
Alternating Conditional Analysis

A Dissertation

Presented to

the faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the requirements for the Degree

Doctor of Philosophy

Computer Science

by

Mitchell J. Gerrard

August 2021

To Evan, Lola and Grandma Mac

Acknowledgments

Thank you to my advisor, Matt Dwyer, for many things: guidance, patience, inspiration, believing

in me, fully funding my classes and research, teaching the art of hand-ground pour over coffee.

Thanks for everything these past seven years, Matt.

Thank you to Evan Hemsley, my college roommate and best friend, for introducing me to

the beauty in computer science. I remember standing in line waiting to enter Collins dining hall

while Evan—his hair striking some fractal pose—explained merge sort for the first time, and his

excitement resonated in me then and now.

Thank you to Professors Chuck Riedesel and Jitender Deogun, for encouraging me to pursue

graduate studies, and mentoring me in graph and number theory. My first programming course

was with Chuck; we used MATLAB, and every class was some permutation of brain teasers, non

sequiturs, horrible puns (German sausage jokes are just the wurst), and lucid explanations of

programming fundamentals. What a happy, Carroll-esque introduction to the magical incantations

of symbolic logic.

Thanks to all my labmates at UNL and UVa, for working through research ideas, eating

together during a long day in the lab, or just shooting the breeze; I couldn’t have finished without

you all. Special thanks to John-Paul, Eric, Jonathan, Mikaela, Kennis, James, Mouna, Mehrdad,

Guolong, Dong, David, Tony, Ajay, Jared, Didier, Wayne, Matias, Natasha, Ellie, Brady, Justin,

Nishant, Mateus, Jeremiah, Will, Carl, Meriel, Nora, Soneya, Trey, and Ashley. Thanks to

the many researchers across the world who helped via email to fix some bug, to understand a

paper, or to provide valuable feedback. Also thanks to all the wonderful nerds I met at the

Marktoberdorf and Menlo College summer programs.

Thanks to those who hosted me outside of the U.S., namely Antonio Filieri at Imperial

i

College London, Jérémie Guiochet at the University of Toulouse, and Sylvie and Thierry in

Bouxiéres-aux-Chênes. Thanks to all my roommates in the States: brudduh Eric, Mom and Dad,

John and Lauren (and Herbert), and Robin.

A big thanks to the administrative and computing staff at UNL and UVa for taking care of

many tedious and necessary details, especially Brandon, Shea, Deb, Sally, Shelley, Larita, Tyler,

Rick, and Barbara. Thanks to my committee members for meeting multiple times, giving helpful

suggestions, reading through this dissertation, and helping me to finish.

Thanks to friends and family for all the support through graduate school, and for only asking

the vague “So, how’s research going?” on the occasions when it seemed to be going well. Thanks

to my brother-in-law, Brandon, for helping me early on with programming in Java. Thank you

to Henry, a miniature chocolate schnauzer who was my constant companion for many years.

Thank you to Sebastian Elbaum for showing me how excellent research is done, for encouraging

me, and for always asking the crucial questions. Thanks to Ari for helping put things into

perspective. Thanks to my wonderful teachers preceding grad school, including Anne Cognard,

Oona Eisenstadt, and Darryl A. Smith. Thanks to all the enchanters I communed with in

the evenings—Nabokov, Melville, Sterne, Zitkála-Šá, the one whose words made the western

welkin blush. Thanks to Don Knuth—the cynosure of this field—for sharing the idea of literate

programming, and for kindly replying to each of my inquiries.

Finally, thank you Lola for all your love.

ii

Abstract

We rely on safety-critical software, so judging its correctness is important. If a pacemaker exhibits

buggy behavior, just how buggy is it? Will a patch to some bug also patch other program paths

that lead to the same bug? How could we guarantee this? Currently, the tools we use to judge

software correctness paint an incomplete picture of how a program’s inputs relate to its behavior,

by giving a rough binary judgment of “correct” or “not correct.” But it is possible to combine

the efforts of these tools to say which portions of a program are correct, buggy, or uncertain.

In this dissertation we develop a novel meta-analysis framework that generates more infor-

mative program correctness proofs by combining results from an algorithmically diverse set of

program analyzers. To safely combine information from overapproximate and underapproximate

program analyzers, we define the concept of a program interval, which encodes these two kinds of

information in a way that can be shared with other analyzers. To compute this program interval,

we employ multiple program analyzers as black boxes that can exchange analysis results, such

that the results from one analyzer can condition another to avoid reanalyzing some part of the

program. We alternate between the guarantees of different analyzers to construct a program

interval, and we define a generalization mechanism to ensure convergence. The constructive

characterization is given in logical formulae collected by a directed symbolic execution.

We evaluate this framework on a set of C benchmarks and a case study and find that program

intervals can be computed in an efficient, effective, and safe manner. We use program intervals

to improve on the state-of-the-art in quantitative program analysis in providing probabilistic

guarantees for safety-critical software standards. We explore how a diversity of analyzers is used

to construct program intervals, and employ the framework to perform modular analyses.

iii

Contents

Acknowledgments i

Abstract iii

List of Figures x

List of Tables xii

List of Listings xiii

1 Introduction 1

2 Related Work 5

2.1 Definitions . 6

2.2 Classical Analyses . 7

2.2.1 Overapproximations; or may analyses . 8

2.2.2 Underapproximations; or must analyses 11

2.3 May-Must Combinations . 14

2.3.1 Counterexample-guided abstraction refinement 14

2.3.2 Verification followed by Validation . 17

2.3.3 Synergistic Combinations . 18

2.4 Cooperative and Meta-Analyses . 19

2.4.1 Conditional model checking . 19

2.4.2 Portfolio frameworks . 21

iv

2.4.3 Cooperative frameworks . 21

2.5 Novelty of Current Work . 22

3 Alternating Conditional Analysis 23

3.1 Motivation . 23

3.2 Overview . 25

3.3 Definitions . 27

3.4 Conditioning Program Analyses . 31

3.5 ACA Algorithm . 32

3.5.1 Specification of analyze . 36

3.5.2 Specification of characterize . 37

3.5.3 Specification of generalize . 38

3.5.4 Specification of accumulate . 40

3.5.5 Specification of filter . 40

3.6 Modular ACA . 40

3.6.1 Formulation of Modular ACA . 41

3.6.2 Limitations . 42

4 Existing Analyses as ACA 43

4.1 Classical Analyses . 44

4.1.1 Overapproximators . 44

4.1.2 Underapproximators . 45

4.2 May-must Combinations . 46

4.2.1 Counterexample-Guided Abstraction Refinement 46

4.2.2 Verification followed by Validation . 46

4.2.3 Synergistic combinations . 46

4.3 Cooperative analyses . 47

4.4 Program intervals unique to ACA . 47

5 Implementation of ACA 49

5.1 ACA in Haskell . 50

v

5.2 Portfolio of Analysis Tools . 52

5.2.1 Tools Used . 53

5.2.2 Parallelism . 53

5.2.3 Enlarging the Portfolio . 54

5.3 Generalization . 55

5.4 Slicing . 57

5.5 Conditioning . 58

5.6 AST Transformations . 59

5.7 Implementation of Modular ACA . 60

5.7.1 Pruning the AST . 61

5.7.2 Symbolic setup . 61

5.7.3 Embedding . 62

5.8 Stepping through a run . 62

6 Evaluation of ACA 65

6.1 Subject Selection . 65

6.2 Experimental Setup . 66

6.3 Results and Discussion . 67

6.4 Threats to Validity . 84

7 Case Study of chrony 85

7.1 chrony . 86

7.2 Methodology . 86

7.2.1 Program intervals in modular ACA . 87

7.2.2 Sample selection . 88

7.2.3 Modeling nondeterminism . 88

7.2.4 Embedding I at callsites . 89

7.2.5 Setup . 89

7.3 Discussion . 90

7.3.1 Subsystem 1 . 90

7.3.2 Subsystem 2 . 91

vi

7.3.3 Subsystem 3 . 91

7.3.4 Subsystem 4 . 92

7.3.5 Observations . 92

7.4 Threats to validity . 94

7.5 Conclusion . 95

8 Conditional Quantitative Analysis 96

8.1 Background . 102

8.1.1 Basic Probability Definitions . 102

8.1.2 Quantifying Logical Formulae . 103

8.2 Conditional Quantitative Analysis . 103

8.2.1 Instantiation of generate intervals . 106

8.2.2 Instantiation of estimate . 106

8.2.3 Instantiations of quantify in bounds . 107

8.2.4 Counting lower and upper bounds . 108

8.2.5 Probabilistic Symbolic Execution . 109

8.2.6 Statistical Symbolic Execution . 109

8.3 CQA Evaluation . 110

8.3.1 Algorithm Implementations . 110

8.3.2 Artifacts . 112

8.3.3 Results . 113

8.3.4 Discussion . 120

8.3.5 Limitations and Threats to Validity . 122

8.3.6 A Benchmark for Analysis Techniques for High-Confidence Systems . . . 123

8.4 Related Research . 124

9 Algorithmic Diversity in ACA 127

9.1 Context of diversity study . 128

9.1.1 Subproblems generated by ACA . 128

9.1.2 Space of analyzers in portfolio . 129

9.2 Experimental Setup . 132

vii

9.3 Evaluation of Algorithmic Diversity . 134

9.3.1 RQ1—contribution of diversity . 134

9.3.2 RQ2—correlation among analyzer pairs 138

9.3.3 Discussion . 142

9.4 Limitations and Threats to Validity . 146

10 Conclusion and Future Work 148

10.1 Summary of Contributions . 148

10.2 Future Work . 149

10.2.1 Improving ACA . 149

10.2.2 Using Program Intervals . 155

Appendices 179

A Observational Study Data 180

A.1 Name mapping . 180

A.2 Detailed results . 192

B Conditional Quantitative Analysis Data 206

B.1 Name mapping . 206

B.2 Detailed results . 211

viii

List of Figures

2.1 Example control flow graph . 12

3.1 Uninstrumented program . 26

3.2 Instrumented program . 27

3.3 Line directives derived from E (above); Program instrumented with full direction

using these directives (below). 31

3.4 Program conditioned to ignore previously-analyzed subspaces 31

3.5 Alternating Conditional Analysis Framework . 33

3.6 Two logical intervals I1 and I2 whose upper and lower bounds describe disjoint

regions of the input space. 39

5.1 Portfolio of analysis tools in ALPACA . 53

5.2 The powerset lattice over a set of three conjuncts. 56

5.3 Fragment of code to be sliced. 57

5.4 Example program foo.c . 62

6.1 Total and Component ACA Runtime . 69

6.2 ACA Iterations to Convergence . 72

6.3 Impulse plot of interval accuracy . 74

6.4 Impulse plot of conjuncts sliced . 75

6.5 Impulse plot of generalizations . 77

8.1 Comparing state-space exploration and path quantification costs 97

8.2 Linear diagram of overlap for most-accurate I. 116

ix

8.3 Linear diagram of overlap for most-accurate I. Sets of the most-accurate lower

(Fig. 8.2) and upper (Fig. 8.3) bound for each technique are depicted as horizontal

lines, and their intersection by overlapping vertical segments. Each subject is given

by a vertical stripe; gold stripes are subjects on which an exhaustive technique

completes. The numbers give a technique’s average distance to the best bound. . 116

8.4 Signatures of conditioned PSE raising/reducing the lower/upper bound across

different subjects. 119

8.5 Least upper bounds per subject across techniques. 124

9.1 Impulse plots of effective evidence sorted by time for analyzers collecting 54 pieces

of evidence or more when run with the eager strategy. Time in seconds on the

vertical axis goes up to 630. Tools providing evidence in top row, from left to right:

reachability from Symbiotic, Pesco, UAutomizer, CPA-Seq, VeriAbs; evidence in

bottom row: unreachability from ESBMC, VeriAbs, UAutomizer and SeaHorn. . 144

9.2 Impulse plots of effective evidence sorted by time for analyzers collecting 62 pieces

of evidence or more when run with the patient strategy. Time in seconds on the

vertical axis goes up to 630. Tools providing evidence in top row, from left to right:

reachability from Symbiotic, Pesco, UAutomizer, CPA-Seq, VeriAbs; evidence in

bottom row: unreachability from ESBMC, VeriAbs, UAutomizer and SeaHorn. . 144

x

List of Tables

6.1 ACA runtime (rounded to the nearest second) . 68

6.2 Percentage of subjects on which prior techniques yield a less accurate or equivalent

characterization of ψ-state reachability compared to ACA. 81

6.3 Average accuracy improvements—according to the count measure—in ACA over

single analyzers across four sizes of the gap between I and I, denoted by |I|. . . 82

7.1 Computed upper and lower bounds for each depth i function across subsystems. 93

8.1 Summary of evaluation by technique . 114

9.1 Reachability evidence count and times (s) run with eager strategy 135

9.2 Unreachability evidence count and times (s) run with eager strategy 135

9.3 Reachability evidence count and times (s) run with patient strategy 137

9.4 Unreachability evidence count and times (s) run with patient strategy 137

9.5 Two-character abbreviations for analyzers. 139

9.6 Upper triangular matrix (correlation is symmetric) of φ-coefficient among individ-

ual analyzers when run with the eager strategy. 140

9.7 Upper triangular matrix (correlation is symmetric) of φ-coefficient among individ-

ual analyzers when run with the patient strategy. 140

9.8 Display of ordering effects by showing the number of times an analyzer appears in

a later iteration along with its top three most frequent precursors when run with

the eager strategy. 143

xi

9.9 Display of ordering effects by showing the number of times an analyzer appears in

a later iteration along with its top three most frequent precursors when run with

the patient strategy. 143

xii

List of Listings

5.1 High-level ACA function . 51

5.2 Definition of ProgramInterval data type . 52

5.3 Definition of DisjointInterval data type . 52

5.4 Definition of Analyzer data type . 55

xiii

Chapter 1

Introduction

The concept of a program encapsulates a wide range of complexity—from a one line print

statement to a sprawling codebase made from thousands of contributors. The range of possible

program behavior is so broad, that determining an interesting program property, e.g., does the

program terminate on all inputs, is undecidable for the general class of programs. It is remarkable,

then, that we can determine interesting properties about many programs, and do so all the time

with the help of program analyzers. A program analyzer is itself a program that takes another

program as input and tries to determine interesting facts about it, such as guaranteeing that

some program will not attempt to dereference a null pointer. These analyzers are used to verify

the correctness of safety-critical software, and are also found as components of many everyday

applications, such as compilers, and IDEs.

While program analyzers can help us discover facts about a program, analyzers currently

paint an incomplete picture of how program behavior relates to the desired facts. That is, an

analyzer will either: make a statement about all program executions; make a statement about

a single program execution; or declare that it does not know. This picture leaves out all the

descriptive variations that lie between characterizing all program executions as a whole and

characterizing a single one. Some indeterminacy is unavoidable, i.e., no analyzer can be sound

and complete, but a more complete picture could describe program behavior by relating portions

of a program’s input to one of these three characterizations of “fact holds,” “fact doesn’t hold,”

1

or “don’t know.” We can talk about these characterizations in terms of the conditions that lead

to them. Why would this be helpful? By making explicit which portions of the program have

been accounted for by some analyzer, we can increase our confidence in the correctness of some

program; we can use conditions produced by one analyzer to confine the space of uncertainty

to a smaller set of program inputs that can be targeted with more specialized analyses; we can

use this comprehensive description to see how sets of inputs are related, e.g., there may be two

distinct paths leading to an error state—calling for a more general bug fix.

A standard program analyzer such as a dataflow analysis cannot compute this comprehensive

description of program behavior, in general. As dataflow analysis reasons about more program

executions than are feasible, its determinations are an all-or-nothing affair: all executions are

reasoned about, or no definite answer can be given. A different analysis technique such as

symbolic execution reasons only about feasible program executions, and in general cannot reason

about all possible executions, e.g., when exploring an unbounded loop. To obtain our desired

comprehensive description, we need to alternate between analysis techniques that reason about

overapproximations and underapproximations of a program’s executions. Why do we need

alternation? The underapproximate analyzer is able to demarcate exactly which portions of

the program have been accounted for, and the overapproximate analyzer can possibly reason

about the portions of the program that have not yet been accounted for. To avoid reanalyzing

already-characterized inputs, we condition an analysis by restricting it from analyzing demarcated

regions of its input domain.

Instead of creating a bespoke program analyzer to compute this comprehensive description of

program behavior, we develop a meta-analysis framework into which widely varying analyzers

can be plugged. This dissertation makes contributions to generating more informative program

correctness proofs by combining a diverse set of program analyzers. The four main contributions

of this dissertation are in:

• enriching the results of a program analysis to encode overapproximate and underapproximate

information

• developing a novel program meta-analysis framework that combines artifacts produced by

over- and underapproximate analyzers to compute such a result

2

• empirically evaluating that framework

• applying the framework to improve the scalability and accuracy of downstream analyses

Enriching analysis results

A program analyzer tries to determine if a program is correct with respect to some specification

of correctness. There are three results given by a typical analyzer: yes, the program is correct; no,

it is not correct; or, “I do not know.” This ternary view cannot capture more nuanced descriptions

of a program’s correctness, e.g., that all program paths except one are correct. We introduce

a description of program behavior that provides a direct characterization of which parts of the

program conform to these three answers. That is—which portions of the program’s input are

guaranteed to be correct, which are incorrect, and which are undetermined. This description is

given in terms of logical formulae that capture which parts of the program have been assessed by

which kind of analyzer. We call such a characterization a program interval.

Developing a meta-analysis framework

To compute this characterization of program behavior, we develop the meta-analysis framework

of ACA (alternating conditional analysis). ACA employs multiple program analyzers as black

boxes that can exchange analysis results that are typed as overapproximate or underapproximate

proofs of correctness. The results from one analyzer can condition another to avoid reanalyzing

some part of the program. ACA dynamically decomposes the program being analyzed such that

each decomposition can be explored by all analyzers in parallel. A stopping point is reached

when all program behavior has been characterized. We specify interfaces to: share information

between analyzers, encode analysis results into a program interval, and widen the scope of the

interval if necessary. Previous analysis techniques can be recast as instances of ACA.

Empirical evaluation of framework

To evaluate ACA we implemented the framework in a Haskell tool named ALPACA. We

instantiate ALPACA with program analyzers that reason about the correctness of C programs. We

employ 9 state-of-the-art analyzers as black boxes, and run each in a parallel portfolio in search of

some full or partial correctness guarantee. The implementation includes instantiations for central

3

ACA components, but is architected to allow different instantiations of subcomponents—e.g.,

generalization—to be easily substituted. We also implement an extension that allows for ACA to

be run in a modular fashion.

ALPACA is run in an observational study of 380 C programs comprising 798,544 source lines

of code from the SV-COMP benchmark suite. We also conduct a case study over the chrony

codebase. We find that ACA is able to compute program intervals in an efficient, accurate, and

safe manner.

Application to other analyses

The results of ACA—a program interval—can be applied in various downstream analyses.

We look at one such application: using the program interval to focus the efforts of expensive

quantitative analyses. A program interval allows us to factor out parts of the state space that do

not need to be explicitly quantified, leaving a potentially much smaller portion to be handled by

a fine-grained analysis. We find that using ACA as a preprocessing step can improve the runtime

and accuracy of state-of-the-art quantitative techniques.

The remainder of the dissertation is organized as follows. Chapter 2 discusses related work;

we focus on program analysis techniques and the kinds of proofs they provide. In Chapter 3,

we describe how to combine overapproximate and underapproximate program analyzers into

the framework of ACA. Chapter 4 reformulates the techniques of Chapter 2 as instances of

ACA. We detail the implementation of the core components of ACA within the tool ALPACA in

Chapter 5. Chapters 6, 7 and 9 evaluate ACA on a set of benchmarks, in a case study, and

through the lens of algorithmic diversity, respectively. The application of ACA to techniques

used to quantify program correctness is given in Chapter 8. Chapter 10 concludes and looks

to future research directions. Appendices A and B provide details of the raw empirical data

interpreted in Chapters 6 and 8, respectively.

4

Chapter 2

Related Work

In this section, we look at the theoretical foundations that our current work builds upon. The

pieces to this foundation are imported from different decades and appear in dissimilar dress, but

are all related under the category of formal software analysis. As defined in [87], this kind of

analysis is “a mathematically well-founded automated technique for reasoning about the semantics

of software with respect to a precise specification of intended behavior for which the sources

of unsoundness are defined.” Formal software analysis differs from more informal—though not

unhelpful—techniques such as manual code reviews or scanning program text to reveal patterns

correlated with errors.

We separate the formal analyses into three broad groups. The first is that of the “classi-

cal” analyses, which reason about either a superset (an overapproximation) or a subset (an

underapproximation) of a program’s possible executions. These analyses were first formalized

in the 1960’s through the 1980’s. The second group consists of analyses that combine the

overapproximations and underapproximations of the classical analyses in a principled, bespoke

manner. These analyses appeared beginning in the late 1990’s, largely due to efficiency advances

in satisfiability solvers. The third group seeks to employ multiple distinct analyses either by

defining external interfaces or by trying to predict which analysis is best suited to a particular

program. This last group is the most recent, less than a decade old.

5

2.1 Definitions

The definitions in this section are adapted from [190]. The program analyses we discuss in this

dissertation all rely on some notion of a program model.

Definition 1. A program model M is a 5-tuple (Q,A,→, s, F), where

1. Q is a set of nodes or program states

2. A is a set of actions modeling the effect of program statements

3. →⊆ Q×A×Q is a set of guarded transitions modeling control flow

4. s is the start state

5. F is the set of final states

We consider a program model to be a synonym for both a transition system and a guarded

transition system. The state space of a model the set of all reachable states from the start state

s.

A program analysis will try to compute facts about this program model. For example, after

traversing an edge guarded by the condition (x < 0), some program analysis can reason that the

value of x is negative in the updated state. For a program model, the set of all facts is usually

structured as a lattice, where the partial order v relates how precise these facts are, e.g., if facts

are propositions on an integer variable x, then (x ≡ 1) v (x < 5), because (x ≡ 1) is less precise

than (x < 5).

The lattice operations t (or join) and u (or meet) constructs a least upper bound (or lub)

and a greatest lower bound (or glb) from subsets of facts. The join operation can move elements

“up” in the lattice of facts, i.e., make the analysis less precise; and the meet operation can move

elements “down” in the lattice, i.e., make it more precise. For instance, if we want to join two

facts collected on different paths through the program model—x ≡ 2 and x ≡ 4—we may move

up in the lattice of facts to (x ≡ 2)∨ (x ≡ 4), telling us that x has the value of either 2 or 4. The

join and meet operators are analogous to the union and intersection of sets. When we refer to

a function or operator being “monotone,” we mean that it preserves ordering, i.e., if function f is

monotonic, then x v y implies f(x) v f(y).

6

We consider the term “logical implication” to be equivalent to “entailment” and “logical

consequence,” which may be given by either of the symbols |= or ⇒. We use both symbols to

ease readability when there are more than two statements being related. Logical implication is a

relation between two statements P and Q saying that all models that make P true also make Q

true, written as P |= Q, or P ⇒ Q. Because no models make the statement “false” become true,

Q is the empty set when P is false. This differs from the meaning of “material implication.”

We will be working with a logical lattice, which is a lattice whose elements are made up of

logical formulae. The formulae are related in a lattice in which the ordering v is defined by

logical implication. Supposing that formulae f1 and f2 describe constraints on the values of

program inputs, the idea is that f1 v f2 corresponds to:

{i | i is input implied by f1} ⊆ {i | i is input implied by f2}.

Intuitively, f2 described a larger (or equal-sized) set of inputs than f1. The maximal value

in the lattice—denoted by the symbol >—is “true”, and implies all inputs, while the minimal

values—denoted by ⊥—is “false” and implies the empty set of inputs. The join and meet operators

are defined as logical disjunction (∨) and logical conjunction (∧), respectively.

Note that the conventions we use here are the duals of conventions used in dataflow analy-

sis [167] or denotational semantics [168]. That is, in dataflow analysis, the ⊥ value conveys no

information and the analysis becomes more precise as you move up the lattice. We adopt the

conventions of abstract interpretation (described in Sec. 2.2.1), in which > conveys no information,

and precision is added as you move down the lattice.

2.2 Classical Analyses

A program analysis tries to determine if a program satisfies some property. In Schmidt and

Steffen’s paper “Program Analysis as Model Checking of Abstract Interpretations,” [190] the

machinery of a program analysis is placed together in a comprehensive three-step process: first

a program model, M , is constructed; second, M is abstracted to M ′ by reducing the amount

of detail in its nodes and edges; finally, M ′ is checked to see if some property holds—if so, the

7

property holds in M .

A large number of program analysis problems can be transformed into reachability problems

within a given program model [178]. The reachability problem is that of determining whether

there exists a path in a program’s transition system from the initial state to some specified state.

2.2.1 Overapproximations; or may analyses

The distinguishing characteristic of the analyses discussed in this subsection are that, given a

program model M , they reason about an overapproximation of M , call it M . This allows these

analyses to collect facts that are true about all program executions in M , and thus in M as well.

Information computed over overapproximate program models is called may information, and may

analyses are algorithms that compute just this. There are many variations of may analyses, but

we will focus on three: abstract interpretation, model checking, and deductive methods.

Abstract interpretation

Abstract interpretation [69] is the general framework for reasoning about an overapproximation

of a program’s state space. Analyzing the overapproximated state space is handy because it is

often smaller and simpler, and therefore easier to reason about; and if you can show a property

holds in the overapproximated state space, then it also holds in the state space of the original

program.

In its classical form, the algorithm for computing an abstract interpretation boils down to

three steps:

1. define the abstract domain

2. define the abstract semantics

3. iterate over this abstracted transition system until reaching a fixed point

Steps one and two involve defining Q′ and →′ as abstractions of Q and → of our transition

system in Def. 1. How should we define these abstractions? This depends on the property you

would like to verify.

8

Suppose you want to know whether some variable was always nonnegative in some program.

Let’s first consider abstracting the domain for this problem, which should reduce the number

of states to consider. Instead of keeping track of all possible integer values a variable can take,

you only need to keep track of each state variable being negative or not, along with some value

representing the fact that you do not know. This reduces the possibility of variable values down

from the size of the integer domain to just three values; we lose information about the precise

original values, and keep only the information necessary to our analysis, making this a “good”

abstract domain.

In designing an abstract domain, there are important properties to preserve, such as: repre-

senting the domain as a lattice with either a join or meet operation defined, defining an abstraction

function to map an element in the abstract domain to a set of elements in the concrete domain,

and defining a concretization function to map a concrete element to an abstract element. The

precise definitions and algebraic properties are out of the scope of this work (see [167, 70, 68] for

details), but it suffices to know that this framework computes sound may information.

Abstract semantics define the mapping between abstract elements in our domain after applying

some program statement. In the context of our sign domain, a decrement operation would map a

negative value onto a negative value, but after decrementing a nonnegative value, it may still be

nonnegative or it may be negative, so the nonnegative value is mapped to the maximal value in

the lattice: >. The > value signifies “I do not know what this concrete value could be.” The

main requirement in designing the abstract semantics is that if s′ is an overapproximation of s,

then the abstract interpretation of s′ is an overapproximation of the concrete interpretation of s.

Once the abstract transition system has been defined, then, starting from the initial state,

you make repeated transitions in the system until you have reached a “fixed point,” meaning the

states do not change after applying additional transitions. (We assume the domain and semantics

have been defined in a way that ensures that the analysis completes.) After a fixed point is

reached, you can make a judgment about how the property relates to the overapproximated—or

abstractly interpreted—state space.

9

Model checking

Model checking was developed in the 1980’s [90, 62, 63] as a way to verify the model of some

system through an exhaustive state space exploration. While model checking can reason

about properties in a variety of logics, here we consider the simple, but useful, case of safety

properties [14]. Reasoning about safety properties reduces to computing reachability, i.e., to

prove a safety property holds search for an unsafe state in an overapproximate program model

and if you fail to find one you have succeeded in your proof. To guarantee termination, the

reachable state space of the model must be finite. If no property violation is found, the system is

proven correct with respect to the model and the property. If a violation is found, this could

represent either a true property violation in the system, or a spurious violation existing in the

abstracted system but not in the concrete one.

The structure can be explored by any graph traversal algorithm such as a depth-first search or a

breadth-first search, backtracking when the same state is seen. Model checking is a path-sensitive

analysis, as it does not summarize information computed on different paths (as an abstract

interpretation would do when computing the abstract semantics of an if statement—summarizing

the information computed over the then and else blocks with a join operation), but considers all

paths independently. For this reason, model checking excels at discovering property violations in

concurrent systems with many possible execution interleavings, as each combination is explicitly

checked.

Path-sensitivity comes at a cost when a system with a large number of branches leads to an

exponential number of states to be checked; this is known as the state-space explosion problem.

One way to mitigate the blow-up is by creating a more abstract model with fewer transitions,

though this can introduce an undue number of spurious violations. Automated methods to deal

with spurious violations were introduced later and are discussed in Sec. 2.3.1.

Deductive methods

Deductive methods date back to the earliest work in formal software analysis. Precursors to

deductive methods from the 1940’s include Turing’s embedded assertions in “Checking a Large

Routine” [201] and von Neumann and Goldstine’s assertion-annotated flow charts [105]. But

10

it was not until the late 1960’s that Floyd and Hoare formalized the meaning of program

correctness [96, 124].

Using the logic developed by Hoare, any program command C can be described by a triple

{P}C{Q}

where P and Q are formulae in predicate logic that describe properties of the state expected to

hold before and after the execution of C, respectively. P is called the precondition, and Q is

called the postcondition. A triple is considered valid if all states satisfying P are transformed by

C into a state satisfying Q, upon C’s termination. Given inference rules for each command in a

programming language, these rules can be composed together such that pre- and postconditions

can be given for each command in a sequence of commands—yielding input/output summaries

across all execution paths.

As the postcondition of a branching command, e.g., an if statement, must summarize

executions for each branch, deductive methods are not path-sensitive. This can lead to analysis

imprecision that may be mitigated by adding stronger assertions at certain program points, such

as at loop headers. These assertions are often manually added, though there are techniques that

can automate much of this invariant discovery [145].

2.2.2 Underapproximations; or must analyses

The distinguishing characteristic of the analyses discussed in this subsection are that, given a

program model M , they reason about an underapproximation of M , call it M . This allows

these analyses to collect facts that are true about specific program executions in M . Because M

contains all executions that are in its underapproximation M , these represent feasible executions.

Information computed over underapproximate program models is called must information, and

must analyses are their corresponding algorithms. Here we focus on two must analyses: symbolic

execution and bounded model checking.

11

Symbolic execution

Symbolic execution [135, 64] is a way to step through the execution paths of a program using

symbolic values instead of concrete inputs. It can be formulated, albeit loosely, as an abstract

interpretation where the abstract domain is composed of logical formula over free variables

capturing input values, and the abstract semantics are defined as the concrete semantics; the

requirement of reaching a fixpoint is relaxed, meaning symbolic execution will not terminate for

unbounded state spaces. If the entire state space can be exhaustively explored, then a fixpoint is

reached and the analysis soundly approximates the program semantics. A more formal treatment

of the connection between abstract interpretation and symbolic execution is given in Section

3.4.5 of [67]. The following paragraphs give a more traditional formulation of symbolic execution.

A program’s transition system is interpreted symbolically by maintaining a state that holds a

mapping from variables to symbolic expressions, and a path condition (PC), which is a quantifier-

free first order formula over symbolic expressions. The PC describes constraints on inputs that

cause execution to flow down a given path.

The PC is initialized to true, meaning all input values are initially unconstrained. When a

branch with condition c is encountered, symbolic execution explores both possible paths, using

a SAT solver to check if the formulae encoding the paths are satisfiable. If any PC is found to

be unsatisfiable, symbolic execution halts along that path. Let’s see how this works on a small

example.

Consider the control flow representation in Figure 2.1 of some program, where nodes are

program locations and edges are annotated with assumptions on the state that must hold for

the transition to occur. (Note that a transition system can be derived from this, given an initial

state.) In Figure 2.1, there are two distinct paths from l0 to l5.

l0 l1

l2

l3

l4 l5
α

β

¬β

γ

δ
ε

Figure 2.1: Example control flow graph

A symbolic execution over the control flow graph of Figure 2.1 begins by setting PC = true,

12

and exploring the first transition, so now PC = true∧ α; a SAT solver checks the satisfiability of

PC—and α is found to be satisfiable. Now a branch condition at l1 is encountered, so two separate

PCs are enumerated (eliding the trivial true clause), namely PC1 = α∧β and PC2 = α∧¬β; and

satisfiability is checked for each. In this way, symbolic execution will systematically enumerate

the conditions describing each feasible path in a program, i.e., PC1 = α ∧ β ∧ γ ∧ ε and

PC2 = α ∧ ¬β ∧ δ ∧ ε.

The advantage of using symbolic execution is that any path determined to violate a property

is guaranteed to be a feasible one; you do not have to deal with spurious counterexamples. The

disadvantage is that a program containing unbounded loops or recursive function calls will be

explored by symbolic execution indefinitely, creating an unbounded number of PCs to check. In

practice, symbolic execution engines are bounded in their search in some way, e.g., by number of

paths or by a timeout.

Bounded model checking

Bounded model checking [59, 32], or BMC, involves considering the semantics of traces that are

bounded in length by encoding them as one big logical formula related to a property, and asking

a SAT solver if any of the considered traces violate that property.

BMC is similar to symbolic execution, but instead of enumerating all program paths and

solving the constraints for each of these paths, BMC will encode all possible program paths (up

to a depth bound) into a single formula. This often pushes the computational complexity of

exponential branching behavior into the backtracking search used within constraint solvers. So

in the control flow example from the previous section, instead of creating two separate formulae,

BMC will stuff the branching behavior following l1 into a disjunction; and the formula

α ∧ ((β ∧ γ) ∨ (¬β ∧ δ)) ∧ ε ∧ ψ

is checked for validity to see if some property ψ is satisfied along all (bounded) paths.

Many programs have traces that are unbounded in length, so this approach cannot provide a

safe overapproximation as abstract interpretation or CEGAR-based techniques can. Even with a

bounded exploration, some transition systems generate formulae too large or complex for a SAT

13

solver to efficiently solve. But in many cases this technique is effective in finding feasible traces

of the system that violate some property, also known as bugs.

One technique used to avoid dealing explicitly with the large formulae that can come with

fully unwinding program loops is called k-induction [191, 81]. This technique is analogous to

traditional mathematical induction, where you try to prove—using bounded model checking—that

a property holds for the first k states (this is the base case), and then prove via induction that

this property must hold in the next state. This technique allows BMC-based analyzers to safely

prove unreachability of a property.

2.3 May-Must Combinations

The classical analyses overviewed in Sec. 2.2 were categorized as either may or must analyses.

These categories correspond to the approaches’ respective strengths: may analyses work best

when proofs of unreachability can be effectively computed, while must analyses work best when

proofs of reachability can be effectively computed. But what happens when neither types of

proof are easily found?

A may analysis can produce an inordinate amount of false positives, i.e., reachability traces in

an abstract model that do not correspond to concrete program traces. Each of the reachability

traces must be checked by hand, and if a large portion consists of false positives, a frustrated

user will stop using the analysis. On the other hand, a must analysis may exhaust its resources

searching for a reachability proof in a large state space, and return with an unknown result.

Perhaps setting a larger resource bound will lead to the discovery of a reachability proof, but

this hope is uncertain. The imagined user can become discouraged with the limits of a pure must

analysis.

Noting the fundamental limitations of these two “pure” approaches, researchers in the last few

decades have attempted to combine may and must analyses such that their respective weaknesses

can be mitigated by the others’ strengths. In this section, we look at how these combinations are

made and what guarantees they provide. We group the may-must combinations broadly into:

counterexample-guided abstraction refinement, verification techniques followed by validation, and

finally, approaches that employ the combinations in a more synergistic fashion.

14

2.3.1 Counterexample-guided abstraction refinement

In order to ensure a fixed point is reached in a program analysis, the abstract domain must be

sufficiently coarse, but it must also be fine enough to prove the property-to-be-checked. Notice

that in the classical formulation of an abstract interpreter, after the abstract domain is defined,

it does not change; so if the domain is too coarse, the abstract interpreter may report many false

positives.

One technique to use these false positives in order to find a sufficiently-precise abstraction is

called Counter-Example Guided Abstraction Refinement, or CEGAR [60], which is an automatic

method for focusing the precision of an abstract domain. The idea behind CEGAR is to start

with a very coarse abstract domain, and refine this domain only if this abstracted transition

system produces a violation trace proven to be infeasible in the concrete semantics.

CEGAR is often used with a domain modeled by predicate abstraction, where the state

variables are related to a finite set of predicates. In the preceding section, each state variable is

related to the predicate (< 0), (≥ 0), or > (unknown). When discussing abstract interpretation,

we saw how applying the decrement operation to a nonnegative variable value results in moving its

abstract element up to >. This transition system could reveal a counterexample to the property

being checked (all variable values stay nonnegative) that turns out to be spurious—the variable

value in the concrete semantics is determined to be zero after decrementing. CEGAR will refine

the abstract domain by introducing a new predicate based on this counterexample, and rerunning

the analysis. The predicate added is (= 0), so now the domain is split into the predicates (< 0),

(= 0), (> 0), and >. After this refinement, the spurious trace is removed from the transition

system, and the property of nonnegativity can be safely proven.

There are three main steps used within CEGAR: (1) step through the transition system to

find a trace violating a property, (2) check if this trace is feasible, (3) if not, then generate a new

predicate. Any one of the above steps can be optimized, but the success of a CEGAR-based

approach strongly depends on the method for generating new predicates. The ideal is to find a

predicate that can remove many spurious counterexamples from the transition system at once.

One common technique for predicate generation involves Craig interpolation [159, 74]. If

some trace has been found to be infeasible, represented by the unsatisfiable conjunction of A∧B,

15

we would like some kind of explanation of why the trace is infeasible according to the concrete

semantics. This is the role of a Craig interpolant, which—given A ∧B is unsatisfiable—is some

formula I such that (1) A⇒ I, (2) I ∧B is unsatisfiable, and (3) the variables found in I are

also found in A and B. Finding a sufficiently general interpolant can be a difficult task, one that

is out of the scope of this discussion; see [159, 7, 9] for more details. Later techniques such

as [8] introduce interpolation-based methods that enumerate multiple program executions at one

time. This work allows you to parameterize the degree to which this interpolation-generation

drives the analysis, i.e., guessing at a safe inductive invariant for the program, versus only using

interpolants to refine the abstract domain. Further improvements to the traditional CEGAR

approach are given in [114].

The guarantees provided by CEGAR are: any proof of unreachability is sound, and if it

reports reachability in the form of a counterexample, this is also a sound proof, i.e., it represents

a feasible trace.

Variants of CEGAR

There are some techniques that, like CEGAR, are overapproximate but are still able to

determine if a counterexample in the model is feasible or not. Unlike CEGAR, the abstraction

refinement in these techniques is either done implicitly or not performed at all. An example of a

technique that performs implicit refinement is given in [119], where a call to a SAT solver is used

to check for feasibility (as with CEGAR), but in the case of an infeasible counterexample, the

trace is directly removed from the model via a simple graph operation. In [172], no automated

refinement is performed, but if some counterexample is returned it is guaranteed to be feasible.

This is done by checking properties of the trace, e.g., is some path fully deterministic, and by

running a concrete simulation.

Property Directed Reachability

A technique introduced in 2011—Property Directed Reachability, or IC3 [41, 42]—has been

shown to be an effective procedure for proving properties of both finite and infinite transition

systems. IC3 attempts to find an inductive invariant to prove some property. It does so by

computing a sequence of sets, each of which is an overapproximation of the set of reachable states

in at most i steps through the transition system, or “frames.” An SMT solver checks whether the

16

given frame can violate the property-to-be-checked. If this is the case, additional strengthening

clauses are added to the description of the overapproximated set. This process continues until

either a feasible counterexample is found or two successive frames are found to be equal, in which

case the property is proved.

IC3 differs from the original CEGAR approach in that it does not try to prove one large

assertion over the state space; instead, many simple inductive assertions are added and checked

incrementally. Similar to the interpolation used within many instantiations of CEGAR, IC3 is

property-directed in the sense that each new assertion is added in order to remove the possibility

of a property-violating trace that ends up being spurious.

2.3.2 Verification followed by Validation

In contradistinction to the may-must combinations in this subsection that blend may and must

information throughout the analysis, the combination now considered operates in a staged manner:

a may analysis—verification—is run first, and is followed by a must analysis—validation.

The impetus for this kind of staged analysis was the observation that most implementations of

may analyses make unsound compromises in order to be effective over real-world codebases [86, 57].

The unsound compromises include ignoring arithmetic overflow by considering only the ideal

domain of integers, disregarding exceptional control flow, and many others. When these unsound

assumptions are left unstated, it becomes unclear whether the safety guarantees returned by a

may analysis hold or not. However, if the unsound assumptions are made explicit, a must analysis

can check the (hopefully small) set of remaining execution paths that have not yet been verified.

Later variations of this staged approach [76, 58, 77, 56, 6, 26] include stating unsoundness

resulting from partial verification due to resource limitations, e.g., stopping due to a time bound,

along with predefined sources of unsoundness, e.g., unrolling a loop a fixed number of times. The

guarantees offered by this sequential may-must composition typically come in the form of a more

robust test suite according to some coverage metric. That is, given a program P , a property ψ,

and a coverage metric C, verification followed by validation computes the function P → ψ → C,

where C should yield higher coverage than is possible with a may or must analysis on its own.

The best case of C covering the whole program space occurs when either a may analysis can

17

soundly verify a program in the first stage, or when the subsequent must analysis can cover the

uncovered residual space in the second stage.

The work considered in this subsection tends to use symbolic execution to perform the second

phase of analysis, but other underapproximate techniques such as bounded model checking may

also be used, as in [149].

2.3.3 Synergistic Combinations

Whereas CEGAR is largely a may analysis that uses a must component if refinement is needed,

and the techniques in Sec. 2.3.2 cleanly separate the may and must components into distinct

phases, the approaches discussed in this subsection rely on the close interaction of may and

must components throughout the analysis. We name these last kinds of approaches synergistic

combinations.

One distinguishing feature of synergistic combinations is the maintenance of separate overap-

proximate and underapproximate program states. This idea goes back to Wong-Toi and Dill’s

work in the 90’s [84, 209], which is formulated in the context of timed automata (finite automata

extended with a set of real-valued clocks) [10]. To compute whether a property is satisfied, they

extend the classic dataflow analysis iterative fixpoint algorithm [134] to track both under- and

overapproximate sets of reachable states. The coarseness of the overapproximating set is reduced

by determining what they term separating classes of states that restrict the application of the

join operator. The underapproximate set is obtained by replacing the join operator with an

underapproximating operator, i.e., a union is replaced with a subset of the union. The basic

idea is simple: if the overapproximated set of states does not contain a violation, the system is

safe; whereas if the underapproximated set contains a violation, the system is not safe. Other

synergistic combinations are variations on this theme that use different methods of generating

these two sets.

A fruitful variant of the synergistic combinations led to the SYNERGY [112], DASH [20], and

SMASH [104] algorithms. These all come from the same group of researchers and largely build

on one another, so we will only summarize DASH here. The underapproximate data structure in

DASH is a forest of trees, where each path in the forest corresponds to a concrete program path

18

that is discovered by symbolic execution. The overapproximate data structure is a finite relational

abstraction of the state space that begins as the control flow graph, and is refined over time.

Each iteration of DASH either expands the forest to include more known (must) reachable states,

or refines the partition. This is done by finding a path to an error state in the overapproximation,

and then discovering the frontier between regions known to be reachable, and those not known to

be reachable; this frontier is the boundary between must and may information. Directed symbolic

execution is then used to try to “expand” the frontier, and if no such expansion is possible, this

information is used to refine the overapproximation—marking that there are no more states to

explore beyond that frontier. The abstract error traces help direct symbolic execution, and the

non-existence of concrete reachable states helps refine the overapproximation. The algorithm

terminates either when an error trace exists in the forest of concrete paths, or when no path to

an error exists in the overapproximation.

An extension of the DASH algorithm is given by the SMASH algorithm [104], which also uses

two different structures to store may and must information, but (unlike DASH) is compositional.

Separate may and must summaries are computed for each function on demand, and as the state

space is explored, these summaries are queried to see if a given pre-state satisfies some must

condition or some not-may condition. The result of these queries dynamically refines the two

summaries of the function being analyzed. Distinct may and must function summaries are also

used in [136].

2.4 Cooperative and Meta-Analyses

The analyses described in Sec. 2.2 and Sec. 2.3 are assumed to be implemented in a standalone

tool, where each has a custom internal program representation, each tracks facts about the

program state in different ways, etc. In contrast, the approaches described in this section assume

the existence of multiple standalone analyses that can be combined in some way, either via

composition, into a portfolio framework, or within a meta-analysis framework that defines

interfaces for verification artifacts.

19

2.4.1 Conditional model checking

When an analysis fails to return an answer (e.g., due to a timeout), the computation performed

up to that point is not typically communicated to the user, and a new verification attempt must

be started from scratch. Researchers have long known this, but not until recently have there been

calls to explicitly account for this partial verification evidence [86]. A first step in this direction

appeared with the idea of conditional model checking [24]. In conditional model checking, given

a program and a property, a model checker can provide one of three answers: a proof that the

property hold, a proof it does not hold, or—in the case of failure—a condition describing the

state-space explored and verified thus far. Any state space that satisfies this condition does not

have to be re-verified. This condition can then be passed to a subsequent model checker, in the

hope that the remaining state space outside of this condition can be effectively reasoned about

by a different analysis.

The formulation of conditional model checking was abstract enough to be applied to any model

checker, but in practice, the externalized condition was written in a domain-specific language

closely tied to a particular model checking toolchain [28]. This prevented widespread adoption of

conditional model checking outside of this toolchain. In an attempt to avoid this tight coupling,

there have been various proposals to communicate the condition via an external interface that all

analyzers can take as input: the source code of a program.

Embedding the condition into the program itself has been done in two ways—either explicitly

through program annotations, or implicitly by excising program paths in the source code that

have been verified. Using program annotations still comes with the difficulty that another analyzer

must be able to understand the annotation language, making some of these approaches again

tool-specific [57, 58]. Our work uses the source language as its annotation language (see 3.4),

which allows for generic interfacing between analyzers at the cost of reduced expressivity that a

full-blown annotation language like ACSL [19] gives.

Rather than explicitly embedding annotations, it is also possible to remove parts of the program

that have been verified, leaving a residual program to be checked [93, 27]. The idea is that the

residual program will have fewer execution paths, improving the effectiveness of downstream

analyses. While similar in spirit to program slicing [208, 34] and program transformations to better

20

suit static analyses [141, 165, 203], which remove program statements or perform semantically-

preserving code transformations, the techniques to produce residual programs remove full program

paths. One drawback to residual programs is that, while the number of execution paths have been

reduced, the size of the program in terms of lines of source code counterintuitively increases. This

occurs when the condition encodes a large amount of branching, e.g., explicitly unrolling a loop a

certain number of times, which is more compactly expressed in the original program (though

the compactness describes more paths). The enlarged residual program can cause downstream

techniques to perform worse compared to the original program.

2.4.2 Portfolio frameworks

A portfolio framework employs a large diversity of analysis tools trying independently to solve

a verification problem, meaning the separate tools do not communicate with one another. If

computational resources are available, one can run a portfolio in parallel, as the tools run

independently, as in [16].

To avoid wasting computational resources, you can try to guess which tool would work best.

This is the problem of algorithm selection [179]—finding the most effective algorithm (according to

some criteria, e.g., lowest runtime, simplest output, etc.) given an input instance. This approach

has been shown to be helpful in portfolio-based SAT-solvers [211], where certain structures of

clauses in a boolean formula tend to be more easily solved by one SAT-solver over another.

Portfolio frameworks that employ algorithm selection are now being applied to choosing the

best analyzer for a given program and property [82, 75, 180, 182]. A “selection model” is first

abstracted from the program, which focuses on certain of its features, e.g., number of branch

points, number of variables. Based on the model, a strategy selector assigns a ranking to the

analyzers. The selection model and the strategy selector are usually the result of machine-learning

(though not always, e.g., [22]). As a machine-learned function, the selections made are dependent

on the underlying distribution of the training set. All such approaches have used the SV-COMP

benchmarks [195] in their evaluations, and perform well. It has not been demonstrated how much

these results generalize outside of this benchmark.

Unlike the other the other combination techniques described in this section, a portfolio

21

framework will pick one tool (or employ all in parallel) to search the entire state space of a given

program. In contrast to the portfolio approach, the approaches in the preceding and following

subsections decompose the program state space in some meaningful way.

2.4.3 Cooperative frameworks

The groundwork has been laid for analyzers to cooperate with each other as black boxes within a

meta-analysis framework. The foundations involve: analysis engines that offer sound guarantees

on either overapproximations or underapproximations of a program’s state space; methods to

combine these two approximations; and ways to externalize partial verification results. One such

meta-analysis framework is given in [115], where separate analyzers discover and externalize

different program invariants, and feed these invariants to a “master” (sic) verifier, which attempts

to solve the overall verification problem. This approach differs from our current work in a number

of ways, notably that in [115] much of the analysis burden still rests on a single analyzer, the

framework does not compute comprehensive summaries of must and may information, and there

is no attempt at generalizing partial evidence when separate analyzers do not discover new

invariants. Some possibilities for integrating multiple tools into a framework for cooperative

verification are given in the recent survey paper [30].

2.5 Novelty of Current Work

The ACA framework advances prior work by computing program intervals that yield sound over-

and underapproximate guarantees for a given program and reachability property (described in the

following chapter); by applying conditional verification in a blackbox manner; and by employing

alternation between the respective sound and complete guarantees of generic A and A analyzers

in a parameterizable framework.

Program intervals can characterize ψ-state reachability in a more comprehensive way than

previous techniques. While prior work can compute a limited kind of program interval, ACA

allows one to compute other program intervals that encode richer descriptions of input constraints

(see Chap 4). Conditional analysis has previously been used either with model checkers coming

from the same toolchain (CPA), or this toolchain with one additional analyzer. We apply

22

conditional verification in a blackbox manner, such that the conditions generated by a generic

analysis tool can be passed to another; the back-and-forth can continue in a synergistic way.

Previous work combined may and must information in a bespoke way, usually with two kinds

of analysis engines coupled closely together, while we are able to alternate between these types

of information using a framework into which you can plug multiple analyzers in a blackbox

fashion.

23

Chapter 3

Alternating Conditional Analysis

This chapter details the core contribution of this thesis—the framework of an alternating

conditional analysis. The chapter is outlined as follows: a brief motivation; formal definitions of

key concepts; a discussion of the two different kinds of conditioning used; a presentation and

explication of the pseudocode for an alternating conditional analysis framework; and an expanded

discussion of the framework components.

3.1 Motivation

Software developers spend much of their time determining whether a program behaves as intended.

This time is spent in writing specifications, perhaps documentation, unit tests, system tests,

and—upon the exhibition of some program failure—debugging and reviewing the previously

listed items for insights into the cause(s) of failure. Fixing the mismatch in intended and actual

program behavior involves understanding the failure, repairing the fault that caused the failure,

and finally making sure the repair is correct and deploying the patch. These steps can be done by

hand, but previous research has shown that much of this software development can be automated,

e.g., [175, 147, 143, 155, 160, 212, 150, 213].

Each of these automated techniques could be improved by broadening the failure summary

from just one input vector to a more comprehensive characterization describing a set of inputs.

With this characterization, duplicate failure reports could be identified, the root cause of failure

24

could be better understood upon seeing multiple input instances, the repairs could be more

robust by covering a larger portion of the input space, and validation can be concentrated on

exactly the space of inputs given by the comprehensive characterization.

In this chapter, we describe a framework that begins with individual evidence of statement

reachability in some program and produces a generalized characterization of program behavior

that may reach this statement. This characterization is to be both comprehensive, in that it safely

characterizes all reachable behavior, and constructive, in that it can exactly characterize reachable

behavior for some inputs. To do so, we define a logical interval as a pair of logical formulae that

bound the input space reaching some statement in a program. (While the framework defines

the general concept of reachable statements, in the remainder of this section we will continue to

assume this refers to the instance of a failure statement.)

Suppose some failure report carries as evidence the triggering input vector of <23, 9, "foo">.

We would like to compute a pair of formulae defining an upper bound, e.g., I1 > 0 ∧ I2 < I1,

and a lower bound, e.g., I1 > 0 ∧ I2 < I1 ∧ I2 < 10, on the failing input space; Ii represents

the ith input. The upper bound defines the space of inputs on which the program may fail,

whereas the lower bound defines the space of inputs on which it must fail. We conjecture that

this richer failure information can be leveraged in downstream automated development processes.

For example, the upper bound above indicates that the third input is not implicated in the

failure, which can simplify the state space in a model checker significantly. Whereas the lower

bound establishes a minimal set of inputs for regression testing, the upper bound establishes a

maximal set since inputs outside of that bound are guaranteed to be failure-free. In this work,

these characterizations are passed on to other automated tools—the human is kept out of the

loop.1

To compute this characterization, we combine over and underapproximating static program

analyses. Overapproximating analysis tools, such as IKOS [43], SeaHorn [113], Astrée [72], and

Facebook Infer [49], can prove the absence of particular kinds of program failures. This advantage

comes with the drawback that failures reports from these tools may be spurious—they may not

correspond to valid program executions. Underapproximating analysis tools, such as CBMC [61],
1While we can imagine outputting analysis results in a form that would directly aid the programmer in

answering reachability queries, this is left to future work.

25

KLEE [47], and Mayhem [50], have the advantage that they never report a spurious failure. The

drawback with this class of tools is they may miss failures, and so cannot prove their absence.

As discussed in Chap. 2, researchers have long understood that there are advantages in

combining these approaches. Conceptually, these techniques alternate the application of over

and underapproximating analyses with the output of each driving the other toward convergence.

Unlike these approaches, which develop bespoke alternating analyses, we develop a framework

to extract and combine information from existing static analysis tools to achieve the efficient,

accurate, and safe computation of comprehensive reachability characterizations.

The resulting framework leverages the strengths of existing state-of-the-art analysis techniques

and tools, while mitigating their weaknesses.

3.2 Overview

In order to compute all the ways a program can reach some state—with some degree of accuracy—

we introduce the framework of an alternating conditional analysis, or ACA.2 This analysis takes

as input a program and a state reachability property, and outputs a logical characterization of

all ways that this property can be satisfied. A state reachability property is a property asserting

that a particular state can be reached, while a safety property asserts that a “bad” state is never

reached; so reachability properties can be seen as the negation of a safety property [154]. Because

the focus of this work is on characterizing reachable states, safety is discussed in this negated

sense.

ACA computes the characterization of state reachability by alternating between the soundness

of overapproximation and the completeness of underapproximation to characterize portions of

the input space as either satisfying a reachability property or not; conditioning analysis tools to

ignore already-examined inputs; and repeating this process until all inputs have been accounted

for. To simplify the presentation, we assume in this subsection that the alternation is strict,

i.e., an overapproximation is always followed by an underapproximation and vice versa, but the

algorithm in Sec. 3.5 does not require this strictness.

Before defining the formalisms used in ACA, let’s look at a small example. The C program in
2This is an improved formulation of work first published in [101].

26

Fig. 3.1 includes an input() function, which returns an arbitrary integer; a while loop whose

body contains some computation that does not modify the value of x; and a call to the function

property satisfied (), whose reachability we want to characterize.

int main() {
int x = input();
while (input() 6= 0) {

/∗ computation not involving x ∗/
}
if (x > 0) { property satisfied (); }
}

Figure 3.1: Uninstrumented program

A run of ACA computes a characterization of all inputs that lead to property satisfied () being

called. The analysis begins by running an overapproximating analyzer on the original program,

searching for the reachability of property satisfied (). Suppose this analyzer claims that it has

found a reachable path, and passes the evidence of this claim to be validated (or invalidated) by

an underapproximating analyzer. The underapproximator validates the evidence, and collects a

logical characterization of its reachability in terms of x, namely x > 0.

We now know the program’s behavior when x > 0, so ACA conditions future rounds of

analysis to ignore program executions satisfying this input constraint, and checks if there are any

other inputs that can reach property satisfied (). This conditioning is embedded in an assume

statement. The semantics of assume, given some predicate p are: if(p): skip; else: exit;—this

prunes out execution paths that do not satisfy p. We can place the assume statement at any point

between the initial read of x and the if statement; we choose to place the assume statements early

in the program encoding so that they have have the possibility to block more execution paths from

having to be analyzed. Under these new assumptions, ACA again runs an overapproximating

analyzer on the instrumented program of Fig. 3.2.

This time an overapproximate analyzer declares property satisfied () to be unreachable. Be-

cause this result is overapproximate, we are safely guaranteed that all program paths have been

27

int main() {
int x = input();
assume(¬(x > 0)); /∗ ignore executions where x > 0 ∗/
while (input() 6= 0) {

/∗ computation not involving x ∗/
}
if (x > 0) { property satisfied (); }
}

Figure 3.2: Instrumented program

accounted for, and the reachability of property satisfied () can be exactly characterized by the

logical formula x > 0.

ACA relies on the alternation of over- and underapproximation to compute the reachability

characterization. An overapproximate analysis is able to safely compute a fixpoint when reasoning

about the body of the while loop, whereas an underapproximate analysis may get “stuck”

exploring this loop, and run out of resources before ever reaching property satisfied (). In

addition, overapproximation can safely declare portions of the input space as unable to satisfy

a reachability property, which underapproximation cannot do in general. On the other hand,

underapproximation can accurately characterize an execution path as feasible or not, mitigating

the nuisance of false positives inherent to overapproximation. While at least one alternation is

needed in order to establish an upper and a lower bound, we note again that a strict alternation

is not necessary in ACA.

3.3 Definitions

To combine may and must information—computed by a variety of program analysis tools—we

define a logical characterization of all program inputs, with respect to some state reachability

property. We call this logical characterization a program interval; it consists of an upper bound

that is guaranteed to subsume all reachable paths (the may information), and a lower bound that

is guaranteed to be subsumed by all reachable paths (the must information). We now define the

formalisms used in computing this characterization.

Let P be the domain of programs and Ψ the domain of reachability properties. A program

28

analysis, A, targets a pair of elements 〈p, ψ〉, p ∈ P and ψ ∈ Ψ, in order to provide information

about whether the executions of p conform to ¬ψ, i.e., whether p |= ¬ψ. We refer to states that

satisfy ψ as ψ-states.

Most modern program analysis frameworks produce some form of evidence about their claims

of ψ-state reachability or unreachability. Evidence of reachability can be as complete as initial

concrete inputs or a full trace of program execution leading to a potential ψ-state, or as partial

as designating a single statement at which the ψ-state may occur. A general model for such

evidence, termed an error automaton, has been developed in [31]. These automata can be used

as evidence of ψ-state reachability for both over- and underapproximating analyses. Within error

automata, a program is represented as a control flow automaton, which is a control flow graph

where the nodes and edges are flipped, i.e., the program locations are the nodes and the program

statements are the edges.

Error automata have a start state that coincides with the initial program state and transitions

that are labeled by control flow branches. The language of an error automaton is a set of program

executions, e.g., the set of all executions for an automaton that accepts immediately, or a single

execution which has a single enabled transition at each state.

Definition 2 (Error automaton). An error automaton A = (Q,Σ, q0, qψ,→) contains a set of

program states Q, the alphabet of program statements Σ, the initial state q0, the target state of

qψ, and the relation → determining which states can transition to another after an application of

some program statement.

Let E be the domain of evidence produced by a program analysis. This would include

evidence of ψ-state reachability, Rψ, or unreachability, Uψ. An evidence-producing program

analysis is A : P × Ψ → E . The SV-COMP competition contains over 30 analyzers that are

evidence-producing [198].

An overapproximating analysis A ∈ A is one where A(p, ψ) = Uψ =⇒ p |= ¬ψ. An

underapproximating analysis A ∈ A is one where A(p, ψ) = Rψ =⇒ p 6|= ¬ψ. Conceptually, A is

capable of proving the unreachability of a ψ-state and A is capable of proving ψ-state reachability.

We assume that a program, p ∈ P, has a set of input statements, i ∈ I, that return well-

typed values, where dom(i) is the domain of i’s type. To simplify the presentation of ACA, we

29

formalize the analysis for programs that read from each input statement a single time, thus

the input domain of p is D =
∏
i∈I dom(i), which means D is finite. The framework, and the

implementation described in Chapter 5, work more generally by modeling the kth execution of

an input statement by the pair (i, k), and the input domain as the product of execution-specific

input domains,
∏

1≤j≤n dom(ij), where the inputs on an execution are 〈(i1, 1), . . . , (in, n)〉. The

implementation can enforce a bound on the length of sequence to restrict analysis to a finite

D; in doing this, it may lose accuracy by characterizing all inputs beyond the given length as

potentially reaching a ψ-state.

State Characterization

While the classical reachability problem is given as an existential query (does a path exist

or not?), this work considers its generalization: find all paths from q0—the start state—that

could reach a ψ-state. Because there may be many program paths that lead to a ψ-state, we will

characterize these sets of paths in terms of logical intervals.

We characterize program behavior using logical formulae that encode regions of D on which

ψ-states are detected. This characterization consists of a collection of lower bounds (I) guaranteed

to be subsumed by a program’s true ψ-state reachability, Rψ, and a collection of upper bounds

(I) guaranteed to subsume Rψ. A sufficient condition on p’s inputs reaching a ψ-state is given

by I , while I comprises a necessary condition for the same.

Definition 3 (Logical Interval). A logical interval, I = [I, I], is an ordered pair of logical

predicates on the inputs such that I ⇒ I. We call the first element, I, the interval’s lower bound;

and the second, I, the upper bound. The I and I terminology will be overloaded to also stand

for the left and right projections, respectively, of I. A logical interval describes constraints on a

subset of program inputs, where I describes a portion of the input space that must reach a ψ-state,

and I describes a portion of the input space that may reach a ψ-state.

Assuming a domain of integer variables, an example of a logical interval is [(x < 3), (x < 5)], as

(x < 3)⇒ (x < 5). Equivalently, the set of inputs described by the lower bound—integers less

than three—is subsumed by the set described by the upper bound.

Definition 4 (Disjointness). Two intervals are considered disjoint when their upper bounds are

disjoint, i.e., Ii ∧ Ij ≡ ∅; because upper bounds subsume their lower bounds, all lower bounds will

30

also be disjoint.

The logical intervals [(x = 3), (0 < x < 7)] and [(x = 14), (11 < x < 15)] are disjoint, as

(0 < x < 7) ∧ (11 < x < 15) ≡ ∅. But the intervals [(x < 3), (x < 5)] and [(x < 4), (x < 7)] are

not disjoint, because their upper bounds have a nonempty intersection.

Definition 5 (Program Interval). A program interval, I, is a set of logical intervals {I1, . . . , In}

that semantically bound a program’s ψ-state reachability, Rψ, such that Rψ lies between the

disjunction of lower bounds and the disjunction of upper bounds. That is, let the disjunction of

lower bounds,
∨n
i=1 Ii, be named I, and the disjunction of upper bounds,

∨n
i=1 Ii, be named I,

then I ⇒ Rψ ⇒ I.

Suppose there is a program whose ψ-state reachability, Rψ, is exactly defined by the formulae

(2 < x < 6) ∨ (11 < x < 15), i.e., the ψ-state will be reached when x takes on a value from

the set {3, 4, 5, 12, 13, 14}. One possible program interval that bounds Rψ can be given as

a set of disjoint intervals: I = {[(x = 3), (0 < x < 7)], [(x = 14), (11 < x < 15)]}. The

description of lower bounds is given by I = ((x = 3) ∨ (x = 14)), and the upper bounds by

I = ((0 < x < 7) ∨ (11 < x < 15)). Notice that I is a strict overapproximation of Rψ, as it

contains all values described by Rψ, and includes some that are not—namely the set {1, 2, 6}. A

strict underapproximation is given by I, which includes the values 3 and 14 found in Rψ, but

does not include the other values {4, 5, 12, 13}.

The range of input space a program interval can characterize lies between two extremes:

I = I = Rψ (most informative, exact characterization) and {[false, true]} (non-informative).

A partition on I induces a set of disjoint intervals.

Ideally a program interval encodes a small reachable subspace of D. In the worst case, I = D,

and all of the input space is implicated. Even here ACA is able to isolate the inaccuracy to one

interval that will have as its upper bound the complement of the disjunction of all of the other

upper bounds. For example, continuing the running example above, let the first disjoint interval

be named I1, and the second I2. Now if I = D, then the inaccuracy can be isolated to the last

element of the program interval I = {I1, I2, [false, (¬(I1∨ I2))]}. The remaining intervals provide

useful information about ψ-state reachability, especially in their lower bounds.

31

...
directive@L15: true branch
directive@L23: true branch
...

...
L14 assume(c j);
L15 if (c j) {
...
L22 assume(c k);
L23 if (c k) {
...
...

Figure 3.3: Line directives derived from E
(above); Program instrumented with full
direction using these directives (below).

main() {
x = read();
assume(!(x<5));
...
if (x<2) \{

/* ignore */
}
...
if (x==4) \{

/* ignore */
}
...

}

Figure 3.4: Program conditioned to ignore
previously-analyzed subspaces

3.4 Conditioning Program Analyses

The goal of conditioning is to restrict the program behavior that is subjected to analysis. For

example, to restrict the propagation of abstract states across a branch in A or to prune the

exploration of a subtree in A.

There are many possible ways to define conditioning, and in this work we employ two

different approaches. The first approach focuses the analyzer’s search space when characterizing

reachability by telling it precisely where to go, i.e., search only along this path. To do this, given

an error automaton E, the automaton structure is used to direct the state-space search performed

by A. Any branches that are inconsistent with E go unexplored.

For example, in Fig. 3.3, the error automaton (shown above the horizontal rule) gives directives

for which branches to take at each line of a conditional, e.g., at both lines 15 and 23, A should

take the true branch. The program (shown below the horizontal rule) is then instrumented with

an assume statement before each conditional statement according to the given directive.

The second approach to conditioning asks the analyzer to ignore a given portion of the input

space by telling it areas that do not need to be explored, i.e., do not look at this set of paths.

To do this, given Eu as a logical formula defined over D, we instrument the program with the

statement assume(¬Eu) to inform A that it need not consider that behavior.

32

For example, in Fig. 3.4, the assume statement at the top of the program conditions analyzers

to avoid exploring the body of both if statements. Note that the conditioning in Fig. 3.3 differs

from that in Fig. 3.4 in that in the latter, the direction is not explicitly given for each branch.

The clause (x<5) is more general than either of the if conditionals in Fig. 3.4, and consequently

can prune away more of the execution space to-be-explored at one time.

While the second form of conditioning aims to restrict the analysis to avoid previously analyzed

subspaces, it does not guarantee that this will be effective. For example, if some expression e in

assume(e) cannot be accurately modeled by an abstract domain in some A, then the semantics

of the assume will be overapproximated. Generalization is used to address this issue.

We consider this second form of conditioning to be “effective” if some analyzer is able to

produce a new piece of evidence on the conditioned program. We will place this into a definition

for cross referencing in Chapter 5.

Definition 6 (Effective conditioning). When a program is conditioned to avoid the input space

described by some program interval I, and some analyzer produces evidence describing a portion

of the state space not already encoded in I, the conditioning is called effective.

Dually, the first form of conditioning A aims to restrict the analysis to a ψ-state reachable

space of the program behavior in order to confirm its reachability and characterize it. Effective

conditioning for A means that the ψ-states that are characterized are guaranteed to be executable.

When such guarantees are not computed, e.g., due to timeouts or overapproximation in underlying

constraint solvers, either the bottom false value can be safely returned, or specialization can be

applied to further restrict the conditioning.

3.5 ACA Algorithm

The structure of the ACA algorithm is depicted in Figure 3.5, and its recursive definition in

pseudocode is given in Algorithm 1. The ACA algorithm depends on certain properties of the

algorithms that it combines. Specifically, it assumes that over and underapproximating program

33

p
ψ
I ← ∅

E ← A(p, ψ, I)

analyze
E ≡ ∅

G ← gen(I)

generalize

(U,A) ∈ E

I ← {I | I ∈ I ∧ I : Reach}

filter

X ← A(E)

characterize

I ← I ⊕ (X ∪ G)

accumulate

I

E no

yes no

yes

X

I

G

Figure 3.5: Alternating Conditional Analysis Framework

analyses are typed:

A : P ×Ψ→ {Uψ, Rψ,⊥}

where ⊥ encodes the inability of the analysis to compute a result, e.g., due to a timeout,

encountering an unsupported language feature, or unsoundness relative to the nature of the

analysis’ approximation. For example, if some A returns Uψ, this result is converted to ⊥.

ACA extends logical intervals with two types: descriptions of reachability and descriptions

of unreachability, i.e., I : {Reach,Unreach}. In addition, it assumes the strict monotonicity of

generalization relative to a finite order on formulae. The formulae are related in a lattice in which

the ordering is defined by logical implication.

The algorithm begins by calling ACA with an initial state of a program p, a state reachability

property ψ, and an empty program interval I. The call to analyze first instruments p with the

negation of already-characterized state space in I (the first form of conditioning discussed above),

after which, any number of evidence-producing analysis tools search for ψ-state reachability

in this instrumented program. Because each analysis tool’s search for reachability evidence is

distinct from another’s, a portfolio of tools with differing strengths can be launched in parallel.

Their evidence is collected in the set E.

34

There are three possible cases to consider depending on what is contained in E. In the first

case, when E has some unreachability evidence given by an overapproximate analyzer, then

the current program interval has safely characterized all reachable ψ-states. The filter function

removes any “false positives” potentially collected during previous calls to characterize, retaining

the intervals typed as reachable characterizations, and the final program interval is returned.

In the second case, some analyzer has found evidence of ψ-state reachability. (We keep a

cache of evidence to ensure that some A does not keep declaring previously-seen evidence as

new.) The function characterize takes each piece of evidence in E and runs a directed symbolic

execution according to the assumptions given in the corresponding error automaton. The output

of characterize is a logical interval extended with a type annotation that denotes whether the

path condition validates ψ-state reachability or not. If the evidence is invalidated, this represents

a false positive. Intervals typed as false positives will be filtered out before termination, but can

be helpful in conditioning future rounds of analysis away from these paths. The path condition

is safely sliced and is added to I. Slicing eliminates branches from the path condition that are

independent of reaching the ψ-state, and is a way of safely increasing the accuracy of the lower

bounds—by dropping irrelevant clauses in the path condition, more inputs can be characterized as

definitely reaching the ψ-state. If symbolic execution does not complete within a time bound, the

evidence can be successively specialized (down to the limiting false value) until a characterization

is returned. The typed logical intervals are then placed in X.

In the final case, there is no new evidence, and the program interval must be generalized, or

“widened.” The generalization process will converge to true, due to monotonicity. The accumulate

function ensures that the space described by logical intervals that are added in characterize or

widened in generalize are added to I such that the input space described by I grows monotonically.

Theorem 1 (Termination). Algorithm 1 terminates if each A terminates and the generalize

function is strictly monotone relative to a finite ordering on formulae.

Proof. Termination depends on the existence of an ordering on the formulae that are used

to encode conditioning. The framework can be instantiated with any finite ordering, such as

containment ordering on sets of conjuncts from a CNF encoding of formulae.

An execution of function ACA is guaranteed to terminate if every call to A terminates and if

35

Algorithm 1 Alternating Conditional Analysis
1: function ACA(P , ψ, I)
2: E ← analyze (P,ψ, I)
3: switch
4: case (Uψ, A) ∈ E
5: return filter (I)
6: case (Rψ, A) ∈ E
7: X ← characterize (P,ψ, I, E)
8: I ′ ← accumulate (I, X)
9: ACA(P , ψ, I ′)

10: case E ≡ ∅
11: G← generalize (I)
12: I ′ ← accumulate (I, G)
13: ACA(P , ψ, I ′)

Specifications for ACA Functions

analyze (P,ψ, I)
Input: Program P , reachability property ψ, program interval I
Output: Set of analysis evidence E
filter (I)
Input: Program interval I
Output: Program interval characterizing positive reachability I ′

characterize (P,ψ, I, E)
Input: Program P , reachability property ψ, program interval I, set of analysis evidence E
Output: Program interval X
accumulate (I, X)
Input: Program interval I, program interval X
Output: Program interval I ′ that merges I and X such that I ′ A I
generalize (I)
Input: Program interval I
Output: Program interval G such that such that G A I

36

generalize produces a result that is greater in the ordering due to the finite bound on chains in

the ordering. (Recall that the input domain D is made finite.)

The recursive loop executes at most once for each element of X or G that is computed. New

elements are computed by either characterize (in case 2) or generalize (in case 3); otherwise case

3 leads to termination. Each element in turn is added to I in accumulate. There can be only

finitely many elements of I, since the upper bounds of the reachable characterizations—intervals

typed as Reach—and the upper bounds of the unreachable characterizations—intervals typed as

Unreach—are disjoint, and their union must be a subset of D.

Theorem 2 (Safety). Algorithm 1 terminates with a program interval I such that the reachable

space of p relative to ψ, Rψ, is bounded by I, I =⇒ Rψ =⇒ I.

Proof. For all elements of I, the lower bounds are computed by A and then sliced. By definition A

computes a safe underapproximation and thus any ψ-state reachability detected is guaranteed to

be feasible. If no reachability is detected, then false is used as the lower bound which is guaranteed

to be safe. Slicing only eliminates subformulae that are provably independent from the ψ-state

reachability characterized by the interval. Thus, while the sliced lower bound may subsume the

original path to the ψ-state detected by some A, it is guaranteed to underapproximate the space

of all paths to the ψ-state that are equivalent up to execution of independent branches.

For any iteration of the ACA function, the upper bounds from all prior rounds of analysis are

conditioned into the program in analyze. The algorithm terminates only if: (1) the conditioning

of all upper bounds permit some A to prove the program free ψ-state reachability, or (2) a final

run of generalize results in ⊥ in which case I ≡ true. The first case guarantees that the upper

bounds of I are safe, since an A computes a safe overapproximation, and the second case is

trivially safe.

3.5.1 Specification of analyze

The purpose of analyze is to run one or more program analyzers in search of ψ-state reachability

in a program conditioned by some program interval I. The analyzers are typed to specify whether

they produce only overapproximate proofs, only underapproximate proofs, or are able to compute

37

both. Any proofs of ψ-state reachability are returned in the form of evidence (e.g., an error

automaton) that may be interpreted by some underapproximate analyzer.

Much of analyze is left underspecified because most of the work is done within the black

boxes that produce program proofs. We also want to allow for freedom in the way conditioning

is implemented, e.g., with residual programs, or with assume statements. The three expected

invariants of analyze are: 1) that overapproximate analyzers are sound with respect to their

typing, i.e., a proof of unreachability can be trusted; 2) in the case of a reachability proof, an

analyzer can return an interpretable proof such as an error automaton; and 3) that conditioning

removes the concrete traces described by I from the semantics of the unconditioned program.

Soundness in underapproximate proofs is desired, but as it will be reverified by a separate A in

characterize, this is not a requirement.

Each application of program conditioning yields a new program, and at each new application

of analyze, this new program can be given as a verification problem to a large number of analysis

tools. As each of these tools operate independently and do not share results within analyze, this

is an embarrassingly parallel problem, so you can run as many at one time as computing power

allows. This function can be implemented with different strategies for when to stop—after the

first piece of evidence is found, or allow other analyzers to continue trying to find some different

piece of evidence.

3.5.2 Specification of characterize

The purpose of characterize is to validate (or invalidate) any given reachability proofs and

translate this validation into an interval to be added to I.

The only requirement of characterize are that it safely underapproximate the program behavior

of program P conditioned by I, i.e., it explores only concrete program traces not implied by I.

The pseudocode for characterize is given in Algorithm 2. The condition function on line 2 refers

to the first form of conditioning described in Sec. 3.4, and guarantees some underapproximator A

must only explore traces not implied by I. We guarantee termination when ACA calls characterize

by requiring specialization within directed symex. A failed computation can occur if some branch

constraint is too complex for a solver inside a symbolic execution engine. We guarantee that some

38

concrete path is produced by requiring the call to directed symbolic execution in directed symex

on line 5 to concretize any problematic branch constraints, down to the limiting value of false.

For example, if a boolean expression with a modulo operator (x % 2 == 0) cannot be handled,

concretizing this expression would assign a value to x, allowing traces beyond this problematic

branch point to be explored. Concretizing a branch can be done with techniques used in concolic

execution [102].

Algorithm 2 characterize
1: function characterize(P , ψ, I, E)
2: p′ ← condition (P, I)
3: intervals ← {}
4: for e ∈ E do
5: r ← directed symex(p′, e)
6: r′ ← slice(r)
7: intervals ← {r′} ∪ intervals
8: return intervals

The requirement on slice is that, given some path condition computed by directed symex,

the sliced path condition remain a safe underapproximation. For example, suppose in some

program a ψ-state is reached exactly when integer variable x is less than 2. But suppose the path

condition, x < 2 ∧ y > 0 retains information about an irrelevant branch involving another integer

variable y. Now slice can remove the constraint y > 0, as this is still a sound underapproximation

of all ψ-state reachability; but slice cannot remove both y > 0 and x < 2, because that is

an overapproximation of ψ-state reachability. Static slicing techniques fulfill this soundness

requirement [208], while most dynamic slicing techniques do not [5, 210].

Lines 3 and 7 specify that the sliced characterizations be collected in some set, which is

returned in line 8.

3.5.3 Specification of generalize

The purpose of generalize is to increase the number of paths accounted for by I by relaxing

some upper bound. When an upper bound is relaxed, yielding a logical formula that constrains

less of the input space than before, the area between upper bounds and lower bounds becomes

may information: the formula in the logical lattice between I and I describe inputs that may

reach a ψ-state. Figure 3.6 shows two logical intervals that describe disjoint regions of the input

39

I1 I1 I2 I2

Figure 3.6: Two logical intervals I1 and I2 whose upper and lower bounds describe disjoint regions
of the input space.

space, where the lighter shadings represent the may space between some I and I. Note that I1

and I2 have different degrees of approximation: the space between I1 and I1 is smaller (i.e., less

approximate) than that between I2 and I2. . Generalization is needed for ACA to reach a fixed

point, so it is required to be monotone in the lattice of logical formula (the top value being true).

The pseudocode for generalize is given in Algorithm 3, which takes a program interval I as

its only argument. The first step is to choose some interval I from the collection of intervals in I,

given as choose interval on line 2. This selection can be according to some heuristic, e.g., choose

the last-discovered interval, choose the interval whose upper bound contains the most conjuncts,

etc. We are looking for a relaxed upper bound that will provide effective conditoning in the

subsequent round of analysis.

The upper bound of the selected interval, I, is relaxed, or generalized in relax upper on line 3.

The only requirement on relax upper is that it strictly move the upper bound I higher in the

logical lattice, i.e., I @ relax upper(I). Line 4 updates the program interval with the interval

returned by relax upper(I), which is returned in line 5.

Algorithm 3 generalize
1: function generalize(I)
2: I ← choose interval (I)
3: I ′ ← relax upper (I)
4: I ′ ← I \ I
5: I ′′ ← {I ′} ∪ I ′
6: return I ′′

40

3.5.4 Specification of accumulate

The purpose of accumulate is to merge the may and must information encoded in different

intervals Ii into the program interval I. The merge operation is depicted by ⊕ in Fig. 3.5. The

only requirement on ⊕ is that it yields a value in the logical lattice that is higher than either of

the operands, that is, for program intervals I and X , I @ (I ⊕ X) and X @ (I ⊕ X).

The implementation for accumulate may be as simple as a set union, or it may preserve

properties amongst intervals such as disjointness, or it may even be forgetful of certain intervals.

This last option could be desired to drop any intervals tagged as describing paths that do not

reach a ψ-state—this is one way to reduce the complexity encoded in some program conditioned

by I.

3.5.5 Specification of filter

The purpose of filter is to remove intervals that describe program executions that do not reach a

ψ-state. If the intervals are extended with the two-valued type of {Reach, Unreach}, this filter

can be implemented by a match on types. The reason we throw Unreach types away is to ensure

that, at that end of ACA, the invariant holds that program intervals describe ψ-state reachability.

If a complete run of ACA is seen as an atomic action to compute some I, this invariant can be

temporarily broken across rounds of analysis.

3.6 Modular ACA

We have discussed the ACA framework in terms of analyzing whole programs, but it is also

possible to use the ACA framework to analyze smaller fragments of programs. Why would we

want to do this? Programs may include portions that are difficult for analyzers to handle, such

as external library calls [123], functions that contain nonlinear arithmetic [98], or massive state

spaces to explore [14]; and these can cause analyzers to either fail, or to return uninformative

results (e.g., >). Rather than simply giving up when whole program analysis fails, we can break

the program into smaller fragments to provide sound characterizations of the portions of the

program over which the analyzers can successfully operate.

41

3.6.1 Formulation of Modular ACA

To adapt the above formulation of ACA to a modular analysis, we define the concepts of a module

and a prestate. (Prestates are closely related to preconditions [124] and guards [83], but are not

equivalent.)

Definition 7 (Module). A module is any function definition or compound statement. We do

not require the function to be “closed” in the sense that all called functions have full definitions.

Called functions can be modeled by specifications of pre- and post-states, the loosest being a

pre-state of true and a post-state of a nondeterministic value of the called function’s type.

Modeling called functions by returning any value introduces overapproximation, meaning only

the information in the upper bound I is meaningful in the returned I. We explore propagating

I in this modular setting in Chap. 7. To retain a valid lower bound I, we can impose the

requirement of being closed with respect to called functions.

Definition 8 (Prestate). A prestate consists of an environment of typed variables along with

logical formulae constraining their values, modeling the possible states prior to executing some

module.

A module, m, is analyzed in an execution context constrained by a prestate, consisting of

declarations and constraints on state variables that are referenced in a given module. For

variables of basic types such as int or char, declaring and constraining state variables can be done

by following a nondeterministic initialization with an assume statement constraining this variable.

To create nondeterministic complex data types, e.g., a struct, you must recursively initialize

each of its fields with a nondeterministic value and constrain it accordingly. Arrays that are

nondeterministically bounded must be given some concrete bound. For creating nondeterministic

pointers to variables, we assume the analysis tool will have an annotation primitive to signal this,

such as the VERIFIER nondet pointer() construct used by SV-COMP tools.

Definition 9 (Modular Alternating Conditional Analysis). A modular alternating conditional

analysis is a modification of ACA given in Algorithm 1, where program p is replaced with module

m, and where the first statement in m initializes and constrains the execution environment as

specified by a prestate α.

42

Running modular ACA on m results in a program interval whose upper bound describes the

constraints on state variables in relation to a state reachability property; by Definition 1, these

constraints are guaranteed to subsume all reachable paths after executing m with a prestate of α.

This program interval may then be reused to drive further analysis in some module in which m

appears, as we explore in Chap. 7.

3.6.2 Limitations

When we do not have information on a module’s prestates, in order to maintain soundness,

modular ACA must assume maximally permissive prestates. That is, each state variable is

allowed to take on any value in its domain. Our definition of module also allows for functions

called within the module to be modeled overapproximately. Overapproximate assumptions such

as these can lead to paths that are infeasible at execution time being declared feasible. This is a

fundamental limitation of assuming maximally permissive prestates, and this overapproximation

can be improved by obtaining more accurate runtime models that provide tighter constraints on

the prestate.

43

Chapter 4

Existing Analyses as ACA

This brief chapter recasts prior work as different instantiations of ACA, showing both the

generality of the framework and highlighting connections between seemingly distinct analysis

techniques. Each prior technique is recast into ACA terminology by detailing how the framework

should be parameterized in each case, and describing the expected output in terms of a program

interval. Recall that if an ACA interval has a lower bound I other than false, that means that

the ψ-state is reachable. For instance, a proof of reachability is given in a program interval as

{[c, true]}, i.e., a ψ-state is reachable under the input constraints of c, but we say nothing about

the rest of the input space—so the upper bound is true. A proof of unreachability is given as

{[false, false]}, i.e., ψ is provably unreachable.

We divide existing analyses into the three broad categories given in Chapter 2: classical

analyses—using exclusively over- or underapproximate techniques; may-must analyses—employing

a blend of over- and underapproximation; and cooperative analyses—using distinct analyses

out-of-the-box and possibly combining their partial analysis results.

44

4.1 Classical Analyses

4.1.1 Overapproximators

The analysis techniques we classify as purely overapproximate include abstract interpretation,

data flow analysis, model checking, and deductive analyses. Their distinctive characteristic is that,

given a reachability property, each of these techniques can potentially prove its unreachability.

The inability to find a proof could be the result of hitting a resource limit; or could be due to

finding a reachable state in the analysis’ model, which may be infeasible in concrete executions.

We will first cover the commonalities of these techniques within ACA, and discuss where they

diverge in the subsequent paragraphs. As an instance of ACA, each overapproximate technique

would instantiate the analysis portfolio with a pure overapproximator, i.e., one that is typed as

A : P ×Ψ→ {Uψ,⊥}. From this typing, it follows that an overapproximate ACA can produce

only two kinds of intervals: either {[false, false]}, i.e., ψ is provably unreachable; or {[false, true]},

i.e., ψ may be reachable. How to report potential reachability is left unspecified in the classical

formulations of overapproximate techniques; a given tool could be as crude as simply reporting

“may be reachable,” or could be more specific and output a trace in the state space model. In all

cases, any potential reachability is not provable, so characterize must always return the interval

that implicates the whole program in potential reachability: {[false, true]}.

The difference among techniques lies in their respective instantiations of analyze and generalize.

In model checking’s original formulation, analyze constructs a finite-state model, and given

an initial state, a graph search is performed to enumerate each reachable state. Abstract

interpretation’s instantiation of analyze requires specifying the semantics of transfer functions,

and tracking the possible values variables can take within a lattice as the transfer function is

applied while symbolically executing a program.

The generalize instantiation is either nonexistent in model checking, implicit if using symbolic

model checking, given ahead of time by creating a more-abstract state space model by hand, or

given by some acceleration technique such as partial order reductions. The generalize instantiation

for abstract interpretation is either given implicitly in the semantics of the transfer function, or

given explicitly with a widening operation [69, 71, 66].

45

4.1.2 Underapproximators

The techniques we classify as underapproximate include symbolic execution and bounded model

checking. These techniques can be seen as duals of the overapproximate ones. As such, their

distinctive characteristic is that, given a reachability property, an underapproximate technique can

potentially prove its reachability. Because these techniques operate over the concrete semantics

of a program, they cannot in general compute sound and complete proofs of a property’s

unreachability (see Halting Problem, Rice’s Theorem).

As an instance of ACA, each underapproximate technique would instantiate the analysis

portfolio with a pure underapproximator, i.e., one that is typed as A : P × Ψ → {Rψ,⊥}.

From this typing, it follows that an underapproximate ACA can produce two variations of

intervals: either {[false, true]}, i.e., ψ may be reachable—this may occur when hitting some

resource bound, for example; or {[c1, c1], . . . , [ci, ci], [false, true]}, i.e., an accumulation of exact,

disjoint characterizations of ψ-state reachability. Note the final logical interval, [false, true], which

implies that all inputs outside of
∨i
i=1 ci can possibly reach a ψ-state.

The differences between symbolic execution and bounded model checking lie in their instan-

tiations of analyze and characterize. In symbolic execution, the analyze phase examines one

collection of concrete execution paths (i.e., path conditions) at a time, where input variables

assume symbolic values constrained by branch conditions. At each branch, a SAT solver checks for

feasibility, and records this result in a conjunctive formula; in the case that a ψ state is reached,

the characterize implementation is simply yielding the conjunctive formula that is already at

hand.

In bounded model checking, the analyze phase consists in constructing the entire finite

state system (up to a bound) in the form of a disjunctive logical formula and checking for its

satisfiability via a SAT solver. If the SAT solver finds a solution to its query, this means a ψ

state is reachable, and the characterize phase consists in converting the SAT assignment into

some counterexample.

As pure underapproximate techniques, there is no specification of generalize; so in the case of

the analyze phase finding no evidence, these techniques must return the noninformative program

interval of {[false, true]}.

46

4.2 May-must Combinations

4.2.1 Counterexample-Guided Abstraction Refinement

Instantiations of CEGAR, discussed in Sec. 2.3.1, can be modeled in ACA by instantiating the

portfolio with the desired model checker as a pure overapproximator, and the underapproximator

used in characterize as a SAT solver, and by modifying the definition of accumulate. The

accumulate function will be the abstraction-refinement when the characterization is typed as a

false positive. If reachability to a ψ-state is confirmed, ACA exits upon finding this reachability.

The possible intervals produced by CEGAR within ACA are {[c, true]} or {[false, false]}.

4.2.2 Verification followed by Validation

Instantiations of verification followed by validation, discussed in Sec. 2.3.2, can be modeled as a

one-iteration pass of ACA. The portfolio employed in analyze is instantiated with one or more

overapproximate analyzers that will produce as artifacts either generalized witnesses, i.e., witness

automata that do not specify branch directives for all branch points, or residual programs, as

in [27]. The final filter phase would be modified to return all reachability information, both paths

typed as Reach and paths typed as Unreach.

4.2.3 Synergistic combinations

The synergistic combination of may and must information given in the DART algorithm can be

instantiated in an ACA that does not use conditioning or generalization. The overapproximator

A monitors an internal finite abstraction of the program, and is allowed to track the answers of

A in characterize across rounds of analysis. The underapproximator A runs a guided symbolic

execution based on evidence from A. Depending on A’s answer—i.e., does the evidence represent

a feasible trace or not—, A will refine its overapproximation by internally marking its frontier

(see 2.3.3). In this way, conditioning is happening internal to A, but is not given explicitly.

No generalization is given, and because proving program correctness is undecidable in general,

it is possible to loop between analyze and characterize, indefinitely refining an abstraction.

Termination is not guaranteed by DASH. The possible intervals produced by DASH within ACA

47

are {[c, true]} or {[false, false]}.

4.3 Cooperative analyses

The techniques in Sec. 2.4 of Chapter 2 will only be touched upon, as they are either an integral

component of ACA (conditional model checking), orthogonal to ACA (algorithm selection), or

descriptive of ACA itself (meta-analysis framework).

The original description of conditional model checking can be instantiated within ACA by

significantly disabling most of the framework’s features: removing the generalize case; removing

all characterization; replacing interval parameters I by evidence E; and requiring that all portfolio

tools be able to emit and consume partial evidence. The only informative interval possible in

this instantiation is when a combination of analyzers proves unreachability—{[false, false]}. But

the basic insight of conditional model checking—using previous results of differing analyzers to

help focus the exploration of later analyzers—is present in each iteration of ACA.

Modeling instantiations of algorithm selection from the literature also involves disabling most

of ACA’s features: instead of running all analyzers within analyzer, an algorithm selector would

choose a single one, and ACA would terminate after a single iteration. There could be two

informative intervals, the same as with CEGAR: a proof of unreachability—{[false, false]}, or an

interval whose lower bound contains a single reachability trace: {[c, true]}.

4.4 Program intervals unique to ACA

ACA offers a flexible framework into which prior work can be instantiated, but it also can compute

program intervals that prior work cannot. To the best of our knowledge, no other work can

compute a program interval such as {[c, c]}, where ψ-state reachability is exactly characterized

by input constraints in c, outside of which, i.e., ¬c, there is a proof of ψ-state unreachability.

Nor can prior work compute a program interval such as {[c, c], [d, e]}, where one portion of the

state space is exactly characterized—[c, c]—while another is approximate (assuming d @ e). This

means there is must information in c and d, and may information is given in two different ways:

between d and e, i.e., the set of inputs in (¬d ∧ e), denotes a region where you may reach a

48

ψ-state; while outside of the upper bound, i.e., ¬I ≡ ¬(c ∨ e), you are guaranteed to not reach a

ψ-state (referred to as not-may information in the literature). Combinations of the preceding

examples are unique to ACA and offer richer characterizations of ψ-state reachability than given

in prior work.

49

Chapter 5

Implementation of ACA

This fierce abridgement

Hath to it circumstantial branches, which

Distinction should be rich in.

Cymbeline 5.5.383–385

This chapter discusses an instantiation of the ACA framework in a tool named ALPACA,

which stands for A Large Portfolio-based Alternating Conditional Analysis. ALPACA is an

open-source tool available for download at github.com/mgerrard/alpaca. The majority of

ALPACA is written in Haskell (5284 SLOC), with some portions in Java (1851 SLOC).

In discussing specific components of ALPACA’s implementation, there are a few different

approaches one can take: using the Haskell code given in ALPACA; detailing the operations in

prose; or developing my own custom notation that models the code. I will employ a combination

of the first two. The central ACA algorithm and the main data structures will be given in Haskell.

Haskell is concise and readable, and as a machine language, it avoids some of the ambiguity

that a pure prose presentation may introduce. Where needed, I will explain Haskell’s syntax.

Prose is often necessary—e.g., in motivating the selection of some algorithm, or in explaining a

workaround imposed by a resource limitation—to account for what is not explicit in the code.

The components written in Java will be sketched in prose, as the majority of Java code deals

with manipulating data structures specific to a symbolic executor, and details of this kind are

50

github.com/mgerrard/alpaca

outside of our current scope.

We begin with an overview of the general ACA algorithm within Haskell, and the main data

structures used. Next we discuss ALPACA’s tool portfolio—the analyzers included, running them

in parallel, and adding new tools. In Sec. 5.3 we give one possible instantiation of generalizing

some I. A method of slicing path conditions is given in Sec. 5.4. The different approaches we

take to conditioning analysis tools to explore certain subspaces of a program are given in Sec. 5.5.

We discuss an implementation of a modular ACA in Sec. 5.7. A brief tour of commonly-used

modules in the ALPACA codebase concludes the chapter.

5.1 ACA in Haskell

We chose Haskell because it allows for a compact representation of the core ACA components,

it facilitates implementations of parallel programming, and features of the language—e.g.,

immutability, referential transparency, pattern matching, type classes—make reasoning about

subprograms easier.

The main ACA algorithm in Haskell is given in Listing 5.1, which is a nearly one-to-one

implementation of the pseudocode given in Algorithm 1. The leading line is the type signature

for the function aca; these types and others will be discussed in this chapter.

The :: notation denotes that the function named on its lefthand side has the type signature

given on the righthand side. The return type of a function in Haskell is the rightmost type in the

type signature, e.g., in the case of function aca, the return type is a ProgramInterval computed

in the context (monad) of AcaComputation—this context is discussed below.

While Haskell is a “pure” functional language (generally meaning stateful mutation is not

allowed), the steps in Algorithm 1 involve a number of updates, as well as calling a portfolio of

tools that must produce side effects. This seeming mismatch of functional and imperative styles

is resolved by using a state transformer, which is the type given by AcaComputation. A state

transformer is a way to combine Haskell’s modeling of IO computations with its modeling of

stateful computations. Both of these models are defined within a programming interface called a

monad that can then be composed together; details on monads and transformers can be found

in [161, 174, 142, 146]. The state transformer AcaComputation encapsulates important state

51

aca :: Program -> ProgramInterval -> AcaComputation ProgramInterval
aca program interval = do

result <- exploreSubspace program interval
case result of

UnreachableEvidence -> do
interval’ <- enforceDisjointness interval
lastWrites interval’
return interval’

(ReachableEvidence ev) -> do
interval’ <- characterize ev
program’ <- condition program interval’
aca program’ interval’

NoEvidence -> do
interval’ <- generalize interval
program’ <- condition program interval’
aca program’ interval’

Listing 5.1: High-level ACA function

information that is updated as ACA runs, such as the program conditioned under a new I, as

well as information that is not updated, such as parameters passed on the command line.

The state transformer AcaComputation is updated via recursion within function aca. The

expression aca program’ interval’ yields a new AcaComputation representing the updated

context, and this in turn is evaluated. In the cases of tools discovering evidence of the types

ReachableEvidence and NoEvidence, there is a recursive call to aca. The termination condition

is the case of some A finding UnreachableEvidence, in which—after some cleanup steps (e.g.,

writing to log files)—the ProgramInterval is returned.

The data types that appear here are Program, ProgramInterval, and three kinds of evidence.

The Program type includes a reference to an abstract syntax tree (AST) to make conditioning

simpler (see 5.5), and the path to the textual representation of this AST.

The ProgramInterval type is defined in Listing 5.2. The definition of data types in Haskell

is similar to how a struct is defined in C. The [..] notation stands for a list of some type.

So [DisjointInterval] is a list of DisjointIntervals. The deriving (Show, Eq) directive

gives the type ProgramInterval a way to pretty print—via Show—, and a way to compare two

intervals for equality—via Eq. This assumes the types within ProgramInterval also have Show

52

data ProgramInterval = ProgramInterval {
disjointIntervals :: [DisjointInterval],
inputCountMap :: CountMap,
inputTypeMap :: TypeMap,
spuriousSpace :: [Conjunction]
} deriving (Show, Eq)

Listing 5.2: Definition of ProgramInterval data type

data DisjointInterval = DisjointInterval {
upperBound :: UpperBound,
lowerBound :: LowerBound,
assumptions :: [Conjunction]
} deriving (Show, Eq)

Listing 5.3: Definition of DisjointInterval data type

and Eq instances defined. Derived instances are automatically generated by Haskell (see Chapter

11 in [157]).

The ProgramInterval type follows the definition of I in Chapter 4, Def. 5, with the extra

type information of input counts and types necessary for conditioning (see 5.5), the typing of

false positives is given as a list of conjunctions returned by spuriousSpace.

5.2 Portfolio of Analysis Tools

We focused on analysis tools that participated in the annual International Competition on

Software Verification (SV-COMP). This allowed us to take advantage of the already-existing

corpus of hundreds of benchmarks of C programs submitted by the community. The competition

also requires that these tool report possible failures in a specified language, so there was a common

interface that we could build on.

The first two requirement in implementing the analyze specification given in 3.5.1 are guaran-

teed by tools competing in SV-COMP, namely: 1) that overapproximate analyzers are sound

with respect to their typing, i.e., a proof of unreachability can be trusted (modulo bugs in under-

lying tools); and 2) in the case of a reachability proof, an analyzer can return an interpretable

53

• CBMC [138]
• CPA-Seq [78]
• ESBMC [163]

• PeSCo [181]
• SeaHorn [113]
• Symbiotic [194]

• UAutomizer [118]
• UTaipan [109]
• VeriAbs [79]

Figure 5.1: Portfolio of analysis tools in ALPACA

proof—SV-COMP tools must report reachability in the form of an error automaton. The final

requirement is covered below in Sec. 5.5.

5.2.1 Tools Used

ALPACA instantiates the ACA framework with a tool portfolio of nine different static analysis

tools shown in Fig. 5.1.

A discussion of each tool’s theoretical underpinnings is given in Chapter 9. We will just

note here that the tools in this portfolio cover a diversity of techniques, including abstract

interpretation, automata-based model checking, bounded model checking, property-directed

reachability (IC3), and symbolic execution.

5.2.2 Parallelism

All tools in the portfolio are treated as black boxes, and on each iteration of ACA, each tool’s

search for reachability evidence is distinct from another’s, i.e., there is no communication between

them. This makes running the portfolio an “embarrassingly parallel problem.”

We launch all tools in parallel. By using the BenchExec library in container mode, we can

ensure that the processes do not interfere with each other, e.g., by one tool calling killall

z3 as part of some cleanup process and clobbering any extant z3 instances [29]. The portfolio

runs can be terminated eagerly—stopping the other tools after one reports new evidence, or

patiently—allowing all tools to run to completion (up to a time bound), each reporting potentially

different evidence.

In Haskell, true parallelism must take place inside of a “pure” function with no side effects.

But analysis tools produce many side effects in general. So within ALPACA, parallelism is

actually achieved via the Async concurrency library. This library is used to take advantage of its

robust exception handling needed to deal with each tool’s intensive I/O operations. More details

54

on modeling parallelism with concurrency in Haskell can be found in Chapter 13 of [156].

5.2.3 Enlarging the Portfolio

Adding a new tool to the portfolio involves three tasks: writing a simple Python wrapper to

integrate into the BenchExec framework, defining the tool according to ALPACA’s definition of

an Analyzer, and adding the tool to the command line options.

The Python wrapper tells BenchExec how to execute a tool, and how to interpret its output

as one of three values: true, false, or unknown. Instructions for writing these wrappers are given

at github.com/sosy-lab/benchexec/blob/master/doc/tool-integration.md. Examples of

wrappers can be found at github.com/sosy-lab/benchexec/tree/master/benchexec/tools.

At the time of writing, there are 110 modules for tools already in BenchExec’s repository, so if

some user would like to quickly try a tool not in the portfolio, it is possible that the first task

has already been done.

The Haskell definition of an Analyzer, taken from Portfolio.lhs, is given in Listing 5.4. In

supplying the definition of an Analyzer, the user must: create a unique name for the analysis

tool as a Haskell data constructor (simply an uppercase name, e.g. Seahorn), supply a unique

string name, provide the directory from which to execute the tool, specify command line options,

declare whether it can provide a safe overapproximation of program semantics, give a default

timeout in seconds, specify whether its witness type is given as branch directives or as concrete

inputs (see Sec. 5.5), give a default timeout for the generalization phase, and give a default

timeout for the initial iteration of ACA. The data constructor for your new tool, e.g., Seahorn,

should be appended to the list following the definition of AnalysisTool in Portfolio.lhs.

Adding the tool to the command line options involves editing the Main.lhs file to include the

tool’s unique lowercase string identifier, and creating a case for the function correspondingTool

in Portfolio.lhs to return the appropriate data constructor for the given string, e.g., “seahorn”

would return the constructor Seahorn.

55

github.com/sosy-lab/benchexec/blob/master/doc/tool-integration.md
github.com/sosy-lab/benchexec/tree/master/benchexec/tools

data Analyzer = Analyzer {
analysisTool :: AnalysisTool,
analysisName :: String,
analysisDir :: FilePath,
analysisOptions :: [Option],
safeOverapproximation :: Bool,
analysisTimeout :: Int,
witnessType :: WitnessType,
generalizeTimeout :: Int,
initTimeout :: Int
}

Listing 5.4: Definition of Analyzer data type

5.3 Generalization

Initially ACA attempts to condition the upper bound to avoid previously-characterized reachability

traces. If that is unsuccessful, generalization is applied to compute effective conditioning and to

guarantee ACA’s termination. Conditioning is “effective” if some analyzer is able to produce a

new piece of evidence on the conditioned program (see Def. 6).

The specification for generalize given in 3.5.3 require two functions be defined. The first,

choose interval, is implemented in ALPACA by the simple heuristic of choosing the last interval

that was added to I. The intuition behind this heuristic is that if no effective evidence was

found after the last interval, In, enlarged I, something about the formulae in In may be difficult

for other analyzers to handle and by relaxing In, the other analyzers may deal better with the

simpler formula.

The second function given in 3.5.3, relax upper, requires that, given some interval I, relax upper

returns an interval I ′ whose upper bound I ′ is strictly higher in the logical lattice, i.e., I @

relax upper(I). We detail how this requirement is fulfilled below.

We implement a structural generalization of the upper bound, which is always a conjunctive

formula. To generalize a conjunction of n clauses, we first construct the powerset lattice over

the set of conjuncts; this lattice has height n, the upper bound as the top element (at height n),

and true as the bottom element (at height 0). Having failed to demonstrate that the element at

height n constitutes effective conditioning, we determine whether the elements at height 1, i.e.,

56

the singleton clauses, are effective.

For those that are effective we compute the least-upper-bound and determine if it is effective;

if k singletons are effective then the lub will be at height k. We refer to this as a “round” of a

binary search on the conditioning sublattice. Each round successively narrows that sublattice,

by raising the height of the bottom and lowering the height of the top. This process defines a

bounded finite order and thus, generalization is guaranteed to terminate. Generalization returns

the effective condition that is lowest in the lattice. If none are effective, then true is returned.

As an example, suppose an analysis tool found a reachability condition that is described by a

conjunctive formula made up of three clauses: x ∧ y ∧ z. When ALPACA attempts to block the

input space described by this formula by injecting assume(¬(x∧ y ∧ z)), suppose no analyzer can

either find new reachability evidence nor prove unreachability. This triggers the generalization

mechanism.

{x, y, z}

{x, y} {x, z} {y, z}

{x} {y} {z}

∅

Figure 5.2: The powerset lattice over a set of three conjuncts.

The powerset lattice for x, y, and z is constructed, as shown in Fig. 5.2. The top element—

{x, y, z}—did not constitute effective conditioning, so the binary search moves down to the

singleton elements, and tries to see if blocking the subspace described by each of these effectively

conditions the program. That is, we create three separate copies of the program, and see if, by

injecting assume(¬(x)) in the first copy, assume(¬(y)) in the second, and assume(¬(z)) in the

third, some analyzer can now find new evidence or prove unreachability. If no conditioning is

57

effective at the singleton level, we must move to the bottom element, and return true as the

generalization. However, if conditioning is successful at the singleton level, the binary search

moves up the lattice, and tries blocking each of the pairwise combinations. In the case of multiple

elements on the same lattice level succeeding, we break ties by selecting an arbitrary element

from this level.

In our example, suppose x∧y∧z was the only reachability condition found before generalization

is triggered, and that generalization terminates with an overapproximator declaring unreachability

of a ψ-state after blocking the clause x ∧ z. The interval returned will have the “generalized”

upper bound of x ∧ z and a lower bound containing the single path condition x ∧ y ∧ z.

5.4 Slicing

When some analysis tool provides evidence of ψ-state reachability in the form of an error

automaton (see Def. 2), ALPACA uses this evidence to perform a directed symbolic execution

in order to either confirm or refute the claimed reachability. The result of a directed symbolic

execution is a program trace. This program trace may contain branches that are independent of

reaching the ψ-state. If possible, we would like to eliminate these independent branches from the

trace in order to obtain an interval whose lower bound safely describes a larger portion of input

space. Eliminating these independent branches is referred to as slicing [208, 5].

As an example, consider the program fragment in Fig. 5.3.
...
if (y < 3) { ... } // no updates to x
if (x > 5) { psi(); }
...

Figure 5.3: Fragment of code to be sliced.

One reachable path to ψ that a fully-directed symbolic execution may yield is given by the

constraint (y < 3) ∧ (x > 5). However, the first branch does not influence whether or not ψ is

reached—the path ¬(y < 3) ∧ (x > 5) is also valid. The (y < 3) branch can be “sliced” away,

giving the more compact and descriptive constraint of (x > 5). The slicing module attempts to

determine which branches, if any, can be safely sliced away.

58

To determine which branches were relevant in reaching a ψ-state, we extend the symbolic

execution engine CIVL [192]. We implemented a version of Xin and Zhang’s dynamic slicing

algorithm [210] on the CIVL representation of the replayed program trace. Xin and Zhang define

a new notion of dynamic control dependence—i.e., whether a statement execution depends on

some predicate at runtime—by combining statically computed information about postdominators

with a stack-like structure that reflects the calling contexts of a concrete trace. We extend CIVL

by constructing a control flow graph, computing postdominators, and implementing Algorithm 3

from [210]. Because this slicing algorithm detects only dynamic control dependence, to ensure

a safe underapproximation—one whose logical formula encodes definite traces reaching a ψ-

state—we also run an inexpensive static analysis. This fulfills the requirement on slice is that,

given some path condition computed by directed symex, the sliced path condition remain a safe

underapproximation.

This static analysis seeks to determine that branches not taken will not impact the detected

failure. To do this, for each branch identified as independent we run a depth-first search (DFS) on

sub-control flow graph rooted at the branch not taken in the trace; the DFS backtracks when it

rejoins the program trace. If the DFS encounters a “suspicious” statement, then we assume that

there may be a dependence and revert the classification of the branch as independent. We define

a suspicious statement as one of: assignment to a variable that is data-dependent on the failure, a

goto statement, a function call, and any statement involving pointers (including arrays). Slicing

is implemented as a configuration option, -sliceAnalysis, within CIVL’s “replay” feature. The

implementation consists of 1851 NSLOC of Java code.

5.5 Conditioning

Conditioning attempts to restrict the focus of program analyzers. As discussed in Chap. 3, ACA

employs two different kinds of conditioning: one to direct an underapproximate analyzer down a

single execution path; the other to direct all analyzers away from some portion of a program’s

state space.

The first form of conditioning is a standard application of directed symbolic execution. The

symbolic execution engine is guided along specific branches instead of attempting to explore

59

all branches. The directions come from a witness graphml file produced by any tool claiming

reachability. The SV-COMP requirements ensure that each witness is in a standard format that

can be easily parsed.

The witness file can either specify each branch direction explicitly, e.g., take the true branch on

line 28; or the witness can provide initial concrete values, e.g., x=4; y=-2;, and drive execution

in this way. In the latter case, we first normalize the concrete witnesses to be in the form of

branch directives. If a branch is not specified in the witness file, we do not inject instrumentation

at this branch, and the symbolic executor will do a standard exploration of both branches at this

point. We implement the function directed symex within the symbolic execution CIVL, and can

be turned on with the configuration option -direct when using CIVL’s verify feature. The

implementation consists of 338 SLOC in Java.

The second form of conditioning is seen by all analysis tools during the analyze phase of

Algorithm 1. This conditioning is the addition of assume statements that attempt to direct tools

away from exploring already-analyzed subspaces. Within the assume statements we place the

negated formulae of the upper bounds of each interval. We place the assumes at the top of the

program—after first reading in relevant inputs—to immediately prune the state space that has

yet to be explored.

The final requirement of analyze, given in 3.5.1, is fulfilled by this assume-based conditioning;

namely, that conditioning removes the concrete traces described by I from the semantics of the

unconditioned program. This follows from the semantics of assume statements, which simply

exit when constraints are not satisfied, i.e., the concrete traces described by the formulae in I

are removed upon execution of the assume statements.

The metadata needed correctly set up instrumentation is stored in the inputCountMap and

inputTypeMap fields of the Interval data type given in Sec. 5.1. The instrumentation and

injection of assumes is performed as a transformation of the AST.

5.6 AST Transformations

We embed the conditioning of I into a program via transformations on the program’s abstract

syntax tree (AST). To parse the full C99 language with GNU-extensions is a non-trivial task, and

60

we use the Haskell library Language.C to help us do so. We briefly describe the infrastructure of

Language.C [116].

The API of the parser is found in Language.C.Parser; we only use the function parseCFile

from this module. Once we have the program parsed into an abstract syntax tree, we use the API

defined in Language.C.AST to traverse and transform the AST. The tree structure defined in

Language.C.AST follows the grammar in Appendix A of The C Programming Language [132]. Tree

traversal is done by decomposing the AST via pattern matching. The tree transformations are done

within a state transformer, which returns new tree with each transformation. The implementations

of the AST transformations are found in Transformations.lhs and Transformer.lhs.

The Language.C also provides a pretty-printer in Language.C.Pretty, which allows us to

write our transformed ASTs to C files.

5.7 Implementation of Modular ACA

This subsection discusses an instantiation of modular ACA in a tool named LLAMA, which

stands for Lessen Large ASTs (for) Modular Analysis.1 LLAMA is an open-source tool written

in 753 SLOC of Haskell, available for download at github.com/mgerrard/llama.

The module LLAMA expects to extract and embed within main is any valid function defined

within a C program. Given a function name and a C abstract syntax tree, LLAMA creates a new

abstract syntax tree that allows a program analyzer to reason about reachability properties from

the callsite of the function-of-interest. Because this kind of modular analysis rips the function

out of its runtime context, we have to assume that the global variables as well as the function’s

parameters can take on any value.

To create this new AST, LLAMA declares the parameters of the function-of-interest as

globals (giving them unique names, to use in the issued call) just before main, collects all globals,

makes each of the globals symbolic at the entry point of main, and finally issues a call to the

function-of-interest. The resulting AST is hopefully more amenable to a modular analysis when

pretty-printed to a file.

We will briefly cover LLAMA’s three main components: pruning out superfluous declarations
1This Andean camelid tool name is clearly a backronym.

61

github.com/mgerrard/llama

from an AST; setting up a symbolic environment appropriate for a function-of-interest (the

module); and embedding this module within the call to main.

5.7.1 Pruning the AST

We often need to remove external declarations that are guaranteed to be unused, starting from

some entry function. The reason we do this is because, after preprocessing files in large codebases,

their header files include many library functions that makes the tools in alpaca’s portfolio

fail—usually because these functions are not modeled in the tools.

To prune the unneeded external declarations, we first traverse the AST starting from the

given entry function and collect the names of functions, global variables, structs, and enums

encountered. We then retain any external declarations whose name is found in our collection of

names.

5.7.2 Symbolic setup

To safely model the calling context of some function, we have to extract each of its parameters

and make them symbolic, i.e., give them nondeterministic values. We must do the same with any

unpruned global variables.

Making a direct type, e.g., an integer variable, is straightforward: we construct an initializa-

tion statement with the variable’s identifier on the lefthand size and the SV-COMP primitive

“ VERIFIER nondet type()” on the righthand side.

The more involved cases are the pointer variables and the struct variables. In the case of a

pointer, we first have to declare an auxillary variable that has a unique name and make this

auxillary variable symbolic; now the pointer can actually point to something in memory; we can

then assign the address of this auxillary variable to the pointer. In the case of a struct, we do

something similar, where we first make each of the fields of the struct hold symbolic values in

memory by declaring respective auxillary variables, and then we can define the struct using these

auxillary variables as the initializers.

62

5.7.3 Embedding

After the AST has been pruned and the symbolic environment has been prepared, the final step

of embedding the function within main is simple. LLAMA creates a function call statement with

the appropriate name and uniquely-named parameters that have been made symbolic; and then

glues together the symbolic setup and this function call into a new function definition that we

call “main”. This new definition of main is now appended on to the pruned AST’s list of external

declarations.

5.8 Stepping through a run

This subsection is a whirlwind tour through ALPACA’s codebase for someone who intends to

actually modify or study ALPACA’s source code. The tour is a stepping-through of a “typical”

run of ALPACA, with the hope that this will give a rough feel of how the program is executed,

helping a potential user to find their way around the codebase. To connect these internal steps

with what the user sees on the terminal, we will interleave the terminal output (shown with a

light grey background) with the numbered steps.

Assume we want to use the analyzers CBMC and CPA-Seq to characterize the simple C

program in Fig. 5.4, named foo.c.

int main() {
int x = input();
if (x < 0) { error (); }
}

Figure 5.4: Example program foo.c

When running alpaca --portfolio cpaSeq,cbmc foo.c on this program, the following steps

occur.

1. the command-line arguments are parsed in Main.lhs

2. the options are placed in a data structure defined in Configuration.lhs

3. this configuration is used to instantiate the state of ACA’s computation (defined as a state

transformer in AcaComputation.lhs)

63

4. an artifacts folder is created at ./logs alpaca/foo/; this is where conditioned programs,

tool results, and logs about each iteration will be written to

5. the setup steps are done in the runAca function within Analysis.lhs, and the core logic

can now be launched from the aca function (see Sec. 5.1) within the same file

6. the portfolio of two tools is launched from the function exploreSubspace within Analysis.lhs,

which uses functions defined in RunPortfolio.lhs and LaunchBenchexec.lhs

* Running ALPACA on foo.c

** Iteration 1 ************

Launching tool portfolio.

7. suppose CBMC finds reachability evidence: x < 0; this evidence is verified and charac-

terized as a logical formula via the symbolic execution engine CIVL, using code from

RunPortfolio.lhs, CivlParsing.lhs, and Characterize.lhs

CBMC found reachability evidence.
(Adding reachability condition to program interval.)

Partial Program Interval:

Partition:
Upper Bound:

(X_int_0[0] + 1 <= 0)
Lower Bound:

(X_int_0[0] + 1 <= 0)
Assumptions:

(X_int_0[0] - 1073741823 <= 0 && 0 <= X_int_0[0] + 1073741823)

8. this evidence is added to the comprehensive state characterization (ProgramInterval)

defined in IntervalTypes.lhs

9. foo.c is instrumented to block the input space accounted for in I by adding assume(!(x<0));

using code from Transformations.lhs and Transformer.lhs

64

Instrumenting foo.c
to block space covered by partial program interval.

10. the tool portfolio is run on this conditioned program in a second call to the aca function;

this time CPA-Seq declares that the remainder of the program cannot reach the error()

statement, which is ACA’s termination condition

** Iteration 2 ************

Launching tool portfolio.

CPA_Seq declares unreachability.

_ Terminating ALPACA _________________

11. the final ProgramInterval is displayed, the final artifacts are written, and ALPACA exits

Final Program Interval:

Partition:
Upper Bound:

(X_int_0[0] + 1 <= 0)
Lower Bound:

(X_int_0[0] + 1 <= 0)
Assumptions:

(X_int_0[0] - 1073741823 <= 0 && 0 <= X_int_0[0] + 1073741823)

Note that this step-through is not at all exhaustive: it does not cover the case when ACA

requires generalization (which invokes code within Characterize.lhs and BinarySearch.lhs),

does not discuss all configuration options (shown with alpaca -h), does not list each created

artifact, does not name each code module used, etc.

65

Chapter 6

Evaluation of ACA

We conducted a study to explore the cost and effectiveness of ACA in computing logical intervals

of C programs. Our goal is to provide information about the efficiency, accuracy, and safety of

the ACA framework.

RQ1: How does the total ACA runtime and the runtime of ACA components vary across

programs?

RQ2: How does the accuracy of the computed intervals vary across programs?

RQ3: How do the ACA components that ensure safety influence the efficiency and accuracy of

ACA?

RQ4: How does the accuracy of ACA-computed intervals compare to prior work?

6.1 Subject Selection

This observational study uses a selection of the SV-COMP benchmarks [195]. We consider the

sequential subjects from the benchmark that have property violations. These property violations

model both real failures and seeded failures. We do not consider subjects that contain no property

violations, because the current ACA framework depends on the existence of at least one reachable

property.1

1Any program can be artificially decomposed by injecting reachable states, e.g., at callsites, and thus amenable
to analysis within ACA. Doing so across SV-COMP benchmarks is left to future work.

66

From these we selected 1400 for which at least one of the 9 tools used in ALPACA could detect

a violation within 15 minutes (SV-COMP competition timeout); note that this does not mean

that ALPACA can characterize all violating inputs for subjects making it past this filter. From

these, we filtered out subjects that could not be processed by ALPACA: 352 subjects suffered

from the inability to confirm a witness to a violation (a known problem in multiple SV-COMP

tools), 172 could not be handled due to incomplete support for C expressions in the ALPACA

implementation, and 420 subjects could not be processed by civl because it either enforced

strict C standards that were not met by the subjects, or the subject contained an unsupported

feature. During the course of our study we detected 76 SV-COMP benchmarks that either read

no input or read no input on failing behaviors. We do not think that these are representative

of real programs failures, since all program runs lead to failure, and keeping these in our study

would inappropriately, albeit positively, bias our results. The remaining 380 subjects were run

through ALPACA.

6.2 Experimental Setup

The experiments were executed on a dedicated computing cluster consisting of 10 Intel Xeon

Gold 6130 CPUs (2.10GHz), each with 16 physical cores and 128G of RAM. The cluster runs on

CentOS Linux release 7.8.2003. The experiments in this study were run on the exp branch of

ALPACA from revision:

c835094c52c2019232d379bd97e5c0928ba5d72b.

On each subject.c we ran the command:

timeout --signal=SIGKILL 90m $ALPACA --docker -t 300

--generalize-timeout 300 -p allDock --known-reach subject.c

The first three tokens of the command—timeout --signal=SIGKILL 90m—set a 90 minute

time bound on a run of ALPACA using the GNU Coreutils program timeout; after 90 minutes,

a SIGKILL signal is sent to ALPACA. We assume $ALPACA points to the executable path for

ALPACA. The --docker flag runs all tools in a Docker container. Using Docker is necessary

67

when running ALPACA on non-Ubuntu based machines, as we make use of a restrictive mode

in the library BenchExec that is only supported on Ubuntu machines (which we can model in

a Docker image). The -t 300 flag sets a 300 second time limit for each tool on each round of

analysis before trying to generalize. The first round of analysis has a default value of 900 seconds,

per SV-COMP time bound standards, so the -t flag applies to all analysis rounds after the first.

The --generalize-timeout 300 sets a 300 second timeout on exploring each lattice level during

generalization. The -p allDock flag instantiates the portfolio with the 9 tools used in this study.

Finally the --known-reach flag tells ALPACA that there is at least one reachability condition in

the program, so any immediate unreachability proofs should be discarded as unreliable.

6.3 Results and Discussion

We report results of running ALPACA on the 380 SV-COMP C programs both in aggregated

data and through a series of plots that depict the variability of informative metrics across the

programs. All raw data used to build the tables and figures in this section can be found in

Appendix A.

Each plot uses a single “impulse” to record the metric for the run of ACA on a subject. The

impulses are sorted from high to low (according to the metric given on the y-axis) moving left to

right on the horizontal axis. These plots are effective at depicting the trend across the set of

subject programs. Note that the ith impulse in a pair of plots may not correspond to the same

program.

RQ1: How does the total ACA runtime and the runtime of ACA components vary across

programs?

Table 6.1 reports the average, maximum, minimum, and median times, in seconds, to run

ACA components analyze, characterize, and generalize in our study. The average time to compute

a final interval is 17 minutes. This runtime is dominated by the cost of running the portfolio

and generalization; each taking on average over 52% and 43% of the runtime, respectively. Not

listed in the table is the cost of miscellaneous ACA internals which include constructing an

abstract syntax tree, writing to log files, performing conditioning, and merging disjoint partitions.

Compared to the time spent running heavy-weight analyses, the cost of these plumbing details is

68

Component Avg. Max. Min. Med. % Total
analyze 543 3537 17 419 52.4%
characterize 43 848 2 7 4.1%
generalize 446 5073 0 306 43.0%
Total 1036 5400 21 840

Table 6.1: ACA runtime (rounded to the nearest second)

negligible—less than 1% of the analysis time on average.

When all analysis tools fail to produce effective evidence after the analyze phase of ACA, the

interval is generalized to block more of the program space—the hope being that the generalized

interval is simpler, allowing some tool to find either reachability or unreachability evidence on the

remaining program space. The time spent in the generalize phase depends on the generalization

procedure used, and how aggressively generalization is applied. To limit excessive generalization

time in this evaluation, we chose to be quite aggressive in how we generalized, by parameterizing

ALPACA to immediately try blocking the singleton elements of the powerset lattice (discussed

in Sec. 5.3). This generalization strategy is often effective in helping ACA to converge without

moving the analysis to Top. For instance, on subject transmitter.01, after 5 iterations and 11

minutes have passed collecting evidence, generalization is triggered; and a clause that widens the

interval and leads to convergence is discovered in just over a minute (67 seconds). In half of the

subjects where generalization is required, the cumulative time spent in generalize is less than 10

minutes.

The cumulative time spent generalizing can still be costly if it needs to be called multiple times

and if there are many lattice elements to explore. Both of these conditions are met on subject

minepump spec4 product38. Generalization is required in four separate iterations, and in the final

iteration, the logical formula ALPACA needs to generalize consists of 10 conjuncts. Exploring all

possible 3-way and even 2-way combinations of 10 conjuncts would be computationally expensive;

it is examples such as these which led to us parameterize ALPACA to jump straight to the

singleton layer in the logical lattice when generalizing. For all that, because each of the blocked

conjuncts is launched with the portfolio, if we do not limit number of asynchronous threads, the

system can become overloaded and begin to thrash. To prevent this overloading, we run the

exploration in batches when there are many conjuncts to explore. The combination of calling

69

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 50 100 150 200 250 300 350 400

To
ta

l
ti

m
e
 (

s)

Subject

characterize time
analyze time

generalize time

Figure 6.1: Total and Component ACA Runtime

generalize multiple times with the computational consequence of exploring many conjuncts results

in subject minepump spec4 product38 spending over 18 minutes in generalization.

The most expensive instances of generalization can be tolerated only because of parallelization.

The earlier prototype of ACA was run sequentially, and though its portfolio only consisted of

two tools, generalization took over 73 minutes on average [101]. We took advantage of the fact

that each problem instance is embarrassingly parallel to both increase the size of the portfolio

and significantly decrease the accrued runtime.

Figure 6.1 shows the variability in runtime across the 380 programs. This is a stacked impulse

plot with the time spent in generalize on the lowest part of the impulse, then time spent in

analyze, then time in characterize at the top. The height of the entire impulse represents the

total time in seconds of ACA runtime per subject. Characterize times are visible in brief bursts

of yellow when zooming in on the plot.

Some subjects have massive state spaces that all tools in the portfolio struggle to explore,

both in the analyze and generalize phases. On the subject minepump spec1 product43, by the

sixth iteration there are nine symbolic integers to account for. There are 2,147,483,648 possible

values each of these symbolic integers can take,2 so the cross product of these ranges yields a
2This is half the range of a long int in standard implementations of C. We halved the range because CIVL

rewrites a path condition in the domain of ideal integers, which leads to overflow violations upon conditioning in
certain edge cases. Restricting to a smaller range still yields immense state spaces.

70

state space with 9.7e83 possible values. Faced with this large state space, after the first piece of

reachability evidence is found, tools in the analyze phase find no more effective evidence for the

subsequent iterations; this adds up to 3385 seconds of unsuccessful attempts. Generalization on

this example is necessary, and proves to be effective, but still takes up 1472 seconds overall.

The time spent in both analyze and generalize can also increase due to blocking processes

within the tool portfolio. To simulate parallelism in Haskell, we use the async library [12] to

create and destroy asynchronous threads. When effective evidence is found, ALPACA calls the

cancel function from this library to stop outstanding threads. However, once the cancel signal

is sent to all asynchronous analyzer threads, some process could block, e.g., if it is executing

a foreign call, and cannot receive the asynchronous exception. This can lead to inflated times

in some phases—primarily in generalize, where exploring separate lattice elements necessitate

the creation of n times more asynchronous threads than analyze, where n is the size of the tool

portfolio.

What is happening in ACA on subjects that require significant generalization? We look at the

six subjects that spend over 75% of their total runtime within generalize: token ring.{08,10,13},

Problem03 label52, and Problem04 {19,55}. All six subjects have the pattern of: finding a

reachability condition on the first round of analysis that has a large number of conjuncts (greater

than 16), failing to find effective evidence on the second round of analysis within analyze, and

spending the remaining time in generalize trying to find an element higher in the lattice that can

produce effective evidence. No effective evidence is found, and ACA times out, moving I to the

top value—true.

What can be done to reduce this time in generalization? After the first round of analysis, each

of the subjects’ I contained a single logical interval, so choose interval is not relevant for these

subjects. We can implement relax upper to move aggressively up the lattice, that is, jump straight

to the singleton values one relation below true; this is in fact what we do. In our implementation

of ACA, generalize employs a call to the tool portfolio to check if the generalized bound was

effective. As each element in the lattice can be explored in parallel, n elements corresponds to n

parallel calls to the portfolio, which itself launches separate parallel calls for each tool. When

there are many lattice elements being explored, we run the search in batches, to limit the machine

becoming overloaded with too many processes. With an upper bound with a large number of

71

conjuncts, running these batches can be expensive.

Another possible way to reduce time in generalization when running in batches is to come

up with some ordering heuristic. For instance, you could try first running lattice elements that

would block the most space, e.g., choose (x 6≡ 3) instead of (x ≡ 1), as the constraint given

by negating the first: (¬(x 6≡ 3)) = (x ≡ 3), constrains much more of the program space than

the relaxed formula given by negating the second: (¬(x ≡ 1)) = (x 6≡ 1). The intuition here

is that the portfolio tools need to consider less of the state space in their search. We employ

this ordering heuristic when generalizing. Even when aggressively relaxing the upper bound

and using heuristics to choose the order in which lattice elements are explored, the six given

subjects did not have any successful exploration within generalize, i.e., one producing effective

evidence. In these cases, spending as much time trying to find some evidence other than true

seems acceptable.

In general, characterizing and slicing a path condition will take up a trivial portion of the

overall analysis time. This is to be expected, because characterization in our implementation is a

fully directed symbolic execution, i.e., only one path is explored, followed by an inexpensive slice

of the path condition. The cumulative time to characterize and slice a path condition is below 40

seconds for all but one class of subjects.

However, on 56 subjects from the ECA-RERS category, the cumulative time spent in characteri-

zation ranges from 104 seconds up to the maximum of 848. Why do these subjects spend significant

time in characterization? We look at the eight subjects that spend more than 30% of their

total runtime within characterize: Problem10 {15,24,29,41,47} and Problem11 {15,29,36}.

After the call to directed symex within characterize, each of these subjects contains a conjunct

in its path condition that is a large disjunction, e.g., ((Y ≡ 6) ∨ (Y ≡ 4) ∨ · · ·). The slowdown

comes from the call to slice, and is due to the fact that these disjunctions lead to an exponential

number of SAT queries within an implication check in the slicing module. One way to avoid this

slowdown is to come up with a heuristic that either disables slicing when a large disjunction is

spotted, or to try to transform this disjunction into an equivalent, non-disjunctive term before

running the implication check—e.g., transform (X ≡ 1) ∨ (X ≡ 2) to (X ≥ 1) ∧ (X ≤ 2).

Figure 6.2 shows the variability in the number of iterations of ACA needed to reach convergence.

This ranges from two to fourteen across the data set. Two iterations is the minimum in this

72

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300 350 400

It
e
ra

ti
o
n
s

Subject

Figure 6.2: ACA Iterations to Convergence

study, the best case being: a reachable state is discovered in the first iteration, and is determined

to be the only path to reachability in the second—final—iteration. This minimal case occurs on

49 subjects of the study, such as s3 srvr 6, in which CPAchecker quickly finds the reachability

path encoded by the formula (X ≡ 0) ∧ (Y ≡ 0); and in the second iteration, UltimateAutomizer

determines the absence of reachability outside of this path.

Any subject containing multiple reachable paths to a given property—paths that cannot be

simplified via slicing—call for multiple iterations of ACA.3 We do not know a priori how many

paths there may be to a ψ-state, so to ensure convergence, generalization is triggered after the

4th iteration. Depending on how much the logical interval is widened during generalization,

there can still exist many paths to a ψ-state outside of this disjoint interval. As each iteration

adds to the overall runtime, it is desirable to limit excessive iterations. Using this heuristic of

triggering generalization allowed ACA to converge in seven or fewer iterations for more than 95%

of subjects.

RQ1 Findings. The majority of runtime in ACA is split between the analyze

and generalize components. As each round of analysis presents verification tools
3This statement may not hold if each of the various reachable paths are identified by distinct tools in the first

iteration, but we did not see this case across the study.

73

with a new verification problem, the time spent analyzing is dependent on some

tool in the portfolio finding effective evidence for that particular problem; and this

varies across subject from a minimum of 17 seconds up to a maximum of 3537. By

moving up to the singleton layer of the lattice within generalize, time spent trying

to find effective evidence for each generalization is reasonable—less than 8 minutes

on average. Running the portfolio tools in parallel on each round of analysis is

necessary for an efficient implementation of ACA, or there could be an n times

slowdown in finding effective evidence, where n is the number of tools in the portfolio.

The characterize component should be inexpensive in general; the few instances we

observed characterize taking longer could be amended by an added case within the

implementation of directed symex.

RQ2: How does the accuracy of the computed intervals vary across programs?

The accuracy of a final interval should be judged based on the input space it describes, i.e.,

how many inputs leading to a ψ-state are not characterized by the lower bound, and how many

inputs that avoid a ψ-state are characterized by the upper bound. This presupposes we know the

exact relation of ψ-state reachability to a program’s state space, which is hard to determine. In

this study, we use two proxy measures to provide information on accuracy. First, we know that

any I with coinciding bounds is completely accurate. Second, we know that any intervals that

have true as an upper bound are inaccurate—since we removed programs from the study that

always reach a ψ-state. Intuitively, the greater the number of intervals with coinciding bounds

and the fewer the number of true upper bounds, the more accurate the analysis.

The intervals for all 380 subjects in the study were comprised of 620 disjoint intervals. Of

these, 60 (9.7%) have coinciding bounds and 109 (17.6%) have true values as upper bounds. The

remaining 443 disjoint intervals have noncoinciding bounds whose upper bound is not true.

Though an interval with true as its upper bound indicates inaccuracy, this inaccuracy could

either be the result of ACA not being able to compute a sufficiently tight interval, or it could be

the result of a subject whose program paths almost always lead to a ψ-state—in which case an

upper bound of true is a reasonable approximation. To see how often the latter is the case in our

study, we use statistical symbolic execution to sample the paths with the most probability mass

74

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 50 100 150 200 250 300 350 400

To
ta

l
in

te
rv

a
ls

Subject

Noncoinciding intervals
Coinciding intervals

Figure 6.3: Impulse plot of interval accuracy

from each of the 109 subjects that yield true upper bounds; this should give us an idea of how

often a ψ-state can be expected. We run SSE for 30 seconds, which allows time to account for a

portion of probability mass. For 69 of these subjects—including all 53 ECA-rers variants—the

collected probability mass of hitting a ψ-state is below 0.1%. For 27 subjects the probability

mass is above 99.9%. The remaining 12 subjects have all probability mass that could not be

accurately classified. In many cases, true is a close approximation of the ideal upper bound.

Whether or not ACA yields a poor approximation is highly dependent on the interaction between

a program’s structure and the abstract domains of the analyzers in the portfolio. The cases

we observed where I is a poor approximation tended to have large state spaces made of an

unbounded “evaluate” loop controlled by some complex condition on state variables.

Figure 6.3 plots the variability across the examples in terms of the number of disjoint

intervals computed for the final interval, and whether those disjoint intervals have coinciding or

noncoinciding bounds. The significant number of noncoinciding intervals corresponds to the need

for generalization across the study subjects.

There are a number of subjects in Fig. 6.3 that display a mix of coinciding and and non-

coinciding intervals. This indicates that the logical interval contains some disjoint intervals

that exactly describe conditions for reaching a ψ-state, while other disjoint intervals contain

75

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400

C
o
n
ju

n
ct

s
sl

ic
e
d

Subject

Figure 6.4: Impulse plot of conjuncts sliced

a portion of input space that cannot be determined as reaching a ψ-state or not. This is

the case with minepump spec3 product30, which completes with three coinciding intervals,

and two noncoinciding intervals. In addition to calling generalize to “raise” the upper bound,

minepump spec3 product30 is also able to “raise” the lower bound by slicing a total of of 22

conjuncts away; this slicing significantly improves an interval’s accuracy.

Generalization influences the accuracy of upper bounds, but slicing influences the accuracy of

lower bounds, i.e., these bounds are generalized yet they remain underapproximations. Figure 6.4

plots the number of conjuncts sliced across a run of ACA for each subject. For more than half of

the programs, some slicing is performed.

In certain subjects, slicing helps to drastically simplify interval bounds, such as test locks 14,

where 46 conjuncts are sliced away across the run of ACA. In the first iteration, 12 conjuncts are

sliced away from the path condition: this is a major help in producing a more comprehensive

interval and in accelerating convergence for ACA. Without slicing, ACA would have to block

the full path condition, and—as each of the 12 irrelevant branch points must be explored in

all combinations—would then need to block the other 4095 (212 − 1) path conditions to arrive

at the point slicing sweeps us along to. The program test locks 14 models a system with

14 semaphores, and tests that these semaphores can be acquired and released correctly. Each

76

semaphore is represented by a symbolic value, and the main logic of the program consists in

checking if a process has its respective lock before releasing that lock. This program structure

means that the majority of branch conditions deal with distinct semaphores and do not influence

each other—thus can be safely sliced away. Though the model in test locks 14 is small, it

exemplifies simple boolean tests in a program that do not share data dependencies, and exemplifies

how helpful slicing can be.

Slicing can also have a downstream effect on performance within generalize, since reducing

the size of an initially coinciding disjoint interval reduces the number of conjuncts considered

when the upper bound of this disjoint interval is being generalized.

The study in this chapter does not quantify accuracy in absolute terms, nor does it quantify

the size of an interval in terms of their semantics, i.e., the input mass described by an interval’s

bounds. These quantifications are explored in Chapter 8. The study does provide evidence

that even when ACA is configured with a limited form of generalization it can converge to final

intervals that bound the space of ψ-state reachability to a strict subset of the input space.

RQ2 Findings. The most accurate I is given when I ≡ I; we observe ACA

computing this class of I for 9.7% of the subjects. The least accurate I is given

when I ≡ true. While we observe this case for 17.6% of the subjects, we found

through a brief sampling that a quarter of these subjects have most paths leading to a

ψ-state—in which case I ≡ true is a reasonable overapproximation. Slicing improves

the accuracy of I from below by raising I, because the input space described by I

becomes more comprehensive with each conjunct sliced. We observe slicing improve

the accuracy of I on more than half of the subjects in this study, with some subjects

slicing away hundreds of conjuncts across a run of ACA.

RQ3: How do the ACA components that ensure safety influence the efficiency and accuracy of

ACA?

The safety of intervals computed by ACA is based on the soundness of analysis tools run

within analyze and the use of generalization. We take the former as a given and present data on

the number of times generalize is invoked in Fig. 6.5.

At least some generalization is required on 320 of the 380 subjects (84.2%). This is a clear

77

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 50 100 150 200 250 300 350 400

G
e
n
e
ra

liz
a
ti

o
n
s

Subject

Figure 6.5: Impulse plot of generalizations

indication of the necessity of generalization for computing safe intervals. We use the number of

calls to generalize as a proxy to measure the efficiency of the processes within ACA that ensure

safety. Under this measure, the most “efficient” use of generalize is to call it as little as possible,

as each invocation of generalize can be expensive. If generalize does need to be invoked, the

most efficient implementation would immediately move I to the top value in the lattice—true,

but this can lose an inordinate amount of accuracy. With this proxy measure of efficiency, we

find that 190 of the 320 subjects (59%) requiring generalization establish a safe I after only one

invocation. A safe I is found after two to three invocations in 106 of the 320 subjects (33%), and

the remaining 8% require four to nine calls to generalize.

We look at the two subjects with the highest number of calls to generalize (9 invocations):

minepump spec2 product41 and minepump spec2 product44. In both cases there was the pat-

tern that, after a number of ACA rounds of collecting ψ-state reachability, conditioning is not

effective, and generalization is triggered. Generalization is then required in each successive round

of ACA, and each time the new I produced by generalize yields effective conditioning. In this case,

the component that ensures safety (generalize) actually helps to increase the must information

computed, by effectively conditioning analysis tools to find new ψ-state reachability outside of

I, and thus increasing I. Both analyses end with I ≡ true, but as we see below, this does not

78

necessarily mean it is a poor approximation.

How do the calls to generalize influence the accuracy of ACA? Any call to generalize will

always produce an overapproximation of I, so unless the overapproximation is exact in describing

ψ-state reachability, there will always be some degree of inaccuracy. We estimate the amount

of inaccuracy introduced by generalize by looking at how much input space does not reach

some ψ-state within some noncoinciding interval. We do so by running SSE—introduced in the

discussion of RQ2—that is conditioned to stay within each of the noncoinciding intervals (i.e.,

does not reexamine the lower bound and does not look “outside” the upper bound) for 30 seconds,

reporting the amount of input mass measured that avoids a ψ-state. These are all the program

paths that do not reach ψ-states.

To clarify what we are reporting on, we present pseudocode in Algorithm 4 for our use of

conditioned SSE to measure inaccuracy.

Algorithm 4 Estimating inaccuracy of I
1: for each subject where I 6≡ I do
2: pr mass = 0 .0
3: for each I ∈ I where I 6≡ I do
4: pr mass += conditioned SSE¬ψ(subject, ψ, I , I)
5: print pr mass of subject

The number of subjects with noncoinciding bounds, i.e., where I 6≡ I, is 320—this is the

pool of subjects we will sample to estimate the probability mass of paths leading to ¬ψ. Of

these 320 subjects, within 227 (70.9%) there was discovered less than 0.05% of probability mass

reaching ¬ψ-states. This means that the generalized intervals that allowed for ACA’s termination

introduced very little inaccuracy with these 227 subjects, according to the SSE sample. As with

the previous use of SSE in RQ2 to measure programs whose I is the top value in the lattice, the

discovery of probability mass tended to be binary—either the vast majority miss a ψ-state, or

a vast majority reaches a ψ-state. For 64 subjects (20.0%), there was discovered greater than

99.95% of probability mass reaching ¬ψ-states. That is, the components ensuring safety for

ACA did so at the cost of introducing a large amount of inaccuracy on 20% of subjects. A small

amount of subjects, 29 (9.1%) reported only grey probability mass within 30 seconds of running

SSE—this is due either to the SSE tool struggling with solving a path condition—e.g., due to

79

embedded assumptions from I or I, or from a timeout. Note that some SSE examples that

collected less than 0.1% of ¬ψ-state mass in RQ2 subjects may overlap with subjects here that

found a small portion of ψ-state mass—i.e., these numbers are not always complementary because

we only sample for 30 seconds.

RQ3 Findings We observed that ACA requires generalization on 84% of subjects,

and that, of these 320 subjects, most (92%) only need to invoke generalize three or

fewer times across a run of ACA. When generalization is needed, we observed that on

more than 70%, a small amount of inaccuracy is introduced by generalize, according

to a brief sample of SSE. On 20% of the subjects, a large amount of inaccuracy is

introduced in I by generalize.

RQ4: How does the accuracy of ACA-computed intervals compare to prior work?

By construction, ACA is more expensive in terms of time and memory than prior work—

because ACA employs multiple analyzers as black-box components of its framework—, but

program intervals offer the possibility of large improvements in the accuracy of ψ-state reachability

characterizations. This research question compares the accuracy of program intervals generated

by ACA with the accuracy of reachability characterizations generated by individual analyzers.

Recall from Chapter 4 that prior work can compute essentially two kinds of program intervals:

one guaranteeing that no ψ-state can be reached, i.e., {[false, false]}; and another giving one or

more proofs of ψ-state reachability, e.g., {[c, true]}, where a ψ-state is reachable under the input

constraints of c. The subjects considered in this chapter contain at least one reachable ψ-state,

so this research question will only examine the second kind of program interval produced by prior

work: some accumulation of reachability characterizations in the lower bound, I.

We approach accuracy by measuring its dual—inaccuracy. Inaccuracy is measured in terms

of an estimate of the size of the input domain for which the analysis results are inaccurate.

For any given individual analyzer, inputs that are not implied by I are not given a definite

characterization, so inaccuracy is given by the size of the input space outside of I. We use the

count measure (i.e., an input domain modeled by a uniform distribution) to estimate the size of

input subdomains—specifically, the size of inaccurate subdomains. The count measure computes

the ratio of the size of the input space comprising a target subdomain to the size of the total

80

input domain. Note that as we use the count measure, the count of I must be between 0 and 1.

We now describe how we measure the inaccuracy of program intervals produced by individual

analyzers.

Given a program P and an analyzer A, we run A for 90 minutes using its default settings in

search of reachability information, i.e., we do not modify A’s internals. This run will produce a set

of reachability characterizations, some of which may be false positives if A is an overapproximator.

We quantify and sum this set of reachability characterizations—#(I)—using the model counter

Barvinok [204] (see Sec. 8.2.2 for more on quantification using model counting). The inaccuracy

of A on program P is then given as 1 minus this sum, i.e., 1 −#(I). False positives are not

included in #(I) by definition; their inaccuracy is implicitly characterized by the above difference.

We enforce a bound on the number of inputs read at a particular program location—e.g., a read

statement within an unbounded while loop—for each subject according to the maximum number

of inputs read across a full run of ACA. We quantify inaccuracy within this finite domain.

The inaccuracy of ACA-produced program intervals is measured by the size of input sub-

domains given between I and I. When ACA produces a program interval with noncoinciding

bounds, i.e., I 6≡ I, the inaccuracy is the difference of their quantifications: #(I)−#(I). We

will use the standard notation in measure theory [199] for the “length of an interval”—|I|—when

referring to the difference in size between I and I. When ACA produces a program interval

with coinciding bounds, i.e., I ≡ I, the characterization of ψ-state reachability is exact, so the

inaccuracy is 0.

Across the study, two analyzers did not produce reachability proofs: SeaHorn and ESBMC.

These two analyzers are not considered in this research question, as they will always be wholly

inaccurate. Of the 380 subjects in this study, nine subjects have ψ-state reachability involving

floating point arithmetic. While ACA can exactly characterize these subjects, the Barvinok

model counter does not support floating point constraints, so we do not consider these nine

subjects. This leaves a pool of 371 subjects and seven analysis tools for this research question.

Table 6.2 reports the percentages of subjects on which each analyzer yields either a less

accurate or an equivalent characterization of ψ-state reachability compared to ACA. For instance,

CPAchecker computes a less accurate description of ψ-state reachability than ACA on 338 of

the 371 subjects (91.1%), and computes the same accuracy on 33 subjects (8.9%). Note that

81

Analyzer % subjects
less acc.

% subjects
same acc.

CBMC 98.7 1.3
CPAchecker 91.1 8.9
PeSCo 94.3 5.7
Symbiotic 86.8 13.2
UAutomizer 93.3 6.7
UTaipan 99.5 0.5
VeriAbs 98.7 1.3

Table 6.2: Percentage of subjects on which prior techniques yield a less accurate or equivalent
characterization of ψ-state reachability compared to ACA.

no single analyzer computes a more accurate program interval than ACA. This is because the

reachability information collected by a single analyzer will be included in the I produced by

ACA, as the underlying analyzers are employed in ACA’s tool portfolio.

The benchmark includes a variety of programs including some for which existing analysis

techniques, such as symbolic execution, are known to perform well. We compare with two

symbolic execution based techniques: CBMC and Symbiotic—which is a wrapper for the KLEE

symbolic execution tool. As Table 6.2 reports, ACA is more accurate than CBMC and Symbiotic

on 98.7% and 86.3% of the experimental subjects, respectively. This is likely due to the fact

that from the set of 371 subjects studied, the symbolic execution techniques performed well on

programs containing on average 6.5 symbolic inputs, while the majority (58%) have an average

of 14 symbolic inputs and complex control flow that is dependent on symbolic inputs.

The main takeaway from Table 6.2 is that across the considered subjects, prior work when

employed on its own yields strictly less accurate program intervals than ACA the vast majority of

the time. The large improvement in accuracy across subjects is both encouraging and expected,

because any time ACA can either produce an I that is sufficiently below the top value of true, or

can accumulate a large amount of must information in I, the accuracy is strictly more than prior

work can characterize on its own (see Chapter 4). On some subjects, ACA finds only one or two

pieces of ψ-state reachability before needing to generalize to the top true value. In these cases, if

some analyzer on its own (e.g., Symbiotic) finds some ψ-state reachability, then this analyzer can

characterize the same space as ACA does with I, whose accurate information is given only by I.

Table 6.3 reports on the average accuracy improvements—according to the count measure—in

82

Average accuracy improvement of ACA
Analyzer |I| ≡ 0 |I| < 0.01 |I| > 0.99 |I| ≈ 0.5
CBMC 0.9907 0.9932 3.1e−10 0.2500
CPAchecker 0.9722 0.9072 2.8e−10 0.2500
PeSCo 0.9907 0.9479 2.6e−10 0.2500
Symbiotic 0.8426 0.7534 2.4e−10 0.2500
UAutomizer 0.9352 0.9706 3.1e−10 0.5000
UTaipan 0.9352 0.9706 3.1e−10 0.5000
VeriAbs 0.9722 0.9344 3.0e−10 0.2500

Table 6.3: Average accuracy improvements—according to the count measure—in ACA over single
analyzers across four sizes of the gap between I and I, denoted by |I|.

ACA over single analyzers across subjects grouped by four distinct program interval sizes, denoted

by |I|. Recall that |I| refers to the difference in size between I and I produced by ACA. We

separate |I| into four groups: (1) exact program intervals where |I| ≡ 0—this occurs when I ≡ I

and is observed on 54 subjects; (2) program intervals for which the difference between I and I is

very small, i.e., |I| < 0.01—observed on 167 subjects; (3) program intervals with a very large

difference between I and I, i.e., |I| > 0.99—observed on 148 subjects; and (4) program intervals

whose difference in size is around 0.5, observed on just 2 subjects. For instance, when |I| < 0.01,

the information in I produced by ACA accurately characterizes on average 94.79% more of a

subject’s ψ-state reachability than PeSCo can do on its own. We will now discuss accuracy gains

observed in each type of |I|.

The most accurate program interval produced by ACA is given when I ≡ I, whose inaccuracy

is 0. Prior work cannot produce this kind of interval on its own, because for subjects with

ψ-state reachability, the only possible value of I is the extremal true. As a program interval with

coinciding bounds is novel to ACA, the large increase in the count measure makes sense. For

instance, suppose CBMC either finds no valid reachability evidence or its ψ-state characterization

describes a small portion of the input space. If ACA produces a program interval with coinciding

bounds, then I exactly describes the must and the not may portions of the whole input space,

making the improvement in the count measure close to 1 on this subject. When a subject has

large portions of its input characterized by I, then the increase in accuracy provided by an exact

I is less dramatic; this was the case for many subjects on which Symbiotic was successful in

finding ψ-state reachability on its own.

83

When the size of the “gap” between I and I is small—as with the subjects whose |I| < 0.01—,

there is again a large increase in improvement in the count measure of accuracy. This is for

similar reasons as the increase in accuracy described in the previous paragraph: the majority of

the input space can be accurately characterized by ACA when the “gap” denoting inaccuracy is

small, whereas an individual tool can only make contributions to the lower bound.

When the “gap” between I and I is large—as in |I| > 0.99—, there is still an increase in

accuracy given by ACA, but the measure of this increase is minuscule: in the best case ACA

yields an average increase of 3.1e−10 per subject. A large |I| occurs when ACA’s I for a subject

is either the maximal true value, or close to true. In these cases, the accuracy given by ACA

is comparable to prior work run on its own. The increase in accuracy can be no greater than

1− 0.99 = 0.01, so we cannot expect a large increase in accuracy when the gap is large. A large

gap represents inaccuracy insofar as it characterizes a large portion of the input space as may

information. But as discussed in RQ3, the large gap denoting may information often offers a

decent approximation of subjects’ true ψ-state reachability.

The final case of program interval sizes are for two subjects on which |I| ≈ 0.5. For these

two subjects, either the individual analyzer did not find valid ψ-state reachability, making the

increase in accuracy the size of the program interval; this was the case with UAutomizer and

UTaipan. Or the individual analyzer found reachability evidence for one of the subjects but

not the other, halving the average increase in accuracy; this was the case with the remaining

analyzers.

RQ4 Findings The program intervals produced by ACA offer a more accurate

characterization of ψ-state reachability compared to running the component analyzers

on their own. For any of the seven individual analyzers, an ACA-produced program

interval I strictly improves the accuracy of ψ-state characterization on 86–99% of

the considered subjects. The average improvement in the count measure of accuracy

is dramatic for the 60% of subjects whose |I| ≡ 0 or |I| < 0.01. The improvement in

accuracy is necessarily slight when |I| is large.

84

6.4 Threats to Validity

Internal validity

The tools underlying ALPACA are complex and highly configurable. We use these tools in

their default configuration, and do not have control over their internals. We have not controlled

for factors that may influence their performance and this may impact the performance of ACA.

This is a challenging problem in general—benchmarking the performance of static analysis tools

remains an open problem [88, 183]. We have conducted extensive testing and post-analysis of

the computed interval data to ensure that it is safe and have only used static analyses that have

proven to be robust in the SV-COMP competitions [196, 197]. The SV-COMP benchmark suite,

while limited, is updated annually to reflect the challenges to static analyses found in the broader

population of C programs.

We observed that on a few subjects the simplification time in slicing increased significantly

when certain disjunctive forms appeared. This performance issue inflates runtimes, so improving

the implementation would only positively impact the findings in this chapter.

External validity

We caution the reader in making conclusions about the external validity of our study. Using

SV-COMP programs constitutes a common sample used in evaluating C static analysis tools,

and its use promotes the replicability and reproduction of our study. The subjects included in

the benchmark, and the tools taken from the corresponding competition, represent a diverse set

of programs and analyzers, but clearly a broader amount of subjects and tools is needed to make

a strong claim on the generalizability of our results to other C programs.

85

Chapter 7

Case Study of chrony

This chapter describes an exploratory case study in applying ALPACA to portions of a medium-

sized system outside of the SV-COMP benchmarks.

The SV-COMP benchmarks include a large number of diverse C programs, but as a fairly

stable benchmark, the competing tools may overfit their competition contribution to these

benchmark subjects. As all tools in ALPACA’s portfolio come from the set of SV-COMP tools,

we want to explore the feasibility of computing program intervals in a software system not

included in the benchmarks. We choose the chrony [1] system of software—an implementation

of the network time protocol—as it is a medium-sized C system (55 C files with 21,926 SLOC)

embedded with assert statements. Assertions contain conditions expected to hold on all program

executions. The semantics of an assert(c) statement, where c is some boolean predicate, are:

if(c): skip; else: error;, i.e., an assertion violation is equivalent to reaching an error

state. We define the ψ-state to be a violation of an assertion, and explore how we can compute

informative program intervals within chrony.

We summarize chrony in Sec. 7.1, explain our methodology for analyzing portions of its

codebase in Sec. 7.2, discuss what we observe applying this methodology to four subsystems of

chrony in Sec. 7.3, discuss threats to validity in Sec. 7.4, and conclude in Sec. 7.5.

86

7.1 chrony

The chrony codebase is an implementation of the network time protocol (NTP), which is a

protocol for synchronizing clocks between computer systems. Implementations of NTP have been

deployed on systems since the mid 1980’s and are still in use today. The chrony implementation

is the default NTP client in the Red Hat Linux and SUSE Linux distributions, and is available

on many Linux distributions as well as macOS.

The chrony codebase has been rigorously tested and has passed recent a Critical Information

Infrastructure audit [2]. However, this audit is limited in scope—involving three testers

performing manual code checks and applying fuzzing techniques to try to crash the software,

which can only exercise a small portion of chrony’s input space. The input space of chrony

is large, as it must handle nondeterminism from a range of environmental factors, such as

“intermittent network connections, heavily congested networks, changing temperatures (ordinary

computer clocks are sensitive to temperature), and systems that do not run continuously, or run

on a virtual machine.” [1] There is also a daemon that can update system parameters at runtime.

Each of these nondeterministic sources makes the space to consider in chrony massive.

As a well-designed modular piece of software among a multitude of other NTP implementations,

we expect portions of its code to be reused in contexts outside of its designed intent. To safely

reuse these modules in another codebase, it is necessary to discover the implicit invariants that

these interfaces define. We examine chrony version 3.2.

7.2 Methodology

This section describes how we run a modular ACA to reason about portions of the chrony

codebase. We employ modular ACA because chrony is too large and complex for effective

whole-program analysis with any combination of the tools in ALPACA, so we examine subsystems

of chrony. We discuss how program intervals can be interpreted in this modular context, how

we choose the subsystems to examine, how we model nondeterminism in these subsystems, how

we propagate information in I across function boundaries, and conclude with the hardware and

software on which the case study was run.

87

7.2.1 Program intervals in modular ACA

A top-down, whole-program analysis is not feasible with ALPACA over chrony, so we attempt

a bottom-up approach of first analyzing the “leaf” functions that contain an assertion, then

expanding the calling context and analyzing this expanded context given information from the

leaf function’s computed program interval.

If we run ACA in function f to compute If , and function g calls f , how can we use If while

analyzing g? First of all, we do not need to reanalyze f , as the formulae in If characterize the

may conditions on ψ-state reachability in f . The means all inputs implied by If can be ignored

in the analysis of g.

Suppose now the caller function g computes program interval Ig—how do we interpret its

bounds Ig and Ig? It depends. If the analysis of f yields a program interval with coinciding

bounds, i.e., If ≡ If , then Ig encodes a standard program interval: Ig characterizes may

information and Ig must information. If the analysis of f yields a program with noncoinciding

bounds, i.e., If 6≡ If , and we do not reanalyze If , then Ig still characterizes may information,

but the meaning of its lower bound Ig is less clear. The lower bound Ig encodes conditions

under which there may exist ψ-state reachability in f , and so the lower bound in this case is

meaningless with respect to computing definite must information.

Propagating the upper bound If across calling contexts amounts to a form of weakest

precondition reasoning [17, 130], where If encodes the necessary but not sufficient conditions

of reaching a ψ-state in f from the context of g. We use this approach in the case study, and

describe how we propagate I in Sec. 7.2.4. It is also possible to propagate I across calling

contexts, though in this case the meaning of any final I becomes undefined—we look at this

possibility at the end of Sec. 7.3.

To summarize, program intervals with coinciding bounds can propagate both may and must

across calling contexts, but in the presence of a noncoinciding program interval, either may or

must information can be propagated, but not both simultaneously.

88

7.2.2 Sample selection

We want to explore using modular ACA starting from the leaves containing potential ψ-state

reachability—those functions that contain an assertion—and successively expanding calling

contexts. To this end, we choose from a pool of 1008 candidates in chrony whose callchains are

of length four and whose final called function is assert. For instance, function f calls function

g, which calls function h, which calls assert, is a valid 4-length callchain. We discard callchains

whose outermost function is main, as this would amount to a (near) whole-program analysis.

From these candidates, we select four callchains randomly by calling shuf -n 4 callchains.txt,

where callchains.txt contains quadruples of function calls (and associated file names). The

extracted functions and type definitions of the sample sum to 637 SLOC.

7.2.3 Modeling nondeterminism

Nondeterminism is used to express arbitrary choices. This can be used to model, for instance, that

the value of some input from a keyboard could be any ASCII character. An analysis tool could then

reason about each distinct possibility resulting from this nondeterminism. The nondeterminism

needs to be communicated to verification tools in some way, as there is no nondeterministic

primitive in C. We communicate this nondeterminism via annotation primitives made up of

C expression that tools in ALPACA understand. These annotation primitives are of the form

VERIFIER nondet {type}, e.g., when some tool sees a call to VERIFIER nondet char(), it

can assume the return value is any of the values of type char.

Given a function f , we model its parameters, any global variables referenced, and any functions

external to f , nondeterministically. Any external function is assumed side-effect free and returns

a nondeterministic value of its return type. This is a “soundiness” [148] assumption taken from

SV-COMP rules on externally defined functions; we mitigate this threat to validity by looking at

the source of the modeled functions and validating that any side effects do not mutate variables

involved in ψ-state reachability.

To model a nondeterministic struct, we give any fields that are used in f a nondeterministic

value, and leave the remaining fields uninitialized. An arbitrary binary choice, such as a pointer

being null or not, can be modeled with an if-else statement guarded by a nondeterministic

89

conditional variable.

LLAMA, described in Chapter 5 is used to automatically prepare all level 1 functions (those

containing calls to assert) for ALPACA.

7.2.4 Embedding I at callsites

As discussed in Sec. 7.2.1, within a modular ACA context, only I or I may be propagated across

calling contexts in the presence of a program interval with noncoinciding bounds. We choose to

propagate If by embedding assert(¬If) above any of f ’s callsites in some calling function g.

What this does is communicate within g that if the input variables satisfy I, then a ψ-state may

be hit.

The procedure we follow to run ACA in successively expanding calling contexts is given by

these steps:

1. d→ 1

2. Compute Id for depth-d function fd.

3. If d ≡ 3, return I3.

4. Embed assert(¬Id) before all calls to fd in fd+1.

5. Go to Step 2.

For each subsystem discussed in the following section, we will look at the intermediate I’s

computed in Step 2, along with the final I.

7.2.5 Setup

This case study was run on Ubuntu 20.04 using Linux kernel 5.8.0-7642, with an AMD Ryzen

7 2700X eight-core processor. Each subsystem was run on the exp branch of ALPACA from

revision:

c835094c52c2019232d379bd97e5c0928ba5d72b.

ALPACA was run on each subsystem without any parameters, that is, as alpaca subsystem1.c.

90

7.3 Discussion

In this section we look at four different subsystems in chrony and make observations about

program intervals computed in different calling contexts. We consider the function that calls

assert to be a “depth 1” function, and so use the notation that I1 is the program interval

computed at depth 1, I2 the interval at depth 2, etc. We conclude with observations over all four

subsystems.

7.3.1 Subsystem 1

The first subsystem we consider is the callchain: CLG initialize (in clientlog.c) calls

expand hashtable (in clientlog.c) calls ARR GetElement (in array.c) calls assert.

The assertion within the function ARR GetElement is checking that an index references a valid

position in a bespoke array data type defined in chrony. ALPACA is able to compute a program

interval with coinciding bounds, exactly characterizing may and must ψ-state reachability for all

contexts in which ARR GetElement is called.

In the function expand hashtable, there are two calls to ARR GetElement within two separate

unbounded for loops. There are two additional assertions made in the scope of expand hashtable:

one before any calls to ARR GetElement and the other in the second for loop—checking for the

non-nullity of a hash table record. ALPACA is able to find reachability conditions leading to

the first assertion, which involves variables not mentioned in I1. ALPACA is not able to find

effective evidence after conditioning analyzers away from the first reachability condition and

must generalize its program interval. After generalization, unreachability is proved and I2 is

returned with noncoinciding bounds.

In the function CLG Initialise there is one call to expand hashtable. Possibly hitting

a ψ-state at this callsite requires two conditions to hold: that a certain file exists and that a

variable be nonnegative. That the second condition holds is guaranteed by its typing as an

unsigned int. ALPACA computes a program interval I3 with coinciding bounds that denotes a

ψ-state may be reached when the ClientLog file exists and variable max slots is nonnegative

(the characterization in CIVL includes the redundant constraint on unsigned int types).

91

7.3.2 Subsystem 2

The second subsystem we consider is made up of the callchain: post init ntp hook (in main.c)

calls NSR ResolveSources (in ntp sources.c) calls resolve sources (in ntp sources.c) calls

assert.

The function resolve sources includes an assertion that checks if a pointer to a struct has

been initialized. This can be exactly characterized—running ALPACA yields a program interval

I1 with corresponding bounds.

Within the function NSR ResolveSources, a single call to resolve sources is given within

two if branches guarded by two distinct nondeterministic variables. ALPACA determines that

I1 can never be satisfied in the context of NSR ResolveSources, yielding a program interval of

I2 ≡ {[false, false]} What does I2 tell us in the context of this subsystem? It guarantees that no

invocation of NSR ResolveSources will result in an assertion violation.

This guarantee holds for invocations of post init ntp hook, which—containing no other asser-

tions itself—also yields the program interval encoding ψ-state unreachability: I3 ≡ {[false, false]}.

7.3.3 Subsystem 3

The third subsystem we consider is is made up of the callchain: post init ntp hook (in main.c)

calls NSR RemoveAllSources (in ntp sources.c) calls clean source record (in ntp sources.c)

calls assert.

Within clean source record there is an assertion checking for the existence of a pointer

field in a struct. As with the depth 1 function in the preceding subsystem, ALPACA computes

an exact I1—one with coinciding bounds.

In the context of NSR RemoveAllSources, the call to clean source record is made within

a for loop that is nondeterministically bounded. But ALPACA can prove that I1 cannot be

satisfied at the callsite within the for loop and returns the same interval as with Subsystem

2: I2 ≡ {[false, false]}. And as with Subsystem 2, ALPACA run over the caller function

post init ntp hook yields this same interval for I3.

92

7.3.4 Subsystem 4

The fourth subsystem we consider is the callchain: SRC DumpSources (in sources.c) calls

open dumpfile (in sources.c) calls source to string (in sources.c) calls assert.

The function source to string uses a switch statement to select an appropriate subfunction

for the enumerated types of a struct field. If the field does not hold a value specified by the

enum, the fall-through default case is an assertion violation. This assertion may appear strange,

because all enumerator values are given in the cases—so how could the struct field hold a value

outside of this range? But in C, it is legal to assign a value to some enumerator type that is not

found in the enumerator list. ALPACA characterizes this strange possibility of the default case

exactly, yielding program interval I1 with coinciding bounds.

Within function open dumpfile.c, there are two callsites for source to string. ALPACA

discovers three different pieces of reachability evidence to I1, each at the second callsite. Each

reachable characterization involves a symbolic variable not taking the value of ‘r’ (ASCII code

114), denoting read-only access to a file. The full formulae for the three reachability conditions

are given in the lower bound I2 in Table 7.1.

No more effective evidence is found, and the program interval is generalized to a non-Top

value. After this generalization, the remainder of the state space is proven to not reach a

ψ-state, and ALPACA returns with I2 encoding three different ways of reaching a ψ-state in

open dumpfile.c.

In the calling context of SRC DumpSources, the single callsite of open dumpfile is within an

unbounded for loop. ALPACA computes a program interval I3 whose upper bound denotes that

when there are one or more sources to save to file, and when I2 is satisfied, a ψ-state may be

reached.

7.3.5 Observations

We summarize the program intervals computed at the function boundaries for each subsystem

in Table 7.1. Subsystems 1–4 are given in the columns. For each subsystem, the upper bound

computed by ALPACA in the depth i function is given in the Ii row, and its corresponding lower

bound, Ii, is given in the row below. As Subsystem 4 has a lengthy I2, we just use its name in

93

Subsys. 1 Subsys. 2 Subsys. 3 Subsys. 4
I1 A ≤ B F 6≡ 0 G ≡ 0 H 6≡ 1 ∧H 6≡ 0
I1 A ≤ B F 6≡ 0 G ≡ 0 H 6≡ 1 ∧H 6≡ 0

I2 2 ∗ C ≤ D false false (H ≡ 0 ∧ I 6≡ 0 ∧ (1 ≤ J −K)
∧L 6≡ 0 ∧M 6≡ 114)

∨(N 6≡ 0 ∧H ≡ 0 ∧ L 6≡ 0 ∧M 6≡ 114)
∨(P 6≡ 0)

I2 2 ∗ C ≤ D false false (H ≡ 0 ∧ I 6≡ 0 ∧ (1 ≤ J −K)
∧D ≤ 0 ∧L 6≡ 0 ∧M 6≡ 114)

∨(N 6≡ 0 ∧H ≡ 0 ∧ L 6≡ 0 ∧M 6≡ 114)
∨(P 6≡ 0 ∧H 6≡ 0 ∧ L 6≡ 0 ∧M 6≡ 114)

I3 E 6≡ 0 ∧ 0 ≤ D false false I2 ∧Q ≥ 1
I3 E 6≡ 0 ∧ 0 ≤ D false false I2 ∧Q ≥ 1

Table 7.1: Computed upper and lower bounds for each depth i function across subsystems.

I3 and I3 rather than relisting the formulae. Each capital letter in a formula refers to a distinct

symbolic variable. For instance, variable H in Subsystem 4 is found in I1, I2, and I3; while

variable A in Subsystem 1 only appears in I1. Although the subsystems examined included the

C data types int, char, and unsigned int, we do not make the distinction between types in

the table.

Across the four subsystems in this case study, an application of modular ACA was able to

propagate nontrivial ψ-state reachability information across function boundaries in most cases.

In Subsystem 1, the information relating symbolic variables A and B in the depth 1 function

is lost, as a new assertion in the depth 2 function—formulated by variables C and D—ends up

composing its I2; this leaves A and B as free variables.

In two cases—Subsystems 2 and 3—ALPACA proves that assertion violations are unreachable

in the two outermost function contexts. This is the best case, assuming an assertion violation

always reachable in a depth 1 function.

In the other two cases, the program interval computed on the depth 2 function, I2, has

noncoinciding bounds. In Subsystem 1, the upper bound of I3 depends on some file existing.

Depending on the expected probability of that file existing, the approximation in I3 computed

by ALPACA is more or less helpful. For instance, if the file usually exists, the characterization

in I3 is not very informative, as we are told that with the usual case of I3, there may be an

94

assertion violation. But if the file never exists when the function is called; then I3 tells us we

will never hit an assertion from the context of the depth 3 function. In Subsystem 4, the upper

bound I3 becomes slightly more constrained in the outermost function, and the upper bound

can be satisfied if there is one or more sources to write to file, and any of the conditions in I2

are satisfied.

For ACA to produce informative program intervals in the modular context of this case study,

it is desirable to propagate intervals with coinciding bounds to other contexts. Noncoinciding

bounds represent some degree of overapproximation in the characterization given by I. In all

four cases, the first computed program interval, I1, has coinciding bounds. This is helpful, as it

allows calling contexts to reason over the exact conditions describing ψ-state reachability at the

callsite.

This case study applied program intervals in such a way that sound may information is

propagated across boundaries via I, as described in Sec. 7.2.4. But it is also possible to imagine

propagating the sound must information in I across function boundaries. To do so, you must give

full definitions (or exact output specifications) of functions—so that no unsound overapproximation

is introduced in I, and embed assert(¬I) at the callsite. If that assertion is violated in an

outer context, there is definite proof of reachability in the outer context. Complementary to our

case study, this would produce a succession of propagated lower bounds: I1, I2, I3.

7.4 Threats to validity

We examined a small sample of the subsystems that make up the chrony codebase, and do not

claim that the four we examined are representative of all of chrony. This case study does suggest

that ALPACA can be applied in a modular way to portions of medium-sized systems outside of

SV-COMP.

One threat to validity is the assumption we make that functions external to the one being

examined are side-effect free. This is a “soundiness” [148] assumption made to make the

application of analysis tools more effective. To mitigate this threat, we examined by hand that

no variables relevant to ψ-state reachability are mutated, but this check could be automated

by a cheap static analysis that tracks sets of variables that have been written to. However, if

95

there is a large amount of mutation in global state involving ψ-state reachability, then a modular

approach is necessarily limited in its effectiveness.

Another threat is in modeling nondeterminism for the ALPACA tools. While we try to apply

correct transformations to model arbitrary choices with SV-COMP primitives, as the process is

semi-automated it is possible we have altered the semantics of the programs. To mitigate for

this threat we check that the program intervals computed make sense applied to their respective

original functions.

The computed constraints are fairly simple and in all but one case only a few conjuncts

long. We need to see if this application of modular ACA is effective when contexts encode more

complex constraints.

7.5 Conclusion

This chapter presented an exploratory case study in applying modular ACA to the software

system chrony. We looked at subsystems of chrony consisting of function callchains ending with

an assertion. We reused the upper bound computed by ACA in one calling context to compute

informative program intervals in an expanded calling context.

On a small sample of four subsystems, we found that nontrivial ψ-state reachability can be

propagated across function boundaries in most cases. Using our modular approach, either one or

the other of may or must information can be passed from one context to another.

96

Chapter 8

Conditional Quantitative Analysis

In this chapter of the dissertation,1 we leverage the framework of ACA to address the simultaneous

challenges of scalability and accuracy in computing likelihood estimates of reaching a program

state. By factoring out the parts of the state space that do not need to be explicitly quantified from

what remains, a fine-grained quantitative analysis can be focused on a potentially much smaller

portion of a program’s state space. The portions that do not need to be explicitly quantified

can be characterized as such using guarantees computed by overapproximating analyzers; these

characterizations serve as a conditioning to drive underapproximators to explore the remaining

state space. The scalability of the former helps focus the accuracy of the latter.

Imagine a program that contains 24 distinct execution paths, and you are interested in

quantifying the likelihood of reaching a set of ψ-states that—unbeknownst to you—is shared by

4 of these paths. To solve this problem, we introduce the idea of conditional quantitative analysis

(CQA). This analysis takes as input a program interval I (output by ACA), which delineates a

subspace of the program; this characterization is used to condition precise analyses to consider

only the portions of the program where these 4 paths may lie. If other portions of the program

are guaranteed to avoid ψ-states, we do not want to waste time exploring or quantifying each

path in this subspace.
1This chapter is a variant of the 2020 TSE paper “Conditional Quantitative Program Analysis” [100] that

has been integrated into the dissertation by adopting common terminology and reducing redundancy. This work
was done in collaboration with colleagues from Imperial College London, Mateus Borges and Antonio Filieri.
Mateus and Antonio developed the quantitative analyses. Mateus extended the CIVL symbolic execution engine
to implement probabilistic and statistical exploration strategies described in [99] and [95].

97

ε
δ

γ
β

α

(a) Example State Space

##
#

####
#

##
##

##

(b) PSE

#
#

#
#

#
#

.5

.6

.6
#
#

#
.8

.5

.4

.5
#

#
#

#
.5

.8

.5

.5

.7
#

#
#
#

#
.5

.5

.5

.5
#

#
#

.6

.8

.5

.3

(c) SSE

#

(d) CQA

Figure 8.1: Comparing state-space exploration and path quantification costs

Fig. 8.1a depicts the state space of this program. The program is visualized as an execution

tree, where nodes represent branch points, and edges one of the true or false branches taken. Each

path from the root node to a leaf node represents a feasible program execution; each subpath in

the tree is associated with a conjunction of constraints denoting the set of inputs that follow the

same branch sequence during program execution. The execution path common to all diagrams

in Fig. 8.1 is given by the inputs satisfying α ∧ β ∧ γ ∧ δ ∧ ε, annotated in Fig. 8.1a. Execution

paths reaching a ψ-state have green leaves; those that do not are colored orange.

The operation of three different forms of quantitative program analysis on the state space

in Fig. 8.1a is depicted in Fig. 8.1b–8.1d. These analyses will be sketched here and discussed

in more detail in Sec. 8.2. The first two analyses we will consider are probabilistic symbolic

execution [99] and statistical symbolic execution [95].

One possible run of probabilistic symbolic execution (PSE) is shown in Fig. 8.1b. At the

termination of each feasible program execution, the collected path condition is quantified using a

model counter, which counts the number of distinct solutions that satisfy a propositional formula

(e.g., a path condition). In our context, calling a model counter yields the number of inputs that

flow down an execution path. The count measure of executing this path is given by the resulting

count divided by the count of the entire input domain. In Fig. 8.1, calls to a model counter are

given by a ‘#’ (green representing the count of inputs on a path reaching a target state; orange,

the count on a non-reaching path).

There is a systematic sweep of the state space in Fig. 8.1b, which allows much of the left

subtree—including two paths reaching target states—to be quantified; the explored state space is

shaded in blue. But there is a significant portion of the right subtree that cannot be analyzed

due to exhaustion of resources. There are also a large amount of calls to the model counter (one

98

for every path condition), each of which can be expensive.

A possible run of statistical symbolic execution (SSE) is given in Fig. 8.1c where computed

branch probabilities annotate both explored outcomes and the states along paths reaching those

outcomes. Most importantly, SSE biases the exploration towards the paths with the most

unexplored input mass first. Note that some states missed by the systematically exhaustive

technique, namely the rightmost path in Fig. 8.1c, are quantified using a statistical approach.

Three of the four distinct path conditions leading to the target states are missed, but the

path reaching a target state that has the most input mass is quantified. Though the statistical

procedure halted before the program was explored exhaustively, the fraction of the total input

mass is significantly higher due to path sampling and pruning.

In constrast to both PSE and SSE, the framework of CQA only needs to explicitly quantify

the green regions of Fig. 8.1d and in many cases the remainder of the state-space can be quantified

implicitly—using the laws of probability and simple arithmetic. Thus motivated, we now look to

the kinds of guarantees required in safety-critical systems.

Modern safety-critical systems are software-intensive. While such systems undergo traditional

verification and validation processes to detect and remove faults, they also go through a certifica-

tion process that aims to demonstrate their absence. International standards for such systems

establish requirements for certifying the software’s contribution to overall system safety across a

range of domains including: avionics [186], industrial robotics [127], personal care robotics [129],

railway [92], automotive [128], and medical software [125]. Meeting these standards is essential,

but they present substantial verification and validation challenges above and beyond those of

traditional software [117].

Safety certification standards vary, but all represent a complex undertaking that includes, for

example, demonstration of bi-directional traceability between requirements and implementation

elements and achieving rigorous forms of implementation coverage. It comes as no surprise

that the primary means of demonstrating that an implementation meets a safety requirement is

achieved through testing. In fact, testing is used in myriad ways across the breadth of application

domains and associated standards—Nair et al.[164] identify 13 different forms of testing evidence

that can be incorporated into safety arguments. For example, structural coverage evidence, such

as MC/DC that is required for avionics software [186], robustness evidence, such as that which is

99

achieved using fault-injection to meet automotive standards [128], and reliability evidence, such

as that which is required to certify functions to IEC 61508 safety integrity levels (SIL) [126].

The increasing cost-effectiveness of automated formal methods and static analyses has led

certification standards, e.g., DO-333[187], and researchers to explore the types of evidence they

can contribute to safety arguments to complement evidence from testing, e.g., [65]. In the context

of a safety argument, such methods tend to provide all or nothing evidence—they can prove a

property, e.g., through sound overapproximating model checking [60], or they cannot.

In this chapter, we investigate combinations of static analysis methods that can provide a

more gradual, quantitative form of evidence that can contribute to safety arguments. Our work

is motivated by Ladkin and Littlewood’s call for the increasing use of statistical evaluation in the

certification of critical software [139, 140]. Their perspective is motivated by the fact that IEC

61508 defines SIL levels in statistical terms, e.g., a SIL level 4 function has an average probability

of failure of less than 10−4 per invocation,2 yet few cost-effective test methods exist to directly

provide such evidence.

The challenges of testing ultra-reliable systems have long been known. Butler and Finelli [46]

observed that achieving confidence in a very low probability of failure requires an exorbitant

amount of testing. This challenge has been mitigated to an extent by advances in underlying

technologies, e.g., high-fidelity simulation systems that can run in faster than real time and

that can be executed in parallel [170], yet testing for high, much less ultra, reliability remains a

significant obstacle.

Our insight is that two complementary forms of static analysis, when combined synergistically,

yield a cost-effective method for demonstrating that functions achieve extremely low probability

of failure. For completing subjects across the study, one instantiation of this technique computes

a mean and median probability of failure below 10−10 and 10−38, respectively. This would be

sufficient to easily discharge the evidentiary requirements for a low demand SIL 4 function.

The first analysis targets the fact that a key component of the cost of reliability testing

comes from the need to resample equivalent program behavior. It is not obvious that two inputs

will lead to equivalent behavior from a black box perspective, but when testing is permitted to
2This is for functions that are invoked relatively infrequently which is referred to as low demand in the standard;

functions invoked frequently or continuously frame requirements in terms of the number of failure-free hours of
operation.

100

observe the internal behavior of software, equivalence can be detected. This is precisely what

symbolic execution techniques do [135] and reliability-focused extensions to symbolic execution

can quantify the probability mass of a set of equivalent inputs [99, 94, 95]. This allows a single

non-failing test input to accumulate all of the probability mass associated with its equivalent

behaviors, which can greatly accelerate the process of reaching a reliability threshold.

The second analysis targets the fact that when systems enter the certification process they

have already been thoroughly validated [117]. Our insight is that in this setting one can formulate

a sound static analysis to partition the program input space into two subspaces—one that may

lead to failure and one that definitely does not lead to failure [101]. The latter of these can be

skipped entirely when performing the above reliability analysis and the former can be used to

condition the application of the reliability analysis, allowing it to focus on a smaller region of

program behavior to maximize its cost-effectiveness.

In this chapter, we study how these two analyses can be blended to create a new form of

quantitative static analyses that can produce guaranteed bounds on the probability of violating

a safety property. Unlike statistical methods [122, 216], which can only produce a probabilistic

confidence on the soundness of the results based on statistics on the outcome of many test runs

of the program,3 the static analyses we focus on in our work provide mathematically sound

guarantees on the bounds for the probability of violations, and thus meet the strict evidentiary

requirements for the above standards, e.g., [187].

Quantitative static program analysis has been studied for more than two decades, e.g.,

[176, 162], but only recently have fully automated techniques been developed that can scale to

non-trivial code bases. Researchers have built on developments in increasingly scalable path-

sensitive analyses, e.g., [133, 48, 51, 215], and increasingly scalable techniques for model counting

of logical formulae, e.g., [18, 15, 108, 205, 152, 13, 37], to produce several families of techniques

which we term probabilistic symbolic execution (PSE) [99, 94] and statistical symbolic execution

(SSE) [95].

These techniques hint at the potential of combining non-quantitative program analyses, like

symbolic execution, with quantitative analysis techniques, like model counting. We take this a
3For a property ψ, a probabilistic guarantee is of the form Pr(p¬ψ ∈ [a, b]) ≥ δ, where p¬ψ estimates the

probability of violating ψ and δ < 1 is a confidence value bounding the probability of the produced interval being
incorrect (e.g., [144, 4, 216]).

101

step further in presenting a novel algorithmic framework for conditional quantitative program

analysis (CQA) that blends evidence from multiple static analyses to extend the scalability,

accuracy, and applicability of quantitative program analysis.

The history of combining non-quantitative static analyses to improve cost-effectiveness dates

back at least three decades, e.g., [207]. We use the ACA framework to precisely characterize the

regions of a program’s execution space that always satisfy (or always violate) a given property.

Whereas individual analyzers may be limited in their ability to cope with aspects of a program or

state-space structure, ACA harvests and blends their partial results to produce a comprehensive

description of program behavior. The key to CQA is the insight that ACA-computed descriptions—

rendered as logical constraints formulated over program input variables—can be leveraged to

focus the application of different forms of quantitative analyses, which has the potential to make

them more efficient and more accurate.

Understanding the potential improvements that the algorithmic variants of the CQA framework

offer relative to existing state-of-the-art quantitative static analyses, such as [99, 94, 95], requires

empirical evaluation. Unfortunately, no benchmarks exist that focus on the specific challenges in

evidence generation for certification of safety-critical software systems.

Developing a broad and representative benchmark for this class of problems is a worthwhile

pursuit, but in this work we only take a modest first step by customizing an existing verification

benchmark—SV-COMP [195]. The benchmark is designed to stress automated static analysis and

verification tools, but to reflect certification challenges, benchmark programs should exhibit low-

probability property violations—like those that might slip through development into a certification

process. In Sec.8.3 we describe the systematic selection of 136 C programs, comprising more

than 385,000 SLOC, for which the probability of a property violation is less than 10−4. This

threshold was chosen because it corresponds to the failure probability threshold required to meet

IEC 61508’s SIL 4 standard. As our evaluation reveals, CQA is capable of establishing a much

lower probability of failure than the SIL 4 requirement and can produce probability guarantees

that were previously thought to be completely infeasible to achieve [46], e.g., less than 10−35 in

under 15 minutes on Problem10 label48.

The next section presents background and the prior work on quantitative and conditional

program analysis on which we build. Sec.8.2 presents the foundations of the CQA framework.

102

Sec.8.3 presents an evaluation that explores the algorithmic tradeoffs between CQA and existing

approaches and demonstrates that CQA extends the state-of-the-art.

8.1 Background

8.1.1 Basic Probability Definitions

The possible outcomes of an experiment are called elementary events. For example, flipping a

coin can produce one of two elementary events: heads or tails. Elementary events are mutually

exclusive, and the set of all elementary events is called the sample space. An event is a set of

elementary events.

Definition 10 (Probability distribution). Let Ω be the sample space of an experiment. A

probability distribution on Ω is a function associating to each subset of Ω a real value between 0

and 1: Pr : 2Ω → [0, 1] that satisfies the Kolmogorov’s probability axioms [173]:

• Pr(e) ≥ 0 for every elementary event e

• Pr(Ω) = 1

• Pr(A ∪B) = Pr(A) + Pr(B) for all events A,B where A ∩B = ∅

(Ω,Pr) is called the probability space.

Definition 11 (Conditional probability). Let (Ω,Pr) be a probability space. Let A and B be

events with Pr(B) > 0. The conditional probability of A given B (i.e., the probability of A

assuming B has occurred) is defined as Pr(A |B) = Pr(A∩B)
Pr(B) .

Definition 12 (Law of total probability). Let (Ω,Pr) be a probability space and {Ei | i =

1, 2, 3, . . . , n} be a finite partition of Ω, where ∀i.Pr(Ei) > 0. Then, for any event A, Pr(A) =∑n
i=1 Pr(A |Ei) · Pr(Ei).

The probability mass function yields the probability that a discrete random variable is equal

to some value. The probability mass of a set of values is the summation of the probability mass

function applied to its elements. A logical formula is the characteristic function of the set of

its models, thus the probability mass of a logical formula is the probability mass of each of its

models.

103

8.1.2 Quantifying Logical Formulae

Given a logical formula and a probability distribution over the free variables in the formula,

there are a growing number of cost-effective methods to estimate the probability mass contained

in the formula. Some of these estimates are exact, e.g., when the formula lies in the domain

of linear integer arithmetic [18]; in other cases the accuracy of estimates are probabilistically

bounded [39, 33].

8.2 Conditional Quantitative Analysis

The problem this chapter addresses is determining how likely it is that a ψ-state is reached within

some program. Unlike the classical formulation of reachability, where either a path to a ψ-state

exists or not, quantifying the probability of reaching a ψ-state requires considering many paths,

in general.

One approach to solving the problem of how to quantify the probability mass of inputs

reaching a ψ-state is via brute force, i.e., enumerate all program paths and sum the mass of

those reaching a ψ-state, as proposed in [99]. Another approach is to fuzz the input space to get

a statistical bound on the probability of reaching a ψ-state [111, 103, 36]. The first approach

suffers when the state space is large, while the latter suffers when the probability of reaching a

ψ-state is exceedingly rare.

The solution advocated in this chapter is to first determine which regions of the input space

can lead to a ψ-state, and only quantify this reduced portion of the program state space. We call

this a conditional quantitative analysis.

Algorithm 5 defines the conditional quantitative analysis algorithm using the specified internal

functions. CQA takes as input a program, a reachability property (ψ), and a probability

distribution over the program’s input variables; and outputs a quantitative characterization that

bounds the input probability mass reaching ψ. The “lower” quantity (l) provides a sound lower

bound on ψ-reaching inputs, i.e., l quantifies the sufficient conditions on inputs reaching ψ, while

the “upper” quantity (u) provides a safe upper bound on ψ-reaching inputs, i.e., u quantifies the

necessary conditions.

CQA begins by initializing the lower and upper quantifications to zero in line 2. The function

104

Algorithm 5 Conditional Quantitative Analysis
Input: Program P , reach. property ψ, prob. distribution X
Output: Lower/upper quant. of ψ-reaching inputs [l, u]

1: procedure CQA(P,ψ,X)
2: [l, u]← [0, 0]
3: I ← generate intervals (P,ψ)
4: for each I ∈ I do
5: if I ≡ I then
6: e← estimate (I,X)
7: [l, u] += [e, e]
8: else
9: [l, u] += quantify in bounds (P,ψ, I,X)

10: end if
11: return [l, u]
12: end procedure

Specifications for CQA Functions

generate intervals (P,ψ)
Input: Program P , reachability property ψ
Output: Set of disjoint logical intervals (see Defs. 3–5)

estimate (f,X)
Input: Logical formula f , probability distribution X
Output: Estimate of Pr(f)

quantify in bounds (P,ψ, I,X)
Input: Prog. P , reach. prop. ψ, interval I, prob. dist. X
Output: [Overappr. of Pr(I), Underappr. of Pr(I)]

generate intervals on line 3 takes a program and a reachability property and returns a nonempty,

finite set of intervals that describe the portions of the state space that may/must reach a ψ-state.

The intervals must satisfy the safety and disjointness properties of Definition 1 and Definition 2,

respectively. A trivial implementation of generate intervals would return the set {[false, true]},

which contains a single interval that implies all program behavior—thus safely but trivially

bounding ψ-state reachability. A more informative implementation of generate intervals could,

for instance, return the set {[α ∧ β, α], [¬α ∧ γ,¬α ∧ γ]}, which contains two intervals: the first

denotes that a ψ-state must be reached when the program inputs satisfy α∧β (the interval’s lower

bound), and that a ψ-state may be reached when the program inputs satisfy α (the interval’s

upper bound); the second denotes an interval whose lower and upper bound coincide—this means

that a ψ-state must be reached when the inputs satisfy ¬α ∧ γ.

Lines 4–9 use these computed intervals to focus quantification efforts within the state space

105

delineated by a given interval. There are two cases to consider when deciding how to quantify

ψ-state reachability within an interval. In one case—line 5—, the lower and upper bounds

coincide, so we can directly quantify the formula given by its upper (or equivalent lower) bound.

This is done by the function estimate, which takes as input a logical formula and a probability

distribution, and computes either an exact or a (probabilistically bounded) approximate estimate—

e—of the probability mass that satisfies the given formula. In the case of coinciding bounds, the

computed probability mass e is necessary and sufficient, so e is added to both the lower and

upper quantifications in line 7.

The other possibility—line 8—is that an interval’s bounds do not coincide, in which case

we must explore the region of the state space between the lower and upper bounds in order to

quantify the ψ-reaching probability mass contained within the interval. The function in line

9—quantify in bounds—takes as input a program, a reachability property, a logical interval from

the set I, and a probability distribution, and returns a pair whose first part quantifies a safe

overapproximation of the probability mass reaching I—the lower bound of I, and whose second

part quantifies a safe underapproximation of the probability mass reaching I—the upper bound

of interval I. The output in line 10 gives the lower and upper bounds on the probability mass of

reaching a ψ-state.

Theorem 3 (Termination). Algorithm 5 terminates if generate intervals, estimate and quan-

tify in bounds terminate.

Proof. The loop in lines 4–9 will run a bounded number of times because I is a finite set, so

if each function terminates, Algorithm 5 will terminate. All functions called within CQA are

required to terminate due to both time and space bounds, guaranteeing that CQA terminates. �

Theorem 4 (Correctness). Algorithm 5 terminates with l providing a sound lower bound and u

a safe upper bound on the probability mass of a program reaching a ψ-state, given some input

probability distribution.

Proof. The correctness of CQA’s output follows from four observations: (1) the function

generate intervals requires all program behavior reaching a ψ-state to be contained within I,

implying all probability mass of reaching a ψ-state is also in I, (2) the same function requires

the intervals of I to be disjoint, so no probability mass is quantified twice, (3) the functions

106

estimate and quantify in bounds are required to yield a sound underapproximation and a safe

overapproximation on the probability of reaching a ψ-state within the state space bounded by an

interval, and (4) the estimates on each interval’s probability mass are accumulated in l and u in

either lines 7 or 9. So upon termination of the loop in line 10, l and u correctly provide lower

and upper bounds on the probability mass of reaching a ψ-state. �

The remainder of this section discusses some of the possible instantiations of the functions

used within Algorithm 5. These instantiations are used in the evaluation of CQA, discussed in

Sec.8.3.

8.2.1 Instantiation of generate intervals

One non-trivial instantiation of generate intervals is given by the alternating conditional analysis

framework. The intervals computed by ACA satisfy the requirements of generate intervals, in

that its output consists of a lower bound that is guaranteed to be subsumed by all reachable

paths (the must information), and an upper bound that is guaranteed to subsume all reachable

paths (the may information).

Across the 136 subjects in this study, the instantiation of generate intervals returns intervals

with noncoinciding upper and lower bounds on 129 subjects; 15 of these subjects are composed

of multiple intervals. The upper and lower bounds coincide on the remaining 7 subjects, one of

which is composed of multiple intervals.

8.2.2 Instantiation of estimate

Inputs can be assumed distributed uniformly over their domains or according to a given input

distribution called a usage profile [94]. For simplicity, a uniform distribution over the input

domains will be assumed throughout the chapter; extension to arbitrary usage profiles is orthogonal

to our contributions and can be straightforwardly implemented as in [94] and [38].

For a finite input domain D, computing the probabilities Pr(c) of a constraint c can be reduced

to computing the ratio between the number of solutions of](c ∧D) and the size of the domain

](D). Model counting procedures may in general be intractably complex [202]. Nonetheless, as

with constraint solving problems, several algorithms are available for the efficient solution of

107

specific fragments of the problem. Linear integer constraints can be efficiently and exactly solved

using Barvinok’s algorithm [18] (with off-the-shelf implementations including Latte [15] and

Barvinok [205]). Nonlinear constraints over numerical variables can rely on progress in convex

analysis [45], interval constraint paving [108, 169], and the approximate methods developed in

both program analysis [38, 89, 189] and statistical machine learning [184]. Model counting over

string domains includes exact counters for regular languages [13], exact bound computation [152],

and mixed string/numerical counters [200].

More general—though usually more expensive—]SAT and]SMT solvers also exist for model

counting over mixed theories (e.g., [52, 106, 55]). The growing research interest in model counting

for program analysis and artificial intelligence is driving a substantial research effort discovering

new fragments of theories where efficient solutions are possible (e.g., [120, 53]) and are expected

to directly benefit quantitative program analysis in the coming years.

As model counting is an orthogonal concern for CQA (equally impacting all the existing

quantitative analysis techniques), for the implementations reproduced in this chapter we will

focus on linear integer constraints.

8.2.3 Instantiations of quantify in bounds

Following the principle of conditional program analysis, because all behaviors outside the program

interval I have already been analyzed by generate intervals,4 quantification techniques can focus

only on the residual behaviors, i.e., program paths satisfying the assumption α ≡ ¬Iψ ∧ Iψ.

We require each logical interval I composing I to be disjoint, and due to this, each I can

be reasoned about separately. In probabilistic terms, this can be formalized as computing the

conditional probability Pr(Iψ|α), instead of Pr(Iψ), as the analysis is restricted to the subspace

of the sample space that encloses all inputs satisfying α. Recalling Definition 11 (conditional

probability), for each disjoint interval Ii and its corresponding assumption αi we obtain:

Pr(Iψ|αi) = Pr(Iψ ∧ αi)
Pr(αi)

. (8.1)

4Recall that generate intervals characterizes behaviors that must reach a ψ-state, i.e., Iψ ; and upon termination
guarantees that all inputs outside the upper bound, i.e., ¬Iψ , must not reach a ψ-state. These two behaviors lie
outside the interval Iψ , in that they lie “below” the lower bound and “above” the upper bound, and have already
been characterized by some analyzer; so they may safely be ignored by quantify in bounds.

108

The total probability Pr(Iψ) is the result of summing over the conditional probabilities multiplied

by the respective Pr(αi), as in Definition 12.

We now discuss three possible instantiations of quantify in bounds; the first being a direct

application of model counting and the last two based on symbolic execution. Each satisfies the

requirements of quantify in bounds in that it: (1) safely overapproximates its lower bound I

and safely underapproximates an interval’s upper bound I, and (2) is amenable to conditioning.

The second requirement is fulfilled simply by each technique respecting the semantics of assume

statements. As the intervals of I are guaranteed to be disjoint, the conditioning comes for free,

because each technique will reason only about the state space encoded by the disjoint formulae.

We will refer to CQA whose quantify in bounds has been instantiated with model counting,

probabilistic symbolic execution, and statistical symbolic execution, as CQA#, CQApse, and

CQAsse, respectively.

8.2.4 Counting lower and upper bounds

The set of logical intervals I can be passed to a model counting procedure that converts its

bounds into a numerical interval describing the contributions to the probability mass, i.e., by

summing over the counts of the lower bounds and the counts of the upper bounds.

Applying model counting to an interval’s lower bound and upper bound yields quantifications

of these formulae that are either exact or (probabilistically bounded) over- and underapproximate

estimates on the probability mass defined by I and I, respectively; this satisfies the postcondition

of quantify in bounds.

This instantiation of quantify in bounds is straightforward but can be very imprecise depending

on the precision of the bounds. The potential imprecision can be improved upon by focusing

underapproximate analyses within the lower and upper bounds. Any behavior that is analyzed

within the interval is guaranteed to improve the bounds, e.g., if ψ is found, then the lower bound

raises, and if ¬ψ is found, the upper bound drops. We discuss two techniques that offer this kind

of improved precision in Sec. 8.2.5 and Sec. 8.2.6.

109

8.2.5 Probabilistic Symbolic Execution

Probabilistic symbolic execution (PSE) extends symbolic execution by computing the probability

of each execution path being triggered by a program input [99]. As in standard symbolic execution,

a program execution path (or program path) is uniquely identified by its path condition.

Program paths are classified in one of three ways, as: (a) reaching a ψ-state (denoted with a

ψ superscript), (b) missing a ψ-state (denoted with a ¬ψ superscript), or (c) truncated (denoted

with a ? superscript) because the execution along a path failed to reach a ψ-state within the

prescribed depth or time limit. This classification of the execution paths induces a partition on the

path conditions into three sets: (a) PCψ = {PCψ
1 , . . . ,PCψ

i }, (b) PC¬ψ = {PC¬ψ1 , . . . ,PC¬ψj },

and (c) PC ? = {PC ?
1, . . . ,PC ?

k}. Because each path gives rise to a disjoint path condition, a

lower bound on the probability of reaching a ψ-state is given by

Prψ(P) =
∑
i

Pr(PCψ
i). (8.2)

The probability of missing a ψ-state, Pr¬ψ(P), and the truncated probability, Pr?(P), have

analogous definitions. As the union of path conditions induces a partition of all execution paths,

the sum of these probabilities is 1, entailing that with any two of them the third can be computed

arithmetically.

When the analysis of PSE is focused within an interval I, the path conditions within PCψ will

raise the lower bound, or safely overapproximate I’s probability mass; and the path conditions

within PC¬ψ will dually drop the upper bound by the probability mass contained in the set, so

PSE safely underapproximates I’s probability mass. Thus PSE satisfies the postcondition of

quantify in bounds.

8.2.6 Statistical Symbolic Execution

PSE inherits the path explosion issue of symbolic execution, in addition to the cost of quantification

procedures, which may prevent it from exploring the entirety of a program’s executions.

Statistical symbolic execution (SSE) [95] addresses the problem of incomplete exploration by

prioritizing the exploration of paths based on their probability mass. At each branch point, SSE

110

computes the probability of moving towards each of the possible successor states by quantifying

the solution space of the branch condition. The exact probability of a path is computable after

its complete traversal.

As a sampled path is completely characterized by its path condition, it does not need to

be sampled again, and can be pruned out of the sample space. This pruning allows for faster

convergence of the statistical estimator to a prescribed accuracy, deterministically guaranteed

termination, and more efficient coverage of rare events (i.e., execution paths with low probability).

The classification of program paths into three distinct sets is the same as with PSE, as is

the way in which the probability mass within the sets PCψ and PC¬ψ is used to satisfy the

postcondition of quantify in bounds.

8.3 CQA Evaluation

In this section, we explore the cost and effectiveness of conditional quantitative analysis (CQA)

compared to the state-of-the-art—namely probabilistic symbolic execution (PSE) and statistical

symbolic execution (SSE)—, as well as how bounds within CQA can focus further analyses. Our

goal is to provide information about the runtime, accuracy, and cost of quantification across

techniques, when applied in a context that captures challenges for evidence generation for safety

certification of software components. To this end, we look at three research questions.

RQ1 How cost-effective is CQA compared to the state-of-the-art in terms of runtime and accuracy

of probabilistic bounds?

RQ2 How much quantification can be avoided using CQA?

RQ3 How does conditioning within CQA progressively focus quantitative analysis?

8.3.1 Algorithm Implementations

To maximize consistency in our evaluation of different algorithmic approaches we implemented

them on top of a common set of existing analyses. We use ALPACA, described in Chap. 5, since

it is the only tool we are aware of that implements a nontrivial instantiation of generate intervals

for computing sound conditional information to drive CQA. We made minor modifications to

invoke a model counter [205] to count computed intervals. ALPACA uses the civl symbolic

111

executor for C programs [192]; it also enabled us to use a portfolio of 9 different analyzers

that participated in the SV-COMP’19 competition for the synthesis of conditioning intervals,

namely: CBMC [138], CPA-BAM-BnB [11], CPA-Seq [78], ESBMC-incr [163], PeSCo [181],

Symbiotic [194], UltimateAutomizer [118], UltimateTaipan [109], and VeriAbs [79].

For consistency with ALPACA, our implementations of PSE and SSE both build on civl. PSE

extends the default depth-first search in civl to report the current PC at the end of each path,

which will then be categorized as either PCψ, PC¬ψ, or PC?: PCψ for paths that end due to a

call to the SV-COMP function VERIFIER error(), PC¬ψ for executions terminating within

the time bound without invoking the error function, and PC? for paths that hit the search depth

limit. Only PCψ and PC¬ψ paths are counted, since Pr(PC?) = 1− (Pr(PC¬ψ) + Pr(PCψ)).

SSE is implemented following the design in [95], by annotating each explored node of the

symbolic execution tree with the fraction of the input domain reaching it (quantifying the path

condition up to the node). Transitions during SSE exploration are randomly chosen according

to the relative probability mass of the direct successor nodes, that is, for each direct successor,

the ratio between the fraction of domain that can reach it and the cumulative fraction of the

domain that can reach any direct successor. On backtrack, either due to termination of a path or

reaching the depth limit, SSE subtracts the probability of the final path condition from each node

along the way up to the root; nodes with a probability of 0 are pruned from the tree and thus will

not be visited again (intuitively, the probability mass annotating a symbolic node represents how

much of the executions through the node have not been explored yet; when 0, all such executions

have been explored and the node will not be sampled in subsequent runs). We use Barvinok [205]

for model counting (default parameters, no timeout). Using Barvinok off-the-shelf limits our

prototype to linear integer constraints.

Before counting, path conditions are first simplified using the Z3 solver [80] and then sliced

into independent subproblems that do not share symbolic variables (following the slicing rules

in [94]). The simplification step helps to mitigate the impact of Barvinok’s internal transformation

into Disjunctive Normal Form for inputs containing nested disjunctions.

112

8.3.2 Artifacts

All artifacts, including tools, subjects, and generated data are publicly available at bitbucket.

org/mgerrard/cqa.

International standards establish safety integrity levels (SIL) for safety-related functions. For

the highest integrity level the standard imposes a probability of violation per invocation of less

than 10−4—low demand mode for SIL4 [126].5 The selection and filtering of subjects suitable for

evaluating CQA was driven by this requirement that each subject has a probability of failure

below 10−4.

Our choice of building on ALPACA, which relies on analyzers that competed in SV-COMP,

naturally led us to consider the SV-COMP benchmark suite [195] since the analyzers generally

are able to process subjects in the benchmark and interpret SV-COMP annotation primitives, for

example, VERIFIER error(), whose reachability defines ψ-states in our evaluation. We begin

with the filtering process as described in Chapter 6.

In specific domains or applications, inputs are usually assumed as generated by an input

probability distribution. Unfortunately, this information is not available for any SV-COMP

benchmark, even when the benchmarks are components of real software systems. Consequently,

for our evaluation we assume a uniform input probability.6

For subjects passing the initial filter we ran the five considered quantitative analysis techniques

to determine whether any could compute a lower bound on the probability of violation that

exceeded 10−4. Such subjects do not reflect the type of rare violations that make certification

evidence challenging to produce, e.g., [139, 140, 46], so we removed them from our study. This

resulted in a final set of 136 C subject programs which average 2833 SLOC—only 6 of these

subjects have less than 100 SLOC and the largest is 9464 SLOC.
5More stringent probabilities are required for high demand contexts.
6Arbitrary discrete distributions can be reduced to mixtures of uniform ones over a partition of the finite

domain, as in [94] therefore supporting arbitrary discrete profiles would add a linear complexity factor in the size
of the partition; however, no input distribution is specified in SV-COMP.

113

bitbucket.org/mgerrard/cqa
bitbucket.org/mgerrard/cqa

8.3.3 Results

We report the results of running CQA and (unconditioned) PSE and SEE on the 136 subjects

in aggregated data; the full details of our experiments are included in the electronic appendix.7

These details include a variety of measures that capture characteristics of the subjects and their

analysis, for example, the number of paths explored, the number of gray paths whose exploration

was truncated at depth bounds, and the share of analysis time spent in model counting. We

reference these measures in the discussion of our results below.

Setup. We ran our analyses on a 2x 16-core Intel Xeon Gold 6130 server with 64GBs of RAM

running Ubuntu Linux 18.04. We established a timeout of 90 minutes for running any of the

implementations on a subject. It is not possible to determine the optimal depth limit for a given

subject ahead of time, so for this evaluation we used a depth limit of 1000 symbolic states for

both PSE and SSE.

Results overview. Table 8.1 provides an overview of our study results. There is a row for each

algorithmic variant, where CQA has three variants depending on the technique used to instantiate

quantify in bounds: CQA#, CQApse, and CQAsse. The columns classify the performance of

each technique by the number of subjects, out of 136, that share a particular outcome. The

Most acc. I and Most acc. I columns report on the number of subjects on which a technique

computes the most accurate lower bound, and upper bound, respectively. For the analyses that

complete, we report the Average runtime in seconds. The final three columns report on different

characteristics across runs. The Complete column lists the number of subjects for which the

technique finishes the analysis without timing out or being depth limited. The Timeout column

lists the number of subjects that the technique could not analyze within the 90-minute bound.

The Depth Limited column lists the number of subjects for which the technique hit the depth

limit—this only applies to analyses using PSE or SSE.

We note that a run of a technique may be both depth limited and timeout; for a given

technique, the counts for complete, timeout, and depth limited need not sum to 136. If two

techniques produce the same most-accurate bound (for either I or I), then both are counted as

having produced the most-accurate bound; thus the columns reporting on accuracy in the table
7Available at bitbucket.org/mgerrard/cqa.

114

bitbucket.org/mgerrard/cqa

Most Most Avg. Run characteristics

acc. I acc. I Time (s) Complete T/O Bounded

CQA# 80 8 1269 133 3 0
CQApse 113 77 2488 40 32 76
CQAsse 93 59 1418 21 57 63
PSE 51 54 1672 34 31 97
SSE 60 57 2886 11 54 76

Table 8.1: Summary of evaluation by technique

do not sum to 136.

RQ1 (time/accuracy): CQA improves the state-of-the-art in quantitative analysis by comput-

ing more accurate probability bounds than previous techniques, at a comparable cost. Across the

study, both CQApse and CQAsse produced more accurate lower and upper bounds than their

unconditioned counterparts. All CQA variants produce a greater number of most-accurate lower

bounds than the state-of-the-art. This is because the variety of analysis techniques used with

generate intervals can discover ψ-state reachability within state spaces in which unconditioned

PSE/SSE find little to no ψ-state reachability.

With respect to the upper bound, the instantiation of generate intervals used in this study

computes upper bounds that, when quantified directly with a model counter, are too approximate

to compete with the exhaustive techniques of PSE/SSE. Accordingly, CQA# computes the most-

accurate upper bound for the seven subjects in which the intervals given by generate intervals

coincide; the eighth subject is a degenerate case on which all techniques compute the same trivial

I. However, when quantify in bounds is instantiated with PSE and SSE, these approximate

bounds allow CQApse and CQAsse to produce 23 and 2 more most-accurate upper bounds than

unconditioned PSE and SSE, respectively.

Both CQA# and CQAsse complete in less time, on average, than the state-of-the-art. The

average runtime of CQApse is less time than SSE, but is nearly 14 minutes longer, on average,

than PSE; the tradeoff for the longer runtime is an increase in the accuracy of bounds produced

by CQApse.

Some of the increased accuracy in CQApse and CQAsse is a result of the provided conditioning

allowing these techniques to complete on more subjects than their unconditioned counterparts.

The time spent in generate intervals causes CQApse and CQAsse to time out on 1 and 3 more

115

subjects than PSE and SSE, respectively, but this time spent refining the conditioning allowed

CQApse and CQAsse to avoid being depth-bounded on 21 and 13 more subjects than PSE and

SSE, respectively.

Though the CQA variants produce a greater number of most-accurate bounds than PSE and

SSE, their strengths were found to be complementary across this study.

Figures 8.2 and 8.3 use linear diagrams [185] to depict the overlap between techniques for

achieving the most-accurate lower and upper bounds on given subjects, respectively. A linear

diagram is an alternative to Venn diagrams in showing the intersection between sets, in which sets

are depicted as horizontal lines across the diagram, and their intersection is given by overlapping

vertical segments. Each subject is demarcated by a vertical stripe. For example, the lefthand

side of Fig. 8.2’s linear diagram tells us that CQApse alone computes the most-accurate lower

bound for four subjects, then both CQApse and PSE compute the most-accurate lower bound

for the next six subjects, and so on. Note that the ith stripe in Fig. 8.2 does not necessarily

correspond to the same subject as the ith stripe in Fig. 8.3.

We highlight in gold those subjects on which some exhaustive technique (i.e., symbolic-

execution-based) could complete. No technique always produces the most-accurate bound, so

we give the average distance to that best bound as colored annotations laid over the linear

diagram, e.g., whenever CQA# does not produce the most-accurate lower bound, it is on average

1.7× 10−11 away from that best bound.

The main takeaway from Figs. 8.2 and 8.3 is that, in the context of this evaluation, conditioned

and unconditioned quantitative analyses can be seen as having complementary strengths in

bounding the probability of reaching a ψ-state. This is especially apparent from Fig. 8.3, where

the set of subjects for which CQA variants compute the most accurate upper bound are nearly

disjoint from those on which PSE/SSE perform the best.

The differences in magnitude between the average distance to the most-accurate bounds

between Figs. 8.2 and 8.3 are due to the fact that this study is done in the context of finding

ψ-states that have a low probability of occurring. This means that even if a technique like PSE

does not find any probability mass reaching a ψ-state, if the most-accurate lower bound is 10−27,

then PSE’s probability mass of 0 is still relatively close to the most-accurate lower bound. In

contrast, if some technique times out or hits a depth bound, the vast majority of the probability

116

CQA# 1.7× 10−11

CQApse 4.0× 10−11

CQAsse 2.2× 10−11

PSE 4.4× 10−11

SSE 6.7× 10−11

Figure 8.2: Linear diagram of overlap for most-accurate I.

CQA# 1.7× 10−1

CQApse 9.8× 10−2

CQAsse 7.5× 10−2

PSE 6.7× 10−2

SSE 5.7× 10−2

Figure 8.3: Linear diagram of overlap for most-accurate I. Sets of the most-accurate lower
(Fig. 8.2) and upper (Fig. 8.3) bound for each technique are depicted as horizontal lines, and their
intersection by overlapping vertical segments. Each subject is given by a vertical stripe; gold
stripes are subjects on which an exhaustive technique completes. The numbers give a technique’s
average distance to the best bound.

mass involves paths that do not reach a ψ-state may remain unaccounted for—e.g., in the worst

case for CQA techniques, all time is spent within generate intervals and the upper bound is not

lowered at all, as with email spec3 product29. So if one technique does not complete for a

subject on which another technique is particularly effective in collecting mass reaching ¬ψ-states,

the distance to the most-accurate upper bound can be many magnitudes more than to that of

the most-accurate lower bound.

The disjointness of each interval returned by generate intervals also offers the potential for

parallelism through separate interval quantification. While it is possible to merge each separate

interval into a single one and focus quantitative techniques within this larger interval—by

quantifying within the space described by the disjunction of each upper bound and the negation

of each of the lower bounds (see Sec. 8.2.4)—we observed a 2.9× speedup within CQApse by

quantifying each interval in parallel compared to doing so all at once.8

In terms of both runtime cost and effectiveness in computing accurate probability bounds,

CQA is a clear improvement on the state-of-the-art. But the two need not be competitors. The
8Merging disjoint intervals into a single one causes a blowup of clauses-to-quantify due to the presence of

disjunctions in the merged upper bound as well as disjunctions resulting from negating the conjuncted lower
bounds, increasing the cost of constraint solving and model counting in our experiments.

117

complementary strengths of CQA variants and unconditioned PSE/SSE observed across this

study recommends that both the conditioned and the unconditioned techniques should be applied,

if possible.

RQ2 (counter calls): As pointed out in previous work on quantitative techniques [99, 95],

in addition to the traditional cost of program analysis—e.g., constructing a program model,

exploring its feasible branches, etc.—there is a significant component of the cost that goes into

quantification, i.e., calls to a model counter. Being able to focus quantitative analyses on small

subspaces of a program can significantly cut down on the number of calls made to a model

counter. When an interval is exact, i.e., I ≡ I, this reduction can be drastic. (Note that, even if

the probability mass within a noncoinciding interval is relatively small, this interval may still

contain a large number of paths, necessitating a proportional amount of model count calls within

quantify in bounds.)

We restrict this discussion to comparing techniques among common subjects that complete.

When two techniques complete on a subject, they have produced the same probability bounds, so

the overall work to compute the bounds is fixed, and we can compare quantification head-to-head,

e.g., we can compare the exhaustive quantification done by PSE against that of CQApse, which

divides its work amongst ALPACA and PSE within intervals. Comparing on completing subjects

allows us to evaluate the effect conditioning has on the cost of quantification. The possible

improvement in quantification is related to how the probability mass outside of the conditioned

intervals is distributed across paths. If the probability mass is concentrated in a single path

outside of the intervals, then the improvement within CQA will be negligible (a single call saved);

but if there are many such paths then the improvement can be substantial.

On the single subject with noncoinciding intervals for which both SSE and CQAsse complete—

cdaudio simpl1—, SSE spends 1246 seconds issuing 48758 counter queries, while CQAsse spends

252 seconds issuing 18360 queries. For 24 of the subjects with noncoinciding intervals on which

both PSE and CQApse complete, CQApse reduces the number of counter queries and counter

time by 15%—with CQApse issuing an average of 15060 queries in 1233 seconds, and PSE issuing

an average of 17412 queries in 1424 seconds. The 25th subject with a noncoinciding interval on

which both PSE and CQApse complete—floppy simpl3—is an outlier in that CQApse issues

118

1750 queries in 3973 seconds, while PSE issues 1756 queries in only 368 seconds. The reason

for the large difference in count times is a combination of the fact that this subject has a large

number of symbolic variables and the conditioning includes a disjunctive formula, causing an

exponential blowup in each query’s clauses and slowing down CQApse’s overall quantification

considerably. This is a scalability issue specific to the model counter we used for the experiments

when handling disjunctive constraints in high-dimensional spaces. Different model counters may

offer different scalability tradeoffs for different classes of constraints, e.g., [39].

When CQA provides intervals that do coincide, then a significant number of model counts

can be avoided using CQA. This effect is observed on 7 of the 136 subjects in our study. On

one of those subjects—kbfiltr—it is possible to characterize this reduction since CQA#, PSE,

and SSE all complete; for the remaining 6, PSE and SSE do not complete. On the single subject

for which CQA’s intervals coincide and both PSE and SSE complete—kbfiltr—, the CQA

techniques spend under 1 second issuing 4 queries, while PSE spends 123 seconds issuing 600

queries, and SSE spends 211 seconds issuing 16408 queries.

The relation between reduced calls to a model counter and reduced overall analysis time

depends on the complexity of a program’s constraints. The subjects in this study have only linear

integer constraints, meaning programs containing more complex constraints will only further

highlight the benefit of fewer calls to a model counter.

RQ3 (focusing): This research question will not compare against the state-of-the-art but will

instead look at how the framework of CQA itself is used to progressively focus the accuracy of

its computed logical intervals. We assume for this question that the computed intervals do not

coincide, i.e., Iψ 6≡ Iψ, and that there is some uncertainty that can be progressively resolved. (If

this were not the case, and the lower and upper bounds of Iψ coincide, then the “focusing” is a

few calls to a model counter, as discussed in RQ2.)

When two bounds of an interval do not coincide, this means there is some amount of probability

mass implied by the upper bound of which we are uncertain, i.e., we do not know if this mass

leads to a ψ-state or not. CQA can focus further quantitative analyses within ¬Iψ ∧ Iψ, as

discussed in 8.2.4. Within this focused subspace of the subject, any probability mass proven

to lead to a ψ-state effectively raises Iψ (the lower bound), and mass proven to miss a ψ-state

reduces Iψ (the upper). We will refer to the reduction of uncertainty as tightening an interval.

119

a. b. c. d.

Figure 8.4: Signatures of conditioned PSE raising/reducing the lower/upper bound across different
subjects.

How do further analyses tighten an interval over time, e.g., is the upper bound first reduced,

followed by the lower?; is the rate of tightening linear? do intervals containing less probability

mass get tightened in less time than those containing more mass?

Figure 8.4 depicts how Iψ is tightened from below and from above across a sample of four

subjects9 whose bounds do not coincide; we will call each depiction a subject’s signature. The

x-axis of a signature gives the running time of a quantitative analysis, from 0 to 270 seconds.

The y-axis of a signature ranges from 0 to 1, and the gray areas represent the probability mass

whose uncertainty has been left unresolved at a given time. The y-axis is depicted on a log scale

in order to visualize miniscule changes in probability mass, ranging from 2.3× 10−187 up to 1.

This means that an upper bound of 1× 10−11 will look the same as an upper bound of 0.9, so

there can be a dramatic tightening of bounds that appears as slight reductions on the logscale

plot, e.g., the upper bound of signature d is eventually lowered to 4.7× 10−10, though no shift in

the upper bound is apparent in logscale. In Figure 8.4, the instantiated quantitative analysis is

PSE. The visual steps are an artifact of PSE reporting its probability mass findings in 15-second

intervals.

In the best case, a quantitative analysis will resolve all uncertainty, signified in a signature by

the absence of gray after some time step. In the worst case, no uncertainty is resolved, and the

gray area is not reduced at all.

The best case is visualized in both signatures b and c, though their respective uncertainties are

resolved in different ways. In signature b, all probability mass collected accounts for inputs that

do not lead to a ψ-state, and the upper bound is successively lowered. In signature c, probability

mass accounting for both inputs that miss and inputs that lead to a ψ-state are collected in the

first 15 second timestep, both raising the lower bound and lowering the upper bound; eventually
9We chose these four signatures as representatives of others with similar visual patterns. All signatures can be

viewed at bitbucket.org/mgerrard/cqa_signatures.

120

bitbucket.org/mgerrard/cqa_signatures

just a sliver of uncertainty remains in a disjoint interval until PSE resolves this bit of probability

mass.

Signatures a and d are examples of subjects whose uncertainty has not been resolved within a

time bound. The uncertainty shown in signature a is tightened from above and below in distinct

time steps, finally leaving a relatively small amount of probability mass unresolved. Signature d

shows PSE raising the lower bound slightly, and, though not apparent with the log scale, the

upper bound is lowered to 4.7× 10−10, but the remaining probability mass is left unresolved.

The diversity of signatures indicates how, in relation to some property, the resolution of a state

space’s uncertainty can occur in quite unpredictable ways. Some of this unpredictability occurs

because certain portions of the state space contain more paths to explore than other portions;

but part of the unpredictability comes from the fact that probability mass is not distributed

evenly across paths.

The amount of probability mass contained in an interval is not related to the number of paths

explored in this interval. For instance, one interval contains 6 paths whose probabilities sum

to 2.3× 10−9, while another interval contains 7062 paths whose probabilities sum to the same

amount. At the other end of the spectrum, one interval contains 16 paths whose probability

mass covers most of the input space. This suggests that it is difficult to predict—based on the

amount of probability mass in unexplored intervals (given by: (1−#I)−#I)—how long such

an interval will take to explore.

8.3.4 Discussion

This subsection is a more anecdotal discussion of observations culled from the study.

We observed that PSE and SSE are cost-effective when there are paths of modest number

and depth whose constraints are amenable to efficient quantification. This was the case for 33

of the subjects in the study. These range from 1082 to 2726 SLOC with between 878 and 9032

paths—all of length less than 1000. A representative example is email spec8 product15, which

took 1996 seconds to analyze, of which 1568 seconds was spent in quantification procedures, and

computed an exact probability of reaching a violation of 4.7× 10−38.

When a subject contains significantly more paths, as in email spec1 productSimulator, a

121

3236 SLOC subject with at least 19705 paths, PSE times out. PSE faces challenges with subjects

like Problem01 label15 where paths are deep and quantification is expensive. On this 580 line

subject, PSE explored 29562 complete paths, but was forced to abort the exploration of 42098

after hitting the depth limit and spent 84% of its time quantifying path conditions.

Like PSE, SSE also performs well on the subjects with small state spaces—a few thousand

paths of depth less than 1000—but PSE always outperforms SSE on these cases (both explore the

entire state space, but SSE has higher model counting overhead). The data reveal cases where

SSE’s ability to prioritize state-space exploration by probability mass has notable benefits. Both

SSE and PSE timeout on token ring 08. After analyzing 40999 paths, PSE is able to reduce

the upper bound to 2.3× 10−9, but it does not find any paths to a ψ-state, and its lower bound

is not raised at all. In contrast SSE, only analyzes 1275 paths before timing out, but is able to

reduce the upper bound to 4.7× 10−10 and raise the upper bound to 2.2× 10−19.

Many benchmarks in the study mimic the structure of embedded control system components.

They include a top-level REPL that reads an input at each iteration, then applies a cascade

of filters to the inputs to determine how to update its internal state, and finally executes an

action based on the input and state. The subjects vary in the size of their internal state, the

number of filters they apply, the nature of their state updates, and the specific location of

the property violation. They range in size from 580 to 9464 SLOC and they have substantial

state spaces, as evidenced by PSE’s exploration of more than 100k paths prior to timing out on

Problem03 label43.

Our manual analysis of representatives from this group of subjects reveals a common structure

to their violations. Properties are violated only when sequences of values satisfying specific

constraints are read during iterations of the top-level REPL. For all of these subjects, there is an

iteration bound on the REPL beyond which no violation will be exhibited. This give rise to an

unbounded nonviolating state space.

It is no surprise then, that on all of these subjects PSE and SSE either timeout or reach a

depth limit. We note that for subjects like these, a depth-limited symbolic execution to handle

infinite loops changes the semantics of such long running subjects and may lead to unusable

results (i.e., there may be violations beyond the depth bound that would not be detected and

quantified). While the maximum probability of such deep violations must be smaller than the

122

probability of the gray paths, because their execution has been truncated, in REPL control loops

the total mass of gray paths may be significantly large, preventing PSE and SSE from obtaining

tight violation probability bounds within a feasible search depth.

While the CQA variants also cannot produce exact bounds on this group of subjects, the

conditioning provided allows symbolic execution to avoid many unbounded nonviolating state

spaces—the number of depth-limited paths is always less for CQApse and CQAsse than their

unconditioned counterparts. In many cases, the reduction of depth-limited paths is drastic:

on Problem03 label26, PSE is depth-limited on 64679 paths and yields an upper bound of

2.3× 10−9, while the conditioning given by generate intervals allows CQApse to only hit 7176

depth-limited paths and yields an upper bound of 6.5× 10−18.

8.3.5 Limitations and Threats to Validity

Implementation. The main goal of this preliminary evaluation was to explore the capabilities

of a proof-of-concept prototype of the mathematical framework behind CQA. Our implementation

of PSE/SSE inherits all the limitations of the current version of civl’s symbolic execution

engine (e.g., strict conformance to C standards, limited support for non-integer domains, specific

assumptions about the memory model) [85]. Our model counting interface delegates counting

of linear integer constraints to Barvinok [205], after basic simplifications of the constraints via

Z3 [80]; more advanced or specialized counting routines developed for established PSE/SSE

analyzers may be faster.

Benchmark. Because there is no universally accepted specification format for properties and

violation witnesses, to maximize compatibility with the tools in ALPACA we used the SV-COMP

benchmark. Filtering out subjects not analyzable by our prototype tool implementations and

with high violation probability, left a corpus of 136 programs that were sufficient to highlight

limitations of all the approaches we considered. We remark that despite the limitations of the

artifacts studied in this work, they have been able to confirm both the limitations and the

potential of CQA techniques that were expected from their mathematical formalization.

We caution the reader in making conclusions about the external validity of our findings.

While this corpus of programs may be a starting point, clearly a broader set of programs,

123

ideally accompanied with realistic input distribution specifications, will be needed to construct a

comprehensive benchmark for assessing quantitative analysis tools.

Internal validity. The ability to integrate available tools off-the-shelf 10 allowed us to develop

prototype CQA implementations and assess their potential. However, the tools underlying

ALPACA, PSE, and SSE are complex and highly-configurable. We use these tools in their default

configuration and do not have control over their internals. We have not controlled for all of

the factors that may influence their performance and this may impact the performance of CQA

techniques. This is quite challenging and benchmarking the performance of static analysis tools

and constraint solvers remains an open problem, e.g., [21, 206, 171, 88, 183]. Nevertheless, we

took measures to cross check the probability intervals produced by all tools to confirm their

consistency and we monitored for anomalies in underlying metrics reporting on the operation of

the tools. After this check, we found no inconsistencies in reported bounds across the study.

8.3.6 A Benchmark for Analysis Techniques for High-Confidence Sys-

tems

The results of this study establish an absolute ground truth for 40 of the 136 subjects considered.

These are the subjects on which some exhaustive technique (i.e., symbolic-execution-based) could

complete. For those subjects on which none of the techniques could compute this ground truth,

the probability mass of reaching a ψ-state is in general tightly bounded. There is a corpus of

135 examples on which the probability of reaching a ψ-state ranges from less than 4.7× 10−10

down to 4.8× 10−96. (The 136th subject is a degenerate case in which all techniques compute

the same trivial I.)

Figure 8.5 depicts the least upper bound computed by any technique across subjects via an

impulse plot. The y-axis gives the upper bound on the probability mass reaching a ψ-state in

logscale, and each “impulse” on the x-axis represents one of the 135 nondegenerate subjects.

The impulses are sorted by descending heights of least upper bounds, where the probability

mass above each least upper bound represents the probability mass that is guaranteed to be
10Tools that participate in SV-COMP are able to interpret annotation primitives such as VERIFIER error()—

whose reachability defines ψ-states in our evaluation, and VERIFIER assume()—which allows us to inject assump-
tions about program variables into the code. In this way, any analyzer competing in SV-COMP can be plugged
into ALPACA off-the-shelf.

124

 1x10-90

 1x10-70

 1x10-50

 1x10-30

 1x10-10

Figure 8.5: Least upper bounds per subject across techniques.

safe. Fig. 8.5 demonstrates that the techniques in this study are able to compute highly accurate

upper bounds on the probability of reaching a ψ-state for the given subjects, and we hope these

bounds will soon be further lowered.

When analyzing the probability-of-failure in high-confidence systems, the upper bounds offer

the most appealing guarantees, e.g., the assurance that your system will not fail outside of these

bounds. For the state-of-the-art in quantitative analysis, the challenge and excitement lies in

effectively reducing these upper bounds. While the techniques used within our study could not

compute ground truths for all subjects, we hope this corpus will be used as a benchmark for

other researchers to use in exploring analysis and testing for high-confidence systems.

8.4 Related Research

In this work we proposed a framework to use a combination of static analysis tools to synthesize

conditions characterizing execution subspaces that must or may not reach a ψ-state, and use this

information to either bound the probability of reaching a ψ-state, or to condition subsequent

path-sensitive quantitative analysis procedures for PSE or SSE.

Static program analysis of non-quantitative properties is a broad field, but we are applying

the state-of-the-art rather than extending it. Our instantiation of generate intervals using ACA

(via ALPACA) provides us with ready access to a large and diverse set of analyzers. These

include abstract interpretation based overapproximation tools, such as cpachecker, and SMT-

based underapproximation tools, such as cbmc. The ACA framework builds upon research that

combines may and must analyses [60, 121, 112, 20, 104, 8]; applying these ideas is recommended

125

in order to implement a nontrivial instantiation of generate intervals. For CQA, the presence

of overapproximating analyses is critical since they can summarize and classify entire sets of

execution paths [167], which in turn can be quantified as a whole instead of requiring a more

costly path-sensitive traversal of each path.

Conditioning is a method proposed in verification to combine the portions of state space

confirmed as safe or failing using different techniques [24]. Researchers have proposed various

methods to focus verification efforts on reduced portions of a program: passing state predicates

between model checkers to restrict the considered state space [24, 31]; combining verification

and systematic testing [76, 58]; transforming one program to another containing fewer execution

paths while retaining the possible property violations of the original program [93, 27]. With CQA,

we aimed at providing a mathematical foundation linking logical conditioning to conditional

probability theorems, thus enabling the instantiation of conditional verification in the area of

quantitative analysis.

Quantitative analysis in software engineering has historically been focused on the analysis of

probabilistic abstractions of architectural models via probabilistic model checking [131] or on the

definition of probabilistic abstract interpretation methods [137, 162, 73]. The former can take

advantage of efficient probabilistic model checkers [131], but requires a manual construction of

the models, which are difficult to keep consistent with code implementations. The latter proves

difficult to effectively generalize to the constructs of modern programming languages (no tools

exist for industrial-strength languages, to the best of our knowledge). Probabilistic symbolic

execution [99] is a recent technique exploiting symbolic execution to extract conditions on the

input leading to ψ-state. We presented techniques in this family in Section 8.2. Variations of PSE

and SSE have also been used for exact/approximate reliability analysis [94, 151], performance

analysis [54], and detection and automated exploitation of side-channel vulnerabilities in both

regular and probabilistic programs [44, 153]. In this chapter, we focused on non-probabilistic

programs; investigating possible extensions of CQA to general probabilistic programs [107] and

approximate computing [188, 40] is left as future work.

Testing [36, 103] and classic underapproximating analyses aim at producing actionable evidence

to drive the debugging process and their use is complementary to verification and CQA for

certification as they cannot prove the absence of errors or sound bounds on the probability of

126

error [111]. As already discussed, statistical techniques can be coupled with uniformly random

testing to obtain statistical bounds on error probability (e.g., [4, 144, 216]), however, the number

of runs required to achieve high accuracy and confidence bounds may be prohibitive and rare paths

(e.g., guarded by an equality condition like x==42) are unlikely to be explored. As a white-box

analysis, CQA pays the scalability cost of static analyses which can limit its applicability to larger

problems, for which weaker statistical guarantees are the only viable alternative [35]. Despite

their limitations, CQA techniques have proven applicable to components of up 9400 SLOC which

is larger than component sizes suggested for safety critical systems [158].

127

Chapter 9

Algorithmic Diversity in ACA

A static program analyzer reasons about a program’s behavior without actually running the

program. To do so, an analyzer will first construct a model of the program, and an analysis is

then performed on the model. The choice of model and the manner of its analysis can differ

widely from one program analyzer to another. This results in an array of program analyzers that

have complementary strengths and weaknesses, e.g., one may approximate some loop’s behavior,

reducing time at the cost of precision; while another may examine each iteration of the loop,

gaining precision at the cost of using more resources.

Typically, the performance of one analyzer is pitted against another’s—to show, for example,

that one technique is superior in a given domain. This is the general style of academic research,

crystallized in the motivating statement for the annual Competition on Software Verification

(in which static analysis tools are compared against each other across a set of benchmarks):

“Competition is a driving force for the invention of new methods, technologies, and tools.” [198]

Our work attempts to recast this competitive spirit into a cooperative one—if multiple

program analyzers work together, each may emphasize their complementary strengths while

mitigating the weaknesses. In an ideal setting, this cooperation would proceed without a hitch:

a program’s recursive function calls would be handled by analyzers tailored to do so, while its

straightline code would be handled by another, etc. But if the program analyzers are treated as

black boxes, there can be a number of bumps along the road.

128

The main challenge lies in getting program analyzers to effectively communicate their (possibly

partial) analysis results to each other. Because each analyzer models a given program in a different

way, communicating the facts derived from distinct models is not straightforward. We will use

the ACA framework to explore some of the challenges and opportunities involved in treating

program analyzers as communicating black boxes. Do we observe effective communication from a

diversity of program analyzers, or are just a few tools used? Are pairs of analysis tools correlated

in effectiveness across a given program and its conditioned variants? We use the metric of

“effective evidence”—the results of effective conditioning (see Def. 6), described below—as a way

to observe how these black box analyzers communicate with each other in ACA.

9.1 Context of diversity study

In this chapter, we explore algorithmic diversity in the context of the subproblems generated

by ACA. We conjecture that is is advantageous to use an algorithmically diverse set of tools

while performing an alternating conditional analysis. To compute a nontrivial program interval

as is done in ACA, a single cleverly-designed analysis tool is not enough. Given a multiplicity of

difficult verification tasks, no single tool will always outperform the others. A portfolio of diverse

analysis tools is needed.

We first look at the nature of the subproblems that are generated by ACA, and then discuss

the space of analyzers with which we instantiate the ACA tool portfolio.

9.1.1 Subproblems generated by ACA

The subjects we consider in this chapter come from the SV-COMP set of benchmarks described

in Chapter 6. Each round of analysis in ACA yields a new verification problem for each analyzer,

so n iterations of ACA corresponds to showing the analyzers in the portfolio at least n new

problems (possibly more when generalization is employed). Though each new verification problem

can be thought of as a decomposition of the original problem—i.e., the program minus the

input space described by I—, because we treat the analyzers as black boxes, the decomposition

must be passed as an entirely new program. The difference between the original program and a

conditioned one with an assume statement may appear small, but this assume could be cutting

129

out a large semantic space of the program. For instance, if reaching a ψ-state depends on the

value of integer variable x, then a conditioned program with the statement assume(x ≡ 1) yields

a much simpler verification problem.

9.1.2 Space of analyzers in portfolio

This study instantiates the ACA framework with a tool portfolio of nine different static analysis

tools:

• CBMC [138]

• CPA-Seq [78]

• ESBMC [163]

• PeSCo [181]

• SeaHorn [113]

• Symbiotic [194]

• UAutomizer [118]

• UTaipan [109]

• VeriAbs [79]

Each tool takes as input a C program and a specification in linear temporal logic, and reports

if the specification is violated or not. We provide brief summaries of these tools below, and

specify whether they are an overapproximator (A), an underapproximator (A), or both.

CBMC stands for “C Bounded Model Checker.”

CBMC first converts the C program into a GOTO program (where control flow statements are

translated to guarded goto statements). As a standard application of bounded model checking,

CBMC explores the program model up to a configurable depth of loop unrollings, and all of

the collected paths are represented by a large disjunctive logical formula. The formula can be

passed to a backend SAT or SMT solver. If the solver returns a satisfying model, this represents

a reachable path to a ψ-state, and can be translated back to a series of program statements that

lead to the ψ-state.

As CBMC only unrolls loops a bounded number of times and could miss reasoning about

program executions beyond this bound, CBMC returns only sound reachability proofs, and so is

typed as an A.

CPA-Seq is a sequential configuration—the competition contribution for SV-COMP—of CPAchecker,

which stands for “Configurable Program Analysis Checker.”

130

CPAchecker is based on the flexible analysis framework of a configurable program analysis

(CPA), described in [25]. The CPA framework allows a hybrid of model checking and abstract

interpretation to be created by providing one or more abstract interpreters and defining a

termination check and merge operators. Where does the hybrid-ness come in? When exploring

a graph representation of a program in classical abstract interpretation, information is merged

at nodes that refer to the same program location; whereas in model checking nodes are never

merged. CPA allows you to specify the degree to which merging should occur. The abstract

domains may also be composed through a product lattice.

CPA-Seq is typed as both an A and an A.

ESBMC stands for an “Efficient SMT-based Bounded Model Checker.”

ESBMC extends bounded model checking with k-induction. ESBMC integrates the formulae

produced by CBMC with a backend employing multiple SMT-solvers. Whereas CBMC is

typically run with one SAT solver as its backend, ESBMC takes advantage of richer theories than

propositional logic, such as theories of non-linear arithmetic, bit-vectors, arrays, etc.

To prove correctness in the presence of loops, ESBMC uses k-induction [97]. This is a method

to demonstrate that if no ψ-state is reached after k loop unwindings, then it will not be reached

in subsequent unwindings.

ESBMC is typed as both an A and an A.

PeSCo stands for “Predicting Sequential Combination of Verifiers.”

PeSCo tries to predict the best sequential combination of verifiers on a given subject, and then

launches this combination on the task. The underlying verifiers are six different configurations of

CPAchecker. The prediction is based on machine learning using support vector machines. PeSCo

learns rankings of verifiers based on the SV-COMP scoring scheme.

PeSCo extracts features of a program by encoding the program as a control flow automaton

extended by data and control dependencies. PeSCo uses CPA’s restart algorithm: if one verifier

fails, it can still pass on its already computed (partial) results to the next verifier (as in [24]).

The training phase is done on the SV-COMP verification tasks. The details of PeSCo’s feature

extraction and ranking procedure are given in [75]. If there is no prediction in a reasonable

amount of time, PeSCo defaults back to the CPA-Seq fixed configuration.

131

PeSCo is typed as both an A and an A.

SeaHorn’s name comes from the fact that its verification conditions are encoded as Constrained

Horn Clauses; the “Sea” may stand for the “C” in Constrained or the “C” language.

SeaHorn is made up of a front-, middle-, and back-end. The front-end translates a C program

(or other language for which there is an LLVM front-end) into LLVM bitcode. The middle-end

emits verification conditions encoded as Constrained Horn Clauses. A Horn clause is a way to

say “assume that, if p and q and . . . and t all hold, then u also holds”; this encoding is natural

for describing program semantics, and can be handed off to many automated solvers.

The back-end employs several SMT-based model checking engines based on PDR/IC3, along

with abstract interpretation (via IKOS [43]) to supply program invariants. The inferred invariants

can help the model checker to prove safety. SeaHorn can be configured to reason about small-step

semantics or a large-block encoding, and its abstract domains can also be configured.

SeaHorn is typed as an A.

Symbiotic is named for its synergistic combination of instrumentation, slicing and symbolic

execution [193].

Symbiotic is primarily a symbolic execution engine with a few preprocessing steps to reduce

the size of the program-to-be-verified. A preprocessing step of program slicing can remove large

portions of the program, including loops, that are not related to the reachability of a ψ-state.

Symbiotic uses KLEE [48] as its underlying symbolic execution engine.

Symbiotic is typed as an A.

The next two tools are built upon the “Ultimate” architecture [3], which has plugins for

program parsing, transforming, and analyzing.

Ultimate Automizer is named for its automata-based approach [119].

This approach represents the program as an automata built from sets of hoare triples, i.e.,

the program statements are the nodes, and the edges are annotated with pre- and postconditions

of given nodes. Sets of traces are represented by these automata.

A CEGAR-based exploration is performed on this program model. The difference with

classical CEGAR is that when an infeasible trace is found in the automata representation, the

132

infeasible trace is excluded from the model by simply subtracting this trace from the automata,

instead of performing costly SMT calls to partition the predicate domain such that the infeasible

trace will be excluded. The refinement step employs different techniques to obtain interpolants

from the infeasible trace, such as Craig interpolation and constraint-based invariant synthesis.

Ultimate Automizer is typed as both an A and an A.

Ultimate Taipan has a surname whose origin is unknown.

Ultimate Taipan follows its preceding cousin as a CEGAR-based model checker. Taipan

refines its model by performing an abstract interpretation on a fragment of the program they

call a path program, which is a projection of the control flow graph onto a selected sequence of

program statements, described in [110].

Ultimate Taipan is typed as both an A and an A.

VeriAbs stands for “verification by abstraction and test generation.”

VeriAbs contains a portfolio of different analysis techniques, and decides which to employ

based on a lightweight analysis of the input program. VeriAbs uses fuzz testing to find inputs

that lead to a ψ-state, and uses a combination of bounded model checking and k-induction (as

with ESBMC) to find proofs of the unreachability of ψ-states.

VeriAbs is typed as both an A and an A.

9.2 Experimental Setup

In this chapter, we explore two questions: (1) how does employing multiple diverse analyzers

advantage ACA, and (2) is there a correlation between pairs of analyzers and effective evidence

in a run of ACA. Before looking to these questions, we describe the experimental setup.

Metric of effective evidence

The metric we will use to get at these questions is that of effective evidence. Effective evidence

is the result of effective conditioning, given in Def. 6. Effective evidence means either that the

inputs to a ψ-state that are characterized are guaranteed to be executable and have not been seen

on a previous ACA round of analysis, or that evidence to the ψ-state’s unreachability (given a

133

conditioned program) are given by an overapproximate analysis, whose proof is therefore assumed

to be valid. For example, if the analyzer Symbiotic (which is typed as an A) reports a new path

to a ψ-state, this is effective evidence; if ESBMC (which is typed as both an A and an A) gives a

proof of the unreachability of a ψ-state—thus terminating ACA, this is also effective evidence.

Pieces of evidence are counted on each round of analysis in ACA, and multiple analyzers

can provide effective evidence on each of these rounds. Assuming no generalization, all tools

providing either effective reachability or unreachability evidence are counted as providing one

piece of evidence. During generalization, we count each analyzer as contributing a maximum of

one piece of evidence per lattice level, to mitigate overcounting when the lattice is wide (see 5.3).

At most one piece of evidence is ultimately considered at each lattice level, even if one tool finds

multiple pieces of evidence among lattice elements on the same level.

Running ALPACA

The instantiation of ACA used in this study is ALPACA, described in Chapter 5. The

experiments in this study were run on the exp branch of ALPACA from revision:

c835094c52c2019232d379bd97e5c0928ba5d72b.

Each subject.c was run using the command:

timeout --signal=SIGKILL 90m $ALPACA --docker -t 300

--generalize-timeout 300 -p allDock --known-reach

--exit-strategy {eager|patient}

--gen-exit-strategy {eager|patient} subject.c

This command is the same as in Chapter 6, with the addition of the strategy flags, explained

below.

The exit-strategy flag determines whether, on each iteration of ALPACA, the portfolio of

tools stops searching after the first valid reachability (or unreachability) condition is confirmed—

the eager strategy, or continues until all analyzers either complete or exhaust their timebound—the

patient strategy. We use both the eager and patient strategy in this study because we want

to examine the relation amongst analyzers both when ACA attempts to reduce runtime (via

134

the eager strategy) and when ACA allows analyzers to collect as much evidence as possible (via

patient), up to a time bound.

The gen-exit-strategy is analogous to the above flag, but is applied within the generalization

phase of ACA: the termination of any one of the many possible generalizations—each of which

is a distinct lattice element as defined in Chap. 5, Sec. 5.3—of an interval can occur either

eagerly or patiently. The generalize-timeout is set to 300 seconds in order to be significantly

less than the ALPACA default time of 900 seconds to run the portfolio on any given iteration.

The generalization time is reduced because the lattice of conjuncts may be large, and all of its

elements time-intensive to explore.

Either both exit strategies are set to eager or both are set to patient.

Subject selection

The subjects selected are those coming from the SV-COMP corpus of benchmarks discussed

in Chapter 6, using the same selection criteria. The hardware and setup is also the same as in

Chapter 6.

9.3 Evaluation of Algorithmic Diversity

In this section, we will explore how employing multiple diverse analyzers advantages ACA.

We discuss how how different subsets of analyzers contribute to characterizing reachable and

unreachable ψ-state spaces, and see if pairs of analyzers are correlated across a run of ACA. To

this end, we look at two research questions.

RQ1 How does a diversity of analysis tools contribute to finding effective evidence within ACA?

RQ2 Is there a correlation among analyzer effectiveness on subproblems of the same subject?

9.3.1 RQ1—contribution of diversity

We approach this question by seeing first if more than one tool is needed to compute I, and if so

what are the relative contributions of tools in terms of effective evidence. We answer this on two

different ACA configurations: when rounds of analysis are short-circuited upon discovery of some

135

tool #(Er) max min avg med
VeriAbs 1394 305 13 119 79
CPA-Seq 773 270 5 34 32
UAutomizer 209 302 10 117 102
Pesco 162 155 8 25 15
Symbiotic 101 519 5 21 8
CBMC 13 11 3 4 4
UTaipan 12 336 11 93 34

Table 9.1: Reachability evidence count and
times (s) run with eager strategy

tool #(Eu) max min avg med
Seahorn 336 293 2 27 5
UAutomizer 116 268 28 83 70
VeriAbs 69 305 116 237 250
ESBMC 62 34 3 6 5
CPA-Seq 14 75 8 28 26

Table 9.2: Unreachability evidence count
and times (s) run with eager strategy

effective evidence; and when each round allows all tools some fixed time to explore. We first look

at ACA when run with the short-circuiting—eager—strategy.

The task of ACA would be simplified if a single analysis tool could provide the required

reachability and unreachability evidence to construct a program interval. But among the study,

no single tool could comprehensively characterize the state space of all programs when running

with the eager strategy.

Across 380 C benchmarks, each of the 9 tools in the portfolio provides effective evidence;

some provide reachability paths, others unreachability proofs, and a few analyzers provide both

kinds of evidence. On average, four distinct tools per program provide effective evidence; with

the maximum program collecting evidence from five distinct tools.

We present the data of evidence provided by analyzers in two separate tables: one for those

that are able to provide effective reachability evidence—shown in Table 9.1; and another for

analyzers that are able to provide safe unreachability evidence—shown in Table 9.2. The tables

are sorted by counts of effective evidence. The set of analyzers among the two tables is not

disjoint, e.g., VeriAbs is able to provide both reachability and safe unreachability evidence. But

some tools can only underapproximate a program’s state space, such as CBMC, and some can

only provide effective unreachability evidence, such as SeaHorn.

The #(Er) and #(Eu) columns in Tables 9.1 and 9.2 denote the number of pieces of effective

reachability and unreachability evidence, respectively, provided by each analyzer, and the max,

min, avg, and med, refers to the maximum, minimum, average, and median times (in seconds),

to find a piece of evidence. Because there are multiple pieces of evidence collected per subject

in general, the # column sums to greater than 380.

136

The main takeaway from Tables 9.1 and 9.2 is that all analysis tools are used within ACA to

construct a more precise program interval across subjects, even with short-circuiting when the

first tool finds effective evidence on analysis rounds. Each tool contributed at least 12 pieces

of combined reachability and unreachability evidence across 380 subjects. Note that a trivial

interval can be built without any analyzers—this interval would imply the whole program in

possibly reaching a ψ-state and would be wholly uninformative. But if many analyzers can be

employed, then each piece of evidence provided only strengthens the precision of an interval. On

many subjects, a single iteration would yield multiple distinct pieces of evidence from different

analyzers, which significantly accelerated convergence within ACA.

All tools in the portfolio contributed to building a more precise I, but they did not all

contribute equally in terms of pieces of evidence. For reachability, the leading two tools—VeriAbs

and CPA-Seq—account for the bulk of effective evidence found (81%). Similarly, for unreachability

proofs, the leading two tools—SeaHorn and Ultimate Automizer—find the majority of evidence

(76%). The collection of the four leading tools is noteworthy in that each uses employs very

different strategies to find effective evidence—combinations of fuzzing, k-induction, abstract

interpretation with composite domains, solving constrained horn clauses, running a CEGAR-style

model check. In any case, no one tool can be singled out as the most effective.

What is happening within ACA when a large number of distinct tools find effective evidence?

We look at the subject with the largest number of contributing tools for the eager strategy:

minepump spec3 product59. On the first round of analysis in ACA, CPA-Seq quickly (in 13

seconds) finds reachability to a ψ-state; on the second round, both PeSCo and Symbiotic find two

new distinct pieces of reachability within seconds of each other; no effective evidence could be

found on the third round, so generalization allows VeriAbs to find a new reachability condition;

Symbiotic, PeSCo, and VeriAbs continue to collect new evidence for ψ-state reachability, and

SeaHorn declares unreachability for the final subproblem.

It is interesting to observe how the first three tools found three different reachability paths in

a very short time (less than 25 seconds), after which no tool was effective until generalization

steered tools away from some portion of the state space that was difficult to analyze. For this

subject, the creation of I necessitates a diverse toolset, but tool diversity is not enough to build

I, and an effective generalization mechanism must also be able to condition analyzers to explore

137

tool #(Er) max min avg med
VeriAbs 1296 415 13 87 62
CPA-Seq 735 334 5 34 27
UAutomizer 399 592 9 118 96
Symbiotic 389 784 4 28 8
Pesco 322 339 8 26 14
UTaipan 93 643 9 105 53
CBMC 68 820 3 57 6

Table 9.3: Reachability evidence count and
times (s) run with patient strategy

tool #(Eu) max min avg med
Seahorn 294 235 2 32 6
UAutomizer 124 304 24 84 65
ESBMC 75 32 3 5 5
VeriAbs 54 305 139 227 238
CPA-Seq 15 70 7 23 16

Table 9.4: Unreachability evidence count
and times (s) run with patient strategy

reduced subspaces.

We now look at ACA when run with the strategy to allow all tools some time bound to find

effective evidence—the patient strategy. Data for the reachability and unreachability counts of

each analysis tool using the patient strategy is given in Tables 9.3 and 9.4, respectively.

As in the eager strategy case, all analysis tools are used to construct a more precise I.

Unsurprisingly, when each tool is given more time to explore a subproblem, there are more pieces

of effective reachability evidence that can be collected. This makes the distribution of effective

reachability evidence among tools in the portfolio more even than in the eager case: the same

two leading tools only account for 62% of evidence, rather than 81%.

There is actually a decrease in the total number of pieces of unreachability evidence found

from the eager strategy to the patient strategy, by 35. This is because allowing each round

of analysis to run until some timeout causes the overall runtime of ACA to grow and thus hit

a timeout faster, and there are no unreachability reports in the presence of a timeout. The

distribution of contributions among tools is still mostly from the leaders SeaHorn and Ultimate

Automizer (74%).

What is happening within ACA in the patient case when a large number of distinct tools

find effective evidence? We look at the subject with the largest number of contributing tools

(8) for the patient strategy: array. In this instance tool diversity does not necessarily help

in the construction of I: six tools all find the same piece of reachability evidence on the first

round of analysis, and SeaHorn finds unreachability evidence on the second. A subject with the

next largest number of contributing tools (6)—floppy simpl4—does not find any redundant

evidence: on the first round of analysis, five different tools find five distinct pieces of evidence;

138

and after generalization in the second round, SeaHorn finds unreachability evidence.

We conjecture that the diversity in both the eager and patient cases is helpful because

varying tools have strengths in different areas. For instance, VeriAbs was fairly successful in

collecting unreachability evidence (69 and 54 pieces running eager and patient, respectively),

while it was one of the highest-performing tools as far as collecting reachability evidence (1394

and 1296 pieces)—this can in part be explained because it employs a random fuzzer to search for

reachable paths, and the fuzzing was able to quickly reach some ψ-state across these subjects.

RQ1 Findings. Diversity is needed to produce a non-trivial I on a variety of

SV-COMP benchmarks—no tool or pair of tools can do so on its own. The relative

contributions of each tool in the portfolio is heavily dependent on the strategy ACA

employs to wait for multiple pieces of evidence to come in or not, though four tools

tended to collect the majority of effective evidence regardless of strategy.

9.3.2 RQ2—correlation among analyzer pairs

This section explores whether or not certain analyzer pairs are correlated in finding effective

evidence over a given analysis run. What would correlation between tool pairs tell us in the

context of ACA? Correlation could be the result of four (not necessarily distinct) causes: two

tools can share evidence effectively within ACA (or not), and two tools are able to effectively

verify similar subproblems (or not).

For example, if many subjects have reachable ψ-states that occur after unbounded loops,

two CEGAR-based model checkers may be able to handle this class of programs and would

have resulting high correlations, whereas a bounded model checker may deal poorly with these

programs, and be negatively correlated with the first two. The other possibility of correlation

could occur if, altering the preceding example, evidence found by the CEGAR-based model checker

can be used to condition the bounded model checker on a subsequent round of analysis—allowing

it to bypass the “blockage points” of unbounded loops and find new ψ-state reachability—, then

these two tools could be correlated. Because we do not enter the black boxes of analysis tools,

we measure correlation from high level ACA statistics.

139

CB = CBMC SH = SeaHorn CS = CPA-Seq
UA = UltimateAutomizer ES = ESBMC VA = VeriAbs
UT = UltimateTaipan SY = Symbiotic PE = PeSCo

Table 9.5: Two-character abbreviations for analyzers.

We will measure correlation in the following way. Given a subject and some blocking

clause, an analyzer either finds effective evidence or not, so we use the φ-coefficient to examine

correlation, which is a measure of association over binary variables [214]. Two analyzers are

considered correlated if they both find (or cannot find) evidence for the same subject and same

blocking clause; they are considered negatively correlated if one finds evidence but the other does

not. The φ-coefficient is derived from a 2× 2 contingency table for binary variables X and Y .

We consider correlation only among analysis runs that yield reachability evidence, because

due to a short-circuit termination condition in the implementation of ALPACA, a tool providing

unreachability evidence will be the only tool appearing for that run. As a result of this implemen-

tation detail, tools providing mostly unreachability evidence have weak negative correlations with

other tools, which would likely go away if the short-circuiting were removed. SeaHorn provides

only unreachability evidence, thus it does not appear in this subsection’s tables.

According to [177], a rough estimate for interpreting the strength of correlation (positive

or negative) given by the φ-coefficient can be broken down into five categories: very strong

(0.8+), strong (0.6–0.79), relatively strong (0.4–0.59), moderate (0.2–0.39), and weak to negligible

(0–0.19). These qualifiers are given under two assumptions. The first is that the sample size is

sufficient, which holds with 3261 and 3864 samples, for eager and patient strategies, respectively.

There are more samples than the 380 base programs, because we consider correlation within

each program and an associated blocking clause, which constitutes an independent analysis run;

ACA will in general have multiple analysis runs for a given program (see Chapter 3). The second

assumption is that each cell of the underlying 2 × 2 contingency table contains an expected

frequency of at least five; this assumption is satisfied.

The tables in the remainder of this chapter reference many individual analysis tools together,

so their full names are associated with the two-character abbreviations given in Table 9.5.

Table 9.6 gives an upper triangular matrix for the φ-coefficient among each analyzer pair,

when run with the eager strategy. We use an upper triangular matrix because correlation is

140

symmetric, and we do not include a tool’s relation with itself (which is always 1).

CB CS ES PE SY UA UT VA

CB -0.05 0.02 -0.09 -0.08 0.15 0.3 -0.12
CS -0.08 -0.41 -0.09 0.04 -0.1 0.16
ES 0.03 -0.16 -0.16 0.11 -0.08
PE -0.19 -0.23 -0.1 0.03
SY -0.21 -0.08 -0.06
UA 0.17 -0.29
UT -0.13
VA

Table 9.6: Upper triangular matrix (correlation is symmetric) of φ-coefficient among individual
analyzers when run with the eager strategy.

CB CS ES PE SY UA UT VA

CB 0.13 0.08 -0.04 -0.01 0.18 0.14 -0.11
CS 0.08 0.31 0.33 -0.06 -0.03 0.39
ES 0.09 -0.14 -0.15 0.01 0.14
PE 0.2 -0.48 0.02 0.65
SY -0.29 -0.27 0.33
UA 0.62 -0.49
UT -0.05
VA

Table 9.7: Upper triangular matrix (correlation is symmetric) of φ-coefficient among individual
analyzers when run with the patient strategy.

The main observation from Table 9.6 is that almost all tool pairs under the eager strategy

have a weak to negligible correlation. The only relatively strong correlation is a negative one

between PeSCo and CPA-Seq (−0.41). A negative correlation could suggest that the tools cannot

share evidence effectively. This is unlikely to be the case for PeSCo and CPA-Seq, because they

share the same input and output interfaces as instantiations of the CPAchecker toolchain, and

even employ common abstract domains.

A negative correlation could also suggest that two tools are complements to one another, that

is, that one is only effective in the state spaces in which the other is ineffective, and vice versa.

The fact these two tools have a negative correlation is interesting because PeSCo and CPA-Seq

are built within the same toolchain and run many of the same algorithms, the main difference is

that PeSCo runs them in a permuted order. We conjecture that this negative correlation is a

result of the variability in the quality of PeSCo’s ordering predictions on a given subject and its

corresponding subproblems.

Table 9.7 gives an upper triangular matrix for the φ-coefficient among each analyzer pair, when

141

run with the patient strategy. The first observations from Table 9.7 is that more pairs exhibit

moderate to strong correlations compared to pairs in Table 9.6. Why is there this difference? We

conjecture that the eager strategy, while reducing overall runtime for ALPACA, masks possible

correlations by its short-circuiting mechanism. For instance, if VeriAbs finds effective evidence

after 16 seconds, and CBMC would have taken 18 seconds, in the eager strategy, CBMC will not

have its evidence counted even though it was relatively well-suited for that verification problem.

The strongest positive correlations in Table 9.6 are between PeSCo and VeriAbs (0.65) and

between Ultimate Automizer and Ultimate Taipan (0.62). The strongest negative correlations are

between Ultimate Automizer and VeriAbs (−0.49) and Ultimate Automizer and PeSCo (−0.48).

Because we cannot see the internal details of the analysis tools, we will look at ACA log files on

subjects with strong tools pair correlations to see what is happening within ACA.

We look at the two pairs with the strongest correlations discussed in the previous paragraph.

We will select one random subject from the pool of subjects in which both tools provide effective

evidence. Our random selection is done by placing the pool of filenames in a text file and running

the Unix command shuf -n 2 filenames.txt to select two subjects.

The selected subjects from the first pair—(PeSCo,VeriAbs)—are minepump spec4 product45

and transmitter.02. On the first subject, both tools find reachability evidence on the first round

of analysis, after which only VeriAbs can find effective evidence. On the second subject, PeSCo

finds effective on the first round of analysis, and VeriAbs finds effective evidence during general-

ization after the fourth round of analysis in ACA. The selected subjects from the second positive

pair—(Ultimate Automizer,Ultimate Taipan)—are Problem01 label38 and token ring.04. For

both of these subjects, we again find the pattern of both tools being effective on the first round,

and only Ultimate Automizer is thereafter. Over these four samples, the positive correlation

appeared both when tools are simultaneously effective over a given subproblem, and also when

the conditioning from one is effective for the other.

We also considered the correlation among families of analyzers. However, seven of the nine

tools fell into either the CEGAR or the BMC families, while more classical Symbolic Execution and

Abstract Interpretation were only represented by single tools. A more detailed evaluation of how

algorithmic families relate to each other—using an ACA instantiated with more representatives

from each family—is left to future work.

142

RQ2 Findings. We did not find strong correlation between effective evidence and

tool pairs when each round of analysis in ACA is terminated eagerly. When given

a fixed time on each round of analysis in ACA, there are strong correlations (both

positive and negative) among tool pairs finding effective evidence. Positive correlation

appeared when tools are effective over the same subproblem, and also when the

conditioning from one is effectively used by the other.

9.3.3 Discussion

This subsection is a more anecdotal discussion of analyzer diversity observed within ACA. We

briefly look at ordering effects among analyzers as ACA proceeds, how long different tools take

to find the time to find effective evidence, and why choosing a downsized portfolio is difficult.

Ordering Effects

We first look at the ordering effects among tools within the context of ACA. Do certain tools

often appear before others in previous rounds of ACA? Do some tools never appear in later

rounds? These relations can suggest how one analyzer can cover a portion of the state space that

may be difficult for another analyzer, freeing the latter to explore state spaces that align better

with its internal abstract domain.

Tables 9.8 and 9.9 list the tools that produce effective evidence in later iterations of ACA,

under the eager and patient strategies, respectively. A later iteration is defined as any iteration

of ACA after the first iteration, that is, we consider evidence collected when analyze of Algorithm 1

has been executed two or more times. The “Later #” column counts the number of times a tool

appears in a later iteration, and the “Precursor counts” column shows the top three tools that

appeared most often in previous iterations—each of the tools in this column lists the number of

preceding appearances.

The biggest takeaway from Tables 9.8 and 9.9 is that only one tool was its own maximal

precursor for each strategy (CPA-Seq and Symbiotic). This means that for the other tools in

Tables 9.8 and 9.9, the exploration of the program’s state space in later iterations of ACA largely

depended on the previous efforts of other analysis tools.

143

Tool Later # Precursor counts

VA 143 CS:95, VA:75, PE:61
CS 99 CS:84, PE:45, SY:6
UA 66 CS:46, UA:45, PE:12
ES 62 CS:32, PE:27, VA:18
SY 31 CS:31, SY:21, VA:20
PE 9 CS:8, PE:4, VA:3
UT 6 UA:3, CS:3, CB:2
CB 4 CS:4, CB:2, PE:1

Table 9.8: Display of ordering effects by
showing the number of times an analyzer
appears in a later iteration along with its
top three most frequent precursors when run
with the eager strategy.

Tool Later # Precursor counts

VA 133 SY:133, PE:133, CS:130
CS 82 SY:82, PE:80, CS:79
ES 75 CS:71, PE:66, SY:65
UA 67 UA:67, SY:59, CS:59
SY 28 SY:28, PE:28, CS:28
UT 18 UA:19, SY:19, UT:19
PE 11 SY:11, PE:11, CS:11
CB 4 UT:4, UA:4, PE:4

Table 9.9: Display of ordering effects by
showing the number of times an analyzer
appears in a later iteration along with its
top three most frequent precursors when run
with the patient strategy.

Analyzers built around a fixed toolchain, such as Ultimate and CPA-based tools, are found

preceding and following each other, unsurprisingly. But some tools are found preceding the

exploration efforts of most tools, such as CPA-Seq, which appears as a top precursor for six

tools under the eager strategy, and Symbiotic, a top precursor for five tools under the patient

strategy.

Table 9.8 contains only eight of the nine tools. SeaHorn does not appear because it is only

used for unreachability evidence, and so by definition will only appear in a later iteration.

Variation in time to find evidence

The diversity in techniques in relation to different program state spaces is also reflected in the

time taken by each analyzer to find effective evidence. Figures 9.1 and 9.2 present the impulse

plots of analyzers collecting 54 pieces of evidence or more in either reachability or unreachability;

the vertical axis is time in seconds and goes up to 630, each “impulse,” or line, indicates the time

an analyzer takes to find a piece of evidence, and these impulses are sorted by ascending time.

The associated analyzers are given in the caption to Figures 9.1 and 9.2, but most details have

been suppressed in the figure so that the reader focuses only on the varying shapes of analysis

times across analyzers. Some analyzers such as Symbiotic and SeaHorn have long, skinny tails.

This indicates that effective evidence can usually be computed very quickly. This makes sense, as

abstract interpretation is fast when the abstract domains used are simple; and symbolic execution

is fast when the portion of the state space searched during the analysis does not involve much

unbounded looping behavior. Because state space partitioning is performed on-the-fly by ACA,

144

Figure 9.1: Impulse plots of effective evidence sorted by time for analyzers collecting 54 pieces of
evidence or more when run with the eager strategy. Time in seconds on the vertical axis goes
up to 630. Tools providing evidence in top row, from left to right: reachability from Symbiotic,
Pesco, UAutomizer, CPA-Seq, VeriAbs; evidence in bottom row: unreachability from ESBMC,
VeriAbs, UAutomizer and SeaHorn.

Figure 9.2: Impulse plots of effective evidence sorted by time for analyzers collecting 62 pieces of
evidence or more when run with the patient strategy. Time in seconds on the vertical axis goes
up to 630. Tools providing evidence in top row, from left to right: reachability from Symbiotic,
Pesco, UAutomizer, CPA-Seq, VeriAbs; evidence in bottom row: unreachability from ESBMC,
VeriAbs, UAutomizer and SeaHorn.

employing a diverse portfolio of analyzers improves the chances of some partition aligning with

an analysis tool’s sweet spot. Others such as the Ultimate Automizer and VeriAbs tend to take

longer on any given subject: their tails are shorter and fatter.

Considerations in Downsizing

If it were possible to predict a priori which tool or tools may be best suited for a particular

program, then just one or two analyzers could be run at a time, and the portfolio could be

significantly downsized. However, it is very difficult to predict which tool will be best in analyzing

a program, in general.

Unlike some strategies used in portfolio-based SAT solvers [211], where the structure of

formulae allow heuristics to guide which solvers to run in parallel or which configurations to apply

to several instances of a solver, the structure of a general program, the reachability property,

145

and the abstract domain as modeled by an analyzer all must align; whether this may happen or

not is hard to predict. These three factors interact in complex ways that can only be indirectly

reflected in a black-box study such as this one. It is possible to have misalignment of structure

and abstract domains in parts of the program state space unrelated to the property and the

analyzer can still successfully characterize parts of its state space. There is a causality dilemma

in that the alignment of the factors happens in the modeled state space, so the analyzer must

first construct the state space before you can see the alignment—this is essentially running the

analyzer to see if you should indeed run the analyzer.

Across the benchmarks in this study, there was no strict subset of tools that could effectively

characterize each. So if the computing resources are available, running all static analyzers is

recommended, in the chance that the analysis of its abstract domain will align nicely with a

given program.

Some tools clearly provide more evidence across more subjects than others. Unsurprisingly,

the tools that performed the best in the reachability category for SV-COMP provide the most

evidence across the largest number of subjects. CPA-Seq provided evidence for 207 distinct

subjects, VeriAbs for 125, and UAutomizer for 59. So downsizing the portfolio can be effective if

there is good evidence (such as competition rankings) that a subset of analyzers can perform

well across a subject set.

But in general, it is difficult to predict the best static analyzers that should instantiate an

ACA tool portfolio. Even among programs whose general structure is very similar—a read-eval-

print-loop whose reachability or unreachability depends on a series of specific inputs (found in

the eca-rers benchmark category)—there is no tool that dominates the others. In fact, the

need of an enlarged portfolio is not reduced by much: only two of the tools are not used; the

other seven provide effective evidence.

If we cannot predict which tools to use beforehand on any given subject, then maybe we

can predict which tool to use within ACA after some observations. The state space of a single

program may be uniform in some way, so that if some tools can find characterizing evidence on

the first iteration of ACA, they can likely do so for other parts of the state space. If this is the

case, then instead of continuing to run each tool in parallel, we could just use the tool or set of

tools that was first successful. This held true to some extent when using the patient exit strategy,

146

but not when using the eager strategy (see Section 5.1).

Among programs yielding multiple pieces of reachability evidence, at least one tool from

among the set of tools that report evidence on the first iteration later found evidence 60% of

the time. Put in another way, if you were to downsize the portfolio based on the success of the

first iteration of ACA, 40% of the time ACA would not yield more effective evidence. When

running with the eager strategy, meaning only a single tool will provide evidence per iteration,

these numbers are more drastic: the tool of the first iteration appears in later iterations only

19% of the time.

There are instances when a set of benchmarks can be efficiently solved by a known technique,

and in this case it is reasonable to run on a downsized portfolio. For instance, a set of assertions

may be known to be proven unreachable using invariants derived from a specific abstract domain,

such as the octagon domain. In this case, instantiating an abstract-interpretation based tool with

this domain—rather than a faster, but more imprecise one, such as the interval domain—would

make sense. But this requires expert knowledge both of the problem domain and of how to

configure the tools in the portfolio; this predictive power is not available in general.

9.4 Limitations and Threats to Validity

We chose the SV-COMP benchmark suite because it defines a standard specification format

for properties embedded in C programs along with violation witnesses provided by analyzers,

which allowed us to use a large number of analysis tools within the framework of ACA. The

set of 380 SV-COMP artifacts that made it through ALPACA cover a range of varied program

state spaces, but we caution the reader in making conclusions about the external validity of

our findings. While this study is a starting point, clearly a broader set of both analyzers and

programs is needed to construct a more comprehensive assessment of the interaction amongst

programs, analyzers, and reachability properties.

Some of the bottlenecks in analysis time come from how the analyzers share reachability

information, which in our case was the error witness specification given by an error automaton [31].

Error automata can specify the constraints on inputs leading to a property violation in different

ways, e.g., branch directives indicating the decision taken at each branch, or concrete inputs

147

at the entry of a program. Because the tool used to characterize reachability within ALPACA

accepts only the error specification of branch directives as its form of directed symbolic execution,

there was an extra translation step involved—using CPAchecker’s witness validator [23]—when a

witness was given as a set of concrete inputs. In the future, the tool to characterize reachability

should directly accept initial concrete inputs as another form of direction.

Finally, only two among the many configurations of ALPACA were run during this study. The

choice of different parameters—e.g., instantiating ALPACA with a different set of tools, running

with a downsized portfolio, changing timeout bounds—on a run of ALPACA can significantly

affect runtime as well as the produced interval. A broader study involving multiple configurations

is needed in order to compare findings across varying instantiations of ACA.

148

Chapter 10

Conclusion and Future Work

10.1 Summary of Contributions

The contributions of this dissertation are in generating more informative program correctness

proofs by combining a diverse set of program analyzers within a meta-analysis framework. The

four main contributions of this dissertation are in:

• enriching the results of a program analysis to encode overapproximate and underapproximate

information

• developing a novel program meta-analysis framework that combines artifacts produced by

over- and underapproximate analyzers to compute such a result

• empirically evaluating that framework

• applying the framework to improve the scalability and accuracy of downstream analyses

We found that nontrivial program intervals can be effectively computed over a broad class

of programs, and that these I depend on a wide diversity of program analyzers computing

combinations of may and must information in order to be assembled. The quality of a returned

program interval is dependent on the instantiation of analyzers in ACA, but given an effective

set of A and A, the sweet spot for ACA seems to be when there is a relatively small portion of

must information to be characterized which can be effectively communicated to some A. Large

149

sets of must information will often cause some generalization to occur; this may occur because

the assumptions we use to condition analyzers can overly complicate their abstract domain.

To support more effective meta-analysis, it would be helpful if other analysis frameworks

have clearly defined interfaces in which tools can exchange partial results. The work of input

interfacing, e.g., with nondeterministic primitives such as VERIFIER nondet int(), and output

interfacing, e.g., with error automata, has been started by the originators of SV-COMP and has

been adopted by many state-of-the-art analysis tools for C and Java. While error (and correctness)

witnesses are a good start, we would like to see more generalized witness automata that describe

subspaces of a program, not just deterministic paths (or overapproximate invariants). We used

embedded C expressions in order to condition analyzers away from already-explored portions of

a program, but we could imagine analysis tools also standardizing an assume interface to allow

for more expressive conditions as are expressed with ACSL [19]. In this way analysis tools can be

designed to account for these conditions in a way that helps them explore the remainder of the

state space most effectively.

10.2 Future Work

In this section we suggest lines of future work, grouping them into two different directions:

improvements to the ACA framework, and uses of its computed program intervals.

10.2.1 Improving ACA

Adaptive Interval Refinement

The disjoint intervals computed by ACA could have a large “gap” between their respective upper

and lower bounds. The set of input points between the gap in these bounds denotes inputs that

may reach the ψ-state, but about which nothing more definite can be said. In general, ACA

cannot always produce exact intervals, i.e., ones where the upper and lower bound coincide, as

no analyzer (or meta-analyzer) can be sound and complete for all programs. But it is possible to

refine the accuracy of individual inexact intervals using techniques that are complementary to the

ACA framework. In other cases, the intervals may actually be too numerous, and refining in this

150

case would mean coming up with more general (and simpler) formulae to describe the intervals.

The pseudocode for refinement is outlined in Algorithm 6. There could be multiple inexact

intervals, and the select function in line 2 chooses which of these to refine according to a

given heuristic (discussed below); because we may want to consider more than one interval

at a time, e.g., to generalize semantic similarities, I could be a set of intervals. The function

refine-interval in line 3 attempts to refine the interval(s) contained in I using one of the

strategies proposed below. The accumulate function in line 4 is the same as in Algorithm 1.

Refinement terminates when a user-defined threshold is reached; this could be as simple as a

time bound, or as involved as checking if the reachability of ψ-states in I sufficiently covers some

measure space. The refinement is adaptive in the sense that, depending on the select heuristic,

the chosen interval could vary at each recursive call of REFINE.

Algorithm 6 Adaptive Interval Refinement
1: function REFINE(I)
2: I ← select(I)
3: I ′ ← refine-interval(I)
4: I ′ ← accumulate(I, I ′)
5: if threshold reached then
6: return I ′
7: else
8: REFINE(I ′)

Selecting Intervals

The selection heuristic could be (1) random, (2) based on the probability mass associated

with the interval, or (3) dependent on characteristics of the formulae defining the interval. The

second heuristic allows us to prioritize the analysis of the different intervals based on the value of

Pr(αi) by targeting only profitable intervals. Since Pr(αi) imposes a bound on the maximum

contribution to the final analysis result, smaller intervals can be discarded entirely if their

contribution is deemed insufficient. The third heuristic would allow us to focus on formulae

that may be good candidates for generalization (e.g., due to a large number of logically “similar”

terms), to disregard others as too difficult (e.g., formulae with complex heap manipulation), or to

run PSE supported with specialized solvers (e.g., string or numerical solvers). This can tailor the

analysis of each interval to its specific features, without relying on more general but less efficient

procedures.

151

Interval Refinement Strategies

We discuss three possible strategies to refine the intervals: the first based on harnessing statistical

symbolic execution (SSE) to characterize rare events within the bounds, the second on finding

interpolants between the upper and lower bound, and third on employing a semantic generalization

of formulae.

Statistical Refinement

The first strategy would build off of the CQA framework discussed above. In particular,

we could use the results of ACA to direct SSE to sample only within the space between the

interval bounds. Conditioning the analysis within a restricted interval increases the probability

of sampling a low-probability execution path leading to a ψ-state.

Consider a Monte Carlo sampling of the execution paths. Assume there exists a path to a

ψ-state corresponding to the path condition PC∗ whose probability in the original program is a

small value ε. An unbiased Monte Carlo sampler is expected to take 1/ε samples before sampling

PC∗. For example, for ε = 10−7, 107 samples are expected before hitting the ψ-state.

If PC∗ =⇒ αi (otherwise PC∗ would have been already included in I before SSE analysis),

then the probability of sampling it for conditional SSE would be increased by a factor 1/Pr(αi).

In other words, the smaller the subset of behaviors satisfying αi, the more likely for the conditional

sampler to hit the rare ψ-state. For example, if αi accounts for 10−3 of the domain, the expected

number of samples required to hit PC∗ is reduced by three orders of magnitude. The strategy of

harnessing SSE would help to increase the accuracy in intervals that delineate program spaces

containing extremely rare events.

Interpolating Inexact Intervals

If you are given two formulae, α and β, and α =⇒ β, it’s conceivable to imagine some

formula F that lies “in between” the two, so that α =⇒ F =⇒ β. There is an amazing theorem

stating that if α =⇒ β, and the two share a common variable, then there always exists this “in

between” formula F—such a formula is called an interpolant. We defined a disjoint interval as

having a lower bound that implies its upper bound; and as an interval delineates a logical space

that reasons over common variables, interpolation seems relevant. The ideal case of an interval

with coinciding bounds is precisely an interpolant between I and I.

152

There are existing tools that return an interpolating formula, given two formulae satisfying

the above conditions. But if we find such an interpolant between some interval’s upper and lower

bounds, we cannot simply replace the interval with this formula. As the interpolant “splits” the

interval in some sense, we must either prove that all program behavior “below” the interpolant

(i.e., between the lower bound and the interpolant) definitely reaches a ψ-state, or that all behavior

“above” (i.e., between the interpolant and the upper bound) definitely does not reach a ψ-state.

We consider the first case as “raising the lower bound” and the second case as “lowering the

upper bound.” If both can be done, the result is an exact interval, i.e., the lower bound coincides

with the upper bound.

To lower the upper bound safely, we will need to use the guarantees of an overapproximator.

If some A did not prove the unreachability of a ψ-state in the space between an interpolant and

an upper bound on an initial run of ACA, why should some A be able to prove it this time

around? Because an interpolant can be significantly simpler than either of its two bounding

formulae. The abstract domain of an A could become overly coarse with complex terms in the

upper and lower bound, but may handle the interpolant with ease. Searching the space between

the interpolant F and the upper bound I amounts to calling the overapproximators on ¬F ∧ I,

and looking for unreachability evidence.

To raise the lower bound safely, we must examine all paths between the lower bound and the

interpolant and confirm that they reach a ψ-state. For large state spaces, even this restricted

search will not finish before running out of resources; but the lower bound can be enriched if any

new reachable paths to a ψ-state are characterized. Searching the space between the lower bound

I and the interpolant F amounts to running a symbolic execution on ¬I ∧ F , and collecting any

evidence of ψ-state reachability.

The choice of an appropriate interpolant plays a big role in whether either of the bounds can

be made more accurate, i.e., moved closer to the interpolant.

Inferring Interval Invariants

The third strategy is motivated by situations where we actually want to create an inexact

interval. Why would we want this? There are cases where I grows large in the number of

intervals due to reachable ψ-state paths that are semantically similar, but syntactically distinct.

153

In principle this set of paths can be unbounded.

Consider the program fragment: . . .while (x > 0){ψ}. . . , where x is some symbolic integer.

After a few iterations, ACA could compute a series of exact, disjoint intervals; the succession of

coinciding lower/upper bounds may be: [x = 1, x = 1], followed by [x = 2, x = 2], followed by

[x = 3, x = 3], and so on. This overly-fine granularity arises because the bounding condition of the

while loop is not explicit in the given path conditions produced by A. Though the generalization

needed (x > 0) is obvious in this case, the patterns we hope to automatically infer will often be

much more complex.

So for the third strategy, we want to compute a disjoint interval I ′ such that I =⇒ I ′. (Note

that this implication conceptually “raises” the upper bound of I while leaving the lower bounds

intact; we only want to generalize the upper bound.) We would like I ′ to be small in the sense

that all or mostly all behavior described by I ′ actually leads to a ψ-state. To produce a minimal

generalization of this kind, we plan to build on recent work that infers program invariants using

symbolic states—SymInfer [166].

SymInfer is conceptually similar to the dynamic inference of formulae pioneered by Daikon [91];

but unlike Daikon, the newer work validates or invalidates the candidate invariants using symbolic

states—meaning no spurious invariants are produced. Also, by using a counterexample-guided

algorithm, more accurate invariants are produced. This makes SymInfer ideal for generating

our desired “minimally”-generalized intervals. The select function would choose a set of

syntactically-similar formulae (e.g., all formulae involving an equality constraint on the same

variable), and refine-interval would run SymInfer to see if a more general interval can be

inferred to cover the numerous “similar” intervals.

Statically Decomposing Programs

The current presentation of ACA assumes a program with the existence of a reachable ψ-state,

and as ACA proceeds, this program is dynamically decomposed with assume statements. We

can also use ACA to statically decompose a program with or without ψ-state reachability. Each

of these decompositions can then be again given to ACA, or to some other analyzer.

We can imagine partitioning a program that contains some line with a call to psi()—which

may or may not be reachable—, by chopping the program domain in two in the following manner:

154

1. make a copy of the original program, call the copy p’

2. comment out the call to psi() in p’

3. inject a new error state in p’ at some:

• loop header

• loop exit

• just before a function callsite

• just after a function callsite

4. try to collect a single reachability condition within p’, call it r

5. insert either assume(r) or assume(!r) at the top of the original program

If ACA successfully finds a path to an injected error, it can produce a file that contains an

assumption and mappings from input variables to their counts and types so that a later run of

ACA can create initial instrumentation that makes sense, i.e., all input variables mentioned in

the assumption have been initialized. Now ACA (or some other analyzer) chews again on the

original program with the embedded assumptions, with the hope being that it is easier to reason

about the smaller program pieces.

Reconstructing I in modular ACA

The end of Chapter 7 discussed the possibility of propagating the sound must information in I

across function boundaries. This would produce a succession of propagated lower bounds: I1,

I2, I3.

We imagine this list of lower bounds can be paired with the list of upper bounds (whose

generation is described in Chapter 7), e.g., (I1, I1), (I2, I2), . . . , such that a program interval

with both bounds defined can be reconstructed at each depth. Unlike a typical run of ACA, here

the Ii and Ii are produced independently of each other. We hypothesize that two complementary

runs of modular ACA—one computing series of I, the other series of I—can reconstruct subsystem

program intervals sound in both bounds.

155

10.2.2 Using Program Intervals

We presented promising applications of program intervals in focusing the results of expensive

quantitative techniques in Chapter 8, and in computing a weakest precondition in a modular

setting in Chapter 7. Here we look at two other possible applications of I.

Predictive Failure Avoidance

Due to the complexity of modern software, we cannot always have a proof that a program is free

of potential failures before deploying it. But if we are given an idea of how a failure may occur,

it is possible to detect a possible failure on a given execution path in order to steer execution

away from the failure. The hope would be to avoid the failure with minimally affecting program

behavior.

If the ψ-states are defined as error locations, then the program interval produced by ACA

could be used as a runtime monitor for predicting a failure. The logical formulae given by I

can be used to monitor the runtime constraints on inputs. By performing branch-lookahead to

see what the upcoming constraint will be, you can check if it is implied by I; if so, there’s the

possibility of hitting an error state. If this possibility is detected, we would need to define some

neighborhood of “similar” execution paths that could avoid avoid being implied by I, and force

execution to take one of these alternate paths.

Using program intervals for comprehensive bug fixes

We mentioned at the beginning of Chapter 3 the possibility of using I to provide developers with

a broader summary of conditions on inputs that must lead to a failure. If there are multiple paths

to some failure, this more comprehensive summary could be helpful in guiding the developer to

make a single general bug fix, rather than having to discover, debug, and patch each individual

path to a failure over time.

In the context of bug fixes, we only want to show developers known failures, so we would

output the must information collected in I. While the slicing within characterize has already

attempted to safely generalize ψ-state reachability conditions by removing conjuncts that are

irrelevant to reaching a ψ-state, there could still be a large number of distinct conditions in I.

156

We want to group these in some meaningful way so that the developer is not overwhelmed by a

large set of complex logical formulae.

Some of these conditions are grouped by logical implication under their disjoint interval’s upper

bound Ii, but we can imagine other grouping schemes, e.g., conjunctions with the longest shared

prefix, conjunctions containing only disequalities, conjunctions containing nonlinear constraints,

etc. We could also visualize the paths in I by projecting its conditions onto a simplified program

model such as a control flow graph. Developing different groupings by similarity metrics, or

making commonalities apparent visually would show a developer multiple perspectives on how a

ψ-state could be reached. This could provide deeper insight than a single failure report, leading

to a more comprehensive bug fix.

157

Bibliography

[1] Homepage of chrony. https://chrony.tuxfamily.org/, Accessed Jun 13, 2021.

[2] Pentest-report chrony 08.2017. https://web.archive.org/web/20171005123643/https:

//wiki.mozilla.org/images/e/e4/Chrony-report.pdf, Accessed Jun 13, 2021.

[3] Ultimate toolchain. https://monteverdi.informatik.uni-freiburg.de/tomcat/

Website/, Accessed Jun 5, 2021.

[4] G. Agha and K. Palmskog. A survey of statistical model checking. ACM Trans. Model.

Comput. Simul., 28(1):6:1–6:39, Jan 2018.

[5] H. Agrawal and J. R. Horgan. Dynamic program slicing. ACM SIGPlan Notices, 25(6):246–

256, 1990.

[6] E. Alatawi, T. Miller, et al. Leveraging abstract interpretation for efficient dynamic symbolic

execution. In 2017 32nd IEEE/ACM International Conference on Automated Software

Engineering (ASE), pages 619–624. IEEE, 2017.

[7] A. Albarghouthi, A. Gurfinkel, and M. Chechik. Craig interpretation. In International

Static Analysis Symposium, pages 300–316. Springer, 2012.

[8] A. Albarghouthi, A. Gurfinkel, and M. Chechik. From under-approximations to over-

approximations and back. In Proceedings of the 18th International Conference on Tools

and Algorithms for the Construction and Analysis of Systems, TACAS’12, pages 157–172,

Berlin, Heidelberg, 2012. Springer-Verlag.

158

https://chrony.tuxfamily.org/
https://web.archive.org/web/20171005123643/https://wiki.mozilla.org/images/e/e4/Chrony-report.pdf
https://web.archive.org/web/20171005123643/https://wiki.mozilla.org/images/e/e4/Chrony-report.pdf
https://monteverdi.informatik.uni-freiburg.de/tomcat/Website/
https://monteverdi.informatik.uni-freiburg.de/tomcat/Website/

[9] A. Albarghouthi and K. L. McMillan. Beautiful interpolants. In International Conference

on Computer Aided Verification, pages 313–329. Springer, 2013.

[10] R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci., 126(2):183–235,

1994.

[11] P. Andrianov, K. Friedberger, M. Mandrykin, V. Mutilin, and A. Volkov. Cpa-bam-bnb:

Block-abstraction memoization and region-based memory models for predicate abstractions.

In Proc. TACAS, pages 355–359. Springer, 2017.

[12] async: Run IO operations asynchronously and wait for their results. https://hackage.

haskell.org/package/async.

[13] A. Aydin, L. Bang, and T. Bultan. Automata-based model counting for string constraints. In

D. Kroening and C. S. Păsăreanu, editors, Computer Aided Verification: 27th International

Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I,

pages 255–272, Cham, 2015. Springer International Publishing.

[14] C. Baier and J.-P. Katoen. Principles of model checking. MIT press, 2008.

[15] V. Baldoni, N. Berline, J. A. De Loera, B. Dutra, M. Köppe, S. Moreinis, G. Pinto,

M. Vergne, and J. Wu. A user’s guide for latte integrale v1. 7.2. 2014.

[16] T. Balyo, P. Sanders, and C. Sinz. Hordesat: A massively parallel portfolio sat solver.

In International Conference on Theory and Applications of Satisfiability Testing, pages

156–172. Springer, 2015.

[17] M. Barnett and K. R. M. Leino. Weakest-precondition of unstructured programs. In

Proceedings of the 6th ACM SIGPLAN-SIGSOFT workshop on Program analysis for

software tools and engineering, pages 82–87, 2005.

[18] A. Barvinok and J. E. Pommersheim. An algorithmic theory of lattice points. New

perspectives in algebraic combinatorics, 38:91, 1999.

[19] P. Baudin, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy, and V. Prevosto. Acsl: Ansi c

specification language. CEA-LIST, Saclay, France, Tech. Rep. v1, 2, 2008.

159

https://hackage.haskell.org/package/async
https://hackage.haskell.org/package/async

[20] N. E. Beckman, A. V. Nori, S. K. Rajamani, and R. J. Simmons. Proofs from tests. In

Proceedings of the 2008 International Symposium on Software Testing and Analysis, ISSTA

’08, pages 3–14, New York, NY, USA, 2008. ACM.

[21] D. Beyer. Automatic verification of c and java programs: Sv-comp 2019. In D. Beyer,

M. Huisman, F. Kordon, and B. Steffen, editors, Tools and Algorithms for the Construction

and Analysis of Systems, pages 133–155, Cham, 2019. Springer International Publishing.

[22] D. Beyer and M. Dangl. Strategy selection for software verification based on boolean

features. In International Symposium on Leveraging Applications of Formal Methods, pages

144–159. Springer, 2018.

[23] D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, and A. Stahlbauer. Witness validation

and stepwise testification across software verifiers. In Proceedings of the 2015 10th Joint

Meeting on Foundations of Software Engineering, pages 721–733. ACM, 2015.

[24] D. Beyer, T. A. Henzinger, M. E. Keremoglu, and P. Wendler. Conditional model checking:

A technique to pass information between verifiers. In Proceedings of the ACM SIGSOFT

20th International Symposium on the Foundations of Software Engineering, page 57. ACM,

2012.

[25] D. Beyer, T. A. Henzinger, and G. Théoduloz. Configurable software verification: Con-

cretizing the convergence of model checking and program analysis. In Computer Aided

Verification, pages 504–518. Springer, 2007.

[26] D. Beyer and M.-C. Jakobs. Cooperative verifier-based testing with coveritest. International

Journal on Software Tools for Technology Transfer, pages 1–21, 2021.

[27] D. Beyer, M.-C. Jakobs, T. Lemberger, and H. Wehrheim. Reducer-based construction

of conditional verifiers. In Proceedings of the 40th International Conference on Software

Engineering, pages 1182–1193. ACM, 2018.

[28] D. Beyer and M. E. Keremoglu. CPAchecker: A tool for configurable software verification.

In Computer Aided Verification, pages 184–190. Springer, 2011.

160

[29] D. Beyer, S. Löwe, and P. Wendler. Reliable benchmarking: Requirements and solutions.

International Journal on Software Tools for Technology Transfer, pages 1–29, 2017.

[30] D. Beyer and H. Wehrheim. Verification artifacts in cooperative verification: Survey and

unifying component framework. In International Symposium on Leveraging Applications of

Formal Methods, pages 143–167. Springer, 2020.

[31] D. Beyer and P. Wendler. Reuse of verification results. In Model Checking Software, pages

1–17. Springer, 2013.

[32] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, Y. Zhu, et al. Bounded model checking.

Advances in computers, 58(11):117–148, 2003.

[33] A. Biere and H. van Maaren. Handbook of Satisfiability. Frontiers in Artificial Intelligence

and Applications. IOS Press, 2009.

[34] D. W. Binkley and K. B. Gallagher. Program slicing. Advances in computers, 43:1–50,

1996.

[35] M. Böhme and S. Paul. On the efficiency of automated testing. In Proceedings of the 22nd

ACM SIGSOFT International Symposium on Foundations of Software Engineering, pages

632–642. ACM, 2014.

[36] M. Böhme, V.-T. Pham, and A. Roychoudhury. Coverage-based greybox fuzzing as markov

chain. IEEE Transactions on Software Engineering, 2017.

[37] M. Borges, A. Filieri, M. d’Amorim, C. S. Păsăreanu, and W. Visser. Compositional

solution space quantification for probabilistic software analysis. In Proceedings of the 35th

ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI

’14, pages 123–132, New York, NY, USA, 2014. ACM.

[38] M. Borges, A. Filieri, M. d’Amorim, and C. S. Păsăreanu. Iterative distribution-aware

sampling for probabilistic symbolic execution. In Proceedings of the 10th Joint Meeting of

the European Software Engineering Conference and the ACM SIGSOFT Symposium on the

Foundations of Software Engineering, ESEC/FSE 2015, pages 866–877. ACM, 2015.

161

[39] M. Borges, Q.-S. Phan, A. Filieri, and C. S. Păsăreanu. Model-counting approaches for

nonlinear numerical constraints. In NASA Formal Methods Symposium, pages 131–138.

Springer, 2017.

[40] J. Bornholt, T. Mytkowicz, and K. S. McKinley. Uncertain: A first-order type for uncertain

data. In Proceedings of the 19th International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS ’14, pages 51–66, New York,

NY, USA, 2014. ACM.

[41] A. R. Bradley. Sat-based model checking without unrolling. In International Workshop on

Verification, Model Checking, and Abstract Interpretation, pages 70–87. Springer, 2011.

[42] A. R. Bradley. Understanding ic3. In International Conference on Theory and Applications

of Satisfiability Testing, pages 1–14. Springer, 2012.

[43] G. Brat, J. A. Navas, N. Shi, and A. Venet. Ikos: A framework for static analysis based on

abstract interpretation. In International Conference on Software Engineering and Formal

Methods, pages 271–277. Springer, 2014.

[44] T. Brennan, S. Saha, T. Bultan, and C. S. Păsăreanu. Symbolic path cost analysis for

side-channel detection. In Proceedings of the 27th ACM SIGSOFT International Symposium

on Software Testing and Analysis, ISSTA 2018, pages 27–37, New York, NY, USA, 2018.

ACM.

[45] B. Büeler, A. Enge, and K. Fukuda. Exact Volume Computation for Polytopes: A Practical

Study, pages 131–154. Birkhäuser Basel, Basel, 2000.

[46] R. W. Butler and G. B. Finelli. The infeasibility of quantifying the reliability of life-critical

real-time software. IEEE Trans. Softw. Eng., 19(1):3–12, Jan. 1993.

[47] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and automatic generation of

high-coverage tests for complex systems programs. In OSDI, volume 8, pages 209–224,

2008.

162

[48] C. Cadar, D. Dunbar, D. R. Engler, et al. Klee: Unassisted and automatic generation of

high-coverage tests for complex systems programs. In OSDI, volume 8, pages 209–224,

2008.

[49] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer, M. Luca, P. O’Hearn,

I. Papakonstantinou, J. Purbrick, and D. Rodriguez. Moving Fast with Software Verification,

pages 3–11. Springer International Publishing, Cham, 2015.

[50] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley. Unleashing mayhem on binary code.

In Security and Privacy (SP), 2012 IEEE Symposium on, pages 380–394. IEEE, 2012.

[51] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley. Unleashing mayhem on binary code.

In IEEE Symposium on Security and Privacy, pages 380–394, May 2012.

[52] S. Chakraborty, K. S. Meel, and M. Y. Vardi. A Scalable Approximate Model Counter,

pages 200–216. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[53] S. Chakraborty, K. S. Meel, and M. Y. Vardi. Algorithmic improvements in approximate

counting for probabilistic inference: From linear to logarithmic sat calls. In Proceedings of

the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI’16, pages

3569–3576. AAAI Press, 2016.

[54] B. Chen, Y. Liu, and W. Le. Generating performance distributions via probabilistic symbolic

execution. In Proceedings of the 38th International Conference on Software Engineering,

ICSE ’16, pages 49–60, New York, NY, USA, 2016. ACM.

[55] D. Chistikov, R. Dimitrova, and R. Majumdar. Approximate counting in smt and value

estimation for probabilistic programs. Acta Informatica, 54(8):729–764, Dec 2017.

[56] M. Christakis. On narrowing the gap between verification and systematic testing. it-

Information Technology, 59(4):197–202, 2017.

[57] M. Christakis, P. Müller, and V. Wüstholz. Collaborative verification and testing with

explicit assumptions. In International Symposium on Formal Methods, pages 132–146.

Springer, 2012.

163

[58] M. Christakis, P. Müller, and V. Wüstholz. Guiding dynamic symbolic execution toward

unverified program executions. In Proceedings of the 38th International Conference on

Software Engineering, pages 144–155, 2016.

[59] E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using satisfiability

solving. Formal methods in system design, 19(1):7–34, 2001.

[60] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-Guided Abstraction

Refinement, pages 154–169. Springer Berlin Heidelberg, 2000.

[61] E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs. In Tools and

Algorithms for the Construction and Analysis of Systems (TACAS 2004), pages 168–176.

Springer, 2004.

[62] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using

branching time temporal logic. In Workshop on Logic of Programs, pages 52–71. Springer,

1981.

[63] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state

concurrent systems using temporal logic specifications. ACM Transactions on Programming

Languages and Systems (TOPLAS), 8(2):244–263, 1986.

[64] L. Clarke. A system to generate test data and symbolically execute programs. Software

Engineering, IEEE Transactions on, (3):215–222, 1976.

[65] D. D. Cofer and S. P. Miller. DO-333 certification case studies. In NASA Formal Methods

- 6th International Symposium, NFM 2014, Houston, TX, USA, April 29 - May 1, 2014.

Proceedings, pages 1–15, 2014.

[66] A. Cortesi. Widening operators for abstract interpretation. In 2008 Sixth IEEE International

Conference on Software Engineering and Formal Methods, pages 31–40. IEEE, 2008.

[67] P. Cousot. Méthodes itératives de construction et d’approximation de points fixes

d’opérateurs monotones sur un treillis, analyse sémantique des programmes. PhD thesis,

1978.

164

[68] P. Cousot. The calculational design of a generic abstract interpreter. NATO ASI SERIES

F COMPUTER AND SYSTEMS SCIENCES, 173:421–506, 1999.

[69] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis

of programs by construction or approximation of fixpoints. In Proceedings of the 4th ACM

SIGACT-SIGPLAN symposium on Principles of programming languages, pages 238–252.

ACM, 1977.

[70] P. Cousot and R. Cousot. Abstract interpretation and application to logic programs. The

Journal of Logic Programming, 13(2-3):103–179, 1992.

[71] P. Cousot and R. Cousot. Comparing the galois connection and widening/narrowing

approaches to abstract interpretation. In International Symposium on Programming

Language Implementation and Logic Programming, pages 269–295. Springer, 1992.

[72] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. The

ASTRÉE Analyzer, pages 21–30. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[73] P. Cousot and M. Monerau. Probabilistic abstract interpretation. In Programming Languages

and Systems, pages 169–193. Springer, 2012.

[74] W. Craig. Three uses of the herbrand-gentzen theorem in relating model theory and proof

theory. The Journal of Symbolic Logic, 22(3):269–285, 1957.

[75] M. Czech, E. Hüllermeier, M.-C. Jakobs, and H. Wehrheim. Predicting rankings of software

verification tools. In Proceedings of the 3rd ACM SIGSOFT International Workshop on

Software Analytics, pages 23–26, 2017.

[76] M. Czech, M.-C. Jakobs, and H. Wehrheim. Just test what you cannot verify! In

International Conference on Fundamental Approaches to Software Engineering, pages

100–114. Springer, 2015.

[77] P. Daca, A. Gupta, and T. A. Henzinger. Abstraction-driven concolic testing. In Inter-

national Conference on Verification, Model Checking, and Abstract Interpretation, pages

328–347. Springer, 2016.

165

[78] M. Dangl, S. Löwe, and P. Wendler. Cpachecker with support for recursive programs and

floating-point arithmetic. In Proc. TACAS, pages 423–425. Springer, 2015.

[79] P. Darke, S. Prabhu, B. Chimdyalwar, A. Chauhan, S. Kumar, A. Basakchowdhury,

R. Venkatesh, A. Datar, and R. K. Medicherla. Veriabs: Verification by abstraction and

test generation. In Proc. TACAS, pages 457–462. Springer, 2018.

[80] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In Tools and Algorithms for the

Construction and Analysis of Systems, pages 337–340. Springer, 2008.

[81] L. De Moura, H. Rueß, and M. Sorea. Bounded model checking and induction: From

refutation to verification. In International Conference on Computer Aided Verification,

pages 14–26. Springer, 2003.

[82] Y. Demyanova, T. Pani, H. Veith, and F. Zuleger. Empirical software metrics for bench-

marking of verification tools. Formal methods in system design, 50(2-3):289–316, 2017.

[83] E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs.

Communications of the ACM, 18(8):453–457, 1975.

[84] D. L. Dill and H. Wong-Toi. Verification of real-time systems by successive over and under

approximation. In Proceedings of the 7th International Conference on Computer Aided

Verification, pages 409–422, London, UK, UK, 1995. Springer-Verlag.

[85] M. B. Dwyer, J. G. Edenhofner, G. Gopalakrishnan, A. Marianiello, Z. Luo, Z. Rakamaric,

M. S. Rogers, S. F. Siegel, M. Zheng, and T. K. Zirkel. CIVL: The concurrency intermediate

verification language reference manual, v1.19. https://vsl.cis.udel.edu/civl, Feb.

2019.

[86] M. B. Dwyer and S. Elbaum. Unifying verification and validation techniques: relating

behavior and properties through partial evidence. In Proceedings of the FSE/SDP workshop

on Future of software engineering research, pages 93–98, 2010.

[87] M. B. Dwyer, J. Hatcliff, R. Robby, C. S. Pasareanu, and W. Visser. Formal software

analysis emerging trends in software model checking. In Future of Software Engineering

(FOSE’07), pages 120–136. IEEE, 2007.

166

https://vsl.cis.udel.edu/civl

[88] M. B. Dwyer, S. Person, and S. G. Elbaum. Controlling factors in evaluating path-sensitive

error detection techniques. In M. Young and P. T. Devanbu, editors, Proceedings of the

14th ACM SIGSOFT International Symposium on Foundations of Software Engineering,

FSE 2006, Portland, Oregon, USA, November 5-11, 2006, pages 92–104. ACM, 2006.

[89] M. Dyer, A. Frieze, and R. Kannan. A random polynomial-time algorithm for approximating

the volume of convex bodies. J. ACM, 38(1):1–17, Jan. 1991.

[90] E. A. Emerson and E. M. Clarke. Characterizing correctness properties of parallel programs

using fixpoints. In J. de Bakker and J. van Leeuwen, editors, Automata, Languages and

Programming, pages 169–181, Berlin, Heidelberg, 1980. Springer Berlin Heidelberg.

[91] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz, and

C. Xiao. The daikon system for dynamic detection of likely invariants. Science of Computer

Programming, 69(1-3):35–45, 2007.

[92] European Committee for Electrotechnical Standardization. EN 50126: Railways applications

– the specification and demonstration of reliability, availability, maintainability and safety,

2017.

[93] K. Ferles, V. Wüstholz, M. Christakis, and I. Dillig. Failure-directed program trimming.

In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,

pages 174–185, 2017.

[94] A. Filieri, C. S. Păsăreanu, and W. Visser. Reliability analysis in symbolic pathfinder. In

Proceedings of the 35th International Conference on Software Engineering, ICSE ’13, pages

622–631, Piscataway, NJ, USA, 2013. IEEE Press.

[95] A. Filieri, C. S. Păsăreanu, W. Visser, and J. Geldenhuys. Statistical symbolic execution with

informed sampling. In Proceedings of the 22nd ACM SIGSOFT International Symposium

on Foundations of Software Engineering, FSE 14, pages 437–448, New York, NY, USA,

2014. ACM.

[96] R. W. Floyd. Assigning meanings to programs. Mathematical aspects of computer science,

19(19-32):1, 1967.

167

[97] M. Y. Gadelha, H. I. Ismail, and L. C. Cordeiro. Handling loops in bounded model checking

of c programs via k-induction. International Journal on Software Tools for Technology

Transfer, 19(1):97–114, 2017.

[98] S. Gao, M. Ganai, F. Ivančić, A. Gupta, S. Sankaranarayanan, and E. M. Clarke. Integrating

icp and lra solvers for deciding nonlinear real arithmetic problems. In Formal Methods in

Computer Aided Design, pages 81–89. IEEE, 2010.

[99] J. Geldenhuys, M. B. Dwyer, and W. Visser. Probabilistic symbolic execution. In Proceedings

of the 2012 International Symposium on Software Testing and Analysis, ISSTA 2012, pages

166–176, New York, NY, USA, 2012. ACM.

[100] M. Gerrard, M. Borges, M. Dwyer, and A. Fillieri. Conditional quantitative program

analysis. IEEE Transactions on Software Engineering, 2020.

[101] M. J. Gerrard and M. B. Dwyer. Comprehensive failure characterization. In Proceedings of

the 32Nd IEEE/ACM International Conference on Automated Software Engineering, ASE

2017, pages 365–376, Piscataway, NJ, USA, 2017. IEEE Press.

[102] P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated random testing.

40(6):213–223, 2005.

[103] P. Godefroid, M. Y. Levin, D. A. Molnar, et al. Automated whitebox fuzz testing. In

NDSS, volume 8, pages 151–166, 2008.

[104] P. Godefroid, A. V. Nori, S. K. Rajamani, and S. D. Tetali. Compositional may-must

program analysis: Unleashing the power of alternation. In Proceedings of the 37th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL

’10, pages 43–56, New York, NY, USA, 2010. ACM.

[105] H. H. Goldstine, J. Von Neumann, and J. Von Neumann. Planning and coding of problems

for an electronic computing instrument. 1947.

[106] C. P. Gomes, A. Sabharwal, and B. Selman. Model Counting, pages 633–654. Frontiers in

Artificial Intelligence and Applications. IOS Press, 2009.

168

[107] A. D. Gordon, T. A. Henzinger, A. V. Nori, and S. K. Rajamani. Probabilistic programming.

In Proceedings of the on Future of Software Engineering, FOSE 2014, pages 167–181, New

York, NY, USA, 2014. ACM.

[108] L. Granvilliers and F. Benhamou. Algorithm 852: Realpaver: An interval solver using

constraint satisfaction techniques. ACM Trans. Math. Softw., 32(1):138–156, Mar. 2006.

[109] M. Greitschus, D. Dietsch, M. Heizmann, A. Nutz, C. Schätzle, C. Schilling, F. Schüssele,

and A. Podelski. Ultimate taipan: Trace abstraction and abstract interpretation. In Proc.

TACAS, pages 399–403. Springer, 2017.

[110] M. Greitschus, D. Dietsch, and A. Podelski. Loop invariants from counterexamples. In

International Static Analysis Symposium, pages 128–147. Springer, 2017.

[111] A. Groce, G. Holzmann, and R. Joshi. Randomized differential testing as a prelude to formal

verification. In Proceedings of the 29th International Conference on Software Engineering,

ICSE ’07, pages 621–631, Washington, DC, USA, 2007. IEEE Computer Society.

[112] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori, and S. K. Rajamani. Synergy: a new

algorithm for property checking. In Proceedings of the 14th ACM SIGSOFT international

symposium on Foundations of software engineering, pages 117–127, 2006.

[113] A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas. The seahorn verification

framework. In International Conference on Computer Aided Verification, pages 343–361.

Springer, 2015.

[114] Á. Hajdu and Z. Micskei. Efficient strategies for cegar-based model checking. Journal of

Automated Reasoning, 64(6):1051–1091, 2020.

[115] J. Haltermann and H. Wehrheim. Covegi: Cooperative verification via externally generated

invariants. Fundamental Approaches to Software Engineering, 12649:108, 2021.

[116] language-c: Analysis and generation of C code. https://hackage.haskell.org/package/

language-c-0.9.

169

https://hackage.haskell.org/package/language-c-0.9
https://hackage.haskell.org/package/language-c-0.9

[117] M. P. E. Heimdahl. Safety and software intensive systems: Challenges old and new. In

2007 Future of Software Engineering, pages 137–152, 2007.

[118] M. Heizmann, Y.-F. Chen, D. Dietsch, M. Greitschus, J. Hoenicke, Y. Li, A. Nutz, B. Musa,

C. Schilling, T. Schindler, et al. Ultimate automizer and the search for perfect interpolants.

In Proc. TACAS, pages 447–451. Springer, 2018.

[119] M. Heizmann, J. Hoenicke, and A. Podelski. Software Model Checking for People Who

Love Automata, pages 36–52. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[120] P. Hennig, M. A. Osborne, and M. Girolami. Probabilistic numerics and uncertainty in

computations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering

Sciences, 471(2179):20150142, 2015.

[121] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software verification with blast.

In International SPIN Workshop on Model Checking of Software, pages 235–239. Springer,

2003.

[122] T. Hérault, R. Lassaigne, F. Magniette, and S. Peyronnet. Approximate probabilistic model

checking. In B. Steffen and G. Levi, editors, Verification, Model Checking, and Abstract

Interpretation, pages 73–84, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[123] S. Heule, M. Sridharan, and S. Chandra. Mimic: Computing models for opaque code. In

Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, pages

710–720, 2015.

[124] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the

ACM, 12(10):576–580, 1969.

[125] International Electro-technical Commission. IEC 62304: Medical device software software

life cycle processes, 2006.

[126] International Electro-technical Commission. IEC 61508: Functional safety of electrical/-

electronic/programmable safety-related systems, 2010.

170

[127] International Organization for Standards. ISO 10218: Robots and robotic devices – safety

requirements for industrial robots, 2011.

[128] International Organization for Standards. ISO 26262: Road vehicles – functional safety,

2011.

[129] International Organization for Standards. ISO 13482: Robots and robotic devices – safety

requirements for personal care robots, 2014.

[130] B. L. Kaminski, J.-P. Katoen, C. Matheja, and F. Olmedo. Weakest precondition reasoning

for expected run–times of probabilistic programs. In European Symposium on Programming,

pages 364–389. Springer, 2016.

[131] J.-P. Katoen. The probabilistic model checking landscape. In Proceedings of the 31st

Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, pages 31–45, New

York, NY, USA, 2016. ACM.

[132] B. W. Kernighan and D. M. Ritchie. The C programming language. 2006.

[133] S. Khurshid, C. S. Pǎsǎreanu, and W. Visser. Generalized symbolic execution for model

checking and testing. In H. Garavel and J. Hatcliff, editors, Tools and Algorithms for the

Construction and Analysis of Systems, 9th International Conference, TACAS 2003, Held as

Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2003,

Warsaw, Poland, April 7-11, 2003, Proceedings, volume 2619 of Lecture Notes in Computer

Science, pages 553–568. Springer, 2003.

[134] G. A. Kildall. A unified approach to global program optimization. In Proceedings of the

1st annual ACM SIGACT-SIGPLAN symposium on Principles of programming languages,

pages 194–206. ACM, 1973.

[135] J. C. King. Symbolic execution and program testing. Communications of the ACM,

19(7):385–394, 1976.

[136] A. Komuravelli, A. Gurfinkel, and S. Chaki. Smt-based model checking for recursive

programs. Formal Methods in System Design, 48(3):175–205, 2016.

171

[137] D. Kozen. Semantics of probabilistic programs. Journal of Computer and System Sciences,

22(3):328–350, 1981.

[138] D. Kroening and M. Tautschnig. Cbmc–c bounded model checker. In Proc. TACAS, pages

389–391. Springer, 2014.

[139] P. Ladkin. Some practical issues in statistically evaluating critical software. In 10th IET

System Safety and Cyber-Security Conference 2015, pages 1–5. IET, 2015.

[140] P. B. Ladkin and B. Littlewood. Practical statistical evaluation of critical software.

electronic,(March 2015),[Online]. Available: http://www. rvs. unibielefeld. de/publication-

s/Papers/LadLitt20150301. pdf, 2016.

[141] A. Lai and S. Qadeer. A program transformation for faster goal-directed search. In 2014

Formal Methods in Computer-Aided Design (FMCAD), pages 147–154. IEEE, 2014.

[142] J. Launchbury and S. L. P. Jones. State in haskell. Lisp and symbolic computation,

8(4):293–341, 1995.

[143] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. GenProg: A generic method for

automatic software repair. IEEE Transactions on Software Engineering, 38(1):54–72, 2012.

[144] A. Legay, B. Delahaye, and S. Bensalem. Statistical model checking: An overview. In

H. Barringer, Y. Falcone, B. Finkbeiner, K. Havelund, I. Lee, G. Pace, G. Roşu, O. Sokolsky,

and N. Tillmann, editors, Runtime Verification, pages 122–135, Berlin, Heidelberg, 2010.

Springer Berlin Heidelberg.

[145] K. R. M. Leino. Efficient weakest preconditions. Information Processing Letters, 93(6):281–

288, 2005.

[146] S. Liang, P. Hudak, and M. Jones. Monad transformers and modular interpreters. In

Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, pages 333–343, 1995.

[147] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable statistical bug

isolation. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’05, pages 15–26, New York, NY, USA, 2005. ACM.

172

[148] B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhoták, J. N. Amaral, B.-Y. E. Chang,

S. Z. Guyer, U. P. Khedker, A. Møller, and D. Vardoulakis. In defense of soundiness: A

manifesto. Communications of the ACM, 58(2):44–46, 2015.

[149] D. Lohar, C. Jeangoudoux, J. Sobel, E. Darulova, and M. Christakis. A two-phase approach

for conditional floating-point verification. Tools and Algorithms for the Construction and

Analysis of Systems (TACAS 2021), 12652:43—63, February 2021.

[150] Y. Lou, A. Ghanbari, X. Li, L. Zhang, H. Zhang, D. Hao, and L. Zhang. Can automated

program repair refine fault localization? a unified debugging approach. In Proceedings of

the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis, pages

75–87, 2020.

[151] K. Luckow, C. S. Păsăreanu, M. B. Dwyer, A. Filieri, and W. Visser. Exact and approximate

probabilistic symbolic execution for nondeterministic programs. In Proceedings of the 29th

ACM/IEEE International Conference on Automated Software Engineering, ASE ’14, pages

575–586, New York, NY, USA, 2014. ACM.

[152] L. Luu, S. Shinde, P. Saxena, and B. Demsky. A model counter for constraints over

unbounded strings. In Proceedings of the 35th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’14, pages 565–576, New York, NY, USA,

2014. ACM.

[153] P. Malacaria, M. Khouzani, C. S. Pasareanu, Q. Phan, and K. Luckow. Symbolic side-channel

analysis for probabilistic programs. In 2018 IEEE 31st Computer Security Foundations

Symposium (CSF), pages 313–327, July 2018.

[154] R. Malik. Lecture notes in model checking. https://www.cs.waikato.ac.nz/˜robi/

comp552-07b/comp552-lecture10.pdf, September 2018.

[155] P. D. Marinescu and C. Cadar. KATCH: High-coverage testing of software patches.

In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering,

ESEC/FSE 2013, pages 235–245, New York, NY, USA, 2013. ACM.

173

https://www.cs.waikato.ac.nz/~robi/comp552-07b/comp552-lecture10.pdf
https://www.cs.waikato.ac.nz/~robi/comp552-07b/comp552-lecture10.pdf

[156] S. Marlow. Parallel and concurrent programming in Haskell: Techniques for multicore and

multithreaded programming. ” O’Reilly Media, Inc.”, 2013.

[157] S. Marlow et al. Haskell 2010 language report. Available online http://www. haskell.

org/(May 2011), 2010.

[158] A. Mayr, R. Plösch, and M. Saft. Towards an operational safety standard for software:

modelling iec 61508 part 3. In 2011 18th IEEE International Conference and Workshops

on Engineering of Computer-Based Systems, pages 97–104. IEEE, 2011.

[159] K. L. McMillan. Interpolation and sat-based model checking. In International Conference

on Computer Aided Verification, pages 1–13. Springer, 2003.

[160] S. Mechtaev, J. Yi, and A. Roychoudhury. Angelix: Scalable multiline program patch

synthesis via symbolic analysis. In Proceedings of the 38th International Conference on

Software Engineering, ICSE ’16, pages 691–701, New York, NY, USA, 2016. ACM.

[161] E. Moggi. Notions of computation and monads. Information and computation, 93(1):55–92,

1991.

[162] D. Monniaux. Abstract interpretation of probabilistic semantics. In Static Analysis, pages

322–339. Springer, 2000.

[163] J. Morse, M. Ramalho, L. Cordeiro, D. Nicole, and B. Fischer. Esbmc 1.22. In Proc.

TACAS, pages 405–407. Springer, 2014.

[164] S. Nair, J. L. De La Vara, M. Sabetzadeh, and L. Briand. An extended systematic literature

review on provision of evidence for safety certification. Information and Software Technology,

56(7):689–717, 2014.

[165] K. S. Namjoshi and Z. Pavlinovic. The impact of program transformations on static

program analysis. In International Static Analysis Symposium, pages 306–325. Springer,

2018.

[166] T. Nguyen, M. B. Dwyer, and W. Visser. Symlnfer: Inferring program invariants using

symbolic states. In Automated Software Engineering (ASE), 2017 32nd IEEE/ACM

International Conference on, pages 804–814. IEEE, 2017.

174

[167] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer, 2005.

[168] H. R. Nielson and F. Nielson. Semantics with applications, volume 104. Springer, 1992.

[169] J. Ninin. Global optimization based on contractor programming: An overview of the ibex

library. In I. S. Kotsireas, S. M. Rump, and C. K. Yap, editors, Mathematical Aspects of

Computer and Information Sciences, pages 555–559, Cham, 2016. Springer International

Publishing.

[170] J. Nutaro and O. Ozmen. Using simulation to quantify the reliability of control software.

In 2019 Winter Simulation Conference (WSC), pages 3267–3276. IEEE, 2019.

[171] H. Palikareva and C. Cadar. Multi-solver support in symbolic execution. In N. Sharygina

and H. Veith, editors, Computer Aided Verification, pages 53–68, Berlin, Heidelberg, 2013.

Springer Berlin Heidelberg.

[172] C. S. Păsăreanu, M. B. Dwyer, and W. Visser. Finding feasible abstract counter-examples.

International Journal on Software Tools for Technology Transfer, 5(1):34–48, 2003.

[173] W. R. Pestman. Mathematical statistics: an introduction, volume 1. Walter de Gruyter,

1998.

[174] S. L. Peyton Jones and P. Wadler. Imperative functional programming. In Proceedings of

the 20th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,

pages 71–84, 1993.

[175] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun, and B. Wang. Automated

support for classifying software failure reports. In Proceedings of the 25th International

Conference on Software Engineering, ICSE ’03, pages 465–475, Washington, DC, USA,

2003. IEEE Computer Society.

[176] G. Ramalingam. Data flow frequency analysis. In ACM SIGPLAN Notices, volume 31,

pages 267–277. ACM, 1996.

[177] L. M. Rea and R. A. Parker. Designing and conducting survey research: A comprehensive

guide. John Wiley & Sons, 2014.

175

[178] T. Reps. Program analysis via graph reachability. Information and software technology,

40(11-12):701–726, 1998.

[179] J. R. Rice. The algorithm selection problem. In Advances in computers, volume 15, pages

65–118. Elsevier, 1976.

[180] C. Richter, E. Hüllermeier, M.-C. Jakobs, and H. Wehrheim. Algorithm selection for

software validation based on graph kernels. Automated Software Engineering, 27(1):153–186,

2020.

[181] C. Richter and H. Wehrheim. Pesco: Predicting sequential combinations of verifiers. In

International Conference on Tools and Algorithms for the Construction and Analysis of

Systems, pages 229–233. Springer, 2019.

[182] C. Richter and H. Wehrheim. Attend and represent: A novel view on algorithm selection

for software verification. In 2020 35th IEEE/ACM International Conference on Automated

Software Engineering (ASE), pages 1016–1028. IEEE, 2020.

[183] E. F. Rizzi, S. Elbaum, and M. B. Dwyer. On the techniques we create, the tools we

build, and their misalignments: A study of klee. In Proceedings of the 38th International

Conference on Software Engineering, pages 132–143, 2016.

[184] C. Robert and G. Casella. Monte Carlo statistical methods. Springer Science & Business

Media, 2013.

[185] P. Rodgers, G. Stapleton, and P. Chapman. Visualizing sets with linear diagrams. ACM

Transactions on Computer-Human Interaction (TOCHI), 22(6):1–39, 2015.

[186] RTCA. DO-178C : Software considerations in airborne systems and equipment certification,

2011.

[187] RTCA. DO-333 : Formal methods supplement to DO-178C and DO-278A, 2011.

[188] A. Sampson, P. Panchekha, T. Mytkowicz, K. S. McKinley, D. Grossman, and L. Ceze.

Expressing and verifying probabilistic assertions. ACM SIGPLAN Notices, 49(6):112–122,

2014.

176

[189] S. Sankaranarayanan, A. Chakarov, and S. Gulwani. Static analysis for probabilistic

programs: inferring whole program properties from finitely many paths. ACM SIGPLAN

Notices, 48(6):447–458, 2013.

[190] D. Schmidt and B. Steffen. Program analysis as model checking of abstract interpretations.

In International Static Analysis Symposium, pages 351–380. Springer, 1998.

[191] M. Sheeran, S. Singh, and G. St̊almarck. Checking safety properties using induction and a

sat-solver. In International conference on formal methods in computer-aided design, pages

127–144. Springer, 2000.

[192] S. F. Siegel, M. Zheng, Z. Luo, T. K. Zirkel, A. V. Marianiello, J. G. Edenhofner, M. B.

Dwyer, and M. S. Rogers. CIVL: The Concurrency Intermediate Verification Language. In

SC15: International Conference for High Performance Computing, Networking, Storage

and Analysis, Proceedings, SC ’15, Piscataway, NJ, USA, Nov 2015. IEEE Press.

[193] J. Slabỳ, J. Strejček, and M. Trt́ık. Checking properties described by state machines: On

synergy of instrumentation, slicing, and symbolic execution. In International Workshop on

Formal Methods for Industrial Critical Systems, pages 207–221. Springer, 2012.

[194] J. Slaby, J. Strejček, and M. Trt́ık. Symbiotic: synergy of instrumentation, slicing, and

symbolic execution. In Proc. TACAS, pages 630–632. Springer, 2013.

[195] SV-COMP benchmarks. https://github.com/sosy-lab/sv-benchmarks, Accessed Aug

1, 2018.

[196] SV-COMP 2016 results. https://sv-comp.sosy-lab.org/2016/results/, Accessed May

1, 2017.

[197] SV-COMP 2017 results. https://sv-comp.sosy-lab.org/2017/results/, Accessed May

1, 2017.

[198] SV-COMP homepage. https://sv-comp.sosy-lab.org/, Accessed Apr 15, 2021.

[199] T. Tao. An Introduction to Measure Theory. American Mathematical Society, 2011.

177

https://github.com/sosy-lab/sv-benchmarks
https://sv-comp.sosy-lab.org/2016/results/
https://sv-comp.sosy-lab.org/2017/results/
https://sv-comp.sosy-lab.org/

[200] M.-T. Trinh, D.-H. Chu, and J. Jaffar. Model counting for recursively-defined strings. In

R. Majumdar and V. Kunčak, editors, Computer Aided Verification, pages 399–418, Cham,

2017. Springer.

[201] A. Turing. Checking a large routine. In The early British computer conferences, pages

70–72, 1989.

[202] L. Valiant. The complexity of computing the permanent. Theoretical Computer Science,

8(2):189–201, 1979.

[203] R. van Tonder and C. L. Goues. Tailoring programs for static analysis via program

transformation. In Proceedings of the ACM/IEEE 42nd International Conference on

Software Engineering, pages 824–834, 2020.

[204] S. Verdoolaege. Software package barvinok. 2004. Electronically available at

http://freshmeat.net/projects/barvinok.

[205] S. Verdoolaege, R. Seghir, K. Beyls, V. Loechner, and M. Bruynooghe. Counting integer

points in parametric polytopes using barvinok’s rational functions. Algorithmica, 48(1):37–

66, Mar. 2007.

[206] X. Wang, J. Sun, Z. Chen, P. Zhang, J. Wang, and Y. Lin. Towards optimal concolic

testing. In Proceedings of the 40th International Conference on Software Engineering, ICSE

’18, pages 291–302, New York, NY, USA, 2018. ACM.

[207] M. N. Wegman and F. K. Zadeck. Constant propagation with conditional branches. In

Proceedings of the 12th ACM SIGACT-SIGPLAN Symposium on Principles of Programming

Languages, POPL ’85, pages 291–299, New York, NY, USA, 1985. ACM.

[208] M. Weiser. Program slicing. IEEE Transactions on software engineering, (4):352–357, 1984.

[209] H. Wong-Toi. Symbolic approximations for verifying real-time systems. Technical report,

STANFORD UNIV CA DEPT OF COMPUTER SCIENCE, 1994.

[210] B. Xin and X. Zhang. Efficient online detection of dynamic control dependence. In

Proceedings of the 2007 international symposium on Software testing and analysis, pages

185–195. ACM, 2007.

178

[211] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. SATzilla: portfolio-based algorithm

selection for SAT. Journal of artificial intelligence research, 32:565–606, 2008.

[212] J. Xuan, M. Martinez, F. DeMarco, M. Clement, S. L. Marcote, T. Durieux, D. Le Berre,

and M. Monperrus. Nopol: Automatic repair of conditional statement bugs in Java programs.

IEEE Trans. Softw. Eng., 43(1):34–55, Jan. 2017.

[213] H. Ye, M. Martinez, and M. Monperrus. Automated patch assessment for program repair

at scale. Empirical Software Engineering, 26(2):1–38, 2021.

[214] G. U. Yule. On the methods of measuring the association between two variables. Journal

of the Royal Statistics Society, 75:576–642, 1912.

[215] M. Zheng, M. S. Rogers, Z. Luo, M. B. Dwyer, and S. F. Siegel. Civl: Formal verification

of parallel programs. In 2015 30th IEEE/ACM International Conference on Automated

Software Engineering, ASE, pages 830–835, 2015.

[216] P. Zuliani, A. Platzer, and E. M. Clarke. Bayesian statistical model checking with application

to stateflow/simulink verification. Formal Methods in System Design, 43(2):338–367, Oct

2013.

179

Appendices

180

Appendix A

Observational Study Data

This appendix contains performance metrics for runs of ALPACA on the 380 SV-COMP subjects

discussed in Chapter 6. The mapping between subject IDs and original SV-COMP names is in

Section A.1. Detailed results for each subject are in Section A.2.

A.1 Name mapping

For readability reasons, we shortened the filename of some subjects. Here below is a table

mapping each name id to the original filename from the SV-COMP benchmark, which can be

found at: https://github.com/sosy-lab/sv-benchmarks.

Notably, the SV-COMP organizers renamed some of the subjects. However, the origi-

nal filename is stored in the yml description of the subject, e.g., see “old file name” in

email spec0 product31.cil.yml.

The recommended way to access the benchmark files is searching the SV-COMP repository

for the filename using the search function of GitHub.

181

https://github.com/sosy-lab/sv-benchmarks
https://github.com/sosy-lab/sv-benchmarks/blob /d56a700f65b46568f84520384df80b1fd844b54a/c/product-lines/email_spec0 _product31.cil.yml

Subject ID SV-COMP file name

Ackermann02 Ackermann02˙false-unreach-call˙true-no-overflow˙true-termination.c

Addition02 Addition02˙false-unreach-call˙true-no-overflow˙true-termination.c

array array˙false-unreach-call˙true-termination.i

BallRajamani-SPIN2000-Fig1 BallRajamani-SPIN2000-Fig1˙false-unreach-call˙true-no-overflow˙true-termination.c

cdaudio simpl1 cdaudio˙simpl1˙false-unreach-call˙true-valid-memsafety˙true-termination.cil.c

elevator spec14 productSimulator elevator˙spec14˙productSimulator˙false-unreach-call˙true-termination.cil.c

elevator spec1 productSimulator elevator˙spec1˙productSimulator˙false-unreach-call˙true-termination.cil.c

elevator spec2 productSimulator elevator˙spec2˙productSimulator˙false-unreach-call˙true-termination.cil.c

elevator spec3 productSimulator elevator˙spec3˙productSimulator˙false-unreach-call˙true-termination.cil.c

elevator spec9 productSimulator elevator˙spec9˙productSimulator˙false-unreach-call˙true-termination.cil.c

email spec0 product16 email˙spec0˙product16˙false-unreach-call˙true-termination.cil.c

email spec0 product21 email˙spec0˙product21˙false-unreach-call˙true-termination.cil.c

email spec0 product22 email˙spec0˙product22˙false-unreach-call˙true-termination.cil.c

email spec0 product26 email˙spec0˙product26˙false-unreach-call˙true-termination.cil.c

email spec0 product31 email˙spec0˙product31˙false-unreach-call˙true-termination.cil.c

email spec0 product33 email˙spec0˙product33˙false-unreach-call˙true-termination.cil.c

email spec0 product34 email˙spec0˙product34˙false-unreach-call˙true-termination.cil.c

email spec0 product35 email˙spec0˙product35˙false-unreach-call˙true-termination.cil.c

email spec0 productSimulator email˙spec0˙productSimulator˙false-unreach-call˙true-termination.cil.c

email spec11 product15 email˙spec11˙product15˙false-unreach-call˙true-termination.cil.c

email spec11 product20 email˙spec11˙product20˙false-unreach-call˙true-termination.cil.c

email spec11 product22 email˙spec11˙product22˙false-unreach-call˙true-termination.cil.c

email spec11 product26 email˙spec11˙product26˙false-unreach-call˙true-termination.cil.c

email spec11 product30 email˙spec11˙product30˙false-unreach-call˙true-termination.cil.c

email spec11 product32 email˙spec11˙product32˙false-unreach-call˙true-termination.cil.c

email spec11 product33 email˙spec11˙product33˙false-unreach-call˙true-termination.cil.c

email spec11 product35 email˙spec11˙product35˙false-unreach-call˙true-termination.cil.c

email spec11 productSimulator email˙spec11˙productSimulator˙false-unreach-call˙true-termination.cil.c

email spec1 product14 email˙spec1˙product14˙false-unreach-call˙true-termination.cil.c

email spec1 product15 email˙spec1˙product15˙false-unreach-call˙true-termination.cil.c

email spec1 product16 email˙spec1˙product16˙false-unreach-call˙true-termination.cil.c

email spec1 product20 email˙spec1˙product20˙false-unreach-call˙true-termination.cil.c

email spec1 product21 email˙spec1˙product21˙false-unreach-call˙true-termination.cil.c

email spec1 product22 email˙spec1˙product22˙false-unreach-call˙true-termination.cil.c

email spec1 product26 email˙spec1˙product26˙false-unreach-call˙true-termination.cil.c

email spec1 product30 email˙spec1˙product30˙false-unreach-call˙true-termination.cil.c

182

Subject ID SV-COMP file name

email spec1 product31 email˙spec1˙product31˙false-unreach-call˙true-termination.cil.c

email spec1 product32 email˙spec1˙product32˙false-unreach-call˙true-termination.cil.c

email spec1 product33 email˙spec1˙product33˙false-unreach-call˙true-termination.cil.c

email spec1 product34 email˙spec1˙product34˙false-unreach-call˙true-termination.cil.c

email spec1 product35 email˙spec1˙product35˙false-unreach-call˙true-termination.cil.c

email spec1 productSimulator email˙spec1˙productSimulator˙false-unreach-call˙true-termination.cil.c

email spec27 product17 email˙spec27˙product17˙false-unreach-call˙true-termination.cil.c

email spec27 product18 email˙spec27˙product18˙false-unreach-call˙true-termination.cil.c

email spec27 product19 email˙spec27˙product19˙false-unreach-call˙true-termination.cil.c

email spec27 product23 email˙spec27˙product23˙false-unreach-call˙true-termination.cil.c

email spec27 product24 email˙spec27˙product24˙false-unreach-call˙true-termination.cil.c

email spec27 product25 email˙spec27˙product25˙false-unreach-call˙true-termination.cil.c

email spec27 product27 email˙spec27˙product27˙false-unreach-call˙true-termination.cil.c

email spec27 product29 email˙spec27˙product29˙false-unreach-call˙true-termination.cil.c

email spec27 product30 email˙spec27˙product30˙false-unreach-call˙true-termination.cil.c

email spec27 product31 email˙spec27˙product31˙false-unreach-call˙true-termination.cil.c

email spec27 product32 email˙spec27˙product32˙false-unreach-call˙true-termination.cil.c

email spec27 product33 email˙spec27˙product33˙false-unreach-call˙true-termination.cil.c

email spec27 product34 email˙spec27˙product34˙false-unreach-call˙true-termination.cil.c

email spec27 product35 email˙spec27˙product35˙false-unreach-call˙true-termination.cil.c

email spec27 productSimulator email˙spec27˙productSimulator˙false-unreach-call˙true-termination.cil.c

email spec3 product13 email˙spec3˙product13˙false-unreach-call˙true-termination.cil.c

email spec3 product17 email˙spec3˙product17˙false-unreach-call˙true-termination.cil.c

email spec3 product18 email˙spec3˙product18˙false-unreach-call˙true-termination.cil.c

email spec3 product19 email˙spec3˙product19˙false-unreach-call˙true-termination.cil.c

email spec3 product23 email˙spec3˙product23˙false-unreach-call˙true-termination.cil.c

email spec3 product24 email˙spec3˙product24˙false-unreach-call˙true-termination.cil.c

email spec3 product25 email˙spec3˙product25˙false-unreach-call˙true-termination.cil.c

email spec3 product27 email˙spec3˙product27˙false-unreach-call˙true-termination.cil.c

email spec3 product28 email˙spec3˙product28˙false-unreach-call˙true-termination.cil.c

email spec3 product29 email˙spec3˙product29˙false-unreach-call˙true-termination.cil.c

email spec3 product30 email˙spec3˙product30˙false-unreach-call˙true-termination.cil.c

email spec3 product31 email˙spec3˙product31˙false-unreach-call˙true-termination.cil.c

email spec3 product32 email˙spec3˙product32˙false-unreach-call˙true-termination.cil.c

email spec3 product33 email˙spec3˙product33˙false-unreach-call˙true-termination.cil.c

email spec3 product34 email˙spec3˙product34˙false-unreach-call˙true-termination.cil.c

183

Subject ID SV-COMP file name

email spec3 product35 email˙spec3˙product35˙false-unreach-call˙true-termination.cil.c

email spec3 productSimulator email˙spec3˙productSimulator˙false-unreach-call˙true-termination.cil.c

email spec4 product18 email˙spec4˙product18˙false-unreach-call˙true-termination.cil.c

email spec4 product19 email˙spec4˙product19˙false-unreach-call˙true-termination.cil.c

email spec4 product23 email˙spec4˙product23˙false-unreach-call˙true-termination.cil.c

email spec4 product24 email˙spec4˙product24˙false-unreach-call˙true-termination.cil.c

email spec4 product25 email˙spec4˙product25˙false-unreach-call˙true-termination.cil.c

email spec4 product27 email˙spec4˙product27˙false-unreach-call˙true-termination.cil.c

email spec4 product30 email˙spec4˙product30˙false-unreach-call˙true-termination.cil.c

email spec4 product31 email˙spec4˙product31˙false-unreach-call˙true-termination.cil.c

email spec4 product32 email˙spec4˙product32˙false-unreach-call˙true-termination.cil.c

email spec4 product33 email˙spec4˙product33˙false-unreach-call˙true-termination.cil.c

email spec4 product34 email˙spec4˙product34˙false-unreach-call˙true-termination.cil.c

email spec4 product35 email˙spec4˙product35˙false-unreach-call˙true-termination.cil.c

email spec4 productSimulator email˙spec4˙productSimulator˙false-unreach-call˙true-termination.cil.c

email spec6 product12 email˙spec6˙product12˙false-unreach-call˙true-termination.cil.c

email spec6 product14 email˙spec6˙product14˙false-unreach-call˙true-termination.cil.c

email spec6 product15 email˙spec6˙product15˙false-unreach-call˙true-termination.cil.c

email spec6 product16 email˙spec6˙product16˙false-unreach-call˙true-termination.cil.c

email spec6 product20 email˙spec6˙product20˙false-unreach-call˙true-termination.cil.c

email spec6 product21 email˙spec6˙product21˙false-unreach-call˙true-termination.cil.c

email spec6 product22 email˙spec6˙product22˙false-unreach-call˙true-termination.cil.c

email spec6 product26 email˙spec6˙product26˙false-unreach-call˙true-termination.cil.c

email spec6 product28 email˙spec6˙product28˙false-unreach-call˙true-termination.cil.c

email spec6 product29 email˙spec6˙product29˙false-unreach-call˙true-termination.cil.c

email spec6 product30 email˙spec6˙product30˙false-unreach-call˙true-termination.cil.c

email spec6 product31 email˙spec6˙product31˙false-unreach-call˙true-termination.cil.c

email spec6 product32 email˙spec6˙product32˙false-unreach-call˙true-termination.cil.c

email spec6 product33 email˙spec6˙product33˙false-unreach-call˙true-termination.cil.c

email spec6 product34 email˙spec6˙product34˙false-unreach-call˙true-termination.cil.c

email spec6 product35 email˙spec6˙product35˙false-unreach-call˙true-termination.cil.c

email spec6 productSimulator email˙spec6˙productSimulator˙false-unreach-call˙true-termination.cil.c

email spec7 product28 email˙spec7˙product28˙false-unreach-call˙true-termination.cil.c

email spec7 product29 email˙spec7˙product29˙false-unreach-call˙true-termination.cil.c

email spec7 product30 email˙spec7˙product30˙false-unreach-call˙true-termination.cil.c

email spec7 product31 email˙spec7˙product31˙false-unreach-call˙true-termination.cil.c

184

Subject ID SV-COMP file name

email spec7 product32 email˙spec7˙product32˙false-unreach-call˙true-termination.cil.c

email spec7 product33 email˙spec7˙product33˙false-unreach-call˙true-termination.cil.c

email spec7 product34 email˙spec7˙product34˙false-unreach-call˙true-termination.cil.c

email spec7 product35 email˙spec7˙product35˙false-unreach-call˙true-termination.cil.c

email spec7 productSimulator email˙spec7˙productSimulator˙false-unreach-call˙true-termination.cil.c

email spec8 product15 email˙spec8˙product15˙false-unreach-call˙true-termination.cil.c

email spec8 product16 email˙spec8˙product16˙false-unreach-call˙true-termination.cil.c

email spec8 product20 email˙spec8˙product20˙false-unreach-call˙true-termination.cil.c

email spec8 product21 email˙spec8˙product21˙false-unreach-call˙true-termination.cil.c

email spec8 product22 email˙spec8˙product22˙false-unreach-call˙true-termination.cil.c

email spec8 product26 email˙spec8˙product26˙false-unreach-call˙true-termination.cil.c

email spec8 product30 email˙spec8˙product30˙false-unreach-call˙true-termination.cil.c

email spec8 product31 email˙spec8˙product31˙false-unreach-call˙true-termination.cil.c

email spec8 product33 email˙spec8˙product33˙false-unreach-call˙true-termination.cil.c

email spec8 product34 email˙spec8˙product34˙false-unreach-call˙true-termination.cil.c

email spec8 product35 email˙spec8˙product35˙false-unreach-call˙true-termination.cil.c

email spec8 productSimulator email˙spec8˙productSimulator˙false-unreach-call˙true-termination.cil.c

email spec9 product15 email˙spec9˙product15˙false-unreach-call˙true-termination.cil.c

email spec9 product16 email˙spec9˙product16˙false-unreach-call˙true-termination.cil.c

email spec9 product20 email˙spec9˙product20˙false-unreach-call˙true-termination.cil.c

email spec9 product21 email˙spec9˙product21˙false-unreach-call˙true-termination.cil.c

email spec9 product22 email˙spec9˙product22˙false-unreach-call˙true-termination.cil.c

email spec9 product26 email˙spec9˙product26˙false-unreach-call˙true-termination.cil.c

email spec9 product30 email˙spec9˙product30˙false-unreach-call˙true-termination.cil.c

email spec9 product31 email˙spec9˙product31˙false-unreach-call˙true-termination.cil.c

email spec9 product32 email˙spec9˙product32˙false-unreach-call˙true-termination.cil.c

email spec9 product33 email˙spec9˙product33˙false-unreach-call˙true-termination.cil.c

email spec9 product34 email˙spec9˙product34˙false-unreach-call˙true-termination.cil.c

email spec9 product35 email˙spec9˙product35˙false-unreach-call˙true-termination.cil.c

EvenOdd03 EvenOdd03˙false-unreach-call˙true-no-overflow˙true-termination.c

Fibonacci04 Fibonacci04˙false-unreach-call˙true-no-overflow˙true-termination.c

Fibonacci05 Fibonacci05˙false-unreach-call˙true-no-overflow˙true-termination.c

floppy simpl3 floppy˙simpl3˙false-unreach-call˙true-valid-memsafety˙true-termination.cil.c

floppy simpl4 floppy˙simpl4˙false-unreach-call˙true-valid-memsafety˙true-termination.cil.c

for bounded loop1 for˙bounded˙loop1˙false-unreach-call˙true-termination.i

id b3 o2 id˙b3˙o2˙false-unreach-call˙true-termination˙true-no-overflow.c

185

Subject ID SV-COMP file name

kbfiltr simpl2 kbfiltr˙simpl2˙false-unreach-call˙true-valid-memsafety˙true-termination.cil.c

kundu2 kundu2˙false-unreach-call˙false-termination.cil.c

McCarthy91 McCarthy91˙false-unreach-call˙true-no-overflow˙true-termination.c

minepump spec1 product33 minepump˙spec1˙product33˙false-unreach-call˙false-termination.cil.c

minepump spec1 product34 minepump˙spec1˙product34˙false-unreach-call˙false-termination.cil.c

minepump spec1 product35 minepump˙spec1˙product35˙false-unreach-call˙false-termination.cil.c

minepump spec1 product36 minepump˙spec1˙product36˙false-unreach-call˙false-termination.cil.c

minepump spec1 product37 minepump˙spec1˙product37˙false-unreach-call˙false-termination.cil.c

minepump spec1 product38 minepump˙spec1˙product38˙false-unreach-call˙false-termination.cil.c

minepump spec1 product39 minepump˙spec1˙product39˙false-unreach-call˙false-termination.cil.c

minepump spec1 product40 minepump˙spec1˙product40˙false-unreach-call˙false-termination.cil.c

minepump spec1 product42 minepump˙spec1˙product42˙false-unreach-call˙false-termination.cil.c

minepump spec1 product43 minepump˙spec1˙product43˙false-unreach-call˙false-termination.cil.c

minepump spec1 product44 minepump˙spec1˙product44˙false-unreach-call˙false-termination.cil.c

minepump spec1 product49 minepump˙spec1˙product49˙false-unreach-call˙false-termination.cil.c

minepump spec1 product50 minepump˙spec1˙product50˙false-unreach-call˙false-termination.cil.c

minepump spec1 product51 minepump˙spec1˙product51˙false-unreach-call˙false-termination.cil.c

minepump spec1 product52 minepump˙spec1˙product52˙false-unreach-call˙false-termination.cil.c

minepump spec1 product53 minepump˙spec1˙product53˙false-unreach-call˙false-termination.cil.c

minepump spec1 product54 minepump˙spec1˙product54˙false-unreach-call˙false-termination.cil.c

minepump spec1 product55 minepump˙spec1˙product55˙false-unreach-call˙false-termination.cil.c

minepump spec1 product56 minepump˙spec1˙product56˙false-unreach-call˙false-termination.cil.c

minepump spec1 productSimulator minepump˙spec1˙productSimulator˙false-unreach-call˙false-termination.cil.c

minepump spec2 product33 minepump˙spec2˙product33˙false-unreach-call˙false-termination.cil.c

minepump spec2 product34 minepump˙spec2˙product34˙false-unreach-call˙false-termination.cil.c

minepump spec2 product35 minepump˙spec2˙product35˙false-unreach-call˙false-termination.cil.c

minepump spec2 product36 minepump˙spec2˙product36˙false-unreach-call˙false-termination.cil.c

minepump spec2 product41 minepump˙spec2˙product41˙false-unreach-call˙false-termination.cil.c

minepump spec2 product42 minepump˙spec2˙product42˙false-unreach-call˙false-termination.cil.c

minepump spec2 product43 minepump˙spec2˙product43˙false-unreach-call˙false-termination.cil.c

minepump spec2 product44 minepump˙spec2˙product44˙false-unreach-call˙false-termination.cil.c

minepump spec2 productSimulator minepump˙spec2˙productSimulator˙false-unreach-call˙false-termination.cil.c

minepump spec3 product01 minepump˙spec3˙product01˙false-unreach-call˙false-termination.cil.c

minepump spec3 product02 minepump˙spec3˙product02˙false-unreach-call˙false-termination.cil.c

minepump spec3 product03 minepump˙spec3˙product03˙false-unreach-call˙false-termination.cil.c

minepump spec3 product04 minepump˙spec3˙product04˙false-unreach-call˙false-termination.cil.c

186

Subject ID SV-COMP file name

minepump spec3 product05 minepump˙spec3˙product05˙false-unreach-call˙false-termination.cil.c

minepump spec3 product06 minepump˙spec3˙product06˙false-unreach-call˙false-termination.cil.c

minepump spec3 product07 minepump˙spec3˙product07˙false-unreach-call˙false-termination.cil.c

minepump spec3 product08 minepump˙spec3˙product08˙false-unreach-call˙false-termination.cil.c

minepump spec3 product09 minepump˙spec3˙product09˙false-unreach-call˙false-termination.cil.c

minepump spec3 product10 minepump˙spec3˙product10˙false-unreach-call˙false-termination.cil.c

minepump spec3 product11 minepump˙spec3˙product11˙false-unreach-call˙false-termination.cil.c

minepump spec3 product12 minepump˙spec3˙product12˙false-unreach-call˙false-termination.cil.c

minepump spec3 product13 minepump˙spec3˙product13˙false-unreach-call˙false-termination.cil.c

minepump spec3 product14 minepump˙spec3˙product14˙false-unreach-call˙false-termination.cil.c

minepump spec3 product15 minepump˙spec3˙product15˙false-unreach-call˙false-termination.cil.c

minepump spec3 product16 minepump˙spec3˙product16˙false-unreach-call˙false-termination.cil.c

minepump spec3 product17 minepump˙spec3˙product17˙false-unreach-call˙false-termination.cil.c

minepump spec3 product18 minepump˙spec3˙product18˙false-unreach-call˙false-termination.cil.c

minepump spec3 product19 minepump˙spec3˙product19˙false-unreach-call˙false-termination.cil.c

minepump spec3 product20 minepump˙spec3˙product20˙false-unreach-call˙false-termination.cil.c

minepump spec3 product21 minepump˙spec3˙product21˙false-unreach-call˙false-termination.cil.c

minepump spec3 product23 minepump˙spec3˙product23˙false-unreach-call˙false-termination.cil.c

minepump spec3 product24 minepump˙spec3˙product24˙false-unreach-call˙false-termination.cil.c

minepump spec3 product25 minepump˙spec3˙product25˙false-unreach-call˙false-termination.cil.c

minepump spec3 product26 minepump˙spec3˙product26˙false-unreach-call˙false-termination.cil.c

minepump spec3 product27 minepump˙spec3˙product27˙false-unreach-call˙false-termination.cil.c

minepump spec3 product28 minepump˙spec3˙product28˙false-unreach-call˙false-termination.cil.c

minepump spec3 product29 minepump˙spec3˙product29˙false-unreach-call˙false-termination.cil.c

minepump spec3 product30 minepump˙spec3˙product30˙false-unreach-call˙false-termination.cil.c

minepump spec3 product31 minepump˙spec3˙product31˙false-unreach-call˙false-termination.cil.c

minepump spec3 product32 minepump˙spec3˙product32˙false-unreach-call˙false-termination.cil.c

minepump spec3 product35 minepump˙spec3˙product35˙false-unreach-call˙false-termination.cil.c

minepump spec3 product36 minepump˙spec3˙product36˙false-unreach-call˙false-termination.cil.c

minepump spec3 product39 minepump˙spec3˙product39˙false-unreach-call˙false-termination.cil.c

minepump spec3 product40 minepump˙spec3˙product40˙false-unreach-call˙false-termination.cil.c

minepump spec3 product43 minepump˙spec3˙product43˙false-unreach-call˙false-termination.cil.c

minepump spec3 product44 minepump˙spec3˙product44˙false-unreach-call˙false-termination.cil.c

minepump spec3 product47 minepump˙spec3˙product47˙false-unreach-call˙false-termination.cil.c

minepump spec3 product48 minepump˙spec3˙product48˙false-unreach-call˙false-termination.cil.c

minepump spec3 product51 minepump˙spec3˙product51˙false-unreach-call˙false-termination.cil.c

187

Subject ID SV-COMP file name

minepump spec3 product52 minepump˙spec3˙product52˙false-unreach-call˙false-termination.cil.c

minepump spec3 product55 minepump˙spec3˙product55˙false-unreach-call˙false-termination.cil.c

minepump spec3 product56 minepump˙spec3˙product56˙false-unreach-call˙false-termination.cil.c

minepump spec3 product59 minepump˙spec3˙product59˙false-unreach-call˙false-termination.cil.c

minepump spec3 product60 minepump˙spec3˙product60˙false-unreach-call˙false-termination.cil.c

minepump spec3 product63 minepump˙spec3˙product63˙false-unreach-call˙false-termination.cil.c

minepump spec3 product64 minepump˙spec3˙product64˙false-unreach-call˙false-termination.cil.c

minepump spec3 productSimulator minepump˙spec3˙productSimulator˙false-unreach-call˙false-termination.cil.c

minepump spec4 product33 minepump˙spec4˙product33˙false-unreach-call˙false-termination.cil.c

minepump spec4 product34 minepump˙spec4˙product34˙false-unreach-call˙false-termination.cil.c

minepump spec4 product35 minepump˙spec4˙product35˙false-unreach-call˙false-termination.cil.c

minepump spec4 product36 minepump˙spec4˙product36˙false-unreach-call˙false-termination.cil.c

minepump spec4 product37 minepump˙spec4˙product37˙false-unreach-call˙false-termination.cil.c

minepump spec4 product38 minepump˙spec4˙product38˙false-unreach-call˙false-termination.cil.c

minepump spec4 product39 minepump˙spec4˙product39˙false-unreach-call˙false-termination.cil.c

minepump spec4 product40 minepump˙spec4˙product40˙false-unreach-call˙false-termination.cil.c

minepump spec4 product41 minepump˙spec4˙product41˙false-unreach-call˙false-termination.cil.c

minepump spec4 product42 minepump˙spec4˙product42˙false-unreach-call˙false-termination.cil.c

minepump spec4 product43 minepump˙spec4˙product43˙false-unreach-call˙false-termination.cil.c

minepump spec4 product44 minepump˙spec4˙product44˙false-unreach-call˙false-termination.cil.c

minepump spec4 product45 minepump˙spec4˙product45˙false-unreach-call˙false-termination.cil.c

minepump spec4 product46 minepump˙spec4˙product46˙false-unreach-call˙false-termination.cil.c

minepump spec4 product47 minepump˙spec4˙product47˙false-unreach-call˙false-termination.cil.c

minepump spec4 product48 minepump˙spec4˙product48˙false-unreach-call˙false-termination.cil.c

minepump spec4 productSimulator minepump˙spec4˙productSimulator˙false-unreach-call˙false-termination.cil.c

newton 1 4 newton˙1˙4˙false-unreach-call˙true-termination.i

newton 1 5 newton˙1˙5˙false-unreach-call˙true-termination.i

newton 1 6 newton˙1˙6˙false-unreach-call˙true-termination.i

newton 1 7 newton˙1˙7˙false-unreach-call˙true-termination.i

pc sfifo 1 pc˙sfifo˙1˙false-unreach-call˙false-termination.cil.c

pc sfifo 2 pc˙sfifo˙2˙false-unreach-call˙false-termination.cil.c

Problem01 label15 Problem01˙label15˙false-unreach-call˙false-termination.c

Problem01 label20 Problem01˙label20˙false-unreach-call˙false-termination.c

Problem01 label21 Problem01˙label21˙false-unreach-call˙false-termination.c

Problem01 label32 Problem01˙label32˙false-unreach-call˙false-termination.c

Problem01 label33 Problem01˙label33˙false-unreach-call˙false-termination.c

188

Subject ID SV-COMP file name

Problem01 label35 Problem01˙label35˙false-unreach-call˙false-termination.c

Problem01 label37 Problem01˙label37˙false-unreach-call˙false-termination.c

Problem01 label38 Problem01˙label38˙false-unreach-call˙false-termination.c

Problem01 label44 Problem01˙label44˙false-unreach-call˙false-termination.c

Problem01 label47 Problem01˙label47˙false-unreach-call˙false-termination.c

Problem01 label50 Problem01˙label50˙false-unreach-call˙false-termination.c

Problem01 label56 Problem01˙label56˙false-unreach-call˙false-termination.c

Problem01 label57 Problem01˙label57˙false-unreach-call˙false-termination.c

Problem02 label13 Problem02˙label13˙false-unreach-call˙false-termination.c

Problem02 label16 Problem02˙label16˙false-unreach-call˙false-termination.c

Problem02 label43 Problem02˙label43˙false-unreach-call˙false-termination.c

Problem02 label44 Problem02˙label44˙false-unreach-call˙false-termination.c

Problem02 label45 Problem02˙label45˙false-unreach-call˙false-termination.c

Problem02 label50 Problem02˙label50˙false-unreach-call˙false-termination.c

Problem02 label59 Problem02˙label59˙false-unreach-call˙false-termination.c

Problem03 label09 Problem03˙label09˙false-unreach-call.c

Problem03 label13 Problem03˙label13˙false-unreach-call.c

Problem03 label26 Problem03˙label26˙false-unreach-call.c

Problem03 label27 Problem03˙label27˙false-unreach-call.c

Problem03 label28 Problem03˙label28˙false-unreach-call.c

Problem03 label31 Problem03˙label31˙false-unreach-call.c

Problem03 label35 Problem03˙label35˙false-unreach-call.c

Problem03 label37 Problem03˙label37˙false-unreach-call.c

Problem03 label39 Problem03˙label39˙false-unreach-call.c

Problem03 label43 Problem03˙label43˙false-unreach-call.c

Problem03 label45 Problem03˙label45˙false-unreach-call.c

Problem03 label50 Problem03˙label50˙false-unreach-call.c

Problem03 label52 Problem03˙label52˙false-unreach-call.c

Problem04 label19 Problem04˙label19˙false-unreach-call.c

Problem04 label55 Problem04˙label55˙false-unreach-call.c

Problem06 label05 Problem06˙label05˙false-unreach-call.c

Problem06 label11 Problem06˙label11˙false-unreach-call.c

Problem06 label20 Problem06˙label20˙false-unreach-call.c

Problem06 label21 Problem06˙label21˙false-unreach-call.c

Problem06 label24 Problem06˙label24˙false-unreach-call.c

Problem06 label27 Problem06˙label27˙false-unreach-call.c

189

Subject ID SV-COMP file name

Problem06 label29 Problem06˙label29˙false-unreach-call.c

Problem06 label48 Problem06˙label48˙false-unreach-call.c

Problem06 label56 Problem06˙label56˙false-unreach-call.c

Problem06 label58 Problem06˙label58˙false-unreach-call.c

Problem06 label59 Problem06˙label59˙false-unreach-call.c

Problem10 label12 Problem10˙label12˙false-unreach-call.c

Problem10 label15 Problem10˙label15˙false-unreach-call.c

Problem10 label24 Problem10˙label24˙false-unreach-call.c

Problem10 label26 Problem10˙label26˙false-unreach-call.c

Problem10 label28 Problem10˙label28˙false-unreach-call.c

Problem10 label29 Problem10˙label29˙false-unreach-call.c

Problem10 label41 Problem10˙label41˙false-unreach-call.c

Problem10 label42 Problem10˙label42˙false-unreach-call.c

Problem10 label47 Problem10˙label47˙false-unreach-call.c

Problem10 label48 Problem10˙label48˙false-unreach-call.c

Problem10 label57 Problem10˙label57˙false-unreach-call.c

Problem10 label58 Problem10˙label58˙false-unreach-call.c

Problem11 label00 Problem11˙label00˙false-unreach-call.c

Problem11 label14 Problem11˙label14˙false-unreach-call.c

Problem11 label15 Problem11˙label15˙false-unreach-call.c

Problem11 label20 Problem11˙label20˙false-unreach-call.c

Problem11 label29 Problem11˙label29˙false-unreach-call.c

Problem11 label31 Problem11˙label31˙false-unreach-call.c

Problem11 label34 Problem11˙label34˙false-unreach-call.c

Problem11 label36 Problem11˙label36˙false-unreach-call.c

Problem11 label39 Problem11˙label39˙false-unreach-call.c

Problem11 label42 Problem11˙label42˙false-unreach-call.c

Problem11 label43 Problem11˙label43˙false-unreach-call.c

Problem11 label49 Problem11˙label49˙false-unreach-call.c

Problem11 label51 Problem11˙label51˙false-unreach-call.c

Problem11 label58 Problem11˙label58˙false-unreach-call.c

Problem13 label04 Problem13˙label04˙false-unreach-call.c

Problem13 label07 Problem13˙label07˙false-unreach-call.c

Problem13 label12 Problem13˙label12˙false-unreach-call.c

Problem13 label16 Problem13˙label16˙false-unreach-call.c

Problem13 label19 Problem13˙label19˙false-unreach-call.c

190

Subject ID SV-COMP file name

Problem13 label21 Problem13˙label21˙false-unreach-call.c

Problem13 label24 Problem13˙label24˙false-unreach-call.c

Problem13 label25 Problem13˙label25˙false-unreach-call.c

Problem13 label28 Problem13˙label28˙false-unreach-call.c

Problem13 label29 Problem13˙label29˙false-unreach-call.c

Problem13 label32 Problem13˙label32˙false-unreach-call.c

Problem13 label35 Problem13˙label35˙false-unreach-call.c

Problem13 label40 Problem13˙label40˙false-unreach-call.c

Problem13 label43 Problem13˙label43˙false-unreach-call.c

Problem13 label44 Problem13˙label44˙false-unreach-call.c

Problem13 label45 Problem13˙label45˙false-unreach-call.c

Problem13 label48 Problem13˙label48˙false-unreach-call.c

Problem18 label00 Problem18˙label00˙false-unreach-call.c

Problem18 label01 Problem18˙label01˙false-unreach-call.c

Problem18 label03 Problem18˙label03˙false-unreach-call.c

Problem18 label06 Problem18˙label06˙false-unreach-call.c

Problem18 label08 Problem18˙label08˙false-unreach-call.c

Problem18 label10 Problem18˙label10˙false-unreach-call.c

Problem18 label12 Problem18˙label12˙false-unreach-call.c

Problem18 label19 Problem18˙label19˙false-unreach-call.c

Problem18 label20 Problem18˙label20˙false-unreach-call.c

Problem18 label25 Problem18˙label25˙false-unreach-call.c

Problem18 label33 Problem18˙label33˙false-unreach-call.c

Problem18 label34 Problem18˙label34˙false-unreach-call.c

Problem18 label35 Problem18˙label35˙false-unreach-call.c

Problem18 label36 Problem18˙label36˙false-unreach-call.c

Problem18 label38 Problem18˙label38˙false-unreach-call.c

Problem18 label45 Problem18˙label45˙false-unreach-call.c

Problem18 label52 Problem18˙label52˙false-unreach-call.c

Problem18 label55 Problem18˙label55˙false-unreach-call.c

Problem18 label57 Problem18˙label57˙false-unreach-call.c

rangesum05 rangesum05˙false-unreach-call˙true-termination.i

rangesum10 rangesum10˙false-unreach-call˙true-termination.i

rangesum20 rangesum20˙false-unreach-call.i

recHanoi03 recHanoi03˙false-unreach-call˙true-termination.c

s3 srvr 6 s3˙srvr˙6˙false-unreach-call˙false-termination.cil.c

191

Subject ID SV-COMP file name

sine 1 sine˙1˙false-unreach-call˙true-termination.i

sine 2 sine˙2˙false-unreach-call˙true-termination.i

square 1 square˙1˙false-unreach-call˙true-termination.i

square 2 square˙2˙false-unreach-call˙true-termination.i

square 3 square˙3˙false-unreach-call˙true-termination.i

sum01 bug02 sum01 bug02 base.case sum01˙bug02˙sum01˙bug02˙base.case˙false-unreach-call˙true-termination.i

terminator 01 terminator˙01˙false-unreach-call˙true-termination.i

test locks 14 test˙locks˙14˙false-unreach-call˙true-valid-memsafety˙false-termination.c

test locks 15 test˙locks˙15˙false-unreach-call˙true-valid-memsafety˙false-termination.c

token ring.01 token˙ring.01˙false-unreach-call˙false-termination.cil.c

token ring.04 token˙ring.04˙false-unreach-call˙false-termination.cil.c

token ring.08 token˙ring.08˙false-unreach-call˙false-termination.cil.c

token ring.10 token˙ring.10˙false-unreach-call˙false-termination.cil.c

token ring.13 token˙ring.13˙false-unreach-call˙false-termination.cil.c

toy1 toy1˙false-unreach-call˙false-termination.cil.c

toy2 toy2˙false-unreach-call˙false-termination.cil.c

transmitter.01 transmitter.01˙false-unreach-call˙false-termination.cil.c

transmitter.02 transmitter.02˙false-unreach-call˙false-termination.cil.c

transmitter.15 transmitter.15˙false-unreach-call˙false-termination.cil.c

transmitter.16 transmitter.16˙false-unreach-call˙false-termination.cil.c

192

A.2 Detailed results

For each subject, we report the time (in seconds) spent in characterize; generalize; analyze;

and the overall (tot.) time. We also report on the number of: ACA iterations to convergence;

times generalization is invoked; logical intervals with coinciding bounds; logical intervals with

noncoinciding bounds; and conjuncts sliced away from reachability conditions expressed as

conjunctive formulae.

Table A.2: ACA run characteristics by subject

Time (in sec.) Count of:

Subject cha. gen. ana. tot. Iters Gens Ii ≡ Ii Ii 6≡ Ii Sliced

Ackermann02 3 0 21 25 2 0 1 0 0

Addition02 10 23 99 132 6 1 0 1 6

BallRajamani-SPIN2000-Fig1 2 0 18 21 2 0 1 0 2

EvenOdd03 12 16 83 111 7 1 0 1 0

Fibonacci04 3 0 22 25 2 0 1 0 0

Fibonacci05 2 0 27 29 2 0 1 0 0

McCarthy91 2 0 47 54 2 0 1 0 0

Problem01 label15 31 306 1033 1373 6 1 0 1 63

Problem01 label20 16 255 634 906 5 1 0 1 44

Problem01 label21 24 328 730 1085 5 1 1 1 50

Problem01 label32 12 306 456 776 4 1 1 1 21

Problem01 label33 17 288 612 918 5 1 0 1 33

Problem01 label35 25 306 910 1243 6 1 0 1 63

Problem01 label37 15 306 584 906 5 1 0 1 33

Problem01 label38 33 307 893 1236 6 1 0 1 63

Problem01 label44 30 176 619 825 6 1 0 1 51

Problem01 label47 12 306 438 757 4 1 0 1 11

Problem01 label50 17 313 617 949 5 1 1 1 50

Problem01 label56 17 311 598 927 5 1 0 1 33

Problem01 label57 17 306 678 1002 5 1 0 1 43

Problem02 label13 29 238 483 752 6 1 0 1 40

193

Table A.2: ACA run characteristics by subject

Time (in sec.) Count of:

Subject cha. gen. ana. tot. Iters Gens Ii ≡ Ii Ii 6≡ Ii Sliced

Problem02 label16 34 205 751 993 6 1 0 1 55

Problem02 label43 28 199 446 674 6 1 0 1 40

Problem02 label44 33 156 512 701 6 1 0 1 39

Problem02 label45 26 146 670 842 6 1 0 1 45

Problem02 label50 29 162 699 893 6 1 0 1 45

Problem02 label59 27 258 946 1237 6 1 1 1 69

Problem03 label09 31 306 384 724 3 1 0 1 0

Problem03 label13 25 306 359 692 3 1 0 1 0

Problem03 label26 27 306 343 678 3 1 0 1 0

Problem03 label27 47 307 388 750 3 1 0 1 0

Problem03 label28 22 306 349 679 3 1 0 1 0

Problem03 label31 28 326 384 745 3 1 0 1 0

Problem03 label35 18 307 352 680 3 1 0 1 0

Problem03 label37 23 222 345 591 3 1 0 1 0

Problem03 label39 31 714 379 1128 3 1 0 1 0

Problem03 label43 22 307 349 681 3 1 0 1 0

Problem03 label45 20 306 353 681 3 1 0 1 0

Problem03 label50 24 331 363 726 3 1 0 1 0

Problem03 label52 21 5048 326 5400 2 1 0 1 0

Problem04 label19 67 4850 478 5400 2 1 0 1 0

Problem04 label55 76 4865 454 5400 2 1 0 1 0

Problem06 label05 119 307 526 958 3 1 0 1 0

Problem06 label11 117 315 517 1023 3 1 0 1 0

Problem06 label20 130 306 544 989 3 1 0 1 0

Problem06 label21 147 319 575 1049 3 1 0 1 0

Problem06 label24 129 306 659 1104 3 1 0 1 0

Problem06 label27 124 306 561 1004 3 1 0 1 0

Problem06 label29 116 309 482 913 3 1 0 1 0

194

Table A.2: ACA run characteristics by subject

Time (in sec.) Count of:

Subject cha. gen. ana. tot. Iters Gens Ii ≡ Ii Ii 6≡ Ii Sliced

Problem06 label48 134 306 579 1029 3 1 0 1 0

Problem06 label56 117 307 580 1015 3 1 0 1 0

Problem06 label58 135 306 521 967 3 1 0 1 0

Problem06 label59 125 307 548 1014 3 1 0 1 0

Problem10 label12 229 328 367 928 3 1 0 1 56

Problem10 label15 824 397 1120 2341 6 1 0 1 204

Problem10 label24 531 524 473 1530 4 1 1 1 132

Problem10 label26 265 338 467 1072 3 1 0 1 97

Problem10 label28 194 430 475 1099 3 1 0 1 36

Problem10 label29 848 563 897 2309 5 1 0 1 252

Problem10 label41 470 305 589 1364 4 1 0 1 111

Problem10 label42 137 224 330 691 3 1 0 1 16

Problem10 label47 252 0 96 350 2 0 1 0 69

Problem10 label48 228 268 342 839 3 1 0 1 48

Problem10 label57 182 399 338 919 3 1 0 1 30

Problem10 label58 243 433 348 1026 3 1 0 1 60

Problem11 label00 177 457 360 995 3 1 0 1 54

Problem11 label14 322 275 477 1075 4 1 0 1 78

Problem11 label15 631 360 834 1826 6 1 0 1 297

Problem11 label20 148 396 369 915 3 1 0 1 79

Problem11 label29 568 305 917 1792 5 1 0 1 213

Problem11 label31 348 340 630 1320 4 1 0 1 126

Problem11 label34 349 428 745 1525 4 1 0 1 126

Problem11 label36 104 0 152 258 2 0 1 0 25

Problem11 label39 149 305 587 1043 3 1 0 1 61

Problem11 label42 349 317 506 1173 4 1 0 1 78

Problem11 label43 151 305 394 855 3 1 0 1 37

Problem11 label49 378 429 585 1393 4 1 0 1 110

195

Table A.2: ACA run characteristics by subject

Time (in sec.) Count of:

Subject cha. gen. ana. tot. Iters Gens Ii ≡ Ii Ii 6≡ Ii Sliced

Problem11 label51 191 476 354 1022 3 1 0 1 37

Problem11 label58 134 325 341 804 3 1 0 1 26

Problem13 label04 121 307 409 849 3 1 0 1 0

Problem13 label07 130 307 420 864 3 1 0 1 0

Problem13 label12 136 617 424 1188 3 1 0 1 0

Problem13 label16 128 308 412 869 3 1 0 1 0

Problem13 label19 140 306 434 886 3 1 0 1 0

Problem13 label21 120 315 399 848 3 1 0 1 0

Problem13 label24 112 308 417 860 3 1 0 1 0

Problem13 label25 134 308 415 863 3 1 0 1 0

Problem13 label28 110 306 373 795 3 1 0 1 0

Problem13 label29 118 306 455 888 3 1 0 1 0

Problem13 label32 116 307 408 836 3 1 0 1 0

Problem13 label35 98 306 371 780 3 1 0 1 0

Problem13 label40 111 312 396 829 3 1 0 1 0

Problem13 label43 155 307 497 987 3 1 0 1 0

Problem13 label44 131 306 389 829 3 1 0 1 0

Problem13 label45 115 306 382 811 3 1 0 1 0

Problem13 label48 118 306 406 835 3 1 0 1 0

Problem18 label00 81 307 385 784 3 1 0 1 0

Problem18 label01 80 307 377 768 3 1 0 1 0

Problem18 label03 85 307 394 788 3 1 0 1 0

Problem18 label06 83 307 384 777 3 1 0 1 0

Problem18 label08 88 307 376 778 3 1 0 1 0

Problem18 label10 84 307 381 775 3 1 0 1 0

Problem18 label12 95 307 433 872 3 1 0 1 0

Problem18 label19 85 308 377 790 3 1 0 1 0

Problem18 label20 107 307 386 802 3 1 0 1 0

196

Table A.2: ACA run characteristics by subject

Time (in sec.) Count of:

Subject cha. gen. ana. tot. Iters Gens Ii ≡ Ii Ii 6≡ Ii Sliced

Problem18 label25 109 307 419 845 3 1 0 1 0

Problem18 label33 92 307 390 792 3 1 0 1 0

Problem18 label34 94 307 403 836 3 1 0 1 0

Problem18 label35 99 323 402 833 3 1 0 1 0

Problem18 label36 82 307 384 776 3 1 0 1 0

Problem18 label38 90 309 370 794 3 1 0 1 0

Problem18 label45 131 307 459 914 3 1 0 1 0

Problem18 label52 87 306 365 763 3 1 0 1 0

Problem18 label55 84 339 435 866 3 1 0 1 0

Problem18 label57 90 308 379 780 3 1 0 1 0

array 4 0 32 37 2 0 1 0 0

cdaudio simpl1 29 350 334 715 3 1 0 1 3

elevator spec14 productSimulator 7 306 333 649 3 1 0 1 4

elevator spec1 productSimulator 5 306 330 642 3 1 0 1 3

elevator spec2 productSimulator 3 0 55 59 2 0 1 0 3

elevator spec3 productSimulator 5 306 329 640 3 1 0 1 2

elevator spec9 productSimulator 5 0 61 70 2 0 1 0 4

email spec0 product16 4 0 28 34 2 0 1 0 0

email spec0 product21 3 0 33 38 2 0 1 0 0

email spec0 product22 5 0 28 33 2 0 2 0 0

email spec0 product26 3 917 949 1871 5 3 0 3 0

email spec0 product31 7 612 352 975 3 1 0 1 0

email spec0 product33 3 0 25 29 2 0 1 0 0

email spec0 product34 3 917 941 1863 5 3 0 3 0

email spec0 product35 4 0 29 34 2 0 1 0 0

email spec0 productSimulator 4 612 331 951 3 1 0 1 11

email spec11 product15 13 612 812 1439 7 2 0 2 52

email spec11 product20 4 0 35 41 2 0 1 0 0

197

Table A.2: ACA run characteristics by subject

Time (in sec.) Count of:

Subject cha. gen. ana. tot. Iters Gens Ii ≡ Ii Ii 6≡ Ii Sliced

email spec11 product22 13 611 830 1456 7 2 0 2 52

email spec11 product26 3 0 35 43 2 0 1 0 0

email spec11 product30 5 611 709 1330 4 2 0 2 0

email spec11 product32 4 0 29 35 2 0 1 0 0

email spec11 product33 4 917 942 1869 5 3 0 3 0

email spec11 product35 8 1223 1004 2236 6 3 0 3 6

email spec11 productSimulator 3 306 328 639 3 1 0 1 11

email spec1 product14 4 612 324 941 3 1 0 1 0

email spec1 product15 6 1191 953 2154 5 3 0 3 0

email spec1 product16 5 306 327 640 3 1 0 1 0

email spec1 product20 4 612 326 944 3 1 0 1 0

email spec1 product21 4 612 332 952 3 1 0 1 0

email spec1 product22 5 1231 629 1867 4 2 0 2 0

email spec1 product26 5 612 325 944 3 1 0 1 0

email spec1 product30 8 306 340 655 3 1 1 1 0

email spec1 product31 5 306 325 637 3 1 0 1 0

email spec1 product32 5 619 330 960 3 1 0 1 0

email spec1 product33 6 611 324 942 3 1 0 1 0

email spec1 product34 4 306 332 645 3 1 0 1 0

email spec1 product35 4 1223 1249 2481 6 4 0 4 0

email spec1 productSimulator 5 612 338 957 3 1 0 1 9

email spec27 product17 5 0 69 82 2 0 1 0 0

email spec27 product18 5 938 632 1576 4 2 0 2 0

email spec27 product19 6 0 80 90 2 0 1 0 0

email spec27 product23 4 0 34 38 2 0 1 0 0

email spec27 product24 5 927 633 1566 4 2 0 2 0

email spec27 product25 7 306 380 700 3 1 0 1 0

email spec27 product27 4 612 325 943 3 1 0 1 0

198

Table A.2: ACA run characteristics by subject

Time (in sec.) Count of:

Subject cha. gen. ana. tot. Iters Gens Ii ≡ Ii Ii 6≡ Ii Sliced

email spec27 product29 5 0 25 31 2 0 1 0 0

email spec27 product30 5 944 632 1585 4 2 0 2 0

email spec27 product31 11 0 56 71 2 0 1 0 0

email spec27 product32 9 0 92 107 2 0 1 0 0

email spec27 product33 5 1533 633 2172 4 2 0 1 0

email spec27 product34 4 920 331 1256 3 1 0 1 0

email spec27 product35 4 0 28 32 2 0 1 0 0

email spec27 productSimulator 5 612 475 1097 3 1 0 1 9

email spec3 product13 7 533 650 1196 4 2 1 2 0

email spec3 product17 4 545 638 1190 4 2 1 2 0

email spec3 product18 4 544 640 1190 4 2 1 2 0

email spec3 product19 4 553 632 1190 4 2 1 2 0

email spec3 product23 28 2173 3194 5400 5 4 0 1 0

email spec3 product24 5 539 638 1185 4 2 1 2 0

email spec3 product25 7 1509 939 2472 5 3 0 3 0

email spec3 product27 3 579 636 1219 4 2 1 2 0

email spec3 product28 4 1479 935 2421 5 3 0 3 0

email spec3 product29 4 565 671 1242 4 2 1 2 0

email spec3 product30 5 2101 1551 3662 7 5 0 5 0

email spec3 product31 8 543 730 1289 4 2 1 2 0

email spec3 product32 6 620 761 1392 4 2 1 2 0

email spec3 product33 4 538 660 1205 4 2 1 2 0

email spec3 product34 3 614 635 1253 4 2 1 2 0

email spec3 product35 7 628 643 1281 4 2 1 2 0

email spec3 productSimulator 4 313 400 722 3 1 0 1 8

email spec4 product18 4 1221 635 1861 4 2 0 2 0

email spec4 product19 4 0 75 81 2 0 2 0 0

email spec4 product23 4 918 629 1552 4 2 0 2 0

199

Table A.2: ACA run characteristics by subject

Time (in sec.) Count of:

Subject cha. gen. ana. tot. Iters Gens Ii ≡ Ii Ii 6≡ Ii Sliced

email spec4 product24 4 1226 642 1876 4 2 0 2 0

email spec4 product25 4 612 328 948 3 1 0 1 0

email spec4 product27 3 1224 630 1859 4 2 0 1 0

email spec4 product30 4 0 25 30 2 0 1 0 0

email spec4 product31 5 0 26 32 2 0 1 0 0

email spec4 product32 4 0 28 32 2 0 1 0 0

email spec4 product33 4 1240 745 1992 4 2 0 2 0

email spec4 product34 3 1166 640 1812 4 2 0 2 0

email spec4 product35 5 0 29 35 2 0 1 0 0

email spec4 productSimulator 4 306 478 794 3 1 0 1 9

email spec6 product12 10 306 456 773 5 1 1 1 27

email spec6 product14 9 612 730 1357 5 2 0 2 22

email spec6 product15 9 917 756 1684 6 2 0 2 27

email spec6 product16 7 306 387 704 4 1 1 1 11

email spec6 product20 15 918 1099 2033 8 3 0 3 29

email spec6 product21 7 611 690 1310 5 2 0 2 6

email spec6 product22 4 306 355 669 3 1 1 1 0

email spec6 product26 14 917 1142 2078 8 3 0 3 29

email spec6 product28 7 612 688 1308 5 2 0 2 22

email spec6 product29 8 918 1048 1979 6 3 0 3 6

email spec6 product30 12 917 1060 1991 7 3 0 3 17

email spec6 product31 7 306 604 919 4 1 0 1 16

email spec6 product32 13 917 1076 2012 7 3 0 3 17

email spec6 product33 7 1223 1245 2480 6 4 0 4 0

email spec6 product34 15 918 1121 2058 8 3 0 3 31

email spec6 product35 12 917 1066 1996 7 3 0 3 17

email spec6 productSimulator 4 306 329 641 3 1 0 1 9

email spec7 product28 6 871 650 1531 4 2 1 2 0

200

Table A.2: ACA run characteristics by subject

Time (in sec.) Count of:

Subject cha. gen. ana. tot. Iters Gens Ii ≡ Ii Ii 6≡ Ii Sliced

email spec7 product29 8 917 991 1926 5 3 0 3 0

email spec7 product30 11 918 1062 1991 7 3 0 3 17

email spec7 product31 8 614 692 1316 5 2 0 2 22

email spec7 product32 3 345 679 1030 4 2 0 2 0

email spec7 product33 11 917 1070 2001 7 3 0 3 17

email spec7 product34 11 612 756 1380 6 2 0 2 35

email spec7 product35 13 918 1072 2006 7 3 0 3 17

email spec7 productSimulator 6 306 338 651 3 1 0 1 12

email spec8 product15 5 286 343 636 3 1 0 1 0

email spec8 product16 4 308 326 639 3 1 0 1 0

email spec8 product20 4 306 332 643 3 1 0 1 0

email spec8 product21 3 306 325 635 3 1 0 1 0

email spec8 product22 6 310 335 655 3 1 0 1 0

email spec8 product26 4 612 328 945 3 1 0 1 0

email spec8 product30 6 306 342 658 3 1 0 1 0

email spec8 product31 4 331 325 661 3 1 0 1 0

email spec8 product33 4 936 636 1579 4 2 0 2 0

email spec8 product34 4 306 325 636 3 1 0 1 0

email spec8 product35 4 306 328 641 3 1 0 1 0

email spec8 productSimulator 4 612 337 954 3 1 0 1 8

email spec9 product15 5 284 327 620 3 1 0 1 0

email spec9 product16 4 316 328 652 3 1 0 1 0

email spec9 product20 5 306 327 639 3 1 0 1 0

email spec9 product21 5 305 327 638 3 1 0 1 0

email spec9 product22 5 308 330 643 3 1 0 1 0

email spec9 product26 4 306 445 764 3 1 0 1 0

email spec9 product30 5 305 325 637 3 1 0 1 0

email spec9 product31 4 327 327 660 3 1 0 1 0

201

Table A.2: ACA run characteristics by subject

Time (in sec.) Count of:

Subject cha. gen. ana. tot. Iters Gens Ii ≡ Ii Ii 6≡ Ii Sliced

email spec9 product32 3 305 328 640 3 1 0 1 0

email spec9 product33 5 932 661 1604 4 2 0 2 0

email spec9 product34 5 306 327 639 3 1 0 1 0

email spec9 product35 4 306 329 641 3 1 0 1 0

floppy simpl3 32 346 943 1322 6 1 0 1 51

floppy simpl4 34 306 329 670 3 1 0 1 3

for bounded loop1 5 0 42 47 3 0 2 0 5

id b3 o2 3 0 19 23 2 0 1 0 0

kbfiltr simpl2 22 0 119 142 4 0 3 0 18

kundu2 22 186 171 382 7 1 0 1 42

minepump spec1 product33 5 31 331 368 4 1 1 1 5

minepump spec1 product34 15 324 374 714 7 2 1 2 22

minepump spec1 product35 7 345 636 990 5 2 0 2 5

minepump spec1 product36 6 348 635 989 5 2 0 2 6

minepump spec1 product37 6 30 332 369 4 1 1 1 5

minepump spec1 product38 17 328 586 939 7 2 1 2 22

minepump spec1 product39 5 344 634 984 5 2 0 2 5

minepump spec1 product40 5 346 641 993 5 2 0 2 5

minepump spec1 product42 4 201 1239 1446 6 4 0 4 20

minepump spec1 product43 4 785 1541 2332 7 5 0 5 22

minepump spec1 product44 9 751 1265 2026 8 4 0 4 28

minepump spec1 product49 5 30 334 370 4 1 1 1 5

minepump spec1 product50 14 322 378 716 7 2 1 2 22

minepump spec1 product51 5 346 634 986 5 2 0 2 5

minepump spec1 product52 6 345 639 991 5 2 0 2 5

minepump spec1 product53 7 34 396 440 4 1 1 1 5

minepump spec1 product54 13 322 377 713 7 2 1 2 22

minepump spec1 product55 6 343 636 986 5 2 0 2 5

202

Table A.2: ACA run characteristics by subject

Time (in sec.) Count of:

Subject cha. gen. ana. tot. Iters Gens Ii ≡ Ii Ii 6≡ Ii Sliced

minepump spec1 product56 6 348 638 993 5 2 0 2 5

minepump spec1 productSimulator 8 74 327 412 3 1 0 1 1

minepump spec2 product33 3 34 332 370 3 1 1 1 11

minepump spec2 product34 2 37 326 366 3 1 1 1 5

minepump spec2 product35 4 181 928 1114 5 3 0 3 7

minepump spec2 product36 9 305 355 671 5 1 1 1 17

minepump spec2 product41 4 1129 2762 3897 11 9 0 7 111

minepump spec2 product42 5 240 939 1186 5 3 0 3 18

minepump spec2 product43 3 0 27 31 2 0 1 0 1

minepump spec2 product44 15 1730 2538 4287 14 9 0 9 89

minepump spec2 productSimulator 3 306 324 633 3 1 0 1 3

minepump spec3 product01 8 0 43 52 4 0 1 0 0

minepump spec3 product02 7 86 660 755 6 3 3 2 22

minepump spec3 product03 8 114 972 1095 7 4 0 1 24

minepump spec3 product04 5 199 1846 2052 8 6 0 6 22

minepump spec3 product05 8 0 61 70 4 0 1 0 0

minepump spec3 product06 11 57 371 441 6 2 4 1 23

minepump spec3 product07 5 148 1560 1714 8 5 0 1 27

minepump spec3 product08 3 52 627 683 4 2 0 2 3

minepump spec3 product09 9 0 73 82 5 0 1 0 0

minepump spec3 product10 11 87 667 766 6 3 3 2 22

minepump spec3 product11 5 108 1256 1370 7 4 0 1 24

minepump spec3 product12 3 227 2174 2410 9 7 0 7 25

minepump spec3 product13 8 0 52 61 4 0 1 0 0

minepump spec3 product14 11 83 685 780 7 3 0 1 22

minepump spec3 product15 7 146 1619 1774 9 5 0 1 33

minepump spec3 product16 4 50 623 678 4 2 0 2 3

minepump spec3 product17 11 0 77 89 5 0 1 0 0

203

Table A.2: ACA run characteristics by subject

Time (in sec.) Count of:

Subject cha. gen. ana. tot. Iters Gens Ii ≡ Ii Ii 6≡ Ii Sliced

minepump spec3 product18 7 80 661 748 6 3 3 2 22

minepump spec3 product19 6 127 1343 1488 7 4 0 1 19

minepump spec3 product20 4 48 623 676 4 2 0 2 3

minepump spec3 product21 10 0 67 78 5 0 1 0 0

minepump spec3 product23 8 96 966 1070 7 3 0 1 22

minepump spec3 product24 4 54 626 685 4 2 0 2 3

minepump spec3 product25 8 0 53 62 4 0 1 0 0

minepump spec3 product26 10 58 683 753 7 2 0 1 23

minepump spec3 product27 7 145 1632 1789 8 5 0 1 24

minepump spec3 product28 3 48 625 677 4 2 0 2 3

minepump spec3 product29 7 0 53 60 4 0 1 0 0

minepump spec3 product30 7 83 659 750 6 3 3 2 22

minepump spec3 product31 9 86 979 1075 7 3 0 1 23

minepump spec3 product32 4 52 625 682 4 2 0 2 3

minepump spec3 product35 6 85 952 1045 6 3 1 3 19

minepump spec3 product36 2 72 623 697 4 2 0 2 4

minepump spec3 product39 9 85 969 1064 7 3 0 1 27

minepump spec3 product40 4 77 661 743 4 2 0 2 4

minepump spec3 product43 5 85 947 1038 6 3 1 3 18

minepump spec3 product44 3 69 624 698 4 2 0 2 5

minepump spec3 product47 14 58 407 479 7 2 0 1 28

minepump spec3 product48 3 71 624 699 4 2 0 2 4

minepump spec3 product51 5 305 338 649 4 1 0 1 14

minepump spec3 product52 4 66 624 696 4 2 0 2 4

minepump spec3 product55 7 91 968 1067 7 3 0 1 26

minepump spec3 product56 3 72 621 696 4 2 0 2 4

minepump spec3 product59 14 360 692 1068 7 3 3 2 32

minepump spec3 product60 4 63 653 723 4 2 0 2 6

204

Table A.2: ACA run characteristics by subject

Time (in sec.) Count of:

Subject cha. gen. ana. tot. Iters Gens Ii ≡ Ii Ii 6≡ Ii Sliced

minepump spec3 product63 9 51 354 414 5 2 0 1 22

minepump spec3 product64 4 75 625 704 4 2 0 2 4

minepump spec3 productSimulator 4 89 620 714 4 2 0 2 4

minepump spec4 product33 2 0 20 23 2 0 1 0 3

minepump spec4 product34 2 0 19 22 2 0 1 0 2

minepump spec4 product35 6 214 931 1153 5 3 0 3 4

minepump spec4 product36 13 858 2226 3100 13 8 0 7 75

minepump spec4 product37 8 0 34 43 2 0 1 0 3

minepump spec4 product38 4 817 1544 2367 7 5 0 4 23

minepump spec4 product39 3 0 19 22 2 0 1 0 0

minepump spec4 product40 14 907 1326 2250 10 5 0 5 63

minepump spec4 product41 4 0 21 26 2 0 1 0 3

minepump spec4 product42 2 0 22 25 2 0 1 0 2

minepump spec4 product43 2 230 934 1168 5 3 0 3 4

minepump spec4 product44 4 0 17 22 2 0 1 0 0

minepump spec4 product45 4 1851 2158 4015 9 7 0 1 92

minepump spec4 product46 3 913 1541 2458 7 5 0 5 26

minepump spec4 product47 2 702 1237 1943 6 4 0 4 12

minepump spec4 product48 69 1789 3537 5400 11 5 0 1 0

minepump spec4 productSimulator 3 306 323 632 3 1 0 1 4

newton 1 4 2 0 58 60 2 0 1 0 0

newton 1 5 2 0 55 58 2 0 1 0 0

newton 1 6 3 0 36 39 2 0 1 0 0

newton 1 7 2 0 34 37 2 0 1 0 0

pc sfifo 1 13 48 124 187 6 1 1 1 7

pc sfifo 2 11 305 419 737 6 1 0 1 12

rangesum05 2 0 107 115 2 0 1 0 0

rangesum10 4 0 212 216 3 0 2 0 0

205

Table A.2: ACA run characteristics by subject

Time (in sec.) Count of:

Subject cha. gen. ana. tot. Iters Gens Ii ≡ Ii Ii 6≡ Ii Sliced

rangesum20 2 305 843 1151 3 1 0 1 0

recHanoi03 38 305 696 1040 6 1 0 1 0

s3 srvr 6 11 305 319 637 3 1 0 1 0

sine 1 2 0 145 152 2 0 1 0 0

sine 2 2 0 316 318 2 0 1 0 0

square 1 2 0 41 44 2 0 1 0 0

square 2 2 0 239 241 2 0 1 0 0

square 3 2 0 349 351 2 0 1 0 0

sum01 bug02 sum01 bug02 base.case 2 8 21 33 3 1 0 1 0

terminator 01 13 139 82 235 7 1 0 1 10

test locks 14 13 305 390 710 5 1 0 1 46

test locks 15 14 305 388 708 5 1 0 1 49

token ring.01 12 97 751 867 6 1 0 1 34

token ring.04 17 4639 739 5400 4 2 0 1 0

token ring.08 3 5073 319 5400 2 1 0 1 0

token ring.10 4 5070 321 5400 2 1 0 1 0

token ring.13 5 5067 323 5400 2 1 0 1 0

toy1 29 424 718 1174 8 2 0 1 86

toy2 25 429 658 1115 8 2 0 1 86

transmitter.01 14 69 671 761 6 1 0 1 21

transmitter.02 10 80 530 620 5 1 0 1 16

transmitter.15 4 611 633 1248 4 2 0 1 1

transmitter.16 5 611 632 1247 4 2 0 1 1

206

Appendix B

Conditional Quantitative Analysis

Data

This appendix contains results and performance metrics for the different quantitative analyzers

and all the 136 subjects of the benchmark extracted from SV-COMP. The mapping between

subject IDs and original SV-COMP names is in Section B.1. Detailed results for each subject are

in Section B.2.

B.1 Name mapping

For readability reasons, we shortened the filename of some subjects. Here below is a table

mapping each name id to the original filename from the SV-COMP benchmark, which can be

found at: https://github.com/sosy-lab/sv-benchmarks.

Notably, the SV-COMP organizers renamed some of the subjects. However, the origi-

nal filename is stored in the yml description of the subject, e.g., see “old file name” in

email spec0 product31.cil.yml.

The recommended way to access the benchmark files is searching the SV-COMP repository

for the filename using the search function of GitHub. File names in the table are clickable (note:

Preview for Mac may not support the LATEXpackage hyperref; Acrobat Reader is recommended).

207

https://github.com/sosy-lab/sv-benchmarks
https://github.com/sosy-lab/sv-benchmarks/blob /d56a700f65b46568f84520384df80b1fd844b54a/c/product-lines/email_spec0 _product31.cil.yml

Subject ID SV-COMP file name

Ackermann02 Ackermann02˙false-unreach-call˙true-no-overflow˙true-termination.c

Fibonacci04 Fibonacci04˙false-unreach-call˙true-no-overflow˙true-termination.c

Fibonacci05 Fibonacci05˙false-unreach-call˙true-no-overflow˙true-termination.c

McCarthy91 McCarthy91˙false-unreach-call˙true-no-overflow˙true-termination.c

Problem01˙label15 Problem01˙label15˙false-unreach-call˙false-termination.c

Problem01˙label32 Problem01˙label32˙false-unreach-call˙false-termination.c

Problem01˙label33 Problem01˙label33˙false-unreach-call˙false-termination.c

Problem01˙label37 Problem01˙label37˙false-unreach-call˙false-termination.c

Problem01˙label44 Problem01˙label44˙false-unreach-call˙false-termination.c

Problem01˙label50 Problem01˙label50˙false-unreach-call˙false-termination.c

Problem01˙label56 Problem01˙label56˙false-unreach-call˙false-termination.c

Problem01˙label57 Problem01˙label57˙false-unreach-call˙false-termination.c

Problem02˙label13 Problem02˙label13˙false-unreach-call˙false-termination.c

Problem02˙label16 Problem02˙label16˙false-unreach-call˙false-termination.c

Problem02˙label44 Problem02˙label44˙false-unreach-call˙false-termination.c

Problem02˙label45 Problem02˙label45˙false-unreach-call˙false-termination.c

Problem02˙label50 Problem02˙label50˙false-unreach-call˙false-termination.c

Problem02˙label59 Problem02˙label59˙false-unreach-call˙false-termination.c

Problem03˙label09 Problem03˙label09˙false-unreach-call.c

Problem03˙label26 Problem03˙label26˙false-unreach-call.c

Problem03˙label28 Problem03˙label28˙false-unreach-call.c

Problem03˙label31 Problem03˙label31˙false-unreach-call.c

Problem03˙label37 Problem03˙label37˙false-unreach-call.c

Problem03˙label39 Problem03˙label39˙false-unreach-call.c

Problem03˙label43 Problem03˙label43˙false-unreach-call.c

Problem03˙label50 Problem03˙label50˙false-unreach-call.c

Problem04˙label19 Problem04˙label19˙false-unreach-call.c

Problem04˙label55 Problem04˙label55˙false-unreach-call.c

Problem06˙label05 Problem06˙label05˙false-unreach-call.c

Problem06˙label11 Problem06˙label11˙false-unreach-call.c

Problem06˙label20 Problem06˙label20˙false-unreach-call.c

Problem06˙label21 Problem06˙label21˙false-unreach-call.c

Problem06˙label24 Problem06˙label24˙false-unreach-call.c

Problem06˙label27 Problem06˙label27˙false-unreach-call.c

Problem06˙label29 Problem06˙label29˙false-unreach-call.c

Problem06˙label48 Problem06˙label48˙false-unreach-call.c

208

https://github.com/sosy-lab/sv-benchmarks/search?q=Ackermann02_false-unreach-call_true-no-overflow_true-termination.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Fibonacci04_false-unreach-call_true-no-overflow_true-termination.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Fibonacci05_false-unreach-call_true-no-overflow_true-termination.c
https://github.com/sosy-lab/sv-benchmarks/search?q=McCarthy91_false-unreach-call_true-no-overflow_true-termination.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem01_label15_false-unreach-call_false-termination.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem01_label32_false-unreach-call_false-termination.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem01_label33_false-unreach-call_false-termination.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem01_label37_false-unreach-call_false-termination.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem01_label44_false-unreach-call_false-termination.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem01_label50_false-unreach-call_false-termination.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem01_label56_false-unreach-call_false-termination.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem01_label57_false-unreach-call_false-termination.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem02_label13_false-unreach-call_false-termination.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem02_label16_false-unreach-call_false-termination.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem02_label44_false-unreach-call_false-termination.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem02_label45_false-unreach-call_false-termination.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem02_label50_false-unreach-call_false-termination.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem02_label59_false-unreach-call_false-termination.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem03_label09_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem03_label26_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem03_label28_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem03_label31_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem03_label37_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem03_label39_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem03_label43_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem03_label50_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem04_label19_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem04_label55_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem06_label05_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem06_label11_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem06_label20_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem06_label21_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem06_label24_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem06_label27_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem06_label29_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem06_label48_false-unreach-call.c

Subject ID SV-COMP file name

Problem06˙label56 Problem06˙label56˙false-unreach-call.c

Problem06˙label58 Problem06˙label58˙false-unreach-call.c

Problem06˙label59 Problem06˙label59˙false-unreach-call.c

Problem10˙label15 Problem10˙label15˙false-unreach-call.c

Problem10˙label24 Problem10˙label24˙false-unreach-call.c

Problem10˙label28 Problem10˙label28˙false-unreach-call.c

Problem10˙label41 Problem10˙label41˙false-unreach-call.c

Problem10˙label42 Problem10˙label42˙false-unreach-call.c

Problem10˙label47 Problem10˙label47˙false-unreach-call.c

Problem10˙label48 Problem10˙label48˙false-unreach-call.c

Problem10˙label58 Problem10˙label58˙false-unreach-call.c

Problem11˙label00 Problem11˙label00˙false-unreach-call.c

Problem11˙label14 Problem11˙label14˙false-unreach-call.c

Problem11˙label15 Problem11˙label15˙false-unreach-call.c

Problem11˙label20 Problem11˙label20˙false-unreach-call.c

Problem11˙label29 Problem11˙label29˙false-unreach-call.c

Problem11˙label31 Problem11˙label31˙false-unreach-call.c

Problem11˙label34 Problem11˙label34˙false-unreach-call.c

Problem11˙label42 Problem11˙label42˙false-unreach-call.c

Problem11˙label43 Problem11˙label43˙false-unreach-call.c

Problem11˙label49 Problem11˙label49˙false-unreach-call.c

Problem11˙label51 Problem11˙label51˙false-unreach-call.c

Problem11˙label58 Problem11˙label58˙false-unreach-call.c

Problem13˙label04 Problem13˙label04˙false-unreach-call.c

Problem13˙label07 Problem13˙label07˙false-unreach-call.c

Problem13˙label12 Problem13˙label12˙false-unreach-call.c

Problem13˙label16 Problem13˙label16˙false-unreach-call.c

Problem13˙label19 Problem13˙label19˙false-unreach-call.c

Problem13˙label21 Problem13˙label21˙false-unreach-call.c

Problem13˙label24 Problem13˙label24˙false-unreach-call.c

Problem13˙label25 Problem13˙label25˙false-unreach-call.c

Problem13˙label28 Problem13˙label28˙false-unreach-call.c

Problem13˙label29 Problem13˙label29˙false-unreach-call.c

Problem13˙label32 Problem13˙label32˙false-unreach-call.c

Problem13˙label35 Problem13˙label35˙false-unreach-call.c

Problem13˙label40 Problem13˙label40˙false-unreach-call.c

209

https://github.com/sosy-lab/sv-benchmarks/search?q=Problem06_label56_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem06_label58_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem06_label59_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem10_label15_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem10_label24_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem10_label28_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem10_label41_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem10_label42_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem10_label47_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem10_label48_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem10_label58_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem11_label00_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem11_label14_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem11_label15_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem11_label20_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem11_label29_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem11_label31_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem11_label34_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem11_label42_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem11_label43_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem11_label49_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem11_label51_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem11_label58_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem13_label04_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem13_label07_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem13_label12_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem13_label16_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem13_label19_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem13_label21_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem13_label24_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem13_label25_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem13_label28_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem13_label29_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem13_label32_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem13_label35_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem13_label40_false-unreach-call.c

Subject ID SV-COMP file name

Problem13˙label43 Problem13˙label43˙false-unreach-call.c

Problem13˙label44 Problem13˙label44˙false-unreach-call.c

Problem13˙label45 Problem13˙label45˙false-unreach-call.c

Problem13˙label48 Problem13˙label48˙false-unreach-call.c

Problem18˙label00 Problem18˙label00˙false-unreach-call.c

Problem18˙label01 Problem18˙label01˙false-unreach-call.c

Problem18˙label03 Problem18˙label03˙false-unreach-call.c

Problem18˙label06 Problem18˙label06˙false-unreach-call.c

Problem18˙label08 Problem18˙label08˙false-unreach-call.c

Problem18˙label10 Problem18˙label10˙false-unreach-call.c

Problem18˙label12 Problem18˙label12˙false-unreach-call.c

Problem18˙label19 Problem18˙label19˙false-unreach-call.c

Problem18˙label20 Problem18˙label20˙false-unreach-call.c

Problem18˙label25 Problem18˙label25˙false-unreach-call.c

Problem18˙label33 Problem18˙label33˙false-unreach-call.c

Problem18˙label34 Problem18˙label34˙false-unreach-call.c

Problem18˙label35 Problem18˙label35˙false-unreach-call.c

Problem18˙label36 Problem18˙label36˙false-unreach-call.c

Problem18˙label38 Problem18˙label38˙false-unreach-call.c

Problem18˙label45 Problem18˙label45˙false-unreach-call.c

Problem18˙label52 Problem18˙label52˙false-unreach-call.c

Problem18˙label55 Problem18˙label55˙false-unreach-call.c

Problem18˙label57 Problem18˙label57˙false-unreach-call.c

cdaudio˙simpl1 cdaudio˙simpl1˙false-unreach-call˙true-valid-memsafety˙true-termination.cil.c

email˙spec0˙product21 email˙spec0˙product21˙false-unreach-call˙true-termination.cil.c

email˙spec0˙product31 email˙spec0˙product31˙false-unreach-call˙true-termination.cil.c

email˙spec1˙product32 email˙spec1˙product32˙false-unreach-call˙true-termination.cil.c

email˙spec1˙product33 email˙spec1˙product33˙false-unreach-call˙true-termination.cil.c

email˙spec1˙product34 email˙spec1˙product34˙false-unreach-call˙true-termination.cil.c

email˙spec1˙product35 email˙spec1˙product35˙false-unreach-call˙true-termination.cil.c

email˙spec1˙productSimulator email˙spec1˙productSimulator˙false-unreach-call˙true-termination.cil.c

email˙spec27˙product17 email˙spec27˙product17˙false-unreach-call˙true-termination.cil.c

email˙spec27˙product18 email˙spec27˙product18˙false-unreach-call˙true-termination.cil.c

email˙spec27˙product23 email˙spec27˙product23˙false-unreach-call˙true-termination.cil.c

email˙spec27˙product24 email˙spec27˙product24˙false-unreach-call˙true-termination.cil.c

email˙spec27˙product30 email˙spec27˙product30˙false-unreach-call˙true-termination.cil.c

210

https://github.com/sosy-lab/sv-benchmarks/search?q=Problem13_label43_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem13_label44_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem13_label45_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem13_label48_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem18_label00_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem18_label01_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem18_label03_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem18_label06_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem18_label08_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem18_label10_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem18_label12_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem18_label19_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem18_label20_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem18_label25_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem18_label33_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem18_label34_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem18_label35_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem18_label36_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem18_label38_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem18_label45_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem18_label52_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem18_label55_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=Problem18_label57_false-unreach-call.c
https://github.com/sosy-lab/sv-benchmarks/search?q=cdaudio_simpl1_false-unreach-call_true-valid-memsafety_true-termination.cil.c
https://github.com/sosy-lab/sv-benchmarks/search?q=email_spec0_product21_false-unreach-call_true-termination.cil.c
https://github.com/sosy-lab/sv-benchmarks/search?q=email_spec0_product31_false-unreach-call_true-termination.cil.c
https://github.com/sosy-lab/sv-benchmarks/search?q=email_spec1_product32_false-unreach-call_true-termination.cil.c
https://github.com/sosy-lab/sv-benchmarks/search?q=email_spec1_product33_false-unreach-call_true-termination.cil.c
https://github.com/sosy-lab/sv-benchmarks/search?q=email_spec1_product34_false-unreach-call_true-termination.cil.c
https://github.com/sosy-lab/sv-benchmarks/search?q=email_spec1_product35_false-unreach-call_true-termination.cil.c
https://github.com/sosy-lab/sv-benchmarks/search?q=email_spec1_productSimulator_false-unreach-call_true-termination.cil.c
https://github.com/sosy-lab/sv-benchmarks/search?q=email_spec27_product17_false-unreach-call_true-termination.cil.c
https://github.com/sosy-lab/sv-benchmarks/search?q=email_spec27_product18_false-unreach-call_true-termination.cil.c
https://github.com/sosy-lab/sv-benchmarks/search?q=email_spec27_product23_false-unreach-call_true-termination.cil.c
https://github.com/sosy-lab/sv-benchmarks/search?q=email_spec27_product24_false-unreach-call_true-termination.cil.c
https://github.com/sosy-lab/sv-benchmarks/search?q=email_spec27_product30_false-unreach-call_true-termination.cil.c

Subject ID SV-COMP file name

email˙spec27˙product31 email˙spec27˙product31˙false-unreach-call˙true-termination.cil.c

email˙spec27˙product32 email˙spec27˙product32˙false-unreach-call˙true-termination.cil.c

email˙spec3˙product25 email˙spec3˙product25˙false-unreach-call˙true-termination.cil.c

email˙spec3˙product29 email˙spec3˙product29˙false-unreach-call˙true-termination.cil.c

email˙spec4˙product19 email˙spec4˙product19˙false-unreach-call˙true-termination.cil.c

email˙spec8˙product15 email˙spec8˙product15˙false-unreach-call˙true-termination.cil.c

email˙spec8˙product16 email˙spec8˙product16˙false-unreach-call˙true-termination.cil.c

email˙spec8˙product20 email˙spec8˙product20˙false-unreach-call˙true-termination.cil.c

email˙spec8˙product21 email˙spec8˙product21˙false-unreach-call˙true-termination.cil.c

email˙spec8˙product22 email˙spec8˙product22˙false-unreach-call˙true-termination.cil.c

email˙spec8˙product26 email˙spec8˙product26˙false-unreach-call˙true-termination.cil.c

email˙spec9˙product15 email˙spec9˙product15˙false-unreach-call˙true-termination.cil.c

email˙spec9˙product16 email˙spec9˙product16˙false-unreach-call˙true-termination.cil.c

email˙spec9˙product20 email˙spec9˙product20˙false-unreach-call˙true-termination.cil.c

email˙spec9˙product21 email˙spec9˙product21˙false-unreach-call˙true-termination.cil.c

email˙spec9˙product26 email˙spec9˙product26˙false-unreach-call˙true-termination.cil.c

email˙spec9˙product30 email˙spec9˙product30˙false-unreach-call˙true-termination.cil.c

email˙spec9˙product33 email˙spec9˙product33˙false-unreach-call˙true-termination.cil.c

floppy˙simpl3 floppy˙simpl3˙false-unreach-call˙true-valid-memsafety˙true-termination.cil.c

floppy˙simpl4 floppy˙simpl4˙false-unreach-call˙true-valid-memsafety˙true-termination.cil.c

id˙b3˙o2 id˙b3˙o2˙false-unreach-call˙true-termination˙true-no-overflow.c

kbfiltr˙simpl2 kbfiltr˙simpl2˙false-unreach-call˙true-valid-memsafety˙true-termination.cil.c

nec11 nec11˙false-unreach-call˙false-termination.i

recHanoi03 recHanoi03˙false-unreach-call˙true-termination.c

token˙ring.04 token˙ring.04˙false-unreach-call˙false-termination.cil.c

token˙ring.08 token˙ring.08˙false-unreach-call˙false-termination.cil.c

token˙ring.10 token˙ring.10˙false-unreach-call˙false-termination.cil.c

token˙ring.13 token˙ring.13˙false-unreach-call˙false-termination.cil.c

211

https://github.com/sosy-lab/sv-benchmarks/search?q=email_spec27_product31_false-unreach-call_true-termination.cil.c
https://github.com/sosy-lab/sv-benchmarks/search?q=email_spec27_product32_false-unreach-call_true-termination.cil.c
https://github.com/sosy-lab/sv-benchmarks/search?q=email_spec3_product25_false-unreach-call_true-termination.cil.c
https://github.com/sosy-lab/sv-benchmarks/search?q=email_spec3_product29_false-unreach-call_true-termination.cil.c
https://github.com/sosy-lab/sv-benchmarks/search?q=email_spec4_product19_false-unreach-call_true-termination.cil.c
https://github.com/sosy-lab/sv-benchmarks/search?q=email_spec8_product15_false-unreach-call_true-termination.cil.c
https://github.com/sosy-lab/sv-benchmarks/search?q=email_spec8_product16_false-unreach-call_true-termination.cil.c
https://github.com/sosy-lab/sv-benchmarks/search?q=email_spec8_product20_false-unreach-call_true-termination.cil.c
https://github.com/sosy-lab/sv-benchmarks/search?q=email_spec8_product21_false-unreach-call_true-termination.cil.c
https://github.com/sosy-lab/sv-benchmarks/search?q=email_spec8_product22_false-unreach-call_true-termination.cil.c
https://github.com/sosy-lab/sv-benchmarks/search?q=email_spec8_product26_false-unreach-call_true-termination.cil.c
https://github.com/sosy-lab/sv-benchmarks/search?q=email_spec9_product15_false-unreach-call_true-termination.cil.c
https://github.com/sosy-lab/sv-benchmarks/search?q=email_spec9_product16_false-unreach-call_true-termination.cil.c
https://github.com/sosy-lab/sv-benchmarks/search?q=email_spec9_product20_false-unreach-call_true-termination.cil.c
https://github.com/sosy-lab/sv-benchmarks/search?q=email_spec9_product21_false-unreach-call_true-termination.cil.c
https://github.com/sosy-lab/sv-benchmarks/search?q=email_spec9_product26_false-unreach-call_true-termination.cil.c
https://github.com/sosy-lab/sv-benchmarks/search?q=email_spec9_product30_false-unreach-call_true-termination.cil.c
https://github.com/sosy-lab/sv-benchmarks/search?q=email_spec9_product33_false-unreach-call_true-termination.cil.c
https://github.com/sosy-lab/sv-benchmarks/search?q=floppy_simpl3_false-unreach-call_true-valid-memsafety_true-termination.cil.c
https://github.com/sosy-lab/sv-benchmarks/search?q=floppy_simpl4_false-unreach-call_true-valid-memsafety_true-termination.cil.c
https://github.com/sosy-lab/sv-benchmarks/search?q=id_b3_o2_false-unreach-call_true-termination_true-no-overflow.c
https://github.com/sosy-lab/sv-benchmarks/search?q=kbfiltr_simpl2_false-unreach-call_true-valid-memsafety_true-termination.cil.c
https://github.com/sosy-lab/sv-benchmarks/search?q=nec11_false-unreach-call_false-termination.i
https://github.com/sosy-lab/sv-benchmarks/search?q=recHanoi03_false-unreach-call_true-termination.c
https://github.com/sosy-lab/sv-benchmarks/search?q=token_ring.04_false-unreach-call_false-termination.cil.c
https://github.com/sosy-lab/sv-benchmarks/search?q=token_ring.08_false-unreach-call_false-termination.cil.c
https://github.com/sosy-lab/sv-benchmarks/search?q=token_ring.10_false-unreach-call_false-termination.cil.c
https://github.com/sosy-lab/sv-benchmarks/search?q=token_ring.13_false-unreach-call_false-termination.cil.c

B.2 Detailed results

Columns. For each implementation, we report the total time (time, including both analysis

and counting), the counting time (]-time), the guaranteed minimum probability of reaching a

target state (](ψ)), the guaranteed minimum probability of not reaching a target state (](¬ψ)),

the number of paths reaching the target state (p(ψ)), the number of paths terminating without

reaching a target (p(¬ψ)), and the number of grey paths (p(?), i.e., whose execution reached the

depth bound before terminating). The values for the number of paths are meaningful only for

implementations using PSE or SSE at some stage, i.e., not for CQA#.

Rows. Each row reports the result of an implementation. PSE and SSE indicate the results

of executing PSE and SSE without conditioning. cqa-pse-interval-n and cqa-sse-interval-n

indicate the application of PSE and SSE conditioned within the n-th interval computed by

generate intervals, respectively. The size of the interval (as fraction of the input domain) is

reported on the left of cqa-pse-interval-n.

Color scheme. Cells are highlighted with according to the following scheme: the time value

is highlighted in red in case of timeout (90 minutes), the time value is highlighted in blue in

case of OOM (>8Gb for a single tool) or exception raised by some of the tools involved in this

case the results of the highlighted implementation are not reliable and should be ignored, p(?) is

highlighted in pink when greated than zero.

212

email˙spec27˙product17˙false-unreach-

call˙true-termination.cil.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 5144 1 2.3e−187 1− 2.8e−9 - - -

cqa-pse 5386 240 1.0e−140 1− 4.7e−10 11 1564 0

cqa-sse 5386 240 2.3e−187 1− 4.7e−10 0 377 0

pse 2001 1577 4.8e−94 1− 4.8e−94 812 8220 0

sse 5389 3386 4.8e−94 1− 4.8e−94 644 7182 0

(4.7e−10) cqa-pse-interval-1 242 239 0.0 0 0 0 0

cqa-sse-interval-1 242 239 0.0 0 0 0 0

(4.7e−10) cqa-pse-interval-2 242 200 2.3e−159 1.0e−28 4 519 0

cqa-sse-interval-2 242 210 0.0 2.6e−64 0 155 0

(4.7e−10) cqa-pse-interval-3 242 206 4.9e−150 4.7e−38 4 485 0

cqa-sse-interval-3 242 218 0.0 3.2e−64 0 137 0

(4.7e−10) cqa-pse-interval-4 242 219 4.9e−150 4.7e−38 2 324 0

cqa-sse-interval-4 242 228 0.0 4.8e−55 0 73 0

(4.7e−10) cqa-pse-interval-5 242 226 1.0e−140 1.0e−28 1 160 0

cqa-sse-interval-5 242 237 0.0 6.1e−28 0 9 0

(4.7e−10) cqa-pse-interval-6 242 233 0.0 3.0e−28 0 76 0

cqa-sse-interval-6 242 239 0.0 4.3e−19 0 3 0

213

email˙spec27˙product23˙false-unreach-

call˙true-termination.cil.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 3873 1 4.8e−122 0 - - -

cqa-pse 5390 1175 4.7e−38 1− 4.7e−38 2729 14685 0

cqa-sse 5391 1333 4.7e−38 1− 4.7e−38 1114 6146 0

pse 2076 1616 4.7e−38 1− 4.7e−38 1360 7672 0

sse 5389 3510 4.7e−38 1− 4.7e−38 1192 6616 0

(4.7e−10) cqa-pse-interval-1 1517 1107 2.2e−47 2.2e−47 1119 5498 0

cqa-sse-interval-1 1517 981 2.2e−47 2.2e−47 298 1753 0

(4.7e−10) cqa-pse-interval-2 1517 1174 2.2e−47 2.2e−47 687 5300 0

cqa-sse-interval-2 1517 1199 2.2e−47 2.2e−47 263 1752 0

(4.7e−10) cqa-pse-interval-3 873 692 2.2e−47 2.2e−47 471 2327 0

cqa-sse-interval-3 1517 1165 2.2e−47 2.2e−47 362 1732 0

(1− 1.4e−9) cqa-pse-interval-4 1111 985 4.7e−38 1.0− 4.7e−38 452 1560 0

cqa-sse-interval-4 1518 1332 4.7e−38 1.0− 4.7e−38 191 909 0

214

email˙spec4˙product19˙false-unreach-

call˙true-termination.cil.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 3836 1 2.2e−47 0 - - -

cqa-pse 5398 1290 2.2e−19 1− 2.2e−19 1761 13952 0

cqa-sse 5399 1232 2.2e−19 1− 2.2e−19 881 5250 0

pse 1970 1546 2.2e−19 1− 2.2e−19 821 8211 0

sse 5389 3407 2.2e−19 1− 2.2e−19 792 6790 0

(4.7e−10) cqa-pse-interval-1 1562 1218 1.0e−28 1.0e−28 609 4862 0

cqa-sse-interval-1 1562 1179 1.0e−28 1.0e−28 300 1757 0

(4.7e−10) cqa-pse-interval-2 1562 1235 1.0e−28 1.0e−28 577 4579 0

cqa-sse-interval-2 1562 1158 1.0e−28 1.0e−28 290 1649 0

(4.7e−10) cqa-pse-interval-3 1562 1289 2.2e−19 2.2e−19 517 3822 0

cqa-sse-interval-3 1563 1231 2.2e−19 2.2e−19 233 1155 0

(1− 1.4e−9) cqa-pse-interval-4 268 221 4.7e−38 1.0− 4.7e−38 58 689 0

cqa-sse-interval-4 506 433 4.7e−38 1.0− 4.7e−38 58 689 0

215

email˙spec8˙product16˙false-unreach-

call˙true-termination.cil.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 3091 1 4.7e−66 1− 1.9e−9 - - -

cqa-pse 4738 1253 1.0e−28 1− 1.0e−28 1119 14782 0

cqa-sse 5388 1596 1.0e−28 1− 1.0e−28 960 9823 0

pse 2029 1595 1.0e−28 1− 1.0e−28 548 8484 0

sse 5389 3498 1.0e−28 1− 1.0e−28 548 7491 0

(4.7e−10) cqa-pse-interval-1 1305 964 4.7e−38 4.7e−38 396 5463 0

cqa-sse-interval-1 2297 1595 4.7e−38 4.7e−38 343 3592 0

(4.7e−10) cqa-pse-interval-2 1647 1252 4.7e−38 4.7e−38 389 5714 0

cqa-sse-interval-2 2297 1536 4.7e−38 4.7e−38 283 2626 0

(4.7e−10) cqa-pse-interval-3 909 736 4.7e−38 4.7e−38 263 2578 0

cqa-sse-interval-3 1978 1551 4.7e−38 4.7e−38 263 2578 0

(4.7e−10) cqa-pse-interval-4 437 371 1.0e−28 1.0e−28 71 1027 0

cqa-sse-interval-4 928 821 1.0e−28 1.0e−28 71 1027 0

216

email˙spec9˙product21˙false-unreach-

call˙true-termination.cil.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 3163 1 4.8e−122 1− 1.9e−9 - - -

cqa-pse 4531 984 1.0e−28 1− 1.0e−28 851 11478 0

cqa-sse 5385 1499 1.0e−28 1− 1.0e−28 765 8650 0

pse 1564 1187 1.0e−28 1− 1.0e−28 548 8484 0

sse 5389 3311 1.0e−28 1− 1.0e−28 548 8223 0

(4.7e−10) cqa-pse-interval-1 1368 983 4.7e−38 4.7e−38 421 6293 0

cqa-sse-interval-1 2222 1498 4.7e−38 4.7e−38 335 3465 0

(4.7e−10) cqa-pse-interval-2 777 573 4.7e−38 4.7e−38 178 3256 0

cqa-sse-interval-2 1941 1346 4.7e−38 4.7e−38 178 3256 0

(4.7e−10) cqa-pse-interval-3 394 310 2.2e−75 2.2e−75 90 1311 0

cqa-sse-interval-3 799 632 2.2e−75 2.2e−75 90 1311 0

(4.7e−10) cqa-pse-interval-4 295 244 1.0e−28 1.0e−28 162 618 0

cqa-sse-interval-4 554 470 1.0e−28 1.0e−28 162 618 0

217

email˙spec27˙product31˙false-unreach-

call˙true-termination.cil.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 3898 1 2.3e−159 0 - - -

cqa-pse 5385 1128 1.0e−28 1− 1.0e−28 974 12731 0

cqa-sse 5386 1091 1.0e−28 1− 1.0e−28 574 5517 0

pse 2105 1641 1.0e−28 1− 1.0e−28 524 8508 0

sse 5390 3555 1.0e−28 1− 1.0e−28 505 7212 0

(4.7e−10) cqa-pse-interval-1 1304 962 4.7e−38 4.7e−38 361 5499 0

cqa-sse-interval-1 1488 1090 4.7e−38 4.7e−38 166 1927 0

(4.7e−10) cqa-pse-interval-2 1487 1127 4.7e−38 4.7e−38 303 5376 0

cqa-sse-interval-2 1487 1044 4.7e−38 4.7e−38 98 1734 0

(4.7e−10) cqa-pse-interval-3 327 256 4.7e−38 4.7e−38 155 1000 0

cqa-sse-interval-3 690 544 4.7e−38 4.7e−38 155 1000 0

(1− 1.4e−9) cqa-pse-interval-4 350 285 1.0e−28 1.0− 1.0e−28 155 856 0

cqa-sse-interval-4 783 659 1.0e−28 1.0− 1.0e−28 155 856 0

218

email˙spec27˙product18˙false-unreach-

call˙true-termination.cil.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 3159 1 2.2e−103 1− 1.9e−9 - - -

cqa-pse 4653 1118 4.7e−38 1− 4.7e−38 1049 13815 0

cqa-sse 5397 1618 4.7e−38 1− 4.7e−38 973 8166 0

pse 2088 1647 4.7e−38 1− 4.7e−38 548 8484 0

sse 5389 3567 4.7e−38 1− 4.7e−38 548 7295 0

(4.7e−10) cqa-pse-interval-1 1288 947 2.2e−47 2.2e−47 396 5463 0

cqa-sse-interval-1 2238 1617 2.2e−47 2.2e−47 363 2846 0

(4.7e−10) cqa-pse-interval-2 1494 1117 2.2e−47 2.2e−47 389 6025 0

cqa-sse-interval-2 2238 1505 2.2e−47 2.2e−47 346 2993 0

(4.7e−10) cqa-pse-interval-3 633 503 2.2e−47 2.2e−47 160 2070 0

cqa-sse-interval-3 1317 1055 2.2e−47 2.2e−47 160 2070 0

(4.7e−10) cqa-pse-interval-4 140 115 4.7e−38 4.7e−38 104 257 0

cqa-sse-interval-4 269 234 4.7e−38 4.7e−38 104 257 0

email˙spec8˙product21˙false-unreach-

call˙true-termination.cil.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1689 1 4.8e−122 1− 1.4e−9 - - -

cqa-pse 3398 1272 1.0e−28 1− 1.0e−28 585 8975 0

cqa-sse 5396 2503 1.0e−28 1− 1.0e−28 552 6625 0

pse 2014 1559 1.0e−28 1− 1.0e−28 548 8484 0

sse 5389 3396 1.0e−28 1− 1.0e−28 548 7673 0

(4.7e−10) cqa-pse-interval-1 1709 1271 1.0e−28 1.0e−28 488 7262 0

cqa-sse-interval-1 3707 2502 1.0e−28 1.0e−28 455 4912 0

(4.7e−10) cqa-pse-interval-2 192 130 2.2e−47 2.2e−47 50 968 0

cqa-sse-interval-2 371 267 2.2e−47 2.2e−47 50 968 0

(4.7e−10) cqa-pse-interval-3 189 137 4.7e−38 4.7e−38 47 745 0

cqa-sse-interval-3 382 302 4.7e−38 4.7e−38 47 745 0

219

email˙spec1˙product32˙false-unreach-

call˙true-termination.cil.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1521 1 2.2e−47 0 - - -

cqa-pse 3194 1242 1.4e−37 1− 1.4e−37 1912 7142 0

cqa-sse 5393 2612 1.4e−37 1− 1.4e−37 1831 5017 0

pse 2039 1578 1.4e−37 1− 1.4e−37 1914 7118 0

sse 5390 3348 1.4e−37 1− 1.4e−37 1898 5877 0

(4.7e−10) cqa-pse-interval-1 1673 1241 4.7e−38 4.7e−38 1678 6072 0

cqa-sse-interval-1 3872 2611 4.7e−38 4.7e−38 1597 3947 0

(1− 4.7e−10) cqa-pse-interval-2 284 208 9.4e−38 1.0− 9.4e−38 234 1070 0

cqa-sse-interval-2 577 428 9.4e−38 1.0− 9.4e−38 234 1070 0

email˙spec1˙product33˙false-unreach-

call˙true-termination.cil.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1901 1 1.0e−84 0 - - -

cqa-pse 4007 1593 1.0e−28 1− 1.0e−28 2230 11840 0

cqa-sse 5399 2508 1.0e−28 1− 1.0e−28 1948 7322 0

pse 2081 1623 1.0e−28 1− 1.0e−28 1368 7664 0

sse 5389 3541 1.0e−28 1− 1.0e−28 1367 6418 0

(4.7e−10) cqa-pse-interval-1 1207 882 4.7e−38 4.7e−38 965 4895 0

cqa-sse-interval-1 3498 2507 4.7e−38 4.7e−38 965 4305 0

(1− 4.7e−10) cqa-pse-interval-2 2106 1592 1.0e−28 1.0− 1.0e−28 1265 6945 0

cqa-sse-interval-2 3498 2363 1.0e−28 1.0− 1.0e−28 983 3017 0

220

email˙spec27˙product24˙false-unreach-

call˙true-termination.cil.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 2137 1 2.3e−159 0 - - -

cqa-pse 4080 1459 1.0e−28 1− 1.0e−28 1581 12490 0

cqa-sse 5395 2237 1.0e−28 1− 1.0e−28 1332 7621 0

pse 2028 1575 1.0e−28 1− 1.0e−28 970 8062 0

sse 5388 3560 1.0e−28 1− 1.0e−28 950 6737 0

(4.7e−10) cqa-pse-interval-1 1394 1051 4.7e−38 4.7e−38 681 5179 0

cqa-sse-interval-1 3258 2236 4.7e−38 4.7e−38 649 4062 0

(1− 4.7e−10) cqa-pse-interval-2 1943 1458 1.0e−28 1.0− 1.0e−28 900 7311 0

cqa-sse-interval-2 3257 2137 1.0e−28 1.0− 1.0e−28 683 3559 0

email˙spec0˙product31˙false-unreach-

call˙true-termination.cil.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1331 1 1.0e−56 1− 9.3e−10 - - -

cqa-pse 2804 1034 2.2e−19 1− 2.2e−19 371 8534 0

cqa-sse 5399 2899 2.2e−19 1− 2.2e−19 365 5177 0

pse 2095 1649 2.2e−19 1− 2.2e−19 372 8660 0

sse 5390 3506 2.2e−19 1− 2.2e−19 372 8015 0

(4.7e−10) cqa-pse-interval-1 1473 1033 1.0e−28 1.0e−28 356 7773 0

cqa-sse-interval-1 4068 2898 1.0e−28 1.0e−28 350 4416 0

(4.7e−10) cqa-pse-interval-2 131 85 2.2e−19 2.2e−19 15 761 0

cqa-sse-interval-2 298 234 2.2e−19 2.2e−19 15 761 0

221

email˙spec1˙product35˙false-unreach-

call˙true-termination.cil.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1510 1 4.7e−38 0 - - -

cqa-pse 2883 976 1.0e−28 1− 1.0e−28 2058 7092 0

cqa-sse 5398 2750 1.0e−28 1− 1.0e−28 1853 4430 0

pse 2061 1602 1.0e−28 1− 1.0e−28 2036 6996 0

sse 5389 3472 1.0e−28 1− 1.0e−28 2010 5588 0

(4.7e−10) cqa-pse-interval-1 1373 975 1.1e−46 1.1e−46 1719 5841 0

cqa-sse-interval-1 3888 2749 1.1e−46 1.1e−46 1514 3179 0

(1− 4.7e−10) cqa-pse-interval-2 386 280 1.0e−28 1.0− 1.0e−28 339 1251 0

cqa-sse-interval-2 752 571 1.0e−28 1.0− 1.0e−28 339 1251 0

email˙spec27˙product30˙false-unreach-

call˙true-termination.cil.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1530 1 4.8e−122 1− 9.3e−10 - - -

cqa-pse 3274 1269 4.7e−38 1− 4.7e−38 907 12444 0

cqa-sse 5388 2740 4.7e−38 1− 4.7e−38 894 9371 0

pse 1993 1558 4.7e−38 1− 4.7e−38 548 8484 0

sse 5389 3445 4.7e−38 1− 4.7e−38 548 7686 0

(4.7e−10) cqa-pse-interval-1 1237 915 2.2e−47 2.2e−47 397 5463 0

cqa-sse-interval-1 3858 2739 2.2e−47 2.2e−47 397 4900 0

(4.7e−10) cqa-pse-interval-2 1744 1268 4.7e−38 4.7e−38 510 6981 0

cqa-sse-interval-2 3858 2585 4.7e−38 4.7e−38 497 4471 0

222

email˙spec9˙product16˙false-unreach-

call˙true-termination.cil.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1982 1 4.8e−122 1− 9.3e−10 - - -

cqa-pse 3756 1313 1.0e−28 1− 1.0e−28 905 12263 0

cqa-sse 5390 2420 1.0e−28 1− 1.0e−28 803 7930 0

pse 1826 1422 1.0e−28 1− 1.0e−28 548 8484 0

sse 5389 3398 1.0e−28 1− 1.0e−28 548 8063 0

(4.7e−10) cqa-pse-interval-1 1296 950 4.7e−38 4.7e−38 396 5463 0

cqa-sse-interval-1 3408 2419 4.7e−38 4.7e−38 374 4105 0

(4.7e−10) cqa-pse-interval-2 1774 1312 1.0e−28 1.0e−28 509 6800 0

cqa-sse-interval-2 3408 2310 1.0e−28 1.0e−28 429 3825 0

floppy˙simpl3˙false-unreach-call˙true-

valid-memsafety˙true-termination.cil.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 720 1 1.0e−56 1− 4.7e−10 - - -

cqa-pse 4715 3973 1.9e−37 1− 1.9e−37 95 780 0

cqa-sse 5388 4644 1.9e−37 1− 1.9e−37 29 237 0

pse 391 368 1.9e−37 1− 1.9e−37 96 782 0

sse 1000 932 1.9e−37 1− 1.9e−37 96 782 0

(4.7e−10) cqa-pse-interval-1 3995 3972 1.9e−37 1.9e−37 95 780 0

cqa-sse-interval-1 4668 4643 1.9e−37 1.9e−37 29 237 0

223

email˙spec3˙product29˙false-unreach-

call˙true-termination.cil.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 5400 1 2.2e−103 0 - - -

cqa-pse 5400 1 2.2e−103 0 0 0 0

cqa-sse 5400 1 2.2e−103 0 0 0 0

pse 1994 1565 4.7e−10 1− 4.7e−10 7203 1829 0

sse 5389 3493 4.7e−10 1− 4.7e−10 6224 1766 0

(1− 2.2e−103) cqa-pse-interval-1 0 0 0.0 0 0 0 0

cqa-sse-interval-1 0 0 0.0 0 0 0 0

email˙spec3˙product25˙false-unreach-

call˙true-termination.cil.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 5400 1 4.8e−94 0 - - -

cqa-pse 5400 1 4.8e−94 0 0 0 0

cqa-sse 5400 1 4.8e−94 0 0 0 0

pse 1985 1559 4.7e−10 1− 4.7e−10 7721 1311 0

sse 5389 3432 4.7e−10 1− 4.7e−10 6821 1262 0

(1− 4.8e−94) cqa-pse-interval-1 0 0 0.0 0 0 0 0

cqa-sse-interval-1 0 0 0.0 0 0 0 0

Problem13˙label43˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1607 1 1.1e−46 1− 2.3e−9 - - -

cqa-pse 5396 3779 1.1e−46 1− 1.1e−18 0 28 16

cqa-sse 5396 3780 1.1e−46 1− 7.6e−27 0 8 0

pse 19 2 0.0 1− 1.1e−18 0 39 25

sse 57 29 0.0 1− 1.1e−18 0 39 25

(2.3e−9) cqa-pse-interval-1 3789 3778 0.0 1.1e−18 0 28 16

cqa-sse-interval-1 3789 3779 0.0 7.6e−27 0 8 0

224

Problem13˙label19˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 2110 1 1.1e−46 1− 2.3e−9 - - -

cqa-pse 2539 419 1.1e−46 1− 1.1e−18 0 28 16

cqa-sse 2494 374 1.1e−46 1− 7.6e−27 0 8 0

pse 24 3 0.0 1− 1.1e−18 0 39 25

sse 50 23 0.0 1− 1.1e−18 0 39 25

(2.3e−9) cqa-pse-interval-1 429 418 0.0 1.1e−18 0 28 16

cqa-sse-interval-1 384 373 0.0 7.6e−27 0 8 0

email˙spec1˙productSimulator˙false-

unreach-call˙true-termination.cil.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1676 1 2.3e−159 1− 1.0 - - -

cqa-pse 5398 3720 2.3e−159 1− 1.0 0 0 0

cqa-sse 2083 405 2.3e−159 1− 1.0 0 0 0

pse 5390 4179 2.2e−47 1− 1.0 3364 16341 0

sse 5389 2872 1.0e−28 1− 1.0e−28 976 3851 0

(1− 4.7e−10) cqa-pse-interval-1 3722 3719 0.0 0 0 0 0

cqa-sse-interval-1 407 404 0.0 0 0 0 0

Problem04˙label19˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 3296 1 3.0e−177 0 - - -

cqa-pse 3739 435 3.0e−177 0 0 0 0

cqa-sse 3694 390 3.0e−177 0 0 0 0

pse 36 8 0.0 1− 1.3e−18 0 117 101

sse 110 69 0.0 1− 1.3e−18 0 117 101

(1− 3.0e−177) cqa-pse-interval-1 443 434 0.0 0 0 0 0

cqa-sse-interval-1 398 389 0.0 0 0 0 0

225

floppy˙simpl4˙false-unreach-call˙true-

valid-memsafety˙true-termination.cil.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 939 1 1.0e−56 1− 4.7e−10 - - -

cqa-pse 5398 4453 1.0e−56 1− 4.7e−10 0 26 0

cqa-sse 5398 4452 1.0e−56 1− 2.1e−36 0 25 0

pse 5389 1394 0.0 1− 1.0 0 97 0

sse 5388 2772 0.0 1− 1.2e−27 0 17 0

(4.7e−10) cqa-pse-interval-1 4459 4452 0.0 4.7e−10 0 26 0

cqa-sse-interval-1 4459 4451 0.0 2.1e−36 0 25 0

recHanoi03˙false-unreach-call˙true-

termination.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 5400 1 3.3e−9 0 - - -

cqa-pse 5400 1 3.3e−9 0 0 0 0

cqa-sse 5400 1 3.3e−9 0 0 0 0

pse 0 0 0.0 0 0 0 0

sse 0 0 0.0 0 0 0 0

(1− 3.3e−9) cqa-pse-interval-1 0 0 0.0 0 0 0 0

cqa-sse-interval-1 0 0 0.0 0 0 0 0

Problem03˙label37˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 530 1 1.3e−46 1− 2.8e−9 - - -

cqa-pse 5395 4600 1.3e−46 1− 6.5e−18 313 25875 32334

cqa-sse 5394 3585 1.3e−46 1− 1.3e−46 118 4921 1

pse 5392 4826 2.9e−93 1− 2.3e−9 654 54801 65979

sse 5394 3021 1.3e−46 1− 1.3e−46 145 5875 0

(2.8e−9) cqa-pse-interval-1 4865 4599 5.8e−93 6.5e−18 313 25875 32334

cqa-sse-interval-1 4864 3584 3.7e−55 3.7e−55 118 4921 1

226

Problem06˙label29˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1362 1 6.1e−56 1− 2.8e−9 - - -

cqa-pse 1389 7 6.1e−56 1− 1.4e−26 0 67 76

cqa-sse 1408 22 6.1e−56 1− 1.4e−26 0 67 76

pse 58 8 0.0 1− 5.0e−18 0 91 91

sse 111 51 0.0 1− 5.0e−18 0 91 91

(2.8e−9) cqa-pse-interval-1 27 6 0.0 1.4e−26 0 67 76

cqa-sse-interval-1 46 21 0.0 1.4e−26 0 67 76

Problem10˙label58˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1102 1 2.4e−37 1− 2.3e−9 - - -

cqa-pse 1117 9 2.4e−37 1− 1.3e−35 0 122 188

cqa-sse 1174 58 2.4e−37 1− 1.3e−35 0 122 188

pse 17 10 0.0 1− 9.1e−28 0 214 212

sse 245 215 0.0 1− 9.1e−28 0 214 212

(2.3e−9) cqa-pse-interval-1 15 8 0.0 1.3e−35 0 122 188

cqa-sse-interval-1 72 57 0.0 1.3e−35 0 122 188

Problem11˙label14˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1032 1 6.1e−28 1− 2.8e−9 - - -

cqa-pse 1117 68 6.1e−28 1− 2.9e−27 23 675 1108

cqa-sse 1595 419 6.1e−28 1− 2.9e−27 23 675 1108

pse 73 53 6.1e−28 1− 2.0e−27 25 886 1417

sse 1369 1111 6.1e−28 1− 2.0e−27 25 886 1416

(2.8e−9) cqa-pse-interval-1 85 67 3.1e−36 2.3e−27 23 675 1108

cqa-sse-interval-1 563 418 3.1e−36 2.3e−27 23 675 1108

227

Problem10˙label42˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1175 1 5.0e−28 1− 2.3e−9 - - -

cqa-pse 1225 43 5.0e−28 1− 1.9e−27 7 159 187

cqa-sse 1286 96 5.0e−28 1− 1.9e−27 7 159 187

pse 26 16 5.0e−28 1− 1.4e−27 9 205 212

sse 208 176 5.0e−28 1− 1.4e−27 9 205 212

(2.3e−9) cqa-pse-interval-1 50 42 7.1e−37 1.4e−27 7 159 187

cqa-sse-interval-1 111 95 7.1e−37 1.4e−27 7 159 187

email˙spec1˙product34˙false-unreach-

call˙true-termination.cil.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 964 1 1.0e−140 0 - - -

cqa-pse 2768 1283 1.0e−28 1− 1.0e−28 1317 7714 0

cqa-sse 5392 3020 1.0e−28 1− 1.0e−28 1101 4470 0

pse 2095 1620 1.0e−28 1− 1.0e−28 1318 7714 0

sse 5389 3507 1.0e−28 1− 1.0e−28 1300 6438 0

(1− 1.0e−140) cqa-pse-interval-1 1804 1282 1.0e−28 1.0− 1.0e−28 1317 7714 0

cqa-sse-interval-1 4428 3019 1.0e−28 1.0− 1.0e−28 1101 4470 0

Problem18˙label10˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1289 1 1.3e−74 1− 2.8e−9 - - -

cqa-pse 1297 3 1.3e−74 1− 6.1e−28 0 20 3

cqa-sse 1303 8 1.3e−74 1− 6.1e−28 0 20 3

pse 12 2 0.0 1− 2.2e−19 0 22 5

sse 23 10 0.0 1− 2.2e−19 0 22 5

(2.8e−9) cqa-pse-interval-1 8 2 0.0 6.1e−28 0 20 3

cqa-sse-interval-1 14 7 0.0 6.1e−28 0 20 3

228

Problem03˙label39˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1249 1 6.1e−56 1− 2.8e−9 - - -

cqa-pse 1896 584 6.1e−56 1− 6.5e−18 0 6553 8233

cqa-sse 1821 469 6.1e−56 1− 6.1e−56 0 1359 0

pse 5393 4858 0.0 1− 2.3e−9 0 52853 62997

sse 5394 3175 6.1e−56 1− 6.1e−56 1 5938 0

(2.8e−9) cqa-pse-interval-1 647 583 0.0 6.5e−18 0 6553 8233

cqa-sse-interval-1 572 468 0.0 9.3e−63 0 1359 0

email˙spec8˙product15˙false-unreach-

call˙true-termination.cil.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 490 1 1.0e−84 1− 4.7e−10 - - -

cqa-pse 2202 1263 4.7e−38 1− 4.7e−38 397 7507 0

cqa-sse 5398 3513 4.7e−38 1− 4.7e−38 397 5552 0

pse 1996 1568 4.7e−38 1− 4.7e−38 398 8634 0

sse 5389 3484 4.7e−38 1− 4.7e−38 398 7578 0

(4.7e−10) cqa-pse-interval-1 1712 1262 4.7e−38 4.7e−38 397 7507 0

cqa-sse-interval-1 4908 3512 4.7e−38 4.7e−38 397 5552 0

Problem04˙label55˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 3201 2 1.4e−158 0 - - -

cqa-pse 3869 661 1.4e−158 0 0 0 0

cqa-sse 3793 586 1.4e−158 0 0 0 0

pse 35 8 0.0 1− 1.3e−18 0 117 101

sse 104 64 0.0 1− 1.3e−18 0 117 101

(1− 1.4e−158) cqa-pse-interval-1 668 659 0.0 0 0 0 0

cqa-sse-interval-1 592 584 0.0 0 0 0 0

229

email˙spec9˙product33˙false-unreach-

call˙true-termination.cil.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 526 1 1.0e−84 1− 4.7e−10 - - -

cqa-pse 2257 1268 1.0e−28 1− 1.0e−28 819 7209 0

cqa-sse 5389 3444 1.0e−28 1− 1.0e−28 799 5056 0

pse 1361 1012 1.0e−28 1− 1.0e−28 820 8212 0

sse 4512 2650 1.0e−28 1− 1.0e−28 820 8212 0

(4.7e−10) cqa-pse-interval-1 1731 1267 1.0e−28 1.0e−28 819 7209 0

cqa-sse-interval-1 4863 3443 1.0e−28 1.0e−28 799 5056 0

Problem11˙label49˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1388 1 6.1e−28 1− 2.8e−9 - - -

cqa-pse 1481 61 6.1e−28 1− 2.9e−27 1 697 1108

cqa-sse 1909 381 6.1e−28 1− 2.9e−27 1 697 1108

pse 73 52 6.1e−28 1− 2.0e−27 2 908 1417

sse 1289 1031 6.1e−28 1− 2.0e−27 2 908 1417

(2.8e−9) cqa-pse-interval-1 93 60 1.3e−46 2.3e−27 1 697 1108

cqa-sse-interval-1 521 380 1.3e−46 2.3e−27 1 697 1108

email˙spec27˙product32˙false-unreach-

call˙true-termination.cil.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 634 1 2.2e−47 0 - - -

cqa-pse 4656 3416 4.7e−38 1− 4.7e−38 1358 7672 0

cqa-sse 5392 3056 4.7e−38 1− 4.7e−38 661 3642 0

pse 2011 1574 4.7e−38 1− 4.7e−38 1360 7672 0

sse 5389 3433 4.7e−38 1− 4.7e−38 1195 6676 0

(1− 2.2e−47) cqa-pse-interval-1 4022 3415 4.7e−38 1.0− 4.7e−38 1358 7672 0

cqa-sse-interval-1 4758 3055 4.7e−38 1.0− 4.7e−38 661 3642 0

230

Problem18˙label36˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1320 1 6.2e−84 1− 4.7e−10 - - -

cqa-pse 1850 525 6.2e−84 1− 4.7e−10 0 0 0

cqa-sse 1790 465 6.2e−84 1− 4.7e−10 0 0 0

pse 12 2 0.0 1− 2.2e−19 0 22 5

sse 23 9 0.0 1− 2.2e−19 0 22 5

(4.7e−10) cqa-pse-interval-1 530 524 0.0 0 0 0 0

cqa-sse-interval-1 470 464 0.0 0 0 0 0

Problem18˙label12˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1264 1 1.3e−74 1− 2.8e−9 - - -

cqa-pse 1273 3 1.3e−74 1− 6.1e−28 0 20 3

cqa-sse 1280 9 1.3e−74 1− 6.1e−28 0 20 3

pse 12 2 0.0 1− 2.2e−19 0 22 5

sse 22 9 0.0 1− 2.2e−19 0 22 5

(2.8e−9) cqa-pse-interval-1 9 2 0.0 6.1e−28 0 20 3

cqa-sse-interval-1 16 8 0.0 6.1e−28 0 20 3

Problem11˙label58˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 960 1 6.1e−28 1− 2.8e−9 - - -

cqa-pse 1020 46 6.1e−28 1− 2.9e−27 11 687 1108

cqa-sse 1521 430 6.1e−28 1− 2.9e−27 11 687 1108

pse 94 72 6.1e−28 1− 2.0e−27 13 897 1417

sse 1295 996 6.1e−28 1− 2.0e−27 13 897 1417

(2.8e−9) cqa-pse-interval-1 60 45 5.6e−37 2.3e−27 11 687 1108

cqa-sse-interval-1 561 429 5.6e−37 2.3e−27 11 687 1108

231

Problem13˙label32˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1312 1 1.1e−46 1− 2.3e−9 - - -

cqa-pse 1326 3 1.1e−46 1− 3.0e−27 0 33 22

cqa-sse 1337 11 1.1e−46 1− 3.0e−27 0 33 22

pse 21 3 0.0 1− 1.1e−18 0 39 25

sse 58 30 0.0 1− 1.1e−18 0 39 25

(2.3e−9) cqa-pse-interval-1 14 2 0.0 3.0e−27 0 33 22

cqa-sse-interval-1 25 10 0.0 3.0e−27 0 33 22

Problem06˙label59˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1431 2 6.1e−56 1− 2.8e−9 - - -

cqa-pse 1464 10 6.1e−56 1− 1.4e−26 0 67 76

cqa-sse 1489 31 6.1e−56 1− 1.4e−26 0 67 76

pse 58 8 0.0 1− 5.0e−18 0 91 91

sse 128 66 0.0 1− 5.0e−18 0 91 91

(2.8e−9) cqa-pse-interval-1 33 8 0.0 1.4e−26 0 67 76

cqa-sse-interval-1 58 29 0.0 1.4e−26 0 67 76

token˙ring.13˙false-unreach-call˙false-

termination.cil.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 2650 1 2.2e−19 0 - - -

cqa-pse 5397 2745 2.2e−19 0 0 0 0

cqa-sse 5397 2745 2.2e−19 0 0 0 0

pse 5392 1206 0.0 1− 4.7e−9 0 5630 45080

sse 5391 2935 0.0 1− 4.7e−10 0 1105 390

(1− 2.2e−19) cqa-pse-interval-1 2747 2744 0.0 0 0 0 0

cqa-sse-interval-1 2747 2744 0.0 0 0 0 0

232

Problem11˙label00˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1371 1 2.8e−37 1− 2.8e−9 - - -

cqa-pse 1471 65 2.8e−37 1− 2.5e−35 1 581 1063

cqa-sse 2055 536 2.8e−37 1− 2.5e−35 1 581 1063

pse 113 90 2.8e−37 1− 1.4e−27 2 908 1417

sse 1256 996 2.8e−37 1− 1.4e−27 2 908 1417

(2.8e−9) cqa-pse-interval-1 100 64 1.3e−46 2.5e−35 1 581 1063

cqa-sse-interval-1 684 535 1.3e−46 2.5e−35 1 581 1063

Problem18˙label52˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1259 1 1.3e−74 1− 2.8e−9 - - -

cqa-pse 1267 3 1.3e−74 1− 6.1e−28 0 20 3

cqa-sse 1274 8 1.3e−74 1− 6.1e−28 0 20 3

pse 13 2 0.0 1− 2.2e−19 0 22 5

sse 25 10 0.0 1− 2.2e−19 0 22 5

(2.8e−9) cqa-pse-interval-1 8 2 0.0 6.1e−28 0 20 3

cqa-sse-interval-1 15 7 0.0 6.1e−28 0 20 3

Problem10˙label48˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 834 1 2.4e−37 1− 2.3e−9 - - -

cqa-pse 847 8 2.4e−37 1− 1.3e−35 1 120 189

cqa-sse 927 74 2.4e−37 1− 1.3e−35 1 120 189

pse 26 17 2.4e−37 1− 9.1e−28 2 212 212

sse 214 180 2.4e−37 1− 9.1e−28 2 212 212

(2.3e−9) cqa-pse-interval-1 13 7 1.1e−46 1.3e−35 1 120 189

cqa-sse-interval-1 93 73 1.1e−46 1.3e−35 1 120 189

233

Problem13˙label16˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1318 1 1.1e−46 1− 2.3e−9 - - -

cqa-pse 1331 3 1.1e−46 1− 3.0e−27 0 33 22

cqa-sse 1338 8 1.1e−46 1− 3.0e−27 0 33 22

pse 19 2 0.0 1− 1.1e−18 0 39 25

sse 55 28 0.0 1− 1.1e−18 0 39 25

(2.3e−9) cqa-pse-interval-1 13 2 0.0 3.0e−27 0 33 22

cqa-sse-interval-1 20 7 0.0 3.0e−27 0 33 22

Problem06˙label05˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1370 1 6.1e−56 1− 2.8e−9 - - -

cqa-pse 1402 9 6.1e−56 1− 1.4e−26 0 67 76

cqa-sse 1432 30 6.1e−56 1− 1.4e−26 0 67 76

pse 44 6 0.0 1− 5.0e−18 0 91 91

sse 129 66 0.0 1− 5.0e−18 0 91 91

(2.8e−9) cqa-pse-interval-1 32 8 0.0 1.4e−26 0 67 76

cqa-sse-interval-1 62 29 0.0 1.4e−26 0 67 76

email˙spec9˙product26˙false-unreach-

call˙true-termination.cil.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 557 1 1.0e−84 1− 4.7e−10 - - -

cqa-pse 2100 1126 1.0e−28 1− 1.0e−28 819 7209 0

cqa-sse 5391 3401 1.0e−28 1− 1.0e−28 792 4903 0

pse 1650 1252 1.0e−28 1− 1.0e−28 820 8212 0

sse 4817 2813 1.0e−28 1− 1.0e−28 820 8212 0

(4.7e−10) cqa-pse-interval-1 1543 1125 1.0e−28 1.0e−28 819 7209 0

cqa-sse-interval-1 4834 3400 1.0e−28 1.0e−28 792 4903 0

234

Problem18˙label34˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1448 1 1.3e−74 1− 4.7e−10 - - -

cqa-pse 2120 666 1.3e−74 1− 2.2e−19 0 9 3

cqa-sse 2713 1260 1.3e−74 1− 4.7e−10 0 0 0

pse 9 1 0.0 1− 2.2e−19 0 22 5

sse 26 10 0.0 1− 2.2e−19 0 22 5

(4.7e−10) cqa-pse-interval-1 672 665 0.0 2.2e−19 0 9 3

cqa-sse-interval-1 1265 1259 0.0 0 0 0 0

Problem03˙label26˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1168 1 2.8e−37 1− 2.8e−9 - - -

cqa-pse 1680 458 2.8e−37 1− 6.5e−18 0 5788 7176

cqa-sse 5386 3160 2.8e−37 1− 2.8e−37 0 4688 1

pse 5392 4831 0.0 1− 2.3e−9 0 54286 64679

sse 5394 3237 2.8e−37 1− 2.8e−37 1 5798 0

(2.8e−9) cqa-pse-interval-1 512 457 0.0 6.5e−18 0 5788 7176

cqa-sse-interval-1 4218 3159 0.0 3.0e−71 0 4688 1

cdaudio˙simpl1˙false-unreach-call˙true-

valid-memsafety˙true-termination.cil.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 925 1 4.7e−66 1− 4.7e−10 - - -

cqa-pse 1046 112 2.2e−47 1− 2.2e−47 10 355 0

cqa-sse 1198 252 2.2e−47 1− 2.2e−47 10 355 0

pse 463 439 2.2e−47 1− 2.2e−47 12 1199 0

sse 1346 1246 2.2e−47 1− 2.2e−47 12 1199 0

(4.7e−10) cqa-pse-interval-1 121 111 2.2e−47 2.2e−47 10 355 0

cqa-sse-interval-1 273 251 2.2e−47 2.2e−47 10 355 0

235

Problem18˙label33˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1303 1 1.3e−74 1− 2.8e−9 - - -

cqa-pse 1313 4 1.3e−74 1− 6.1e−28 0 20 3

cqa-sse 1321 9 1.3e−74 1− 6.1e−28 0 20 3

pse 9 1 0.0 1− 2.2e−19 0 22 5

sse 26 11 0.0 1− 2.2e−19 0 22 5

(2.8e−9) cqa-pse-interval-1 10 3 0.0 6.1e−28 0 20 3

cqa-sse-interval-1 18 8 0.0 6.1e−28 0 20 3

Problem03˙label28˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1175 1 1.3e−46 1− 2.8e−9 - - -

cqa-pse 5394 4003 1.3e−46 1− 6.5e−18 0 23804 29294

cqa-sse 5394 3298 1.3e−46 1− 1.3e−46 0 4219 0

pse 5392 4734 0.0 1− 2.3e−9 0 67304 80025

sse 5394 3192 1.3e−46 1− 1.3e−46 1 5766 0

(2.8e−9) cqa-pse-interval-1 4219 4002 0.0 6.5e−18 0 23804 29294

cqa-sse-interval-1 4219 3297 0.0 3.1e−71 0 4219 0

Problem02˙label44˙false-unreach-

call˙false-termination.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 738 1 5.0e−28 1− 2.3e−9 - - -

cqa-pse 5390 4663 5.0e−28 1− 5.4e−18 0 1 0

cqa-sse 5391 4651 5.0e−28 1− 5.4e−18 0 1 0

pse 5389 4742 0.0 1− 1.9e−9 0 15608 20176

sse 5388 3597 5.0e−28 1− 5.0e−28 22 6795 0

(2.3e−9) cqa-pse-interval-1 4652 4662 0.0 5.4e−18 0 1 0

cqa-sse-interval-1 4653 4650 0.0 5.4e−18 0 1 0

236

Problem18˙label01˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1296 1 6.2e−84 1− 4.7e−10 - - -

cqa-pse 1825 525 6.2e−84 1− 4.7e−10 0 0 0

cqa-sse 1782 480 6.2e−84 1− 4.7e−10 0 0 0

pse 10 1 0.0 1− 2.2e−19 0 22 5

sse 27 12 0.0 1− 2.2e−19 0 22 5

(4.7e−10) cqa-pse-interval-1 529 524 0.0 0 0 0 0

cqa-sse-interval-1 486 479 0.0 0 0 0 0

Problem18˙label57˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1248 1 1.3e−74 1− 2.8e−9 - - -

cqa-pse 1256 3 1.3e−74 1− 6.1e−28 0 20 3

cqa-sse 1262 8 1.3e−74 1− 6.1e−28 0 20 3

pse 9 1 0.0 1− 2.2e−19 0 22 5

sse 24 9 0.0 1− 2.2e−19 0 22 5

(2.8e−9) cqa-pse-interval-1 8 2 0.0 6.1e−28 0 20 3

cqa-sse-interval-1 14 7 0.0 6.1e−28 0 20 3

Problem06˙label56˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1382 1 6.1e−56 1− 2.8e−9 - - -

cqa-pse 1416 9 6.1e−56 1− 1.4e−26 0 67 76

cqa-sse 1441 30 6.1e−56 1− 1.4e−26 0 67 76

pse 52 6 0.0 1− 5.0e−18 0 91 91

sse 147 82 0.0 1− 5.0e−18 0 91 91

(2.8e−9) cqa-pse-interval-1 34 8 0.0 1.4e−26 0 67 76

cqa-sse-interval-1 59 29 0.0 1.4e−26 0 67 76

237

email˙spec0˙product21˙false-unreach-

call˙true-termination.cil.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 562 1 2.2e−19 0 - - -

cqa-pse 2274 1230 2.2e−19 1− 2.2e−19 371 8660 0

cqa-sse 5394 3441 2.2e−19 1− 2.2e−19 356 4833 0

pse 2023 1575 2.2e−19 1− 2.2e−19 372 8660 0

sse 4597 2612 2.2e−19 1− 2.2e−19 372 8660 0

(1− 2.2e−19) cqa-pse-interval-1 1712 1229 3.0e−28 1.0− 3.0e−28 371 8660 0

cqa-sse-interval-1 4832 3440 3.0e−28 1.0− 3.0e−28 356 4833 0

Problem13˙label35˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1269 1 1.1e−46 1− 2.3e−9 - - -

cqa-pse 1285 3 1.1e−46 1− 3.0e−27 0 33 22

cqa-sse 1297 13 1.1e−46 1− 3.0e−27 0 33 22

pse 19 2 0.0 1− 1.1e−18 0 39 25

sse 54 27 0.0 1− 1.1e−18 0 39 25

(2.3e−9) cqa-pse-interval-1 16 2 0.0 3.0e−27 0 33 22

cqa-sse-interval-1 28 12 0.0 3.0e−27 0 33 22

email˙spec8˙product22˙false-unreach-

call˙true-termination.cil.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 576 1 1.0e−84 1− 4.7e−10 - - -

cqa-pse 1961 972 1.0e−28 1− 1.0e−28 819 7209 0

cqa-sse 5393 3327 1.0e−28 1− 1.0e−28 812 5437 0

pse 2003 1572 1.0e−28 1− 1.0e−28 820 8212 0

sse 5389 3454 1.0e−28 1− 1.0e−28 820 7252 0

(4.7e−10) cqa-pse-interval-1 1385 971 1.0e−28 1.0e−28 819 7209 0

cqa-sse-interval-1 4817 3326 1.0e−28 1.0e−28 812 5437 0

238

Problem11˙label43˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1277 1 6.1e−28 1− 2.8e−9 - - -

cqa-pse 1329 40 6.1e−28 1− 2.9e−27 0 698 1108

cqa-sse 1660 275 6.1e−28 1− 2.9e−27 0 698 1108

pse 112 87 6.1e−28 1− 2.0e−27 1 909 1417

sse 1158 902 6.1e−28 1− 2.0e−27 1 909 1417

(2.8e−9) cqa-pse-interval-1 52 39 0.0 2.3e−27 0 698 1108

cqa-sse-interval-1 383 274 0.0 2.3e−27 0 698 1108

Problem11˙label42˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 872 1 6.1e−28 1− 2.8e−9 - - -

cqa-pse 946 60 6.1e−28 1− 2.9e−27 12 686 1108

cqa-sse 1443 433 6.1e−28 1− 2.9e−27 12 686 1108

pse 110 86 6.1e−28 1− 2.0e−27 19 892 1416

sse 1266 991 6.1e−28 1− 2.0e−27 19 892 1416

(2.8e−9) cqa-pse-interval-1 74 59 2.3e−36 2.3e−27 12 686 1108

cqa-sse-interval-1 571 432 2.3e−36 2.3e−27 12 686 1108

Problem13˙label45˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1261 1 1.1e−46 1− 2.3e−9 - - -

cqa-pse 1277 4 1.1e−46 1− 3.0e−27 0 33 22

cqa-sse 1284 10 1.1e−46 1− 3.0e−27 0 33 22

pse 23 4 0.0 1− 1.1e−18 0 39 25

sse 52 25 0.0 1− 1.1e−18 0 39 25

(2.3e−9) cqa-pse-interval-1 16 3 0.0 3.0e−27 0 33 22

cqa-sse-interval-1 23 9 0.0 3.0e−27 0 33 22

239

Problem10˙label15˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1751 1 2.4e−37 1− 2.3e−9 - - -

cqa-pse 1765 9 2.4e−37 1− 1.3e−35 0 121 189

cqa-sse 1854 87 2.4e−37 1− 1.3e−35 0 121 189

pse 24 15 2.4e−37 1− 9.1e−28 1 213 212

sse 201 169 2.4e−37 1− 9.1e−28 1 213 212

(2.3e−9) cqa-pse-interval-1 14 8 0.0 1.3e−35 0 121 189

cqa-sse-interval-1 103 86 0.0 1.3e−35 0 121 189

Problem06˙label11˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1372 1 6.1e−56 1− 2.8e−9 - - -

cqa-pse 1399 7 6.1e−56 1− 1.4e−26 0 67 76

cqa-sse 1419 22 6.1e−56 1− 1.4e−26 0 67 76

pse 58 8 0.0 1− 5.0e−18 0 91 91

sse 114 54 0.0 1− 5.0e−18 0 91 91

(2.8e−9) cqa-pse-interval-1 27 6 0.0 1.4e−26 0 67 76

cqa-sse-interval-1 47 21 0.0 1.4e−26 0 67 76

Problem18˙label19˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1355 1 1.3e−74 1− 2.8e−9 - - -

cqa-pse 1363 3 1.3e−74 1− 6.1e−28 0 20 3

cqa-sse 1369 8 1.3e−74 1− 6.1e−28 0 20 3

pse 9 1 0.0 1− 2.2e−19 0 22 5

sse 27 11 0.0 1− 2.2e−19 0 22 5

(2.8e−9) cqa-pse-interval-1 8 2 0.0 6.1e−28 0 20 3

cqa-sse-interval-1 14 7 0.0 6.1e−28 0 20 3

240

Problem11˙label51˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1010 1 6.1e−28 1− 2.8e−9 - - -

cqa-pse 1084 59 6.1e−28 1− 2.9e−27 27 671 1108

cqa-sse 1590 447 6.1e−28 1− 2.9e−27 27 671 1108

pse 65 45 6.1e−28 1− 2.0e−27 36 878 1415

sse 1159 915 6.1e−28 1− 2.0e−27 36 878 1413

(2.8e−9) cqa-pse-interval-1 74 58 1.1e−36 2.3e−27 27 671 1108

cqa-sse-interval-1 580 446 1.1e−36 2.3e−27 27 671 1108

Problem18˙label35˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1283 1 1.3e−74 1− 2.8e−9 - - -

cqa-pse 1293 4 1.3e−74 1− 6.1e−28 0 20 3

cqa-sse 1300 9 1.3e−74 1− 6.1e−28 0 20 3

pse 13 2 0.0 1− 2.2e−19 0 22 5

sse 26 11 0.0 1− 2.2e−19 0 22 5

(2.8e−9) cqa-pse-interval-1 10 3 0.0 6.1e−28 0 20 3

cqa-sse-interval-1 17 8 0.0 6.1e−28 0 20 3

Problem13˙label12˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1321 1 1.1e−46 1− 2.3e−9 - - -

cqa-pse 1336 4 1.1e−46 1− 3.0e−27 0 33 22

cqa-sse 1348 13 1.1e−46 1− 3.0e−27 0 33 22

pse 21 3 0.0 1− 1.1e−18 0 39 25

sse 57 31 0.0 1− 1.1e−18 0 39 25

(2.3e−9) cqa-pse-interval-1 15 3 0.0 3.0e−27 0 33 22

cqa-sse-interval-1 27 12 0.0 3.0e−27 0 33 22

241

Problem02˙label59˙false-unreach-

call˙false-termination.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 381 1 2.4e−37 1− 2.3e−9 - - -

cqa-pse 5392 1 2.4e−37 1− 2.3e−9 0 0 0

cqa-sse 5393 5011 2.4e−37 1− 2.3e−9 0 0 0

pse 5390 4764 0.0 1− 1.9e−9 0 15344 19862

sse 5389 3937 2.4e−37 1− 2.4e−37 21 6122 0

(2.3e−9) cqa-pse-interval-1 5011 0 0.0 0 0 0 0

cqa-sse-interval-1 5012 5010 0.0 0 0 0 0

Problem02˙label50˙false-unreach-

call˙false-termination.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 504 1 2.4e−37 1− 2.3e−9 - - -

cqa-pse 5396 4890 2.4e−37 1− 4.3e−18 0 18 0

cqa-sse 5397 4251 2.4e−37 1− 2.4e−37 15 4132 0

pse 5389 4740 0.0 1− 1.9e−9 0 16508 21402

sse 5389 3792 2.4e−37 1− 2.4e−37 26 6471 0

(2.3e−9) cqa-pse-interval-1 4892 4889 0.0 4.3e−18 0 18 0

cqa-sse-interval-1 4893 4250 4.4e−46 4.4e−46 15 4132 0

Problem01˙label37˙false-unreach-

call˙false-termination.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 403 2 6.1e−56 1− 2.8e−9 - - -

cqa-pse 5386 4332 6.1e−56 1− 6.5e−18 0 15246 20682

cqa-sse 5386 3978 6.1e−56 1− 6.1e−56 0 5138 0

pse 5388 4588 0.0 1− 2.3e−9 0 26274 37584

sse 5388 3685 6.1e−56 1− 6.1e−56 1 7244 0

(2.8e−9) cqa-pse-interval-1 4983 4330 0.0 6.5e−18 0 15246 20682

cqa-sse-interval-1 4983 3976 0.0 7.2e−62 0 5138 0

242

Problem10˙label41˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1202 1 5.0e−28 1− 2.3e−9 - - -

cqa-pse 1220 12 5.0e−28 1− 1.8e−27 0 171 188

cqa-sse 1277 59 5.0e−28 1− 1.8e−27 0 171 188

pse 24 15 5.0e−28 1− 1.4e−27 1 213 212

sse 203 172 5.0e−28 1− 1.4e−27 1 213 212

(2.3e−9) cqa-pse-interval-1 18 11 0.0 1.3e−27 0 171 188

cqa-sse-interval-1 75 58 0.0 1.3e−27 0 171 188

Problem06˙label58˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1512 1 6.1e−56 1− 2.8e−9 - - -

cqa-pse 5390 3851 6.1e−56 1− 3.9e−18 0 59 64

cqa-sse 5388 3851 6.1e−56 1− 1.4e−26 0 29 13

pse 48 5 0.0 1− 5.0e−18 0 91 91

sse 141 75 0.0 1− 5.0e−18 0 91 91

(2.8e−9) cqa-pse-interval-1 3878 3850 0.0 3.9e−18 0 59 64

cqa-sse-interval-1 3876 3850 0.0 1.4e−26 0 29 13

Problem06˙label20˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1362 1 6.1e−56 1− 2.8e−9 - - -

cqa-pse 1395 9 6.1e−56 1− 1.4e−26 0 67 76

cqa-sse 1412 24 6.1e−56 1− 1.4e−26 0 67 76

pse 57 8 0.0 1− 5.0e−18 0 91 91

sse 121 55 0.0 1− 5.0e−18 0 91 91

(2.8e−9) cqa-pse-interval-1 33 8 0.0 1.4e−26 0 67 76

cqa-sse-interval-1 50 23 0.0 1.4e−26 0 67 76

243

Problem18˙label06˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1289 1 1.3e−74 1− 2.8e−9 - - -

cqa-pse 1299 4 1.3e−74 1− 6.1e−28 0 20 3

cqa-sse 1308 10 1.3e−74 1− 6.1e−28 0 20 3

pse 12 2 0.0 1− 2.2e−19 0 22 5

sse 28 12 0.0 1− 2.2e−19 0 22 5

(2.8e−9) cqa-pse-interval-1 10 3 0.0 6.1e−28 0 20 3

cqa-sse-interval-1 19 9 0.0 6.1e−28 0 20 3

email˙spec9˙product15˙false-unreach-

call˙true-termination.cil.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 445 1 1.0e−84 1− 4.7e−10 - - -

cqa-pse 1840 986 4.7e−38 1− 4.7e−38 397 7507 0

cqa-sse 5398 3540 4.7e−38 1− 4.7e−38 397 5301 0

pse 1659 1279 4.7e−38 1− 4.7e−38 398 8634 0

sse 4784 2921 4.7e−38 1− 4.7e−38 398 8634 0

(4.7e−10) cqa-pse-interval-1 1395 985 4.7e−38 4.7e−38 397 7507 0

cqa-sse-interval-1 4953 3539 4.7e−38 4.7e−38 397 5301 0

token˙ring.08˙false-unreach-call˙false-

termination.cil.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 2006 1 2.2e−19 0 - - -

cqa-pse 5022 3015 2.2e−19 0 0 0 0

cqa-sse 5397 3390 2.2e−19 0 0 0 0

pse 5388 3326 0.0 1− 2.3e−9 0 16945 24054

sse 5391 2940 2.2e−19 1− 4.7e−10 43 439 793

(1− 2.2e−19) cqa-pse-interval-1 3016 3014 0.0 0 0 0 0

cqa-sse-interval-1 3391 3389 0.0 0 0 0 0

244

email˙spec9˙product20˙false-unreach-

call˙true-termination.cil.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 604 1 4.8e−94 1− 4.7e−10 - - -

cqa-pse 2325 1272 4.7e−38 1− 4.7e−38 397 7507 0

cqa-sse 5392 3391 4.7e−38 1− 4.7e−38 397 4926 0

pse 1646 1271 4.7e−38 1− 4.7e−38 398 8634 0

sse 5344 3375 4.7e−38 1− 4.7e−38 398 8634 0

(4.7e−10) cqa-pse-interval-1 1721 1271 4.7e−38 4.7e−38 397 7507 0

cqa-sse-interval-1 4788 3390 4.7e−38 4.7e−38 397 4926 0

Problem01˙label57˙false-unreach-

call˙false-termination.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 388 1 6.1e−56 1− 2.8e−9 - - -

cqa-pse 1050 595 6.1e−56 1− 6.5e−18 0 3143 4090

cqa-sse 1034 564 6.1e−56 1− 2.8e−53 0 1257 0

pse 5388 4563 0.0 1− 2.3e−9 0 27297 39136

sse 5388 3702 6.1e−56 1− 6.1e−56 1 7184 0

(2.8e−9) cqa-pse-interval-1 662 594 0.0 6.5e−18 0 3143 4090

cqa-sse-interval-1 646 563 0.0 2.8e−53 0 1257 0

Problem18˙label00˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1283 1 1.3e−74 1− 2.8e−9 - - -

cqa-pse 1294 4 1.3e−74 1− 6.1e−28 0 20 3

cqa-sse 1299 9 1.3e−74 1− 6.1e−28 0 20 3

pse 10 1 0.0 1− 2.2e−19 0 22 5

sse 28 13 0.0 1− 2.2e−19 0 22 5

(2.8e−9) cqa-pse-interval-1 11 3 0.0 6.1e−28 0 20 3

cqa-sse-interval-1 16 8 0.0 6.1e−28 0 20 3

245

Problem02˙label13˙false-unreach-

call˙false-termination.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 812 1 5.0e−28 1− 2.3e−9 - - -

cqa-pse 3843 1 5.0e−28 1− 2.3e−9 0 0 0

cqa-sse 1099 285 5.0e−28 1− 2.3e−9 0 0 0

pse 5390 4736 0.0 1− 1.9e−9 0 15820 20463

sse 5389 3937 5.0e−28 1− 5.0e−28 4 6110 0

(2.3e−9) cqa-pse-interval-1 3031 0 0.0 0 0 0 0

cqa-sse-interval-1 287 284 0.0 0 0 0 0

Problem01˙label50˙false-unreach-

call˙false-termination.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 644 1 1.3e−46 1− 2.8e−9 - - -

cqa-pse 1321 675 1.3e−46 1− 2.8e−9 0 0 0

cqa-sse 1305 660 1.3e−46 1− 2.8e−9 0 0 0

pse 5389 4520 0.0 1− 2.3e−9 0 28634 40899

sse 5389 3917 1.3e−46 1− 1.3e−46 1 6924 0

(2.8e−9) cqa-pse-interval-1 677 674 0.0 0 0 0 0

cqa-sse-interval-1 661 659 0.0 0 0 0 0

email˙spec8˙product20˙false-unreach-

call˙true-termination.cil.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 577 1 4.8e−94 1− 4.7e−10 - - -

cqa-pse 2209 1208 4.7e−38 1− 4.7e−38 397 7507 0

cqa-sse 5395 3348 4.7e−38 1− 4.7e−38 397 5634 0

pse 1927 1495 4.7e−38 1− 4.7e−38 398 8634 0

sse 5389 3479 4.7e−38 1− 4.7e−38 398 7412 0

(4.7e−10) cqa-pse-interval-1 1632 1207 4.7e−38 4.7e−38 397 7507 0

cqa-sse-interval-1 4818 3347 4.7e−38 4.7e−38 397 5634 0

246

Problem01˙label33˙false-unreach-

call˙false-termination.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 375 1 6.1e−56 1− 2.8e−9 - - -

cqa-pse 5388 4622 6.1e−56 1− 6.5e−18 0 15784 21466

cqa-sse 5387 3896 6.1e−56 1− 6.1e−56 0 5963 0

pse 5388 4496 0.0 1− 2.3e−9 0 28986 41301

sse 5389 3663 6.1e−56 1− 6.1e−56 1 7520 0

(2.8e−9) cqa-pse-interval-1 5013 4621 0.0 6.5e−18 0 15784 21466

cqa-sse-interval-1 5012 3895 0.0 6.3e−62 0 5963 0

Problem18˙label45˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1277 1 1.3e−74 1− 2.8e−9 - - -

cqa-pse 1286 3 1.3e−74 1− 6.1e−28 0 20 3

cqa-sse 1293 8 1.3e−74 1− 6.1e−28 0 20 3

pse 10 2 0.0 1− 2.2e−19 0 22 5

sse 26 11 0.0 1− 2.2e−19 0 22 5

(2.8e−9) cqa-pse-interval-1 9 2 0.0 6.1e−28 0 20 3

cqa-sse-interval-1 16 7 0.0 6.1e−28 0 20 3

Problem06˙label27˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1380 1 2.8e−65 0 - - -

cqa-pse 4428 3030 2.8e−65 1− 2.3e−9 0 29 18

cqa-sse 2344 945 2.8e−65 0 0 0 0

pse 59 7 0.0 1− 5.0e−18 0 91 91

sse 116 57 0.0 1− 5.0e−18 0 91 91

(1− 2.8e−65) cqa-pse-interval-1 3048 3029 0.0 1.0− 2.3e−9 0 29 18

cqa-sse-interval-1 964 944 0.0 0 0 0 0

247

Problem11˙label34˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1303 1 2.8e−37 1− 2.8e−9 - - -

cqa-pse 1373 55 2.8e−37 1− 2.5e−35 1 581 1063

cqa-sse 1852 422 2.8e−37 1− 2.5e−35 1 581 1063

pse 63 44 2.8e−37 1− 1.4e−27 2 908 1417

sse 1178 919 2.8e−37 1− 1.4e−27 2 908 1417

(2.8e−9) cqa-pse-interval-1 70 54 1.3e−46 2.5e−35 1 581 1063

cqa-sse-interval-1 549 421 1.3e−46 2.5e−35 1 581 1063

Problem13˙label48˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1309 1 1.1e−46 0 - - -

cqa-pse 1329 9 1.1e−46 1− 1.3e−18 0 35 22

cqa-sse 1372 51 1.1e−46 1− 1.3e−18 0 35 22

pse 22 3 0.0 1− 1.1e−18 0 39 25

sse 49 24 0.0 1− 1.1e−18 0 39 25

(1− 1.1e−46) cqa-pse-interval-1 20 8 0.0 1.0− 1.3e−18 0 35 22

cqa-sse-interval-1 63 50 0.0 1.0− 1.3e−18 0 35 22

Problem10˙label24˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 946 1 2.4e−37 1− 2.3e−9 - - -

cqa-pse 958 8 2.4e−37 1− 1.3e−35 0 122 188

cqa-sse 1010 52 2.4e−37 1− 1.3e−35 0 122 188

pse 19 11 2.4e−37 1− 9.1e−28 1 213 212

sse 274 241 2.4e−37 1− 9.1e−28 1 213 212

(2.3e−9) cqa-pse-interval-1 12 7 0.0 1.3e−35 0 122 188

cqa-sse-interval-1 64 51 0.0 1.3e−35 0 122 188

248

Problem13˙label21˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1330 1 1.1e−46 1− 2.3e−9 - - -

cqa-pse 1345 3 1.1e−46 1− 3.0e−27 0 33 22

cqa-sse 1353 9 1.1e−46 1− 3.0e−27 0 33 22

pse 21 3 0.0 1− 1.1e−18 0 39 25

sse 47 22 0.0 1− 1.1e−18 0 39 25

(2.3e−9) cqa-pse-interval-1 15 2 0.0 3.0e−27 0 33 22

cqa-sse-interval-1 23 8 0.0 3.0e−27 0 33 22

Problem06˙label48˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1412 1 6.1e−56 1− 2.8e−9 - - -

cqa-pse 1447 9 6.1e−56 1− 1.4e−26 0 67 76

cqa-sse 1474 32 6.1e−56 1− 1.4e−26 0 67 76

pse 58 9 0.0 1− 5.0e−18 0 91 91

sse 110 50 0.0 1− 5.0e−18 0 91 91

(2.8e−9) cqa-pse-interval-1 35 8 0.0 1.4e−26 0 67 76

cqa-sse-interval-1 62 31 0.0 1.4e−26 0 67 76

Problem06˙label24˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1394 1 6.1e−56 1− 2.8e−9 - - -

cqa-pse 1428 9 6.1e−56 1− 1.4e−26 0 67 76

cqa-sse 1449 27 6.1e−56 1− 1.4e−26 0 67 76

pse 45 6 0.0 1− 5.0e−18 0 91 91

sse 130 68 0.0 1− 5.0e−18 0 91 91

(2.8e−9) cqa-pse-interval-1 34 8 0.0 1.4e−26 0 67 76

cqa-sse-interval-1 55 26 0.0 1.4e−26 0 67 76

249

Problem10˙label47˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 688 1 5.0e−28 1− 2.3e−9 - - -

cqa-pse 702 10 5.0e−28 1− 1.9e−27 0 170 189

cqa-sse 755 54 5.0e−28 1− 1.9e−27 0 170 189

pse 17 9 5.0e−28 1− 1.4e−27 1 213 212

sse 249 217 5.0e−28 1− 1.4e−27 1 213 212

(2.3e−9) cqa-pse-interval-1 14 9 0.0 1.4e−27 0 170 189

cqa-sse-interval-1 67 53 0.0 1.4e−27 0 170 189

Problem13˙label24˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1276 1 5.1e−56 0 - - -

cqa-pse 1306 19 5.1e−56 1− 1.3e−18 0 34 22

cqa-sse 1426 138 5.1e−56 1− 1.3e−18 0 34 22

pse 21 3 0.0 1− 1.1e−18 0 39 25

sse 56 29 0.0 1− 1.1e−18 0 39 25

(1− 5.1e−56) cqa-pse-interval-1 30 18 0.0 1.0− 1.3e−18 0 34 22

cqa-sse-interval-1 150 137 0.0 1.0− 1.3e−18 0 34 22

email˙spec9˙product30˙false-unreach-

call˙true-termination.cil.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 609 1 4.8e−94 1− 4.7e−10 - - -

cqa-pse 2037 1010 4.7e−38 1− 4.7e−38 397 7507 0

cqa-sse 5397 3375 4.7e−38 1− 4.7e−38 397 5313 0

pse 1305 959 4.7e−38 1− 4.7e−38 398 8634 0

sse 4809 2855 4.7e−38 1− 4.7e−38 398 8634 0

(4.7e−10) cqa-pse-interval-1 1428 1009 4.7e−38 4.7e−38 397 7507 0

cqa-sse-interval-1 4788 3374 4.7e−38 4.7e−38 397 5313 0

250

Problem13˙label28˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1251 1 1.1e−46 1− 2.3e−9 - - -

cqa-pse 1264 3 1.1e−46 1− 3.0e−27 0 33 22

cqa-sse 1270 8 1.1e−46 1− 3.0e−27 0 33 22

pse 23 3 0.0 1− 1.1e−18 0 39 25

sse 50 24 0.0 1− 1.1e−18 0 39 25

(2.3e−9) cqa-pse-interval-1 13 2 0.0 3.0e−27 0 33 22

cqa-sse-interval-1 19 7 0.0 3.0e−27 0 33 22

Problem01˙label56˙false-unreach-

call˙false-termination.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 414 2 6.1e−56 1− 2.8e−9 - - -

cqa-pse 5397 4346 6.1e−56 1− 6.5e−18 0 14443 19497

cqa-sse 5396 3978 6.1e−56 1− 6.1e−56 0 5403 0

pse 5393 4528 0.0 1− 2.3e−9 0 28138 40263

sse 5388 3681 6.1e−56 1− 6.1e−56 1 7407 0

(2.8e−9) cqa-pse-interval-1 4983 4344 0.0 6.5e−18 0 14443 19497

cqa-sse-interval-1 4982 3976 0.0 6.8e−62 0 5403 0

Problem13˙label07˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1309 1 1.1e−46 1− 2.3e−9 - - -

cqa-pse 1323 3 1.1e−46 1− 3.0e−27 0 33 22

cqa-sse 1331 10 1.1e−46 1− 3.0e−27 0 33 22

pse 23 3 0.0 1− 1.1e−18 0 39 25

sse 44 19 0.0 1− 1.1e−18 0 39 25

(2.3e−9) cqa-pse-interval-1 14 2 0.0 3.0e−27 0 33 22

cqa-sse-interval-1 22 9 0.0 3.0e−27 0 33 22

251

token˙ring.10˙false-unreach-call˙false-

termination.cil.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 2158 1 2.2e−19 0 - - -

cqa-pse 5385 3225 2.2e−19 0 0 0 0

cqa-sse 5385 3225 2.2e−19 0 0 0 0

pse 5395 2421 0.0 1− 3.3e−9 0 12875 33878

sse 5392 2783 0.0 1− 4.7e−10 0 842 598

(1− 2.2e−19) cqa-pse-interval-1 3227 3224 0.0 0 0 0 0

cqa-sse-interval-1 3227 3224 0.0 0 0 0 0

Problem11˙label29˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1470 1 6.1e−28 1− 2.8e−9 - - -

cqa-pse 1554 54 6.1e−28 1− 2.9e−27 1 697 1108

cqa-sse 2033 425 6.1e−28 1− 2.9e−27 1 697 1108

pse 114 90 6.1e−28 1− 2.0e−27 2 908 1417

sse 1162 901 6.1e−28 1− 2.0e−27 2 908 1417

(2.8e−9) cqa-pse-interval-1 84 53 2.8e−37 2.3e−27 1 697 1108

cqa-sse-interval-1 563 424 2.8e−37 2.3e−27 1 697 1108

Problem13˙label25˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1326 1 1.1e−46 1− 2.3e−9 - - -

cqa-pse 1340 3 1.1e−46 1− 3.0e−27 0 33 22

cqa-sse 1349 10 1.1e−46 1− 3.0e−27 0 33 22

pse 19 2 0.0 1− 1.1e−18 0 39 25

sse 54 28 0.0 1− 1.1e−18 0 39 25

(2.3e−9) cqa-pse-interval-1 14 2 0.0 3.0e−27 0 33 22

cqa-sse-interval-1 23 9 0.0 3.0e−27 0 33 22

252

Problem03˙label31˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1158 1 1.3e−46 1− 2.8e−9 - - -

cqa-pse 5391 4023 1.3e−46 1− 6.5e−18 0 23817 29324

cqa-sse 5391 3009 1.3e−46 1− 1.3e−46 0 4620 0

pse 5392 4766 0.0 1− 2.3e−9 0 60941 72619

sse 5395 3474 1.3e−46 1− 1.3e−46 1 5322 0

(2.8e−9) cqa-pse-interval-1 4233 4022 0.0 6.5e−18 0 23817 29324

cqa-sse-interval-1 4233 3008 0.0 3.0e−71 0 4620 0

Problem18˙label20˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1340 1 6.2e−84 1− 4.7e−10 - - -

cqa-pse 1706 360 6.2e−84 1− 4.7e−10 0 0 0

cqa-sse 1902 555 6.2e−84 1− 4.7e−10 0 0 0

pse 9 2 0.0 1− 2.2e−19 0 22 5

sse 27 11 0.0 1− 2.2e−19 0 22 5

(4.7e−10) cqa-pse-interval-1 366 359 0.0 0 0 0 0

cqa-sse-interval-1 562 554 0.0 0 0 0 0

Problem18˙label55˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1279 1 1.3e−74 1− 2.8e−9 - - -

cqa-pse 1291 4 1.3e−74 1− 6.1e−28 0 20 3

cqa-sse 1296 9 1.3e−74 1− 6.1e−28 0 20 3

pse 12 2 0.0 1− 2.2e−19 0 22 5

sse 23 8 0.0 1− 2.2e−19 0 22 5

(2.8e−9) cqa-pse-interval-1 12 3 0.0 6.1e−28 0 20 3

cqa-sse-interval-1 17 8 0.0 6.1e−28 0 20 3

253

Problem01˙label15˙false-unreach-

call˙false-termination.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 434 2 2.6e−46 1− 2.8e−9 - - -

cqa-pse 5386 4953 2.6e−46 1− 7.8e−18 0 1 0

cqa-sse 5386 4952 2.6e−46 1− 7.8e−18 0 1 0

pse 5389 4506 0.0 1− 2.3e−9 0 29562 42098

sse 5389 3918 1.3e−46 1− 1.3e−46 1 6611 0

(2.8e−9) cqa-pse-interval-1 4952 4951 0.0 7.8e−18 0 1 0

cqa-sse-interval-1 4952 4950 0.0 7.8e−18 0 1 0

Problem18˙label38˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1257 1 1.3e−74 1− 2.8e−9 - - -

cqa-pse 1265 3 1.3e−74 1− 6.1e−28 0 20 3

cqa-sse 1271 8 1.3e−74 1− 6.1e−28 0 20 3

pse 9 1 0.0 1− 2.2e−19 0 22 5

sse 26 11 0.0 1− 2.2e−19 0 22 5

(2.8e−9) cqa-pse-interval-1 8 2 0.0 6.1e−28 0 20 3

cqa-sse-interval-1 14 7 0.0 6.1e−28 0 20 3

Problem02˙label16˙false-unreach-

call˙false-termination.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 606 1 5.0e−28 1− 2.3e−9 - - -

cqa-pse 5393 4786 5.0e−28 1− 5.4e−18 0 1 0

cqa-sse 5393 4786 5.0e−28 1− 5.4e−18 0 1 0

pse 5389 4754 0.0 1− 1.9e−9 0 15449 19985

sse 5389 3889 5.0e−28 1− 5.0e−28 18 5944 0

(2.3e−9) cqa-pse-interval-1 4787 4785 0.0 5.4e−18 0 1 0

cqa-sse-interval-1 4787 4785 0.0 5.4e−18 0 1 0

254

Problem01˙label44˙false-unreach-

call˙false-termination.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 596 1 2.8e−37 1− 2.8e−9 - - -

cqa-pse 5398 4800 2.8e−37 1− 6.5e−18 0 10 0

cqa-sse 5398 4800 2.8e−37 1− 9.1e−27 0 13 0

pse 5389 4497 0.0 1− 2.3e−9 3 29364 41869

sse 5389 3965 2.8e−37 1− 2.8e−37 56 6634 0

(2.8e−9) cqa-pse-interval-1 4802 4799 0.0 6.5e−18 0 10 0

cqa-sse-interval-1 4802 4799 0.0 9.1e−27 0 13 0

Problem03˙label50˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1147 1 1.3e−46 1− 2.8e−9 - - -

cqa-pse 5395 4049 1.3e−46 1− 6.5e−18 0 22353 27434

cqa-sse 5395 3856 1.3e−46 1− 1.3e−46 0 2641 0

pse 5393 4693 0.0 1− 2.3e−9 0 66484 79034

sse 5395 3056 1.3e−46 1− 1.3e−46 1 6330 0

(2.8e−9) cqa-pse-interval-1 4248 4048 0.0 6.5e−18 0 22353 27434

cqa-sse-interval-1 4248 3855 0.0 3.3e−63 0 2641 0

Problem02˙label45˙false-unreach-

call˙false-termination.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 614 1 2.4e−37 1− 2.3e−9 - - -

cqa-pse 5386 4770 2.4e−37 1− 4.3e−18 0 19 0

cqa-sse 5386 3939 2.4e−37 1− 2.4e−37 20 4787 0

pse 5390 4775 0.0 1− 1.9e−9 0 14254 18399

sse 5389 3620 2.4e−37 1− 2.4e−37 27 6706 0

(2.3e−9) cqa-pse-interval-1 4772 4769 0.0 4.3e−18 0 19 0

cqa-sse-interval-1 4772 3938 4.4e−46 4.4e−46 20 4787 0

255

Problem13˙label04˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1280 1 1.1e−46 1− 2.3e−9 - - -

cqa-pse 1293 3 1.1e−46 1− 3.0e−27 0 33 22

cqa-sse 1302 8 1.1e−46 1− 3.0e−27 0 33 22

pse 20 2 0.0 1− 1.1e−18 0 39 25

sse 55 27 0.0 1− 1.1e−18 0 39 25

(2.3e−9) cqa-pse-interval-1 13 2 0.0 3.0e−27 0 33 22

cqa-sse-interval-1 22 7 0.0 3.0e−27 0 33 22

Problem10˙label28˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1492 1 4.7e−37 1− 2.3e−9 - - -

cqa-pse 1508 9 4.7e−37 1− 1.4e−35 0 117 181

cqa-sse 1565 57 4.7e−37 1− 1.3e−35 0 118 181

pse 17 10 2.4e−37 1− 9.1e−28 1 213 212

sse 254 221 2.4e−37 1− 9.1e−28 1 213 212

(2.3e−9) cqa-pse-interval-1 16 8 0.0 1.3e−35 0 117 181

cqa-sse-interval-1 73 56 0.0 1.2e−35 0 118 181

Problem18˙label08˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1267 1 1.3e−74 1− 2.8e−9 - - -

cqa-pse 1276 3 1.3e−74 1− 6.1e−28 0 20 3

cqa-sse 1281 8 1.3e−74 1− 6.1e−28 0 20 3

pse 9 1 0.0 1− 2.2e−19 0 22 5

sse 26 11 0.0 1− 2.2e−19 0 22 5

(2.8e−9) cqa-pse-interval-1 9 2 0.0 6.1e−28 0 20 3

cqa-sse-interval-1 14 7 0.0 6.1e−28 0 20 3

256

token˙ring.04˙false-unreach-call˙false-

termination.cil.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 570 1 2.2e−19 1− 4.7e−10 - - -

cqa-pse 5387 4815 5.4e−19 1− 4.7e−10 2 0 0

cqa-sse 5387 4815 2.2e−19 1− 4.7e−10 0 0 0

pse 5391 4459 0.0 1− 9.3e−10 0 20930 8400

sse 5391 4038 8.7e−19 1− 4.7e−10 85 43 667

(4.7e−10) cqa-pse-interval-1 4817 4814 3.3e−19 0 2 0 0

cqa-sse-interval-1 4817 4814 0.0 0 0 0 0

Problem01˙label32˙false-unreach-

call˙false-termination.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 376 1 2.8e−65 1− 2.8e−9 - - -

cqa-pse 5389 4622 2.8e−65 1− 6.5e−18 0 16220 21445

cqa-sse 5387 3807 2.8e−65 1− 5.2e−62 0 4947 0

pse 5388 4514 0.0 1− 2.3e−9 0 28985 41301

sse 5388 3905 2.8e−65 1− 6.1e−62 1 6988 0

(2.8e−9) cqa-pse-interval-1 5013 4621 0.0 6.5e−18 0 16220 21445

cqa-sse-interval-1 5011 3806 0.0 5.2e−62 0 4947 0

Problem11˙label15˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1259 1 6.1e−28 1− 2.8e−9 - - -

cqa-pse 1312 40 6.1e−28 1− 2.9e−27 6 692 1108

cqa-sse 1646 269 6.1e−28 1− 2.9e−27 6 692 1108

pse 65 46 6.1e−28 1− 2.0e−27 7 903 1417

sse 1230 966 6.1e−28 1− 2.0e−27 7 903 1417

(2.8e−9) cqa-pse-interval-1 53 39 1.1e−36 2.3e−27 6 692 1108

cqa-sse-interval-1 387 268 1.1e−36 2.3e−27 6 692 1108

257

Problem03˙label09˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1179 2 6.1e−56 1− 2.8e−9 - - -

cqa-pse 5398 3490 6.1e−56 1− 6.5e−18 0 18156 22820

cqa-sse 5396 3219 6.1e−56 1− 6.1e−56 0 4244 1

pse 5393 4850 0.0 1− 2.3e−9 0 54539 64925

sse 5393 3086 6.1e−56 1− 6.1e−56 1 6010 0

(2.8e−9) cqa-pse-interval-1 4219 3488 0.0 6.5e−18 0 18156 22820

cqa-sse-interval-1 4217 3217 0.0 3.1e−71 0 4244 1

Problem18˙label03˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1299 1 1.3e−74 1− 2.8e−9 - - -

cqa-pse 1308 3 1.3e−74 1− 6.1e−28 0 20 3

cqa-sse 1313 7 1.3e−74 1− 6.1e−28 0 20 3

pse 13 2 0.0 1− 2.2e−19 0 22 5

sse 27 11 0.0 1− 2.2e−19 0 22 5

(2.8e−9) cqa-pse-interval-1 9 2 0.0 6.1e−28 0 20 3

cqa-sse-interval-1 14 6 0.0 6.1e−28 0 20 3

Problem13˙label29˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1297 1 1.1e−46 1− 2.3e−9 - - -

cqa-pse 1310 3 1.1e−46 1− 3.0e−27 0 33 22

cqa-sse 1316 8 1.1e−46 1− 3.0e−27 0 33 22

pse 24 3 0.0 1− 1.1e−18 0 39 25

sse 44 20 0.0 1− 1.1e−18 0 39 25

(2.3e−9) cqa-pse-interval-1 13 2 0.0 3.0e−27 0 33 22

cqa-sse-interval-1 19 7 0.0 3.0e−27 0 33 22

258

Problem18˙label25˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1320 1 1.3e−74 1− 2.8e−9 - - -

cqa-pse 1329 3 1.3e−74 1− 6.1e−28 0 20 3

cqa-sse 1336 8 1.3e−74 1− 6.1e−28 0 20 3

pse 13 2 0.0 1− 2.2e−19 0 22 5

sse 25 10 0.0 1− 2.2e−19 0 22 5

(2.8e−9) cqa-pse-interval-1 9 2 0.0 6.1e−28 0 20 3

cqa-sse-interval-1 16 7 0.0 6.1e−28 0 20 3

email˙spec8˙product26˙false-unreach-

call˙true-termination.cil.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 558 1 1.0e−84 1− 4.7e−10 - - -

cqa-pse 1943 950 1.0e−28 1− 1.0e−28 819 7209 0

cqa-sse 5391 3302 1.0e−28 1− 1.0e−28 811 5443 0

pse 2016 1567 1.0e−28 1− 1.0e−28 820 8212 0

sse 5389 3460 1.0e−28 1− 1.0e−28 820 7152 0

(4.7e−10) cqa-pse-interval-1 1385 949 1.0e−28 1.0e−28 819 7209 0

cqa-sse-interval-1 4833 3301 1.0e−28 1.0e−28 811 5443 0

Problem13˙label44˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1297 1 1.1e−46 1− 2.3e−9 - - -

cqa-pse 1310 3 1.1e−46 1− 3.0e−27 0 33 22

cqa-sse 1317 8 1.1e−46 1− 3.0e−27 0 33 22

pse 18 2 0.0 1− 1.1e−18 0 39 25

sse 54 28 0.0 1− 1.1e−18 0 39 25

(2.3e−9) cqa-pse-interval-1 13 2 0.0 3.0e−27 0 33 22

cqa-sse-interval-1 20 7 0.0 3.0e−27 0 33 22

259

Problem03˙label43˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1075 1 1.3e−46 1− 2.8e−9 - - -

cqa-pse 5398 4081 1.3e−46 1− 6.5e−18 44 24783 30589

cqa-sse 5398 3131 1.3e−46 1− 1.3e−46 23 4975 2

pse 5391 4844 6.2e−84 1− 2.3e−9 67 54174 64616

sse 5394 3081 1.3e−46 1− 1.3e−46 31 6038 0

(2.8e−9) cqa-pse-interval-1 4323 4080 1.3e−74 6.5e−18 44 24783 30589

cqa-sse-interval-1 4323 3130 1.8e−55 1.8e−55 23 4975 2

Problem13˙label40˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1250 1 1.1e−46 1− 2.3e−9 - - -

cqa-pse 1263 4 1.1e−46 1− 3.0e−27 0 33 22

cqa-sse 1277 12 1.1e−46 1− 3.0e−27 0 33 22

pse 22 3 0.0 1− 1.1e−18 0 39 25

sse 51 25 0.0 1− 1.1e−18 0 39 25

(2.3e−9) cqa-pse-interval-1 13 3 0.0 3.0e−27 0 33 22

cqa-sse-interval-1 27 11 0.0 3.0e−27 0 33 22

Problem11˙label31˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1457 2 2.8e−37 1− 2.8e−9 - - -

cqa-pse 5390 3933 2.8e−37 1− 7.8e−18 0 1 0

cqa-sse 5391 3930 2.8e−37 1− 7.8e−18 0 1 0

pse 71 51 2.8e−37 1− 1.4e−27 2 908 1417

sse 1345 1076 2.8e−37 1− 1.4e−27 2 908 1417

(2.8e−9) cqa-pse-interval-1 3933 3931 0.0 7.8e−18 0 1 0

cqa-sse-interval-1 3934 3928 0.0 7.8e−18 0 1 0

260

Problem06˙label21˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1360 1 6.1e−56 1− 2.8e−9 - - -

cqa-pse 1387 7 6.1e−56 1− 1.4e−26 0 67 76

cqa-sse 1416 30 6.1e−56 1− 1.4e−26 0 67 76

pse 50 6 0.0 1− 5.0e−18 0 91 91

sse 143 77 0.0 1− 5.0e−18 0 91 91

(2.8e−9) cqa-pse-interval-1 27 6 0.0 1.4e−26 0 67 76

cqa-sse-interval-1 56 29 0.0 1.4e−26 0 67 76

Problem11˙label20˙false-unreach-call.c time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 1368 1 2.8e−37 1− 2.8e−9 - - -

cqa-pse 1419 37 2.8e−37 1− 2.5e−35 0 583 1062

cqa-sse 1734 267 2.8e−37 1− 2.5e−35 0 583 1062

pse 111 87 2.8e−37 1− 1.4e−27 2 908 1417

sse 1292 1012 2.8e−37 1− 1.4e−27 2 908 1417

(2.8e−9) cqa-pse-interval-1 51 36 0.0 2.5e−35 0 583 1062

cqa-sse-interval-1 366 266 0.0 2.5e−35 0 583 1062

nec11˙false-unreach-call˙false-

termination.i

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 14 1 4.7e−10 1− 4.7e−10 - - -

cqa-pse 14 1 4.7e−10 1− 4.7e−10 - - -

cqa-sse 14 1 4.7e−10 1− 4.7e−10 - - -

pse 0 0 0.0 0 0 0 0

sse 0 0 0.0 0 0 0 0

261

Ackermann02˙false-unreach-call˙true-no-

overflow˙true-termination.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 73 1 2.2e−19 1− 2.2e−19 - - -

cqa-pse 73 1 2.2e−19 1− 2.2e−19 - - -

cqa-sse 73 1 2.2e−19 1− 2.2e−19 - - -

pse 7 3 2.2e−19 1− 5.4e−18 1 50 24

sse 11 7 2.2e−19 1− 5.4e−18 1 50 24

Fibonacci04˙false-unreach-call˙true-no-

overflow˙true-termination.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 22 1 4.7e−10 1− 4.7e−10 - - -

cqa-pse 22 1 4.7e−10 1− 4.7e−10 - - -

cqa-sse 22 1 4.7e−10 1− 4.7e−10 - - -

pse 130 3 4.7e−10 1− 5.0e−1 1 20 0

sse 186 6 0.0 0 0 0 0

kbfiltr˙simpl2˙false-unreach-call˙true-

valid-memsafety˙true-termination.cil.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 507 1 2.2e−19 1− 2.2e−19 - - -

cqa-pse 507 1 2.2e−19 1− 2.2e−19 - - -

cqa-sse 507 1 2.2e−19 1− 2.2e−19 - - -

pse 133 123 2.2e−19 1− 2.2e−19 4 296 0

sse 224 211 2.2e−19 1− 2.2e−19 4 296 0

262

Fibonacci05˙false-unreach-call˙true-no-

overflow˙true-termination.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 43 1 4.7e−10 1− 4.7e−10 - - -

cqa-pse 43 1 4.7e−10 1− 4.7e−10 - - -

cqa-sse 43 1 4.7e−10 1− 4.7e−10 - - -

pse 98 2 4.7e−10 1− 5.0e−1 1 20 0

sse 132 5 0.0 0 0 0 0

id˙b3˙o2˙false-unreach-call˙true-

termination˙true-no-overflow.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 26 1 4.7e−10 1− 4.7e−10 - - -

cqa-pse 26 1 4.7e−10 1− 4.7e−10 - - -

cqa-sse 26 1 4.7e−10 1− 4.7e−10 - - -

pse 103 67 4.7e−10 1− 1.0 1 494 4

sse 1904 1857 4.7e−10 1− 1.0 1 494 4

McCarthy91˙false-unreach-call˙true-no-

overflow˙true-termination.c

time #-time #(ψ) #(¬ψ) p(ψ) p(¬ψ) p(?)

cqa-# 44 1 4.7e−10 1− 4.7e−10 - - -

cqa-pse 44 1 4.7e−10 1− 4.7e−10 - - -

cqa-sse 44 1 4.7e−10 1− 4.7e−10 - - -

pse 5379 344 4.7e−10 1− 5.0e−1 1 4618 0

sse 5385 4426 0.0 1− 5.0e−1 0 38 1

263

	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Related Work
	Definitions
	Classical Analyses
	Overapproximations; or may analyses
	Underapproximations; or must analyses

	May-Must Combinations
	Counterexample-guided abstraction refinement
	Verification followed by Validation
	Synergistic Combinations

	Cooperative and Meta-Analyses
	Conditional model checking
	Portfolio frameworks
	Cooperative frameworks

	Novelty of Current Work

	Alternating Conditional Analysis
	Motivation
	Overview
	Definitions
	Conditioning Program Analyses
	ACA Algorithm
	Specification of analyze
	Specification of characterize
	Specification of generalize
	Specification of accumulate
	Specification of filter

	Modular ACA
	Formulation of Modular ACA
	Limitations

	Existing Analyses as ACA
	Classical Analyses
	Overapproximators
	Underapproximators

	May-must Combinations
	Counterexample-Guided Abstraction Refinement
	Verification followed by Validation
	Synergistic combinations

	Cooperative analyses
	Program intervals unique to ACA

	Implementation of ACA
	ACA in Haskell
	Portfolio of Analysis Tools
	Tools Used
	Parallelism
	Enlarging the Portfolio

	Generalization
	Slicing
	Conditioning
	AST Transformations
	Implementation of Modular ACA
	Pruning the AST
	Symbolic setup
	Embedding

	Stepping through a run

	Evaluation of ACA
	Subject Selection
	Experimental Setup
	Results and Discussion
	Threats to Validity

	Case Study of chrony
	chrony
	Methodology
	Program intervals in modular ACA
	Sample selection
	Modeling nondeterminism
	Embedding I at callsites
	Setup

	Discussion
	Subsystem 1
	Subsystem 2
	Subsystem 3
	Subsystem 4
	Observations

	Threats to validity
	Conclusion

	Conditional Quantitative Analysis
	Background
	Basic Probability Definitions
	Quantifying Logical Formulae

	Conditional Quantitative Analysis
	Instantiation of generate_intervals
	Instantiation of estimate
	Instantiations of quantify_in_bounds
	Counting lower and upper bounds
	Probabilistic Symbolic Execution
	Statistical Symbolic Execution

	CQA Evaluation
	Algorithm Implementations
	Artifacts
	Results
	Discussion
	Limitations and Threats to Validity
	A Benchmark for Analysis Techniques for High-Confidence Systems

	Related Research

	Algorithmic Diversity in ACA
	Context of diversity study
	Subproblems generated by ACA
	Space of analyzers in portfolio

	Experimental Setup
	Evaluation of Algorithmic Diversity
	RQ1—contribution of diversity
	RQ2—correlation among analyzer pairs
	Discussion

	Limitations and Threats to Validity

	Conclusion and Future Work
	Summary of Contributions
	Future Work
	Improving ACA
	Using Program Intervals

	Appendices
	Observational Study Data
	Name mapping
	Detailed results

	Conditional Quantitative Analysis Data
	Name mapping
	Detailed results

