
Circuit Solutions and Tool Flow of
Ultra-Low-Power FPGAs

A Dissertation

Presented to

the faculty of the School of Engineering and

Applied Science

University of Virginia

in partial fulfillment

of the requirements for the degree

Doctor of Philosophy

by

He Qi

December 2017

Abstract

Low-power miniature systems for ubiquitous computing such as wireless

sensor networks have been developing rapidly in the past years. The grow-

ing demand on collecting and analyzing information from surrounding environ-

ment drives researchers and engineers to develop Internet-of-Things (IoT). This

trend requires future integrated circuits for IoT devices to be ultra-low-power

(ULP), flexible, and low-cost. Existing circuit solutions of IoT devices are ei-

ther too costly such as sub-threshold ASICs, or too power-consuming such as

sub-threshold microprocessors. ULP FPGAs operating in near/sub-threshold

region, flexible and much lower-power than sub-threshold microprocessors, be-

come a promising hardware solution for IoT applications. In this dissertation,

circuit/architecture and tool flow of a custom ULP FPGA are explored and

developed.

1) Energy E�cient FPGA Interconnect

The global interconnect is the major power consumer of the core fabric

of FPGAs. Studies have shown that over 65% of power is dissipated in the

interconnection fabric. The same conclusion applies to delay and area. The

strict requirements on both speed and energy of IoT applications make energy

reduction and energy-e�ciency improvement of FPGA routing fabrics a driv-

ing challenge. In this dissertation, an energy-e�cient low-swing interconnect

is modeled, optimized, and evaluated in near/sub-threshold region. When im-

plementing Microelectronics Center of North Carolina (MCNC) benchmarks,

the proposed interconnect leads to 68.4% delay reduction and 47.5% energy

reduction compared to prior works.

2) Per-Path Voltage Scaling and Power-Gating

Per-path voltage scaling is a technique to reduce FPGA energy to just the

minimum while maintaining the overall FPGA speed by reducing the supply

ii

voltage on non-critical paths. However, no existing work applied it to FPGA

interconnect due to large area overhead. In this dissertation, this problem is

solved by using the low-swing interconnect. When using this technique along

with power-gating, a 22.3% - 56.5% energy reduction is observed. A custom

low-power FPGA is fabricated and measured. When implementing a 4-bit

adder, it consumes 277x lower power and 3.4x lower energy than Microsemi

IGLOO, which is the most low-power FPGA in the market today.

3) Low-Power FPGA Evaluation Platform

To evaluate custom FPGAs, full tool flow and benchmark support are

needed. However, existing commonly used FPGA benchmarks are either too

large for ULP FPGAs or too simple to fully utilize ULP FPGA resources. Also,

the existing benchmark synthesis tools either only support commercial FPGA

architectures, or have crucial limitations on the syntax of input Verilog. In

addition, the existing power estimation tools do not accurate for low-power

FPGAs and the embedded accelerators/IPs. Solutions to those problems are

addressed in this dissertation. The functionality of the custom flows has been

verified using a custom low-power application suite. Compared to Microsemi

IGLOO, the custom FPGA on average consumes 315x less power and 75x less

energy when implementing the custom low-power FPGA application suite.

iii

Acknowledgement

I firstly want to thank my parents, who give me their utmost support and trust.

When I make decisions that I think will surprise them, they always choose to support

me with smiles and jokes. Research life is both enjoyable and hard. They completely

understand me when I struggled with my research progress. I can’t remember how

many time they said “we don’t expect you to be excellent, but just wish you could

happy”. I did fell warm and got back to my fighting mode. Thank you! Now we

video chat on the phone to share each other’s life, but I really miss them.

During my second year of PhD, I met Xiaoyu. She is beautiful, smart, kind, and

she is my wife now. These years, I spent a big portion of my spare time on research

and learning new skills. I very much appreciate her support and understanding on

this. As a PhD of electrical engineering, Xiaoyu supports me not only in the way

of family, but also technically. When I have troubles with my research, I am always

inspired by talking to her. Xiaoyu and I raised a cute golden retriever Candy. We

both amused by her when we disappointed about unexpected failures in research, and

finally get pumped again.

I want to thank professor Benton Calhoun, who is my research adviser at UVa.

Ben is always generous at giving chance to students who interested in his research.

I joined UVa as a teaching assistant. Back then, I was a bad English speaker and

not good at expressing my thoughts. Ben encouraged me and agreed to let me join

Bengroup. I was so glad to have this opportunity to prove myself and become a

research assistant in Bengroup to work on the interesting projects. I learnt a lot from

Ben, especially research methodology and project management. I was focused on

detailed research questions, but Ben trained me to think broader on the high level.

This exercise is so valuable that I can benefit from it for my entire life. I very much

iv

appreciate for everything.

When I applied to UVa PhD program, I was attracted by Bengroup website, which

made me think this is a professional, friendly, and energetic group. It turned out I

was wrong. The fact is Bengroup is even better! The team is very like to share and

help each other. I especially want to thank Dr. Oluseyi Ayorinde. Seyi and I worked

on the same project, but he joined the group one year before me, which means he

knows everything I don’t know and have to know. Seyi never hesitates to help and

always provide more than my expectation. Even years later, Seyi still always come

to my cubic to check if I need any support. It’s my pleasure to work with you! Other

current and former students (Yousef, Yanqing, Aatmesh, Kyle, Peter, Jim, Alicia, Yu,

Patricia, Manula, Farah, Chris, Dilip, Kevin, Arijit, Divya, Abhishek, Harsh, Ningxi,

Shuo, Daniel, Jacob, Henry, Rishika, Sumanth, etc.) are also very kind and friendly.

I want to thank all of you for the help and being around these years. I am so glad to

know you. I also want to thank other faculty, Sta↵, and my friends who helped me

and shared time with me at UVa.

v

List of Figures

1 Basic architecture of the core fabric of FPGAs 3

2 Active energy, leakage energy, and total energy of a FIR filter when

sweeping its supply voltage VDD [5] 4

3 FPGA Core Fabric Energy Breakdown 7

4 (a) Bi-directional switch box (b) uni-directional switch box 10

5 Basic structure of low-swing interconnect 11

6 Diagram of the global interconnect path model 14

7 Path length distribution (a) segment length = 1 (b) segment length = 4 15

8 Abstracted Path and branch distribution 16

9 Details of path distribution of MCNC benchmarks 17

10 Table of the Equivalent Capacitance and Resistance of a Wire Segment 18

11 Total Capacitance of Wire Segments in a 84-Track Channel 19

12 Routing Switch Modeling . 20

13 Knobs of Interconnect Optimization 22

14 The layout photo of the characterization chip 23

15 Measurement results of the energy and EDP of a path when sweeping

(a) VDD (b) and VDDC in 130nm CMOS (Path Length = 10) 24

16 ED curves of interconnect paths at di↵erent VDD in 32nm SOI (path

length = 40) . 25

17 The optimal VDDC value results in minimum EDP of interconnect paths

with di↵erent lengths in 32nm SOI @ VDD=0.4V 26

18 The process variation of paths at di↵erent voltage 27

19 Schematic of di↵erent CB topologies: (a) full multiplexer (b) 1-stage

multiplexer (c) 2-stage multiplexer 27

vi

20 Measured energy and EDP of paths with varying (a) switch size (b)

driver size @ VDD=0.4V in 130nm CMOS (Path Length = 10) 29

21 ED curves of interconnect paths with di↵erent switch box topologies

and sizes @ VDD=0.4V in 32nm SOI (a) path length = 5 (b) path

length = 40 . 30

22 ED curves of interconnect paths with di↵erent driver sizes @ VDD=0.4V

in 32nm SOI (a) path length = 5 (b) path length = 40 31

23 The process variation of paths with di↵erent circuit parameters . . . 31

24 Comparison of the normalized delay, energy, and EDP of bu↵er-based,

minimum-sized low-swing, and optimized low-swing interconnect @

VDD=0.4V . 32

25 The energy reduction of MCNC benchmarks when utilizing the opti-

mized low-swing interconnect in 130nm CMOS 33

26 Signal Degradation along Low-Swing Interconnect Paths 34

27 The signal swing of low-swing paths with varying length and the switch-

ing threshold of the level shifter @ VDD = 0.4V in 130nm CMOS . . . 35

28 Measured shmoo plot of signal degradation @ VDD = 0.4V in 130nm

CMOS . 36

29 Measured ED curves of paths with di↵erent numbers of inserted level

shifters @ VDD = 0.4V in 130nm CMOS 37

30 Simulated ED curves of paths with di↵erent numbers of inserted level

shifters @ VDD = 0.4V in 32nm SOI 38

31 The diagram of traditional subset switch box (left) and the proposed

folded-subset switch box (right) . 39

32 Layout of a 7-switch-points cluster 40

33 Layout of an 84-track switch box . 41

vii

34 Area Comparisons of traditional Subset and the proposed Folded-Subset

SBs in 130nm CMOS . 42

35 The diagram of a 10-track Wilton switch box 42

36 The interconnect area of FPGAs implementing MCNC benchmarks . 43

37 The energy e�ciency improvement by using folded-subset switch box 45

38 The concept diagram of applying per-path voltage scaling and power-

gating techniques to FPGA interconnect 52

39 The comparison of applying per-path voltage scaling on the traditional

interconnect and the low-swing interconnect 53

40 The area overhead of headers introduced when using per-path voltage

scaling . 54

41 The percentage of interconnect energy from level shifters under di↵er-

ent conditions . 54

42 The concept diagram of the proposed architecture and the power man-

agement unit . 55

43 The concept diagram of the delay chain circuit and the proposed delay

detector and voltage controller architecture 56

44 The flow chart of the custom multi-VDD assignment tool 58

45 The energy reductions of the low-swing interconnect implementing

MCNC benchmarks using per-path voltage scaling @ 0.6V in 130nm

CMOS . 61

46 The a↵ects of cross-talk and power noise on the energy reduction of

interconnect implementing alu4 @ 0.6V in 130nm CMOS 62

47 The adjustable range of delay and energy of the interconnect imple-

menting MCNC benchmarks when using DVS @ 0.6V in 130nm CMOS 63

viii

48 Energy breakdown of the low-swing FPGA interconnect implementing

MCNC benchmarks @ 0.6V in 130nm CMOS 64

49 The coarse-grain power-gating and fine-grain power-gating architectures 65

50 Characterization of the headers for power-gating 66

51 The energy reduction of the low-swing interconnect after using power-

gating and per-path voltage scaling @ 0.6V in 130nm CMOS 67

52 Architectural and Circuit-Level Parameters for taped-out FPGA chip 68

53 The annotated layout of the of the custom FPGA chip 69

54 The measurement results of leakage energy reduction of the custom

FPGA chip before and after using power-gating 70

55 Simulated waveforms of a 4bit-adder 71

56 Comparisons of the custom FPGA and existing low-power FPGAs . . 72

57 The flow chart of FGC . 79

58 VTR Applications Characterizations 80

59 Commercial Applications Characterizations 81

60 Ubiquitous Computing Applications Characterizations 83

61 The Custom Benchmark Synthesis Flow 84

62 Flow Chart of “HDL Converter” in the Synthesis Tool 86

63 Integration of the Synthesis Flow and FGC 88

64 The Fast Power Estimation Flow of the Custom Low-Power FPGA . 89

65 Table of parameters of sub-circuits of the custom low-power FPGA

used for fast power estimation @ 0.6V in 130nm CMOS 92

66 Table of parameters of the custom interconnect used for fast power

estimation @ 0.6V in 130nm CMOS 93

67 Table of parameters of the embedded memory blocks used for fast

power estimation @ 0.6V in 130nm CMOS 93

ix

68 Table of parameters of embedded multipliers used for fast power esti-

mation @ 0.6V in 130nm CMOS . 94

69 Comparisons of the measurement result and the estimated result of a

4-bit adder . 95

70 Integration of the Power Estimation Flow to FGC Flow 95

71 Comparisons of the Custom Low-Power FPGA with and without Hard

IPs . 97

72 Comparisons of the custom low-power FPGA and ASICs when imple-

menting the custom low-power application suite 99

73 Comparisons of the custom low-power FPGA and Microsemi IGLOO

when implementing the custom low-power application suite 100

x

Contents

1 Introduction 1

1.1 Motivation of Low-Power FPGAs . 1

1.2 Thesis Statement . 2

1.3 Goals . 2

2 Background 3

2.1 General FPGA Architecture . 3

2.2 Sub-threshold Operation . 5

2.3 Existing Low-Power FPGAs . 6

3 Energy E�cient FPGA Interconnect 7

3.1 Motivation . 7

3.2 Prior Art . 8

3.3 Low-Swing Interconnect . 10

3.3.1 Overview . 10

3.3.2 Delay and Energy Trade-O↵ 12

3.3.3 Applicable Conditions of the Low-Swing Interconnect 13

3.4 Interconnect Modeling . 13

3.4.1 Overview . 13

3.4.2 Path Length and Branch Distribution 15

3.4.3 Detailed Circuit Modeling . 18

3.5 Circuit and Supply Voltage Optimization 21

3.5.1 Overview . 21

3.5.2 Supply Voltage Optimization 22

3.5.3 Circuit Optimization . 27

xi

3.6 Level Shifter Insertion . 34

3.6.1 Overview . 34

3.6.2 Impact to Signal Swing . 35

3.6.3 Impact to Energy E�ciency 37

3.7 Switch Box Layout . 39

3.7.1 Overview . 39

3.7.2 Subset Switch Box Area Reduction 39

3.7.3 Wilton Switch Box Area Reduction 42

3.7.4 Energy E�ciency Improvement 44

3.7.5 Cross Talk . 45

3.8 Future Research . 46

4 Per-Path Voltage Scaling and Power-Gating 48

4.1 Motivation . 48

4.2 Prior Art . 49

4.2.1 Per-Path Voltage Scaling & DVS 49

4.2.2 Power-Gating . 51

4.3 Per-Path Dynamic Voltage Scaling 51

4.3.1 Architecture Overview . 51

4.3.2 Level Conversion . 54

4.3.3 Voltage Regulation . 55

4.3.4 CAD Flow for VDD Assignment 57

4.3.5 Energy Reduction Results . 60

4.4 Power-Gating . 63

4.4.1 Architecture Overview . 63

4.4.2 Header Design for Power-Gating 66

xii

4.4.3 Energy Reduction Results . 66

4.5 A Custom FPGA Chip . 68

4.5.1 Chip Description . 68

4.5.2 Measurement Results . 71

4.6 Future Research . 73

5 Low-Power FPGA Evaluation Platform 74

5.1 Motivation . 74

5.1.1 Low-Power Application Suite 74

5.1.2 Application Synthesis . 74

5.1.3 Fast Power Estimation of the Custom FPGA 75

5.2 Prior Art . 76

5.2.1 Low-Power Application Suite 76

5.2.2 Application Synthesis . 77

5.2.3 Fast Power Estimation of the Custom FPGA 77

5.2.4 FPGA Generation and Configuration 78

5.3 Application Suite . 79

5.3.1 Selected VTR Applications . 80

5.3.2 Selected Commercial Applications 81

5.3.3 Additional Ubiquitous Computing Applications 82

5.4 Benchmark Synthesis Flow . 84

5.4.1 Overview . 84

5.4.2 Description of the Flow . 84

5.4.3 Integration of the Synthesis Flow and FGC 88

5.5 Fast Power Estimation Flow of the Custom FPGA 89

xiii

5.5.1 Description of the Fast Power Estimation Flow of the Custom

Low-Power FPGA . 89

5.5.2 Parameters Used in the Flow 92

5.5.3 Accuracy of the Flow . 94

5.5.4 Integration to FGC . 95

5.6 IP Integration . 96

5.6.1 Overview . 96

5.6.2 Results . 97

5.7 Results . 98

5.8 Future Research . 100

6 Conclusion 103

6.1 Energy E�cient FPGA Interconnect 103

6.2 Per-Path Voltage Scaling and Power-Gating 104

6.3 Low-Power FPGA Evaluation Platform 105

Appendices 107

Appendix A List of Publications 107

A.1 Publications . 107

A.2 Pending Publications . 107

Appendix B Glossary of Terms 108

xiv

1 Introduction

1.1 Motivation of Low-Power FPGAs

Low-power miniature systems for ubiquitous computing such as wireless sensor

networks have been developing rapidly in the past years. The growing demand on

collecting and analyzing information from surrounding environment drives researchers

and engineers to develop internet of things (IoT). This trend leads to new require-

ments on integrated circuits. Firstly, due to the potential large number of IoT devices

in the future, frequently changing battery for all of them becomes unfeasible. Fur-

thermore, many sensors such as the ones equipped on human or deployed in the

environment desire light weight, high portability, and wireless communication ability.

All these demands require hardware used in IoT applications to be ultra-low-power

(ULP). Secondly, due to the rapidly changing demands and technologies today, these

hardware needs computational flexibility for regularly algorithm upgrade or function-

ality change. Finally, since the cost is potentially high to design sensors using in tons

of di↵erent applications, low-cost hardware is highly recommended.

Existing hardware solutions for ubiquitous computing include ULP ASICs and

ULP microprocessors working in sub-threshold region. However, the development

of sub-threshold ASICs for IoT applications is costly and time-consuming due to

high design complexity. On the other hand, sub-threshold microprocessors are too

power-consuming. FPGAs operating in near/sub-threshold region, flexible and much

lower-power than sub-threshold microprocessors, become a highly desired hardware

solution for IoT applications. However, comparing to functionality equivalent ASICs,

FPGA implementations consume 7x - 14x more power, and 4x slower [4]. This gap

makes it not easy for FPGAs to meet energy and performance requirements of IoT

applications at the same time. To widely use FPGAs in IoT, energy reduction and

1

energy-e�ciency improvement are critical.

1.2 Thesis Statement

By scaling the supply voltage down to near/sub-threshold region, optimizing the

circuit and architecture of the interconnect fabric, and applying per-path voltage scal-

ing and power-gating to the interconnect, the ULP FPGAs become an energy-e�cient

hardware solution for IoT devices or other low-power applications that require well-

balanced flexibility, cost, and energy-e�ciency. The custom tool set and application

suite enable fast and e↵ective evaluation of ULP FPGAs.

1.3 Goals

The major research goals of this dissertation include:

• Optimize ULP FPGA interconnect circuit, supply voltage, and physical imple-

mentation towards maximum energy-e�ciency

• Apply per-path voltage scaling and power-gating to the interconnect of ULP

FPGAs

• Develop an ULP FPGA evaluation platform (including a low-power application

suite, a Verilog synthesis flow, and a fast power estimation flow)

• Enable the tool support of evaluating the e↵ects of using embedded hard IPs

on ULP FPGAs

2

2 Background

2.1 General FPGA Architecture

Figure 1: Basic architecture of the core fabric of FPGAs

FPGAs are integrated circuits that can be configured to di↵erent logic functions

as needed after manufacturer. The basic structure of the core fabric of FPGAs in-

cludes Configurable Logic Blocks (CLB), global interconnect, and IO blocks. Each

CLB consists of multiple Look-Up-Tables (LUT), Flip-Flops (FF), and multiplexers

(MUX), while all CLBs and IO blocks are connected by the global interconnect. By

changing the values in configuration bits that distributed all over the FPGA, users

can determine the logic function of CLBs, the connectivity pattern between CLBs,

and whether the IOs are inputs or outputs.

3

Figure 2: Active energy, leakage energy, and total energy of a FIR filter when sweeping
its supply voltage VDD [5]

The detailed architecture illustrated above is shown in figure 1. There are multiple

Basic Logic Elements (BLE) in each CLB. Each BLE includes one LUT, one FF, and

one MUX. The output of the LUT is connected to the input of the FF and one of

the inputs of the MUX, while the MUX is used to determine whether the BLE is

implementing combinational or sequential logic by selecting between the outputs of

the LUT and the FF. The BLE outputs are connected to the CLB outputs through

bu↵ers. The CLB local interconnect plays a role to help communication between

BLEs inside a CLB, by connecting the output of each BLE to the input of other

BLEs and providing feed back loops to its own inputs. Also, there are large MUXes

placed at the input of each BLE to select the BLE inputs from all the CLB inputs and

BLE outputs. The FPGA global interconnect is used to make connections between

CLBs and IOs. The multi-track interconnect includes Connection Boxes (CB) and

Switch Boxes (SB), where CBs are used to connect CLB inputs and outputs from/to

4

the global interconnect, and SBs are used to route the signals from the original CLB

to the destination CLBs. Both CBs and SBs are made of bu↵ers and switches,

while configuration bits are connected to these switches. CBs are located at each

input/output of the CLBs. By turning on specific switches, the signal can be detected

or directed to specific tracks of the global interconnect. This multi-track architecture

provides high flexibility of FPGAs. SBs are located at the intersections of vertical

tracks and horizontal tracks. By turning on the corresponding switches, signals inside

the global interconnect can be directed to the destinations.

2.2 Sub-threshold Operation

While many applications today pay more attention to high performance, the ubiq-

uitous computing applications such as wearable sensors require extremely low energy

consumption to support long battery life or even energy harvesting technology. Since

active energy is quadratically proportional to the supply voltage VDD at nominal

voltage, the method of reducing VDD is widely used in low-power-oriented designs [6].

Sub-threshold operation is a technique to reduce VDD to lower than the threshold

voltage of transistors. In sub-threshold, current is exponentially proportional to VDD

as shown in (1).

IsubVT
= I0e

(VGS�VT)
nVth (1)

Reducing VDD down to sub-threshold makes it possible to decrease energy con-

sumption to extremely low level. Although active energy reduces with VDD, the

leakage energy increases rapidly in sub-threshold due to the exponentially increased

delay. At nominal voltage, leakage energy can be ignored, but becomes the major

energy contributor in sub-threshold. Figure 2 shows the energy of a FIR filter when

5

sweeping the supply voltage VDD [5]. As shown, the lowest-energy-point is reached

around 0.25V, where leakage energy and active energy are equal.

Obviously, near/sub-threshold operation is a very e↵ective technique used to re-

duce energy. Although many works are done in this area, they mainly focus on ASIC

and processor designs. FPGAs can also benefit from this technique when designed

for ultra-low-power applications.

2.3 Existing Low-Power FPGAs

Researchers and engineers from both commercial and academic fields spend time

on developing low-power FPGAs. As the largest FPGA vendors, however, Xilinx and

Altera’s expertise is more on the high-performance end, and currently have no public

products for ultra-low-power applications. Their FPGAs consumes power in the range

of 10s of Watts, which is too high for IoT applications. There are also commercial

FPGAs designed towards low-power. The Lattice iCE40 [7] has a standby power of

71uW, while the Microsemi IGLOO [8] has a standby power as low as 10uW by using

Flash-based configuration bits. However, the power of these products keeps in the

range of uW only in sleep mode. When implementing applications, their power raises

to several mW. In academic field, [9] presents a 4-CLB FPGA, which consumes as

little as 40uW total power. However, this design is too small to implement meaningful

low-power applications. In [10], a full FPGA fabric with over 2000 logic blocks,

block RAMs, and DSPs is introduced. By using a hierarchical interconnect, this

design reduces power by 4x-5x comparing to Xilinx Virtex products, while keeping

competitive speed. However, since not targeting at ultra-low-power applications, this

design consumes power in the range of several tens of mW, which is too high for IoT.

6

3 Energy E�cient FPGA Interconnect

3.1 Motivation

Figure 3: FPGA Core Fabric Energy Breakdown

Interconnect traditionally contributes a big portion of delay and power in circuits.

As the size of logic blocks shrinks with technology node scaling, the interconnect

cannot scale at the same rate due to physical limitations, such like electromigration

and cross-talk. Thus, the interconnect becomes consuming even more delay and

power in modern sub-micron electronic systems. In low-power system development,

a research focus on reducing interconnect power is crucial.

Unlike interconnect on SoCs and CPUs, FPGA interconnect consists not only

wires and bu↵ers, but also tens even hundreds of switches in series along paths with

similar amounts of branches. This leads to huge fanout of the drivers and bu↵ers in

the interconnect, as well as the capacitance load. In low-power FPGAs, as the supply

voltage is low, the capacitance load on the interconnect becomes even more dominant.

As shown in figure 3, the specialty of FPGA interconnect makes it contribute 65% or

more power of FPGA core fabric, which consists of only CLBs and interconnect [1]

[2] [3].

7

Modern mainstream FPGAs integrated processors, transceivers/receivers, and

other high-power hard IPs on chip to support more high-performance applications,

such as machine learning, 5G network, data-centers, etc. As a result, the core fabric

itself no longer the major power consumer of modern FPGAs on the market, and

the interconnect power becomes not as important as before. However, in low-power

FPGAs that have no much power budget for hard IPs, reducing interconnect power

is still the most e↵ective way to improve the overall FPGA power e�ciency.

3.2 Prior Art

Researchers reduce FPGA interconnect power in three ways: 1) technology scaling

2) circuit and architecture optimization 3) place and route (P&R) algorithm improve-

ment

All computing platforms benefit from technology node scaling in terms of speed,

power, and area. As the dimension of devices shrink to sub-14nm in 2017, the FPGA

core fabric power is reduced by hundred even thousands time compared to ten years

ago. FinFet and SOI devices also enables ultra-low-power applications by reducing

leakage power e↵ectively. However, the emerging low-power applications also bring

more and more strict power budget on the hardware. For example, personal health

care applications need ultra-long battery-life of the sensors to enable circuit-on-skin.

In [11], a self-powered body sensor node SoC is proposed with a full chip power

as low as 6.45uW. Other low-power applications have similar power budget on the

hardware. FPGAs usually consumes 14x more power compared to ASICs due the

design for flexibility [4]. Keeping FPGA power low enough to meet the requirements

of health care applications is even harder. In this scenario, simply switching to newer

technology node cannot solve the problem. As technology scaling is reaching the

physical limit, circuit/architecture/algorithm level low-power techniques are needed

8

to apply to FPGA interconnect at the same time.

Typical circuit and architecture level power reduction techniques include 1) us-

ing multi/high-VT devices 2) using reversed body bias 3) reducing supply voltage 4)

inserting power-gating headers. All of these techniques have been applied to FPGA

interconnect in exsiting work. Researchers in [12] and [13] exploited multi-VT scheme,

which allowed mixed usage of low and high threshold transistors in routing switches

in order to reduce leakage current. In [12], researchers reduced FPGA leakage power

by 1.7x - 2.5x by using reversed body bias, a technique of reducing transistor body

voltage to increase threshold voltage. In [14], a new FPGA routing switch design

that is programmable to operate in three di↵erent modes is introduced. In low-power

mode, the supply voltage is lowered to just maintain the minimum function require-

ment, and the leakage power is reduced by up to 52% and active power is reduced by

up to 31% comparing to in high-speed mode. Similarly, in [15] and [16], researchers

applied a multi-VDD scheme in FPGA interconnect and saved up to 61% of power.

However, although these works reduced interconnect power e↵ectively, they are at a

high cost of speed degradation. As a result, the power e�ciency is not improved.

Another research direction of FPGA interconnect power reduction is P&R algo-

rithms. A smart algorithm can pack logic blocks in a minimum number of CLBs and

minimize the total length of global interconnect. The power of FPGAs with shorter

interconnect routing wires is much more e�cient than FPGAs with long wires. In

addition, since better P&R algorithms use less routing resources to implement appli-

cations, FPGAs could be made smaller to achieve lower power while still meet the

speed requirement. There are many works have been done in this area. In [17], a

“path finder” algorithm reduces routing delay by 11x. In [18], the channel width of

FPGA interconnect is reduced by 22%. Algorithm level improvement is beyond the

scope of this dissertation, but it is important to point out its importance in power

9

reduction.

3.3 Low-Swing Interconnect

3.3.1 Overview

Figure 4: (a) Bi-directional switch box (b) uni-directional switch box

While power is the energy consumption of circuits in unit time, energy itself is a

more important metric to evaluate hardware used in battery-life-oriented applications.

As discussed in chapter 2, the total energy consists of dynamic energy and leakage

energy. The dynamic energy of FPGA interconnect is calculated by

Dynamic Energy = C ⇤ VDD ⇤ V DDswing (2)

where C denotes the total lumped capacitance of wires/switches/bu↵ers, VDD is the

main supply voltage on interconnect drivers/bu↵ers, and V DDswing is the swing of

the signal transmitting through the interconnect channel. Typically, V DDswing has a

value equal to VDD. However, in some special designed circuits, such as the low-swing

interconnect that will be discussed in this chapter, their values could be di↵erent.

10

To minimize dynamic energy, all of the three terms in the equation need to be min-

imized as long as the FPGA speed is in the acceptable range given by low-power

applications. Reducing supply voltage VDD to near/sub-threshold region is the most

e↵ective method to reduce dynamic energy because of the near quadratic correlation.

However, as indicated in figure 2, the leakage energy increases with VDD decrease, and

finally becomes the major portion of system energy. Thus, the value of VDD needs to

be carefully selected to achieve overall minimum FPGA interconnect energy.

Figure 5: Basic structure of low-swing interconnect

The routing fabric in FPGAs is defined as the electrical connectivity hardware

between CLBs. It is comprised of connection boxes that connect CLBs to the routing

channel, switch boxes that form the connectivity of routing paths, and wire segments.

The traditional bi-directional and uni-directional SBs are shown in figure 4 (a) and

(b) respectively. Each bi-directional routing switch is comprised of 2 tri-state bu↵ers,

while each unidirectional switch is comprised of an N-input multiplexer followed by

11

a bu↵er, where N represents the number of tracks that can connect to the track that

this switch drives [19] [20] [21]. As shown in the figure, no matter uni-directional

or bi-directional, traditional FPGA interconnect uses multiplexers and bu↵ers to im-

plement routing switches to achieve high speed, but it su↵ers from high energy cost.

Reducing supply voltage for conventional interconnect to near/sub-threshold helps

solving this problem. However, since driver and bu↵er current decreases exponen-

tially in sub-threshold, delay is increased exponentially as well. Although speed is

not the major metric for low-power applications, the FPGAs still need to be fast

enough to accomplish tasks. Simply upsizing drivers and bu↵ers does not help, since

speed depends linearly on device size but exponentially on VDD in sub-threshold.

The low-swing interconnect replaces the multiplexers and bu↵ers structure with pass-

gates [22] [23]. Its basic structure is shown figure 5. This topology reduces “C” by

removing bu↵ers. Also, the “V DDswing” is also reduced due to the natural voltage

drop across pass-gates. Furthermore, the novel level shifter (developed by Dr. Joseph

Ryan) that receives the reduced swing signals at the input to the CLBs reduces de-

lay by detecting the signal earlier in its transition than traditional receivers or level

shifters [22] [23].

3.3.2 Delay and Energy Trade-O↵

Although the design goal of this FPGA is to meet the requirements of low-power

applications, the speed and energy requirements may vary with di↵erent applications.

The simplest way to obtain this flexibility is to adjust the supply voltage of the

FPGA. This means increasing VDD when higher speed is needed, or decreasing VDD

when a lower power budget is set. However, since speed and energy are very sensitive

(quadratic relation) to VDD change in near/sub-threshold, adjusting VDD requires

highly accurate voltage control, which is not realistic on a small low-power chip. An

12

alternative solution is instead of adjusting the main VDD of the FPGA, just change the

gate voltage of the routing switches in the interconnect. Since the routing switches

in low-swing interconnect are pass-gates, changing their gate voltage can adjust the

delay and signal swing of the interconnect with the overhead of a separate voltage

rail and very small gate leakage energy penalty. Since changing gate voltage does

not a↵ect VDD, but only “V DDswing”, the requirement on voltage control accuracy is

dramatically reduced. This idea will be further discussed later in this chapter.

3.3.3 Applicable Conditions of the Low-Swing Interconnect

Although the low-swing design reduces interconnect energy e↵ectively, the benefit

is achieved with a price on reduced robustness. Since the signal swing is too small,

the PVT variations and voltage/ground noises can easily make a logic high signal to

logic low, especially in near/sub-threshold where VDD is small. Thus, the low-swing

interconnect is suitable for high performance systems with a need of power saving

or ultra-low-power systems with signal degradation solutions, while will be discussed

later in this chapter.

3.4 Interconnect Modeling

3.4.1 Overview

To implement meaningful applications, a low-power FPGA should include a large

number of CLBs and a wide interconnect channel built with over a hundred of tracks.

Simulating such a large system for only one cycle can take from tens of hours to

several days. To make things worse, sweeping circuit parameters towards minimum

energy and lower variation requires hundred/thousand times of runs in the design

phase. All the subsequent work such as chip tapeouts need to pulse for months to

13

wait the simulation results to be done. This is unreasonable and unacceptable. Thus,

a circuit model of the low-swing interconnect is needed for design purpose. This

model should be accurate enough to represent the complicated environment of the

interconnect, and also should be simple enough to finish simulations in short time.

Figure 6: Diagram of the global interconnect path model

The architecture of low-swing interconnect has been shown in figure 5. As men-

tioned earlier in this chapter, a FPGA interconnect path is defined as the circuit

starting from the driver at an output of a CLB, passing CBs and switches, then

ending at a level shifter of the destination CLB. The function of level shifter is to re-

generate the signal to full swing to avoid short-circuit current in the destination CLB

as well as improving noise margin. Figure 6 shows the diagram of the abstraction

of figure 5, which is the interconnect model used in this work. Each wire segment is

modeled as a Pi structure to represent the highly capacitive long wires. Each routing

switch is modeled as one turned-on switch and four turned-o↵ switches connected to

ground, representing the signal path and the leakage paths respectively. Each CB is

modeled as a multiplexer. A separate VDDC voltage is applied to routing switches and

14

CBs by high-VT config bits to provide flexibility in delay and energy. Level shifters

can be inserted either between two switches when regeneration is needed or at the end

of a path. Branches are added based on the path distribution analysis. To optimize

the circuit, parameters including the value of VDD, VDDC , the topology and size of

CBs and switches, and the number of inserted level shifters will be varied and the

corresponding influence on energy e�ciency will be evaluated and discussed in the

remaining part of this chapter.

3.4.2 Path Length and Branch Distribution

(a) (b)

Figure 7: Path length distribution (a) segment length = 1 (b) segment length = 4

The length of an interconnect path in this dissertation is defined as the number of

routing switch on the path from the origin CLB to the destination CLB. The length of

paths varies from 1 to over 80 and is not equally distributed. To optimize the intercon-

nect circuit, we ideally want to look at all interconnect paths when implementing all

target applications. However, doing so is too time consuming and does not necessary.

We can archive a near-optimal design by looking into a carefully selected collection

of interconnect paths that can represent the majority scenarios. Since the optimal

15

circuit of the interconnect highly depends on the length of the paths, we firstly need

to set a range of path length to aim at.

Figure 8: Abstracted Path and branch distribution

The path length distribution depends on the FPGA architecture, the P&R tool,

and the benchmarks selected to map to the FPGA. In this chapter, an open source

FPGA P&R tool called VTR [24] is used to run a general-accepted Microelectronics

Center of North Carolina (MCNC) benchmark suite [25] to investigate the FPGA

path distribution. A basic FPGA architecture, which has a logic cluster size of 8

and a look-up-table input number of 4, is selected as the target fabric to map the

benchmarks. The path length distribution is shown in Fig. 7. For some express

interconnect wires, the routing switch does not appear at every horizontal and vertical

track intersections. The number of intersections they skipped a↵ects the path length.

To obtain a comprehensive path length distribution that considers all the cases, Fig.

7 shows two histograms present di↵erent segment lengths accordingly, which represent

the number of CLBs each wire segment spans without routing switches in the middle.

As a result, the histograms indicate no matter which architecture is used, the majority

of paths are less than 40 routing switches. However, while most of the paths are less

than 5 when segment length equal to 1, the length of most paths is around 10 when

segment length is 4. This is because longer segment is harder to route to adjacent

16

logic blocks when the applications are small and compact, especially for low-power

applications.

Figure 9: Details of path distribution of MCNC benchmarks

The path length distribution cannot represent the energy distribution. Although

most of the paths are short (less than 10), the longer paths consume much higher

energy. As energy linearly depends on the total capacitance in the interconnect, the

branch distribution is also worth to look at. In Fig. 8, the path length, energy and

branch distributions are all shown in one plot for comparison. In the plot, paths are

divided into 6 categories based on path length. The blue and green bars represent

the path count distribution and the energy distribution. The red bar represents the

average percentage of switches from the path that fall on branches rather than the

17

main path. As indicated in Fig. 8, paths shorter than length 40 take about 98% of

the total path count and consume about 94% of the total global interconnect energy.

Although branches are very common in the FPGA interconnect network, there are few

branches on paths shorter than 40. Such analysis indicates that in order to increase

energy e�ciency of FPGA interconnect, circuit level optimization should mainly focus

on paths shorter than 40 without branches. However, the results highly depend on

how the P&R tool operates. For that reason, paths less than 68 are all considered in

this chapter. The details of path distribution of the largest 20 MCNC benchmarks

are shown in Fig. 9.

3.4.3 Detailed Circuit Modeling

Figure 10: Table of the Equivalent Capacitance and Resistance of a Wire Segment

18

The interconnect model is built from a combination of five element sub-circuits:

driver, level shifter, wire segment, routing switch, connection box.

Figure 11: Total Capacitance of Wire Segments in a 84-Track Channel

Both the driver and level shifter are modeled as two cascade inverters. However,

both inverters in the driver are standard structure with one PMOS and NMOS that

have same driving strength, while the level shifter is built of one strong-NMOS interver

followed by a strong-PMOS inverter taking advantage of stack e↵ect. The purpose

of this design is to detect small signal swings without speed overhead [22] [23]. In

this dissertation, the same structure of this level shifter is used with modifications

on sizing, and its schematic can be found in Fig. 5. Since the driver locates at the

very beginning of interconnect paths, its input signal is always at full swing, so using

a basic inverter-based design is fine and can save area. The size optimization of the

driver will be discussed in the following contents of this chapter.

19

Figure 12: Routing Switch Modeling

To model the wire segments, either Pi model or T model can be used. Since both

models have equivalent total capacitance/resistance values and no additional circuit

parts between adjacent routing switches, either model works for this research. In

this dissertation, the Pi model is selected. Three factors a↵ect the value of R and

C in the wire model: 1) the length of each wire segment 2) the metal layer used for

routing in physical implementation 3) the coupling capacitance between wires in the

same channel. As will be explained in 3.7, the length of each wire segment is 250um

(segment length = 1)/500um (segment length =2)/1000um (segment length =4) in

130nm CMOS. Based on this, the equivalent capacitance and resistance values of wires

implemented by each metal layer in both 130nm CMOS and 32nm SOI technologies

are estimated and shown in Fig. 10. The RC values are calculated by reading from

the PDK user manuals, then verified in the Cadence Virtuoso parasitic extraction

environment. Since the interconnect channel includes a bundle of tens of tracks in

parallel close to each other, the coupling capacitors between adjacent tracks can’t be

ignored. Fig. 11 shows the total capacitance of each track in an interconnect channel.

20

The tracks in the middle have much higher capacitance compared to those at the edge

of the channel.

Both the routing switch and connection box are built with pure pass-gates and

configuration bit-cells. While the connection box structure is one of the knobs in

this research and will be discussed later, the circuit model of the routing switch is

shown in Fig. 12. Each routing switch includes six pass-gates to provide potential

connectivity of all four directions: Left-to-Right, Left-to-Top, Left-to-Bottom, Right-

to-Top, Right-to-Bottom, and Top-to-Bottom. In the case of no branch in a path,

one pass-gate will be turned on, four pass-gates will be turned o↵ creating leakage

paths, and the last pass-gate is not related to the example path. For example, if a

signal is transmitted from left to right in Fig. 12, the Top-to-Bottom pass-gate is

unrelated. In FPGA interconnect, if a switch is turned o↵, a floating net might be

created and causes short-circuit current. To avoid this situation, all potential floating

nets will be either pull up to VDD or pull down to ground. In this research, ground is

selected as the default. For the reasons described above, the routing switch model is

a pass-gate with 4 parallel turned-o↵ pass-gates to ground. The voltage to the pass-

gates are not directly given by supplies, but through a configuration bit made of a 5T

SRAM bit-cell. Since these memory cells are not in an array and are configured once

without value changes thereafter, 6T or more complicated structures are unnecessary

and minimum size high-VT transistors are used to minimize leakage.

3.5 Circuit and Supply Voltage Optimization

3.5.1 Overview

The goal of this research is to improve the energy e�ciency of the interconnect

while maintaining the robustness of it at a certain level. This goal results in many

21

circuit design trade-o↵s. For example, the requirement of high energy e�ciency in-

dicated both low energy/operation and adequate speed. To reduce energy, we can 1)

reduce transistor size of routing switches/CBs/drivers 2) decrease VDD/VDDC 3) us-

ing transmission-gates instead of pass-gates to implement routing switches. However,

all of these methods decrease system speed, which is already very low in near/sub-

threshold. There is a sweet point to balance speed and energy for each design knob.

The energy-delay-product (EDP) and the energy-delay (ED) curve of the interconnect

are widely used metrics to evaluate energy e�ciency of circuits, and are also used in

this research. Another trade-o↵ example is about circuit robustness. While reducing

VDDC or using smaller size of pass-gates decreases energy, the signal swing is also

decreased and worsen robustness. All of these trade-o↵s are explored and explained

in this chapter.

Figure 13: Knobs of Interconnect Optimization

3.5.2 Supply Voltage Optimization

Supply voltage VDD is a dominant knob for EDP. There are three components

contributing to EDP: delay, active energy, and leakage energy. VDD a↵ects all of the

22

important parameters for energy e�cient FPGAs. Path delay decreases exponentially

in sub-threshold, while it only decreases quadratically in the above-threshold region.

Energy is lower in the sub-threshold region and is dominated by leakage energy, while

dynamic energy, which decreases quadratically with VDD, dominates total energy for

above-threshold operation [26]. In this research, VDD is swept from 0.3V to 0.6V for

paths with length of 5, 10, 20, and 40. VDDC is swept from 0 to 0.8V above VDD. The

minimum EDP is obtained at VDD = 0.5V. Increasing VDD from 0.5V to higher cannot

further decrease EDP, but increases energy. On the other hand, reducing VDD to 0.4V

is very beneficial when energy is more important than energy e�ciency, because much

smaller energy can be achieved with small EDP overhead. However, reducing VDD to

0.3V results in rapidly increased EDP but relatively smaller energy reduction. This

conclusion applies to path with a length of 5, 10, 20, and 40 indicating it is a general

conclusion for the majority of paths involved in MCNC benchmark routing.

Figure 14: The layout photo of the characterization chip

23

Besides VDD, energy and delay also depend on VDDC . As explained earlier, the

dynamic energy of a path equals to C*VDD*V DDswing. For smaller VDDC , the equiv-

alent resistance of switches is large due to sub-threshold operation. Larger resistance

leads to increased voltage drop and decreased signal swing. Consequently, dynamic

energy and speed are both low. Applying a higher VDDC , on the other hand, results

in higher dynamic energy but substantially reduced delay. As a result, the delay

decreases sharply as VDDC increases in the range of VDD  VDDC  VDD + 0.2V .

Keeping increasing VDDC to above VDD + 0.2V can no longer reduce delay as sig-

nificantly as before. On the other hand, energy increases slowly as VDDC increases

when VDD  VDDC  VDD + 0.2V , while it experiences a much faster increase when

VDDC � VDD + 0.2V . Similar to delay, the EDP decreases sharply at low VDDC and

slowly at high VDDC . This transition point is discovered at 0.2V higher than VDD.

However, this value varies with path length. It can reach 0.3V above VDD for paths

longer than 40 and 0.1V for paths shorter than 10.

(a) (b)

Figure 15: Measurement results of the energy and EDP of a path when sweeping (a)
VDD (b) and VDDC in 130nm CMOS (Path Length = 10)

To verify the above conclusions, a chip is designed to implement eight low-swing

FPGA interconnect meshes with di↵erent circuit topology (pass-gates/transmission-

gates) and transistor sizes (1x, 2x, 4x, and 8x) of routing switches in 130nm CMOS.

24

Each mesh is a 10-by-10 routing switch structure interconnected by wire segments,

which are intentionally inserted between switches to imitate the RC of long wires in

real FPGA fabrics. The meshes are driven by a driver block on the die. The driver

block comprises drivers with di↵erent sizes followed by connection boxes that can be

configured to be turned on or o↵. The annotated layout of the test chip is shown

in Fig. 14. Each mesh on the chip is configured to signal paths with all branches

and leakage paths. The measured normalized energy and EDP when sweeping VDD

and VDDC are shown on the left and right plot respectively in Fig. 15. The chip

measurement results indicate conclusions the same as simulation. This chip will be

used again in circuit optimization later in this chapter.

Figure 16: ED curves of interconnect paths at di↵erent VDD in 32nm SOI (path length
= 40)

In case the conclusions above vary from technology to technology, I also ran the

same simulations in 32nm SOI, which is a more advanced technology in leakage re-

duction. Fig. 16 shows the ED curves of two paths (left: length 5; right: length 40)

at di↵erent VDD by sweeping VDDC from the right end of each curve to its left end.

25

On the way of sweeping VDDC , there is always a combination of delay and energy on

the ED curve results in the lowest EDP. Higher VDD always leads to higher energy,

while usually leads to smaller delay. However, for paths longer than 40, path delay at

di↵erent VDD are almost same. Thus, using a lower VDD for higher energy e�ciency

is recommended. In Fig. 17, the VDDC-VDD values lead to these minimum EDPs are

also shown. The optimal VDDC values decrease as the size of pass-gates increases for

all paths. Furthermore, the optimal VDDC values for longer paths are higher than

shorter paths. To be more specific, when using 4x pass-gates as the routing switches,

the optimal value of VDDC is 0.1V higher than VDD for paths with length of 5, and is

0.3 0.4V higher than VDD for longer paths.

Figure 17: The optimal VDDC value results in minimum EDP of interconnect paths
with di↵erent lengths in 32nm SOI @ VDD=0.4V

In near/sub-threshold operations, the process variation is significant. Fig. 18

shows the average delay and the standard deviation of a length 10 path at di↵erent

voltages. The data was obtained by running Monte Carlo simulation in both 130nm

CMOS and 32nm SOI technology nodes. The variation is estimated by �/µ. As a

result, the 32nm SOI is better in reducing variation in general. Variation in 32nm

26

SOI is only have of that in 130nm CMOS. For each technology node, increasing VDDC

e↵ectively reduces variation when VDDC is low. When 0.3V higher than VDD, keep

increasing VDDC does not reducing variation further. On the other hand, increasing

VDD always reduces variation in near/sub-threshold.

Figure 18: The process variation of paths at di↵erent voltage

3.5.3 Circuit Optimization

Figure 19: Schematic of di↵erent CB topologies: (a) full multiplexer (b) 1-stage
multiplexer (c) 2-stage multiplexer

27

In this section, circuit optimization is performed on 1) connection box topology 2)

routing switch implementation topology 3) routing switch transistor sizing 4) driver

transistor sizing.

The connection boxes in FPGAs targeting at high performance operations are

implemented by multiplexers with bu↵ers to make connections between the routing

fabric and the CLBs. In this research, the bu↵ers are removed for low-power opera-

tions. According to SPICE simulation results, the connection boxes contribute 13.4%

of total delay and 2.6% of total energy to a low-swing path. Only removing the

bu↵ers from the existing connection boxes without re-sizing and revisiting typologies

results in un-minimized delay and energy. Fig. 19 shows three candidate connection

box topologies for near/sub-threshold operations. The 1-stage design has the smallest

delay because it adds only one transistor delay to the interconnect path. However,

the capacitance load of this design is the sum of all drain/source capacitance of N

transistors, where N represents the number of inputs of the multiplexer. In addition,

the signal swing is also large. As a result, the 1-stage design su↵ers from high energy.

In contrast, the full multiplexer benefits from both low active and leakage energy,

but su↵ers from slow speed. Both of the two designs cannot guarantee the maximum

energy e�ciency in sub-threshold. The 2-stage multiplexer is a good alternative to

balance energy and delay. The simulation result shows that the delay of the 2-stage

multiplexer is 16% smaller than the full multiplexer, while the energy of the 2-stage

multiplexer is 5% lower than the 1-stage design. In addition, the 2-stage design has

the smallest variation among the 3 candidates. The overhead of using a 2- stage

design is area (2.6x larger than a full multiplexer when N = 40). Considering energy

e�ciency and variation, the 2-stage design is optimal. This conclusion applies to

paths with length of 5, 10, 20, and 40.

Since no bu↵ers in the routing switches, drivers are the only consumer of the

28

dynamic energy in low-swing interconnect. To achieve low energy, large drivers are

not acceptable. However, simply reducing energy by decreasing driver size as much

as possible is also not a good choice when delay is already large in the sub-threshold

region. Under these circumstances, finding a driver size to balance energy and delay

becomes a problem. As a result, increasing the size of drivers from 5x to 20x reduces

delay by 55% with a 39% energy overhead. This result implies that a larger driver

may result in a smaller EDP.

(a) (b)

Figure 20: Measured energy and EDP of paths with varying (a) switch size (b) driver
size @ VDD=0.4V in 130nm CMOS (Path Length = 10)

The transistor sizes of the routing switches/connection boxes also need to be

optimized. Routing switches with a larger size introduce larger capacitance load

into the interconnect fabric but result in larger signal swing and smaller delay. As

mentioned in last section, a test chip is made to implement eight 10-by-10 routing

switch meshes with di↵erent topology. As shown in Fig. 20 (a), the minimum EDP of

the same path is obtained at a pass-gate size of 4x and is 15% lower than the EDP at a

pass-gate size of 1x. In addition, the EDP of transmission-gates is always larger than

pass-gates. In both simulation and measurement, the optimal switch size is sensitive

to the RC value of wire segments. If ignoring wire RC, the optimal switch size is 1x.

However, 2x switches are needed when wires are shorter than 45m, while 4x switches

29

are needed for longer wires. Fig. 20 (b) shows that increasing the driver size from

5x to 10x reduces the EDP by 42% with a 2% energy overhead. Further increasing

the driver size to 20x can decrease the EDP by 10% with a 10% energy overhead.

Paths with length of 5, 10, 20 have the similar conclusions. The measurement results

confirm the optimal choices of the topology and sizes of the circuit components, and

the optimal value of supply voltages.

(a) (b)

Figure 21: ED curves of interconnect paths with di↵erent switch box topologies and
sizes @ VDD=0.4V in 32nm SOI (a) path length = 5 (b) path length = 40

Similar to last section, I also run simulations with di↵erent circuit sizing and

topology in 32nm SOI to explore how does the conclusions change with technology

scaling. In Fig. 21, the ED curves of interconnect paths with varying switch box

topology and size are shown. Each curve in the figure is obtained by sweeping VDDC .

From the bottom-right corner to the top-left corner on each curve, VDDC is swept

from low to high. As a result, for paths with length of 5, interconnect using pass-

gates always consumes less energy than interconnect using transmission-gates. At low

VDDC (less than 0.3V higher than VDD), transmission-gates provides faster speed than

pass-gates. For paths with length of 40, the ED curves become closer to each other,

but pass-gates benefit from 50% smaller area than transmission-gates. Furthermore,

30

increasing pass-gate size from 1x to 4x dramatically reduces interconnect delay and

energy. However, keeping increasing pass-gate size to 8x has no obvious e↵ect on the

ED curves.

(a) (b)

Figure 22: ED curves of interconnect paths with di↵erent driver sizes @ VDD=0.4V
in 32nm SOI (a) path length = 5 (b) path length = 40

Figure 23: The process variation of paths with di↵erent circuit parameters

In Fig. 22, the driver size exploration in 32nm SOI is also shown. No matter

how long the paths are, increasing driver size from 1x to 5x dramatically improved

31

both delay and energy, and further increasing driver size doesn’t help too much. For

a path with length of 5, the EDP decreases when increasing the driver size from 1x

to 10x. Keeping increasing the driver size to 20x has no much di↵erence in EDP and

the ED curve. For longer paths, driver size larger 5x results in similar ED curves.

The process variation is also considered in the circuit optimization of low-swing

paths. In Fig. 23, the �/µ of paths with di↵erent driver size and switch size are all

shown. The data is obtained by Monte Carlo simulation in both 130nm CMOS and

32nm SOI. Similar to the conclusion indicates by Fig. 18, circuit in 32nm SOI is less

a↵ected by process variation. On the other hand, changing driver size and switch size

does not a↵ect the �/µ of paths very much.

Figure 24: Comparison of the normalized delay, energy, and EDP of bu↵er-based,
minimum-sized low-swing, and optimized low-swing interconnect @ VDD=0.4V

The simulation results of the traditional bu↵er-based interconnect, un-optimized

low-swing design, and optimized design are compared in Fig. 24. The optimized

design has 61.7% smaller delay, 60.2% lower EDP, and 3.2% higher energy than the

un-optimized design. The EDP is sharply reduced with very small energy overhead.

32

Comparing to the traditional uni-directional design, the optimized low-swing design

has 97.7% smaller delay and 42.7% lower energy. The benefit of using the optimized

interconnect is also evaluated using MCNC benchmarks. Fig. 25 shows the criti-

cal path delay and total energy of interconnect implementing 20 benchmarks. The

numbers are calculated by running VTR for place and route info of each benchmark,

simulating each path, then summing up. As a result, when using the optimized low-

swing interconnect, the delay and energy of the interconnect reduce by 68.4% and

47.5% on average, respectively.

Figure 25: The energy reduction of MCNC benchmarks when utilizing the optimized
low-swing interconnect in 130nm CMOS

33

3.6 Level Shifter Insertion

3.6.1 Overview

Figure 26: Signal Degradation along Low-Swing Interconnect Paths

Since the low-swing interconnect uses pass-gates without bu↵er to implement rout-

ing switches, it is not good at passing logic 1. In above-threshold operations, there is a

voltage drop of VT between drain and source of pass-gates, and the signal swing keeps

at VDD � VT after passing through the subsequent pass-gates. Using transmission-

gates can avoid the voltage drop when needed. However, this is a di↵erent story in

near/sub-threshold region, where VDD is already about or lower than VT . In this

region, there is a voltage drop across both pass-gates and transmission-gates with a

value depends on current. Fig. 26 shows a diagram of how does it work. In the routing

switch inside the dotted line box, I1 is charging node N, which is also discharged by

the leakage current I2 simultaneously. The signal degradation in near/sub-threshold

operations applies to every routing switches along paths. As a result, the signals will

keep degrading and ultimately become too small to be captured by the level shifters

at the end of paths. Although the switching threshold of the level shifter used in this

research [22] [23] is as low as 0.09V at VDD = 0.4V, level shifters are still potentially

needed to be inserted into long paths to regenerate signals.

34

3.6.2 Impact to Signal Swing

Figure 27: The signal swing of low-swing paths with varying length and the switching
threshold of the level shifter @ VDD = 0.4V in 130nm CMOS

In order to determine whether level shifters are needed, the first thing to look

at is how does the signal swing changes along a path in simulation. Fig. 27 shows

the signal swing change after passing through di↵erent numbers of routing switches

at VDD = 0.4V. In the figure, the x-axis represents the number of routing switches

signals have passed through, while the y-axis represents the value of the signal swing

at the end of the path. The areas in di↵erent colors represent the µ± 2� range (from

Monte Carlo simulations in SPICE) of the swing at di↵erent VDDC values. The areas

in red, grey, and green represent VDDC of 0.6V, 0.5V, and 0.4V, respectively. The

black horizontal line represents the mean value of the switching threshold of the level

shifter. The x-value where the switching threshold of the level shifter and the signal

35

swing intersect represents the maximum number of switches signals can pass through

without requiring any level shifters in the middle of paths. If variation is ignored,

a level shifter is needed after the signal passes through 5, 40, or over 80 switches

when VDDC equals to 0.4V, 0.5V, and 0.6V, respectively. If considering variation, the

switch numbers just mentioned become 2, 20, and over 80. When V DDC > 0.6V , no

level shifters are needed to maintain functionality of a path shorter than 80. Similar

results are also observed in 32nm SOI node, where the signal swing never dropped

below the switching threshold of the level shifters at VDD = VDDC = 0.4V even under

processing variation.

Figure 28: Measured shmoo plot of signal degradation @ VDD = 0.4V in 130nm
CMOS

In addition to simulations, chip measurement results are desired to verify the

conclusions on silicon. The test chip mentioned earlier in this chapter is also good for

this research. The Shmoo plot in Fig. 28 shows the measured functionality of paths

including signal degradation at VDD = 0.4V. In the figure, green means the signal

can be captured by the level shifter after passing through the corresponding number

of switches at the corresponding VDDC , and red means the signal swing is too small

to be captured. As shown, the level shifter at the end of paths successfully captured

the signals after passing through at least 100 switches when V DDC � 0.5V , but can

only capture signals in paths shorter than 60 when VDDC = 0.4V. If VDD is higher

than 0.4V, no level shifters are needed for paths shorter than 80, which is the largest

36

path length observed in FPGAs implementing MCNC 20 benchmark suite. These

measurement results are verified on multiple chips. From functionality point of view,

no level shifters are needed except the one at the end of paths.

3.6.3 Impact to Energy E�ciency

Figure 29: Measured ED curves of paths with di↵erent numbers of inserted level
shifters @ VDD = 0.4V in 130nm CMOS

Inserting level shifters a↵ects not only functionality, but also delay and energy

of paths. Inserting level shifters increases the total capacitance load in the intercon-

nect, resulting in increased dynamic energy. However, the influence on delay after

inserting repeaters is unclear. Thus, I configured the test chip to di↵erent length

with di↵erent number of inserted level shifters to explore that. As shown in Fig.

37

29, the measurement results show that increasing the number of level shifters always

increase both delay and energy for paths shorter than 80. The number beside each

point represents the number of level shifters inserted. These results indicate no level

shifters are needed in terms of path delay and energy. Fig. 30 shows the simulation

results of the same thing, but in 32nm SOI. Inserting level shifters into paths shorter

than 40 results in larger delay and energy. However, for longer paths, inserting 2 to 8

level shifters can reduce path delay e↵ectively with energy overhead. Thus, the design

decision in 32nm SOI depends on which metric is more important case by case.

Figure 30: Simulated ED curves of paths with di↵erent numbers of inserted level
shifters @ VDD = 0.4V in 32nm SOI

38

3.7 Switch Box Layout

3.7.1 Overview

The value of parasitic resistance and capacitance of a wire segment between two

routing switches is highly related to the total delay and energy of FPGA interconnect.

The length of a wire segment equals to the dimension of a FPGA tile (as shown on

the left of Fig. 31), which is the width of a CLB plus a switch box. Since RC value

is linear proportional to the length of wire segments, minimizing the area of switch

boxes (that also minimize the lengths of the intra-switch wires) could e↵ectively

reduce interconnect delay and energy.

Figure 31: The diagram of traditional subset switch box (left) and the proposed
folded-subset switch box (right)

3.7.2 Subset Switch Box Area Reduction

The switch box topology shown on the left side of Fig. 31 is a widely used

one called Subset. It is built up with switch points that locate on each track of

the interconnect channel. Traditionally, people make compact switch point layout

separately, and then align the switch points on the diagonal of switch boxes. Doing

so makes inter-switch routing simple in the layout. However, large triangle area in

39

switch boxes is wasted and the minimum space between CLBs becomes determined by

the dimensions of switch points instead of the minimum space between metal pieces

defined by the technology specification, as shown in the figure. In this research, I

designed a Folded-Subset switch box layout which breaks the alignment of the switch

points and squeeze them into a minimum square area, as shown on the right side of

Fig. 31.

Figure 32: Layout of a 7-switch-points cluster

Minimizing area increases the local routing complexity of the switch boxes. To

simplify routing and enable scalability, the layout is done hierarchically. The strategy

is to combine several switch points as a cluster in layout, then creating the full switch

box layout by tiling up several clusters. Each switch point is made of six pass-gates

with a SRAM bit-cell attached to each pass-gate for enabling programmability. When

making the cluster, the six pass-gates are firstly grouped, then lined it up with the six

bit-cells to create the layout of a switch point, as shown in Fig. 32. However, simply

tiling up several identical switch points as a cluster causes severe routing congesting

problems. Fig. 33 shows the strategy to solve this problem. Seven di↵erent switch

40

points are made by shifting the location of the pass-gates, then line them up. This

cluster is the basic cell building up the 84-track switch box layout in the custom

FPGA. As shown in Fig. 33, twelve of the clusters are used to make the Folded-

Subset switch box. The proposed layout is scale-able to varying number of tracks

without modifying the cluster.

Figure 33: Layout of an 84-track switch box

In Fig. 34, the area comparison of the traditional Subset topology and the pro-

posed Folded-Subset topology is shown. Due to the cluster-based hierarchical layout

structure, the proposed switch box does not available for all channel widths. However,

the channel width granularity is fine enough from FPGA design point of view. From

observing the six cases shown in the table, higher channel width leads to higher area

reduction by using the proposed layout. At channel width equals to 28, the area can

be reduced by 8.7x, while at channel width equals to 280, this number increases to

41

86.6x. Although there is a channel width gap between 84 and 280 in the table, our

switch box can be used for numbers in between, such as 112, 140, 168, 210, and 245.

Figure 34: Area Comparisons of traditional Subset and the proposed Folded-Subset
SBs in 130nm CMOS

3.7.3 Wilton Switch Box Area Reduction

Figure 35: The diagram of a 10-track Wilton switch box

42

The Subset switch box is widely used because it is straightforward to implement

and is easy to scale. For example, if designers want to expand a 10-track switch box to

12-track, they can just add two more switch points without redesigning the 10-track

structure, as shown in Fig. 31. This is very beneficial when building several FPGAs

with di↵erent number of tracks. However, Subset is impossible to route a signal

from one track to another, even though the Folded Subset optimized the layout area.

Wilton is another type of switch box topology as shown in Fig. 35. While track

T0 connects to L0/R0/B0 in Subset, it connects to L0/R1/B0 in Wilton instead,

providing an opportunity for routing between tracks. Thus, FPGAs using Wilton

switch box always uses more tracks than FPGAs using Subset, as shown in Fig. 36.

Figure 36: The interconnect area of FPGAs implementing MCNC benchmarks

Since Wilton switch box provides intra-track connection, the nested tracks make

its layout very complicated and hard to scale. Even adding one more track requires

completely redesigning the switch box. The most straightforward way to layout a

43

Wilton switch box is adding a pass-gate for each potential connection from one track

on one side (top/bottom/left/right) to any track on the other side. For example,

T0 can connect to L0-L9/B0-B9/R0-R9. Doing so simplifies the process of making

multiple switch boxes with di↵erent number of tracks. Designers just need to build a

big mesh of pass-gates then make connections where needed. However, this method

wastes a big portion of area on pass-gates prepared for non-exist connections. For

example, the connection between T0 and R9 in Fig. 35 is clearly not exist. Another

method is to add pass-gates only at intersections where physical connections exist.

As an example in Fig. 35, since T0 connects to L0, a switch (represented as the black

dot) is places. Each square area within dotted lines is a potential spot for “dropping”

pass-gates. For a 10-track switch box, there are 100 such spots in total. However,

Fig. 35 indicates only 60 connections exist. Thus, this method wastes the area of

40 “spots”. To minimize area, I squeezed 60 pass-gates into the dark grey area in

Fig. 35, which has 64 “spots” available. The methodology is to firstly “drop” all

pass-gates at connections that originally exist in the grey area, like the yellow dot

connecting T2 and L8. Then, “drop” other pass-gates like the black dot to grey spots

left.

Fig. 36 shows the number of tracks needed and the switch box area of FPGAs

implementing MCNC benchmarks. Using Wilton switch boxes, FPGAs needs 47.3%

less tracks compared to using (Folded-)Subset. However, this number drops to 26.6%

when comparing FPGA area, since Wilton switch box requires a big portion of area

on its complicated internal routing.

3.7.4 Energy E�ciency Improvement

The proposed folded-subset switch box not only reduces FPGA area, but also

increases FPGA interconnect energy e�ciency. The simulated results of paths using

44

subset switch box and folded-subset switch box are compared in Fig. 37. Since the

area of switch boxes highly depend on number of tracks in the channel, the channel

width needs to be considered in evaluating the energy e�ciency improvements. To

implementing MCNC benchmarks and the majority of applications in chapter 5, 84

tracks are needed. In this case, using the proposed switch box layout results in 56.3%

delay decrease and 67.6% energy reduction of the global interconnect. Channel widths

of 42 and 280 are also considered for di↵erent FPGA sizes.

Figure 37: The energy e�ciency improvement by using folded-subset switch box

3.7.5 Cross Talk

As the switch box area in physical layout is reduced, the space between two

interconnect tracks is also reduced and becomes close to the minimum space defined

by design rules of technology. The parasitic capacitance between tracks (42fF in

130nm CMOS) and between a track and substrate (10fF in 130nm CMOS) then

make the custom interconnect su↵ering from cross-talk problem. In the interconnect

model used for running simulations in this chapter, the cross-talk e↵ect is considered

by adding average parasitic capacitance between the adjacent tracks in to the Pi

model of wire segments. As a result, including cross-talk increases the critical path

delay of alu4 (a benchmark in MCNC suite) by up to 64.3%

45

3.8 Future Research

Todays data centers consume a vast amount of energy. According to the Depart-

ment of Energy [27], data centers in the United States consumed about 70 billion

kilowatt-hours of electricity in 2014, representing 2% of the countrys total energy

consumption, up from 0.8% in 2000 [28]. In particular, companies spend roughly

twice as much on powering and cooling data centers than the servers and components

themselves [29]. There is an urgent need to explore energy e�ciency improvement

strategies for the hardware of data centers to reduce financial and environmental costs

associated with high volume data centers. In addition to energy e�ciency, data cen-

ter computing platforms also require high speed and flexibility for rapidly-changing

applications. Therefore, a growing number of companies have begun using FPGAs as

the primary choice for computing platforms in several applications. However, existing

FPGAs are not yet optimalthe energy e�ciency of FPGAs could be further improved

via circuit-level solutions. The low-swing design is already proved can reduce FPGA

interconnect energy significantly in near/sub-threshold. It is also worth to explore if

the same design can reduce energy of high-performance FPGAs used in data centers.

There are challenges in applying the custom interconnect to high-performance

FPGAs. Firstly, modern FPGA interconnect architecture is di↵erent from the model

used in this chapter. Compared to basic interconnect topology, modern interconnect

1) uses smaller CLBs for better flexibility, 2) breaks up the switch point structure and

instead uses combination of wires with di↵erent spans or long express wires across the

FPGA on both directions, 3) inserts registers everywhere to enable deep pipelining,

and 4) has a variety of hard IPs. While each CLB used in the custom low-power

FPGA contains 8 LUTs, modern CLB has only 2 LUTs. This makes the logic cluster

smaller and transfers the burden of local interconnect into the global interconnect of

the FPGA. On the other hand, the multi-span interconnect wires, the everywhere-

46

registers, and the hard IPs dramatically increase the complexity of interconnect mod-

eling, the value of equivalent capacitance, and the characteristics of leakage paths.

To make matters worse, since the everywhere-registers are supposed to connect to

the main VDD while the signal swing is smaller, additional level converters may be

needed to avoid large static current. These issues make the actual energy reduction

we can achieve by applying the low-swing design to the custom slice unpredictable.

The second challenge is that the speed and energy requirements on high-performance

and low-power applications are quite di↵erent, prompting di↵erent design strategies

for circuits. First, while the voltage drop across the NMOS pass-gates is the thresh-

old voltage at nominal voltage, it is more complicated in near/sub-threshold, where

the voltage drop depends on the balance between on-current and the leakage current

everywhere in the interconnect. Thus, the signal swing might be quite di↵erent at

varying supply voltages and a simple level shifter design may not avoid large static

current in both cases. Secondly, since variation is a significant concern in near/sub-

threshold, robust circuits need to be developed for low-power applications. However,

such a robust design is not needed in high-performance applications, but the addi-

tional design degrades speed and increases energy. For example, to improve robust-

ness, the transistor size needs to be increased in near/sub-threshold, but this change

increases energy at nominal voltage. The metrics and criteria of energy-robustness

balancing is a design challenge. Finally, leakage energy dominates in sub-threshold,

indicating a focus on leakage energy reduction, while this is not an issue at nominal

voltage.

47

4 Per-Path Voltage Scaling and Power-Gating

4.1 Motivation

It is desired that low-power FPGAs can be as energy e�cient as possible due

to the strict power budget. Although FPGA interconnect has been optimized in

Chapter 3, architectural level optimization is also needed to further reducing energy.

Dynamic voltage scaling (DVS) is a widely used technique where the supply voltage of

computing devices can be increased or decreased dynamically depending on the load

or environment changes during usage. Properly using DVS guarantees the system

to consume energy at just the minimum to meet the speed requirement at all time.

In FPGAs, the supply voltage can be adjusted either spatially or temporally. The

spatial adjustment means applying di↵erent voltages to di↵erent paths on FPGAs.

In ASICs and processors, this technique is usually called multi-VDD. Since dynamic

energy is proportional to V 2
DD, reducing the supply voltage on non-critical paths

dramatically reduces FPGA energy while still maintaining the overall speed. Since

FPGAs are flexible hardware, the critical path keeps changing when FPGAs switch

between di↵erent applications. Thus, voltage values need to be reassigned to each

path on FPGAs before using. To distinguish this, I call the spatial DVS used in

this research “per-path voltage scaling” instead of multi-VDD. In addition to “per-

path voltage scaling”, the supply voltage of FPGAs can also be adjusted at run-time

to minimize energy waste due to process/voltage/temperature (PVT) variations and

dynamically changing speed requirements. For example, in the absence of scene

changes in MPEG video processing, reducing the processing speed by a reasonable

amount will not a↵ect the overall system performance due to the fixed fetching rate

of frames [30]. When processing speed is no longer critical, power and energy can be

saved by scaling down the supply voltage to or near the minimum energy point of the

48

system. This temporal DVS is simply called DVS in this document. Power-gating is

another low-power technique can be applied to FPGAs. The principle of power-gating

is to cut o↵ the connections of the idle circuit components from supply voltages to

reduce leakage energy without speed overhead. Although DVS and power-gating are

already used in FPGAs, additional energy reduction is expected by combining these

techniques with low-swing interconnect introduced in Chapter 3.

4.2 Prior Art

4.2.1 Per-Path Voltage Scaling & DVS

Multi-voltage technique has been widely used in computing devices. For example,

SoCs usually have one always-on voltage domain for control logic, and several volt-

age domains for processors, memory blocks, and IOs for di↵erent speed and energy

requirements. The latest commercial FPGAs also have di↵erent voltage domains for

embedded processors and IPs. Since FPGA core fabric consumes only a small portion

of energy, assigning one voltage domain to it is good enough. The energy reduction of

applying multi-voltage technique on the core can’t outweigh the overhead of control

circuit and additional routing. However, since the core fabric is the major energy

consumer of low-power FPGAs, existing works have tried multi-voltage on the core.

In [16], a FPGA architecture that applies dual-VDD on CLBs and interconnect is in-

troduced. The authors reduced the dynamic energy by applying nominal voltage to

the critical path, and applying a lower supply voltage to all the non-critical paths.

While [16] only explored designs on algorithm and architecture levels, [15] uses the

similar technique with circuit level optimization. However, although some work im-

plemented dual-VDD on CLBs in chip designs, no existing work uses per-path voltage

scaling on FPGA interconnect due to the high area overhead of adding headers to

49

the bu↵ers in switch boxes. Also, the designs in the existing works mainly focus

on the traditional bu↵er-based interconnects at the nominal voltage, while wireless

IoT applications require FPGAs optimized at near/sub-threshold. The low-swing

design introduced in Chapter 3 provides a good opportunity. It is proven to be an

energy-e�cient design in near/sub-threshold. Also, since there are no bu↵ers inside

the switch boxes in the low-swing interconnect, a big portion of the potential area

overhead no longer exists.

Dynamic voltage scaling has been used as a low-power technique on processors

for years. However, most of the existing works focus on theoretical estimations and

simulations of applying DVS on processors. For example, researchers developed an

algorithm of real-time DVS in [31]. Although they applied it to the operating system

and get an energy reduction of 20% to 40% on hardware platforms, neither circuit

implementation nor verification is discussed. In [32], researchers dig into this topic

more by measuring power of a processor running H.263 video benchmark. They

build testing station on board and observed a 20x power reduction at a cost of 5x

speed degradation. However, this work adjusts voltage from outside with additional

equipment, which is not a solid on-chip solution for low-power applications. Recent

years, more circuit level solutions for DVS are published as higher requirement on

system power. In [33], a 77% e�ciency DC/DC converter is proposed, along with

other similar works enabling high e�ciency on-chip DVS. In [34], a processor using

DVFS achieves a 16% power reduction. In [30], an ultra-dynamic-voltage-scaling

circuit solution is proposed. It allows circuit to operate as low as 0.33V with an

energy reduction of 9x, which is very beneficial for low-power ASIC and processors.

While more and more processors use DVS, this technique has not been widely used

on FPGAs. Only few work tried to apply DVS to FPGAs using o↵-chip solutions.

For example, in [35], researchers applied DVS to a commercial FPGA to solve PVT

50

variation problem using a computer.

4.2.2 Power-Gating

Power-gating is a leakage reduction technique widely used in all kinds of chips

today. In [36], researchers build an 8-core media processor in 65nm CMOS. By using

power-gating, they reduced leakage power by up to 98%. In [37], fine-grained power-

gating along with other low-power techniques helped designers reducing the leakage

energy of a 64Mb SRAM by 37%. In ultra-low-power applications, where supply

voltage is usually reduced to near/sub-threshold, using power-gating is even important

because of the increased portion of leakage power. For example, [11] uses power-gating

to minimize leakage of a self-powered body sensor SoC that has extremely low power

budget. As FPGAs already consume higher power than ASICs, using techniques

like power-gating is essential. In [38], researchers achieved a 99% leakage reduction

by applying power-gating to look-up-tables. In [39], designers also applied power-

gating to FPGA interconnect, reducing leakage power by 70% 84%. However, no

existing work examined how much FPGA interconnect leakage energy could be saved

in near/sub-threshold operations. Especially, nobody tried to apply power-gating

to the configuration bit-cells, which is a big source of leakage energy in near/sub-

threshold.

4.3 Per-Path Dynamic Voltage Scaling

4.3.1 Architecture Overview

Low-power FPGAs are expected to be as energy e�cient as possible. Reducing

supply voltage on non-critical paths can e↵ectively minimize energy while maintaining

the overall FPGA speed [6]. Per-path voltage scaling is a low-power technique based

51

on this concept. As shown in Fig. 38, the circuits in dark-gray represent the critical

path that are attached to VDDH through headers. The circuits in mid-gray represent

non-critical paths that are attached to VDDL. The circuits in light-gray are in idle

mode and are power-gated. The energy reduction is completed by turning on/o↵ a

pair of header transistors. In this research, two voltage rails are used to implement

per-path voltage scaling. Circuits on the critical path are attached to a higher supply

voltage VDDH , while the rest of the circuits are attached to a lower voltage VDDL.

When both transistors are turned o↵, the circuit component is power-gated in order

to reduce leakage [16] [15].

Figure 38: The concept diagram of applying per-path voltage scaling and power-
gating techniques to FPGA interconnect

Multi-voltage has been proven to be capable of minimizing energy in ASICs, pro-

cessors and FPGA CLBs. However, this technique was not easy to be applied to

FPGA interconnects due to the large area overhead. Fig. 39 shows the interconnect

model discussed in Chapter 3, but with additional headers enabling per-path voltage

scaling. In each switch box, a configuration bit-cell is used to control the switch. Be-

cause the traditional interconnect fabric has bu↵ers in each switch box, implementing

per-path voltage scaling on the interconnect requires adding headers and configura-

52

tion bit-cells to each switch box. This will substantially bloat the already large area

of the switch boxes. The size of headers usually larger than transistors in bu↵ers to

avoid voltage drop. Fig. 40 shows the estimated area overhead of using per-path

voltage scaling. When header size is 10x, the overhead could as large as 43%. For

this reason, although many papers evaluated the potential energy reduction by using

per-path voltage scaling, no design use this technique on chips. The low-swing inter-

connect, which removes bu↵ers from switch boxes, discussed in Chapter 3 solved this

problem. As shown in Fig. 39, the headers used for the voltage assignment are not

needed anymore and the area overhead is reduced to near zero. In this chapter, the

interconnect model in Fig. 39 will be used for evaluating energy reduction of using

per-path voltage scaling.

Figure 39: The comparison of applying per-path voltage scaling on the traditional
interconnect and the low-swing interconnect

The bit-cells in switch boxes are attached to an additional boosted supply VDDC ,

which is used to adjust path delay and energy dynamically. This method is more

energy-e�cient and less sensitive than adjusting the main supply voltage VDD. Since

53

the energy of VDDC is purely leakage in the bit-cells, which is orders of magnitude

smaller than the energy of VDD applied to drivers and level shifters, the energy waste

of voltage regulators used for adjusting VDDC is much smaller than adjusting VDD.

Figure 40: The area overhead of headers introduced when using per-path voltage
scaling

4.3.2 Level Conversion

Figure 41: The percentage of interconnect energy from level shifters under di↵erent
conditions

Circuit using the multi-VDD technique requires the designers to carefully manage

cross-voltage-domain issues. That is, isolation and level shifting circuit is needed

at the interface of two voltage domains to avoid short circuit current. The per-path

54

voltage scaling technique brings the cross-voltage-domain issue to FPGA interconnect.

Since the critical path varies from application to application, each interconnect path

in FPGAs has potential cross-voltage-domain problem. Thus, over thousands of level

shifters needed to be inserted to traditional interconnect. However, the low-swing

interconnect already has level shifters to regenerate low-swing signals. They can also

be used to minimize the short circuit current of converting VDDL back to VDDH , so

no additional circuit is needed. Cross-voltage-domain operations introduce additional

energy in level shifters. Fig. 41 shows the simulated percentage of energy from level

shifters under di↵erent conditions. At lower VDDC , the signal swing is smaller and

results in higher short circuit current. When VDDC is high enough, the percentage of

level shifters energy is lower than 5% for most paths.

4.3.3 Voltage Regulation

Figure 42: The concept diagram of the proposed architecture and the power manage-
ment unit

There are three voltage sources mentioned so for implementing per-path voltage

scaling and DVS: VDDH , VDDL, and VDDC . However, providing all three supplies from

55

o↵-chip is not realistic. For example, low-power applications like personal health sen-

sors require very small form factor. Having multiple o↵-chip supplies usually indicates

multiple batteries, which are large, heavy, and increase the chance of replacing. One

solution is using only one battery and generating the other two voltage values on

board. However, on board regulation does not energy-e�cient or reliable due to long

wires. The best strategy is performing voltage regulation on chip through a power

management unit (PMU). How to design a PMU is beyond the scope of this disser-

tation. However, as the energy overhead of generating additional supplies on-chip is

large, this part of circuit cannot be ignored. Thus, the voltage regulating strategy

and hardware components are chosen and theoretically estimated.

When estimating the overall energy reduction of using per-path voltage scaling

and DVS, the energy overhead of generating additional supplies needs to be taken

into account. Fig. 42 shows one possible solution of the on-chip power management

unit. The type of voltage regulator used to generate each supply is indicated. First

of all, VDDH directly comes from a chip pin. As what will be explained later in

this chapter, the di↵erence between VDDH and VDDL leading to the largest energy

reduction is small (0.05V - 0.15V). In this case, low-drop voltage regulator (LDO) is

chosen to generate VDDL for its near-90% e�ciency and small area.

Figure 43: The concept diagram of the delay chain circuit and the proposed delay
detector and voltage controller architecture

56

Due to the varying speed requirement of applications, we sometimes need to dy-

namically adjust VDDC . To generate VDDC , a boost converter is needed, as its value

is higher than VDDH . The frequency of the input square wave of the boost converter

depends on, and is converted from, the varying target system speed of applications.

In the existing works, people use switch-capacitor-based voltage regulators to control

voltages according to the detected chip delay found by the commercial IBM Critical

Path Monitor [40] or the Intel Droop Detector [41]. However, those designs are large,

complicated, and time-consuming in the design process. In this research, a simpler

voltage controller based on the idea of the Logic Delay Measurement Circuit (LDMC)

discussed in [35] for low-power designs. As shown in Fig. 43, the delay-chain-based

control logic takes the system clock as the only input. The frequency of this clock

determines the number of bu↵ers a high-to-low transition can propagate. When the

falling edge of the clock arrives, the clock signal has half cycle to propagate though

the delay chain before the rising edge arrives and triggers the flip-flops. Thus, only

a portion of the flip-flops close to the input have outputs of 0, while the rest stay

at 1. The on-chip LUTs along with analog components can be used to generate the

input square waveform of the boost converter, taking the flip-flop outputs as control

signals. In other word, by changing the frequency of the system clock, the VDDC

value will be adjusted to meet the new speed requirement at run-time. The method

of adjusting VDDC described above is just a reference. Better circuit solutions may

occur, but beyond the scope of this dissertation. Also, the delay-chain-based control

logic can also be implemented by LUTs if varying number of bu↵er stages are needed.

4.3.4 CAD Flow for VDD Assignment

For the remainder of Chapter 4, we define net to mean any signal path from an

output of a CLB to an input of another CLB. Each net includes one or more switch

57

boxes. We define path to mean any signal path from a FPGA input pad to an output

pad. Each path involves multiple switch boxes and CLBs. By assigning the nets

on the non-critical paths to VDDL, the overall energy of the FPGA can be reduced.

There are two important knobs for VDDH & VDDL assignment: the portions of the nets

assigned to and the values of VDDH & VDDL. We need to find the best combination

of VDDH & VDDL values that can minimize the interconnect energy without increase

the critical path delay. In this research, a custom timing analysis tool is created to

automatically do this optimization.

Figure 44: The flow chart of the custom multi-VDD assignment tool

The custom tool is based on VTR [24], which can do complete timing analysis for

many FPGA architectures. VTR estimates interconnect timing based on constant

delay values of circuit components (switches, bu↵ers, and wires) described in its

architecture files. However, it assumes the circuit components of the same type

always have same delay. This is not true for an architecture using per-path voltage

58

scaling. For example, VTR assumes a switch in net # 1 and another switch in net #

2 have same delay. However, when applying VDDH to net # 1 and VDDL to net # 2,

the delay of the two switches aren’t the same. In this case, VTR timing analysis no

longer accurate. To solve this problem, we can keep using VTR by creating a model

for each net. This makes the architecture files extremely complicated. Also, since the

nets assigned to VDDH & VDDL vary among applications, this method requires us to

make a specific architecture file for each benchmark. For this reason, instead of using

the entire VTR flow, I extracted the routing info (the length of each net, the start

point and end point of each net, and how the nets build up paths) from VTR output

files, then calculated the delay of each path by adding up the delay of each net on

the path. Since the low-swing interconnect circuit and the operating voltage applied

to it are very di↵erent from the assumptions of VTR, the delay of nets is obtained

by running SPICE simulation. Compared to the timing analysis results of VTR, the

custom tool finds the same critical paths. The only di↵erence is the absolute delay

values. Since the custom tool allows users to recalculate the delay of every path in the

multi-VDD assignment process, we can keep trying to assign di↵erent voltages to each

net until the FPGA archives the lowest energy point without changing the critical

path. This is what VTR cannot do.

The details of the custom tool are shown in Fig. 44. In order to do multi-VDD

assignment as while as timing analysis for a benchmark, we need the routing info from

running VTR, the simulated delay and energy of each net from running SPICE, the

activity factor of each net by running ACE 2.0 [42], and a script (the custom script

3 in Fig. 44) to do multi-VDD assignment, critical path delay calculation, and energy

saving calculation. In this script, a simple brute-force algorithm is used to initially

assign all the nets to VDDH and try to reassign VDDL to each net. If the critical path

does not change after the assignment, that net is kept on VDDL, otherwise assign it

59

back to VDDH . The script exports the info of the portions of the nets assigned to VDDH

& VDDL, the energy before and after using the multi-VDD scheme, and the energy

distribution of the FPGA interconnect at every VDDH & VDDL value combinations.

Then the energy overhead of using the voltage regulator is estimated based on the

exported info. To use the routing info from VTR, two additional scripts are also

created to parse the text-based .net, .place, and .route files generated by VTR. The

custom script 1 in Fig. 44 creates a dictionary to store the detailed info of each net,

while the script 2 creates that of each path. For the activity factors, I use 0.2 for all

FPGA inputs. The activity factors of internal nets are then automatically generated

by running ACE 2.0.

4.3.5 Energy Reduction Results

In this research, I swept VDDH from 0.45V to 0.6V and VDDL from 0.15V lower

than VDDH to VDDH , to find the supply voltage values leading to the lowest energy

of FPGAs implementing MCNC benchmarks. The result shows the higher VDDH ,

the more energy savings we can achieve from using per-path voltage scaling. Fig. 45

shows the overall energy reduction of the interconnect when implementing five largest

MCNC benchmarks at di↵erent voltage values. The details of the benchmarks are

also shown. The FPGA architecture chosen has 8-LUT CLBs with 4-inputs of each

LUT and switch boxes at each intersection of horizontal and vertical channels.

As shown in Fig. 45, when VDDH is set to 0.6V, the maximum energy saving

of the interconnect is achieved at VDDL equals to 0.5V, which is 0.1V lower than

VDDH . Theoretically, keep reducing VDDL always results in higher energy reduction.

However, lowering VDDL leads to higher portion of leakage energy. Also, too low VDDL

makes some non-critical paths become the new critical path, and increase the overall

FPGA delay and energy. For these reasons, an optimal VDDL value is observed in

60

terms of energy reduction. In Fig. 45, an average energy saving of 20.1% is archived

when the LDO overhead does not included. As discussed earlier, a LDO is used to

estimate the voltage regulator overhead of generating VDDL. The energy e�ciency of

the LDO approximately equals to the output voltage divided by the input voltage,

which is VDDL

VDDH
in this case. If included LDO overhead, the average energy saving

drops to 10.1%.

Figure 45: The energy reductions of the low-swing interconnect implementing MCNC
benchmarks using per-path voltage scaling @ 0.6V in 130nm CMOS

61

Figure 46: The a↵ects of cross-talk and power noise on the energy reduction of
interconnect implementing alu4 @ 0.6V in 130nm CMOS

So far, all the energy reduction numbers are estimated based on an activity factor

of 0.2 of all the inputs. However, this assumption cannot cover all the cases. Thus,

I ran simulations to show how does the results change while sweeping the activity

factor from 0.1 to 1.0. Although increasing the toggle rates increases the FPGA

energy dramatically, the percentage of energy reduction doesn’t change much if the

VDDC value is a constant. In Fig. 46, the influences from cross-talk and voltage noise

are also examined. As a result, although the critical path delay and the interconnect

energy are vulnerable to cross-talk, they are not very sensitive to voltage noise. All

the data shown in this figure is simulated at VDDH = 0.6V and VDDL = 0.5V.

Finally, the simulated maximum and minimum delay and energy of the intercon-

nect can be adjusted to by using DVS are shown in Fig. 47. The VDDC value is

swept from VDDH to 0.7V higher than VDDH for each benchmark. However, when

VDDC is less than 0.2V higher than VDDH , the swing of the signals in the interconnect

will reduce to a level that cannot be detected by the level shifters in the simulation.

This leads to functionality failures of the FPGAs. DVS allows approximately 45%

62

delay reduction or 40% energy reduction when needed in addition to per-path voltage

scaling. Take alu4 as an example, the critical path delay can be adjusted from 0.35µs

to 0.18µs and energy per operation from 36.1pJ to 20.8pJ at 0.6V.

Figure 47: The adjustable range of delay and energy of the interconnect implementing
MCNC benchmarks when using DVS @ 0.6V in 130nm CMOS

4.4 Power-Gating

4.4.1 Architecture Overview

Power-Gating is an e↵ective technique to reduce leakage energy in idle circuits.

FPGA researchers traditionally use this technique to reduce the leakage energy of the

bu↵ers in switch boxes [16] [15]. However, this part of energy is naturally zero for low-

swing interconnect since all bu↵ers have already been removed. As leakage energy

becomes the dominant part when the supply voltage is scaled down to near/sub-

63

threshold, the leakage in the configuration bit-cells can no longer be ignored [6]. The

interconnect energy breakdown of the low-swing interconnect implementing MCNC

benchmarks is shown in Fig. 48. About 50% of the total FPGA energy at 0.6V is

contributed by the leakage energy in idle circuits, where the majority is contributed by

configuration bit-cells. The numbers shown in the figure is based on the assumption of

an activity factor of 0.2, which is an empirical number. Increasing the activity factor

increases the portion of dynamic energy. In the extreme case, where the activity

factor equals to 1, the percentage of leakage energy drops to 26.7%. However, this is

not realistic in real applications.

Figure 48: Energy breakdown of the low-swing FPGA interconnect implementing
MCNC benchmarks @ 0.6V in 130nm CMOS

In this research, power-gating is applied to the bit-cells in switch boxes. The

simplest bit-cells are 5T SRAM cells used to turn-on or turn-o↵ the switches in the

interconnect or to store LUT values in CLBs. To use power-gating, PMOS headers

need to be inserted between the voltage supply and bit-cells. When the corresponding

64

switch boxes are in idle mode, turning-o↵ the PMOS headers reduces leakage current

in the bit-cells due to stack e↵ect. By using high-VT transistors, the leakage could

be even smaller. However, the size of the headers need to be properly selected. Too

large headers result in higher leakage, while smaller headers lead to degraded speed

and robustness due to IR drop. As shown in Fig. 49, there are di↵erent architectures

of power-gating. The coarse-grain power-gating only need one header in each switch

box. All bit-cells in a switch box can only be turned on or o↵ at once. The fine-

grain architecture, on the other hand, has one header for each bit-cell to control them

individually. Although the fine-grain power-gating can be applied to more switch

boxes, it has higher routing and area overhead than the coarse-grain design. This

trade-o↵ will be discussed later. The control signal of a header is provided by another

bit-cell instead of scan-chains, because of the large total number of headers. Thus,

applying power-gating to each bit-cell is not realistic, since the same amount of bit-

cells is required to performing power-gating.

Figure 49: The coarse-grain power-gating and fine-grain power-gating architectures

65

4.4.2 Header Design for Power-Gating

Figure 50: Characterization of the headers for power-gating

In Fig. 50, the characterization of the headers is shown. Since no MCNC bench-

marks requires more than 84-tracks to route, all simulations are setup for an 84-track

switch box. which has 504 leaking bit-cells. The voltage drop across the header can

be ignored. In 100-point Monte Carlo simulations at di↵erent voltage, the voltage

drop is less than 1% even thought a minimum-sized header is used to power-gate all

the 504 bit-cells. If using the minimum-sized header, the area overhead of the header

is also less than 1% compared to the area of the switch box. Using fine-grain power-

gating leads to higher area overhead of up to 20%, as each bit-cell needs a header.

This area overhead is confirmed by making a custom layout of s 84-track low-swing

switch box. Finally, the leakage energy of the switch boxes can be reduced by over

100x after using power-gating according to SPICE simulations.

4.4.3 Energy Reduction Results

Fig. 51 shows the overall energy reduction of the low-swing interconnect using

both per-path voltage scaling and power-gating. For each benchmark, the energy of

the interconnect before and after using power-gating and per-path voltage scaling is

listed, and the overall energy reduction is calculated by comparing the two numbers.

66

The total energy in the figure comprises both leakage energy and dynamic energy,

which is obtained by summing up SPICE simulation results of each path implementing

the benchmarks.

Figure 51: The energy reduction of the low-swing interconnect after using power-
gating and per-path voltage scaling @ 0.6V in 130nm CMOS

The power-gating architecture has a large impact on the overall energy reduc-

tion. In the figure, six di↵erent strategies of power-gating are considered, simulated,

and used to estimate energy reduction. These strategies are based on the number of

bit-cells controlled by each header in a switch box. For example, an 84-track switch

box, which can route all the MCNC benchmarks, has 504 bit-cells in total. Since

the coarse-grain power-gating only has one header in a switch box, this header need

to control all 504 bit-cells. That’s why “504” is placed in the slot. The header in a

coarse-grain power-gating can be turned-o↵ only when the entire switch box is in idle

mode, which is very rare. Take alu4 as example, although there are 307,499 bit-cells

in the FPGA are not used, only 81,413 of them can be power-gated, since the ac-

tive bit-cells distributed in many switch boxes. Using more headers in a switch box

theoretically can solve this problem. However, as each header requires an additional

bit-cell to control it, using too much headers makes the benefit of power-gating cannot

compensate the energy overhead of the introduced bit-cells. The number of bit-cells

67

can be power-gated highly depends on the P&R algorithm. In Fig. 51, the energy of

FPGA interconnect implementing benchmarks using no low-power techniques, using

only per-path voltage scaling, and additionally using power-gating are given. As a re-

sult, the average energy reduction after using all low-power techniques is 22.3% when

coarse-grain power-gating is used, relative to a near/sub=threshold FPGA without

using per-path voltage scaling and power-gating. When using fine-grain power-gating,

the maximum reduction is 56.5%.

4.5 A Custom FPGA Chip

4.5.1 Chip Description

Figure 52: Architectural and Circuit-Level Parameters for taped-out FPGA chip

To verify the low-power design ideas and the functionality of a custom tool flow

that will be discussed in Chapter 5, Dr. Ayorinde and I built and taped-out a chip of

FPGA core fabric with full functionality. The chip is designed for near/sub-threshold

operation and has the following low-power features:

• Clustered configurable logic blocks with eight look-up-tables and flip-flops

• Low-swing interconnect optimized for energy e�ciency

• Area-optimized folded-subset switch boxes in the interconnect

68

• Enabling per-path voltage scaling

• Low-power multiplexer-based intra-CLB routing

• Coarse-grain power-gating for both CLBs and switch boxes

The chip also includes additional circuitry for configuration and testing. This

includes:

• Scan-chains for configuring look-up-tables, interconnect, per-path voltage scal-

ing, and power-gating

• Scan-chains for controlling a large percentage of the inputs/outputs to the

FPGA core fabric

• Direct connections to virtual rails of CLBs and switch boxes to observe power-

gating e�ciency

• Registers at the inputs and outputs of the FPGA for delay measurements

Figure 53: The annotated layout of the of the custom FPGA chip

69

Fig. 52 displays the important parameters of the FPGA chip. We chose 4-input

look-up-tables and a clustering (N) of 8 to build the CLBs due to Dr. Ayorinde’s

research results [43] and the industry standard. The total number of look-up-tables

on the chip is 512, which is large enough to implement meaningful applications. A

channel width (W) of 84 allows our chip to route significant benchmarks while using

the subset switch box topology. To our knowledge, this is the first FPGA chip has

been taped out which is targeted for near/sub-threshold operation and also includes

as many look-up-tables and routing resources.

Figure 54: The measurement results of leakage energy reduction of the custom FPGA
chip before and after using power-gating

An annotated screen shot of the layout of the chip is shown in Fig. 53. The 8x8

CLB array is on occupying the majority of area is the FPGA core fabric. A word-line

(WL) scan-chain and a bit-line (BL) scan-chain are included to configure the chip

WL by WL. Since the number of IOs of the FPGA core fabric (192) is higher than

the number of IOs of the chip (112), two additional scan-chains are needed to access

and observe a portion of IOs of the FPGA core fabric. There is also a portion of IOs

are directly connected to the chip IOs. Each chip IO includes a register enable delay

measurement.

70

4.5.2 Measurement Results

In Fig. 54, the leakage current of the chip at varying VDDC is shown. In this task,

no application is mapped to the FPGA, and the values in all bit-cells are reset to

zero. At each VDDC , the total leakage current of the bit-cells is measured when the

power-gating headers are turned-on and turned-o↵. As a result, using power-gating

reduces the leakage energy of the bit-cells by about 90%. The value of VDDC doesn’t

a↵ect the percentage of energy reduction much. The size of the power-gating header

in this chip is chosen as 30x. Although 1x is good enough shown in simulation, a larger

header is used for a guard-band against variation and noise. The area overhead of

the header can be ignored in this chip, since the header is placed in the blank area

between two CLBs.

Figure 55: Simulated waveforms of a 4bit-adder

Besides leakage reduction, the functionality of the custom chip and tool flow (in-

troduced in Chapter 5) is also verified. Fig. 55 shows the simulated waveform of

the chip implementing a 4-bit adder. The chip is simulated using HSPICE with an

initial condition stream of the bit-cells generated by the custom tool flow. Assume

71

the inputs of the 4-bit adder are denoted as ’a’ and ’b’, the output is denoted as ’sum’,

and the carry-in and carry-out are denoted as ’Cin’ and ’Cout’, respectively. In the

figure, the inputs are set to a[3]=a[2]=a[1]=a[0]=0 and b[3]=b[2]=b[1]=b[0]=1. By

toggling ’Cin’ from 0 to 1, the ’sum[3]’ is expected to flip from 1 to 0 and ’Cout’ from

0 to 1. The waveform shown in the figure exactly matches the expected results.

Figure 56: Comparisons of the custom FPGA and existing low-power FPGAs

Benchmarking the existing FPGAs is extremely important for providing a context

in which to look at our work in the development of FPGA fabrics, which will allow

us to target our designs for the state-of-the-art. Thus, a 4-bit adder is mapped to the

custom FPGA chip for measurement. In Fig. 56, its measured delay and power are

compared to three academic works ([9], [10], and [22]) and two commercial products

(Lattice iCE40 UltraLite [7] and Microsemi IGLOO [8]). Since the benchmarks used

in the academic works are di↵erent from us, we cannot do direct comparisons with

them. However, the leakage power of the custom FPGA is much smaller then the

existing works. Comparing to [9], our FPGA is 2.5x lower static power even though

our FPGA is 4x larger than [9] and measured at a higher supply voltage. The rest

72

of the academic works consume even more leakage power than [9]. The commercial

products provide more flexibility on applications. Thus, we mapped the 4-bit adder

to iCE40 and IGLOO using their released tools for fair comparisons. As a result, the

custom FPGA consumes 578x lower power at a 17x lower speed than iCE40 UltraLite,

and consumes 277x lower power at a 77x lower speed than IGLOO. The energy of

IGLOO is 3.4x higher than the custom FPGA.

4.6 Future Research

In this chapter, a custom tool is developed to assign VDDH and VDDL to each path

towards minimize energy. However, the tool is currently using a simple brute-force

algorithm, which makes the tool having long run-time for large benchmarks. A better

algorithm can improve the tool speed significantly. Furthermore, although the tool

can determine which paths need to be connected to VDDH or VDDL, it can’t generate

configuration bit-stream to enable per-path voltage scaling and power-gating on the

chip. In addition, as discussed in 4.4.3, the energy saving of using power-gating highly

depends on the P&R tool, which is expected to be power-gating-aware to group all

idle bit-cells into several switch boxes. Also, the leakage power saving needs to be

revisit at modern technology nodes such as 16nm FinFET, where the percentage of

leakage energy is reduced.

Another topic of future research is about voltage regulator. In this research, the

energy overhead of the voltage regulators is estimated by theoretical calculation of

the equations. However, this is potentially not accurate. Since delay and energy of

the FPGA is very sensitive to supply voltage, a tiny inaccuracy in voltage regulator

estimation can result in di↵erent conclusions on the optimal VDDH and VDDL values.

A more realistic model of the voltage regulators is needed.

73

5 Low-Power FPGA Evaluation Platform

5.1 Motivation

5.1.1 Low-Power Application Suite

It is hard to evaluate a FPGA since it can run arbitrary applications, and the

performance and energy of a FPGA varies when implementing di↵erent applications.

To evaluate a FPGA comprehensively, we need an application suite that has good

application diversity, size diversity, and hardware resource usage diversity. Since the

goal of this research is about building a low-power FPGA, the requirement on this

application suite becomes finding a group of low-power applications in di↵erent fields

that are suitable to be implemented by FPGAs. At mean time, these applications

are expected to use di↵erent combination of LUTs, FFs, interconnect resources, and

hard IPs.

5.1.2 Application Synthesis

Before using FPGAs, the CAD tools need to perform multiple preparation steps,

including 1)translating applications written in Verilog into gate-level descriptions

2)mapping the gates to LUTs, which then wrapped into CLBs or other hardware

resources available on the target FPGAs 3)placing the CLBs at certain locations

on FPGAs, then connecting them through global interconnect 4)optimizing P&R to

meet design constraints. The first and second steps are usually done by benchmark

synthesis tools. All FPGA companies have their own synthesis tools, such as Xil-

inx ISE/Vivado and Altera Quartus. Although these tools are powerful, they are

designed for supporting their own FPGAs. Compared to commercial FPGAs that

much care about throughput to compete with processors, ultra-low-energy FPGAs

has less requirements on speed but highly constrained by power budget. While ad-

74

vanced place and route algorithms play an important role in reducing FPGA power,

circuit level improvement also helps. Low-power circuit design techniques such as

custom CLB, low-swing interconnect, new architectures, power-gating, and per-path

voltage scaling can be applied to low-power FPGA designs. However, commercial

synthesis tools do not recognize the architecture of custom designed FPGAs, and

cannot map logic correctly to these FPGAs. Thus, a general-purpose synthesis tool

is needed. Since the majority of applications are written in Verilog these days, there

is no strong need to work on the conversion of C/C++ and VHDL, which are out of

scope of this dissertation.

5.1.3 Fast Power Estimation of the Custom FPGA

FPGA fast evaluation is an important topic in FPGA CAD flow developments.

There are mainly three reasons designers need FPGA fast evaluations. 1)The near/sub-

threshold analysis of energy consumption and timing closure of custom FPGAs re-

quire a dramatically increased level of SPICE-level simulation precision. Such highly-

accurate simulations can take days even weeks to complete for a full FPGA fabric.

FPGA circuit designers need an alternative method to fast evaluate their designs on

system level. 2)Designers of custom FPGAs need quick guides towards the optimal

architecture parameters and on-chip IP type/size/number (memory blocks, multipli-

ers, adders, etc.) to build their chips. 3)When SoC designers want to implement

some on-chip blocks with embedded FPGA slices, they need to quickly know the

overhead and trade-o↵s without dealing with transistor level issues. Besides evalua-

tion speed, the accuracy of evaluation is also important for FPGA circuit designers.

Since circuit level improvements usually has smaller impact on the system compared

to improvements on architecture or P&R algorithms, inaccurate simulations can hide

the impact of circuit innovations. Thus, a tool enabling fast speed and energy esti-

75

mation of the custom low-power FPGA is required. The only inputs of the tool will

be the applications in Verilog and an FPGA architecture description file.

5.2 Prior Art

5.2.1 Low-Power Application Suite

Application suites play a significant role in evaluating and comparing FPGA cir-

cuits, architectures, and CAD tools. Unfortunately, existing commonly used appli-

cation suits are either too large for low-power FPGAs or too simple to fully utilize

low-power FPGA resources. For example, none of the designs in the MCNC suite [25]

uses hard IPs, which are deployed on all modern FPGAs, and a big portion of the de-

signs are purely combinational. Furthermore, the MCNC suite is written in Berkeley

Logic Interchange Format (BLIF) that is very inconvenient to use, since it needs to be

modified every time designers make changes to FPGA architecture even though the

change is very tiny. On the other hand, the Titan23 [44] suite includes designs with

high usage of hard IPs. The number of those IP blocks in each Titan23 benchmark

reaches the range of several thousand, which is comparable with the available hard IPs

on the latest Xilinx Virtex 7 series FPGAs. However, these applications are too big

to fit into low-power FPGAs. For example, the size of commercial low-power FPGA

Lattice iCE40 [7] and Microsemi IGLOO [8] ranges from 100 LUTs to 7680 LUTs,

while the smallest Titan23 application has 90,779 LUTs. Without applications with

proper size and the utilization of hard IPs, we cannot e↵ectively and comprehensively

evaluate low-power FPGA circuits and CAD flows.

76

5.2.2 Application Synthesis

The existing Verilog synthesis tools are also not suitable for low-power FPGAs.

The most common used synthesis tools are Xilinx ISE/Vivado, Altera Quartus, and

Synopsys Synplify. These tools support all kinds of application formats and create

configuration bit-streams very fast in minutes. However, the commercial tools only

support the existing FPGAs on the market. Researchers cannot verify their own

FPGA circuit or architecture designs using commercial tools. To solve this problem,

multiple open source synthesis tools are build, and the most widely used one is ODIN

II [45] integrated in Verilog-to-Routing (VTR) [24]. The ODIN II can synthesis appli-

cations using the hardware resources on a user-defined FPGA architecture. However,

ODIN II only supports limited Verilog syntax. For example, it does not support

nested modules, high-impedance ‘z’, shift operations, 2D arrays, gate-level descrip-

tions, unused modules, and so on. These functions play an irreplaceable position

and are very commonly seen in modern RTL designs. Since FPGA circuit designers

do not always write RTL benchmarks on these own, but using RTL designs from a

third party, they have to revise the RTL before evaluating their custom FPGAs using

ODIN II. This process is painful, time-consuming, and unnecessary. Thus, a new

synthesis flow supports both custom FPGA architecture and all valid Verilog formats

is required.

5.2.3 Fast Power Estimation of the Custom FPGA

The exiting tools cannot meet the requirements of estimating the energy of the

custom FPGA as well. Although the commercial tools such as Xilinx ISE/Vivado and

Altera Quartus provides fast speed and power estimations of their own products when

implementing any applications, they can’t evaluate FPGAs either have a di↵erent

architecture or run at a di↵erent voltage. To solve this, VTR [24] is designed to

77

be able to estimate any user-defined FPGA at any voltage. However, VTR does not

work well for the custom low-power FPGA for multiple reasons. 1)While designers can

define the architecture of CLBs, the interconnect architecture is fixed in VTR. Since

interconnect dominate the overall FPGA energy, designers usually apply multiple

low-power techniques to the interconnect. For example, I use low-swing architecture,

per-path voltage scaling, power-gating. The benefits of these low-power designs can’t

be counted by VTR flow. 2)VTR estimates delay, power, and area based on user-

provided values of sub-circuits and hard IPs in FPGA architecture files. For example,

users need to provide the delay from each input of a LUT to its output. These

values are obtained from circuit simulations or chip measurements. However, all such

values in VTR are based on high performance FPGAs, which is far di↵erent from

near/sub-threshold operations. 3)The leakage power estimated by VTR does not

take consideration of power-gating. In addition to VTR, FPGA-SPICE is another

FPGA fast evaluation tool [49]. Although it achieves 14x speed-up compared to

simulating full-chips in SPICE, it also does not support low-swing interconnect and

per-path voltage scaling.

5.2.4 FPGA Generation and Configuration

To enable low-power FPGA circuit development and simulation, Dr. Ayorinde

build a FPGA Generation and Configuration (FGC) tool as shown in Fig. 57 [43].

While VTR can only generating virtual mapping and routing information of the

given application and FPGA architecture, FGC add more functions to it, including

FPGA schematic generation, circuit initial condition generation for chip simulation,

and configuration bit-stream generation for chip measurement. However, FGC still

remains the problem of application synthesis and FPGA energy estimation. In this

chapter, researches of adding these capabilities to FGC will be discussed.

78

Figure 57: The flow chart of FGC

5.3 Application Suite

The members of the low-power application suite are expected to include meet the

following requirements.

• use less than 100k LUTs

• including both combinational logic and sequential logic

• including the usage of memory blocks, multipliers, and other hard IPs

• from real low-power applications

Based on these requirements, the proposed application suite is built up with selected

applications from the VTR suite [24], applications implemented by Lattice iCE40 [7]

79

and Microsemi IGLOO [8], and battery-less wearable sensor applications from UVa

[46] [11].

5.3.1 Selected VTR Applications

Figure 58: VTR Applications Characterizations

80

Some of the benchmarks released together with VTR meet the requirements of

the expected low-power application suite. The number of 4-input LUTs needed to

implement these applications is between 202 to 112K, and on average 17K. In ad-

dition, they use varying number of memory blocks (single port or dual port) and

multipliers. These applications are too small to evaluate high performance FPGAs,

which usually equipped over 1M LUTs and 1K hard IPs. However, while only less

than 1% of the resources can be utilized, the majority of the hardware available on

low-power FPGAs will be used to implement these applications. This collection also

has diversity of the field/industry, include image processing, memory control, math,

soft processor, cryptography, computer vision, and so on. The details of the selected

VTR benchmarks are shown in the Fig. 58.

5.3.2 Selected Commercial Applications

Figure 59: Commercial Applications Characterizations

81

Another portion of members of the low-power application suite comes from the

usage of commercial FPGAs. The iCE40 and IGLOO have two main categories of

usage, including 1) portable miniature systems 2) interfaces. The details of these

applications are shown in the Fig. 59. For low-power SoC solutions of portable ap-

plications, such as barcode emulator, pedometer, and sensors, the low-power FPGAs

are more widely used than high performance FPGAs due to the strict energy budget.

In addition, low-power FPGAs can be used to implement interfaces or supplemental

units as a separate chip on board, such as the interfaces, IO expander, and remote

Rx/Tx. Most of these applications can also be implemented by ASICs, however,

the hardware flexibility of FPGAs dramatically reduces the costs of design, error-

fixing, and algorithm upgrade. Finally, these applications are small in size (392 -

2457 equivalent 4-input LUTs) and use heterogeneous hard IPs.

5.3.3 Additional Ubiquitous Computing Applications

The last portion of the application suite comes from on-going ultra-low-energy

research. As the size of devices shrinks for decades, integrated circuits become more

and more faster and lower energy. The entire circuit community agrees that the age

of ubiquitous computing is coming. People expect to have sensors everywhere around

us, helping to collect data from the environment, analyzing data, and even making

decisions for us for straightforward tasks. To archive this, ultra-low-energy computing

systems are needed. These devices are expected to have long life-time, local intelli-

gence, and sharing information with each other and higher level of controllers throw

wireless communication. Among the existing ubiquitous computing applications, the

most promising one is personal health sensors. Although these sensors are currently

implemented by ASICs, FPGAs are essential for some of the blocks. For example,

for digital signal processing units in the sensors, hardware flexibility is needed to

82

frequently update the quickly changing algorithms without re-spin the chips. In ad-

dition, as an interface with other devices in the market, IOs can be implemented by

embedded FPGA slices to enable post-silicon revisions of IO type and bandwidth

to meet the rapidly changing requirements of customers. FPGA are also good at

implementing on-chip interfaces such as SPI and I2C. Other than these applications,

embedded FPGA slices can also be used as hardware encryption in the future when

personal health data protection becomes important.

Figure 60: Ubiquitous Computing Applications Characterizations

Fig. 60 shows commonly used ubiquitous computing blocks for low-power FPGAs,

including FIR filter, FFT, CORDIC, SPI bus, FIFO, dynamic power management

unit, I2C bus, and so on. Most of these blocks are already used in ultra-low-energy

wireless body sensor network SoCs [46] [11], and are also very useful in SoCs of other

83

ubiquitous computing applications, such as smart home, smart car, and environmental

sensors. The size of these applications varies from 31 to 15k equivalent 4-input LUTs.

Some of the applications also take advantage of hard IPs.

5.4 Benchmark Synthesis Flow

5.4.1 Overview

As discussed above, the custom synthesis flow should be able to support both

custom FPGA architectures and all common-used Verilog syntax. To address this,

I add a pre-synthesis step to ODIN II. The key idea is to use commercial ASIC

synthesis tools to firstly convert Verilog into gate-level descriptions with some custom

modifications so that ODIN II can recognize, then use ODIN II to map applications

to custom FPGAs.

5.4.2 Description of the Flow

Figure 61: The Custom Benchmark Synthesis Flow

84

Fig. 61 describes shows the flow chart of the custom synthesis tool. The green

boxes represent original input files to the tool; the blue represents the existing tools

leveraged; the red represents the generated internal and final output files; the yellow

represents the custom scripts. As described before, the key idea is to use commercial

ASIC synthesis tools for an additional pre-synthesis step before using ODIN II. Here,

Cadence RTL Compiler is chosen to convert the input file into a gate-level Verilog us-

ing only “assign” statements basic logic elements, including NAND gates, NOR gates,

inverters, flip-flops, and bu↵er. This is because ODIN II has very strict requirements

on the syntax of “initial” block, “always” block, and loops. So, pre-synthesizing all

of these statements in the original Verilog into gate-level descriptions guarantees the

functionality of ODIN II. To perform pre-synthesis, a customized library file (“Li-

brary of Selected Logic Gates and FFs” shown in the figure) is created as a input

of Cadence RTL Compiler. This library only contains the standard cells described

above.

Ideally, ODIN II should now be able map the gate-level Verilog to LUTs and IPs on

FPGAs. However, the gate-level Verilog still needs additional modifications in both

syntax and content to meet the requirements of using ODIN II. For example, ODIN

II does not understand the functionality of standard cells. To solve this problem, a

behavior-level module for each standard cell in the gate-level Verilog should be added

before running ODIN II. Another example is ODIN II requires the order and number

of pins in instances exactly match to the definitions of modules. So additional work

of reordering active pins and removing unused pins in instances is needed. There are

also many other syntax issues. Since fixing these issues by human is very complicated

and easy to make mistakes, a custom script is made to automatically to this. The

ODIN-ready version of the application is called “Fixed Verilog” in Fig. 61. The entire

process described above is wrapped into a “HDL Converter” written in Python. In

85

one click, the “Input Verilog” can be converted to “Fixed Verilog” in several minutes.

Figure 62: Flow Chart of “HDL Converter” in the Synthesis Tool

The “HDL converter” includes multiple files with di↵erent functions. Fig. 62

shows the flow chart of “HDL converter”. The detailed function of each script is

described below.

• parameters.py: This is the start point of the flow. Users need to specify

the path to the input Verilog and FPGA architecture file, the name of the top

module of the input Verilog, and the name of clock. This script will use this

provided info to modify other scripts, which can’t run correctly without running

“parameters.py” first.

• runrc.py: This script generates files needed to run Cadence RTL Compiler,

then run it.

• postrc.py: Cadence RTL Compiler will generate a lot of internal files and save

them to the folder of “HDL converter”. This script deletes these intermediate

files, and move the useful outputs into a pre-defined folder for next steps.

• revisehdl.py: This script converts the “Gate-Level Verilog” to the “Fixed

Verilog”. The final ODIN-ready Verilog will be created after running this script.

• runVTR.py: This script generates files required for running VTR and run it

using the “Fix Verilog”. The application synthesis process will be done after

86

this step. All the packing, place, and routing information of the application will

be saved in a pre-defined folder.

• cleanup.py: This script deletes all the files generated by HDL converter.

The core scripts described above works for most of the applications. However,

there are additional scripts to deal with special situations.

• runrcsplit.py: Di↵erent versions of Cadence RTL Compiler have di↵erent lim-

its on the maximum supported gate count of the input Verilog. Excepts the

most expensive version, other versions cannot synthesis large applications. To

improve the impact of this tool, I modified it so that institutions and organi-

zations using entry-level licenses can still use this tool. To solve the problem,

running “runrcsplit.py” instead of “runrc.py” can split large Verilog inputs into

multiple small pieces and synthesis them one by one. The synthesis process of

each piece is same as running “runrc.py”.

• postrcsplit.py: “postrcsplit.py” is also designed for synthesizing large Ver-

ilog files. Compared to “postrc.py”, “postrcsplit.py” combines the synthesized

outputs into one file, then performs the same functionality of “postrc.py”.

• postVTRdebug.py: The basic flow covers most of the problems observed in

the debugging process. However, in some cases, ODIN II fails when synthesizing

a Verilog without any error message. By contacting the authors of ODIN II

and VTR, this is a bug in their tool without easy solution. However, the GDB

debugging tool embedded in Linux can help to generate these error messages.

“postVTRdebug.py” is a script to perform GDB debugging in these cases.

• runVPR.py: Once fixing the errors indicated by GDB, the BLIF file (that

logically equivalent to the input Verilog but written in a syntax that matches

87

FPGA architecture) will be generated. It is an intermediate file in VTR flow.

By running “runVPR.py”, the tool will continue from this intermediate point

and finally generates the packing, place, and routing information of the input

Verilog.

5.4.3 Integration of the Synthesis Flow and FGC

Figure 63: Integration of the Synthesis Flow and FGC

The Verilog synthesis flow can either be used separately or be integrated into

FGC flow. The FGC has three key steps: 1) synthesizing input Verilog to BLIF

format, 2) mapping the application in BLIF format to the target FPGA architecture

and performing P&R, 3)converting P&R output info into FPGA configuration bit-

stream. The synthesis flow can be directly integrated into the FGC flow by adding a

88

new step before running FGC, as the grey dotted-lie box shown in Fig. 63. Since the

input files of the synthesis flow is a subset of inputs to FGC, no additional scripts are

needed to do the integration.

5.5 Fast Power Estimation Flow of the Custom FPGA

5.5.1 Description of the Fast Power Estimation Flow of the Custom Low-

Power FPGA

Figure 64: The Fast Power Estimation Flow of the Custom Low-Power FPGA

Fig. 64 shows the details of the custom flow. Since VTR is a good platform of

FPGA evaluation, the custom flow is based on VTR, but with several improvements

suitable for estimating the custom FPGA. The idea is using custom scripts and exist-

ing tools to estimate the energy of each sub-circuit or IP block comprising the FPGA,

then creating a FPGA architecture file using the estimated values, and finally running

89

VTR using that architecture file as an input. The only exception is the interconnect,

which is estimated independently without using VTR estimation flow. A di↵erent

strategy is used to estimate the energy of each sub-circuit, as discussed below.

• CLBs: The VTR flow provides multiple power estimation methods. The most

accurate one is allowing VTR to run SPICE simulations for all sub-circuits

of each CLB, then add them up. Since VTR supports custom CLBs, this

estimation is accurate. However, this method is still slow. An alternative

method is based on user-provided characterizations of sub-circuits, energy-per-

toggle of each input of the CLBs, and the leakage energy of one CLB, the P&R

info, and the activity factor of each CLB input pin. This method is selected

in the custom flow. The user-provided numbers of the custom FPGA are pre-

simulated in HSPICE. Once changes are made in circuit, only the modified part

needs to be re-simulated.

• Global Interconnect: The VTR flow only works for uni-directional bu↵er-

based full-swing interconnect. If users specify another interconnect design in

the architecture file, VTR flow will stop working. For the custom low-power

FPGA, since low-power techniques (power-gating, per-path voltage scaling, low-

swing, etc.) are applied on the interconnect, VTR will overestimate the energy

of the interconnect. For this reason, I pre-simulated the custom interconnect

with varying path lengths. A custom script is then created to estimate the

total energy of the interconnect by summing up the energy of each path based-

on the path distribution information and the transition rate of each path from

intermediate files of VTR. There is no need to re-simulate the interconnect when

using the flow.

• SRAM Blocks: VTR estimates the energy of memory blocks by using user-

90

provided energy-per-toggle numbers. However, simulating memory blocks to

obtain these numbers is very time-consuming. Thus, I choose to use Vipro [47]

[48], which is a fast memory evaluation tool made by researchers at UVA. Vipro

estimates memory energy by running HSPICE for each of its sub-circuit. After

providing column number, row number, bank number, and word size, Vipro will

run and can complete in minutes with less than 10% loss in accuracy.

• Multipliers: VTR estimates multiplier energy in the same way as memory

blocks. To my best knowledge, there is no open source tools that are both

fast and accurate for estimating multipliers. Since multipliers are widely used

and simple in structure, I choose to synthesis the Verilog of the multipliers in

Cadence RTL Compiler, import them into Cadence Virtuoso, then pre-simulate

them in HSPICE. The transistor-level simulations guarantee the accuracy of the

results. Again, the SPICE simulation does not need to be re-ran when using

the flow.

• Others: Other hard IPs are beyond the scope of this dissertation. It is possible

that new IPs are needed to be integrated into the custom FPGA in the future.

These blocks include but not limited to FFT, FIR, CORDIC, I2C, SPI, CAM,

etc. Since Vipro supports CAM, using Vipro to estimate CAM is a good idea.

Besides, the method used to estimate multipliers can also be applied to other

blocks, as they are either small or have open source Verilog codes on the internet.

91

5.5.2 Parameters Used in the Flow

Figure 65: Table of parameters of sub-circuits of the custom low-power FPGA used
for fast power estimation @ 0.6V in 130nm CMOS

92

Figure 66: Table of parameters of the custom interconnect used for fast power esti-
mation @ 0.6V in 130nm CMOS

Figure 67: Table of parameters of the embedded memory blocks used for fast power
estimation @ 0.6V in 130nm CMOS

93

Figure 68: Table of parameters of embedded multipliers used for fast power estimation
@ 0.6V in 130nm CMOS

The method used for generating or simulating the parameters of each sub-circuit

of the custom FPGA has been described. In Fig. 65, 66, 67, and 68, the values of

all these parameters used for fast power estimation are shown. All simulations are

setup in 130nm CMOS technology at 0.6V. Since the length of the interconnect path

varies from 1 to over 300, it is not feasible to show all the data in this dissertation,

but only the data points of ten shortest paths are shown. To minimize leakage energy

and area, the size of memory blocks and multipliers should be just as large as needed.

Thus, parameters of these IPs in di↵erent size are shown to be used for di↵erent

applications, which are also indicated in the figures.

5.5.3 Accuracy of the Flow

Due to the limitation of VTR, a small application 4-bit adder is used to evaluate

the accuracy of the custom flow. As shown in Fig. 56, the measured total power

of a 4-bit adder implemented by the custom FPGA is 7.6uW at 0.6V. However, the

leakage power was measured for the entire chip, while only 62 out of 64 CLBs and

switch boxes are purely leaking. Thus, this part of leakage should be deducted for fair

comparison. As a result, the measured power of the active circuits becomes 4.1uW.

The VTR power estimation flow does not accurate. It gives a 63.9uW (15.6x higher)

when estimating the same 4-bit adder. As a comparison, the result of the custom flow

is 4.2uW, only 2.4% higher than silicon. However, this result is based-on the default

94

interconnect, which is bu↵ered unidirectional. By replacing the interconnect power

with the power of the low-swing design, the estimated result reduces to 3.5uW, which

is 14.6% lower than the measurement result.

Figure 69: Comparisons of the measurement result and the estimated result of a 4-bit
adder

5.5.4 Integration to FGC

Figure 70: Integration of the Power Estimation Flow to FGC Flow

95

VTR has two main functions: 1) application P&R 2) FPGA power estimation.

Although FGC uses VTR, it only takes advantage of the P&R part. The custom

power estimation flow uses the other part of VTR by providing VTR a more accurate

architecture file. The ultimate goal of all the methods described in 5.5.1 is to create

this architecture file for the custom near/sub-threshold FPGA. Thus, the custom

power estimation flow can be seen as an intermediate step of FGC with an additional

output of power report, as shown in Fig. 70. The steps in the grey dotted-line box

represents the power estimation flow.

5.6 IP Integration

5.6.1 Overview

Low-power FPGAs are naturally suitable to implement ubiquitous computing sen-

sor nodes, which require both flexibility and low-power. In addition to collecting data,

it is desired that those sensor nodes have local intelligence to extract information and

control locally. For example, body sensor nodes are expected to analysis personal

health information locally and clearly show to users. Implementing signal processing

algorithms by FPGAs usually requires large number of LUTs, which is not energy

and area e�cient. Thus, some commonly used algorithms can be implemented by

hard IP blocks on FPGAs to dramatically improve energy e�ciency and reduce area.

For example, in [4], FPGAs with hard IPs are on average 12% faster, 49% less energy,

and 47% less area than FPGAs without hard IPs. Although IP blocks are widely

used in both commercial and academic FPGAs, the number of those blocks is easily

over 1000, close to or larger than the total area of low-power FPGAs. The energy e�-

ciency improvement numbers are also obtained by evaluating large high-performance

FPGAs, which is inaccurate in near/sub-threshold operations. The energy e�ciency

96

improvement after integrating IPs on low-power FPGAs is also needed to be esti-

mated.

5.6.2 Results

The size and number of the embedded hard IPs need to be carefully selected to

meet the requirements of the low-power applications described early in this chapter.

To minimize leakage energy and area, the exact size and number of each IP needed

in a given application are used. For example, “ch intrinsics” has eight instances of

the 256-bit single-port SRAM block in its Verilog, so the exact same number and size

of single-port SRAM blocks are added into the FPGA architecture file. The detailed

info of each IP used in each application is shown in Fig. 67 and 68. Compared to

high-performance FPGAs, which has over 1000 hard IPS, the number of selected IPs

on the custom FPGA is no more than 64, which is very suitable for implementing

low-power applications.

Figure 71: Comparisons of the Custom Low-Power FPGA with and without Hard
IPs

Fig. 71 shows the comparisons of the custom low-power FPGA implementing

97

selected applications when using and not using hard IPs, which include single-port

SRAM, dual-port SRAM, and multiplier. By using these IPs, the power, area, and

delay of the FPGA changes as follows.

• Power: The power of the listed applications is all reduced, and by 21.8% on

average.

• Area: The area of “ch intrinsics” increases by 17.9% after using memory blocks.

For other benchmarks, the area reduces by 27.2% on average.

• Delay: The delay of “ch intrinsics” increase by 79.4% after using memory

blocks. For other benchmarks, the delay doesn’t change much, increases by

1.6% on average.

Using hard IPs is not easy for ODIN II users. During application synthesis, ODIN

II cannot automatically understand and decide which part of the RTL code can be

implemented by hard IPs. The only way to take advantage of the hard IPs is to

modify the RTL code and explicitly use hard IPs as instances. For a large Verilog,

this method can be very complicated since users have to re-write a big portion of

code and re-evaluate the code. To make things worse, when the users want to enable

or disable the usage of some of the IPs, they always need to modify the code. For

this reason, not all of the low-power applications introduced in 5.3 are shown here.

To solve this problem, the fundamental engine of VTR needs to be modified, which

is far beyond the scope of this dissertation.

5.7 Results

In [4], researchers compared commercial high-performance FPGAs and ASICs.

They suggest FPGAs on average consume 14x more active power compared to ASICs

98

implementing same applications. It worth to do the same comparison for low-power

applications to assist the selection of di↵erent computing platforms. To do so, I

used the custom flow to estimate the power of the custom FPGA implementing the

applications in Fig. 72. The estimation results of ASICs are obtained by running

Cadence RTL Compiler. As a result, the custom low-power FPGA consumes 3.52x

more power and 7.85x power-delay product than ASICs on average when implement-

ing the applications listed in Fig. 72. The comparisons between the custom FPGA

and the Microsemi IGLOO, which is lowest power FPGA on the market, are made.

As indicated by Fig. 73, the custom FPGA has 315x average power reduction and

75x average energy reduction compared to IGLOO when implementing the custom

low-power application suite. The data of IGLOO is obtained by running their Mi-

crosemi’s power estimation tool. To make fair comparison, only the core power of

IGLOO is considered. Also, same activity factors and toggle rates are applied to both

FPGAs.

Figure 72: Comparisons of the custom low-power FPGA and ASICs when implement-
ing the custom low-power application suite

99

Figure 73: Comparisons of the custom low-power FPGA and Microsemi IGLOO when
implementing the custom low-power application suite

5.8 Future Research

The custom tool and flow can be further improved in five directions.

• Expanded Application Suite: The low-power FPGA application suite in-

cludes diverse types of on-chip buses, building blocks of personal health systems,

hardware security, computer visions, etc. However, since IoT plays an impor-

tant role in low-power applications, more IoT applications can be added to the

suite. Since many IoT applications are under-developed and remains secret in

companies, not all the RTL can be accessed. However, future researchers can

build RTL prototypes of these applications based on their ideas and roughly

estimated its performance, power, and area on FPGAs. These applications in-

clude but not limited to smart homes, smart grid, and autonomous driving.

100

The low-power FPGAs have potentials to implement blocks comprising these

applications or the entire application.

• Advanced Automation: Currently, the FPGA evaluation platform can es-

timate delay, power, and area of the custom FPGA. However, users need to

manually change the parameters of CLBs, interconnect, and hard IPs in the

architecture file when evaluating other FPGAs. Although the value of these pa-

rameters is obtained from reliable external tools (like Cadence RTL Compiler

or Vipro), the process is troublesome and is easy to make errors. It is desired

that the FPGA evaluation flow and the external tools can be linked together in

the future. This means the flow can automatically run the external tools and

modify the corresponding parameters in the architecture file.

• Design Constraints: Although the custom flow can evaluate FPGAs, it can-

not optimize FPGAs base on the input design constraints. VTR do support

Synopsys Design Constraints (SDC). However, only timing constraint is men-

tioned in their user manual (no power, and area constraints). In addition, since

VTR is not based on Synopsys tools, the functionality and reliability of VTR

on timing constraints need to be further verified.

• Additional Hard IPs: So far, the custom FPGA evaluation flow supports

embedded memory blocks and multipliers on FPGAs. However, as more and

more IoT applications are coming out, it is possible that more types of hard IPs

need to be integrated to low-power FPGAs. For example, although the embed-

ded multipliers help improving hardware performance and power significantly

when implementing FIRs, the FIR itself can be customized and used as a new

type of hard IPs on low-power FPGAs.

• Auto IP Recognition: As discussed, the current flow cannot recognize RTL

101

descriptions that can use hard IPs automatically, making enabling and disabling

IP usage very complicated. This can be solved in the future by introducing RTL

template for finding potential IPs in applications. By searching potential usage

of IPs and modify the syntax in the original RTL, it is possible to enable auto

IP recognition.

102

6 Conclusion

Low-power miniature systems for ubiquitous computing such as wireless sensor

networks have been developing rapidly in the past years. The growing demand on

collecting and analyzing information from surrounding environment drives researchers

and engineers focus on developing internet-of-things. This demand indicates the need

of ultra-low-power computing platforms. In this dissertation, the circuit/architec-

ture and tool flow of an ultra-low-power FPGA are explored and developed. More

specifically, three research topics have been discussed in detail:

• Energy E�cient FPGA Interconnect

• Per-Path Voltage Scaling and Power-Gating

• Low-Power FPGA Evaluation Platform

6.1 Energy E�cient FPGA Interconnect

As the major energy consumer, an energy-e�cient interconnect is required for

ultra-low-power FPGAs. In this dissertation, a low-swing interconnect architecture,

which has been proven to be an energy-e�cient design in near/sub-threshold, is care-

fully modeled, optimized, and evaluated. The simulation and chip measurement re-

sults indicate the following recommended circuit parameters and supply voltage of

the interconnect in terms of energy e�ciency.

• Interconnect Structure: Low-Swing

• Supply Voltage: VDD = 0.4/0.5V, VDDC = VDD + 0.2V

• Driver Size: 10/20x

• Routing Switch Structure: Pass-Gates

103

• Routing Switch Size: 2/4x

• Connection Box Structure: 2-Stage Multiplexer

• Connection Switch Size: 2/4x

• Number of Inserted Level Shifters (except the one at the destinations of paths):

0

The above recommendations are valid for interconnect paths less than 40, which

consume over 95% of interconnect energy when implementing MCNC benchmarks. In

additional, the physical implementation of the interconnect is also optimized, reducing

the area of an 84-track switch box by 26x. As an overall conclusion, the work of this

project reduces FPGA interconnect delay and energy by 68.4% and 47.5% respectively

when implementing MCNC benchmarks.

6.2 Per-Path Voltage Scaling and Power-Gating

The multi-VDD or per-path voltage scaling is an attractive energy reduction tech-

nique that can be used on FPGAs. However, no existing work implemented it on

FPGA interconnect due to an area overhead of up to 43%. In this dissertation, the

low-swing interconnect enables per-path voltage scaling with near zero area overhead.

In addition, strategies of applying power-gating on configuration bit-cells are explored

and simulated. A custom tool flow is developed to evaluate the energy reduction of

using per-path voltage scaling and power-gating on FPGA interconnect when imple-

menting MCNC benchmarks. The results indicate:

• Optimal voltage for per-path voltage scaling in terms of energy reduction: VDDH

= 0.6V, VDDL = 0.5V

104

• Energy reduction of using per-path voltage scaling without considering voltage

regulator overhead: 20.1%

• Energy reduction of using per-path voltage scaling including voltage regulator

overhead: 10.1%

• Energy reduction of using per-path voltage scaling and power-gating including

voltage regulator overhead: 22.3% - 56.5%

A 512-LUT FPGA using low-swing interconnect, per-path voltage scaling, and power-

gating is fabricated in 130nm CMOS. The measurement result shows a 43% leakage

energy reduction by using power-gating. The exact leakage power of the chip is as

low as 3.6uW at 0.6V, which is 2.5x smaller than the lowest existing work that is

4x smaller than ours at a much lower operating voltage of 0.26V. In addition, when

implementing a 4-bit adder, the custom FPGA consumes 7.6uW at 0.6V, which is

277x lower than Microsemi IGLOO.

6.3 Low-Power FPGA Evaluation Platform

To evaluate the custom ultra-low-power FPGA, an application suite is created by

exploring and selecting existing benchmarks written in Verilog, including personal

hearth sensors, commercial low-power applications, interfaces, and so on. Since no

existing benchmark synthesis flow supports both custom FPGA architectures and

all Verilog syntax, a custom flow is developed. Its functionality is verified using the

custom low-power application suite. In order to fast estimate the power consumption

of the custom FPGA, a power estimation flow is also developed. The di↵erence

between the estimated power and the measured power from the chip of a 4-bit adder

is within 15%. Both flows are integrated into the existing VTR flow and FGC.

Comparisons between the custom FPGA and ASICs are made using the custom flow.

105

When implementing the proposed application suite, the custom FPGA consumes

3.52x higher power and 7.85 higher energy on average than the ASIC counterpart.

When compared to Microsemi IGLOO, the custom FPGA on average consumes 315x

less power and 75x less energy.

106

Appendix A List of Publications

A.1 Publications

• Qi, He, Oluseyi Ayorinde, Yu Huang, and Benton H. Calhoun. “Optimizing
energy e�cient low-swing interconnect for sub-threshold FPGAs”, In Field Pro-
grammable Logic and Applications (FPL), 2015 25th International Conference
on, pp. 1-4. IEEE, 2015.

• Qi, He, Oluseyi Ayorinde, and Benton H. Calhoun. “An energy-e�cient
near/sub-threshold FPGA interconnect architecture using dynamic voltage scal-
ing and power-gating”, In Field Programmable Technology (FPT), 2016 Inter-
national Conference on, pp. 20-27. IEEE, 2016.

• Qi, He, Oluseyi Ayorinde, and Benton H. Calhoun. “An Ultra-Low-Power
FPGA for IoT Applications”, S3S 2017, In Press.

• Ayorinde, Oluseyi, He Qi, Yu Huang, and Benton H. Calhoun, “Using island-
style bi directional intra-CLB routing in low-power FPGAs”, In Field Pro-
grammable Logic and Applications (FPL), 2015 25th International Conference
on, pp. 1-7. IEEE, 2015.

A.2 Pending Publications

• Ayorinde, Oluseyi, He Qi, and Benton H. Calhoun, FGC: A Toolflow for Gen-
erating and Configuring Custom FPGAs.

107

Appendix B Glossary of Terms

• FPGA - abbreviation of “Field Programmable Gate Array”

• CLB - abbreviation of “Configurable Logic Block”, which consists a cluster of
interconnected BLEs

• BLE - abbreviation of “Basic Logic Element”, which consists a LUT, a FF and
a multiplexer

• LUT - abbreviation of “Look-Up-Table”

• FF - abbreviation of “Flip-Flop”

• CB - abbreviation of “Connection Box”, which is a cluster of switches connecting
CLBs and the global interconnect

• SB - abbreviation of “Switch Box”, which is a cluster of routing switches at the
intersection of horizontal tracks and vertical tracks in the global interconnect

• SP - abbreviation of “Switch Point”, which is a sub-circuit of switch box

• IoT - abbreviation of “Internet-of-Things”

• VTR - abbreviation of “Verilog-to-Routing”, which is an open source tool to do
custom FPGA place & route

• MCNC - a widely used FPGA benchmark suite in academia

• DVS - abbreviation of “Dynamic Voltage Scaling”

• ULP - abbreviation of “Ultra-Low-Power”

• EDP - abbreviation of “Energy-Delay-Product”, which is usually used to eval-
uate the energy-e�ciency of circuit

• PDP - abbreviation of “Power-Delay-Product”, which is usually used to evaluate
the power-e�ciency of circuit

• FPGA Tile - a FPGA sub-circuit that consists of a CLB, a SB, and multiple
CBs

• Segment Length - the number of FPGA tiles that an interconnect wire segment
spans

• Configuration Bit-cell - a 5T cross-coupled memory cell used for FPGA config-
uration

• Subset - a type of connectivity pattern of the switch boxes

108

• Folded-Subset - an advanced physical implementation of Subset

• WL - abbreviation of “Word Line”, which is the control signal line of the con-
figuration bit-cells

• BL - abbreviation of “Bit Line”, which is the data signal line of the configuration
bit-cells

• BLIF - abbreviation of “Berkeley Logic Interchange Format”, which is a file
format of FPGA benchmarks

• FGC - abbreviation of “FPGA Generation and Configuration”, which is an open
source tool used for FPGA configuration bit-stream generation

• Vipro - an open source tool for speed and power estimation of memory blocks

109

References

[1] Betz, Vaughn, Jonathan Rose, and Alexander Marquardt. Architecture and CAD

for deep-submicron FPGAs. Vol. 497. Springer Science & Business Media, 2012.

[2] Shang, L., A. Kaviani, and K. Bathala. “Dynamic Power Consumption inthe

Virtex-II FPGA Family.” ACM/SIGDA International Symposium on Field Pro-

grammable Gate Arrays.

[3] Poon, Kara KW, Andy Yan, and Steven JE Wilton. “A flexible power model for

FPGAs.” FPL. Vol. 2. 2002.

[4] Kuon, Ian, and Jonathan Rose. “Measuring the gap between FPGAs and ASICs.”

IEEE Transactions on computer-aided design of integrated circuits and systems

26.2 (2007): 203-215.

[5] Calhoun, Benton H., Alice Wang, and Anantha Chandrakasan. “Modeling and

sizing for minimum energy operation in subthreshold circuits.” IEEE Journal of

Solid-State Circuits 40.9 (2005): 1778-1786.

[6] Rabaey, Jan M., Anantha P. Chandrakasan, and Borivoje Nikolic. Digital inte-

grated circuits. Vol. 2. Englewood Cli↵s: Prentice hall, 2002.

[7] Semiconductor, Lattice. “iCE40 Ultra Family Data Sheet.” DS1048 Version 1

(2015).

[8] Microsemi Corporation, “IGLOO nano FPGA Fabric (User’s Guide),” Version

1.4, March 2008.

[9] Grossmann, Peter J., Miriam E. Leeser, and Marvin Onabajo. “Minimum en-

ergy analysis and experimental verification of a latch-based subthreshold FPGA.”

110

IEEE Transactions on Circuits and Systems II: Express Briefs 59.12 (2012): 942-

946.

[10] Yuan, Fang-Li, et al. “A multi-granularity FPGA with hierarchical interconnects

for e�cient and flexible mobile computing.” IEEE Journal of Solid-State Circuits

50.1 (2015): 137-149.

[11] Klinefelter, Alicia, et al. “21.3 A 6.45 W self-powered IoT SoC with integrated

energy-harvesting power management and ULP asymmetric radios.” Solid-State

Circuits Conference-(ISSCC), 2015 IEEE International. IEEE, 2015.

[12] Rahman, Arifur, and Vijay Polavarapuv. “Evaluation of low-leakage design tech-

niques for field programmable gate arrays.” Proceedings of the 2004 ACM/SIGDA

12th international symposium on Field programmable gate arrays. ACM, 2004.

[13] Ciccarelli, Luca, Andrea Lodi, and Roberto Canegallo. “Low leakage circuit de-

sign for FPGAs.” Custom Integrated Circuits Conference, 2004. Proceedings of

the IEEE 2004. IEEE, 2004.

[14] Anderson, Jason H., and Farid N. Najm. “Low-power programmable FPGA rout-

ing circuitry.” IEEE transactions on very large scale integration (VLSI) systems

17.8 (2009): 1048-1060.

[15] Gayasen, Aman, et al. “A Dual-VDD Low Power FPGA Architecture.” FPL.

2004.

[16] Li, Fei, Yan Lin, and Lei He. “Vdd programmability to reduce FPGA inter-

connect power.” Proceedings of the 2004 IEEE/ACM International conference on

Computer-aided design. IEEE Computer Society, 2004.

111

[17] McMurchie, Larry, and Carl Ebeling. “PathFinder: a negotiation-based

performance-driven router for FPGAs.” Proceedings of the 1995 ACM third in-

ternational symposium on Field-programmable gate arrays. ACM, 1995.

[18] Alexander, Michael J., and Gabriel Robins. “New performance-driven FPGA

routing algorithms.” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems 15.12 (1996): 1505-1517.

[19] Huda, Safeen, Jason Anderson, and Hirotaka Tamura. “Charge recycling for

power reduction in FPGA interconnect.” Field Programmable Logic and Appli-

cations (FPL), 2013 23rd International Conference on. IEEE, 2013.

[20] Lewis, David, et al. “The stratix routing and logic architecture.” Proceedings of

the 2003 ACM/SIGDA eleventh international symposium on Field programmable

gate arrays. ACM, 2003.

[21] Lemieux, Guy, et al. “Directional and single-driver wires in FPGA intercon-

nect.” Field-Programmable Technology, 2004. Proceedings. 2004 IEEE Interna-

tional Conference on. IEEE, 2004.

[22] Ryan, Joseph F., and Benton H. Calhoun. “A sub-threshold FPGA with low-

swing dual-VDD interconnect in 90nm CMOS.” Custom Integrated Circuits Con-

ference (CICC), 2010 IEEE. IEEE, 2010.

[23] Ryan, Joseph. On the Robust Design of Sustainably Managed, Reconfigurable

Circuits for Ultra Low Energy Systems in Nanoscale CMOS. Diss. University of

Virginia, 2011.

[24] Betz, Vaughn, and Jonathan Rose. “VPR: A new packing, placement and routing

tool for FPGA research.” International Workshop on Field Programmable Logic

and Applications. Springer, Berlin, Heidelberg, 1997.

112

[25] Yang, S. “Logic Synthesis and Optimization Benchmarks Version 3.0. 1991.”

Microelectronics center of North Carolina.

[26] Calhoun, Benton H., Alice Wang, and Anantha Chandrakasan. “Modeling and

sizing for minimum energy operation in subthreshold circuits.” IEEE Journal of

Solid-State Circuits 40.9 (2005): 1778-1786.

[27] Sverdlik, Yevgeniy. Heres How Much Energy All US

Data Centers Consume. June 27, 2016. Available via

http://www.datacenterknowledge.com/archives/2016/06/27/heres-how-much-

energy-all-us-data-centers-consume/

[28] Koomey, Jonathan. “Growth in data center electricity use 2005 to 2010.” A

report by Analytical Press, completed at the request of The New York Times 9

(2011).

[29] Timmer, John. “Datacenter energy costs outpacing hardware prices.” Ars Tech-

nica (2009).

[30] Calhoun, Benton H., and Anantha P. Chandrakasan. “Ultra-dynamic voltage

scaling (UDVS) using sub-threshold operation and local voltage dithering.” IEEE

Journal of Solid-State Circuits 41.1 (2006): 238-245.

[31] Pillai, Padmanabhan, and Kang G. Shin. “Real-time dynamic voltage scaling

for low-power embedded operating systems.” ACM SIGOPS Operating Systems

Review. Vol. 35. No. 5. ACM, 2001.

[32] Pouwelse, Johan, Koen Langendoen, and Henk Sips. “Dynamic voltage scaling

on a low-power microprocessor.” Proceedings of the 7th annual international con-

ference on Mobile computing and networking. ACM, 2001.

113

[33] Kim, Wonyoung, David M. Brooks, and Gu-Yeon Wei. “A fully-integrated 3-

level DC/DC converter for nanosecond-scale DVS with fast shunt regulation.”

Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2011 IEEE

International. IEEE, 2011.

[34] Howard, Jason, et al. “A 48-core IA-32 message-passing processor with DVFS

in 45nm CMOS.” Solid-State Circuits Conference Digest of Technical Papers

(ISSCC), 2010 IEEE International. IEEE, 2010.

[35] Chow, Chun Tak, et al. “Dynamic voltage scaling for commercial FPGAs.” Field-

Programmable Technology, 2005. Proceedings. 2005 IEEE International Confer-

ence on. IEEE, 2005.

[36] Nomura, Shuou, et al. “A 9.7 mw aac-decoding, 620mw h. 264 720p 60fps de-

coding, 8-core media processor with embedded forward-body-biasing and power-

gating circuit in 65nm cmos technology.” Solid-State Circuits Conference, 2008.

ISSCC 2008. Digest of Technical Papers. IEEE International. IEEE, 2008.

[37] Pilo, Harold, et al. “A 64Mb SRAM in 22nm SOI technology featuring fine-

granularity power gating and low-energy power-supply-partition techniques for

37% leakage reduction.” Solid-State Circuits Conference Digest of Technical Pa-

pers (ISSCC), 2013 IEEE International. IEEE, 2013.

[38] Nair, Pradeep S., Santosh Koppa, and Eugene B. John. “A comparative analysis

of coarse-grain and fine-grain power gating for FPGA lookup tables.” Circuits and

Systems, 2009. MWSCAS’09. 52nd IEEE International Midwest Symposium on.

IEEE, 2009.

114

[39] Bsoul, Assem AM, and Steven JE Wilton. “An FPGA with power-gated switch

blocks.” Field-Programmable Technology (FPT), 2012 International Conference

on. IEEE, 2012.

[40] Drake, Alan, et al. “A distributed critical-path timing monitor for a 65nm high-

performance microprocessor.” Solid-State Circuits Conference, 2007. ISSCC 2007.

Digest of Technical Papers. IEEE International. IEEE, 2007.

[41] Muhtaroglu, Ali, Greg Taylor, and Tawfik Rahal-Arabi. “On-die droop detector

for analog sensing of power supply noise.” IEEE Journal of solid-state circuits

39.4 (2004): 651-660.

[42] Lamoureux, Julien, and Steven JE Wilton. “Activity estimation for field-

programmable gate arrays.” Field Programmable Logic and Applications, 2006.

FPL’06. International Conference on. IEEE, 2006.

[43] Ayorinde, Seyi. “Circuit Design and Configuration for Low Power FPGAs.”

(2015).

[44] Murray, Kevin E., Scott Whitty, Siyuan Liu, Jason Luu, and Vaughn Betz.

Titan: Enabling large and complex benchmarks in academic CAD. In Field Pro-

grammable Logic and Applications (FPL), 2013 23rd International Conference on,

pp. 1-8. IEEE, 2013.

[45] Jamieson, Peter, et al. “Odin ii-an open-source verilog hdl synthesis tool for cad

research.” Field-Programmable Custom Computing Machines (FCCM), 2010 18th

IEEE Annual International Symposium on. IEEE, 2010.

[46] Zhang, Yanqing, et al. “A Batteryless 19µ W MICS/ISM-Band Energy Harvest-

ing Body Sensor Node SoC for ExG Applications.” IEEE Journal of Solid-State

Circuits 48.1 (2013): 199-213.

115

[47] Liu, Ningxi, and Benton Calhoun. “Design Optimization of Register File

Throughput and Energy Using a Virtual Prototyping (ViPro) Tool.” VLSI

(ISVLSI), 2016 IEEE Computer Society Annual Symposium on. IEEE, 2016.

[48] Nalam, Satyanand, et al. “Virtual prototyper (ViPro): An early design space

exploration and optimization tool for SRAM designers.” Proceedings of the 47th

Design Automation Conference. ACM, 2010.

[49] Tang, Xifan, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. ”FPGA-

SPICE: A simulation-based power estimation framework for FPGAs.” Computer

Design (ICCD), 2015 33rd IEEE International Conference on. IEEE, 2015.

116

