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ABSTRACT  

Rhesus monkey rhadinovirus (RRV) is a close relative of the human pathogen, 

Kaposi’s Sarcoma-Associated Herpesvirus (KSHV). Primary infection with KSHV 

in culture is highly inefficient and it predominantly adopts a latent phenotype, 

expressing only a minimal number of viral genes and producing no progeny 

virions. This contrasts with RRV in culture, which replicates to high viral titer and 

produces abundant progeny virions, making it a useful model to study 

gammaherpesvirus lytic replication, virion structure, and the potential roles of 

tegument proteins in the biology of gammaherpesviruses. Initial work in our 

laboratory determined that the RRV virion was composed of 33 virally encoded 

proteins. Of these, 17 are tegument proteins, five of which are unique to the 

gammaherpesvirus subfamily. ORF52 is one of these five gammaherpesvirus 

specific tegument proteins and is the focus of this dissertation. This protein is 

highly abundant within the virion (approximately 1000 copies per particle) and it 

is closely associated with the capsid. Our results describe a critical role for 

ORF52 in the cytoplasmic-based later stages of virion morphogenesis. Without 

ORF52, capsids fail to undergo tegumentation, which is necessary for final 

envelopment and production of fully infectious virions. In a later section of this 

dissertation, we also describe preliminary data proposing that ORF52 may play a 

direct or indirect role in virion transport through interaction with cellular 

microtubules. 
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Herpesviruses 

Viruses that make up the Herpesviridae belong to a large family of double 

stranded DNA viruses that are approximately 200 nm in diameter. These viruses 

have large genomes 150-200 kb, with 70-200 predicted open reading frames 

(ORFs) (reviewed in (133, 265, 299)). All members within the family share the 

capacity for both latent and lytic stages of infection. In the latent stage of the 

herpesvirus life cycle, only a small number of viral genes are transcribed and no 

virions are made. This is in contrast to the lytic state, when the virus expresses 

the full array of viral genes and produces new progeny virions (reviewed in (29, 

117, 211)). The 130 known members within the family Herpesviridae all establish 

life-long infections within the host, have complex virion structures, and are known 

to infect a variety of human and non-human animals causing a variety of 

diseases. The Herpesviridae family comprises alphaherpesvirinae (α), 

betaherpesvirinae (β), and gammaherpesvirinae (ϒ), separated based on their 

genomic organization, nucleotide and amino acid sequence homology, as well as 

biological properties (Figure 1-1) (63, 69).  

While these viruses share common structural features and a number of 

genes share high levels of homology, each encodes a subset of viral genes that 

are specific to that subfamily. These variances between subfamilies may play an 

important role in the cellular tropism and subsequently the type of pathogenesis 

caused by each virus. To date, investigators have identified eight herpesviruses 

that infect humans (20, 270). Members of the alphaherpesvirus subfamily include 

herpes  simplex   virus-1  (HSV-1)   and   herpes  simplex   virus-2  (HSV-2),   the  
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Figure 1-1. Classification of herpesviruses in the family Herpesviridae. 

Phylogenetic tree depicting the three subfamilies of herpesviruses: alpha, beta, 

and gamma. (Not depicted are the allos and maculos herpesviruseses because 

they are members of the Alloherpesviridae and Malacoherpesviridae families 

respectively and not Herpesviridae.) Image from (63) and used with permission. 
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causative agents of oral and genital herpes. Actively replicating HSV causes 

lesions or blisters, most frequently around the mouth or genitals. Varicella zoster 

virus (VZV) is the viral agent responsible for chicken pox and shingles (20). 

Alphaherpesviruses infect cells of the mucoepithelia, but tend to establish latency 

within neurons (270). β herpesviruses include human cytomegalovirus (HCMV) 

as well as the roselola viruses, human herpesvirus-6 and 7 (HHV-6 and HHV-7) 

(20, 92, 270). HCMV infects a variety of different cell types including fibroblasts, 

epithelial, smooth muscle, and endothelial cells (reviewed in (292)), yet restricts 

maintenance of latency to hematopoietic cells (reviewed in (291)). In healthy 

individuals, HCMV infections may go undetected with no symptoms; however, 

HCMV can cause congenital birth defects, and – in immunocompromised 

individuals – infection may cause symptoms resembling mononucleosis ((179) 

and reviewed in (54)). The gammaherpesviruses are further subdivided into the 

lymphocryptoviruses, or gamma-1 (γ1), and the rhadinoviruses, or gamma-2 (γ2). 

Epstein Barr virus (EBV) is a γ1 lymphocryptovirus that can infect a variety of cell 

types including monocytes, lymphocytes and epithelia, establishing latency in 

both monocytes and lymphocytes (reviewed in (117)). EBV infection can lead to 

mononucleosis, nasopharyngeal carcinoma, Burkitt’s lymphoma (reviewed in 

(171)), the AIDS-related malignancies leiomyosarcoma, Hodgkin’s disease, and 

non-Hodgkin’s lymphoma (NHL) (reviewed in (13, 338)). Kaposi’s sarcoma-

associated herpesvirus (KSHV) is a γ2 herpesvirus and the causative agent of 

Kaposi’s sarcoma (KS), as well as two B-cell malignancies, multicentric 

Castleman’s disease (MCD) (297) and primary effusion lymphoma (PEL) 
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(reviewed in (46)). KSHV infects endothelial cells, but can also establish latency 

and replicate in T and B lymphocytes (123, 206, 220, 221, 257).  

 

Kaposi’s Sarcoma Associated Herpesvirus  
 
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the most recently 

discovered member of the gammaherpesvirinae subfamily and is specifically the 

only member of the γ2 or rhadinoviruses known to infect humans (215).  In 1994, 

Chang and Moore isolated unique DNA sequences from KS tumors that were 

absent from unaffected tissue in the same patient. These sequences shared 

similarities to EBV herpesviral DNA (52). These initial fragments allowed the 

eventual isolation of the entire new herpesvirus genome, named KSHV. The 

KSHV genome is approximately 160 kb and is surrounded by two G – C rich 

terminal repeats 25-35 kb each. The long unique region (LUR) is approximately 

140.5 kb and contains a region encoding over 80 ORFs (216, 269). KSHV 

infection can lead to transformation of endothelial cells and phenotypic changes 

that induce the cells to resemble tumor spindle-cells (93). KSHV encodes a 

number of viral genes, including homologues of cellular genes, that can affect 

cell signaling, deregulate the cell cycle, and stimulate angiogenesis, leading to 

the development of malignancies (see Table 1-1 for a summary of their functions) 

(reviewed in (13, 14, 37, 280, 319)). Saliva largely accounts for KSHV 

transmission, and unlike most other human herpesviruses, KSHV infection is not 

universal within the world’s population. Infection occurs at increased levels in 

some ethnic groups and in men who have sex with men.   Transmission of KSHV 
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Table 1-1. Potential KSHV Genes Involved in Tumorgenesis  

Table from (13) and used with permission.  
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Viral gene     Function 
K1  Signal transduction of receptor binding. 

Involved in deregulation of NF-κB. 
K12 (Kaposin) Kaposin A is a type II membrane 

protein; Kaposin B involved in the 
MAPK signaling pathway. 

vGPCR (viral G-protein coupled 
receptor) 

Homologue of cellular IL-8 receptor 
and binds to CXC and CC chemokines. 
It stimulates MAPK pathway and leads 
to secretion of VEGF. 

vIL-6 (viral interlukin-6) Homologue of cellular IL-6, it supports 
cell growth and protects the cells from 
undergoing apoptosis. 

K4, K4.1, and K6 Viral homologues of cellular CC 
chemokins such as RANTES and MIP-
1α. They induce signal transduction 
and enhance angiogenesis.  

vFLIP (viral FLICE-inhibitory protein or 
ORF71) 

Homologue of cellular FLIP, it activates 
NF-κB pathway and protects cells from 
apoptosis. 

LANA (latency associated nuclear 
antigen) 

Important in maintenance of viral 
latency and binds to viral genome and 
a number of cellular factors, such as 
p53. 
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by organ transplant is also a concern (reviewed in (319)). KSHV exists primarily 

in its latent form and current studies rely primarily on reactivation of KSHV from 

latently infected B cell lines (259), which is an artificially induced reactivation of 

the lytic life cycle, rather than a primary infection. However, even following 

induction of the lytic transcription program, only 25-30% of latently infected cells 

undergo lytic reactivation (49), with a mere 5 to 10% of induced cells producing 

progeny virions (259). 

KSHV is the causative agent of KS, described in more detail in the next 

section, as well as two B cell lymphomas, PEL and MCD (reviewed in (46)). MCD 

is an uncommon, but highly aggressive lymphoproliferative B cell tumor. KSHV 

positive MCD constitutes a subset of MCD, called plasmablastic MCD, and 

displays a large accumulation of plasmablastic cells in the interfollicular region 

(reviewed in (41, 85)). PEL is also a B cell lymphoma thought to be clonal in 

origin, but unlike KS and MCD, it typically forms pericardial or pleural effusions 

without a tumor mass  (reviewed in (39)). PEL is a form of NHL also known as 

body cavity-based lymphoma and found frequently in HIV infected individuals. 

PEL is rare and has a high morbidity rate (reviewed in (45)).  

 

Kaposi’s sarcoma 

In 1872, a Hungarian dermatologist, Moritz K. Kaposi, first described Kaposi’s  

sarcoma as “idiopathic multiple pigmented sarcoma of the skin,” in the skin of five 

men (154). KS is a spindle-cell tumor that can present with cutaneous lesions 

(115). Unlike other common tumors, KS contains multiple cell types, including 
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inflammatory cells as well as endothelial cells - the precursors of tumor 

spindle-cells ((30) and reviewed in (319)). KS lesions can have multiple 

morphologies, including patch, plaque, and nodular. The patch stage is the 

earliest phase in the development of cutaneous KS, depicted by bluish red skin 

spots, and subtle changes that appear histologically in the vicinity around the 

existing vasculature, with the addition of irregular spaces and newly formed 

vessels (reviewed in (115)). In the plaque stage, the existing vasculature 

increases in cellularity, endothelial cells line spaces formed in the patch stage, 

and cells spindle. In the nodular stage, lesions can appear slightly elevated from 

the skin, which can be hard, brownish in color, and ulcerative ((97, 137) and 

reviewed in (115)). 

There are four clinical variants of Kaposi’s sarcoma including Classic, 

Endemic, Iatrogenic - or transplant-associated, and HIV/AIDS-associated 

(reviewed in (14)). Classic KS primarily affects Mediterranean and Eastern 

European elderly men with a median age of 64 (72). KS lesions and nodules 

appear typically on the feet and hands and can progress up the legs and arms 

over the years. Classic KS is relatively mild and slow-progressing, with a median 

survival of years or decades (72). 

Discovered in the 1950’s in portions of Southern and Central Africa, 

Endemic KS is a more aggressive form than classic KS (307). In endemic forms 

of KS, disease nodules or plaques on limbs are common. Patients maintain 

health until more aggressive lesion growth and dissemination begins. Unlike 

classic  KS,  the   endemic  variant  affects  children  and  is  one   of  the  leading 
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cancers in HIV positive African children (21, 79).   

Iatrogenic or transplant-associated, KS affects individuals on 

immunosuppressive therapy ((89, 104, 287) and reviewed in (13, 14)). Median 

time from organ transplant to KS diagnosis is anywhere from 2 months to eight 

years (reviewed in (13)). Iatrogenic KS may or may not be associated with 

cutaneous lesions, but can be aggressive affecting mucosa, visceral organs, and 

lymph nodes in a large percentage of patients (reviewed in (14)). 

HIV/AIDS-associated KS was first described in 1981 when a large number 

of previously healthy homosexual young men were diagnosed with Pneumocystis 

carinii pneumonia, in addition to KS, with no obvious cause (96). HIV/AIDS-

associated KS is very aggressive and often quickly forms skin lesions on not only 

the hands and feet, (as is typical in classic KS), but also disseminates throughout 

the body, including the head, upper body, viscera, organs and lymph nodes. This 

variant frequently leads to opportunistic infections, due to the defect in cell-

mediated immunity, which can be life threatening and often fatal ((83, 96) and 

reviewed in (127, 128)). 

 

Rhesus monkey rhadinovirus (RRV)  

Scientists first described Rhesus monkeys rhadinovirus (RRV) when antibodies 

from a number of monkeys in the New England Regional Primate Research 

Center (NERPRC) reacted by ELISA to herpesvirus saimiri (HVS), a γ2 

herpesvirus that infects monkeys (69). Researchers sequenced an approximate 

10 kb piece  of DNA  from RRV  isolate  H26-95, which  showed  strong similarity 
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between HVS and other rhadinoviruses. The genes encoding glycoprotein B 

and DNA polymerase showed sequence identity demonstrating relatedness 

closer to KSHV than to any other herpesvirus, at 65% and 67%, respectively 

(69). Unlike KSHV, which is primarily a latent herpesvirus producing low viral 

titers (94, 259), RRV is a robust lytic virus replicating to high titers in cultured 

rhesus monkey fibroblasts (RhF) (69).  

Not long after the first isolation and early description of RRV H26-95 (69), 

researchers isolated a closely related strain of RRV from the Oregon Regional 

Primate Research Center (ORPRC). Sequencing of the long unique region (LUR) 

(the non-terminal repeated portion of the genome) of RRV isolate 17577 

confirmed a genome 131,365 bp long with a G + C content of 52.5%, coding for 

over 79 open reading frames (ORFs), and a similar genomic organization to 

KSHV. Of these ORFs, 67 have similar genes found in both HVS and KSHV 

(281). Comparison of the initial 10 kb genomic segment in RRV H26-95 (69) to 

the corresponding RRV 17577 segment show a greater than 99% identity 

between the two isolates of RRV, indicating they are different strains of the same 

virus (281). The RRV 17577 isolate was linked to simian immunodeficiency virus 

(SIV)-associated lymphoprolferative disorder (LPD) (337). 

Subsequent research on RRV H26-95 shows the LUR of RRV H26-95 is 

130,733 bp and contains 84 ORFs. Except for K3, K5, K7, and K12, all KSHV 

ORFs have homologs in RRV H26-95, share similar genomic organization, and 

have similar lytic viral replication gene expression profiles (Figure 1-2) (70). 

Comparison of  the RRV  H26-95  isolate to RRV 17577  indicates  83  out  of  84 
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FIGURE 1-2. Alignment of ORFs of KSHV and RRV26-95. Conserved ORFs in 

KSHV and RRV26-95 are indicated and different colors signify conservation in   

herpesvirus subfamilies or subgroups. Figure from (12) and used with 

permission.  
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ORFs contain sequence similarity (12).  

 

Herpesvirus Structure 

All herpesviruses share a common virion structure that involves a complex 

coordination and layering of an excess of 30 viral proteins, in addition to a 

number of cellular proteins. The linear double-stranded viral DNA is at the 

innermost core of the herpes virion. An icosahedral capsid surrounds this DNA  

((239, 349) and reviewed in (36, 263)). The viral tegument – a thick layer 

composed of viral and cellular proteins – surrounds the capsid. The outermost 

layer is a host cell derived envelope studded with many viral glycoproteins, which 

aid in attachment to host cells and function in secondary envelopment, in addition 

to cellular proteins (Figure 1-4) ((55, 92, 356) and reviewed in (209)).  The 

herpesvirus capsid shell comprises 162 capsomers, 150 hexavalent capsomers 

(hexons), and 12 pentavalent capsomers (pentons). The capsomers lie on a T = 

16 icosahedral lattice, with pentons located at the vertices and hexons occupying 

the capsid faces and edges ((92) and (reviewed in (36, 133)) (Figure 1-3). There 

are three types of herpesvirus capsid species produced: A, B, and C capsids  

(238, 299, 349, 356, 358).  

 

Herpesvirus capsid  

In KSHV and RRV, six capsid proteins compose the capsid: major capsid protein 

(MCP encoded by ORF25), small capsomer interacting protein (SCIP/ORF65),  

two   triplex   proteins  -  TRI-1  (ORF62),  TRI-2  (ORF26),   the   portal  protein 
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Figure 1-3. Herpesvirus structure. Herpesviruses have a linear dsDNA core, 

surrounded by an icosahedral capsid, an inner and outer tegument, and a 

glycoprotein-studded envelope. Image credit: collaboration with Mary A. Maxfield 

and used with permission. 
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(PORT/ORF43), and the portal capping protein (PCP/ORF19) (68, 226, 239, 

358). 955 copies of MCP make up each icosahedrial capsid - 150 hexons each 

with 6 copies of MCP and 11 pentons with 5 copies each. The remaining penton 

contains the portal protein, ORF43, ((68, 228-230, 349) and reviewed in (36)). 

These capsid proteins are conserved within the herpesviruses and have 

homologs in HSV-1: VP5 (MCP), VP19c (TRI-1), VP23 (TRI-2), VP26 (SCIP), 

pUL6 (PORT), and pUL25 (PCP) (encoded by UL19, UL38, UL18, UL35, UL6, 

and UL25 respectively) (reviewed in (36)). The C capsids are identical in capsid 

protein composition to A capsids; however, they contain the linear DNA genome. 

B capsids are a unique intermediate species that contain a scaffold protein, 

ORF17.5 in KSHV/RRV and VP22a in HSV-1, and lack DNA. Experiments with 

alphaherpesviruses indicate that A and B capsids are essentially dead-end 

products and cannot mature further (reviewed in (36, 133, 263)). 

 

The herpesvirus tegument 

The herpesvirus tegument layer lies between the envelope and the capsid and 

comprises both cellular and viral proteins (reviewed in (208-211)). Proteomic 

analysis on the composition of several herpesviruses including EBV, HCMV, 

HSV-1, KSHV, RRV, and murine gammaherpesvirus 68 (MHV-68) has identified 

virion components specific to each virus as well as their location within the 

particle (17, 28, 142, 158, 184, 239, 325, 358). 

Studies examining the components of the herpesvirus virions indicate that 

tegument proteins make up over half of the total number of viral proteins 
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(reviewed in (149)). Recent studies have established that the number of 

different tegument proteins present in each herpesvirus is as follows: HSV-1 has 

26 ((184) and (reviewed in (209)), human cytomegalovirus (HCMV) has 14 (28), 

EBV has 23 (325), MHV-68 has at least 10 (28, 327), KSHV has 11 (23, 267, 

358) and RRV has 17 (239). Until recently, investigators believed proteins within 

the tegument were an amorphous collection; however, cryoelectron microscopy 

(cryo-EM) studies with human cytomegalovirus (HCMV) (55), MHV-68 (62), and 

HSV-1 (356) have indicated the presence of ordered tegument structures 

involving at least a subset of the tegument proteins. This ordering is significant 

enough to be further divided into “inner” and “outer” tegument layers, which are 

seen with cryo-electron tomography (Figure 1-4) (62). While the research does 

not strictly define the terms “inner” and “outer,” the former generally refers to 

tegument proteins more tightly associated with the capsid and more resistant to 

Triton X-100 detergent treatment (336). Large tegument protein (LTP), ORF64 

(VP1/2 in HSV-1 encoded by UL36), exists in all herpesviruses and researchers 

commonly refer to it as an inner tegument protein. LTP plays an important role in 

the protein-protein interactions of the tegument (40, 267, 330). Studies have 

shown that tegument proteins function in at least four crucial roles in viral 

replication including: 1) transcytosis of herpesvirus capsid following viral entry of 

the host cell toward the nucleus (113, 187, 295, 350), 2) modulation of the host 

cell  environment  during the immediate-early  phase of  infection (294), including 

shut  off  of  host  gene expression  (289, 301, 302), 3)  immune  system  evasion 
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Figure 1-4. Cryo-electron tomogram reconstruction of the MHV-68 virion. 

The structure of the virion as well as interactions between the herpesvirus 

capsid, tegument, and envelope. Image from (62) and used with permission. 
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(102, 147, 178, 180, 276, 362) including interaction with cellular proteins to 

promote viral replication (82, 141, 237), and 4) assembly and egress of 

herpesvirus virions ((27, 57, 120, 277) and reviewed in (209-211)). Investigators 

have not yet defined the functions of the vast majority of the tegument proteins 

within gammaherpesviruses, though several of the proteins have presumed 

functions based on varying degrees of homology to other herpesviral tegument 

proteins.  

A subset of tegument proteins is present only in the gammaherpesviruses 

and their functions remain largely unknown. Of the 17 tegument proteins in RRV, 

5 are found only within the gammaperpesvirinae subfamily. They are ORFs 27, 

45, 49, 52, and 75 (239), and I will discuss them separately at the end of this 

section. 

 

Herpesvirus replication  

As mentioned above, all members of the Herpesviridae family have two phases 

of viral replication programs: latent and lytic. In the latent stage, cells express 

only a small number of the viral genes necessary for maintenance of the viral 

genome (359). During latency, in KSHV, the viral protein, latency associated 

nuclear antigen (LANA), tethers the circularized viral episome to the host 

chromatin	   (18). In contrast, in the lytic stage, the cell actively transcribes the 

linear viral DNA and expresses almost all of its genes, producing progeny virions. 

Latency is indispensable, as it allows herpesviruses to evade the immune 

response, persist indefinitely within host cells, and—in the case of 
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gammaherpesvirus infection—to possibly lead to transformation events that 

induce malignancies (reviewed in (332, 345)). While herpesvirus lytic reactivation 

in latently infected cells can be induced with addition of drugs like histone 

deacetylase (HDAC) inhibitors or phorbol esters, causes of spontaneous 

reactivation are not yet well understood. 

 An overview of the herpesvirus lytic replication cycle is shown in Figure 1-

5. Primary (de novo) infection begins when virions attach to the cell membrane 

mediated by viral glycoproteins engaging with various host cell receptors. Viral 

glycoproteins conserved across the herpesviruses include gB, gM, gN, gH, and 

gL (reviewed in (50, 125, 167)). For KSHV, cellular receptors include ephrin A2 

(EphA2), heparin sulfate, integrins - specifically α3β1, αvβ5, α8β1, and αIIbvβ3, 

the cysteine/glutamate transporter (xCT), and dendritic cell-specific intercellular 

adhesion molecule-3 grabbing nonintegrin (DC-SIGN) ((6, 122, 135, 148, 161, 

252, 257, 258) and reviewed in (48)). RRV gB shares sequence homology to its 

homolog in KSHV, but, in contrast, to KSHV, RRV gB does not engage with 

integrins α3β1 or αvβ5 and does not have identified receptor(s) for mediating 

entry (107) and reviewed in (352)). RRV enters the cell by different mechanisms, 

depending on cell type, including clatharin- and caveolin- mediated endocytosis 

and macropinocytosis (reviewed in (48, 50)). RRV enters fibroblasts, for 

example, through clathrin-mediated endocytosis (353). Upon fusion of the viral 

envelope with the cellular plasma membrane or endocytic vesicle, the capsid is 

released into the cytoplasm and loses the majority of tegument proteins from the 

virion  (23, 113, 195).   Capsids   travel  along  microtubules   by   the  minus-end 
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Figure 1-5. Lytic replication cycle of herpesviruses. Representation of the 

herpesvirus replication cycle, including virus entry and dissociation of tegument, 

transport of incoming capsids to the nuclear pore, and release of viral DNA into 

the nucleus, where transcription occurs in a cascade-like fashion and DNA 

replication occurs. Following nuclear egress, DNA filled C capsids undergo 

tegumentation, secondary envelopment, and egress. Image from (208) and used 

with permission. 
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(retrograde), directed dynein/dynactin motor protein complex to the nucleus 

((76, 225) and reviewed in (74, 116)). In HSV, capsids partially tegumented with 

VP1/2 and UL37 proteins then bind to the host nuclear pore complex (NPC), 

where the viral DNA is “uncoated” or released into the nucleus (60, 241, 295). 

The linear genome then converts into a covalently closed circular form required 

for viral replication (106).  

Researchers propose that DNA replication initially precedes by a theta 

type mechanism and, by a yet undetermined mechanism, switches to the rolling 

circle mode of replication, generating long head-to-tail concatemers. 

Concatemers are cleaved into individual herpesvirus genomes upon packaging 

into viral capsids aided by the terminase protein complex (103, 222). 

Transcription of herpesvirus genes, including latent, immediate-early, early, and 

late genes, takes place within the nucleus. Immediately-early genes are the first 

viral genes expressed following the initiation of lytic replication of latently infected 

cells, whether spontaneous or induced, with phorbal esters like tetradecanoyl 

phorbol acetate (TPA) or histone deacteylase (HDAC) inhibitor, or following 

primary (de novo) infection, and do not require new viral protein synthesis. These 

genes often encode regulatory proteins critical for the viral life cycle. Early genes 

often play a role in regulation of gene expression and require viral protein 

synthesis of immediate early genes. Late genes require DNA replication and 

often participate in the major structural components of the herpesvirus particle, 

including formation of the viral icosahedral capsid and many, but not all, of the 

tegument proteins ((73, 144, 185, 248, 359) and reviewed in (208)). Following 
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translation of viral mRNAs on ribosomes in the cytoplasm, all capsid proteins 

are transported back into the nucleus either by their own nuclear localization 

signal (NLS) or by binding to another protein with an NLS (165, 250, 264).  

More is known about HSV-1 in the area of capsid maturation and, in the 

following section, I will utilize the HSV-1 nomenclature. The B capsid core 

includes UL26 encoded proteins VP21 and VP24, as well as the UL26.5 encoded 

protein VP22a. UL26 cleaves itself to generate the capsid proteins VP24 and 

VP21 and also cleaves the UL26.5 gene product, generating VP22a. VP22a is 

the most abundant protein, forming the inner scaffolding core, which aids in 

assembly of the outer capsid shell structure (66, 181, 249). Cleavage from VP24 

upon DNA encapsidation removes VP21 and VP22a from B capsids to make 

room for the linear genome, whereas VP24 remains (110). Studies in insect cells 

with purified capsid proteins have shown that mature, icosahedral capsids can be 

assembled from the following four HSV-1 proteins: VP5, VP19C, VP23 and pre-

VP22a (232-234).  

Interaction between the scaffold protein precursor, pre-VP22a, with VP5 

(major capsid protein) appears to initiate in the cytoplasm, whereby they enter 

the nucleus via the pre-VP22a NLS and begin assembly into hexons and pentons  

((339) and reviewed in (133)). The HSV-1 UL26 gene encodes the virus protease 

essential for DNA packaging, capsid maturation, and virus growth (105). The 

mature capsid is formed from a fragile, porous, spherical intermediate called the 

procapsid, which has the same protein composition as the mature capsid, except 

that pre-VP22a is not cleaved in the procapsid (233, 236). Cleavage of the 
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scaffold protein by the viral protease causes a cascade of structural changes 

that result in transformation of the procapsid into an icosahedral B capsid ((315) 

and reviewed in (133)). 

The proteins encoded by UL17 and UL32 (ORFs 32 and 68 in 

KSHV/RRV) localize capsid protein precursors important in forming procapsids 

(173, 305). The capsid-associated protein encoded by UL25 (ORF19) is present 

on A, B, C capsids as well as virions (231, 285). UL25 forms a heterodimer with 

UL17 and attaches to the exterior capsid vertices (310, 316). Additionally, UL25 

reportedly interacts with the triplex protein VP19c, as well as the major capsid 

protein VP5 (240, 316). Accumulation of UL25 protein may reinforce the capsid 

to prevent loss of DNA, similar to the role of accessory proteins in dsDNA 

bacteriophages (203, 231). Studies have also recently described a role for UL25 

early in infection, involving the uncoating of the viral genome (254), as well as the 

requirement of UL25 for attachment of the tegument to the capsid through its 

interaction with the large tegument protein UL36 (59).  

The herpesvirus DNA encapsidation process is still understood only in 

general terms and primarily from studies on the alphaherperpesviruses 

pseudorabies virus (PrV) and HSV-1; however, it resembles packaging observed 

in dsDNA bacteriophages, such as P22, T7, and λ. Studies suggest DNA 

packaging in KSHV and RRV occurs by the same mechanisms as in HSV-1, 

even though –unlike DNA in phages—the KSHV portal protein is internally 

localized (68). HSV-1 and dsDNA bacteriophages share similar functions, such 

as capsid portal structure, proteins that recognize the ends of viral DNA, and an 
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endonuclease plus a DNA translocase (terminase complex) (26, 43). 

Moreover, the major core protein of the precursor capsid is also expelled during 

packaging, as with phage assembly (22, 322).  

In HSV-1, DNA enters the capsid via the portal vertex, which consists of 

12 copies of the UL6 (ORF43) protein. The portal is located at only one of the 12-

capsid vertices and is the docking site for the packaging proteins, such as 

terminase, the protein responsible for cleavage of monomeric units from 

concatemeric DNA and ATP-dependent translocation of DNA into the capsid (26, 

42, 43, 322). Portal proteins are integral capsid components in both procapsids 

and mature capsids, while terminase proteins are only associated with 

procapsids and are not present in mature capsids or virions (76). Studies have 

found that the interaction of the scaffold protein and the portal proteins is 

essential for incorporation of the portal into the capsid and, additionally, that the 

portal proteins need to be present when the assembly reaction begins (231).  

In addition to the UL6 portal protein, DNA packaging involves six HSV-1 

proteins. These proteins are the products of genes UL15, UL17, UL25, UL28, 

UL32 and UL33 ((7, 33, 53) and reviewed in (132, 133, 173, 203, 246, 253, 

309)). Infection with mutants lacking any one of these seven genes (except for 

UL25) results in uncleaved concatameric DNA and accumulation of B capsids 

(235). Neither cleavage nor insertion of DNA into the capsid requires UL25; its 

role is in maintenance of the viral genome after packaging. Disruption of the 

UL25 gene results in nuclear accumulation of both A and B capsids in addition to 

unpackaged, genome-length DNA (203). Studies suggest the HSV-1 terminase 
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complex is composed of UL15, UL28 and UL33 subunits (2, 333, 343), which 

assemble in the cytoplasm and are then transported into the nucleus utilizing a 

NLS within UL15 (348).  

Nuclear egress of DNA filled C capsids or A and B capsids, occurs—

according to wide consensus—in what is coined the primary envelopment, de-

envelopment, and re-envelopment pathway ((293) and reviewed in (213)). Of 

note, investigators continue to debate the method of nucleocapsid egress from 

the nucleus into the cytoplasm (176, 212, 334). Leuzinger, et al. proposed an 

alternate pathway not entirely unlike those previously proposed (92), where 

capsids bud into the inner nuclear membrane (INM), obtain an envelope, and 

subsequently travel through the rough endoplasmic reticulum (RER) cisternae, 

prior to being sorted and packaged within transport vacuoles to the cell surface 

(176). A second alternative involves capsids gaining direct access to the 

cytoplasm by migrating though impaired nuclear pores (176, 334) (Figure 1-6). 

These hypotheses have taken criticism, most vocally from Thomas C. 

Mettenleiter, who has written extensively on the primary envelopment, de-

envelopment, and re-envelopment pathway (reviewed in (208-213)). Concerns 

include the published evidence that some proteins present in primary enveloped 

particles within the INM such as the tegument proteins UL31 and UL34 in HSV 

(ORF69 and ORF67 in KSHV and RRV) are not present in mature virions (101, 

163, 260). Additionally, nuclear pore size typically restricts direct passage for 

substances larger than 36 nm (243). While the integrity of the nucleus changes 

during  the course of infection, possibly  widening the  pore size to accommodate 
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Figure 1-6. Diagram of the four models for exit of herpesvirus capsids from 

the nucleus. (A) Single envelopment model entailing capsid budding at INM and 

transport via lumenal pathway. (B) Capsid movement into cytoplasm through 

dilated nuclear pores. (C) Dual envelopment model entailing vesicle-mediated 

nuclear egress of capsids (primary envelopment-de-envelopment, and re-

envelopment). (D) Nuclear escape of capsids after nuclear envelope breakdown 

(not officially proposed as an alternative, but possible). Image from (213) and 

used with permission. 
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a 100-200 nm herpesvirus particle, the nuclear pore appears to remain intact 

until late in infection (reviewed in (213)). In this thesis, I will reference the 

envelopment, de-envelopment, and re-envelopment pathway (293), when 

discussing the latter maturation steps.  

The proteins, interactions, and even the particular stimulus that triggers 

capsid egress from the nucleus into the cytoplasm to further mature are not 

thoroughly understood. Researchers do know that the heterodimeric complex 

composed of proteins encoded by UL31 (pUL31) and UL34 (pUL34) (ORF69 and 

ORF66, respectively, in KSHV and RRV), are conserved across the 

herpesviruses (272) and are critical for formation of primary enveloped virions 

(reviewed in (143)). Phosphorylation of laminins by cellular and viral kinases 

including HSV pUL13 and its homologs in other herpesviruses, (ORF36 in KSHV 

and RRV) (199) softens the nuclear lamina, to allow for cargo transport through 

the nuclear membrane (reviewed in (193, 217, 219)). In PrV and HSV, infection 

leads to accumulation of myosin V, in addition to inducing nuclear actin, which 

may play a role in capsid movement in, and egress from, the nucleus (90). Other 

viral proteins in addition to pUL31 and pUL34 may be present and involved in 

nuclear egress, but difficulty in consistently isolating large quantities of primary 

enveloped virions (PEVs) between the nuclear membranes has made this a 

difficult challenge. Of note, William W. Newcomb, a researcher at the University 

of Virginia, has developed a technique to isolate these HSV-1 PEVs and is 

optimistic about the success in defining their composition (personal 

correspondence, February 2014).   
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Following fusion with the outer nuclear membrane (ONM), capsids are 

released into the cytoplasm. At these latter points in virion maturation, capsids 

now need to traverse through the cytoplasm, and obtain their full repertoire of 

tegument proteins and envelope prior to release. The kinesin family of motor 

proteins utilizes the plus-end directed microtubule network to mediate capsid 

movement throughout the cytoplasm (reviewed in (75, 188, 251)). Interestingly, 

research shows that KSHV gammaherpsvirus specific tegument protein ORF45 

mediates docking of the herpesvirus capsid prior to secondary envelopment onto 

the KIF3A subunit of the kinesin-2 motor protein for movement to the cell 

periphery (277). Current data does not fully explain the timing of addition, specific 

order, and complex network of protein-protein interactions that make up the 

tegument layer, but this is an active and exciting area of exploration. Several 

studies have investigated the role of specific tegument proteins, within a specific 

herpesvirus (including my own manuscript and this thesis) (reviewed in (119, 

143, 149, 160, 211-213)), and while critical to advancing our understanding of 

this complex and multifaceted layer of the virion, none convey a complete picture 

or fully elucidate the details of this process. Research on CMV shows that many 

glycoproteins and tegument proteins aggregate to a perinuclear assembly-like 

structure, that could be the site of assembly and egress (64, 65, 273), but it is not 

present during lytic infection with all herpesviruses. Data reveals that capsids 

travel in the cytoplasm, likely obtaining some initial tegument prior to secondary 

(final) envelopment, whereby the partially tegumented capsid obtains the bulk of 

the tegument proteins and the final envelope from vesicles (possibly Golgi 
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derived or endosomes), already studded with viral glycoproteins (reviewed in 

(209, 211)). The consensus in the field is that secondary envelopment occurs as 

the result of a still poorly understood triggering event between viral tegument 

proteins and glycoproteins present on vesicles that become the viral envelope 

(reviewed in (126, 213)). In KSHV, eight glycoproteins were identified as part of 

the virion (gB, gp35/37, gH, pORF28, gM, gL, and gN) (358) and 9 in RRV 

(ORF4, gB, R8.1, gH, ORF28, gM, gL, gN, and ORF58) (239).  

Multiple studies report several herpesvirus glycoproteins including gB, gM, 

gK, gE/gI, gD, and possibly gH localize to the trans-Golgi network for HSV-1 and 

other herpesvirus family members (9-11, 35, 61, 95, 118, 140, 202, 214, 273, 

311, 364, 365), although gB and - to a lesser degree - gL, did not completely 

colocalize with the TGN46 marker (318). In HSV-1 the glycoprotein pUL49 (gN in 

KSHV and RRV) binds to pUL48 (151). pUL48 in turn interacts with the 

cytoplasmic tail of gH and gD (56). Studies show pUL49 of PrV interacts with the 

cytoplasmic tails of gE and gM (100). 

During secondary envelopment, tegument proteins engage with 

glycoproteins leading vesicles to surround the capsids, wrap entirely around the 

particle, and form an envelope (reviewed in (126, 213)). Hollinshead, et al., 

recently proposed an alternative mechanism for secondary envelopment, where 

endocytosis from the plasma membrane formed tubules that then wrapped 

around HSV-1 capsids in the cytoplasm (131) (Figure 1-7). Evidence that capsids 

did not colocalize with TGN46, a trans-Golgi network marker, or markers for late 

endosomal vesicles provides additional support for this method of secondary 
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envelopment (131). Of note, in preliminary data from our own laboratory, we 

detected no colocalization of TGN46 and RRV capsid protein SCIP (ORF65) in 

the cytoplasm (Loftus and Kedes, unpublished data). 

Egress from the cell occurs with enveloped virions inside vesicles 

transported to the plasma membrane. The plasma membrane fuses with the 

vesicle and mature virions are released from the cell (reviewed in (209, 211, 

213)). Researchers know little about the viral protein interactions required during 

egress. Studies implicate PrV pUL20 and gK in egress (reviewed in (208)), 

whereas in HSV, the pUL20/gK complex apparently functions prior to egress 

(166, 205). Following egress from the cells, mature virions release into the 

extracellular medium. However, often herpesviruses remain associated with the 

plasma membrane following egress mediated partly by bone marrow stromal 

antigen 2 (BST2).  BST2, also called tetherin, is a type II glycosylated membrane 

protein that localizes to lipid rafts (77). Self-association of tetherin molecules 

between the cellular plasma membrane and those embedded in the viral 

envelope tether enveloped viruses—including herpesesviruses, retroviruses, and 

filoviruses—to the plasma membrane following cellular egress (146, 150, 271, 

324, 351). However, viruses often encode proteins, including KSHV K5 and HIV-

1 Vpu, which allow for sidestepping of this anti-viral function of the innate 

immune system (78, 192, 227, 244, 279, 323). Following egress, these virions 

can spread in two different ways. First, the virion may detach from the cellular 

plasma membrane and spread through the environment to attach to another cell. 

Alternately,  direct cell-to-cell  contact from  an infected  cell to  another  cell  may  
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Figure 1-7. Model for virus envelopment via endocytosis. (1) Viral 

glycoproteins are processed in the Golgi (GA)/trans-Golgi (TGN) and exported to 

the cell surface. (2) The plasma membrane (PM), containing glycoproteins, is 

endocytosed and transported through the early endosome (EE) to produce 

tubules. (3) Tubules containing glycoproteins wrap around capsids, forming 

virions with a double membrane. These tubules eventually fuse with the plasma 

membrane releasing enveloped virions. Image from (131), an open-access 

article. 
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allow for an increase in efficiency of horizontal spread and new infection. 

Herpesviruses utilize both methods of spread ((218, 354) and reviewed in (288)). 

 

Gammaherpesvirus specific tegument proteins 

Our laboratory has taken a particular interest in the proteins specific to the 

gammaherpesvirus subfamily as they might play important roles in the 

tumorigenic potential of the gammaherpesviruses. Below I have detailed what is 

currently known about ORF52 and I have also included information on the other 

gammaherpesvirus specific tegument proteins. Several published reports on 

these gamma-specific tegument proteins investigate their function in MHV-68. 

MHV-68 is a γ-2 herpesvirus (like KSHV and RRV) that naturally infects mice and 

thus allows for investigation in both in vivo and in vitro model systems (327).  

 

Gammaherpesvirus ORF52 

ORF52 is a highly abundant, gammaherpesvirus specific protein component of  

the virion tegument in gammaherpesviruses, including RRV (239), MHV-68 (28), 

KSHV (23, 358), and EBV (142) (see Figure 1-8 for alignment). In RRV, like 

MHV-68, ORF52 closely associates with the virion capsid (27, 239) and 

researchers consider it an inner tegument protein. We submitted for publication 

the   first    functional    study  of   RRV  ORF52   and   Chapter 2  of  this   thesis 

encompasses this work, focusing on the role of RRV ORF52 during lytic 

replication. Recent reports have provided evidence for the role of MHV-68 

ORF52 (24, 28, 330), and investigations have most recently been extended to 
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the EBV ORF52 homolog, BLRF2 (82). Our work, however, is the first study of 

a primate rhadinovirus (γ-2), the closest homolog to KSHV. 

 

MHV-68 ORF52 

In MHV-68, ORF52 is 135 amino acids, with 41% identity and 63% similarity to 

RRV ORF52 and it is a true late gene, expressed after viral DNA replication (5, 

84, 194). In 2005, by utilizing signature tagged mutagenesis and MHV-68 cloned 

into a bacterial artificial chromosome (BAC), Song, et al. were able to identify 41 

genes essential for in vitro growth; one of these is ORF52 (296). Subsequent 

work in 2007 by Bortz and colleagues found that MHV-68 ORF52 and the virion 

capsid exhibit close association with another gammaherpesvirus specific 

tegument protein, ORF45. By tagging ORF52 with either enhanced green 

fluorescent protein or a FLAG epitope, researchers observed ORF52 localizing to 

the cytoplasm. When researches transfected a recombinant MHV-68 BAC with a 

nonsense (stop) mutation incorporated at ORF52 (ORF52STOP BAC/52S) into 

293T cells, the null virus still managed to replicate its DNA; however, it was 

unable to produce infectious virions that could subsequently infect naïve cells. 

Furthermore, thin section transmission electron microscopy (TEM) of transfected 

cells showed an accumulation of immature, partially tegumented capsids in the 

cytoplasm and an absence of extracellular virions from those cells transfected 

with the ORF52-null virus (27).  In an effort to gain additional insight into MHV-68 

ORF52, Benach and colleagues solved the crystal structure at 2.1 A resolution 

(24). In  addition to  the structural  data, coimmunoprecipitation and  fluorescence 
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Figure 1-8.  Alignment of ORF52 in RRV, KSHV, MHV-68, and EBV. Strictly 

conserved residues are highlighted in red and conservatively conserved residues 

in yellow. Alignment done using CLUSTAL O (1.2.1) software 

(http://www.ebi.ac.uk/Tools/msa/clustalo/). 
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energy transfer (FRET) experiments demonstrated a self-association of 

ORF52.  Structurally, the ORF52 monomer consists of three α-helices followed 

by a β-strand near the C-terminus; however, the monomer of ORF52 is unlikely 

to be stable and instead exists in a dimeric or tetrameric state. The dimer exhibits 

2-fold symmetry except for the α1 helix, which is located near the N-terminal 

region (Figure 1-9). The authors suggest that this α1 helix mediates interactions 

between ORF52 and other proteins in the tegument and/or capsid. They also 

suggest that the asymmetrical tetramer, when not involved in virion assembly, 

may be a “latent” form of the protein, and the dimer may be the active form of 

ORF52. When the α1 helix moves away from the rest of the dimer, it exposes 

several conserved, highly hydrophobic patches on the α1 helix, which are optimal 

for mediating interaction between ORF52 and other proteins in the tegument 

and/or capsid of MHV-68 (24) (Figure 1-10). While there are varying levels of 

sequence identity and similarity among the gammaherpesvirus ORF52 proteins, 

data show that the α-1 helix, as well as residue Arg95 are strictly conserved. To 

investigate whether these two areas may be responsible for the function of 

ORF52, investigators created expression plasmids deleting the first 33 amino 

acids of ORF52 (Δ33) or mutating Arg95 to an alanine (R95A). They then 

assessed the ability of ORF52 to self-associate and the ability of wild type or 

mutant ORF52 plasmid to rescue an ORF52-null mutant. Interestingly, the 

mutant plasmids, Δ33 or R95A, had no effect on the ability of ORF52 to self-

associate; however, both mutant plasmids were unable to rescue the ORF52-null 

virus,  suggesting  ORF52  requires  both  domains, to  some  extent,  in order  to  
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Figure 1-9. Structure of ORF52 dimer. (A) Pymol software generated image of 

the ORF52 dimer. One molecule, molecule A is shown in gold, and the second, 

molecule B, is in cyan. (B) ORF52 dimer after 90° rotation. (C) A model for the 

ORF52 dimer with interaction mediated through the α2 helices. (D) Conserved 

molecular surface features of the dimer model with residues conserved among 

the herpesviruses highlighted in blue and labeled. (See text for further 

description.) Image from (24) and used with permission.  
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Figure 1-10. Asymmetric tetramer of ORF52. (A) Pymol software generated 

image of the ORF52 tetramer. The figure shows one dimer in gold and blue and 

another in green and magenta. (B) ORF52 tetramer after 180° rotation from A. 

The black oval at the center of the structure is the conserved arginine 95 residue 

in the hydrophobic core. (See text for further description.) Image from (24) and 

used with permission.  
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function (24). 

More recent investigations in 2012 by Wang, et al. have gone on to 

perform a structure and function analysis, to determine the specific role of the 

individual MHV-68 ORF52 domains on the function of the protein (330). The 

authors first utilized immunoelectron microscopy (ImmunoEM) to reveal ORF52 

in both mature, extracellular virions, as well as immature subviral particles within 

the cytoplasm. While previous research showed the α-1 helix and C-terminal R95 

to be essential to the function of ORF52 (27), here the authors demonstrate that 

ORF52 mutants have a dominant negative effect. 293T cells transfected with wt 

BAC and either a N33-del-ORF52, which lacks amino acids 1-33, corresponding 

to the α-1 helix, or the R95A mutant, show a reduction of 17% and 33% 

respectively measured as released virus by qPCR. Transfecting these same 

ORF52 mutant constructs into Flp-In-293-FLAG-ORF52, which constitutively 

express a wt ORF52, confirmed the dominant negative effect. The researchers 

cotransfected 52S (Stop) BAC with wt MHV-68 ORF52 or the homologs in KSHV 

and EBV (ORF52 and BLRF2) and determined viral genome copies by qPCR of 

viral DNA in the supernatant. Both KSHV ORF52 and BLRF2 were able to rescue 

the defect in the 52S BAC as well as co-immunoprecipitate with wt MHV-68 

FLAG-ORF52	  (330).  

ORF52 contains five strictly conserved amino acids Leu20, Glu23, Asn24, 

Leu27, and Arg95. Of these, all except Arg95 are located within the α-1 helix and 

investigators reasoned that these four amino acids might be important for the 

function of ORF52. They made individual point mutants at each of these strictly 
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conserved amino acids and co-transfected the mutant ORF52 constructs along 

with 52S BAC. Using qPCR they measured the ability of the ORF52 mutants to 

complement the defect in the 52S BAC by quantifying viral DNA released into the 

supernatant. None of the mutants was able to complement the lack of ORF52. By 

performing IF on Vero cells transfected with these point mutant constructs, they 

found that each point mutant changed the normal localization pattern of ORF52 

from its punctate cytoplasmic pattern to diffuse cytoplasmic, tight peri-nuclear, 

nuclear, or some combination thereof. These results suggest that the α-1 helix is 

responsible for the punctate cytoplasmic localization pattern in wt ORF52	  (330).  

 Structural data of MHV-68 indicated that ORF52 forms homodimers and 

that the dimeric form of ORF52 is the functional form	   (24). The authors 

suggested that the α-2 helix domain might be responsible for dimerization (24). 

Additionally, the investigators performed co-IPs with FLAG-ORF52 and either wt 

HA-ORF52 or HA-Mdel-ORF52, which has amino acids 48-69 deleted in the α-2 

helix. Western blots clearly show that FLAG-ORF52 pulls down wt-HA-ORF52 

and that interaction is lost when a portion of the α-2 helix is missing in the HA-

Mdel-ORF52, while having no affect on ORF52 localization or staining pattern 

when examined by IF. Finally, the authors tested wt ORF52 for interaction with 

numerous other structural proteins and found it to interact with the tegument 

protein ORF42. By testing this interaction between wt ORF42 and different 

ORF52 mutant constructs, they found that the R95A ORF52 mutant resulted in a 

loss of interaction with ORF42. The role of ORF42 is currently unknown. As a 

final note, in a paper by Duarte, et al., the authors reported in an interaction 
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table, without showing the data, that MHV-68 ORF52 interacts with ORF45 

(EBV BKRF4)	   (82). This interaction between ORF52 and ORF45 is of particular 

interest to our work on the virion protein-protein interactome. 

 

KSHV ORF52 

KSHV ORF52 is 131 amino acids long and is 47% identical and 67% similar to 

RRV ORF52 and 34% identical and 64% similar to MHV-68 ORF52 (NCBI 

protein BLAST).  A study by Rozen, et al. in 2008 sought to investigate the 

protein-protein interactions occurring within the KSHV virion by both yeast two-

hybrid and subsequent confirmation by coimmunoprecipation. They detected 

thirty-seven protein-protein interactions during this investigation. KSHV ORF52 

interacted with the capsid protein TRI-2 (ORF26), two tegument proteins (ORF45 

and ORF75), and two envelope glycoproteins (gM and gN) in co-

immunoprecipitation experiments, as well as by the yeast two-hybrid method 

when ORF52 was used as bait (267). Additionally, ORF52 interacted with a third 

tegument protein, ORF64N, or large tegument protein, (with the ‘N’ labeling for a 

truncated form of ORF64), by the yeast two-hybrid method, but not by co-IP. 

KSHV ORF52, when expressed in isolation, has a diffuse cytoplasmic staining 

pattern	  ((274) and our own unpublished observations).  

 

EBV BLRF2 (ORF52 homolog) 

BLRF2 is the EBV homolog of ORF52. It is 162 amino acids long (142) and has 

38% identity and 55% similarity to RRV ORF52 (NCBI protein BLAST). Previous 
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reports showed that BLRF2 interacts with another tegument protein, BNRF1 

(the RRV-, KSHV-, and MHV-68- ORF75 homolog) (38). An additional study, 

using a yeast-two hybrid approach, identified several cellular proteins that 

interacted with BLRF2 including Serine/Arginine-rich protein kinase 2 (SRPK2) 

(268). SRPK2 is part of a larger family of serine/arginine kinases that 

phosphorylate serine residues in arginine-serine (RS) motifs and play critical 

roles in pre-mRNA splicing, acting as non-small nuclear ribonuclearprotein 

(snRNP) factors ((329) and reviewed in (98, 109)).  Additionally, SRPK2 induces 

cell cycle progression by increasing cyclin A1 expression in hematopoietic cells 

(139) and apoptosis in neurons by increasing cyclin D1 (138). 

A recent study of BLRF2 by Duarte, et al., further confirmed potential 

interactions by co-IP between cellular proteins and BLRF2 and found that BLRF2 

does indeed interact with SRPK2 through the C-terminus of BLRF2 (82). BLRF2 

has two arginine-serine (RS) repeats in the C-terminal domain that were found to 

be substrates for SRPK2 phosphorylation. Taking advantage of an MHV-68 

ORF52 null BAC, the investigators found that a BLRF2 construct with the RS 

motifs changed to ARA was unable to rescue viral production where a wt BLRF2 

could. Interestingly, in contrast to its homologs in RRV and MHV-68, EBV BLRF2 

has a nuclear staining pattern, that is relocalized to the cytoplasm during the 

course of EBV infection (82). 

 

Gammaherpesvirus ORF45 

The gammaherpesvirus protein ORF45 is a tegument protein found within the  
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virions of RRV (239), MHV-68 (28), KSHV (23, 358), and EBV (142). See 

Figure 1-11 for alignment. 

 

RRV ORF45 

RRV ORF45 is 353 amino acids long, is highly phosphorylated, has a nuclear 

staining pattern, and shares relatively high sequence identity to other gamma-

specific ORF45 tegument proteins (see homologs below for specific percentage) 

predominantly in the C-terminal region. ORF45 interacts selectively with 

activated pERK2 to promote nuclear accumulation and protection of pERK from 

phosphatases, promoting lytic viral gene expression and preserving persistent 

and robust activation of both nuclear and cytoplasmic ERK targets	   (340). 

Knockdown of RRV ORF45 leads to a decrease in ORF52 protein in the cell and 

a decrease of infectious virus produced (Anderson and Kedes, Appendix 5, 

Figure 5-1). 

 

MHV-68 ORF45 

In MHV-68, ORF45 is a highly phosphorylated immediate-early tegument protein 

of 206 amino acids with a primarily nuclear staining pattern of expression (27, 

141). MHV-68 is 53% identical and 57% similar to RRV ORF45 (NCBI protein 

BLAST). MHV-68 ORF45 shows less association with the viral capsid than 

ORF52 and researchers consider it an outer tegument protein (27). The role of 

ORF45 is not entirely clear at this point, however, it appears to be important for 

viral gene expression. Transfection of a 45STOP (45S) BAC resulted in a defect 
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Figure 1-11.  Alignment of ORF45 in RRV, KSHV, MHV-68, and EBV. Strictly 

conserved residues are highlighted in red and conservatively conserved residues 

in yellow. Alignment done using CLUSTAL O (1.2.1) software  

(http://www.ebi.ac.uk/Tools/msa/clustalo/). 
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in viral replication, as well as lack of expression of the late lytic proteins 

ORF25 and ORF65. Researchers mapped the role in viral replication to the 23 C-

terminal amino acids and rescued the defect by providing MHV-68 ORF45 in 

trans (141). 

 

KSHV ORF45 

KSHV ORF45 is an immediate-early gene (359) that encodes a phosphorylated 

tegument protein of 407 amino acids present in the virion particle (358, 363). 

KSHV ORF45 is 49% identical and 58% similar in sequence to RRV ORF45 

(NCBI protein BLAST). In contrast to its homolog in MHV-68 and RRV, KSHV 

ORF45 has a predominantly cytoplasmic localization, although it has both a 

nuclear export and import signal and it does shuttle back and forth (177, 274). 

Interestingly, this localization appears to have a role in lytic replication, as 

recombinant viruses with a mutation that causes cytoplasmic only localization 

produced 5- to 10- fold fewer viruses than control, whereas recombinant virions 

restricted to the nucleus produced virions similar to control (177). There also 

appears to be possible interactions between ORF45 and other viral proteins 

when examined by yeast-two hybrid, co-IP, or both. These include the capsid 

proteins ORF26, ORF62, and ORF65 as well as several tegument proteins, 

ORFs 11, 21, 27, 33, 63, 64M (‘M’ is one fragment of the whole ORF64 protein) 

and 75 (note that when ORF45 is used as bait, ORF52 does not interact by yeast 

two-hybrid or co-IP) and the glycoproteins gM and gH (267). ORF45 also plays a 

role in viral egress. ORF45 is responsible for docking viral capsid-tegument 
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particles onto the kinesin-2 motor protein, KIF3A subunit for movement along 

microtubules toward the cell periphery (277). 

Extensive study of KSHV ORF45 has found it to have several important 

roles within the virus life cycle. While there was no significant difference in viral 

gene expression or lytic DNA replication, cells transfected with an ORF45-Stop 

BAC (45S BAC) released 10-fold fewer virions than the wt BAC. Additionally, 

these virions were less infective than those produced in wt conditions, suggesting 

that KSHV ORF45 may play roles both in early and late stages of infection (361). 

The cellular protein seven in absenthia homolog (SIAH), which is in the ubiquitin 

E3 ligase family, also interacts with ORF45 and stimulates degradation of ORF45 

through the proteasome (1). As ORF45 is important in viral infection, targeting 

degradation of the protein may dampen the ability of the virus to establish a 

productive infection. 

 ORF45 plays additional roles in the cellular immune response to viral 

infection. ORF45 associates with the inhibitory domain of cellular interferon-

regulatory factor 7 (IRF-7), thereby inhibiting its phosphorylation by inhibitor-κB 

kinase ε (IKKε) or TANK binding kinase 1 (TBK1). By acting as an alternative 

substrate, ORF45 inhibits activation of IRF-7, preventing its translocation to the 

nucleus. The inability of IRF-7 to translocate into the nucleus prevents activation 

of interferons alpha and beta, which are key factors in the immune system 

response to viral infection (178, 276, 360, 362).  

ORF45 also interacts with p90 ribosomal S6 kinases RSK1 and RSK2, 

stimulating their kinase abilities (169). The activation of RSKs by ORF45 occurs 



	   57	  
as ORF45 interacts with —and forms a complex with —  RSK and ERK. These 

complexes protect the activated phosphorylated forms of ERK and RSK (pERK 

and pRSK) from dephosphorylation, leading to an increase in persistent 

activation in KSHV (170). This persistent activation of RSK by ORF45 also 

causes an increase in phosphorylation and activation of eukaryotic translation 

factor 4B (eIF4B), which increases viral replication and progeny virion production 

(168). 

 

EBV BKRF4 (ORF45 homolog) 

EBV BKRF4 is 217 amino acids long and shares 46% identity and 62% similarity 

to RRV ORF45 (NCBI protein BLAST). No additional information is known at this 

time with respect to BKRF4 function.  

 

Gammaherpesvirus ORF75 

Gammaherpesvirus ORF75 is a tegument protein found within the virions of  

RRV (239), MHV-68 (28), KSHV (23, 102, 358), EBV (142), and herpesvirus 

saimiri (HVS) (159). ORF75 is a member of the viral 

phosphoribosylformylglycineamide amidotransferase (FGARAT) family of 

proteins. Cellular FGARAT proteins are involved in purine biosynthesis (247); 

however, in herpesviruses the FGARAT family of proteins reportedly plays a role 

in counteracting a group of cellular restriction factors called nuclear domain 10 

(ND10) that inhibit herpesvirus lytic DNA replication. ND10 components include 

promyeloctic leukemia protein (PML), speckled protein 100 (Sp100), death 
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domain-associated protein (Daxx), and ATP-dependent helicase (ATRX) 

((306) and reviewed in (262)). 

 

MHV-68 ORF75 

In MHV-68 ORF75c is 1310 amino acids with 27% identity and 43% similarity to 

RRV ORF75 (NCBI protein BLAST). ORF75c induces proteasomal degradation 

of PML complexes leading to a dispersal of ND10 components and a reduction in 

SUMOylation, Daxx and Sp100 levels (108, 180). Researchers found that 

ORF75c interacts weakly with PML and might mediate subsequent proteasomal 

degradation by direct ubiquitination of PML by ORF75 (284). 

 

KSHV ORF75  

Made up of 1296 amino acids, KSHV ORF75 shares 44% identity and 59% 

similarity with RRV ORF75 (NCBI protein BLAST). KSHV ORF75 is essential for 

viral replication and initiation of viral immediate-early gene expression (102). 

When expressed in isolation following transfection, KSHV ORF75 displays both 

nuclear and cytoplasmic staining pattern (274). KSHV infection leads to a 

reduction of ATRX and a dispersion of Daxx that researchers also note when the 

cell expresses ORF75 in isolation. The ND10 components PML and Sp100 (102) 

restrict KSHV. Additionally, when used as bait in yeast-two-hybrid or co-IP 

experiments, KSHV ORF75 interacted with ORF62 (TRI-1), ORF21, ORF64M, 

gM, and gN. As mentioned in their respective sections, ORF75 interacted with 

ORF52 and ORF45 only when ORF75 was the prey (267).  
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EBV BNRF1 (ORF75 homolog) 

EBV BNRF1, the ORF75 homolog, is 1318 amino acids with 31% identity and 

44% similarity to RRV ORF75. BNRF1 interacts with the ND10 component Daxx, 

enabling viral replication by releasing ATRX from ND10 (317). 

 

Gammaherpesvirus ORF27 

RRV ORF27 is identified as one of the five gammaherpesvirus specific tegument  

proteins (239). Investigations into the specific function of ORF27 have only 

begun in MHV-68, but suggest that ORF27 encodes a type 2 transmembrane 

glycoprotein (gp48) found on the surface of infected cells and within the viral 

particle that, when disrupted, impair cell-to-cell spread of virus (196, 197). KSHV 

ORF27 is listed as an “uncategorized” protein (358) with a cytoplasmic staining 

pattern (274), and EBV BDLF2 is listed as a “probable tegument protein” (142). 

 

Gammaherpesvirus ORF49 

KSHV ORF49 displays a nuclear localization pattern (274). There is currently  

no published information as to the function of ORF49. 

 

This thesis focuses on the function of RRV ORF52, but at different points also 

discusses the γ-specific tegument proteins, ORF45 and ORF75, in addition to 

other proteins conserved across the Herpesviridae family, including ORF33 and 

ORF64. 
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ABSTRACT 

The tegument layer of herpesviruses comprises a collection of proteins that is 

unique to each viral species. In Rhesus monkey rhadinovirus (RRV), a close 

relative of the human oncogenic pathogen, Kaposi’s sarcoma-associated 

herpesvirus, ORF52 is a highly abundant tegument protein tightly associated with 

the capsid. We now report that ORF52 knockdown during RRV infection of 

Rhesus fibroblasts led to a greater than 300-fold reduction in viral titer by 48h, 

but had little effect on the number of released particles, only modest reductions in 

the levels of intracellular viral genomic DNA and no appreciable change in viral 

DNA packaging into capsids. These data suggested that the lack of ORF52 

resulted in the production and release of defective particles. In support of this 

interpretation, transmission electron microscopy (TEM) revealed that without 

ORF52, capsid-like particles accumulated in the cytoplasm and were unable to 

enter egress vesicles where final tegumentation and envelopment normally 

occurs. TEM also demonstrated defective particles in the media that closely 

resembled the accumulating intracellular particles, having neither a full tegument 

nor an envelope. The disruption in tegument formation from ORF52 suppression, 

thereby, prevented the incorporation of ORF45, restricting its subcellular 

localization to the nucleus and appearing, by confocal microscopy, to inhibit 

particle transport toward the periphery. Ectopic expression of siRNA-resistant 

ORF52 was able to partially rescue all of these phenotypic changes. In sum, our 

results indicate that efficient egress of maturing virions and, in agreement with 



	   62	  
studies on MHV-68, complete tegumentation and secondary envelopment are 

dependent on intact ORF52. 

 

INTRODUCTION 

Rhesus monkey rhadinovirus (RRV), a gamma-2 herpesvirus, is a close homolog 

of Kaposi’s sarcoma associated herpesvirus (KSHV) or HHV8, the causative 

agent of three human tumors: Kaposi Sarcoma, primary effusion lymphoma and 

multicentric Castleman’s disease (46, 47, 52). Like all herpesviruses, KSHV and 

RRV have both latent and lytic phases of infection (reviewed in (29, 117, 211)). 

KSHV adopts a primarily latent infection and, even with reactivation by phorbol 

esters or histone deacetylace (HDAC) inhibitors, titers in culture are low	  (94, 259). 

In contrast, RRV efficiently infects cultured primary or immortalized Rhesus 

monkey fibroblasts (RhF), enters the lytic phase, and replicates to relatively high 

viral titer (69). These qualities, along with the high levels of conservation in their 

genomic sequence and organization (12, 281), make RRV a useful model to 

study the structure and lytic (productive) replication of KSHV and other 

gammaherpesviruses, as well as the role(s) of individual lytic viral genes in these 

processes.  

 RRV also shares with all members of the Herpesviridae family the same 

overall structural architecture: a linear double stranded DNA genome surrounded 

by an icosahedral capsid, then a proteinaceous layer or tegument, comprised of 

a limited subset of viral and cellular proteins, and finally an outermost layer 

derived from the host cell envelope studded with viral glycoproteins (reviewed in 
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(211)). During host cell entry, the herpesvirus envelope fuses with either the 

plasma membrane or an endocytic vesicle membrane, releasing the majority of 

tegument proteins ((113, 195) and reviewed in (50)). Investigators have 

suggested that these tegument proteins likely play important roles in preparing 

the host cell for viral replication (23, 124, 156, 157, 200, 279, 302). Though the 

process of tegumentation remains poorly defined, previous studies have found 

both cellular and viral proteins within this layer (142, 184, 239, 298, 325, 358). 

This gives rise to a proteomic tegument profile that is distinct for each different 

viral species and possibly even among the same species grown within different 

cell types or conditions (341). 

Until recently, structural information for the tegument was limited to 

images from electron microscopy (EM) that suggested that this layer was 

comprised of an amorphous collection of proteins; however, more recent studies 

with human cytomegalovirus (HCMV)	   (55), HSV-1 (36, 356), MHV-68 (62), RRV 

(349), and KSHV (267) indicate the presence of ordered tegument structures 

(356). Investigators have further divided the tegument into inner and outer layers, 

which are evident by cryo-electron tomography of MHV-68 (62), with inner 

tegument proteins more tightly associated with the capsid and more resistant to 

Triton X-100 detergent treatment (239, 336, 356). The majority of functional data 

regarding the herpesvirus tegument comes primarily from research on alpha and 

betaherpesviruses, which has shown that tegument proteins function in crucial 

roles in viral replication, including transcytosis of the herpesvirus capsid toward 

the nucleus during initial infection and egress from the nucleus toward the 
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periphery during lytic replication (27, 113, 187, 295, 350). Additional functions 

of tegument proteins include modulation of the host cell environment during the 

immediate-early phase of infection (294), including shut off of host gene 

expression (289, 301, 302), antagonism of innate antiviral host response	   (102, 

147, 178, 180, 276, 362), and assembly and egress of herpesvirus virions ((27, 

57, 120, 277) and reviewed in (213)). 

 Previous biochemical and mass spectrometry analyses of Rhesus Monkey 

Rhadinovirus (RRV) from our laboratory indicate the presence of at least 33 

virally encoded proteins comprising the viral particles (239). Among these 

proteins in RRV, we identified ORF52 as a gammaherpesvirus specific, highly 

abundant tegument protein that tightly associates with the capsid (239), but with 

a function that remains uncharacterized for this primate gammaherpesvirus. 

ORF52 encoded by RRV is a late gene (73), encoding a protein of 139 amino 

acids with a molecular weight of 15 kDa. Homologs are present within other 

gammaherpesvirus virions and share varying degrees of identity/similarity, 

including MHV-68 (41%/63%) (27, 28), KSHV (47%/67%) (23, 358), and EBV 

(38%/55%) (142). MHV-68 ORF52 plays a key role in tegumentation and 

secondary envelopment of viral particles (27, 330). 

 In the present study, we have examined the function of ORF52 during lytic 

infection with wild type RRV in culture using siRNA knockdown and rescue 

approaches. We assessed the role of ORF52 on various steps during the viral life 

cycle, including DNA replication and packaging, capsid production and assembly, 

nuclear egress, tegumentation and envelopment, and finally egress with the 
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production and release of infectious virions. Our results argue that, much like 

its murine homolog from MHV-68, RRV ORF52 is necessary for late stages in the 

viral life cycle and that when ORF52 is absent or limited, particles fail to undergo 

tegumentation and secondary envelopment. We additionally found that in the 

absence (or severe reduction) of ORF52, another tegument protein, ORF45, 

remained restricted to the nucleus. Furthermore, and in contrast to infections with 

MHV-68 containing a stop codon in its ORF52 homolog, RRV ORF52 knockdown 

still resulted in the release of subviral particles that lacked tegument and 

envelope and were also unable to remain cell-surface associated, unlike mature 

and fully infectious virions.  

 

MATERIALS AND METHODS 

Cell Culture 

Telomerase-immortalized rhesus monkey fibroblasts (RhF) were grown in 

complete media (Dulbecco’s modified Eagle’s medium [Gibco] supplemented 

with 1 nM puromycin, 1 mM sodium pyruvate, and 10% fetal bovine serum 

[Gibco]), as described previously (239). HEK293 cells were grown in complete 

media (Dulbecco’s modified Eagle’s medium [Gibco] supplemented with 10% 

fetal bovine serum. 

 

RRV Stocks 

 RhFs were grown to confluency, approximately 2x107 cells in a T182 flask, and 

infected with RRV strain H26-95 at a multiplicity of infection (MOI) of 0.05 in 5 ml 
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complete media for 1 hour. Cells were then supplemented with an additional 

100 ml of complete media per flask. Media was collected 5-7 days post-infection 

(p.i.) and cleared of cellular debris by low-speed centrifugation at 350 x g. 

Cleared media containing virus were passed through a 0.45µm pore size filter. 

Virus was concentrated by centrifugation for 3 hour at 12,855 x g in a Sorvall 

SL250T rotor. Resulting viral pellets were resuspended in 1.0 ml TNE (20 mM 

Tris [pH 7.5], 100 mM NaCl, 1 mM EDTA), titer was determined, and 20 µL 

aliquots were stored at -80°C. 

 

Antibodies 

Mouse monoclonal anti-RRV ORF52 and anti-RRV ORF65 (SCIP) were 

generated in the Lymphocyte Culture Center at the University of Virginia. 

Following PCR amplification and cloning of RRV orf52 and orf65 from RRV-

derived DNA, full-length ORF52 and ORF65 (SCIP) GST-fusion proteins were 

made in E. coli. Following purification and cleavage of GST, the proteins were 

used by the Lymphocyte Culture Center to produce mouse monoclonals to 

ORF52 and ORF65/SCIP. Rabbit polyclonal anti-RRV ORF45 was generated 

from Open Biosystems, Inc. (341). Anti-RRV major capsid protein (MCP) was 

kindly provided by Scott Wong at Oregon Health and Science University. Rabbit 

polyclonal anti-actin (sc-1616-R) was purchased from Santa Cruz Biotechnology. 

Anti-Infrared Dye 800 anti-mouse and Infrared Dye 800 anti-rabbit were 

purchased from LiCor Biosciences and Rockland Immunochemicals, 

respectively. 
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siRNA 

Silencer Select custom siRNA specific to the RRV ORF52 coding sequence 5’–

AACCCGTAAGATTGAAGCTAA–3’ and siControl #1 were purchased from Life 

Technologies.  

 

siRNA transfection followed by RRV infection  

20 nM of ORF52 siRNA or Control siRNA were transfected into RhF in 10 cm2 

plates using Lipofectamine RNAiMAX (Life Technologies) following the Reverse 

Transfection manufacturer protocol. 24 hours later, cells were infected with RRV 

at an MOI of 5 for 1 hour at 37°C with rocking every 15 minutes to ensure 

uniform distribution of virus. 1 hour later, virus was removed and cells were 

washed with 1X phosphate buffered saline (PBS) 3 times and then replaced with 

complete media. Cells were incubated for an additional 48 hour. 

 

Expression of viral lytic proteins 

(i) RRV Infected RhF 

Following removal of the media, plated cells were washed 3 times in 1X PBS at 

room temperature. Cells were trypsinized off plates and pelleted. Pellets were 

washed once in 1X PBS prior to being resuspended in lysis buffer as described 

above. For each sample, approximately 45 µg of total protein was loaded onto a 

pre-cast 12% BisTris gel (NuPage; Life Technologies).  
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(ii) Viral Supernatants  

48 h p.i. media was collected and cell debris cleared by centrifugation at 350 x g. 

To concentrate and isolate viral particles, 3 mL of the cleared media was layered 

over 750 µL of a 20% sucrose cushion in TNE. Media was centrifuged at 65,204 

x g for 30 minutes at 4°C in a SW-41Ti rotor. Following centrifugation, media was 

decanted and pellets containing viral particles were resuspended in 60µl sample 

buffer. Samples were boiled for 10 minutes and equal volumes were loaded onto 

a 12% BisTris gel. Statistical significance between conditions was determined 

using an unpaired Student’s t test. Calculations were performed using GraphPad 

Prism online software. 

 

Protein electrophoresis and immunoblotting 

Cells were trypsinized off of plates, pelleted, and washed once in 1X PBS. 

Pelleted cells were lysed for 15 minutes at 4°C with whole-cell lysis buffer (50 

mM Tris [pH 7.3], 150 mM NaCl, 1% Igepal, 5 mM EDTA, 10% glycerol) 

supplemented with 1X protease inhibitor cocktail (Roche Applied Science) 

immediately prior to use. Lysed cells were centrifuged for 30 minutes at 4°C and 

media were removed for protein analysis.  

Cell lysates and concentrated supernatants containing viral particles from 

each experiment were resuspended in lithium dodecyl sulfate LDS sample buffer 

(NuPage; Life Technologies) with NuPage sample reducing agent (50 mM 

dithiothreitol (DTT)). Following denaturation by boiling for 10 minutes, proteins 

were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis 
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(SDS-PAGE) on 12% Bis-Tris gels (NuPage; Life Technologies).  

For immunoblot analyses, proteins separated by SDS-PAGE were 

transferred to nitrocellulose membranes for 60 minutes at 350 mA at 4°C. The 

membranes were blocked in 5% nonfat milk–TBS (20 mM Tris base, 150 mM 

NaCl, 3 mM Tris-HCl) for 90 minutes at room temperature and then incubated 

with primary antibodies overnight at 4°C. Primary antibodies were used at the 

following dilutions: anti-RRV ORF52 (1:1,000), anti-RRV SCIP (1:2,500), anti-

RRV ORF45 (1:10,000), anti-RRV MCP (1:1,000), and anti-mouse actin 

(1:15,000). After three washes with TBS-Tween (0.05%) at room temperature 

(RT), membranes were incubated with secondary antibodies for 45 minutes at 

RT. For quantitative immunoblotting membranes were incubated with Infrared 

Dye 800-conjugated anti-mouse (Rockland Immunochemicals) or Infrared Dye 

800-conjugated anti-rabbit (LiCor Biosciences) diluted 1:10,000 in 5% nonfat milk 

in TBS-Tween (0.05%). Images were scanned and analyzed using an Odyssey 

infrared imaging system and 3.0 software (LiCor Biosciences). 

 

Quantitative PCR (qPCR)  

(i) RRV Infected RhF   

Cells from a 6 well plate were washed 3 times in 1X PBS prior to collection and 

after pelleting were resuspended in PK digestion buffer (100 mM NaCl, 10 mM 

Tris Cl [pH. 8], 25 mM EDTA [pH. 8], 0.5% SDS and 0.1 mg/ml PK (Sigma-

Aldrich) and incubated at 55°C overnight. DNA was extracted as above.  A 

standard DNA concentration curve was based on serial dilutions of an ORF45 
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plasmid, pCMV-Tag2A-ORF45. Primers for human glyceraldehyde-3-

phosphate dehydrogenase (GAPDH), GAPDH-F 

(5’GAAGATGGTGATGGGATTTCCA-3’) and GAPDH-R 

(5’GATTCCACCCATGGCAAATT3’), were used to normalize the samples. 

Biological triplicates were performed for each condition and time point and each 

triplicate was analyzed by PCR in triplicate. Quantitative data are presented as 

means and error bars for only the positive component of the SD. 

 

(ii) Viral supernatants 

Pre-cleared media was collected under each condition at various time points 

post-infection (p.i.) and particles pelleted by centrifugation at 65,204 x g for 30 

minutes at 4°C in a SW-41Ti rotor through 750 µL of a 20% sucrose cushion. The 

pellet containing viral particles was resuspended in DNase buffer (100 mM Tris-

Cl; 25 mM MgCl2; 1 mM CaCl2) in PBS overnight at 4°C. Viral particles were then 

dissociated by bath sonication in an ice bath slurry 5 times for 3 seconds each, 

and samples were treated with 5 U RNAase free DNase I (Stratagene) for 30 

minutes at 37°C to leave only encapsidated DNA. DNase I was inactivated with 

50 mM EDTA and an additional 10 minutes of incubation at 65°C to inactivate the 

DNase. Samples were then treated with 0.1 mg/mL proteinase K (PK) (Sigma-

Aldrich) at 55°C overnight. DNA was extracted with phenol-chloroform and 

precipitated with ethanol along with 1 µg of glycogen carrier (Glycoblue; Ambion). 

RRV genomic copy numbers were assayed in triplicate by real-time PCR (SYBR 

green PCR Master Mix; Applied Biosystems), using primers specific to the 
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ORF45 coding sequence (ORF45F, 5’TGATTCGTCCCATGTCTCAA3’; 

ORF45R, 5’CCTGTTGTTGCTGGATCAAA3’) and amplified and detected with an 

ABI Prism 7900 HT detection system instrument at the University of Virginia 

Biomolecular Research Center. Quantification was based on serial dilution of a 

plasmid bearing the ORF45 coding sequence, pCMV-Tag2A-ORF45.  

 

Plaque Assay 

Determination of viral titers was performed essentially as described previously 

(71). In brief, RhF were plated in 12-well plates. 48 hours later, confluent 

monolayers were infected with 5-fold serial dilutions of pre-cleared media 

containing an unknown concentration of virus. Each dilution was done in 

triplicate. Plates were incubated for 1 hour at 37°C with rocking every 15 minutes 

to ensure uniform distribution of the virus. After 1 hour, overlay media containing 

0.6% methyl-cellulose was added. Plates were incubated for 5 days at 37°C. 

Overlay media was removed and cells were stained with crystal violet for 10 

minutes at room temperature. Plaques were counted using an inverted 

microscope (Nikon Eclipse TE-2000-E) at X 10 magnification. Absolute titers 

were determined based on the dilution used and the number of plaques counted. 

Data are presented as means and SD. Statistical significance between conditions 

was determined using an unpaired Student’s t test.  

 

IF Assay 

20,000 cells/well were  reverse  transfected with  RNAiMax (Life Technologies)  
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with either ORF52 siRNA or control siRNA and plated onto 48 well plates 

containing a Cell-Tak (BD Biosciences) coated 8 mm round coverslip (Electron 

Microscopy Sciences) and incubated for 24 hours. Cells were then infected with 

RRV at a MOI of 5 or mock infected.   

48 h p.i., cells were fixed with 4% formaldehyde in PHEM buffer (60 mM 

PIPES, 25 mM HEPES, 10 mM EGTA, 2 mM MgCl2, pH 6.9) solution for 15 

minutes at room temp. Cells were washed 3x with PHEM buffer and then 

permeabilized in 0.25% triton in PHEM buffer for 10 minutes and washed 3x with 

PHEM buffer.  The samples were blocked overnight at 4C in 10% normal goat 

serum (in PHEM). 

Samples were stained at room temperature with antibodies diluted in 5% 

normal goat serum (in PHEM).  Primary antibodies were incubated for 1 hour, 

and secondary antibodies were incubated for 30 minutes. The staining was 

sequential (i.e. primary then corresponding secondary followed by the next 

primary and its corresponding secondary and so forth) with 3x washes of PHEM 

buffer between each antibody. Primary antibodies to ORF52 (1:500), ORF45 

(1:250), and SCIP (1:250), conjugated to 488 using the Mix-n-Stain CF488A kit 

(Biotium) were used.   Secondary antibodies Alexa Fluor 647 goat anti-mouse 

(ORF52) and Alexa Fluor 555 goat anti-rabbit (ORF45) (both 1:500) (Life 

Technologies), respectively were used. After the last secondary antibody, cells 

were counterstained with DAPI (4,6-diamidino-2-phenylindole; Sigma) (1.0 µg/mL 

in double distilled water) for 5 minutes and washed 1x with double distilled water.  

Cover slips were mounted onto microscope slides (Fisher) with Fluro-Gel 



	   73	  
(Electron Microscopy Sciences) and imaged using the Zeiss 710 confocal 

microscope. 

 

Transmission Electron Microscopy  

(i) RRV infected RhF  

48 h p.i. media was removed from the 10 cm2 plate and RhF cells were washed 3 

times with 1X PBS at RT. 2.5% electron microscopy grade gluteraldehyde 

(Electron Microscopy Sciences) in 1X PBS was added to the plate to fix cells for 

10 minutes at room temperature. Cells were then scraped into a tube and 

pelleted by centrifugation at 350 x g for 5 minutes at RT. The fixed cell pellet was 

stored at 4°C until processing at the University of Virginia (UVa) Advanced 

Microscopy (AVM) Core.  

 

(ii) Supernatants 

48 h p.i. media was collected and concentrated by centrifugation over sucrose 

cushion as described above. Following centrifugation, media was decanted and 

the remaining pellet was fixed in 2.5% gluteraldehyde in 1X PBS. Samples were 

stored at 4°C until processing. 

Samples were post-fixed in 2% osmium tetroxide, dehydrated in graded 

ethanol, and embedded in epoxy resin. Ultrathin sections, approximately 60-

70nm in thickness, were collected on 200 mesh copper grids and contrast-

stained with lead citrate and uranyl acetate. The sections were examined at 80 

kV on a JEOL 1230 transmission electron microscope at the UVa AVM Core. 
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Complementation of RRV ORF52 with exogenous siORF52 resistant 

plasmid  

N-terminal myc-tagged siORF52 resistant RRV ORF52 was generated from a 

pK-myc wt RRV ORF52 plasmid. The pK-myc plasmid was derived from pKH3 

backbone and a gift from Deborah Lannigan and Ian Macara. Full-length ORF52 

sequence was amplified by PCR using purified RRV DNA as a template and 

primers that added a NotI and an EcoRI sequence to ORF52 for cloning (NotI-

ORF52-F 5’-ATAAGAATGCGGCCGCTTATGTCTTCCACGCGT-3’ and EcoR1-

ORF52-R 5’-GGAATTCCTAGTCCGCGTCGTTATT-3’). RRV ORF52 was cloned 

into the pK-myc vector at the NotI and EcoRI sites. The sequence of the wt pK-

myc-RRV52 plasmid was confirmed prior to further use by sequencing with Sp6 

Fwd primer and comparison to published RRV ORF52 genomic sequence. wt 

pK-myc RRV ORF52 plasmid was used as a template to generate an RRV 

ORF52 siRNA resistant plasmid (siORF52). Primers were designed that would 

alter 2 nucleotides (225 and 228) in the wobble base position of two adjacent 

amino acid coding sequences of ORF52 that are complementary to the ORF52 

siRNA. Changed nucleotides are underlined. 5’–

AACCCGTAAAATCGAAGCTAA–3’. The siORF52 resistant plasmid was 

generated using the primers containing the desired mutations, the wt pK-myc 

ORF52 plasmid, and the QuikChange Lightening Site-Directed Mutagenesis Kit 

(Life Technologies). The mutations were verified by sequencing of the pK-myc-

siORF52 resistant plasmid.  
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Confirmation of Res52 expression and resistance to siORF52 

1x106 HEK293 cells in 2.5 mL media were plated in a 6 well plate containing 0.5 

mL Opti-mem and 20 nM siCNL or siORF52 and 5 µL RNAiMax (Life 

Technologies). 24 hours later cells were transfected with 1 µg pK-myc wtORF52 

(wt52) plasmid or 1 µg pK-myc-siORF52 resistant plasmid (Res52) combined 

with 3 µL Lipofectamine 2000 (Life Technologies) in 500 µL Opti-mem and 

subsequently incubated at 37°C. 5 hours later media was removed, cells were 

washed with 1X PBS, and 3 mL fresh complete media was added. 48 hours later, 

media was removed and cells were washed 3 times in 1X PBS. Expression of 

ORF52 was determined by gel electrophoresis and western (methods are 

identical to those stated in the protein electrophoresis and immunoblotting and 

expression of viral lytic proteins section). 

 

Complementation assay  

6x106 RhF cells were transfected via Amaxa nucleofector program T-016 with 6 

µg of pK-myc-empty vector or pK-myc-siORF52 resistant plasmid DNA in primary 

fibroblast nucleofection reagent and plated in a 10 cm2 plate. 24 hours later, cells 

were reverse transfected with siRNA by lifting cells off the plate with 0.05% 

trypsin and replating in 8 mL of complete media on 10 cm2 plates containing 2 

mL Opti-Mem, 20 nM siCNL or siORF52, and 25 µL RNAiMax (Life 

Technologies). 24 hours later cells were infected in 2 mL complete media for 1 

hours with RRV at an MOI 5 at 37°C and rocked every 15 minutes to ensure 

even distribution of virus. Following infection, virus was removed, cells were 
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washed 3 times in 1X PBS, and complete media was added. Media and cells 

were collected 48 h p.i. and protein composition determined by gel 

electrophoresis and western (methods for determining cell pellet and protein 

composition in the media are identical to those stated in the protein 

electrophoresis and immunoblotting and expression of viral lytic proteins section). 

 

IF Assay for Complementation  

6x106 RhF cells were transfected via Amaxa nucleofector program T-016 with 6 

µg of pK-myc-empty vector or pK-myc-siORF52 resistant plasmid DNA in primary 

fibroblast nucleofection reagent and incubated in a 10 cm2 plate for 24 hours. 

25,000 cells/well were subsequently reverse transfected with RNAiMax 

(Invitrogen) with either ORF52 siRNA or control siRNA and plated onto 48 well 

plates containing a Cell-Tak (BD Biosciences) coated 8 mm round coverslip 

(Electron Microscopy Sciences) and incubated for 24 hours. Cells were then 

infected with RRV at a MOI of 5 or mock infected. Remainder of staining and 

imaging methods are the same as above in IF Assay, except the secondary 

antibodies used were Alexa Fluor 488 goat anti-mouse and Alexa Fluor 555 goat 

anti-rabbit (both 1:500) (Life Technologies).   

 

Results 

Efficient knockdown of ORF52 has little effect on other viral structural 

proteins 



	   77	  
To begin investigating the function of ORF52 during lytic RRV infection, we 

first knocked down its expression by transfecting RhFs with either control (siCNL) 

or ORF52 (siORF52) specific siRNA 24 hours prior to the addition of the virus. 

Using quantitative western blots, we then measured the relative levels of ORF52 

as well as several other lytic structural proteins in the cell lysates (Figure 2-1A 

and 2-1B). In cells targeted with ORF52 siRNA, the knockdown of ORF52 was 

nearly complete at 97% compared to the robust expression in controls (siCNL). 

In contrast, another tegument protein, ORF45, and capsid proteins, small 

capsomer interacting protein (SCIP/ORF65) and major capsid protein 

(MCP/ORF25), showed no statistically significant change (Figure 2-1B). We 

noted similar results with the use of a second ORF52-targeting siRNA (data not 

shown). These results suggested that expression of the structural proteins we 

examined were independent of the synthesis of ORF52 and that the knockdown 

was specific. 

 

Loss of ORF52 markedly decreases viral titer 

We next determined if the depletion of ORF52 had an effect on productive RRV 

infection by assessing the release of infectious virions. In earlier work with MHV-

68, cells transfected with a BAC construct containing a stop codon in its ORF52 

(ORF52Stop-BAC) did not result in the release of measurable infectious virus 

(27). Therefore, we hypothesized that if ORF52 were likewise required for RRV 

production then the titers we measured from siORF52 treated cells would be 

significantly  lower  than from  controls.  In  five separate  experiments, we  found 
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Figure 2-1. Efficient knockdown of ORF52 significantly decreased RRV titer 

with only minimal effects on intracellular levels of other structural viral 

proteins. (A) Immunoblot analysis of cell lysates from RhF transfected with 

control siRNA (siCNL), lane 1, or ORF52 siRNA (siORF52), lane 2 and then 

infected with RRV 24 hours later at MOI 5. Cells were harvested 48 h p.i. and 

immunoblots were performed, probing for the viral tegument proteins, ORF52 

and ORF45, the capsid proteins, MCP and SCIP, and, in addition, actin, to 

normalize for loading differences. (B) Graphical representation of the intracellular 

levels of the indicated viral structural proteins after siORF52 treatment relative to 

siCNL in RRV infected RhF cells. Data represent the mean +/- SD of 6 individual 

experiments. (C) Viral titers in the media 48 h p.i. from RhF treated with siCNL or 

siORF52 were determined from 6 different experiments by viral plaque assay. 

Values are mean +/- SD. ****p<0.0001. 
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that the titers from siORF52 treated cells were over 300-fold lower than from 

controls (Figure 2-1C), indicating that ORF52 was indeed critical for efficient 

production and/or release of infections virions. 

We subsequently asked whether depletion of ORF52 affected intracellular 

levels of viral DNA, thereby leading to the decrease in viral titer we observed 

following ORF52 knockdown. Since viral protein production of lytic proteins 

seemed grossly unaffected despite the near absence of ORF52 (Figure 2-1A and 

2-1B) and since ORF52 is a late gene expressed after viral DNA replication (73), 

we hypothesized that viral DNA copies would not be markedly affected in 

siORF52 treated cells. We, instead, predicted that the block in virus production 

would be at a stage after viral DNA replication. qPCR analysis showed that viral 

DNA increased approximately 3 orders of magnitude between 12 and 24 hours 

for  siCNL treated cultures following infection and only modestly less with ORF52 

knockdown (Figure 2-2A). While DNA in cell lysates with ORF52 knocked down 

had 25% and 50% fewer copies of viral DNA at 24 and 48 hours post-infection, 

respectively, the overall kinetics and expression profile closely paralleled that of 

siCNL treated cells, suggesting that knockdown of ORF52 did not grossly inhibit 

viral DNA replication (Figure 2-2A). Combined, these results indicated that 

neither the production of structural viral proteins (Figure 2-1A and 2-1B) nor the 

lytic replication  of  viral   DNA  (Figure 2-2A)   could  account  for   the  profound 

reduction (>300-fold) in viral titer that resulted from ORF52 knockdown. Rather, 

the  findings  suggested a  block  at  a subsequent  stage  of  particle  maturation. 
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Figure 2-2. Intracellular viral DNA production and packaging within 

particles appeared independent of ORF52. (A) RhF cells were transfected with 

siCNL or siORF52 and 24 hours later infected with RRV at MOI 5. At the time 

points indicated, cells were collected and total intracellular DNA was isolated and 

purified. Viral DNA was quantified by SYBR green qPCR with primers to the RRV 

ORF45 coding region. (B) RhF cells were transfected with siCNL or siORF52 and 

24 hours later infected with RRV at MOI 5. At the time points concentrated 

particles were treated with DNase followed by PK and viral DNA was isolated, 

purified, and quantified by SYBR green qPCR with primers for RRV ORF45. 

Values are the mean and SD of 2-3 qPCR replicates from 3 separate 

experiments with only the positive component of errors shown for increased 

graphical clarity. 
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Release of an increased proportion of empty particles 

Although intracellular viral DNA and lytic structural proteins were present at close 

to control levels despite the near absence of ORF52, we could not rule out the 

possibility that ORF52 might be necessary for DNA packaging of capsids within 

the nuclei. Therefore, we next asked whether ORF52 knockdown led to a 

decrease in the DNA content of released particles, measuring encapsidated viral 

DNA in media from cells treated with siCNL or siORF52 at multiple time points 

following infection with RRV. DNAse-resistant (encapsidated) viral DNA in the 

media of both siCNL and siORF52 treated RRV infected cells began to 

appreciably accumulate 12 h p.i. and continued to increase through 48 h p.i. 

(Figure 2-2B). However, encapsidated viral DNA released from siORF52 treated 

cells was approximately 9-fold and 6-fold lower at 24 and 48 h p.i., respectively, 

compared to control levels at these times (Figure 2-2B). These results suggested 

that ORF52 knockdown led to the release of either fewer overall particles or a 

lower proportion of particles containing viral DNA, or both. In either case, 

however, the modest difference in encapsidated viral DNA at 48 h p.i. in the 

media from the ORF52 knockdown (kd) condition was also insufficient to explain 

the large drop in titers (>2.5 orders of magnitude) (Figure 2-1C). Therefore, it 

followed that the major contributor to the loss in titer likely stemmed from a defect 

in particle infectivity other than DNA packaging or drop in particle number.  

 

ORF52 knockdown led to the release of subviral particles lacking tegument  

To test  whether  the  decrease  in  encapsidated  viral  DNA  drop  from  ORF52  
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knockdown resulted from a concomitant drop in released particles, we first 

collected media from siCNL or siORF52 treated RhF cells 48 h p.i., isolated 

potential viral particles from the media by centrifugation through a sucrose 

cushion and then used quantitative immunoblotting to measure the levels of 

particle-associated structural proteins from equal volumes of concentrated 

media. Since ORF52 knockdown led to such a dramatic decrease in viral titer 

that was nearly 2 orders of magnitude greater than the relatively modest 

reduction in encapsidated viral DNA, we predicted that we would observe 

qualitative as well as quantitative differences in the protein composition of the 

released particles. As we anticipated, siCNL treatment of RhF cells led to the 

production of particles containing capsid proteins MCP and SCIP, as well as 

tegument proteins ORF45 and ORF52 (Figure 2-3, lane 1). The particles from 

siORF52 treated cells also contained the capsid proteins MCP and SCIP and, not 

surprisingly, they lacked ORF52. We noted, however, that the difference in 

particle associated capsid proteins (MCP and SCIP) released from siCNL and 

siORF52 treated cells was minimal (Figure 2-3B). Since the stoichiometry of both 

SCIP and MCP is fixed in the icosahedral capsid of all herpesviruses (121, 133, 

226, 299), these results suggested that the overall abundance of released virion 

or subvirion-like particles was similar in the two conditions following RRV 

infection.  

In contrast, we noted that the released particles from the ORF52 kd 

conditions also lacked the tegument protein ORF45, despite its presence within 

the  siORF52  treated  cell  lysates  (Figure 2-1A and 2-1B).  Figure 2-3B  depicts 
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Figure 2-3. In the absence of ORF52, RRV infection led to release of                                      

immature particles lacking tegument. (A) RhF cells were transfected with 

siCNL, lane 1, or siORF52, lane 2, and then infected 24 hours later with RRV at 

MOI 5. 48 h p.i., supernatants were collected and concentrated over a 20% 

sucrose cushion to isolate particles and equal volumes of media were separated 

by SDS-PAGE and immunoblotted for MCP, ORF45, SCIP, and ORF52. (B) 

Graphical representation of the effect of siORF52 relative to siCNL on the levels 

of the indicated viral protein within the released viral particles. Data represent the 

mean +/- SD of 6 individual experiments. **p<0.01 and ****p<0.0001. 
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graphically the protein levels from six separate experiments quantifying the 

ratio of each protein associated with particles released from siORF52 compared 

to siCNL treated cells. These results demonstrated that both ORF52 and ORF45 

were virtually absent in particles present in the media of siORF52 treated cells. 

Since the decrease in viral titer between siORF52 compared to siCNL treated 

cells was 300-fold (Figure 2-1C), despite the suggestion of similar particle 

numbers (Figure 2-3B), we reasoned that the greatly lower infectivity of particles 

in the media from ORF52 knockdown cells likely resulted from the production of 

incomplete particles lacking, at a minimum, a full complement of tegument 

proteins.  

 

Loss of ORF52 prevents ORF45 incorporation into the particle 

As we have just remarked above, though the intracellular abundance of tegument 

protein ORF45 remained essentially unaffected following ORF52 knockdown 

(Figure 2-1A and 2-1B), it was absent from released particles (Figure 2-3A and 2-

3B). Earlier studies with KSHV have documented that KSHV ORF45 and KSHV 

ORF52 interact by both co-IP and yeast two-hybrid studies, though the latter was 

only evident when ORF52 served as bait but not as prey (267) and similar 

interactions are less clear for the murine gammaherpesvirus, MHV-68 (82, 330). 

To gain further insight into the interactions between ORF52 and ORF45 during 

RRV infection, we assessed their subcellular localization using 

immunofluorescence microscopy (IF) in the absence or presence of ORF52 

knockdown (Figure 2-4). In siCNL cells, IF revealed that ORF45 localization was 
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diffuse in the nucleus with nucleolar sparing but highly punctate in the 

cytoplasm while ORF52, in agreement with MHV-68 ORF52 staining (27), 

displayed a discrete punctate pattern in the cytoplasm and was absent from the 

nucleus. Additionally, the merge of the two staining patterns demonstrated that 

punctate patterns of ORF52 and ORF45 in the cytoplasm overlapped, consistent 

with their representing individual or collections of viral or subviral tegumented 

particles (Figure 2-4A, upper panels and 2-4B, left panel). To help assess 

whether the punctate cytoplasmic staining of the two tegument proteins did 

reflect maturing virions, we also co-stained for SCIP, reasoning that it would 

localize to trafficking capsids and would co-localize with both ORF52 and 

ORF45. However, we found that cytoplasmic compared to nuclear SCIP staining 

was weak, possibly reflecting a partial masking of the SCIP epitope due to the 

overlying tegument proteins. In contrast, following ORF52 knockdown, ORF45 

remained strictly nuclear and SCIP staining in the cytoplasm was now prominent, 

though mainly adopting an aggregated perinculear distribution (Figure 2-4A, 

lower panels and 2-4B, right panel). Together, these images suggested a role for 

ORF52, directly or    indirectly,  in  the  export  of  ORF45   into   the  cytoplasm.  

Of note,  co-IP experiments failed to demonstrate an interaction between ORF45 

and ORF52 either from RRV infected RhF cells or from HEK293 cells following 

ectopic expression of the two tegument proteins (data not shown). Thus, during 

unperturbed assembly of the virions, ORF45 appeared to exit the nucleus by its 

incorporation within maturing particles as they acquired tegument. The exact 

mechanism  underlying  the ORF52-dependence of  this  incorporation, however,  
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Figure 2-4. ORF52 knockdown restricted ORF45 to nucleus. (A) RhF cells 

were reverse transfected with siCNL, upper panels (i-v), or siORF52, lower 

panels (vi-x) and plated onto coverslips. 24 hours later cells were infected with 

RRV at MOI of 5 and then 48 h p.i., cells were fixed and stained with conjugated 

anti-SCIP, anti-ORF52, and anti-ORF45 antibodies, as indicated, followed by the 

secondary antibodies Alexa Fluor 647 goat anti-mouse or Alexa Fluor 555 goat 

anti-rabbit. Cells were stained with DAPI. (B) Magnified (3X) areas indicated by 

dotted lines in merged images of (A), panels v and x. Arrows in siCNL (panel i) 

point to punctate orange staining (due to ORF45-ORF52 co-localization) in the 

cytoplasm, consistent with tegumented viral particles during maturation/egress. 

Arrowheads in siORF52 (panel ii) point to yellow cytoplasmic staining consistent 

with SCIP Ab reactivity in the absence of ORF45 and ORF52 reactivity and 

suggesting untegumented cytoplasmic capsids. 
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remains unclear (see Discussion). 

 

Secondary envelopment depends on ORF52  

Since the immunofluorescence images of infected cells with ORF52 knockdown 

showed little to no evidence of either ORF52 or ORF45 in the cytoplasm, and 

immunoblots of the released particles from these cells, likewise, demonstrated an 

absence of these two tegument proteins, we hypothesized that the particles 

would more closely resemble capsids rather than mature trilaminar virions. 

Further, since we also detected lower levels of encapsidated DNA in the media 

from ORF52 kd cells, we anticipated observing a greater proportion of empty 

particles lacking electron-dense genomic viral DNA otherwise typical in electron 

micrographs of mature herpesviruses ((36, 184, 349, 356) and reviewed in (208, 

211, 213)). 

 After centrifuging media over a sucrose cushion, we fixed the pelleted 

samples and visualized any particles from both ORF52 knockdown and control 

conditions using thin-section transmission electron microscopy (TEM). The 

majority of particles from siCNL treated cells appeared to be mature virions 

containing DNA, an icosahedral capsid, tegument, and envelope (Figure 2-5A). 

In contrast, the particles from siORF52 treated cells had the shape and diameter 

of capsids and lacked evidence of either tegument or envelope (Figure 2-5B). A 

number of these subviral particles contained the electron-dense DNA that is 

typical of TEM images of herpesviruses; however, compared to siCNL, there was 

an   increase   in   the   proportion   of   empty   (lacking   DNA)   capsids  present  
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Figure 2-5. TEM images of the concentrated media from RRV-infected RhF 

after ORF52 knockdown demonstrated release of untegumented and 

unenveloped capsid-like particles, many of which lacked DNA. RhF cells 

were transfected with siCNL or siORF52 and infected 24 hours later with RRV at 

MOI 5. 48 h p.i. media was removed and layered over a sucrose cushion prior to 

centrifugation. Pelleted supernatants were fixed and examined by TEM at 30K 

magnification. In contrast to the siCNL sample (A) that contained mature virions 

with envelope (e) and tegument (t) surrounding a capsid (c), particles from 

siORF52 treated RhF cells (B) appeared to lack both envelope and tegument. 

(d), encapsidated viral DNA. Inset images are expanded 3X from original images 

(dashed boxes). 
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(Figure 2-5B). This result suggested that ORF52 was necessary for the 

production and release of fully formed virions at a stage subsequent to capsid 

protein production, assembly and DNA replication and packaging but before 

tegumentation and envelopment. 

 

ORF52 is necessary for tegumentation and envelopment 

Although we had anticipated that knockdown of a conserved tegument protein 

such as ORF52 might interfere with virion maturation, we also expected that this 

block would inhibit particle release. Thus, we were struck by the apparent 

efficiency with which infected cells knocked down for ORF52 still released 

subviral (defective) particles in quantities that approximated the numbers of 

presumably mature virions from control cells (Figure 2-3B). To better 

characterize this unexpected phenomenon and to more precisely elucidate the 

stage that requires ORF52 for virion maturation, we used TEM to examine the 

morphology and distribution of particles within infected cells with or without 

ORF52 knock down. 

 That ORF52  appeared to play  a critical  structural role  in  tegumentation 

and secondary envelopment, similar to its homolog in MHV-68 (27), was 

consistent with its cytoplasmic localization during lytic infection (Figure 2-4) and 

our earlier finding that it belongs to the inner tegument of RRV (239). TEM 

revealed that cells receiving either siCNL or siORF52 produced all three major 

types of capsid species within their nuclei, which is typical for infection with RRV 

and other herpesviruses ((110, 121, 226, 238, 299) and reviewed in (133)): A, 
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empty; B, containing scaffold protein; and C containing viral DNA (Figure 2-6A 

and 2-6B). These results demonstrated that capsid assembly and DNA 

packaging did not require ORF52 expression and provided strong support for our 

earlier data showing that released particles still had DNase-resistant, packaged 

viral DNA, even after kd of ORF52 (Figure 2-2B). 

 Likewise, we noted that capsid egress from the nucleus into the cytoplasm 

also appeared independent of ORF52 expression. TEM revealed cytoplasmic 

particles under both knockdown and control conditions (Figure 2-6C and 2-6D). 

In the cytoplasm of siCNL treated cells, multiple trilaminar, mature virions were 

evident within large vesicles (Figure 2-6C). However, in cells treated with 

siORF52, the cytoplasm contained a large number of untegumented and 

unenveloped subviral particles that were indistinguishable from nuclear capsids 

and no evidence of mature virions (Figure 2-6D).  

Since invagination into vesicles appears coupled with tegumentation and 

secondary envelopment (reviewed in (211)), it seemed that ORF52 was 

necessary for these maturation steps (Figure 2-6D). We also noted that in 

ORF52 knockdown cells there appeared to be a larger number of total capsids 

present in the cytoplasm compared to the combined number of subviral particles 

and virions in siCNL cells (quantified below), providing further evidence that 

inhibition of tegumentation in cells lacking ORF52 created a block in efficient 

release of particles via the canonical vesicle-based pathway. Comparison of 

particles from the nucleus of siCNL or siORF52 treated cells and the cytopasm of 

siORF52  treated  cells  showed that  the  species  appeared  similar in  size  and  
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Figure 2-6. TEM of RRV infected cells following ORF52 knockdown showed 

block in tegumentation and secondary envelopment, leading to peri-

vesicular accumulation of capsids as well as a lack of cell surface-

associated virions. RhF cells were transfected with siCNL or siORF52 and 

infected as in Figure 5. 48 h p.i. cells were fixed and examined by TEM at 40K 

magnification. The nucleus of siCNL (panel A) and siORF52 (panel B) treated 

cells contained A (empty) capsids (unfilled arrowhead), B capsids containing 

scaffold (chevron), and C capsids with DNA (arrow). The cytoplasm of siCNL 

cells (panel C) contained large vesicles (ves) filled with multiple tegumented and 

enveloped mature virions. In contrast, cytoplasm of siORF52 treated cells (panel 

D) contained untegumented, unenveloped capsids that were juxtaposed to but 

not within vesicles (filled arrowheads indicate capsids surrounding vesicle). 

Multiple extracellular plasma membrane (pm)-associated virions were present in 

siCNL cells (panel E) but not in siORF52 samples (panel F). Inset images are 

expanded 3X from original images. Cyto (cytoplasm), nuc (nucleus). 
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morphology (compare insets from Figures 2-6A and 2-6D). This finding 

suggested the particles in the cytoplasm of cells knocked down for ORF52 likely 

lacked most, if not all, of their tegument as well as their envelope.  

 

Efficient release and cell-surface association of viral particles are ORF52 

dependent 

The presence of cell surface associated virions post egress is typical during 

productive infection with herpesviruses. Although the mechanism of particle 

release into the media from ORF52 knockdown cells remains unclear, we 

predicted that these subviral particles, lacking tegument and envelope, would 

also be defective in adhering to the cell surface since in other herpesviruses (and 

enveloped viruses, in general) this depends on the interaction between cellular 

BST2/tetherin and viral envelope glyocproteins ((146, 150, 192, 244, 271, 351) 

and reviewed in (324)). To address this question, we examined the cell surface of 

both siORF52 and siCNL treated cells and found that knockdown of ORF52 led 

to a marked absence of cell surface associated particles (Figure 2-6F). In 

comparison, control cells showed mature virions populating large areas of the 

plasma membrane (Figure 2-6E).  

To assess more precisely the effect of ORF52 on viral maturation, we 

quantified the different phenotypes of particles within the nuclear and cytoplasmic 

compartments, as well as those released particles collected from the media 

(Table 2-1). While the total number of particles in siCNL and siORF52 was 

similar,  overall, the relative  proportion of the different viral and  subviral  species  
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Table 2-1. Distribution of intracellular and released viral and subviral 

particles following RRV infection with and without ORF52 knockdown 
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and their location differed markedly between control and knockdown 

conditions. In siCNL cells, the nuclei contained approximately twice as many 

capsids as in the ORF52 knockdown; however, the proportion of A, B, and C 

capsids were similar. Conversely, in the cytoplasm, cells lacking ORF52 

contained over four times as many particles as were present in siCNL cells, 

suggesting that egress from the cell was less significantly efficient. We reasoned 

that this relative intracellular accumulation of particles might have led to fewer 

released particles in the media of the kd compared to control condition; however, 

we found little difference (Figure 2-3B). One possible explanation for this is that a 

large portion of the particles following egress in the controls remained cell-

surface associated (see Figure 2-6F), thereby lowering the number released into 

the media. 

 In siCNL cells, virions within vesicles constituted the majority (61%) of 

total cytoplasmic particles while in siORF52 cells, virions within vesicles totaled 

only 2 of the 327 (<1%) viral particles that we detected. Unenveloped and 

untegumented capsids comprised the remaining cytoplasmic subviral particles in 

the siORF52 treated cells and were often present surrounding vesicles as 

evident in Figure 2-6D (see arrowheads). Examining 10 randomly selected 

infected cells from siCNL and siORF52 treatments, we enumerated the cell 

surface-associated virions near the cellular plasma membrane and detected 145 

cell surface-associated virions in siCNL cells in contrast to 1 subviral particle 

evident in siORF52 conditions. Combined with the TEMs (Figures 2-5 and 2-6), 

these  results  demonstrated  that  ORF52   played   little   if   any  role  in  capsid 
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formation, DNA packaging, or nuclear egress, but, instead, was critical for 

later steps of maturation, including tegumentation, secondary envelopment, 

release and virion adherence to the cell surface. 

 

Expression of siRNA-resistant ORF52 in trans partially rescued maturation 

and release of infectious virions in ORF52 knockdown cells  

To confirm that the block in tegumentation and secondary envelopment was 

specific to ORF52 knock down and not to off-target effects, we sought to rescue 

the defect by providing siRNA-resistant myc-tagged ORF52 in trans (Res52). We 

engineered the Res52 plasmid to have two wobble base changes, making it 

resistant to siORF52. To confirm that Res52 was expressed in cells and resistant 

to siORF52, we first transfected HEK293 cells with no siRNA, siCNL, or siORF52 

and 24 hours later transfected cells with wt ORF52 (wt52) or Res52. Cells 

transfected with wt52 and Res52 alone, or with siCNL, expressed ORF52 (Figure 

2-7A, lanes 1, 2, 4, and 5). Cells treated with siORF52 and transfected with wt52 

effectively knocked down ORF52 (Figure 2-7A, lane 3), in contrast to cells that 

received Res52 that still expressed ORF52 even with siORF52 transfection 

(Figure 2-7A, lane 6). We next transfected RhF cells with either empty myc-

tagged vector (pk-myc) or Res52 and 24 hours later treated the cells with siCNL 

or siORF52 and then infected at an MOI of 5 as we had in our earlier 

experiments. Infection of RhF cells transfected first with an empty-myc tagged 

vector (pk-myc) and siCNL expressed MCP and SCIP, as well as ORF45 and 

ORF52   (Figure 2-7B,  lane 1),  whereas   cells   transfected   with   pk-myc   and  
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Figure 2-7. Complementation of ORF52 knockdown with exogenous siRNA-

resistant ORF52 partially rescued wild-type phenotype. (A) HEK293 cells were 

reverse transfected with siCNL or siORF52. 24 hours later cells were transfected with wt 

myc-tagged ORF52 (wt52) or siORF52 resistant myc-tagged ORF52 (Res52) and 

harvested for immunoblot analysis 48 hours later. (B-F) RhF cells transfected with either 

empty myc-tagged vector (Vec) or Res52 were reverse transfected 24 hours later with 

siCNL or siORF52. After an additional 24 hours cells were infected with RRV at MOI of 5 

and then harvested 48 h p.i. (B) Immunoblot analysis of cell lysates from infected RhF 

first transfected with siCNL + Vec, lane 1, siORF52 + Vec, lane 2, or siORF52 Res52, 

siORF52 + Res52, lane 3. Protein blots were incubated with Abs specific for the viral 

tegument proteins ORF45 and ORF52, the capsid proteins, MCP and SCIP, and cellular 

actin, to normalize for loading differences. (C) Graphical representation of the levels of 

the indicated viral proteins after siORF52 treatment with Vec (black bars) or Res52 (gray 

bars) relative to siCNL in infected RhF cells. Data represent the mean +/- SD of 4 

individual experiments. (D) Immunoblot analysis of concentrated media collected from 

RhF transfected siCNL + Vec, lane 1, siORF52 + Vec, lane 2, or siORF52 + Res52, lane 

3. Protein blots of the supernatants were probed for ORF45, ORF52, MCP, and SCIP. 

(E) Graphical representation of the levels of the indicated viral proteins in released 

particles after siORF52 treatment following transfection with Vec (black bars) or Res52 

(gray bars), relative to those in particles released from siCNL treated cells. Data 

represent the mean and SD of 4 individual experiments. For (C) and (E) p values are 

calculated comparing knockdown (black bar) to rescue (gray bar). (F) Viral titers in the 

media from each condition were determined by viral plaque assay of 4 individual 

experiments. Values are mean and SD. *p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. 
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siORF52 showed a significant reduction in ORF52 (Figure 2-7B, lane 2), 

similar to the pattern we discerned in infected cultures pretreated with only 

siORF52 (Figure 2-1A and 2-1B). Aside from the near absence of ORF52 in cell 

lysates, production of other viral proteins that we examined was not significantly 

different from infected cells transfected with empty vector and siCNL (Figure 2-

7C, black bars). In cell lysates from the complementing RhF cells (i.e. transfected 

with pk-myc-Res52, abbreviated as Res52 from this point onwards), we detected 

Res52 that, as we expected, migrated more slowly than wild-type ORF52 due to 

the myc tag (Figure 2-7B, lane 3). With the exception of SCIP that is modestly 

depressed (by approximately 25%) in the kd/Res52 condition compared to the 

control (kd/vector), the intracellular levels of the non-targeted structural proteins 

are similar in the two conditions (Figure 2-7C, gray bars). Expression of the 

transfected Res52 in siORF52 treated, RRV infected cells is notably lower than 

that of wt ORF52 encoded by the virus in cells treated with siCNL + vector, yet it 

is significantly higher (11-fold) than the wt ORF52 levels following knockdown 

alone (siORF52 + pk-myc vector) (Figure 2-7C). 

Since Res52 was present in the rescue cell lysate (Figure 2-7B, lane 3), 

we hypothesized that if it were expressed at the correct time in the viral life cycle 

and in a useable form, we would observe some rescue of the knock down 

phenotype. We first examined particle composition from media collected from the 

control, knockdown, and rescue conditions. As we had observed previously with 

infected cells pre-treated with siCNL or siORF52 (Figure 2-3), the levels of 

particle-associated capsid proteins (MCP and SCIP) were similar in the presence 
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or absence of complementing Res52 following ORF52 kd compared to 

controls (Figure 2-7D), and the two tegument proteins (ORFs 45 and 52) were 

absent following kd without ORF52 complementation (Figure 2-7D, lane 2). 

However, in the particles released into the media from the rescue condition, we 

now observed Res52 at a significantly increased level (40-fold) over the amount 

in without rescue (Figure 2-7D, lane 3 vs. lane 2). The presence of Res52 in 

these released particles indicated that the Res52 that we provided in trans was 

packaged within the virion. Of note, we also observed partial rescue (albeit 

proportionally less than for Res52) of ORF45 incorporation into particles (Figure 

2-7, lane 3). The average of five experiments demonstrated an approximately 7-

fold greater amount of ORF45 per particle (using MCP as a way to normalize for 

particle number) over the particles released from infected cells pre-treated with 

siORF52 without rescue (+ pk-myc vector). This suggested that ORF45 required 

the presence of ORF52 on particles for its stable incorporation within the virion 

(Figure 2-7D and Figure 2-7E) but also that exogenous expression of Res52 may 

not be optimal in allowing efficient production of fully wt virions. 

We next tested whether the released particles that contained Res52 and 

ORF45 represented infectious virions that would, in turn, partially restore the 

suppressed viral titer. To address this, we assessed the viral titer of the media 

from the rescue vs. control conditions (i.e. ORF52 kd with or without Res52 

expression in trans, respectively). siORF52 + pk-myc vector showed a decrease 

in titer of >400 fold compared to siCNL + pk-myc vector. However, the presence 

of Res52 with siORF52 was able to partially reverse this suppression, increasing 
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the titer approximately 24 fold over siORF52 + pk-myc vector (Figure 2-7F). 

Combined, these data argued that reduction of ORF52 was responsible for the 

significant decrease in viral titer and that this decrease was likely due to a lack of 

formation and release of mature virions. However, to demonstrate the latter more 

definitively, we next examined whether Res52 could also rescue the siORF52 

block in particle maturation that was evident in our earlier TEM (Figure 2-6). 

 

ORF52 in trans partially rescued virion maturation 

To address more directly whether the increase in titer after Res52 expression in 

trans reflected an increase in the production of mature particles and, specifically, 

tegumentation and envelopment, we next asked whether we could discern an 

increase in the production and release of trilaminar virions. We again used thin-

section TEM to examine the various stages of RRV maturation in cells, this time 

comparing those transfected with pk-myc or rescued with Res52, both in the 

presence of siORF52. Since our results indicated that particles packaged 

exogenously expressed Res52 that resulted in an increase in the production of 

infectious virions (Figure 2-7F), we also expected to observe a partial rescue in 

normal virion morphogenesis. Not surprisingly, A, B, and C capsids were present 

in the nuclei of infected cells from all three conditions: control, knockdown, and 

rescue (Figures 2-8A, 2-8B, and 2-8C respectively). Likewise, examination of the 

cytoplasm in siCNL + pk-myc vector treated cells revealed multiple mature virions 

with tegument and envelope within large vesicles (Figure 2-8D) as well as cell 

associated virions on or near the plasma membrane (Figure 2-8G). In cells 



	   108	  
transfected with siORF52 + pk-myc vector, however, we once again found 

untegumented and nonenveloped particles that often surrounded but did not 

appear to enter vesicles (Figure 2-8E). Furthermore, these cells lacking ORF52 

and transfected only with vector displayed a lack of cell surface-associated 

virions (Figure 2-8H). In marked contrast, cultures under rescue conditions 

(siORF52 + Res52) displayed low but consistent levels of tegumented and 

enveloped virions located within cytoplasmic vesicles (Figure 2-8F) as well as 

cell surface-associated virions along the outer surface of the cellular plasma 

membrane (Figure 2-8I), reminiscent of the control phenotype. Consistent with 

the somewhat weak restoration of total intracellular ORF52, the degree of this 

rescued phenotype was less frequent than in the control cells. 

Likewise, with levels of Res52 and ORF45 in released particles in the 

rescue conditions lower than ORF52 and ORF45, respectively, in control 

conditions (Figure 2-7E), we predicted that we would continue to find immature 

capsid-like particles in the media along with the recovery of at least some mature 

trilaminar  virions. TEMs from the concentrated  media of  the rescue  and control 

cells bore out these predictions. Cells treated with siORF52 but expressing 

Res52 still produced naked capsids but we also observed mature-appearing 

virions with evidence of tegument, envelope, and glycoproteins that resembled wt 

virions from infected cells treated with siCNL and pk-myc (compare Figure 2-8L 

with 2-8J). Combined, these TEM images provided additional evidence that 

ORF52 is necessary for RRV tegumentation and envelopment as well as 

subsequent  release of  free  and  cell-surface associated  mature  viral  particles.  



	   109	  
 

Figure 2-8. Exogenous ORF52 rescues formation and release of 

tegumented and enveloped virions. RhF cells transfected with either empty 

myc-tagged vector (Vec) or siORF52 resistant myc-tagged ORF52 (Res52) were 

transfected 24 hours later with siCNL or siORF52 and then, after an additional 24 

hours, were infected at an MOI of 5. 48 h p.i. later cells were fixed and examined 

by TEM at 40K magnification. The nucleus of siCNL + vec (panel A), siORF52 + 

vec (panel B), siORF52 + Res52 (panel C) all contained A (empty arrowhead), B 

scaffold-containing (chevron), and C (arrow) capsids. The cytoplasm of siCNL+ 

Vec cells (panel D) contained large vesicles (ves) filled with multiple tegumented 

and enveloped virions; the cytoplasm of siORF52 + Vec (panel E) contained 

untegumented particles, many of which surrounded but were not within vesicles. 

siORF52 + Res52 cells (panel F) showed virions within cytoplasmic vesicles. In 

cells treated with siORF52 + Vec (panel H) cell associated virions are absent, in 

contrast to cells treated with siCNL + vec (panel G) or siORF52 + Res52 (panel 

I). Cells treated with siORF52 + Vec release particles that appear to be capsids, 

lacking tegument and envelope (panel K), in contrast to cells treated with siCNL 

+ Vec (panel J) and siORF52 + Res52 (panel L) that release intact, mature 

virions. Inset images are expanded 2X from original images.  
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Res52 partially restored nuclear egress of ORF45 in siORF52 treated 

cells 

Since providing Res52 in trans, in the presence of siORF52, partially rescued 

ORF45 incorporation into viral particles and led to an increase in the production 

and release of infectious virions, we also predicted that IF images would reveal a 

partial return to wild-type subcellular distribution of ORF45. To verify this, we 

again transfected RhF cells with vector or Res52 prior to ORF52 knockdown and 

RRV infection. 48 hours later pk-myc vector plus siCNL, as we had predicted, 

resulted in the normal cytoplasmic and nuclear distribution of ORF45 and only 

cytoplasmic localization for ORF52 (Figure 2-9, upper row). In siORF52 treated 

cells, the ORF45 expression again was only nuclear (Figure 2-9 middle row). 

However, with Res52 some ORF45 signal was again evident in the cytoplasm 

and appeared as punctate dots that co-localized with ORF52, suggesting that 

ORF45 and ORF52 were again packaged within virions (Figure 2-9, lower row, 

white arrows).  

 

DISCUSSION 

While there are a number of proteins (or their homologs) present in the tegument 

of all herpesvirus species (reviewed in (119)), others are restricted to a specific 

subfamily. These latter proteins likely have specialized roles critical in aspects of 

the life cycle or intracellular environment that are specific to those subfamilies. 

Most models of herpesvirus maturation suggest that final tegumentation begins 

once   a  capsid  enters   the   cytoplasm  following  nuclear  egress  (reviewed  in 
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Figure 2-9. Complementation with siRNA-resistant ORF52 partially restored 

cytoplasmic subcellular localization of ORF45. RhF cells transfected with 

either empty myc-tagged vector (Vec) or siORF52 resistant myc-tagged ORF52 

(Res52) were reverse transfected 24 hours later on coverslips with siCNL (upper 

panel) or siORF52 (middle and lower panels) and then, after 24 hours, infected 

with RRV at MOI of 5 and fixed 48 hours later. Cells were stained with anti-

ORF52 and anti-ORF45 antibodies, followed by secondary antibodies Alexa 

Fluor 488 goat anti-mouse and Alexa Fluor 555 goat anti-rabbit, respectively. 

Cells were then stained with DAPI. Arrows in merge panels (upper and lower) 

highlight overlapping signals and colocalization of ORF52 and ORF45 in the 

cytoplasm. 
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(119, 213)). Capsids in the cytoplasm may then obtain a number of tegument 

proteins while moving toward vesicles, which may have an additional reservoir of 

tegument proteins (reviewed in (119, 211)). These partially tegumented capsids 

reach the vesicles and then bud into them, acquiring additional tegument proteins 

as well as the envelope studded with glycoproteins already embedded in the 

vesicle membrane (reviewed in (119, 126)). If tegumentation depends on the 

coordinated interaction of proteins to assemble, it follows that a lack of or defect 

in one of these proteins might disturb this process. Similarly, disruption in 

tegument assembly could also lead to particles lacking the proteins necessary to 

initiate and ensure receptor-mediated invagination, thereby preventing the 

acquisition of an envelope and inhibiting vesicle-mediated egress. 

ORF52 is a tegument protein found only within the gammaherpesvirus 

subfamily. While previous studies have investigated both the structure and 

function of the murine homolog, MHV-68 ORF52 (24, 27, 330), and most recently 

the importance of phosphorylation in the ability of BLRF2, the EBV homolog, to 

complement a null mutant of MHV-68 ORF52 (82), this is the first study 

investigating the role of ORF52 in RRV, a close homolog of the human pathogen, 

KSHV. RRV ORF52 is a tegument protein that is highly abundant within virions 

and tightly associated with the capsid (239). In this report, we show that ORF52 

is necessary for tegumentation and secondary envelopment but is not essential 

for the production of structural proteins, assembly of capsids, viral DNA 

replication or packaging, or the ability of capsids to egress from the nucleus. 

Without ORF52, untegumented particles, which are morphologically 
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indistinguishable from intranuclear capsids, accumulate within the cytoplasm 

(Figure 2-6), unable to enter but often surrounding cytoplasmic vesicles where 

they would otherwise undergo secondary envelopment (reviewed in (126, 213)). 

These results are consistent with the observations from disruption of MHV-68 

ORF52, which also leads to a defect in tegumentation and secondary 

envelopment (27, 330). 

 

Increased proportion of immature particles in the absence of ORF52 

Despite the inability of the untegumented and unenveloped particles to enter 

vesicles, we detected their release into the media at levels that were similar to 

those from control cells (Figure 2-3). At first this seemed contradictory in light of 

the approximately 4-fold greater cytoplasmic accumulation of particles in the 

ORF52 kd compared to controls, which we suggest reflects the inability of the 

untegumented particles to enter the vesicle-mediated egress pathway. However, 

we also noted that essentially no virions were associated with the cell surface in 

the kd conditions, whereas the controls displayed large numbers of virions that 

remained attached to the plasma membrane following egress (Figure 2-6E and 

Table 2-1), a typical phenomenon of herpesviruses, including KSHV (112, 114). 

Thus, although the number of released particles in the media is similar, with or 

without ORF52 knockdown (Figure 2-3), the contribution of the cell surface-

associated fraction argues that the number of virions exiting the cells, in total, is 

greater in the control than in the knockdown condition. Although the mechanism 

of release of the immature particles from the siORF52 treated cells remains 
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unclear, we did investigate whether it was simply due to cell lysis. However, 

we found that even if we harvested media at 24h p.i., a time in which infection 

induced lysis is negligible (Anderson and Kedes, unpublished observations), the 

number of particles in the media, though lower than at 48h p.i., was similar 

between kd and control conditions (data not shown), arguing against this 

explanation. Furthermore, it is not immediately evident whether our results reflect 

a bona fide alternative egress pathway or arise as an artifact of the ORF52 kd 

conditions. Arguing against this last interpretation, however, is that even in 

control conditions, A, B and C capsids, together, comprised over 1/3 of the total 

released particles. Nevertheless, the mechanism of vesicle-independent particle 

release, other than through cell lysis, remains unclear and is of continued interest 

to our laboratory. 

 

ORF52 is essential for virion maturation following egress from the nucleus 

Although ORF52 kd conditions led to an approximately 6-fold reduction in the 

proportion of DNA-containing particles in the media, we conclude that their lack 

of tegument and envelope accounted for most of the drastic loss in titer (>300-

fold) that we observed (Figure 2-1C) despite similar total concentration of 

particles between kd and control conditions (Figure 2-3). The released particles 

were morphologically indistinguishable from the accumulating cytoplasmic 

particles (and nuclear capsids), lacking any discernable evidence of tegument or 

envelope (Figure 2-5). Consistent with these observations, immunoblots 

demonstrated that these particles lacked tegument proteins ORF52 and ORF45 
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(Figure 2-3). We also showed that these phenotypes are specific to ORF52, 

since myc-tagged ORF52 in trans partially rescued maturation with particle entry 

into vesicles and release of mature virions that was accompanied by the 

reappearance of cell-associated mature virions (Figure 2-7 and 2-8). 

 

ORF52 acts as a functional lynch pin for tegument formation 

Tegumentation is a complex process involving the layering of multiple interacting 

cellular and viral proteins, which occurs throughout the cytoplasm and at sites of 

secondary envelopment (reviewed in (119, 211, 275)). Earlier studies divide the 

tegument into “inner” and “outer” portions, referring to biochemical or structural 

evidence describing the relative affinity and proximity of specific sets of proteins 

to the surface of the capsid (62, 239, 336, 356, 357). When one of these 

tegument proteins is missing, it affects the ability of other proteins to be added or 

perhaps remain stably attached to the particle. We postulate that this might 

explain the loss of tegumentation that we observed by TEM and, specifically, the 

defect in incorporation of tegument protein ORF45 during RRV maturation in the 

absence of ORF52.  

In our work, we found that diminution of ORF52 critically affected the 

ability of particles to acquire this tegument layer post nuclear egress and these 

particles localized around but were unable to enter vesicles (Figure 2-6D). This 

result is consistent with data published on MHV-68 ORF52 where cells 

transfected with an ORF52-StopBAC, which expresses the entire viral genome, 

except ORF52, are also unable to undergo tegumentation and envelopment, as 
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we have mentioned above (27). Recent work from the Deng laboratory 

demonstrated, by co-immunoprecipitation (co-IP) of transiently transfected HEK-

293 cells, that MHV-68 ORF52 interacts with another gammaherpesvirus specific 

tegument protein, ORF42, and that an arginine to alanine change at amino acid 

95 (R95A) in ORF52 inhibited this interaction (330). The specific function of 

ORF42 is currently unknown; however, R95, which is conserved among ORF52 

homologs in gammaherpesviruses, is important in the viral life cycle. The wt 

MHV-68 ORF52, but not the R95A mutant, complements the defect in replication 

of the ORF52-StopBAC (24). Other evidence from both KSHV and MHV-68 

studies demonstrate that their respective ORF52 proteins interact with ORF45 

and ORF42, respectively (267, 330). 

In our experiments with RRV, we were unable to detect a direct interaction 

between ORF52 and ORF45 by IP either from HEK-293 cells expressing tagged 

versions of the two proteins (data not shown) or from RRV infected RhF. Since 

there are multiple proteins within the tegument layer interacting in yet unknown 

configurations, it is possible that ORF52 and ORF45 might indirectly interact 

through a third protein. A possible candidate is ORF33, a tegument protein 

present in alpha-, beta-, and gamma-herpesviruses. In MHV-68, ORF33 plays a 

role in virion maturation affecting both egress of capsids from the nucleus and 

tegumentation and envelopment of capsids reaching the cytoplasm (120). 

Particles released via freeze-thaw of cells transfected with a MHV-68 ORF33-

StopBAC have ORF52, but they lack ORF45 (120), suggesting that ORF33 might 
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be a bridge between inner (e.g. ORF52) and outer (e.g. ORF45) tegument 

proteins. 

 

Nuclear egress of ORF45 is ORF52 dependent 

ORF45, a multifunctional protein with roles that include antagonizing the host 

antiviral response (360), is also a gammaherpesvirus specific tegument protein 

with homologs in RRV, KSHV, EBV, and MHV-68 (23, 28, 142, 239, 358). KSHV 

ORF45 also interacts with a kinesin-2 motor protein, KIF3A, and is responsible 

for loading of viral particles onto microtubules for plus-end directed transport 

toward the plasma membrane (277). In our experiments, knockdown of ORF52 

had no discernable effect on the overall ORF45 expression levels (Figure 2-1) 

yet it was not incorporated into released particles (Figure 2-3). This suggests that 

ORF52 is necessary for ORF45 incorporation (or at least its stable incorporation) 

into maturing virions and likely reflects the role ORF52 might have in establishing 

a tegument foundation that allows the stable addition of other tegument proteins 

rather than a direct interaction with ORF45 itself. In light of these findings, we 

hypothesized that if ORF45 were responsible for efficient particle transport, then 

knocking down ORF52 would affect tegumentation of particles in the cytoplasm 

and result in reduced movement through the cytoplasm and viral egress. 

Consistent with a potential defect in anterograde transport, suppression of 

RRV ORF52 expression also appears to affect the subcellular localization of 

ORF45. During unperturbed RRV infection we found that in addition to a diffuse 

nuclear pattern, ORF45 also co-localized with ORF52 in the cytoplasm in a 
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discrete punctate pattern. Following ORF52 kd, however, we detected 

ORF45 only in the nucleus. While we have no evidence that ORF52 can enter 

the nucleus (e.g. no NLS, no nuclear staining by IF) or interact directly with 

ORF45, these data argue that an intact tegument, dependent on ORF52 

expression, is necessary for ORF45 incorporation into viral particles undergoing 

transcytosis. Capsid (SCIP-containing) particles from ORF52 kd lacked ORF45 

and ORF52 in the cytoplasm (Figure 2-3 and 2-4) and demonstrated a more 

restricted and aggregated perinuclear distribution. This might reflect an inability 

to attach to microtubule-based motors (277). 

 

Inability of particles to invaginate into cytoplasmic vesicles 

During secondary envelopment in the cytoplasm, partially tegumented particles 

enter vesicles, acquiring their final complement of tegument proteins and their 

glycoprotein-studded envelope. In cells lacking ORF52, there was an 

accumulation of particles with no detectable tegument within the cytoplasm 

(Figure 2-6D). We found that vesicles in siCNL cells were larger than in siORF52 

and many contained multiple trilaminar virions (Figure 2-6C and 2-6D). 

Interestingly, cells that we treated with siORF52 still formed vesicles but the 

particles failed to enter and were often clustered around them (Figure 2-6D and 

2-8E), consistent with ORF52null MHV-68 studies (27, 330). We speculate that 

this last step of invagination is dependent on proper tegumentation that provides 

key protein interactions between the surface of the particle and the surface of the 

vesicle. 
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ORF52 dependent tegumentation and envelopment are necessary for 

cell-surface association of viral particles 

Virions undergo release from the cell in a process similar to exocytosis once the 

vesicle containing virions merges with the cellular plasma membrane (reviewed 

in (119, 212, 213)). This leads to an opening of the vesicle where particles are 

released into the surrounding environment or remain associated with the cell 

surface. Part of the host immune function is to prevent the spread of infectious 

virions to other cells. Some virally infected cells, in fact, trap newly released 

enveloped virions, including retroviral and filoviral particles (146) and KSHV 

(192), onto the outer surface of the plasma membrane using bone marrow 

stromal cell antigen 2 or BST2/tetherin. BTS2, a heavily glycosylated type II 

transmembrane cellular protein (172), likely acts by forming homodimers that link 

the viral envelope and plasma membrane (reviewed in (88)). KSHV partially 

circumvents this inhibition by encoding K5/MIR2 that ubiquinates BST2, leading 

to its degradation (192). RRV, interestingly, has no K5 homolog. We observed 

mature RRV particles lining up along the cell surface during RRV infection in 

control but not in ORF52 kd conditions (Figure 6F), suggesting that without the 

envelope and its glycoproteins, no tethering of particles occurs. 

 

ORF52 in trans partially rescues block in particle maturation 

To ensure that ORF52 was responsible for the phenotypes that we observed, we 

complemented the system by providing siRNA resistant ORF52 (Res52) in trans. 

Expression of Res52 (Figure 2-7B and 2-7C) during siORF52 treatment of 
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infected cells led to the incorporation of Res52 and, to a lesser extent, 

ORF45 into virions (Figure 2-7D and Figure 2-7E), suggesting that at least 

tegumentation was partially restored. This complementation also had functional 

consequences, increasing the viral titer compared to ORF52 knockdown alone 

(Figure 2-7F), and suggesting a partial restoration of fully infectious trilaminar 

virions. TEM images from Res52 complemented infections corroborated this 

hypothesis, demonstrating evidence of mature virions within vesicles (Figure 2-

8F), cell-associated virions that appeared identical to those without knockdown 

(Figure 2-8G and 2-8I) and released virions also with visible tegument, envelope, 

and glycoproteins (Figure 2-8L). The efficiency of the rescue was likely 

suboptimal due to low plasmid transfection efficiency (~30%) of Res52 in the 

culture and the possibility that ectopic over expression likely fails to recapitulate 

the coordinated expression of interacting tegument proteins. 

With MHV-68, the expression in trans of its own ORF52, or the homolog 

from KSHV or EBV (BLRF2), is able to complement a similar defect in virion 

maturation and total block in virion release that arises with transfection of 

cultures with an ORF52-stop BAC (330). We also attempted to complement the 

ORF52 kd induced defect in tegumentation in the RRV system with KSHV 

ORF52 but found that despite its expression being comparable to that of RRV 

Res52, its incorporation into the virions was poor and, as a consequence, the 

viral titer increased by only 1.5 fold (compared to 26-fold increase with RRV 

Res52) over ORF52 knockdown controls (data not shown). The reasons behind 

the differences between the MHV-68 and our RRV results are unclear.  
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In sum, we have shown that the inner tegument protein RRV ORF52 is 

critical for post-nuclear stages of virion maturation, including tegumentation and 

secondary envelopment necessary for production and egress of fully mature 

trilaminar virions. Without ORF52, the necessary layering of tegument proteins - 

key to the architecture of the virion – is unable to occur, resulting in the 

cytoplasmic accumulation of immature viral particles surrounding but unable to 

enter awaiting vesicles. 
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CHAPTER 3: RRV ORF52 COLOCALIZES WITH MICROTUBULES AND 

INDUCES A BUNDLING PHENOTYPE 
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Abstract 

We have found that, when over-expressed, the gammaherpesvirus specific 

tegument protein RRV ORF52, co-localizes with microtubules and can lead to 

polyploidy as well as microtubule bundling. In addition, RRV ORF52 appears to 

associate with microtubules in pull down experiments when cytoplasmic extracts 

are present but only minimally in a purified system, suggesting the role of a 

cofactor or microtubule-binding partner in mediating the phenotype. We propose 

that ORF52 plays a role not only in the structure of virions but also in viral particle 

assembly as well as transcytosis during egress and/or entry via a direct or 

indirect interaction with microtubule components of the cytoskeleton.  

 

Introduction 

Microtubules (MTs), actin microfilaments, and intermediate filaments (IFs) make 

up the eukaryotic cytoskeleton providing various functions including maintenance 

of cell shape (99, 201), cell motility (15, 19), and movement of chromosomes 

during mitosis and cargo throughout the cell (111, 175, 190). Following 

herpesvirus envelope fusion and release of the unenveloped capsid into the 

cytoplasm, the majority of tegument proteins are lost from the particle and 

released into the cell. In HSV-1 two viral tegument proteins remain associated 

with the capsid following entry, VP1/2 (encoded by UL36) and UL37 (113, 187, 

195). While neither VP1/2 nor UL37 interact with motor proteins, both are thought 

to somehow recruit dynein (256). 
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Cargo transported throughout the cell also includes viruses that utilize 

the host cytoskeleton, specifically MTs, during entry, movement through the 

nucleus and cytoplasm, and egress (reviewed in (19, 67, 75, 155, 188, 209, 212, 

213, 251, 308, 352)). Viruses, including herpesviruses, rely on the MT network 

for transportation throughout the cell during entry, egress, and additional stages 

during the viral life cycle (34, 74, 116, 198, 225, 255, 261, 282, 295 , 300, 335). 

 

Microtubules 

MTs are made up of α and β tubulin subunits that join together in the presence of 

Mg2+ and GTP in an end-to-end manner to form protofilaments, giving 

microtubules an intrinsic polarity. 13 protofilaments then associate to form a 

hollow 25 nm microtubule (Figure 3-1) (8). Due to their polarity, MTs have a 

designated plus and minus end. α- and β tubulin heterodimers can add or 

dissociate at either end of a MT; however, there is greater tendency for addition 

to occur at the faster growing plus end where β-tubulin is exposed and 

depolymerization to occur from the minus-end. Both α and β tubulins exist in 

several isotypic forms and can undergo several post-translational modifications. 

Drugs and temperature can also alter MT dynamics. For example, nocodazole 

and colchicine in addition to cold temperatures block the polymerization of tubulin 

into microtubules, whereas the taxane drug class (e.g. paclitaxel or docetaxel), 

stabilize GDP-bound tubulin in the microtubule (186, 266).  
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Figure 3-1. The structure of a microtubule and its subunit. (A) The subunit of 

each protofilament is a tubulin heterodimer, formed from a very tightly linked pair 

of α- and β-tubulin monomers. (B) One tubulin subunit (α-β heterodimer) and one 

protofilament. Each protofilament consists of many adjacent subunits with the 

same orientation. (C) The microtubule is a stiff hollow tube formed from 13 

protofilaments aligned in parallel. Image credit: Mary A. Maxfield and used with 

permission. 
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Microtubule associated proteins 

Structural microtubule associated proteins (MAPs) bind reversibly with low-

molecular range affinities to MTs (194). Structural MAPs, which include the 

neuronal proteins MAP1, MAP2 and tau as well as MAP4, which is present in all 

non-neuronal cells, promote tubulin polymerization and stabilize MTs, often in the 

form of “bundles” that look like thick cords of MTs (80, 314). MAP2, tau and 

MAP4 are made up of an N-terminal domain protruding from the MT surface and 

a C-terminal MT binding domain containing a proline-rich sequence and three or 

four 31 residue pseudorepeats (reviewed in (81)). The MT-stabilizing capacity of 

MAPs is greatly influenced by phosphorylation (25, 80, 314). Growth factor 

signals can activate protein kinases that catalyze phosphorylation of tubulin-

binding domains of MAPs and allow them to detach from MTs. Phosphorylation 

of MAPs is shown to decrease their binding capacity for MTs, destabilizing the 

MTs (136). The HSV-1 tegument protein VP22 colocalizes with MTs inducing 

stable bundles reminiscent of cellular MAPs suggesting it might be the first 

recognized virally encoded MAP (86). Additionally, VP22 interacts with gD, which 

also interacts with the viral capsid (56).  

 

Motor proteins 

Motor proteins are a type of MAP. Current knowledge of motor proteins in mouse 

and humans identifies 45 kinesin motors, 15 dynein and 40 myosin genes, 

categorized into 5 kinesin, 3 dynein, and 2 myosin subclasses based on 

sequence and functional motor comparison (reviewed in (74, 130, 321, 326)) 
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(Figure 3-2, myosin not shown). Kinesins bind microtubules and hydrolyze 

ATP to produce movement toward microtubule plus ends, typically extending out 

toward the cell periphery. These motor proteins are made up of an N-terminal, 

ATP-hydrolyzing domain, a central coiled stalk region and a C-terminal tail 

region, which is most often the site of cargo binding (reviewed in (189)). Kinesin-

2 is a MT-based plus-end-directed motor protein, moving cargoes from the 

nucleus out toward the cell periphery (129, 342, 344). Dyneins are also 

microtubule motors; however, they move cargoes toward the minus end of the 

microtubules, (reviewed in (320, 321)) (Figure 3-3). The dynein motor domain is 

made up of a hexamer of AAA domains (ATPases Associated with cell Activities), 

which bind and release proteins in an ATP-dependent manner (reviewed in (320, 

321)). Dynein is associated with additional proteins including light intermediate 

chains, intermediate chains and light chains (‘chain’ refers to a polypeptide 

subunit of the protein complex). Additionally, dynein associates with the multi-

subunit complex, dynactin, which stimulates dynein-cargo interaction and long 

distance movement of dynein (reviewed in (320, 321)). 

Many viruses, including herpesviruses, have found ways to utilize the 

cellular cytoskeleton, specifically MTs, for transportation and viral spread ((277) 

and reviewed in (34, 74, 75, 255, 331)); however, the mechanism (i.e. specific 

protein-protein interaction between cellular and viral proteins) is not clear. 

Studies from multiple groups have identified kinesin-1 and cytoplasmic dynein as 

the two most frequently used motor proteins in viral transport (reviewed in (74)). 

However, in KSHV, the  tegument protein  ORF45 docked  the entire  KSHV  viral  
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Figure 3-2. Structure of common motor proteins. (A) Cytoplasmic dynein 

heavy chains (DHC; purple) comprise the globular heads and a stalk that ends in 

a MT-binding domain. The N-terminal DHC stem binds dynein light intermediate 

chains and dynein intermediate chains (blue). (B) Dynactin consists of a rod of 

Arp1 protein, and a flexible sidearm of the protein p150Glued. Dynein is thought to 

bind to dynactin along or near the base of the sidearm. (C) Kinesin-1 has a rod-

like structure with two heads, a stalk, and a splayed end. Kinesin-1 is a 

heterotetramer of two kinesin heavy chains (purple) and two kinesin light chains 

(blue). (D) Kinesin-2 is a heterotrimer of two KIF3 chains (purple) that form 

globular heads, and one kinesin-associated protein (blue). (E) Kinesin-4 is a 

dimer of two KIF4 chains with two globular heads, a central α-helical coiled-coil 

stalk and a globular tail. Image credit: Mary A. Maxfield and used with 

permission. 
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Figure 3-3. Organization of microtubules in an unpoloraized fibroblast cell. 

Organization of microtubules (MTs) (red) in an unpolarized fibroblast cell, radiate 

from the MT-organizing center (MTOC) to the cell periphery, where their plus-

ends (+) are located. The MTOC nucleates MT minus-ends (−) and is often close 

to the nucleus. Image credit: Mary A. Maxfield and used with permission. 
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capsid-tegument complex onto KIF3A, a subunit of the kinesin-2 motor 

protein that was then translocated along MTs for maturation and egress (277). In 

our laboratory we have found that upon transient transfection of RRV ORF52 into 

HEK293, RhF, and HeLa cell lines, microtubules became thicker and adopted a 

bundle-like phenotype that was resistant to the depolymerization action of cold 

temperatures or nocodazole (Veriville and Kedes, unpublished data). This 

bundling was most pronounced when ORF52 was highly expressed such as in 

HeLa cells, but was also clearly evident in RhF cells leading us to question 

whether ORF52 might be a virally encoded MAP. 

 

Materials & methods 

Cell Culture 

Telomerase-immortalized rhesus monkey fibroblasts (RhF) were grown in 

complete media (Dulbecco’s modified Eagle’s medium) [Gibco] supplemented 

with 1 nM puromycin, 1 mM sodium pyruvate, and 10% fetal bovine serum 

[Gibco]). HEK293 and HeLa cells were grown in complete media (Dulbecco’s 

modified Eagle’s medium [Gibco] supplemented with 10% fetal bovine serum 

[Gibco]). 

 

RRV Stocks 

RhFs were grown to confluency, approximately 2x107 cells in a T182 flask, and 

infected with RRV strain H26-95 at a multiplicity of infection (MOI) of 0.05 in 5 mL 

complete media for 1 hour. Cells were then supplemented with an additional 100 
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mL of complete media per flask. Supernatants were collected 5-7 days post-

infection (p.i.) and cleared of cellular debris by low-speed centrifugation at 350 x 

g. Cleared viral supernatants were passed through a 0.45µm pore size filter. 

Virus was concentrated by centrifugation for 3 hours at 12,855 x g in a Sorvall 

SL250T rotor. Resulting viral pellets were resuspended in 1.0 mL TNE (20 mM 

Tris [pH 7.5], 100 mM NaCl, 1 mM EDTA), titer was determined, and 20 µL 

aliquots were stored at -80°C.  

 

ORF52 plasmid and generation of arginine to alanine mutant plasmid 

N-terminal myc-tagged siORF52 resistant RRV ORF52 was generated from a 

pK-myc wt RRV ORF52 plasmid. The pK-myc plasmid was derived from pKH3 

backbone and a gift from Deborah Lannigan and Ian Macara. Full-length ORF52 

sequence was amplified by PCR using purified RRV DNA as a template and 

primers that added a NotI and an EcoRI sequence to ORF52 for cloning (NotI-

ORF52-F 5’-ATAAGAATGCGGCCGCTTATGTCTTCCACGCGT-3’ and EcoR1-

ORF52-R 5’-GGAATTCCTAGTCCGCGTCGTTATT-3’). RRV ORF52 was cloned 

into the pK-myc vector at the NotI and EcoRI sites. The sequence of the wt pK-

myc-RRV52 plasmid was confirmed prior to further use by sequencing with Sp6 

primers (GeneWiz) and comparing with published wt ORF52 sequence. wt pK-

myc RRV ORF52 plasmid was used as a template to generate an RRV ORF52 

arginine to alanine mutant plasmid (R103A) ‘R95A’ is MHV-68 nomenclature, but 

the conserved arginine is 103 in RRV. Primers were designed that would alter 

one nucleotide,  
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Fwd: 5‘- CCTCGCCGGAATTAGTATCGCCGTGGACGTGTCAATGGACG -3’ 

Rev: 5’- CGTCCATTGACACGTCCACGGCGATACTAATTCCGGCGAGG -3’ 

The R103A mutant plasmid was generated using the primers containing the 

desired mutations, the wt pK-myc ORF52 plasmid, and the QuikChange 

Lightening Site-Directed Mutagenesis Kit (Life Technologies). The mutations 

were verified by sequencing of the pk-myc-ORF52R103A plasmid with Sp6 fwd 

primer.  

 

Immunofluorescence assay (IFA) 

48 hours post-transfection cells were washed in PBS and fixed in 4% 

paraformaldehyde (PFA) for 10 minutes at room temperature. After two additional 

washes, the cells were permeabilized with 0.2% TritonX-100 in 10% normal goat 

serum (NGS) in PBS for 20 minutes. Then the cells were incubated with mouse 

anti-ORF52 and FITC-conjugated mouse anti-tubulin (Sigma) primary antibodies 

in 10% NGS in 0.05% Tween in PBS for 60 minutes at room temperature. After 

three additional washes, the cells were incubated with Cy3-goat-anti-mouse 

secondary antibody in 10% NGS in 0.05% Tween in PBS for 45 minutes at room 

temperature. Before the cover slip was sealed, the cells were treated with 0.5 

µg/mL DAPI (4’,6-diamidino-2-phenylindole) to stain the nuclear DNA. 

Fluorescent images were photographed with a Nikon Eclipse TE2000E inverted 

microscope. 
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Transfection of ORF52 

For IF experiments, 2x106 RhF cells were transfected via Amaxa nucleofector 

program T-016 with 2 µg of pkmyc-empty vector, pkmyc-ORF52, or pkmyc-

R103AORF52 plasmid and 3x104 RhF cells were plated in an 8 well chamber 

slide (BD Biosciences). For transfection of RhF with ORF52 for MT pull down the 

same transfection conditions were used, but additional cells were plated in 10 

cm2 plates. For transfection of HeLa and HEK293 cells, plasmid DNA was 

transfected with Lipofectamine 2000 (Life Technologies) into 90% confluent cells 

plated in 8 well chamber slides (IF) or 10 cm2 plates (MT pull down) per 

manufacturer protocol.  

 

Microtubule spin-down assay 

Polymerization of MTs for purified binding assay  

Microtubule Binding Protein Spin-down assay kit from Cytoskeleton.com. To 100 

µg of tubulin protein in 20 µL 1X BRB80 buffer [80 mM pipes, 1 mM MgCl2, 1 

mM EGTA] plus 2.5 µL 100 mM GTP add 2.5 µL of cushion buffer (1X BRB80 

buffer + 50% glycerol) and incubate at 35°C for 20 minutes to allow for 

polymerization of MTs. After 20 minutes we added 2 µL of 2 mM Taxol in DMSO 

to 200 µL 1X BRB80 and combined BRB80 + Taxol with polymerized MTs and let 

sit at RT. MTs are between 5-10 µm in length and a concentration of 

approximately 5.0x1011 MT/ml, equivalent to 5 µM tubulin dimer or 0.4 nM MTs.  
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MT binding assay using purified MTs and ORF52  

Purified RRV ORF52 GST-fusion protein was made previously in our laboratory 

(Nancy Verville) in E. coli. Following purification and cleavage of GST, 

approximate concentration was determined by OD 280 reading.   

1-3 µg of purified ORF52 protein in 1X BRB80 to final volume of 30 µL 

was combined with 20 µl polymerized MTs (see above) or 100 µg of tubulin 

protein in 20 µL 1X BRB80 buffer with no GTP (unpolymerized) and incubated at 

RT for 30 minutes. 50 µL of protein and MT mixture was layered over 100 µL 1X 

BRB80 + 50% glycerol cushion in ultracentrifuge tubes (Hitachi Koki #339133A). 

We spun samples at 100,000xg in a Beckman ultracentrifuge (Todd Stukenberg 

laboratory) at 24°C for 35 minutes. Following centrifugation, 40 µL was removed 

from the very top of the sample as “Supernatant”, the remaining cushion was 

discarded, and the pellet was resuspended in 40 µL 1X BRB80 buffer. 4 µl of 

supernatant and pellet samples were resupsended in lithium dodecyl sulfate LDS 

sample buffer (NuPage; Life Technologies) with NuPage sample reducing agent 

(50 mM dithiothreitol (DTT)). Following denaturation by boiling for 10 minutes, 

proteins were separated by sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) on 12% Bis-Tris gels (NuPage; Life Technologies).  

For immunoblot analyses, proteins separated by SDS-PAGE were 

transferred to polyvinylidene fluoride (PVDF) membrane for 60 minutes at 250 

mA at 4°C. The membranes were blocked in 5% nonfat milk–TBS (20 mM Tris 

base, 150 mM NaCl, 3 mM Tris-HCl) for 90 minutes at room temperature and 

then incubated with the primary antibodies mouse anti-RRV ORF52 (1:5,000) 
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and mouse anti-alpha tubulin clone DM1 (Sigma) (1:500) diluted in 5% nonfat 

milk–TBS-Tween (TBST) (0.05%) overnight at 4°C. After three 10 minute washes 

with TBST at room temperature (RT), membranes were incubated with HRP-

goat-anti-mouse (Jackson Immunological) secondary antibody for 45 minutes at 

RT. Following two 10 minute washes in TBST and 1 in TBS, blots were exposed 

with a 1:1 ratio of Western Lightning Plus enhanced luminol reagent 

(PerkinElmer) and exposed to film. 

 

MT pull-down assay in transfected cells 

HeLa and RhF cells were transfected with pkmyc-ORF52 or pk-mycVector 

(mock) for 48 hours. Cells were washed in 1X PBS and collected in 1X BRB80 

buffer supplemented with 1X complete pill protease inhibitor (Roche) and 1 

µg/mL cytochalasin D. Cells were lysed by sonication in a an ice water bath 5 

times for 3-5 seconds each time.  Nuclei were pelleted by centrifugation at 

12,000 rpm for 30 minutes at 4°C. Protein concentration was determined by 

OD280 reading and ~400-900 µg of protein was used for each MT spin down 

assay. For polymerized samples we added 0.5 mM GTP and 5 µM Taxol and 

allowing for RT incubation for 5 minutes. Subsequently an additional 15 µM Taxol 

was added and incubated for 30 minutes at 37°C. For unpolymerized samples, 

no GTP or Taxol were added at anytime. Samples were layered over a 40% 

glycerol cushion in 1X BRB80 and centrifuged at 40,000 rpm for 40 minutes, at 

25°C. Supernatant was removed, cushion was discarded, and loading buffer was 

added to pellet. Samples were boiled for 10 minutes and separated by sodium 



	   141	  
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) on 12% Bis-

Tris gels (NuPage; Life Technologies) followed by immunoblot analysis (see 

above for protocol).  

 

Results and Discussion 

RRV ORF52 colocalizes with microtubules and induces a bundle-like 

microtubule phenotype 

In our earliest attempts to characterize RRV ORF52, we sought to determine 

localization of ORF52 upon transient transfection. We transfected HEK293 cells 

(Figure 3-4A) or RhF cells (Figure 3-4B) with pkmyc-ORF52 and fixed cells 48 

hours later for IF. ORF52 localized to the cytoplasm, but what we also noticed is 

that ORF52 often displayed a staining pattern reminiscent of tubulin. We found 

when staining for tubulin that in some transfected cells MTs had a thicker, 

bundle-like appearance (Figure 3-4, white arrows). Furthermore, the appearance 

of MT bundling was increased with greater amounts of ORF52 transfected into 

the cells. We tested between 11 ng-1.5 µg ORF52 plasmid in 1x106 cells, and 

while there was a thickening of MTs even at the lowest concentration, the 

number of cells expressing bundling, and the extent of bundling, was greatest at 

1.5 µg ORF52 plasmid (data not shown). We also performed a time course, 

staining cells transfected at the higher concentration of ORF52 at 12, 24, and 48 

hours post-transfection. We saw minimal bundling at 12 hours, more at 24 hours, 

and the greatest amount at 48 hours post-transfection (data not shown).   
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Figure 3-4. Ectopic expression of ORF52 in transfected cells; ORF52 

colocalizes with MTs and induces a bundle-like MT phenotype. (A) HEK293 

cells or (B) RhF cells transfected with pkmyc-ORF52 for 48 hours and stained 

with Dapi, anti-tubulin, and anti-ORF52 antibodies. Arrows highlight transfected 

cells with bundled MTs.  
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RRV infection also leads to an ORF52 staining pattern that resembles 

cytoskeletal MTs. 

We also examined RhF cells during the course of wt RRV infection. RhF cells 

infected at an MOI of 5 for 48 hours and probed with anti-ORF52 showed a 

staining pattern in some cells suggestive of MTs (Figure 3-5), however tubulin 

was not co-stained so the MT-like pattern is only suggestive. While the MT 

bundling is much less during infection with RRV than transfection with ORF52, 

there is often colocalization between ORF52 and tubulin (data not shown). Our 

preliminary experiments with RRV indicate potential colocalization between 

ORF52 and tubulin and need to be further examined.  

 

Purified ORF52 interacts weakly with purified MTs 

In our IF experiment examining cells following transfection of ORF52, we noticed 

a colocalization between ORF52 and tubulin (Figure 3-4) as well as a thickening 

or bundling of MTs in many of the transfected cells (Figure 3-4, white arrows). 

The above observations led us to question whether ORF52 might be directly 

binding to MTs like other known cellular MAPs. To examine this potential 

interaction, we utilized a microtubule pull-down assay where we combined 

polymerized microtubules with purified RRV ORF52 protein and then, following 

centrifugation, analyzed both the supernatant and pellets for tubulin and ORF52 

(Figure 3-6). In this assay, polymerized tubulin (MTs) will pellet through the 

cushion and be in the pellet fraction, whereas unpolymerized tubulin stays in the 
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Figure 3-5. Some ORF52 has a MT-like staining pattern following RRV 

infection.  RhF cells were infected with RRV at MOI 5 and fixed 48 hours later. 

Cells were stained with Dapi and anti-ORF52 antibodies. Arrow highlights area in 

an infected RhF where ORF52 appears filamentous and may be colocalized with 

MTs. Lower panel is a merged and magnified image of the single stained Dapi 

and ORF52 upper panels. 
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Figure 3-6. Purified ORF52 minimally associates with purified microtubules 

Unpolymerized or polymerized tubulin (MT) was incubated with purified RRV 

ORF52 protein and the suspension was centrifuged over a glycerol cushion. 

Western blot of fractions from unpolymerized supernatant (S) (lane 1) and pellet 

(P) (lane 2) and polymerized supernatant (lane 3) and pellet (lane 4) probed with 

anti-tubulin and anti-ORF52. 
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supernatant fraction. If ORF52 binds directly to MTs, it will be in the pellet 

fraction. Unpolymerized tubulin stayed in the supernatant (Figure 3-6, lane 1), as 

did ORF52 (Figure 3-6, lane 1), while polymerized tubulin (MTs) pelleted through 

the cushion (Figure 3-6, lane 4) along with a portion of ORF52 (Figure 3-6, lane 

4).  

 

ORF52 MT binding in transfected cell extracts is dependent on MT 

polymerization 

We also examined the ability of ORF52 to associate with MTs in the whole cell 

context following transfection of ORF52 into both HeLa and RhF cells (Figure 3-

7). Following a MT spindown assay whereby polymerized MTs and bound 

proteins would pellet, ORF52 was present in the pellet fraction with MTs at 37°C, 

but absent in cold conditions: tubulin will not polymerize to form MTs on ice and, 

therefore, remain in the supernatant fraction following spin-down. These results 

suggest that ORF52 may be associated with MTs and that the association is 

dependent on the polymerization of tubulin (Figure 3-7).  

 

Conserved ORF52 residue, arginine 95 (R95) (R103 in RRV), may play a role 

in MT thickening phenotype 

Reports on the structure of MHV-68 ORF58 indicate that ORF52 self-associates 

through its α-2 helix domain, functions as a homodimer, and that this association 

is necessary for the function of ORF52 (24). The same report suggests that 

ORF52  dimers  are able  to  associate  and  form  tetramers,  via  the  conserved  
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Figure 3-7. ORF52 MT binding is dependent on MT polymerization. (A) HeLa 

and (B) RhF cells were mock transfected or transfected with pkmyc-RRV ORF52. 

48 hours later samples were harvested and kept at 4°C or at RT. Western blot of 

pellet fraction from cell lysates following high-speed centrifugation over BRB80 + 

glycerol cushion and probed with anti-tubulin and anti-ORF52. Experiment 

performed by former Kedes laboratory member, Sefat Kudah. 
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Figure 3-8. Arginine to alanine change in β-sheet of RRV ORF52 reduces 

MT bundling. RhF cells transfected with pkmyc-vector (panels A and B), pkmyc-

wt ORF52, (panels C and D), or pkmyc-R103A ORF52 (lanes E and F). 48 hours 

post-transfection cells were fixed and stained with Dapi, anti-tubulin, and anti-

ORF52. Experiment performed in collaboration with former Kedes laboratory 

undergraduate, Sophia Urban. 
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arginine 95 residue in the β-strand (24), which corresponds to amino acid 103 

in RRV ORF52. We hypothesized that if ORF52 dimers were able to bind directly 

or indirectly to MTs, and then interact with each other by their R95 residues 

forming tetramers, that this might lead to a cross-linking of ORF52 tetramers 

bound to MTs and a thickening or bundling appearance of MTs. To test this, we 

made a point mutation in the conserved arginine to an alanine, hypothesizing that 

this would eliminate the ability of the ORF52 dimers to form tetramers, and thus, 

perhaps the bundle formation. We transfected HEK293 cells with vector, wt 

ORF52, or R103A ORF52 and 48 hours later examined the cells by IF staining 

for both ORF52 and tubulin (Figure 3-8). In both wt ORF52 and R103A ORF52, 

the ORF52 staining pattern is similar to that of tubulin (Figure 3-8, d, e, f, g). As 

we had seen previously, expression of wt ORF52 leads to a thickening in MTs in 

some of the wt ORF52 transfected cells (Figure 3-5, panel c). However, this 

phenotype is less pronounced in cell receiving R103A ORF52 constructs. Of 

note, it appears overall expression of ORF52 in the R103A transfected RhF is 

less that in wt  (Figure 3-8, panel e). These results are preliminary, but suggest 

that this alteration in the conserved arginine 95 may disrupt and/or lessen 

thickening of MTs seen when transfected with wt ORF52.   

 

Summary 

Much of the data presented in this chapter is preliminary and at the very least 

needs to be repeated for confidence. The microtubule spin-down assay that 

utilized purified MTs and purified ORF52 might provide some insight as to 
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whether ORF52 can directly interact with polymerized tubulin; however, it will 

also be important to consider the concentration of MTs and ORF52 combined for 

testing as they may not mimic the intracellular context during an infection. If we 

convincingly show that ORF52 does interact with MTs, it would be necessary to 

determine the domains of ORF52 responsible for binding MTs as well as the 

residues on MTs responsible for interacting with ORF52. Additionally, if we do 

find that R103A mutation in ORF52 alters the MT interaction profile, we would 

next begin trying to determine the mechanism underlying this change. If we 

believe it is due to the lack of ORF52 tetramer formation, we would additionally 

need to show that RRV ORF52 dimers do form tetramers and that this 

association is lost in the R103A mutation. 
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CHAPTER 4: GENERAL SUMMARY AND PERSPECTIVES 
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Summary  

Much of the research on the structure of herpesviruses and function of 

herpesviral proteins has, until recently, been focused on alphaherpesviruses. 

However, viruses within the gammaherpesvirus subfamily have become the 

focus of increased interest since of all the subfamilies they have the clearest 

tumorigenic potential, including the ability to cause malignancy in humans as well 

as other animals. While many genes are homologous among the alpha-, beta-, 

and gamma- herpesviruses there are a number of genes found only within each 

subfamily and some of these proteins likely play key roles in the cellular tropism 

of each virus and its pathogenesis. It is important to examine differences within 

the subfamilies to develop a better fundamental understanding of the unique 

biology of each species that will, in turn, help identify novel potential therapeutic 

targets in each different virus species. 

The central aim of my thesis was to determine the function of RRV 

ORF52, a tegument protein unique to the gammaherpesvirus subfamily. We 

conducted loss and gain of function experiments, assessing the effects on virion 

production during the course of a wt RRV infection. Our results indicate that 

ORF52 plays a critical role in the assembly of the RRV virion at a stage following 

viral DNA packaging and nuclear egress but preceding tegumentation and 

secondary envelopment. Further, our results argue that this structural protein is 

critical for the protein-protein interactions that permit tegument assembly, 

efficient transcytosis and invagination into vesicles, all of which are necessary for 

viral maturation and release into the extracellular space.  
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Discussion 

The role of ORF52 in the protein-protein interactions leading to the 

structure of the virion  

Researchers have only an earliest stage understanding of the intricate 

interactions between RRV ORF52 and other proteins necessary for virion particle 

formation. In KSHV, investigators used a yeast-two-hybrid system and co-IP 

experiments   and determined that ORF52 interacts with ORF45, ORF26, 

ORF75, gM, and gN when ORF52 was used as bait (Y2H) or antibodies directed 

to tagged ORF52 were used in the pull-down assay (co-IP) (267). That same 

study showed that, used as bait in Y2H or in the pull-down of IPs, ORF45 

interacted with ORF62, ORF11, ORF27, ORF33, ORF63, ORF64, ORF75, gL 

and gN, but not ORF52, (267). Based on this study, researchers have assembled 

a virion wide protein interaction map for KSHV (Figure 4-1). The figure illustrates 

the multiple direct and indirect interactions between ORF64-ORF52-ORF33-

ORF45, as well as the interaction between ORF52-ORF75-ORF45 (Figure 4-1).  

In the KSHV interaction study (267) as well as outlined in Figure 4-1 (275) 

ORF52 and ORF45 directly interact. In our studies with RRV, we were unable to 

detect a direct interaction between ORF52 and ORF45, when either was used in 

co-IP experiments following co-transfection, nor were we able to find an indirect 

interaction following IP in RRV infected RhF cells (data not shown). This is 

confusing to us, as we have evidence that knocking down expression of ORF52 

affects the ability of ORF45 to be packaged within the virion as shown by western 

blot and IF (see Chapter 2, Figure 2-3).  
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Figure 4-1. Interactome map of KSHV virion proteins. Interactions amongst 

the virion proteins, capsid (inside the hexagon), tegument (outside the hexagon 

but within the oval), and envelope (outside oval) are indicated with arrows. Image 

from (275), an open-access article. 
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KSHV ORF33 pulled-down ORF52 when used in a co-IP experiment 

(267). ORF33 is conserved among the herpesviruses and in HSV-1 the homolog 

UL16 may function in viral DNA packaging, virion assembly, budding and egress 

(16, 183, 204, 224, 242). In MHV-68, when researchers transfected 33STOP 

BAC into 293T cells, intracellular particles retrieved by freeze thaw of cells 

showed particles that lacked ORF33 and ORF45, but that had ORF52 at levels 

similar to wt BAC (120). In cells transfected with 33STOP BAC, particles were 

unable to undergo secondary envelopment and egress (120). This suggests that 

ORF52 may be more closely associated with the capsid than ORF33 and that 

ORF52 may provide a scaffolding-type function where its expression and addition 

to the particle is required for addition of other proteins such as ORF33 and 

ORF45. This is consistent with the proposed interaction map in KSHV (Figure 4-

1). However, in the discussion of MHV-68, Wang et al. did not mention ORF33 

interacting with ORF52 (330), so this interaction may or may not occur in MHV-

68 and/or RRV.  

The KSHV protein-protein interactions map (Figure 4-1) and co-IP data 

examining interactions between different proteins (267) indicate a direct 

interaction between ORF52 and ORF45 and suggest ORF33 may interact with 

ORF45 or the conserved large tegument protein (LTP), ORF64. ORF64 (HSV-1 

UL36 homolog) is an inner tegument protein that was present in both ORF45 and 

ORF75 IPs in KSHV (267). In MHV-68, ORF33 colocalizes to cytoplasm and 

nucleus, but in the presence of another tegument protein, ORF38, ORF33 

localizes to TGN. ORF33 co-localizes with ORF38 during viral infection. ORF38 
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is also a conserved tegument protein, (UL11 in HSV-1), that in MHV-68 

localizes to the cytoplasm during transient transfection and infection and is 

packaged into virions during secondary envelopment (286). The interaction 

between ORF33 and ORF38 in MHV-68 is conserved in HSV-1 between UL16 

and UL11 (346). 

When used as bait in KSHV during yeast-two-hybrid experiments, or to 

pull-down in co-IP experiments, another gamma-specific tegument protein, 

ORF75, interacted with ORF62 (TRI-1), ORF21, ORF64M, gM, and gN. ORF75 

interacts with ORF52 and ORF45 only when ORF75 was the prey (267). ORF75 

is a member of the FGARAT family of proteins involved in counteracting the 

ND10 cellular restriction factors that inhibit herpesvirus lytic DNA replication. The 

introduction of this dissertation provided information on this function in greater 

detail.  

As can be garnered from the above section, the interactions between viral 

proteins are quite extensive, with evidence for specific interaction between 

proteins in KSHV—such as between ORF52 and ORF45—that have not been 

found in RRV, yet need to be further investigated. Homology in the viral proteins 

across the subfamilies may speak to a conserved function or partial function; 

however, remaining variance could account for different protein-protein 

interactions and functional variance. For example KSHV ORF45 is found in the 

cytoplasm, but MHV-68 and RRV ORF45 are found in the nucleus, and this 

difference in localization may alter the order in which ORF45 is added to the 

particle, thereby affecting addition of subsequent proteins. Study of RRV has not 
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yet elucidated the interaction between any of these proteins and, in order to 

determine what is happening in RRV, investigators must further assess and 

tease out these interactions.  

In the future we would like to investigate the potential protein-protein 

interactions necessary for virion maturation by creating a library of differently-

tagged RRV proteins that we would co-transfect into permissible cell lines such 

as HeLa or 293 and IP for interactions following detection by western blot. 

Special attention would be paid to potential interactions between ORF52 and the 

capsid protein, ORF26 (TRI-2) implicated in KSHV, as well as between the 

tegument proteins ORF64, ORF33, and ORF75. Interactions discovered from 

these studies will provide an overall map of interactions in RRV, as well as speak 

to conservation between RRV and KSHV and/or MHV-68. 

 

When is ORF52 added to the particle?  

Based on detergent sensitivity and mass spectrometry (MS) (239) ORF52 is a 

tegument protein tightly associated with the capsid; however, researchers do not 

yet know when ORF52 is added to the tegument. We have no evidence that 

ORF52 is ever in the nucleus – it has no NLS and there is no nuclear ORF52 

staining by IF - but if it is an inner tegument protein that forms an essentially 

base-like layer on the capsid for binding of other proteins, (which seems likely 

based on the KSHV map, MHV-68 data, and our own observations), we would 

hypothesize that it is added to the particle soon after nuclear egress into the 

cytoplasm, thus allowing other proteins to bind.  
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Unfortunately, immuno-EM images in MHV-68 are not entirely clear 

and show ORF52 present on released virions, within the cytoplasm located near 

the Golgi, in the membrane of vesicles, on particles within vesicles, and on 

immature particles not yet within vesicles (82). While ORF52 is added to the 

capsid in the cytoplasm, looking solely at the immuno-EM in the MHV-68 study, it 

is difficult to determine if ORF52 is added at multiple places within the cytoplasm 

(i.e. prior to, and again during, secondary envelopment) or if ORF52 addition is 

required at one stage and disposable at another. Currently, we do not know 

precisely when RRV ORF52 is added to the tegument layer of egressing 

herpesvirus particles.  

To investigate this matter, we propose performing immuno-EM during 

RRV infection, in both wt and ORF52 kd conditions and looking for ORF52 

staining by TEM. Since we have an antibody directed to RRV ORF45, we could 

additionally perform immuno-EM to determine when ORF45 is added to the 

particle, a matter that is of interest to our laboratory.  

 

The role of ORF52 in secondary envelopment 

Researchers have a more limited understanding of the specific proteins involved 

in secondary envelopment – as well as the events that trigger this process – than 

one might expect. Investigators have documented a number of interactions 

between capsid-tegument, tegument-glycoprotein, and capsid-glycoprotein 

proteins (reviewed in (208)) in the herpesviruses, yet the location of secondary 
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envelopment, and whether that location varies depending on the individual 

herpesvirus is still unknown (reviewed in (119, 126, 212, 213)). 

Research on HSV-1 suggests that secondary envelopment occurs at the 

TGN, with documented interactions between the tegument proteins pUL16 

(ORF33), pUL11 (ORF38), and pUL21 (ORF24) (162, 303, 346). pUL11 

accumulates at TGN-derived vesicles, which may enable recruitment of other 

required proteins to these vesicles (182). Investigators have also found 

interaction between ORF33 and ORF38, and the localization of ORF38 at TGN 

vesicles, in MHV-68 (286). If researchers delete any of these proteins, there are 

egress defects and an accumulation on non-enveloped capsids in the cytoplasm 

(27, 120, 145, 164, 278, 283, 286, 290, 330). HSV-1 studies have also shown an 

interaction between the tegument proteins pUL48, pUL41, pUL46, pUL47, and 

pUL49 with evidence that pUL49 interacts with the cytoplasmic tail of the 

glycoproteins gE, gD, and US9—possibly shedding some light on the interactions 

between tegument proteins and glycoproteins that might stimulate secondary 

envelopment. However, there are no homologs for the above-mentioned 

tegument proteins in RRV, so identifying the tegument proteins necessary for 

secondary envelopment remains an area open for investigation and one of great 

interest to our laboratory. In RRV infected RhF cells co-stained with antibodies 

directed to the TGN and the viral capsid protein SCIP, we were unable to detect 

colocalization (data not shown). Our results suggest that RRV may undergo 

secondary envelopment at a non-TGN derived vesicle, and we are currently 

exploring this option, looking for markers to distinguish early endosomes (EE), 
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late endosomes (LE), recycling endosomes (RE), and plasma membrane 

surface derived vesicles.   

 

Domains of ORF52 responsible for its functions in both the RRV life cycle 

and MT interaction  

Structural information on MHV-68 indicates that ORF52 is composed of 3 α-

helices followed by a C-terminal β-sheet (24). In MHV-68 the α-1 domain is 

responsible for localization within the cell, the α-2 domain for dimerization and 

self-association of ORF52, and the conserved R95 residue in the C-terminal β-

sheet for interaction with ORF42 (330). We found by western blot following IP of 

both transfected and RRV infected cells that RRV ORF52 also self-associates 

(data not shown). We showed that RRV ORF52 is necessary for virion 

maturation and that without it there is a significant decrease in the amount of 

infectious virus released, although that amount could be partially rescued by 

providing ORF52 in trans (Chapter 2, Figure 8). However, the domain 

responsible for the rescue is not known, nor is the domain responsible for MT 

interaction. To investigate domains required for function, we would make different 

mutations to our siResistant ORF52 plasmid and transfect it into RRV infected 

cells treated with siORF52. We would determine if these mutant constructs were 

still able to rescue virus production by calculating viral titer and released wt virion 

determined by protein production. We would also examine the localization of 

mutant ORF52 by IF and determine its ability to self-associate by IP. 
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Release of subviral particles in ORF52 kd 

In MHV-68, cells transfected with 52STOP BAC did not release particles or 

virions (24). In our system we used a knockdown instead of a knockout, so we 

did expect to see some released wt particles from cells that did not receive 

siRNA but were infected with RRV. However, in our experiments we found that 

there were approximately the same amount of capsids released in the ORF52 kd 

determined by MCP and SCIP, and that more than 50% were empty A capsids 

(Chapter 2, table 2-1). We hypothesized that a passive mechanism released 

these capsids from the cells upon lysis of the cell and that any composition of 

particles (A, B, C) in the cells would be released. Upon enumeration of the 

different intracellular particles, our hypothesis was not proven true because we 

identified many more DNA-filled C capsids in the cells than the numbers in the 

released particles would suggest (Chapter 2, table 2-1). We also looked at the 

conditions 24 hours p.i. and, while the total number of capsids released was less 

than at 48 h p.i., it was still relatively similar between siCNL and siORF52 (data 

not shown). Additionally, we observed more capsids produced and released in 

the siCNL than expected- 24% including A, B, and C capsids (Chapter 2, table 2-

1). We suspected the increase in the proportion of empty A capsids collected 

from the supernatant in siORF52-treated RhF cells might be due to ORF52 

playing a role DNA retention in the capsid. In HSV-1 the proteins encoded by 

UL17 and UL25 manage DNA packaging and retention (58, 230, 310, 313, 316) 

(ORF32 and ORF19 respectively in RRV/KSHV).  
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We hypothesized that, as an inner tegument protein, ORF52 may be in 

proximity to interact with ORF32 and/or ORF19 and that, with it absent in the kd 

conditions, the DNA may not be as securely packaged. Furthermore, following 

our high-speed centrifugation protocol to separate particles, we posited that DNA 

might simply escape, resulting in a large number of A capsids in the supernatant 

that were actually DNA filled C capsids. We tested this by isolating capsids from 

the cytoplasm in kd and siCNL and subjecting them to the same centrifugation 

protocol and subsequent examination by TEM as our released supernatant 

samples. We already showed that the majority of capsids in the siORF52 

cytoplasm (Chapter 2, Figure 2-6D, 2-8D, and Table 2-1) had DNA, so if they 

were more fragile and/or the DNA was packaged less securely because they 

lacked ORF52, following isolation and centrifugation, we would expect to see a 

large number of empty capsids that had lost their DNA in our released sample. 

However, our results contradicted this prediction and instead we found the vast 

majority of capsids to have DNA (data not shown). We have yet to determine the 

mechanisms of release for these subviral particles or why the majority of capsids 

are empty. We speculate that there might be a loss or alteration of nuclear or 

plasma membrane integrity in the ORF52 kd that allows for escape of subviral 

particles.   

 

Role of ORF52 in interaction with MTs and movement of particles 

Upon overexpression of ORF52, we noticed that ORF52 appeared to have a 

staining pattern similar to microtubules and frequently created a bundled or 
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thickening appearance in MTs (Chapter 3, Figure 3-1, 3-2, and 3-3). We have 

also observed this MT-like staining pattern in RRV infected RhF cells, albeit to a 

lesser extent than in transient transfection experiments. Our preliminary data 

suggest that ORF52 associates with MTs during purified pull-down experiments, 

as well as following transfection of ORF52 and MT pull-down of cell lysates; 

however, we have yet to fully explore this potential relationship. While research in 

the field has well documented the fact that herpesviruses utilize the MT network 

for both anterograde and retrograde transport ((76, 225) and reviewed in (74, 

116)) following entry into the cell and during egress, the potential advantage for 

MT bundling upon infection or transfection is not known. It may stem from the 

mobility of the virus, suggesting bundling occurs not as a negative side effect but 

during movement of the viral particle. RRV ORF52 is not the only herpesvirus 

tegument protein to demonstrate this type of phenotype. In HSV-1, VP22 is a 

tegument protein with properties similar to cellular MAPs, in that it colocalizes 

with MTs and reorganizes them into thick bundles that are highly stable and 

resistant to depolymerization	  (86). 

While ORF52 may interact directly or indirectly with MTs, it is important to 

consider the potential interaction between RRV ORF45 and motor proteins, as 

documented in KSHV where ORF45 docked the viral capsid onto the kinesin-2 

motor protein KIF3A	  (277). In KSHV, ORF45 is cytoplasmic, whereas it is nuclear 

in RRV (and MHV-68), unless associated with maturing viral particles in the 

cytoplasm or in virions following release. Thus, this relationship between ORF45 

and KIF3A may not extend to RRV.  
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In the future we would like to repeat our experiments involving 

transfection of ORF52, followed by staining with tubulin using different ORF52 

mutant constructs. We would transfect cells with ORF52 mutants including α-1 

helix, α-2 helix and β-strand deletions, as well as mutations of phosphorylated 

serine residues to alanine, and examine the localization to see if the pattern 

changes. Additionally, we would determine if MT depolymerization alters 

localization of ORF52 and test with anti-acetylated tubulin antibodies to examine 

whether MTs are stabilized in wt or ORF52 kd and if that changes with use of 

different mutant constructs. 

 

Phosphorylation of ORF52 and interaction with SRPK2 

Serine/arginine rich kinase 2 (SRPK2) interacts with, and phosphorylates, EBV 

BLRF2 at a conserved RS motif within the C-terminus (noted in Figure 1-9 in the 

introduction) and this phosphorylation plays a role in viral replication. Upon 

mutation of serines 148 and 150 to alanines (ARA) in BLRF2, this mutant was 

still able to associate with SRPK2 as shown in IPs; however, it was unable to 

complement the defect in viral replication measured by viral DNA copies in the 

supernatant (82).   

SRPK2 is discussed in greater detail in the introduction, but it is interesting 

to note that SRPK2 also phosphorylates the MAP, tau, at S214. Tau is a well-

studied MAP that mediates cognitive defects in Alzheimer’s. Tau has an N-

terminal projection domain, a C-terminal of MT binding domain repeats, and a 

short tail. The phosphorylation status regulates binding of MTs and SRPK2 
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phosphorylation of tau at S214 suppresses MT polymerization (134, 136, 

152). RRV ORF52 is phosphorylated at three residues: serines 46 or 48, 107 and 

119 (Woodson and Kedes, unpublished data). While the homologs do not strictly 

conserve the C-terminal RS domain (Figure 1-9, introduction), it would be 

interesting to determine if SRPK2 phosphorylates RRV ORF52, if that 

phosphorylation is necessary for the function of ORF52, and if so, for which 

function - tegumentation, egress, or MT interaction. If phosphorylation by SRPK2 

of ORF52 does take place, it would provide an additional similarity between a 

well-established cellular MAP like tau and this viral tegument protein.  

 

Creation of a RRV BAC – wt, 52-stop, 52-revertant 

To more cleanly demonstrate the function of other RRV viral proteins and their 

role in the virion structure, it may be useful to create a functional RRV BAC 

system that has an antibiotic selection marker and either a fluorescent tag or a 

FLAG/HA/myc tag. Once investigators create and test the wt BAC they can then 

perform genetic manipulations to introduce stop codons into the specific gene of 

interest, and subsequently create a revertant BAC again expressing the gene of 

interest. While we believe there are positive reasons to use the high efficiency 

siRNA knockdown during wt RRV infection and rescue system that we used to 

investigate ORF52 in Chapter 2, including use of wt virus during a primary 

infection in a biologically relevant cell type, this approach also has its difficulties 

and detractors. The most widely studied herpesvirus genomes (HSV-1, CMV, 

KSHV, MHV-68) are cloned as BACs (4, 51, 87, 153, 174, 207, 223, 304, 328, 
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347, 355) and researchers have made many different genetic manipulations 

and additional BACs for use in investigations. There is potential concern that a 

knockdown (siRNA), as opposed to a complete genomic knockout using a BAC, 

may muddle the results by giving a mix of results from wt virus infected/not 

knocked down, as well as knockdown, cells. We are currently in the process of 

creating lentiviral vectors that we can use to express a tagged wt ORF52 or 

siResistant ORF52 to transduce RhF cells during siRNA knockdown and wt RRV 

infection experiments. We believe this is a promising way to utilize our current 

system, while increasing ORF52 expression and the health of the cells, i.e., by 

not using Amaxa for plasmid transfection. Once established, researchers could 

manipulate this lentiviral expression system with relative ease to express 

different RRV genes for further examination of other viral proteins such as 

ORF45, ORF75, ORF33, and ORF64.  

 

Does RRV ORF52 play a role following virus entry?  

Upon viral entry the viral envelope fuses with a cell membrane (either the plasma 

membrane or a vesicle membrane following endocytosis) and releases the 

capsid and tegument proteins into the cytoplasm (113, 195). At this point the 

majority of tegument proteins dissociate from the capsid (113, 114, 195) and can 

play roles in priming the cell for viral infection (294). In HSV-1 and PrV, the inner 

tegument proteins UL36 (ORF64 homolog), UL37 (ORF63 homolog), and US3 

(not in gammaherpesviruses) remain associated with the capsid following entry 

and transport to the nucleus (60, 76, 195, 245, 256, 336). ORF52 is a tegument 
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protein that appears to colocalize with MTs and may bind to MT and/or play a 

role in particle movement. It would be interesting to investigate whether ORF52 

remains capsid-associated during entry and whether it functions in capsid 

translocation to the nucleus. To explore this, we could use immunoEM staining of 

ORF52, following high MOI infection at early time points, for example 2, 4, 6, 8 h 

p.i. If ORF52 remains capsid-associated, we would then investigate whether it 

plays a role in transport toward the nuclear pore utilizing MTs. Using IF and IP, 

we may be able to determine if ORF52 colocalizes or interacts with dynein 

motors during entry. 

 

The tegument and its potential role as a therapeutic target 

In addition to our goal of investigating the role of ORF52 in the RRV life cycle, we 

also hoped our work would inform investigation into other herpesviruses, 

specifically KSHV, as these two gamma-2 herpesviruses are closely related. Our 

overarching hope was that we would be able to identify ways to block 

gammaherpesvirus lytic replication and, thus, decrease the disease burden 

associated with this virus family. ORF52 is a conserved gammaherpesvirus 

specific protein, making it an attractive target for specific inhibition that would not 

hit cellular targets, but might work to inhibit both KSHV and EBV (both 

pathogenic human herpesviruses). ORF52 is likely involved in two separate 

critical stages of the viral life cycle—de novo infection and lytic replication—and it 

may be a broadly acting target. Upon in vitro knockdown of ORF52, subviral 

capsids were released from the cell, yet were over 300-fold less infective than 
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RRV released in siCNL (Chapter 2, Figure 2-1C). This release of less 

infectious, defective, unenveloped subviral particles and intracellular 

accumulation of viral proteins may also have the potential to generate an immune 

response without the highly lytic nature of a wt infection. In addition to ORF52 as 

a potential target, ORF45 might also provide a potential therapeutic target, for 

many of the same reasons as ORF52. In terms of potential target development, 

small molecule screens or rational drug design, followed by combinatorial 

chemistry type approaches could be used to search for an ORF52- (or ORF45-) 

specific inhibitor. Since tegument proteins are not surface expressed in wt 

virions, immunotoxins would not be effective; however, they are highly expressed 

in lytic cells and may be potential vaccine targets. 

 

Model of virion maturation with, and without, ORF52 

Our results show that when ORF52 is knocked down, capsids containing DNA 

egress the nucleus without significant deficit (Figure 2-6D and Table 2-1). Upon 

examination these capsids appear to lack tegument, although they may contain a 

minimal amount of protein not clearly visible by TEM (Figure 2-6D) suggesting 

the necessity of ORF52 for the continued layering of tegument proteins to take 

place. Additionally, IF results indicate that ORF52 is necessary for nuclear 

egress of the outer tegument protein ORF45 (Figure 2-4). In KSHV ORF45 

interacts with the kinesin-2 motor protein docking the tegumented capsid for 

movement along MTs (277). Without ORF52, ORF45 appears unable to be 

added to the capsid (Figure 2-4). In attrition, in ORF52 knock down cells, capsids 
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may be unable to efficiently interact with motor proteins, like kinesin-2, and 

be moved along MTs toward the plasma membrane. In summary, we submit the 

following model to illustrate the role of ORF52 in the maturation of RRV (Figure 

4-2). 
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Figure 4-2. Model highlighting impact of ORF52 knockdown and its 

effect on virion maturation. (A) RRV maturation in the presence of ORF52. (a) 

Capsid egresses the nucleus, (b) obtaining inner tegument proteins (brown and 

green circles), including ORF52 (green) that might possibly interact with motor 

proteins such as Kinesin-2, MTs directly, or other cellular/viral proteins (not 

shown). (c) Outer tegument proteins are added to the particle (orange, brown, 

and blue), followed by (d) secondary envelopment of glycoprotein containing 

vesicles. Particles within vesicles are transported toward the cell surface by 

motor proteins, possibly Kinesin-2, that may require other cellular/viral proteins 

(not shown). (f) The vesicle fuses with the plasma membrane and virions are 

released and either stay cell-surface associated or disperse into the media. (B) 

When ORF52 is knocked down, (a) capsids exit the nucleus, and potentially 

some inner tegument proteins that do not require ORF52 expression are added 

to the particle (brown circles). (c) Knock down of ORF52 prevents outer tegument 

proteins that require ORF52 expression, potentially as binding partners, to be 

added to the particle. (d) Partially tegumented/untegumented capsids that are 

impaired for secondary envelopment, rosette around vesicles, unable to undergo 

envelopment. Of note, without proper tegumentation, particles may be unable to 

associate as needed with motor proteins and may not move throughout the 

cytoplasm with the same efficiency as wt and remain closer to the nucleus. (e) 

Subviral particles, the majority of which do not have DNA, and lack tegument 

proteins, including ORF45 and ORF52, as well as envelope, are released, by a 

yet unknown mechanism, into the media. 
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APPENDIX 1: RRV BACTERIAL ARTIFICIAL CHROMOSOME (BAC) 
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In our early investigations into the role of ORF52 in the RRV life cycle we 

initially hoped to utilize bacterial artificial chromosomes (BACs) containing either 

the wt RRV strain 17577 genome or an ORF52 deletion (Δ52 BAC) (gifts of Scott 

Wong at the Oregon Regional Primate Research Center, created in his 

laboratory). Our plan involved transfecting RhF cells with either wt BAC, Δ52 

BAC, or complementing the Δ52 BAC by providing exogenous ORF52 plasmid 

by transient transfection. We would allow time for activation of the viral lytic life 

cell and formation of cytopathic effect (CPE), and utilize the samples for our 

experiments narrowing down the function of ORF52 by what changed in the virus 

life cycle without it.  

Numerous herpesvirus genomes have been cloned as BACs, including 

murine CMV, HVS, MHV-68, rhesus CMV, EBV, HCMV, VZV, HSV-1, KSHV, 

and RRV (4, 51, 87, 153, 174, 207, 223, 304, 328, 347, 355). BACs allow for 

entire viral genomes to be sustained in E. coli and, following transfection into 

eukaryotic cells, production of progeny virions. BACs allow researchers to 

examine the function of specific viral proteins in the course of infection by 

alteration, mutation, or deletion of sequences encoding a specific viral protein. 

Care needs to be taken when designing BACs, as manipulations pose potential 

concerns and technical issues, especially for proteins with overlapping coding 

regions and sequences left over from cloning (reviewed in (3)). 

The utilization of a BAC also allows investigators to make recombinant 

viruses. This includes viruses that express a fluorescent marker fused to a 

specific protein of interest, such as GFP, for easier immunofluoresecent imaging 
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of a viral capsid protein during the course of infection, or a tag such as FLAG, 

and/or to make viruses that lack the coding sequence for particular proteins 

useful for examining function of those proteins.  

The Wong laboratory tested the wt BAC derived RRV and found it similar 

to wt (non-BAC derived) RRV in terms of infectious virions produced (87). The 

Δ52 BAC was not tested for functionality following creation and gifting to our 

laboratory. 

To obtain BAC DNA, we grew large clonal E. coli cultures, containing 

either wt or Δ52 BAC, and purified DNA using phenol-chloroform-isoamyl alcohol 

and ethanol precipitation. Once BAC DNA was isolated, we tested the 

preparation to ensure DNA was present and to determine potential integrity by 

cutting it with HindIII restriction enzyme and running a sample on an agarose gel 

(Figure A1-1). 

To test the BAC DNA for functionality, we first transfected subconfluent 

(~70%) RhFs with 1-2 µg of BAC DNA with TransIt transfection reagent (Mirius) 

and checked the cells daily for evidence of CPE. In the wt BAC DNA transfected 

cells, depending on the DNA preparation, we saw evidence of CPE at the 

earliest, 8 days post DNA transfection, but on average it was 10 or more days 

(Figure A1-2). This is in stark contrast to primary RRV infection where CPE is 

evident and infectious virions can be collected from the supernatant 24 hours 

post infection. This extensive time period between transfection and CPE posed 

immediate  concerns in  terms  of  using the BAC for my  research purposes.  For  
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Figure A1-1. BAC DNA purified from E. coli. wt BAC and Δ52 BAC cut with 

HindIII restriction enzyme and run on a 0.8% agarose gel. 
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Figure A1-2. Lack of CPE evidence in RhF transfected with Δ52 BAC.  

A) Untransfected RhF, B) RhF transfected with wt BAC for 10 days, C) RhF 

transfected with Δ52 BAC for 10 days. Only RhF transfected with wt BAC show 

evidence of CPE as indicated by arrow.  
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example, following BAC transfection, the host cells continue to divide, 

doubling approximately every 24 hours. If it takes 10 days for evidence of viral 

production - not robust viral activity, but any indication of activity - maintaining the 

cell cultures while keeping the transfected DNA concentrated within the cells to 

produce virus is highly unlikely. Additionally, if the wt BAC takes 10+ days from 

transfection to viral production, complementation of the Δ52 BAC poses even 

greater challenges, as these cells needed to be transfected with plasmid ORF52, 

which is not expressed 10 days after transfection and is also being diluted out in 

dividing cells.   

We initially assumed that the Δ52 BAC was functional in all ways, except 

for deletion of the ORF52 coding sequence so any phenotypic differences 

between the wt BAC and the Δ52 BAC would be attributable to the lack of 

ORF52. If ORF52 were critical in the RRV life cycle and in production and/or 

release of infectious virus (which we show it is in Chapter 2 of this thesis) we 

wouldn’t expect to see CPE or virus production in Δ52 BAC, which we never did. 

Unfortunately, in over 2 years of troubleshooting and optimization of the BAC in 

our laboratory we were never able to complement the ORF52 deletion by 

providing ORF52 in trans under any conditions. We never saw any suggestion of 

CPE or viral production following complementation with Δ52 BAC. 

While this may be due to factors such as the amount of plasmid ORF52 

transfected, the timing of plasmid addition, the loss of plasmid, the dilution of 

BAC DNA during splitting of cells over the course of 10+ days, it became clear 

that it was impossible for us to narrow down in a way that was useful for our 
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research purposes. Of important note, we were also never able to detect any 

viral DNA present by PCR in Δ52 BAC transfected cells, which we would expect 

if the BAC was functioning properly, because ORF52 expression is not required 

for viral DNA replication or expression of SCIP, MCP, and ORF45 (see Chapter 

2, Figure 2-1 and 2-2A).  Therefore, it is quite probable that there were functional 

issues with the Δ52 BAC and that even under optimal complementation 

conditions, rescue would not have happened. For example, there were several 

sequences left behind from the cloning and deletion of ORF52, including plasmid 

and primer sites (Figure A1-3) that may have posed additional issues. 

There were several challenges that presented themselves regarding using 

the BAC. 1) Expression of viral proteins is highly regulated. Specifically, the point 

at which each protein is expressed, and/or whether it is expressed at different 

stages in the viral life cycle is difficult to determine and therefore when we 

provide plasmid to the cells may not be when it is needed, 2) The amount of 

protein expressed also varies and in some cases with exogenous transfection the 

amount may not be too little or too much. For example, we have repeatedly 

shown that overexpression of ORF52 can lead to microtubule bundling, which 

may pose a potential hindrance to viral infection, 3) RhF cells are difficult to 

transfect under the best of circumstances. Transfecting a large BAC into the cells 

via TransIt resulted in approximately 10-30% transfection efficiency, made 

additionally difficult by number 4, 4) the BAC did not have an antibiotic selection 

marker. I was unable to select for cells that received the BAC, which potentially 

may  have  assisted  in  reducing  the  period  of  time  from  transfection  to  viral  
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Figure A1-3. Sequencing alignment of Δ52 BAC compared to wt RRV H25-

95 ORF52. Lower sequence in purple is the original wt 420 bp RRV ORF52 

sequence (NCBI), with the start (ATG) and stop (TAG) in red. The upper 

sequence is from the Δ52 BAC and shows various sequences remaining in the 

genome from the construction of the Δ52 BAC. In yellow is a portion of p73 

plasmid sequence, in green a FRT site sequence, and in blue M13 primer. (See 

text for addition description.)  
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Δ52 BAC                                                          0 
RRVORF52    TGCCATGTCTTCCACGCGTCCCAAGACGCGCGCCCCCAAAAAAGAGCTGA  400 
                                                                     
Δ52 BAC                                                           0 
RRVORF52    CAATGGAGGAGTTAGCCGCTCAGGTGCAAAAATTGTCCGTTGAAAACAAG  450 
                                                                     
Δ52 BAC                                                           0 
RRVORF52    CAGCTCAAAAAGCTGATAAATTCTGGGGATCCCACCAGGTCCGGCTCCGA  500 
                                                                     
Δ52 BAC                          AAAAAAAAAAAACAACACAA-TGTA--CT   26 
RRVORF52    CCCCGTCATCTCTAACACCGAAAAGGAGGCCAAAATCGCAGCTGCCGTTT  550 
                         
Δ52 BAC     CAGTAATACGTA--GTAGCTACA-GTAAAACGACGGCCA--GTGAA----   67 
RRVORF52    CGGCCTTATGTAACGTGGCAACCCGTAAGATTGAAGCTAAGGTGAGGGCG  600 
  
Δ52 BAC     ---TTCG--AACTCGGT-AAAC-CGGGGATCTT-GAAGTTCCTATTCCGA  109 
RRVORF52    GCCACGGCCAAGGCCGTGACGCGCGGGCAGATGGAAGACGCCCTCGCCGG  650 
                     
Δ52 BAC     AGTTCCTATTCTCTAGAAAGTATAGGAACTTC---AGAGCACTTTTGAAG  156 
RRVORF52    AATTAGTATCCGCGTG-GACGTGTCAATGGAC--GAGACCA--CCAGAG-  694 
  
Δ52 BAC     CTGGGTTTAAACGC-GATATCCCGG---GAGCTCCCGATAT----CGCGT  198 
RRVORF52    --GCG--GAATCGCTGCCAGCGCGGACGGGGCGCTCAGGAGGAGGCGCGC  740 
  
Δ52 BAC     TTAAACGCAGCTTGGCGTAATCATGGTCATAGCT-GTTTCG---GTGCAAAA  246 
RRVORF52    CCAGTCCAGGACCAGAAATAACGACGCGG-AC--------TAGTGTGCAAAA  783 
                                                        ******** 
Δ52 BAC     TAAATAAACCTTTATTCGCAGTGAAGCGTCGTGTAGTTTCTATGTGCATA  296 
RRVORF52    TAAATAAACCTTTATTCGCAGTGAAGCGTCGTGTAGTTTCTATGTGCATA  833 
            ************************************************** 
Δ52 BAC     TATTTGATATTTAGTAAACAAGGCGATCGTGAGGCCCAATATTCCGGCCA  346 
RRVORF52    TATTTGATATATCGTGTACAAGGCGATCGTGAGGCCCAATATTCCGGCCA  883 
            ********** * **  ********************************* 
Δ52 BAC     TATAACACAGGGGGTGAACCAGGTGCCACGGCGTCGGCGAAAGGGAGGAA  396 
RRVORF52    TAGCCCACAGGGGGTGAACCAGGTGCCACGGCGTCGGCGAA-GGGAGGAA  932 
            **   ************************************ ******** 
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production, and 5) The doubling of RhFs every 24 hours, which meant they 

had to be split throughout the course of the experiment, which in turn diluted the 

BAC DNA and in the case of the Δ52 BAC, diluted out the plasmid ORF52 as 

well. 

In my attempts to effectively use this BAC, I altered multiple conditions. I 

transfected plasmid ORF52 into cells prior to transfection of BAC, at the same 

time, 24- or 48 hours after BAC DNA transfection, or throughout the 10+ BAC 

transfection period. I varied the amounts of plasmid as well as BAC DNA. I 

attempted different transfection reagents, and attempted to use HEK293 cells, 

which are more amenable to transfection. Regardless of numerous changes to 

each condition, I never saw evidence of CPE or virus production (Figure A1-4).  

In addition to RhF cells, I also did a time-course using HEK293 cells, because 

they are easier to transfect than RhF. Upon Transfection of HEK293 cells with 

ORF52 plasmid (pk-mycORF52), Δ52 BAC, ORF52 plasmid + Δ52 BAC, or wt 

BAC, I was only able to detect ORF52 in cells transfected with the ORF52 

plasmid and not in any other condition, including wt BAC. Myc-tagged ORF52 

expression was robust at 5 days post-transfection, had significantly decreased at 

7 days, and was gone at 13 days (Figure A1-5). I had already shown that in RhF 

cells the wt BAC did produce virus, which led us to believe that HEK293 cells did 

not support  RRV lytic replication  and would not be  useful  for  our  experiments. 
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Figure A1-4. Examination of viral proteins expressed in wt BAC and Δ52 

BAC transfected RhF cells. A) Western blot of cell lysates to examine 

expression of viral proteins including MCP, SCIP, and ORF52 in RhFs infected 

for 48 hours as a positive control (+) (lane 1), uninfected RhFs as a negative (-) 

control (lane 2), RhFs transfected with a wt BAC for 11 days (lane 3), or Δ52 

BAC (lane 4). B) Concentrated supernatants collected from the BAC transfected 

cells in A were probed for the viral proteins MCP, SCIP, and ORF52. Wt BAC 

supernatant (lane 1) and Δ52 BAC (lane 2) 
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Figure A1-5. Time course of ORF52 protein expression in HEK293 cells 

transfected with wt BAC or Δ52 BAC. HEK293 cells were transfected with 

ORF52 plasmid (pk-mycORF52) only (lane 2), Δ52 BAC only (lane 3), ORF52 

plasmid and Δ52 BAC (lane 4), or wt BAC (lane 5) and probed for ORF52, MCP, 

or cellular actin on days 5 (A), 7 (B), or 13 (C). RRV infected RhFs are used as a 

positive control (+) (lane 1) in A, B, and C. myc-tagged ORF52 is robustly 

expressed at 5 days post plasmid transfection (lanes 2 & 4 in A). That expression 

is significantly less 7 days posttransfection (B) and gone at day 13 (C). There is 

no wt virion produced (non-tagged) ORF52 in any lanes except control at any 

time point (A, B, or C). 
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APPENDIX 2: shORF52 AND shSCRAMBLED EXPRESSING RHF CELL  

LINES 
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We decided to utilize a shRNA lentiviral vector approach to try and 

circumvent the low transfection efficiency of RhF cells. Utilizing this system, all 

(or almost all) cells would express shRNA targeted to ORF52 (shORF52), or a 

scrambled sequence (shScrambled) (control), in RhF cells, which we could select 

with hygromyocin. Following development of a stable population of RhF 

expressing shORF52 or an shScrambled, we would subsequently infect these 

cells with wt RRV and go on to investigate the role of ORF52 in cells expressing 

ORF52 (shScrambled + RRV) or with ORF52 knocked down (shORF52 + RRV) 

as done in Chapter 2.  

In general, to generate lentivirus, plasmids for the transgene expression 

cassette, packaging and envelope vectors are co-transfected into permissible cell 

line, such as 293T cells. Produced lentivirus is then used to transduce the 

desired target cell.  Only the vector containing the shRNA expression cassette 

integrates into the host genome in transduced cells. The shRNA hairpin in the 

expression cassette is cleaved by the cellular machinery into siRNA, which then 

binds to the RISC complex, leading to matching of siRNA bound to it to 

complementary mRNA sequences, and subsequently cleaves them so they are 

unable to be translated (Figure A2-1) (reviewed in (91, 191, 312)). 

 To create the lentivirus, we used the pLKO.1 hygromyocin vector 

(Addgene) and their protocol (Figure A2-2). pLKO.1 hygro lentiviral vector carries 

a hygromycin resistance cassette for selection in transfected cells. An AgeI and 

an EcoRI restriction site flank the cloning site (labeled ‘shRNA’ in Figure A2-2) 

used for  insertion of  the shRNA construct  containing  the  siRNA  sequence  of  
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Figure A2-1. Overview of lentiviral creation and shRNA processing. Image 

broadly outlines the three different vectors necessary for generation of lentivirus, 

transduction into target cell, processing of shRNA, and destruction of mRNA. 

Image adapted from (191) and used with permission. 
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Figure A2-2. Map of lentiviral expression vector pLKO hygro. pLKO hygro is 

driven by the U6 promoter, has an Amp resistance gene for prokaryotic selection, 

and a hygromyocin resistance gene for eukaryotic selection. Image adapted from 

Addgene, an open source website (http://www.addgene.org/tools/protocols/plko/ 

and accessed 4/24/14). 
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choice. Additionally, the shRNA has a 6-nucleotide sequence recognized by 

XhoI, the siRNA anti-sense siRNA sequence, and a termination sequence 

(Figure A2-3). To create the shRNA construct, we entered our siRNA sense and 

antisense sequences into the aforementioned format and ordered corresponding 

oligosaccharides (oligos). 

We then cut the pLKO.1 hygro vector sequentially with AgeI and EcoR1 and 

combined the cut vector with annealed shRNA construct oligos at different 

oligo:plasmid (ligation mix) ratios (1:1, 4:1, 2:2 ). We then transformed Stbl2 E. 

coli with 5 µL of ligation mix and following clonal selection, maxi prep, and 

sequence confirmation, had our shRNA constructs containing both shORF52-3 

and shScrambled. The shScrambled construct contained the same siORF52 

nucleotides; they were just scrambled in a random order to use as a negative 

control. 

Next we generated lentivirus expressing our shRNAs by co-transfected 

293T cells with pLKO.1 hygro vector, a packaging vector (psPAX2), and an 

envelope vector (pMD2.G) (gifts of Bouton laboratory). We collected 

supernatants from transfected 293Ts at 24, 48, and 72 hours post transfection, 

combined them, and filtered them through a 0.45 µM filter.  We then added 1 mL 

of supernatant containing lentivirus to naïve RhF cells. 48 hours later 

hygromyocin was added to select for transduced cells. Selection of transduced 

RhF cells continued with replenishment of media containing hyrgomyocin until a 

pool  of  stably  transduced  RhF cells  were  generated.  We went  on to test  the  
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Figure A2-3. Diagram of shRNA construct including shORF52 and 

shScrambled oligosaccharide design sequences. A shRNA construct was 

designed to target RRV ORF52 and a negative control shShrambled construct 

composed of the same RRV ORF52 amino acids, just scrambled and non-

targeting. Image from Addgene, an open source website 

(http://www.addgene.org/tools/protocols/plko/ and accessed 4/24/14). 
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CCGG: AgeI restriction enzyme site 
AATTC: EcoRI restriction enzyme site 
TTTTTG: polyT site for RNA polmerase III 
CTCGAG: loop contains XhoI cleavage site 
siORF52 sense: 5’ CCCGTAAGATTGAAGCTAATT 3’ 
siORF52 antisense: 5’ AATTAGCTTCAATCTTACGGG 3’ 
siScrambled sense: 5’ CATTACGTTGTAAGCTAGACA 3’ 
siScrambled antisense: 5’ TGTCTAGCTTACAACGTAATG 3’ 
 

shORF52-3 Fwd construct: 

5’  CCGGCCCGTAAGATTGAAGCTAATTCTCGAGAATTAGCTTCAATCTTACGGGTTTTTG  3’ 

shORF52-3 Rev construct  

5’  AATTCAAAAACCCGTAAGATTGAAGCTAATTCTCGAGAATTAGCTTCAATCTTACGGG  3’ 

 

shScrambled construct: 

Fwd oligo 

5’  CCGGCATTACGTTGTAAGCTAGACACTCGAGTGTCTAGCTTACAACGTAATGTTTTTG  3’ 

Rev Oligo 

5’  AATTCAAAAACATTACGTTGTAAGCTAGACACTCGAGTGTCTAGCTTACAACGTAATG  3’ 
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efficacy of these cells following transfection with exogenous ORF52 and 

probing the cell lysates for ORF52 expression. Initially use of these cell lines 

seemed promising, as there was a decrease in ORF52 in the shORF52 

expressing cells compared to shScrambled (Figure A2-4, panel A); however 

these cells lost their ability to knockdown ORF52 when cultured over time (Figure 

A2-4, panel B). Additionally, this knockdown ability was lost following freeze/thaw 

of early cell passages.  

Rather than taking a great deal of time to troubleshoot this situation, or 

transducing naïve RhFs with shORF52 lentivirus for each new experiment, which 

may not have worked, we decided to move on and back into transient siRNA 

transfection to investigate the role of RRV ORF52. This made particular sense 

given the time already spent on the BAC. 
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Figure A2-4. sh52 knocks down expression of transfected pk-mycORF52; 

however, knockdown is not stable. RhF cell lines stably expressing shORF52 

(sh52) or shScrambled (shScram). Cells were transfected with 1 µg of pk-myc 

ORF52 plasmid DNA per 1x106 cells and harvested 48 hours later. Equal 

amounts of protein were run and western blots were probed with anti-ORF52 and 

anti-actin. 
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APPENDIX 3: TET-INDUCIBLE ORF52 AND SIORF52 RESISTANT RHF CELL 

LINES 

 

 

 

 

 

 

 

 

 

 

 



	   207	  
In our continued pursuit to determine RRV ORF52 function, we decided to 

move away from the BAC and instead utilize siRNA-mediated knockdown of 

ORF52 during wt RRV infection. In order to confirm the role of ORF52 we knew 

we would need to show rescue of phenotypes linked to ORF52 knock down by 

providing ORF52 in the system. RhF cells are transfected with plasmid DNA at a 

low efficiency (~40% in best case scenarios with Amaxa) and we hoped to 

increase this efficiency by creating inducible wt ORF52 and siORF52 resistant 

(Res52) RhF cell lines. Our plan was to transfect these inducible RhF cells with 

siRNA to ORF52 or control, then infect them with RRV, and at some point induce 

expression of Res52, with the hope that it would be available and able to 

complement the ORF52 knockdown. For this purpose, we created tet-inducible 

ORF52 RhF cell lines using the Flp-In T-Rex kit (Life Technologies). This system 

allows the creation of a mammalian host cell line that contains an integrated Flp 

recombination target site (FRT) and stably expresses the tetracycline (tet) 

repressor (tetR). One can then able to utilize this cell line and express any cloned 

gene of interest under a tet-inducible system.  

We first transfected linearized pFRT/lacZeo plasmid into RhF cell via 

Amaxa transfection (Lonza). The pFRT/lacZeo vector contains a lacZ-Zeocin 

fusion and a FRT site. Following transfection, we selected for RhF cells with the 

integration with Zeocin. We isolated nine individual clones and expanded them. 

Then, using Southern blot, we screened these clones to identify clones with a 

single FRT integration site using a lacZ probe. We first determined the 

concentration of lacZ probe  by dot blot  and comparison to a  known  standard 
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Figure A3-1. Establishment of a stably transfected pFRT/LacZeo RhF host 

cell line.  (A) Dot blot of LacZeo probe used to determine concentrion for 

Southern blot. (B) DNA isolated from pFRT/LacZeo transfected RhF and 

amplified by PCR using LacZ primers, (C) Agarose gel of DNA isolated from 

pFRT/LacZeo transfected clones and cut with HindIII and (D) Southern blot from 

Agarose gel separation. (See text for more detailed explanation.) 
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(Figure A3-1A). Finally, we ran an agarose gel of DNA isolated from our 

clones (Figure A3-1C) and performed the Southern blot using the lacZ probe 

(Figure A3-1D). Unfortunately, we experienced technical issues with the 

Southern blot and after several months were still unable to resolve them and 

detect lacZ in any of our clones. To ensure that these clones were actually 

integrated with pFRT/lacZeo, we performed PCR of each of the 9 clones using 

LacZ primers (Figure A3-1B). Since each clone had DNA amplified with the LacZ 

primers, meaning integrated sequence, we decided to continue on with the 

protocol and cell line development without confirmation of single integration.   

Stable clones 1-9 that were resistant to Zeocin were next transfected 

using Amaxa with the pcDNA6/TR plasmid that contains the tetR gene and 

conferred Blasticidin resistance. Following selection of clones resistant to both 

Zeocin and Blasticidin we tested for β-galactosidase activity (Figure A3-2). The 

protocol recommends selecting the clone with the greatest β-galactosidase 

activity to use for the subsequent steps. We selected clone 4, which had the 

highest expression, as well as clone 7 that had moderate β-galactosidase 

activity. We found clone 4 to be most effective and is the clone used in this 

section.  

We co-transfected clones via Amaxa with linearized pcDNA5/FRT/TO 

expression vector that contained our gene of interest, ORF52, and pOG44. Next, 

we cloned ORF52 into pcDNA5/FRT/TO, a vector that contained a tetON gene 

and   a   hygromycin  resistance   gene.  Plasmid   pOG44  expressed   the   FLP  
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Figure A3-2 β-galactosidase activity in RhF cells with pFRT/lacZeo 

integration. β-galactosidase activity was measured by combining cell lysates 

with ONPG and measuring hydrolysis of ONPG to ONP anion at an absorbance 

of 420 nm. 
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recombinase gene that, when co-transfected, allowed for integration of 

ORF52-pcDNA5/FRT/TO into the established FRT site in the RhF host cell line.  

We then selected for clones of ORF52 integrated RhFs with Hygromycin 

and Blasticidin. Following expansion of cells, we tested individual clones for both 

uninduced (leakiness) expression of ORF52, as well as expression of ORF52 

following doxycycline (a tetracycline antibiotic) addition. Several of the clones 

tested negative for ORF52 expression when uninduced (U) and positive when 

induced (I) (Figure A3-3).  

At this time, we planned to further our ORF52 knockdown studies by 

transfecting into our inducible cell line a siRNA targeted to ORF52. Tests of 

several sequences revealed two that gave the best knockdown of ORF52 with 

the most minimal side effects labeled as ‘c’ and ‘3’. Initially, when we made this 

tet-inducible ORF52 RhF cell line, we were working with siORF52c sense strand 

with the sequence 5’- GCUGAUAAAUUCUGGGGAUUU. However, in order to 

assign a specific function of ORF52, we needed to be able to rescue the 

phenotypes with the knockdown. Instead of trying to complement by transiently 

transfecting ORF52 into these cells, we created a tet-inducible siRNA resistant 

ORF52 RhF cell line, using the already established FRT site integreated RhF 

host cell line. We made a mutation to 2 wobble bases in ORF52 that were in the 

area targeted by the siRNA, which we hoped would confer siRNA resistance. 

Then we created a siResORF52c forward primer changing the TCT to TCC and 

GGG to GGA (changed bases are underlined) 5’ - 

AAAAGCTGATAAATTCCGGAGATCCCACCAGGTCCGG. The bolded area is  
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Figure A3-3. Tet-inducible RhF clones express ORF52 upon induction by 

doxycycline. Western blot of several different clones uninduced (U) or induced 

(I) with doxycycline and probed with anti-ORF52 or anti-actin. 
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the siRNA target sequence. We then performed site directed mutagenesis 

(Stratagene) using the already created ORF52-pcDNA5/FRT/TO plasmid and the 

oligos with the desired mutation following the Stratagene protocol. Afterward, we 

then co-transfected this siResistantORF52c-pcDNA5/FRT/TO and pOG44 and 

selected for integrated clones as described previously. 

Tests performed on one of our clones for uninduced ORF52 expression 

and expression following 48 hours induction with doxycycline and the yielded 

promising results (Figure A3-4).  

We next went on to test whether this induced Res52c was resistant to 

siORF52c. We transfected these cells with siORF52c and induced with Dox 24 

hours later. 48 hours following induction, we collected cells and saw that Res52 

was resistant to knockdown with siORF52c (Figure A3-5). 

In subsequent experiments we used these Res52c RhF cells in RRV 

infection experiments. After transfection with siRNA, cells were infected with RRV 

at an MOI 5. After removing the input virus, we replenished media containing 40 

ng/mL or 1 µg/mL Dox (Figure A3-6). 

In all conditions at both 72- and 96- h p.i. in the cell lysates, we saw 

expression of MCP, ORF45, and SCIP. ORF52 was expressed in the siCNL 

treated cells as well as in the cells induced with the Res52 (si52c + 40 ng/mL or 

si52c + 1 µg/mL Dox) (Figure A3-6A lanes 1, 3, 4, 6, and 7), but not in cells with 

ORF52 knockdown and no rescue (si52c) (Figure A3-6A lanes 2 and 5). 

Supernatants collected from these cells and concentrated show that MCP, 

ORF45, SCIP, and  ORF52  are  packaged  in  particles in siCNL  (Figure A3-6A,  
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Figure A3-4. Tet-inducible siResistant ORF52c RhF cells express ORF52 

following induction with Dox. RhF cells with integrated Res52 express ORF52 

upon induction (lane 2) with Dox. Western blot of cell lysates probed with anti-

ORF52 and anti-actin. 
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Figure A3-5.  Tet-inducible siResistant ORF52c RhF cells express ORF52 

upon addition of Dox and it is resistant to knockdown by siORF52c. Res52 

is resistant to knockdown by siORF52. Cells were transfected with siRNA and 

induced with 1 µg/µL of Dox for 48 hours. Western blot of cell lysates probed with 

anti-actin and anti-ORF52. 
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Figure A3-6. Expression of viral proteins in RhF cells and in released 

particle following ORF52 knockdown and rescue. Tet-inducible Res52c RhF 

cells were transfected with siORF52c for 24 hours. Cells were infected with wt 

RRV at an MOI of 5 for 1 hour. Following removal of input virus, cells were 

washed with PBS and media containing no Dox (siCNL and si52c) or rescue 

(si52c + 40 ng/mL or si52c + 1 µg/mL Dox), 40 ng/mL or 1 µg/mL Dox was 

added. (A) 72 or 96 hours later cells were harvested and cell lysates probed for 

MCP, ORF45, SCIP, ORF52, and actin. (B) Supernatants were collected and 

layered over a 35% sucrose cushion. Following concentration in a centrifuge at 

65,204 x g for 30 minutes at 4° samples were resuspended in lysis buffer, boiled 

for 10 minutes, and equal volumes were run.  
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lanes 1 and 5). In si52 conditions, with no Dox, at both time points, there is 

minimal packaging of ORF52 and ORF45 in the viral particle compared to siCNL 

(Figure A3-6, lanes 2 and 6). When cells are induced with 40 ng/mL or 1 µg/mL 

Dox and at 72 and 96 h p.i. there was a partial rescue of ORF52 and ORF45 

packaging, indicated by an increase in expression over si52 (Figure A3-6B, lanes 

3, 4, 7, and 8).  

Next, we measured the titer in tet-inducible Res52c RhF cells at 48, 72, 

and 96 hours post infection. Based on our western blots that showed expression 

or ORF52 in the cell lysates following induction (Figure A3-6A, lanes 3, 4, 6, and 

7) and the increase in packaging on ORF52 and ORF45 in the particle of Dox 

induces RhF cells (Figure A3-6B, lanes 3, 4, 6, and 7) we expected to see a 

robust increase in viral titer of Dox induced (rescue) over si52 with no Dox (kd). 

In siORF52c treated cells, titers decreased 35 fold at 48 h p.i., 200-fold at 72 h 

p.i., and 168-fold at 96 h p.i. from siCNL. While induction of Res52 was able to 

partially rescue this decrease, it was to a very minimal extent of 2-, 3, or 6- fold, 

respectively, depending on time point (Figure A3-7).  

We also established a second tet-inducible siResistant ORF52 RhF cell 

line that was resistant to a different siORF52 siRNA, siORF52#3 (the siORF52 

sequence used in Chapter 2), and while several clones did express ORF52 

following Dox addition, we did not pursue their use for further studies. This was 

primarily because, in addition to the minimal rescue in viral titer with this cell line, 

we observed these Tet-inducible RhFs (both wt ORF52 and Res52) did not 

behave  and look exactly  like  non-manipulated  RhF cells. First  of all,  during wt  



	   224	  
 

 

 
 
 
 
 
 
 
 

Figure A3-7. Titers of siCNL, ORF52 knockdown, or ORF52 rescue 

determined by plaque assay 48-, 72-, or 96 hpi. Res52 tet-inducible RhF cells 

were treated with siCNL or siORF52. 24 hours later cells were infected with RRV 

at an MOI of 5 and induced for Res52 expression with Dox. At the indicated time 

points, media was collected and titers determined by plaque assay. 
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RRV infection, the infection progressed at a slower rate, approximately 48 

hours slower than wt RRV. For example, at 48 h p.i. in siCNL treated 

siResORF52 RhF, the tilter was 1.29x105 pfu/mL. In wt RRV infected RhFs the 

titer is 7x106pfu/mL on average – over 50-fold difference - and it never catches 

up to wt RRV titer. Even 96 h p.i.  in the tet-inducible siResistant ORF52 RhF 

cells the titer is still half of that in wt RRV infected RhFs (3x106 pfu/mL) in 

contrast to wt RRV infection, where there are no cells left at 72 h p.i. because 

they have all lysed from infection. Additionally, the cells appeared to have more 

nucleoli regions in the nucleus; the relevance, or lack thereof, is unknown. 
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APPENDIX 4: ORF45 AND ITS ROLE IN THE SUSTAINED ACTIVATION OF 

ERK IN RRV 
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Previous work in our laboratory by Evonne N. Woodson investigated the roles 

of extracellular signal-regulated kinase 1 (ERK1) and ERK2 in the structure and 

function of RRV (341). She found that RRV infection activated the ERK pathway, 

that activated (phosphorylated) ERK2 (pERK2) was preferentially incorporated 

into mature virions in the tegument layer, and that the activation of ERK was 

required for production of viral proteins and virions (341). 

ORF45 is a gammaherpesvirus specific tegument protein packaged into 

mature KSHV and RRV virions (239, 277, 358). In KSHV, ORF45 induces 

sustained ERK and p90 ribosomal S6 kinase (RSK) activation during KSHV lytic 

reactivation (169, 170). It was suggested that ORF45 formed a heterotrimeric 

complex providing protection from phosphatases that would otherwise 

dephosphorylate/inactivate ERK and RSK (170).  

 As part of continued research in our laboratory, a second paper 

investigating ORF45 and its role in the sustained activation of ERK in RRV was 

recently published in PLoS Pathogen	   (340). In this study, we demonstrated that 

in RRV pERK levels continued to rise throughout the lytic cycle and that RRV 

ORF45 interacts with both ERK and RSK in infected cells forming heterotrimeric 

complexes within the nucleus. Also, RRV infection led to the activation of nuclear 

and cytoplasmic pERK targets, suggesting that the pERK in ORF45 or 

ORF45/RSK complexes in the nucleus retained their kinase activity. 

 
As a collaborative effort in our laboratory, I performed experiments leading to two 

figures published in this manuscript and included below. 
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Excerpt from our paper, Woodson, et al, 2014:  

Previous data from Zhu’s laboratory suggest that when KSHV ORF45 is bound to 

pRSK, the interaction between pRSK and pERK is prolonged leading to the 

formation of a more stable trimeric complex (170). To assess the stability of the 

ORF45 nucleated trimeric complexes in even greater detail, we infected RhF for 

48 hours, allowing the accumulation of complex-protected pERK, and then 

determined the half-lives of both pERK2 and pERK1 by measuring their levels 

following the addition of the MEK inhibitor U0126 or DMSO (Figure A4-1). This 

drug would block the formation of additional pERK1 and pERK2. We 

hypothesized that stable and phosphatase-resistant complexes would lead to 

persistent elevations of pERK2 levels even without ongoing MEK activity. 

Following the addition of U0126 48h p.i., pERK2 levels remained elevated with a 

prolonged t1/2 of approximately 3 hours, likely reflecting a slow off rate of ORF45 

from the complex and corroborating our hypothesis (Figure A4-1). Of note, the 

GAPDH normalized ORF45 levels declined only minimally over the 10 hours and 

were not statistically different between the DMSO and U0126 treated samples. In 

marked contrast, the levels of pERK1 decreased rapidly with, a t1/2 of 

approximately 25 minutes (Figure A4-1). These latter data suggested that, in 

infected cells, pERK1, in contrast to pERK2, was freely accessible to the 

enzymatic activity of MAP kinase phosphatases (MKPs) (31, 32, 44) 
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Figure A4-1. The ORF45-containing complex predominantly protects 

pERK2 over pERK1. (A) Immunoblots of RRV-infected RhF (48 hour; MOI of 

2.5) treated with DMSO (left) or the MEK inhibitor, U0126 (50 µM, [right]). 10-

15% of total lysate was loaded per lane. Blots were probed with antibodies to 

phosphorylated ERK (pERK) and GAPDH. Times indicated above blots 

represents hours after U0126 treatment. (B) Graphical representation of decay of 

GAPDH normalized pERK1 and pERK2 levels following the addition of DMSO or 

U0126. Data are the mean of three independent experiments with error bars 

reflecting the SEM. R2 values indicate the coefficient of determination for each 1st 

order exponential decay curve. (Of note, the lower MOI of 2.5 helped minimize 

the degree of lysis between p.i. hours 48 to 58). Figure from our own open-

access article. 
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Excerpt from our paper, Woodson, et al, 2014: 

If pRSK played a non-essential role in maintenance of pERK levels during RRV 

infection, we also predicted that the pERK half-life following the addition of the 

MEK inhibitor U0126, as we had measured previously (Figure A4-1), would be 

similar in RRV infected cells following pre-treatment with either control or RSK-

directed siRNA. To test this prediction, we infected RhF 24 hours after siRNA 

reverse-transfection and then waited 48h p.i. before adding U0126 and 

measuring pERK 1 and 2 over the subsequent 10 hours. We found that the half-

lives of pERK2 in infected cells pre-treated with siRNA to RSK or siRNA control 

were statistically indistinguishable and were prolonged (t1/2=1.34 and 1.23 hours, 

respectively). For pERK1, siRSK pre-treatment actually appeared to lead to a 

modest increase in half-life compared to siCNL (t1/2=40 vs. 11 minutes, 

respectively), but both decay curves were statistically distinct from the longer 

half-lives of pERK2 under either condition (Figure A4-2). Importantly, these data 

further supported the notion that RSK was not critical to the stability of pERK2 or, 

therefore, to the ORF45-pERK2 complex. 
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Figure A4-2. Delayed decay of pERK2 during RRV infection is independent 

of RSK expression. (A) RhF were transfected with siCNL or siRSK1+2 (siRSK) 

and 24 hours later infected with RRV at an MOI of 2.5. 48 h p.i. cultures were 

treated with DMSO (top) or the MEK inhibitor, U0126 (bottom) for up to 10 hours. 

10 µg of cell lysate (10-15% of total lysate) were loaded per lane and 

immunoblotted with antibodies to pERK, RSK1+2, and GAPDH to control for 

loading. (B) Graphical representation of two independent experiments described 

in (A) with levels of pERK1 and pERK2 at each time point first normalized to 

GAPDH and then expressed as the ratio of their values under U0126 or DMSO 

conditions. We set the ratios for pERK1 and for pERK2 levels to 1.0 for the 

siCNL samples at the zero hour time point. Subsequent time points are relative to 

these initial values. Dashed lines indicate the samples that received siCNL and 

solid lines siRSK. Data are the mean from the two experiments with error bars 

representing the range. R2 values indicate the coefficient of determination for 

each curve and the p-values indicate the level of significance difference using the 

extra sum-of-squares F test (Prism 6.0d software) between the decay curves of 

each pERK1 and pERK2 with (siRSK) or without (siCNL) RSK knockdown (p 

values were 0.0029 and 0.799 respectively). Figure from our own open-access 

article. 
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APPENDIX 5. EFFECT OF RRV ORF45 KNOCKDOWN ON VIRUS 

PRODUCTION 

 

 

 

 

 

 

 

 

 

 

 



	   236	  
We have discussed throughout this dissertation, we have discussed that 

knockdown of ORF52 resulted in particles that were unable to undergo virion 

morphogenesis in the cytoplasm as well as the release of subviral particles that 

lacked both ORF52 and ORF45. Additionally, we explored the effect of RRV 

ORF45 knockdown on ORF52. ORF45 performs several known functions in 

addition to its structural role in the tegument (see Introduction), including roles in 

the immediate early phase of viral infection and in DNA replication	   (361). We 

predicted that, if knocking down ORF45 affected viral DNA replication, we might 

see related effects relating to protein expression within the cell.  

To investigate the role of ORF45, we transfected RhF cells with a siRNA 

directed to ORF45 (siORF45) and infected cells 24 hours later with wt RRV at an 

MOI of 5. 48 h p.i., we collected cell lysates and supernatants. We used a portion 

of the supernatant for a titer assay and concentrated a portion over a 20% 

sucrose cushion to pellet particles.  

Upon examining cell lysates for expression of MCP, SCIP, ORF45 and 

ORF52, we found that our knockdown of ORF45 was very efficient (>98%) 

(Figure A5-1A and 1B) and, additionally, that ORF52 expression decreased to 

approximately 40% relative to siCNL. Furthermore, examination of released 

particles revealed fewer particles released overall in siORF45 conditions, with 

many lacking ORF52 (Figure A5-1C and 1D). The titer from siORF45-treated 

RhF cells decreased by over 150-fold. (Figure A5-1E).  

At this point, we can draw only limited conclusions from these experiments 

regarding  the effect of ORF45. ORF52  is a late protein  that  requires viral  DNA  
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Figure A5-1. RRV ORF45 plays a role in multiple stages of the RRV 

lifecycle. (A) Immunoblot analysis of cell lysates from RhF transfected with 

control siRNA (siCNL), lane 1, or ORF45 siRNA (siORF45), lane 2 and then 

infected with RRV 24 hours later at MOI 5. Cells were harvested 48 h p.i. and 

immunoblots were performed, probing for the viral tegument proteins, ORF52 

and ORF45, the capsid proteins, MCP and SCIP, and, in addition, ran, to 

normalize for loading differences. (B) Graphical representation of the intracellular 

levels of the indicated viral structural proteins after siORF45 treatment relative to 

siCNL in RRV infected RhF cells. Data represent the mean +/- the range of 2 

individual experiments. (C) Supernatants from siCNL or siORF45 treated cells 48 

h p.i. collected and concentrated over a 20% sucrose cushion to isolate particles 

and equal volumes of media were separated by SDS-PAGE and immunoblotted 

for MCP, ORF45, SCIP, and ORF52. (D) Graphical representation of the effect of 

siORF45 relative to siCNL on the levels of the indicated viral protein within the 

released vira 

l particles. Data represent the mean +/- the range of 2 individual experiments. (E) 

Viral titers in the media 48 h p.i. from RhF treated with siCNL or siORF45 were 

determined from 2 different experiments by viral plaque assay. Values are mean 

+/- the range. 
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replication prior to its expression, and–based on the western blot of cell 

lysates—it appears to be affected by an ORF45 knockdown. We did these 

experiments only in duplicate and do not have qPCR or TEM supporting 

information. Additionally, as mentioned, ORF45 is a polyfunctional protein that 

has global effects; and pinpointing its role in virion maturation or early events is 

not possible without at least corroborating TEM and qPCR. Our laboratory is very 

interested in the function of RRV ORF45 and will continue to investigate its role 

in the RRV life cycle. 
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