
Automating Software Tools in Consulting: Enhancing the SitScape
Platform with OpenSearch Advanced Text Search

CS4991 Capstone Report, 2024

Ethan C. Buckner
Computer Science

The University of Virginia
School of Engineering and Applied Science

Charlottesville, Virginia USA
ecb8pw@virginia.edu

ABSTRACT
SitScape offers custom solutions for
businesses and organizations that integrate
and automate many software tools. During
my internship, I worked on a team to add
advanced text search of document databases
to the SitScape STP (straight through process)
automation platform. We decided to use
Amazon’s OpenSearch tool to add this feature
and worked in agile cycles throughout
development. To offer semantic search, we
tested many word embedding models on
speed and search performance, finding that
the MiniLM-L6-v2 model performed the best
for our use case overall. By the end of my
internship, our team successfully
implemented widgets into the SitScape
platform for document uploading and
deleting, encoding documents with word
embeddings, and searching of documents on
regexes or semantic meaning. We also
implemented basic security features like end-
to-end encryption and user accounts with
passwords. Immediate future work should
focus on improving the security features of
our widgets by adding features like document
security levels, user permissions, and
documents with masked fields.

1. INTRODUCTION
SitScape is a software consulting corporation
that develops client software through a two-
tiered development approach. At the high
level, the SitScape platform is used by

application developers to produce business
automation flows called Straight Through
Processes (STP). SitScape STPs are built like
other low code automation tools like
Microsoft Power Automate, using a flow
chart presentation composed of software
widgets that perform discrete tasks in
sequence. At the lowest level, platform
developers containerize software tools into
widgets and integrate them into the SitScape
automation platform. This involves writing
backend PHP to call the software libraries
and JavaScript for the widget options
frontend. This two-tiered approach is
motivated by the efficiency of separating
concerns between application and platform
developers and code reuse for common tools.
Our project was for the platform side of
development.

Our task was to develop a new widget for text
searching into the SitScape platform. The
widget was required to support conventional
text queries and queries on semantic meaning.
Text searching a large amount of data is a
classic software engineering problem and is
applicable to many business processes. Text
searching is difficult to perform efficiently
since search methods must either process the
entire body of text linearly for each query or
preprocess the text to speed up searches. This
represents a tradeoff between prioritizing
uploading speed and search speed.

2. RELATED WORKS
Zobel and Moffat (2006), provide an
overview of the text search problem as it
applied to search engines of the early 2000s.
These techniques are still foundational to
conventional (non-semantic) text search
implementations like Apache Lucene. Zobel
and Moffat explain that text searching for
relevant documents differs from database
records search because there are no unique
keys to return or distinct boolean conditions
to apply to fields. Text search must produce a
list result ordered by relevance, a heuristic.
This list can be of any length up to the size of
the document collection since all documents
have some level of relevance to the query.
Adding to this complexity are issues unique
to text data like very common words
occurring in almost all documents, word
morphology, and phrases that are sensitive to
word order.

To determine relevance of a document to a
query, Zobel and Moffat (2006) describe the
inverted index approach that is core to
efficient text search. In this approach, all
documents are preprocessed on upload to add
to an index file. This index file has an entry
for each document, which includes a list of all
words in the document and their number of
occurrences. This index file can be very large,
occupying a significant (20-60%) portion of
the document collection’s storage cost, but it
contains all the data needed to determine a
document’s relevance to a bag-of-words
query. In the relevance calculation described,
documents will score highly if they contain
many occurrences of terms in the query when
compared to the average document in the
collection. This indexing approach is much
faster than a naïve linear scan to produce the
same data, but trades off storage cost and
processing time on upload.

Although the concept of encoding words as
vectors of floating point numbers to capture

their semantic meaning had been present
since the 1950’s, the approach received
renewed attention after Mikolov’s research at
Microsoft and Google and the release of the
word2vec embedding model. His research
group at Microsoft published a conference
paper that demonstrated word vectors or
embeddings, produced via large language
model training, successfully encoded
grammatical concepts like number, tense, and
gender (Mikolov et al., 2013b). This
conclusion is substantiated by vector
arithmetic results like the embedding for
queen being very similar to the embedding
for king plus the embedding for woman and
minus the embedding for man. The paper also
used similar vector distances between two
word pairs with a common transformation
like man and woman to aunt and uncle or
king and kings to queen and queens to support
their claim.

A later research team led by Mikolov at
Google published a journal article that
discusses the integration of the skip-gram
approach into the embedding model and its
improved results (Mikolov et al., 2013a). The
end of the article details the team’s tests on
creating embeddings for phrases in addition
to single words with promising results,
although the problem of phrase identification
is left unsolved. For this paper, phrase lists
were produced using a naïve approach that
leads to the total number of ngrams to embed
growing quadratically with document length
in words for an arbitrary maximum phrase
length. Semantic search is the synthesis of
conventional text search and word
embeddings. A similar search operation is
performed, but relevance is calculated with
embedding vector distances rather than an
inverted index.

3. PROJECT DESIGN
My team for the text search widget project
was composed of four interns and a senior

engineer providing guidance. Over the
duration of our summer internship, we
worked in weeklong agile cycles. At the start
of each week, we would meet with the
SitScape CEO and CTO to determine our
goal and on Friday, we would present to the
entire SitScape dev team an update on our
progress. Our team was able to divide our
work however we wished, allowing us to
specialize on tasks we were most effective at.

The first step towards adding the desired text
search functionality to the SitScape platform
was translating the non-technical
requirements from leadership into technical
specifications for a minimum viable product.
This involved iteratively building a mockup
user interface with feedback meetings until a
final design was agreed upon. Required
features for a minimum viable product
included starting and stopping the document
server, performing CRUD operations on
documents, and issuing text search queries. It
also must be scalable, supporting bulk upload
natively. The final design for the text search
project would be two widgets, one for
conventional text searches and one for
semantic searches. This is required since
although user facing actions are very similar,
the semantic search widget must embed
documents on upload and store embeddings
for each ngram. Both distinctions are too
expensive if the user only requires
conventional text search.

The next phase of development was focused
on researching the state of the art in text
search and comparing the various tools
available. To efficiently use our time, we
divided our team into a conventional search
subteam and a semantic search subteam.
Within these subteams, both interns would
research different tools, building a list of
notes. We then compared research notes to
decide on a tool to use for the project. Among
tools researched were Apache’s Lucene and
Solr and Amazon’s OpenSearch. Lucene is

most simple of the options, built on the
inverted index technique discussed above. It
is well suited to simpler applications or when
computing power or storage capacity is
limited, but more advanced tools like Solr and
OpenSearch benefit from faster search times
and data redundancy composing their
document collections out of parallel Lucene
instances. These instances, or shards can also
be run on different computers communicating
over a network. In deciding between Solr and
OpenSearch, our team decided to move
forward with OpenSearch because of its
popularity relative to Solr, high quality
documentation, and built in support for
embedding models and semantic search.
Machine learning models can be uploaded to
and stored by OpenSearch like any other data
and semantic search can easily be performed
by adding a flag to the search query.

OpenSearch allows for defined workflows on
document uploads, including creating word
embeddings, but does not supply its own
embedding model. This meant our second
research phase was focused on selecting a
suitable embedding model. The model must
not be too large or computationally expensive
to run on a local OpenSearch server, and must
have acceptable embedding times at scale,
and permissive usage terms. We were unable
to quantify an error metric for our generated
word embeddings, so testing was focused on
speed, with user acceptance testing for
results.

After we selected our document server and
embedding model, we moved into the build
phase of development. The most significant
challenge of this phase was determining how
to integrate the functions we implemented
and tested with scripts into the large and
unfamiliar SitScape codebase. Our team set
up meetings with other senior developers to
understand what portion of the codebase we
would need to modify, focusing only on
understanding what was related to our

project. We built our widgets using insecure
OpenSearch over http first, then enabled
encryption and https once basic features were
functional.

4. RESULTS
By the end of our internship, my team
finished the minimum viable product features
for a conventional text search widget and a
semantic search widget. These widgets hide
all the implementation details of OpenSearch
and abstract all document operations so they
can easily be integrated with other SitScape
platform widgets. The widgets support bulk
insert operations, with acceptably low upload,
embedding, and search times per page even
for document collections with hundreds of
thousands of pages. The final widgets use a
secure OpenSearch instance and all
operations are encrypted over https. They also
support a basic username/password profile
system and user whitelists.

5. CONCLUSION
My internship has prepared me for real world
software engineering by giving me
experience working on a large scale,
production product that has users. Learning a
new codebase was a unique experience that
required me to improve at reading other’s
code and cross-referencing documentation. I
also learned how to ask effective questions of
experienced developers when answers
couldn’t be found online.

This experience was valuable because of how
it differed to completing my undergraduate
computer science degree. In school, your
client is your professor who has technical
knowledge and knows how the final product
will be assembled. In real world engineering,
your client does not have technical
knowledge and does not know what is
possible or how it can be done. This means
much of the work of software engineering is
in researching and determining what to do,
rather than just writing code. It is also critical

to be able to communicate results to an
unfamiliar audience and provide an
explanation for progress being slower than
expected. I also learned how to divide work
among a small team and maximize our
individual strengths.

6. FUTURE WORK
If I was hired to continue working at SitScape
to improve our project, I would first focus on
improving security features like permission
groups, where a user can be a member of any
number of groups, and each document can
restrict read access to only users in a set of
allowed groups. OpenSearch also provides
support for field level security which would
allow only certain fields to be visible to some
users. For example, this could allow low level
users to see that a confidential document
exists in the collection, but its contents cannot
be read.

REFERENCES
Mikolov, T., Sutskever, I., Chen, K., Corrado,

G., & Dean, J. (2013a). Distributed
Representations of Words and Phrases
and their Compositionality.
https://doi.org/10.48550/ARXIV.1310.45
46

Mikolov, T., Yih, W., & Zweig, G. (2013b).

Linguistic Regularities in Continuous
Space Word Representations. In L.
Vanderwende, H. Daumé III, & K.
Kirchhoff (Eds.), Proceedings of the 2013
Conference of the North American
Chapter of the Association for
Computational Linguistics: Human
Language Technologies (pp. 746–751).
Association for Computational
Linguistics. https://aclanthology.org/N13-
1090

Zobel, J., & Moffat, A. (2006). Inverted files

for text search engines. ACM Computing
Surveys, 38(2), 6.
https://doi.org/10.1145/1132956.1132959

https://doi.org/10.48550/ARXIV.1310.4546
https://doi.org/10.48550/ARXIV.1310.4546
https://aclanthology.org/N13-1090
https://aclanthology.org/N13-1090
https://doi.org/10.1145/1132956.1132959

