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ABSTRACT 
SitScape offers custom solutions for 
businesses and organizations that integrate 
and automate many software tools. During 
my internship, I worked on a team to add 
advanced text search of document databases 
to the SitScape STP (straight through process) 
automation platform. We decided to use 
Amazon’s OpenSearch tool to add this feature 
and worked in agile cycles throughout 
development. To offer semantic search, we 
tested many word embedding models on 
speed and search performance, finding that 
the MiniLM-L6-v2 model performed the best 
for our use case overall. By the end of my 
internship, our team successfully 
implemented widgets into the SitScape 
platform for document uploading and 
deleting, encoding documents with word 
embeddings, and searching of documents on 
regexes or semantic meaning. We also 
implemented basic security features like end-
to-end encryption and user accounts with 
passwords. Immediate future work should 
focus on improving the security features of 
our widgets by adding features like document 
security levels, user permissions, and 
documents with masked fields. 
 
1. INTRODUCTION 
SitScape is a software consulting corporation 
that develops client software through a two-
tiered development approach. At the high 
level, the SitScape platform is used by 

application developers to produce business 
automation flows called Straight Through 
Processes (STP). SitScape STPs are built like 
other low code automation tools like 
Microsoft Power Automate, using a flow 
chart presentation composed of software 
widgets that perform discrete tasks in 
sequence. At the lowest level, platform 
developers containerize software tools into 
widgets and integrate them into the SitScape 
automation platform. This involves writing 
backend PHP to call the software libraries 
and JavaScript for the widget options 
frontend. This two-tiered approach is 
motivated by the efficiency of separating 
concerns between application and platform 
developers and code reuse for common tools. 
Our project was for the platform side of 
development. 
 
Our task was to develop a new widget for text 
searching into the SitScape platform. The 
widget was required to support conventional 
text queries and queries on semantic meaning. 
Text searching a large amount of data is a 
classic software engineering problem and is 
applicable to many business processes. Text 
searching is difficult to perform efficiently 
since search methods must either process the 
entire body of text linearly for each query or 
preprocess the text to speed up searches. This 
represents a tradeoff between prioritizing 
uploading speed and search speed. 
 



 

2. RELATED WORKS 
Zobel and Moffat (2006),  provide an 
overview of the text search problem as it 
applied to search engines of the early 2000s. 
These techniques are still foundational to 
conventional (non-semantic) text search 
implementations like Apache Lucene. Zobel 
and Moffat explain that text searching for 
relevant documents differs from database 
records search because there are no unique 
keys to return or distinct boolean conditions 
to apply to fields. Text search must produce a 
list result ordered by relevance, a heuristic. 
This list can be of any length up to the size of 
the document collection since all documents 
have some level of relevance to the query. 
Adding to this complexity are issues unique 
to text data like very common words 
occurring in almost all documents, word 
morphology, and phrases that are sensitive to 
word order. 
 
To determine relevance of a document to a 
query, Zobel and Moffat (2006) describe the 
inverted index approach that is core to 
efficient text search. In this approach, all 
documents are preprocessed on upload to add 
to an index file. This index file has an entry 
for each document, which includes a list of all 
words in the document and their number of 
occurrences. This index file can be very large, 
occupying a significant (20-60%) portion of 
the document collection’s storage cost, but it 
contains all the data needed to determine a 
document’s relevance to a bag-of-words 
query. In the relevance calculation described, 
documents will score highly if they contain 
many occurrences of terms in the query when 
compared to the average document in the 
collection. This indexing approach is much 
faster than a naïve linear scan to produce the 
same data, but trades off storage cost and 
processing time on upload. 
 
Although the concept of encoding words as 
vectors of floating point numbers to capture 

their semantic meaning had been present 
since the 1950’s, the approach received 
renewed attention after Mikolov’s research at 
Microsoft and Google and the release of the 
word2vec embedding model. His research 
group at Microsoft published a conference 
paper that demonstrated word vectors or 
embeddings, produced via large language 
model training, successfully encoded 
grammatical concepts like number, tense, and 
gender (Mikolov et al., 2013b). This 
conclusion is substantiated by vector 
arithmetic results like the embedding for 
queen being very similar to the embedding 
for king plus the embedding for woman and 
minus the embedding for man. The paper also 
used similar vector distances between two 
word pairs with a common transformation 
like man and woman to aunt and uncle or 
king and kings to queen and queens to support 
their claim. 
 
A later research team led by Mikolov at 
Google published a journal article that 
discusses the integration of the skip-gram 
approach into the embedding model and its 
improved results (Mikolov et al., 2013a). The 
end of the article details the team’s tests on 
creating embeddings for phrases in addition 
to single words with promising results, 
although the problem of phrase identification 
is left unsolved. For this paper, phrase lists 
were produced using a naïve approach that 
leads to the total number of ngrams to embed 
growing quadratically with document length 
in words for an arbitrary maximum phrase 
length. Semantic search is the synthesis of 
conventional text search and word 
embeddings. A similar search operation is 
performed, but relevance is calculated with 
embedding vector distances rather than an 
inverted index. 
 
3. PROJECT DESIGN 
My team for the text search widget project 
was composed of four interns and a senior 



 

engineer providing guidance. Over the 
duration of our summer internship, we 
worked in weeklong agile cycles. At the start 
of each week, we would meet with the 
SitScape CEO and CTO to determine our 
goal and on Friday, we would present to the 
entire SitScape dev team an update on our 
progress. Our team was able to divide our 
work however we wished, allowing us to 
specialize on tasks we were most effective at. 
 
The first step towards adding the desired text 
search functionality to the SitScape platform 
was translating the non-technical 
requirements from leadership into technical 
specifications for a minimum viable product. 
This involved iteratively building a mockup 
user interface with feedback meetings until a 
final design was agreed upon. Required 
features for a minimum viable product 
included starting and stopping the document 
server, performing CRUD operations on 
documents, and issuing text search queries. It 
also must be scalable, supporting bulk upload 
natively. The final design for the text search 
project would be two widgets, one for 
conventional text searches and one for 
semantic searches. This is required since 
although user facing actions are very similar, 
the semantic search widget must embed 
documents on upload and store embeddings 
for each ngram. Both distinctions are too 
expensive if the user only requires 
conventional text search. 
 
The next phase of development was focused 
on researching the state of the art in text 
search and comparing the various tools 
available. To efficiently use our time, we 
divided our team into a conventional search 
subteam and a semantic search subteam. 
Within these subteams, both interns would 
research different tools, building a list of 
notes. We then compared research notes to 
decide on a tool to use for the project. Among 
tools researched were Apache’s Lucene and 
Solr and Amazon’s OpenSearch. Lucene is 

most simple of the options, built on the 
inverted index technique discussed above. It 
is well suited to simpler applications or when 
computing power or storage capacity is 
limited, but more advanced tools like Solr and 
OpenSearch benefit from faster search times 
and data redundancy composing their 
document collections out of parallel Lucene 
instances. These instances, or shards can also 
be run on different computers communicating 
over a network. In deciding between Solr and 
OpenSearch, our team decided to move 
forward with OpenSearch because of its 
popularity relative to Solr, high quality 
documentation, and built in support for 
embedding models and semantic search. 
Machine learning models can be uploaded to 
and stored by OpenSearch like any other data 
and semantic search can easily be performed 
by adding a flag to the search query. 
 
OpenSearch allows for defined workflows on 
document uploads, including creating word 
embeddings, but does not supply its own 
embedding model. This meant our second 
research phase was focused on selecting a 
suitable embedding model. The model must 
not be too large or computationally expensive 
to run on a local OpenSearch server, and must 
have acceptable embedding times at scale, 
and permissive usage terms. We were unable 
to quantify an error metric for our generated 
word embeddings, so testing was focused on 
speed, with user acceptance testing for 
results. 
 
After we selected our document server and 
embedding model, we moved into the build 
phase of development. The most significant 
challenge of this phase was determining how 
to integrate the functions we implemented 
and tested with scripts into the large and 
unfamiliar SitScape codebase. Our team set 
up meetings with other senior developers to 
understand what portion of the codebase we 
would need to modify, focusing only on 
understanding what was related to our 



 

project. We built our widgets using insecure 
OpenSearch over http first, then enabled 
encryption and https once basic features were 
functional. 
 
4. RESULTS 
By the end of our internship, my team 
finished the minimum viable product features 
for a conventional text search widget and a 
semantic search widget. These widgets hide 
all the implementation details of OpenSearch 
and abstract all document operations so they 
can easily be integrated with other SitScape 
platform widgets. The widgets support bulk 
insert operations, with acceptably low upload, 
embedding, and search times per page even 
for document collections with hundreds of 
thousands of pages. The final widgets use a 
secure OpenSearch instance and all 
operations are encrypted over https. They also 
support a basic username/password profile 
system and user whitelists. 
 
5. CONCLUSION 
My internship has prepared me for real world 
software engineering by giving me 
experience working on a large scale, 
production product that has users. Learning a 
new codebase was a unique experience that 
required me to improve at reading other’s 
code and cross-referencing documentation. I 
also learned how to ask effective questions of 
experienced developers when answers 
couldn’t be found online. 
 
This experience was valuable because of how 
it differed to completing my undergraduate 
computer science degree. In school, your 
client is your professor who has technical 
knowledge and knows how the final product 
will be assembled. In real world engineering, 
your client does not have technical 
knowledge and does not know what is 
possible or how it can be done. This means 
much of the work of software engineering is 
in researching and determining what to do, 
rather than just writing code. It is also critical 

to be able to communicate results to an 
unfamiliar audience and provide an 
explanation for progress being slower than 
expected. I also learned how to divide work 
among a small team and maximize our 
individual strengths. 
 
6. FUTURE WORK 
If I was hired to continue working at SitScape 
to improve our project, I would first focus on 
improving security features like permission 
groups, where a user can be a member of any 
number of groups, and each document can 
restrict read access to only users in a set of 
allowed groups. OpenSearch also provides 
support for field level security which would 
allow only certain fields to be visible to some 
users. For example, this could allow low level 
users to see that a confidential document 
exists in the collection, but its contents cannot 
be read. 
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