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ABSTRACT

The interaction between the central nervous system (CNS) and immune system is crucial

in maintaining homeostasis. Scientists have recently realized the extreme significance of

the role of CNS immune cells after injury, in aging, and in neurodegenerative disease.

Morphological changes of microglia cells, which are immune cells in the brain, can reveal

the state of the CNS. However, manual quantification of these complex morphologies is

tedious, error-prone, and potentially biased. The primary objective of this thesis is to provide

an automatic image-based engineering solution to study microglia structure and motion.

We propose a fully automatic system for quantifying 3D images of glial morphology

over time to produce accurate image-based bioinformatics in naive and diseased settings.

The quantification of morphology requires acquiring consistent digital reconstructions of the

morphology, which is a challenging open problem in bioimage analysis. First, we describe

an automatic 3D segmentation algorithm, called the coupled Tubularity flow field-Blob flow

field (Tuff-Bff) for images of microglia. Tuff-Bff introduces a geometric deformable model

designed to simultaneously reconstruct the large cell body and thin tubular processes. Our

method found a 20% performance increase against state-of-the-art segmentation methods on

a dataset of 3D images of microglia even in images with intensity heterogeneity throughout

the object. The coupled Tuff-Bff segmentation results also yielded 40% improvement in

accuracy for the ramification index of the processes, which reveals the efficacy of our

method.

We also provide a methodology, called Hieroglyph, for consistent reconstruction of

morphology over time using a novel hierarchical graph matching of glyphs, a term we use to

describe the graph theoretic tree representation of glia. Our temporal graph representation

possesses information about the connections between the paths of a cell and node in the path.

This information is used to track the digital reconstruction at subsequent time frames. These

temporal glyphs contain all the complex morphological data for a glia in space and time.
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Hieroglyph yielded a 21% performance increase compared to the state-of-the-art automatic

skeleton reconstruction methods and outperforms the state of the art in different measures of

consistency on datasets of 3D images of microglia.

To improve glial tracing we introduce C3VFC (Critical points on constrained Concentric

Circles using Vector Field Convolution), which utilizes vector field convolution for detection

and labeling of multiple cells in 3D images over time, leading to multi-object reconstruction.

The C3VFC reconstruction results yielded more than 50% improvement on the next best

performing tracing method. C3VFC achieved the highest accuracy scores, in relation to the

baseline results, in four of the five different measures: entire structure average, the average

bi-directional entire structure average, the different structure average, and the percentage of

different structure.

Finally, we show that our automatic digital reconstruction system can provide a set of

image-based bioinformatic measures for glia morphology and motility, including the volume

covered, path length, path velocity, and bifurcation angle. We use the results from the

three reconstruction algorithms to determine useful quantitative measurements to determine

surveillance and ramification of microglia in naive, diseased, and injured animal models.
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CHAPTER 1

INTRODUCTION

Recently, scientists have found that the central nervous system (CNS) and the immune

system are not two isolated systems, but rather connected systems [1, 2]. More specifically,

neurons in the CNS communicate with microglia (the tissue-resident immune cells of the

brain parenchyma), which play an active role in brain homeostasis. The advancements made

in the recent studies of microglia have shifted our understanding of the impact of microglia

not only in development, but also their role in injury, disease, and aging [3, 4, 5, 6]. The

morphological changes of microglia are directly associated with functional roles in the

normal and the pathological CNS.

Glia are cells in the central and peripheral nervous system. Microglia are a type of

glial cell located in the CNS, or brain and spinal cord, that are the resident macrophages.

This means that microglia are the primary immune cells in the CNS that play a critical role

during brain development (embryonic and postnatal stages) and maintaining homeostasis.

Microglia originate in the mesodermal region but migrate to and disseminate throughout the

brain parenchyma. During development, microglia are pruning neuron synapses to decide

which connections stay. Microglia processes (thin ’legs’ that extend from the cell body, or

soma) are constantly in motion for surveillance to maintain homeostasis, or stable conditions.

These processes allow microglia to sense and respond rapidly to their environment. They

phagocyte, or absorb and engulf, damaged neuron synapses, plaques, dead or dying cells, or

secrete cytotoxic substances that can kill bacteria or other unwanted agents [7, 8, 9, 10, 11,

12].

Figure 1.1 depicts microglia in two different states: resting and activated. When mi-

croglia processes are ramified it is termed “resting” microglia state. However, in response to

disease, microglia become “activated” where they transition from a highly ramified state to
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Figure 1.1: Resting microglia (right) and activated microglia (left)

a less ramified, amoeboid state [13, 14]. During brain injury and disease, for example, the

continual movement of microglia processes is altered as microglia retract their processes

and take on a more amoeboid morphology. Such morphological changes may play a role

in the progression of neurodegenerative diseases, such as Parkinson’s disease, multiple

sclerosis, and Alzheimer’s disease. Microglia are highly activated during the presence of

these diseases and scientists are trying to understand the role of microglia in these settings.

Changes in microglia morphology have been linked and proven to be associated with neu-

rodegenerative diseases and infections. Quantifying microglia morphology and activity can

help scientists understand how they are sampling their environment. Staining and imaging

microglia can help quantify microliga length over time, the volume it covers over time, and

other morphological informatics. This thesis meets a major need of the immunology and

neuroscience communities; namely, it provides a toolbox of image-based bioinformatics for

glia.

1.1 Understanding the “third element” through imaging

We credit the founder of modern neuroscience to Santiago Ramon y Cajal, who (with

Camillo Golgi) won the Nobel Prize for their work on “the structure of the nervous system.”
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Ramon y Cajal illustrated the precise network of neurons in which he later hypothesized the

neuron doctrine. This doctrine described the nervous system made up of individual cells, or

neurons, connected by small contact zones.

However, the history of image processing and microglia perhaps dates back to 1880

when Franz Nissl developed Nissl staining which gave scientists the ability to view neural

cells, including microglia. Nissl then described microglia in their resting state, activated,

and bipolar, rod state.

A student of Ramón y Cajal, Nicolás Achúcarro also visualized the rod shaped cells

that Nissl had described in the brain of rabbits that had been infected by rabies. With his

tannin and amoniacal silver nitrate staining method, he was able to image these cells, which

he called granuloadipose cells. Achúcarro hypothesized that the role of these cells were to

phagocytize, or ingest, damaged neurons. He also described the cell’s rod shape morphology

and movement was related to degenerated neurons. He further hypothesized that glial cell

dysfunction could cause brain disease which is still being researched today [15]. These

findings are imperative to the little we know about glia today. Ramon y Cajal followed

Achúcarro to study and attempt to visualize neuroglia with his sublimated gold chloride

method. However, he could only clearly image astrocytes and named the unknown neuroglia

the “third element” in the nervous system.

Achúcarro’s student, Pı́o del Rı́o-Hortega continued the research on these cells and

developed a novel imaging technique in which he stained the brain with ammoniacal silver

carbonate method. This stain allowed him to clearly visualize and illustrate glial cells.

In these illustrations, he clearly labeled and differentiated three glial cells in the brain:

astrocytes, oligiodendrocytes, and microglia. With this eminent staining method, Rı́o-

Hortega was able to study microglia and define microglia in different settings. First, he

contradicted Cajal’s presumptions of the ‘third element’. He found that microglia originated

from the mesoderm and are related to leukyocytes, whereas oligiodendrites are different

and more similar to astrocytes. Microglia actively phagocyte dendritic spines and cells
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during brain development. He also studied microglia cells during brain damage in which he

saw their morphological changes and activate, noting that they proliferate and phagocytose

debris in pathological settings [16, 15].

Even a century ago, we witnessed the great impact of novel imaging techniques on how

much or little is known about a single cell. Despite these findings, microglia still remains the

least understood cell in the nervous system today. Microglia had been viewed as “resting”

in a healthy brain until real time in-vivo imaging using two-photon microscopy revealed that

its fine processes are highly motile during homeostasis.

The bipolar, rod morphology visualized by Nissl in 1899 was seen apparent in neurolog-

ical disorders and sleep disorders by Spielmeyer in 1922 [17]. Since then, microglia have

been linked to brain injury, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease,

and other neurodegenerative diseases [18, 19, 20, 21]

Microglia morphology are seen to change from ramified to amoeboid and bipolar, rod

states in certain disease settings. It has been a century since these morphological findings

appeared, yet the microglia’s functional roles in adulthood and during neuronal injuries is

still being uncovered.

The morphological changes of microglia are directly associated with their functional

roles in normal and pathological central nervous systems. A resting microglia is ramified

during homeostasis, while a microglia changes to amoeboid shape or bipolar, rod shape

during an injury, depending on the stimulus. Further, microglia morphology is even more

dynamic, where its other shapes are not yet categorized [14].

1.2 Background on Microglia Segmentation and Tracing

The role of microglia in neurological diseases, brain injury, and aging is still being studied

and uncovered, but we do know that glia are highly activated in such cases. Scientists are

trying to understand microglia by studying their gene expression and their morphology in

different settings. Currently, most microglia image analysis is done by hand where scientists
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manually trace the processes. With a high-throughput of images, we may be able to reveal

a quantitative model of morphological differences, but manual analysis is tedious and not

feasible. In this thesis, we want to automate the quantification of glial morphology and

motion via image analysis.

1.2.1 Background on Segmentation

“One picture is worth a thousand words.” Fred R. Barnard popularized this quote, in which he

depicted the use of images in the advertising industry. An image holds a lot of information.

Yet, what is labeled as useful information, is relative to the application. In the realm of

digital image processing, it is important to extract useful information from an image in order

to further understand the image. That could entail extracting certain objects or areas within

an image with similar characteristics, or features. Segmentation is an important technique

within digital image processing that partitions an image into segments; it is commonly used

to separate or find boundaries of an object. Popular segmentation applications include the

domains of cell and biological segmentation, medical imaging, handwritten or text detection

in natural language processing, object detection and recognition, and much more.

Perhaps one of the earliest and still most common segmentation technique is thresholding.

The thresholding technique places pixel values above a specific threshold pixel value

into the foreground and labels pixel values below the threshold value as the background.

Thresholding works best when there is high contrast between the foreground and background

pixels of interest. The threshold value can be determined manually by a human examining

the image histogram or automatically using an algorithm that determines this threshold.

One of the first automatic segmentation techniques was developed by Noboyuki Otsu

which automatically determines the threshold value. The Otsu thresholding technique is

a non-parametric algorithm that detects and separates peaks, or threshold value, in the

gray level histogram of an image, thus separating the foreground and background pixels

[22]. This algorithm is still widely used due to its simplicity, since it does not require
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pre-determined parameters. However, this technique fails when there is high signal-to-noise

ratio and inhomogeneity within the objects in an image, which lead to mis-classified pixels.

Thus, this method may require pre-processing techniques, such as image enhancement

and denoising. In some images, such as in biological imaging or in low contrast images,

these pre-processing tasks can be very difficult. There are other thresholding algorithms

that discriminate multiple classes, but in general thresholding algorithms require a “clean”

image. However, variants of thresholding techniques are widely used by scientists because

of their simplicity and computational efficiency. Other classical segmentation techniques

include pixel-based methods (morphological operations, connected component analysis),

edge-based methods, region-based methods (watershed), model-based methods, and graph

cuts.

1.2.2 Segmentation and analysis of microglia and similar biological images

It is difficult to find a generalizable segmentation technique that provides accurate results

for every kind of image. There are many variants within an image that can affect the

segmentation result. For example, the morphology and complexity of the object, and the

image quality can affect the segmentation result of differing segmentation techniques. For

example, for our images of microglia, a thresholding technique would capture background

noise and would not capture all the processes due to intensity inhomogeniety, as explained

in Section 1.4.

It is helpful to look at previous research on segmentation techniques for images similar

to microglia. Since microglia is an immune cell in the brain, it is also helpful to look at

research done for other astrocytes and neurons. Other images with similar morphology

include retinal image data. These images also have a region with complex branching coming

out of it. Neuronal images, in particular, have been studied since the early 1900s when

Santiago Ramón y Cajal presented the idea that a neuron’s shape, connectivity, and network

were directly correlated to its function and the brain’s functions [23]. This idea carried
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throughout the studies within neuroscience. Since then engineers have developed a myriad

of algorithms to help analyze cell morphology and function.

Biological reconstructions could refer to segmentation or tracing, which are sometimes

used interchangeably. Segmentation refers to separating the foreground from the background

by finding the boundary of the object. Tracing refers to finding the centerline or medial axis

of an object. For microglia images, the soma is usually represented by its center of mass.

However, more recent tracing includes the entire segmentation of the soma in the tracing for

quantification accuracy.

Morphological reconstruction is an important technique for the analysis of cell morphol-

ogy. Yet even in NeuroMorpho.org, the largest curated inventory of publicly accessible 3D

neuronal reconstructions, less than 5% of the reconstructions are traced in a semi-automatic

fashion, while the remainder are manually traced [24]. The complexity of glia morphology

makes it difficult to automate the analysis of glia motility. Existing studies have manually

traced glial images or used heuristic image processing methods to measure process length,

extension, and retraction over time [25, 26, 27, 28]. Nimmerjahn et al. manually traced

the ends of microglia processes to get a rough estimation of the velocity of length change

and drew out microglia for other measurements [25]. This manual method does not give

accurate measurements for the fine processes and is not feasible for high throughput data.

Others quantified microglia size and processes movement by thresholding the foreground

and background [27], manually outlining the cell, and manually counting primary branches

using ImageJ software (National Institutes of Health) [29].

Researchers have developed automatic image analysis methods involving the recon-

struction of skeletons of the microglia processes [30, 31]. In [30], the skeletonization was

semi-automatic in that the user went through many pre-processing tasks in ImageJ before

achieving a 2D skeleton. However, 2D skeletonization loses information since the skeletons

may overlap in the z direction, as shown in our experimental results. ProMoIJ achieves an

automatic reconstruction of a 3D skeleton of glia, which is then used to analyze microglia
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motility [31]. However, the skeletonization is not accomplished for the entire cell; rather,

each process of the glial cell is manually selected by the user. Furthermore, the user must

define a set of parameters to heuristically pre-process the image and create a skeleton. This

reconstruction of the processes over time is manually assisted.

An automated segmentation effort for microglia images was reported by Madry et al.

in which Vaa3D software is used to trace microglia [12] and by Ding et al.’s framework

that uses variational methods to segment multiple microglia in a 2D image with lower

magnification [32]. Numerous state-of-the-art microglia segmentation algorithms use varia-

tions of thresholding techniques to automatically segment microglia, including multi-level

thresholding, preprocessing by denoising, or classic Otsu-thresholding [33, 34, 35, 36, 37].

Thresholding is the oldest automatic segmentation technique that is favorable because of

its simplicity, but it does not result in accurate reconstruction results due to microscopy

imaging challenges, such as low contrast, background clutter, and intensity inhomogeneity.

Microglia have very thin processes that are not fully captured by these thresholding methods.

To this date, numerous highly cited works in the literature still use thresholded microglia

images for their quantitative analysis [36, 37]. As discussed later, imaging microglia from

healthy and infected mice with multiphoton microscopy results in images with varying

intensity contrast throughout the cell which makes it difficult to threshold and separate

the object from the background, in which state of the art segmentation techniques can not

capture. However, some methods do use thresholding to acquire a more accurate result using

minimum spanning trees [38, 39]. In [28], the authors also used a different thresholding

method to segment the microglia images. They also automatically acquired a skeleton of the

microglia image in three steps: calculating a distance map from a binary mask, breaking up

the distance map with the watershed algorithm, then connecting broken segments with a

straight line using a graph and minimum spanning tree. While these papers found a sufficient

method to segment and analyze microglia morphology, the reconstruction methodology

required excellent raw image quality, yet the reconstruction results were still noisy and did
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not capture all of the foreground object.

In [40, 41], the researchers developed an algorithm that automatically skeletonized and

segmented 3D images of microglia. They were able to find the centerline of the processes

using an active contour method, which they then used to reconstruct the cell. However,

this algorithm still only processes one image at a time. It is imperative to have a consistent

reconstruction over time in order to attain an accurate analysis of the image data. Glial cells

make up 60% of the brain parenchyma yet there are over 300,000 papers in the literature on

neuronal reconstruction and very limited on microglia reconstruction. A challenge we face in

this thesis is finding sufficient state-of-the-art algorithms related to microglia reconstruction

to compare to. Microglia image reconstruction is a widely open problem.

1.3 Imaging

For part of this thesis, we use image datasets collected by the Harris lab at the University

of Virginia. These datasets are 3D temporal images of microglia, or 4D images, in mouse

models. We have datasets of microglia of healthy mice and those of mice that have been

infected by the Toxoplasma gondii parasite. As described above, we do see that, in the

infected mice, some microglia soma are ruptured into an amoeboid-like state and the

processes decrease in activity. We use these datasets to automate the image analysis of glia

in order to quantify these differences in morphology during activity.

The dataset consists of 3D images of microglia from mice using multiphoton microscopy.

To label microglia in the mouse brain we used mice with an inducible cre recombinase under

the control of the CX3CR1 promoter crossed to the Ai6 fluorescent reporter mouse (Jackson

Laboratories, Bar Harbor, ME) to generate CX3CR1creERT2/+ X Ai6ZsGreen [42, 43]. At

post-natal day (P23) 23, mice were given 10uL/g body weight of a 20mg/mL Tamoxifen

(Sigma) solution in corn oil to induce recombination of the floxed stop codon leading to

ZsGreen expression in microglia. All procedures adhered to guidelines of the Institutional

Animal Care and Use Committee (ACUC) at the University of Virginia. Microglia of adult
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mice (7-10 weeks old) were imaged using a Leica TCS SP8 multiphoton microscopy system

equipped with a Coherent Chameleon Ti:Sapphire laser and a 25x 0.95 NA immersion lens.

ZsGreen was excited with a wavelength of 880 nm.

The 3D movies of microglia were imaged over 20 minutes with z-stacks taken at one

minute intervals, containing single or multiple microglia per field of view. Some of the

images were cropped from a larger field of view containing about 10 different cells and

two images were imaged from a zoomed in view of one individual cell. The images ranged

from a horizontal pixel width of .01 um and a vertical pixel width of .01 um to horizontal

pixel width of .2 um and a vertical pixel width of .2 um. In the 3D images, there is variation

in intensity contrast throughout the cell, non-structural noise, and fluorescence bleeding

through the z-stack due to the lengthy imaging technique, which makes it difficult to visualize

and process. The images were pre-processed using histogram equalization which increased

the intensity throughout the cell but further increased noise in the background.

We also used image datasets collected by the Eyo Lab at the University of Virginia.

The datasets contain 3D multicellular images of microglia and blood vessels. Some of the

datasets attain images with burn spots to show the motility and morphology changes. The

multi-cellular dataset consists of 3D images of microglia from living mice using in vivo

multiphoton microscopy. Heterozygous GFP reporter mice expressing GFP under control

of the fractalkine receptor promoter (Cx3cr1GFP/+) were used for the imaging studies.

Wild-type C57/B6 mice were crossed with CX3CR1GFP/GFP mice from Jackson labs

(Stock No. 005582) to generate Cx3cr1GFP/+ for all experiments to visualize microglia.

These multi-cellular 3D movies of microglia were imaged over 16 minutes taken at one

minute intervals, containing single or multiple microglia per field of view. The 3D images

were 1024× 1024× 61 pixels where the x-y frame size was 295µm× 295µm. The z-stacks’

depth was taken in 1µm intervals. There are about 5-18 different cells in each multi-cellular

video dataset. The images were taken in different settings that would significantly vary the

movement and morphology between the videos.
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All procedures adhered to guidelines of the Institutional Animal Care and Use Committee

(ACUC) at the University of Virginia. Microglia of adult mice (7-10 weeks old) were

imaged using a Leica TCS SP8 multiphoton microscopy system equipped with a Coherent

Chameleon Ti:Sapphire laser and a 25x 0.95 NA immersion lens. ZsGreen was excited with

a wavelength of 880 nm.

1.4 Difficulties in Automating the Analysis of these images

Two-photon microscopy is a popular image acquisition tool for imaging 3D live and thicker

biological subjects. Two photon microscopy produces sharp images of an optical sectioned

plane, without using a pinhole aperture (unlike confocal microscopy); rather using two

photons with a longer wavelength than the emitted light. In contrast with conventional

confocal microscopy, two-photon microscopy achieves less attenuation, or loss of intensity,

as scattering within the subject decreases with excitation frequency.

Microglia imaging using in vivo two-photon microscopy still comes with challenges.

Microscopy images often exhibit background noise and clutter resulting from non-microglia

fluorescence or artifacts. The images may potentially have low contrast between the fore-

ground and background. The processes or branches of the microglia are much smaller in

radius compared to the soma, hence they have lower intensity than the soma does. There is

also intensity inhomogeneity throughout the microglia processes meaning that the intensity

varies along the processes, which would make it difficult to separate the foreground from

the background. 3D imaging provides more information of the imaging subject in the z

direction. This is advantageous for microglia since their processes extend out of the soma in

multiple directions. However, part of the microglia could be out of the imaging field-of-view

due to the complex nature of the processes or if the imaging cuts it off. Microglia in different

settings have significantly different soma/process size, shape, and length which makes it

difficult to use generalized segmentation and tracing techniques.
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1.5 Objectives and Contributions

The first objective of this thesis is to create an automatic segmentation algorithm for 3D

glia images in different settings. Segmentation helps to answer the important scientific

question of how much volume are glia processes covering and their motility in different

settings. With an increased high-throughput of 3D image data, automatic segmentation

becomes a necessary task. We propose an automatic segmentation algorithm for 3D glial

images that can capture the fine processes and soma of glia. Our coupled tubularity flow

field (TuFF)-blob flow field (BFF) method evolves a level set towards the object boundary

using the directional tubularity and blobness measure of 3D images.

The second objective is the automatic reconstruction of morphology that is consistent

over time. The ramification and activity of glial processes changes in different settings

and may be indicative of a homeostatic state or an unhealthy state. Thus, temporal image

analysis is important for understanding cell function. Manually analyzing the morphology

can become a difficult task, yet, current automatic morphology analysis methods cannot

capture an accurate, consistent morphology. We propose an automatic method for the

consistent morphology construction of 3D glia by using prior temporal information, called

Hieroglyph. This is achieved by representing the glia as a graph network and splitting the

branches into hierarchies. The 3D temporal skeletonization is then constructed by using

the skeleton and glial graph information at the prior time frame to hierarchically track the

movement of glia at the following time frames. We propose a second automatic tracing

algorithm called C3VFC that uses vector field convolution to find the critical points along

the centerline of an object and trace paths that traverse back to the soma of every cell in an

image. The solution provides detection and labeling of multiple cells in an image over time,

leading to multi-object reconstruction. The reconstruction results can be used to extract

bioinformatics from temporal data in different settings.

The third objective is to quantify the differences in morphology and motility of glia in
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different settings. This aim integrates the tools we created for segmentation and morphology

reconstruction to extract a set of bioinformatics. The segmentation algorithm from the first

objective allows us to quantify 3D surveillance of the processes. The temporal graph infor-

mation from the second objective gives us numerous quantification information, including

path length, path velocity, the amount of extension and retraction, bifurcation angles, and the

number of terminal nodes. From this information, our aim is to produce metrics that could

differentiate and characterize glia in different settings. These metrics would help in making

connections between morphology and function. This would be a significant contribution to

the study of neurodegenerative disorders and diseases.
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CHAPTER 2

SEGMENTATION

The goal of automating glial image analysis is to extract quantitative data from images

to learn something about their morphology and motion. In such cases, we would want

information about the activity of the processes which surveil the environment during home-

ostasis. From an image processing perspective, the most critical step in automatic digital

reconstruction is segmentation. Segmentation is the separation of the foreground from the

background, which in this case is separating the cell from the background. While there

have been a multitude of segmentation techniques that have arisen for different problems,

techniques geared towards biological image data still do not solve all segmentation needs

and scientists must reconstruct their data manually. Often, rendered biological images have

low contrast, intensity inhomogeneity, and disruptive background noise making it difficult

for automatic reconstruction methods to produce a clean segmentation output.

In this chapter, we introduce an automatic segmentation algorithm specific to microglia

called the coupled Tubularity flow field and Blob flow field (Tuff-Bff). Previous methods do

not provide adequate results for microglia images. In Chapter 1, we outlined the challenges

of microglia reconstruction and analysis. The coupled Tuff-Bff is a geometric active contour

based method that segments both the processes and the soma of the microglia.

2.1 Background on Active Contours

An active contour, or snake, is a thin deformable model that is placed in an image where

it will delineate towards the boundaries of desired objects. Active contour models are

energy-based segmentation problems that maximize or minimize energy via an optimization

technique. Geometric active contours are favored for biological image segmentation because

of the ability to split and merge for ranges of topologies. Biological images tend to have
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a multitude of objects with varying and complex morphologies. Microglia images, for

example, can have soma and processes with varying soma sizes and shapes in different

settings or even in a single frame of view. The goal of active contour model segmentation is

to evolve an initial contour iteratively optimizing to get the boundary as close to an object as

possible. Geometric active contours are implemented via a variational level set method. For

a 2D curve, in a 2D image, think of a 3D topographical surface that is growing in a third

dimension. This surface implicitly defines a curve or level set where the surface equation

has a height of zero. So for a 3D image:

C = {(x, y, z) : φ(x, y, z, t) = 0} (2.1)

where C is the curve represented by all the points x, y, z ∈ Ω. Ω ⊂ R3 is the image domain

for a 3D image. This representation of the curve, C, with the level set φ is implicit, which

benefits topological activity of merging and splitting the level set. φ = 0 at the object

boundary, φ > 0 inside the object boundary, and φ < 0 outside of the object boundary. If

we visualize the level set function as a surface, φ(x, y, z, t) is the height of the surface at

time t. An energy functional is minimized when φ, the zero level set, reaches the object

boundary. The active contour is updated by differentiating φ(x, y, z, t) with respect to time.

The derivation can be found in [44]. For a general level set model, the active contour moves

in a direction normal to the contour. Thus, the velocity (xt, yt, zt) constrained by the normal

direction gives us the curve motion equation, or the speed of the active surface:

F = (xt, yt, zt) · n (2.2)

for the unit normal n. The outward normal vector is:

n =
∇(x, y, z, t)

|∇(x, y, z, t)|
(2.3)
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thus, the classic snake update equation is then:

φt + F |∇(x, y, z, t)| = 0 (2.4)

where φt =
dφ(x, y, z, t)

dt
. The goal of most of these active contour segmentation

problems is to find a proper speed function, F , to control the evolution of the active contour

towards the desired boundary.

2.2 Coupled Tubularity Flow-Field and Blob Flow Field

A flow-field technique is an approach to segmentation that uses a vector to extend the

segmented region. Coupled TuFF-BFF is an automatic microglia segmentation algorithm

that optimally combines the tubularity flow field technique (Tuff) [45] with a blob flow field

(BFF) technique. The TuFF algorithm is specific to neuron dendritic trees because it only

searches for tubular structures in an image. The fine processes of microglia do have tubular

shapes, but the TuFF algorithm does not account for the microglia soma. Our coupled

TuFF-BFF algorithm segments both the processes and soma while minimizing the overlap

of their segmentation. Coupled TuFF-BFF is in the family of active contour models that

pull a contour or snake towards the edges or lines of the object in an image [46, 47, 48, 49,

50, 51, 52]. The snake is evolved by minimizing an energy functional, ε(φ), that follows

some constraints until it converges to the object boundary, or zero level set. φ is the level set

function that is positive inside the zero level set and is negative on the outside.

TuFF [45] uses the tubular structure of the vessel-like objects to evolve a level set

towards the objects boundary. The evolution of the contour relies on the tubular vector

field of the image [48] which is attained by the orthonormal eigenvectors ei(x), where x is

the pixel position within the image domain Ω. The eigenvectors are ordered by increasing

magnitude of the eigenvalues, |λ1| ≤ |λ2| ≤ |λ3| >> 0. These eigenvalues are attained

by computing the Hessian matrix of the Gaussian-smoothed image. The algorithm uses
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Frangi’s vessel enhancement technique[53] to distinguish and enhance tubular structures in

an image by using a multiscale vesselness function according to the three directions of ei(x).

The segmentation is achieved by minimizing an energy functional ε(φ):

ε(φ) = εreg(φ) + εevolve(φ) + εattr(φ) (2.5)

εreg(φ) = v1

∫
Ω

|∇H(φ)|dx (2.6)

εevolve(φ) = −
∫

Ω

d∑
i=1

αi〈ei(x),n(x)〉2H(φ)dx (2.7)

where ε(x)reg is the smoothness energy, ε(x)evolve is the curve evolution energy, and

ε(x)attr is the attraction energy. In Eq. 2.2, the smoothness weight, v1, controls the

smoothness of the level set curve. ε(x)reg constrains the length of the zero level set with the

gradient of the Heaviside function in terms of φ. In Eq. 2.2, the vector n(x) =
∇φ(x)

|∇φ(x)
is

the outward normal to the zero level set of φ which effects the evolution along the vessel

width. In the evolution energy d is the image dimension. Thus, for a 3D image, the axial

vector component, e1 controls the curve evolution in the direction perpendicular to itself.

Whereas, the orthogonal vector components, e2 and e3i also controls the curve evolution

in the perpendicular direction to itself, normal to the vessel axis. αi effects the curve

evolution along the vessel width and axial direction. εattr(φ) is the attractive energy which

uses the vector field to connect smaller disjoint fragments to larger fragments during the

segmentation, as depicted in Figure 2.1. The energy functional, ε(φ), is minimized where φ

is iteratively updated using gradient descent [45].

The effect of the axial and orthogonal components in the evolution energy functional in

Eq. 2.2 are shown in Figure 2.2.
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Figure 2.1: Original image may have disjoint segments.

Figure 2.2: Axial vector flow field (left) and orthogonal vector flow field (right)

2.3 The Coupled Tubularity Flow Field and Blob Flow Field (Tuff-Bff)

Similar to the tubularity measure, the proposed method uses a blobness vector field in

the algorithm to account for the soma of the cell. Since the soma and the processes have

varying thickness, we scale the width of the Gaussian corresponding to their sizes, where

the width of the soma is to be much larger than the width of the fine processes. The blobness

measure is calculated by again ordering the eigenvalues of the Hessian matrix by increasing

magnitudes, |λ1| ≤ |λ2| ≤ |λ3| to attain a structure that has high magnitude of λ in all three

orthonormal directions [53, 54].

After computing the tubular and blobness information, the initial level set is attained

from the 3D stack. The level set contours φ1 to capture the processes and φ2 to capture

the soma are separately initialized by Otsu thresholding [22] the image’s vessel- and blob-

enhanced image. The processes and soma of microglia are simultaneously segmented by
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Figure 2.3: Determining vesselness and blobness with Hessian analysis.

Figure 2.4: Eigenvalues magnitude in three directions.

evolving their level sets and minimizing their respective energy functionals, εTuFF (φ1) and

εBFF (φ2):

εTuFF (φ1) = εreg(φ1) + εevolve(φ1) + εattr(φ1) + εrepel(φ2) (2.8)

εBFF (φ2) = εreg(φ2) + εevolve(φ2) + εattr(φ2) + εrepel(φ1) (2.9)

εrepel(φi) =

∫
Ω

H(φTuFF )H(φBFF )dx (2.10)

The evolution energy term, regulation energy term, and attraction energy terms were

described above through Equations 2.2 and 2.2. The coupled Tuff-Bff algorithm contains ab

additional repel term and two energy functionals, εTuFF (φ1) and εBFF (φ2), that controls the

curve evolution for the tubular-like vessels and the blob-like soma, respectively. Although
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the vesselness and blobness segmentations are separate, they are linked by using the result

of both level sets in the εrepel(φ) term. εrepel(φi) penalizes the regions of overlap between

the two level sets. The level set functions φ can be iteratively updated by solving ∂ε
∂φ

which,

by the chain rule, can be solved with ∂φ
∂t

, where t denotes each iteration[45]. We call this F,

the velocity of the level set implementation:

F =
∂φreg
∂t

+ α
∂φevolve
∂t

+ v1
∂φattr
∂t

+ r
∂φrepel
∂t

(2.11)

Figure 2.5: The soma and processes are separately yet simultaneously reconstructed.

The regions of overlap between both level sets are computed for r ∂φrepel
∂t

, where the

repel term r = 0 when there is no overlap. This term changes the velocity, F, within the

overlapping regions to repel away from their opposing level set φ. Thus, the repel force

energy functional εrepel(φ) minimizes the overlap between the segmentation of the processes

and soma to attain a joint segmentation, as depicted in Figure 2.5.

2.4 Experimental Results and Analysis

The dataset consists of 3D images of microglia imaged from healthy mice brains using

multi-photon microscopy, as explained in Section 1.3.
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Figure 2.6: Dice index of the segmentation using Coupled TuFF-BFF, L2S[55], and Chan-Vese[56].

Figure 2.7: Dice index of surveyed area from the segmentation using Coupled TuFF-BFF, L2S[55],
and Chan-Vese[56].
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2.4.1 Performance evaluation

In our experiments, we compare the coupled TuFF-BFF microglia segmentation results with

those given by L2S [55] and the Chan-Vese segmentation method [56]. The groundtruth

in 3D was attained by manually tracing the object slice by slice from the z-stack. It must

be noted that this was done by eye and could have some error. Figure 2.8 shows the

visual comparison of the segmentation results for our dataset. Our result shown on the

third column captures both the soma and processes. Figure 2.6 shows the Dice coefficient

comparison of each segmentation method to the ground truth. Since the soma is much

larger than the fine processes in the microglia, the processes have less volumetric impact

on the similarity score. As explained in Section 1, segmenting the processes is important

for quantifying the extension from the soma and its volume of surveillance. We use the

Dice coefficient to quantitatively compare the ramification by taking the convex hull of the

resulting segmentation. The Dice coefficient is a similarity measure that is computed using

with 2 ∗ |intersection(A,B)|
(|A|+|B|) where A is the ground truth and B is the compared image.

From Figure 2.7, the average Dice score for coupled TuFF-BFF was 0.77, compared

to 0.53 for L2S [55] and 0.58 for Chan-Vese [56]. It must be noted that L2S required

manual user initialization for each 2D image in the stack. While the Chan-Vese method has

automatic seed selection, our coupled TuFF/BFF method was the only method that was a

true 3D segmentation algorithm. L2S could not consistently capture the entire processes due

to the intensity inhomogeneity throughout the object and background noise. The Chan-Vese

segmentation could capture the extensions of the processes but did not work well with noise

and attained false positives in the reconstruction. Since our method uses the tubular and

blob information of the object to separate foreground and background, the segmentation

only evolved within the object boundaries.

From the segmentation of microglia from 3D multiphoton images, we attained quantifi-

cation of the ramification of the microglia processes using the index provided by Madry

et al. The ramification index in Table 1 quantifies the extension of the processes from the
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Original Ground truth Coupled TuFF-BFF L2S[55] Chan-Vese[56]

Figure 2.8: Segmentation results of 3D microglia images.

soma for each image. The ramification index of 1 is the soma with no ramification and a

larger index denotes greater ramification. We compare the ramification index attained from

the segmentation result from each method with that attained from the ground truth. The

mean absolute error for coupled TuFF-BFF was 1.49 compared with 3.92 and 3.78 for L2S

[55] and Chan-Vese [56], respectively. Our method appears to achieve the closest results to

the ramification index of the ground truth which shows a more realistic application-based

measure.

Table 1 Ramification Index
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No. groundtruth TuFF-BFF L2S Chan-Vese

#1 8.88 7.88 4.0 7.46

#2 7.69 10.14 2.1 9.89

#3 6.54 5.98 4.34 8.76

#4 9.02 13.6 5.48 12.4

#5 6.44 7.22 5.26 18.3

#6 8.60 8.74 3.57 11.0

#7 9.09 7.70 4.78 12.86

#8 8.88 7.88 4.0 7.46

#9 11.18 12.7 7.56 16.48

MAE: – 1.49 3.92 3.78

2.5 Discussion

In this section, we proposed an automated segmentation method, coupled TuFF-BFF, that

segments microglia in 3D images. The method does not depend on prior image smoothing.

Coupled TuFF-BFF was able to segment processes and soma from 3D images of microglia

from the mouse brain. It was able to simultaneously capture the object of interest from

images despite intensity inhomogeneity throughout the cell and background noise. While

our method performed better than the state of the art, it could be further improved to attain a

more accurate thickness of the cell and capture the low intensity areas of the branches. We

plan to apply our method on images of microglia from mice in other states that significantly

alters the microglia morphology. Another extension planned involves using coupled TuFF-

BFF within existing cell tracking algorithms [49, 51, 52]. Future work relevant to this

section will be briefly discussed later in Chapter 3 as it pertains to work in that chapter.

29



Original coupled Tuff-Bff

Figure 2.9: Segmentation results of microglia from healthy mouse (top row) and infected
mouse (bottom row)

30



CHAPTER 3

TIME SERIES MOTILITY RECONSTRUCTION: ACHIEVING A CONSISTENT

ANALYSIS

Accurately tracing the thin, tubular microglia processes would benefit the assessment of

microglia topology and facilitate acquiring motility measurements and bioinformatics. In

this chapter, we present two methods to accurately trace 3D images of microglia over

consecutive time frames. First, we give a brief background on skeletonization. Then, we

present the first method, Hieroglyph, which generates microglia skeletons over time by

hierarchically matching graph to glia of subsequent time frames. We will discuss and

analyze the experimental results. Next, we present our second tracing method based on

Vector Field Convolution (VFC). We will give a brief background on active contour models,

gradient vector fields, vector field convolution and centerline tracing. We will present our

second method, C3VFC, which uses vector field convolution and concentric circles to find

the critical points that are used to trace 3D images of microglia over consecutive time frames.

We will discuss the experimental results and performance evaluation of C3VFC.

The main goal of this project is to analyze temporal image data, or more specifically the

movement of glia processes in different settings to understand the morphological differences

in those settings. In the previous chapter, the segmentation framework is non-continuous,

meaning, each 3D image in the time stack is individually segmented. The problem with

non-continuous segmentation is the reconstructions may not be consistent with subsequent

reconstructions within the time stack. Consistency in this context means the reconstruction

results and accuracy are agreeable over time.

Skeletons are compact representations of an object in an image that are single pixel

or voxel thick and represent the overall topology of the structure. Figure 3.1 illustrates

segmentation reconstructions are skeletonized using medial axis thinning over consecutive
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time frames. The skeletonizations illustrate that a slightly inconsistent segmentation over

time can impact the branch information. In the top row, the original images show that

microglia processes steadily extend and retract over time. However, the skeletons of the

segmentation show that the processes abruptly appear and disappear through out time

frames, which is not an accurate depiction of microglia movement. In Chapter 2, we

discussed the challenges and difficulties of acquiring a segmentation reconstruction, due to

microscopy imaging and intensity inhomogeneity. Yet, it is apparent from the figure that

inconsistent reconstructions could result in an inaccurate analysis of temporal data. For

example, correspondence between branches would be necessary to find the change in length

or the velocity of a branch path over time. However, erroneous branch correspondence

between time frames would lead to incorrect length changes and velocity measures of a

branch.

Time = 1 min Time = 2 min Time = 3 min Time = 4 min

Figure 3.1: Consistent skeleton reconstructions over time is essential for morphological analysis.

3.1 Background on Tracing

Manual reconstruction and tracing is still accepted to be the gold standard. However, manu-

ally reconstructing 3D images is laborious and becomes infeasible with high-throughput

imaging. As depicted in Figure 3.1, it is difficult to acquire consistent segmentations over

32



time. Automatic segmentation relies on the image information, however, microglia processes

are thin and have intensity inhomogeneity, which attribute to inconsistent segmentations.

Tracing microglia gives visually clear topological information, particularly about struc-

tural changes over time. Skeletonization is a popular method for tracing tubular biological

structures like neurons and microglia. A skeleton is a single-pixel-wide tracing along the

centerline of an object. A skeleton should be a topological representation of the object,

meaning it should ideally follow the geometric properties of the object where components

correspond to parts of the object [57]. There is disagreement on this definition of a skeleton

due to the challenging process of automatically acquiring a skeleton and the requirements

of various applications. In 1967, Harry Blum introduced object thinning, referred to as the

medial axis transform, to present a shape descriptor that would describe biological images.

Since then, thinning algorithms have been useful in the biological imaging field, including

applications related to cell shape analysis [58], vessel skeletonization [59, 60], character

analysis [61], fingerprint recognition, tracking and characterization of object morphology.

Blum’s medial axis was found using a grassfire transform where the object is though of

as dry grass, fire starts at the boundary of the objects, and the grassfire propagates towards

the medial axis where it meets and forms the skeleton [62]. This has been generalized

and adopted into the medial axis transform (MAT) which involves iteratively eroding the

boundary of the object until only a one-voxel-thick limb remains on the ”medial axis” [62].

Alternatively, the medial axis can be attained using a distance transform. The distance

transform map is obtained by labeling the pixels or voxels of a binary image with their

distance to the nearest background. The values on this ”distance map” increases closer to

the center of the image. There are various methods to acquire the skeleton from the maxima

of the distance map.

Different skeletonization approaches have been generated including the minimal span-

ning tree. There is still a monumental amount of research to attain a medial axis that is robust

and stable. The difficulty in achieving an accurate skeleton still remains, as the existing
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methods are dependent on the object shape or the image intensity variations. Non-smooth

and irregular structure can lead to spurious edges, false branches, discontinuities, loops and

other anatomical or structural inaccuracies in the skeleton reconstruction. Such methods

typically require a prior segmentation, or binarized image, of the object of interest, which

makes the resulting skeleton largely dependent on the segmentation accuracy. A slight shift

in the object boundary would affect the placement of the medial axis. The inaccuracies of

the prior information can lead to inconsistent and erroneous skeletonization. Consistency is

necessary in analyzing temporal image data to attain accurate analysis. We aim to create a

joint framework in which reconstruction results are used to create reconstructions of other

images within the same time stack.

3.2 Hieroglyph: Matching Glia and Graph

Our method Hieroglyph generates consistent glia over time by hierarchically matching

graph to glia of a subsequent time frame, hence its name. Hieroglyph produces a consistent

temporal digital reconstruction of a glia skeleton by using prior information from previous

3D acquisition. The skeleton from a previous acquisition is evolved by representing the cell

as a graph where the glia process lengths are stored as edge information and each bifurcation

is stored as a node. In Section 3.2.1, we describe the use of the graph representation of

the glia to achieve a skeleton tracing using a shortest path algorithm. In Section 3.2.2,

Hieroglyph evolves the previous skeleton to match the image in the next time frame. Each

generated skeleton is employed to create another consistent 3D skeleton for the following

glia image in the time series.

3.2.1 3D skeleton: shortest path in a graph

Let us consider a set of 3D time series images where the segmentation of the image at time

t=1 is represented as an adjacency matrix of an undirected, weighted, rooted tree graph,

Adj(G). The graph consists of vertices and edges, G=(V,E), where the vertices are initialized
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Figure 3.2: Overall methodology. A) The shortest path is take from the end node to the soma to get
the first skeleton. B-C) a skeleton is morphed to another in an hierarchical manner D) the resulting
skeleton. (B-C) is repeated for the remaining images in the time series.
at every foreground pixel in the segmented image and size of V equals the number of

foreground voxel in the segmented image. The edges are weighted by the spatial Euclidean

distance between the voxels, e = 1,
√

2, or
√

3 [63, 64]. The adjacency matrix is filled with

the weights of the edges between all the foreground voxels. The size of Adj(G) is N ×N

where N is the number foreground pixels, or the number of vertices.

From a biological standpoint, we know that our reconstructed graph is a simple graph

which should not contain any loops or discontinuities from the processes to the soma of the

glia. Thus, to implement our tracing of the cell, we use Dijkstra’s algorithm [65] to find

the shortest path between the terminal nodes of the processes to the soma of the glia. The

terminal nodes are extracted from the segmentation of the 3D glia, and the soma vertex is

the center of mass of the 3D soma segment. The algorithm starts at terminal node and finds

the shortest route within the given adjacency matrix of the graph to the soma, or root node.

The route of the voxels between the soma and the terminal nodes result in a 3D skeleton

tracing of the glia. The benefit of the graph representation is the rich information provided

that includes the hierarchy of the processes, the bifurcation points, and the endpoints. These

properties are exploited in the creation a consistent skeleton for the subsequent glia image

in a time series.

3.2.2 Consistent 3D skeletons from temporal information

Acquiring glial skeletons solely from segmentation can result in inconsistencies between

acquisitions in time and is computationally burdensome. A single glia cell over time extends
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Ground truth

Hieroglyph

Skel2Graph[66]

time t=1 minute time t=2 minute time t=6 minute time t=10 minute time t=13 minute

Figure 3.3: Segmentation results of 3D microglia images.

and retracts the processes while keeping the same number of branches that emerge from the

soma. Thus the morphology of a glial cell between subsequent acquisitions is consistent. We

propose a method that uses prior temporal information combined with intensity information

from the current image. Hieroglyph seeks to drive the skeleton from a previous time frame

to the vessel-like information in the original image of the current time stack.

The latter information is gathered by using the Hessian-based vessel enhancement

technique to distinguish tubular structures in an image. This technique utilizes a multiscale

function according to three direction of the orthonormal eigenvectors, ei(x), where x is the

pixel position within the image domain [53, 67]. These directional eigenvectors are attained

by computing the Hessian matrix of a Gaussian smoothed 3D image and then ordering the

eigenvectors by the increasing magnitudes of the eigenvalues |λ1| ≤ |λ2| ≤ |λ3| >> 0. A

vessel-enhanced image is obtained with a low |λ1| value and high |λ2| and |λ3| magnitudes.

We call the vessel enhanced image Iv.

The initial skeleton from the previous time frame, St−1 is broken into hierarchies,

where the root node is equal to 0 and the hierarchy increases toward the terminal branches.

Every bifurcation of a process separates the process into another hierarchy H , where

H = h1, h2, ...hi is a set of hierarchies, length i. Every segment belongs to a cluster hi
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within the set. The algorithm morphs the skeleton, one segment at a time, starting from the

lowest hierarchy until it achieves the maximum response with the vessel enhanced image.

This is repeated for all segments of the skeleton in H . The final skeleton at time t is given by

St = max
i∑

h=1

St=1(h∗)Iv (3.1)

Iv =


x x > 0,

−xavg x ≤ 0.

(3.2)

where h∗ is the morphed segment from the previous skeleton and x is the voxel value in

Iv. The morphing of the segments are changes in the 26 cardinal directions. The morphed

segments are bounded by the following conditions: 1) The first hierarchy must start at the

root node. 2) Segments may not overlap with each other (no loops). 3) The bifurcation

points are regularized so they do not drastically move.

The zero intensity values in Iv are set to the negative value of the average pixel intensity

to penalize morphing beyond vessels in the Hessian map. Once a new segment is created,

the tree is rerouted resulting in an updated graph representation of the skeleton so that the

routes and bifurcation nodes are updated.

3.2.3 Experimental Results and Analysis

The dataset consists of 3D images of microglia imaged from healthy mice brains using

multiphoton microscopy, as explained in Section 1.3.

In our experiments, the segmentation at time t = 1 was attained using the coupled

tubularity flow field and blob flow field (Tuff-Bff) algorithm [68].

3.2.3 Performance Evaluation

We use a dataset consisting of 3D images of microglia over a time of 13 minutes. We compare

our reconstruction of temporal skeleton results with an automatic skeleton reconstruction

37



method called Skel2Graph3D, which requires a 3D segmentation of the original image at

each time and was used to reconstruct osteocyte cells [66]. This was done as a comparison,

because osteocytes are similar in morphology to microglia. Their 3D skeletonization function

is based on a medial axis thinning algorithm [69, 70], but the Skel2Graph3D algorithm

iteratively prunes the skeleton and converts it into graph representation. The ground truth

was attained using the Simple Neurite Tracer in ImageJ, which is a semi-automatic tracing

software [71]. We compare the accuracy of the Hieroglyph results and the state-of-the-art

comparisons with the ground truth. We note that even the ground truth may have user error

due to background noise and intensity inhomogeneity throughout the object of interest.

Figure 3.4: The endpoints and bifurcation points can easily be determined from the hieroglyph.

From Figure 3.4.2.2, Hieroglyph has a consistent structure over time. The algorithm

maintains consistency by its working principle. But the spatiotemporal localization of the

consistent skeletons are obtained within a margin of error. Our temporal results are based

on the result of the prior image but we can see that the skeleton over time changes as the

cell changes. We use a hierarchical weighting method to compare the accuracy scores. The

branches in each hierarchy are counted and the true and false count is attained by comparing

with the ground truth and the accuracy TP
TP+FP+FN

is attained for each hierarchy. The final

accuracy is found by giving a higher weight to the hierarchies closest to the soma, or the

primary branches. The weight is established with the factorial of the maximum number
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Figure 3.5: Performance evaluation using the number of endpoints (left) and bifurcation
points (right) of the results from the ground truth, Hieroglyph, and Skel2Graph.

of hierarchies times the accuracy at each hierarchy given by Atotal = Hgt
max!

∑i
n=0AHn

where Hgt is the number of hierarchies in the ground truth and i is the total number of

hierarchies in the test image. This final accuracy for Hieroglyph for the first time stack is

55% for Hieroglyph, and 34% for Skel2Graph. Since the accuracy of the skeleton over time

is dependent on the accuracy of the first skeleton, we consider additional measurements for

comparison.

We measure the number of bifurcation points and number of terminal nodes as well

as the distance between the results and the ground truth, as shown in Figure 3.6. The

endpoints and bifurcation points on a hieroglyph can be depicted in Figure 3.4. The number

of bifurcation points and terminal points in Hieroglyph results remain consistent with the

number of bifurcation points in the skeletons from the ground truth, which is further shown

in the graphs in Figure 3.5. The Skel2Graph has a significantly greater number of bifurcation

points and endpoints due to the loops. The distance between the bifurcation points and

endpoints of the ground truth’s and that of Hieroglyph and Skel2Graph are calculated. The

measurements show how structurally similar the resulting skeletons are compared to the

ground truth skeleton. Figure 3.7 shows that a 3D skeleton rotated to make processes
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Figure 3.6: Structural measurements compared to the ground truth.

extending in the z-direction more visible. Some processes described may not be visible or

be accurately distinguished in a 2D image. This motivates a 3D skeleton for morphological

and motility analysis.

3.2.4 Remarks

In this section, we proposed an automatic temporal 3D skeletonization method for glia

images. We are able to use the a priori information from preceding skeletons to derive

subsequent ones. The method is hierarchical since the skeletonization and graph matching

are performed in segments starting at the soma and extending to the endpoints of the

processes. Hieroglyph attained consistent skeleton structures over time. Unlike other

skeletonization or tracing methods that lose volumetric information of the structure, the

graph representation is not only minimalistic and compact, Hieroglyph retains information

about the diameter of the original image at every point while understanding the spatial

relationship between the soma, bifurcation points, and terminal points of the processes.

While our method performed better than the state of the art, the algorithm could be
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Figure 3.7: A skeletonization of a glial cell in one orientation (left) and a 3D rotation of the same
(right). The rotated view reveal branches not shown in the original view motivating 3D analysis.

further improved to increase the accuracy of the reconstructed skeleton. For the current

implementation of Hieroglyph, the accuracy of all the skeletons in the time series is de-

pendent on the skeleton reconstruction at the first time. To reiterate, the initial skeleton is

reconstructed by finding the shortest path from the end nodes to the soma (center of mass of

the soma) of the segmented image. Thus, the accuracy of the skeleton is dependent on the

number of correct terminal nodes found.

One of the measurements we want to analyze associated with glia are the ramification

of processes over time. For most cases, this means measuring the length of a processes.

However, this could also mean there are appearances and disappearances of smaller branches.

Past works that have analyzed glia motility do not account for these addition and deletion

of branches over time. It is a difficult problem consider in automatic algorithms. In future

improvements, we would like to account for the branches that may appear or disappear

in subsequent frames. The temporal images may have a drifting of the objects of interest

because the mice may be moving during the imaging. A solution to account for this in

our tracking algorithm could be finding and assigning the bifurcation points in subsequent

frames. Accounting for the addition and deletion of processes could also improve the

accuracy in case some branches may not have been captured in previous frames. Thus, the
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Figure 3.8: Graph representation with soma.

accuracy of the skeleton over time would not be completely dependent on prior frames.

In Hieroglyph, the soma is represented by the center of mass which is just one point.

This single-point representation could change the path of the processes and thus the analysis

of the processes. Instead of representing the soma as just one point, the algorithm should

account for the whole soma. This means that in the first part of the algorithm, we should

find the shortest path from the end point to the whole soma, or the nearest point of the

soma, as shown in Figure 3.8. This graph is no longer a tree since the soma in itself is a

loop. If we were to need an acyclic graph, the graph could be translated such that the soma

is represented by a point. However, initially keeping the soma shape may produce more

accurate skeletons.

3.3 Improving Centerline Tracing with Vector Field Convolution

In this section we create an algorithm that simplifies the tracing algorithm using Vector Field

Convolution. Our method does not require preprocessing, greatly reduces the computational

time of previous tracing methods, and improves on accuracy of the centerline tracing. This

method provides consistent morphological reconstructions that is imperative to analysis, as

proven in Section 4.
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3.3.1 From parametric active contours to vector field convolution

In Section 2, we designed a method to look for the image boundary using an active contour

method. In that section we discussed how the active contour is first initialized in the image

of interest. Next, the contour is iteratively evolved until it reaches the desired boundary

where it stops, or converges. Often times, the active contour evolution follows the gradient

magnitude of the image, however, a gradient external force can be limited by its capture

range. The gradient magnitude of an image’s homogeneous regions are zero or close to zero

which may cause the active contour to get stuck before reaching the desired boundaries.

This limitation makes some models to reliant on the initialization of the contour, which in

turn is not very robust. The gradient external force also caused issues in cases where the

edges were concave or the initial contour was too far from the minimum.

Geometric active contours, mentioned in Chapter 2, are an implicit active contour model.

Parametric active contours are, rather, explicitly defined where the contour C is represented

as

C = {x ∈ Ω : x = (x1(s), x2(s), 0 ≤ s ≤ 1} (3.3)

where x1(s) and x2(s) are parameterized point locations along the contour C with

landmark s. Parametric active contours were first defined by Osher and Sethian [72]. The

contour is discretely parametrized with a finite number of pixels, or snaxels, as in equation

3.3, and the evolution is explicitly computed with the forces at each of the snaxel positions.

Some limitations include problems with re-initialization, and issues with converging

at boundary concavities. A new external force, called gradient vector flow (GVF), was

developed by Xu et al. [73] to address the issue of capturing an adequate capture range.

The GVF is computed from the diffusion of the gradient vectors (u(x, y), v(x, y), w(x, y))

of either the gray level image or the edge map of an image. The GVF is computed by
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minimizing the energy functional:

EGV F =
1

2

∫ ∫
µ(u2

x + u2
y + v2

x + v2
y) + (f 2

x + f 2
y )((u− fx)2 + (y − fy)2)dxdy (3.4)

where µ is the smoothness parameter of the GVF force field and (fx, fy) is the edge force.

GVF diffused external force gave a better capture range that was further from the object so

that initialization was (less forgiving). Vector field convolution (VFC) also computed the

diffused external force using convolution, a compututionally less expensive method than

finding the GVF via diffusion. VFC fields are more robust to noise and initialization than

the classical gradient field convolution[48]. It was used to reconstruct a skeleton for neuron

images in [74] by acquiring a VFC medialness map to find a binary image to thin and then

reconnect with a graph minimum spanning tree. However, these methods rely on finding the

correct scale to accurately reconstruct the image but result in disjoint segments and noisy

reconstructions. The authors used Tree2Tree and Tree2Tree2 attempted to reconnect disjoint

segments using a graph connectivity algorithm that relied on orientation and distance[75,

63]. However, attempting to reconnect disjoint segments in glia images with orientation

and distance result in incorrect connections due to the complexity of branches within one

cell and between one another. Our method proposes to use VFC field to evolve seed points

towards the centerline.

3.3.2 Background on Vector Field Convolution

Vector field convolution (VFC) was proposed as an external force field for an active contour

method used in image segmentation. The basic idea was to compute vectors that pointed

at image edges and then to diffuse such forces across the image via tensor convolution.

The resultant VFC fields are robust to noise and to initialization of an active contour [48].

The convolution-based approach was also used to reconstruct a skeleton for neuron images

in [74] by acquiring a VFC medialness map, an enhanced medial-axis image, which they
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used to create a graph minimum spanning tree. However, these methods rely on finding

the correct scale to accurately reconstruct the image, but result in disjointed segments

due to intensity inhomogeneity and noisy images. The authors attempted to reconnect the

disjointed segments using a graph-connectivity algorithm that was based on the orientation

and distance of the segments from one another [75, 63]. Attempting to reconnect disjointed

segments in glia images based on orientation and distance result in incorrect connections

due to the complexity of branches within one cell and between other intra-cell branches.

Our method, C3VFC, utilizes VFC in an open curve tracing methodology to find the

critical points and the centerline, or skeleton, of multiple objects within 2D and 3D videos.

This technique, based on VFC, is an enabling image analysis technology that paves the way

for reliable microglia reconstruction.

In [48], the open curve is a parametric active contour model that is deformed toward

edges in the image, controlled by the external and internal energy. The external force guides

the active contour towards the edges using image features. The internal force is guided by

the qualities of the contour, such as smoothness or tautness. The contour is represented

as a set of contour points v(s) = [x(s), y(s), z(s)] and the initial points are parameterized

between s ∈ [0, 1]. The initialized contour is evolved by minimizing an energy functional:

E =

∫ 1

0

[
1

2
(α|v′(s)|2 + β|v”(s)|2) + Eext(v(s)]ds (3.5)

where α and β are the parameters for controlling smoothness and bending of the contour,

respectively. In [48], the authors defined the external energy, Eext, with the Vector Field

Convolution force, fvfc(v).

An active contour model for open splines needs to be constrained so that the points

along the contour do not drag into itself and vanish. For every iteration, the curve is updated

where the set of contour points may shrink or grow. For a vector field that points towards

the medial axis of an object, the intensity inhomogeneity within the object may cause parts
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of the medial axis to have a greater pull on the vector field. However, constraining the end

points of a contour for a non-continuous structure, such as a microglia, typically involves

splitting an object into multiple parameterized contours, or branches. In [40], the authors

constrained the open curve by evolving the contour one point, or seed, at a time, controlling

the elasticity and connection of all seed points to each other, which, if used in larger data sets,

could be computationally expensive. Other open curve active contour methods improved on

this work by automatically initializing fewer, more accurate, seed points to evolve the seeds

toward each other following the gradient vector field [76, 77, 78]. These methods largely

rely on finding seeds that are already initialized on the centerline.

3.4 C3VFC: Tracing 3D Images of Microglia Over Time

C3VFC is our automated tracing system that computes the skeleton of objects in a 3D image

over sequential time frames, which facilitates accurate biological analysis and quantification

via extraction of bioinformatics. The method is described in Figure 3.9 and in Algorithm 1.

The number of objects in the image are determined by automatically detecting the soma, or

the cell body, and its corresponding critical points, so that each object can be individually

traced in parallel. Critical points are detected for each object by evolving seed points, or the

initialized points, that are constrained by concentric circles around each soma. The final

temporal skeletons are extracted via a fast marching method from the critical points and a

centerline map. The temporal reconstructions can be used for accurate biological analysis.

In this paper, we compare our reconstruction results from C3VFC and from state-of-the-art

methods with those derived from the baseline standard manual tracing.

3.4.1 Overall Methodology

A 3D vector field is computed using vector field convolution [48] on the original image,

I(x, y, z) ∈ R3, to find the centerline that lies on maximum intensity of an object, which is

also the centerline of the object. A vector field kernel, k(x, y, z), is convolved with I(x, y, z)
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Figure 3.9: C3VFC methodology.

so that the vector field points towards the centerline. The vector field is defined as:

fvfc(x, y, z) = I(x, y, z) ~ k(x, y, z) (3.6)

where ~ is defined as linear convolution. The vector kernel is defined as:

k(x, y, z) = m(x, y, z)n(x, y, z) (3.7)

where m(x, y, z) is the magnitude of the vector kernel and n(x, y, z) is the unit vector

pointing towards the kernel origin at (0,0,0):

n(x, y, z) = [−x/r,−y/r,−z/r] (3.8)

that is normalized by the radius r =
√
x2 + y2 + z2 which is the distance from the origin.

The origin of the kernel, (0,0,0), is considered the location of the features of interest (FOI),

so a particle that is placed in that field is able to move towards the FOI, which in this case is

the centerline. The magnitude of the vector kernel is:

m(x, y, z) = (r + ε)−γ (3.9)
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(a) (b)

(c) (d)

Figure 3.10: The VFC field of the intensity image a) The kernel is convolved with b) the
original image (slice 8 of 16 in the z-stack is shown) to produce c) VFC field d) zoomed in
of the red box in (c). The arrows point to areas of higher intensity that pull the vectors on
the centerline of the object.

where γ is a parameter that controls the influence of the FOI, and should be changed

according to the signal-to-noise ratio. ε is a small positive constant that avoids dividing by

zero. Thus, the further away the particles are from the origin, the smaller the influence of the

FOI, and the magnitude of the vector field kernel is a decreasing function of distance from

the origin. Figure 3.10a shows a vector kernel where the magnitude of the vectors decreases

as the they are farther from the origin.

The VFC external force fvfc(x, y, z) is calculated by finding the convolution between the

48



vector field kernel k(x, y, z) and the intensity image I(x, y, z). For a 3D image, the VFC

force field would be comprised by a three directional vector field in which the vectors point

towards the centerline of a 3D object.

Figure 3.10 depicts the VFC field on a microglia image. A 3D image of microglia is

convolved with the vector kernel in equation 3.7 to produce a VFC field that points to the

centerline of the objects. Although the figure depicts a slice from the z-stack, the 3D vector

field points to the center line in x-y-z direction. The vector’s magnitude and direction relies

on the intensity of the image and the parameters of the kernel. In a real image, the noise

pulls the vectors in the background but the large capture range of the kernel pull the vectors

towards the higher intensity of the foreground object, or the centerline.

In biological images, there may be varying intensity throughout the object, where some

intensities may be stronger in thicker parts of the object. Figure 3.10d shows that the vectors

along the centerline point towards higher intensities within the object. Thus, there are

non-zero vectors on the centerline that would move free particles towards a converging point.

However, in open curve tracing we would ideally want the particles to stop at the centerline.

Our workflow solves these challenges by detecting and labeling the cells, using the VFC

field to find critical points in the cells, and tracing critical points back to the soma.

3.4.1 Initialization

The goal of C3VFC is to trace glia in single- and multi-cellular 3D images, I , over con-

secutive time frames. Biological images acquired through microscopy imaging have low

signal-to-noise ratio (SNR) and background noise so we want to ensure that the points are

evolved within the region of interest. The Hessian matrix of partial derivatives describes

the local curvature of an image [79]. The visualization of the initialization is depicted in

Figure 3.11. The eigenvector of the Hessian describes the concavity at points in the image.

The attained eigenvectors can be sorted via by the absolute value of their eigenvalues. The

most negative eigenvalue, λ3, describes the highest curvature. The voxels at which λ3 > 0
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is set to zero. The remaining voxels are the foreground pixel in Ifore. This will be the initial

seed points that will be evolved towards the centerline of the parts of the object via our open

curve tracing method.

Figure 3.11: The initial seed points are determined using curvature analysis. The original image
(left) is analyzed with a curvature analysis (middle) to find the foreground image (right).

3.4.1 Soma Detection and Labelling Cells Over Time

In glia cells, the processes extend and retract from the soma. The cell bodies can be utilized

to determine the number of cells and its respective processes in an image. The soma can

be distinguished by its overpowering intensity and volume compared to the fine processes.

We automatically detect and reconstruct the soma from the input image via the blob flow

field (BFF) method [68]. In this approach, eigenvectors attained from the Hessian matrix

of a Gaussian-smoothed image are ordered by increasing magnitude of the eigenvalues,

|λ1| ≤ |λ2| ≤ |λ3| � 0 [53]. BFF enhances blob-like structures by finding structures in the

image with high values of λ in the three orthonormal directions. Once the blobs are detected,

the edge based active contour algorithm moves the contour towards the soma boundary.

The soma detection method finds s somas in the given input image, which is used to

label detected soma over consecutive time frames. As seen in Figure 3.12, it is difficult

to determine soma shape and separate touching cells in 2D images, which are z-stack

projections of the 3D image. Some cell processes and soma may be overlapping or occluded

in the z-stack of a 2D view. However, a tilted view of the 3D image reveals the actual number

of cells in a given region. Knowing the correct number of cells and soma shape allows our
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algorithm to trace the processes back to the appropriate soma. Figure 3.12c shows some

processes that belong to cells where the soma is not in the field of view and only portions of

a cell are captured. This inevitable issue presents a challenge for constructing the tracing

methodology. It can be argued that only cells that are fully in the region of interest need to

be segmented for quantification and analysis. C3VFC uses the detected soma to find and

label the corresponding soma over consecutive time frames. Consequently, corresponding

glia are automatically labelled over time with respect to their corresponding soma.

(a) (b) (c)

Figure 3.12: Soma detection a) 2D view, b) 3D view and c) 3D tracing of each cell. The red
box in the images indicate the region of interest where soma overlap and would be difficult
to distinguish in the top 2D projection of the 3D image.

3.4.1 Tracing Multiple Objects in a 3D Image

The objects in the images, or cells, are non-continuous points that are connected at the

soma. These points could be parameterized in segments, as with the methods mentioned

in Section 3.3.2, or represented as free particles without an internal force, as in equation

3.5. Since the seed points are non-continuous, the internal force of the active contour energy

functional would not acquire the desired smoothing and bending constraints. Therefore,

the energy functional would be dependent on the VFC field from Equation 3.6. The initial

contour points for the image I(x, y, z) is v(s) = [xi(s), yi(s), zi(s)] which is represented by
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N discrete points vi, i ∈ 0, 1, 2, , , N − 1. The update procedure is iterative

Vt+1 = Vt + τF (3.10)

where τ is the step size,

Vt = [vt0, v
t
1, v

t
2, ...v

t
N−1]T (3.11)

and

FT = [fvfc(vt0), fvfc(vt1), fvfc(vt2), ...fvfc(vtN−1)]T . (3.12)

The VFC field for the image contains vectors on the centerline that point to higher intensity

values within the object of interest. Vectors along the centerline may cause points to vanish

into each other instead of providing a continuous tracing. To resolve these open curve

tracing issues, our method finds critical points throughout the object.

3.4.1 Concentric Circles, VFC, Critical Point Detection

The cells in the image are detected via soma detection and corresponding cells are labeled

over consecutive time frames. Thus, all the processes can be traced back to its corresponding

soma. As mentioned in Section 3.3.2, critical points are typically determined through an

eigenvalue analysis of the image vector field and represent the structural changes along the

object of interest. In C3VFC, the critical points are determined by using an active contour

evolution using the vector field of concentric spheres around each glia. The concentric

circles are placed around the soma of every detected cell, shown in Figure 3.13a. The

concentric circles are

S(x, y, z) = (x− a)2 + (y − b)2 + (z − c)2 − (rsoma + (dCC · i))2 (3.13)

where the coordinates (a, b, c) represents the soma, rsoma is the radius of the soma, and dCC

is the distance between the concentric circles, and i ∈ [1,M ] where M is the maximum
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number of concentric circles. The distance between concentric circles, dCC , is a user-input

parameter. The maximum number of concentric circles, M , is determined by the farthest

initialized distance from the soma divided by dCC . The vector kernel, from equation 3.7, is

convolved with the intersection of the concentric circles and the intensity image to find the

vector field:

fvfcCC(x, y, z) = S(x, y, z)I(x, y, z) ~ k(x, y, z) (3.14)

This force field constrains the evolution of seed points to the spheres to ensure that the

critical points are constrained to the centerline on these areas, as shown in Figure 3.13c

and 3.13d. equation 3.14 is a important contribution in our method that uses the VFC

field to find the critical points in an object that lie on the centerline. In this case, we only

want to evolve the initial points that lie on the concentric spheres around the objects. The

initial contour points is extracted from the initial foreground image explained in Section

3.4.1.1: Vfore = Ifore > 0 that also intersect with concentric circles for a given soma,

V s
fore = Vfore · Ss(x, y, z). Figure 3.13 shows that the vector field will carry the seeds to the

critical point on the intersection of the branches and the concentric sphere, using equation

3.10. The updated foreground vertices become the critical point list which is used to trace

processes back to the soma of each microglia.

3.4.1 Tracing cells back to soma

The critical points described in the previous section lie on the centerline of the processes.

Each point from the critical point list is traced back to the soma detected in the first step of

C3VFC. The critical points and the soma could be thought of respectively as the start and

end points on a path. The path that reaches the endpoint in a least amount of time within an

image domain Ω ⊂ R3 is the geodesic path. The minimal path problem can be solved with

the Multi-Stencil Fast Marching algorithm [80]. The time arrival map is initialized with

the result of the initial foreground, Vfore, updated using the VFC field from equation 3.6.
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(a) (b)

(c) (d)

Figure 3.13: The VFC fields to find critical points of an object. (a) Concentric circles are
placed around every detected soma to find (b)the vector field of the intensity image on these
circles (c) zoomed in (d) the critical points on the object of interest.

These points do not form a continuous tracing of the glia but they lie on the centerline. The

rest of the time arrival map is formed with the distance transform of the initialized seeds

in Section 3.4.1.1. The fast marching algorithm computes the fastest path to get from one

point to another.

For every object detected in the image, the critical points are a set of points on the

centerline that will be traced back to the soma. We start with the farthest critical point from
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Algorithm 1 Procedure for C3VFC for tracing medial axis of glia
Input Original 3D Image I .
Output 3D traced image T , SWC files TSWC ;
Parameters dCC , rvfc

1: procedure C3VFC(I , params)
2: Soma← soma detection on I using BFF method;
3: Ifore← find foreground objects from curvature information of I;
4: for each soma s in Soma do
5: Ss← use Eq. 3.13 to get concentric circles;
6: f svfcCC ← calculate concentric circle constrained VFC field using Eq. 3.14 ;
7: criticalPointsList← update vertices Vfore from Ifore > 0 using Eq. 3.10;
8: while criticalPointsList not empty do
9: process← trace critical point to soma using FM;

10: T s← update image with traced process
11: criticalPointsList← remove criticalPointsList on process;
12: end while
13: end for
14: Transfer T to TSWC ;
15: return
16: end procedure

the soma to traverse through the path. After every iteration, we remove points the lie on the

traced path from the critical point list. Then, the next point farthest from the soma is traced

back to the soma until there are no more critical points in the set.

The output of our tracing workflow is a skeleton image that can be represented in the

SWC file format. (In this case, SWC is the concatenation of the last initials of the inventors

of the format.) The SWC file is a standard format for biological images with tree structures

and is widely used by neuroscientists. With the SWC format, each foreground traced pixel

of the connected cell is saved in matrix format with seven fields: index number, structure

type, three x-y-z coordinates, radius and parent connection node. Since our algorithm detects

and reconstructs the soma, we have formatted the SWC file to save the entire soma as the

root node for accuracy. Typically the soma, or root node, is indicated by just the first row

of the SWC file which is indicated by −1 as the parent connection node. Our SWC format

saves all the soma voxels in the SWC file with a −1 as the parent connection node. Any

child node of a soma voxel will indicate the index number as their parent connection node.
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3.4.2 Experimental Results and Analysis

3.4.2 Imaging Acquisition and Fluorescence Technique

The multi-cellular dataset consists of 3D images of microglia from living mice using

in vivo multiphoton microscopy, see supplementary materials SI2-SI4. Heterozygous

GFP reporter mice expressing GFP under control of the fractalkine receptor promoter

(CX3CR1GFP/+) were used for the imaging studies. Wild-type C57/B6 mice were

crossed with CX3CR1GFP/GFP mice from Jackson labs (Stock No. 005582) to gener-

ate CX3CR1GFP/+ for these experiments to visualize microglia. For in vivo imaging, mice

were implanted with a chronic cranial window as previously described [bisht2020precise].

Briefly, during surgery, mice were anesthetized with isoflurane (5% for induction; 1-2% for

maintenance) and placed on a heating pad. Using a dental drill, a circular craniotomy of ¿

3mm diameter was drilled at 2mm posterior and 1.5mm lateral to bregma, the craniotomy

center was around the limb/trunk region of the somatosensory cortex. A 70% ethanol-

sterilized 3mm glass coverslip was placed inside the craniotomy. A light-curing dental

cement (Tetric EvoFlow) was applied and cured with a Kerr Demi Ultra LED Curing Light

(DentalHealth Products). iBond Total Etch glue (Heraeus) was applied to the rest of the

skull, except for the region with the window. This was also cured with the LED light. The

light-curing dental glue was used to attach a custom-made head bar onto the other side of

the skull from which the craniotomy was performed.

To label microglia in the mouse brain for the dataset in supplementary materials SI1, we

used mice with an inducible Cre recombinase under the control of the CX3CR1 promoter

crossed to the Ai6 fluorescent reporter mouse (Jackson Laboratories, Bar Harbor, ME) to

generate CX3CR1creERT2/+ X Ai6ZsGreen [42, 43]. At post-natal day (P23) 23, mice

were given 10uL/g body weight of a 20mg/mL Tamoxifen (Sigma) solution in corn oil to

induce recombination of the floxed stop codon leading to ZsGreen expression in microglia.

All procedures adhered to guidelines of the Institutional Animal Care and Use Committee
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(ACUC) at the University of Virginia. Microglia of adult mice (7-10 weeks old) were

imaged using a Leica TCS SP8 multiphoton microscopy system equipped with a Coherent

Chameleon Ti:Sapphire laser and a 25x 0.95 NA immersion lens.

Original Our result APP2

FMST MST

Figure 3.14: Visual comparison of the multi-cellular reconstruction results using C3VFC (our
method), APP2, FMST, and MST. Traced foreground voxels are all non-black voxels.

3.4.2 Dataset

The multi-cellular 3D movies of microglia were imaged over 16 minutes taken at one minute

intervals, containing multiple microglia per field of view. The 3D images were 1024 x

1024 x 61 pixels where the x-y frame was 295µm x 295µm. For each image, there were

61 z-stacks acquired and the z-stack depth was taken in 1µm intervals. There are about

37 different cells in the multi-cellular video dataset, see supplmentary materials SI2-SI4.

SI1-SI3 are microglia in naive mice, or mice that have not been previously subjected to

experiments. SI4 is a video of the same microglia in SI3 that has been subjected to laser

burn induced injury. The processing of 3D images is very difficult, because the varying

intensity throughout the cell and non-structural noise along the z-stack make the actual cell

signals hard to be visualized. To increase the intensity throughout the cell regions and the

contrast of the images for further processing, histogram equalization was applied, although
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Original Ground truth C3VFC APP2 FMST MST

Figure 3.15: Reconstruction results of 3D microglia images. The first column on the left is the
original image with the region of interest boxed out on the left. The following columns are the 3D
reconstruction in SWC format.

some noise in the background may be increased too. The images were taken in naive mice

and mice with laser burn induced injury that would vary the movement and morphology

between the videos.

3.4.2 Performance Evaluation

We use datasets consisting of 3D images of microglia over a time of 16 minutes, as described

in Section 3.4.2.2. We compare the temporal tracing results from C3VFC with results

from state-of-the-art automatic skeleton reconstruction methods including improved all path

pruning version 2 (APP2) [81], fast marching minimum spanning tree (FMST) [82], and

minimum spanning tree (MST) [83]. APP2 is one of the fastest state-of-the-art methods

for neuron tracing and has been used as the gold standard in some neuron reconstruction

studies. APP2 is based on fast marching and hierarchical pruning and has proven that it can
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achieve complete reconstructions for images with uneven pixel intensities, fine branches,

and irregular sized cell bodies. We also compare our results with FMST and MST since

both algorithms achieve higher or similar accuracy reconstruction scores than results from

APP2 in numerous studies. MST uses local maxima to find points on the object of interest

to create a minimum spanning tree to trace neurons. FMST is an advancement of the MST

algorithm with the advantage of an over-segmentation and pruning method that is similar to

that of APP2. The Vaa3D software was used to implement APP2, FMST, and MST. Vaa3D

is short for 3D Visualization-Assisted Analysis software suite that is currently maintained

and updated by HHMI - Janelia Research Campus and the Allen Institute for Brain Science

[84]. For MST, the parameters for the window size were set to 10 or 15 depending on which

value obtained a better result. The default settings for APP2 were used since they gave the

best results. However, the output of the three comparison methods were insufficient for

multi-cellular images. From the Figure 3.14, we see that APP2 could not detect over 50%

of cells in a given image. Meanwhile, FMST and MST could not separate cells in a multi-

cellular image. Thus, for the performance evaluation comparisons, each individual cell had

to be manually cropped before inputting the image into APP2, FMST, and MST. However,

the entire multicellular image was input into C3VFC and output was the reconstruction

image and SWC file format for all detected cells that were labelled over consecutive time

frames. The individual labelled glia were easily manipulated for comparison.

The accuracy of all the automatic reconstruction results are found against a baseline

manual result. The baseline manual result is attained using the Simple Neurite Tracer in the

ImageJ software [71]. The software allows for a semi-manual tracing setting in which the

user could slide through the z-stacks of a 3D image and connect points along the branch

paths. We note that the baseline manual result may have user error due to background noise

and intensity inhomogeneity throughout the object of interest and through human error of

estimating the centerline, especially through the z-stack view. The branch complexity of the

cell and the resolution of the confocal microscope make it difficult to distinguish the path
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of each branch and between cells that are in close proximity or touching. The 3D image

captures a specific region of interest, so the soma of some branches may be occluded from

the 3D image. Parts of some branches also extend outside the 3D image. These inevitable

issues cause reconstruction error for both the automatic algorithms and the expert manual

tracer.

Figure 3.15 shows the visual tracing results between the original image, the manual

baseline, our result, and the result from the comparisons. Although C3VFC outputs the

skeleton for all the cells in the entire image, individual cells are shown in the figure for a

visual comparison against other methods. In our method, every cell is detected and labeled

over time based off of the soma detection. This allows for a simple conversion from 3D

skeleton image to SWC files and the extraction of image-based bioinformatics.

There is disagreement in the research community regarding how to evaluate the accuracy

of a skeleton reconstruction. Manually tracing an object is indeed subject to intra-user

and inter-user variability, especially in 3D, but such manual measurements represent the

best existing choice for a baseline of quality. We use five different distance measures to

measure the error between the baseline and the reconstruction results. We evaluate the

performance of the reconstructions by measuring the average Euclidean distance between

the reconstruction result and the ground truth. We input the SWC format reconstructions

into Vaa3d to measure the entire-structure-average from 1 to 2 (ESA12), ESA from 2

to 1 (ESA21), average-bidirectional-ESA (ABESA), difference-structure-average (DSA),

and percentage-of-different-structure (PDS), which were introduced and defined in [84].

ESA12is a measure of the distance of a voxel from the ground truth to the closest voxel

on the reconstruction result. ESA21 is a measure of the distance of a voxel from the

reconstruction result to the closest voxel on the ground truth. ABESA refers to the smallest

spatial distance of a voxel between the reconstruction result to the closest voxel on the

ground truth. DSA refers to the average spatial distance for the voxels that are different

between the reconstruction result and the ground truth result. PDS is the percentage of the
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voxels that are different between the reconstruction result and the ground truth result. We

used the default two voxel spatial distance to account for human error and shown in [84]

this value has a visible deviation. Table 3.1 shows the average and standard deviation of

these distances compared with the manual baseline result. A lower value for each of these

distances signify higher accuracy measure to the ground truth.

C3VFC has a lower error in all of the measures compared to APP2, FMST, and MST.

APP2 achieved the second closest distance for four of the five measures: ESA21, ABESA,DSA,

and PSA. FMST and MST have a low ESA12 but higher ESA21 values signifying that

their reconstruction contained a larger amount of false positive branches. FMST and MST

also had the largest PDS values which tells that these reconstructions were the most different

to the baseline reconstruction. The visual testimonial can be seen in Figure 3.15 where

FMST and MST capture erroneous branches and noise that do not belong to the cell of

interest. APP2 showed the most competitive results for all scores but it seemed to have

missed the shorter processes and may over-prune its segmentation results. It must be noted

that APP2 did not perform well when the entire multicellular image was input into the

algorithm, as shown in Figure 3.14. FMST and MST seemed to be an over-segmentation,

which was posed as an advantage of their algorithms, but the pruning was insufficient for

glial images. From Table 1, if we consider the mean distance measure with the standard

deviation, C3VFC achieves the best performance in four of the five accuracy measures:

ESA21, ABESA,DSA, and PSA. The mean distance measure with the standard deviation

requires adding and subtracting the standard deviation from the mean to find the range of

distance measures. C3VFC found up to a 53% improvement compared to APP2, FMST,

and MST using the five accuracy measures (ESA12, ESA21, ABESA,DSA, and PSA).

This percentage was attained by calculating the improvement of the worst distance measure

for C3VFC over the next best distance measure in the comparison methods in Table 3.1.

The worst accuracy measure for C3VFC was found by calculating the worst mean with

the standard deviation of the measures. The worst performance for C3VFC would be for
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ESA21. This value is subtracted from the best performance measure for ESA21 achieved

by the comparison algorithms, which was attained by APP2, to then find the percentage of

improvement.

Table 3.1: Performance evaluation of results. The five measures computes the distance of
the baseline manually traced results to the results from the respective methods. A lower
value signifies better performance for all distance measures.

C3VFC APP2 FMST MST

ESA12 3.85 ± 2.67 6.18 ± 7.80 4.60 ± .889 4.92 ± 1.08
ESA21 7.77 ± 5.95 15.4 ± 13.7 29.6 ± 27.23 33.4 ± 28.5
ABESA 5.81 ± 3.64 10.8 ± 7.71 17.1 ± 13.6 19.2 ± 14.2

DSA 7.93 ± 4.066 13.1 ± 8.76 18.0 ± 14.2 20.3 ± 14.7
PDS 0.614 ± 0.124 0.779 ± 0.114 0.890 ± .028 .899 ± 0.0197

The standard deviation in the measures for C3VFC could partially be attributed to

the algorithm capturing parts of another cell, as shown in the temporal visualization in

Figure 3.16. Since our method takes in the entire image with multiple cells, the accuracy is

attributed to detecting the correct number of somas and cells. However, the 3D images may

capture some processes with their corresponding soma outside of the 3D image, thus these

processes may not be traced or erroneously picked up by another cell. Additionally, our

method attempts to prevent capture of erroneous branches with the vector field, but some

branches are touching and make it difficult to separate even with the human expert’s eye.

C3VFC intentionally does not trace branches with a corresponding soma not in the field

of view. The purpose of the C3VFC algorithm is to trace temporal images for dynamic

microglia analysis, and so, lone branches are considered to be background objects.

Figure 3.15 shows the visual tracing results between the original image, the manual

baseline, our result, and the result from the comparisons. Although C3VFC outputs the

skeleton for all the cells in the entire image, individual cells are shown in the figure for a

visual comparison against other methods. In our method, every cell is detected and labeled

over time based off of the soma detection. This allows for a simple conversion from 3D

skeleton image to SWC files and the extraction of image-based bioinformatics.
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time = 1 min time = 5 min time = 11 min time = 16 min

time = 1 min time = 6 min time = 11 min time = 16 min

Figure 3.16: Reconstruction results of 3D microglia images over time. The video of the reconstruc-
tion results for the top and bottom rows could be found in Supplementary Information materials SI1
and SI4, respectively.

3.4.2 Measuring Tracing Consistency

The temporal tracing result using our method is attached as a video in the supplement. The

video demonstrates the consistent tracing result over time and fluidity of motion. Consistent

temporal tracing is imperative for accurate motility and morphology analysis. Consistency

in this context means the reconstruction results and accuracy are agreeable over time. For

example, correspondence between branches would be necessary to find the change in length

or the velocity of a branch path over time. Figure 3.16 depicts snapshots of the 3D traced

image over a few time points.

We measure consistency over consecutive time by calculating the average of the standard

deviation of the measures between each frame. The consistency results are shown in Figure

3.17. The five measures describe the differences between the reconstruction results and the

baseline result. Therefore, the standard deviation between the measures over time frames

show how similar the results are over time. The results from C3VFC, FMST, and MST show

a low average standard deviation which means the results show a high level of consistency

among the time frames. FMST and MST results are consistently over segmented which
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Figure 3.17: Consistency measure for the reconstruction results over time. We compare the
standard deviations over time of the five performance measures (ESA 1:2, ESA 2:1, ABESA,
DSA, PSA) for each of the reconstruction algorithms (C3VFC, APP2, FMST, MST). A
lower average standard deviation constitutes a more consistent change over time. The scale
for the PSA graph is from 0 to 1 because the PSA is a percentage.

could be a desired attribute. With C3VFC, the results consistently achieve a low mean

square error for all of the five measures over 16 time frames.

3.5 Remarks

In this section, we propose the C3VFC algorithm for tracing and labelling 3D multi-cellular

images of glia over consecutive time frames. In summary, the method followed the sequential

steps: soma detection, critical point detection, and centerline tracing. C3VFC utilizes vector

field convolution in conjunction with constrained concentric circles to easily find the critical

points that lie in the centerline of the glia processes. The critical points are traversed back

to the corresponding soma to trace the glia processes. The output of the algorithm is the

microglia reconstructions of a multi-cellular image that is labelled over time frames. The

labelled reconstruction results could be individually analyzed over time in a SWC format.
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We proved the efficacy of the reconstruction results with bioinformatics we developed to

explain motility and morphology changes of microglia which can be used to analyze cells in

different environments. The bioinformatics we provided included two ramification indexes, a

skeletal growth index, and structural graph representation. Our contributions for a microglia

reconstruction algorithm and accompanying bioinformatics were motivated by its desire in

current literature and our collaborators in the neuroscience field.

In the experiments, we proved significant accuracy results and consistency of the C3VFC

reconstruction results over consecutive time frames. We used datasets of 3D multi-cellular

microglia images over 16 time frames. These 3D muli-cellular images over time were input

into the C3VFC algorithm, while the individual cells had to be manually cropped before

inputting them into the state-of-the-art methods that were used for comparison. Even so,

in all of our experiments, C3VFC achieved a significantly higher accuracy measure to the

manual baseline than all other methods in ESA12, ESA21, ABESA, DSA, and PDS. We

define significant as having a lower mean square error average with standard deviation than

the next best score. We generated the highest accuracy on the temporal microglia datasets,

with up to 53% improvement over the next best reconstruction result. we also test the

consistency of the reconstruction results to prove that C3VFC consistently achieves accurate

results for all five measures over time frames. This proves that C3VFC could correctly

trace the centerline and achieve better reconstruction results. We also proved the efficacy of

our workflow since the microglia reconstructions were labeled over time - we showed that

dynamic image-based bioinformatics could be extracted and can used for comparison of

cells in different environments.

There are some limitations to C3VFC. In 3D images, portions of the cell could be exist

outside of the field of view. A sufficient amount of erroneous tracing of branches happen

in cases where the soma body of a cell is outside the field of view but the processes are in

the field of view. Still, C3VFC produces consistent tracing results of multiple microglia in

the field of view over time frames that are easily manipulated for extracting image-based
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bioinformatics.
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CHAPTER 4

BIOINFORMATICS

In this chapter, we provide bioinformatics that can be computed from the 4D segmentation

results from Tuff-Bff in Chapter 2 and the 4D tracing results from Hieroglyph and V3VFC

in Chapter 3. The bioinformatics yielded from image analysis can provide descriptive

morphological and motion information in different settings. Time lapse analysis is imperative

for studying the effects of microglia in brain development, reacting to an injury to the brain,

or in diseased settings. First, we give a background on the analytics that have been used in

literature by neuroscientists. Then, we provide novel set of bioinformatic tools specific to

microglia motility and morphology. Some metrics may be useful in explaining microglia in

different experimental settings and could possibly be used to classify microglia. In order

to classify objects in different settings, we must determine features or measures that are

significant and separable. We compare and analyze many different bioinformatic measures

for microglia in different settings.

4.1 Background on microglia bioinformatics

A few groups have studied microglia movement by estimating the rate of change of mi-

croglial processes. Some estimated this bioinformatic measure by subtracting the number

of pixels between consecutive images, where added or lost pixels were proxies for process

ramification or extraction [85, 8]. This rate of change of the processes has been calculated

by taking the average movement of the cell processes. Current ways of calculating the

bioinformatic is thus measuring two different things. Further, calculating the change in

number of pixels between frames may not necessarily be calculating branch ramification

since the change in number of pixel could partially be accounted for by the change in process

thickness over time or by movement of the entire image plane.

67



Skeletonizing microglia is a common method to analyze morphology. A skeleton

provides a way to measure the changes in ramification of microglia processes in different

settings, particularly between microglia in animal models that are naive, injured, or infected.

Studies have shown that microglia ramification change in different settings which have

previously been analyzed by finding the number of branches and process length [86, 87,

85]. One method of attaining a skeleton is described in [28] where the maximum intensity

projection in the z-stack was binarized, skeletonized and analyzed using the AnalyzeSkelton

function in ImageJ to find the number of endpoints and the process length. In [85], the

authors additionally found the tree branch area- ”area circumscribed by the polygonal object

defined by connecting the outer points of the dendritic ramified arbor”, total dendritic length

- sum of all dendritic segments identified in a skeletonization of the arbor, and total branch

point number- sum of branch points identified in a skeletonized rendition of the arbor.

Skeleton reconstructions provide a myriad of additional features and morphological in-

formation. In [36], the authors used their skeleton reconstruction to analyze the morphology

of microglia following a ischemic stroke, a brain tissue injury. Some features they measured

included the sphericity (compactness of the cell in 3D), circularity (compactness of the

cell in 2D), volumeP75 (volume of nodes; 75th percentile),nodes total, branching nodes,

end-nodes, nodes in branches, nodes per branch, end-nodes per branch, branch segments,

segments per branch, and branch cycles. Authors of [88] also studied the ramification of

microglia using a rat model of aseptic neuroinflammation. They measured 15 features using

FracLac for ImageJ, a free NIH-distributed software. These features included fractal dimen-

sion (to measure complexity), lacunarity (which measures heterogeneity or translational and

rotational invariance in a shape), cell area, convex hull area, density, cell perimeter, convex

hull perimeter,roughness (ratio of cell perimeter to convex hull perimeter), convex hull span

ratio (the ratio of the major to minor axis), cell circularity (4πcellarea)/(cellperimeter)2),

Sholl analysis is a method to quantify dendritic arbors and does not fully depend on the

accuracy of a segmentation or reconstruction method to attain an accurate analysis. Sholl
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profiles plot the intersections of branches and the radial distance from the soma [89]. Some

studies have used Sholl analysis on microglia images to find the process maximum (the

maximum number of intersections for the cell), the critical value (the distance from the

soma where the maximum number of intersections occurred), the maximum branch length

(the maximum radius at which a branch intersection occurred) and the number of primary

branches (the number of branches that originated from the microglia soma) [28]. Further, a

Shoenen ramification index can be attained from this analysis by calculating the process

maximum over the number of primary branches [90, 91, 36].

From the resulting reconstruction of our segmentation and skeletonization algorithms,

we want to extract bioinformatic measures that could describe and quantify the activity of

glia processes in different settings. In resting state, the microglia processes are ramified

and are constantly surveilling the environment by extending and retracting their processes.

Previous works have either manually or used a semi-automatic algorithm to measure process

extension and retraction and process velocity [25, 26, 27, 28, 30, 31]. These works analyze

each process individually. Our segmentation and skeletonization algorithms produce full

3D reconstructions. The goal is to use these digital representations to automatically extract

process length, velocity, and other metrics that could characterize glia in different settings.

Scientists are trying to extract a rich set of image-based features in order to understand

the relationship between the structure and function. The goal is to find discriminant features

the can classify structurally different microglia. In this section, we aim to determine image-

based bioinformatic measures that quantify the dynamic morphological changes of microglia

in different settings. In this section, we analyze and quantify the morphological changes

over consecutive image time frames.

4.2 Representing Microglia as Graphs

Microglia are comprised of a soma and processes that extend from the soma. This cell

structure could be represented as a tree, or an acyclic undirected graph [92, 93]. An acyclic
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Figure 4.1: The original image of a microglia cell is shown on the left. The glyph, glia-graph
representation is shown on the right. The path hierarchy is depicted by the different colors
in the glyph. The paths hierarchy at each node is determined by the number of bifurcations
that are crossed when traversed back to the soma.

graph is a graph with no loops. An undirected graph contains edges with no direction. Our

method represents each foreground pixel in the traced skeleton as a vertex and is connected

by an edge link, with a weight value of the Euclidean distance between connected pixels,

where the graph is defined as G = {V,E,W}. We use the mathematical tree representation

of the microglia to acquire structural information of the cell structure, such as the hierarchy,

bifurcation nodes, and end nodes. A bifurcation occurs where the path divides into two

parts. In microglia, the ramification and addition of new processes over time is telling

of its environment and state. Microglia are highly ramified during active surveillance of

surroundings. Such processes are less ramified, with fewer bifurcations, in a diseased setting,

as described in Section 1.

Figure 4.1 depicts a microglia represented as a tree, with different colors representing

different levels of hierarchy of the paths. The path hierarchy of a vertex is defined in [94]

as the number of bifurcations that is crossed when traversed back to the root node, or the

soma. The paths closest to the root node will have a value of one and the hierarchy number

increases with additional bifurcations away from the soma.
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4.3 Bioinformatic Analysis

The project discussed in this dissertation is motivated by the needs of neuroscientists in

the Brain, Immunology, and Glia Center at UVA and those of the greater glia research

community. The main question we want to answer is what does microglia morphology

reveal about the function of microglia? To answer such a question, neuroscientists want to

specifically know 1) the surveillance changes and 2) ramification changes over time.

Tracing consistent skeletons over time is a first step in analyzing microglia morphology

in different scenarios. There is still much unknown about the role of microglia in different

settings, particularly with respect to neurodegenerative disease. It is known that the morphol-

ogy and motility of microglia changes in these diseased states. This section describes how

our temporal tracing result from Hieroglyph and C3VFC can be used to analyze dynamic

behavior of glial cells.

The swc (format) file of the digital reconstruction gives the spatial location of every

pixel of the skeleton and the connections and relationships between all the pixels. Some

features that could be attained from this graph representation include the branch lengths, the

bifurcation points and angles, the end points of each branch, and hierarchy of the branches.

From the branch length over time we could simply compute the branch velocity within each

processes as well. Unlike previous studies, our method would extract informatic measures

from the processes of the entire glia in 3D. Using these informatic measures, we propose to

create quantitative descriptors of the 3D images of glia that could measure the movement of

glia processes over time.

4.3.1 Surveillance

The surveillance can be determined by finding the volume change over time. It can also be

thought of as the total volume covered in a space by the branch processes. This concept is

useful to differentiate how much space the processes are surveilling in different settings.
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Automatically quantifying surveillance of microglia is first addressed in Chapter 2. The

coupled Tuff-Bff algorithm automatically segments 3D images of microglia. The results

from these reconstructions are used to create metrics for quantifying microglia surveillance

of its environments over time.

In Chapter 2 the results from the coupled Tuff-Bff segmentation algorithm are used to

quantify surveillance over time. The volume of an object could be found by counting the

voxels in the object. The foreground voxels of an object are given in the segmentation of the

image.

From the segmentation result of coupled Tuff-Bff, as explained in Section 2, we sep-

arately but simultaneously segment the soma and processes. We are able to measure the

volume covered by the processes over time, as shown in Figure 4.3. To attain the volume

measure, we sum all the foreground pixels of the processes over time and convert this

volume to cubic microns.

Neuroscientists are particularly interested in the total volume that the processes cover

over time. This signifies how much of the environment the processes are surveilling in

a given time, which also accounts for the process motility. The volume covered can be

computed by finding the volume accumulated at each time frame. At the first time frame,

the volume is computed by counting all of the foreground voxels. In the second time frame,

the accumulated volume is the volume in the first time frame and any new voxels. In the

third time frame, the accumulated volume is the accumulated volume from the second time

frame (which is all foreground voxels in the first two time frames) and any new voxels not

in the previous time frames. The remaining accumulated volume at other time points are

computed the same way. The equation for computing the accumulated volume is:

accvolumet = accvolume1:t + (volumet − (volumet&&accvolume1:t) (4.1)

Figure 4.3 is a graph of the accumulated volume of processes over time of multiple
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Glia 1 Glia 2 Glia 3 Glia 4 Glia 5

Figure 4.2: The images on the top row are the original images and the images on the bottom row
are the segmentation results of 3D microglia images.

microglia from the image in Figure 4.2. The graph shows the accumulated volume covered

over 13 minutes. The slope of this line is always positive or zero because it shows the rate at

which new amount of space is covered.

Figure 4.3: Accumulated volume of processes over time using the segmentation result from Coupled
Tuff-Bff.

Figure 4.4 depicts the original and segmented 3D images of microglia from a healthy

mouse and an infected mouse. Figure 4.5 shows the accumulated volume over time of the

microglia in these images. The graph shows that the microglia from the healthy mouse

surveys more of the environment over time than microglia in the infected mouse does. The

73



slope of each of the lines on the graph is the rate at which the processes covers space. The

graph also shows that the total volume covered at each time frame is higher in the healthy

mouse that in the infected mouse. From this volume graph we can conjecture information

about the amount of space the processes takes up and velocity from the slope. It could be

presumed that the processes of microglia from the healthy mouse are either longer or thicker

than that of the microglia from the infected mouse. Information about how the microglia

processes takes up that space would have to be described in other measurements.

Original coupled Tuff-Bff

Figure 4.4: Segmentation results of microglia from healthy mouse (top row) and infected
mouse (bottom row)

Madry et al. devised surveillance metrics for quantifying microglia that sums the pixels

of processes that either extending or retracting between time frames [12]. This is index a

good measure of changes between different frames, but their measurement is computed

from the maximum intensity projection (MIP). The MIP projects the voxels with the highest

attenuation on every view of the z stack of the volume onto a 2D image. Meanwhile
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Figure 4.5: Volume of processes over time of healthy mouse vs. infected mouse.

the thickness, branch length, complexity of the branch, could be more telling of how the

microglia takes up space and move. These measures would fall under ”ramification,” which

describes the extension and retraction of microglia processes.

4.3.2 Ramification

Ramification changes over time details the amount of extension and retraction. Ramification

is related to how much and how fast branches move over time. In terms of a quantifiable

metrics, ramification can be quantified by finding the change branch length over time

and branch velocity. The automatic skeleton algorithms in Chapter 3 aim to produce

reconstruction results that will allow for quantifying dynamic bioinformatics regarding

microglia movement over time. The skeleton along with swc reconstruction format allows

for straightforward dynamic analysis. The skeleton is one voxel thick radius which makes

finding the length of each length easier. The swc format stores the xyz location of every

foreground voxel of the skeleton, radius, and parent voxel. This representation allows user to

find more analytics related the the bifurcation, end points, and hierarchy of all the branches.

Determining the ramification of microglia processes requires finding the change in branch
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time = 1 min time = 2 min time = 3 min

time = 4 min time = 5 min time = 6 min

time = 7 min time = 8 min time = 9 min

time = 10 min time = 11 min time = 12 min

time = 13 min time = 14 min time = 15 min

Figure 4.6: Segmentation results from C3VFC of microglia of a naive mouse.

length and motion over time. To automatically find the branch length the correspondence

between the branches in each time frame must be known. Thus, we must emphasize that

consistent reconstruction results from Chapter 3 is essential for this reason. Automatically

detecting the correspondence of branches through time frames is a difficult task. Most
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time = 1 min time = 2 min time = 3 min

time = 4 min time = 5 min time = 6 min

time = 7 min time = 8 min time = 9 min

time = 10 min time = 11 min time = 12 min

time = 13 min time = 14 min time = 15 min

Figure 4.7: Segmentation results from C3VFC of microglia in a mouse brain with a laser-induced
burn injury.

automatic ramifications measures are found globally, or the whole cell.

For this section, we compare the motility of microglia in naive mice and microglia in a

brain with a laser induced injury. We show the visual tracing results produced from C3VFC

in Figure 4.6 and Figure 4.7, respectively. It would be helpful to view the videos of these
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results in the supplementary materials, labelled SI3 and SI4. The microglia in naive mice

are moving at a continuous rate. It is clear that the microglia near the burn spot, labelled A,

B, and C in Figure 4.6 and Figure 4.7, change their rate of motion. These microglia retract

their processes before extending them towards the burn spot. Microglia A and B start to

extend their processes towards the burn spot around the 6-minute mark, while microglia C

starts extending at around 13 minutes.

We compute the average length of each path for a given microglia. A path traverses from

an end point node back to the soma. The soma is labelled in our SWC file for each microglia,

which makes it easier to find the start and end point of a path. As mentioned in Section

4.2, the graph representation of microglia allows us to find the hierarchy of each part of the

processes. The SWC file stores the parent connection of each node so we can also find a

bifurcation, a point with more than one child connection. We also know the end nodes which

are the points with only one connection. With this information, we are able to differentiate

the different paths. We find the length of each path and take the average of this length for

each cell. The average path length of microglia depicted in Figure 4.6 and Figure 4.7 are

shown in the graph in Figure 4.8. We can see from the graph the microglia from naive mice

typically have a higher average path length. As we explained previously, the microglia in

the brain with the burn injury are retracting its processes away from the burn spot. Madry

et al. devised surveillance and ramification metrics for quantifying microglia [12]. Both

indexes are measured for a 2D image of microglia, which in this case was the maximum

intensity projection of the 3D image. The ramification index is the ratio of the perimeter to

the area, as shown in Figure 4.9. As we can see from the figure, if the ramification index is

R=1 then the cell is a perfect circle and there is no ramification. As the ramification index,

R, increases the larger the processes ramification. The issue with this ramification index is,

while it looks at the cell as a whole, it only take into account the most ramified processes

and does not look at individual or the average processes. Our goal is to create a ramification

and surveillance metrics that takes into account all the branch information in the 3D image.
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Figure 4.8: Average path length of microglia in naive mice and mice with a laser-induced burn spot.

Table 2.4.1 from Chapter 2.4.1 shows the ramification index for nine different microglia

cells for the different reconstruction algorithms.

In [95], the authors developed a ramification index to explain changes in microglia

motility when microglia activation is inhibited. Their ramification index was a measure

of the ratio of the cell’s perimeter over its area and normalized to a circle of that area:

R = (perimeter/area)/[2(π/area)1/2]. If R=1, then the cell has no branches, and thus no

ramification. This ramification index was used for the 2D maximum intensity projection

of the image. From this, we develop a 3D ramification index that can also describe the

changes in extension and retraction of the microglia processes in different settings. Our 3D

territorial ramification index (TRI) is a measure of the ratio of the volume of the convex hull

of the skeleton and the volume of the soma. The convex hull is a polygonal enclosure of the

extension of the skeleton. The TRI measures the ramification of the cell as a whole. As seen
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Figure 4.9: An illustration of the ramification index devised in [12].

Figure 4.10: The graph shows the associated biofinformatic measures over time for three
microglia labeled in 4.7.

in Figure 4.12, the processes of the microglia start to retract and then extends over time.

TRI =
Vconvexhull
‖soma‖0

(4.2)

We also develop the skeletal ramification index which puts more weight on the individual

branches. The SRI is the ratio of the volume of the skeleton and the volume of the soma.

SRI = 1 indicates no ramification. From Figure 4.12, the cell labeled B may cover less
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Figure 4.11: The graphs show the associated biofinformatics over time for three microglia
labeled in 4.7.

territorial volume than glia C, but there is greater branch growth.

SRI =
‖skeleton‖0

‖soma‖0

(4.3)

Figure 4.12: The graphs show the associated biofinformatics over time for three microglia
labeled in 4.7.
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TRI 207.6 170.0 140.3 169.9 204.9
SRI 1.78 1.58 1.32 1.72 1.61

Figure 4.13: Examples of the TRI and SRI measures with different microglia.

From Figure 4.13, we show the TRI and SRI of five different microglia. The figure

exemplifies that the soma size effects the TRI and SRI indexes since it is normalized by the

soma volume.

Lastly, we measure the skeletal growth by finding the skeletal volume over time. The

skeletal volume is computed by counting the total number of voxels in the skeleton and

subtracting the soma volume. The soma has such a large volume compared to the thinned

processes that it would outweigh the effects of the process volume. Additionally, this skeletal

growth represents how the processes are surveilling its environment over time. The slope of

this line is the velocity that measures how fast the skeleton changes over time.

4.4 Remarks

We have explained how to use the segmentation results from the three algorithms from the

previous chapters to attain image-based bioinformatics. The surveillance and ramification

measures as well as the indexes were introduced to study the change of microglia morphology

and motility. In the future, longitudinal imaging studies will help us understand how long it

takes microglia to change morphology. These studies could also determine the percentage of

cells that change morphology. The reconstruction results from Chapters 2 and 3 combined

with the different surveillance and ramification measures will certainly be useful for such

morphological studies.
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CHAPTER 5

DISCUSSION AND FUTURE WORK

The history of imaging microglia dates back to the 1880s when Franz Nissl developed the

Nissl staining technique that allowed scientists to visualize cells in the brain, including

microglia. Since then many scientist have been trying to describe microglia morphology.

The earliest drawing and descriptions have come from the founder of neuroscience, Ramón

y Cajal, his student Nicolás Achúcarro, and thenAchúcarro’s student Pı́o del Rı́o-Hortega,

all of whom gave different visual descriptions of microglia. A century later, we are equipped

with advanced microscopy imaging techniques, genetic engineering techniques, and image

analysis tools that allow us to acquire clearer images and videos of microglia in different

settings. The recent rediscovery that the immune system and the brain are a connected

system has pushed research to trying to understanding microglia and their relationship the

neurodegenerative diseases and brain injuries. Modern biological image analysis tools and

software has allowed us to analyze and quantify images and videos in different settings.

Recent microglia research is constantly shifting our understanding of microglia and their

relationship to neurodegenerative diseases, aging, and injury. In the homeostasis, the thin

processes extends from the cell body, or soma, and is constantly surveilling its environement.

However, in some settings, such as in a subject with Alzheimer’s disease, some microglia

in that environment change their morphology where the soma is more amoeboid shape

and its processes are retracted. Microglia is the first cell that responds in brain injuries.

This reaction is apparent in the morphological changes some microglia undergo during

activation- from the thin, highly motile processes to an amoeboid cell. In other settings,

scientists have found that microglia also change into other morphological shapes in different

environments. Neuroscientists are trying to understand the relationship between these

structural changes and their function or effect in different environments. Microglia imaging
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has helped scientists quantify morphological changes. However, the quality of microscopy

images, microglia’s complex structure, and the myriad of morphological changes are a few

of the challenges we face during microglia image analysis and morphological quantification.

In this dissertation, we utilize experts in the neuroscience domain to create an engineering

solution that would help analyze microglia morphology. Neuroscientists have been trying

to research what micorglia structure can reveal about its function. The two main things

neuroscientists want to quantify is how surveillance and ramification of the processes change

when microglia are in different environments. From an image processing perspective, we

can answer these questions by designing an algorithm that will automatically segment

the microglia over time. Bioinformatics related to surveillance and ramification, such as

volume and processes length, can easily be extracted from microglia segmentation and

skeletonization.

5.1 Segmentation

In the first part of this dissertation (Chapter 2), we present an automatic segmentation algo-

rithm that is specific to reconstructing glial cells. Two-photon microscopy and advances in

genetic engineering have allowed neuroscientists to image microglia in healthy environments

or diseased and injured settings. We are able to observe how the morphology change in

these different settings. However, microscopy images often exhibit background noise and

clutter resulting from non-microglia fluorescence or artifacts. The processes of the microglia

have smaller in radius and thus lower intensity than the soma does. The intensity varies

along the processes, which makes it difficult to correctly reconstruct the processes to its

corresponding soma. The question that the first part of this dissertation aims to solve is:

• finding a the segmentation result that could be used to find the changes in surveillance

of microglia processes using 3D microglial images over consecutive time frames.

Thus, the segmentation could be used to find the volume microglia processes cover

over time.
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In the following subsections we will summarize the each contribution to present the

advantages, applicability and limitations of each technique.

5.1.1 Summary

The first algorithm, the coupled Tubularity flow field- Blob flow field (Tuff-Bff), provides an

efficient way to simultaneously but separately segment the soma and processes of a microglia.

The Tuff algorithm solved the issues of intensity imhomogeneity and disjoint segments for

reconstructing the processes. The Bff worked to separately reconstruct the soma which is

much larger and was rather blob-like unlike the processes. The couple Tuff-Bff algorithm

ensures that there is not an overlap in reconstructing the soma and processes, rather it

can distinguish between the two reconstructions. The first aim of microglia morpohology

analysis is to quantify the surveillance of the processes. The coupled Tuff-Bff algorithm is

valuable because:

• we have developed a method to segment microglia based on a geometric deformable

model that is topologically adaptable.

• it can reconstruct the soma and distinguish from the processes. Soma detection

is a major advantage in segmentation and is often times the first step in microglia

reconstruction.

• it can separately segment the processes. The volume of the soma is so large that it

overshadows the volume of the processes. We want to be able to understand how the

processes move and take up space in its environment.

Observing the changes in soma and process morphology throughout different environ-

ments is key to quantifying microglia behavior. Both the soma and processes change their

morphology depending on the environmental factor. However, the soma’s size has a much

greater volume than the thin processes that we would want to analyze the two separately.

Further, soma detection in the coupled Tuff-Bff algorithm is a significant contribution of this

85



algorithm. We have shown in the following chapters that it was imperative for distinguishing

the number of microglia and labelling the glia in images over consecutive time frames.

5.1.2 Future Work

The coupled Tuff-Bff algorithm is an essential contribution the segmentation of glial cells.

However, this algorithm segments each time frame separately. It is shown in Chapter 3

that having consistent reconstructions over time is critical for morphology analysis. The

coupled Tuff-Bff algorithm inputs a single image and outputs the reconstruction of that

image. because of the intensity inhomogeneity throughout the processes and the changes

in background clutter of the images between time frames, the reconstructions may be

inconsistent over time.

5.2 Consistent reconstruction over time

The second part of this dissertation (Chapter 3) is focused on acquiring consistent recon-

structions over consecutive time frames to evaluate the ramification of microglia in different

settings. The aim of this section was to find a solution that will handle reconstructions of

3D microglia images over time that would guide bioinformatics analysis. The question that

results in this section aims to answer is:

• the changes in ramification of microglia processes using 3D microglial images over

consecutive time frames.

In the following subsections we will summarize the each contribution to present the advan-

tages, applicability, and limitations of each technique.

5.2.1 Summary

The second algorithm, called Hieroglyph, hierarchically matches microglia graph to glia

of subsequent time frames to produce microglia skeletons over time. Hieroglyph was
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primarily designed to use temporal image information to generate consistent skeletons over

subsequent time frames. Finding corresponding branches of microglia over time could

facilitate quantifying motility of a glia. The contributions of this method are as follows:

• Providing a consistent temporal skeleton benefits the assessment of microglia motility

in different environments

• The hierarchical matching of glia through temporal data allows us to find the corre-

spondence between all the branches and its hierarchy

The issue with this method is that it relies on the segmentation of the glia in the first

time frame. Further, new processes appear and disappear which may not be accounted for in

subsequent time frames. Hieroglyph also inputs a 3D video with one microglia at a time. We

develop another skeletonization algorithm that is able to accurately reconstruct 3D temporal

images with multiple microglial objects. The contributions of C3VFC are as follows:

• processes are accurately traced back to its corresponding microglia using a novel

technique that takes advantage of vector field convolution.

• soma detection allows for automatic reconstruction of multiple microglia in an image.

• soma detection allows for automatic labelling of microglia over subsequent time

frames.

• the skeleton binary reconstruction is also represented compactly as a graph structure

and facilitates extracting bioinformatic measures related to microglia morphology.

5.2.2 Future Work

We have presented two 3D reconstruction algorithms that have proven to attain consistent

results over time. The first algorithm, Hieroglyph, used temporal information to skeletonize

the cell, but it relied to much on the correct segmentation of the previous time. This method

also introduces the mathematical representation of a glia as a glyph, or glia graph structure.
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C3VFC was able to reconstruct multiple microglia within an image over time while also

detecting and reconstructing the soma. Although C3VFC did not use temporal information

to reconstruct the microglia, it did prove that the temporal reconstructions were consistent

over time. However, the computational complexity of the algorithm could be improved. The

algorithm had the longest computational time tracing the critical points back to the soma.

5.3 Bioinformatics

In the last part of this dissertation (chapter 4) we use the results from the reconstruction

algorithms to extract useful bioinformatics information and compare microglia morphology

in different environments. To reiterate, the goal of current research related to microglia is

to understand the relationship of its structure to its function in different environments. It is

apparent that microglia change morphology from its large soma and thin elongated processes

to a less motile, amoeboid shape. Scientists are trying to understand the impact of these

morphological changes effects on the brain environment. It is known that microglia is related

to neurodegenerative diseases and brain injuries. Yet, there are still many questions that lead

scientists to want to understand by quantifying their morphology. With the expertise and

guidance of neuroscientists at UVa, we aim to establish a viable set of bioinformatics that

may help understand microglia morphology and motility.

5.3.1 Summary

In the last chapter, we use the results from the three reconstruction algorithms to deter-

mine useful quantitative measurements and bioinformatics to determine surveillance and

ramification of microglia.

• we compare surveillance metrics between microglia in a healthy mouse versus in a

diseased mouse.

• we use the reconstruction results to generate bioinformatics such as branch length,
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velocity, and different ramification indexes

• we use the graph representation of microglia to devise quantification tools.

5.3.2 Future Work

Microglia research is still at its genesis were advancements are being made every day. The

current tools used by scientists to quantify microglia images is can still be improved. This

dissertation provides a set of automatic reconstruction techniques for images of microglia.

From an engineering perspective, the obvious research that should follow should be clas-

sification of microglia in different settings. However, more quantitative studies must be

done before it is possible to classify microglia based off their morphology. Longitudinal

studies would be useful for studying the rate of morphological change. The image-based

bioinformatics measures examplified in this thesis could be used to study the microglia

morphology and motion.
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and D. Attwell, “Microglial ramification, surveillance, and interleukin-1β release are
regulated by the two-pore domain k+ channel thik-1”, Neuron, 2017.
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