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Abstract
Community detection in temporal networks is a challenging
task. Particularly difficult is determining how communities
form and when they can be detected. This paper attempts
to identify groups tweeting about mask usage during the
COVID-19 pandemic between March 1st and May 31st of
2020. Snapshot based graphs were created via Networkx and
analyzed using Gephi to find communities across the whole
time period, as well as during every week long time slice
[1]. This analysis found mixed results, but was successful in
examining how communities change structure over time.
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1 Introduction
Temporal, or Dynamic, Networks are vital to understanding
any phenomenon happening on social media. However, the
addition of time series information often comes at a cost,
including but not limited to larger file sizes, increased dif-
ficulty in computing various graph metrics, and increased
computing time for those graph metrics.

In this paper, we present an analysis of community forma-
tion in a subset of Chen’s COVID-19 Twitter dataset, which
only contains the tweets containing the word mask, tweeted
between March 1, 2020 and May 31, 2020[4]. The goal of this
analysis is to compare the efficacy of community detection
algorithms in a larger temporal network to the "snapshot"
(subgraphs representing a given time-step) graphs which
compose it. In doing so we attempt to determine if com-
munity formation can be tracked temporally, and if large
communities which develop late in a graph’s lifespan can
be found earlier in its development. Specifically, we aim to
determine if both pro- and anti-mask communities can be
found in this period corresponding with the beginning of
the COVID-19 pandemic and early discussion around the
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adoption of masks as a public health measure, and if those
communities look like the polarized political communities
found in other work[7],[11].

2 Related Work
Others have examined community detection algorithms in
large networks, temporal community detection, and the anal-
ysis of graph structure. This work builds upon and relies on
the results of this work, by applying those algorithms to this
our temporal data set, and examining the structure of the
communities within the created graphs.

2.1 Community Detection in Large Networks
Work has already been done in the field of identifying com-
munities in large networks, of particular relevance is the
Louvain method from Blondel et al [2]. Other researchers
have done community detection using algorithms like IN-
FOMAP or K-means[3],[10]. K-means clustering is not ideal
for this application (as the user specifies the value of K), but
work has been done to automate the process of determin-
ing the existence and memebers of communities in large
networks. We elected to use The Louvain method over IN-
FOMAP and K-means because of Louvain’s compatibility
with the visualization software we used and that we did not
wish to pre-define the number of communities we expected
to find respectively.

2.2 Community Detection in Temporal Networks
Several others have examined how to best detect commu-
nities within temporal networks. He and Chen propose a
snapshot-based method that applies the Louvain algorithm
at each time step, as well as processing information about
the graph structure from the prior time step in order to find
communities at any given time step[6]. This methodology
preserves temporal information, as well as minimizes CPU
overhead by only looking back a single time step when per-
forming community detection. Additionally, there has also
been work done using network embedding in high dimen-
sional vector spaces. Algorithms like those used by Chhetri
et al are a very different and effective means of detecting
communities in temporal networks[5]. Additionally, Zhao
et al and Li et al have examined how to track changes to
communities over time, and how nodes transition in and out
of communities over time[8],[14]. This work is quite helpful
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in understanding community development over time. This
is because they provide mechanisms to track community
development, and how individual nodes will can go from
one community to another over time.

2.3 Community Structure
Recuero et al analyze the roles of specific users in politi-
cal networks on Twitter, and present a specific structure in
networks surrounding political events[11]. This structure
is a highly dense and highly modular structure where one
community represents one side of an issue, and the other
community represents the opposite side. In this case, Recuero
examines the trial of Luiz Silva and the pro- and anti-Silva
communities which formed during the trial. Other useful
work on community structure includes Himelboim et al’s
work on classifying Twitter Topic Networks[7]. Himelboim
found recurring patterns in Twitter networks, including the
previously discussed high density high modularity structure
in polarized political topics. This methodology however, was
only applied to static graphs, and not to any temporal data.

3 Methods
3.1 Data Collection
We collected data from a subset of Chen’s COVID-19 Twitter
dataset[4]. In order to create this subset, we hydrated all
tweets between March and June (non-inclusive) using Twarc,
and inserted them into a MySQL relational database[12]. It
is of note, that there are two gaps in the dataset. It is missing
tweets for March 2, 2020, as well as May, 14, 2020 from 7:00-
8:00 AM. Once this was complete, we iterated through all of
the tweets, storing each tweet containing the word mask in
a separate table, as well as using NLTK to assign a sentiment
score to each tweet[9].

3.2 Graph Creation
Three kinds of graphs were created from this data. The
graphs we created are either snapshot graphs representing
any specific week, or temporal graphs made of each individ-
ual snapshot.

• User to User: these graphs connect users when they
are retweeted or mentioned by each other. In addition
to tracking which users are interacting with which,
each node and each edge track the overall sentiment of
this user’s posts. Node sentiment tracks the sentiment
of each post that user makes, edge sentiment tracks
the sentiment of each post between the users an edge
connects. Both of these measures are calculated by
taking the arithmetic mean of all relevant sentiment
scores for a given node or edge.

• User to Hashtag: these graphs connect users to any
hashtags they include in their tweets. They are bipar-
tite graphs, which serve as a means of identifying pop-
ular hashtags as well as who they are popular among.

Edges in these graphs also contain a field which keeps
track of the number of times a user tweets a tweet
contain a given hashtag.

• Hashtag to Hashtag (Hashtag Co-occurrence): these
graphs map hashtags to other hashtags which appear
in the same tweets. These are the simplest of the three
types of graphs, as they only connect co-occurring
hashtags. Edges in these graphs also contain a data
field acting as edge weight which simply tracks the
number of tweets between the two nodes. An example
of this can be seen in Figure 1.

Figure 1. An example of a Hashtag Co-occurrence graph.
This graph contains all communities across all time steps,
and each community is demarcated with a different color.

These graphs were made using 3 python scripts. These
scripts, as well as those used to create the database, can be
accessed from this git repository. After making the graphs,
the scripts then exported as .gexf files. The .gexf file for-
mat is an XML based format for encoding graph data used by
Gephi[1]. Each individual .gexf file is a snapshot graph rep-
resenting a given week. To turn the snapshots into temporal
networks, each .gexf file’s metadata was edited to indicate
that they represented time-slice data and were applied the
appropriate time stamp. Additionally, unconnected nodes
in any of the graphs were removed when imported into
Gephi[1]. This was to improve computation time when find-
ing communities, as unconnected nodes will be sorted into
their own communities, not substantially aiding analysis.

3.3 Graph Analysis and Visualization
Graphs were analyzed using the graph visualization utility
Gephi[1]. It was used additionally to compute modularity
measures, using Blondel et al’s Louvain Method of com-
munity detection[2]. Communities found within the graph
over the entire time period (March 1 through May 31) were

https://github.com/jss5ha/covid_graph_gen
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then compared to the communities found at individual time
slices. Those comparisons were primarily subjective, manu-
ally checking for significant overlap in the membership of
any given community in both the relevant time slice graph,
as well as the graph representing the entire time period.
Community detection on the temporal graph was done by
applying the Louvain algorithm on the graph across all time
slices simultaneously.

4 Results
It was found to be possible to find and track communities
through time in the networks. The communities we expected
to find we not always found however. Additionally, there
were mixed results in finding expected structure within these
networks.

4.1 Temporal Community Detection
When comparing communities at a given snapshot relative
to the entire temporal network, we were able to find those
communities existing both in the temporal network, as well
as in individual time slices. Even when these communities
were initially small and grew to a much larger size over
time, they were still able to be found in individual snapshots.
Figures 2, 3, 4, and 5 are an example of this. This shows 3
different versions of the same community from the tempo-
ral hashtag co-occurrence graph. This community shows a
group of pro-mask hashtags and hashtags related to the sale
and creation of masks. Figure 2 is the community across all
time slices, Figure 3 is that same community at time slice 2,
Figure 4 is that same community taken from the appropriate
snapshot graph, and Figure 5 is that same community at time
slice 9. The most interesting graph is Figure 4. It would seem
that the co-occurring hashtags at this point in time are not
as related to each other as the temporal graph would suggest,
but upon closer inspection one will see that the relevant
hashtags from Figures 2, 3, and 5 are all central in this graph.
This is mostly a product of the graph being much smaller,
and the community detection acting in a finer grained man-
ner. Additionally, if one runs the Louvain algorithm on the
subgraph in Figure 3 the results are similar to what is seen
in Figure 4.

Figure 2. The mask selling community across all weeks

Figure 3. The mask selling graph at week 2. Many, though
not all of the high degree nodes from the full community are
present.
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Figure 4. All communities at week 2. Communities are de-
marcated by color.

Figure 5. The mask selling graph at week 9. Most of the
high degree nodes from the full community are present.

This is one example, among many, of communities which
can be tracked temporally.

4.2 Expected Communities
Though many communities were found representing differ-
ent groups, this analysis was not able to lead to the detection
of both pro- and anti-mask communities within these net-
works. In the hashtag co-occurrence graphs as well as the
hashtag to user graphs, multiple pro-mask communities can
be found. However, no explicitly anti-mask communities
were found. In the user to user network, the largest commu-
nities detected were a group centering around Indian news
sources, a large community defined by users retweeting an
American political figure (we cannot identify whom in this
paper as it is a violation of the Twitter terms of service),

a mix of liberal news sources and figures (a large portion
of whom were tweeting pro-mask content at the time), a
center right UK news network and UK citizens, and a group
of African musicians. These communities can be seen in Fig-
ure 6. Within that figure, the pink nodes correspond to the
liberal news community, the cyan nodes are the Indian news
community, the tightly clustered turquoise community is
the group of African musicians, and the tightly clustered or-
ange community is the retweet community of the previously
mentioned political figure.

Figure 6. The user to user graph over the entire time period.

Though the results in the user to user graph were not
particularly relevant in finding pro- and anti-mask commu-
nities, it did result in finding clearly defined communities
surrounding particular topics. The hashtag to user and hash-
tag co-occurrence graphs however, were more fruitful in
detecting pro-mask communities. Both of these networks
found two pro-mask communities, one centered around the
sale of masks, and another centered around the CDC, WHO,
and other organizations promoting them as a public health
measure. There were no explicitly anti-mask communities
found in either of these networks using our methodology.
There were two politically conservative communities cen-
tered around different topics. Within those networks are also
communities primarily centered around hard news. They
have no political leaning, and primarily are users interacting
with far larger news networks. There is also a large group
of EU related hashtags and users in those networks, made
insular because they are primarily tweeting about their own
countries.

4.3 Community Structure
Though the communities we expected to see were not found,
our methodology was able to find politically polarized com-
munities. These polarized communities can be seen in Figure
7, and are represented with a hashtag to user graph, which
is analogous to the Twitter Topic Networks discussed by
Himelboim[7]. This figure shows four communities, two of
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which are pro-mask and politically liberal, the other two
are not anti-mask, but are both conservative. The pro-mask
communities are represented by the blue and orange nodes.
They have considerable crossover and are dense, but highly
modular relative to the two other communities. The green
and black communities are both also dense and modular, but
have little overlap. This has to do with the subject matter of
those communities, green is a mix of right wing news content
from India and the United States, and black is a collection of
anti-China/pro-Hong Kong hashtags and users. This shows
a clear split along ideological lines amongst twitter users at
this time, as well as addressing why the right-wing groups
found do not map onto each other as cleanly as the liberal
groups.

Figure 7. This graph contains 4 of the largest communities
in the full temporal hashtag to user network.

Additionally, there is temporal behavior within the struc-
ture of these communities. Of particular note is the anti-
China community. The anti-China community does not ap-
pear in the modular manner it does in the full time graph
until week 4, becomes its largest at week 6, and then dis-
sipates after week 8. Particularly, at this point the hashtag
"Taiwan" and the users tweeting about it created significantly
less overlap between it and the other communities at ear-
lier times. Similarly, as time goes on, the community fades
away almost entirely. By week 11 there are few nodes in this
community still present in the graph. Figure 8 illustrates the
temporal development of this community.

Figure 8. This image shows the development of 4 communi-
ties at weeks 3, 6, 8 and 11.

5 Further Study
There are a few avenues for further study, these include, but
are not limited to, applying finer grained time-slices, apply-
ing this analysis to larger datasets (including more tweets
and or analyzing a larger time period), changing the repre-
sentation of the temporal networks, and applying different
community detection algorithms. Finer grained time slices
would potentially allow for the detection more better defined
temporal behavior. Because the time slices applied are a week
long, though temporal behavior is possible to notice, it does
bring into question if smaller time slices would have helped
to identify any additional time-based phenomena in the data.
Larger datasets would potentially be able to find some of
the communities we had expected to find, and the issues
with not finding anti-mask communities could potentially
be addressed by not looking at a subset of the Chen’s dataset,
but instead the entirety of it[4]. Similarly, examining tweets
past the month of May could also address this issue.
Additionally different methods of temporal community

detection could find different community structures, as well
as rely more on the temporal aspects of the data being an-
alyzed. This can either be done by using embedding tech-
niques to make the graphs and perform analysis, or simply
using different community detection algorithms such as the
PCA community detection approaches, or simply iterating
on Blondel’s Louvain method[2],[13]. Any community de-
tection measure which could be used to better represent and
analyze the temporal behavior of these networks is vital to
further study in this area. Particularly, I believe that He and
Chen’s method would be helpful to this analysis, and went
unused due to limitations of the software library used to
create the graphs.
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