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Abstract

The wide implementation of electronic health record (EHR) systems facilitates the

collection of large scale health data from real clinical settings. Despite the signif-

icant increase in adoption of EHR systems, this data remains largely unexplored,

but presents a rich data source for knowledge discovery from patient health histories

in tasks such as understanding disease correlations and predicting health outcomes.

However, the heterogeneity, sparsity, noise, and bias in this data present many com-

plex challenges. This complexity makes it di�cult to translate the potentially relevant

information into machine learning algorithms.

To that end, this research provides contributions to the interpretable representa-

tion of complex, sparse, high-dimensional data comprised of various medical events,

such as diagnoses, medications and procedures. The goal of this dissertation is to

propose new computational frameworks for representing longitudinal EHR data for

improved patient characterization and developing optimized predictive models. To

illustrate the utility of the proposed frameworks, the designed algorithms will be

applied to a variety of risk prediction problems including the early detection of dia-

betes, comorbid risk prediction of chronic diseases, and prediction of hospitalization.

Furthermore, the designed algorithms are evaluated against other state-of-the-art rep-

resentation approaches, and the learned representations are visualized and interpreted

to deepen clinical sights. In addition to assisting clinical decision making, the meth-

ods proposed in this research could be applied to other complex temporal knowledge
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representation tasks within and outside the healthcare domain.

iv



Acknowledgements

It is a great pleasure to thank my committee members for their time and support.

First, I would like to express my sincere gratitude to my advisor, Dr. Laura Barnes,

for her constant encouragement and guidance throughout my study at UVa. Without

her support, I wouldn’t be able to complete this dissertation. Also, I would like to

thank my committee members Dr. Donald Brown and Dr. Stephen Patek for their

advice and help on my graduate study. Their wisdom and attitude inspire me greatly

in my research. In addition, I would like to thank Dr. James Harrison, Dr. Jennifer

Lobo, and Dr. Christopher Moore for their guidance on my projects that have greatly

deepened my understanding and interests in this area.

Most importantly, I would like to express my deepest appreciation to my parents

and sisters for their persistent encouragement, support, and confidence on me. I

appreciate everything they have done for me and I would not be where I am without

them. It is their great love to me that have enlightened every moment of my life. I

am so fortunate to have such a great family and they are my greatest motivation to

pursue my dreams.

Finally, I would like to thank my dear friends. I will always remember our true

friendship and the good times and laughs that we have shared. Special thanks to all

the people that have helped me during my Ph.D. study.

v



To my beloved family

vi



Table of Contents

List of Tables x

List of Figures xi

Abbreviations xiii

1 Introduction 1

1.1 Utilization of EHR Data in Clinical Decision Support . . . . . . . . . 1

1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Literature Review 8

2.1 Data Representation in Natural Language Processing . . . . . . . . . 8

2.1.1 Frequency-based Embedding: TF-IDF . . . . . . . . . . . . . 9

2.1.2 Prediction-based Embedding: Word2Vec . . . . . . . . . . . . 10

2.2 Data Representation of EHR Data . . . . . . . . . . . . . . . . . . . 12

2.2.1 Aggregated Frequency Vector . . . . . . . . . . . . . . . . . . 12

2.2.2 Bag-of-Pattern in Sequences . . . . . . . . . . . . . . . . . . . 13

2.2.3 Other Advanced Representations . . . . . . . . . . . . . . . . 13

2.3 Predictive Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

vii



2.3.1 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.3 Multilayer Perceptron . . . . . . . . . . . . . . . . . . . . . . 18

2.3.4 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 SLR: A Sparse Longitudinal Representation of Electronic Health

Record Data 25

3.1 SLR System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 SLR Representation Learning Algorithm . . . . . . . . . . . . . . . . 27

3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.2 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.4 Visualization & Interpretation . . . . . . . . . . . . . . . . . . 40

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 WB-SLR: Weighted Bagging of Sparse Longitudinal Representation

of Electronic Health Record Data 47

4.1 WB-SLR System Model . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 WB-SLR Representation Learning Algorithm . . . . . . . . . . . . . 49

4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.2 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.4 Visualization & Interpretation . . . . . . . . . . . . . . . . . . 58

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

viii



5 Patient2Vec: A Personalized Interpretable Deep Representation of

Longitudinal Electronic Health Record Data 66

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Patient2Vec System Model . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Patient2Vec Representation Learning Algorithm . . . . . . . . . . . . 77

5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5.2 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . 83

5.5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 87

5.5.4 Visualization & Interpretation . . . . . . . . . . . . . . . . . . 88

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Conclusions & Future Directions 97

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

ix



List of Tables

2.1 The pairwise transition matrix of patient x . . . . . . . . . . . . . . . 14

3.1 The preliminary vector representation x

i

of Patient i . . . . . . . . . 28

3.2 The preliminarily selected diagnoses for the early detection of diabetes 36

3.3 The predictive performance of baselines and the proposed SLR framework 38

4.1 The preliminarily selected diagnoses for the early detection of chronic

kidney disease (CKD) in diabetic patients . . . . . . . . . . . . . . . 54

4.2 The predictive performance of baselines and the proposed WB-SLR

framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 The predictive performance of WB-SLR framework on the early detec-

tion of diabetes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Diagnoses positively correlated with prediction outcome in at least one

third of SLR models . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 The predictive performance of baselines and the proposed Patient2Vec

framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 The top clinical groups with high weights in hospitalized patients . . 93

5.3 The top diagnosis groups with high weights in patients hospitalized for

osteoarthritis, septicemia, acute myocardial infarction, congestive heart

failure, and diabetes mellitus with complications, respectively . . . . . 95

x



List of Figures

2.1 The skip-gram model for vector representation of medical codes [1] . . 11

2.2 The structure of a multilayer perceptron (MLP) with two hidden layers 19

2.3 The structure of a deep neural network (DNN) [2] . . . . . . . . . . . 21

2.4 The structure of a convolutional neural network (CNN) [3] . . . . . . 22

2.5 A recurrent neural network (RNN) and its unfolding in time [4] . . . 24

3.1 An example of a patient’s profile in EHR systems . . . . . . . . . . . 26

3.2 The SLR representation learning framework . . . . . . . . . . . . . . 26

3.3 The EHR data of an example patient and the construction of time

windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 A graphical illustration of the age distribution of diabetic patients . . 34

3.5 A graphical illustration of the experimental setting for the early detec-

tion of diabetes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Numbers of features selected by SLR with di↵erent regularization strengths 39

3.7 The predictive performance with features selected by SLR with di↵er-

ent regularization strengths . . . . . . . . . . . . . . . . . . . . . . . 41

3.8 Selected features by SLR and their correlations to the first diagnosis

of diabetes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.9 The medical history of an example diabetic patient . . . . . . . . . . 44

3.10 The medical history of a second example diabetic patient . . . . . . . 45

xi



4.1 The WB-SLR representation learning framework . . . . . . . . . . . . 48

4.2 A graphical illustration of the experimental setting for the comorbid

risk prediction of CKD in diabetic patients . . . . . . . . . . . . . . . 55

4.3 The set of selected features with highest weight in the WB-SLR frame-

work and their correlations to CKD in diabetic patients . . . . . . . . 59

4.4 The medical history of an example diabetic patient who developed

CKD later . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 The medical history of an example diabetic patient without CKD in

the record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1 The GRU gating [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 The global attention model [6] . . . . . . . . . . . . . . . . . . . . . . 72

5.3 The Patient2Vec representation learning framework . . . . . . . . . . 75

5.4 A graphical illustration of the network in the Patient2Vec representa-

tion learning framework . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 A graphical illustration of the experimental setting for the risk predic-

tion of hospitalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.6 The cumulative histogram and density plot of patients’ numbers of visits 84

5.7 The profile of Patient A . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.8 The profile of Patient B . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.9 The heat map showing feature importance for Patient A . . . . . . . 90

5.10 The heat map showing feature importance for Patient B . . . . . . . 91

xii



Abbreviations

AFV Aggregated frequency vector

AHRQ Agency for healthcare research and quality

ATV Aggregated transition vector

AUC Area under curve

BiRNN-MGE Bidirectional RNN with medical group embedding

BiRNN-MVE Bidirectional RNN with medical vector embedding

BPS Bag-of-pattern in sequences

CBOW Continuous bag-of-words

CDC Centers for disease control and prevention

CDR Clinical database repository

CKD Chronic kidney disease

CNN Convolutional neural network

CPT Current procedural terminology

DNN Deep neural network

EHR Electronic health record

ESRF End stage renal failure

FRNN-MGE Froward RNN with medical group embedding

FRNN-MVE Forward RNN with medical vector embedding

GBT Gradient boosting trees

GDP Gross domestic product

xiii



GSP Generalized sequential pattern

GRU Gated recurrent unit

ICD-9 International classification of diseases, ninth version

ICD-10 International classification of diseases, tenth version

ICU Intensive care unit

LR Logistic regression

LSTM Long short term memory

MLP Multilayer perceptron

NLP Natural language processing

OOB Out-of-bag

RF Random forest

RNN Recurrent neural network

TEMR Temporal event matrix representation

TF-IDF Term frequency - inverted document frequency

xiv



Chapter 1

Introduction

Electronic health systems have been widely implemented in the United States and

across the world [7]. The availability of tremendous health data provides promising

opportunities for public health research. In particular, electronic health record (EHR)

data have become very popular in clinical decision support systems, such as predictive

modeling of health outcomes. However, many challenges exist when utilizing EHR

data for such tasks. In this chapter, we introduce the utilization of EHR data in

predictive modeling and its challenges. Then, we define the research problems and

the data used in this work briefly.

1.1 Utilization of EHR Data in Clinical Decision Support

Rich EHR data can facilitate clinical research in understanding disease correlations

and detecting health outcomes in advance, where machine learning plays an impor-

tant role in this process. In particular, predictive models have been applied to help

with decision-making in many medical domains. These include the prediction of

breast cancer, type 2 diabetes, cardiovascular disease, and mortality for critically-ill

hospitalized adults to name a few [8–11]. According to the model output, a high-risk

patient will be referred to intensive interventions and monitoring (e.g., screening and
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counseling) to prevent adverse outcomes. These models have the potential to reduce

the mortality rates and improve the quality of life of high-risk patients and control

cost and complications for low-risk patients [12]. Notably, predictive models have

become vital tools to assist with medical decision-making and can bring benefits to

both healthcare providers and patients.

Predictive modeling of health outcomes can be treated as a classification prob-

lem in which many well-established classifiers are actively used in this arena, such

as logistic regression and random forest. In [13], researchers studied the cardiovascu-

lar risk prediction problem using comprehensive EHR data, in which a few popular

machine learning approaches are adopted, including logistic regression, generalized

additive models, and gradient boosting trees. The experimental results demonstrate

an improvement in predictive performance when compared to traditional clinical scor-

ing systems. This and other similar research in applying machine learning methods

to large healthcare datasets have demonstrated great potential in advancing clinical

care.

1.2 Challenges

The wide implementation of electronic health systems has a great research potential

for understanding unknown disease correlations and for better characterization of

patients. However, it is generally very challenging to analyze EHR data for a variety

of reasons, presented as follows [14,15]:

• Complexity: EHR data are generally high-dimensional and sparse, and contain

information collected from multiple sources, which makes it hard to integrate

them into a universal feature space while preserving all useful information. In

addition to single clinical events, there are multivariate and nested sequences

stored in EHR systems, and it is di�cult for machines to understand the pat-
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terns.

• Heterogeneity: EHR systems store huge amounts of health histories of many pa-

tients, whose characteristics and medical conditions could be very diverse from

each other. The heterogeneity in patients’ medical histories and characteris-

tics brings another challenge to analytical tools for clinical decision support.

Apart from the heterogeneity between patients, there is also a fairly high level

of variation in clinicians’ practices. For instance, if a diabetic patient visits a

physician for an acute condition unrelated to the chronic disease, the physician

might code diabetes in the electronic record for this patient or not. In addition,

a patient with chronic diseases might schedule a regular doctor visit every 30

days while a similar patient might have a doctor visit every 45 days. These

heterogeneities make it challenging to mine EHR data.

• Interpretability: Physicians make clinical decisions based on precise knowledge

of the patients’ health conditions, medical histories, and other characteristics.

Patterns learned by machine learning methods from EHR databases provide

supplemental or even unknown knowledge to support the decision making.

Thus, in addition to improving clinical decision support, it requires the patterns

discovered by machines to be interpretable to humans for further validation and

knowledge discovery.

• Time-invariance: Patients’ medical histories are not aligned in absolute time.

Thus, representations that capture information in relative time perspective are

needed for further modeling.

• Scalability: EHR systems store medical histories from heterogeneous data sources

of large numbers of patients; patients with chronic conditions can have very

complex and long histories. This aspect contributes to the large scale data

3



contained in the EHR database, and ultimately requires e�cient computational

methods for analysis.

Hence, EHR data is complex and cannot be readily utilized in machine learning

methods. This makes it a challenging task to extract useful information for further

modeling and analytics.

1.3 Problem Definition

Although the large scale data from EHR systems has great potential to support

clinical care and to discover unknown disease correlations, its complexity poses many

challenges in utilizing this data for health analytics. Thus, the objective of this

research is to develop representation learning frameworks for longitudinal EHR data

to facilitate further analytics on patient characterization and prediction of health

outcomes. Formally, representation learning is learning representations of the data

that make it easier to extract useful information when building classifiers or other

predictors [16].

In this research, we focus on addressing five problems in developing the represen-

tation learning frameworks.

• Temporal Information: A patient’s medical history is expressed as multiple

visits with distinct time stamps and clinical events, including the diagnoses,

prescribed medications and procedures, etc. Overall, a patient’s medical history

in EHR data is a nested sequence of events with implicit temporal relationships

between events. Thus, an e↵ective representation of a patient’s EHR data needs

to capture the temporal information as well.

• High-dimensionality and Sparsity: Patients’ clinical conditions and events that

occur during visits are heterogeneous, resulting in a very high-dimensional fea-

ture space. For instance, there are 14, 000 ICD-9 diagnosis codes and 68, 000
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ICD-10 diagnosis codes. In the meantime, each patient has a very small portion

of events occurring in the medical history such that the feature space is very

sparse.

• Predictive Modeling: Predictive modeling plays an increasingly important role

in supporting clinical decision making, where early warning systems based on

predictive modeling have been beneficial to both health care providers and

patients. Thus, one of the aims of this research is to develop representation

learning frameworks to better support predictive modeling of diseases or health

outcomes of interest.

• Interpretation: Clinical decision making relies on precise knowledge of patient’s

medical condition and characteristics. Thus, a representation interpretable by

a human is more desirable from two perspectives. First, it can deepen clinical

insights that were previously unknown and could be used by clinicians to assist

health and medical research. Second, the knowledge learned by mining EHR

data can be evaluated by human experts to validate its utility.

• Personalization: Health care systems have experienced many changes over the

past few decades. Access to a tremendous amount of health data and revolu-

tionary discoveries in the medical world has promoted the demand and interest

in personalized health care [17]. Although personalized medicine has been stud-

ied extensively in genetics research, little work has been conducted to help with

personalized clinical decision making via mining EHR data [18, 19].

In fact, in the prediction of certain health outcomes or in clinical decision mak-

ing, it is very likely that a particular clinical event is of great importance for

one group of patients, but not for another group. Furthermore, the relative

importance of clinical events in one patient’s medical history is most likely dis-

tinct from that of a di↵erent patient. Thus, one of the aims of this research is
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to learn a personalized representation for each patient to provide more accurate

prediction of health outcomes and a better understanding of a patient’s medical

history, which can ultimately help with the delivery of personalized medicine.

In brief, this research aims to develop novel representation learning frameworks

for longitudinal EHR data that can capture temporal relationships between clinical

events, cope with the high-dimensionality and sparsity in the data, and help improve

the performance of predictions on diseases and health outcomes. Finally, the learned

representation is interpretable to allow further validation and to bring meaningful

clinical insights.

1.4 Data

This research uses the EHR data from the University of Virginia (UVA) Clinical

Database Repository (CDR), which is a de-identified data warehouse managed by the

Division of Biomedical Informatics in the Department of Public Health Sciences [20].

This CDR contains information of all patient encounters in the UVA Health Sys-

tem, including limited patient demographics, such as age and sex, and inpatient and

outpatient visit details with diagnoses, procedures, and medications. The diagnoses

are coded primarily in the International Classification of Diseases, Ninth Version

(ICD-9), and a small portion are in the Tenth Version (ICD-10) format [21,22]. The

procedures are primarily coded in the Current Procedural Terminology (CPT) and

some are in ICD-9 [21, 23]. This research is based on 75 months of data beginning

in September 2010, including 2, 343, 651 encounters of 473, 915 distinct patients. On

average, each patient has 4.95 visits during this time period.
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1.5 Dissertation Overview

In this research, novel computational frameworks are proposed to learn e↵ective and

interpretable representations of patients’ medical histories from a longitudinal EHR

database. The rest of the dissertation is organized as follows.

Chapter 2 discusses related work on data representation and representation learn-

ing approaches. First, we review the commonly used and state-of-the-art representa-

tion in general, particularly in natural language processing (NLP), such as TF-IDF,

and Word2Vec. Then, representation learning approaches for EHR data are summa-

rized. We also provide an overview of popular classification models which are used

for further predictive modeling to evaluate the proposed frameworks.

Chapters 3 to 5 present three computational representation learning frameworks

to address the challenges in utilizing longitudinal EHR data. A general overview

and the detailed algorithms are provided for each designed framework. Then, the

proposed methods are evaluated with three prediction problems, respectively, using

EHR data from real clinical settings. The performance of the models are compared

with popular representation baselines. Additionally, the learned representations are

visualized and interpreted to bring clinical insights.

Finally, this dissertation is concluded with a summary of the contributions of this

research and a discussion on future directions in Chapter 6.
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Chapter 2

Literature Review

In this chapter, we review the state-of-the-art data representations in general and

for EHR data. First, we summarize the previous studies on representation learning,

including feature vectors, graphs, and distributed representation, especially in natural

language processing. Second, we focus on the data representation employed for EHR

data. Finally, we describe popular classification models which are used for predictive

modeling with the learned representations in the healthcare domain.

2.1 Data Representation in Natural Language Processing

The EHR data containing clinical events is similar to text documents with words in

natural language processing (NLP) domain. Thus, the data representation approaches

used for texts could be potentially used for EHR data representation. There are

two types of word embeddings — frequency-based embedding and prediction-based

embedding. In this section, we present a popular representation learning method for

text data in each of the above categories, respectively.
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2.1.1 Frequency-based Embedding: TF-IDF

TF-IDF is a classic representation approach for text data, and it is the most well-

known document representation schema in information retrieval. In general, TF-IDF

is a term-weighting scheme according to its importance in a document indicated by the

statistics of occurrence of the term [24]. TF-IDF consists of two parts: TF is short for

term frequency and IDF is inverted document frequency. Here, the frequency count

of term t in document d is denoted as tf(t, d). Usually, TF is normalized due to the

variation in document lengths and repeated occurrences. A popular TF normalization

method is sublinear TF scaling, which normalizes TF by the most frequent term in

the document, as presented in Equation 2.1.

TF (t, d) =

8
>><

>>:

↵ + (1� ↵) tf(t,d)
maxttf(t,d)

tf(t, d) > 0

0 otherwise

(2.1)

IDF assigns higher weights to rare terms since terms occurring in fewer documents

are more discriminative. Equation 2.2 shows the formula to calculate IDF.

IDF (t) = 1 + log(
N

df(t)
) (2.2)

where N is the total number of documents in the corpus and df(t) is the counts of doc-

uments containing term t. Straightforwardly, TF-IDF weighting is the combination

of TF and IDF, as shown in Equation 2.3 [25].

w(t, d) = TF (t, d)⇥ IDF (t) (2.3)

Thus, a document d is represented by a vector v(d) and each dimension corre-

sponds to a distinct term t with value w(t, d).

TF-IDF is based on the idea of bag-of-words and it is a very intuitive method,
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which has been demonstrated to be empirically e↵ective and easy to implement.

However, it has ignored the ordering between terms in a document and assumes term

independence [24].

2.1.2 Prediction-based Embedding: Word2Vec

Bag-of-words representation ignores the ordering of words and fails to capture much

of the semantics. Additionally, the vocabulary size is usually very large such that

bag-of-words methods always result in a very high-dimensional and sparse vector

representation of documents [26]. Word2Vec, a group of methods to learn fixed-length

dense vector representations using a shallow neural network trained by prediction

tasks, is proposed to address these issues [26].

There are two variants of the Word2Vec algorithm: CBOW (continuous bag-of-

words) and skip-gram. The former one uses context to predict a target word, while

the latter one uses a word to predict context. We describe the structure of skip-gram,

presented in Figure 2.1 and its computation in the following.

Given a word w

t

represented with a unique vector v

wt , we have a sequence of

words {w1, w2, · · · , wT

} and the objective of the prediction task is to maximize the

average log probability of context words presented as follows [26,27].

J(✓) =
1

T

TX

t=1

X

�kjk,j 6=0

log(p(w
t+j

|w
t

)) (2.4)

where k is the size of the context window. Usually, softmax function is used for

classification problems, such that [28]

p(w
c

|w
t

; ✓) =
exp(v|

wt
v

0
wc
)

VX

j=1

exp(v|
wt
v

0
wj
)

(2.5)

where V is the vocabulary size, and v

wt and v

0
wt

are the input and output vector of

10
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word w

t

. With the learned word embeddings, words sharing common contexts are

located close to each other in the new vector space. Finally, a document is represented

by the concatenation or sum of words in it.

With this e↵ective representation of words and documents, it has achieved suc-

cesses in many applications in the NLP field. Considering the similarity between

text documents and longitudinal EHR data, the representation methods have great

potential to be applied to the representation of clinical events in EHR data.

2.2 Data Representation of EHR Data

In this section, we discuss the popular representations of EHR data, which have been

the basis of many predictive modeling tasks.

2.2.1 Aggregated Frequency Vector

Usually, frequency and presence (or absence) are used as the representations for cat-

egorical features, where presence or absence is coded as a binary variable [29, 30].

In [29], the diagnosis of diabetes is predicted based on the past diagnoses informa-

tion, medication and procedure orders, and lab tests from patients’ medical records.

For each patient, a feature vector is constructed based on the longitudinal health

data. When using frequencies, a feature value is generated by counting the occur-

rences of the associated clinical event in the pre-defined time window. Otherwise, it

uses a binary variable as the feature value where 1 indicates that the associated event

is present in the patient’s medical history, and 0 otherwise [30].

Thus, a frequency vector or a binary vector indicating presence of clinical events

is constructed to represent a patient’s medical history in EHR data. However, the

temporal information are omitted which might adversely a↵ect the performance of

predictive models.

12



2.2.2 Bag-of-Pattern in Sequences

Merely using frequencies omits the temporal orders of events, which might include vi-

tal information. Thus, frequent subsequences learned using sequence mining methods

are used as features to represent patient’s medical history [31–34].

Generalized Sequential Pattern (GSP) algorithm is a classical method for sequence

mining, which is primarily based on the aprior algorithm [35]. GSP makes multiple

passes over the database and starts with counting all single items. Using the frequent

items discovered in the first pass, sequences with 2 items are generated and the

supports are counted in the second pass. The GSP algorithm repeats this process

until no more frequent sequences are found [32]. Many advanced algorithms have

been proposed to improve the e↵ectiveness and e�ciency of sequence mining, such as

SPAM, SPADE, and CM-SPADE [33,34,36].

Given the frequent bag-of-pattern sequences discovered by sequence mining algo-

rithms, a vector representation is constructed with the counts or presence of these

features. This representation learning approach is able to capture the temporal re-

lationships between clinical events. However, it is very likely that important yet

infrequent patterns are lost, while some frequent patterns which might not be useful

are included in such a representation.

2.2.3 Other Advanced Representations

More advanced representation learning approaches have been proposed to preserve

the temporal information in longitudinal EHR data. In [14, 37], longitudinal EHR

data are represented in a temporal event matrix representation (TEMR) in which the

columns correspond to time units and rows represent events. Further, a comprehen-

sive patient signature is built by representing the EHR data in multiple time windows

with di↵erent lengths.

Additionally, pairwise transitions have also been proposed to capture the short-

13



term dependencies between clinical events [38]. Given each patient’s visit sequence,

pairs of events and their temporal orders A
ij

in a visit sequence are extracted, where

A

ij

2 {A11, A12, . . . , Ann

} refers to the co-occurrences of diagnoses A
i

and A

j

in two

distinct visits (i.e., the p

th and q

th visits, and |p � q| = 1, 2, 3, . . . ), and that A

i

occurs prior to A

j

. Then, fx

ij

is introduced to denote the transition from A

i

to A

j

in the sequence of patient x, which could be simple counts, binary feature indicating

presence, or functions of time interval between events.

Table 2.1: The pairwise transition matrix of patient x

A1 A2 A3 A4 A5

A0 f

x

01 f

x

02 f

x

03 f

x

04 f

x

05

A1 f

x

11 f

x

12 f

x

13 f

x

14 f

x

15

A2 f

x

21 f

x

22 f

x

23 f

x

24 f

x

25

A3 f

x

31 f

x

32 f

x

33 f

x

34 f

x

35

A4 f

x

41 f

x

42 f

x

43 f

x

44 f

x

45

A5 f

x

51 f

x

52 f

x

53 f

x

54 f

x

55

Then, to learn the informative features from the temporal representation con-

structed above, various feature extraction approaches are proposed including latent

factor model [14], non-negative matrix factorization [31], and simple �

2 test [38].

Moreover, the graph-based representation approaches are proposed to capture

temporal dependencies between clinical events, such as decomposing temporal graphs

into bases [31], creating temporal clinical signatures and discovering temporal patterns

using nonnegative matrix factorization based methods [14, 37, 39], and so forth [40].

In [31], the event sequence of each patient is represented with a temporal graph and

the direction of the edges are based on the temporal orders between events. Further,

the weight of each edge is defined by an exponential distribution of the time di↵erences

between two events. Then, the temporal graphs are decomposed into graph bases and

each patient is represented by the graph bases and their associated weights. In general,

these advanced approaches are capable of learning sequential patterns in the EHR

data, and they achieve comparable predictive performance to the BPS representation

14



method in terms of AUC according to [31].

Additionally, researchers have attempted to further learn the graph-based repre-

sentation using deep learning approaches customized for longitudinal EHR data [41].

First, the medical record of each patient is converted to an attributed graph struc-

ture. The attributes of the vertices of the graph are the medical events (e.g., diagnosis

codes) while the attributes of the edges are the temporal relationships between the

vertices representing the correlation between events. Then, a convolutional neural

network is adapted to handle irregular graphs. It initializes the distance between

medical events by constructing a local tensor and then customizes the deep learning

infrastructure to learn the correlation between events. Finally, the learned repre-

sentations are used for further predictive modeling on the comorbid risk of chronic

diseases.

Poor representation of data lacking vital information can adversely a↵ect predic-

tive models, while an appropriate data representation is the cornerstone for further

advancements in analytics and modeling. Although the advanced approaches are ca-

pable of learning more sophisticated patterns of clinical events in patients’ EHR data,

they introduce more complex data structures, need prior clinical knowledge to guide

the model construction, and require extra e↵orts to transform the findings to assist

clinical decision support. Thus, it is imperative to develop e↵ective and intuitive rep-

resentation learning methods for the representation of EHR data. In this research,

our work continues to explore other possibilities for advanced representation of EHR

data.
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2.3 Predictive Models

2.3.1 Logistic Regression

Logistic regression, a generalized linear regression model, is one of the most commonly

used statistical methods to model the relationships between the response variable and

explanatory features. The logistic function is very similar to linear regression except

that the response variable is binomial such that the odds ratio is:

p(x)

1� p(x)
(2.6)

where p(x) is the probability of the target event given explanatory variables x. Lo-

gistic regression models the logarithm of the ratio, shown in Equation 2.7 [42].

log

p(x)

1� p(x)
= �0 + �x (2.7)

Let Pr(Y = 1|X = x) = p(x; �) and we model p

p(x
i

; �) =
1

1 + exp

�(�0+�xi)
(2.8)

The maximum likelihood function is used for parameter estimation and the log

likelihood transforms products to sums. The log likelihood function is presented in

Equation 2.9 [42].

1

N

NX

i=1

(y
i

log(p(x
i

; �)) + (1� y

i

)log(1� p(x
i

; �))) (2.9)

where N is the total number of observations and y

i

2 {0, 1} is the true label of obser-

vation x

i

. In addition, lasso, which is originally the shrinkage in linear regression, can

also be adapted to logistic regression which shrinks the coe�cients towards zero [43].

Thus, the objective function of lasso logistic regression is the likelihood function of a

16



vanilla logistic regression with a l1 penalty term on coe�cients �.

Overall, logistic regression and its variants can be used as predictive models when

there are two or more classes.

2.3.2 Random Forest

Random forest is one of the most popular bagging ensemble learning methods, also

called bootstrap aggregating, which can be used for classification, regression and other

tasks. The basic idea of ensemble methods is that a group of “weak learners” are

combined to obtain a “strong learner”, where each individual classifier is a “weak

learner”. Bagging is a powerful ensemble method that can reduce the variance of a

single classifier with high variance, such as decision trees. Bagging of decision trees

works as follows [44].

1. Create bootstrap samples by re-sampling with replacement from the dataset

2. Train a decision tree on each bootstrap sample

3. Make a prediction on a new observation by combining the outputs from each

tree, where majority voting is a commonly used approach to get the final output

Bagging of a high-variance base algorithm can result in a more stable classifier.

However, decision trees are greedy and the base trees are likely to be correlated which

limits the improvement that can be achieved by bagging.

Random forest is an improvement from bagging of decision trees, since the former

one takes a randomly sampled subset of features when growing a tree. In this way,

the models are not correlated or are weakly correlated which works better with the

bagging approach. In addition to better classification performance, random forest

computes feature importance by measuring the normalized average decrease in out-

of-bag (oob) error after permuting a certain feature in the oob cases. The feature

importance can also be computed using Gini impurity criterion in node splitting,
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i.e., by summing up the Gini decreases of the feature across all trees. The feature

importance calculated in these two ways are usually consistent with each other [45].

Random forest grows an ensemble of trees, and the construction and training of each

tree in the forest is as follows [45].

1. Randomly sample with replacement from the original data and use the boot-

strapped sample as the training set to grow a decision tree.

2. Randomly sample m⌧M features at each node, where M is the total number

of features in the original data. Then, the best split on the subset of features is

used to split the node.

3. Grow each tree without pruning.

Then, the final prediction on a new observation is obtained by majority voting on

the classification decisions by trees in the forest.

2.3.3 Multilayer Perceptron

Multilayer perceptron (MLP) is a group of feedforward artificial neural networks with

one or more hidden layers. Figure 2.2 presents an example of the structure of MLP

with two hidden layers.

Except the input layer, each node in the hidden layers or output layer has a

nonlinear activation function. In a one-hidden-layer MLP,

f(x) = G(b(2) +W

(2)(s(b(1) +W

(1)
x)). (2.10)

where b

(1) and b

(2) are bias terms in the hidden and output layer. and W

(1) and

W

(2) are weight matrices, and G and s are activation functions. The output of

the hidden layer in a MLP is h(x) = s(b(1) + W

(1)
x), and two popular functions

for s are tanh(z) = e

z�e

�z

e

z+e

�z and sigmoid(z) = 1
1+e

�z . The final output of a MLP
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Figure 2.2: The structure of a multilayer perceptron (MLP) with two hidden layers

is o(x) = G(b(2) + W

(2)
h(x)), and the softmax function is usually used for G in

classification problems [46].

The MLP is trained by optimizing the weights that can minimize the loss function,

where mean square error is often used to compute the loss for regression problems

and cross entropy loss is popular for classification problems [47]. The set of weights

to optimize is ✓ = {W (2)
, b

(2)
,W

(1)
, b

(1)} and the backpropagation method is used to

compute the gradients [48]. Stochastic gradient descent with mini-batches is usually

employed to minimize the loss.

There are two steps in the training process [46, 49]:

1. Forward: the input signal is propagated through the network until the output

layer in the forward direction.

2. Backward: the error (loss) is calculated using pre-defined loss function, which

is then propagated back through the network in the backward direction. In this

process, weights in the network are adjusted.
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The two steps are iterated until the loss stops decreasing, i.e., the network is con-

verged. A MLP is able to learn the nonlinear relationships between the input and

output vectors, and it demonstrates practical benefits when full theoretical models

are not available. However, the disadvantage lies in the di�culties in training and

interpretation [49].

2.3.4 Deep Learning

Deep learning has become a very popular machine learning method lately. It has

achieved great success in many areas, such as computer vision and NLP. The deep

structure and nonlinear activation functions allow deep learning models to learn com-

plex patterns from the data where full theoretical models are not available. Moreover,

the availability of big data makes deep learning models a feasible approach for many

machine learning problems.

A deep neural network (DNN) is an artificial neural network with many hidden

layers, di↵ering from MLPs which usually have no more than two hidden layers. The

most intuitive DNN is a type of feedforward neural network with fully connected

hidden nodes in adjacent layers, and an example of the structure of DNN is presented

in Figure 2.3.

Intuitively, we expect that a deeper MLP is more powerful than a shallow one.

However, a deeper MLP introduces too many parameters to optimize which makes it

hard for the network to train and would need much more data and time to converge.

Thus, a MLP with many layers is not a mainstream method nowadays. Instead,

more advanced deep networks have been developed to learn complex representations

for classification and other tasks. Here, we present an overview of two popular deep

learning models – convolutional neural networks and recurrent neural networks.
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Figure 2.3: The structure of a deep neural network (DNN) [2]

Convolutional Neural Network (CNN)

CNNs are a group of feedforward artificial neural networks with one or more convolu-

tional layers followed by fully connected layers [50]. Figure 2.4 presents the structure

of a CNN and there are three major components in a CNN described in the following.

• Local connectivity: Instead of connecting the entire input signal to every neuron

in the hidden layer, a CNN only makes connections in small, localized regions of

the input signal, which is called a local receptive field of a hidden neuron [51].

Therefore, a neuron learns patterns from small local regions rather than from

the entire input signal. Then, we slide the receptive field on the input signal to

generate the first layer of feature maps, which is the convolutional layer. In this

way, local patterns of the input signal are captured by the network, and this is

inspired by how the early visual system works in biology [50].

• Shared weights: A neuron connects to a local receptive field using weights and

biases in order to generate feature maps from the input signal. Here, the weights

and biases are called filters and usually multiple filters with di↵erent sizes are
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Figure 2.4: The structure of a convolutional neural network (CNN) [3]

employed. All neurons in the same layer use the same set of filters such that the

weights and biases are shared among all neurons. The benefit of this strategy

is that the number of parameters in the network is much smaller [2].

• Pooling: In CNNs, a convolutional layer is usually followed by a pooling layer

such that the learned feature maps are simplified. There are two popular pool-

ing strategies, i.e., max-pooling and l2-pooling. Max-pooling selects the most

salient information in the feature maps, and l2-pooling takes the squared sum

to condense the information in the feature maps [2]. Thus, the patterns learned

become position-invariant and fewer parameters are needed in the following

layers.

Multiple convolutional and pooling layers could be used in the network to learn

a hierarchy of abstractions. At the end, fully connected layers are added to gather

information learned from the previous layers and to make the final output. In brief,

CNNs have a few nice properties, such as learning from local regions, subsampling

salient features, learning a hierarchy of abstractions, and reduced number of features.

Therefore, CNNs have been very successful in machine learning tasks on images and

in many other fields.
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Recurrent Neural Network (RNN)

Unlike CNNs which emphasize local connectivity, RNNs are capable of learning se-

quential information. As previously elaborated, traditional neural networks assume

that inputs are independent of each other, while in many cases it is not realistic,

such as in NLP fields. For example, it is clear that there is a dependency between

the words in a sentence. In a RNN, in addition to taking the current element as

the input, the computation on this element is also dependent on that of the previ-

ous elements. This resembles the dependencies in natural languages such that RNNs

have been very successful in the NLP fields. To describe how a RNN works, we start

with the mathematical definition of the computation of the RNN cell, as presented

in Equation 2.11.

s

t

= f(Ux

t

+Ws

t�1) (2.11)

where x

t

and s

t

are the input and hidden state at time step t. According to Equa-

tion 2.11, the hidden state at time step t is based on the current input x

t

and the

hidden state from the previous time step t � 1. W and U are weight matrices and

f is an activation function, in which tanh and ReLU are two popular nonlinear

choices [52]. The output at time step t is:

o

t

= g(V s

t

) (2.12)

where V is a weight matrix and g is usually a nonlinear function such as softmax.

Figure 2.5 presents a graphical illustration of a RNN and its unfolding in time [4].

The RNN unfolded in time is equivalent to a deep feedforward neural network in

which the weights are shared at all the hidden layers.

The RNNs are expected to store long-term dependencies, however, it has been

demonstrated that it is not capable of learning from very long sequences [4]. Some
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Figure 2.5: A recurrent neural network (RNN) and its unfolding in time [4]

variants have been proposed to address this issue, such as long short term memory and

gated recurrent unit, which have been successfully applied to many NLP tasks [53,54].

2.4 Summary

Electronic health data is heterogeneous and cannot be readily expressed in a unified

vector space, which makes it hard to be utilized for further modeling and analytics. In

this chapter, we present an overview of the popular and state-of-the-art representation

learning methods for text documents in the NLP field as well as for EHR data. Finally,

we briefly introduce four types of classifiers, including logistic regression, bagging-

based ensemble methods, multi-layer perceptron, and deep learning models, which

are used in the later chapters for representation learning and predictive modeling.

More literature reviews on deep learning approaches are presented in Chapter 5,

including gated recurrent unit and the attention mechanism.
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Chapter 3

SLR: A Sparse Longitudinal

Representation of Electronic

Health Record Data

In this chapter, we propose a novel framework to learn a sparse longitudinal repre-

sentation of patients’ medical histories in an EHR database. The proposed method

is evaluated with the early detection of diabetes and the predictive performance is

compared with widely used baselines. The learned representations are interpreted

and visualized to bring clinical insights.

3.1 SLR System Model

Given (1) the training set, a patient’s health record, consists of a sequence of visits

and each visit containing a set of medical codes (shown in Fig. 3.1), namely, s

i

,

for patient i, and (2) each patient’s label (i.e., 1 or 0) representing the outcome

(e.g., y
i

= 1 indicating that patient i has a diagnosis of disease of interest or the

targeted outcome in their medical history), our research problem is to find a method

to transform each s

i

to a unified representation x

i

, where x
i

2 R

d, so as to maximize
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Figure 3.1: An example of a patient’s profile in EHR systems
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Figure 3.2: The SLR representation learning framework

the accuracy of any arbitrary classifier. That is:

min
NX

i=1

|y
i

� classifier(x
i

)|, (3.1)

where N is the number of patients and the function classifier : Rd ! {0, 1} refers to

an arbitrary binary classifier on top of feature space R

d.

The SLR framework contains the following three components and Figure 3.2

presents a graphical illustration of the SLR framework.
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1. Representation Learning — Given each patient’s medical history and the

corresponding label, this step transforms each patient’s record into a unified

vector space. Further, a sparse group lasso based algorithm [55] is employed to

learn a sparse longitudinal representation of the patient’s medical history.

2. Supervised Learning — Given the learned data representation from Step 1

and the label of each patient, this step trains a predictive model using supervised

learning algorithms, such as logistic regression and random forest.

3. New Patient Prediction — Given a feature representation from Step 1, this

step uses the predictive model (from Step 2) to predict the new patient’s label.

The outcome of this step is 1 or 0, which refers to whether the patient will have

the targeted health outcome.

3.2 SLR Representation Learning Algorithm

Preliminary Vector Representation

As presented in Figure 3.1, the medical history of patient i is a sequence s
i

with mul-

tiple visits and there are one or more clinical events during each visit. Commonly,

the time intervals between visits are di↵erent intra and across patients. One straight-

forward way of representing this data is to use the counts or binary indicators of the

clinical events in the sequence, however, temporal information is omitted. To cope

with this issue, we develop an itemset representation which truncates the sequence

s

i

into T time windows with even intervals and an itemset of clinical events is con-

structed for each time window t

j

. Then, the counts of clinical events in each time

window is computed and concatenated as a preliminary representation x

i

of patient

i’s medical history, i.e., x
i

= {v
i1, vi2, · · · , vij, · · · , viT} and the associated time win-

dows are {t1, t2, · · · , tj, · · · , tT}. Here, v
ij

= {c(i)
j1 , c

(i)
j2 , · · · , c

(i)
jp

, · · · , c(i)
jP

} is the count

vector of clinical events A1, A2, · · · , Ap

, · · · , A
P

at time window t

j

, where P is the
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total number of distinct clinical events. Thus, all elements in a patient’s preliminary

representation are presented in Table 3.1. The final preliminary data representation

Table 3.1: The preliminary vector representation x

i

of Patient i

A1 A2 A3 · · · A

p

· · · A

P

t1 c

(i)
11 c

(i)
12 c

(i)
13 · · · c

(i)
1p · · · c

(i)
1P

t2 c

(i)
21 c

(i)
22 c

(i)
23 · · · c

(i)
2p · · · c

(i)
2P

t3 c

(i)
31 c

(i)
32 c

(i)
33 · · · c

(i)
3p · · · c

(i)
3P

· · · · · · · · · · · · · · · · · · · · · · · ·
t

j

c

(i)
j1 c

(i)
j2 c

(i)
j3 · · · c

(i)
jp

· · · c

(i)
jP

· · · · · · · · · · · · · · · · · · · · · · · ·
t

T

c

(i)
T1 c

(i)
T1 c

(i)
T1 · · · c

(i)
Tp

· · · c

(i)
TP

of patient i is x(i) = {c(i)11 , c
(i)
12 , · · · , c

(i)
TP

}.

Figure 3.3 illustrates the medical history of an example patient and the construc-

tion of itemsets with associated time windows of this patient. In this example, the

size of each time window is 4 months and an itemset is constructed for each time win-

dow. Then, the counts of clinical events in the itemsets are computed to represent

the medical record at each window, while the events not present in the time window

are assigned a value 0. Finally, the count vectors of clinical events in each of the time

windows are concatenated to construct a preliminary representation of the patient’s

medical history.

SLR Representation Learning Algorithm

With the preliminary data representation, x
i

= {v
i1, vi2, · · · , vij, · · · , viT}, the pro-

posed method based on the sparse group lasso algorithm [55] aims at learning a sparse

set of events in the longitudinal order, as presented in Equation 3.2.

min

!

L(X!, y) + (1� ↵)�
TX

j=1

p
P ||!

j

||2 + ↵�||!||1 (3.2)
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where P is the number of distinct clinical events. j is the jth time window (j 2

{1, 2, · · · , T}) and !

j

= {!
j1,!j2, · · · ,!jP

}. L(X!, y) is the loss function shown in

Equation 3.3.

L(X!, y) =
1

N

NX

i=1

log(1 + exp(�y
i

x

|
i

!)) (3.3)

where N is the total number of patients. The objective function in SLR learning

consists of three parts: error minimization, l2 penalty on each time window of features,

and a l1 sparsity term on each feature throughout the entire medical history. Thus,

SLR learns a sparse longitudinal representation of the medical history by minimizing

the error in Equation 3.2. We propose Algorithm 1 to learn a sparse longitudinal

representation from the EHR data.

This problem is the sum of a convex function and a penalty term, so that the

coordinate descent algorithm is employed to learn the global optimum [55]. When

↵ = 1, Equation 3.2 becomes lasso, which learns a sparse representation of the clin-

ical events, while it becomes group lasso when ↵ = 0, which is equivalent to ridge

regression on groups of features. Here, ↵ and � are two tuning parameters to control

the degree of sparsity in the SLR representation.

3.3 Evaluation

3.3.1 Background

Diabetes mellitus is a group of metabolic diseases characterized by hyperglycaemia

with disturbances of carbohydrate, fat and protein metabolism resulting from defects

in insulin secretion and/or insulin action [56, 57]. According to the American Di-

abetes Association, there are generally two etiopathogenetic categories of diabetes,

type 1 and type 2 diabetes. The cause of the former one is absolute insulin deficiency.

The latter one is more prevalent in the population and the cause is a combination
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Algorithm 1: SLR Representation Learning

Input : Set of sequences S, set of events A, number of time intervals T ,
number of patients N , number of distinct events P

Output: Set of selected events A
s

1 begin
2 Construct Preliminary Data Representation X:
3 Initialization:
4 X  �;
5 for i = 1 to N do
6 x

i

 �

7 for j = 1 to T do

8 c

(i)
j

 {c(i)
j1 , · · · , c

(i)
jp

, · · · , c(i)
jP

}
9 x

i

 {x
i

, c

(i)
j

}
10 X

i

 x

i

11 Learn SLR Representation A

s

:
12 Initialization:
13 A

s

 �;
14 Block coordinate descent to optimize (3.2): !̂
15 for j = 1 to T do
16 !

j

 {!
j1, · · · ,!jp

, · · · ,!
jP

}
17 if !

j

6= 0 then
18 for p = 1 to P do
19 if !

jp

6= 0 then
20 A

s

 A

s

[ {A
jp

}

21 return A

s
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of resistance to insulin action and an inadequate compensatory insulin secretory re-

sponse [56]. According to the National Diabetes Statistics Report by the Centers for

Disease Control and Prevention (CDC), 30.3 million Americans, i.e., 9.4% of the U.S.

population, have diabetes in 2017 [58, 59].

Diabetes is now the third leading cause of death in the United States, which

was ranked the seventh in 2015. The number of people diagnosed with diabetes has

more than tripled over the last couple of decades [60]. Diabetes may cause other

complications, such as kidney disease, vision loss, heart disease, high blood pressure,

obesity, and depression [14,60]. According to [61], almost 40% of patients with type 2

diabetes are su↵ering from chronic kidney disease and that diabetes is the leading

cause of it in the United States. Diabetes also brings a huge economic burden.

According to [62], the total estimated economic costs of diagnosed diabetes in the

United States is $245 billion with $176 billion of medical costs and $69 billion due to

reduced productivity. The medical expenditure of diabetic patients is approximately

2.3 times higher than the individuals without diabetes. Moreover, the economic costs

are still increasing, and there has been a 41% increase from costs in 2007. In brief,

diabetes imposes a substantial burden on the society in addition to the su↵ering of

patients.

However, diabetes is often undiagnosed or misdiagnosed. Statistics from the Amer-

ican Diabetes Association shows that approximately 24% are undiagnosed among all

diabetic patients [59]. Uncontrolled or untreated diabetes can lead to serious compli-

cations, such as blindness, heart disease, infections, neuropathy, or even death [63].

The early detection of diabetes can help patients take actions early and make their

diabetes under control to reduce the risk of complications.

Hence, the SLR representation learning framework is applied to recognizing the

misdiagnosed or undiagnosed diabetes using patients’ EHR data. One of the objec-

tives is to improve the performance of classifiers with the proposed representation,
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and the other objective is to bring clinical insights to deepen the understanding of

disease correlations. In the rest of this chapter, we use the terminology “prediction”

to indicate the early recognition of undiagnosed or misdiagnosed diabetes.

3.3.2 Experimental Design

In this research, we use the de-identified EHR data of 75 months beginning in Septem-

ber 2010 from the University of Virginia Health System. This dataset contains

2, 343, 651 inpatient and outpatient visits of 473, 915 distinct patients. In this ex-

periment, we focus on the diagnosis codes in the EHR data. Here, the diagnoses are

coded primarily in ICD-9 and a small portion are ICD-10 codes. The raw diagnoses

codes are further clustered into 283 groups according to the Clinical Classification

Software from the Agency for Healthcare Research and Quality (AHRQ) [64].

In the experiment, we define the observation window and prediction period to

validate the proposed method. For patients with diabetes diagnoses, we first extract

the visits between 1.5 years to half a year prior to the first observed diagnoses of

diabetes. The visits within 6 months of the first observed diabetic diagnosis are

excluded for the purpose of early detection. Although the type 1 and type 2 diabetes

are not distinguished in the AHRQ clinical classification, the majority are patients

with type 2 diabetes. Additionally, Figure 3.4 illustrates the age distribution of

diabetic patients with histogram and density plot, demonstrating that this population

are primarily consist of elder patients.

For patients without observed diabetes diagnoses, we exclude the individuals when

their visit histories are shorter than four years. Visits occurred in the first 12 months

are used as observations for modeling, while the following 3 years are monitored

to ensure the patients are not diagnosed with diabetes in the near future. Thus,

a 12-month observation window is constructed for patients in each group, and a

prediction window is defined to allow observation of the outcome. To better illustrate
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Figure 3.4: A graphical illustration of the age distribution of diabetic patients
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Time (day)

Observation window (360 days)

Hold-off (180 days)

First observed 
diagnosis of 
diabetes

Figure 3.5: A graphical illustration of the experimental setting for the early detection
of diabetes

the experimental setting, we present the observation window, hold-o↵ and onset of

outcome event in Figure 3.5

Accordingly, there are 3, 112 and 27, 555 patients in the target and control groups,

respectively. Table 3.2 presents the preliminarily selected diagnoses, which includes

the diagnoses appear in at least 5% of patients’ records in both populations. These

preliminary diagnoses are used as the basis of the SLR framework. To validate the

proposed representation learning framework, we compare the prediction performance

of the proposed model with baseline approaches as follows.

• Aggregated Frequency Vector (AFV): A patient’s record is represented as a

count vector of medical events in the observation window. Each dimension is

associated with a distinct medical event in patients’ EHR data.

• Bag-of-pattern in Sequences (BPS): This method runs a widely used sequence

pattern mining algorithm, CM-SPADE [34], to discover all frequent patterns in

patients’ EHR data. Thus, a patient’s record is represented with a frequency

vector of the discovered frequent patterns.

• Aggregated Transition Vector (ATV): The pairwise transitions between medical

event pairs are counted and a patient’s record is represented with a frequency
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Table 3.2: The preliminarily selected diagnoses for the early detection of diabetes

Index Diagnoses
1 Immunizations and screening for infectious disease
2 Coronary atherosclerosis and other heart disease
3 Nonspecific chest pain
4 Cardiac dysrhythmias
5 Other circulatory disease
6 Other lower respiratory disease
7 Esophageal disorders
8 Other liver diseases
9 Other gastrointestinal disorders
10 Chronic kidney disease
11 Genitourinary symptoms and ill-defined conditions
12 Nonmalignant breast conditions
13 Osteoarthritis
14 Other non-traumatic joint disorders
15 Spondylosis; intervertebral disc disorders; other back problems
16 Other connective tissue disease
17 Other bone disease and musculoskeletal deformities
18 Other injuries and conditions due to external causes
19 Abdominal pain
20 Malaise and fatigue
21 Medical examination/evaluation
22 Other aftercare
23 Other screening for suspected conditions (not mental disorders or infec-

tious disease)
24 Other and unspecified benign neoplasm
25 Thyroid disorders
26 Nutritional deficiencies
27 Disorders of lipid metabolism
28 Other nutritional; endocrine; and metabolic disorders
29 Deficiency and other anemia
30 Mood disorders
31 Screening and history of mental health and substance abuse codes
32 Other nervous system disorders
33 Essential hypertension
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vector of pairwise transitions.

In the experiment, 80% of patients are randomly selected from each group as training

data, while the rest are used for testing. The final predicted labels are assigned by

comparing the model output with the classification threshold tuned on the training

set. The time window used to group clinical events is 90 days such that 4 subsets of

features are constructed for the 1-year observation window. The size of time window is

determined according to the U.S. Census Bureau stating that adults have an average

of 3.9 visits to doctors annually [65]. However, this time window can be further

tuned on specific populations for an optimal output. With the SLR and baseline

representations of patients’ medical records, we model the risk of diabetes using three

classifiers, logistic regression with l1 penalty (LR), random forest (RF), and gradient

boosting trees (GBT). Here, the RF and GBT consist of 100 trees, respectively, and

the � value in the l1 penalty term of the LR is tuned with 10-fold cross validation.

The prediction performance of baselines and the proposed framework on the early

detection task is evaluated with AUC (area under curve), sensitivity, specificity, and

F2 score. Each experiment is repeated 50 times and we calculate the averages and

standard deviations of the above metrics, respectively.

3.3.3 Experimental Results

The predictive performance of the classifiers based on the baselines and proposed

SLR framework are presented in Table 3.3. Here, the results shown are based on the

SLR learned with ↵ = 0.8 and � = 0.00016.

According to the results table, the predictive performance of classifiers based on

SLR outperform the baselines with a significant improvement in terms of sensitiv-

ity, AUC, and F2 score. The three classifiers based on SLR have a relatively high

sensitivity greater than 80%, and the specificity are around 62%. The performance

between the baselines are not significantly di↵erent, while the GBT classifiers achieve
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Table 3.3: The predictive performance of baselines and the proposed SLR framework

Sensitivity Specificity AUC F2 score

AFV
LR 0.827± 0.012 0.332± 0.006 0.640± 0.011 0.283± 0.015
RF 0.302± 0.016 0.830± 0.005 0.599± 0.010 0.444± 0.009
GBT 0.694± 0.014 0.541± 0.005 0.670± 0.009 0.451± 0.009

BPS
LR 0.829± 0.012 0.333± 0.006 0.637± 0.009 0.290± 0.016
RF 0.683± 0.011 0.950± 0.002 0.611± 0.011 0.446± 0.009
GBT 0.699± 0.013 0.539± 0.006 0.674± 0.009 0.449± 0.009

ATV
LR 0.830± 0.014 0.338± 0.006 0.643± 0.010 0.447± 0.009
RF 0.266± 0.011 0.902± 0.004 0.638± 0.008 0.268± 0.015
GBT 0.506± 0.017 0.725± 0.005 0.656± 0.013 0.383± 0.016

SLR
LR 0.859± 0.010 0.620± 0.005 0.802± 0.007 0.563± 0.012
RF 0.818± 0.011 0.630± 0.006 0.807± 0.006 0.579± 0.011
GBT 0.880± 0.009 0.600± 0.006 0.822± 0.007 0.583± 0.011

slightly better results than the other two classifiers in general. Additionally, the LR

classifiers based on baseline representations emphasize more on the positive class such

that they achieve high sensitivity but very low specificity. However, the RF classifiers

tend to have a high specificity but low sensitivity. The GBT models are capable of

achieving a more balanced prediction in the two classes. Overall, the proposed SLR

framework is capable of improving the prediction performance.

To illustrate the impact of the tuning parameters in the two penalty terms, Fig-

ure 3.6 presents the numbers of features selected using the proposed framework with

di↵erent ↵ and �, respectively. Accordingly, we found that using a larger � with fixed

↵ obtains a sparser set of features. This trend holds true for all ↵ values from 0 to

1. In the SLR framework, ↵ balances the degree of sparsity over all features and the

penalization in groups of features, where the groups are constructed corresponding to

the time window in which the event occurs. A larger ↵ indicates that the algorithm is

more toward sparsity on events occurred throughout the entire observation window,

while a smaller ↵ tends to penalize more at the group level. According to Figure 3.6, a

larger ↵ demonstrates a smoother change in terms of the number of selected features,

while a smaller ↵ focuses more on the group-level penalty such that the changes in
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Figure 3.6: Numbers of features selected by SLR with di↵erent regularization
strengths
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the number of selected features are less smooth.

In addition, we also compare the model performance when ↵ changes from 0 to

1, as shown in Figure 3.7. Accordingly, the predictive performance of the model

increases when � decreases with fixed ↵. When ↵ = 0, Equation 3.2 only focuses on

the group-level penalty and a larger � forces many groups of features to be discarded

which results in a low AUC. Similarly, the increase of AUC when � decreases is not

smooth in such cases.

In brief, Figures 3.6 and 3.7 further demonstrate that we can balance the group-

level penalty and feature-level sparsity by ↵, and � controls the penalty on both

levels. Hence, increasing � gives more sparse representation in general, while a larger

↵ emphasizes more on the feature-level sparsity and a smaller ↵ shows more penalty

on the group-level.

3.3.4 Visualization & Interpretation

To get a better understanding of the learned SLR representation, we illustrate the

correlations between the selected features in the observation window and the out-

come, i.e., diabetes mellitus, in Figure 3.8. We observe that the diagnoses temporally

closer to the observation of the outcome are more positively correlated while the se-

lected features that are negatively correlated are mostly in the first time window, i.e.,

relatively much earlier than the outcome onset. In the very early time window, the

events are either learned as uncorrelated or have negative correlations with the out-

come. Such negatively correlated events are other screening for suspected conditions,

medical examination/evaluation, etc.

Disorders of lipid metabolism and chronic kidney disease (CKD) are the most pos-

itively correlated diagnoses with the outcome, and the correlations are stronger when

they are closer to the onset of the outcome. Here, the disorders of lipid metabolism

includes hypercholesterolemia, hyperglyceridemia, hyperlipidemia, lipoprotein defi-
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Figure 3.7: The predictive performance with features selected by SLR with di↵erent
regularization strengths
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ciencies, and so forth [64]. According to [66, 67], hypertriglyceridemia and hyper-

lipidemia are common lipid abnormality in persons with type 2 diabetes. Research

has also shown that the presence of hypertriglyceridemia may be used to predict the

presence of coexistent diabetes since abnormalities in triglyceride metabolism may be

a fundamental factor in the pathogenesis of diabetes [68]. Additionally, it is not rare

to see lipoprotein abnormalities in untreated, hyperglycemic diabetic patients [69].

As to chronic kidney disease, previous literature has shown that the prevalence of

CKD is high among people with diagnosed diabetes (39.6%), undiagnosed diabetes

(41.7%) and prediabetes (17.7%), compared to the general population without dia-

betes (10.6%) [70].

Moreover, essential hypertension, deficiency and other anemia, malaise and fa-

tigue, and other liver disease are also positively correlated with the outcome. Here,

deficiency and other anemia refers to iron deficiency anemias, other deficiency ane-

mias, and/or hereditary anemias according to [64]. Numerous medical research have

shown that these are prevalent symptoms in prediabetic and diabetic patients [71–75].

According to Mayo Clinic, essential hypertension and diabetes are linked by hyper-

insulinemia, which is often caused by insulin resistance and might eventually lead

to type 2 diabetes [71, 76, 77]. Obesity is the most common cause of insulin resis-

tance and compensatory hyperinsulinemia and it is a strong risk factor of elevated

blood pressure [78]. Moreover, diabetes and essential hypertension are the leading

causes of chronic kidney disease, where we also observe the correlations between these

diseases in Figure 3.8. However, essential hypertension and other liver disease oc-

curred much earlier show a weak correlation with the outcome than those diagnoses

occurred later and temporally closer to the outcome onset. In addition, the diagnoses

of other gastrointestinal disorders occurred closer to the first observed diabetes is

weakly correlated with it.

In general, the learned SLR representation is consistent with the previous medical

43



Medical 
examination/evaluation

Time (day)

Cancer of prostate; 
Other nutritional; 
endocrine; and 
metabolic disorders;
Essential hypertension;
Coronary 
atherosclerosis and 
other heart disease

0 813

EHR Data – Medical History 
Observation window

834

Other non-
epithelial 
cancer of skin

987

Disorders of lipid 
metabolism;
Essential hypertension;
Medical 
examination/evaluation

1163

Disorders of lipid 
metabolism;
Essential hypertension;
Urinary tract infections

Essential hypertension;
Diabetes mellitus 
without complication

1381

Figure 3.9: The medical history of an example diabetic patient

research. In addition to improving the accuracy of early detection of diabetes, this

research could also be used to deepen clinical understanding of disease correlations.

To provide a more straightforward understanding of the learned representation

and its benefit to the early detection of diabetes, we present two example patients

who are diagnosed with diabetes at least 18 months after their first visits recorded in

the EHR system in Figures 3.9 and 3.10. We observe that some initial diagnoses in

the patients’ medical records are unrelated to diabetes, while later in the observation

window some strong risk factors appear, such as disorders of lipid metabolism and

essential hypertension, highlighted with underscore in the figures. Both example

patients are predicted as positive by the classifiers based on the SLR representation.

3.4 Summary

In this chapter, we propose a representation learning framework, SLR, to learn a

sparse longitudinal representation of EHR data. This work improves the performance

of predictive models as well as deepens the understanding of disease correlations. We
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Figure 3.10: The medical history of a second example diabetic patient
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apply this framework to the early detection of diabetes using patients’ longitudinal

EHR data. The experimental results demonstrate that the proposed SLR representa-

tion is capable of achieving a more accurate prediction and that it also uncovers the

correlations between diseases which are found to be consistent with previous medical

research.

One limitation of this framework is multicollinearity with clinical events occurring

in multiple time windows. However, penalty terms are used to reduce overfitting of

data in such models. Other possibilities to avoid overfitting can be explored in future

work. Another limitation is that we use the general diagnosis categories of ICD-9 and

ICD-10 codes from the AHRQ classification scheme [64]. The current coarse categories

might introduce information loss, so future work will consider more specific diagnosis

codes and other grouping strategies. Additionally, the clinical events can be expanded

to include procedures and medications for a more comprehensive representation of

patients’ medical histories.
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Chapter 4

WB-SLR: Weighted Bagging of

Sparse Longitudinal

Representation of Electronic

Health Record Data

In this chapter, we propose a novel framework to learn a sparse longitudinal rep-

resentation of EHR data based on the bagging strategy. The proposed method is

evaluated with the early detection of chronic kidney disease (CKD) in diabetic pa-

tients and the predictive performance is compared with widely used baselines. The

learned representations are interpreted and visualized to bring clinical insights.

4.1 WB-SLR System Model

Given patients’ longitudinal EHR data, the research problem remains the same as in

Chapter 3, i.e., to find a method to transform each sequence s
i

into a unified represen-

tation for an accurate prediction. In this section, we propose WB-SLR which learns a

weighted bagging of SLRs to provide a more stable and comprehensive representation.
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Figure 4.1: The WB-SLR representation learning framework

The WB-SLR framework consists of four steps and Figure 4.1 presents a graphical

illustration of the designed framework.

1. Constructing Preliminary Representation—Given each patient’s medical

record, this step transforms a sequence into the preliminary vector representa-

tion of clinical events at multiple time windows, as elaborated in 3.2.

2. Learning SLR Ensemble — Given the training set of preliminary vector

representations, this step first performs bootstrapping on the training set. Then,

a SLR representation and an associated logistic regression classifier are learned

on each bootstrapped sample.
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3. Learning Weights for Model Aggregation — Given the ensemble of clas-

sifiers and associated SLRs, the classifiers are aggregated linearly with weights

such that the oob error is minimized.

4. Making Final Prediction — This step makes the final prediction for each

patient by weighted aggregation of the output from each single classifier in the

ensemble.

4.2 WB-SLR Representation Learning Algorithm

In this section, we elaborate the details of theWB-SLR representation learning frame-

work consisting of three parts – SLR ensemble learning, weighted model selection, and

new patient prediction, as described in the following.

SLR Ensemble Learning

There are two steps to obtain the ensemble of SLRs and the associated classifiers:

1. Constructing data bootstraps — Given the training set of preliminary vec-

tor representationD, we sampleB bootstraps, denoted as {D1, · · · , Db

, · · · , D
B

}.

Each bootstrap D

b

is created by randomly sampling with replacement from D.

2. Learning SLRs — Given bootstrap D

b

, a sparse representation l

b

is learned

using the SLR framework proposed in Chapter 3. Additionally, an associated

classifier C(l
b

, D

b

) is trained to make prediction according to Equations 3.2.

Accordingly, a classifier and the associated SLR representation is learned on each

bootstrap, which are the basis for weighted model selection.

Weighted Model Aggregation

In this part, we provide the details of model aggregation using oob weighting, which

is derived from the work by Rao and Tibshirani [79]. The steps are elaborated as
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follows:

1. Prediction on oob samples — Given the bootstraps {D1, · · · , Db

, · · · , D
B

}

and the training set D, we use K

i

to denote the indices of the bootstrapped

samples that do not contain patient i. Then, each classifier trained based on

the bootstrapped samples in K

i

makes a prediction on the label of observation

i. The final prediction on the oob sample is aggregated with the following

Equation 4.1:

ŷ

i

(W ) =
1

|K
i

|
X

b2Ki

!

b

C(l
b

, D

b

) (4.1)

where W = {!1,!2, · · · ,!b

, · · · ,!
B

}.

2. Learning of oob weighting —Given (ŷ
i

(W ), y
i

) for observation i in the train-

ing set, we optimize the weightsW of all classifiers in the ensemble. Considering

that this is a classification problem, we employ the negative log-likelihood as

the objective function with the constraints that !
b

� 0 for all b 2 {1, 2, · · · , B},

as presented in Equation 4.2.

minimize
W

�
NX

i=1

y

i

logŷ

i

(W ) + (1� y

i

)log(1� ŷ

i

(W ))

subject to W � 0.

(4.2)

Then, the truncated Newton method, Newton conjugate gradient algorithm [80],

is utilized to solve the optimization problem in Equation 4.2, and the optimal

weights are denoted as Ŵ = {!̂1, · · · , !̂b

, · · · , !̂
B

}.
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New Patient Prediction

Given the learned representations and classifiers in the ensemble with associated

weights, we make final prediction for a new patient i as presented in Equation 4.3.

ŷ

i

(Ŵ ) =
1

B

BX

b=1

!̂

b

C(l
b

, D

b

) (4.3)

Thus, the WB-SLR framework introduces a weighted bagging of the SLRs to

obtain the final output in order to achieve more stable and more accurate prediction.

4.3 Evaluation

4.3.1 Background

Chronic kidney disease (CKD) is a general term of heterogeneous disorders charac-

terizing the gradual loss of renal function over time [81–83]. There are five stages of

CKD: Stage 1 - kidney damage with normal kidney function; Stage 2 - kidney damage

with mild loss of kidney function; Stage 3 - mild to severe loss of kidney function;

Stage 4 - severe loss of kidney function; and Stage 5 - also known as end stage re-

nal failure (ESRF), which indicates kidney failure requiring dialysis or transplant for

survival [84]. CKD could eventually progress to kidney failure, which is fatal without

dialysis or a kidney transplant [83]. It increases the risk of mortality, decreased qual-

ity of life, as well as serious complications, such as cardiovascular disease, anemia,

mineral and bone disorders, fractures, and cognitive decline. [85]

The worldwide prevalence of CKD in the general population is 13.4%, and it

imposes a huge economic burden globally [86]. According to CDC, 30 million Amer-

icans, i.e., 15% of adults population, are estimated to have CKD. The prevalence of

CKD has been increasing since the last couple of decades, which is partly due to the

increased prevalence of diabetes and hypertension [87]. Medicare spending exceeds
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$50 billion in 2013 for CKD patients ages 65 or older, which is 20% of all medical

spending for this age group [84].

Diabetes and high blood pressure are the main risk factors of CKD and close

to half of the CKD patients also have diabetes and/or self-reported cardiovascular

disease [84]. This study by Bailey et al. confirms the high prevalence of CKD, 43.5%,

in patients with type 2 diabetes [88]. However, CKD starts with impaired renal

function and is usually asymptomatic until the later stages [83, 86]. According to

CDC, almost half of the patients with severely reduced kidney function but not on

dialysis are not aware of having CKD, and it is also unaware to approximately 96%

of people with kidney damage or mildly reduced renal function [89].

Early detection and treatment of CKD can slow the progression of kidney dam-

age by controlling the underlying cause [83, 85]. Early medical interventions can

also prevent the risk of complications, especially cardiovascular disease, which is the

leading cause of morbidity and mortality in dialysis patients. It has been widely

demonstrated that interventions in the conservative phases of CKD is more e↵ec-

tive and should be performed as early as possible [90]. Considering the prevalence

of CKD in diabetic patients, the di�culty in recognizing it in the early stage, and

its extreme importance of early interventions, we apply the proposed representation

learning framework, WB-SLR, to this clinically meaningful problem, i.e., recognizing

misdiagnosed and undiagnosed CKD in diabetic patients. In the rest of this chapter,

we use the the terminology “prediction” to indicate the early recognition of undiag-

nosed or misdiagnosed CKD in diabetic patients.

4.3.2 Experimental Design

In this research, we use the de-identified EHR data of 75 months beginning in Septem-

ber 2010 from the University of Virginia Health System. This dataset contains

2, 343, 651 inpatient and outpatient visits of 473, 915 distinct patients. In this ex-
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periment, we focus on the diagnosis codes in the EHR data. Here, the diagnoses are

coded primarily in ICD-9 and a small portion are ICD-10 codes. The raw diagnoses

codes are further clustered into 283 groups according to the Clinical Classification

Software from AHRQ [64].

In the experiment, we define the observation window and prediction period to

validate the proposed method. We first extract all patients with diabetes diagnoses

in their medical record. For diabetic patients with CKD diagnoses to be included in

the cohort, their diabetes are diagnosed at least 1.5 years prior to the first observed

diagnoses of CKD. Thus, it allows adequate time to observe the health conditions to

construct features and allows the hold-o↵ window to be used for the purpose of early

detection.

For positive patients, their visits during 1.5 to 0.5 year prior to the first observed

CKD are used to construct features for prediction. The visits within 6 months of the

first observed CKD diagnosis are excluded. For diabetic patients without observed

CKD diagnoses, we exclude the individuals when their visit histories are shorter than

2.5 years after the first observed diagnosis of diabetes. Visits occurred in the first 12

months are used as observations for modeling, and the next 0.5 year is the hold-o↵

window same as that for the positive patients. The following 1 year is monitored to

ensure the patients are not diagnosed with CKD in the near future. Thus, a 12-month

observation window is constructed for patients in each group, and a prediction window

is defined to allow observation of the outcome. To better illustrate the experimental

setting, we present the observation window, hold-o↵ and onset of outcome event in

Figure 4.2.

Diagnoses appear in less than 5% of the patients’ records in both populations are

excluded as rare events. Table 4.1 presents the preliminarily selected diagnoses, which

are used as the basis of the WB-SLR framework. Overall, there are 395 and 6, 259

patients in the target and control group, respectively. The target group is randomly
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Table 4.1: The preliminarily selected diagnoses for the early detection of chronic
kidney disease (CKD) in diabetic patients

Index Diagnoses
1 Coronary atherosclerosis and other heart disease
2 Nonspecific chest pain
3 Other and ill-defined heart disease
4 Cardiac dysrhythmias
5 Congestive heart failure; nonhypertensive
6 Other circulatory disease
7 Pleurisy; pneumothorax; pulmonary collapse
8 Other lower respiratory disease
9 Esophageal disorders
10 Other liver diseases
11 Other gastrointestinal disorders
12 Other diseases of kidney and ureters
13 Genitourinary symptoms and ill-defined conditions
14 Osteoarthritis
15 Other non-traumatic joint disorders
16 Spondylosis; intervertebral disc disorders; other back problems
17 Other connective tissue disease
18 Other bone disease and musculoskeletal deformities
19 Other injuries and conditions due to external causes
20 Abdominal pain
21 Malaise and fatigue
22 Medical examination/evaluation
23 Other aftercare
24 Other screening for suspected conditions (not mental disorders or infec-

tious disease)
25 Other and unspecified benign neoplasm
26 Thyroid disorders
27 Diabetes mellitus without complication
28 Diabetes mellitus with complications
29 Nutritional deficiencies
30 Disorders of lipid metabolism
31 Fluid and electrolyte disorders
32 Other nutritional; endocrine; and metabolic disorders
33 Deficiency and other anemia
34 Mood disorders
35 Screening and history of mental health and substance abuse codes
36 Other nervous system disorders
37 Essential hypertension
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Time (day)

Observation window (360 days)
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Figure 4.2: A graphical illustration of the experimental setting for the comorbid risk
prediction of CKD in diabetic patients

split into training, validation and testing sets with a 2:1:2 ratio. In other words, 40%

are used for training, another 40% are used for testing, and the rest 20% are used

for parameter tuning. As to the negative group, we randomly extract 593 patients

since the prevalence of CKD in diabetic patients is approximately 40%. Then, this

negative group is randomly split into training, validation and testing with the same

ratio as used for the positive class.

To validate the proposed representation learning framework, we compare the pre-

diction performance of the proposed model with baseline approaches as follows.

• Aggregated Frequency Vector (AFV): A patient’s record is represented as a

count vector of medical events in the observation window. Each dimension is

associated with a distinct medical event in patients’ EHR data.

• Bag-of-pattern in Sequences (BPS): This method runs a widely used sequence

pattern mining algorithm, CM-SPADE [34], to discover all frequent patterns in

patients’ EHR data. Thus, a patient’s record is represented with a frequency

vector of the discovered frequent patterns.

• Aggregated Transition Vector (ATV): The pairwise transitions between medical

event pairs are counted and a patient’s record is represented with a frequency

vector of pairwise transitions.
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• SLR: A sparse longitudinal representation proposed in Chapter 3.

• Bagged SLR: It first learns a SLR representation and an associated classifier

on each bootstrap sample. Then, the final prediction is obtained by majority

voting over all the classifiers.

The time window used to group clinical events is 120 days such that 3 subsets of

features are constructed for the 1-year observation window. According to the U.S.

Census Bureau, adults have an average of 3.9 visits to doctors annually [65]. Here,

we use a slightly larger time window in this experiment considering that the dataset

is small. However, this time window can be further tuned on specific populations

for an optimal output. With WB-SLR and baseline representations of patients, we

model the comorbid risk of CKD using three classifiers, logistic regression with l1

penalty (LR), random forest (RF), and gradient boosting trees (GBT) with 20 trees,

respectively. The hyperparameters of classifiers are tuned on the validation set. The

performance of baselines and the proposed framework on the comorbid risk prediction

task is evaluated with AUC (area under curve), sensitivity, specificity, and F2 score.

Each experiment is repeated 50 times and we calculate the averages and standard

deviations of the above metrics, respectively.

4.3.3 Experimental Results

The predictive performance of the classifiers based on the baseline representations and

proposed WB-SLR framework are presented in Table 4.2. Here, the results shown are

based on the WB-SLR learned with ↵ = 0.7 and � = 0.0005.

According to the results table, the predictive performance of classifiers based on

WB-SLR outperform the baselines in terms of AUC. The classifier based on WB-SLR

achieves a relatively higher AUC by approximately 5% than the bagged SLR. The

WB-SLR achieves a highly balanced prediction result on the target and control groups

by comparing the sensitivity and specificity. With the baseline representations, the
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Table 4.2: The predictive performance of baselines and the proposed WB-SLR frame-
work

Sensitivity Specificity AUC F2 score

AFV
LR 0.649± 0.030 0.734± 0.025 0.712± 0.025 0.660± 0.037
RF 0.557± 0.033 0.890± 0.017 0.774± 0.020 0.671± 0.026
GBT 0.623± 0.029 0.891± 0.028 0.796± 0.021 0.667± 0.023

BPS
LR 0.592± 0.042 0.728± 0.026 0.757± 0.022 0.592± 0.031
RF 0.975± 0.011 0.287± 0.026 0.732± 0.027 0.803± 0.020
GBT 0.831± 0.026 0.684± 0.026 0.807± 0.018 0.749± 0.024

ATV
LR 0.500± 0.033 0.888± 0.027 0.697± 0.026 0.546± 0.035
RF 0.598± 0.032 0.842± 0.022 0.791± 0.021 0.712± 0.028
GBT 0.558± 0.031 0.885± 0.017 0.796± 0.025 0.722± 0.024

SLR
LR 0.747± 0.035 0.899± 0.018 0.835± 0.015 0.772± 0.031
RF 0.753± 0.033 0.903± 0.019 0.847± 0.026 0.799± 0.030
GBT 0.857± 0.024 0.775± 0.025 0.877± 0.017 0.810± 0.016

Bagged SLR 0.829± 0.023 0.865± 0.020 0.842± 0.020 0.818± 0.028
WB-SLR 0.835± 0.025 0.852± 0.012 0.891± 0.018 0.820± 0.027

GBT and RF classifiers generally outperform LR classifiers in terms of AUC and

F2 score. In general, the GBT models demonstrates a slightly better performance

than RFs. The performance between the first four baselines are not significantly

di↵erent, while the SLR based representations are capable of improving the prediction

performance significantly. In terms of AUC, the bagged SLR achieves a more accurate

prediction than the LR classifier based on SLR, while the RF and GBT models based

on SLR outperform the bagged SLR. This finding is consistent with the properties

of bagging and random forest described in Chapter 2. In general, the proposed

WB-SLR is able to achieve a more accurate prediction compared to baselines and the

improvement could be more significant if there are more observations to allow better

weight learning for model aggregation.

In addition to the predictive modeling on CKD in diabetic patients, we apply

WB-SLR to the risk prediction of diabetes, in which the details of this task are

elaborated in Chapter 3. The predictive performance are presented in Table 4.3.

Comparing the predictive performance in Tables 4.3 and 3.3, we observe that
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Table 4.3: The predictive performance of WB-SLR framework on the early detection
of diabetes

Sensitivity Specificity AUC F2 score
WB-SLR 0.885± 0.009 0.610± 0.006 0.846± 0.006 0.623± 0.005

WB-SLR achieves a more accurate prediction, especially in terms of AUC and F2

score. Thus, it indicates that the weighted bagging of SLRs are capable of improving

the predictive performance.

4.3.4 Visualization & Interpretation

In addition to predictive performance, we elaborate the selected features by the SLR

with highest weight in WB-SLR in the early detection of CKD among diabetic pa-

tients. We illustrate the correlations between the selected features in the observation

window and the outcome in Figure 4.3. In general, we observe that the diagnoses

temporally closer to the observation of outcome are more positively correlated with it

while the selected features that are negatively correlated are mostly in the first time

window, i.e., occurred much earlier than the outcome onset. Negatively correlated

events in the very early time window include non-specific chest pain, osteoarthri-

tis, thyroid disorders, other connective tissue disease, essential hypertension, diabetes

with/without complications, and so forth.

However, the diabetic diagnoses become a very important positive risk factor

when it is later in the time window, especially the diabetes mellitus with complica-

tions. Other positively correlated risk factors throughout the observation window

are deficiency and other anemia, other aftercare, other injuries and conditions due

to external causes, and heart and cardiovascular diseases, including congestive heart

failure, cardiac dysrhythmias, other and ill-defined heart disease, etc. Here, deficiency

and other anemia refers to iron deficiency anemias, other deficiency anemias, and/or

hereditary anemias according to [64], which are found to be correlated to CKD ac-
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cording to [91–93]. In fact, previous literature have shown that the prevalence of

anemia increases as kidney function decreases [93–95].

Additionally, we observe that essential hypertension and a group of cardiovascular

and heart diseases are strongly correlated with the onset of CKD. Previous research

have demonstrated that essential hypertension is one of the leading causes of CKD

together with diabetes [96]. According to [97], there is a close interrelation between

cardiovascular disease and kidney disease, and the disease of one organ may cause

dysfunction of the other, which could ultimately lead to the failure of both organs [97].

Additionally, both cardiovascular and heart diseases and kidney disease are complica-

tions of diabetes. It is also likely that the diabetic patients developed cardiovascular

and heart problems because of uncontrolled diabetes such that we observe the diag-

noses of CKD later as another complication of diabetes, apart from the damages to

renal function by hypertension and cardiovascular diseases.

In Figure 4.3, other nervous system disorder, other aftercare and other injuries

and conditions due to external causes are also shown to be positively correlated to

CKD. According to [98,99], neurological complications are prevalent in CKD patients

and occur in almost all patients with severe CKD, which might a↵ect both the central

and peripheral nervous systems. Here, the other aftercare diagnosis group includes

aftercare following surgeries and long-term (current) use of drugs, such as insulin. In

the diagnosis group other injuries and conditions due to external causes, there are

diagnoses of injuries due to accidents as well as other nonspecific abnormal toxicolog-

ical findings which includes abnormal levels of drugs or heavy metals in blood, urine,

or other tissue [64]. Medical research has shown that exposure to heavy metals and

chronic use of drugs known to be potentially nephrotoxic can lead to CKD [100,101].

It is clinically counterfactal to observe disorders of lipid metabolism, essential hy-

pertension, and diabetes with/without complications being negatively correlated fac-

tors earlier in the observation window, while they become strong positive risk factors
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Table 4.4: Diagnoses positively correlated with prediction outcome in at least one
third of SLR models

Months in Observation Window
1-4 5-8 9-12

Coronary atherosclerosis and other heart dis-
ease

Y Y

Nonspecific chest pain Y
Other and ill-defined heart disease Y Y
Cardiac dysrhythmias Y Y Y
Congestive heart failure; nonhypertensive Y Y Y
Other circulatory disease Y Y Y
Pleurisy; pneumothorax; pulmonary collapse Y
Other lower respiratory disease Y Y Y
Other diseases of kidney and ureters Y
Diabetes mellitus without complication Y Y
Diabetes mellitus with complications Y Y
Nutritional deficiencies Y
Deficiency and other anemia Y Y
Disorders of lipid metabolism Y
Other nervous system disorders Y
Essential hypertension Y Y
Spondylosis; intervertebral disc disorders; other
back problems

Y

Other connective tissue disease Y
Other injuries and conditions due to external
causes

Y

Other and unspecified benign neoplasm Y
Thyroid disorders Y Y
Malaise and fatigue Y Y
Other aftercare Y Y

later. The potential rationale is that these diagnoses are prevalent in the early obser-

vation window in both the negative and positive patient cohorts, however, the factors

making real di↵erences are the occurrences of them later in the observation period or

constant occurrences of these diagnoses. Thus, the early observation of these factors

are learned as being negatively correlated to the onset of CKD.

To get a more comprehensive understanding of the learned WB-SLR representa-

tion, we further interpret the learned WB-SLR representation in Table 4.4. It shows

the diagnoses at the three distinct time windows during the observation period which
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are selected as being positively correlated to the outcome by at least one third of

the SLRs in WB-SLR. Accordingly, the diabetes mellitus with/without complications,

other diseases of kidney and ureters, other circulatory disease, deficiency and other

anemia, as well as heart diseases, including congestive heart failure, cardiac dysrhyth-

mias, etc., appear to be important factors. These findings are consistent with the

medical literature.

Interestingly, we observe that some diagnoses are positively correlated throughout

the entire observation window, such as cardiac dysrhythmias and congestive heart fail-

ure, while some are more correlated when occurred early in the observation window,

such as spondylosis, intervertebral disc disorders, other back problems. According to

the National Kidney Foundation, there are three early warnings signs of kidney dis-

ease, including lower back pain in which the pain from kidney might be recognized as

lower back pain [102]. It is very straightforward to observe that the diagnoses of other

diseases of kidney and ureters as a positive risk factor of CKD, since CKD starts with

impaired renal function and may not be apparent until the kidney function is signifi-

cantly impaired [83]. Moreover, some diagnoses occur later in the observation window,

i.e., closer to the onset of CKD, are more positively correlated to it, including diabetes

with complications, essential hypertension, other and ill-defined heart disease, other

nervous system disorders, deficiency and other anemia, and nutritional deficiencies.

According to medical research, deficiencies of nutritions including Vitamin D is also

positively correlated to CKD [95,103–105].

It is not surprising to observe that the diabetic diagnoses are found to have a posi-

tive correlation with CKD. Both diabetes mellitus without complications and diabetes

mellitus with complications occur from the 5 to 8 months window to the end of the

observation period. It implicitly mimics the progression of CKD due to diabetes. We

also observe that lower respiratory disease and pleurisy, pneumothorax, pulmonary

collapse are positive factors, especially the former one being positively correlated
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Figure 4.4: The medical history of an example diabetic patient who developed CKD
later

throughout the entire observation window. In fact, lung and kidney function are inti-

mately related and the respiratory complications of CKD include pulmonary edema,

fibrinous pleuritis, pulmonary calcification, and so forth [106]. Thus, the two groups

of diagnoses related to lung function are recognized as positively correlated factors to

CKD.

To provide a more straightforward understanding of the learned representation and

its benefit to the comorbid risk prediction of CKD in diabetic patients, we present the

medical histories of two example diabetic patients in Figures 4.4 and 4.5. Figure 4.4

shows the EHR data of a diabetic patient who developed CKD later, while Figure 4.5

illustrates the medical history of a diabetic patient with no observed CKD in the

record. We observe that disorders of lipid metabolism and diabetes mellitus with

complications occur repeatedly in the first patient’s medical record, and those are

found to be positively correlated with comorbid CKD. However, the diagnoses in the

second patient’s EHR data are less correlated to comorbid CKD according to the

learned representation by WB-SLR. Both example patients are predicted correctly
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Figure 4.5: The medical history of an example diabetic patient without CKD in the
record

using the proposed WB-SLR representation learning framework.

In general, the learned WB-SLR representation is consistent with the previous

medical research. In addition to improving the accuracy of the early detection of CKD

in diabetic patients, this research could also be used to deepen clinical understanding

of disease correlations.

4.4 Summary

In this chapter, we propose a novel representation learning framework, WB-SLR, to

learn a comprehensive and stable representation of patients’ EHR data. This method

utilizes the SLR framework, the bagging strategy, and model aggregation based on

oob weighting. We apply this framework to the early detection of CKD in diabetic

patients using longitudinal EHR data. The experimental results demonstrate that the

proposed WB-SLR representation framework is capable of achieving a more accurate

prediction and it also uncovers the correlations between diseases which are found to
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be consistent with previous medical research.

Alternative model selection and combination methods will be explored to ag-

gregate the ensemble of classifiers and representations learned from bootstrapped

samples. Moreover, future improvement on the proposed model could employ the

strategy of random forest which samples a subset of features when growing a tree.

This could potentially reduce the correlation between the single models in the en-

semble and further improve the prediction accuracy. Again, future work will consider

more specific diagnosis codes and other grouping strategies to reduce the information

loss introduced by using the current AHRQ clinical classification scheme. Similarly,

other types of clinical events, such as procedures and medications, could be added

to learn a more comprehensive representation of patients’ medical histories. Regu-

larization is introduced to reduce multicollinearity and other potential approaches to

address this issue will be explored as future directions.

In the experiment, we model the comorbid risk of CKD in diabetic patients with

a small population under the current experimental setting, i.e., 395 individuals are

identified under the setting of having their first CKD diagnoses at least 18 months

after the first observed diabetes diagnoses. To address this sample size issue, we could

potentially employ the medical records of CKD patients without diabetes or with

concurrent diabetes. This is because that CKD in patients with or without diabetes

are similar and most likely share some common risk factors or symptoms. Hence,

there is great potential to improve the prediction performance by including those

patients into the originally identified positive patients. We will also explore transfer

learning approaches to transfer the knowledge learned from a similar population to

address the target problem.
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Chapter 5

Patient2Vec: A Personalized

Interpretable Deep Representation

of Longitudinal Electronic Health

Record Data

In this chapter, we propose a computational framework to learn an interpretable deep

representation of the longitudinal EHR data which is personalized for each patient.

We first introduce the background and related works of this research. Then, we

elaborate the framework and the representation learning algorithm in detail. Next,

we apply this proposed framework to the risk prediction of hospitalization and discuss

the predictive performance of Patient2Vec compared to baselines. In the end, the

learned feature importance are visualized and interpreted at both the individual and

population levels.

66



5.1 Introduction

Longitudinal EHR data are resembling text documents in many perspectives. A text

document consists of a sequence of sentences, and a sentence is a sequence of words.

Similarly, the longitudinal health record of a patient is consisting of a sequence of

visits, and there are a list of clinical events, including diagnoses, medications, and

procedures, occurred during a visit. Unlike text documents, there is usually no order-

ing between the events in a visit. Considering these similarities, the representation

learning methods for text document in NLP has great potential to be applied to

longitudinal EHR data.

Deep neural networks have become very popular in the NLP field and they have

been very successful in many applications, such as machine translation, question an-

swering, text classification, document summarization, language modeling, etc. [5,107,

108] It is very beneficial to use deep neural networks for such tasks, since these net-

works are capable of identifying high-order relationships. Additionally, the network

structure can encode the language structures, and it allows the learning of a hier-

archical representation of the language, i.e., representations for tokens, phrases, and

sentences, etc.

Among a variety of deep learning methods, RNNs have shown their e↵ectiveness

in NLP tasks due to its capability of capturing sequential information which is natural

in human language. Traditional neural networks assume that inputs are independent

of each other, while a RNN computes the output based on the current input as well

as the “memory” from the previous computation. Although the vanilla RNNs are not

good at capturing long-term dependencies, many variants have been proposed and

validated to be e↵ective in addressing this issue.

In medical fields, it is critical that the analytical results are interpretable, such

that it can be understood and validated by human with precise knowledge. However,

67



a salient disadvantage of deep neural networks is the lack of interpretability. In order

to make sense of the “black box”, many attempts have been made and the attention

mechanism is one of the e↵ective methods to make the results more interpretable.

Health care has experienced unprecedented changes over the past century, and

there is a great potential and demand in personalized health care. Personalized

medicine, also called precision medicine, is not a new term, yet most research are in

the genetics field. However, the availability of EHR data and advances in machine

learning have great potential to help make personalized health care accessible to

patients. In fact, personalization has been ubiquitous in our daily life and we are

experiencing it all the time. For example, there is personalized search on Google

and personalized product recommendations on Amazon and Netflix. In addition to

better customer experience, personalization might bring more benefits when applied

in healthcare systems, such as better health outcomes and reduced psychological

distress and costs. In representation learning, most methods capture the important

features at population-level which might be distinctive between patients considering

the heterogeneities in their medical histories and characteristics. Thus, it is important

to learn a personalized representation of a patient’s medical history for personalized

medicine and ultimately to achieve better healthcare outcomes.

This research is based on RNN models and the attention mechanism with the

objective of learning a personalized, interpretable, and complete representation of

patients’ medical records. The ultimate goal is to help achieve more accurate predic-

tion, to bring clinical insights, and to facilitate the delivery of personalized medicine

with such representations of EHR data. The rest of this chapter is organized as fol-

lows: Section 5.2 summarizes the variants of RNNs and the attention mechanism, as

well as the applications of them on EHR data. Section 5.3 presents an overview of the

proposed Patient2Vec representation learning framework, and Section 5.4 elaborates

the details of the algorithms. In Section 5.6, the proposed framework is evaluated with
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a prediction task and we compare its performance with other baseline methods. In

addition to prediction performance, we further interpret the learned representations

with visualizations on example patients and events. Finally, Section 5.6 provides a

summary of this work.

5.2 Related Work

In this section, we present an overview of gated recurrent unit, a type of RNN, which

is capable of capturing long-term dependencies. Then, we briefly introduce attention

mechanisms on neural networks such that to allow the network to attend to certain

regions, which is inspired by the visual attention mechanism of human. Additionally,

we summarize the RNN networks and attention mechanisms used to mine EHR data.

Gated Recurrent Unit (GRU)

RNNs are expected to learn long-term dependencies by taking previous state and the

new input in the computation at current time step t. However, the vanilla RNNs are

incapable of capturing the dependencies when the sequence is very long due to the

vanishing gradient problem [4]. Thus, many variants of the RNN network have been

proposed to address this issue and long short term memory (LSTM) is one of the

most popular models used nowadays in NLP tasks. GRU is a simplified version of

LSTM, and the basic idea of GRU is to combat the vanishing gradient problem with

a gating mechanism. Hence, the general recurrent structure in GRU is identical to

vanilla RNNs, except that a GRU unit is used in the computation at each time step

rather than a traditional simple recurrent unit.

In general, a GRU cell has two gates, i.e., a reset gate r and an update gate

z. The reset gate is used to determine how to integrate the previous state into the

computation of the current state, while the update gate determines how much the

unit updates its activation.
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Given the input x

t

at time step t, the reset gate r

t

is computed as presented in

Equation 5.1.

r

t

= �(U
r

x

t

+W

r

s

t�1) (5.1)

where U
r

and W

r

are the weight matrices of reset gate, and s

t�1 is the hidden activa-

tion at time step t� 1. A similar computation is performed for the update gate z
t

at

time step t, shown in Equation 5.2.

z

t

= �(U
z

x

t

+W

z

s

t�1) (5.2)

where U

z

and W

z

are the weight matrices of update gate. The current hidden acti-

vation h

t

is computed by

h

t

= (1� z

t

)h
t�1 + z

t

h̃

t

(5.3)

where h̃

t

is the candidate activation at time step t and the computation of it is

presented in Equation 5.4.

h̃

t

= tanh(Wx

t

+ U(r
t

� h

t�1)) (5.4)

where U and W are weight matrices and � represents element-wise multiplication.

Figure 5.1 presents a graphical illustration of the GRU.

The GRU is capable of learning long-term dependencies due to the additive com-

ponent of update from t to t+ 1 in the gating mechanism. Consequently, important

features will be carried forward in the input stream and maintained as it is, while

irrelevant information will be dropped. When the reset gate is 0, the network is

forced to drop previous states and reset with current information. Moreover, it pro-

vides shortcuts such that the error is easily backpropagated without vanishing too
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Figure 5.1: The GRU gating [5]

quickly [5, 109]. Hence, the GRU is well-suited to learn long-term dependencies in

sequence data. The LSTM is similar to GRU, but with one more gate in a LSTM

unit. Empirically, LSTM and GRU achieve comparable performance in many tasks,

but there are fewer parameters in a GRU which makes it a little faster to learn and

need fewer data to generalize [110].

Attention Mechanism

Attention mechanisms have become more and more popular in deep learning, which

is inspired by the visual attention system found in human. Attention allows the

network to focus on certain regions, while perceiving the other regions with “low

resolution”. In addition to higher accuracy, it also facilitates the interpretation of

learned representations. We elaborate an attention mechanism on a RNN network,

and Figure 5.2 presents a graphical illustration.

According to Figure 5.2, a variable-length weight vector ↵ is learned based on the

hidden states. Then a global context vector is computed based on weights ↵ and all
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Figure 5.2: The global attention model [6]

the hidden states to make final output. Equation 5.5 presents the computation of

weight vector ↵ = {↵1,↵2, · · · ,↵T

}, where T is the length of the sequence.

↵1,↵2, · · · ,↵T

= f(W
↵

h+ b

↵

) (5.5)

where f is a nonlinear activation function, usually softmax or tanh. Then, the

context vector c is constructed as:

c =
TX

t=1

↵

t

h

t

(5.6)

Thus, the network puts more attention to the important features in the final

prediction which can improve the model performance. An additional benefit is that

the weights can be utilized to understand the importance of features such that the

models are more interpretable. The attention mechanism has been introduced to both

CNNs and RNNs for various tasks and have achieved many successes in computer
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vision and NLP fields [6, 111,112].

Deep Learning in EHR Data

Previous studies on health analytics of EHR data are mainly using statistical methods

or traditional machine learning models. Nowadays, researchers have started adapting

deep learning approaches to this area, including textual notes, temporal measure-

ments of lab tests in the intensive care unit (ICU), and longitudinal EHRs in the

health systems. Here, we summarize the deep learning research in mining EHR data

and focus on the studies using RNN-based models.

Hospitalized patients, especially patients in ICUs are monitored on their clinical

conditions, such that large amounts of clinical measurements are generated. These

measurements are utilized by physicians to make diagnostic and treatment decisions.

However, it is very challenging for traditional machine learning methods to mine this

multivariate time series data considering the missing values, varying length, and irreg-

ular sampling. Lipton et al. train a LSTM with replicated target to learn from these

sequence data and use this model to make predictions of diagnoses [113]. The data

used in this research are the time series clinical measurements with continuous values

and the LSTM models outperform logistic regression and MLP. Furthermore, Che et

al. develop a GRU-based model to address the missing values in multivariate time

series data, in which the missing patterns are incorporated for improved prediction

performance [114]. This work has been applied to the MIMIC-III clinical database

to demonstrate its e↵ectiveness in mining time series of clinical measurements with

missing values [115]. In addition to time series clinical measurements, longitudinal

EHR data with clinical events, such as diagnoses, medications, and procedures is also

a rich resource to explore. Choi et al. leverage this data with a GRU network to

forecast future clinical events, and it achieves a better prediction performance than

baselines such as logistic regression and MLP [116].
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However, the di�culty in interpretation is one of the major drawbacks of using

deep learning to mine EHR data. Some attempts have been made to address this

issue. In [117], it proposes an interpretable mimic learning method which trains

a mimic gradient boosting trees model to utilize the predicted labels or features

learned by the deep learning models for final prediction [118]. Then, the feature

importance learned by the tree-based models are used for knowledge discovery. Re-

cently, attention mechanisms have been introduced to improve the interpretability

of the prediction results of deep learning models in health analytics. In [119], it de-

velops an interpretable model with two levels of attention weights learned from two

reverse time GRU models, respectively. The experimental results on EHR data in-

dicate comparable prediction performance with conventional GRU models but more

interpretable results. Our work continues the attempt to improve the interpretability

of RNN-based models with attention mechanisms for the representation learning of

longitudinal EHR data.

5.3 Patient2Vec System Model

In this section, we provide an overview of the proposed hierarchical representation

learning framework which utilizes deep recurrent neural networks to capture the com-

plex relationships between clinical events in patient’s EHR data. Additionally, it em-

ploys the attention mechanism to learn a personalized representation and to obtain

the relative feature importance.

The proposed representation learning framework contains four steps and Figure 5.3

presents a graphical illustration of this framework.

1. Learning vector representations of medical codes — In the EHR data,

there are often times multiple medical codes within a visit. Here, we treat the

set of medical codes in a visit as a sentence consisting of words, except that
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Figure 5.3: The Patient2Vec representation learning framework
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there is no ordering in the words. Thus, we adopt the word2vec approach to

learn a vector to represent each medical code.

2. Learning within-subsequence self-attention — Given the vector represen-

tation of medical codes, we are able to represent a visit with the codes occurred

during this visit. However, some visits might be highly correlated with each

other such that it is not clinically meaningful to separate them. Thus, we em-

ploy a time window to split the sequence of visits into multiple subsequences.

Consequently, a subsequence might contain multiple original visits if they oc-

curred within the same time window, or there might be no visits during a

particular time window, which makes the subsequence empty. In this way, we

are also able to transform this sequence into a sequence of subsequences with

equal interval, which is preferable for recurrent neural networks.

However, the medical events occurred within a subsequence are not contributing

equally to the prediction of target outcome. Thus, we cannot aggregate them

with equal weights, but instead we employ a self-attention mechanism which

trains the network to learn the weights by itself.

3. Learning subsequence-level self-attention — Given a sequence of subse-

quences with embedded medical codes, we are able to input it into a recurrent

neural network to capture the temporal dependencies between events. However,

the subsequences of visits are not contributing equally to the outcome. Hence,

we employ another level of attention to learn the weights of the subsequences

by the network itself for the outcome prediction.

4. Constructing aggregated deep representation—Given the learned weights

and hidden outputs, we aggregate them into one universal vector for a compre-

hensive representation. In this step, the static information, such as age, gender,

previous hospitalization history is added as extra features, to get a complete
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representation of a patient.

5. Predicting outcome — Given the complete vector representation of a pa-

tient’s EHR data, we add a logistic regression layer at the end for the prediction

of outcome.

5.4 Patient2Vec Representation Learning Algorithm

In this section, we present the details of the proposed representation learning frame-

work, which is based on a GRU network and a hierarchical attention mechanism.

Figure 5.4 presents the structure of the proposed network with attention. The pro-

posed framework consists of five parts presented in the following.

Learning vector representations of medical codes

Given a patient’s raw EHR data, a sequence of visits, we observe that a visit usually

contains multiple medical codes. Hence, it is feasible to learn a vector to represent

the medical code by capturing the relationships between the codes. In this work, we

employ the classical word2vec algorithm, skip-gram, as described in Chapter 2.1 for

medical code embedding. The basic idea of skip-gram is to learn a vector to represent

each word such that the probability of the context to predict based on the target

word is maximized. Hence, the vectors of similar words are close to each other in the

learned feature space. In the skip-gram model, the vectors are learned by training a

shallow neural network to predict the context words given an input word. Similarly,

in our problem, the input is a medical code and the target to predict are the medical

codes occurred in the same visit.

Hence, each subsequence is a matrix consisting of the vectors of medical codes

occurred during this associated time window.
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Learning within-subsequence self-attention

Given a sequence of subsequences encoded by vectors of medical codes, this step

employs the within-subsequence attention which allows the network itself to learn the

weights of vectors in the subsequence according to its contribution to the prediction

target.

Here, we denote the sequence of patient i as s(i), and v

(i)
t

denotes the tth subse-

quence in sequence s(i), where t 2 {1, 2, · · · , T}. Thus, s(i) = {v(i)1 , · · · , v(i)
t

, · · · , v(i)
T

}.

To simplify the notation, we omit i in the following explanation. Subsequence

v

t

2 Rn⇥d is a matrix of medical codes such that v

t

= {v
t1 , vt2 , · · · , vtj , · · · , vtn},

where v

tj 2 Rd is the vector representation of the jth medical code in the tth subse-

quence v
t

and there are n medical codes in a subsequence. In real EHR data, it is very

likely that the numbers of medical codes in each visit or time window are di↵erent,

thus, we utilize the padding approach to obtain a consistent matrix dimensionality in

the network.

To assign attention weights, we utilize the one-side convolution operation with

a filter !

↵ 2 Rd and a nonlinear activation function. Thus, the weight vector ↵

t

is

generated for medical codes in the subsequence v

t

, presented in Equation 5.7.

↵

t

= tanh(Conv(!↵

, v

t

)) (5.7)

where ↵

t

= {↵
t1 ,↵t2 , · · · ,↵tn}, and !

↵ 2 Rd is the weight vector of the filter. The

convolution operation Conv is presented in Equation 5.8.

↵̃

tj = (!↵)|v
tj + b

↵ (5.8)

where b

↵ is a bias term. Then, given the original matrix v

t

and the learned weights

↵

t

, an aggregated vector x

t

2 Rd is constructed to represent the tth subsequence,

presented in 5.9.
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x

t

=
nX

j=1

↵

tjvtj (5.9)

Given Equation 5.9, we obtain a sequence of vectors, x = {x1, x2, · · · , xt

, · · · , x
T

}, to

represent a patient’s medical history.

Learning subsequence-level self-attention

Given a sequence of embedded subsequences, this step employs the subsequence-

level attention which allows the network itself to learn the weights of subsequences

according to their contribution to the prediction target.

To capture the longitudinal dependencies, we utilize a bidirectional GRU-based

RNN, presented in Equations 5.10.

h1, h2, · · · , ht

, · · · , h
T

= GRU(x1, x2, · · · , xt

, · · · , x
T

) (5.10)

where h
t

2 Rk represents the output by the GRU unit at the tth subsequence. Then,

we introduce a set of linear and softmax layers to generate M hops of weights � 2

RM⇥T for subsequences. Then, for the hop m

�

mt

= (w�

m

)|h
t

+ b

� (5.11)

�

m1, �m2, · · · , �mt

, · · · , �
mT

= softmax(�
m1, �m2, · · · , �mt

, · · · , �
mT

) (5.12)

where w

�

m

2 Rk. Thus, with the subsequence-level weights and hidden outputs, we

construct a vector c
m

2 Rk to represent a patient’s medical visit history with one hop

of subsequence weights, presented in the following Equation 5.13.

c

m

=
TX

t=1

�

mt

h

t

(5.13)

Then, a context vector c 2 RM⇥k is constructed by concatenating c1, c2, · · · , cM .
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Constructing aggregated deep representation

Given the context vector c, this step integrate the patients characteristics a 2 Rq into

the context vector for a complete vector representation of the patient’s EHR data. In

this research, the patient characteristics include demographic information and some

static medical conditions, such as age, gender, and previous hospitalization. Thus, an

aggregated vector is constructed, c0 2 RM⇥k+q, by adding a as additional dimensions

to the context vector c.

Predicting outcome

Given the vector representation of the complete medical history and characteristics

of patients, c0, we add a linear and a softmax layer for the final outcome prediction,

as presented in Equation 5.14.

ŷ = softmax(wc

|
c

0 + b

c) (5.14)

To train the network, we use cross entropy as the loss function, presented in

Equation 5.15.

L = � 1

N

NX

n=1

y

i

log(ŷ
i

) + (1� y

i

)log(1� ŷ

i

) +
1

N

NX

n=1

||��| � I||2
F

(5.15)

where N is the total number of observations. Here, y
i

is a binary variable in classifica-

tion problems, while model output ŷ
i

is real-valued. The second term in Equation 5.15

is to penalize redundancy if the attention mechanism provides similar subsequence

weights for di↵erent hops of attention, which is derived from [120]. This penalty term

encourages the multiple hops to focus on diverse areas and each hop focuses on a

small area.
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Thus, we obtain a final output for the prediction of outcomes and a complete

personalized vector representation of the patient’s longitudinal EHR data.

5.5 Evaluation

5.5.1 Background

Although health care spending has been a relatively stable share of the Gross Domes-

tic Product (GDP) in the United States since 2009, the costs of hospitalization, the

largest single component of health care expenditures, increase by 4.1% in 2014 [121].

More importantly, unplanned hospitalization can be distressing and can increase the

risk of related adverse events, such as hospital-acquired infections and falls [122,123].

In fact, hospitalization, one of the most expensive types of health care treatment, are

sometimes avoidable. Approximately 40% hospitalizations in the United Kingdom

are unplanned and are potentially avoidable [124]. Early interventions targeted to

patients at-risk of hospitalization could help avoid unplanned admissions, reduce in-

patient health care cost, reduce emergency department congestion, and so forth [125].

Thus, it is imperative to predict the risk of hospitalization such that interventions

could be designed to prevent unnecessary admissions.

In this research, we apply our proposed representation learning framework on the

risk prediction of future hospitalization. Many studies have been conducted by re-

searchers to predict the risk of 30-day readmission, or the admission risk of a particular

population, such as patients with ambulatory care sensitive conditions (ACSCs), pa-

tients with heart failure, etc. [10,126–128]. Here, we focus on the general population

and the objective is to predict the risk of all-cause hospitalization using longitudinal

EHR data.
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Figure 5.5: A graphical illustration of the experimental setting for the risk prediction
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5.5.2 Experimental Design

In this research, we use the de-identified EHR data of 75 months beginning in Septem-

ber 2010 from the University of Virginia Health System. This dataset contains

2, 343, 651 inpatient and outpatient visits of 473, 915 distinct patients. In this ex-

periment, we focus on the diagnosis, medication, and procedure codes in the EHR

data.

In the experiment, we define the observation window and prediction period to

validate the proposed method. We first extract all patients with a medical record

of at least 1.5 years, where the first year is the observation window and the medical

records in this time window is used for feature construction. The following 6 months

is the hold-o↵ period for the purpose of early detection. For the positive class, we

take all patients who have hospitalization after the first 1.5 years in their medical

history, while the negative class consists of patients who have no hospitalization after

1.5 years. To better illustrate the experimental setting, we present the observation

window, hold-o↵ and onset of outcome event in Figure 5.5.

Here, the medical codes include diagnosis, medication, and procedure codes, and a

vector representation is learned for each code. In this dataset, diagnoses are primarily

coded in ICD-9 and a small portion are ICD-10 codes, while procedures are mainly

using CPT codes with a few ICD-9 procedure codes. The codes of medications are
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Figure 5.6: The cumulative histogram and density plot of patients’ numbers of visits

using the pharmaceutical categories. Overall, there are 94 distinct medication cat-

egories, 34, 419 distinct diagnoses codes, and 7, 895 distinct procedure codes in the

EHR data. The dimension of the learned vectors of medical codes are set to 100. The

raw medical codes appear in less than 50 patients’ medical records are considered as

rare events such that these codes are excluded.

To construct the subsequences of medical codes, we use l days as the time window

to split the sequence. Figure 5.6 presents the cumulative histogram and density plot

of the numbers of visits in the observation window, and we observe that the majority

of patients have a small number of visits during the observation window. In fact,

there are only less than 25% of patients with more than 4 visits. Thus, we set l to 90

days in which a sequence is split into 4 subsequences.

Within each subsequence, the number of distinct medical codes are computed

and patients with more medical codes in a subsequence than the 95% quantile are
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excluded from the dataset. Overall, there are 8, 841 and 89, 101 patients in the target

and control groups, respectively. Each group is randomly split into training, validation

and testing sets with a 7:1:2 ratio. Thus, 70% are used for training, another 20% are

used for testing, and the rest 10% are used for parameter tuning and early stopping.

The stochastic gradient descent algorithm is used in training to minimize the cross

entropy loss function, shown in Equation 5.15.

To evaluate the proposed representation learning framework, we compare the pre-

diction performance of the proposed model with baseline approaches as follows.

• Logistic regression (LR) — The inputs are the aggregated counts of grouped

medical codes over the entire observation window. Since the dimensionality of

raw medical codes are huge, AHRQ clinical classifications of diagnoses and pro-

cedures are used to achieve a more general clustering of medical codes [64]. The

medication codes are the pharmaceutical classes. Furthermore, patient charac-

teristics and previous inpatient visit are also considered, where age and gender

are demographic information, and a binary indicator is utilized to represent

the presence of previous hospitalization. Hence, the input is a 436-dimensional

vector representing a patient’s medical history and characteristics.

• Multi-layer perceptron (MLP) — A multi-layer perceptron is trained to

predict hospitalization using the same inputs for logistic regression. Here, we

use a one hidden layer MLP with 256 hidden nodes.

• Froward RNN with medical group embedding (FRNN-MGE) — We

split the sequence into subsequences with equal interval l. The input at each

step is the counts of medical groups within the associated time interval, and the

patient characteristics are appended as additional features in the final logistic

regression step. Here, the RNN is a forward GRU with one hidden layer and

the size of the hidden layer is 256.
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• Bidirectional RNN with medical group embedding (BiRNN-MGE) —

The inputs used for this baseline is the same as the one for the FRNN-MGE.

The RNN used here is a bidirectional GRU with one hidden layer and the size

of the hidden layer is 256.

• Forward RNN with medical vector embedding (FRNN-MVE) — We

split the sequence into subsequences with equal interval l. The input at each

step is the vector representation of the medical codes within the associated time

interval, and the patient characteristics are appended as additional features in

the final logistic regression step. Here, the RNN is a forward GRU with one

hidden layer and the size of the hidden layer is 256.

• Bidirectional RNN with medical vector embedding (BiRNN-MVE)

— The inputs used for this baseline is the same as the one for the FRNN-MVE.

The RNN used here is a bidirectional GRU with one hidden layer and the size

of the hidden layer is 256.

• RETAIN — This model uses reverse time attention mechanism on RNNs for

an interpretable representation of patient’s EHR data [119]. The inputs are the

same as the one for FRNN-MGE, which takes the counts of medical grouping

within each time interval to construct features. Similarly, the two RNNs used

for generating weights are GRU-based and the size of the hidden layers are 256.

• Patient2Vec — The inputs are the same as that for FRNN-MVE. One filter

is used when generating weights for within-subsequence attention, and three

filters are used for subsequence-level attention. Similarly, the RNN used here

is GRU-based and there is one hidden layer and the size of the hidden layer is

256.

The inputs of all baselines and Patient2Vec are normalized to have zero mean

and unit variance. We model the risk of hospitalization based on Patient2Vec and
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baseline representations of patients’ medical histories, and the model performance

are evaluated with AUC, sensitivity, specificity, and F2 score. Validation set is used

for parameter tuning and early stopping in the training process. Each experiment is

repeated 20 times and we calculate the averages and standard deviations of the above

metrics, respectively.

5.5.3 Experimental Results

The predictive performance of Patient2Vec and baselines are presented in Table 5.1.

The results shown here for the RNN-based models are based on time interval l = 90

days to construct subsequences.

Table 5.1: The predictive performance of baselines and the proposed Patient2Vec
framework

Sensitivity Specificity AUC F2 score
LR 0.637± 0.010 0.728± 0.003 0.721± 0.006 0.434± 0.006
MLP 0.727± 0.013 0.617± 0.004 0.713± 0.007 0.423± 0.007
RETAIN 0.553± 0.012 0.710± 0.003 0.663± 0.007 0.370± 0.008
FRNN-MGE 0.636± 0.012 0.739± 0.004 0.759± 0.006 0.438± 0.009
BiRNN-MGE 0.600± 0.012 0.777± 0.003 0.768± 0.007 0.439± 0.009
FRNN-MVE 0.753± 0.011 0.676± 0.004 0.785± 0.006 0.470± 0.008
BiRNN-MVE 0.724± 0.010 0.707± 0.003 0.788± 0.005 0.473± 0.008
Patient2Vec 0.769± 0.010 0.694± 0.004 0.799± 0.005 0.492± 0.007

According to Table 5.1, the RNN-based models are generally capable of achieving

higher prediction performance in terms of sensitivity, AUC and F2 score, except for

the RNN models based on medical group embedding which have lower sensitivity.

Among all RNN-based approaches, the ones based on vector embedding outperform

those based on medical group embedding in terms of sensitivity, AUC, and F2 score.

The bidirectional RNN models generally have higher specificity but lower sensitivity

than the forward RNN models, while the bidirectional ones have comparable AUC

and F2 score with the forward ones, respectively. Generally, the proposed Patient2Vec

framework outperforms the baseline methods, especially in terms of sensitivity and
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Patient A
Age: 77
Gender: male
Previous hospitalization: yes
Predicted risk: 0.999
Hospitalized in the 7th month after the observation window
Hospitalization cause (primary diagnosis): systolic heart failure
Other scenarios:
• If female: predicted risk ↓ 0.008
• If 10 years older: predicted risk ↑ 0.007
• If no previous hospitalization:  predicted risk ↓ 0.002

Figure 5.7: The profile of Patient A

F2 score.

5.5.4 Visualization & Interpretation

In addition to predictive performance, we interpret the learned representation by

understanding the relative importance of clinical events in a patient’s EHR data.

Considering the feature importance learned by Patient2Vec are personalized for an

individual patient, we illustrate it with two examples in the following. Figures 5.7 and

5.8 present the profiles of two individuals, Patient A and Patient B, respectively. To

facilitate the interpretation, instead of using raw medical codes, we present the clinical

groups from the AHRQ clinical classification software on diagnoses and procedure

codes, as well as pharmaceutical groups for medications.

According to Figure 5.7, Patient A is a male patient who has hospitalization

history in the observation window and is admitted to the hospital later in 7 months

for congestive heart failure. The predicted risk is 99.9%, while the risk decreases for

female patients or patients without hospitalization history. It is also not surprising

to observe an increased risk for older patients. A heat map in Figure 5.9 shows the

relative importance of the medical events in this patient’s medical record at each time
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Patient B
Age: 64
Gender: male
Previous hospitalization: no
Predicted risk: 0.746
Hospitalized in the 13th month after the observation window
Hospitalization cause (primary diagnosis): occlusion of cerebral arteries
Other scenarios:
• If female: predicted risk ↓ 0.042
• If 10 years older: predicted risk ↑ 0.042
• If has previous hospitalization:  predicted risk ↑ 0.010

Figure 5.8: The profile of Patient B

window and the first row of the heat map presents the subsequence-level attention.

The darker color indicates a stronger correlation between the clinical events and the

outcome. Accordingly, we observe that the last subsequence is the most important

with respect to hospitalization risk, and the first two subsequences have relatively

smaller weights, while the second last subsequence is the least important one.

Among all the clinical events in the Subsequence t4, we observe that the OR

therapeutic procedures (nose, mouth, and pharynx), laboratory (chemistry and hema-

tology), coronary atherosclerosis & other heart disease, cardiac dysrhythmias, and

conduction disorders are the ones with the highest weights, while other events such

as other connected tissue disease are less important in terms of future hospitaliza-

tion risk. Additionally, some medications appear to be informative as well, including

beta blockers, antihypertensive, anticonvulsant, anticoagulant, etc. In the first time

window, the medical events with high weights are coronary atherosclerosis & other

heart disease, gastrointestinal hemorrhage, deficiency and anemia, and other after-

care. In the next subsequence, the most important medical events are heart diseases

and related procedures such as coronary atherosclerosis & other heart disease, cardiac

dysrhythmias, conduction disorders, hypertension with complications, other OR heart
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Figure 5.9: The heat map showing feature importance for Patient A
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Figure 5.10: The heat map showing feature importance for Patient B

procedures, and other OR therapeutic nervous system procedures. Additionally, we ob-

serve that the kidney disease related diagnoses and procedures appear to be important

features as well. Throughout the observation window, the coronary atherosclerosis &

other heart disease, cardiac dysrhythmias, and conduction disorders constantly show

high weights with respect to hospitalization risk, and the findings are consistent with

medical literature.

Figure 5.8 presents the profile of Patient B, which is a male patient without

hospitalization in the observation window. This patient is hospitalized for occlusion

of cerebral arteries approximately one year after the observation window, and the

predicted risk is 74.6%. For a similar patient who is 10 years older or with previous

hospitalization history, the risk increases by 4.2% and 1%, respectively, while there

is a smaller risk of hospitalization for a female patient. To illustrate the medical

events of Patient B, a heat map in Figure 5.10 presents the relative importance

of medical groups in the subsequences, as well as the subsequence-level weights to

the risk of hospitalization. Similarly, the darker color indicates a stronger correlation
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between the clinical events and the outcome. Accordingly, we observe that the second

subsequence appears to be the most important, while the last one is less predictive

of future hospitalization. In fact, the medical events in the last time window are

spondylosis, intervertebral disc disorders, other back problems and other bone disease

& musculoskeletal deformities, and malaise and fatigue, which are not highly related

to the cause of hospitalization of Patient B.

In the most predictive subsequence t2, we observe that other OR heart procedures,

genitourinary symptoms, spondylosis, intervertebral disc disorders, other back prob-

lems, therapeutic procedures on eyelid, conjunctiva, and cornea, and arterial blood

gases have high attention weights. In the earliest time window, the most impor-

tant medical events also include therapeutic procedures on eyelid, conjunctiva, and

cornea, arterial blood gases, while diabetes, hypertension as well as diagnostic prod-

ucts show their relatively high importance. Throughout the observation window,

medical events spondylosis, intervertebral disc disorders, other back problems, thera-

peutic procedures on eyelid, conjunctiva, and cornea are constantly with high atten-

tion weights. Here, diagnostic products is a medication class, which include barium

sulfate, iohexol, gadopentetate dimeglumine, iodixanol, tuberculin purified protein

derivative, iodixanol, regadenoson, acetone (urine), and so forth. These medications

are primarily blood or urine testing, or used as radiopaque contrast agents for x-rays

or CT scans for diagnostic purposes.

Additionally, we attempt to interpret the learned representation and feature im-

portance at the population-level. In Table 5.2, we present the top 20 clinical groups

with high weights among hospitalized patients in the test set.

According to Table 5.2, the most predictive diagnosis groups for future hospi-

talization are chronic diseases, including essential hypertension, diabetes, lower res-

piratory disease, disorders of lipid metabolism, and musculoskeletal diseases such as

other connective tissue disease and spondylosis, intervertebral disc disorders, other
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Table 5.2: The top clinical groups with high weights in hospitalized patients

Index Clinical Groups
Diagnoses
1 Essential hypertension
2 Other connective tissue disease
3 Spondylosis; intervertebral disc disorders; other

back problems
4 Other lower respiratory disease
5 Disorders of lipid metabolism
6 Other aftercare
7 Diabetes mellitus without complication
8 Screening and history of mental health and sub-

stance abuse codes
9 Other nervous system disorders
10 Other screening for suspected conditions (not men-

tal disorders or infectious disease)
Procedures
1 Other OR therapeutic procedures on nose; mouth

and pharynx
2 Suture of skin and subcutaneous tissue
3 Other therapeutic procedures on eyelids; conjunc-

tiva; cornea
4 Laboratory - Chemistry and hematology
5 Other laboratory
6 Other OR therapeutic procedures of urinary tract
7 Other OR procedures on vessels other than head

and neck
8 Therapeutic radiology for cancer treatment
Medications
1 Diagnostic Products
2 Analgesics-Narcotic

93



back problems. As to procedures, the most important ones are some OR therapeutic

procedures and laboratory tests, such as the OR procedures on nose, mouth, and

pharynx, vessels, urinary tract, eyelid, conjunctiva, cornea, etc. It is not surpris-

ing to see that diagnostic products are showing with high weights, considering these

medications are used in testing or examinations for diagnostic purposes.

Moreover, we present the top diagnoses groups with high weights in patients hos-

pitalized for di↵erent primary causes. Table 5.3 shows the top 5 diagnosis groups with

high weights in patients admitted for osteoarthritis, septicemia (except in labor), acute

myocardial infarction, congestive heart failure (nonhypertensive), and diabetes melli-

tus with complications, respectively. Accordingly, we observe that the most important

diagnoses for hospitalization risk prediction in population admitted for osteoarthri-

tis are musculoskeletal diseases such as connective tissue disease, joint disorders, and

spondylosis. However, the diagnoses with highest weights in the patients admitted for

septicemia are chronic diseases including essential hypertension, diabetes, disorders

of lipid metabolism, and respiratory disease. The top diagnoses have many overlaps

between the populations admitted for acute myocardial infarction and for congestive

heart failure, considering both populations are admitted for heart diseases. Here, the

overlapped diagnosis groups include coronary atherosclerosis and other heart diseases

and lower respiratory diseases. As for patients admitted for diabetes with compli-

cations, the top diagnoses are diabetes with or without complications, nutritional,

endocrine, metabolic disorders, and fluid and electrolyte disorders. In general, the

learned feature importance are consistent with medical literature.

5.6 Summary

In this chapter, we propose a representation learning framework, Patient2Vec, to learn

a personalized interpretable deep representation of EHR data based on recurrent

neural networks and attention mechanism. This work improves the performance
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Table 5.3: The top diagnosis groups with high weights in patients hospitalized for
osteoarthritis, septicemia, acute myocardial infarction, congestive heart failure, and
diabetes mellitus with complications, respectively

Index Diagnosis Groups
In patients admitted for osteoarthritis
1 Osteoarthritis
2 Other connective tissue disease
3 Other non-traumatic joint disorders
4 Spondylosis; intervertebral disc disorders; other

back problems
5 Other aftercare
In patients admitted for septicemia
1 Essential hypertension
2 Diabetes mellitus without complication
3 Disorders of lipid metabolism
4 Other lower respiratory disease
5 Other aftercare
In patients admitted for acute myocardial infarction
1 Coronary atherosclerosis and other heart disease
2 Medical examination/evaluation
3 Other screening for suspected conditions (not men-

tal disorders or infectious disease)
4 Other lower respiratory disease
5 Disorders of lipid metabolism
In patients admitted for congestive heart failure
1 Congestive heart failure (nonhypertensive)
2 Coronary atherosclerosis and other heart disease
3 Cardiac dysrhythmias
4 Diabetes mellitus without complication
5 Other lower respiratory disease
In patients admitted for diabetes mellitus with complications
1 Diabetes mellitus with complications
2 Diabetes mellitus without complication
3 Other aftercare
4 Other nutritional; endocrine; and metabolic disor-

ders
5 Fluid and electrolyte disorders
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of predictive models as well as deepens the understanding of disease correlations.

We apply this framework to the risk prediction of hospitalization using patients’

longitudinal EHR data. The experimental results demonstrate that the proposed

Patient2Vec representation is capable of achieving a more accurate prediction than

baselines approaches. Moreover, the learned feature importance in the representations

are interpreted both at the individual and population levels to facilitate personalized

medicine and to bring clinical insights.

In this experiment, the proposed Patient2Vec framework is evaluated with the risk

prediction of all-cause hospitalization, and it can be applied to predict hospitalization

in more specific populations or for certain causes.
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Chapter 6

Conclusions & Future Directions

In this chapter, we summarize the proposed frameworks for representation learning of

longitudinal EHR data, as well as the contributions. Then, we conclude this chapter

with discussions on the future directions of this research.

6.1 Conclusions

First, this dissertation describes the wide implementation of EHR data which makes

it a feasible resource to support clinical decision making. Then, we review the char-

acteristics of longitudinal EHR data as well as the di�culties in utilizing it due to

a variety of challenges including its complexity, heterogeneity, interpretation require-

ments and so forth. Hence, we introduce our research objective to address these issues

by developing e↵ective and e�cient representation learning frameworks for EHR data

and to facilitate future analytics. This dissertation also briefly describes the dataset

used for this research, which is longitudinal EHR data from real clinical settings.

Secondly, we review the previous studies on popular and state-of-the-art repre-

sentation learning methods in NLP, considering the longitudinal EHR data is alike

text documents in many perspectives. Additionally, this dissertation summarizes the

representation methods for EHR data, such as aggregated counts and other advanced
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approaches. This dissertation also presents an overview of a variety of classification

models. Although these models are not directly learning representations, they are

used for further predictive modeling based on the learned representations, such as for

patient characterization and prediction of health outcomes.

Then, this dissertation proposes three representation learning frameworks, which

are SLR, WB-SLR, and Patient2Vec.

• SLR focuses on learning a sparse longitudinal representation of patients’ EHR

data and it is evaluated with the early detection of diabetes based on patients’

medical histories of diagnoses codes. The experimental results show an im-

proved prediction performance compared with baseline representations. This

dissertation further interprets the learned representation with an analysis on

the selected features and the medical histories of example patients, and the

findings are generally consistent with medical literature.

• WB-SLR employs the bagging approach to build an ensemble of classifiers and

SLR representations on bootstrapped samples. Then, the learned models are

combined with a weighting strategy, in which the weights are optimized to min-

imize the oob error. The final prediction is computed as the weighted output

from the classifiers in the ensemble. This dissertation elaborates the evaluation

of WB-SLR with the early detection of CKD using longitudinal EHR data of

diagnoses codes, and the WB-SLR achieves an improvement on the prediction

performance. Similarly, we visualize the learned representation of the SLR with

the highest weight in the ensemble and the medical histories of example patients.

To provide a more comprehensive understanding of the learned representation

using WB-SLR, we further analyze the diagnoses groups learned as being posi-

tively correlated with the outcome event in at least one third of the classifiers

in the ensemble. The findings are also supported by medical literature.
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• Patient2Vec learns a personalized interpretable representation based on the lon-

gitudinal EHR data of mainly medical events, including diagnoses, procedures,

and medications. Instead of using the clinical groupings of medical codes,

this work utilizes the word2vec algorithm to learn a vector representation of

each medical code. The dissertation elaborates the structure and algorithm of

Patient2Vec representation learning framework in detail. In brief, the frame-

work proposes a GRU based model with two-level attentions of multiple hops.

Thus, Patient2Vec is capable of capturing the complex relationships between

clinical events in patients’ medical histories such that the prediction perfor-

mance is improved compared with baseline methods.

Meanwhile, feature importance are available in the learned representation, which

indicates improved interpretability in Patient2Vec. A distinguishing character-

istics of Patient2Vec is that it learns a personalized representation for each

individual based on the medical history. Due to the heterogeneity of patients in

terms of their EHR data, the feature importance are likely to be distinctive be-

tween patients. The Patient2Vec is designed to capture the relative importance

of a clinical event among all events in a patient’s medical record according

to its correlation with the target outcome. Thus, the personalization in the

learned representation is an additional benefit of Patient2Vec. This disserta-

tion then illustrates the importance of clinical events in the medical histories of

two example patients to demonstrate the interpretability and personalization

achieved by Patient2Vec. Additionally, we attempt to interpret the feature im-

portance at the population level by summarizing the top diagnoses, procedures,

and medications in terms of the attention weights aggregated in the hospitalized

population, as well as among hospitalized patients for specific causes.

In summary, this dissertation proposes three representation learning frameworks

for longitudinal EHR data, and then describes the evaluation of the frameworks with
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prediction tasks using EHR data collected from real clinical setting. Additionally,

the learned representations are analyzed and interpreted extensively to bring clinical

insights.

In the experiments, we use clinical codes to learn a representation of a patient’s

medical history. One of the limitations is that the codes in the EHR systems are

primarily used for billing purposes rather than prognosis. Additionally, the diagnoses

codes in EHR systems are incapable of indicating the severity of illness. Moreover,

the diagnoses of chronic diseases, such as diabetes and CKD, are subjective to some

degree such that the diagnosis codes of a particular chronic disease could be initially

coded anytime in a time range of multiple years. Hence, the diagnoses and/or pro-

cedure codes in EHR data might not be perfectly accurate or appropriate for risk

prediction of diseases or health outcomes. However, this rich data source is valuable

with tremendous patient information and large populations for research in assist-

ing clinical decision making and understanding disease correlations. Ultimately, it

provides promising opportunities to help improve health outcomes.

6.2 Contributions

As part of the summary, we elaborate the contributions of this research in the follow-

ing.

• This research proposes three computational frameworks for representation learn-

ing of longitudinal EHR data such that the learned representations can be used

for further analytics, such as predictive modeling.

• The learned representations using proposed frameworks are validated with three

clinically meaningful and important prediction tasks, respectively, using longi-

tudinal EHR data from real clinical setting. The results demonstrate that the

learned representations are capable of improving the prediction performance
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compared with baseline representations.

• In addition to better prediction performance, this research emphasizes on the

interpretability of the learned representations in order to bring clinical insights,

deepen the understanding of disease correlations, and discover relationships

between medical events.

• One of the designed frameworks attempts to learn a personalized representation

for each patient to provide more precise characterization, more accurate pre-

diction of health outcomes, and a better understanding of a patient’s medical

history for personalized medicine.

• In addition to EHR data, the methods proposed in this research could be applied

to complex temporal knowledge representation tasks on sequence data in other

domains.

6.3 Future Directions

The work presented in this dissertation can be extended in many directions. For

example, other potential methods can be explored to avoid overfitting of data in

the SLR and WB-SLR frameworks, as well as extending the attention mechanism

in Patient2Vec to allow the network to learn weights of patient characteristics in a

more automatic manner. In the following, we summarize other open areas for future

exploration.

Random Feature Subset in WB-SLR: The bagging strategy is utilized in WB-SLR

to improve prediction performance and to reduce variance. Future improvement on

the proposed model could employ the strategy of random forest which randomly

samples a subset of features when growing each tree. This could potentially reduce

the correlation between the base models in the ensemble and further improve the

prediction accuracy.
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Transfer Learning : It is very likely that there is a small patient cohort for certain

representation learning and predictive modeling tasks in clinical domain. In the

experiment of early detection of CKD in diabetic patients, the sample size of the

positive class is small which limits the performance of the proposed methods and

further predictive modeling. To address this issue, we could potentially employ the

medical records of CKD patients without diabetes or with concurrent diabetes. This

is because that CKD in patients with or without diabetes are similar to each other

and most likely share some common risk factors or symptoms. Hence, there is a

potential to improve the prediction performance by including those CKD patients

into the originally identified positive class. Thus, transfer learning approaches will be

explored to transfer the knowledge learned from a similar population to address the

target problem.

Clinical Data Coding Mechanisms : In the evaluation of SLR and WB-SLR frame-

works, we use the general diagnosis and procedure categories of ICD-9 and ICD-10

codes from the AHRQ clinical classification scheme [64]. This current coarse cate-

gories might introduce information loss, and future work will explore more specific

medical codes and other grouping strategies.

Other Data Sources : In addition to discrete clinical events, the proposed frame-

work can be extended to incorporate lab results in the future for more comprehensive

representation and higher prediction performance.

Other Applications : The proposed representation learning frameworks could be

further validated on more EHR datasets and could be utilized for more applications.

In the evaluation of Patient2Vec, the experiment in this current work is on the pre-

diction of all-cause hospitalization, which could be refined to the risk prediction of

hospitalization in a certain patient population or for a certain cause. Ultimately, the

proposed methods could be applied to other complex temporal knowledge represen-

tation and prediction tasks within and outside the health care domain.
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