=3 p=1

Tpi - © Tl ~
= 7OLy Ly “flwo) + Y JrCilg Ly (o)

Epitl
T (0, .,
-2

* l
2 %C(Z(%(UFLQJ?HJ‘)L-f(x >)) (722%)
=3 p=1 0

'f(xob

o

From (7.2.28), there exist small 7, > 0 and f, > 0, such that, if T < Ty and

|| f(z0)|| < fn, CiB; can be approximated as
e pi—2

From (7.2.27) and (7.2.29), it follows that

En—l =CB~= PO&(S(,’(]), (7230)
where P:diag{%, %, cee 7;;—?{}, which is non-singular. Since the matrix a(xg) is

non-singular, we can conclude that the coefficient E,,_; = C'B is non-singular, when
the sampling period T' < Ty and || f(xo)|| < fn, i-e., the operating point (zg, 0) is close

to the equilibrium point. Hence, we choose the interactor matrix ,,(z) as
Em(z) = diag{z+a1, z+aq, ..., z4+an}, (7.2.31)

with |a;| < 1,i=1,..., M to make lim,_,o. &,,(2)G(z) = E,_; non-singular. \V4
From the proof of Theorem 7.2.1, we can see that if the relative degree p; < 2,

the condition on the operating point (zo,0), i.e., ||f(z0)|| < fa, can be relaxed. This

property is summarized as the following corollary.
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Corollary 7.2.1. For the continuous-time nonlinear system (7.2.19) with the relative
degree {p1, p2,...,pm} at the point xo, where p; < 2,1 =1,2,..., M, there exists a
small Ty > 0, such that, if the sampling period T" < Ty, the linearized discrete-time
system (7.2.20) at the operating point (zo,0) with A, B, and fo, given as (7.2.7)-
(7.2.9), has a diagonal left modified interactor matriz: &, (z) = diag{z+a;, z+

as, ..., z+ay}, with |a;| <1, fori=1,2,..., M.
Proof: For p; = 1, we have that the ith row of a(xg) is
ai(wo) = [Lg, hi(z0), - -, Lgy hi(wo)] = Cig (o) # 0.

For p; = 2, we obtain that, Vx in a neighborhood of xq, Ly hi(z) = Cig;(x) = 0,

j=1,2,..., M, and the ith row of a(zy) is
O‘i(xo) = [Lgl thi(x(])v ERE) LQMthi(xO)]
= [CiLglf(I'o), ey CZ'Lng(SL’(])] % 0. (7232)
From (7.2.3), we have that the ith row of the coefficient E,,; = C'B of (7.2.18) is

T? —T'
CZ'BJ- = TCZQJ(SL’Q)—F?CZLQJ_]C(SL’Q)—FZ WCZLglLlf_zf(SL’(])
= -

00 Tl - 2
+y WQ(L; 'gi(@oHy | LhL, L7 f(g:o)>. (7.2.33)
=3 p=1
There exists a small Ty > 0, such that, for T' < Tj, the coefficient is approximated as
T2
It follows that
E,1 =CB =~ Pa(xy), (7.2.35)

where P is a diagonal matrix with the diagonal elements are T or %2 Hence, the first

coefficient F,,_; is non-singular. So we choose the interactor matrix as

Em(z) = diag{z+a1, z+aq, ..., z4+an}, (7.2.36)
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with |a;| <1, for i =1,2,..., M, such that K, = lim,_, &, (2)G(z) = C'B, which is
non-singular. \Y

Theorem 7.2.1 and Corollary 7.2.1 indicate that, when structural damage occurs,
even if the relative degree of the nonlinear system is altered, infinite zero structure
of the linearized discrete-time model can be invariant, so that the key invariance

conditions (A3) can hold for adaptive damage compensation design.

7.3 A Multivariable MRAC Scheme

In this section, we will develop a new multivariable state feedback MRAC scheme for
the sequential linearized discrete-time model (7.1.5) with parametric uncertainties
due to damage.

We consider a state feedback controller, which has a simple structure suitable for

aircraft control and some other applications:
Au(k) = K{ (k)Ax(k) + Ko(k)r(k) + Ks(k), (7.3.1)

where K3(k) is the adaptive estimate of the unknown compensation term K35 for
canceling the effect of the piecewise constant offset fy, and Kj(k) and K,(k) are
the estimates of the nominal K| and Kj, which satisfy the plant-model matching

condition (2.4.3):
C(zI-A-BK") 'BK;=W,,(2), K;'=K,, (7.3.2)

where the reference system transfer matrix W,,(z) is the inverse of the modified left
interactor matrix: W,,(z) = £,!(2). In particular, when the interactor matrix &,,(z)
is of a diagonal form, the existence of K} and K of the matching condition (7.3.2)
can be treated as the solution of the dynamic decoupling problem for multivariable

systems, which is stated and solved in [22]; when the interactor matrix &,,(z) is of
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a lower triangular form, [62] gives a method to solve K; and K for the matching
condition (7.3.2). To derive K7, we apply the nominal controller

Au(k) = KT Ax(k) + Kir(k) + K3 (7.3.3)

to the system (7.1.5). Considering a set of A, B, and fy, we have the closed-loop

system in the z-domain as

Ay(z) = C(zI — A — BK;")'BK;r(z) + A(2), (7.3.4)

with A(z)=C(zI —A—BK;T)"Y(B Kjf+%) In view of the reference system (7.1.6):

Ay (k) = W (2)[r)(k), Win(2) = €, (2), (7.3.5)
and the matching condition (7.3.2), we have the output tracking error as
Ae(z) = Ay(z) — Ay (2) = A(z2). (7.3.6)
Applying the z-domain final value theorem, we obtain

lim Ae(k) = lim(z — 1)A(2) = Wy, (1) K, K3 + d (7.3.7)

k—o00 z—1

with d = C(I — A — BK;T)7!f,. Then, we set
Ki = —K, ¢, (1)d, (7.3.8)

which follows that limy . (Ay(k) — Ay, (k)) = 0. Therefore, there exists a nominal
controller (7.3.3) with K7, K5, and K}, satisfying (7.3.2) and (7.3.8) to make the
output signal Ay(k) of the linearized discrete-time model (7.1.5) track a reference

signal Ay, (k): limg oo (Ay(k) — Ay (k)) = 0.

Remark 7.3.1. The multivariable discrete-time MRAC control scheme developed in
this chapter is applicable for linear discrete-time systems (7.1.5) with general inter-
actor matriz &, (z). In this chapter, for the linearization-based discrete-time adap-

tive control design, the interactor matriz &,(z) of the linearized discrete-time system
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(7.1.5) possesses a diagonal form with relative degree 1 (as shown in (7.2.21)) and
s invariant before and after damage occurs, so that there exists a common stable
reference system W, (2) = £ 1(z) = diag{(z +a1)™, (2 +az)7t, ..., (2 +ay) "'} with
la;| < 1,1=1,2,..., M, for all possible damage patterns (A;, B;), i =1,2,...,N. O

Tracking error equation. Substituting the adaptive control law (7.3.1) in the

plant (7.1.5), we have

Az(k+1) = (A+BK;T)Az(k)+BK;r(k)+BKi+ fy
+B(KT (k) Az(k)+ Ky (k)r (k) + K3 (k))

Ay(k) = CAx(k), (7.3.9)

where K, (k) =K, (k)—K?, Ky(k)=Ky(k)—K3, and K(k)=K3(k)—KZ. In view of the
reference model (7.1.6), matching conditions (7.3.2) and (7.3.8), and the closed-loop
system (7.3.9), and ignoring the exponentially decaying terms, we obtain the output

tracking error:

Ae(k) = Wi (2)K,[07w](k), (7.3.10)

where w(k) = [Az”(k), 7" (k), 1]7, O(k) = O(k) — O, O(k) = [K{(k), K>(k), Ks(k)]",
and ©*=[K;T K3, K3]T. To deal with the uncertainty of K,, we use its LDS decom-
position (2.3.5):

K, = L,D,S, (7.3.11)

where S is symmetric positive definite, L is unit lower triangular, and

. . . A
D =diagfsign|A |1, &gn[g]w, ..., signf
Ay A

My} (7.3.12)

M-1
with v, > 0, ¢ = 1,..., M, arbitrarily chosen. It is worth noting that, from the

design condition (A3), there exists an invariant D, for the piecewise constant K.
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Substituting the LDS decompensation of K, (with a uniform D) in (7.3.10), we have
L7 (2)][Ae)(k) = D,SOT (k)w(k). (7.3.13)

Operating both sides of (7.3.13) by h(z) = 1/ fn(2), where f5(2) is a stable and monic

polynomial of degree equals to the degree of &,,(z), it leads to
L n(2)h(2)[e](k) = Dy S () [67w] () (7:3.14)

Introducing O = Ly — I = 6, with 65, =0 fori =1,2,..., M and j >, (7.3.14) is

parameterized as

e(k)+[0,05" s, ..., 0: 0" = D,Sh(2)[0Tw|(k), (7.3.15)
where
ék) = &n()h(2)[e](k) = [er(k),. .., en (k)] (7.3.16)
(k) = [en(k),...,e (k)" i=2,..., M, (7.3.17)
0r = [05,....05 0", i=2,..., M. (7.3.18)

Estimation error. Introduce the estimation error
e(k)=[0, 03 (k)na, ..., 05, (k)nar) "+ (k)& (k) +e(k), (7.3.19)
where 6;(k),i = 2,..., M are the estimates of 87, W is the estimate of ¥* = D, .S, and
§(k)=0" (k)¢ (k) —h(2)[0"w](k), C(k)=h(2)[w] (k). (7.3.20)
From (7.3.15)—(7.3.20), we derive that

e(k) = [0.05 (k)na(k), 65 (ks (k), ... 03, (k)mar (k)T

+D, SOT(k)C(k) + T(k)E(k), (7.3.21)
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where 6;(k) = 6;(k) — 6,

i =2,3,...,M, and ¥(k) = U(k) — U* are the related
parameter errors.

Adaptive laws. With the estimation error model (7.3.21), we choose the adaptive

laws as
_ Loiei(k)ni(k) .
k1) = Bi(k) == =23 M, (7.3.22)
Die(k)¢" (k)
T _ T S S N ShA
O (k1) = O (k)~ = gar (7.3.23)
_ Le(k)E™ (k)
V(1) = W)~ e (7.3.24)
where the signal €= [ey, €g, ..., €x]7 is computed from (7.3.19), 0 < Ty; =T} <21, 4,

i=2,...,M,0<I'=TT<2I,, D, is chosen to satisfy 0<D,SD,<2I,;, and

m(k)= (1+CT(/~6)<(1€)+£T(1€)£(/€)+Z ni (k)ns(k))'/2.

Lemma 7.3.1. The adaptive laws (7.3.22)-(7.3.24) ensure that

(i) 6:(k) € loo, 1 =2,3,..., M, O(k) € L, (k) € Lo, and 225 € 1 Nl

(ii) 0i(k + 1) — 0:(k) € Iy Nlo, i = 2,3,.... M, Ok + 1) — O(k) € ly N loo, and

U(k+1)—V(k) €lyNli.
Proof: Consider a positive definite function

M
V=> 0/T;'0; + tx[I"T'U] + tr[©SO"], (7.3.25)

=2
which has a finite jump at k;, i = 1,2,..., N—1 when damage occurs. Within each

interval (k;_1,k;), i =1,2,..., N with kg = 0 and ky = oo, the time-increment of V'

V(0i(k+1),U(k+1),0(k+1)) =V (8;(k), U(k), O(k))

< —a ETsfz—é()k) (7.3.26)
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for some constant a3 > 0. That is V(k;) < V(k;_1). Since V(k) has a finite jump

at k;, i =1,2,...,N—1, we can conclude that V (k) is bounded. Therefore, we have

0:(k) € loo, O(k) € Lo, U(k) € loo, and 2% € loo. From (7.3.26), we have S5k € I,
Then, from the adaptive laws (7.3.22)—(7.3.24), we obtain 0;(k+1)—0;(k) € 2 N,
O(k+1)—O(k) € Iy N loo, and W(k+1)—U(k) € Iy N lue. v

These properties allow us to prove the following theorem.

Theorem 7.3.1. The multivariable MRAC' scheme with the state feedback control
law (7.3.1) updated by the adaptive laws (7.3.22)—(7.5.24), when applied to the plant
(7.1.5), guarantees the closed-loop signal boundedness and asymptotic output tracking:

limy oo (Ay(k) — Ay, (k)) = 0, for any initial conditions.

Proof: The main proof ideas are that (i) a well-defined feedback system structure
is ensured by the boundednesss of the controller parameters, (ii) a small feedback-

loop gain is ensured by the Iy properties of ©(k + 1) — ©(k), 0;(k + 1) — 6;(k) and

e(k)

bounded Ae(k + 1) — Ae(k). The properties (i) and (ii) guarantee the closed-loop

, and (iii) a smooth tracking error Ae(k) = Ay(k) — Ay,,(k) is ensured by a

signal boundedness and an [y tracking error Ae(k), and the last property (iii) leads
to a convergent tracking error Ae(k): limy oo (Ay(k) — Ay, (k)) = 0. The detailed
proof is given as follows.

For clarity of presentation of the proof , we omit the symbol “A” in the linearized

system model (7.1.5) and consider the simple version:
x(k+1) = Ax(k) + Bu(k) + fo,y(k) = Cz(x). (7.3.27)
Then, we have the input-output expression as

y(k) = Go(=)[u)(k) + C(=I — ) folu) (k). (7.3.28)
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where Go(z) = C(zf — A)7'B and uy(k) is a unit step response. To prove the
theorem, we need to express the closed-loop system in a feedback structure in terms
of the system input and output signals u(k) and y(k). For z(k) € R® and y(k) € RM,
based on state observation theory, under the condition that (A, C) is observable (it
can be extended to the case when (A, C) is detectable), we can express the system
(7.3.27) in a full-order state observer form:

x(k+1)=(A— LC)x(k) + Bu(k) + Ly(k) + fo, (7.3.29)

where L € R is chosen to make the eigenvalues of A — LC stable (inside the unit
circle). Note that a reduced-order state estimator can also be used. Hence, it can be

shown that
z(k) = (z[—A—l—LC)_lB[u](k)+(zI—A+LC)_1L[y](k)
+(z[—A+LC)_1f0[uS](/f)+em(k), (7.3.30)

where €,(k) € R™ is an exponentially decaying vector signal. In view of the state

feedback controller (7.3.1):
u(k) = K{ (k)z(k) + Ka(k)r(k) + K3(k), (7.3.31)

and ignoring the exponentially decaying term €,(k), we have the feedback controller

(7.3.31) in terms of u(k) and y(k) as
u(k) = U7 (k)wi(k) + 03 (k)ws(k) + Ko (k)r(k)
UL (k)wu, (k) + Ks(k), (7.3.32)

where U, (k) € RPM*M Wy (k) € RMM>M - and W, (k) € R™M | are some parameter

estimates, and

wu, (k) = Fu,(2)[us](k) (7.3.33)
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with F(Z) = A4(7) Fus(z) = AXEZ()Z)> Ad(z) = [[MaZIM>"'aZn_1IM]T> Aus(z) =

[1,2,...,2" 1T and A(z) being the monic characteristic polynomial of the stable
matrix A — LC.
Letting d,, be the maximum degree of the modified interactor matrix &, (z) of

G(z) = O(2I — A)~'B, we introduce fictitious filters H;(z), K;(z) defined from

(1 _ é)dm de

. 14
(- Ly

(z—1)Hy(2)=1-K;(2), Ki(2)= (7.3.34)

where a; > 0 is chosen to be sufficiently large but finite. Denoting h(k) as the
impulse response functions of the transfer functions H;(z), we have the [; operator
norm

[ ()]l = a; > 1. (7.3.35)

A,
a; — 1’
To show (7.3.35), we express Hy(z) as

11 (1-2)z (1)t
— — ([ 1+—5 =+ :

ay 2— o 2= (Z_i)dm_l
(1= Ly
1 1— (Z_lL)dm
—_ al
= — T — 1,
aq Z_a 1_ (1Z_ai)
al
(1 al )dmzdm
L Pl 1T
Wi der fi(k) = z- 2 A 0 g and it k) =
e consider f;(k) = [gﬂ],j— 1, .,dy — 1, and its sum g;(k) =

1 ay
Zfzo f;(7). We see that f;(k) >0, Vk >0, as f;(k) is the convolution of f;_;(k) and

1—L)z
Z‘l[(z_i"i)], which are nonnegative, j = 1,...,d,, —1. We also see that limy_,, g;(k)
ay

exists and is finite, as a; > 1. Hence, with G;(2) = Z[g;(k)] = Z5Fj(2) (as g;(k) is

z

z

the convolution of f;(k) and the unit step function u,(k) whose z-transform is —*7)
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and Fj(z) = Z[f;(k)] = TG “i)j , we have
ay ay
= . . 1
Zofj(T) = lim g;(k) =lim {1 -~ ) G;(2)
. 1 a1
= il_IHF’](Z) =1 é ST (7.3.36)

Then, we have that [y (-]l = Y307, L Y27, £5(r) = 2 for a) > 1.

From the plant model: y(k) = Go(z)[u](k), wi(k) in (7.3.33), Hi(z) and K;(z) in
(7.3.34), we obtain

F(2)Go'(2) [y] (k)=K;"(2)lwi—Hi(2)(z—1)[wi]] ()

4 F(2)G ()OI — A) 7 folus) (k). (7.3.37)

Let wy(k) = F(2)|ul(k) (where F(z) = Aa(2)y have a controllable realization Ay, By),
A(z)

that is,

2] (k) = (Ay + D (k) + Byu(k), (7.3.38)

where A; + [ is a stable matrix. From (7.3.32), (7.3.37), and (7.3.38), we have

wi(k) = Ki(2)F(2)Go' (2)[y](k) + Hi(2)[Arwn] (k)
+ Hl(z)Bl [\If{wl + \Ifg()F(z)[y] + KQT
+U] w,, + K] (k)

K (2)F(2)G5 (2)O (2] — A) ™ folu] (k). (7.3.39)

Since the filter H(z) satisfies (7.3.35) and ©,(k) is bounded, there exists a constant

aj > 0 such that

-1

Ti(z, k) = (I — Hi(2)(A1 + B1 YT (k))) (7.3.40)

is a stable and proper operator with a finite gain for any fixed a; > a?. For a finite

and fixed a; > af and a new signal (k) 2 %[y](k‘) where 0 < ag < 1 is arbitrary,



it follows from (7.3.39) that
wi(k) = Gi(z,-)[g](k) + bs(k),

where

Gi(z,k) = Ti(z k) (Ki(2)F(2)(2 + a0)Gy ' (2),' (2)

+ Hy(2) B3 (k) (2 + ao) F(2)&,' (2))
is stable and proper with a finite gain and

bs(k) = Ti(z,-) [Hi(2)Bi[Kor + U] w,, + Kj

—K1(2)F(2) Gy (2)C (2T = A) ™ folus]] (k)
is bounded. Consider the estimation error e(k) given in (7.3.19):
(R)=10, 03 o, .. O mar] " HU(R)E(R)eh).
From the definition of [0, 02 (k)na, ..., 0%1,(k)nu)T, we write

[0? eg(k‘)%, BRI efd(k)nM]T = @O(k)é(k)>
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(7.3.41)

(7.3.42)

(7.3.43)

(7.3.44)

(7.3.45)

where Og(k) is the estimate of ©f, a lower triangular matrix with zero diagonal

elements. Then, from (7.3.44), we have

é(k) = (I + ©0(k)) ™" (e(k) — W(k)E(K)).

From this equation, for §(k) = <& [y](k) defined above, we have

z+ao

o ) (eag) OO HONR)

(7.3.46)

(7.3.47)

From (7.3.20), we denote £(k) = [&1(k), ..., &m(R)]T, ©(k) = [01(k), ..., 00 (k)] with

fu(z) = 2" +ag, a2+ -+ a1z+ag. Then, &(k) = 0] (k)C(k)

— (6T (k),
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i=1,..., M, which, from the discrete-time swapping lemma [84], is expressed as
_ 2Tl bagztay L T _* w
(k) = S ol
2m=2 g, o 2 y
# I el 0 +
zZ+aq, -1 B T zdm—1 "
B e ik exlIG
L PR [w]] (k) (7.3.48)
* 70 |G~ D g .

where (2 —1)[07](k) = 0F (k+1)—0F (k),i =1,..., M. Finally, from (7.3.30), (7.3.41),
(7.3.47), and (7.3.48) and the boundedness of parameter estimates, we have

k-1 1
gkl < B1) et Va(r) <Z 6_“2(7%1)”?3(10)”)

+ jO(Tk:)O, - (7.3.49)

where z(k) = [|©(k+1) — O(k)|| + H;((IZ ||, for some By, a1, as > 0, Zo(k) is bounded.

Here we used the fact that ”51((]2)” , ”fl(( ) and ”:1((]2) are bounded. Using the discrete-time
version of Lemma 2.3 in [84] and from Lemma 2, we can show that y(k) is bounded,
so are u(k), y(k), and all signals in the closed-loop system. From the estimation
error €(k) in (7.3.44), (7.3.48), and Lemma 2, we have é(k) € Iy, which implies that
limy o €(k) = 0, where é(k) = h(z)&,(2)[e](k) Since &, (2) has a stable inverse, it
follows that limy_, e(k) = 0, where e(k) = y(k) — ym (k). \Y

Linearization approximation errors. The adaptive control design is devel-
oped based on the linearized system without considering linearization approximation
errors. The approximation errors could be compensated when they are small and
the approximate output tracking could be achieved in an average sense. However,
the exact asymptotic output tracking might not take place, even if the perturbation

signals are small, since the perturbations could lead to some residual errors, or even
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parameter drift or instability. To avoid parameter drift, robust modifications of the

adaptive laws, such as parameter projection, switch-c modification, can be used.

7.4 Application to the NASA GTM

In this section, the developed discrete-time adaptive control scheme will be applied
to the NASA generic transport model (GTM) to assess its effectiveness for control of
the nonlinear continuous-time aircraft flight system with structural damage. Before
applying the developed adaptive damage compensation scheme, we first investigate
the invariance conditions (A3) and (A4) based on the generic aircraft system models
before and after damage occurs, and then the assumptions (Al) and (A2) can be
verified based on the numerical values from the GTM.

An aircraft model with structural damage. Consider the aircraft model
(2.1.1)—(2.1.9) with 0f;,7 = 1,2,...,6, characterizing the structural variations under
damage, for which the state vector signal is x = [uy, Wy, Gb, 0, Vs, 75, Db, @, %]7. In this
simulation study, we choose # and v as two output signals, such that the output

vector signal is y=Cz=[0,v]|T with
c_[G]_[ooo0 10
| Cy | |OO0OO0O0O0

and only manipulate the elevator d. and the rudder d,., while set the other system

, (7.4.1)

o O
o O
o O
)

input signals as the constant operating point values, such that the control input vector
signal is u = [uy, us)T = [d.,d,]T. Then the aircraft model used in this simulation
study can be expressed as

= f(z)+ Y gi@)u,y = Ca = [l (2), ha(z)]". (7.4.2)

i=1
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7.4.1 Invariance of Infinite Zero Structure of the Aircraft
System under Structural Damage

For the aircraft model (7.4.2) before and after damage occurs, from the aircraft system

equations (2.1.1)—(2.1.9) and the chosen output matrix C' in (7.4.1), we obtain that

fori=1,2,and j = 1,2, and

Clﬁb 91(%) 01ﬁ|x092($0)
- 510 5 74.4
@)= | ¥ [ogiwo) Co]segalo) (7.4.4)

is non-singular. That is the relative degree of (7.4.2) is {p1, p2} = {2,2} before and

after damage occurs.

Invariance of interactor matrix. Since the relative degree of the nonlinear
aircraft system is {p1, p2} = {2,2}, from Corollary 1, for a small sampling interval
T, the linearized discrete-time aircraft model (7.1.5) has the same interactor matrix:

Em(z) = diag{z+a1, z4as}, with |a;| < 1 and |as| < 1, before and after damage.

Invariance of high frequency gain matrix. From the proof of Corollary 1
in the Appendix, we obtain the high frequency gain matrix (7.2.35) before and after
damage occurs as

(7.4.5)

Kp ~ |:T72 O:| |:ClAchl ClAch2

0 T; CoAcBa CoAcBea |’
where A, £ %|xo and [B.1, Be] = B. = [g1(20), g2(20)] are matrices of the linearized
continuous-time system by linearizing the aircraft system (7.4.2) at the operating
point (zg,0). For the linearized continuous-time aircraft system (A, B., (), it has
been shown in [57] that, when operating at a wings-level flight condition, signs of

leading principal minors of the high frequency gain matrix:

o ClAchl ClAch2
Kpc_ C12140301 C2ACBC2 ’ (746)
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are invariant before and after damage occurs. Hence, from (7.4.5), we conclude that
for the linearized discrete-time aircraft model (7.1.5), signs of leading principal minors
of K, are invariant before and after damage occurs, when operating at the wings-level

flight condition.

7.4.2 Simulation Study for the NASA GTM

The GTM is a 5.5% dynamically scaled twin-turbine powered test aircraft used to test
flight research control laws in adverse flight conditions such as upsets, damage, and
failures [64]. We use the high-fidelity Matlab Simulink model of the GTM developed
by the NASA, which contains actuator dynamics, sensor dynamics, aerodynamics,
etc., to test the developed control design. The nonlinear GTM simulation will offer
a realistic representation of the aircraft and simulation results can provide a credible
assessment of the developed design.

Damage scenarios. The GTM simulation model contains several damage sce-

narios. In this study, we consider two damage conditions:

(i) loss of outboard left wing tip (approximately 25% semi-span of the left wing);
(ii) loss of entire left stabilizer.

Design conditions. The invariance assumptions (A3) and (A4) for the infinite
zero structure have been verified by the generic structure study in Section 7.4.1. The
assumptions (A1) and (A2) can be verified by the numerical values of the system

parameters obtained from the GTM Simulink model.

Digital control of GTM. The block diagram of the digital control system frame-
work is shown in Fig. 7.1. The operating point (z¢,uo) is chosen as a wings-level
flight condition obtained by trimming the nominal GTM with the equivalent airspeed

as 90 knots. The output signals are chosen as the pitch angle # and the yaw angle v:
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y(kT) = [0(kT),»(kT)]", and the control inputs are chosen as elevator d. and rud-
der d,: u(kT) = [d.(kT),d,(kT)]". From the analysis in Section 7.4.1, we have the
interactor matrix is invariant before and after damage occurs with a small sampling
interval T, which is &,,(z) = diag{z + a1, 2 + a2} with |a;| < 1 and |as| < 1. Hence,

we choose the reference system as

Win(2) = &1(2) = diag{1/z,1/z}, (7.4.7)

for the simulation study.

By applying the discrete-time control law u(k) = Au(k) + ug, where Au(k) is the
adaptive controller (7.3.1) with the adaptive laws (7.3.22)—(7.3.24), to the continuous-
time GTM via the ZOHs (illustrated in Fig. 7.1), we can obtain the desired system
performance of the nonlinear GTM around the chosen operating point (zg, ug), before

and after damage occurs.

Simulation results. In addition to show the output signal y(kT") = Ay(kT') +
Cxzo = [0(KT)+0y, 9 (kT) 4], another state signal-roll angle ¢(kT) = Ad(kT)+ ¢y,
and the control surfaces d.(kT) = Ad.(kT) + deo and d,.(kT) = Ad,.(kT) + d,, will
be illustrated to verify that the aircraft can execute the maneuvers around the chosen
operating point (g, ug). We consider two damage cases: the loss of the outboard left

wing-tip and the loss of the entire left stabilizer.

Case I. We choose the sampling interval 7" = 0.02 seconds and the reference input
as r(kT) = [47/180sin(0.1kT), —87 /180 sin(0.15kT)]". The wing-tip damage occurs
at 30 seconds. From Fig. 7.2, it can be seen that the output signals (solid)—pitch
angle 0(kT') and yaw angle (kT track the reference output signals (dotted) 6,,(kT")
and vy, (kT"), and the GTM state signal-roll angle ¢(kT") is bounded before and after
damage occurs. Moreover, the controller positions—d.(kT') and d,.(kT') are within the

GTM limits as in Fig. 7.3.



152

O NN B~ O
\

—pitch 8
- - reference em

| .
10 20 30 40 50 60
Pitch angle 6 (deg) and reference em (deg) vs. time (sec)

100

90

\ \ \ \
—yawy
— — reference v

10 20 30 40 50 60
Yaw angle Y (deg) and reference 8 (deg) vs. time (sec)

\
10 20 30 40 50 60
Roll angle ¢ (deg) vs. time (sec)

Figure 7.2: pitch §(kT), yaw ¥ (kT), and roll ¢(kT) (Case I).
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Figure 7.3: elevator d.(kT') and rudder d,(kT") (Case I).

Case II. To further demonstrate the effectiveness of the developed discrete-time
control scheme, damage is chosen as the loss of the entire left stabilizer, which occurs
at 20 seconds. In the simulation, we choose the sampling interval T' = 0.05 seconds
and the reference input as r(kT) = [47/180,67/180]7. Fig. 7.4 shows the GTM
output signals §(kT') and 1 (kT'), which track the desired reference signals, and the
GTM state signal ¢(kT"), which is bounded within a reasonable boundary. The control

surface positions d.(k7T") and d,.(kT) are shown in Fig. 7.5.

Remark 7.4.1. During the transient period after damage occurs, the adaptive con-
troller automatically adjusts its parameters to accommodate the unknown system dy-
namics variations due to damage. So the transient responses may highly depend on
variations of system model dynamics caused by structural damage. For the simulation
studies of Case I and Case I, the sampling time T is small (T = 0.02sec for Case I

and T = 0.05sec for Case 11), which leads to small numerical values for parameters in
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Figure 7.4: pitch 0(kT), yaw ¢ (kT'), and roll ¢(kT) (Case II).
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Figure 7.5: elevator d.(kT") and rudder d,(kT") (Case II).

A and B of the linearized discretized aircraft model. It follows that parametric vari-
ations of the linearized discretized aircraft model before and after damage occurs are
small in the sense of numerical values, so that the transient responses after damage

are small in Case I and Case I1. O

Summary

In this chapter, a digital control system framework for control of continuous-time
nonlinear systems with possible structural damage was constructed, with an aircraft
flight control application to the NASA GTM. In this framework, a linearization-based
discrete-time multivariable model reference adaptive control (MRAC) scheme is ap-
plied to compensate the parameter and damage uncertainties. For control design,
we obtained the discretized nonlinear system by using the Taylor series expansion,

and then linearized the discrete-time nonlinear model at a given operating point to
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obtain a linearized discrete-time system. The infinite zero structure of the linearized
discrete-time system model of the aircraft system is shown to be invariant, which en-
sures that the plant-model matching condition holds before and after damage occurs.
With the achievable plant-model matching condition, the developed discrete-time
MRAC design makes the signals of the closed-loop system bounded and the output
signals track reference signals before and after damage occurs. Simulation results of
the proposed digital control design framework for the nonlinear NASA generic trans-
port model (GTM) have shown the desired system performance, which demonstrates
that the linearization-based discrete-time adaptive control scheme is effective for the

continuous-time nonlinear aircraft system around an operating point.



Chapter 8

Adaptive Output Feedback
Actuator Nonlinearity
Compensation for MIMO Systems

This chapter develops a framework of adaptive compensation of actuator nonlineari-
ties with unknown parameters, for output feedback control of unknown MIMO linear
time-invariant dynamic systems. A new controller parametrization is derived to deal
with bilinear parameters from the actuator nonlinearity parameters and the dynamic
system parameters, which, based on the LDU decomposition of the system high fre-
quency gain matrix, is capable of overcoming the difficulty caused by a nondiagonal
high frequency gain matrix and a special actuator nonlinearity parameter structure.
The adaptive actuator nonlinearity compensation control scheme is a model refer-
ence adaptive control based design, employing an adaptive output feedback control
law combined with an adaptive actuator nonlinearity inverse, to deal with parameter
uncertainties in the system dynamics and actuator nonlinearities. Simulation results

show the desired adaptive control system performance.
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8.1 Problem Statement

Consider a multi-input multi-output control system
x(t) = Ax(t) + Bu(t),u(t) = N(v(t)),y(t) = Cx(t), (8.1.1)

with A € R, B € R™M and C € RM*" being unknown and constant parameter
matrices, and z(t) € R", v(t) € RM and y(t) € RM being the system state, control
and output vector signals, where N (-) is the actuator nonlinearity and the input vector
signal u(t) € RM is not accessible for control and measurement. Such a system can

be expressed in the input-output form:

y(t) = G(s)[u](t), u(t) = N(v(t)), (8.1.2)

where G(s) is an M x M strictly proper rational matrix G(s) = C(sI — A)"'B and
u(t) = [u(t),...,up(B)]F and v(t) = [vi(t),...,var(t)]T are the output and input of

the multivariable actuator nonlinearity N(-) = [Ny(+),..., Na(+)]%, that is,
wi(t) = Ni(vi(t)), 1 =1,2,..., M, (8.1.3)

for some nonlinear functions V;(-) such as deadzone, backlash or hysteresis.

Control objective. The control objective is to generate the control signals v;(t)
to cancel the effects of the nonlinearities V;(-), using adaptive inverses v; = NI i(uai)
of the nonlinear characteristics N;(+), 7 = 1,..., M, to be combined with a commonly
used multivariable control scheme which generates the feedback control signals ug; (%)
designed for unknown G(s), to ensure all signals in the closed-loop system are bounded

and the system output y(t) tracks the reference signal y,,(t):

Ym(t) = Win(s)[r](t), Win(s) = &' (s), (8.1.4)

where r(t) is a chosen reference input signal.
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Assumptions. To proceed the adaptive control design, we make the following
assumptions for the unknown transfer matrix G(s) = C(sl — A)™'B: (A1) (4, B) is
controllable and (A, C') is observable, (A2) G(s) has full rank and a known modified
interactor matrix &, (s), (A3) all zeros of G(s) are stable, (A4) the observability index
v (or its upper bound) of G(s) is known, and (A5) all leading principal minors of the

high frequency gain matrix K, are nonzero and their signs are known.

Actuator nonlinearity model and its inverse model. Consider the cases

when N;(-) can be parameterized as

wi(t) = Ni(vi(t)) = —Onwi,(t) +a; (t) (8.1.5)
for some unknown parameter vectors 63, € R, n; > 1, ¢ = 1,..., M, and some

unknown regressor vector signals wi,;(f) € R™ and scalar signals af(t). Such a
parametrization has been established for N;(-) being a dead-zone, backlash, hysteresis,
or other characteristics [83], [84]. To cancel the effects of such actuator nonlinearities,

we use a multivariable nonlinearity inverse

o(t) = NT(ug(t)), (8.1.6)
where ug(t) = [uagi(t), ..., ua(t)]? is a design vector signal from a feedback control
law, that is,

vit) = NLi(ug(t)), i=1,..., M. (8.1.7)

Then, each N1 i(+) can be parametrized as
ugi(t) = =08, (Owni(t) + a;(t), i=1,..., M, (8.1.8)

where fy; € R™ is an estimate of 6%, and wy;(t) € R™ and a,(t) are some known

signals, as in the case of an inverse for a dead-zone, backlash, or hysteresis [83], [84].
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The uncertainties in N;(+) cause a control error
wi(t) — ugi(t) = 0%, (Owni(t) + dni(t),i=1,..., M (8.1.9)
where 9~NZ- = On; — 03, and the unparameterized error is
dyi(t) = Ox; (wnilt) — wii(t)) + ai (t) — ai(?), (8.1.10)

which should satisfy that conditions that dy;(t) is bounded, ¢ > 0, and dy;(t) = 0,
t > to, if Oni(t) = O%;, t > to, and N\IZ() is correctly initialized: dy;(to) = 0. In the
vector form, the control error is

u(t) — ug(t) = OX (Hwn (t) + dy(t), (8.1.11)
where wy(t) = [wh, (1), ..., wky (®)]T and
0L (t) = diag{0%,(t),05,(t), ..., 0%, ()} (8.1.12)

Synthetic jet actuator model and its inverse. A synthetic jet actuator is a
zero-net mass flux device that produces non-zero fluid momentum across an orifice. At
certain operation condition, the synthetic jet actuator can be modeled by a nonlinear

function [18]:
o7
v(t)

where u(t) is the equivalent virtual deflection on the airfoil, v(t) = A2 (t) with A,,(t)

u(t) = N(v(t)) = 05 — = -0 wn(t), (8.1.13)

being the input peak-to-peak voltage amplitude of the synthetic jet, 87 and 05 are

some unknown constant parameters, and 0% = [0F,0;]7 and wy(t) = [Tlt)’ —1)7. In

practice, there are opposite panels to produce negative commanded control input
signal v(t). From (8.1.13), to cancel the effects of the unknown nonlinearity, we use

the adaptively updated local inverse:

6, (t)

o(t) = Nl(ualt) = g

(8.1.14)
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where 601 (t) and () are the estimates of 67 and 05 and uy(t) is the design signal from

the feedback control law, such that 8 —uy > 0. Then, the synthetic jet actuator non-

linearity inverse (8.1.14) can be parameterized as uq(t) = 02(t) — 6;(%) = 0% (H)wn (1)
with O (£)=1[0:(), 02(t)]" and wn(t) = [—5,1]7.

Since the parameters 0}, of the actuator nonlinearities N;(-) are unknown in our
adaptive control problems, we need to design adaptive schemes to update their esti-
mates fy; for implementing the adaptive inverses NI i(+), to be combined with feed-

back control laws for the case when G(s) is unknown.

Key technical issues. A key technical issue in adaptive control of multivariable
systems with uncertain actuator nonlinearities is parametrization of the bilinear pa-
rameters in the system high frequency gain matrix K, and the actuator nonlinearity
parameter vectors 0%,, i =1,2,..., M. The technical difficulty was illustrated in [88]
for the simple case when y(t) = G(s)[u](t) with G(s) = W,,(s)K,,, where W, (s) is
known and stable and K, is nonsingular and unknown. Without special treatments,
adaptive laws may not be able to generate ©(t) to have the required special form
(8.1.12) in which all of the off block-diagonal elements of ©x need to be zero and
should not be updated, for the implementation of individual adaptive inverses NI (),
t=1,2,..., M. In this chapter, we propose to use the LDU decomposition of K, as

in (2.3.3) to solve this issue.

8.2 Adaptive Actuator Nonlinearity Compensation

In this section we develop a general framework for the design of adaptive actuator
nonlinearity compensation control schemes which employ an adaptive inverse NI (+)
to handle the actuator nonlinearity N(-) and an adaptive feedback control law ug to

handle G(s). We will first use a plant-model matching condition to derive an error
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signal identity, based on which the output feedback adaptive controller structure will

be developed.

Plant-model matching condition. For the system transfer matrix G(s) =

C(DI — A)™' B, there exist constant parameters O3, 0%, ©%,, and O}, such that [84]

Iy — O7" F(s) — (03 F(s) + ©3)G(s)

= O5&n(s)G(s), ©5=K,", (8.2.1)

with F (s):’?\o((s‘;), where A(s) is a monic and stable polynomial of degree v—1 and
Ao(s)=1[Ins, - .., 8" 21y|T with v being the observability index.

Tracking error identity. Operating both sides of (8.2.1) on u(t) and from

y(t) = G(s)[ul(t), we obtain
u(t) = 07" wi=03" we-O5ny(t) = K, & (s) ] (1), (8.2.2)

where wy(t) = F(s)[u|(t) and wy = F(s)[y](t). Hence, from the reference system

(8.1.4) and the equation (8.2.2), we have the tracking error e(t) = y(t) — ym(t) as
e(t) =W () K, [u—07" w1—03" wo—O30y—03%r] (¢). (8.2.3)
8.2.1 Adaptive Controller Parametrization

For the system (8.1.2) with actuator nonlinearities u(t) = N(v(t)), we will employ

the nonlinearity inverse v(t) = NI (uq(t)) with NI () parameterized as (8.1.8):
ug(t) = O8 (Hwn(t) + an(t), (8.2.4)

to cancel the effect of the actuator nonlinearities, where the design commanded signal
uq(t) will be developed based on the output feedback adaptive control design frame-
work. Next, we will present a new parametrization of the controller u,(t) based on

the tracking error equation (8.2.3) with the LDU decomposition of K.
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Design based on LDU decomposition. Substituting the LDU decomposition
(2.3.3) of K, in (8.2.3), we obtain

e =Wy () LD* [u—®fu— 3wy — 5wy — By —Pir] (1), (8.2.5)
where & = — U, & = U}, for i = 1,2,20,3. In view of (8.1.11), we have
u(t) = ug(t) + O% (Hwy (t) + dy (), (8.2.6)
and then from (8.2.4), u(t) can also be expressed as
u(t) = =0 wy(t) +an(t) + dn(t). (8.2.7)

Replacing the first u(¢) in the right-hand side of (8.2.5) by (8.2.6) and the second and
third u(t) (in wy(t)) with (8.2.7), we obtain

e=W,, (s)LD*[udJréJTVwNMN—@g(—@;VT wr+an-+dy)

—01TF (s) O wntan+d Py w05 y—P3r(t). (8.2.8)

With @§ in the special structure: 5 = {¢;;} where ¢;; = 0 fori =1,2,..., M, and

7 <1, we have

Of(-ON w(t)+an)=[d5] wor, - - -, Pypsawonr—1, 0], (8.2.9)
where the new parameter vectors are ¢, = [—¢T,0%5, - - -, =0 10800, Pray - -+ Diasl
Pop = [_@39}% S _QS;MQ?VTM’ P35+ gb;M]T’ ce Pprr1 = [_¢?W—2M9?VTM> ¢?V[—2M]T>
and the new regressor signals are wpi(t) = [why(t), ..., wip(t),a2(t), ..., an(t)]”,
wea(t) = [whs(t), ..., wky @), as(t), ..., an®)]F, ..., worr—1(t) = [why (1), an(t)]F.

Similarly but in a new framework, we have

T F(s) -0 wy+an](t) =i wy(t) + D5t wao(t), (8.2.10)
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where wy(t) = F(s)an](t), &5, = @i, and, for ®;7 = [T &7 ... &37 ] with

1. € RM*M | the new parameter matrix @37 = ®;7 ® ©% (with ® denoting the Kro-

necker product) and the new regressor vector wy(t) are ®;7=—[®70%L ... &1L  017]
and wy(t) = fx’((:)) [wy](t) with Ag = [L,, 8Ly, - - -, 8" 21,,]" and I,,, being the ngy x ng

identity matrix for ng = S, n;. Then, from (8.2.9) and (8.2.10), the error equation

(8.2.8) can be parameterized as
6(t) = Wm(S)LD* ud+é]1:/WN_[¢;{w917 SRE) ¢;L—lweﬂﬂ7 O]T

— O w—Pwa — 5 wo— P y—P5r+dy] (1), (8.2.11)

where dy;(t) = (I — @ — O3 F(s))[dy](2).
Adaptive controller structure of uy(t). Based on the parameterized error

equation (8.2.11), we propose to use the adaptive controller

ug = [$p(Hwor(t), ., Boara (worsa (t), 0]+ (t)ws(t)

+ Pao(t)wao (P, ()wa(E)HHPao(t)y (EHPs(t)r (L), (8.2.12)

where ¢g;(t), i = 1,...,M — 1, ®;(t), j = 2,20,3,4,40, are the estimates of ¢,

i=1,...,M—1, &7, j =2,20,3,4,40, to be updated from adaptive laws.
8.2.2 Parameter Adaption Scheme

Applying the controller u4(t) as in (8.2.12) to (8.2.11), we obtain

e(t) = Wn(s) LD SFwn+dhwn, - Ghaaworss, O]

—l—éZW4+(i)4QW4Q+(i)gWQ+é20y+égr+de (t), (8213)

in which dy f(t) represents the error caused by the unparameterizable uncertainties of

the actuator nonlinearity N(-), and all other parts are in terms of their corresponding
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parameter errors, in a desired linear parametrization form. Introducing ©} = L™! —

I'={0;} with 0, =0fori=1,...,M and j > i, we express (8.2.13) as

8) )+ 90§m s)el(t)

)T xa(t)
+D*dy (1), (8.2.14)
) xu(t)
where, for w(t) = wio(t), wg @), 7" (O], x1(t) = [win(t), wg (1), W (1],
Xa(t) = [wha(t), Wez() T(t)] e XM() = [win (@), W (®)]", and (¢(t) — ¢;)",
i=1,2..., M, are the (row) parameter error vectors corresponding to x;(¢), that is,

G1(t) = [On1, Do, (@1, Pag, L, Doy, P3]4]7,

Ga(t) = [Ong, Dpns [P1, Pag, L, Bog, P3o]”,

om(t) = [0k, [PF, T, Pag, P3]]”, (8.2.15)

where [(I)Z (t), (I)40 (t), (I)g (t), (1)20 (t), (I)g (t)]l is the 7th row of [(I)Z, (I)40 (t), (I)g, (1)20, @3]
Consider the modified interactor matrix &,,(s) givenin (2.3.1). Fori =1,2,..., M

Y

choose f;(s) (with fi(s) = di(s)) as a stable polynomial whose degree is equal to

the maximum of the degrees of the polynomials d;(s) and h}j(s), j = 1,2,...,1,
k=2..,4,1=1,...k—1, and contains d;(s) as a factor, introduce the filters
hi(s) = %, i=1,2,..., M, and H(s) = diag{hi(s),...,hap(s)}, and define

e(t) = H(s)em(s)ly — yml(t) = [E1(t), ..., ens(t)]" (8.2.16)

for y(t) = [y1(1), ..., yn(®)]F and ¥ (t) = (Y1 (1), ..., yma (t)]. For a discrete-time
design, the polynomials f;(s) can be simply chosen as f;(s) = D™ for a specified
degree n;, 1 =1,2,..., M.
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Defining the auxiliary error signals

ee(t) = En(s)y—yml(t) = [eart), ..., eem(t)]", (8.2.17)
eoi(t) = leci(t),...,eq1(t)’, i=2,3,..., M, (8.2.18)
ni(t) = hi(s)leg)(t) € R i =2,3,..., M, (8.2.19)

operating both sides of (8.2.14) by H(s), with dy = H(s)[D*dn/](t) = [dn1, - - -, dnu]?,
we have
1 = dihi(s)[(o1—7) xal(t) + dnn,

éx+03m2 = dyha(s)[(d2 — 63)" x2(t) + duve,

exrtyi e = dihar (s) (o) xar) (E+das, (8.2.20)

where 07 = [0%,...,05 |7, for i = 2,..., M. Introduce the auxiliary signals ¢;(t)=

y Yii—1
hi(s)[x:](t) and &(t)=¢F ()¢;(t) — hi(s)[oF xi](t), let di(t) be the estimate of df, i =
1,..., M, 0;(t) be the estimate of 0, i = 2,..., M, and define the estimation errors
er(t) = et) +di(t)&i(t),

e(t) = eat) + 02(t)na(t) + da(t)Ea(2),

exr(t) = en(t) + 04 (t)nar(t) + dar (t)Enr(2). (8.2.21)
Then, from (8.2.20)—(8.2.21), we have the error model
er = di(¢r — ¢1) ¢+ (di — d})é + dia,
€2 = (02— 03) 1+ d3(d2 — 63)" Cot (d2 — d3)Ea+dno,
(8.2.22)

€M = (HM_H}(\/[)TUM‘l’d}k\/[ (¢M_¢R/[)TCM+(CZM_CZ?V[)§M+JNM-
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In this model, the parameters d;(t), i = 1,2, ..., M, are the estimates (to be updated
from some adaptive laws) of d;, ¢ = 1,2,..., M, which are the diagonal elements of
the matrix D* in the LDU decomposition (2.3.3) of the high frequency gain matrix K,
of the system transfer matrix G(s). The signals dy;(t), i = 1,2,..., M, are bounded

disturbances due to the unparametrizable uncertainties of the actuator nonlinearity.

Adaptive laws. Based on the error model (8.2.22), we choose the adaptive laws

; _ TPaea(®)m() -

ez(t) = T({j)+f6i,l_2"“’M’ (8223)
; sign[d;|Tgiei i -
¢z(t) m2(t) —}—fm, Z—]_,. .. ,M, (8224)
; vi€i(t)€i(t) -

dl(t) —T(t)—i—fdi, ’L—l, ey M, (8225)

where m(t) = (1+ Y%, ¢7¢ + YoM, €2 + Y2, 0fn) Y2, and Ty, = T > 0, i =
2,3,...,M, I'y; = F;fi >0,71=1,2,...,M, and v > 0,7 = 1,2,..., M. The
functions fy;(t), fei(t) and fy;(t), i = 1,2,..., M, are robustifying design signals [44],
for robustness of the adaptive laws with respect to the bounded disturbances dy;(t),
1=1,2,..., M.

It is crucial for the parameter estimates Oy;(t) of the actuator nonlinearity pa-
rameters 67, to stay in their required intervals for the implementation of their desired
(nonsingular, that is, no division by zero) adaptive inverses whose parameters have

certain bounds to reflect some physical meaning.

The combined parameter projection and switching-c modification. A
switching-o modification [42] f(t) for the estimate () of a parameter vector ¢* has
the desired properties: 7 (H)T~'f(£) < 0 and and limyy), 00 7 (H)T 1 f(t) = o0,
which are crucial for stability of the adaptive laws. A parameter projection f(t) [84]
satisfies: 17 (t)[ = f(¢) < 0 too, and also ensure the components of ¢(t) stay in the

bounds of *.
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A parameter projection design f(¢) is applied to the portion fy;(t) of fs(t) =

[fﬁl(t),fgz(t)]T in (8.2.24), corresponding to Oy;(t) in ¢;(t) _2 [07.(1), ¢s()]T
(8.2.15), to ensure that the components of 0y;(t) stay in their desired intervals.

To be combined with parameter projection, a switching-o modification f(t) is

used to fy;(t) for 6; in (8.2.23), to fes(t) in fui(t) = [f2:(t), fL(t)]" for ¢i(t) of ¢4(t) =
[07.(1), o7 (#)]T in (8.2.24), and to fy(t) for d(t) in (8.2.25).

8.2.3 Stability

Consider the positive definite function

M
V(0;, i, dy)= ZHTFQZIGZ—FZ\d*\(ﬁTleqbﬂrZ% L2
=2 i=1 i=1

where 0;(t), ¢;(t) and d;(t) are parameter errors, and its time-derivative of V'
2

: L) = (A —a(1)? | o= Bilt)
Vs _ZmQt _Z m?(t) 2 m3(t)

=1 =1 =1

It follows that all parameter estimates are bounded (either from parameter projection
bounding or from the switching-o property: lim,)j,—o YT (1 f(t) = 00). From

the last inequality, it follows that

to M o t 2
? Ei (t) ’ sz t
E E 2.2

for some constants a;>0, b;>0, and any to>t;>0. From (8.2.26) and with fp;, fs and

fai in (8.2.23)—(8.2.25), we can establish:

Lemma 8.2.1. The adaptive laws (8.2.23)—(8.2.25) ensure that all parameter esti-

mates are bounded, all components of On;(t) are within desired regions, and jg(g),

16: D112, | 6:(D)|I2, and d2(t), are bounded by fy;g)’ in the mean sense (8.2.26).

With these desired adaptive law properties, the closed-loop system is well-defined

(based on the boundedness of adaptive parameter estimates), a feedback structure
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can be derived whose loop gain is proportional to :n((?), 0:(t), &;(t) and d;(t), and
a small-gain analysis can be carried out to establish the desired closed-loop control

system properties:

Theorem 8.2.1. The adaptive control scheme consisting of an adaptive actuator
nonlinearity inverse (8.1.6) and an adaptive output feedback control law (8.2.12) up-
dated from the adaptive laws (8.2.23)-(8.2.25), when applied to the system (8.1.1)
with some specific actuator nonlinearities u(t) = N(v(t)), ensures that all closed-loop
system signals are bounded and the tracking error e(t) = y(t) — ym(t) also satisfies

(8.2.26) similarly.

Both switching-o and parameter projection modifications have the desired feature
that they preserve the asymptotic output tracking property when the system distur-
bances and unmodeled dynamics disappear from the controlled system. Therefore,

we also have

Corollary 8.2.1. If, in addition, the actuator nonlinearity parametrization error
dn(t) disappears after t > Ty for some finite Ty > 0, or dy(t) € L?, then the tracking

error e(t) = y(t) — ym(t) has the desired properties: e(t) € L* and lim;_ ;o e(t) = 0.

In next section, we will study a MIMO System application: adaptive control of
aircraft flight control systems with synthetic jet actuators whose nonlinear character-
istics are to be compensated by adaptive inverses, and present simulation results to

show the desired performance of adaptive actuator nonlinearity compensation.
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8.3 Aircraft Flight Control Simulation Study

The system we apply our adaptive control design to is a lateral-directional of the

Innovative Control Effector (ICE) aircraft [75] with synthetic jet actuators:
&(t) = Az(t) + Bu(t), y(t) = Cx(t), (8.3.1)

where the state vector signal is z(t) = [vy(), ps(t), 76(t), &(¢)]T with v,(¢) being the
body-axis lateral-directional velocity whose unit is ft/sec, py(t) and 7,(t) being the
roll rate and yaw rate whose units are rad/sec, and ¢(t) being the roll angle whose
unit is rad, the control input signal is u(t) = [uy(t), uz(t)]* with u;(¢) and us(t) being
the virtual deflections generated by upper leading-edge and wing-tip synthetic jet
actuators whose units are degree, and the output vector signal is chosen as y(t) =

[vy(t), p(t)]T. As described in Section 2.2, the nonlinearity of the synthetic jet actuator

u;(t) = N(v;(t)) can be characterized as u;(t) = N;(05;v;(t)) = 0% — vf%), fori=1,2.
From the structure knowledge of the parameters A, B, and C', we can obtain the
interactor matrix as &,,(s) = diag{(s+1)?, (s +1)?} and the signs of leading principal
minors of K, as sign(A;) = 1,sign(Ay) = —1. Hence, the reference system is chosen
as Wy(s) = &.1(s) = diag{1/(s + 1)%,1/(s + 1)*}. We then apply the adaptive
output feedback inverse compensation control law u,(t) as in (8.2.12) to generate the

control input v(t) = m(ud(t)) as in (8.1.14), to make the plant output y(¢) track the

reference output y,,(t) = W, (s)[r](¢).

Simulation Results For the simulation (i): constant reference input r(t) =
[6(ft/s), o= (rad)]”, the response of output signal y(t), commanded input signal v(t),
plant input signal u(t), and feedback control signal w,(t) is shown in Fig. 8.1-
Fig. 8.3. From Fig. 8.1, we can see that the output signal y(t) tracks the ref-

erence signal y,,(t). Since the parameters of the adaptive inverse NI (ug(t)) may
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not converge to the nominal values, the plant input signal u(¢) may not follow the
feedback control signal wu4(t), as illustrated in Fig. 8.3. The effectiveness of the
developed adaptive actuator nonlinearity compensation scheme is further verified
by the simulation (ii) as shown in Fig. 8.4-Fig. 8.6, where the reference input is

r(t) = [10+4 sin(Z&t)(ft/s), 2 sin( £ t) (rad))” .

—lateral velocity A (ft/s)

~_ _reference Vom (ft/s)

| | | | |
15 20 25 30 35 40 45 50
Output vy (ft/s) and reference Vom (ft/s) vs. time (sec)

—roll angle ¢ (deg) ||
- -reference @ (deg) |

,
2r :
,

0 / | | | | | | | | |
0 5 10 15 20 25 30 35 40 45 50

Output @ (deg) and reference o, (deg) vs. time (sec)

Figure 8.1: Aircraft outputs (solid) vs. reference outputs (dotted) (case i)

Summary

Adaptive compensation of uncertain actuator nonlinearities in multi-input multi-
output systems has certain unique technical issues caused by bilinear parameters
resulted from the actuator nonlinearities and system dynamics. In this chapter we
have solved some such key issues with output feedback design, using a new controller
parametrization to deal with the uncertain parameters of the system high frequency

gain matrix and the special structure of the actuator nonlinearity parametrization.
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Figure 8.3: Plant input signal u(¢) and feedback control signal u,(t) (case i)
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Figure 8.5: Commanded control input signal v(t) (case ii)
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Figure 8.6: Plant input signal u(t) and feedback control signal u,(t) (case ii)

Such a new controller structure is based on the LDU decomposition of the high fre-
quency gain matrix, leading to a linear parametrization of the error system. An
expanded estimation error signal is introduced for stable adaptive laws updating the
controller and inverse parameters. A combined switching-oc and parameter projec-
tion modification is employed for parameter adaptation for both the robustness with
respect to actuator nonlinearity parametrization errors and the nonsingularity of the
adaptive inverse design. Such an adaptive compensation scheme has desired system
stability and tracking properties as stated in the chapter and verified by simulation
results from an aircraft flight control application example in which synthetic jet ac-

tuator nonlinearities are compensated by their adaptive inverses.



Chapter 9

Adaptive State Feedback
Disturbance Rejection for MIMO
Linear Time-Invariant Systems

In this chapter, we will study the adaptive disturbance rejection problem for MIMO
linear time-invariant (LTT) systems by using state feedback control. A nominal state
feedback control law with a parameterizable signal for disturbance cancelation will
be derived. Then, the state feedback adaptive control scheme will be developed
based on the nominal state feedback controller for LTI systems with unknown system

parameters and uncertain disturbances.

9.1 Problem Statement

Consider a MIMO LTT system with uncertain disturbances:

(t) = Ax(t)+ Bu(t) + Byd(t),
y(t) = Cuz(t), (9.1.1)
where z(t) € R™, y(t) € RM, and u(t) € RM are state, output, and control input

vector signals, d(t) € RY represents the uncertain actuation disturbances, and A €

Rv™ B e RvM C e RM*" and By € R™Y are some unknown constant matrices.
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For the study of adaptive disturbance rejection, elements of the disturbance signal

d(t) = [di(t), da(t),...,d,(t)]" are characterized as

P;
d;(t) = djo+ > dw;n(t), (9.1.2)
k=1
with unknown constants djo, dj; and known signals wj,(t), j = 1,2,...,q, k =

1, 2, ce ey Py
The objective is to design a state feedback control law u(t) to cancel the effect of
the disturbance d(t) on the output signal y(¢) and make the output signal y(t) track

a given reference signal y,,(t):

Ym(t) = Wa($)[r](8), Winls) = &, (s), (9.1.3)

where r(t) is a bounded reference input signal.

To proceed the adaptive control design, we make the following assumptions: (Al)
the system input-output transfer matrix Gy(s) = C(sI — A)™'B has full rank, all
zeros of Gy(s) have negative real parts; (A2) the modified left interactor matrix &, (s)
of Gy(s) is known; (A3) all leading principal minors A;, ¢ = 1,2,..., M of the high
frequency gain matrix K, of Gy(s) are nonzero and their signs are known; (A4)
(A, B) is controllable and (A, C) is observable; (A5) the transfer matrix Z; ' (s) Zy(s)
is proper, for the fractional descriptions of the input-output transfer matrix Go(s) =

C(sI — A)™'B and the disturbance-output transfer matrix G4(s) = C(sI — A)"'By:
Go(s) = B (s)Zi(s), Ga(s) = P (s) Zals), (9.1.4)

where Py(s), Zi(s), and Z,(s) are polynomial matrices, and Z;(s) and Pj(s) are left
coprime with row degrees of Fj(s) satisfying deg, [Fi(s)] <wv,i=1,2,..., M, where

v is the observability index of (A, C').
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9.2 Nominal State Feedback Control Design

Before developing the adaptive state feedback control scheme for the system (9.1.1)
with unknown parameters and uncertain disturbances, we need to design a nominal
state feedback controller with a parameterizable form to cancel the disturbances and
achieve exact plant-model matching by assuming that the system parameters and
disturbance parameters are known.

We choose the nominal state feedback controller as
u(t) = KiTa(t) + Kar(t) + k3(1), (9.2.1)

where k3(t) € RM is used to cancel the effect of the disturbance Byd(t) on tracking
error e(t) = y(t) — ym(t), and constant parameters K; € R™M and K €*M satisfy

the matching equation (2.4.3):
C(sl —A— BK;")'BK; = W,(s), K;™'=K,. (9.2.2)

The existence of K7 and K3 of the matching equation (9.2.2) has been shown in
Section 2.4.1. Applying the controller (9.2.1) to the system (9.1.1), we obtain the

closed-loop system as

y(t) = C(sI — A— BK{")'BK;[r](t) + C(sI — A— BK;") ' B[k3](t)

+C(sI — A — BK:T) "' By[d](t) + CeA+BETD (0. (9.2.3)

From the reference system (9.1.3) and the matching equation (9.2.2), we have the

output tracking error e(t) = y(t) — yn(t) as
e(t)=C(sI—A—BK;T) ' B[ki]+C(s]—A—BK:T) ' By[d]+CeATBET 2(0). (9.2.4)
Remark 9.2.1. From the error equation (9.2.4), we may choose to set k3(t) as

Ki(t) = K€, (s)O(sI — A — BEKT) " By[d)(t) (9.2.5)
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to make e(t) = CeATBEI(0), ie., limy,oe(t) = 0. However, such a choice
of k3(t) needs to be parameterized as kj(t) = ij((:)) with a known stable polynomial

A(s) and an unknown polynomial matriz P,(s), such that ]Z“((SS)) is proper (such a

parametrization is crucial for the adaptive control design). Therefore, the direct choice
of k3(t) as (9.2.5) may not be suitable for the adaptive control design. In the following,

we will derive a parameterizable k3(t), which can cancel the effect of the disturbances:
C(sI — A— BK;")'B[k3](t) = —C(sI — A— BK;{")™' By[d|(t), (9.2.6)
so that limy_, ., e(t) = 0. O

In order to obtain a parameterizable k3(¢) to cancel the disturbances, we first

introduce a matching equation as shown in the following lemma.

Lemma 9.2.1. Given K{ and K satisfying the matching equation (9.2.2), the fol-

lowing plant-model matching equation holds:
Z7N () P(s) KT (sSI-AHLO) ' BZ H(s) Pi(s)—K ;T (sI-A+LO) ' L=K;&,,(s),  (9.2.7)
where L is such that det(s] — A+ LC') = A(s) being a chosen stable polynomial.

Proof: Consider the system (9.1.1) without the disturbances by using the state ob-

server representation:

y(t) = Cz(t). (9.2.8)

Since (A, C') is observable, there exists a matrix L € R™M  such that det(s] — A +
LC) = A(s) for a chosen stable polynomial. Then, the state feedback controller can

be parameterized as

u(t) = KiTa(t) + Kir(t)

= KT (sI—A+LCO) ' Blu]+ KT (sI-A+LC) 'Lly| + K;r. (9.2.9)
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For the open-loop system, we have
u(t) = 2 (s)Pu(s)[y)(1), (9.2.10)

with Zj(s) and P(s) being left coprime and deg, [Pi(s)] < v, i = 1,2,..., M, as
defined in (9.1.4). Substituting (9.2.10) in (9.2.9), we have

(Z7 ' (s)P(s)—K{T (sI—A+LC) ' BZ;  (s)P(s) — K;T (sI— A+ LC) ' L)[y] = K3
(9.2.11)
Substituting u(t) = K;Tx(t)+ K;r(t) in the system (9.2.8), we obtain another closed-

loop system expression:
y(t) = C(sI — A— BK{")"'BK;[r](t). (9.2.12)

From the matching equation (9.2.2), there exist constant parameters K; and K to

make the closed-loop system (9.2.12) as
y(t) = Wi (s)[r](¢). (9.2.13)
Since the closed-loop systems (9.2.11) and (9.2.13) are equivalent, we obtain

Z7H(s)Pi(s) = KT (sI — A+ LC) ' BZ Y (5)Py(s) — K{T (s — A+ LO) 'L = K36,.(s).
(9.2.14)
Therefore, the constant parameters K, and K, which satisfy the matching equation

(9.2.2), can also make the matching equation (9.2.7) hold. \%

In the following Lemma 9.2.2 and Lemma 9.2.3, we will show that there exists a
parameterizable k%(t) such that the nominal controller (9.2.1) can reject the distur-

bance d(t) and make the output signal y(¢) track the reference signal y,, (t).
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Lemma 9.2.2. The state feedback controller (9.2.1) with K} and K} satisfying the

matching equation (9.2.2) and

ki) = —(Z7'(s)Za(s) — K{"(sI — A+ LC) ' BZ;(s) Za(s)

+K;"(sI — A+ LC)™'By) [d)(t), (9.2.15)

for det(sI —A+LC) being a chosen stable polynomial, ensures im0 (y(t) —ym(s)) =

0 exponentially.

Proof: From Lemma 9.2.1, we can parameterize kj(t) as

k(t) = = (27 (s)Zals) — K" (sI — A+ LO) ' BZ Za(s)
+ K" (sI — A+ LC) ™' By) [d](t)
= —((Z7 () Pi(s)~K]" (sI=A+LCO) ' BZ (s) Pi(s)—K; " (s[-A+LC) 'L
+KiT(sI — A+ LC) 'L)P ' (s) Za(s) + Ki"(sI — A+ LC) ™' By)[d)(t)
= —(K3&n()P " (s)Za(s) + Ky (s — A+ LO)"'LP(s) Za(s)

+KT(sI — A+ LC)~'By)[d)(t). (9.2.16)

In view of (9.2.16), (9.1.4) (i.e., P7'(s)Z4(s) = C(sI — A)~'B,), and the matching
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equation (9.2.2), we have
C(sI — A— BK;")"'B[k3](t)
= —(C(sI — A" 'BAC(sI-A-BK;") 'BK;T (sI-A+LC) ' LC (s — A) ™' By
+C(sI — A— BK)'BK;" (sI — A+ LC)™'By)[d](t)
= —C(sl —A—BK;")"*((s — A— BK{")(sI — A)™*
+BK{T(sI — A+ LC)'LO(sI — A)™' + BK;"(sI — A+ LC)™ ") By[d](t)
= —C(sl —A—BK;")"*(I — BK{"(sI — A)™*
+BK{T(sI — A+ LC)'LO(sI — A)™' + BK;T(sI — A+ LC) ") By[d](t)
= —C(sI-A-BK;") ' (I-BK;* (sI-A+LC) " ((sI-A+LC) (sI — A)™*
—LC(sI — A)~' — 1)) By[d](t). (9.2.17)
Substituting
(sI — A+ LC)(sI — A" — LO(sI — A~ =1
= [+ LC(sI—A) ' —LC(sI — A =1
-0 (9.2.18)
in (9.2.17), we have
C(sl — A— BK;")'B[k3](t) = —C(sI — A — BK;") ™' Byld](t). (9.2.19)
Then, from (9.2.4) and (9.2.19), we obtain that the output tracking error converges
to zero exponentially: lim; ., e(t) = lim;_, Ce(AJ’BKfT)t:B(O) = 0. \Y
Next, we will show that k3(¢) defined in (9.2.15) is parameterizable.

Lemma 9.2.3. The disturbance rejection signal k3(t) defined in (9.2.15) for the state

feedback controller (9.2.1) can be parameterized as

]{Zg(t) _ _Ql(S>Zd<3/i(_;>@rl Ad(s) [d](t), (9220)
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where A(s) is a chosen stable polynomial of degree n, @Qi(s) is a polynomial ma-
triz, such that % is proper, ©5 € R"M s a constant matriz, Ag(s) =

[y, ..., s" 1T with I, being the q x q identity matriz.

Proof: In order to parameterized kj(t), we first show that the rational matrix Z, !(s)—

KT (sI — A+ LC)BZ;'(s) of (9.2.15) can be parameterized as ?\l((ss)), for some poly-
nomial matrix Q;(s).

By parameterizing K;7 (s[—A+LC)™'B and K;T(sI-A+LC)™'L as

KT(sI—A+LC)'B = @;TAO(S), (9.2.21)
A(s)

KT (sI — A+ LC)'L = @;T‘j\o((s)), (9.2.22)
S

where det(s] — A + LC)=A(s) being a chosen stable polynomial can be ensured by
some L € R™M  due to observability of (A, C), Ay(s) = [Irr, slus, - . ., 8" )T with
Iy being the M x M identity matrix, and ©F € R™™*M and ©% € R™™*M are some

constant matrices, we have the matching equation (9.2.7) as
(A(s)Tar — ©77 Ag()) 2 (5) Pils) = A(8) K36m(s) + ©5T Ag(s). (9.2.23)
Dividing A(s)K3&,,(s) + 3T Ag(s) on the right by P(s), we have
A()EK5€m(s) + 057 Ao(s) = Quls) Pils) + Ri(s), (9.2.24)

for some polynomial matrices Q;(s) and R;(s), such that R;(s) P, *(s) is strictly proper
[3]. Substituting (9.2.24) in (9.2.23), we have

A(8) Iy — O3 Ag(s) = Qu(s) Zi(s) + Ri(s) P (s) Zi(s). (9.2.25)

Since the left-hand side of the equation (9.2.25) is a polynomial matrix, the right-

hand side of (9.2.25) must be a polynomial matrix as well. Moreover, R;(s)P,*(s) is
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strictly proper, and P;(s) and Z;(s) are coprime as defined in the assumption (A5),
we can conclude that R;(s) must be zero to ensure that the right-hand side of the
equation (9.2.25) is a polynomial matrix. Therefore, from (9.2.25) with R;(s) = 0,

we have

(A(s) Iy — ©:T Ag(s)) Z71(5) = Qu(s). (9.2.26)

From (9.2.21) and (9.2.26), it follows that the rational matrix Z; '(s) — K;T (sI — A+

LC)BZ;'(s) of (9.2.15) can be parameterized as

Z7(s) — KT (sl — A+ LC) 'BZ7'(s)
(A(s)Ipr — O3 Ag(5)) 2, (s) _ Qi(s)

9.2.27
AG) AG) (9:227)
where @;(s) is a polynomial matrix. Then, together with
A
KT (sl — A+ LC)'B; = 03 d(s), (9.2.28)
A(s)
for some parameter matrix 0% € R"M and Ay(s) = [I,, sl,,...,s" )T with I,

being the ¢ x ¢ identity matrix, we have that k3(¢) in (9.2.15) can be parameterized

QI(S)Zd(S) —+ @ETAd(S)

k() = — AT 1d](%). (9.2.29)

Since Z; '(s)Z4(s) is proper from the assumption (A5) and

Qu(5)Za(s) _ (M) In = O7"Ao(5)) 1y (.
A(s) A(s) Zy(s)Za(s) (9.2.30)

as from (9.2.27), we have that % is proper. \Y

Qu(s)Za(s) s

New parametrization of the state feedback controller. Since O

5T Aa(s)

proper and © ) is strictly proper as from Lemma 9.2.3, we can further parame-

terize ki(t) as

Ql(S)Zd(S) + @:lTAd(S)

R3() = — e g2l

[d)(t) + ©:Ld(t),  (9.2.31)
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where 03 = [037,05, ..., 05717 € RM with ©5, € RM i = 1,2,...,n, and
O3, € RM are some constant matrices that depend on ©% and coefficients of the
polynomial matrices Q;(s) and Z4(s).

We express the disturbance signal d(t) = [d;(t), da(?), ..., d,(t)]" as
di(t) = djo+ Y dpwin(t) = @77 05(t), j=1,2,....q, (9.2.32)
k=1

where ¢; = [Jjo, le, cey Cijj]T € Rpj+1 and lpj(w = [1, (A)jl(t), -y Whp; (t)]T Then we
have

d(t) = ®TU(t), (9.2.33)

where ®* = diag{¢}, @3, ..., ¢} and W(t) = [T (t), 3 (t),...,¢] (t)]". Substituting

(9.2.33) in (9.2.31), we can parameterize k3(t) as
E5(t) = K3 ws(t), (9.2.34)
where

K5 = 0707, 00 O e )T, wn(t) = (2 [wi)T, w07, (9.2.35)

sl

Tapy * s

for Ay(s) = [I.

n» s" 'L, )", where I, is the n, X ny identity matrix with

g = 225 P+ 4
With the new parametrization of k3(¢) in (9.2.34), we obtain the nominal state

feedback controller (9.2.1) as
u(t) = KT a(t) + Kir(t) + k3 (t) = K o(t) + Kir(t) + K3 ws(t), (9.2.36)

where K7, KJ, and Kj are unknown due to system and disturbance uncertainties,

and the signals z(t), r(t), and ws(t) are accessible.
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Remark 9.2.2. If Q’(Z)(fsi(s) is not proper, we can parameterize the disturbance re-

jection signal k3(t) as

vy Qu(s)Za(s) + O Aa(s)
k() = A d)(1)
o Ad(s) * *
= 6 Ad(s) [d)(8) + ©39d(t) + 67" Ay(5)[d] (1), (9.2.37)
where the proper part of — QL(S)Zd(?;;)QZTAd(S) is O35 é\ﬁ? +03I" and its non-proper part

is ©;7 A,(s) with ©; = [0:],0:]

dooi el T e R M and Ay(s) = [sl, ..., s"1]T

for some order n,. With the parametrization of d(t) in (9.2.33), we have
k3 (t) = Kjg wsolt) + K3 wsi (), (9.2.38)
where

K3 = [05 07, 0507, .. 050" o5 e ],
Ay (s)
wyo(t) = [(ﬁ[%(ﬂ)ﬁ\lﬁ(t)]ﬁ
Kgl = [(9:;?(;[)*7“7 @;g(I)*T’ R @quq)*T]T’

wn(t) = [s[OT](t), s[OT(t), ..., s [WT)(t)]T. (9.2.39)

For this linear parametrization of k3(t), the signal wsg(t) is accessible, while the
accessibility of the signal ws;(¢) needs assumptions that the order n, is known and
the ith order derivative (i = 1,2,...,n,) of ¥(t) can be obtained. If the ith order

derivative of W(t) cannot be obtained, we may use

Si

iy (9.2.40)

with a small 7 > 0 to approximate the ith order derivative of W(¢). Therefore, when

Qu(s)Za(s)

N is not proper, the disturbance rejection signal k}(¢) may still be parame-

terized as the linear combinations of some unknown parameters and known signals.

Hence, the nominal controller (9.2.1) can also be parameterized as (9.2.36). O
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Based on this new parametrization of the nominal controller (9.2.36), we can
proceed the adaptive control design for the system (9.1.1) with unknown parameters

and uncertain disturbances.

9.3 Adaptive State Feedback Control Design

From the newly parameterized nominal controller (9.2.36), we choose the adaptive

controller as
u(t) = K (t)x(t) + Ko (t)r(t) + K (t)ws(t), (9.3.1)
where K(t), K(t), and K3(t) are estimates of K, K3, and K3.

Tracking error equation. Substituting the control law (9.3.1) in the system

(9.1.1) and from (9.2.34), we have

#(t) = (A+ BK;T)x(t) + B(K3r(t) + ki(t)) + Bad(t)

+B(KT (t)x(t) + Ka(t)r(t) + K (Hws(1)),

y(t) = Cuz(t), (9.3.2)
where K, (t) = Ki(t) — K7, Ka(t) = Ky(t) — K3, and Kj(t) = K3(t) — K3. It follows
that

y(t) = C(sl — A— BKT) ' BK3[r](t) + CeA BRI (0)

+CO(sI — A— BK;") ' B[E3)(t) + C(s] — A — BK;") "' By[d](t)

+C(sI — A— BKT)"'B[OTw|(t), (9.3.3)
where O(t) = ©(t) — ©%, O(t) = [KT, Ky, KIT, ©* = [K;T, K3, K:T)T, and w(t) =

[T, rT wIT. In view of (9.3.3), from the matching conditions (9.2.2) and (9.2.19),

we have the tracking error e(t) =y(t) —y.,(t) as

e(t) = Wi (s)K,[0Tw](t) + CeA+BET(0). (9.3.4)
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A+BEK;T)t

From the tracking error (9.3.4), ignoring Ce! x(0), we obtain

Em(9)[e](t) = K0T (H)w(t). (9.3.5)

To deal with the uncertainty of the high frequency gain matrix K,, we use its LDS
decomposition:

K,=L,D,S (9.3.6)
where S € RM*M with S = ST > 0, L, is an M x M unit lower triangular matrix,
and

o A
D, = diag{sign[A]y, ..., sign] AMMI]”YM} (9.3.7)

with A;,7=1,2,..., M, being the ith leading principal minor of K, such that v; > 0

are arbitrary [84]. Substituting (9.3.6) in (9.3.5), we obtain
L7 n(s)]e](t) = D,SOT (H)w(t). (9.3.8)
To parameterize the unknown matrix L,, we introduce
O =L —1={0}}, (9.3.9)
where 0;; = 0 for i = 1,2,..., M and j > 4. From (9.3.8) and (9.3.9), we have
Em(5)[e] () + Om(5)[€](t) = DSOT (t)w(1). (9.3.10)
We introduce a filter h(s) = 1/f(s), where f(s) is a stable and monic polynomial
whose degree equals to the degree of &, (s). Operating both sides of (9.3.10) by
h(s)In leads to
e(t) + [0,8:Tn(t), 0:Tns(t), . .., 0T ()] = D, S h(s)[07w](t), (9.3.11)
where
&t) = &R = a0, .., en®], (9.3.12)
) = [et),....e(0)),i=2,...,M, (9.3.13)

0 = 105,057, i=2,..., M. (9.3.14)
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Estimation error. Based on this parameterized error, we introduce the estima-

tion error signal

e(t) = [0,0; (t)a(t), 05 (t)s(t), . ... O ()mas (O] + T(£)E(1) + e(2), (9-3.15)

where U(t) is the estimate of U* = D, S, and

§(t) = O7(t)C(t) — h(s)[OTw](t), C(t) = h(s)w](?)- (9.3.16)

From (9.3.11)-(9.3.16), we have

e(t) = (0,65 (£)a(t), 05 (£)ns (D), - - 037 (O)mas (8)] "+ Dy SO()TC (1) + W (H)E(E) (9.3.17)

where 6;(t) = 6;(t) — 07, i = 2,3,...,M, and U(t) = ¥(t) — U* are the related
parameter errors.

Adaptive laws. With the estimation error model (9.3.17), we choose

_Toiei)ni(t)

0:(t) = W,z’zQ,B,...,M, (9.3.18)
o7 (t) —%é)(t), (9.3.19)
U(t) = —%i)(t), (9.3.20)

where the signal €(t) = [e1(t), ex(t), . . ., ear(t)]T is computed from (9.3.15), Tg; = T'%, >

0,i=2,3,...,M,and I' = I'" > 0 are adaptation gain matrices, and

M
m(t) = (14 ¢"()¢() + EX &) + > nf (Bmi(t))' .
i=2
For the adaptive laws (9.3.18)—(9.3.20), we can have the following properties.

Lemma 9.3.1. The adaptive laws (9.3.18)-(9.3.20) ensure that

€(®) 2 0 .

(i) 6;(t) € L™, i =2,3,..., M, O(t) € L*®, U(t) € L, and
(i) ;(t) e L2NL>®, i=2,3,...,M, O(t) € LN L>°, and U(t) € L2 N L™,
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Proof: Consider the positive definite function
1l o~ ~
V= 5(2 0T T, 0; + tr[UTT 1] + tr[@SOT]). (9.3.21)
i=2

From (9.3.18)—(9.3.20), we obtain that the time-derivative of V' satisfies

s N~ Tamt)  @ITe(t)  (T(HOSDe(t) _ T(t)e(t)
V== " m2(0) 2 (1) ey =0 0322)

From (9.3.22), we have §,(t) € L*, i = 2,3,...,M, ©(t) € L*, ¥(t) € L=, 2 ¢

L2N L=, 6;(t) € L2NL>®, i=23,....,M,O(t) € L*NL>®, and ¥(¢) € L*NL>®. V

Based on Lemma 9.3.1, we can prove the following stability properties.

Theorem 9.3.1. The multivariable MRAC scheme with the state feedback controller
(9.3.1) updated by the adaptive laws (9.53.18)—-(9.3.20), when applied to the system
(9.1.1) with unknown parameters and uncertain disturbances, guarantees the closed-
loop signal boundedness and asymptotic output tracking: lim;_,(y(t) — ym(t)) = 0,

for any initial conditions.

The proof of Theorem 9.3.1 can be carried out by using a similar way as described
in [84] for multivariable MRAC using output feedback. We first express the state
feedback control signal u(t) in terms of the output signal y(¢) by using the state
observer representation of the system as given in equations (9.2.8) and (9.2.9). Then,

a filtered version of the output y(t) in a feedback framework which has a small gain

due to the L? properties of O(t), 6;(t) and E((t)

Gy can be derived. Hence, the analysis

procedure in [84] can be used to conclude the closed-loop signal boundedness and

asymptotic output tracking: lim;_ . (y(t) =y (t)) =0 for the state feedback case.
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9.4 Rejection of Output Disturbance and Constant
Dynamics Offset

In this subsection, we will present an adaptive disturbance rejection scheme for MIMO
LTT systems with a constant dynamics offset and output disturbances in addition to
input disturbances.

Consider the MIMO LTT system (9.1.1) with input disturbances, output distur-

bances, and a constant dynamics offset:

(t) = Ax(t) + Bu(t) + fo+ Badu(t),

y(t) = Cax(t) + Cudy(t), (9.4.1)

where f; is the unknown constant dynamics offset, d,(t) € R™ and d,(t) € R% rep-
resent the input and output disturbance signals, whose elements can be characterized
as (9.1.2), and A € R™" B e RvM C e RM*" B; € R™% and Cy; € RM*% are
some unknown constant matrices.

In order to design the adaptive control law to cancel the effect of the unknown
disturbances and offset on the output signal y(¢) and make the output signal y(t)
track the reference signal y,,(t) generated from (9.1.3), we will first derive the nominal

control law by assuming the system parameters are known.

9.4.1 Nominal State Feedback Control Design

We choose the nominal state feedback controller as
u(t) = KT a(t) + Kor(t) + k3o + ki (£) + k3a(2), (9.4.2)

where the constant kj, is used to cancel the effect of the offset fy, k3, () is to cancel

the effect of d,(t), k3,(t) is to cancel the effect of d,(t), and the constant parameters
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K} and K satisfy the matching equation (9.2.2). Substituting (9.4.2) in the system
(9.4.1), we obtain the closed-loop system as
y(t) = C(sl — A— BK:T)"'BK3[r](t) + CeATBET5(0)
+C(sI — A= BE{") ™ folu,](t) + C(sI — A — BK{") ™" Bkjy[u](t)
+C (s — A— BK;T) ™' Byld,)(t) + O(sI — A — BK{")"'B[k%,](t)
+Cyd, (t) + C(sI — A — BK;T) ' B[k3,) (1), (9.4.3)

where u4(t) is the unit step response. From Lemma 9.2.2, we choose kj;(t) as

ki (t) = —(Z7'(s)Za(s) — KT (sI — A+ LC) "' BZ; " (s) Za(s)

+K;"(s] — A+ LO) ™' By) [dJ] (1), (9.4.4)

which can be parameterized as (9.2.34) if Z; ' (s)Za(s) is proper:

k3 (t) = K3 wai (1) (9.4.5)
with the unknown constant K3, and the signal ws;(t) = [(AA‘I’(S) [(P]()T, v (t)]"; or
(9.2.38) if Z;(s)Z4(s) is not proper:

k31 (t) = Kiliwsu (1) + Kihwaia(t) = Kif wa (1) (9.4.6)

with some unknown constants K3;; and K3, and the signals

A\I](S)
A(s)

wan () = [( (D))", OO waia(t) = [s[TT](2), * [T (1), ..., s [WT] ()],
to cancel the effect of d, (1), i.e.,

C(sI — A— BK;") ™' Blk3,)(t) + C(sI — A — BK;T) ' By[d,](t) = 0, (9.4.7)
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From the matching equations (9.2.2) and (9.4.7), we have the closed-loop system
(9.4.3) as

y(t) = Wals)lr](t) + Ce PR (0)
+CO(sT — A= BE;T) ™ folug)(£) + Win(s) Kk ] ()

+Cady(t) + Wi (s)Kp[k3,) (). (9.4.8)
To cancel the effect of d,(t), we choose kj,(t) as
kip(t) = —K36m(s)Caldy] (t) = K3y waa(t), (9.4.9)
where K3, € RUHD9>M i5 an unknown constant matrix and
waa(t) = [d} (t), s[d}](t), ..., s'[d]]()]" (9.4.10)

with [ being the degree of &,,(s). It is worth noting that, for the adaptive control
design, the signal wss(t) should be available for measurement. If the ith order deriva-
tive (¢ = 1,2,...,1) of d,(t) can be obtained, we can access wsa(t) for the adaptive

control design. If the ith order derivative (i = 1,2,...,() of d,(t) cannot be obtained,

we may use ﬁ[dy] (t) with a small 7 > 0 to approximate the ith order derivative
of d,(t) to obtain an approximation of the signal wss(t).
From the reference system (9.1.3), the closed-loop system (9.4.8), and the signal

ki, (t) as in (9.4.9), we have the output tracking error e(t) = y(t) — ym(t) as
e(t) = C(sI— A—BKT) " folug () + Wi () K ko [us] (£) + Ce A PR 2 (0). (9.4.11)

Next, we will show that there exists a constant £}, to make lim; ., e(t) = 0. Ignoring
the exponentially decaying term C'eATBXi")2(0), we have the error equation (9.4.11)

in s domain as

e(s)=C(sl — A— BKTT)_lé + éWm(s)kago. (9.4.12)
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Since det(s] — A— BK;T) is a stable polynomial, which implies that det(A+BK;T) #

0, i.e., A+ BK;T has full rank, we can apply the Laplace final value theorem to obtain

lim e(t) = lim se(s) = —C(A+ BK;) ™ fo + W, (0) K, k. (9.4.13)

t—o0 s—0

Then, to cancel the effect of fy, we choose

k3o = K, '6n(0)C(A+ BK*T) ™' fy, (9.4.14)
which leads to
tlgglo e(t) =0. (9.4.15)

In conclusion, when applying the nominal controller (9.4.2) with K} and K sat-
isfying the matching equation (9.2.2), ki, in (9.4.14), k%, (¢) parameterized as (9.4.5)

or (9.4.6), and ki, (t) parameterized as (9.4.9):
u(t) = Ki"a(t) + K3r(t) + ki + K5] ws () + K33 wss(t) (9.4.16)

to the system (9.4.1), the effect of the input and output disturbances and the constant

dynamics offset on the output tracking error can be canceled and lim;_ .. (y(t) —

Ym(t)) = 0.
9.4.2 Adaptive State Feedback Control Design

Based on the parameterized nominal controller (9.4.16), we choose the adaptive con-

troller as
u(t) = K{ ()x(t) + Ka(t)r(t) + kao(t) + Ky (Hws1 (1) + Ko (H)wsz (1), (9.4.17)

where Ki(t), Ko(t), kso(t), Ks1(t), and Kjy(t) are estimates of Ky, K3, ki,, K3,
and K3, for the nominal controller (9.4.16). Similar with the adaptive control design

process in Section 9.3, we first obtain the tracking error equation:

e(t) = Wi (s)K,[0Tw](t), (9.4.18)
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where O(t) = O(t)—0*, © = [KT, Ky, ko, K3, K57, 0% = [Ki7, K3, ko, K31 K337,
and w(t) = [z7(t),rT(t),1,wl; (t),wl,(¢)]", then introduce the estimation error signal

as in (9.3.15):

e(t) = (0,05 ()ma(t), 05 (t)s(t), ..., O3, (e (O] + V(1)E() +&(t).  (9.4.19)

Hence, we choose the adaptive laws as

0.(t) = —%,izz,&...,m (9.4.20)
ort) = —%é)(t), (9.4.21)
U(t) = —%ft)(t). (9.4.22)

It can be proved that the state feedback controller (9.4.17) updated by the adaptive
laws (9.4.20)—(9.4.22), when applied to the system (9.4.1), guarantees the closed-loop
signal boundedness and asymptotic output tracking: lim; . (y(t) — yn(t)) = 0, for

any initial conditions.



Chapter 10

Adaptive Output Feedback
Disturbance Rejection for MIMO

Piecewise Linear Systems

In this chapter, we will present an adaptive output feedback control design framework

for multivariable piecewise linear system disturbance rejection problems.

10.1 Problem Statement

Consider a MIMO piecewise linear system model:
z(t) = A(t)x(t) + B(t)u(t) + Ba(t)d,(t),

y(t) = C@b)a(t), (10.1.1)

where x(t) € R, y(t) € RM, and u(t) € RM are the state, output, and control input
vector signals, d,(t) € R represents the uncertain actuation disturbance signal,

whose elements can be characterized as

Dj
di(t) = djo+ > _ dw;x(t), (10.1.2)
k=1



196

with unknown constants djo, d;x, and known signals w;,(t), for j = 1,2,...,q, k =

1,2,...,p;. With the signal indicator functions defined as

0  otherwise

M@Z{lﬁx®§% (10.1.3)

where €}, j =1,2,...,¢, are the jth subspace of the operational region €2 such that
QYN Q) = {0} for all i # k and US_,Q; = Q, the system piecewise constant matrices
A(t), B(t), C(t), and By(t) can be expressed as

ZXZ A,,B ZXZ B’HC ZXZ CzaBd ZX: de>

(10.1.4)

with some unknown constant matrices A;, B;, C;, and By;.

Control objective. The objective is to develop an output feedback control law
u(t) for the piecewise linear system (10.1.1) to make all the signals in the closed-loop
system bounded and the output y(t) track a reference signal y,,(t) as close as possible,

with y,,(t) generated from a reference system

Ym(t) = Win(s)[r](t), Win(s) = &, (s), (10.1.5)

where W,,(s) is stable and r(t) is bounded.

Assumptions. To proceed the adaptive control design, we make the following
assumptions: (A1) for each system mode i € P = {1,2,...,p}, (C;, A;, B;) is control-
lable and observable; (A2) Gy;(s) = C;(sI — A;) 7' B; has full rank, all zeros of Gy;(s)
are stable with their real parts less than —¢ for some known 6 > 0; (A3) the observ-
ability index v; (or its upper bound) of Gy; is known; (A4) there exists a common
modified left interactor matrix &,,(s) of all G;(s), which is known, and the reference
transfer matrix is chosen as W, (s) = &,(s); (A5) all leading principal minors A,

Jj=1,2,..., M, of the high frequency gain matrix K,; of Gy;(s) are nonzero and their
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signs are known; (A6) the transfer matrix Z;;'(s)Zy(s) is proper, for the fractional
descriptions of the input-output transfer matrix Go;(s) = C;(sI — A;)™'B; and the

disturbance-output transfer matrix Gg(s) = Ci(sI — A;) "' By:
Goi(s) = P; ' (s)Zu(s), Gai(s) = P (s)Za(s), (10.1.6)

where Py;(s), Z;(s), and Zy(s) are polynomial matrices, and Zj;(s) and Pj(s) are
left coprime with row degrees of Pj;(s) satisfying deg, [Pi(s)] <wvi,j=1,2,..., M,

where v; is the observability index of (A4;, C;).

10.2 Output Tracking Error Identity

When operating within the ith subspace €;, for the system transfer matrix Go;(s) =

Ci(sI—A;)"'B; , there exist constant parameters ©%;, ©3;, ©%,, and ©%,, such that [84]

In — O7 Fi(s) = (03] Fy(s) + ©30:)Goi(s) = O5:€m(s)Gails), O3 =K', (10.2.1)

where Fj(s) = ?\Zi(gs)), A;(s) is a monic and stable polynomial of degree v; —1 and

Agi(s)=[Ipr, ..., 8" 21| with v; being the observability index.

When the system is within the ith subspace §2;, we have

y(t) = Goi(s)[u)(t) + Gai(s)[du](t) +n3(t), (10.2.2)

where the signal 73;(t) is due to system mode switches. Operating both sides of

(10.2.1) on u(t) and from (10.2.2), we have
Xi() Kpi (u(t) =07 wii—03 w2030,y — O3 (8) + () ) =xi(D&m (s) ] (1), (10.2.3)

where wi;(t) = Fy(s)[u](t), wai = Fi()[y](t), 73:(t) = (O3] Fi()+050;+05:&m(s)) 13 (2),
and ©};(t) = — (I — 03T Fi(s)) Z; ' (s) Zai(s)[du]) (), which can be parameterized as

0, (t) = O3] wi(?), (10.2.4)
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under the assumption (A6) and a parametrization of the disturbance signal d,(t) =

O*TW(t) with ©fF and ws;(t) as

0; = [6;,07, 05,07, ... 6, )07, ;0] (10.2.5)

i) = (IO WO Al sl o571 )T (1020

Summing up both sides of (10.2.3) from ¢ = 1 to p and from (10.1.5):
p p
En(8) ] (1) = D xa( KB (1) = Y xa(0) Ki®3r(8), (10-2.7)
i=1 =1

we have the tracking error equation as

e(t) = y(t)=ym(t)
p

= Wals) [Z XiKpi (u—@”{fwli—%fw—@Séy—@éﬁ—@éf%i)] (?)
1=1

+na(t), (10.2.8)

where
Ma(t) = Wi(s) [Z xiKpmgz-] (t). (10.2.9)

Remark 10.2.1. Whenever a system mode switch occurs, the part of internal system
state x(t), contributed by input u(t) over the past switching time intervals, are not
matched by y,, (t) at the system output y(t). Such a mismatch of the output signal y(t)
and the reference signal y,,(t) due to system mode switches is characterized as the term
na(t) given by (10.2.9), which is small in the mean square sense under a slow switch-
ing condition [81] when applying the nominal controller w(t)=>"1_, x;(t)O;F wy;(t)+
2211 Xi(1) O3] wai () 4271 Xa(8)O35y (1) 4211 X (£)O%, (1) 43211 Xi ()O3 wsi(t). O
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10.3 Adaptive Output Feedback Control Design

Based on the tracking error equation (10.2.8), we choose the adaptive output feedback

controller as

Z Xz wlz + Z Xz w2z + Z Xz 9502 t)

+ZX¢ (t)OL (1) +le (t)wsi(t), (10.3.1)
where O1;(t), Og(t), Oa;(t), Os(t), and Ox(t), are the estimates of the nominal
parameters O7;, ©3,, 03, O3, and Of,.

Error models. Applying the adaptive controller (10.3.1) to the system (10.1.1),

then from the tracking error identity (10.2.8), we have

P
s) [Z Xl (5w
=1

() + ma(t). (10.3.2)

where

Ou)(t) = [O1-01), 05— 65, O, — Ol O3, —65, 05— 057", (10.3.3)

wy(t) = [wiy(t),wy (), y" (), 77 (1), w5, (D) (10.3.4)

It is worth noting that, when applying the adaptive controller, the effect of the term
n4(t) on the tracking error e(t) is different from that when applying the nominal con-
troller, for which the tracking error e(t) is proportional to n4(t), while for adaptive
control in the presence of parameter uncertainties, the tracking error e(t) is propor-
tional to n4(t) only in a mean square sense. However, we can show that a normalized
version of 7(t) is still small in the mean square sense, when the system mode switching
frequency is low, with the controller parameters adaptively updated by robustifying

adaptive laws, which is critical to closed-loop system stability analysis.
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Substituting the LDS decomposition of K,;: K,; = LsD,;S; in the error equation

(10.3.2), we have the error model parameterized as

P

Z([O 9*~T 2(1), 9?5377@)3@)’ : ~~>9f§Mﬂ(i)M(t)]T+5u)(t))
Z D,iSih(s)[00) xiw(t) + d(t). (10.3.5)

where 07}, € Rf_l, j = 2,...,M, denotes the jth row elements (non-zero part) of

Ol = L;'—1I, and

ew(t) = Em(s)h(s)Dael(t) = [, ez, - - €aml’ (10.3.6)
N (t) = [é(ma Eiyz; - - €] € R, (10.3.7)
ﬂ@zz}jL% )i () [mal] (£) = m (1), (10.3.8)
m(t) = }jL;%< [Xi€m(s §ijWz ()Duell(t). (10.3.9)
Define the estimationlzror signal
et) = i([Oa%z(t) N2 (1), 03 (O1w3 (1), -, 0 ey ()]

e (1)) + i Wi (1)&() (10.3.10)
where 6;(t), j = 2,3,..., M ,_is the estimate of 67, ;, and W((t) is the estimate of
Wi, = DyS;, and

&(t) = O4HB)GE) = h(s)[Of xiww](t), (10.3.11)
G(t) = h(s)[xiwe]®). (10.3.12)

Based on (10.3.5) and (10.3.10), we can obtain the following error model:
p

et) = > ([0, 60uBna2t), 0 Enas(®), - 0 ar (mwar (D))

i=1

+Z( (1) + DaSOT(0G() + dio), (10.3.13)
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where é(i)j(t) = 00);(t) — 6y, \if(i)(t) = V() (t) — U7, (¢) are the parameter errors.
Similarly, the error term d(t) is the unparameterized part of €(t), due to system mode

switches and initial conditions.

Adaptive laws. Then we choose the following adaptive laws to update 6 (t),
©;(t), and U,(t), i € {1,2,...,p}, 7=2,3,..., M:

Oy (1) = —Fe(i)jﬁéjé?%(t) + fay(t) (10.3.14)
o7 (1) = _%WJFFZ@) (10.3.15)
U, (1) Fﬁ;fg(t) + H(b), (10.3.16)

where €(t) = [e1(t), 2(t), ..., exr ()], f;(t), Fi(t), and H;(t) are the parameter pro-
jection or switching-o modification terms, and the adaptation gain matrices I'p, . and
I'; are positive definite and diagonal, and the normalizing signal is m?(t) = 1 + my(t)

with mg(t) generated from
s (t) = —280ms(t) + [[u(@®)|)® + [ly(®)]|?, ms(0) =0, dy <9 (10.3.17)
where 0y < ¢ for 0 in the assumption (A2).

Stability analysis. First, the parameter estimates from the adaptive laws (10.3.14)—
(10.3.16) have the desired properties that they are bounded and within their respective

parameter bounds: by considering the positive definite function
L O o
V=2 0T 0+ (tr[‘IfiTFi‘l‘Ifi] + tr[@iSi@,-T]) : (10.3.18)

=2 i=1
and its time derivative along (10.3.14)—(10.3.16), together with the fact that éng_jlfj <

0, tr[U7T71H;) < 0, and tr[6,S; F}] < 0, we can obtain that for z(t) = %, 0,(1), 0,(t), Uy(t),

and some ¢, k >0

t+T ) t+T Hd(T)Hz
|z(T)||7dT < c+ k 5 AT, YVt > 1, VT > 0.
t t m?(7)
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Then, closed-loop signal boundedness can be proved by deriving a feedback struc-
ture in terms of some instrumental signals, for the control system whose loop gain is
inversely proportional to the minimum switching interval of the piecewise linear sys-
tem. Under sufficiently slow system mode switches (T > 7§ for some T > 0), the
boundedness of those instrumental signals can be concluded, which in turn implies
the closed-loop signal boundedness.

The mean square tracking performance can be obtained by first dividing the in-
tegration time interval [t,¢ + T into corresponding switching time intervals. The
integral of |le(t)||?/m?(t) over each interval is upper bounded by a sum of those of
le(®))12/m2(t), 1|6;()]1%, |©s(t)]|?, and [|¥;()||>. With their respective mean square

properties, it can be shown that

t+T t+T
/ le(T)|IPdT < cp + 03/ |d(7)||*dr (10.3.19)
t t

for some ¢y, c3 > 0, from which the tracking performance
+T
/ le(D)||? dr < Cy + King, Yt >ty, VT >0, (10.3.20)
t

can be established, where ny is the number of system mode switches over [t,t + 1.



Chapter 11

Feedback-Based Adaptive Damage
Detection for MIMO Systems

This chapter addresses the design, analysis and evaluation of an adaptive feedback-
based stable damage detection scheme applied to aircraft flight systems with structure
damage and parameter uncertainties. An aircraft flight system model is presented to
capture decoupling and coupling features of the longitudinal and lateral-directional
dynamics before and after damage occurs. Two detectors are used to estimate de-
coupled healthy system parameters and coupled damaged system parameters. Unlike
most fault detection schemes which operate under the assumption that all system sig-
nals remain bounded under damage conditions, the adaptive damage detection scheme
proposed in this chapter is equipped with a stable adaptive feedback controller for
damage detection operation to ensure the desired signal boundedness condition and
smooth flight. By comparing estimation error residuals between state signals of the
detectors and the aircraft system, system damage is detected. Desired adaptive dam-

age detection performance is demonstrated by extensive GTM simulation studies.
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11.1 Problem Statement

We denote the nonlinear aircraft system model (2.1.1)—(2.1.9) as

i(t) = f(x(t),u(t),y(t) = Ca(t) = [0,9]", (11.1.1)

with the state vector signal being z(t) = [uy, wy, @y, 0, Vo, 76, Py, G, Y], where [uy, wy, gy, 0]
represents the longitudinal motion and [vy, 7, Py, ¢, %] represents the lateral-directional
motion, and the control input vector signal being u(t) = [d,, d;, d,, d,|*, where d., d,
and d, are elevator, rudder and aileron deflections whose units are degree, and d; is
the engine throttle. To investigate the aircraft dynamic characteristics before and
after damage occurs, we linearize the nonlinear aircraft system (11.1.1) at a chosen

operating point (z,ug). Then, the damage detection scheme will be developed based

on the linearized aircraft flight system model.

Detector models. To detect the damage, we will first investigate the aircraft
flight system before and after damage occurs to show that the longitudinal and
lateral-directional dynamics are decoupled for the healthy system and coupled for
the damaged system. Based on such a cross-coupling feature, detector models will be
constructed to estimate the unknown decoupled parameters for the healthy system
and the unknown coupled parameters for the damaged system, by using the state
and control input signals of the linearized aircraft system which are required to be
bounded before and after damage. With the bounded and sufficiently rich signals, the
damage can be detected by observing the response of residuals between the detector

signals and the aircraft system signals.

Multivariable adaptive control. To ensure self-stabilization of the aircraft
flight system before and after damage occurs, we will apply a multivariable MRAC

design to make all the closed-loop signals bounded and the output signal y(t) track
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a desired reference signal y,,(t) generated from a reference system:

Ym(t) = Win(s)[r](t), Win(s) = &, (s), (11.1.2)

where r(t) is a bounded reference input signal. It is worth noting that, to make
the aircraft system before and after damage track a same reference system W,,(s) =
&-1(s), the interactor matrix &,,(s) of the aircraft system should be invariant and
known before and after damage. Moreover, to design the adaptive control scheme,
the signs of leading principal minors of the high frequency gain matrix K, should be
known and invariant before and after damage. In the next section, we will show that
&m(s) and sign information are known and invariant for the generic linearized aircraft

system model before and after damage occurs.

11.2 Modeling of Aircraft Systems with Damage

Before designing the damage detection scheme, some characteristics of the general air-
craft flight system as well as the GTM before and after damage, which are important
for the proposed damage detection design, will be investigated based on linearization
of the aircraft system.

We choose a wings-level flight condition as the operating point (xg,ug) for lin-
earizing the aircraft system (11.1.1), where g = [upg, weo, 0, 60,0, 0,0, 0,07 and
ug = [deo, i, dro, dag]”. The chosen operating point may not be an equilibrium for
the aircraft system, since damage causes uncertain structure changes which makes the
equilibrium point unknown. Hence, an unknown dynamics offset fo = f(z0, uo) will be
introduced in the linearized aircraft system. In this chapter, we only manipulate the

control surfaces elevator and rudder: [d.(t), d,.(t)]"

around the operating point, while
setting the other control inputs as operating point values: [d;(t), dq(t)]T = [dso, duo]?,

for the nonlinear aircraft system (11.1.1). Therefore, the linearized aircraft system is
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given as

A (t)=AANz(t)+ BAu(t) + fo, Ay(t)=CAx(t), (11.2.1)

where Ar = x—x0, Au = [d.—deo, d,—d,o)" and Ay = y—Cxg are state, control input
and output signals of the linearized system, A = %kxo,uo) € R B = %kxo,uo) €

R%2 and

02{000100000

000O0O0O0OO0OOT1]|" (11.2.2)

Since there exists uncertain damage, the system parameters (A, B, fy) are unknown
and different before and after damage occurs. Assuming the uncertain damage occurs

at t = T, with unknown T,, we have

(AannafOn)a tS Td
A B =
( ) >.f0) { (Adchb de)’ t> Td )

(11.2.3)
where (A,,, By, fon) denote the unknown healthy system parameters and (Ag, By, foa)
denote the unknown damaged system parameters. Without loss of generality, the

symbol “A” in Eq. (11.2.1) will be omitted in the following discussions for the

linearization-based design, i.e. the linearized aircraft system is expressed as
(t) = Az(t) + Bu(t) + fo, y(t) = Cx(t). (11.2.4)

Cross-coupling. From the aircraft dynamic equations (2.1.1)—(2.1.9), generic
structures of system parameters (A, B) can be obtained.
When there is no damage, the longitudinal and lateral-directional dynamics are

decoupled, where the parameters A and B are given as

A7(141M) 0(4x5) Bfﬁf” 04x1)
A=l A6 [ B=| () g | (11.2.5)
with

ass  asg  Qs7asg 0 b2

a1 Q12 G13 @ b

a11 a12 a13 a14 bll ags g Qg7 Ggs 0 be2

An: 21 422 423 424 ,Bnlz 21 ,An4: ars Q76 a77a780 ,Bn4: b72 .

31 (32 33 (34 ba1

0 tan6y 1 00 0

00 10 0 0 1/cosy 0 00 0
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After damage occurs, the longitudinal and lateral-directional dynamics are cou-

pled, where the parameters A and B become to be

(4x4) 4(4x5) (4x1) (4x1)
A= Adl Ad2 __ Bdl Bd2 (11 2 6)
— A(5><4) A(5><5) y P B(5><1) B(5><1) ) e
d3 d4 d3 d4
with
Qdyy Qdyp Adyz Adyy bdll Adys Adyg Qdy7 Gdyg 0 bdlZ
A= Qdyy Qdgy Adyz Adoy B— bd21 Ao— Adys Adyg Qdgr Gdag 0 Bo— bdzz
dl1— ; - b ; d2— ol d2— b ;
Qdgy Qdgy Adgz Adsy d31 Adgs Adzg Qdgy Gdgzg d32
0O 0 1 0 0 0O 0 0 0O 0
Qdsy Qdsy Adsg Adsy bd51 Qdss Adsg Ads7 Adsg 0 bdsz
Qdgy Qdgy Adgs Adgs bdm Qdgs Adgg Adgr Adgs 0 bdsz
Ad3: Qdqy Adry Adzg Adzy |5 Bas= bd71 ) Au= Qdqs Qdrg Adrr Qdrg 0 ) Bau= bdn .
00 0 0 0 0 ag 1 00 0
1
0 0 0 0 0 0 L0 00 0

Based on such a cross-coupling characteristic before and after damage, two damage
detectors will be established to estimate the block-diagonally decoupled (healthy) and

coupled (damaged) system parameters (A, B) to detect the damage.

Invariance properties. Invariance of the infinity zero structure of the aircraft
system before and after damage is crucial for the multivariable model reference adap-

tive control design, since the invariant interactor matrix &, (s) ensures that the aircraft

-1

—1(s) before and after damage occurs

system can track a reference system W,,(s) = &
and invariant signs of leading principal minors of K, are required for the adaptive
control design. To investigate the infinity zero structure for the linearized aircraft

system (11.2.4) before and after damage, we first study the relative degrees of entries

of the system transfer matrix G(s) = C(sI — A)~™'B, which can be calculated as

1

e o n—1 E . n—2, . E,
G(S) det(sI—A)( n—19S + n—2S + -+ 0),

where n is the dimension of A, det (sI — A) = "+, 18"+ - +a1s+ag, B,_1 =

CB, E, ,=CAB+ an_ch, R and Ey = CA™'B + Oén_chn_2B 4+ -+ a;CB.
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For the healthy aircraft system, where the parameters A and B are given in Eq.
(11.2.5) and C is given in Eq. (11.2.2), the coefficients E,_, and E,,_, for G(s) are

calculated as

E,.1=CB=0, E,_,=CAB=diag{bs, bo1 1.
cos 6y

Based on Lemma 1, the interactor matrix for G(s) can be chosen as
Em(s) = diag{(s +1)%, (s + 1)*}, (11.2.7)

it follows that the high frequency gain matrix is given as

L _ Y be1
K,= sll)rgo Em(s)G(s) = CAB = diag{bs;, m}. (11.2.8)

Since the parameters b3; and bg; are the control gains from elevator to pitch acceler-
ation and rudder to yaw acceleration, the signs of these parameters can be obtained:

bs; < 0 and bg; < 0. Hence, signs of leading principal minors are given as

: : : . b3ib
sign(A;) = sign(bs;) = —1,sign(Ay) = 51gn(czls 66’;) = 1. (11.2.9)

After damage occurs, the matrices A and B change to the damaged values given

in Eq. (11.2.6). Hence, the coefficients E,,_; and E,_, are calculated as

En—l - 0, En_g — CAB - 1bd31 bd32

1 .
cos Oy bdGl cos Oy bd62

The interactor matrix of G(s) can be chosen as
Em(s) = diag{(s + 1)%, (s + 1)}, (11.2.10)
and the high frequency gain matrix is

K, = lim &,(s)G(s) = Eya= b biza | (11.2.11)

cos Oy dé1  cos 6o bd62
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If the shift of center of mass is small, the signs of bg,, and b4, may still be negative,
and the coupling terms may be very small. Therefore, signs of leading principal

minors are still

sign(A;) = —1,sign(Ay) = 1. (11.2.12)

From the above generic structure analysis, it follows that the infinity zero structure
is invariant before and after damage, which is &,,(s) = diag{(s + 1)?, (s + 1)?}, and
the signs of the leading principal minors of high frequency matrix are invariant when

the shift of center of mass is small, which are sign(A;) = —1 and sign(A,) = 1.

Summary. Since the above analysis is based on the generic aircraft model (11.2.4)
linearized at an arbitrarily given wings-level flight operating point, the coupling fea-
ture and the invariance properties hold for any general aircraft systems linearized at
a wings-level flight operating condition. In the GTM simulation study, we will assess

the developed detection scheme around several different operating conditions.

11.3 Feedback-Based Damage Detection Scheme

In this section, we will present the detailed adaptive feedback-based damage detection
design based on the cross-coupling and invariance properties of the linearized aircraft
system model (11.2.4). To build the detector models, the aircraft state signal and
control input signal are required to be bounded. Therefore, a self-stabilization feed-
back control will be developed to ensure the signal boundedness requirement before

and after damage occurs.

11.3.1 Self-Stabilization Feedback Control

To achieve the closed-loop signal boundedness and output tracking objectives, we

apply the multivariable model reference adaptive control scheme to the aircraft system
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(11.2.4) with damage.

State feedback controller structure. To compensate the uncertainties of the
system parameters A and B, and the unknown constant offset term fy in (11.2.4)

before and after damage, we choose the state feedback controller structure as
u(t) = KT () (t) + Ka(t)r(t) + ks(t). (11.3.1)

Plant-model matching. The parameters K (t), Ky(t), and k3(t) in (11.3.1) are
the adaptively updated estimates of the nominal parameters K7, K3, and k; satisfying

matching conditions [37]
C(sl —A— BK;{") 'BK; =W, (s), K;'=K,, kj=-D"'d, (11.3.2)

with K, being the piecewise constant high frequency gain matrix K, = lim,_,o &, (5)G(9),
and D = —C(A+ BK;})™'B and d = —C(A + BK;}) ' fo. Since the parameters
(A, B, fo) of the system (11.2.4) are piecewise constants due to damage, the nominal
parameters K, K3, and k; are piecewise constants before and after damage occurs.

From the matching conditions (11.3.2), applying the nominal controller
u(t) = KiTa(t) + Kyr(t) + k; (11.3.3)

to the system (11.2.4), we have that the closed-loop signals are bounded and the out-
put signal y(t) tracks the reference signal y,,,(t) = Wy, (s)[r](t): limy—yoo (y(t) —ym(t)) =
0. However, since the parameters Ky, K3, and k3 in (11.3.2) are unknown due to the
uncertainties of the aircraft system, we will apply the adaptively updated control law
(11.3.1) to the aircraft system (11.2.4) with damage. To derive the adaptive laws, we

first parameterize the tracking error equation.

Tracking error equation. From the reference model (11.1.2), the aircraft system

(11.2.4) with the control law (11.3.1) and the matching conditions (11.3.2), we have
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that the output tracking error e(t) = y(t) — y,,(t) can be parameterized as
e(t) = Wi (s)K,[07w](t), (11.3.4)

where O(t) = O(t) — O, O(t)=[K{(t), Ko(t), ks(t)]%, ©* = [K;T K3, k37, and w(t) =
[27(t), 77 (t), 1]7. To deal with the uncertainty of K,, we use its LDS decomposition
K, = LD,S, where S = ST > 0, L, is a unit lower triangular matrix, and D, =

diag{sign[Aq|y, ..., sign[AAAﬁl]yM} with arbitrarily chosen v; > 0,7 =1,..., M [84],

where M is the dimension of the input signal u(t). Since the signs of the leading
principal minors A;, i = 1,2, ..., M, are invariant before and after damage occurs, we
can choose a uniform Dy before and after damage as a gain matrix which will be used
in the adaptive laws. Substituting the LDS decompensation in (11.3.4) and operating
both sides of (11.3.4) by h(s)Iy;, where h(s) = 1/ fx(s) with f;(s) being a stable and

monic polynomial of degree equals to the degree of ,,(s), we have
L6 (s)h(s)[e](t) = Dy S h(s)[OTw](t). (11.3.5)
To parameterize the unknown matrix Ly, we introduce ©f = L' — I = {6;;}, where
0;;=0fori=1,2,..., M and j > 4. Then we have
(t) + (0,05 (1), ..., 0: ()T = DySh(s)[0%w](t), (11.3.6)

where e(t = &n(s)h(s)[e](t) = [e1(t),...,ex(®)]T, n:i(t) = [e1(t),...,e_1(t)]T, and
0r = [07,...,05 |7,

) Yig—1

Estimation error. We introduce an estimation error signal
e(t) = (0,05 (E)ma(t), . ... Oar(B)mar (B)] " + W(RE(E) + &(t), (11.3.7)

where 6;(t),7 = 2,3,..., M are the estimates of 6}, and W(t) is the estimate of U* =
DS, and
§(t) = 07(1)¢(t) — h(s)[O"w](t),¢(t) = h(s)[w](t). (11.3.8)
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From (11.3.6)—(11.3.8), we can derive that
e(t) = [0,65 (£)a(t), 05 (£)ns (D), - . 037 (O)mas (8)] "+ Dy SOT ()¢ () +V(H)E(E), (11.3.9)

where 0;(t) = 0;(t) — 07 and U(t) = U(t) — T*.

Adaptive laws. With the estimation error model (11.3.9), we choose

6.(t) = —%()gm,i:z?),...,M (11.3.10)
o7 (t) —%éj(t) (11.3.11)
U(t) = —%@T;t) (11.3.12)

where the signal €(t) = [e1(t), ex(t), . . ., ear(t)]T is computed from (11.3.7), Tg; = T'%, >

0,i=2,3,...,M,and I' = I'" > 0 are adaptation gain matrices, and

m(t)=(1+ CT(t)C(t)+£T(t)£(t)+Z i (tmi(t))"?

is a standard normalization signal.

Stability analysis. The multivariable MRAC scheme with the state feedback
control law (11.3.1) updated by the adaptive laws (11.3.10)—(11.3.12), when applied
to (11.2.4), guarantees the closed-loop signal boundedness and asymptotic output

tracking: lim; o (y(t) — ym(t)) = 0, for any initial conditions.
11.3.2 Adaptive Damage Detection

In this section, we will present two detector models constructed by using the bounded
control input signal u(t) and state signal z(t). The key feature of aircraft system
before and after damage is that the system parameters A and B are block-diagonally
decoupled before damage and coupled after damage. To detect the damaged status,

the parameters A and B will be adaptively estimated by the proposed detector models.
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With some sufficiently rich input signals, the damage can be detected by observing
the residuals between the state signals of the detectors and the state signals of the

aircraft system.
11.3.2.1 Detector for healthy aircraft system

Based on the healthy aircraft model (11.2.4) with decoupled system parameters (A, B)

given in (11.2.5), we choose the detector model as

(1) = Az D (£)+ (AD (8) = A2 (6) + BD ()u(t) + (1), (11.3.13)

m

where x(t) and wu(t) are the state and input signals of the aircraft system (11.2.4)

which are bounded, A,, = dlag{A (4x4) A 5X5 } is a chosen stable matrix, and
—~ A\(l) 0 - E(l) 0 1 £(1)
A= | F P g | P ,fé ) Az(i)

0o AY 0o BY

are the estimates of healthy aircraft system parameters.
Adaptive laws. The residual between the detector state signal ) (t) and the
linearized aircraft state signal x(t) is defined as e,gb)(t) = x%)(t) x(t). For designed

adaptive laws, we partition u(t), x(t) and e (t) into

u(t) = [u(t), ua(t))" = [de(t), d.(t)]", (11.3.14)
x(t) = [zF (@), 2T ()", (11.3.15)
eD(t) = [e) (1), ey )], (11.3.16)

where z1(t) € RY, 25(t) € R®, e)(t) € R, and €})(t) € R5. Then, we choose
adaptive laws for AY(1), A3y (1), By (1), By (1), for (1), and fiy) (1) as
(1) (1)

A (1) = —TiPe )2l (t), Ay (1) = —ToPocl (el (1), (11.3.17)
= (1) = (1)
By () = —T3Pie(t)ur(t), By (t) = —TaPoe)(Hua(t),  (11.3.18)

(@) = —TsPell (1),  fH)(t) = —TePely(0), (11.3.19)
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where I';,i = 1,2,...,6 are symmetric positive definite gain matrices, P, = Pl > 0
and P, = PI' > 0, such that PiA,,; + AL P, = —Q; and PyA,0 + AL, Py = —(Q,
with Q; = QT > 0 and @, = QT > 0.

With the adaptive laws (11.3.17)—(11.3.19) and the bounded state signal x(t) and
control input signal u(t) from the closed-loop linearized aircraft system, the residual

el (t) = ) (t) — z(t) has the following properties before and after damage occurs.

Proposition 11.3.1. When there is no damage, the residual el (t) = ) (t) — z(t)

between the detector model (11.3.13) updated by (11.5.17)-(11.8.19) and the linearized
aircraft system (11.2.4) with the adaptive controller (11.3.1) updated by (11.5.10)-

(11.5.12) satisfies that limy_, ., e%)(t) =0.

Proof: When there is no damage, the longitudinal and lateral-directional dynamics
are decoupled:

z(t) = Ax(t) + Bu(t) + fo, (11.3.20)
where A = diag{A,1, Au} and B = diag{B,.1, Bns} given in Eq. (11.2.5). Consider

a positive definite function:

V= eWTpel) 4 WPl 4 r AT AW
+tr[f~1§12)TF5 A BT BBy T By
H T A+ £ T (11.3.21)

with A = AN = A, A = AR — A, B = B = Bu, By = By — By, and
Jgo(i) = féi) — for and féi) = f(%) — fo1, where [f&, f&]T = fo. From the linearized
aircraft system (11.3.20) without damage and the detector model (11.3.13), we have
the residual dynamics as

] [ Aucl B
= [ and)

+

7(1)
+ | o) (11.3.22)

02
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From the adaptive laws (11.3.17)—(11.3.18), we obtain

V= =T (0)Qreln (1) — el ()Qaeliy (1) < 0. (11.3.23)

Then, we conclude that el () = [eT (1), e DT ()7, AV (1), AR (1), B (1), B (1),

féi)(t), and fo(;)(t) are bounded. Since the state signal z(t) = [z](t),23(¢)]" and

the control input signal u(t) = [u(#), uz(t)]” are bounded, we further have e (t)=
DT @), DT ()7 € L. Eq. (11.3.23) implies that el (¢) = [ (1), e T (1)]7 € L2,

With ey (t) € L*NL> and ey (t) € L, applying Barbalat lemma, we have that

limy o el (t)=0. \Y
When damage occurs, the parameters (A, B) of linearized aircraft system (11.2.4)

are coupled as given in Eq. (11.2.6). Then, we obtain the residual dynamics as

ér(nll) Ami er(nll) + Aﬁ)% + Eﬁ uj fo1 | Aaew2 || Bazuz (11.3.24)
67(;2) Am 67(;2) Aglz)llfg Béé)UQ (1) Adgl’l Bd3ul ’ e

with A = AWy A = A Ay, BY = B By, and BY = BY By, Hence,
based on the adaptive laws (11.3.17)—(11.3.18), we have

Vo=~ Quei — e Qaehy — 2651 PrAaas

. 26( )T Ple2U2 — 26 P2Ad3xl — 26( )T P2Bd3ula

where the coupling terms may prevent V < 0, that is the residual is not guaranteed
to converge to zero in the presence of damage. To further investigate the performance

of residual after damage occurs, we have the following proposition.

Proposition 11.3.2. When damage occurs, if each element u;, © = 1,2 of control
input u is sufficiently rich of order n + 1 and uncorrelated, i.e., each u; contains

different frequencies, where n is the dimension of the aircraft system state signal,

then the residual el (t) = z) (t) —z(t), between the detector model (11.3.13) updated
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by (11.8.17)—(11.3.19) and the aircraft system (11.2.4) with the adaptive controller

(11.8.1) updated by (11.8.10)-(11.5.12), does not converge to 0.

Proof: When damage occurs, we have the residual dynamics as (11.3.24). Defining

(1 ~(OH)T ~()T ~(1) 1)
Hg) = [agl) 7a§2) PR 54 B§1 ]7
(1 ~(OH)T ~()T ~(1) 1)
95) = [agl) 7a52) PR 25 B§2 ] )

where ELE) is the ith column of Kﬁ’ and EL;) is the ith column of AVSQ), we can write

Az + BYu, = FreW, (11.3.25)

ARz + BGuy = FJo3Y, (11.3.26)

where Fi' (t)=[z1114, . .., 1414, u114]) with x1; being the ith element of z; and FJ (t)=
(9115, . .., To5]5, usls| with zo; being the ith element of zo. For simplicity, we set
I'Y = I'y and I’y = I'y for the adaptive laws (11.3.17) and (11.3.18). Then, the

adaptive laws (11.3.17) and (11.3.18) can be expressed as

80 =1 P E(1)el), 6 =Ty By(t)ell). (11.3.27)

ml>

From (11.3.24), (11.3.25), (11.3.26) and (11.3.27), we have

-(1) @ (1)

€ml1 _ €ml for' —Aazxa — Bagus

éil) — A01 égl) + [ 01 0 3 (11328)
F L T - W z B

ema | €2 foo—Aazr1 — Basus

9;51) = Ay 951) + [ 0 . (11.3.29)

where

a[ Am F [ Aw FF
R S A = N | N A I Y =Xy 2 S o I

Consider a positive definite function

Vi =Pl 4 Z a4 BT B = TPy, (11.3.30)
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where 2T = [ e ,9(1 ] and Py = diag{P,,I'7%...,T["}. From the time derivative of

V1 along with the adaptive laws in (11.3.17) and (11.3.18), we can have
Afy Por + Por Aoy + 11CoiCy <0, (11.3.31)

where v; = A\uin[@1] and C' = [14,0]. Since u;(t), i = 1,2 is sufficiently rich of order
n+ 1 and (A, B) is controllable, it follows that ¢(t) = [zT,u”]T is PE [44]. Then, we
have o1 (t) = [zT, w7 is PE [44, Lemma 4.8.3], which together with (11.3.31) results
in closed-loop exponential stability [44, Lemma 5.6.3] of the system 2, = Ag;2;. Since
the system (11.3.28) has input signals, we have that e(l) 1(t) does not converge to 0.

e))

Similarly, we obtain that e, 5(¢) does not converge to 0. \Y

From the above proposition, the residual el does not converge to zero after
damage occurs. However, there may exist other possible situations to prevent el
converging to zero such as some disturbance to the aircraft system. Hence, the condi-
tion that e\ does not converge to zero may not be enough to detect damage. We will

build another detector to work with detector for healthy aircraft system to identify

the damaged system.
11.3.2.2 Detector for damaged aircraft system

Here, we build a detector to estimate the coupled system parameters (A, B) after

damage occurs:

72 (1) =A@ (8) + (AP (t) — A, (8) + B (t)u(t) + 11.3.32
m m<m f )
where x(t) and wu(t) are the state and input signals of the aircraft system (11.2.4)
which are bounded, A,, is a chosen stable matrix, and A®(t), B®(t) and fo )(t) are
the estimates of damaged aircraft system parameters A, B and f;.

Adaptive laws. The residual is defined as e\2 (t) = z\2) — z(¢). Then, adaptive
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laws for A@ (), B@(¢), and f{*(t) are chosen as

~(2) 5 T
A (t) = —TgaPePt)xT (1), (11.3.33)
=(2) 9 T
B (t) = —TguPe® )’ (1), (11.3.34)
f2) = —TyPeld(), (11.3.35)

where I'g, I'g2, and I'gr are the symmetric positive definite matrices, and P = PT >0,
such that PA,, + AT P = —Q with Q = QT > 0.

With the adaptive laws (11.3.33)—(11.3.35) and the bounded signals z(¢) and u(¢)
guaranteed by the adaptive control design, the residual eg)(t) possess the following

property for the healthy or damaged aircraft systems.

Proposition 11.3.3. The residual e (t) = z3) (t) — x(t) between the detector model
(11.8.32) updated by (11.3.33)-(11.3.35) and the linearized aircraft system (11.2.4)
with the adaptive controller (11.5.1) updated by (11.3.10)—(11.3.12) satisfies that
limy_o0 €2 (t) = 0 for both the healthy and damaged aircraft systems. Moreover,
if each element u;, i = 1,2 of control input u is sufficiently rich of order n + 1 and
uncorrelated, then A®(t) and BP(t) converge to the system parameters A and B

exponentially fast for both the healthy and damaged systems.
Proof: Consider a positive definite function given as
V = e@Tpe® 1 tr[g@)TF;llg@)] + tr[g(z)TF;;g(z)] + fé2)TF;}f0(2), (11.3.36)

where A® = A® — 4, B® = B® _ B, and féz) = féz) — foq for the damaged
system, or A® = A _ A,, B® = B® _ B, fé2) = féQ) — fon, for the healthy
system. For both the healthy and damaged systems, the residual dynamic equation

can be expressed as

(1) = Ape® (1) + AD ()2 (t) + BD(H)ult) + F2 ). (11.3.37)
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From (11.3.37), (11.3.36), and the adaptive laws (11.3.33)—(11.3.35), we obtain the
time-derivative of V' as

V =—e@T(1)Qe?(t) < 0. (11.3.38)

It follows that e®(¢t) € L2 N L™ and é® € L™, along with the bounded x(t) and
u(t). Then, we have lim, ., e®(t) = 0 for both the healthy and damaged systems.
If each element wu;, i = 1,2 of control input u is sufficiently rich of order n + 1
and uncorrelated, following the proof of Theorem 5.2.3 in [44], we can conclude that
A®(t) and B@(t) converge to the parameters A and B exponentially fast for the

healthy and damaged systems. \Y

From Proposition 11.3.3, we can see that the residual e from the damaged
detector (11.3.32) converge to zero for both the healthy and damaged cases, if there
is no other disturbance in the system. Hence, when the residual el?) does not converge
to zero, it may indicate that there is disturbance. Since the disturbance may also
prevent the residual ey from converging to zero, only using ey not converging to
zero as a detection criterion may introduce false alarms. Therefore, we need to check
the response of el to prevent false alarms. Moreover, if the control input signal
u(t) is rich enough, the damaged detector (11.3.32) can give a good estimate of the

damaged aircraft system parameters, which can be used for fault-tolerant feedback

control designs.
11.3.2.3 Determination of damage status

From the steady state response of residuals e and e?) as concluded in the above
propositions, we obtain the following detection criteria:
e if both ei) and e'?) converge to zero, then there is no damage;

e (1 2
o if ) does not converge to zero, but el converges to zero, then damage occurs.
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Since disturbance in the aircraft system may prevent the residuals e and €2 con-
verging to zero, in the damage detection criteria, we need to check the response of

eg) to avoid false alarms.

11.4 Application to the GTM

In this section, we will use the GTM to assess the performance of the developed

feedback-based damage detection scheme.

Damage scenarios. The GTM Simulink model provides some structural damage
scenarios such as rudder off, left outboard flap off, left wing-tip off, left elevator off,
and left stabilizer off. In this study, we choose the damage case as the loss of outboard

left wing-tip, which is approximate 25% semi-span of the left wing.

11.4.1 Simulation Study for the Linearized GTM

We linearize the healthy and damaged GTMs (11.1.1) at an operating condition
(wings-level flight at 100 knots) (xg,up). Then, the linearized GTM is given as
(11.2.1): Atz = AAx + BAu + fo, Ay = CAz. We obtain the numerical values

for the system parameters before and after the loss of wing-tip damage occurs.

Verification of design conditions. The numerical values are only used for
building the simulation model, but not used for the detection scheme design. From
the numerical values, we can see that the longitudinal and lateral-directional dynamics
are decoupled before damage occurs and coupled after damage occurs. The invariant
properties of infinity zero structure and signs of leading principal minors have been
shown by the generic linearized models. Here, we further verify the design conditions
by using the numerical values. We can calculate the interactor matrix as &, (s) =

diag{(s+1)?, (s+1)?} for both healthy and damaged GTMs. Then, we have the high
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frequency gain matrix for the healthy GTM is

K= lim 6a(960) = | T 0]

0 —0.737
and the high frequency gain matrix for the damaged GTM is

. ~1.327 —0.0027
Ky = lim &n(5)G(s) = { 0.0069 —0.7576 } '

Therefore, the leading principal minors are invariant before and after damage, where
sign(A;) = —1, sign(Ay) = 1.

Adaptive feedback control. The reference model is chosen as Ay, (t) =
W (s)[r](t), where W,,(s) = &.1(s) = diag{1/(s + 1)*,1/(s + 1)*}. We apply
Au(t) = KT (t)Ax(t) + Ky (t)r(t) + k3(t) with the adaptive laws (11.3.10)—(11.3.12) to
the linearized model (11.2.1) to ensure the signal boundedness and output tracking.

Detector models. We run the detector (11.3.13):
A (1) = Az (1) + (AD (1) — Ay)Az(t) + BO)Au(t) + fV@)  (11.4.1)
with the adaptive laws (11.3.17)—(11.3.19) and the model (11.3.32):
Az (1) = Apz® (1) + (AP (1) — Ay)Az(t) + BO@®)Aut) + fP ) (11.4.2)

with the adaptive laws (11.3.33)—(11.3.35) in parallel to obtain the detector state
signals Azt (t) and Azl (t) for the linearized simulation. Then, we can have the
residuals as Aely) = Az'Y) — Az and Ael? = Azl? — Ax. Tt is worth noting that the

signals Az and Awu are the state and control signals of the linearized aircraft system.

Simulation results. The output response and residual response are shown in
Fig. 11.1 and Fig. 11.2, where the reference input signal () is rich of frequencies.

The damage (loss of wing-tip) occurs at 100 seconds. From Fig. 11.1, we can see that
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the output signal tracks the reference signal before and after damage occurs. The
response of the 8th elements of Aeld) and Ael) (i.e. errors between roll angle A¢
whose unit is degree and its estimates) are illustrated in Fig. 11.2. From Fig. 11.2,
we have that both residual Aely) and Ae!? converge to zero before damage occurs.
Then, after some transient response starting at 100 seconds, Ae%) fails to converge

to zero, while Aeld) converges to zero. Therefore, we conclude that damage occurs at

100 seconds.

——pitch perturbation A6 (deg)

! - - ~reference A@ (deg)
L ! ! ! ! ! ! ! ! !
00 20 40 60 80 100 120 140 160 180 200
Output A6 (deg) and reference Aem (deg) vs. time (sec)

——yaw perturbation Ay (deg) | —
- - -reference Ay (deg)

| | | |
60 80 100 120 140 160 180 200
Output Ay (deg) and reference Ame (deg) vs. time (sec)

_ ! ! ! ! !
25O 20 40

Figure 11.1: Linearized GTM outputs (solid) vs. reference outputs (dotted).

11.4.2 Simulation Study for the Nonlinear GTM

Since the simulation study for the linearized GTM has verified the proposed design,
we will apply it to the original nonlinear GTM to assess the effectiveness of this
linearization-based design. For the nonlinear GTM simulation study, we will investi-

gate three cases: Case I is that GTM is operated around an operating point (zg, ug)
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Figure 11.2: Detector residuals Ae% and Ae%.

obtained by trimming the healthy GTM at a wing-level flight condition with equiva-
lent airspeed as 100 knots; Case II is that GTM is operated around another operating
point (zg,ug) obtained by trimming the GTM at a wing-level flight condition with
equivalent airspeed as 90 knots; Case III is that GTM is operated from the second
case operating point to the first case operating point. For all these three cases, the
wing-tip off damage can occur at any moments.

We apply the control law u(t) = Au(t) +ug to the nonlinear GTM around a small
neighborhood of (zg,ug). Then, we construct the detectors (11.4.1) and (11.4.2) by
using the signals Az(t) and Au(t). It is worth noting that the signals Axz(t) and
Au(t) are calculated from the nonlinear GTM state signal x(¢) and control input
signal u(t), i.e. Ax(t) = z(t) — zo and Au(t) = u(t) — ug. The simulation results are

given as follows.

Case I: around (¢, up) with airspeed as 100 knots. Fig. 11.3 and Fig. 11.4 show
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the response of the GTM state and control input signals, where we can see that the
signals are bounded and the output signals track the reference signals. From the
response of the 8th elements of Aely) and Ael?) (i.e. errors between roll angle A¢ and
its estimates) in Fig. 11.5, where both residuals converge to zero before 80 seconds
and Aely) does not converge to zero while Ael) converges to zero, we can conclude

that the damage happens at 80 seconds.

10
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60 80 100
Yaw angle ¢ (deg) and reference v, (deg) vs. time (sec)
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Roll angle ¢ (deg) vs. time (sec)

Figure 11.3: GTM responses: pitch 6(t), yaw 1 (t), and roll ¢(t) (case I).

Case II: around (xg, ug) with airspeed as 90 knots. From Fig. 11.6 and Fig. 11.7,
we can see that the signals are bounded and the output signals track the reference
signals around a small neighborhood of the given operating point. Then, from the
response of the 8th elements of Aely) and Ael? shown in Fig. 11.8, where both
residuals converge to zero before 120 seconds and Aeld) does not converge to zero
while Aeg) converges to zero after 120 seconds, we conclude that the damage happens

at 120 seconds.
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Figure 11.4: Control surface positions: elevator d.(t) and rudder d,(t) (case I).
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Figure 11.5: Detector residuals Aeg)8 and Aeg)g (case I).
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Figure 11.6: GTM responses: pitch 6(¢), yaw ¢(t), and roll ¢(t) (case II).
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Control surface positions: elevator d.(t) and rudder d,.(t) (case II).
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Figure 11.8: Detector residuals Ae% and Ae% (case II).

Case III: around the neighborhood of (zg,uy) with airspeed as 90 knots to the
neighborhood of (g, ug) with airspeed as 100 knots. In this simulation, we change the
operating condition at 120 seconds. Fig. 11.9 and Fig. 11.10 show the response of the
GTM state and control input signals, where we can see that the signals are bounded
and the output signals track the reference signals. Fig. 11.11 illustrates the detectors
response. Although there is some transient response of the GTM signals in Fig. 11.9
when we change the operating condition at 120 seconds, from Fig. 11.11, we can see
that both the residuals converge to zero before and after 120 seconds, which means
that there are no damage occurring. But after 180 seconds, Aely) does not converge
to zero while Aeg) converges to zero, where we conclude that the damage happens at
180 seconds. It is worth noting that when we change operating conditions or damage
occurs, there can be some transient response of the GTM state signals, so that we

need the damage detection scheme to enhance the awareness of flight situations for
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the flight control personnel.
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Figure 11.9: GTM responses: pitch 0(t), yaw ¢(t), and roll ¢(t) (case I1I).

Summary

In this chapter, the self-stabilization based damage detection scheme have been devel-
oped for the aircraft systems. When damage happens, the longitudinal and lateral-
directional dynamics are coupled. To capture such a feature, two detection models
have been established to estimate the decoupled and coupled parameters for the
healthy and damaged cases. To ensure the signal boundedness, the multivariable
state feedback for output tracking MRAC scheme has been applied to the aircraft
systems with damage. Simulation studies of the linearized and nonlinear GTM have
been conducted to show the performance of the proposed damage detection scheme

and the effectiveness of this linearization-based damage detection design.
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Figure 11.10: Control surface positions: elevator d.(t) and rudder d,.(t) (case III).
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Figure 11.11: Detector residuals Aeg)8 and Aeg?3 (case III).



Chapter 12

Feedback-Based Adaptive Sensor
Uncertainty Detection

In this chapter, an adaptive feedback-based stable fault detection scheme is developed
for linear time-invairant systems with sensor uncertainties and system parameter un-
certainties. A parametric sensor uncertainty model with additive faults and multi-
plicative faults is introduced. To employ the model-based fault detection method,
the sensor dynamics is derived. Based on the newly developed sensor dynamic mod-
els, a set of estimation model systems are established to estimate the sensor signals.
Unlike most fault detection schemes which operate under the assumption that all sys-
tem signals remain bounded under sensor uncertainty conditions, the adaptive sensor
detection scheme proposed in this chapter is integrated with an adaptive feedback
controller which is designed to ensure the desired signal boundedness requirement
needed for stable sensor uncertainty detection operation. By observing residuals be-
tween the sensor signals and the estimation model signals, the sensor uncertainty
can be detected and specific uncertainty patterns can be identified. Desired adaptive
sensor uncertainty detection performance is demonstrated in the simulation study for

a linearized longitudinal aircraft flight control system.
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12.1 Problem Statement
Consider a single-input and single-output (SISO) linear time-invariant system
x(t) = Az(t) + Bu(t), y(t) = Cx(t), (12.1.1)

where A € R, B € R™! and C € R, are unknown constant parameter
matrices, and z(t) € R", u(t) € R, and y(t) € R are system state, input, and output
signals. For feedback control designs, construction of the input signal u(t) is based on
sensor measurements of the state signal xz(¢) or the output signal y(¢). Performance
of the feedback control system can be deteriorated when there are uncertainties in

the sensor measurements.

Sensor uncertainty model. For the detection and compensation designs, a

sensor uncertainty model is given as

2(t) = ket "‘bez (12.1.2)

where ¢(t) is the actual signal to be measured, which can be the state z(¢) or output

y(t), ks > 0 and b;, i = 1,2,...,q, are some unknown constant sensor uncertainty
parameters, and f;(t),7 = 1,2,..., g, are known bounded signals with bounded deriva-

Remark 12.1.1. The sensor uncertainty modeling problem can be addressed by using
redundant sensors. We can use several sensors to measure the same signal p(t), and
take the weighted sum of the sensors’ output signals z;(t) as z(t) = > ", a;z(t), where
a; > 0,i=1,...,m, such that 3" o, = 1. When there is no uncertainty for all
the sensors, the summed sensor signal z(t) is the exact measured signal o(t). When
there are some sensor uncertainties, e.g., the i1,1s, ..., i,th sensors fail and generate

some random signals z;(t), the summed sensor signal is z(t) = asp(t) + ds(t), where
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O = D isivin. iy Qir and ds(t) = >0, o uzi(t). Since the indezes iy, ia, ..., 1,
are unknown, we may express ds(t) = > 5;Z;(t), where some of ; are zero (for the
unfailed sensors) while others are «;, and z; is accessible in the bias-uncertainty part

of the uncertainty model (12.1.2). O

Feedback-based uncertainty detection problem. Based on the sensor uncer-
tainty models (12.1.2), we will develop a model-based adaptive diagnosis scheme to
detect the modeled sensor uncertainty. More specifically, a set of state sensor detec-
tors and output sensor detectors are designed, which are a set of adaptive estimation
models to estimate the unknown parameters in the sensor uncertainty models. By
comparing residuals between the detection models and the sensor uncertainty models,

detection criteria can be derived to identify particular uncertainty scenarios.

Feedback uncertainty compensation problem. The construction of detec-
tion models requires that the control input signal u(t), the state sensor signal z,(t),
and the output sensor signal z,(t) are bounded. To ensure the signal boundedness re-
quirement, an adaptive feedback control law will be developed for the system (12.1.1)
to compensate the sensor uncertainty and make all the closed-loop signals bounded
including the signals u(t), z,(t), and z,(t).

Since the parameters ks and b;, © = 1,2,...,q;, of the state or output sensor
model (12.1.2) are unknown, the state signal x(¢) or the output signal y(¢) cannot be
retrieved from the sensor measurement z(t). To overcome this difficulty, we propose
to use sensor compensator signals Z(t) and §(t) from the sensor measurement z(t)
to construct an adaptive feedback control law u(t), which can make all the closed-
loop signals bounded and the plant output signal y(t) track a given reference signal

Ym(t) € R generated from a reference model system

Ym(t) = Win(s)[r] (1), (12.1.3)
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with 7(t) € R being a bounded reference input signal.
Assumptions. To proceed the control and detection scheme designs, for the
system (12.1.1):

y(t) = O(sI — A" Blu](t) = 1238 ] (t), (12.1.4)

where Z(s) = z,s™ + -+ - + 218 + 2z with z,, # 0 and P(s) is a monic polynomial of
degree n, we assume that (Al) Z(s) is a Hurwitz polynomial; (A2) the degree m of
Z(s) is known, and W,,(s) = #(S) where P, (s) is a Hurwitz polynomial of degree

n — m; (A3) the sign of z,, is known; (A4) (A, B, C) is controllable and observable.

12.2 Feedback-Based Sensor Uncertainty Detection
Scheme

In this section, we will present the detailed adaptive feedback-based sensor uncertainty
detection design. To develop the uncertainty detection scheme, dynamic models with

signals being the state sensor z,(t) and the output sensor z,(t) will be given first.
State sensor dynamic model. From the sensor uncertainty model (12.1.2), the
state sensor signal z,(t) is expressed as

2 (t) = Kpa(t) + 0L fa(t), (12.2.1)

where the unknown parameters K = diag{k,1,...,kmm}, OL = diag{6L,,...,0L 1}

with Gpei = [brits - - -5 buig,) T, and the signal f.(t) = [f5(¢),..., f2 (#)]7 with f(t) =

zl n

[feir()s o, faigg@®)]T, 4 = 1,...,n. In view of (12.2.1) and the system (12.1.1), we

have the state sensor dynamics as
Z(t) = Az, () + Bou(t) + O fu(t) + OL (1), (12.2.2)
where the unknown parameter matrices are given as

A, = K,AK;'B, = K,B,0T = ~K,AK,'6. (12.2.3)
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Output sensor parametric model. The output sensor with uncertainties is

given as
2y(t) = kyy(t) + 05, f, () (12.2.4)

where 0y, = [by1,...,by,)" and f,(t) = [fy1,.--, fyp]’. Operating both sides of the
transfer function (12.1.4) by a filter 1/A(s), where A(s) is a chosen stable and monic

polynomial of degree n, we can obtain

y(0) = Tl ) + =g i), (1225)
Substituting y(t) = 2,(t) — 22 £,(t) in (12.25), we have

2(t) = 0L ou(t)+07 0. (1) +05, £, (1) + ) 6] 6i(t), (12.2.6)

where the signals are

bu(t) = [w[u](t)a @[U] (), @[u](t)ﬁ

s s(n=1)
00) = [0 10, S oL
1 s s(n=1)

¢i(t) = [A(S)[yi](t),@[fyi](t),-~-,W[fyi](t)]T,

fori=1,...,p, and 6,, 0., and 6;, are the corresponding unknown parameters.

Signal boundedness. The uncertainty detector models will be developed based
on the dynamic models (12.2.2) and (12.2.6) with bounded signals. To ensure the

signal boundedness requirement, an adaptive control design will be applied.

12.2.1 Self-stabilization Feedback Control Design

Since the state sensors have uncertainties, a state sensor compensator will be used to

constructed the controller.
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State sensor compensator. From the state sensor uncertainty model (12.2.1),

the state signal z(t) can be retrieved as

z(t) = [21(1),. .., 2. ()] = O, (1), (12.2.7)
where ¥, (t) = 51, ¥5,]" with ¥ui(t) = (206, feir, -, faig,]” and the unknown
parameter O% is given as O = diag{6:T,0:7 ... 02T} with 07,, i = 1,...,n being

the corresponding unknown parameters. Since the parameter ©F is unknown, the

actual signal z(t) is not accessible. Thus, a sensor compensator is introduced:
#(t) = [21(0), .., (D] = OT () (2), (12.2.8)

where OT(t) = diag{6%,(t),0%,(t),..., 0L (t)} is the adaptively updated estimate of
the unknown parameter ©*7.

Controller structure.We choose the controller u(t) as
u(t) = K7 (8)a(t) + ka(t)r (1), (12.2.9)

where KX (t) = K{(t)©T(t) and ko(t) are the estimates of the unknown nominal
parameters K*7 = K;70*T and kj. The nominal parameters K; and kj satisfy the

following plant-model matching equations:

det(s] — A— BK;") = % kst =z (12.2.10)
Zm m

Closed-loop system. Substituting the controller signal (12.2.9) in the plant

(12.1.1) and applying the state signal model (12.2.7), we have the closed-loop system
i =(A+ BK:T)z + Bkir + BO"w, y=Cxz, (12.2.11)

where O(t) = O(t) — ©%,0(t) = [KT, k)T, 0% = [K:T, k3]", and w(t) = |

T TT]T.

x )

From the matching equation (12.2.10), if ©(t) = ©*, we have limy_, . (y(t)—ym(t)) = 0.
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That is, the controller (12.2.9) with nominal parameter ©* can make the output
track the reference output. However, ©* is unknown, we need to apply the controller
(12.2.9) with adaptively updated parameter ©(t).

To develop an adaptive law for the parameter ©(t), the output tracking error
information is needed. Since the output sensors have uncertainties, we cannot obtain
the exact output signal y(¢). An output sensor compensator g(t) is introduced to

estimate the output signal y(¢).

Output sensor compensator. From the output sensor uncertainty model (12.2.4),

we retrieve that

y(t) = 070, (1), (12.2.12)
where 0 = [0, 051, - -, l’,‘yp]T and 1, (t) = [2,(t), f,1(t), ..., fp(t)]" with 0y, = 1/k,
and 6, = —by;/ky, j =1,2,...,p; being unknown constant parameters. Then, the

output compensation signal g(t) is given as

g(t) = 0] (), (1), (12.2.13)

where 0, (t) is an estimate of the unknown parameter ¢;.

Compensation tracking error. We introduce a compensation output tracking

error signal as
e(t) = §(t) — ym(t) = e(t) + (4(t) — y(2)), (12.2.14)

where e(t) = y(t) — y,(t) is the actual output tracking error.
In view of the closed-loop system (12.2.11), the reference system (12.1.3), and the

matching condition (12.2.10), we have
&(t) = p Won(9)[O7w](1) + 0y (£)0, (2). (12.2.15)

where p* = z,, and ,(t) = 6, (t) — 0.
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Estimation error. We introduce an estimation error as
€(t) = é(t) + p(t)&(t), (12.2.16)
where p(t) is an estimate of the unknown p* and
£(t) = 01 (1)C(t) — Win(s)[0w](t), (12.2.17)

with ((t) = W,,(s)[w](t). Substituting (12.2.15) in (12.2.16), we have

é(t) = p 0T ()() + pOE() + by (1)1 (1), (12.2.18)

*

where p(t) = p(t) — p*.
Adaptive laws. With the estimation error model (12.2.18), adaptive laws for

O(t), p(t), and 6,(t) are chosen as

o) = —FSign(;’;gg(t)é(t), (12.2.19)
plt) = —%)égt), (12.2.20)
; Lyt (£)€(t)

0,(t) = BTN (12.2.21)

where é(t) is computed from (12.2.16), in which é(t) is computed from é(t) = O] ()1, (t)—

Ym(t), =TT >0and ', = Fg > 0 are adaptation gain matrices, and
m(t) = (1+ &) + T (H)C() + vy ()0, (1)

is a standard normalization signal.
The sensor uncertainty compensation scheme with the control law (12.2.9) up-
dated by the adaptive laws (12.2.19)-(12.2.21), when applied to the plant (12.1.1),

guarantees the closed-loop signal boundedness and asymptotic compensation output

tracking: limy o (9(t) — ym(t)) = 0.
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The convergence of the actual tracking error e(t) = y(t) — yn(t) to zero is under
investigation and it may need some additional conditions in the adaptive control
system, as similar to an adaptive observer case where the adaptive state estimation
error converges to zero under some persistent excitation conditions in the case when

(A, B) are unknown.

12.2.2 Sensor Uncertainty Detection Designs

Since the adaptive state feedback controller (12.2.9) with the adaptive laws (12.2.19)—
(12.2.21) can ensure the boundedness of the closed-loop signals, the bounded control
input signal u(t), state sensor signal z,(t), and output sensor signal z,(t) are used to
construct detector models. By observing residuals between the sensor signals (z,(t)
or z,(t)) and the corresponding detector model signals, we can determine whether

there exist sensor uncertainties.

12.2.2.1 State sensor uncertainty detection scheme

Based on the state sensor dynamic model (12.2.2), we start with design and analysis
of a benchmark detection model system which will be used to develop a bank of
detector model systems for different sensor uncertainty patterns.

Total uncertainty sensor estimation model. We introduce an estimation
model to estimate the unknown parameters in sensor dynamic model (12.2.2), which

is given as
i = Amzm + (A, — Ap)ze + Bou+ 07 f, + OF £, (12.2.22)

where A,, is a chosen stable matrix, and A,(t), B.(t), ©,(t), and ©p(t) are the
adaptive estimates of A., B., ©., and ©,, in the total uncertainty dynamic model

(12.2.2). From (12.2.2) and (12.2.22), we obtain the error dynamic system as

6y = Apey + A zy + Bou + éffx + ég;fx, (12.2.23)
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where 6x(t) = Zm(t) - Zx(t)> ;(z(t) = "?{z(t) - AZa gz(t) = gz(t) - BZa éz(t) =

(:)Z(t) - 0,, ébm(t) = (:)bm(t) — Oy,. Then, the adaptive laws are chosen as

A, = —TI'Pe,z", B, =-TyPe,u, (12.2.24)

x )

where I'; = I'T > 0,i = 1,2,3,4, P = PT > 0 satisfying PA,, + AL P = —Q with
Q=0T >0.
Since the proposed adaptive control law (12.2.9) ensures that z,(t) and u(t) are

bounded, we have

Proposition 12.2.1. Given that the signals zy(t), u(t), f.(t), and f,(t) are bounded,
the proposed estimation model system (12.2.22) with the adaptive laws (12.2.24)
and (12.2.25) ensures that z,(t), A.(t), B.(t), ©,(t), and Ou(t) are bounded, and
limy o0 €4 (1) = limy o0 (2 (t) —22(t)) = 0, when z,(t) is of the total sensor uncertainty

pattern (12.2.1).
The proof of this result is standard. Consider a positive definite function
V = el'Pe, +tr[ATT'A,] + [BIT;'B.]
+tr[0,05107] + tr[0y,I'; 161 ). (12.2.26)
From the adaptive laws (12.2.24) and (12.2.25), we obtain its time-derivative as
V = —el(1)Qe,(t) < 0. (12.2.27)

Then, the properties in Proposition 12.2.1 can be derived.

The above estimation model is designed for the general uncertainty signal ©F f,(¢)
in the state sensor model (12.2.1). For a specific situation, some of the terms 07 . f,.(t)
may be not in the sensor uncertainty model (12.2.1), that is the corresponding pa-

rameter 0,,; = 0. To identify the specific sensor uncertainty patterns, some partial
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sensor uncertainty estimation model system will be designed. A special one is for
the case when no sensor bias uncertainty is present, i.e. O f,(t) = 0 in the sensor

uncertainty model (12.2.1).

Bias-uncertainty free sensor estimation model. The sensor dynamic model

without bias-uncertainties is given as
Z:(t) = A,z (t) + B,u(t). (12.2.28)

Based on (12.2.28), we design a bias-uncertainty free sensor estimation model:

~

i) = Az () + (AL (1) — An) 2 (t) + B.(t)u(t), (12.2.29)

where A.(t) and B,(t) are updated from the adaptive laws in (12.2.24). This es-
timation model has similar properties to that in Proposition 12.2.1, in particular,
limy o0 (2 (t) —22(t)) = 0, for the bias-uncertainty free sensor dynamic model (12.2.28).
On the other hand, when the sensor has bias-uncertainties such as the model (12.2.2),
the tracking property may not hold, that is z,,(t) — 2z,(t) does not converge to 0.

Therefore, the bias-uncertainty free sensor output estimation model can be used
to detect the sensor bias-uncertainties. The detection criterion is that if z,,(¢) from
the bias-uncertainty free estimation model (12.2.29) cannot track the state sensor
signal z,(t), the state sensors have bias-uncertainties.

To identify which state sensor has bias-uncertainty, we need to design a bank of

uncertainty-specific sensor output estimation model systems.
Uncertainty-specific sensor estimation models. The bias-uncertainty model
in (12.2.1):
Opefo(t) = [y for (1), O a2 () - O, fan (8] (12.2.30)
contains all possible cases of sensor uncertainties with 6,,; = 0 or not. To identify and

isolate some uncertainty patterns where a part of the state sensors do not have bias-
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uncertainty, i.e. Gp; = 0, for i = jy, 7o, .., Jk with {j1,72,...,Jk} C {1,2,...,n},
while others have bias-uncertainty, we need to construct some estimation models to
ensure that the error e,(t) = z,,(t) — 2z,(t) converges to zero only when z,(t) is of the
specific uncertainty patterns.

Then, we will give an illustrative design to isolate the uncertainty pattern where
Opeo # 0, Oppy # 0, and Oy,; = 0, for : = 1,3,5,6,...,n, i.e. only the 2nd and the 4th
sensors have bias-uncertainties. For this particular uncertain sensor signal z,(t), we

have

O fo(t) = [0, 0,2 f22(1), 0, O304 f2a (1), 0, ..., O] (12.2.31)

Then the state sensor dynamics (12.2.2) becomes

L) = Acz(t) + Bou(t) + ©L foo () + O, fra(t)

+[0, 65, foa (), 0,0L , f2a(1),0,...,0]%, (12.2.32)

where O, = a0 , with ay being the second column of —K,AK_ ! and ©7, = a,0] ,
with a4 being the fourth column of —K,AK_'. Based on (12.2.32), we choose the

estimation model as

Z2m = AmzZm + (ﬁz — Az + f?zu +@ZTgfx2 + @§4fx4

H0, 0L, f12,0,0F , f4,0, ..., 0]% (12.2.33)
We obtain the error dynamics from (12.2.32) and (12.2.33) as

éx - Am@x + AVZZZ‘ + EZU—FéZQfo + éZ4fx4

H07élg;2fx2707§g;4fx4707- . -70]T7 (12234)

where ézz = @zi - ®zz and ébm‘ = ébm’ - Hbm" for i = 2,4
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The adaptive laws for fAlz and EZ are chosen as (12.2.24), and the adaptive laws

for (:)ZZ- and Oy (1 = 2,4) are chosen as

=T =T
O,y = —IsPerfl, O, =-TcPe.f, (12.2.35)
Oy = —Tipseafly, Ofy=—Tsple.fl, (12.2.36)

where I'; = I'T > 0,4 = 5,6,7,8, P = PT > 0 satisfying PA,, + AT P = —Q with
Q=Q" >0, and p;,i = 2,4, is the ith column of P.

Similar with Proposition 12.2.1, the residual converges to 0: lim; oo (2, — 2z) =0
when the bias-uncertainty pattern is OF f.(t) = [0, 0L, fs2(%),0,0L , f24(1),0,...,0]%.
Then, we have the following detection criteria.

If the residual e, = z,, — z, converges to zero, where z,, is from the estimation
model (12.2.33), we can obtain that there exist three possible patterns for the sensor

Zr = [Z:cb Zx2y vy Z:cn]T'

(i) all the state sensors z,; do not have the bias-uncertainty terms;

(i) either z. has the bias-uncertainty term 67 , f.o or z;4 has the bias-uncertainty

term 912;:4.]0 x4
(iii) both z9 and 2,4 have bias-uncertainty terms.

To further isolate the sensor uncertainty pattern, we need to observe the residuals e,
obtained from the bias-uncertainty free estimation model (12.2.29) and the estimation
models corresponding to the sensor uncertainty patterns: OL f, = [0,0L, f.2,0,...,0]"
and OF f.(t) =[0,0,0,0L ,f.4,0,...,0]7 respectively. The isolation of particular un-

certainty patterns will be shown in the simulation.
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12.2.2.2 QOutput sensor uncertainty detection scheme

Since the system only has one output signal, we only detect whether the output
sensor has bias-uncertainty. Based on the output sensor model (12.2.6), we have the

following design.

Total uncertainty estimation model. We introduce an estimation model sys-

tem to estimate the parameters in (12.2.6):
A~ A A, p A~
2y =006, + 076, + 00 f,+> 07y, (12.2.37)
i=1

where ,(t), 0.(t), 6,;(t), and 6;(t), i = 1,...,p are the estimates of corresponding

unknown parameters. Then, the estimation error e, (t) = 2,(t) — 2,(t) is obtained as
~ ~ ~, p ~
ey = 00 by + 070 + 050 f, + > 0] s, (12.2.38)
i=1

where éu(t), éz(t), ébf(t), and él(t) for i = 1,2,...,p, are the parameter errors. We

choose the adaptive laws as

A Luoue, 5 I'.¢.e,

0, = — - 0, =— 3 (12.2.39)

5 Lyroprey, 4 Lyigie

Oy = ——LH Y g =— Y 12.2.40

by ) T ( )
where I'y, I';, Iy, and I'y;,4 = 1,2,...,p, are positive definite and symmetric gain

matrices, and
p
m(t) = (1+ ¢y éu + &L b + by + > b1 6:)'>.
i=1

Proposition 12.2.2. Given that the signals z,(t), u(t), f,(t), and f,(t) are bounded,
the proposed estimation model system (12.2.87) with the adaptive laws (12.2.39)-
(12.2.40) ensures that limy_,o €,(t) = limy_,o0(2,(t) — 2,(t)) = 0, when z,(t) is of the

total sensor uncertainty pattern (12.2.6).
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Bias-uncertainty free sensor estimation model. The above estimation model
(12.2.37) is based on the total sensor uncertainty pattern (12.2.6). To detect the no

bias-uncertainty case, i.e. z,(t) = k,y(t), we build the estimation model as

2,(t) = 0% (D pu(t) + 07 (1)6-(0), (12.2.41)

where 6,,(t) and 6, (t) are updated from the adaptive laws in (12.2.39). This estimation
model has similar properties to that in Proposition 2, which is limy_,o. (2, (t) —2,(t)) =
0, for the case when 6], f,(t) = 0 in the sensor model (12.2.4). When there is bias-
uncertainty, the tracking property may not hold, that is lim, ,.(2,(t) — z,(t)) # 0.
Thus, the detection criterion is that if Z,(¢) from the bias-uncertainty free estimation
model (12.2.41) cannot track the output sensor signal z,(t), the output sensor has

bias-uncertainty.

12.3 Simulation Study

In this simulation study, we consider a linearized aircraft longitudinal dynamic model

with sensor uncertainties and system parameter uncertainties.

Longitudinal aircraft model. The linearized aircraft longitudinal model can
be described as

i(t) = Az(t) + Bu(t), y(t) = Cx(t), (12.3.1)

with state and input variables: x = [uy, wy, @y, 0]7 and u = d,., where u; and w, are the
body-axis velocity components of the origin of the body-axis frame whose units are
ft /sec, gy is the body-axis component of the angular velocity whose unit is deg/sec, 6
is the Euler pitch angle whose unit is degree, and d. is the elevator angular position
whose unit is degree.

In this study, we choose the pitch angle 6(t) as the output signal y(t), so the
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matrix C' is given as

C=[000 1]. (12.3.2)

Although the parameters in A and B have uncertainties, the structures can be ob-

tained from the generic aircraft dynamics, which are given as

a11 Q2 aiz Qa4 b

A | G2 G a2 ax B= ba1 ) (12.3.3)
agr Gzz A33 0 ba1
0 0 1 0 0

Sensor uncertainty models. We consider a state sensor uncertainty model

Zml(t> = I (t), ng(t) = kaxQ(t> + bxlsin(t),

ng(t> = Ig(t), Zm4(t) = kx4x4(t) + bx4sm(2t), (1234)

where only the 2nd and 4th state sensors have bias-uncertainties. Since the state

signal x4 = 6 is the output signal, the sensor z,4 is also used as an output sensor.

Verification of control design conditions. From the structure information
(12.3.2) and (12.3.3), we can obtain that the system is controllable and observable,
the degree of Z(s) in (12.1.4) is m = 2 and z,, = b3;. Based on the physical meaning
of the parameter bs;, which is a control gain from elevator to pitch acceleration, we
have b3; < 0, that is sign(z,) = sign(bs;) = —1. The minimum phase condition
(A1) can be verified by the numerical values of A and B, which are used to build the
simulation system.

Since the design conditions hold for the aircraft flight system, we apply the pro-
posed adaptive controller (12.2.9) to the longitudinal aircraft model (12.3.1) with
sensor uncertainties (12.3.4) to ensure the closed-loop signal boundedness. Then, we

can use the sensor estimation models to detect and identify the sensor uncertainties.

Simulation results of uncertainty detection. Since the state sensor for pitch
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angle 6 is also used as the output sensor, in this simulation study, we only consider
the state sensor uncertainty detection problem.
To detect the sensor uncertainties of (12.3.4) and also identify that only the 2nd

and 4th sensors have bias-uncertainties, we observe four sensor estimation models:

(i) bias-uncertainty free sensor estimation model (12.2.29);

(ii) uncertainty-specific sensor estimation model (12.2.33) for the case when O] f,.(t)

[O> 9!3;2fx2(t)> 0’ 9£4fx4(t)]T;

(iii) uncertainty-specific sensor estimation model (12.2.33) for the case when OL f, ()

[0, 0542 f22(t), 0, 0]

(iv) uncertainty-specific sensor estimation model (12.2.33) for the case when OF f,(¢)

[O> 0’ O> 9£4fx4(t)]T'

Fig. 12.1 shows the residual e,(t) = z,,(t) — z,(t) obtained from the estimation
model (i), which does not converge to zero. From Fig. 12.1, we can see that there
exist uncertainties in the state sensors. Fig. 12.2 shows the residual e,(t) obtained
from the estimation model (ii), which converges to zero, which means that there are
uncertainties in the 2nd state sensor or the 4th state sensor. Since the residual e, (t)
in Fig. 12.3 obtained from the estimation model (iii) and the residual e,(¢) in Fig.
12.4 obtained from the estimation model (iv) do not converge to zero, we can conclude

that both the 2nd and 4th sensors have bias-uncertainties.

Summary

This chapter addressed the design, analysis and evaluation of the adaptive feedback-
based sensor uncertainty detection scheme. The sensor dynamics has been derived

based on the parametric sensor uncertainty model, and a set of sensor estimation
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Figure 12.1: Residual e,(t) = 2,,(t) — 2z,(t) for the estimation model (i).
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Figure 12.2: Residual e,(t) = z,(t) — z,(t) for the estimation model (ii).
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Figure 12.3: Residual e,(t) = z,,(t) — z,(t) for the estimation model (iii).
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Figure 12.4: Residual e,(t) = z,(t) — 2.(t) for the estimation model (iv).
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model systems have been constructed to estimate the uncertain sensor signals. To
ensure the signal boundedness requirement of the estimation model, the adaptive
feedback control design has been applied to the system with the sensor uncertainty.
By comparing the estimation model signals with the sensor signals, we can determine
whether there are sensor uncertainties or not, and the uncertainty patterns can also be
identified. The simulation study of the linearized longitudinal aircraft system showed

the effectiveness of the proposed feedback-based sensor uncertainty design.



Chapter 13

Conclusions

This research mainly focus on development of adaptive fault-tolerant control and
fault detection designs for multi-input and multi-output systems under damage and
component failure conditions with applications to the nonlinear aircraft flight system.
For the fault-tolerant adaptive control, it has been shown that the essential condi-
tion for multivariable model reference adaptive control designs, namely, the infinite
zero structure, can remain invariant under failure and damage conditions. Under
such an invariant property, state feedback and output feedback for output tracking
designs can be developed to compensate damage and failures. Equipped with the
feedback adaptive fault-tolerant control, bounded control input signals and system
state signals are used to construct adaptive detector models based on system models
under different damage and failure patterns to identify and isolate the fault condi-
tions. Thorough evaluation studies of the nonlinear NASA generic transport model
have been conducted to show the effectiveness of the developed linearization-based
adaptive fault-tolerant control and fault detection schemes for the nonlinear system
around the neighborhood of the chosen operating points. The detailed research topics

included in this dissertation are concluded as follows:

e Multivariable state feedback for output tracking MRAC of MIMO systems under
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parametric uncertainties with application to the GTM (Chapter 3).

e Adaptive structural damage compensation design using multivariable state feed-

back for output tracking MRAC with application to the GTM (Chapter 4).

e Adaptive simultaneous actuator failure and structural damage compensation
design using multivariable output feedback for output tracking MRAC with

application to the GTM (Chapter 5).

e Adaptive sensor failure compensation design using multivariable state feedback

for output tracking MRAC with application to the GTM (Chapter 6).

e Discrete-time multivariable adaptive control design for damage compensation

of nonlinear systems with application to the GTM (Chapter 7).

e Adaptive output feedback actuator nonlinearity compensation design with ap-

plications to aircraft systems using synthetic jet actuators (Chapter 8).

e Adaptive state feedback disturbance rejection for MIMO linear time-invariant
systems and adaptive output feedback disturbance rejection for MIMO piecewise

linear systems (Chapter 9 and Chapter 10).

e Feedback-based adaptive structural damage detection and sensor uncertainty

detection designs with applications to the GTM (Chapter 11 and Chapter 12).

For our future research, we may focus on expanding the operation regions of such
linearization-based adaptive fault-tolerant control designs for the nonlinear systems.
A possible method is to approximate the nonlinear system as a global linear time-
varying model constructed by linearizing the nonlinear system at different operat-
ing points with some continuous indicator functions for more precise approximation
(which may be different from the piecewise linear system models in Chapter 10), then

develop adaptive fault-tolerant control designs based on such a global linear model.
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