
Rethinking Control, Access, and Communication Mechanisms for

Data-Intensive Applications

A Dissertation

Presented to

the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the requirements for the Degree

Doctor of Philosophy (Computer Science)

by

Marzieh Lenjani

May 2022

© 2022 Marzieh Lenjani

Abstract

In current computing systems, the transfer of data between the off-chip memory and the processor takes

two orders of magnitude more time and consumes three orders of magnitude higher energy than the actual

computation. This dissertation presents two approaches for alleviating the data movement overhead: (i)

enabling flexible-bitwidth value representation in the memory hierarchy of general-purpose processors and (ii)

processing data inside the memory.

In the first approach, we propose a narrow-bitwidth and overflow-free value representation technique in

the cache and main memory of general-purpose processors, which provides 1.23× speed up compared to the

state-of-the-art cache compression techniques.

In the second approach, we explore deviating from conventional Von Neumann architectures to minimize

data movement by adding processing units as close as possible to the memory cells, i.e., processing in memory

(PIM). We show that realizing the true potential of PIM requires rethinking and simplifying the control,

access, communication, and load balancing mechanisms of PIM units.

Accordingly, first, we propose a PIM-based accelerator, Fulcrum, that introduces a new architecture for

in-memory processing units. The architecture offers a trade-off between (i) full control and access divergence

support in SISD and (ii) no/costly control or divergence support in SIMD/SIMT approaches. Fulcrum

outperforms a server-class GPU with three stacks of HBM2 and, on average, provides 70× speedup per

memory stack and reduces the energy consumption by 96%.

Next, we observe that rethinking communication and load balancing mechanisms can unlock the benefits

of PIM for a wider range of applications. Accordingly, in the second version of Fulcrum, dubbed Gearbox,

we add hardware support for (i) offloading accumulations operations from one memory segment to another

memory segment, and (ii) balancing the load among processing elements. Gearbox can outperform Gunrock,

a GPU-based graph-processing framework, by 15.73×. In the third version of Fulcrum, dubbed Pulley, we add

hardware support that enables every group of processing elements cooperatively generate an intermediate

array. Pulley, on average, delivers 20× speedup compared to Bonsai, an FPGA-based sorting accelerator.

i

Approval Sheet

This dissertation is submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

Marzieh Lenjani

This dissertation has been read and approved by the Examining Committee:

Kevin Skadron, Adviser

Worthy N. Martin, Committee Chair

Ashish Venkat

Mircea Stan

Yangfeng Ji

Accepted for the School of Engineering and Applied Science:

Jennifer L. West, Dean, School of Engineering and Applied Science

May 2022

ii

DEDICATION

I gratefully dedicate this dissertation to my love, Jalal, and to the memory of my father who always encouraged

me to peruse science.

Acknowledgements

I am grateful to numerous people who have contributed to shaping this dissertation. This research would not

have been possible without the influence, advice, and support of many colleagues, friends, and family.

First, I would like to acknowledge and give my warmest thanks to my advisor, Prof. Kevin Skadron,

whose advice, support, and encouragement have had a tremendous impact on my professional and personal

life. Kevin encouraged me to pursue non-incremental ideas, supported me even when facing setbacks, and

challenged and helped me develop my ideas. I am very fortunate to learn how to approach research problems

from one of the most influential scholars in computer architecture. I also could not bear the pain of losing my

father during my Ph.D. studies without Kevin’s support.

I also wish to thank the members of my Ph.D. committee; I had the pleasure to be a co-author with Prof.

Mircea Stan and Prof. Ashish Venkat, and I am very grateful for what I learned from their valuable feedback

and discussion. I would like to thank Prof. Worthy Martin and Prof. Yangfeng Ji for their many insightful

discussions and suggestions on my research.

I also was fortunate to have many friends and collaborators, including Elaheh Sadredini, Reza Rahimi, Alif

Ahmed, Farzana Siddique, Lingxi Wu, Patricia Gonzalez-Guerrero, Rasool Sharifi, Sergui Mosanu, Tommy

Tracy, Vaibhav Verma, and Wole Jaiyeoba; I want to thank you all for all the enjoyable technical and

non-technical conversations that we had.

Last but not the least, I would like to thank my family for their support throughout my entire life. I am

grateful to my best friend and husband, Jalal, for his unconditional love and encouragement. I also wish to

express my gratitude to my mother and brothers for their love and sacrifice.

Contents

Contents v
List of Tables . viii
List of Figures . ix

1 Introduction 1
1.1 Contributions . 3

1.1.1 An Overflow-free Quantized Memory Hierarchy in General-Purpose Processors 3
1.1.2 Fulcrum: a Simplified Control and Access Mechanism toward Flexible and Practical

In-situ Accelerators . 4
1.1.3 Gearbox: A Case for Supporting Accumulation Dispatching and Hybrid Partitioning

in PIM-based Accelerators . 5
1.1.4 Pulley: An Algorithm/Hardware Co-optimization for Multi-device In-memory Sorting 5

1.2 Overview of Dissertation . 6

2 Background and Related works 8
2.1 Background . 8
2.2 Related Work . 9

2.2.1 Bit-width Reduction Techniques. 10
2.2.2 In-situ Computing with Bitwise Operations . 10
2.2.3 In-situ NVM-based Computing . 10
2.2.4 Flexible Cores in DRAM Layers . 11

3 An Overflow-free Quantized Memory Hierarchy in General-Purpose Processors 12
3.1 Introduction . 12
3.2 Motivation . 15

3.2.1 Quantization in Hardware versus Software . 15
3.2.2 Quantization versus Omitting the LSBs. 15
3.2.3 Quantization versus Cache Compression. 18

3.3 Key Observations and Key Ideas . 19
3.4 Mechanism . 20

3.4.1 How to Determine the Quantization Parameters (Metadata)? 21
3.4.2 How to Transfer Metadata to Hardware? . 21
3.4.3 How to Retrieve Metadata? . 22
3.4.4 How to Locate Quantized Values? . 23
3.4.5 How to Quantize and De-quantized Values? . 24
3.4.6 How to Handle Corner Cases? . 25
3.4.7 How to Avoid Overflows? . 26

3.5 More Walk-Through Examples . 26
3.6 Evaluation . 28

3.6.1 Methodology . 28
3.6.2 Performance Improvement and Error Analysis . 30
3.6.3 Energy Consumption . 30
3.6.4 Source of Improvement . 31

v

Contents vi

3.6.5 Comparison with Prior Works . 31
3.6.6 Sensitivity Analysis . 31
3.6.7 Quantization vs. Compression . 32
3.6.8 Software-based Quantization vs Hardware-based Quantization 33
3.6.9 Quantization vs. Prefetching . 33
3.6.10 Hardware Overhead . 34

3.7 Related Work . 34

4 Fulcrum: a Simplified Control and Access Mechanism toward Flexible and Practical
In-situ Accelerators 36
4.1 Introduction . 36
4.2 Problem statement . 40

4.2.1 Lack of flexibility . 40
4.2.2 Lack of support for complex operations . 41
4.2.3 Inefficient peripheral logic . 41
4.2.4 Interleaving . 42

4.3 Key ideas . 43
4.3.1 A simplified control and access mechanism . 43
4.3.2 Narrow and simple ALU . 45
4.3.3 Efficient peripheral logic . 45
4.3.4 Reuniting interleaved bits . 46

4.4 Implementation detail . 48
4.4.1 Hardware . 48
4.4.2 Software . 50

4.5 Evaluation . 52
4.5.1 Methodology . 53
4.5.2 Performance improvement over GPU . 54
4.5.3 Comparison against an ideal model and bitwise row-wide ALUs 55
4.5.4 The effect of application characteristics . 55
4.5.5 The impact of each problem . 57
4.5.6 Area evaluation . 59
4.5.7 Energy consumption . 59
4.5.8 Power evaluation . 60
4.5.9 Performance under power budget . 61

4.6 Related Work . 61
4.7 Conclusion and Future works . 63

5 Gearbox: A Case for Supporting Accumulation Dispatching and Hybrid Partitioning in
PIM-based Accelerators 65
5.1 Introduction . 65
5.2 Background . 69

5.2.1 HMC-like configuration vs HBM-like configuration . 69
5.2.2 Sparse operations . 69
5.2.3 Sparse matrix representations . 70

5.3 Motivation and key ideas . 70
5.3.1 Support for column-oriented processing using accumulation dispatching 70
5.3.2 Reducing remote accumulations and balancing the load by supporting Hybrid partitioning 70

5.4 Proposed Architecture . 72
5.4.1 Walkers and indirect accesses . 73
5.4.2 A walk-through example . 73
5.4.3 Dispatcher and the bank-level switch . 74

5.5 SpMSpV walk-through . 75
5.6 Software stack . 75
5.7 Evaluation . 77

Contents vii

5.7.1 Methodology . 77
5.7.2 Speedup . 78
5.7.3 The effect of each optimization . 79
5.7.4 Execution time and energy breakdown . 80
5.7.5 Comparison against non-in-memory-layer approaches 80
5.7.6 The effect of load balancing . 81
5.7.7 Power and temperature constraints . 81
5.7.8 Area evaluation . 82
5.7.9 Evaluation for regular kernels . 82
5.7.10 Evaluation per dataset . 82

5.8 Related Work . 82
5.9 Conclusions . 83

6 Pulley: An Algorithm/Hardware Co-optimization for Multi-device In-memory Sorting 93
6.1 Introduction . 93
6.2 Background and Motivation . 95

6.2.1 Parallel Radix Sorting . 95
6.3 Our proposed method . 96

6.3.1 Baseline PIM architecture . 96
6.3.2 Fulcrum’s shortcomings for Sorting . 96
6.3.3 Local sorting . 97
6.3.4 Histogram generation . 97
6.3.5 Prefix-sum . 98
6.3.6 Merging and key placement . 99

6.4 Evaluation . 99
6.4.1 Methodology . 99
6.4.2 Throughput . 99
6.4.3 Power and temperature constraints . 100

6.5 Conclusions and future Work . 100

7 Conclusions and Future Works 101

Bibliography 105

List of Tables

3.1 Description of real data sets . 19
3.2 The configuration of simulated systems . 28

4.1 The evaluated applications . 54
4.2 Configuration details for evaluated architectures . 54
4.3 Metrics used in Figure 4.9 . 56
4.4 Area evaluation of Fulcrum . 59

5.1 Configuration details for evaluated architectures . 77
5.2 Evaluated datasets . 78
5.3 Each Gearbox version shown in Figure 5.12. 79
5.4 Speedup against non-in-memory-layer approaches. 81
5.5 Area evaluation of Gearbox . 81

viii

List of Figures

2.1 3D DRAM: (a) each 3D stack has a logic-layer and a few memory layers containing multiple
memory banks, (b) each bank comprises several subarrays . 9

3.1 Quantizing a range of values to 3-bit integers . 13
3.2 Quantization in software . 16
3.3 Final output error using quantization vs. OLSB . 16
3.4 Relative error for (a) angles, and (b) coordinates . 17
3.5 Variables in real datasets exhibiting a limited range (details in Table 3.1) 17
3.6 Histograms of data values in various applications . 18
3.7 (a) Original and (b) quantized array of structure . 20
3.8 Software-hardware interaction . 22
3.9 The De-quantizer module . 25
3.10 Overall architecture of hardware quantization . 27
3.11 Effect of bitwidth on speedup for microkernels. 28
3.12 Effect of bitwidth on speedup and maximum absolute error 29
3.13 Energy reduction . 29
3.14 Source of improvement . 29
3.15 Comparison against ACME [1] . 29
3.16 Sensitivity analysis . 30
3.17 Quantization vs. compression . 33
3.18 Padding (LCP) vs. BitLocationFinder . 33
3.19 Quantization in hardware vs. software . 34
3.20 Quantization vs. prefetching . 34

4.1 Energy consumption of accessing a row in the logic layer vs. energy consumption of multiple
row activations, required for emulating complex operations by bitwise operations 41

4.2 Interleaving a word among mats . 43
4.3 Overall architecture: (a) three Walkers per subarray and one ALPU per every two subarrays,

(b) ALPU comprises a controller, an ALU, an instruction buffer, and few temp registers . . . 44
4.4 A traditional control and access mechanism vs. Fulcrum . 45
4.5 Reuniting interleaved bits . 46
4.6 The format of instructions . 49
4.7 Throughput comparison against NVIDIA P100 . 55
4.8 Throughput per stack comparison against the ideal model, DRISA [2], and GPU 56
4.9 Performance metrics that affect Fulcrum’s speedup . 57
4.10 The effect of density on the EDP benefit . 57
4.11 The performance overhead of copying shared values vs. the performance overhead of broad-

casting. Since broadcasting and computation are often overlapped, broadcasting imposes
zero/negligible overhead. 58

4.12 The performance overhead of inter-subarray data movement through GDL vs. LISA [3] for
applications with inter-subarray data movement requirement. 58

4.13 Breakdown of energy consumption . 60

ix

List of Figures x

4.14 Power consumption of integer Fulcrum and float Fulcrum vs. GPU 60
4.15 Performance under different power budgets . 61

5.1 The row-oriented approach processes all rows, whereas the column-oriented approach processes
only the columns corresponding to the non-zero entries of the input vector. In (b), the input
vector is transposed to illustrate the relation between non-zero entries of the input vector and
the processed (activated) columns of the matrix. 66

5.2 Remote accumulations and load imbalance. (a) With column-oriented partitioning, long
columns cause load imbalance and many remote accumulations. (b) With Hybrid Partitioning,
long column entries cause no remote accumulation and no load imbalance. 84

5.3 A sparse matrix in CSC and CSC Pair format. 84
5.4 Column length distribution in real-world matrices (both x and y-axis are in log scale). 85
5.5 The column-oriented algorithm. 85
5.6 An extra optimization that replicates the output vector entries corresponding to long rows/-

columns in each subarray. 86
5.7 Overall architecture. In (a), the circles are subarrays, the rectangles are banks, and the

pentagons are switches. 86
5.8 A walk-through example for C[A[i]]+ = B[i] with four instructions. 87
5.9 OffsetPacking. 87
5.10 LocalAccumulations. 88
5.11 Average speedup of our final solution (GearboxV3) against a GPU framework (Gunrock) and

a prior work (SpaceA). The values less than 100 represent slowdown. 88
5.12 The effect of each optimization. Table 5.3 lists the description of each Gearbox version. . . . 89
5.13 Breakdown of execution time and energy . 89
5.14 Comparison against ideal models. 90
5.15 (a) The effect of load balancing techniques. 90
5.16 Power and temperature constraints. 91
5.17 Speedup for regular kernels. 91
5.18 The speedup of our final solution (GearboxV3) against a GPU framework (Gunrock) and a

prior work (SpaceA) for each dataset and algorithm. 92

6.1 Parallel Radix sorting: (a) the structure of the intermediate array, (b) in step 1 each processing
unit (PU) generates a local histogram array, (c) in step 2, we need a prefix-sum on all local
histogram arrays, and (d) in step 3, each PU determines the location of each key by deriving
the bucket number (line 8) and adding the prefix value of the bucket to the current index of
the bucket (line 9). 94

6.2 Our proposed architecture: (a) The circles are subarrays, the rectangles are banks, and the
pentagons are switches. Banks and subarray connected using a interconnection with dragonfly
topology (b) a bank with an SPU and three Walkers per subarray, (c) architecture of each
SPU, and (d) an example of local binary radix sorting. 96

6.3 The throughput comparison. 100

Chapter 1

Introduction

Big data applications have enormous impact on many industries by extracting valuables information from

data represented in large tables, graphs, etc. Similarly, machine learning, and particularly deep learning

approaches based on artificial neural networks, has recently revolutionized many fields including computer

vision, speech recognition, natural language processing, helping address the grand challenges facing our

society.

Big data and machine learning applications increasingly require massive computing capacity, parallelism,

and data movement between memory and processors, outpacing existing semiconductor technology. Year-

over-year improvement in general-purpose CPU performance has been stagnating due to physical limits in

processor technology (from doubling performance every 1.5 years (1985 through 2003) and two years (2003 to

2010) to now when the performance is expected to be doubled only every 20 years). This exacerbates the

longstanding memory wall problem. Moving data to and from memory is becoming a huge bottleneck. For

example, in current systems, the transfer of data, from the off-chip memory to the processor, takes two orders

of magnitude more time and consumes three orders of magnitude higher energy consumption than the actual

computation (e.g., a single-precision addition) [4]. Large working sets of some modern applications (with

low temporal locality) or irregular access patterns (with low spatial locality) make caches (our traditional

solution to the memory wall) less effective.

Recent integration technologies, such as 2.5D integration of memory and processing elements (e.g.,

integration of GPU/FPGA with HBM2 memories) have not completely solve the problem, and data movement

still remains the main bottleneck for memory-intensive applications, where each loaded data elements from

memory will only be the subject of a single or few compute operation. The overhead stems from the fact

that memory is designed in a multi-level structure, and data should move along all the buses that connect

1

Introduction 2

these structures. For example, each 3D memory stack has many memory layers (and sometimes a logic layer),

each layer has many banks, each bank has many subarrays, each subarray has many rows, and each row is

composed of many words (e.g., 64 words). When data are accessed, they traverse across all the buses and

across the distance between the memory stack and the processing elements. To alleviate the cost of data

movement of data-intensive applications, we have two options: (i) shrinking the size of data to reduce data

transfer and (ii) processing data inside the memory by adding processing units near memory cells.

To reduce the cost of data movement in general-purpose processors, prior works have explored cache

and memory compression to reduce the data transfer and also increase the effective capacity of on-chip and

off-chip memory elements, which in turn reduces data movement (due to reduced cache misses and redcued

memory page faults). We can categorize prior approaches into two groups: (i) lossless compression and (ii)

lossy compression. Lossless compression impose significant overheads for conversion, metadata handling, and

locating the compressed values. As a result, they are often only amenable for L3 [5, 6]. More importantly,

they have low compression ratio for floating point values and cache blocks with multiple data types. The

inefficiencies stem from the fact that compressor and decompressor have minimum information about the

program and obliviously search for value locality within each cache block that they receive [5, 7]. Some

prior works propose to trade off the accuracy for the size of transferred data by (i) quantizing floating point

values or (iii) omitting (truncating) a certain number of least significant bits (LSBs) in the mantissa of

floating-point numbers [1, 8] (we refer to these techniques as OLSB). These approaches can be considered as

light-weight lossy compression technique. Quantization is popular in accelerators, where the bitwidth can

be customized [9, 10, 11]. However, employing quantization in general-purpose processors is challenging. A

software implementation of quantization imposes a significant conversion overhead and programmer’s effort,

and more importantly, cannot unlock maximum benefit for variables that require less bitwidth than standard

variables. It has to use only 8-bit, 16-bit, or 32-bits variables and hence it imposes significant (e.g., 100%,

77%, or 88% for 4-bit, 9-bit, or 17-bit variables, respectively) cache space and memory bandwidth overhead.

More importantly, the floating-point format and the exponent part are necessary for supporting a wide range

of values. In fact, the floating-point format is popular among developers because it supports a wide range of

values and decreases the probability of overflow during arithmetic operations. The other category of lossy

compression techniques often keeps the exponent intact and reduces the bitwidth of values by truncating

LSBs. Two factors limit the benefit of such techniques: (i) the overhead of eight bits for the exponent, and

(ii) the high error that grows with the value of the exponent. In other words, the larger the magnitude of the

value, the higher the absolute error (the magnitude of error).

The second option for reducing the cost of data movement is to add processing units closer to the

memory cells, i.e., to subarrays so that the data is processed in situ. Processing at the subarray level

1.1 Contributions 3

provides higher parallelism, lower access latency, and lower energy consumption compared to other levels

of processing in memory. However, due to the small size of each subarray and the inefficiency of logic in

memory technology, adding traditional cores per subarray or adding row-wide arithmetic units per subarray

is impractical. Therefore, many of the existing subarray-level methods [2, 12] add only simple row-wide

logic units to the row buffer of each memory subarray. In our paper, Fulcrum [13], we have shown that

row-wide logic units fail to fully capitalize on the benefits of in situ processing because they require multiple

energy-draining row activations. Furthermore, in previous in-situ techniques, the row-wide logic units perform

the same operation on all the words in a row, making operation with data dependency and predicate-based

operations inefficient. The inflexibility limits the range of operations that can benefit from in-situ computing.

1.1 Contributions

This dissertation explores two main research questions: (i) how can we enable light-weight narrow-bitwidth

value representation and avoid overflows? (ii) how can we increase the flexibility and efficiency of in-memory

processing units and widen the range of applications that can benefit from in-situ processing?

Accordingly, we hypothesize that light-weight compression and flexible near-data processing

can significantly mitigate the cost of data movement. To evaluate this hypothesis, this dissertation

proposes: (i) An Overflow-free Quantized Memory Hierarchy in General-Purpose Processors, (ii) Fulcrum: a

Simplified Control and Access Mechanism toward Flexible and Practical In-situ Accelerators, (iii) Gearbox:

A Case for Supporting Accumulation Dispatching and Hybrid Partitioning in PIM-based Accelerators, and

(iv) Pulley: An Algorithm/Hardware Co-optimization for Multi-device In-memory Sorting.

1.1.1 An Overflow-free Quantized Memory Hierarchy in General-Purpose Pro-

cessors

Accelerator designers exploit quantization to reduce the bitwidth of values and reduce the cost of data

movement. However, any value that does not fit in the reduced bitwidth results in an overflow (we refer

to these values as outliers). Therefore accelerators use quantization for applications that are tolerant to

overflows. We observe that in most applications, the rate of outliers is low and values are often within a narrow

range, providing the opportunity to exploit quantization in general-purpose processors. However, a software

implementation of quantization in general-purpose processors has three problems. First, the programmer

has to manually implement conversions and the additional instructions that quantize and dequantize values,

imposing a programmer’s effort and performance overhead. Second, to cover outliers, the bitwidth of the

Introduction 4

quantized values often become greater than or equal to the original values. Third, the programmer has to use

standard bitwidth; otherwise, extracting non-standard bitwidth (i.e., 1-7, 9-15, and 17-31) for representing

narrow integers exacerbates the overhead of software-based quantization. The key idea of this chapter is to

propose hardware support in the memory hierarchy of general-purpose processors for quantization, which

represents values by few and flexible number of bits and stores outliers in their original format in a separate

space, preventing any overflow. We minimize metadata and the overhead of locating quantized values using a

software-hardware interaction that transfers quantization parameters and data layout to hardware. As a

result, our approach has three advantages over cache compression techniques: (i) less metadata, (ii) higher

compression ratio for floating-point values and cache blocks with multiple data types, and (iii) lower overhead

for locating the compressed blocks. It delivers on average 1.40/1.45/1.56× speedup and 24/26/30% energy

reduction compared to a baseline that uses full-length variables in a 4/8/16-core system. Our approach also

provides 1.23× speedup, in a 4-core system, compared to the state of the art cache compression techniques

and adds only 0.25% area overhead to the baseline processor.

1.1.2 Fulcrum: a Simplified Control and Access Mechanism toward Flexible and

Practical In-situ Accelerators

In-situ approaches process data very close to the memory cells, in the row buffer of each subarray. This

minimizes data movement costs and affords parallelism across subarrays. However, current in-situ approaches

are limited to only row-wide bitwise (or few-bit) operations applied uniformly across the row buffer. They

impose a significant overhead of multiple row activations for emulating 32-bit addition and multiplications

using bitwise operations and cannot support operations with data dependencies or based on predicates.

Moreover, with current peripheral logic, communication among subarrays is inefficient, and with typical data

layouts, bits in a word are not physically adjacent.

The key insight of this chapter is that in-situ, single-word ALUs outperform in-situ, parallel, row-wide,

bitwise ALUs by reducing the number of row activations and enabling new operations and optimizations.

Our proposed light-weight access and control mechanism, Fulcrum [13], sequentially feeds data into the

single-word ALU and enables operations with data dependencies and operations based on a predicate [14]. For

algorithms that require communication among subarrays, we augment the peripheral logic with broadcasting

capabilities and a previously-proposed method for low-cost inter-subarray data movement. The sequential

processor also enables overlapping of broadcasting and computation, and reuniting bits that are physically

adjacent. In order to realize true subarray-level parallelism, we introduce a light-weight column-selection

1.1 Contributions 5

mechanism through shifting one-hot encoded values. This technique enables independent column selection in

each subarray.

1.1.3 Gearbox: A Case for Supporting Accumulation Dispatching and Hybrid

Partitioning in PIM-based Accelerators

Recent PIM works employ processing units with a SIMD architecture to provide high parallelism.

However, kernels with random accesses cannot effectively exploit the parallelism of these approaches.

Without efficient support for random accesses, ALUs remain idle until all the operands are collected from

local memory segments (memory segment attached to the processing unit) or remote memory segments (other

segments of the memory).

Generalized sparse-matrix-dense-vector (SpMV) and sparse-matrix-sparse-vector (SpMSpV), used in a

wide range of applications, require random accesses. For SpMV and SpMSpV, properly partitioning the

matrix and the vector among the memory segments is also very important. Partitioning affects (i) how much

processing load will be assigned to each processing unit and (ii) how much communication is required among

the processing units. In SpMSpV, unlike SpMV, the load assigned to each processing unit depends on the

non-zero entries of the input vector, making partitioning even more challenging.

In this chapter, first, we propose a highly parallel architecture that can exploit the available parallelism

even in the presence of random accesses. Second, we observed that, in SpMV and SpMSpV, most of the

remote accesses become remote accumulations with the right choice of algorithm and partitioning. The

remote accumulations could be offloaded to be performed by processing units next to the destination memory

segments, eliminating idle time due to remote accesses. Accordingly, we introduce a dispatching mechanism

for remote accumulation offloading. Third, we propose Hybrid partitioning and associated hardware support.

Our partitioning technique enables (i) replacing remote read accesses with broadcasting (for only a small

portion of data that will be read by all processing units), (ii) reducing the number of remote accumulations,

and (iii) balancing the load.

Our proposed method, Gearbox [15], with just one memory stack, delivers on average (up to) 15.73×

(52×) speedup over a server-class GPU, NVIDIA P100, with three stacks of HBM2 memory.

1.1.4 Pulley: An Algorithm/Hardware Co-optimization for Multi-device In-

memory Sorting

Processing-in-memory (PIM) minimizes data movement overheads and provides high parallelism by placing

one/few ALUs near each memory segment (e.g., bank or subarray). Current PIM approaches are inefficient

Introduction 6

for three types of kernels: (i) kernels that require significant random accesses, which are costly in PIM, (ii)

kernels that require a large intermediate memory per ALU, because the capacity overhead is multiplied by

the number of ALUs, and (iii) kernels that require an operation across all the large intermediate arrays,

because such operations in PIM are often performed through a core far from memory segments.

Parallel sorting is an important and widely used kernel with these requirements. In this paper, we propose

an algorithm and hardware co-optimization for sorting that reduces the capacity and performance overhead of

intermediate arrays and eliminates random accesses. To this end, we add hardware support that enables every

group of processing elements to share an intermediate array, reducing the number of required arrays. We also

modified the sorting algorithm to eliminate random accesses. Our hardware/algorithm optimizations, Dubbed

Pulley, on average, delivers 20× speedup compared to Bonsai [16], an FPGA-based sorting accelerator and

13× speedup compared to IMC [17], an in-logic-layer-based sorting accelerator.

1.2 Overview of Dissertation

Our evaluations of our proposed methods shows that light-weight compression and flexible near-data processing

can significantly mitigate the cost of data movement. Our light-weight compression provides 1.23× speed

up compared to the state-of-the-art cache compression techniques and can significantly reduce the cost of

data movement, supporting the first part of our hypothesis. Fulcrum [13], our near-data processing approach,

provides 70× speedup per memory stack and reduces the energy consumption by 96%, significantly reducing

the cost of data movement and supporting the second part of our hypothesis. Our second version of our

near-data accelerator outperforms Gunrock, a GPU-based graph-processing framework, by 15.73×, confirming

that near-data processing can significantly reduce the cost of data movement for graph processing applications,

supporting the second part of our hypothesis. The third version of our near-data accelerator, on average,

delivers 20 × speedup compared to Bonsai, an FPGA-based sorting accelerator, supporting the second part

of our hypothesis.

The remainder of this dissertation is organized as follows:

Chapter 2: Background and Prior Works introduces the problem of data movement, memory

hierarchy, and prior works.

Chapter 3: An Overflow-free Quantized Memory Hierarchy in General-Purpose Processors

presents a light-weight, overflow-free, and narrow-bitwidth value representation in the memory hierarchy of

general-purpose processors. This chapter, in full, is a reprint of the material as it appears in the proceeding

of IISWC 2019 [18]. I was the primary investigator and author of this paper.

1.2 Overview of Dissertation 7

Chapter 4: Fulcrum: a Simplified Control and Access Mechanism toward Flexible and

Practical In-situ Accelerators presents a flexible but practical subarray-level processing approach. This

chapter, in full, is a reprint of the material as it appears in the proceeding of HPCA 2020 [13]. I was the

primary investigator and author of this paper.

Chapter 5: Gearbox: A Case for Supporting Accumulation Dispatching and Hybrid Parti-

tioning in PIM-based Accelerators presents how we extend Fulcum for highly sparse operations. This

chapter, in full, is a reprint of the material that is accepted to appear in ISCA 2022 [15]. I was the primary

investigator and author of this paper.

Chapter 6: Pulley: An Algorithm/Hardware Co-optimization for Multi-device In-memory

Sorting presents how we extend Fulcrum for large-scale sorting. I am the primary investigator of this work.

Chapter 8: Conclusions summarizes the dissertation and discusses the implications of this work and

potential future directions of research.

Chapter 2

Background and Related works

2.1 Background

In this section, we introduce the structure of 3D stacked DRAM memories and their specific components that

we have employed in our proposed method.

In 3D stacked DRAM memories, unlike DIMM-based memories, data is not interleaved among several

chips. This characteristic is the first characteristic that makes 3D stacked memories suitable for PIM-based

accelerators because processing inside memory is most efficient when all the bits of values are physically

adjacent.

3D stacked DRAM is organized in a multi-level hierarchy, as illustrated in Figure 2.1 (a). Each 3D stacked

memory has one logic layer and multiple (e.g., 4 or 8) memory layers. Each stack is divided into multiple

vertical partition [19]] (e.g., 16 or 32), vaults/channels. Each with its own memory controller in the logic layer,

connected to DRAM partitions. Layers are connected via TSVs (through-silicon via). The TSV is shared

among all the banks in the vault. This shared bus is a bottleneck, as it serializes access to all subarrays in a

vault. It is possible to employ a segmented TSV [20, 21], where every two layers are connected through one

separate TSV, and data from upper layers are buffered in each layer before being sent to the lower layers.

Although segmented TSVs increase the access bandwidth (because it acts as a pipeline, where the latency of

each stage is lower than the latency of one-segment TSV), the segmented TSV increase the latency and the

energy consumption of data movement (due to the extra cost of buffering and arbitration) [20, 21].

In each layer of each vault, there are a few banks (e.g., 2 or 4). Figure 2.1 (b) shows the structure of a

memory bank. A bank comprises several subarrays. Each subarray has multiple rows. Each row contains

multiple columns of data. The column width varies in different DRAM configurations. The most common

8

2.2 Related Work 9

column widths are 32, 64, 128, and 256 bits. To access one column of the data from a bank, a row address is

sent to all row decoders in all subarrays through the address bus in the bank. The row decoder selects the

corresponding subarray and the corresponding row. The whole row that contains multiple columns is read

out at once and will be stored in a row-wide buffer in the subarray, which is called the row buffer. To select

one column from the row buffer, the column address should be sent to the column decoder, at the edge of the

bank. The column decoder decodes the column address and sends the decoded bits to each subarray through

column selection lines (CSL). The pass transistors/multiplexers in each subarray receive the decoded column

address on CSLs and select the requested column and send it to the local data line (LDL), in each subarray.

The data on LDL is sent to the logic-layer via global data lines (GDL). Two components make 3D stacked

memories more suitable for Fulcrum: (i) the logic layer, and (ii) shared TSVs. The logic layer is more efficient

for implementing logic than memory layers. Therefore, we can place flexible core and SRAM memories in the

logic layer and exploit these components for parts of the applications that are not suitable for in-memory

processing. We also employ the shared TSVs for broadcasting, because TSVs are shared among all banks in

a vault and provide an efficient medium for broadcasting.

Logic layer Memory banks

Memory layers TSV

(a) High-level hierarchy
Column Decoder

Row Buffer

R
ow

 D
ec

od
er

Subarray 1

GDLCSL

Row Buffer

Subarray n

(b) A bank

Figure 2.1: 3D DRAM: (a) each 3D stack has a logic-layer and a few memory layers containing multiple
memory banks, (b) each bank comprises several subarrays

2.2 Related Work

This section introduces several categories of prior works on reducing the cost of data movement.

Background and Related works 10

2.2.1 Bit-width Reduction Techniques.

Several studies employed the OLSB method for ASIC and FPGA designs to customize the bit-width [8, 9].

Prior works also show the energy reduction of quantization with arbitrary bit-width in acceleretor design and

provide a framework for deciding the bit-width [10, 11]. However, these solutions cannot be adopted in the

general-purpose processors, because the bitwidth of variable in general-purpose processors are limited to only

a few standard options (e.g., 8, 16, and 32). The only general-purpose solution, ACME [1] employs the OLSB

method which has lower accuracy and lower performance than quantization. We evaluate both our proposed

method and ACME with the specific bit-width that achieves the same level of average relative error (ARE)

and maximum absolute error (MAE). Our evaluations show that our proposed method can achieve up to

31%/26% performance improvement with ARE/MAE fixed to 5%. Our approach provide the same accuracy

with shorter variables and therefore, it achieve higher speedup.

2.2.2 In-situ Computing with Bitwise Operations

SRAM-based [22] and DRAM-based [23, 2, 12, 24] in-situ accelerators often support only bitwise operations.

An NVM-based in-situ accelerator, Pinatubo [25], also proposes to change the sense amplifiers to enable

bitwise operation for NVMs. A limited number of applications can benefit from bitwise operation. Recent

works [2, 26] implemented binarized and 2-bit quantized deep neural networks using in-situ accelerators. In

most memory technologies, employing row-wide complex ALUs imposes a significant hardware overhead. Li

et al., [2] evaluated the overhead of adding a 4-bit adder per every four bits of the row buffer and concluded

that it imposes more than 100% area overhead. Our proposed method has two advantages over these works.

First, we enable 32-bit complex operations such as multiplication and addition operations without imposing

a substantial hardware overhead. Second, our proposed method increases the flexibility of accelerators by

supporting conditional operations, operations with data/position dependency, and independent random

accesses to support a wider range of applications.

2.2.3 In-situ NVM-based Computing

Several prior works [27, 28, 29] employed the analog computation capability of ReRAM technology to perform

matrix-vector multiplication. Our proposed method differs from such methods in three aspects. First, these

technologies are memory-technology dependent and often use multi-bit memristor devices, which are unreliable.

These techniques are neither applicable to SRAM/DRAM, nor commercialized NVM memories [30] such as

3DXpoint [31]. Second, they require analog-to-digital converter (ADC) and digital-to-analog converter (DAC)

(ADC/DAC) blocks that impose significant hardware overhead (98% of the total area) and power overhead

2.2 Related Work 11

(89% of the total power consumption) [30]). Third, performing multiplication and addition operations by

approximately measuring the current introduces potential imprecision. A recent work, FloatPIM [30], designs

a CNN accelerator for training by enabling floating-point matrix-vector multiplication in memory blocks,

without requiring ADC/DAC. To this end, this approach copies the vector (which is the shared value), not

only in each subarray but per each row of the matrix, to enable parallel multiplication and addition, imposing

capacity and energy overhead. They change the entire memory architecture and interconnection, and as

a result, the memory cannot be efficiently be accessed as a normal memory. Furthermore, it implements

addition and multiplication using multiple bitwise operations and depends on the computation capability

of memristors. Furthermore, it implements addition and multiplication using multiple bitwise operations

and depends on the computation capability of NV memories. Since NV memories allow a limited number of

write operations, NVM-based solutions that frequently write to memory have low endurance. For example,

GRAM blocks fail after only one day. Therefore GRAM’s authors propose to employ endurance management

techniques that extend the lifetime to 496 days [32].

2.2.4 Flexible Cores in DRAM Layers

In the first round of research on processing in memory, in the 1990s, a variety of works [33, 34, 35, 36, 37, 38])

proposed to add flexible cores per each bank or per entire DRAM chip. Some of these proposals [39] add one

processor per entire DRAM, plus multiple bank-level buffers. In these proposals, each column of these buffers

moves toward the single processor. This imposes a high cost of data movement, is not scalable for modern

DRAMs with many banks and subarrays, and limits parallelism. Our buffers enable sequential word-level

access with subarray-level parallelism. Recently UPMEM [40] has described a product with a complex core

per each bank of 64 MB. Fulcrum instead adds a simple processing unit per 1 MB and consequently provides

higher parallelism and imposes less overhead for data movement (Our evaluations show that the energy

consumption of accessing data at the edge of a bank through GDLs is at least 3× as much as that of a

floating-point addition). More importantly, traditional cores impose a significant overhead of control and

access for sequential operations. This overhead might be acceptable for far-memory cores for two reasons.

First, for these cores, the ratio of this overhead compared to the overhead of data movement is negligible.

Second, these cores use the small technology size and have a high frequency, whereas cores in DRAM layers

have to use large technology size and have a low frequency. Consequently, the overhead of the extra cycles for

such control and access mechanism becomes significant for in-memory cores. Fulcrum accelerates sequential

operations and reduces the overhead of access and control.

Chapter 3

An Overflow-free Quantized Memory

Hierarchy in General-Purpose

Processors

3.1 Introduction

Data transfer across the memory system and interconnect constitute a significant fraction of the total energy

and performance in memory-intensive applications [41, 42, 43, 44, 45, 46]. Prior works [4] show that the

energy cost of fetching a 32-bit word of data from off-chip DRAM is 6400× higher than an ADD operation.

This trend worsens as the processor technology moves to smaller nodes.

Prefetching and forwarding techniques [47] can alleviate the performance cost but they can not reduce

the energy cost of data movements. Therefore, several approaches proposed to trade off the accuracy for

the size of transferred data by omitting (truncating) a certain number of least significant bits (LSBs) in

the mantissa of floating-point numbers [1, 8]. We refer to these methods as OLSB. Two factors limit the

benefit of such techniques: (i) the overhead of eight bits for the exponent, and (ii) the high error that

grows with the value of the exponent. In other words, the larger the magnitude of the value, the higher

the absolute error (the magnitude of error). Despite the unfavorable effects, the floating-point format and

the exponent part are necessary for supporting a wide range of values. In fact, the floating-point format

is popular among developers because it supports a wide range of values and decreases the probability of

overflow during arithmetic operations. Due to this popularity, processor vendors added floating-point ALUs

12

3.1 Introduction 13

as soon as there were enough transistors available on the chip.

Our characterization demonstrates that, in real applications, most of the data values lie within a limited

range and only a small fraction of data values are located at the tail of the distribution where these values

are relatively further from the average. We define these values as outliers. Based on this observation, we

make a case for using a specific type of quantization (biased fixed-point), as a mean to reduce the bitwidth of

the variables and reduce the cost of data movement. This type of quantization maps a range of values to a

set of discrete indexes and therefore it requires few bits to represent indexes [4, 48, 49, 50].

Figure 3.1: Quantizing a range of values to 3-bit integers

Figure 3.1 shows that this type of quantization reduces the number of bits required for representing values

in the range of 1.25 to 2.75 by dividing the range into six steps (∆=0.25) and mapping them into 3-bit

integers (step-index). In this method, outliers can significantly expand the range and consequently increase

the number of bits required to represent the quantized values, even though they are accessed very infrequently.

A simple solution for handling outliers is to map values that result in overflows to the maximum or minimum

of the range. The effect of such mapping depends on the application. For example, in BlackSholes, mapping

outliers to the maximum or minimum of the range increases maximum absolute error by 116%, 333% and

69355% for bitwidth of 4, 8, and 12, respectively (as bitwidth increases our method’s error decreases and

hence the ratio of the error caused by outliers to our method's error increases).

A software implementation of quantization in general-purpose processors imposes a significant conversion

overhead and programmer’s effort, is prone to overflow, and more importantly, can not unlock maximum

benefit for variables that require less bitwidth than standard variables. It has to use only 8-bit, 16-bit, or

32-bits variables and hence it imposes significant (e.g., 100%, 77%, or 88% for 4-bit, 9-bit, or 17-bit variables,

respectively) cache space and memory bandwidth overhead (more details in Section 3.2).

Due to these constraints, quantization is popular in accelerators, where the bitwidth can be customized [9,

10, 11]. However, having one accelerator for each application, especially in consumer devices, is impossible,

due to space constraints, scheduling overheads, communication overheads and, interconnection limitations.

The goal of this work is to propose and evaluate an overflow-free and transparent architectural support

for quantization in memory hierarchy of general-purpose processors to accelerate a large domain of memory-

An Overflow-free Quantized Memory Hierarchy in General-Purpose Processors 14

intensive applications, where variables can be represented with minimum and flexible number of bits. Our

hardware modules act as accelerators for conversions that transparently quantize and dequantize cache blocks

as they move between L1 and L2 (or alternatively between L2 and L3). Accordingly, the data values are

quantized in the memory hierarchy in L2 and beyond and are de-quantized when transferred to L1, saving

the capacity of L2, L3, and memory as well as bandwidth of L3 and memory. The values are in their original

format in L1 and hence quantization causes no overflow during computation. To prevent overflow while we

quantize and transfer data to L2, we propose to store and represent outliers in a separate space, assigned to

outliers, and propose a mechanism for retrieving these values.

Quantization could be considered as a specific type of compression. However, cache compression techniques

impose a significant metadata overhead and need a complex mechanism for locating the address of compressed

values in compressed caches (translating the address). Due to these overheads, most of the cache compression

techniques are only amenable for L3 [5, 6] and not applicable for L2 (more details in Section 3.2). We observed

that the inefficiencies stem from the fact that compressor and decompressor have minimum information about

the program and obliviously search for value locality within each cache block that they receive [5, 7]. We

exploit the predictability of the range of values and fixed bitwidth in quantization and devised a software-

hardware interaction to address inefficiencies in cache compression techniques. The interaction transfers

specific characterization of applications such as data layout, distribution of values, and tolerable error

(translated to mid, step-size, and bit-width) to hardware. Our hardware modules use this information to track

which pages belong to which array of the application and hence store metadata only once for all pages of

an array, reducing the metadata overhead. More importantly, our hardware modules exploit the bitwdith

information for a light-weight address translation mechanism, implemented by arithmetic operations. This

simplified address translation mechanism enables us to have a compressed L2 in addition to L3.

This paper makes the following contributions:

• We characterize 11 real data sets to show that real applications operate on data values within a particular

narrow range, with only few outliers out of the range, suggesting that a significant portion of values can

be represented by few bits.

• We propose efficient techniques to provide support for quantization in hardware. First, we propose a

simple software-hardware interface to specify quantized variables and the necessary parameters. Second,

we introduce efficient hardware modules that transparently quantize and dequantize cache blocks between

a upper-level cache and a lower level cache. Third, we propose an efficient way of supporting outliers.

• Our evaluation of approximate applications shows that quantization provides on average 39-98% better

accuracy compared to the techniques that omit the LSBs. Quantization provides on average a speedup of

3.2 Motivation 15

1.40/1.45/1.56× and energy reduction of 24/26/30% compared to a baseline that uses full-length variables

in a 4/8/16-core system. We have synthesized the RTL implementation of our hardware modules [51] and

the synthesize report shows that our method adds only 0.25% area overhead to the baseline processor.

3.2 Motivation

In this section, we explain the benefit of hardware-based quantization over three alternative approaches: (i)

quantization in software, (ii) OLSB, and (iii) cache compression.

3.2.1 Quantization in Hardware versus Software

A software-based implementation of the quantization method suffers from four disadvantages. First, it imposes

the overhead of multiple instructions for each conversion. Figure 3.2 (a) demonstrates multiple examples of

necessary conversion points: (i) quantization before storing values in arrays (1 and 3), (ii) dequantization

before functions that requires the real values, such as sine and cosine (2), (iii) dequantization before

computation on non-quantized values (4), (iv) conversion to avoid overflow (5), and (v) dequantization

before storing the final results in the output file (6). Second, it is error-prone as programmers should

manually detect the locations of necessary conversions. Third, when the required bit-width is 1-7, 9-15, 17-31,

it uses 8-bit, 16-bit and 32-bit variables, respectively (to avoid the overhead of addressing and extracting a

few bits in a sequence of bits), imposing up to 700%, 77% and 88% overhead of cache space and memory

bandwidth. Fourth, it cannot represent outlier values, which is quite common in real data sets (explained in

Section 3.3). For example, in Blackscholes, most price values can be represented by 6 bits but the maximum

price requires 18 bits. With no support for outliers, software-based quantization has to use 32 bits for all

values. We can implement our proposed method for outliers in software and store them in a separate array.

However, in this case, quantization (7) and dequantization (8) functions becomes more complex as they

have to check outliers and read/write outliers from/in a separate space(Figure 3.2 (b)).

3.2.2 Quantization versus Omitting the LSBs.

This section discusses two major benefits of using quantization in approximate applications.

(i) Lower relative error/shorter bit-width. Figure 3.3 (a) compares the error introduced by quantization

to the error introduced by OLSBs while varying the bit-width from 4 to 30 in eight popular approximate

applications (details on the methodology is available in Section 3.6.1). For OLSB, we use one bit for the

sign and the rest of the bits for mantissa (unless the bitwidth is 4 bits, where we use one bit for the sign

and three bits for exponent and assume mantissa is one). The accuracy metric here is the average relative

An Overflow-free Quantized Memory Hierarchy in General-Purpose Processors 16

Figure 3.2: Quantization in software

4 8 12 16 20 24 28
Bit-width

10
5

10
4

10
3

10
2

10
1

10
0

A
ve

ra
ge

 re
la

tiv
e

er
ro

r
 (l

og
 s

ca
le

)

OLSB
Quantization

(a) Relative error

4 8 12 16 20 24 28
Bit-width

10
4

10
3

10
2

10
1

10
0

M
ax

 a
bs

ol
ut

e
er

ro
r

 (l
og

 s
ca

le
,n

or
m

al
iz

ed
)

OLSB
Quantization

(b) Absolute error

Figure 3.3: Final output error using quantization vs. OLSB

error (average of the percentage of error for all output variables), which has been used in prior works on

approximation [1, 58, 59]. This figure clearly shows that, for any given bit-width, quantization’s error is lower

than OLSB’s error. It also shows that, for the same level of error, quantization requires fewer bits. Shorter

bit-width stems from the fact that, unlike OLSB, quantization does no need eight bits for the exponent part.

3.2 Motivation 17

(a) Angles

(b) Coordinates

Figure 3.4: Relative error for (a) angles, and (b) coordinates

V1 V2

A
m

nt C
O T

R
H

A
H

FF
M

C

Te
m

p

W
in

d IS
I

Lo
c

A
bs

R
ap

D
dp X1 X2 Y2

Sa
m D
if

W
1

N
m

1

Pr
ic

e

N
et

Sn
dA

EE
G

A

A
ct

v

Different columns in different datasets

10
3

10
0

10
3

R
an

ge
 o

f v
al

ue
s

 (l
og

 s
ca

le
)

Figure 3.5: Variables in real datasets exhibiting a limited range (details in Table 3.1)

(ii) Lower absolute error/shorter bit-width. When the accuracy metric is the relative error, the

magnitude of the error can grow with the magnitude of the original value. However, many approximate

applications expect that the magnitude of error remains limited regardless of the original value. For example,

Inversek2j (an application from AxBench suit [58]), is an application that calculates the rotation angle

for a 2-joint robotic arm. Assume that we define a relative error of 10% as the tolerable error. In this

case, if the arm moves a small angle to hold the object, such as 30°, it will be off by only 3°, but for

large angles, such as 120°, the error becomes 12°, which is quite high and can potentially make the arm

miss the target object (Figure 3.4(a)). In reality, the acceptable error depends on the diameter of the

target object, which is a fixed value and does not depend on the original value of the rotation. Another

example is the inputs of Jmeint (from AxBench suit [58]) that analyzes the overlap of a pair of triangles

in the 3-D space. In the real world, the acceptable error for the coordinates of the point A should not

depend on the location of the center of the cartesian system (Figure 3.4(b)). For these applications, the

absolute difference between the original value and the approximate value defines the proper accuracy metric.

An Overflow-free Quantized Memory Hierarchy in General-Purpose Processors 18

0 200 400 600
Open price

0

500

Fr
eq

ue
nc

y

(a) Blksh, NYSE [52]

10 0 10
Net change

0

1000

Fr
eq

ue
nc

y

(b) Financial,
NYSE [52]

10 0 10
Sound amplitude

0

500000

Fr
eq

ue
nc

y

(c) FFT, ASD [53,
54])

3500 4000 4500 5000
EEG amplitude

0

20000

Fr
eq

ue
nc

y

(d) FFT, EEG [55]

10 0 10
Activation values

0

50000

Fr
eq

ue
nc

y

(e) VGG, Cifar10 [56,
57])

Figure 3.6: Histograms of data values in various applications

Unfortunately, when we omit the LSBs from the mantissa, the absolute error depends on the value of the

exponent (Error = (−1)S ×
(∑23

i=23−(l+1) M23−i2
−i
)
× 2E) which can lead to a high absolute error if the

exponent value is large whereas quantization limits the maximum possible absolute error to the step-size.

Figure 3.3 (b) demonstrates that, compared to OLSB, quantization lowers maximum absolute error in the

output of our evaluated approximate applications when the bit-width is varied from 4 to 30.

3.2.3 Quantization versus Cache Compression.

Cache compression techniques have three problems. First, they require metadata per cache block. For

example, Base-delta [7] shrinks the size of each cache block by subtracting the values within the block from

a base value. It requires 1-4 bytes for the base value per block. For a compression ratio as high as four,

the four bytes, per compressed block, imposes 25% overhead. Second, they can not achieve a reasonable

compression rate for two types of arrays: (i) arrays containing single-precision floating point values, where

variation in the least significant bits is high and (ii) arrays of structure or any other composite data type

with consecutive variables that are inherently different. Third, cache compression techniques, compress each

block of the cache into different size which requires a complex mechanism for locating the cache blocks. As a

result, they employ one of the three following techniques: (i) padding that pads compressed block so that the

size of each compressed block becomes an integer and power of two fraction of the size of the original cache

block (e.g. LCP [60]) (i) dividing the original cache block into integer number of segments and assigning

one tag per each segment (e.g. HyComp [5]), (ii) employing a completely decoupled tag array and data

array, where the tag array points to the start of the compressed block in the data array (e.g. Decoupled

compressed cache [6]). The first and second approach constraint compression ratio and the third approach

requires modification in the cache and a defragmentation mechanism for the data array. More importantly,

tag and data can not be accessed in parallel and will be accessed sequentially, doubling the latency of

caches (which is already around 36 cycles for modern large last level caches). Since the complex decoupling

mechanism cannot be employed for L2 caches, most cache compression techniques only compress the last

level cache. In quantization, the compressed bitwdith is fixed and the page offset of each compressed variable

can be determined by arithmetic operations. Section 3.4.4 explains that we exploit the fixed bitwidth to

3.3 Key Observations and Key Ideas 19

locate our compressed values using simple arithmetic operations and keep the original structure of the cache,

eliminating the decoupling mechanism. This enables us to quantize values in L2 in addition to L3. More

importantly, by transferring information about data layout to hardware, we track which pages belong to

which array of the application and hence store metadata only once for all pages of an array.

3.3 Key Observations and Key Ideas

This section explains three key observations that form three key ideas of this paper.

Observation 1: Data Values in a narrow Range. We characterize 11 real data sets [61, 62, 63, 64, 65,

66, 52, 54, 55, 57] used in different domains, such as machine learning, weather forecast, financial analysis,

signal processing, image recognition, etc. (details in Table 3.1). Figure 3.5 illustrates the box plot for several

variables in these datasets, where the box shows the range of values in the first to third quartile, the bars

show the lower and upper limit within 1.5× of the first and third quartile, and the values outside that range

are shown as dots. This figure clearly demonstrates that data sets for many approximate applications exhibit

values within a narrow range. The first key idea is that, given the narrow range of values, quantization can

be applicable to a wide range of applications and efficiently reduce the cost of data movement.
Table 3.1: Description of real data sets

Variable name Data set description

V1, V2, Amnt Credit card fraud detection data set [61]
CO, T, RH, AH Sensor data for air quality [62]
Temp, Wind, ISI Weather index for forest fire [63]
Loc, Abs, Rap, Ddp Speech data from parkinson patients [64]
X1, X2, Y2 Intrusion detection data set [65]
Sam, Dif Building shapes for energy efficiency [66]
W1, Nm1 Purchase in sale transactions [67]
Price, Net Stock exchanges [52]
SndA Sound amplitudes [54]
EEGA EEG amplitudes [55]
Actv (VGG) Images for deep learning [57]

Observation 2: Outliers. Figure 3.5 also demonstrates that some values will be outside the limited range

(outliers) and Figure 3.6 shows that data values in most real applications exhibit a normal/folded normal

distribution. According to the normal distribution definition, 99.99% of the data values are within 8 standard

deviation and only 0.0001 (0.01%) of the values fall outside this range. There are two common approaches to

deal with outliers in data analysis techniques [68]: (i) mapping outliers to a minimum or maximum value,

or (ii) processing the outliers with their original values if the outliers provide meaningful insight to the

analysis [68, 69, 70, 71]. Our proposed method provides support for both approaches. The second key idea

An Overflow-free Quantized Memory Hierarchy in General-Purpose Processors 20

is to use the lowest possible number of bits for the most common values and store and represent outliers

separately, for applications that require support for the second approach.

Figure 3.7: (a) Original and (b) quantized array of structure

Observation 3: Common data layout in memory intensive applications. Pointers impose a significant

overhead [72, 73, 74]. Consequently, memory intensive applications, with high spatial locality, layout data

in two different ways: (i) array of structures (AoS), or (ii) structure of arrays (SoA). For example, in

graph processing applications (which intuitively should use a linked list), we prefer arrays of edges and

vertices or sparse matrices[75], partly, because pointer chasing, dynamic memory allocation (for each element

of the data structures such as linked list) and additional random memory access of linked lists imposes

a significant overhead. Supporting quantized SoA is straightforward as consecutive elements have same

quantization parameters. However, providing support for AoS requires a complex metadata handling and

address translation mechanism (Figure 3.7 shows how AoS should be quantized). Accordingly, the third key

idea is communicating data layout to hardware and track which pages belong to which arrays to keep metadata

once per whole array and use the layout information for simplifying address translation. Communicating

the layout, also enables eliminating the unused bits before byte variables (used for alignment of composite

data types, as shown in Figure 3.7), compressing boolean values (which only need one bit), and compressing

integers within narrow range (assuming the step-size is equal to one).

3.4 Mechanism

We quantize and dequantize value in the memory hierarchy and keep the ISA, pipeline, load-store module,

controller, and data-path intact for three reasons. First, providing support for quantization in the processing

unit calls for invasive modifications in cores. Second, previous studies show that employing short variables in

the computation part of the systems, such as ALU, can significantly increase the error (due to arithmetic

overflow and inaccurate intermediate values) [1, 76]. Third, the cost of moving data is 6400 times higher

than ALU operations in modern processors [4]. Therefore, we focused on reducing the cost of data movement.

The location of conversion can be decided based on different tradeoffs (performance vs. power). Hereafter,

we assume that the conversion occurs between L1 and L2 caches, as it provides higher speedup by increasing

the effective size of L2. However, we also evaluate the performance improvement when the conversion point

is between L2 and L3 cache such that values are stored in the full-length format in both L2 and L1 caches

3.4 Mechanism 21

(Section 3.6.6). In this section we answer seven questions: (i) how to determine the quantization parameters?,

(ii) how to transfer metadata to Hardware?, (iii) how to retrieve metadata?, (iv) how to locate quantized

values?, (v) how to quantize and de-quantized values?, (vi) how to handle corner cases?, and (vii) how to

avoid overflows?.

3.4.1 How to Determine the Quantization Parameters (Metadata)?

We observe that quantization parameters only depend on the nature of data and do not change significantly

with different data sets. For example, many speech recognition applications process the amplitude of people’s

voice [53, 54], which does not drastically change across different datasets. In the modern development process,

applications (such as machine learning applications) are trained and tested using some data set before the

deployment. During the execution (inference) phase, the application process data with the same nature.

Therefore, the quantization parameters can be derived using an offline profiler during the training and testing

phase. To determine the effectiveness of the offline profiling, we divide our dataset into training and testing

sets. Similar to machine learning training and testing, we kept at least 10% of the data for testing. For

datasets such as NYSE [52], we tracked the stock prices for 20 days to have more than 80000 observations for

training and ten days for testing. Some datasets such as CIFAR-10 [57] already have separated testing and

training sets (There are 50000 training images and 10000 test images). We used their partitioning for testing

and training. We profile applications using the training set to find the parameters for some specific average

relative error (e.g., less than 10%/5%/1%) and find that the parameters provide similar accuracy even with

the testing sets (the average relative error is 7%/2.2%/ 0.64%). Note that the quantization parameters can

be selected conservatively with a small overhead. For example, a conservative selection of 0.5×step-size (the

smaller the step-size, the lower the error) increases the bit-width only by one bit. Additionally, the offline

profiling does not need to be 100% accurate as our mechanism is capable of handling a small fraction of

outliers (explained in section 3.4.7).

Profiling can be a automated process. A parser detects arrays and the structure of arrays, then passes

this information to the profiler. The profiler detects whether the arrays are large enough and extracts the

quantization parameters for the specified tolerable error. A similar automated approach is being used for

accelerator designs [11, 8].

3.4.2 How to Transfer Metadata to Hardware?

After profiling, we need to communicate the quantization parameters obtained by profiler to software and

then from software to hardware. We have two options for transferring quantization parameters to software:

An Overflow-free Quantized Memory Hierarchy in General-Purpose Processors 22

//@quant<bit­width, step­size, mid>
struct element{

 @quant <3, 0.25, 1> float price

 @quant <1, , > bool type

 @quant <5, 0.5, 0> float yield };

@quant element array1;

array1(element*)malloc(n*sizeof(element));

(a) (b)

field
annotationarray

annotation
annotation
 form

at

mallocQuantize(n*sizeof(element), Metadata);

Page Table &
M

etaD
ata-Table

TLB
 &

 M

ataD
ata-B

uffer

M

alloc(M
etadata)

4

M
etadata

System
 C

all

M
M

U

C
om

piler

O
S

321

Figure 3.8: Software-hardware interaction

(i) automatic and static annotation of arrays with quantization parameters as shown in Figure 3.8 (a), and

(ii) putting the parameters in input arguments, so that it can be read at run-time, dynamically (useful for

API and library developers).

There are three essential steps involved in the communication of quantization parameters to hardware. First,

the compiler extracts the metadata from the annotated code. It extracts Bit-width, Step-size, and Mid values

of each filed of the structure (or address of the variables, in which these values are stored), as shown in

Figure 3.8 (a) and Figure 3.8 (b), step 1 . (For this step, we are mimicking the compiler support and do not

change the compiler itself). Then, the compiler passes this data to OS, using a specialized malloc function

(system call in step 2). Second, the malloc function assigns a page aligned space to the array and calculates

other required metadata (explained in Section 3.4.3). At this point, OS stores a few fields of metadata

required in the critical path in the page table (we extended page table entries to store these fields), and the

rest of metadata, in our proposed table, MetaData-Table (step 3). Third, once a page is requested, memory

management unit (MMU), as a part of its normal process, transfers page table entries to TLB, meaning that

metadata stored in the page table are transferred to TLB automatically. Our customized MMU also transfers

the corresponding metadata, stored in MetaData-Table, to our hardware module, called MetaData-Buffer

(step 4).

3.4.3 How to Retrieve Metadata?

Our proposed method requires two types of metadata. The first type of metadata, such as DeQWordCount,

is required for address translation between L1 and L2. DeQWordCount determines how many words (of L1

values) can fit in a quantized L2 block. DeQWordCount is an integer number (in Section 3.4.6 we explain

why it should be an integer number). Access to DeQWordCount is in the critical path as it is required for

3.4 Mechanism 23

sending a miss request to lower level cache (L2). Hence, DeQWordCount is stored in the TLB so that it can

be accessed when the processor accesses the TLB for the traditional virtual to physical address translation.

Existing systems, such as Intel x86-64 systems [77] have up to 15 unused bits in their TLB entries. Our

proposed method requires 18 bits [78]. Accordingly, we only add three bits to the original TLB entry and

the total overhead per core is 216 bytes (in a system with 64-entry first level TLB and 512-entry second

level TLB). The second type of metadata, including Step-size, Bit-width, and Mid, is required for data

conversion, We introduce a new hardware module, the MetaData-Buffer, to store the metadata required for

data conversion. Thanks to our MetaData-Buffer, our method can mix compressible and non-compressible

data. In our MetaData-Buffer (a full description of each field and its purpose is available at our online

documentation [78]), for each variable of the structure, we have a one-bit field, called “Conv?” that determines

whether that field needs conversion or not.

3.4.4 How to Locate Quantized Values?

When compression/decompression happens between two level of caches, page number and page offset of the

values in the decompressed cache are different from those of compressed cache. Unlike most cache compression

techniques, we do not need decoupling the tag array and the data array for address translation. In fact, our

fixed bitwidth enables address translation using arithmetic operations, which is performed by two modules:

(i) BitLocationFinder, and (ii) Offset-Divider.

We built upon prior works [60, 79] that allocate smaller page within a 4KB page and add few bits in the

page table entries that point to the start of the smaller page within 4KB pages. Therefore we only need to

translate page offset. We explain this process using two examples.

Example 1, an array of float numbers (float Arr[1000]: In this example, each element can be quantized

with 5 bits, and each cache line of the system has 64 bytes (512 bits). As a result, each L2 block accommodates

102 quantized words(DeQWordCount=512/5=102 (the division is implemented by multiplication by reciprocal

and takes 2.5 cycles)). Step 1 , an L1 eviction happens. Step 2 : Offset-Divider simply divides the word

number of the virtual offset(Vofset) by DeQWordCount, to determine the index of the L2 block that contains

the missed L1 block(index = (V ofset >> 2)/102). Since the index is ready, L1 can send the write-back

request to L2. Step 3 : while L2 is finding the L2 block containing the evicted block, the BitLocationFinder

finds the exact location of the evicted L1 block within the L2 block. To this end, the BitLocationFinder

multiplies the quantized bitwidth by the remainder of the last division ((V ofsett >> 2%102) ∗ 5).

Example 2, an AoS: In this case, BitLocationFinder needs two metadata: (i) AccLen and (ii) StartWord.

AccLen is a field of our MetaData-Buffer. Per each variable of the structure, AccLen stores the accumulated

An Overflow-free Quantized Memory Hierarchy in General-Purpose Processors 24

quantized length of preceding variables in the structure. This field optimizes BitLocationFinder to lower the

complexity of address location calculation. StartWord is a field in the TLB extension that indicates with

which word of the structure the page starts. BitLocationFinder first finds how many complete structures

exist before the start of the L1 block and then multiply this number by the quantized size of the structure.

lengthOfCompleteStructures =(((Vofsett >>2)% DeQWordCount)/NumWordInStructure)*

QntStructBits.

Then it uses AccLen and StartWord to calculate how many bits are required for any partial structure before

the start of the L1 block. The remainder of the last division determines how many words exist in the partial

structure.

remainder =(((Vofsett >>2)%DeQWordCount)% NumWordInStructure)

BitLocationFinder determines with which word of the structure, the partial structure ends

end =((Vofsett >>2)+StartWord)%NumWordInStructure

Then it calculates the number of bits in the partial structure and adds this to the lengthOfCompleteStructures.

if(end > remainder) {

start=end -remainder

BitLocationStart= AccLen[end]-AccLen[start]+ lengthOfCompleteStructures;

}else{

start=NumWordInStructure+end -remainder

BitLocationStart= AccLen[NumWordInStructure +1]- AccLen[start]+ AccLen[end]+

lengthOfCompleteStructures;

}

This operation, on cache misses, overlaps with reading the block from L2 and, on writebacks, lies out of the

critical path and does not hurt performance (The above pseudo code is developed to simplify the explanation

and differs from our optimized Verilog implementation).

3.4.5 How to Quantize and De-quantized Values?

The de-quantization process is on the critical path of a L1 miss whereas quantization only happens during

the writebacks. Therefore, we design a parallel de-quantizer for efficient and fast conversion that performs

the computation shown in Equation 3.1. Since the Step-size is a power of two number, the multiplication

in Equation 3.1 can be implemented as a summation of the exponent of Step-size and exponent of Index+

QuantizedMid (In fact, we store the exponent of Step-size in the MetaData-Table) and a leading one detector

module (LOD) can calculate the exponent of Index+QuantizedMid. We propose a 16-way parallel module

where each of the ways takes a 32-bit word (extracted through a crossbar) from the cache block as its input

3.4 Mechanism 25

and converts them in parallel (Figure 3.9). We synthesize the modules using an industry-standard 1xFinFET,

and the latency of the whole process is 1.6 ns (4.8 cycles in 3GHz frequency).

X̃ = (Index+QuantizedMid)× step− size (3.1)

Ex
p(
st
ep
-s
iz
e)

M
id

>>

+

LOD

One quantized cache block

Multiple de-quantized cache blocks

B
it-
w
id
th

Original

Index+Mid

Index
...

...

Way1 Way2 Way16

>>+
Align

M
id

>>

+

LOD

B
it-
w
id
th

Original

Index+Mid

Index

>>+
Align

M
id

>>

+

LOD

B
it-
w
id
th

Original

Index+Mid

Index

>>+
Align

Ex
p(
st
ep
-s
iz
e)

Ex
p(
st
ep
-s
iz
e)

Figure 3.9: The De-quantizer module

3.4.6 How to Handle Corner Cases?

As an extra optimization, we relax the constraint of fitting only integer number of L1 blocks in L2 blocks to

avoid the overhead of padding. As a result, naively unpacking a L2 block generates one or two partial L1

blocks on de-quantization, wasting cache space and requiring some extra metadata per cache block to track

the valid words of the block. Alternatively, we place the partial blocks in the prefetch buffer until the rest of

the block arrives to avoid extra metadata and wasted space in L1. We evaluate a 4-entry prefetch buffer

(similar to the original prefetch-buffer paper [80]). As our method is word-aligned, we only add one valid bit

per word to the prefetch buffer (total overhead of 64 bits). On a L1 miss, our Offset-Divider generates

a miss for the L2 cache block that contains the missed address. Subsequent requests to the valid part of

the partial block are serviced from the prefetch buffer and cause no miss. Once an address from the rest of

the partial block is requested, the Offset-Divider module will generate a miss request for the subsequent

L2 block. Note that we always store an integer number of quantized words in an L2 block (determined

by DeQWordCount). Therefore, No L1 word spans two L2 blocks, ensuring that Offset-Divider never

generates two L2 miss for one word, avoiding complexity in miss status history register (MSHR).

An Overflow-free Quantized Memory Hierarchy in General-Purpose Processors 26

3.4.7 How to Avoid Overflows?

We provide two options for dealing with the outliers that does not fit in short bitwidth and may cause

overflows: (i) mapping the outliers to the maximum or minimum of the range that can be represented using

the same bit-width used in the quantization process, and (ii) storing the outliers in the original floating point

format in a separate space. We explain how we support the second option using a walk-through example that

shows a scenario with an outlier in a block.

Step 1 : L1 evicts a cache block. Step 2 : the converter tries to quantize the evicted block and send it to the

L2 but it detects an oulier in the evicted block. Step 3 : the converter fills the location of the value in the L2

block with an outlier indicator (we assign both all-one or positive-all-one values as outlier indicators. For

example, for a quantized value with bit-width of four, outliers will be stored as ”1111”). Therefore, the layout

of data in L2 does not change. Step 4 : to preserve the real value of the outlier, the converter also sends a

message to memory, containing the real value of the outlier along with Voffset of the value to be stored in the

reserved space, extra b blocks at the end of each page, after the quantized values (In case the reserved block

space cannot accommodate a new outlier, the memory controller informs the OS to convert the quantized

page to a normal page). Step 5 : when this block is requested again (on a L1 miss), the converter sees the

indicator and detects that the related value is stored as an outlier. Thus, the converter sends a memory

request to get the real value of the outlier from the reserved space. To this end, the memory controller reads

the reserved blocks for outliers and scans these blocks until it finds the Voffset of the requested variable. The

real value of the outlier is stored next to the Voffset. Therefore, while L2 stores the outlier indicator, with

the same bitwidth of quantized values, L1 always stores the real value of the outlier and we never give up the

wide range that floating point format can support.

In our evaluation with real data sets, we notice that the fraction of outliers is significantly low (less than

0.005%) and the overhead of retrieving the outliers does not hurt the performance (evaluated in Section 3.6.6).

3.5 More Walk-Through Examples

In this section, we explain the necessary steps during loading a new page, a L1 miss, and a L1 eviction. The

steps are marked in Figure 3.10.

Steps during loading a new page: There are three steps involved in this process: (i) once processor loads

a new page, our proposed boolean filed, IsQuant in the TLB entry indicates whether the page is quantized or

not, (ii) if the page is quantized, our proposed MetaDataID field of the TLB entry specifies the Id of the

corresponding MetaData-Set in MetaData-Table of the corresponding virtual space, (iii) when a TLB entry

3.5 More Walk-Through Examples 27

Figure 3.10: Overall architecture of hardware quantization

is loaded, the Address Space ID (ASID) + MetaDataID of the TLB entry is compared against the ASID+

MetaDataID of all the sets. In case of a miss, MMU assigns one of the free sets in the MetaData-Buffer to the

MetaDataID and loads the corresponding MetaData-Set of the MetaData-Table in the MetaData-Buffer

(Figure 3.10 13). Note that each TLB entry traditionally has the ASID. Accordingly, we store ASID+

MetaDataID in each set of the MetaData-Buffer.

Steps during a L1 cache miss: There are three steps.

1. finding the address of the L2 block that contains the quantized values: Traditionally, for each load or store

instruction, processor uses virtual offset (Voffset) to access L1 and virtual page number (VPN) to read the

corresponding TLB entry and extract the the physical page number (PPN). In our method, on a L1 miss, if

the IsQuant of the TLB entry indicates that the missed address belongs to a quantized page, L1 sends the

Voffset to the Offset-Divider (Figure 3.10 1) and send PPN to L2 (2). The translator divides the Voffset

by the DeQWordCount value to generate the page offset (Poffset) of the L2 block and sends this offset to the

L2 cache (3).

2. Getting quantization parameters: While, waiting for the L2 block to be received, the TLB sends the

MetaDataID to the Converter (4). The Converter uses the MetaDataID to read the quantization parameters

from the MetaData-Buffer (5 and 6).

3. Conversion: When L2 sends the quantized block to the Converter (7), the Converter uses the

quantization parameter to de-quantize the block and sends back multiple de-quantized blocks to L1 (8).

Steps during a L1 write-back: There is no TLB access during the write-back. Accordingly, we store the

MetaDataID, in the L1 cache tag. Quantization in write-back has two steps.

1. Getting quantization parameters: When L1 evicts a dirty block from a quantized page (9), the MetaDataID

is read from its tag and the Converter uses this MetaDataID value to read the quantization parameters from

the MetaData-Buffer (10 and 11).

An Overflow-free Quantized Memory Hierarchy in General-Purpose Processors 28

2. Conversion: The Converter quantizes the block and calculates the location of the block in the quantized

L2 block (using the BitLocationFinder module), and sends the quantized block to L2 (12). Upon receiving

the block, L2 updates data at the correct location within the quantized block.
Table 3.2: The configuration of simulated systems

Component Parameters

Processor 4/8/16 cores, 3 GHz, 8-wide issue

L1
64B cache-line, 2-way associative,
32KB, private, 4 cycles

L2 8-way associative, 256KB, private, 12 cycles

L3
16-way associative, 8/16/32 MB, shared,
36/43/58 cycles

Prefetch buffer 4-entry
Memory system DDR3 1600 x64, 2 channels

4 8 12 16 20 24 28 32
Bitwidth

1

2

Sp
ee

du
p

ov
er

 fu
ll-

le
ng

th

Mean Hist Axpy VecAdd

Figure 3.11: Effect of bitwidth on speedup for microkernels.

3.6 Evaluation

3.6.1 Methodology

To evaluate the performance and energy consumption of our proposed method, we augmented Gem5 [81] and

McPAT [82] with timing and energy model of our proposed components. For simulation configuration, we

use the specification of Intel Core-i7 Haswell processor (listed in Table 5.1) and add a penalty of five cycles

(explained in Section 3.4.5) to model the conversion latency of a parallel converter module. We evaluated

four microkernels: (i) Hist (calculates the histogram of a vector of values), (ii) Mean (calculates the mean of

a vector), (iii) Axpy (Y = α×X + Y), and (iv) VecAdd (Z = X + Y). We also evaluated eight applications

from different domains: four applications from AxBench [58] (Blksh, Sbl, Inv2j, and FFT), three convolution

with configuration of three different layers of the deep learning application with high, moderate, and low

locality (FstAlx, Conv, and LstVg), and a Dot product kernel (Dot). For the eight applications, we used

standard data sets for each application [53, 54, 55, 83, 56, 57, 52]. Our evaluated workloads represent modern

applications, which are highly memory-intensive and exhibits a large memory footprint. Prior works have

shown that these applications are bottlenecked by the cost of data movement [4, 43, 84]. However, in order

3.6 Evaluation 29

4 8 12 16 20 24 28 32
Bitwidth

1.000

1.025
Sp

ee
du

p
ov

er
 fu

ll-
le

ng
th

4 Cores 8 Cores 16 Cores

10
610
510
410
310
210
110

010
1

M
A

E
(lo

g
sc

al
e)

Max absolute error (right axis)

(a) FstAlx

4 8 12 16 20 24 28 32
Bitwidth

1.0

1.5

Sp
ee

du
p

ov
er

 fu
ll-

le
ng

th

4 Cores 8 Cores 16 Cores

10
810
710
610
510
410
310
210
1

M
A

E
(lo

g
sc

al
e)

Max absolute error (right axis)

(b) Blksh

4 8 12 16 20 24 28 32
Bitwidth

1

2

Sp
ee

du
p

ov
er

 fu
ll-

le
ng

th

4 Cores 8 Cores 16 Cores

10
410
310
210
110

010
1

M
A

E
(lo

g
sc

al
e)

Max absolute error (right axis)

(c) Conv

4 8 12 16 20 24 28 32
Bitwidth

1.00

1.25

Sp
ee

du
p

ov
er

 fu
ll-

le
ng

th

4 Cores 8 Cores 16 Cores

10
410
310
210
110

010
1

M
A

E
(lo

g
sc

al
e)

Max absolute error (right axis)

(d) Dot

4 8 12 16 20 24 28 32
Bitwidth

1.00

1.25

Sp
ee

du
p

ov
er

 fu
ll-

le
ng

th

4 Cores 8 Cores 16 Cores

10
010
110
210
310
4

M
A

E
(lo

g
sc

al
e)

Max absolute error (right axis)

(e) FFT

4 8 12 16 20 24 28 32
Bitwidth

1.0

1.1

Sp
ee

du
p

ov
er

 fu
ll-

le
ng

th

4 Cores 8 Cores 16 Cores

10
3

10
2

10
1

10
0

M
A

E
(lo

g
sc

al
e)

Max absolute error (right axis)

(f) Inv2j

4 8 12 16 20 24 28 32
Bitwidth

1.0

1.1

Sp
ee

du
p

ov
er

 fu
ll-

le
ng

th

4 Cores 8 Cores 16 Cores

10
0

10
1

M
A

E
(lo

g
sc

al
e)

Max absolute error (right axis)

(g) Sbl

4 8 12 16 20 24 28 32
Bitwidth

1

2

Sp
ee

du
p

ov
er

 fu
ll-

le
ng

th

4 Cores 8 Cores 16 Cores

10
710
610
510
410
310
210
1

M
A

E
(lo

g
sc

al
e)

Max absolute error (right axis)

(h) LstVg

Figure 3.12: Effect of bitwidth on speedup and maximum absolute error

4 8 12 16 20 24 28 32
Bit-width

10

20

30

En
er

gy

 re
du

ct
io

n
(%

)
 o

ve
r f

ul
l-l

en
gt

h 4 Cores 8 Cores 16 Cores

10
610
510
410
310
210
110

0

M
A

E
(lo

g
sc

al
e)

Max absolute error, normalized (right axis)

Figure 3.13: Energy reduction

4 8 12 16 20 24 28
Bit-width

0

50

%
 re

du
ct

io
n

 c
om

pa
re

d
to

 fu
ll-

le
ng

th

L2 misses
L3 misses

Memory BW

Figure 3.14: Source of improvement

B
lk

sh

C
on

v

D
ot

FF
T

Fs
tA

lx

In
v2

j

Ls
tV

g

Sb
l

A
vg

Applications

0.0

0.2

Pe
rf

ro
m

an
ce

 im
pr

ov
em

en
t (

%
)

 o
ve

r A
C

M
E

 fo
r A

R
E=

5%

4 Cores 16 Cores 8 Cores

(a) Based on relative error

B
lk

sh

C
on

v

D
ot

FF
T

Fs
tA

lx

In
v2

j

Ls
tV

g

Sb
l

A
vg

Applications

0

20

Pe
rf

ro
m

an
ce

 i
m

pr
ov

em
en

t (
%

)
 o

ve
r A

C
M

E
 fo

r M
A

E=
5%

16 Cores 8 Cores 4 Cores

(b) Based on absolute error

B
lk

sh

C
on

v

D
ot

FF
T

Fs
tA

lx

In
v2

j

Ls
tV

g

Sb
l

A
vg

Applications

0

10

B
it-

w
id

th
 re

du
ct

io
n

 o
ve

r
 A

C
M

E

ARE
0.1% 1% 5% 10%

(c) Based on relative error

B
lk

sh

C
on

v

D
ot

FF
T

Fs
tA

lx

In
v2

j

Ls
tV

g

Sb
l

A
vg

Applications

0

5

B
it-

w
id

th
 re

du
ct

io
n

 o
ve

r
 A

C
M

E

MAE
0.1% 1% 5% 10%

(d) Based on absolute error

Figure 3.15: Comparison against ACME [1]

to be comprehensive, we also evaluated two computation-intensive applications (FstAlx and Inv2j), which

inherently do not benefit from reducing the cost of data movement.

An Overflow-free Quantized Memory Hierarchy in General-Purpose Processors 30

3.6.2 Performance Improvement and Error Analysis

Figure 3.11 illustrates the effect of bitwidth on speedup for four microkernels. Mean has one memory access

per compouation, Hist has two memory accesses but one of them is often cached, Axpy has two memory

accesses per computation and VecAdd has three memory accesses per computation. This figure shows that

the narrower the bitwidth, the higher the speedup. It also shows that for VecAdd with three memory access

per computation, a small reduction in bitwidth (e.g. bitwidth of 24) can not compensate the conversion

penalty. However, for smaller bitwidth, such as four, the reduced memory bandwidth provide a significant

speedup. Figure 3.12 shows the speedup (on the left axis) and maximum absolute error (on the right axis)

per bitwidth for eight applications using real data sets. Our proposed mechanism achieves on average 1.6×

(up to 2.7×) speedup over the baseline system.

There are four observations that we draw from Figure 3.12. First, the shorter the bit-width, the higher the

speedup, demonstrating that reduction in data movement directly impacts the overall performance. In rare

cases, such as Sobel, access pattern with the 8-bit variables causes more conflict misses than 12-bit variable,

causing unexpected slowdown in a 4-core system. Second, a system with a higher number of cores gains

higher speedup from reduction in data movement, due to the higher contention in caches and memory. Third,

applications with a low temporal locality, such as LstVg, gains the most benefit from our proposed method.

On the contrary, applications that have a high temporal locality gain the least speedup (e.g., FstAlx [85]

achieves less than 1.04× speedup). Fourth, the shorter the bit-width, the higher the maximum absolute

error, except for applications such as Sbl, where the values (pixel values) inherently can be represented by 8

quantized bits, without significant accuracy loss.

1 5 15 20 50

Dequantization latency
 Avg (cycle)

1.3

1.4

Sp
ee

du
p

 o
ve

r
 fu

ll-
le

ng
th

(a) De-quantization

1 5 15 20 50

Quantization latency
 Avg (cycle)

1.3

1.4

Sp
ee

du
p

 o
ve

r
 fu

ll-
le

ng
th

(b) Quantization

0.
00

00
1

0.
00

01
0.

00
1

0.
01 0.

1

Fraction of outliers
 Avg

1.3

1.4

Sp
ee

du
p

 o
ve

r
 fu

ll-
le

ng
th

(c) Outlier (avg)

0.
00

00
1

0.
00

01
0.

00
1

0.
01 0.

1

Fraction of outliers
 FFT

1.00

1.25

Sp
ee

du
p

 o
ve

r
 fu

ll-
le

ng
th

(d) Outlier (FFT)

B
lk

sh

C
on

v

D
ot

FF
T

Fs
tA

lx

In
v2

j

Ls
tV

g

Sb
l

A
vg

Applications

1

2

Sp
ee

du
p

 o
ve

r
 fu

ll-
le

ng
th

L1-L2 L2-L3

(e) Location

Figure 3.16: Sensitivity analysis

3.6.3 Energy Consumption

We model the energy consumption of all memory elements (such as MetaData-Table, etc.) and all arithmetic

operations using McPAT [82]. Figure 4.13 demonstrates the average energy reduction of the evaluated

benchmarks over the baseline when we vary bit-width and number of cores. It shows that the energy cost of

data movement decreases when the applications use shorter bit-width.

3.6 Evaluation 31

3.6.4 Source of Improvement

The performance and energy benefits of quantization stem from two sources: (i) reducing the number of

cache misses (due to an increase in the effective size of L2 and L3 and also due to loading one quantized block

instead of multiple full-length blocks), and (ii) decreasing the memory bandwidth consumption. Figure 3.14

demonstrates that reducing the variable length from 32 bits to 6 bits reduces L2 misses/L3 misses/BW

consumption on average by 77%/82%/74% in a 16-core system. None of the evaluated application fit in L1

and L2. Since the L3 is shared among cores, LstVg does not fit even in its share of L3 (before quantization).

Some applications such as Blksh, fit in L3, but they do not show locality with long reuse distance, so they

experience a high L3 miss rate. As an example, for Blksh, the L1 miss rate is 0.006052, the L2 miss rate is

0.877949, and the L3 miss rate is 0.999938. For FFT, L1 miss rate is 0.039064, L2 miss rate is 0.966428, and

L3 miss rate is 0.34570956478. for LstVg, the L1 miss rate is 0.006861, the L2 miss rate is 0.917308 and

0.9999.

3.6.5 Comparison with Prior Works

Figure 3.15 compares the performance of our proposed method against ACME [1] that omits the LSBs to

shorten the variable lengths. We evaluate both of the mechanisms with the specific bit-width that achieves

the same level of average relative error (ARE) and maximum absolute error (MAE). Figure 3.15 (a) and 3.15

(b) show that our proposed method can achieve up to 31%/26% performance improvement with ARE/MAE

fixed to 5%. We provide the same accuracy with shorter variables and therefore, achieve higher speedup.

Figure 3.15 (c) and 3.15 (d) show the reduction in the number of bits compared to ACME when we vary the

accuracy. On average, the bit width reduction in the quantized variables are 5.62/5.25/5.1/6.2 bits (ARE)

and 6.62/6.62/6.5/5.7 bits (MAE) when the error rate is 10%/5%/1%/0.1%.

3.6.6 Sensitivity Analysis

In this section, we analyze the effect of four parameters: (i) de-quantization latency, (ii) quantization latency,

(iii) the fraction of the outliers, and (iv) the location of the conversion in the memory hierarchy, in a system

with 4 cores.

(i) De-quantization and (ii) Quantization latency. The conversion latency depends on many design

parameters (e.g. technology size, parallel vs serial Converter, etc.). Figure 3.16(a) shows that for a de-

quantization latency as large as 20 cycles, our proposed method achieves 1.38× speedup on average. The low

sensitivity to the quantization latency stems from the fact that a quantized L2 block fills multiple de-quantized

L1 blocks and consequently subsequent L1 hits amortize the additional conversion penalty on a L1 miss. The

An Overflow-free Quantized Memory Hierarchy in General-Purpose Processors 32

speedup is insensitive to the quantization latency (Figure 3.16(b)) because quantization occurs on writeback

requests which are out of critical path.

(iii) The fraction of the outliers. We find that the fraction of the outliers is very low (the highest rate

belongs to Blackscholes and FFT where the fraction is 0.00001, 0.00002, respectively) that they impose a

negligible overhead. In order to analyze the overhead of the outliers, we synthetically varied the fraction of

outliers from 0.00001 to 0.1. Figure 3.16(c) shows that the fraction of outliers does not affect the performance

except for a high fraction such as 0.1. The insensitivity to the fraction of outliers stems from the fact that

the access to outliers is not on the critical path unless the outlier is in the missed L1 block (and not in the

rest of unpacked blocks). Figure 3.16(d) shows that for some applications such as FFT (with relatively high

L2 miss rate), the accesses to outliers may occur on the critical path and in that case, even a lower fraction

such as 0.01 can significantly impact the performance.

(iv) Location of the conversion. So far, we evaluated the performance of our proposed method when

data conversion occurs between L1 and L2. Figure 3.16(e) evaluates the alternative design, where conversion

happens between L2 and L3. As a result, the conversion happens less frequently, decreasing the energy

consumption. This figure shows that placing the conversion point between L2 and L3 provides on average,

1.22× and up to 1.4× speedup.

3.6.7 Quantization vs. Compression

The most related cache compression technique that takes into account the effect of data type and the effect

of floating point is Hycomp [5].

Figure 3.17(a) illustrates that Hycomp yields only a compression ratio of 1.85 on average whereas our

method itself yields the ratio of 4.78. Although, quantization on top of compression achieves a higher

compression rate (7.83), a variable cache block size of compresssion will again require a complex mechanism

for finding the location of cache blocks. We evaluated the effect of decoupling the tag array and data

array in the last level cache. Figure3.17 (b) shows that the latency of access to the decoupled tag and

data array nullifies the higher compression rate that can be achieved by employing compression on top

of quantization. Figure 3.18 demonstrates that address translation by BitLocationFinder and corner case

handling (Section 3.4.6) outperforms padding (which is proposed by LCP [60] to avoid the cost of decoupling

tag array and data array), on average by 20% and up to 45%, in a 4-core system, where average bit-width is

18.

3.6 Evaluation 33

B
lk

sh

C
on

v

D
ot

FF
T

Fs
tA

lx

In
v2

j

Ls
tV

g

Sb
l

A
vg

Applications

0

10
C

om
pr

es
si

on
 ra

tio Comp Qnt Qnt+Comp

(a) Compression ratio

B
lk

sh

C
on

v

D
ot

FF
T

Fs
tA

lx

In
v2

j

Ls
tV

g

Sb
l

A
vg

Applications

1

2

Sp
ee

du
p

Comp Qnt Qnt+Comp

(b) Speedup

Figure 3.17: Quantization vs. compression
B

lk
sh

C
on

v

D
ot

FF
T

Fs
tA

lx

In
v2

j

Ls
tV

g

Sb
l

A
vg

Applications

1.0

1.5

Sp
ee

d
up

 o
ve

r
 p

ad
di

ng

Figure 3.18: Padding (LCP) vs. BitLocationFinder

3.6.8 Software-based Quantization vs Hardware-based Quantization

Figure 3.19 demonstrates that our hardware-based design delivers 1.54× speedup compared to software-based

approach, in a 4-core system. The speedup stems from less data movement and lower conversion overhead.

We tried our best to manually optimize the code and perform conversion only when it is required. One of the

benefits of our method is that the programmer does not need to think about optimizations, overflows, and

outliers for every line of arithmetic computations in the code. In software, for applications such as Blackscholes

we had to use standard 32-bit variables to cover the outliers that require 18 bits. With quantization in

hardware we can employ 6-bit variables for Blacksholes and store outliers in their original format in a separate

space.

3.6.9 Quantization vs. Prefetching

Unlike our method, prefetching can not alleviate the energy cost of data movement and do not increase the

effective size of caches or decrease the memory bandwidth consumption. However, we can employ quantization

in tandem with a prefetcher to hide the conversion latency. Prefetcher tracks physical addresses and does not

need address translation. Therefore, we modified the prefetcher to record the MetaDataID for the previous

An Overflow-free Quantized Memory Hierarchy in General-Purpose Processors 34

B
lk

sh

C
on

v

D
ot

FF
T

Fs
tA

lx

In
v2

j

Ls
tV

g

Sb
l

A
vg

Applications

1.0

1.5

2.0

Sp
ee

d
up

 o
ve

r
 s

of
tw

ar
e-

ba
se

d
 q

ua
nt

iz
at

io
n

Figure 3.19:
Quantization

in hardware vs. software

B
lk

sh

C
on

v

D
ot

FF
T

Fs
tA

lx

In
v2

j

Ls
tV

g

Sb
l

A
vg

Applications

1

2

Sp
ee

du
p

 o
ve

r f
ul

l-l
en

gt
h Pre Qnt Qnt+Pre

Figure 3.20:
Quantization vs. prefetching

misses and use it for de-quantizing the prefetched blocks. Figure 3.20 shows that our method achieves on

average 1.6× speedup over prefetcher. Figure 3.20 also demonstrates that our method along with prefetchers

can achieve on average 1.46× speedup over the baseline system.

3.6.10 Hardware Overhead

We design and synthesize the modules using an industry-standard 1xFinFET technology with foundry

models.The total area of our modules, per core, is 0.012455 mm2. Accordingly, 16 modules in a 16-core

processor impose 0.2% area overhead (we scaled the area of the processor in 22 nm technology, obtained from

McPAT [82], to derive the area of the processor in 1xFinFET technology). The total overhead is 0.25% of the

original processor.

3.7 Related Work

Bit-width Reduction Techniques. Several studies employed the OLSB method for ASIC and FPGA

designs to customize the bit-width [8, 9]. Prior works also show the energy reduction of quantization with

arbitrary bit-width in acceleretor design and provide a framework for deciding the bit-width [10, 11]. However,

these solutions cannot be adopted in the general-purpose processors. The only general-purpose solution,

ACME [1] employs the OLSB method which has lower accuracy and lower performance than quantization.

Software-based Quantization for Specific Applications.

Due to high overhead, software-based quantization is not a popular technique unless in three following

cases: (i) to compress data before storing in storage [86], (ii) to compress data before offloading data to

accelerators [4, 87], and (ii) in some cheap embedded processors [88, 89] that cannot accommodate floating

point ALU, where the cost of conversions is less than the emulation of floating point operations on integer

ALU and programmer’s effort for manipulating integers pays off.

3.7 Related Work 35

Approximate cache techniques. Cache approximation techniques [90, 91] also reduce the cost of movement

and storage of data. We do not compare against any other approximate cache techniques, as ACME [1]

(to which we have compared our method in Section 3.6.5) shows performance improvement over the prior

approximate cache techniques, Doppelganger [90].

Chapter 4

Fulcrum: a Simplified Control and

Access Mechanism toward Flexible and

Practical In-situ Accelerators

4.1 Introduction

The energy consumption and execution time of applications with low computational intensity (low computation

per datum) is mainly due to the high cost of data movement [92, 93]. This is illustrated by a prior work

that shows the energy cost of fetching a 32-bit word of data from off-chip DRAM is 6400× higher than

an ADD operation in 45 nm technology [4]. We refer to applications with low computational intensity as

memory-intensive applications. In the Big Data era, many applications, such as data analytics, scientific

computing, graph processing, and machine learning, are memory-intensive.

To minimize the cost of data movement, recent studies have explored the possibility of processing data

near or even inside the memory (PIM), for example, TOP-PIM [94], DRISA [2], Ambit [12], SCOPE [95],

PRIME [29], ISAAC [28], and TOM [96].

Memory is designed in a multi-level hierarchy, consisting of vaults (in 3D stacked memories), banks,

subarrays, etc. (more details in Section 6.2). PIM designs vary based on the level of the memory hierarchy at

which the computation is performed. In-situ [2, 12] computing is one of the most aggressive forms of PIM

that processes data in the row buffer, very close to the subarrays in which the data are stored. The subarray

level provides a high throughput for two reasons: (i) the low latency of each access at the subarray level, and

36

4.1 Introduction 37

(ii) high subarray-level parallelism (e.g., Hybrid Memory Cube (HMC) has 512 banks [19], and assuming 32

subarrays per bank, the HMC will have 16384 subarrays.).

In-memory processing architectures are not limited to conventional DRAM configurations and interfaces

(e.g., DIMM or HBM). Some prior in-situ approaches [95, 2, 29, 28, 97] target their design as a peripheral-

attached accelerator instead of as a host memory to avoid the tight area and cost constraints for commodity

DRAM. Indeed, these designs can be thought of as high-throughput accelerator architectures that happen to

use DRAM as the most effective technology, based on parallelism, proximity to data, and overall capacity.

DRAM, compared to SRAM/eDRAM, provides a higher capacity for the accelerator. Compared to

NVM, DRAM provides a lower latency. DRAM is also more tolerant to frequent writing of partial results.

Therefore, in this paper, we focus on DRAM-based in-situ accelerators. Although computation in DRAM

technology is inefficient [98] compared to a traditional logic process, the low computation requirement of the

memory-intensive applications justifies the slower computations in DRAM-based in-situ accelerators.

In this project, we identified four problems that limit the benefit of current in-situ computing approaches.

The first limitation is the lack of flexibility for supporting a wide range of applications, which in turn,

limits the market for the product. Prior in-situ approaches [2, 12] perform the same operation in all subarrays

and on all bytes (e.g., 256 bytes) of the row buffer (row-wide operations). As a result, they cannot efficiently

support operations with data dependencies along the row buffer or operations with a condition or predicate.

For example, prior works cannot efficiently support reduction and scans (which are more efficient with serial

operations along the row buffer), database operations such as Sort, FilterByKey, and FilterByPredicate (which

require filtering based on predicate), or sparse operations (which require multiplications and accumulations

only for nonzero values with matched indexes). Unfortunately, enabling operations with data dependency or

operations based on a predicate, at a subarray level, using the traditional control and access mechanism is

not practical (the area of a simple in-order core, such as ARM Cortex-A35 with 8KB of cache, excluding the

SIMD units and scaled to 22 nm, is 25× larger than the area of a subarray).

The second issue is the capacity of the accelerator, which can be limited by the hardware overhead of the

computing elements. At the subarray level, we read an entire row at once and store it in the row buffer. A

processing unit with the capability of performing bitwise operations, addition, and multiplication (integer

and single-precision floating point) on all bytes of the row buffer is at least 52× larger than the subarray.

Thus, in-situ approaches only employ bitwise ALUs. It means any other operation should be emulated

using multiple bitwise operations, requiring multiple subarray accesses and hundreds of cycles. We will

show that the cost of emulating complex operations using bitwise ALU is higher than the cost of moving

data out of the vaults. Some in-situ approaches use the analog computation capability of memory cells of

Fulcrum: a Simplified Control and Access Mechanism toward Flexible and Practical In-situ Accelerators 38

ReRAM-based non-volatile memories (NVM) for multiplication and addition, without requiring any adder

or multiplier [97, 28, 29]. However, this type of in-situ computation requires analog-to-digital converters

(ADC), which also incur a significant hardware overhead. For example, the area overhead of ADCs in [97] is

45× higher than the area of the subarray. More importantly, analog computing introduces a high error rate

and therefore, these accelerators suit applications that are highly tolerant of error, such as deep learning

applications [29, 28]

The third problem is the physical layout of words in DRAM. The subarray itself is typically divided

into smaller units, called mats. Due to circuit design constraints (which are explained in Section 4.2.4), in

current memory designs, every four bits of a 32-bit word is stored in a separate mat. We refer to this as mat

interleaving. Accordingly, prior in-situ approaches [2, 12] perform computation only on 1-bit, 2-bit, and 4-bit

values.

The fourth limitation is inefficient peripheral logic. Many applications require sharing values among

subarrays. For example, in matrix-vector multiplication, we can map each row of the matrix to a subarray.

To perform matrix-vector multiplication, all subarrays need the values of the vector. A variety of applications

require data movement among subarrays. For example, for the Sort application, the data is partitioned among

subarrays. Then, all sorted partitions (which reside in different subarrays) should be merged. The merge

requires inter-subarray data movement. Finally, many applications require parallel and independent column

selection for each subarray. For example, in FilterByPredicate, in every subarray, we check a condition on

each column and store the data in the row buffer, only if the condition is met. Therefore, different subarrays

may write into different columns of the row buffer. Current peripheral logic serializes movement of shared

values, inter-subarray movement, and column selection in different subarrays (more details in Section 4.2.3).

To resolve the aforementioned problems, we propose Fulcrum, where we rethink the design of in-situ

accelerators to increase flexibility, practicality, and efficiency.

First, we propose a new lightweight access and control unit that processes data sequentially and determines

the next operation based on the outcome of the previous operation (if necessary).

Second, we accommodate a processing unit capable of 32-bit addition, subtraction, and multiplication (in

addition to bitwise operations) in the subarray level and limit the hardware overhead by performing operations

on only a word of the row buffer at a time. Although this processing unit processes only a fraction (1/64) of

the row buffer per cycle, it can provide a significant performance improvement overall. Our evaluation shows

that performing complex operations on a subset of the row buffer outperforms prior in-situ approaches that

perform computation on the whole row buffer but emulate complex operations by multiple bitwise operations.

4.1 Introduction 39

Third, we slightly modified the mat-interleaving circuits to transfer all bits of a word to the side of a

subarray (reuniting interleaved bits) so that all bits are physically close to each other. Since we only process

one word at each cycle, the circuits for reuniting one word do not impose significant hardware overhead.

Fourth, we optimized peripheral logic for computation. To satisfy the data-sharing requirement, we

enable broadcasting. For applications with inter-subarray data movement requirement, we employ a prior

work [3] (Low-cost Inter-linked SubArrays (LISA)) that transfers a whole row from one subarray to another

at once, reducing the overhead of inter-subarray data movement. For applications with independent column

access requirements, we enable a light-weight independent column selection mechanism through storing

one-hot-encoded values of the column address in latches.

Our processing unit in each subarray has four parts: (i) Walkers, that provide sequential access with our

lightweight column-selection mechanism. Walkers store the input operands of the computation (which are

read from the memory array) or the output of the computation (to be written in the memory subarray),

(ii) a small programmable instruction buffer, where we store the pre-decoded signals for the computation,

(iii) a simple controller that determines the next operation and direction of the sequential access, and (iv) a

single-word ALU. We show the flexibility of our design by mapping important kernels from different domains

such as linear algebra, machine learning, deep learning, database management system (DBMS), as well

as sparse matrix-vector multiplication and sparse matrix-matrix multiplication that appears in scientific

computing, graph processing, and deep learning.

We integrate Fulcrum with CXL [99], a new class of interconnect that extends PCIe to significantly

reduce the latency of access to the data in peripheral devices. Therefore, CXL provides high bandwidth

and high power delivery of PCIe while supporting memory-like access to the data stored in Fulcrum. The

low access latency enables communication through a single memory model. As a result, CXL can connect

multiple in-memory accelerators, such as Fulcrum, and create a pool of disaggregated in-memory accelerators,

providing scalability. The memory-like access of CXL also benefits workloads with phase behavior, where

some phase is suitable for in-situ computing while other phases are not. In these cases, the host or other

devices can access the output of Fulcrum with the latency in the order of latency of accessing normal memory.

Our paper makes the following contributions:

• Broadening the range of supported applications by in-situ accelerators

• Optimizing peripheral logic

• Optimizing mapping of important memory-intensive kernels and applications to Fulcrum.

Fulcrum: a Simplified Control and Access Mechanism toward Flexible and Practical In-situ Accelerators 40

• Releasing the source code of three artifacts: (i) MoveProf, a tool that uses profiled performance metrics

for evaluating the cost of data movement, (ii) InSituBench, an in-situ computing benchmark suite, and

(iii) the RTL code of our proposed method.

• Integrating Fulcrum with CXL to increase the power budget and enable scalability and disaggregation.

We evaluated our method against three approaches: (i) a prior work on DRAM-based in-situ computing

(DRISA [2]), (ii) a server-class GPU that has three stacks of high-bandwidth memory (NVIDIA P100 with

HBM2), and (iii) an ideal model of a GPU, where we take into account only the cost of data movement between

GPU and the memory, assuming zero overhead for on-chip data movement and computation. Our evaluation

shows that, for memory-intensive applications, our method delivers, on average (up to), 70 (228)× speedup

per memory stack over the GPU. Our area evaluation shows that an 8GB integer Fulcrum (which supports

bitwise operations and integer addition and multiplication) requires 51.74mm2 (8 layers) and single-precision

float Fulcrum (integer and bitwise functionality, plus floating-point addition and multiplication) require

55.26mm2. The GPU die size of the NVIDIA P100 is 601mm2. Accordingly, Fulcrum provides up to 839×

higher throughput per area than the NVIDIA P100.

4.2 Problem statement

In order to reduce the cost of data movement for tasks that are data-intensive and have locality within a

row or subarray, prior works have proposed in-situ computing, where we perform computation on the row

buffer, and therefore, there is no need to move data out of the subarray. We identified four problems that

have hindered adoption and realization of in-situ approaches.

4.2.1 Lack of flexibility

Recent in-situ approaches employed non-flexible row-wide operations. As a result, they cannot support

operations with any form of dependency along the row buffer. For example, in operations such as Scan,

the value of each partial sum depends on the value of the previous partial sum. They also cannot support

algorithms that check a condition on a value and perform a different operation based on the outcome of

the condition. For example, radix sort is an algorithm that sorts data by grouping values by the individual

digits, which share the same significant position. Each iteration of this sort algorithm packs values into two

different buffers. The target buffer for the value is determined by the digit that is being processed at that

iteration. Another example is sparse matrix-vector multiplication, where we often store the non-zero values

4.2 Problem statement 41

next to their indices (instead of wasting the capacity by storing the whole matrix with mostly zero values).

Consequently, we only perform multiplication and accumulation on non-zero values, whose index matches.

4.2.2 Lack of support for complex operations

Prior works have evaluated a spectrum of in-situ computing. Seshadri et al. [12], evaluated row-wide bitwise

operations using computation capability of bitlines without adding any extra gate, realized by activating

two rows at the cost of destroying the values in both rows, requiring extra copies before each operation. Li

et al. [2], evaluated row-wide bitwise ALUs, shifters, and latches (the latches eliminate the extra copies),

emulating 4-bit addition and 2-bit multiplication using bitwise ALUs. They also evaluated adding row-wide

4-bit adders to the row buffer and reported that this increases the area by 100%. Unfortunately, emulating

complex operations such as addition or multiplication using bitwise ALUs requires reading and writing

multiple rows. Since row activation is very costly, the energy consumption of row activation for emulating

complex operations by bitwise operations surpasses the energy consumption of sending data to the logic layer,

as shown in Figure 4.1.

Xo
r,i

nt
(3

2)

A
dd

,in
t(4

)

M
ul

tip
ly

,in
t(4

)

A
dd

,in
t(8

)

M
ul

tip
ly

,in
t(8

)

A
dd

,in
t(1

6)

M
ul

tip
ly

,in
t(1

6)

A
dd

,in
t(3

2)

M
ul

tip
ly

,in
t(3

2)

A
dd

,in
t(6

4)

M
ul

tip
ly

,in
t(6

4)

A
dd

,fl
oa

t(1
6)

M
ul

tip
ly

,fl
oa

t(1
6)

A
dd

,fl
oa

t(3
2)

M
ul

tip
ly

,fl
oa

t(3
2)

A
dd

,fl
oa

t(6
4)

M
ul

tip
ly

,fl
oa

t(6
4)

Operation,type (bitwidth)

10
9

10
8

10
7

10
6

En
er

gy
 c

on
su

m
pt

io
n

(J
ou

l)
 p

er
 ro

w
 (l

og
)

Activation Access

Figure 4.1: Energy consumption of accessing a row in the logic layer vs. energy consumption of multiple row
activations, required for emulating complex operations by bitwise operations

4.2.3 Inefficient peripheral logic

Currently, there are three shared resources in the design of the memory: (i) the TSVs, shared among all

layers in a vault (as explained in Section 6.2 and shown in Figure 2.1), (ii) the shared CSLs, and (iii) the

Fulcrum: a Simplified Control and Access Mechanism toward Flexible and Practical In-situ Accelerators 42

GDLs, shared among all subarrays in a bank. With shared CSL, we can only select one column from a whole

bank at a time and with shared GDLs we can transfer only one column at a time. As a result, the current

peripheral logic and interconnect limit the performance of in-situ approaches in three ways: (i) although they

act as a shared bus, they are not capable of broadcasting values for efficient data sharing, (ii) narrow GDLs

are the only means for movement of an entire row from one subarray to another, (ii) the peripheral logic for

column access (the column decoder) is shared among all subarrays (Figure 2.1 (b)). This shared peripheral

logic limits the flexibility and parallelism of any potential in-situ approach that requires independent and

parallel column access to the row buffer of individual subarrays.

4.2.4 Interleaving

In current commercial DRAMs, we have two types of interleaving: (i) mat interleaving, and (ii) subarray

interleaving. Mat interleaving is shown in figure 4.2, where each subarray is divided into multiple mats [100,

101]. The GDLs are distributed among mats, and each mat has 4 bits of the GDLs. Therefore, for selecting

the same column from all mats, CSLs are repeated for each mat. Pass transistors (PTs) receive CSLs, select

a column, and place it on LDLs. This design is called mat interleaving and is efficient for random column

access, as it reduces the LDLs’s latency (LDLs in Figure 4.2 are shorter than LDLs in Figure 2.1 (b)).

Without mat interleaving, LDLs become wide and long, where the latency of the last column is much longer

than the latency of the first column.

The second type of interleaving is subarray interleaving or open-bitline architecture [3, 102]. Since the size

of a sense amplifier is larger than a cell [102], modern DRAM designs accommodate only as many as sense

amplifiers in a row to sense half a row of cells. To sense the entire row of cells, each subarray has bitlines

that connect two rows of sense amplifiers, one above and one below the subarray.

As a side benefit, mat interleaving and subarray interleaving make the memory more robust against

multiple-bit upset, where soft errors change the value of adjacent cells. In fact, when bits in a column are not

physically close to each other, multiple-bit upset only changes one bit from a column and then error detection

mechanisms (which can detect one error) can detect the error. Therefore, keeping the current interleaving

and not changing the layout is desirable.

However, with interleaving, row-wide computation on more than 4-bit values is impractical, as the result

of an addition and multiplication in each 4 bits of the output depends on the values in other mats. With

row-wide operations, the circuits for reuniting the interleaved bits impose a significant hardware overhead as

many wires cross each other.

4.3 Key ideas 43

R
ow

 D
ec

od
er

CSL
GDL

MAT 2MAT 1 MAT n

4b 4b4b

Subarray 1

LDL

PT
GDL

Figure 4.2: Interleaving a word among mats

4.3 Key ideas

The key insight of this paper is that a narrow ALU with adder and multiplier, placed at the edge of each

pair of subarrays, can outperform row-wide bitwise ALUs, because bitwise ALUs suffer from the drawbacks

previously described. We show that these capabilities are important for a variety of computational kernels.

Figure 4.3 (a) shows the architecture of our in-situ processing unit, which has two parts: (i) Walkers and

(ii) AddressLess Processing Unit (ALPU). The Walkers are implemented by three rows of latches that are

connected through a bus similar to LDLs (implementation details in 4.4).

The ALPU itself comprises four components: (i) a controller, (ii) three temp registers, (iii) an ALU, and

(iv) an instruction buffer.

In this section, we explain the role of these components in resolving prior in-situ approaches’ limitations

and elaborate on implementation detail in Section 4.4.

4.3.1 A simplified control and access mechanism

Since a narrow ALU only processes a word of row buffer, we need a sequential access mechanism for selecting

consecutive words. Due to the significant hardware overhead, employing a core with traditional access and

control mechanism, for sequentially selecting a word from a row buffer at the subarray level, is impractical. We

could give up subarray-level parallelism and employ only one traditional core per bank to limit the hardware

overhead. Unfortunately, other than losing subarray-level parallelism, this solution imposes a significant

overhead for control and access. Since logic in DRAM layers is slow, and the cost of data movement is low,

unlike far-memory processors, this overhead comprises a significant portion of total energy consumption

and execution time. Figure 4.4 (top) illustrates the control and access overhead of a traditional core at

the bank-level for adding two vectors and storing the result in a third vector. In this example, the core

Fulcrum: a Simplified Control and Access Mechanism toward Flexible and Practical In-situ Accelerators 44

generates an address for each element of the three vectors, imposing access overhead. Since the core is placed

at the edge of each bank, the decoded addresses should be sent to the subarray through CSLs (Section 6.2

and Figure 2.1). Data read from the subarray also should move toward the core through GDLs, imposing

data movement overhead. The decoding of all these instructions, branch prediction, and checking for data

dependency in the pipeline of traditional cores impose control overheads. Despite the significant overhead,

such a control and access mechanism provides full flexibility.

Our proposed method provides a tradeoff between flexibility and the overhead of control and access. In

fact, while we enable operations with data dependency and operation based on predicates, we avoid the

overhead of sophisticated control mechanisms and the overhead of accessing data by address. We observed

that for almost any memory technology, an entire row is read/activated at once and stored in a buffer. We

introduced Walkers, where each Walker either captures a row of input operands (read from the subarray) or

stores a row of target variables (before being written to the subarray). We read/write to/from these rows

sequentially and implement the sequential accesses using shifting of a one-hot-encoded value that determines

which column of the row should be selected to be placed on the bus. Our simple controller determines

the direction of shifts in each Walker and also determines the next operation based on the outcome of

the previous operation, providing flexibility. Accordingly, for example, our simplified access and control

mechanism performs an addition of two vectors by iteration of an instruction over the row buffer, similar to

the instruction shown in Figure 4.4 (down) (Section 4.4 presents the exact format of Fulcrum’s instructions

and discuses how our hardware modules control loading new rows of each vector to Walkers).

Subarray 1

 G
D

L

Subarray 2

In
st

ru
ct

io
n

bu
ffe

r
(P

re
-d

ec
od

ed
 s

ig
na

ls
)

C
on

tr
ol

 u
ni

t

 G
D

L

R
ow

 d
ec

od
er

R
eg

is
te

rs
A

LU

(a) Overall architecture of each subarray (b) AddressLess Processing Unit (ALPU)

A
dd

re
ss

Le
ss

 P
ro

ce
si

ng
 U

ni
t (

A
LP

U
)

Walker1
Walker2
Walker3

Walker1
Walker2
Walker3

Row address, select,
and shift signals

Data Selector

Shift

Figure 4.3: Overall architecture: (a) three Walkers per subarray and one ALPU per every two subarrays, (b)
ALPU comprises a controller, an ALU, an instruction buffer, and few temp registers

4.3 Key ideas 45

(b) Fulcrum
Shift_Read a[i], shift_Read b[i], Shift_Write c[i] , c[i]=a[i]+b[i]

(a) Traditional control and access mechanisms
1. RA=RA+1 // address generation for vector a[i] + control
2. RB=RB+1 // address generation for vector b[i] + control
3. RC=RC+1 // address generation for vector c[i] + control
4. Read RA, X1 // decoded address movement on CSLs

// data movement on GDL + control
5. Read RB, X2 // data movement on GDL + control
6. X3=X2+X1 // the actual computation + control
7. Store X3, RC //decoded address movement on CSLs
8. i=i+1 // iteration counting + control
9. If (i< 1000000) Jump 1 // iteration checking+ control

Figure 4.4: A traditional control and access mechanism vs. Fulcrum

4.3.2 Narrow and simple ALU

Our sequential access to Walkers enables processing only one word (one column) at a time, and consequently we

do not need row-wide ALUs. We observed that addition, comparison, multiplication, and bitwise operations

are the most common operations that appear in modern memory-intensive applications. Therefore, we

included a single-word ALU, which supports these common operations. The input operands of the ALU can

come from one of the four resources: (i) the value sequentially accessed from one of the Walkers, (ii) temp

registers, (iii) the GDLs, or (iv) one of the outputs of the ALU (our controller supports two operations in one

cycle). Section 6.4 explains that although our ALU is narrow, it outperforms row-wide bitwise operations

and supports modern memory-intensive applications.

4.3.3 Efficient peripheral logic

We have introduced minor modifications in the peripheral logic to increase flexibility, parallelism, and efficiency

of data movement for our method. First, we added a broadcasting command, by which every processing unit

receives and captures the data on shared buses. Second, we build upon Low-cost Inter-linked SubArrays

(LISA) [3] to transfer an entire row at once to any other subarray in the same bank (otherwise we had to

transfer the entire row, column by column, through the narrow GDL bus). Third, for independent column

access in each subarray, instead of using column decoder and column address buses, which are shared among

Fulcrum: a Simplified Control and Access Mechanism toward Flexible and Practical In-situ Accelerators 46

subarrays, we employ column selection latches in each subarray, where we store a one-hot-encoded value that

determines the selected column. In each cycle, based on the outcome of the previous operation, the controller

decides in which direction the on-hot-encoded value should be shifted.

4.3.4 Reuniting interleaved bits

Unlike reuniting the whole row, reuniting one word is possible through a slight modification of the current

mat interleaving circuits. Therefore, we can transfer and reunite interleaved bits of a word at the side of the

subarray to perform arithmetic operations.

To resolve subarray interleaving, we simply use only one processing unit per two subarrays. Figure 4.3

shows that per every two subarrays, we only have one ALPU.

To resolve the mat interleaving, we propose two solutions. Our first solution is to change the layout and

completely remove the mat interleaving (if the target application does not need efficient random column

access or is resilient against soft errors). As a side benefit of eliminating mat-interleaving, we will save the

area overhead of CLSs and columns selection logics (repeated for each mat). The second solution is to keep

1st
Column 4b

2nd
Column

nth
Column

HFF

0 1 0

1st
Column

2nd
Column

nth
Column

HFF

0 1 0

LDL

1st
Column

2nd
Column

nth
Column

HFF

0 1 0

LDL

1st
Column 4b

2nd
Column

nth
Column

HFF

0 1 0

1st
Column

2nd
Column

nth
Column

HFF

0 1 0

1st
Column

2nd
Column

nth
Column

HFF

0 1 0

LDL

Mat 1 Mat 2

LDL

LDL

LDL

Figure 4.5: Reuniting interleaved bits

the mat interleaving. In the traditional design of memory, each segment of the LDL corresponding to each

mat is connected to four flip-flops (called helper flip flops (HFF)). We connect these flip flops to the segment

of the LDL of the adjacent mat and form a pipeline so that we can transfer all values to the side of the

subarray in a pipeline fashion. In a memory structure with four mats per subarray, this pipeline requires

four cycles to transfer 32 bits (16 bits from the upper Walker and 16 bits from the lower Walker). If we

4.3 Key ideas 47

use the TSV for sending the clock signal, the clock cycle should be at least twice as long as the latency

of the TSV (according to CACTI-3DD, the latency of TSV with eight memory layers and one logic layer

is more than 4.4 ns). This will significantly degrades our throughput. To resolve this issue, we employed

segmented TSV [20, 21] (explained in Section 6.2) for the clock signal (according to CACTI-3DD, the latency

of segmented TSV is 0.3 ns).

Fulcrum: a Simplified Control and Access Mechanism toward Flexible and Practical In-situ Accelerators 48

4.4 Implementation detail

This section elaborates on hardware and software implementation.

4.4.1 Hardware

This section provides more implementation details about six hardware components: (i) Walkers, (ii) the

controller, (iii) the instruction buffer, (iv) our in-logic layer components, (v) interconnect, and (vi) the walker

renamer.

The Walkers

Walkers provide sequential accesses. We have two options for implementing the Walkers. The first option

is changing the layout, employing shift registers (or shift latches, implemented by ping-pong shifting [23]),

and accessing the row sequentially by shifting the values. The second solution is keeping the interleaved

layout, employing the structure of traditional row buffers and local buses (similar to LDLs, explained in

Section 6.2) along with a column-selection mechanism that selects a column to be placed on each Walker’s

LDL. In addition to keeping the interleaved format, the second solution has two side advantages: (i) enabling

sequential read and write in both directions (with the first option, we can only read by shifting to the right

and write by shifting to the left (in Figure 4.3)), and (ii) consuming less energy (with first option, per each

shift, there will be value transition in all latches, whereas with the second solution, only the value of the bus

and only one latch changes).

The only difference between the structure of the traditional row buffer and our Walkers is the column-

selection mechanism. As we explained in Section 6.2 and Section 4.2, traditional memories share the

peripheral logic for column selections. Figure 2.1 (b) shows that the CLSs (on which the decoded column

address is placed), are shared among subarrays. Figure 4.2 shows that CLSs are repeated for each mat. To

support operations based on predicates, we need independent column access for all Walkers and subarrays.

Hence, we introduced column-selection latches where we store the one-hot-encoded value of a column and

shift the value to access the next column, without requiring one column decoder per Walker, per subarray,

and per mat.

The controller

Our controller employs a few counters: (i) a 6-bit counter (6 = log2 of the number of words in a row (64))

per Walker for detecting a fully-accessed Walker (fully read or written). Each Walker has a 2-bit latch that

determines to which Walker we should switch and rename when the Walker is fully accessed (elaborated in

4.4 Implementation detail 49

Section 4.4.1), (ii) a 4-bit counter (4 = ceil of log2 of the number of wait cycles (9)) for counting the wait

time for a new row to be read from the subarray and be stored in a Walker, or for a Walker to be written to

the subarray, and (iii) three 11-bit (11 = log 2 of the number of rows in each pair of subarrays (2048)) row

counters which are initialized to the row address of the beginning of the data and will be compared against

the end of the data in the subarray.

The instruction buffer

Figure 4.6 illustrates the format of each entry of the instruction buffer. This format allows two operations at

the same time and has the following fields: (i) NextPc1 and NextPc2 that determine the program counter

of the next instruction, (ii) NextPc Cond determines the condition under which the controller switches to

instruction determined by NextPc1 (otherwise, it switches to NextPc2). When NextPc1 equals NextPc2,

the NextPc Cond is used for determining which comparison flag should be the input bit of the bitwise shift

operation, (iii) opCode1 and opCode2 are the operation codes of each operation, (iv) Src1Op1, Src2Op1,

Src1Op2, and Src2Op2 select a source for each input of the operation, (v) ShiftCon1, ShiftCon2, and ShiftCon3

specify the condition under which the corresponding Walker should be shifted, (vi) ShiftDir1, ShiftDir2,

and ShiftDir3 determine the direction of shifts in each row, (vii) repeat filed is the number of repeat before

shifting when any of the shift conditions are IF REPEAT ENDS SHIFT”, and (vii) OutSrc selects the value

shifted to the destination row among the two operation outputs and the two outputs of the first two Walkers.

Although for the evaluated benchmarks an instruction buffer with four entries is enough, we also evaluated

our area overhead with an instruction buffer that has eight entries.

N
ex

tP
C1

 (
2

b)

N
ex

tP
C2

 (
2

b)

N
ex

tP
C_

Co
nd

(3
 b

)

O
pC

od
e1

 (
4

b)

O
pC

od
e

2
(4

 b
)

Sr
c1

O
p1

 (
3

b)

Sr
c2

O
p1

 (
3

b)

Sr
c1

O
p2

 (
3

b)

Sr
c2

O
p2

 (
3

b)

Sh
ift

Co
nd

1
(3

 b
)

Sh
ift

Co
nd

2
(3

 b
)

Sh
ift

Co
nd

3
(3

 b
)

Sh
ift

Di
r1

 (
1

b)

Sh
ift

Di
r2

 (
1

b)

Sh
ift

Di
r3

 (
1

b)

Re
pe

at
 (

6
b)

O
ut

Sr
c

(2
 b

)

Figure 4.6: The format of instructions

In-Logic layer components

For in-logic layer operations, we use an ARM Cortex-A35 which is used in prior works [84] as the processing

unit in logic layer (because it has low power consumption), along with a 128 KB buffer for buffering shared

values.

Fulcrum: a Simplified Control and Access Mechanism toward Flexible and Practical In-situ Accelerators 50

Interconnect

Fulcrum can be integrated into a system in two ways. The first option is to integrate Fulcrum with CPU/GPU

through current 3D interfaces. For this option, we have to lower the power budget to 10 Watt [94, 84]

(we evaluate Fulcrum under different power budgets in Section 6.4). The second option is to use CXL [99]

interface (similar to GPU and FPGA), which allows a higher power budget. This option allows a memory-like

access to the data stored in Fulcrum. As a result, for workloads that have phase behavior, where some phases

are suitable for in-situ while other phases are not, the host, GPU, FPGA, or any other device can access the

output of Fulcrum (output of in-situ phases).

The Walker renamer

Fulcrum exploits broadcasting for reducing the cost of data movement. To overlap computation and

broadcasting, all subarrays should work in lockstep so that the broadcasted value is used for computation

and can be discarded in the next cycle, eliminating the need for storing broadcasted values. However, in

some applications, the processing time for each Walker in each subarray might vary, hindering the lockstep

computation. We propose to exploit Walker renaming to solve this problem. As an example, we explain the

role of Walker renaming in SPMV.

To represent sparse matrices (where most of the values are zero), we can employ a few formats. One of

the most popular formats is the compressed sparse row (CSR) format, which represents a matrix M by three

arrays containing: (i) nonzero values, (ii) the positions of the start of the rows, and (iii) column indices. A

naive implementation lays out the three vectors in three different rows and uses all Walkers. Since the values

of the vector are being broadcasted, when a controller detects a fully accessed Walker in any of the subarrays,

the process, in all subarrays, should wait until a new row is read into the Walker. To avoid this overhead,

we place each non-zero value and its corresponding column index subsequently in the same array. This

way, we only need one Walker for computation. Therefore, for example, while Walker A is being processed,

another row can be captured in Walker B. When Walker A is fully accessed, the computation can continue

by processing Walker B. However, the ALPU’s instruction buffer is programmed to process Walker A. Here

Walker renaming can help. As explained in Section 4.4.1, when Walker A is fully accessed, Walker B will be

renamed to Walker A so that computation can continue with the same ALPU instruction.

4.4.2 Software

In this section, we discuss programming, data placement, and high-level programming.

4.4 Implementation detail 51

Programming

Fulcrum’s programs comprise two parts: (i) the in-logic layer portion, and (ii) the ALPUs’ portion.

Our in-logic layer programs interact with vault controllers for generating commands for setting ALPU’s

registers and instruction buffer, sending broadcast values, and collecting the partial results. It also reduces

the partial results or performs specific functions on intermediate results. Our in-logic layer core is an ARM

Cortex-A35 and can be programmed by high-level programming languages such as C++.

To program the ALPU, we used the low-level instructions explained in Section 4.4.1 (Figure 4.6). Our

online repository [103] contains ALPU programs for the evaluated applications. A non-expert programmer

can easily use ALPU libraries, written by experts (similar to machine-learning users with no CUDA knowledge

that are using NVIDIA libraries).

Therefore, a Fulcrum kernel call first loads the in-logic layer program. The in-logic layer program generates

commands for the vault controller to load the ALPU programs and other ALPU settings and start the

computation.

Data placement

The layout of data highly affects the performance benefit of Fulcrum. The data should be partitioned and

laid out carefully to enable exploiting subarray-level parallelism, broadcasting, and the light-weight sequential

access mechanism. For example, in matrix-vector multiplication, we use a row-oriented layout for the matrix

and map each row of a matrix to one pair of subarrays. In each cycle, we broadcast one element of the vector

to all ALPUs, and each ALPU multiplies the broadcasted value by the corresponding element of the row of

the matrix. To choose the best strategy for placing data in the desirable layout, we categorize data as either:

(i) long-term and (ii) temporary resident data. The first category resides in Fulcrum for a long time, but the

second group is the input of the application or the intermediate results that reside in Fulcrum temporarily.

For example, DNN algorithms are composed of several layers. The core of computation in each layer is a

matrix-vector multiplication, where a matrix of weights are multiplied by a vector of activations (for batch

size of one). The output of each layer is a vector, which is the activation vector for the next layer. The matrix

of weights can reside in Fulcrum for a long time. However, the activation vectors, which are the output of

each layer, only reside in Fulcrum for a short time. Machine learning models such as reference points in KNN

or database tables are other examples of long-term resident data. The query points in KNN are examples of

temporary resident data.

For long-term data, we assume an offload paradigm for both the 3D and CXL deployments. So an API

similar to CUDA’s API (cudaMemcpy()) manages the data transfer. Mapping the address space to DRAM

Fulcrum: a Simplified Control and Access Mechanism toward Flexible and Practical In-situ Accelerators 52

rows, banks, and subarrays is configurable in the memory controller [19]. Therefore, by copying data in a

specific address, the programmer can place data in the desirable layout. For this group, we can ignore the

overhead of laying out the data as this is a one-time cost.

The temporary resident data itself can be categorized into two groups. The first group are the data that

we broadcast and do not need to be stored, such as the activation vectors or the query points in KNN. We

store these values in our in-logic layer buffer. The space in this broadcasting buffer has also a memory address.

If these data are generated outside Fulcrum (for example, in GPU, in the previous phase of the applications

which are not suitable for in-situ computing), an API copies these data to the in-logic layer buffer. If these

data are generated inside Fulcrum, our in-logic layer core’s program collects these data from the memory and

stores it in the in-logic layer buffer. The second group are the data that cannot be broadcast. If these data

are generated outside Fulcrum, we propose to employ on-the-fly layout optimization methods [104] that are

proposed for GPUs. If these data are generated inside Fulcrum but need to be laid out differently for the

next phase, our in-logic layer core’s program collects and changes the layout for the next phase.

High-level programming

We realize that a non-expert programmer will not write an assembly program for ALPUs. Our future work

will develop a high-level programming language and a software stack. We hypothesize that a programming

model similar to TensorFlow suits Fulcrum. Accordingly, we envision a software stack composed of two steps.

The first step is to implement the important kernels of most commonly used libraries, such as cuBLAS [105],

cuSPARS [106], and Thrust [107] and any other useful primitive such as Reduction, Scan, Sort, and Filter

that are amenable for in-situ computing. The second step is to develop a programming model similar to

TensorFlow([97]). The TensorFlow programs are Data-Flow Graphs (DFG) where each operator node can

have multi-dimensional vectors, or tensors, as operands. The compiler transforms the input DFG into a

collection of primitives and kernels which are implemented in step1. A similar approach is used for TPU and

prior in-situ accelerators [97, 95].

4.5 Evaluation

In this section, we first describe our evaluation methodology. Second, we compare the performance of our

method against three approaches: (i) a server-class GPU, (ii) a prior work on in-situ computing, and (iii) an

ideal model of the GPU, where we only incorporate the cost of data movement. Third, we discuss applications’

characteristics that affect the Fulcrum’s performance and energy benefit. Fourth, we evaluate the effect

4.5 Evaluation 53

of each problem. Finally, we present area, energy, and power evaluation results, as well as performance

evaluation under specific power budgets.

4.5.1 Methodology

We evaluated performance, area, and energy consumption of Fulcrum. For performance evaluation of Fulcrum,

we divided applications into multiple phases, where each phase could either be an ALPU processing phase or

an in-logic layer processing phase. We evaluated ALPU processing by modeling the ALPU’s computation time,

including both the row activation time and processing time. We also modeled the in-logic layer processing

time, including data movement and partial-result calculations.

We evaluated Fulcrum with both integer and floating-point configurations: Integer Fulcrum is capable of

integer addition and multiplication, as well as bitwise operations, whereas float Fulcrum adds single-precision

floating-point addition and multiplication.

The major benefit of Fulcrum is reducing the cost of data movement. Accordingly, to abstract away

from architectural details of GPUs, we also evaluated against an ideal model of the GPU, where we only

incorporate the cost of data movement to and from the GPU’s global memory. To this end, we measured the

data that are read or written to the GPU’s DRAM (using NVProf [108]) and divided the measured data

movement by the raw bandwidth of the memory stack to obtain the performance cost of the data movement.

Our RTL and CACTI-3DD [101] evaluations show that Fulcrum can work at a frequency of 199 MHZ, in

22nm technology. We added slack of 21.5% (to incorporate the delay penalty of logic in DRAM technology [98])

and evaluated Fulcrum with 164 MHZ.

Table 5.1 lists the configuration of our evaluated systems, and Table 5.2 introduces our in-situ benchmark

suite, InSituBench [109] (a combination of memory-intensive kernels, suitable for in-situ computing, from

different domains). We selected Sort, Scan, Reduction, GEMM (matrix-matrix multiplication), and GEMV

(matrix-vector multiplication) from the NVIDIA SDK benchmark [110]. We also included sparse matrix-

vector (SMPV) and sparse matrix-matrix (SPMM), LSTM (a deep learning application), K-nearest neighbor

(KNN) [111, 112] (a classical machine learning application), Scale, and AXPY (representatives of simple

kernels). We also added FilterByKey, FilterByPredicate, Bitmap (from DBMS domain [113, 114, 115,

84]), and Xor (representative of bitwise kernels, used in bitmap indexing [116] and bitmap-based graph

processing [117, 2, 25, 12]).

For area evaluation, we designed the ALPU in RTL and synthesized the modules using an industry-

standard 1xFinFET technology with foundry models (in modern technologies the node number does not

refer to any feature in the process, and foundries use slightly different conventions. We use 1x to denote the

Fulcrum: a Simplified Control and Access Mechanism toward Flexible and Practical In-situ Accelerators 54

Table 4.1: The evaluated applications

Application Implementation Operation DRISA ? input options
AXPY cuBLAS [105] add and multiply Yes –Num=1000000000
Bitmap Thrust [107] compare and bitwise shift No –Num=1000000000

FilterByKey Thrust [107] compare No –Num=100000000
FilterByPredicate Thrust [107] compare No –Num=1000000000

GEMM cuBLAS [105] add and multiply Yes –numRowA=25600 numColA=19200 –numRowB=19200 –numColB=12800
GEMV cuBLAS [105] add and multiply Yes –numRow=25600 –numCol=19200 –IsVector=1
KNN Fast KNN [111, 112] add and multiply NO –global mem –ref nb=100000 –query nb=1
LSTM cuDNN [118] add and multiply Yes –seqLength=100 –numLayers=4 –hiddenSize=4096 –miniBatch=1

Reduction NVIDIA SDK [110] add Yes –Num=16777216
SPMM cuSPARSE [106] compare, add and multiply No –NumRowA=8192 –NumColA=100000 –NumColB=8192 –percentage=0.2
SPMV cuSPARSE [106] compare, add and multiply No –NumRow=8192 –NumCol=100000 –percentage=0.2
Scale Thrust [107] multiply Yes –Num=1000000000
Scan NVIDIA SDK [110] add No –Num=1073741824
Sort NVIDIA SDK [110] compare No –Num=10000000
Xor Thrust [107] bitwise Yes –Num=1000000000

14/16nm FinFET nodes offered by the foundry.). Then we scaled the area estimation (both pessimistic and

optimistic) to 22 nm technology. We modeled the area of Walkers in CACTI-3DD [101].

To evaluate the energy consumption, we extracted the energy consumption of ALPU by RTL simulation,

and used the energy consumption modeling of CACTI3DD [101] for Walkers. To evaluate the breakdown of

energy consumption for the GPU, we developed MoveProf [119] that integrates NVIDIA’s NVProf [108] with

GPUWattch [120]. GPUWattch [120] uses RTL models for processing elements and CACTI [101] for memory

elements. Therefore our evaluation of Fulcrum is comparable to GPUWattch [120].
Table 4.2: Configuration details for evaluated architectures

Component Parameters

GPU
Tesla P100 [121], 12 GB memory
3 HBM2 memory stacks at 549 GB/s
(183 GB/s per stack)

Fulcrum

technology:22 nm, 32 vaults
32 subarray, open-bitline structure
4 mats per subarray, 256 bytes per row
64 banks per layer, 8 memory layers,
row cycle:50 ns, frequency:164 MHz
In-logic layer:
128 KB SRAM-based FIFO
ARM Cortex-A35

Ideal machine HBM2, bandwidth:183 GB/s

4.5.2 Performance improvement over GPU

Figure 4.7 illustrates the throughput of Fulcrum over a server-class GPU, NVIDIA P100. This figure shows

that Fulcrum outperforms the GPU, on average by 23.4×, and up to 76× (achieved for Bitmap). For

applications such as Sort, with lower memory-intensity, the speedup is around one order of magnitude (8.8×).

Applications such as GEMM, which can employ blocking to significantly increase locality, gain lower speedup

(1.5×). NVIDIA P100 has three memory stacks and Fulcrum has one memory stack. Therefore, Fulcrum

delivers, on average (up to), 70 (228)× speedup per memory stack over the GPU.

4.5 Evaluation 55

A
XP

Y

B
itm

ap

Fi
lte

rB
y-

K
ey

Fi
lte

rB
y-

Pr
ed

ic
at

e

G
EM

M

G
EM

V

K
N

N

LS
TM

R
ed

uc
tio

n

SP
M

M

SP
M

V

Sc
al

e

Sc
an

So
rt

Xo
r

A
vg

Operation

10
0

10
1

Th
ro

ug
hp

ut
 (n

or
m

al
iz

ed
 to

 G
PU

)
 (l

og
)

GPU Fulcrum

Figure 4.7: Throughput comparison against NVIDIA P100

4.5.3 Comparison against an ideal model and bitwise row-wide ALUs

The most beneficial aspect of in-situ computing is reducing the cost of data movement. Therefore we evaluated

our method against an ideal model of GPU, where we only incorporated the cost of data movement between

DRAM and GPU. We also evaluated our method against DRISA [2] for applications that do not have

branches, where the complex operations can be emulated using bitwise operations. Figure 4.8 illustrates the

throughput per memory stack of the ideal model, DRISA [2], GPU, and Fulcrum. This figure shows that

Fulcrum outperforms the ideal model, on average, by 19× and up to 178.9×. However, it can not outperform

the ideal model for GEMM, which has a higher locality. This figure also shows that Fulcrum can outperform

DRISA [2] (the last column of Table 5.2 indicates applications that DRISA can support), often by more than

two orders of magnitude. However, Fulcrum is 3.5× slower than DRISA for Xor–a bitwise task ideally suited

for DRISA.

4.5.4 The effect of application characteristics

Figure 4.9 shows detailed performance metrics, collected by the NVIDIA profiler [108]. Tables 4.3 presents

the definition of the metrics used in this Figure. In this Figure, the y-axis shows the normalized value of

the metric, so that the y-axis value for the application with the highest metric value is one. This Figure

demonstrates that applications such as Bitmap that have very high memory read per computation benefit

more from Fulcrum. Since reading data from DRAM is in the critical path, memory read per computation

is more important than memory write per computation. KNN, which gains a high speedup, has a high value

of sm inefficiency.

Fulcrum: a Simplified Control and Access Mechanism toward Flexible and Practical In-situ Accelerators 56

A
XP

Y

B
itm

ap

Fi
lte

rB
y-

K
ey

Fi
lte

rB
y-

Pr
ed

ic
at

e

G
EM

M

G
EM

V

K
N

N

LS
TM

R
ed

uc
tio

n

SP
M

M

SP
M

V

Sc
al

e

Sc
an

So
rt

Xo
r

A
vg

Operation

10
2

10
1

10
0

10
1

10
2

Th
ro

ug
hp

ut
 (n

or
m

al
iz

ed
 to

 G
PU

)
 p

er
 m

em
or

y
st

ac
k

 (l
og

)
Ideal model Bitwise in-situ GPU Fulcrum

Figure 4.8: Throughput per stack comparison against the ideal model, DRISA [2], and GPU

Table 4.3: Metrics used in Figure 4.9

Metric Definition
dram read bytes Total bytes read from DRAM to L2 cache
dram write bytes Total bytes written from L2 cache to DRAM.

inst integer Number of integer instructions executed by nonpredicated threads
inst fp 32 Number of single-precision floating-point instructions

executed by non-predicated threads (arithmetic, compare, etc.)
stall memory dependency Percentage of stalls occurring because a

memory operation cannot be performed due to
the required resources not being available or fully utilized, or
because too many requests of a given type are outstanding

sm efficiency The percentage of time at least one warp is active
on a multiprocessor averaged over all multiprocessors on the GPU

sm inefficiency 1-sm efficiency
memory read per computation dram read bytes/(inst integer+ inst fp 32)
memory write per computation dram write bytes/(inst integer+ inst fp 32)

It also shows that SPMV on GPU has the highest

stall memory dependency, which is the result of indirect memory accesses such as x[col[j]] [122]. To implement

SPMV on Fulcrum, we partition rows of the matrix among subarrays and store column indexes and non-zero

values consecutively. We broadcast the index of the vector elements, followed by the corresponding value. In

each subarray, the ALPU checks the column index of the non-zero value with the broadcasted index and

perform multiplication and addition for matched indexes. While our implementation does not require indirect

memory accesses, for highly sparse vectors, we waste many cycles for broadcasting values that will not be

matched in any subarray. However, the simplified control and access mechanism and in-situ computing (which

reduces the energy consumption of data movement) still provide energy benefits. Figure 4.10 illustrates that

4.5 Evaluation 57

the higher the density, the lower normalized energy-delay product (EDP) (the lower, the better). Therefore

we can conclude that Fulcrum benefits applications with the density of 3-100%. Prior works have shown that

many problems in statistics and sparse neural networks have such density [123].

A
XP

Y

B
itm

ap
Fi

lte
rB

y-
K

ey
Fi

lte
rB

y-
Pr

ed
ic

at
e

G
EM

M

G
EM

V

K
N

N

LS
TM

R
ed

uc
tio

n

SP
M

M

SP
M

V

Sc
al

e

Sc
an

So
rt

Xo
r

A
vg

Operation

10
5

10
4

10
3

10
2

10
1

10
0

N
or

m
al

iz
ed

 m
et

ric
 (l

og
)

Dram_read_per_computation
Dram_write_per_computation

stall_memory_dependency
SM_Inefficiency

Figure 4.9: Performance metrics that affect Fulcrum’s speedup

News20
 density=0.03%

Rcv1
 density=0.1%

E2006
 density=0.8%

W8a
 density=3.0%

mnist
 density=19.0%

Dataset

10
2

10
1

10
0

10
1

10
2

10
3

Fu
lc

ru
m

's
 E

D
P

 n
or

m
al

iz
ed

 to
 G

PU

(th
e

lo
w

er
, t

he
 b

et
te

r)

Figure 4.10: The effect of density on the EDP benefit

4.5.5 The impact of each problem

Section 4.2 lists four problems for prior in-situ approaches. In this Section, we discuss the impact of each

problem.

1. Lack of flexibility: The fourth column of Table 1 demonstrates that DRISA [2], a prior in-situ approach,

can not efficiently support applications such as Sort, Scan, FilterByKey, and FilterByPredicate. The hardware

overhead of solutions such as a simple in-order core is 25× larger than the size of each subarray.

2. No support for complex operations: Figure 4.1 illustrates that the energy consumption of several

row activations, required for emulating complex operations using bitwise operations, is higher than the energy

Fulcrum: a Simplified Control and Access Mechanism toward Flexible and Practical In-situ Accelerators 58

consumption of accessing the same data in the logic layer, nullifying the advantages of in-situ computing over

in-logic layer computing.

3. Interleaving: Without reuniting interleaved bits, computation on more than 4-bit values is impractical,

as bits are not physically adjacent (Section 6.3).

4. Inefficient interconnections: Figure 4.11 illustrates the overhead of copying shared values. In this

figure, the y-axis shows the percentage of Fulcrum’s execution time that would be spent on copying shared

values in all subarrays vs. the percentage of Fulcrum’s time that is spent on broadcasting. Since broadcasting

is often overlapped with computation, it imposes negligible performance overhead.

Figure 4.12 shows the performance overhead of inter-subarray data movement through GDLs. This figure

shows that LISA data movement can alleviate the inter-subarray data movement overhead and improve the

performance of applications with inter-subarray data movement requirement such as Scan, Sort, and KNN.

A
XP

Y

B
itm

ap

Fi
lte

rB
y-

K
ey

Fi
lte

rB
y-

Pr
ed

ic
at

e

G
EM

M

G
EM

V

K
N

N

LS
TM

R
ed

uc
tio

n

SP
M

M

SP
M

V

Sc
al

e

Sc
an

So
rt

Xo
r

Operation

10
3

10
2

10
1

10
0

10
1

10
2

Ex
ec

ut
io

n
tim

e
ov

er
he

ad

 (n
or

m
al

iz
ed

 to
 to

ta
l

Fu
lc

ru
m

's
 e

xe
ct

io
n

tim
e(

lo
g)

)

Shared by copying Shared by broadcasting

Figure 4.11: The performance overhead of copying shared values vs. the performance overhead of broadcasting.
Since broadcasting and computation are often overlapped, broadcasting imposes zero/negligible overhead.

A
XP

Y

B
itm

ap

Fi
lte

rB
y-

K
ey

Fi
lte

rB
y-

Pr
ed

ic
at

e

G
EM

M

G
EM

V

K
N

N

LS
TM

R
ed

uc
tio

n

SP
M

M

SP
M

V

Sc
al

e

Sc
an

So
rt

Xo
r

Operation

10
3

10
2

10
1

Ex
ec

ut
io

n
tim

e
ov

er
he

ad

 (n
or

m
al

iz
ed

 to
 to

ta
l

Fu
lc

ru
m

's
 e

xe
ct

io
n

tim
e(

lo
g)

)

Inter-subarray by GDL Inter-subarray by LISA

Figure 4.12: The performance overhead of inter-subarray data movement through GDL vs. LISA [3] for
applications with inter-subarray data movement requirement.

4.5 Evaluation 59

Table 4.4: Area evaluation of Fulcrum

Area mm2

Per two subarrays Per layerComponent
Optimized Pessimistic Optimized Pessimistic

Original DRAM – – – 34.95
Walkers – 0.011 – 11.26

Integer+Bitwise ALPU (4 entries) 0.0054 0.0076 5.53 7.87
Integer+Bitwise ALPU (8 entries) 0.0059 0.0083 6.09 8.51

Integer+Bitwise+Float ALPU(4 entries) 0.0088 0.0166 9.05 17.09
Integer+Bitwise+Float ALPU(8 entries) 0.0093 0.0173 9.52 17.73

4.5.6 Area evaluation

A high capacity accelerator is desirable as it can support applications with large footprints. Therefore we

targeted an 8GB accelerator with eight layers (1GB per layer). Fulcrum has two major types of components

added to the commodity DRAM: (i) Walkers and (ii) ALPUs. Table 5.5 lists the optimistic and pessimistic

area evaluation of these components with different configurations. Our evaluation shows that an 8GB integer

Fulcrum, with 4 entries of the instruction buffer, is achievable by eight layers, where the area of each layer

optimistically (pessimistically) is 51.74mm2 (54mm2). A 4-entry, 8GB float Fulcrum is achievable by eight

layers, where the area of each layer optimistically (pessimistically) is 55.26mm2 (63.3mm2).

4.5.7 Energy consumption

Figure 4.13 compares the energy consumption of two configurations of Fulcrum: (i) integer Fulcrum, and

(ii) float Fulcrum to GPU. This Figure illustrates the energy consumption spent (both dynamic and static)

on three parts: (i) data movement (on on-chip and off-chip memory elements and interconnections), (ii)

control (instruction fetch units and instruction schedulers), and (iii) computation (ALUs and FPUs). Fulcrum

reduces the total energy consumption, compared to GPU, on average by 96%. Our evaluation shows that float

Fulcrum reduces the energy consumption of movement, control, and computation by 97%, 73%, and 24%,

respectively. Unlike the energy reduction in control and data movement (which are expected), the energy

reduction in computation is unexpected as Fulcrum uses larger technology size than GPU for computation.

Our evaluation shows that the dominant factor in energy reduction, for memory-intensive applications (where

the computation units are often waiting for the data), is the reduced execution time, which reduces the

static power consumption. For computation-intensive applications such as GEMM, Fulcrum increases the

computation energy by 509%, as expected.

Fulcrum: a Simplified Control and Access Mechanism toward Flexible and Practical In-situ Accelerators 60

1.0

Figure 4.13: Breakdown of energy consumption

4.5.8 Power evaluation

Figure 4.14 compares the power consumption of GPU, float Fulcrum, and integer Fulcrum. This figure

illustrates that, on average, float Fulcrum (integer Fulcrum) decreases the power consumption by 72.3%

(73.8%). Our detailed evaluation shows that 33.2% percent of the power consumption of float Fulcrum is spent

on row activation, 34.71% is spent on moving data to the side of the subarray, 13.1% is spent on computation,

and 14.6% is spent on control. The rest is spent other forms of data movement such as broadcasting, LISA

movement, and collecting the partial results.

A
XP

Y

B
itm

ap
Fi

lte
rB

y-
K

ey
Fi

lte
rB

y-
Pr

ed
ic

at
e

G
EM

M

G
EM

V

K
N

N

LS
TM

R
ed

uc
tio

n

SP
M

M

SP
M

V

Sc
al

e

Sc
an

So
rt

Xo
r

A
vg

Operation

0

50

100

150

Po
w

er
 (w

)

GPU Fulcrum(float) Fulcrum(int)

Figure 4.14: Power consumption of integer Fulcrum and float Fulcrum vs. GPU

4.6 Related Work 61

4.5.9 Performance under power budget

The power budget of any accelerator directly affects the choice of interface and cooling system. Prior

works [94, 84] suggest that a power budget of 10 Watts is practical through current 3D-stacked memory

interfaces. With a higher power budget, deployment as a PCIe/CXL peripheral is required to deliver the

required power for the accelerator and more complex and, consequently more expensive cooling system is

required. To change the power consumption of Fulcrum, we can simply change the frequency (however, we

do not increase the frequency beyond 164 MHz, which we treat as our maximum frequency). Figure 4.15

illustrates the throughput of Fulcrum (normalized to GPU) under three power budgets: 10, 40, and 60

Watts. This Figure shows that even with the power budget of 10 watts, Fulcrum (one stack) outperforms a

high-performance GPU (with three stacks of memory) by 6× on average, and up to 25×. However, under

this power budget, Fulcrum slows down GEMM and SPMM.

A
XP

Y

B
itm

ap
Fi

lte
rB

y-
K

ey
Fi

lte
rB

y-
Pr

ed
ic

at
e

G
EM

M

G
EM

V

K
N

N

LS
TM

R
ed

uc
tio

n

SP
M

M

SP
M

V

Sc
al

e

Sc
an

So
rt

Xo
r

A
vg

Operation

10
0

10
1

10
2

Th
ro

ug
hp

ut
 u

nd
er

 b
ud

ge
t (

lo
g)

 (n

or
m

al
iz

ed
 to

 G
PU

)

10 40 60

Figure 4.15: Performance under different power budgets

4.6 Related Work

Traditional solutions for reducing the cost of data movement have limited benefits. Prefetching techniques

can not alleviate the energy cost of data movements. Forwarding on-chip blocks techniques [47] are only

applicable when cores share values. New techniques such as quantized memory hierarchies [18] mostly benefit

applications that can tolerate errors. Therefore, in this section, we discuss only prior works with processing

units near memory elements. We categorize these works into three groups. The first group only supports

bitwise operations. The second group uses the analog computing capability of memory cells of some of the

Fulcrum: a Simplified Control and Access Mechanism toward Flexible and Practical In-situ Accelerators 62

NVM technologies such as multi-bit memristors. Finally, the third group places flexible cores in the DRAM

layer. This Section discusses how Fulcrum differs from such approaches.

In-situ computing with bitwise operations

SRAM-based [22] and DRAM-based [23, 2, 12, 24] in-situ accelerators often support only bitwise operations.

An NVM-based in-situ accelerator, Pinatubo [25], also proposes to change the sense amplifiers to enable

bitwise operation for NVMs. A limited number of applications can benefit from bitwise operation. Recent

works [2, 26] implemented binarized and 2-bit quantized deep neural networks using in-situ accelerators. In

most memory technologies, employing row-wide complex ALUs imposes a significant hardware overhead. Li

et al., [2] evaluated the overhead of adding a 4-bit adder per every four bits of the row buffer and concluded

that it imposes more than 100% area overhead. Our proposed method has two advantages over these works.

First, we enable 32-bit complex operations such as multiplication and addition without imposing a substantial

hardware overhead. Second, our proposed method increases the flexibility of accelerators to support a wider

range of applications.

Complex operations using analog computation capability of memory cells

Several prior works [27, 28, 29] employed the analog computation capability of ReRAM technology to perform

matrix-vector multiplication. Our proposed method differs from such methods in three aspects. First, these

technologies are memory-technology dependent and often use multi-bit memristor devices, which are unreliable.

These techniques are neither applicable to SRAM/DRAM, nor commercialized NVM memories [30] such as

3DXpoint [31]. Second, they require ADC/DAC blocks that impose significant hardware overhead (98% of the

total area) and power overhead (89% of the total power consumption) [30]). Third, performing multiplication

and addition operations by approximately measuring the current, introduces potential imprecision. A

recent work, FloatPIM [30] designs a CNN accelerator for training by enabling floating-point matrix-vector

multiplication in memory blocks, without requiring ADC/DAC. To this end, this approach copies the vector

(which is the shared value), not only in each subarray but per each row of the matrix, to enable parallel

multiplication and addition, imposing capacity and energy overhead. Furthermore, it implements addition and

multiplication using multiple bitwise operations and depends on the computation capability of memristors.

More importantly, they change the entire memory architecture and interconnection, and as a result, the

memory cannot be efficiently be accessed as a normal memory.

Flexible cores in DRAM layers

In the first round of research on processing in memory, in the 1990s, a variety of works [33, 34, 35, 36, 37, 38])

proposed to add flexible cores per each bank or per entire DRAM chip. Some of these proposals [39] add one

processor per entire DRAM, plus multiple bank-level buffers. In these proposals, each column of these buffers

moves toward the single processor. This imposes a high cost of data movement, is not scalable for modern

4.7 Conclusion and Future works 63

DRAMs with many banks and subarrays, and limits parallelism. Our buffers enable sequential word-level

access with subarray-level parallelism. Recently UPMEM [40] has described a product with a complex core

per each bank of 64 MB. Fulcrum instead adds a simple processing unit per 1 MB and consequently provides

higher parallelism and imposes less overhead for data movement (Our evaluations show that the energy

consumption of accessing data at the edge of a bank through GDLs is at least 3× as much as that of a

floating-point addition.). More importantly, as Section 4.3.1 explains, traditional cores impose a significant

overhead of control and access for sequential operations. This overhead might be acceptable for far-memory

cores for two reasons. First, for these cores, the ratio of this overhead compared to the overhead of data

movement is negligible. Second, these cores use the small technology size and have a high frequency, whereas

cores in DRAM layers have to use large technology size and have a low frequency. Consequently, the overhead

of the extra cycles for such control and access mechanism becomes significant for in-memory cores. Fulcrum

accelerates sequential operations and reduces the overhead of access and control.

4.7 Conclusion and Future works

For memory-intensive tasks, data movement dominates computation. Keeping computations close to the

subarray’s row buffer avoids these data-movement overheads, while simultaneously enabling high throughput,

thanks to subarray-level parallelism. Fulcrum overcomes key limitations of prior in-situ architectures, by

placing a scalar, full-word processing unit at the edge of each pair of subarrays. We show that sequentially

processing a row (instead of bit-parallel processing of the entire row buffer) with full-word computation

ability allows a much wider range of tasks to leverage in-situ processing, such as a full range of arithmetic

operations, key sparse and dense linear algebra tasks, operations with data dependencies, operations based on

a predicate, scans and reductions, and so forth. This significantly broadens the market for an accelerator for

memory-intensive processing. Leveraging DRAM technology as the basis for in-situ processing also enables

high total data capacity and high total parallelism, thanks to the large number of subarrays. Our proposed

method provides, one average (up to), 70 (228)× speedup per memory stack over a server-class GPU.

So far we discussed the challenges regarding implementing our method for DRAM. However we believe

the same simplified control and access mechanisem can be employed for SRAM-based and NVM-based

accelerators.

Fulcrum with SRAM-based memory technologies can benefit from the high frequency and more efficient

logic of SRAM technologies. Recent works have utilized SRAM for in-situ pattern matching and have

shown at least two orders of magnitude higher throughput per unit area than a prior in-DRAM solution

[124, 125, 126, 127, 128, 129]. More importantly, due to the flexibility of SRAM-based designs, we can include

Fulcrum: a Simplified Control and Access Mechanism toward Flexible and Practical In-situ Accelerators 64

memory elements with efficient random access, which can support a broader range of applications. However,

due to the lower capacity of SRAM, the number of subarrays are lower than DRAM, limiting parallelism.

Furthermore, the current structure of SRAM-based memories is less suitable for Fulcrum as the row buffers

are shorter. Therefore, a future work can optimize SRAM structures for employing Fulcrum.

NVMs have a higher capacity and higher number of subarrays and, hence, it can provide higher parallelism.

Current NVM-based in-situ approaches use the computation capability of memory cells. This type of in-situ

computing has three problems: (i) the ADC and DAC impose a significant hardware overhead, (ii) it is

not flexible, and (iii) it introduces error, and the error depends on the number of rows in each subarray,

limiting the size of each subarray and limiting the capacity. A future work can evaluate Fulcrum for NVM

and investigate the challenges such as low endurance.

Chapter 5

Gearbox: A Case for Supporting

Accumulation Dispatching and Hybrid

Partitioning in PIM-based

Accelerators

5.1 Introduction

In current computing systems, the latency and energy consumption of fetching data from off-chip memory

can be 2-3 orders of magnitude higher than an arithmetic operation [4]. Processing-in-memory (PIM)

architectures alleviate this data movement overhead by placing processing units near memory segments

(banks or subarrays) [130, 2, 131, 13].

SpMV and SpMSpV are essential computational kernels that are widely used and memory-intensive

(requiring few computations per loaded datum from memory). The generalized forms of SpMV and SpMSpV,

where the multiplication and addition can be replaced by other operations, appear in many important

application domains such as machine learning (e.g., Support Vector Machine and Sparse K-Nearest Neighbor)

and graph processing (e.g., Page Rank) [132, 133, 134]. Due to SpMV and SpMSpV kernels’ memory-bound

nature and widespread applications in various domains, they are natural candidates for PIM acceleration.

Adding support for these kernels to PIM-based accelerators can boost such applications’ performance, expand

the market for PIM, and increase vendors’ motivation in PIM investment.

65

Gearbox: A Case for Supporting Accumulation Dispatching and Hybrid Partitioning in PIM-based Accelerators66

0 1 2 3 4 5
0

1

2

3

4

5

Matrix

0

1

2

3

4

5

0

1

2

3

4

5

Input Output

´ =

0 1 2 3 4 5
0

1

2

3

4

5

(a) Row-oriented (b) Column-oriented

0

1

2

3

4

5

Input (transposed)

´

=

Zero entries

Matrix’s accessed entries Matrix’s non-zero entries that are not accessed

Input/Output vector’s non-zeros

Processed rows Processed columns

Matrix
Output

Figure 5.1: The row-oriented approach processes all rows, whereas the column-oriented approach processes
only the columns corresponding to the non-zero entries of the input vector. In (b), the input vector is
transposed to illustrate the relation between non-zero entries of the input vector and the processed (activated)
columns of the matrix.

However, existing PIM architectures often are only optimized for regular kernels by providing high

parallelism using SIMD units [131, 135] or bit-level parallelism [130, 2]. In this paper, we introduce a PIM

architecture that provides high parallelism for SpMV and SpMSpV. Later, we demonstrate that our proposed

architecture outperforms SIMD approaches for regular kernels as well.

There are two major approaches for SpMV and SpMSpV: i) row-oriented or matrix-driven approach

(Figure 5.1(a)), and ii) column-oriented or vector-driven approach (Figure 5.1(b)). The row-oriented approach

requires processing every non-zero element of the input matrix for both SpMV and SpMSpV. On the other

hand, for SpMSpV, the column-oriented approach processes only the columns corresponding to the non-zero

entries of the input vector. We refer to these columns and their non-zero entries as activated columns and

activated entries. As a result, the column-oriented approach is more efficient for SpMSpV [136].

While the column-oriented approach is common in GPU, CPU, FPGA, and ASIC solutions for SpM-

SpV [137, 138, 139, 140, 141, 142, 143, 144, 145, 134, 133], none of the prior bank-level or subarray-level

PIM-based SpMV accelerators [146, 132] have implemented column-oriented processing. To maximize the

5.1 Introduction 67

benefits of column-oriented processing, we need to address two issues: i) random accesses to remote memory

segments and ii) power-law column length distribution.

Random accesses to remote memory segments:

Processing SpMV and SpMSpV in PIM requires the compressed matrix, the input vector, and the output

vector to be partitioned among memory segments. With both row-oriented and column-oriented approaches,

the processing units near each segment require access to data that is stored in another memory segment.

For example, in Figure 5.2 (a), one of the multiplication and addition required for generating Output[3] is

Output[3]+ = Matrix[3, 0] ∗ Input[0]. However, Figure 5.2 (a) shows that Input[0] and Matrix[3, 0] reside

in Subarray 1 (S1), but Output[3] resides in Subarray 2 (S2). Therefore, the processing unit in S1 does the

multiplication part (Input[0] ∗Matrix[3, 0]) locally but has to access Subarray 2 (S2) to write the result of

multiplication in Output[3].

The remote write accesses are remote accumulations that do not require any mechanism for enforcing the

order of operations. Therefore, the result of multiplications can be sent to be accumulated in the destination

memory segment. For example, S1 can send the multiplication result to S2 to be added to Output[3] in S2

and continue processing another multiplication and do not need to wait until the accessed operand arrives

from a remote memory segment.

Accordingly, we propose Accumulation dispatching. In this mechanism, one dedicated subarray in every

bank acts as a dispatcher for remote accumulations. Without the dispatcher, each remote accumulation would

interrupt the normal processing of the processing unit in the remote subarray. The dispatcher collects all the

remote accumulations and sends them to their destination once the destination subarray’s processing ends.

This solution sacrifices only 6% of capacity. In Section 5.7.3, we evaluate an alternative albeit impractical

approach.

Power-law column length distribution:

Real-world sparse matrices’ column lengths follow the power-law distribution [147]. That means most of

the rows/columns contain very few non-zero entries (referred to as short rows/columns), while the remaining

row/columns have orders of magnitude higher numbers of non-zero entries (referred to as long rows/columns).

The natural way of partitioning a matrix for the column-oriented approach is to assign a few full columns to

each memory segment, where the input entries that activate these columns reside. However, with a power-law

column length distribution, whenever a long column gets activated, the processing unit of the subarray

that has this column has to perform many more multiplications than other processing units, causing load

imbalance. We also observed that, with naive column-oriented partitioning, most of the remote accumulations

are due to long columns.

Gearbox: A Case for Supporting Accumulation Dispatching and Hybrid Partitioning in PIM-based Accelerators68

To address these issues, we propose Hybrid partitioning scheme that treats short and long columns

differently. We partition the short columns in a normal column-oriented way. The long columns’ non-zero

entries are distributed among all memory segments, so that each non-zero entry and its corresponding entry

in the output vector reside in the same memory segment. We also propose hardware support for our proposed

partitioning technique. To lower the overhead of our hardware support, we reorder the matrix so that the

long columns/rows are the first columns/rows of the matrix and their index is lower than a threshold. As a

result, distinguishing the indexes corresponding to these long columns and long rows can be implemented

using a comparator and a latch that holds the threshold.

Figure 5.2 (b) shows that with Hybrid partitioning, the long column no longer causes any remote

accumulation, since Matrix[3 : 5, 0] and Output[3 : 5] reside in the same subarray. This partitioning also

alleviates load imbalance, because all processing units co-operate on processing an activated long column.

With Hybrid partitioning, for multiplications, all subarrays need to access the input vector entries that

activate long columns. We place these entries in the logic layer (one of the layers in 3D stack memories,

introduced in Section 6.2) and broadcast them to all subarrays. For example, in Figure 5.2 (b), we place

Input[0] in the logic layer.

Based on these two key ideas, we propose Gearbox, which adds efficient hardware supports for column-

oriented processing to PIM-based accelerators. We use Fulcrum [13] as the baseline PIM architecture for

Gearbox. Fulcrum places one lightweight single-word processing unit at every two subarrays to achieve high

parallelism. The subarray-level single-word processing allows parallel and independent access per single-word

ALU. Therefore, unlike SIMD approaches, the ALUs do not have to wait for all the operands to be collected.

However, Fulcrum [13] only supports sequential accesses. It does not support local random accesses (i.e.,

random access within the same subarray) and remote accesses required by the SpMV and SpMSpV kernels.

We modify Fulcrum to add support for a new important range of applications by enabling local random

accesses, as well as adding support for our proposed Accumulation dispatching and Hybrid partitioning. Our

support for local random accesses, Accumulation dispatching, and Hybrid partitioning is programmable,

enabling future works to map more irregular kernels to our proposed architecture.

Our proposed method, Gearbox, with just one memory stack, delivers on average (up to) 15.73× (52×)

speedup over a server-class GPU, NVIDIA P100, with three stacks of HBM2 memory. Note that the P100 is

not the state-of-the-art GPU and newer GPUs have even more memory stacks. Compared to GPUs with

more memory stacks, Gearbox remains highly competitive in terms of speedup per stack because Gearbox

delivers on average 45× speedup per stack compared to NVIDIA P100.

5.2 Background 69

Gearbox also outperforms an ideal model of SpaceA [146], a PIM-based SpMV accelerator that only

supports row-oriented processing (assuming no area overhead, perfect load balancing, and no penalty for

remote reads for SpaceA) by 58× (447×) per area.

Our paper makes the following contributions:

• Proposing a highly parallel architecture that can exploit the parallelism for regular kernels, as well as

SpMV and SpMSpV.

• Proposing the first in-memory-layer approach (near banks/subarrays) that implements column-oriented

processing, which is more efficient than row-oriented processing.

• Proposing Hybrid partitioning to reduce remote accumulations and alleviate load balancing.

• Proposing hardware support for remote accumulations and Hybrid partitioning.

5.2 Background

5.2.1 HMC-like configuration vs HBM-like configuration

HMC has short rows (e.g., 256 bytes) and narrow columns (e.g., 32-bit) and GDLs, whereas HBM2E [148]

has wide rows (e.g., 1 KB) and wide columns and GDLs (e.g., 256 bit).

We choose memory configurations with short rows (e.g., 2048 bits), such as HMC [19, 13], because memory

configurations with short rows are more efficient for parallel row activations and random accesses, where only

a few words of a row are useful.

5.2.2 Sparse operations

We denote generalized matrix-vector multiplication as Output[:] = Matrix[:, :] × Input[:], where Input[:]

and Output[:] are vectors, and Matrix[:, :] is a matrix. By “generalized”, we mean multiplications and

accumulations can be replaced by any other operation with similar properties (e.g., commutativity). In most

applications, we need an extra step on the output vector finalOutput[:] = Output[:] + αy[:], where α is a

scalar value and y[:] is a vector. The addition and multiplication in this step can also be replaced by any

other operation. We refer to this step as Applying.

Many applications can be formulated as SpMV and SpMSpV [132, 134, 133]. For example, Single-Source

Shortest Paths (SSSP), a graph processing application, can be formulated as SpMSpV, in which multiplication

is replaced by addition, and the accumulation operation is replaced by minimization.

Gearbox: A Case for Supporting Accumulation Dispatching and Hybrid Partitioning in PIM-based Accelerators70

5.2.3 Sparse matrix representations

There are two main data representations for sparse matrices: (i) compressed sparse rows (CSR) and (ii)

compressed sparse columns (CSC). CSC/CSR stores the matrix in three arrays containing: (i) non-zero values

(V alues), (ii) row/column indices of non-zero values (Indexes), and (iii) offsets (Offsets) that refer to the

positions of the start of the columns/rows in both V alues and Indexes arrays.

CSC representation is more efficient for column-oriented processing, as it has the position of the start of

each column. We can pair the V alues and Indexes arrays into one array (CSC Pair), as shown in Figure 5.3.

5.3 Motivation and key ideas

5.3.1 Support for column-oriented processing using accumulation dispatching

Figure 5.5 shows that the column-oriented algorithm only processes the columns that correspond to non-zero

entries of the input vector. Therefore, column-oriented processing operates on the sparse format of the

input vector (lines 4-5). We refer to this format of the input vector as the frontier (line 5, currFrontier

in Figure 5.5). Column-oriented processing also requires random access to the output vector (lines 20-21).

When we partition the matrix and the input/output vectors among memory segments, the accumulation in

line 21 can be remote or local. For example, in Figure 5.5, consider a subarray containing Matrix[:, j : k],

Input[j : k], and Output[j : k]. In line 21, if j ≤ row index ≤ k, the accumulation is a local accumulation.

Otherwise, it is a remote accumulation.

Key idea 1: Accordingly, we add hardware support for distinguishing remote accumulations from local

accumulations by placing a comparator and two latches that hold the range of index of local accumulations.

We also propose a mechanism for dispatching remote accumulations, Accumulation dispatching. In this

mechanism, one specialized subarray in every bank acts as a dispatcher for the remote accumulations. We

elaborate on the details of this mechanism in Section 5.4.

5.3.2 Reducing remote accumulations and balancing the load by supporting

Hybrid partitioning

Figure 5.4 shows the column length distribution of our evaluated datasets, where the x-axis (log scale) shows

the column length and the y-axis is the percentage of columns within that range. This figure demonstrates

that there are only a few long columns, but they are orders of magnitude longer than the other columns.

Same goes for the long rows. We refer to the top X% (e.g., 0.01%) of columns/rows as long columns/rows.

This threshold is configurable in our architecture.

5.3 Motivation and key ideas 71

Figure 5.2 (a) in Section 6.1 demonstrates that, with column-oriented partitioning, where each subarray

has a few full columns, the long columns can cause many remote accumulations and significant load imbalance

among processing units.

Key idea 2: Given these observations, to both balance the load and reduce the number of remote

accumulations, we propose Hybrid partitioning. Figure 5.2 (b), in Section 6.1, illustrates that Hybrid

partitioning treats short and long columns differently. We partition the short columns in a column-oriented

way but divide the long columns among all subarrays. Consequently, each part of a long column resides in the

same subarray in which its corresponding part of the output vector resides, eliminating remote accumulations.

Furthermore, all subarrays cooperate for processing long columns, alleviating the load imbalance.

In iterative algorithms, the output vector becomes the input vector of the next iteration. Therefore, in

the next iteration, all subarrays for multiplication require accessing the output vector entries that activate

a long column. We place the output vector entries corresponding to long columns in the logic layer. In

the subsequent iterations, they are broadcast to all subarrays from the logic layer, eliminating the need of

copying from the output vector to the input vector. Since there are only a few activated long columns in each

iteration, the broadcasting imposes negligible overhead. The overhead is evaluated in Section 5.7.4.

Real-word matrices may also contain a few long rows. Figure 5.6 (a) shows that these long rows can

trigger many remote accumulations. To reduce this remote accumulation overhead, we place the output

entries corresponding to the long rows in the logic layer. The logic layer provides more efficient random

accesses, since it has SRAMs.

To implement Hybrid partitioning, our subarray-level processing units should be able to distinguish

among input/output entries corresponding to the long columns. We reorder the matrix so that the long

columns/rows of the matrix and their index are lower than a threshold. As a result, we can implement this

distinction by using a comparator and a latch that keeps the index of the last long column/row. Section 5.6

explains that this one-time cost is acceptable [147, 149, 146, 150, 151].

To further minimize the overhead of accumulation of long columns/rows, we added an optional optimization,

where we replicate the output vectors corresponding to the long columns/rows in all subarrays. Then we

accumulate the long rows, first locally in each subarray and then in the logic layer (Figure 5.6 (b)). If we

choose 0.01% of rows/column as long rows/columns, the capacity overhead of this technique stays below

1.7%.

Gearbox: A Case for Supporting Accumulation Dispatching and Hybrid Partitioning in PIM-based Accelerators72

5.4 Proposed Architecture

We use Fulcrum[13] as the baseline PIM-based architecture. Motivated by characteristics of memory-intensive

applications, where there are few simple operations per loaded datum from memory, Fulcrum places one

simplified sequential processing unit per pair of subarrays. Each subarray-level processing unit (SPU) has a

few registers, an 8-entry instruction buffer, a controller, and an ALU. In Fulcrum, every pair of subarray

has three row-wide buffers, called Walkers. The Walkers load an entire row from the subarray at once, but

the processing units sequentially access and process one word at a time. The sequential access is enabled

by using a one-hot-encoded value, where the set bit in this value selects the accessed word. Therefore, to

sequentially process the row, the processing unit only needs to shift the one-hot encoded value.

We chose Fulcrum because it is more flexible and more efficient than bank-level SIMD approaches for three

reasons. First, the three Walkers enable three concurrent sequential accesses. Second, Fulcrum can exploit

the parallelism for operations with data dependency because Fulcrum processes row-wide buffers sequentially.

Third, Fulcrum can efficiently exploit the parallelism for operations with branches because each subarray has

an 8-entry instruction buffer that allows each ALU to perform a different operation independently.

However, Fulcrum can only support sequential accesses and is inefficient for irregular kernels that require

random accesses, communications among subarrays, or load balancing. In this paper, we: (i) modify

the sequential access mechanism of Fulcrum to enable local random accesses, (ii) add in-memory-layer

interconnection and a dispatching mechanism to enable remote accumulations, (iii) add ISA and hardware

support for our proposed Hybrid partitioning, which minimizes communications among subarrays and provide

hardware support for load balancing. Our modifications add only 10.93% area overhead to Fulcrum but

enable exploiting the high parallelism of Fulcrum for a new range of important applications.

Figure 6.2 illustrates our proposed architecture, which is based on 3D-stacked memories. Similar to prior

works [84, 13], every vault has a simple in-order core with a 32KB SRAM scratchpad underneath it, in

the logic layer. A ring interconnection topology (Figure 6.2 (a)) connects the banks in each memory layer.

Subarrays within a bank are connected through a line interconnection topology (Figure 6.2 (b)).

As shown in Figure 6.2 (b), we have two types of SPUs. Subarrays closest to the ring interconnect contain

Dispatcher SPUs. Other subarrays contain Compute SPUs.

The logic layer components launch a kernel (or one step of a kernel) by broadcasting at most 8 instructions

to all Compute and Dispatcher SPUs and loading new values from each subarray to the associated latches.

Our launching mechanism is similar to Samsung’s PIM [131] and poses negligible overhead compared to the

total execution time.

5.4 Proposed Architecture 73

In this section, we elaborate on the role of each part of our architecture, using a simple kernel, C[A[:]]+ =

B[:]. At a high level, a Compute SPU reads the ith entry of array A[:], compares this entry against three

latches, and processes the accumulation differently based on the result of this comparison. These three latches

are FirstLocal3, LastLocal3, and LastLong3. If FirstLocal3 ≤ A[i] ≤ LastLocal3, the accumulation is a

local accumulation. If 0 ≤ A[i] ≤ LastLong3, the accumulation is again a local accumulation but on the

replicated part, C[0 : LastLong3]. Otherwise, the accumulation is a remote accumulation. In this case, the

Compute SPU sends the index-value pair (A[i] and B[i]) to the Dispatcher.

We use this simple example to introduce our modifications to Walkers, provide a walk-through example,

and explain the role of Dispatchers. In the end, we elaborate on the details of the instruction format.

5.4.1 Walkers and indirect accesses

PIM targets memory-intensive applications that process large arrays. In our architecture, each Walker read

from or write to one of these large arrays. The Start1/2/3, shown in Figure 6.2 (c), determine the row address.

The End1/2/3 latches determine the end address of the arrays associated with Walker1/2/3, respectively.

For example, Walker1 loads one row from A[:]. Then, the controller accesses the row one word at a time

by shifting the one-hot-encoded value of Walker1. Once the set bit in the one-hot-encoded value reaches the

last position, the controller loads a new row from array A[:].

In our previous example, however, the array C[:] was being accessed randomly using A[:]’s entries. When

an array is the index of another array, the access is called an indirect access. To enable indirect accesses,

we add two fields to the instruction format that determine which register contains the index of the indirect

access and which Walker should be used for loading the row containing the accessed word. Our controller

derives the row address and column address using the index. To select the accessed word from the row, we

shift the one-hot-encoded value and increment a counter until the counter equals the column address. To

hide the overhead of shifting, we overlap loading a new row into the Walker and shifting the one-hot-encoded

value and use the sub-clock, introduced in [13]. This simple modification enables parallel and independent

random access per ALU in the accelerator, enabling applications with high access divergence.

5.4.2 A walk-through example

Figure 5.8 illustrates a walk-through example of how our architecture processes the first step of C[A[i]]+ = B[i],

using four instructions. The Compute SPUs iterate over these instructions for each entry of A[:] and B[:].

Gearbox: A Case for Supporting Accumulation Dispatching and Hybrid Partitioning in PIM-based Accelerators74

Figure 5.8 1 shows the pseudo format of instruction[0], and Figure 5.8 2 illustrates the operation

performed by instruction[0]. With this instruction, the Compute SPUs load one word from Walker1 into

Walker1Reg and one word from Walker2 into Walker2Reg.

With instruction[1], as shown in Figures 5.8 3 and 4 , the SPU moves Walker2Reg to reg1 and compares

the Walker1Reg against the three latches (FirstLocal3, LastLocal3, and LastLong3). If FirstLocal3 ≤

Walker1Reg ≤ LastLocal3, the Compute SPU derives the row address and column address of C[Walker2Reg],

using Start3 latch. If 0 ≤ Walker1Reg ≤ LastLong3, the row address is derived using the LongStart3 latch

that stores the start of the replicated part of C[:] (i.e., C[0 : LastLong3]). Using the indirect mechanism that

we explained in the previous subsection, SPU loads C[Walker1Reg] into Walker3Reg. If the accumulation

is a remote accumulation, the controller places the index and the value stored in Reg1 and Walker1Reg on

the line interconnection’s port (DownPort in Figure 6.2 (c)) and returns to instruction[0].

Otherwise, Instruction[2], as shown in Figures 5.8 5 and 6 , performs the accumulation (Walker3Reg+ =

Reg1).

Instruction[3], as shown in Figure 5.8 7 , writes the Walker3Reg register to the Walker3, loads one word

from Walker1 into Walker1Reg, loads one word from Walker2 into Walker2Reg, and returns to Instruction[1].

The controller iterates over these instructions until all A[i] entries are processed.

5.4.3 Dispatcher and the bank-level switch

The Dispatcher SPUs are located in the subarrays closest to the ring interconnect (Figure 6.2 (c)). They are

primarily responsible for routing remote accumulation packets. To assist in packet forwarding, the Dispatcher

SPUs contain a switch that keeps the range of the indexes assigned to its bank and its layer in corresponding

latches.

In our previous example, the Compute SPUs send any non-local index-value pairs to the Dispatcher in

the bank. When the Dispatcher receives an index-value pair, if the index belongs to its bank, the Dispatcher

loads the index-value pair in one of its walkers. If the index-value pair belongs to the same memory layer, the

Dispatcher places it on the ring interconnection’s port. Otherwise, the Dispatcher forwards the index-value

pair to a different memory layer via TSVs. As a result, multiplications and local accumulations are overlapped

with sending remote accumulations.

After the multiplication and local accumulation, to complete the remote accumulations, we need two

additional steps. In the first step, the Dispatchers start sending the index-value pairs to Compute SPUs in

the same bank. In the second step, each Compute SPU processes the received index-value pairs to perform

the final accumulation (using instructions that are very similar to the instructions in the first step).

5.5 SpMSpV walk-through 75

5.5 SpMSpV walk-through

We can map SpMSpV to our architecture using the following steps.

Step1 (FrontierDistribution): In Section 6.2, we explained that the sparse format of the input vector is

called the frontier. In the first iteration, we partition and distribute the frontier among subarrays. In most

algorithms, the first frontier is very small (e.g., one entry for BFS). In iterative applications, the frontier is

generated in previous iterations and already resides in subarrays in which their corresponding columns reside,

except for the output entries that correspond to long row/columns, which reside in the logic layer. At the

start of each iteration, we broadcast the entries residing in the logic layer to all subarrays and append them

to the frontier array in each subarray.

Step2 (OffsetPacking): This step packs the column offset, column length, and the values from the frontier

array that should be multiplied in the column into a new array. Figure 5.9 shows the pseudo-code of this step.

Step3 (LocalAccumulations): This step multiplies each value of the frontier with its corresponding column.

Figure 5.10 demonstrates the pseudo-code of this step. In this step, if a clean value is being updated, the

clean value indicator and its row index will be sent to the Dispatcher.

Step4 (Dispatching): In this step, the Dispatcher sends all the stored entries (index-value pairs) to their

destination subarrays. Here, the Dispatcher’s Walker acts as a buffer.

Step5 (RemoteAccumulations): In this step, the SPU sequentially processes index-value pairs received in

the previous step and performs the accumulations. Also, in this step, if the value in the index-value pair is a

clean-value indicator, the index of clean-value is appended to the corresponding array.

step6 (Applying): This step processes the array containing the non-zero indexes to generate the frontier for

the next iteration, initializes the output vector to clean indicators, and sends long-activating entries to the logic

layer to be reduced and applied there. It also performs the apply operation (finalOutput[:] = Output[:]+αy[:],

which is explained in Section 6.2.

5.6 Software stack

PIM-based accelerators [131, 13, 2, 130] are most efficient for applications that can offload a large dataset to

the accelerator once and process any incoming input using the data stored in the accelerator. For example,

database tables, as well as matrices for deep learning, graph, and classic machine learning applications, can

be offloaded to the accelerator once and used for processing many inputs.

In all these domains, the one-time cost of pre-processing and data placement has typically been considered

acceptable. For example, in graph processing, several studies [147, 149, 146, 150, 151] propose pre-processing

Gearbox: A Case for Supporting Accumulation Dispatching and Hybrid Partitioning in PIM-based Accelerators76

techniques that improve the execution time. In machine learning applications, the pre-processing time is even

more negligible compared to the training cost.

Pre-processing: In Gearbox, we need to partition long columns and replicate the column offset for each

partition. To balance the load, we randomize the order of columns assigned to a bank and then reorder the

matrix so that the long columns and long rows are the first columns and rows of the matrix.

Data placement: For placing data, we use the offload paradigm. Therefore, an API similar to CUDA’s API

(cudaMemcpy()) manages the data transfer. We allocate contiguous memory space for each array in each

subarray independently and then store the row address of each array as metadata. Then, in each step, we

load these metadata in the Start and End latches (as shown in Figure 6.2 (c) and (d)).

Programming model: Similar to Samsung’s PIM [152, 131], we are relying on a library-based programming

model, where a compiler would link the kernels in computation graphs of a high-level framework (such as

TensorFlow). We will release our assembly library for the evaluated kernels.

Scaling the proposed method for larger datasets:

We evaluated our approach using datasets that are as large as datasets evaluated by prior works [153,

149, 146], as evaluation with significantly larger datasets, in the slow simulation environments, is impractical.

Gearbox provides high parallelism in one stack. Therefore, unlike prior works[153, 149, 146], Gearbox does

not need multiple stacks for these dataset sizes.

However, to employ Gearbox for large-scale graphs, we can use multiple stacks accompanied with well-

studied partitioning techniques [150, 154, 155, 156, 157]. These techniques partition the graph data into shards

(i.e., coarse-grain partitions) with limited inter-shard communications. Prior work in the area of distributed

graph processing software frameworks [150, 154], multi-stack PIM-based approaches [153, 149, 146], and

low-capacity analog-based accelerators [132] have employed, developed, and optimized these partitioning

techniques. We evaluated our approach using datasets that are as large as datasets evaluated by prior

works [153, 149, 146]. Evaluation with significantly larger datasets in the slow simulation environments is

impractical. To extend the architecture for larger datasets, we use multiple stacks (4-16) per device, similar to

prior works [153, 149, 146]. To extend the capacity even more, we assume multiple devices will be connected

by NVLink3 and NVswitch [158] or similar inter-device interconnection, which allows all-to-all bandwidth

of 600 GB/s for up to 12 devices. To extend the algorithm for multiple devices and multiple stacks, we

can partition the matrix into several blocks, where each block is assigned to one stack. This technique is

used by prior accelerators with limited capacity [159, 132]. In this case, we require an additional step that

reduces the results of all blocks. NVLink supports collective operations [160] (e.g., broadcast and allReduce

operations) that efficiently support the required inter-device communications for our proposed method. We

leave evaluations for multi-device Gearbox as a future work. Supporting kernels with more than three

5.7 Evaluation 77

arrays or more than eight instructions: SpMSpV is an example of a kernel that requires more than

three arrays. Since we have only three Walkers, we break the first step of this algorithm into two steps, where

each step has three arrays. Given that in-memory-layer PIM-based accelerators with high parallelism target

memory-intensive application, with few instructions per loaded data, a few-entry instructions buffer is enough.

For example, for our evaluated regular applications 4-entries and for SpMSpV 8-entry instruction buffer is

enough. If a future work identifies a widely-used memory intensive application that require more instruction

buffer entries, the instruction buffer can be extended at the cost of higher area overhead. A software solution

for mapping a kernel with more than 8 instructions is to break the algorithm into few steps, similar to what

we do for SpMSpV.

Handling corner cases: If the amount of remote accumulations is high, the Dispatcher SPU in the

LocalAccumulations step or a Compute SPU in the Dispatching step may not find enough space for storing

the received index-value pairs. To address this issue, we add a software-hardware-based mechanism. Section 5.4

explains that each Walker has an End latch that indicates the end of its corresponding array. When a Walker

reaches the row address that is one less than the row address of the End latch, the SPU raises a signal that

lets the logic layer know that the reserved space is about to be full. Then the logic layer controller stalls the

senders (depending on the step, could be the Compute SPUs or the Dispatchers) and initiates the next step,

making the array empty again.
Table 5.1: Configuration details for evaluated architectures

Component Parameters

GPU
Tesla P100 [121], 12 GB memory
3 HBM2 memory stacks at 549 GB/s
(183 GB/s per stack)

Ideal in-logic-layer GPU 512 GB/s per stack [153]

Gearbox

technology:22 nm, 32 vaults
32 subarray, open-bitline structure,
256 bytes per row, 64 banks per layer
8 memory layers, row cycle:50 ns, fre-
quency:164 MHz
in-logic-layer components per vault:
4-32 kB SRAM, an ARM Cortex-A35
[84]
interconnection: 1.2 GHZ, 64 lane, la-
tency: 0.8 ns for each interconnection
segment [146, 19]

5.7 Evaluation

5.7.1 Methodology

Following prior works [132, 32, 146, 149, 153, 159], we evaluate Gearbox using three graph algorithms and two

sparse machine learning kernels: Breadth-First Search (BFS), Page Rank (PR), Single-Source Shortest Path

Gearbox: A Case for Supporting Accumulation Dispatching and Hybrid Partitioning in PIM-based Accelerators78

Table 5.2: Evaluated datasets

Matrix Full name Rows Non-Zeros Density Size (Bytes)
Holly hollywood 2009 1139905 112751422 0.0086% 911,130,616
Orkut soc orkut 2997166 212698418 0.0023% 1,725,564,672
Patent cit Patents 3774768 33037896 0.00023% 294,501,312
Road road usa 23947347 57708624 0.00001% 653,247,768

Twitter soc twitter-2010 21297772 530051618 0.0001% 4,410,795,120

(SSSP), Sparse K-Nearest neighbors (SPKNN), and Support Vector Machine (SVM). We vary datasets to

capture different characteristics of applications for different inputs. Table 5.2 introduces the datasets, which

are real-world matrices from the SuiteSparse matrix collection [161], and Table 5.1 lists the configurations of

the evaluated systems.

There is no established simulator for bank-level and subarray-level computing with simplified processing

elements, as these approaches are only recently getting popular. Therefore, we developed an in-house

event-accurate simulator for Gearbox and prior works. Furthermore, we integrated our simulator with

Gunrock [162] to validate the algorithms. We further evaluate our simulator with assertion testing and

analytical evaluations.

We developed the RTL model of our SPUs in 14 nm technology and incorporated an overall penalty of

3.08× for processing in 22 nm DRAM. The penalty incorporates the effect of larger technology node and

other inefficiencies [98]. Consequently, we evaluated Gearbox with a frequency of 164 MHZ.

We evaluated latency, energy consumption, and area of memory elements and interconnect elements using

CACTI-3DD [101]. For the breakdown of energy consumption of GPUs, we used Moveprof [119], which is a

tool based on integrating NVIDIA’s NVProf [108] and GPUWattch [120].

5.7.2 Speedup

Figure 5.11 compares our proposed method (GearboxV3) against a server-class GPU and a prior work,

SpaceA [146]. Gearbox, with just one memory stack, delivers on average (up to) 15.73× (52×) speedup

over a server-class GPU, NVIDIA P100, with three stacks of HBM2 memory. Gearbox also outperforms an

ideal model of SpaceA [146], a PIM-based SpMV accelerator that only supports row-oriented processing.

However, SpaceA [146] reports only 4.86% area overhead. Therefore, a fairer comparison is speedup per area.

Generously assuming no area overhead, perfect load balancing, and no penalty for remote reads for SpaceA,

Gearbox outperforms SpaceA, on average (up to), by 58× (447×) per area. The speedup over SpaceA stems

from the fact that Gearbox provides higher parallelism and efficient support for column-oriented processing.

5.7 Evaluation 79

Although we chose Fulcrum as the baseline architecture, the two key ideas can enable column-oriented

processing for all PIM approaches, such as SpaceA [146], Newton [135], and Samsung PIM [131]. Our ideas

enable column-oriented processing for all PIM approaches and can improve them. For example, our ideas can

speed up SpaceA by 3.4 times. To this end, we can add our hardware support for our Hybrid partitioning by

adding our latches and comparators to spaceA. Similarly, we can add accumulation dispatching to SpaceA

and use the bank-level CAM in SpaceA for accumulating remote results.

The speedup of Gearbox against GPU stems from three sources: (i) higher internal bandwidth compared

to GPU, (ii) lower overhead for random accesses where only a few words out of a cache line is useful, and (iii)

inefficiency of SIMD units in GPU for irregular applications.
Table 5.3: Each Gearbox version shown in Figure 5.12.

Description

GearboxV0
row-oriented processing+local random access for accessing a row+

broadcasting the frontier+
using sequential index matching for processing each row

GearboxV1
column-oriented processing+column-oriented partitioning+

our proposed Accumulation dispatching

HypoGearboxV2

column-oriented processing+our Accumulation dispatching+
an impractical partitioning

(partitioning the matrix with Hybrid partitioning
but placing the entire input and output array in the logic layer)

GearboxV2
column-oriented processing+Accumulation dispatching+

Hybrid partitioning
without replication long activating entries in each subarray

GearboxV3
column-oriented processing+reduction dispatching+

Hybrid partitioning+replicating long activating entries

5.7.3 The effect of each optimization

Figure 5.12 illustrates the effect of the proposed optimizations in Gearbox. Table 5.3 lists the description of

each version. Figure 5.12 shows that GearboxV0 and GearboxV1 are three orders of magnitude and two orders

of magnitude slower than Gunrock, respectively. One hypothetical version of Gearbox, HypoGearboxV2,

which places the entire input and output array in the logic layer, provides, on average, 4.28× speedup

compared to GPU. HypoGearboxV2 is not practical, as SRAMs in the logic layer memory elements do

not have enough capacity for the entire input and output vector. GearboxV2, on average, provides 12.48×

speedup over GPU by placing only long activating entries of the output/input vectors in the logic layer. The

SRAM capacity for this solution is (2 ∗ n × (4 + 4) ∗ P/100, where n is the number of rows and P is the

percentage of input/out entries placed in the logic layer. For the evaluated datasets and P of 0.01 % , we

need 34 KB SRAM in total in the logic layer. GearboxV3 is the final version, whose performance is discussed

in Section 5.7.2.

Gearbox: A Case for Supporting Accumulation Dispatching and Hybrid Partitioning in PIM-based Accelerators80

5.7.4 Execution time and energy breakdown

Figure 5.13 (a) shows the breakdown of execution time spent on each of the six steps of the algorithm

for GearboxV2 and GearboxV3. Here, most of the execution time is spent on LocalAccumulations and

RemoteAccumulations. Step1 in this figure includes the overhead of broadcasting of non-zero entries placed

in the logic layer, which is on average 1.1% of the total execution time.

Figure 5.13 (b) presents the breakdown of the energy consumption of Gearbox, demonstrating that

Gearbox reduces the energy consumption, compared to GPU, on average (up to) by 97 (99)%. This figure

shows that in most applications, row activations are the major source of energy consumption. The exception

is SPKNN, where the input vector and the output vector have many non-zero values corresponding to the

long columns/rows, increasing the energy consumption of the operations in the logic layer.

5.7.5 Comparison against non-in-memory-layer approaches

Figure 5.14 compares the speedup of Gearbox against three ideal models. The ideal models only account for

the overhead of data movement and provide an upper bound for non-in-memory-layer approaches. Figure 5.14

shows that Gearbox provides 7.94× (31×), on average (up to), speedup per memory stack, compared to the

ideal model of a GPU. We also evaluated Gearbox against a purely in-logic-layer approach under aggressive

assumptions such as (i) 512 GB/s raw bandwidth, (ii) having enough parallelism to utilize the raw bandwidth,

and (iii) having 56 64 kB L1 and 4 MB L2 cache to capture any locality.

Gearbox offers, on average (up to), 2.83× (11×) speedup per memory stack, compared to this ideal model

of an in-logic-layer GPU. The main bottleneck of in-logic-layer approaches is the limited bandwidth in the

logic layer, which is 29× lower than the bandwidth of in-memory layers. Table 5.4 compares Gearbox against

a few non-in-memory layer approaches based on the reported speedup in their paper on the two common

algorithms evaluated by all these accelerators (Page Rank and SSSP). The comparison overestimates the

speedup of these accelerators, as we convert their reported CPU speedups to GPU speedups based on the

GPU speedups reported in Graphicionado[159], which has no HBM2 memory and has half the memory

bandwidth.

Tesseract [153] and GraphP [149] in Table 5.4 are using HMC-like configuration. Our speedup against

these approaches shows that our speedup comes from our in-memory-layer design and not from using HMC-like

configuration. Our speedup against these approaches also proves that Gearbox can outperform GPUs with

Fine-Grained DRAM [163], with narrow, dedicated TSVs to each bank, similar to HMC.

5.7 Evaluation 81

Table 5.4: Speedup against non-in-memory-layer approaches.

Graphicionado[159] Tesseract[153] GraphP[149]
Per stack/chip 10.01 27.08 21.99

Per area – 13.47 10.9

5.7.6 The effect of load balancing

Figure 5.15 (a) shows that for most datasets and algorithms, labeling 0.01% of rows/columns as long can

significantly improve performance. This figure also shows that increasing the percentage only slightly improves

the performance.

We also evaluated the effect of distributing consecutive columns (Figure 5.15) (b). In real-world matrices,

consecutive columns (e.g., neighboring nodes in a graph) are most likely to get activated together. Our

evaluations show that distributing consecutive columns among subarrays in a bank (SameBank) provides,

on average (up to), 22.3× (76.9×) speedup compared to storing consecutive columns in the same subarray

(SameSubarray).

5.7.7 Power and temperature constraints

Figure 5.16 (a) shows that Gearbox reduces power consumption by 75%, compared to the GPU. It consumes,

on average, 32.72 watts. Our power density is 465 mW/mm2, which reduces the power density of SpaceA

by 12% and is safely under the power density budget of a PIM-based accelerator with a commodity-server

active heat sink [164, 94] and under the power budget of the PCIe/CXL peripheral interface. We evaluated

the performance of Gearbox under two power budgets: (i) 10W and (ii) 40W. Figure 5.16 (b) presents the

speedup of Gearbox under these two power budgets. To lower the power consumption, we lower the frequency.

This figure shows that even under a restricted power budget of 10 watts, Gearbox (with one memory stack)

outperforms a high-performance GPU (with three memory stacks), on average (up to) by 6.8× (38.65×).
Table 5.5: Area evaluation of Gearbox

Area mm2

Per two subarrays Per layerComponent
Optimistic Pessimistic Optimistic Pessimistic

Original DRAM – – – 34.95
Walkers – 0.011 – 11.26

Bank-level logic and interconnection – – – 4.56
Integer SPUs 0.0067 0.010 6.86 10.42
Float SPUs 0.0098 0.019 10.03 19.45

Gearbox: A Case for Supporting Accumulation Dispatching and Hybrid Partitioning in PIM-based Accelerators82

5.7.8 Area evaluation

Table 5.5 lists the optimistic and pessimistic areas of our hardware components. Our optimistic area numbers

are the ones reported by our synthesizer, scaled to 22nm. Our pessimistic area evaluation is the maximum of

scaling the optimistic area for 4 layers (using the scale factor derived from [165]) and the pessimistic area

reported by our synthesizer. For Walkers, we evaluate the area using CACTI-3DD [166], which is equivalent to

pessimistic area evaluations. Gearbox optimistically (pessimistically) imposes 2.42% (10.93)% area overhead

compared to a prior work, Fulcrum [13]. In comparison with regular HMC memory, Gearbox optimistically

(pessimistically) imposes 73% (100)% area overhead.

5.7.9 Evaluation for regular kernels

GearBox is based on Fulcrum. Therefore, GearBox/Fulcrum can also support and speed up regular workloads.

Figure 5.17 evaluates performance for a range of regular applications from the InSituBench [13] suit. For these

evaluations, both Gearbox/Fulcrum and our bank-level SIMD have the same number of ALUs and have the

same frequency. Gearbox provides, on average, 4.4× higher throughput than the bank-level SIMD approach.

Gearbox can also outperform DRISA [2], a row-wide bitwise-based SIMD approach, which implements

arithmetic operations using bit-wise operations on horizontally laid-out data, by more than two orders of

magnitude. SIMDRAM [130], another row-wide bitwise-based SIMD approach that implements arithmetic

orations on vertically laid out data, cannot support floating-point operations of the evaluated applications.

The vertical layout is also highly inefficient for random accesses, as we would have to activate 32 rows to

access a single 32-bit word, one bit per row (the rest of bits in all rows will not be used).

5.7.10 Evaluation per dataset

We varied datasets to capture different characteristics of applications for different inputs. Figure 5.18

illustrates the speedup achieved for each algorithm and each dataset listed in 5.4.

5.8 Related Work

SIMD and row-wide bitwise approaches: Bank-level SIMD approaches [131, 135] or subarray-level

bit-parallel and bit-serial approaches [130, 2, 12] perform the same operation on multiple aligned words.

These approaches cannot efficiently support SpMV and SpMSpV. Section 5.7.9 compares Gearbox against

these approaches for regular kernels.

5.9 Conclusions 83

Logic-layer-based approaches: This category of prior works [153, 149, 167, 168] employs a few processing

units with traditional or decoupled access/execute architectures[74] in the logic layer. These approaches still

move data along subarrays, banks, and layers, imposing data movement overheads. Section 5.7.5 discusses

these approaches.

NVM-based techniques: These approaches employ NVM computation capabilities (e.g., CAM capability,

analog MAC, and digital computation capabilities) [32, 132, 169]. Due to several issues with NVM-based

approaches, including the hardware and energy overhead of analog-to-digital/digital-to-analog converters

(which can limit the capacity to 64 MB [132]), low endurance, and high error rate, in this paper, we have

focused on DRAM-based accelerators.

ASIC/FPGA-based accelerators: Several ASIC and FPGA designs [133, 170, 159, 171, 134] target

SpMSpV and graph processing. The advantage of these approaches is that their performance, similar to

other non-PIM approaches, does not highly depend on the data placement in memory. Therefore, they

do not require careful offline data placement. For example, they can handle load imbalance at runtime by

distributing tasks among processing elements. However, these approaches have to transfer data from memory

to the accelerator, imposing data movement overhead. We evaluate Gearbox against Graphicionado [159],

an ASIC-based approach, in Table 5.4.

5.9 Conclusions

Gearbox extends the range of applications that highly parallel PIM-based accelerators can support, by

proposing hardware support for Accumulation dispatching, Hybrid partitioning, and subarray-level random

accesses.

We can envision three types of future works: (i) extending Gearbox for other irregular kernels, (ii) applying

Gearbox in an SRAM/EDRAM setting, (iii) augmenting Gearbox with a reliability mechanisms for memory

technologies with higher error rate. (In this work, we employ Gearbox for graph processing, which is tolerant

to error and uses DRAM, where the probability of error per byte in one month, in memory layers, is as low

as 1.86375e-8 (85% of DRAM errors caused by the memory controller and memory channel [172])).

Gearbox: A Case for Supporting Accumulation Dispatching and Hybrid Partitioning in PIM-based Accelerators84

S1 Subarray 1 Subarray 2S2

0 1 2 3 4 5

0

1

2

3

4

5

Matrix

(a) Remote accumulations and
load imbalance

0

1

2

3

4

5

Output

=

S1

S2

S1

LL Logic Layer

S1

S2

´

Input (transposed)

S1

S2

LL

Input (transposed)

0 1 2 3 4 5

0

1

2

3

4

5

Matrix

0

1

2

3

4

5

Output

=

S1

S2

S2

S1

S1

S2

´

(b) Hybrid partitioning reduces
remote accumulations and
alleviates load imbalance

LL

S2

Remote accumulation, sent from S1 to S2 or from S2 to S1

Figure 5.2: Remote accumulations and load imbalance. (a) With column-oriented partitioning, long columns
cause load imbalance and many remote accumulations. (b) With Hybrid Partitioning, long column entries
cause no remote accumulation and no load imbalance.

Pair=[{1,v1},{4,v0},{0,v3},{3,v2},{0,v6},
{3,v5},{4,v4},{1,v7},{2,v9},{5,v8}]
Offsets= [0,4,8,8,14,16,20]CS

C_
Pa

ir

0 1 2 3 4 5

0 v3 v6
1 v1 v7
2 v9
3 v2 v5
4 v0 v4
5 v8

Zero entries Non-zeros
Values=[v1,v0,v3,v2,v6,v5,v4,v7,v9,v8]
Indexes=[1,4,0,3,0,3,4,1,2,5]
Offsets= [0,2,4,4,7,8,10]

CS
C

Figure 5.3: A sparse matrix in CSC and CSC Pair format.

5.9 Conclusions 85

1 2 4 8 16 32 64 12
8

25
6

51
2
10

24
20

48
40

96
81

92
16

38
4

Column length

10
3

10
2

10
1

10
0

10
1

Pe
rc

en
ta

ge
 o

f
 c

ol
um

ns

(a) Holly

1 2 4 8 16 32 64 12
8

25
6

51
2
10

24
20

48
40

96
81

92
16

38
4
32

76
8

Column length

10
3

10
2

10
1

10
0

10
1

Pe
rc

en
ta

ge
 o

f
 c

ol
um

ns
(b) Orkut

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

Column length

10
3

10
2

10
1

10
0

10
1

Pe
rc

en
ta

ge
 o

f
 c

ol
um

ns

(c) Patent

1 2 4 8 16
Column length

10
4

10
3

10
2

10
1

10
0

10
1

10
2

Pe
rc

en
ta

ge
 o

f
 c

ol
um

ns

(d) Road

1 2 4 8 16 32 6412
8
25

6
51

2
10

24
20

48
40

96
81

92
16

38
4

32
76

8
65

53
6

13
10

72

26
21

44

52
42

88

10
48

58
0

Column length

10
5

10
4

10
3

10
2

10
1

10
0

10
1

Pe
rc

en
ta

ge
 o

f
 c

ol
um

ns

(e) Twitter

Figure 5.4: Column length distribution in real-world matrices (both x and y-axis are in log scale).

Input: 1
 CSC_offsets[0:n] 2
 CSC_Pair[0: numNonZeros(Matrix)*2-1], 3
 //pair sparse format of the input vector 4
 currFrontier[0: numNonZeros(Input)*2-1] 5
Output: 6
 OutputDense[0:n-1]=0 7
 numOutputNonZeros=0 8
 //pair sparse format of the output vector 9
 nxtFrontier[0: 2*n-1] 10
//processing only columns corresopnding to non-zeros of the input 11
for (i=0; i< numNonZeros(Input)*2; i+=2): 12
 f_column= currFrontier[i] 13
 f_value= currFrontier[i+1] 14
 col_offset= CSC_offsets[f_column] 15
 col_length= CSC_offsets[f_column+1]-CSC_offsets[f_column] 16
 for (j=0; j< col_length; j+=2): 17
 row_index= CSC_Pair[col_offset +j]; 18

 row_value= CSC_Pair[col_offset+j+1] 19
 //random write to the output vector 20
 OutputDense[row_index]+= row_value * f_value 21
//generating the sparse format of the output vector 22
for (i=0; i<n, i++): 23
 If(OutputDense[i]!=0): 24

 t= numOutputNonZeros*2 25
 nxtFrontier[t]= i 26
 nxtFrontier[t+1]= OutputDense[i] 27
 numOutputNonZeros++ 28

Figure 5.5: The column-oriented algorithm.

Gearbox: A Case for Supporting Accumulation Dispatching and Hybrid Partitioning in PIM-based Accelerators86

Zero entries Matrix’s activated entries Matrix’s non-activated entries

Input/Output ’s non-zerosS1 Subarray 1 Subarray 2S2

0 1 2 3 4 5

0

1

2

3

4

5

Matrix

0

1

2

3

4

5

Output

=

S1 S2

S2

S1

(b) Hybrid partitioning with replication
optimization

LL Logic Layer

S2S1LL
´

Input (transposed)

LL

0 0

S2S1
S1

S2

Remote accumulation, sent from S1/S2 to LL

0 1 2 3 4 5

0

1

2

3

4

5

Matrix

0

1

2

3

4

5

Output

=

S1 S2

S2

S1

S2S1LL
´

Input (transposed)

LL
S1

S2

(a) Hybrid partitioning without
replication optimization

Figure 5.6: An extra optimization that replicates the output vector entries corresponding to long rows/columns
in each subarray.

Pair

Subarray 1

(b) A Bank

C
om

pu
te

SP
U

D
ec

od
er

 Pair

Subarray .. C
om

pu
te

SP
U

D
ec

od
er

Walker 1
Walker 2
Walker 3

 Pair

Subarray n D
is

pa
tc

he
r

SP
U

D
ec

od
er

Walker 1
Walker 2
Walker 3

Walker 1
Walker 2
Walker 3

8-

en
tr

y

In

st
ru

ct
io

n
bu

ffe
r

C
on

tr
ol

un
it

(c) An SPU

Start3
End3/LongStart3

(a) Layers

LastLocal3
FirstLocal3

LastLong3

...1

...1

...1

...1

...1

Logic layer

...2

...2

...2

...2

...2

R
eg

1
R

eg
2

R
eg

3

W
al

ke
r1

R

eg
W

al
ke

r2

R
eg

W
al

ke
r3

R

eg

UpPort

TSVPort

LinePort

R
ingPort

DownPort

Switch

A
LU

Figure 5.7: Overall architecture. In (a), the circles are subarrays, the rectangles are banks, and the pentagons
are switches.

5.9 Conclusions 87

Subarray n SP
U

D
ec

od
er

Walker 1

Walker 2

Walker 3

A[100]A[101]A[102]A[103]

.........
...

B[100]B[101]B[102]B[103]

 Read from Walker1 to Walker1Reg

 Shift Walker1's one-hot-encoded value

 Read from Walker2 to Walker2Reg

 Shift Walker2's one-hot-encoded value

W
al

ke
r1

R

eg
W

al
ke

r2

R
eg

W
al

ke
r3

R

eg

Reg1=Walker2Reg
ColumnAddress= Walker1Reg & 63
If(Walker1Reg>LastLong &&
(Walker1Reg<FirstLocal || Walker1Reg>LastLocal)):
 (index,value)=(Reg1,Walker1Reg)
 DownPort= (index,value) //send reduction to Dispatcher

 go to instructon[0]
else:
 If(Walker1Reg<=LastLong):
 RowAddress=Start3+(Walker1Reg-FirstLocal)>>6)
 else:
 RowAddress=LongStart3+(Walker1Reg-LastLocal)>>6)
 load Suabrray[RowAddress] in Walker3
 Walker3Reg=Walker3[ColumnAddress]

Walker 3 ...

W
al

ke
r3

R

eg

C[Walker1Reg]

R
eg

1

A
LU

 RegisterTransfer(async) src=Walker2Reg dst=Reg1
 IndirectAccess
 src=Walker1Reg dst=Walker3Reg

 opCode=ADD src1=Reg1 src2=Walker3Reg

 RegisterTransfer (async)

 	 src=ALUOut1 dst=Walker3Reg

 Write Walker3Reg to Walker3

 Read from Walker1 to Walker1Reg

 Shift Walker1's one-hot-encoded value

 Read from Walker2 to Walker2Reg

 Shift Walker2's one-hot-encoded value

 go to instruction [1]

In
st

[0
]

In
st

[1
]

In
st

[2
]

In
st

[3
]

1

2

3

4

5

7

6
A[100]A[102]

B[100]B[102]

Walker 1

Walker 2

Figure 5.8: A walk-through example for C[A[i]]+ = B[i] with four instructions.

Input: 1
 CSC_offsets[0:n] 2
 //pair sparse format of the input vector 3
 frontier[0: numNonZeros(Input)*2-1] 4
Output: 5
 pack[0: packLength-1] 6
 packLength 7
j=0; 8
// pack frontier value with correponding column information 9
for (i=0; i< numNonZeros(Input)*2; i=i+2): 10
 index= frontier[i] 11
 pack[j]= CSC_offsets[index] 12
 pack[j+1]= CSC_offsets[index+1]-CSC_offsets[index] 13
 pack[j+2]= frontier[i+1] 14
 j=j+3 15
packLength=j+1 16
 17

Figure 5.9: OffsetPacking.

Gearbox: A Case for Supporting Accumulation Dispatching and Hybrid Partitioning in PIM-based Accelerators88

Input: 1
pack[0 : numNonZeros(Input)*3-1] 2
CSC_Pair[0: numNonZeros(Matrix)*2-1] 3

Output: 4
OutputDense[0:n-1] 5

OutputDense[:]=0 6
for (i=0; i< numNonZeros(Input)*3; i=i+3): 7
 offset=pack[i] 8
 length= pack[i+1] 9
 f_Value= pack[i+2] 10
 for (j=0; j< length;j=j+2): 11
 row_index= CSC_Pair[offset+j] 12
 row_value= CSC_Pair[offset+j+1] 13
 //the fisrt step for generating nxtFrontier 14
 if(OutputDense[row_index]==0) 15
 send (0,row_index) to the dispatcher 16
 OutputDense[row_index] +=f_Value* row_value 17

Figure 5.10: LocalAccumulations.

BFS PR

SPKNN
SSSP

SVM
Avg

Algorithms

10
0

10
1

Sp
ee

du
p

(lo
g)

Gunrock
Ideal 1-stack SpaceA

GearboxV3

Figure 5.11: Average speedup of our final solution (GearboxV3) against a GPU framework (Gunrock) and a
prior work (SpaceA). The values less than 100 represent slowdown.

5.9 Conclusions 89

BFS PR

SPKNN
SSSP

SVM
Avg

Algorithms

10
2

10
1

10
0

10
1

Sp
ee

du
p

(lo
g)

Gunrock
GearboxV0
GearboxV1

HypoGearboxV2
GearboxV2
GearboxV3

Figure 5.12: The effect of each optimization. Table 5.3 lists the description of each Gearbox version.

BFS PR

SPKNN
SSSP

SVM
Avg

Algorithms

0.00

0.02

0.04

0.06

0.08

0.10

Ex
ec

tio
n

tim
e

 (n
or

m
al

iz
ed

 to
 G

PU
)

Step1(V2)
Step2(V2)
Step3(V2)
Step4(V2)
Step5(V2)
Step6(V2)

Step1(V3)
Step2(V3)
Step3(V3)
Step4(V3)
Step5(V3)
Step6(V3)

(a) Execution time breakdown

BFS PR

SPKNN
SSSP

SVM
Avg

Algorithms

0.00

0.02

0.04

0.06

En
er

gy
 b

re
ak

do
w

n
(n

or
m

al
iz

ed
 to

to

ta
l G

PU
 e

ne
rg

y
co

ns
um

tio
n)

Row activation
Computation
Communication
Logic layer
Control
TSV

(b) Energy breakdown

Figure 5.13: Breakdown of execution time and energy

Gearbox: A Case for Supporting Accumulation Dispatching and Hybrid Partitioning in PIM-based Accelerators90

BFS PR

SPKNN
SSSP

SVM
Avg

Algorithms

0

10
Sp

ee
du

p
pe

r s
ta

ck
 (N

or
m

al
iz

ed
 to

 id
ea

l G
PU

)

Ideal GPU
Ideal in-logic-layer GPU
GearboxV3

Figure 5.14: Comparison against ideal models.

BFS PR

SPKNN
SSSP

SVM
Avg

Algorithms

0

100

200

300

Sp
ee

du
p

(lo
g)

 (n
or

m
al

iz
ed

 to
 0

.0
0%

)

0.00%
0.01%

0.05%
0.10%

(a) Percentage of long rows/columns

BFS PR

SPKNN
SSSP

SVM
Avg

Algorithms

10
0

10
1

Sp
ee

du
p

(lo
g)

 (n

or
m

al
iz

ed
 to

 S
am

eS
ub

ar
ra

y)

SameSubarray
SameBank
SameVault
Distributed

(b) Consecutive columns

Figure 5.15: (a) The effect of load balancing techniques.

5.9 Conclusions 91

BFS PR

SPKNN
SSSP

SVM
Avg

Algorithms

0

100

Po
w

er
 C

on
su

m
pt

io
n Gunrock

GearboxV3

(a) Power consumption

BFS PR

SPKNN
SSSP

SVM
Avg

Algorithms

10
1

Sp
ee

du
p

(lo
g)

10 40

(b) Performance under power budget

Figure 5.16: Power and temperature constraints.

AXPY

Bitm
ap

Filte
rB

yK
ey

filt
erB

yP
rd

GEMM
GEMV

KNN
LSTM

Red
ucti

on

HD_S
PMM

HD_S
PMV
Sca

le
Sca

n
Sort Xor

Avg

Operation

10
2

10
1

10
0

10
1

10
2

Th
ro

ug
hp

ut
 (n

or
m

al
iz

ed
 to

 G
PU

)
 p

er
 m

em
or

y
st

ac
k

 (l
og

)

GPU
Ideal model
Row-wide bitwise SIMD

Bank-level SIMD
Gearbox

Figure 5.17: Speedup for regular kernels.

Gearbox: A Case for Supporting Accumulation Dispatching and Hybrid Partitioning in PIM-based Accelerators92

Pate
nt

Orku
t

Twitte
r

Road
Holly

Datasets

10
1

10
0

10
1

Sp
ee

du
p

(lo
g)

Gunrock
Ideal 1-stack SpaceA

GearboxV3

(a) BFS

Holly

Twitte
r

Orku
t

Road
Pate

nt

Datasets

10
0

10
1

Sp
ee

du
p

(lo
g)

Gunrock
Ideal 1-stack SpaceA

GearboxV3

(b) PR

Pate
nt

Road
Holly

Orku
t

Twitte
r

Datasets

10
1

10
0

10
1

Sp
ee

du
p

(lo
g)

Gunrock
Ideal 1-stack SpaceA

GearboxV3

(c) SPKNN

Pate
nt

Road
Holly

Orku
t

Twitte
r

Datasets

10
1

10
0

10
1

Sp
ee

du
p

(lo
g)

Gunrock
Ideal 1-stack SpaceA

GearboxV3

(d) SSSP

Holly

Pate
nt

Road
Orku

t

Twitte
r

Datasets

10
0

10
1

Sp
ee

du
p

(lo
g)

Gunrock
Ideal 1-stack SpaceA

GearboxV3

(e) SVM

Figure 5.18: The speedup of our final solution (GearboxV3) against a GPU framework (Gunrock) and a prior
work (SpaceA) for each dataset and algorithm.

Chapter 6

Pulley: An Algorithm/Hardware

Co-optimization for Multi-device

In-memory Sorting

6.1 Introduction

In current computing systems, the latency and energy consumption of fetching data from off-chip memory can

be 2-3 orders of magnitude higher than an arithmetic operation [4]. Processing-in-memory (PIM) architectures

alleviate this data movement overhead by processing data inside the memory.

Sorting is an important task that requires many passes over data, where each pass performs only a few

operations per loaded datum from memory. As a result, for datasets too large for the processor’s caches, the

overhead of moving data from memory to processor is much higher than the overhead of computation for

sorting algorithms.

Sorting is widely used and appears in many big data applications and database operations, such as index

creation, sort-merge joins, and user-requested output sorting [173]. Accordingly, many studies have focused

on accelerating sorting using GPU, FPGA, and ASIC [173, 16, 17, 174]. Sorting is thus a natural candidate

for PIM acceleration.

Among sorting algorithms, radix sorting is highly parallel and can exploit the parallelism of PIM. With

the emergence of high-bandwidth interconnect (e.g., NVLink, and CXL) (which enable even more parallel

multi-device and multi-stack PIM-based accelerators), it is crucial to employ highly parallel and scalable

algorithms such as radix sorting.

93

Pulley: An Algorithm/Hardware Co-optimization for Multi-device In-memory Sorting 94

//Fields per bucket 1
Struct bucket{ 2

int hist; 3
int prefix; 4
int index; 5

}; 6
//The intermediate array 7
//n processing unit 8
//r buckets 9
bucket intmdt[n][r]; 10

(a)

//Step 1: Local Histogram 1
Input: keys[],mask,nShift 2
Output: intmdt[][]=0 3
//-------------------------------- 4
//each processing unit(PU) 5
for(i=0;i<n;i++) 6
 for(j=0;j< keys.length;j++) 7
 bkt=(keys[i]& mask)>>nShift; 8
 //bkt is random a number 9
 //next access is random access 10
 intmdt[i][bkt].hist++; 11

(b)

Step 2: Prefix-sum 1
Output: intmdt[][] 2
Input: intmdt[][] 3
---------------------------- 4
t=0 5
//for each bucket 6
for(bkt=0;bkt<r;bkt++) 7
 //for each PU 8
 for(i=1;i<n;i++) 9
 t+=intmdt.hist[i][bkt]; 10
 intmdt.prefix[i][bkt]=t 11

(c)

Step 3:Key placement 1
Output: sortedKeys[] 2
Input: intmdt[][],keys[], 3
 mask,nShift 4
--------------------------------- 5
for(i=0;i<n;i++)//Each PU 6
 for(j=0;j< keys.length;j++) 7

bkt=(keys[j]& mask)>>nShift; 8
 pos=intmdt[i][bkt].prefix++ 9
 intmdt[i][bkt].index; 10
 intmdt[i][bkt].index++ 11
 sortedKeys[pos]=key[j] 12

(d)

Figure 6.1: Parallel Radix sorting: (a) the structure of the intermediate array, (b) in step 1 each processing
unit (PU) generates a local histogram array, (c) in step 2, we need a prefix-sum on all local histogram arrays,
and (d) in step 3, each PU determines the location of each key by deriving the bucket number (line 8) and
adding the prefix value of the bucket to the current index of the bucket (line 9).

Radix sorting comprises several passes. In each pass, each processing unit places a key in a bucket in

three steps. First, the Histogram generation step, where each processing unit generates a histogram array by

counting the number of keys in each bucket. Second, the Prefix-sum step, where the algorithm requires a

prefix sum across all local histogram arrays generated by all processing elements. Finally, the Key placement

step, where each processing uses the prefix-sum array for finding the address of each key in the sorted sequence

and writing it in the correct address.

Implementing Radix sorting in PIM is challenging for three reasons. First, the histogram generation step

introduces random accesses and is most efficient with fine-grained random access memories (e.g., SRAMs).

PIM units often lack such memory elements. In fact, memory reads the data at a row granularity, which is

often quite large, several Kbits. As a result, random accesses to the memory segments are very costly because

each random access reads an entire row of data. Second, the larger the number of buckets in each pass, the

fewer the numbers of passes (more details in Section 6.2.1). Accordingly, to limit the number of passes, we

need to reserve a large histogram array per processing element, wasting the capacity. Third, radix sorting

requires prefix-sum across all memory segments, which impose significant overhead if performed using a core

far from memory segments.

In this paper, we propose an algorithm and hardware co-optimization for sorting, Pulley, that (i) reduces

the number of required intermediate arrays and (ii) eliminates random accesses.

To reduce the number of required intermediate arrays, we propose hardware and software optimization,

by which every group of processing units can efficiently share an intermediate array. Since we share

the intermediate array among every m processing element, the number of intermediates arrays decreases,

decreasing the capacity overhead of intermediate arrays and the performance overhead of the prefix-sum

operations.

To eliminate the random accesses, we employ a baseline PIM architecture, Fulcrum [13], that is highly

efficient for the operation of dichotomizing keys into two groups (more details in Section 6.3.1). We optimize

6.2 Background and Motivation 95

this baseline architecture for locally sorting keys in each memory segment using binary radix sorting. Our

modified algorithm exploits locally sorted keys and performs the histogram generation step only with sequential

accesses.

Our paper makes the following contributions:

• Proposing an algorithm/hardware co-optimization approach for enabling large-scale sorting on PIM-based

accelerators.

• Evaluating the effect of our proposed method against a near-HBM FPGA-based approach [16] and an

in-logic-layer-based sorting accelerator [17].

6.2 Background and Motivation

6.2.1 Parallel Radix Sorting

Radix sorting is a sorting algorithm that is highly parallel and can exploit the parallelism of recently proposed

PIM-based accelerators, where each memory segment has one processing element.

This algorithm splits the k bits of keys into smaller d-bit digits and sorts data in ⌈k/d⌉ passes. In each

pass, the algorithm partitions the keys into radix = 2d distinct buckets. Therefore, the fewer passes, the

larger the number of buckets. For example, for 32-bit keys, if we uses radix = 216, we need only two passes

but216 buckets. As explained in the introduction, radix sorting requires 216 buckets. Figure 6.1 (a) shows the

structure of the intermediate array, which has one element per bucket for each processing unit. To save the

memory space, the prefix-sum can be performed in place so that we only need one field for histogram and

prefix-sum values. However, in the Key placement step, we need another intermediate value (field) that keeps

the current index of the bucket. Accordingly, we need to reserve at least 542 MB per processing element for

the intermediate arrays.

In addition to the capacity overheads, the intermediate arrays impose performance overhead due to (i)

random accesses and (ii) the prefix-sum operation. Figure 6.1 (b), (c), and (d) illustrates how the sorting

algorithm uses the intermediate array in each step. Line 11 in Figure 6.1 (b) and line 12 in 6.1 (d) also

shows that radix sorting requires random access to the intermediate array. Line 7 and 9 in Figure 6.1 (c)

show that with inefficient implementation, the overhead of the prefix-sum operations can be in the order

of n× r, where n is the number of processing elements, and r is the number of buckets. In this paper, we

reduce the overhead of random accesses and the overhead of prefix-sum operations.

Pulley: An Algorithm/Hardware Co-optimization for Multi-device In-memory Sorting 96

Subarray 1

(b)

C
om

pu
te

SP
U

D
ec

od
er

 Subarray 15

C
om

pu
te

SP
U

D
ec

od
er

Walker 1
Walker 2
Walker 3

 Subarray 16

D
is

pa
tc

he
r

SP
U

D
ec

od
er

Walker 1
Walker 2
Walker 3

Walker 1
Walker 2
Walker 3

In
st

ru
ct

io
n

bu
ffe

r

C
on

tr
ol

 u
ni

t

R
eg

is
te

rs
A

LU

(d) (c)

Control and access signals
Data

Start1
Start2
Start3

End1
End2
End3

(a)

Subarray n SP
U

D
ec

od
er

Subarray n SP
U

D
ec

od
er

Walker 3
Walker 2

Walker 1 A[193]A[194]A[195]A[196]

B[129]B[130]
B[131]
B[132]

C[65]B[66]B[67]
B[68]

R1= A[195]
comp=(A[195]& 0x0001==0)

1

2

Walker 3
Walker 2

Walker 1 A[193]A[194]A[195]A[196]

B[129]B[130]
B[131]
B[132]

C[65]B[66]B[67]
B[68]

if(comp):
	 B[130]=R1

else:
	 C[65]=R1

Logic layer

Figure 6.2: Our proposed architecture: (a) The circles are subarrays, the rectangles are banks, and the
pentagons are switches. Banks and subarray connected using a interconnection with dragonfly topology (b) a
bank with an SPU and three Walkers per subarray, (c) architecture of each SPU, and (d) an example of local
binary radix sorting.

6.3 Our proposed method

Figure 6.2 illustrates the architecture of our proposed method, where the memory stack has a few layers;

within each layer, banks are connected through an interconnection network with a dragon-fly topology, and

within each bank, subarrays are connected through a line interconnection topology.

6.3.1 Baseline PIM architecture

We use a subarray-level PIM approach, Fulcrum[13], as the baseline PIM architecture. In Fulcrum each pair

of subarrays have one simplified sequential processing unit (Figure 6.2 (b)). Each subarray-level processing

unit (SPU) has a few registers, an 8-entry instruction buffer, a controller, and an ALU (Figure 6.2 (c)). The

simplified design is motivated by the characteristics of memory-intensive applications, where there are few

simple operations per loaded datum.

In Fulcrum, every subarray pair also has three row-wide buffers, called Walkers. The Walkers load an

entire row from the subarray at once, but the processing units sequentially access and process one word at

a time. The sequential access is enabled by using a one-hot-encoded value, where the set bit in this value

selects the accessed word. Therefore, to sequentially process the row, the processing unit only needs to shift

the one-hot encoded value.

6.3.2 Fulcrum’s shortcomings for Sorting

Fulcrum [13] employs its efficient local sequential processing for in-memory sorting. In this approach, first,

data is bucketed among subarrays based on the most significant bits, assuming no bucket is larger than the

reserved size for buckets in each subarray. This bucketing is performed by iteratively dichotomizing keys into

two groups and transferring one group from one subarray to another, using an efficient inter-subarray data

6.3 Our proposed method 97

movement mechanism [2]. Then, data in each subarray is sorted using binary radix sorting (r = 2). Again,

for each bucket of the binary radix sorting, Fulcrum reserve a space and assumes that no bucket is larger

than the reserved size for buckets. Accordingly, Fulcrum can only efficiently sort Megabytes of data uniformly

distributed among buckets and wastes capacity for Gigabytes and non-uniformly distributed keys.

Moreover, Fulcrum cannot efficiently support sorting across banks and only sort data within a bank,

assuming data is already is bucketed among banks during data transfer among the host and the accelerator.

This assumption is not true in many scenarios.

In this paper, we address Fulcrum’s shortcoming by enabling radix sorting that uses histogram and index

arrays for finding the exact address of each key in a sorted stream, eliminating the need for reserving any

extra space for each bucket.

To reduce the number of passes, we use use the radix of 216. Therefore, for 32-bit/64-bit keys we

require two/four passes of bucketization on data, where each pass comprises four steps: (i) Local sorting, (ii)

Histogram generation, (iii) Prefix-sum, (iv) Merging and key placement. In the following subsection, we will

explain our contribution in each step.

6.3.3 Local sorting

The three Walkers with shift-based sequential access mechanisms are highly efficient for binary radix sorting,

where we need to dichotomies an array of keys into two buckets (Bucket0 and Bucket2). To this end, we load

the key array row-by-row in Walker1, employ Walker 2 as Bucket0 and Walker3 as bucket1. Then, as shown

in Figure 6.2 (d), in each clock cycle, the SPU shifts the one-hot-encoded value to read one key from Walker1

and write it to either Walker2 or Walker3 based on the digit being processed by shifting the one-hot-encoded

value of the corresponding Walker. The binary radix sorting is efficient because it requires no random access.

The only problem is that, with non-uniformly distributed keys, the size of each binary bucket can be very

different in each pass. To address these issues, instead of reserving a large space for each binary bucket, we

propose to reserve a space that is almost the size of the key array. Then, we design a hardware controller

that starts Bucket0 from the bottom of the space and fills it upward and starts Bucket1 from the end of the

space and fills it downward. The reverse ordering of keys in Bucket1 can violate stability, a requirement for

radix sorting. Therefore, our controller processes Bucket1 from end to start.

6.3.4 Histogram generation

With radix of 216 the required space for histogram and index values is 542 MB per processing element. We

propose that 15 processing units of 15 subarrays in a bank share a space for the intermediate array in the

Pulley: An Algorithm/Hardware Co-optimization for Multi-device In-memory Sorting 98

lower subarray in the bank. This step comprises three substeps: (i) each SPU generates the histogram values

of the first 256 buckets, (ii) reduce the histogram values of each of these buckets in the lower subarray, (ii) go

to sub-step (i) to generate the histogram values of the next 256 buckets until the histogram values of all the

216 buckets are processed.

As we explained, the second sub-step requires reducing the histogram values of 256 buckets. We can

perform the reduction by a processing unit at the bank’s edge that reads data from all 15 subarrays and

performs the required operations. When the number of data elements per subarray is small, the overhead of

this approach is negligible. However, when the number of data elements per subarray is small, the overhead

becomes significant. Therefore, to propose an approach that is efficient for any number of data elements

per subarray, we propose Cooperative operations, where 15 processing elements cooperate to reduce their

histogram values in the last subarray of the bank.

Assuming the histogram array in ith subarray is Hist[i][:], the Cooperative reduction is as follows: the ith

processing unit receives a value from (i− 1)th processing unit, adds it to its Hist[i][j] entry and passes the

result to the (i+ 1)th processing element.

6.3.5 Prefix-sum

In a 3d-stacked memory, in our configuration, 256 subarrays share a bus (TSVs). Current PIM approaches

require reading histogram values from all these subarrays through the shared bus and writing the prefix-sum

values back to all 256 subarrays. Since we reduce the number of intermediate arrays, the overhead of

prefix-sum decreases to reading and writing to only 16 subarrays in a vault.

Similar to reduction operations explained in Section 6.3.4, when the number of data elements per subarray

is small, the overhead of this approach is negligible. However, when the number of data elements per subarray

is small, the overhead becomes significant. Therefore, to propose an approach that is efficient for any number

of data elements per subarray, we can use Cooperative prefix sum, where all processing elements in a memory

stack cooperate to reduce their histogram values in the last subarray of the bank.

Assuming the histogram array in ith memory segment is Hist[i][:] and the prefix-sum array in ith memory

segment is Prefix[i][:] the Cooperative prefix sum is as follows: the ith memory segment receives the jth

entry of prefixe-sum (Prefix[i − 1][j]) from (i − 1)th memory segment. The ith memory segment adds

Prefix[i − 1][j]) to its Hist[i][j] to form the Prefix[i][j] and forwards Prefix[i][j] to (i + 1)th memory

segment.

6.4 Evaluation 99

6.3.6 Merging and key placement

Since, in our proposed method, all the 15 subarrays in a bank share an intermediate array, we need to

merge the sorted keys in these arrays for correct key placement by deriving the address of each key using

the prefix-sum values (as shown in Line of Figure 6.1) (d). However, naive merging imposes significant

overhead because out of 16 SPUs only the last SPU will perform the merging, decreasing the parallelism.

Our Cooperative merging addresses this issue. Using our proposed Cooperative merging, ith SPU in a bank

receives a key, compares it with its current key. If the received key is less than its current key, the SPU

forwards the received key. Otherwise, the SPU forwards its current key. Once the minimum key reaches the

lower SPU in the bank, this SPU derives the address of each key using the prefix-sum values.

6.4 Evaluation

6.4.1 Methodology

Pulley targets sorting Gigabytes of data, where the capacity of one memory stack is not enough. Given that

new interconnection technologies, such as NVLink [158] provide high-bandwidth fully-connected topology

among multiple devices, we can increase the capacity of our accelerator by connecting multiple devices. We

evaluated Pulley in a 6-device setting, where each device has four stacks of 8-GB memories, providing 192

GB capacity. We chose to place four stacks per device to ensure that the power consumption of each device

is less than 300 Watt. We chose the 6-device setting because the second generation of NVLink allows 6

Links per device. The third and the fourth generations allow 12 and 18 links per device. However, our

current simulation environment cannot evaluate significantly larger datasets. For the same reason, we only

evaluate 24 GB of data but distribute data among the 24 stacks of our 6-device configuration to incorporate

the overhead of communications among devices and stacks. For each stack, we follow the configurations of

fulcrum [13]. We developed an in-house event-accurate simulator for Pulley and will release the source code

of the simulator.

6.4.2 Throughput

We compared our proposed method against an (i) state-of-the-art near-HBM FPGA-based sorting accelerator

Bonsai [16]) and an in-logic-layer sorting accelerator (IMC-Sort [17]). The two evaluated approaches are the

most related works that can support sorting Gigabytes of data.

Pulley: An Algorithm/Hardware Co-optimization for Multi-device In-memory Sorting 100

Data size (MB)

Th
ro

ug
hp

ut
 (G

B
/S

)

0

100

200

300

400

1024 2048 4096 8192 16384 24576

6-Device Bonsai 6-Device IMC 6-Device Pulley

Figure 6.3: The throughput comparison.

6.4.3 Power and temperature constraints

We evaluated the energy consumption of the memory elements and interconnect elements in Pulley using

CACTI3DD [166] and evaluate the energy consumption of processing units using the RTL synthesize. The

average power consumption of Pulley per stack is 38.6 watts. Our average power density is 540 mW/mm2,

which is under the power density budget of a PIM-based accelerator with a high-end server active cooling

(1214 mW/mm2 [146, 164, 94]) and under the power budget of the PCIe peripheral interface (300 Watts per

device and 75 per stack).

We could not add performance per watt against Bonsai [16] and IMC. Bonsai provides no energy number.

IMC [17] only provides energy numbers normalized to CPU, and we do not know what the absolute energy

consumption of this method is.

6.5 Conclusions and future Work

This paper motivates providing hardware support for sharing intermediate arrays in sorting. As future works,

we envision investigating the benefits of shared intermediate arrays for other important kernels such as graph

processing and database operations. We also optimized operations on the shared intermediate by providing

hardware support for Cooperative operations. Future works can investigate what other applications can

benefit from these operations.

Chapter 7

Conclusions and Future Works

For memory-intensive tasks, data movement dominates computation. To reduce the cost of data movement,

we have two options: (i) reducing the size of data, (ii) processing data inside the memory. This dissertation

explores both approaches.

This dissertation, first, presents a light-weight compression method by exploiting quantization in general-

purpose processors. Our method represents values with few bits to reduce the size of data. It ensures

that values that require more than a few bits are represented in their original format, preventing overflows

and limiting the maximum absolute error. To this end, we propose a software-hardware interface whereby

we transfer information of our high-level abstraction to hardware modules and transparently convert the

short values to the original format before being used in the computation. Our evaluation demonstrates that

our light-weight compression provides 1.23× speed up compared to the state-of-the-art cache compression

techniques and can significantly reduce the cost of data movement, supporting the first part of our hypothesis.

Next, this dissertation explores the second approach by presenting an in-situ PIM design that keeps

computations close to the subarray’s row buffer to avoid substantial data-movement overheads. Our proposed

method, Fulcrum, overcomes key limitations of prior in-situ architectures by placing a scalar, full-word

processing unit at the edge of each pair of subarrays. We show that sequentially processing a row (instead

of bit-parallel processing of the entire row buffer) with full-word computation ability allows a much wider

range of tasks to leverage in-situ processing, including a full range of arithmetic operations, essential sparse

and dense linear algebra tasks, operations with data dependencies, operations based on a predicate, scans

and reductions, and so forth. Our evaluations show that Fulcrum outperforms a server-class GPU with

three stacks of HBM2 and, on average, provides 70× speedup per memory stack and reduces the energy

101

Conclusions and Future Works 102

consumption by 96%. Therefore, our near-data processing approach can significantly reduce the cost of data

movement, supporting the second part of our hypothesis.

Continuing exploring the PIM approach, we observe that rethinking communication and load balancing

mechanisms can unlock the benefits of PIM for a wider range of applications. Accordingly, this dissertation

presents Gearbox, where we augment Fulcrum with hardware support for (i) offloading accumulations

operations from one memory segment to another memory segment and (ii) balancing the load among

processing elements. We find that Gearbox can outperform Gunrock, a GPU-based graph-processing

framework, by 15.73×, showing that near-data processing can significantly reduce the cost of data movement

for graph processing applications, supporting the second part of our hypothesis.

Finally, we extended Fulcrum to support multi-device in-memory sorting by adding hardware support

that enables every group of processing elements cooperatively generate an intermediate array, eliminating the

capacity overhead of reserving one intermediate array per processing element. Our evaluations show that

Pulley (FulcrumV3), on average, delivers 20 times speedup compared to Bonsai, an FPGA-based sorting

accelerator, and can significantly reduce the cost of data movement by processing near data, supporting the

second part of our hypothesis.

Lesson Learned and Future Works

After exploring the effect of the quantized memory hierarchy in general-purpose CPUs, we realized CPUs

could not efficiently exploit the higher effective memory bandwidth provided by our quantized memory

hierarchy. If we had known this fact, we would have proposed a quantized memory hierarchy for SIMD or

SIMT architectures that can exploit the higher memory bandwidth.

Recent works show that, for few-bit integer operations, such as 4-bit multiplications, the row-wide bitwise

approaches are highly efficient. If we had it to do over again, we would have designed an architecture that

could exploit the benefits of both approaches.

We envision six types of future works: (i) evaluating the effect of quantized memory hierarchy for GPGPU,

SIMD and embedded processors, (ii) developing software stacks for simplified in-situ designs, (iii) mapping

new processing or pre-processing to Fulcrum, (iv) evaluating and optimizing Fulcrum for other memory

technologies, (v) enhancing the reliability and security of system using Fulcrum, (vi) designing a subarray-level

architecture that supports both row-wide bitwise operations and single-word processing units.

• Evaluating the effect of quantized memory hierarchy for GPGPU, SIMD and embedded

processors: Cost of data movement is much higher for GPGPU and SIMD applications as they require

a higher memory bandwidth. Cost of data movement is also high for consumer devices where we use a

Conclusions and Future Works 103

low-bandwidth memory. We believe with slight modifications, we can employ and evaluate an overflow-free

quantized memory hierarchy in these processors.

• Developing a software stack: We envision a software stack composed of two steps. The first step is to

implement the important kernels of the most commonly used libraries. The second step is to use automatic

tools that map Data-Flow Graphs (DFG), where each operator node can have multi-dimensional vectors

or tensors into a collection of primitives and kernels, which are implemented in the first step.

• Mapping new processing and pre-processing: We believe that many kernels can be accelerated

using Fulcrum. Thus, researchers in the domain of high-performance computing can use Fulcrum to

map the memory-intensive parts of their applications to Fulcrum and evaluate the end-to-end speedup.

Fulcrum has also the potential to aid as a pre-processor that eliminates unnecessary computation and

data movement in the actual computation. As an example, Fulcrum can be used in pattern matching to

filter those parts of the text that do not match the exact part of the pattern.

• Fulcrum with other memory technologies: In Fulcrum, we discussed the challenges regarding

implementing our method for DRAM. However, we believe the same simplified control and access

mechanism can be employed for SRAM-based and NVM-based accelerators. Fulcrum with SRAM-based

memory technologies can benefit from the high frequency and more efficient logic of SRAM technologies.

non-volatile memories also have higher capacity. However, frequent write operations to non-volatile

memories can lower endurance. Future works can evaluate Fulcrum for NVM and investigate solutions for

increasing endurance. For example, our error detection mechanism proposed in the previous section could

help to increase endurance.

• Enhancing reliability and security: Most current in-situ approaches ignore the error detection and

correction mechanisms and often target only approximate applications. However, even for approximate

applications, enhancing reliability and reducing error is desirable. The single-word and sequential

processing of a row-buffer proposed in this dissertation may enable an early error detection mechanism for

in-situ accelerators. To this end, we can assign the last column of the Walker to parity values, where each

binary digit is the parity bit, for all the bits in the same digit in all columns. Consequently, adjacent bits

will have different parity bits and multiple adjacent errors are still detectable. Thanks to our sequential

column processing, we can xor sequentially accessed columns in each cycle. At the end of the process,

the result must be equal to the last column. On the other hand, in-situ approaches are vulnerable to

row hammer attacks that may flip the bit values, and the aforementioned solution for error detection can

alleviate that. Moreover, the sequential processing and the three Walkers enable in-situ shuffling. The

Conclusions and Future Works 104

shuffling, in addition to our xor operations can be used to implement a light-weight in-situ protection

mechanism for data and enhance the security of systems.

• Designing a subarray-level architecture that supports both row-wide bitwise operations

and single-word processing units: Recently proposed in-situ row-wide bitwise approaches (e.g.,

SIMDRAM [130]) implements arithmetic operations using bit-serial computation on vertically laid-out

data (where each bit of a 32-bit value is in a different row). The vertical layout eliminates the extra shifts

for addition operations and highly benefits few-bit integer operations. However, these approaches still are

inefficient; for example, 32-bit multiplication operations require 11,103 row activations. SIMDRAM[130]

also cannot support floating-point operations, because it cannot support the required shift operations. We

propose to design a new in-situ approach that can exploit the benefits of row-wide bitwise for few-bit integer

operations and the benefits of single-word processing for floating-point operations, 32-bit multiplication,

operations with data dependency, and conditional operations.

Bibliography

[1] Animesh Jain, Parker Hill, Shih-Chieh Lin, Muneeb Khan, Md E Haque, Michael A Laurenzano,
Scott Mahlke, Lingjia Tang, and Jason Mars. Concise loads and stores: The case for an asymmetric
compute-memory architecture for approximation. In Microarchitecture , 2016 49th Annual IEEE/ACM
International Symposium on, pages 1–13, 2016.

[2] Shuangchen Li, Dimin Niu, Krishna T Malladi, Hongzhong Zheng, Bob Brennan, and Yuan Xie.
DRISA: A dram-based reconfigurable in-situ accelerator. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 288–301, 2017.

[3] Kevin K Chang, Prashant J Nair, Donghyuk Lee, Saugata Ghose, Moinuddin K Qureshi, and Onur
Mutlu. Low-cost inter-linked subarrays (LISA): Enabling fast inter-subarray data movement in DRAM.
In Proceedings of the IEEE International Symposium on High Performance Computer Architecture ,
pages 568–580, 2016.

[4] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and William J
Dally. EIE: Efficient inference engine on compressed deep neural network. In Proceedings of the 43rd
International Symposium on Computer Architecture, pages 243–254, 2016.

[5] Angelos Arelakis, Fredrik Dahlgren, and Per Stenstrom. Hycomp: A hybrid cache compression method
for selection of data-type-specific compression methods. In Proceedings of the 48th International
Symposium on Microarchitecture, 2015.

[6] Somayeh Sardashti and David A Wood. Decoupled compressed cache: Exploiting spatial locality for
energy-optimized compressed caching. In Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 62–73, 2013.

[7] Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Phillip B Gibbons, Michael A Kozuch, and
Todd C Mowry. Base-delta-immediate compression: Practical data compression for on-chip caches. In
Proceedings of the 21st international conference on Parallel architectures and compilation techniques,
pages 377–388, 2012.

[8] Atieh Lotfi, Abbas Rahimi, Hadi Esmaeilzadeh, and Rajesh K Gupta. SqueezCL: Squeezing OpenCL
Kernels for Approximate Computing on Contemporary GPUs. In Workshop on Approximate Com-
puting, 2015.

[9] Seogoo Lee, Dongwook Lee, Kyungtae Han, Emily Shriver, Lizy K John, and Andreas Gerstlauer.
Statistical quality modeling of approximate hardware. In Quality Electronic Design (ISQED), 2016
17th International Symposium on, pages 163–168, 2016.

[10] Thierry Moreau, Felipe Augusto, Patrick Howe, Armin Alaghi, and Luis Ceze. Exploiting quality-
energy tradeoffs with arbitrary quantization: special session paper. In Proceedings of the Twelfth
IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis
Companion, 2017.

[11] qappa: A framework for navigating quality-energy tradeoffs with arbitrary quantization. Technical
report.

105

Bibliography 106

[12] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali Boroumand, Jeremie Kim,
Michael A Kozuch, Onur Mutlu, Phillip B Gibbons, and Todd C Mowry. Ambit: In-memory accelera-
tor for bulk bitwise operations using commodity DRAM technology. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 273–287, 2017.

[13] Marzieh Lenjani, Patricia Gonzalez, Elaheh Sadredini, Shuangchen Li, Yuan Xie, Ameen Akel, Sean
Eilert, Mircea R. Stan, and Kevin Skadron. Fulcrum: a Simplified Control and Access Mechanism
toward Flexible and Practical in-situ Accelerators. In Proceedings of the 26th IEEE International
Symposium on High-Performance Computer Architecture, 2020.

[14] Marzieh Lenjani and Kevin Skadron. Supporting moderate data dependency, position dependency,
and divergence in pim-based accelerators. IEEE Micro, 2021.

[15] Marzieh Lenjani, Ahmed Alif, Mircea R. Stan, and Kevin Skadron. Gearbox: A Case for Supporting
Accumulation Dispatching and Hybrid Partitioning in PIM-based Accelerators. In Proceedings of the
49th International Symposium on Computer Architecture (ISCA). IEEE, 2022.

[16] Nikola Samardzic, Weikang Qiao, Vaibhav Aggarwal, Mau-Chung Frank Chang, and Jason Cong.
Bonsai: High-performance adaptive merge tree sorting. In 47th Annual International Symposium on
Computer Architecture (ISCA), 2020.

[17] Zheyu Li, Nagadastagiri Challapalle, Akshay Krishna Ramanathan, and Vijaykrishnan Narayanan.
IMC-Sort: In-Memory Parallel Sorting Architecture using Hybrid Memory Cube. In Great Lakes
Symposium on VLSI (GLSVLSI), 2020.

[18] Marzieh Lenjani, Patricia Gonzalez, Elaheh Sadredini, M Arif Rahman, and Mircea R. Stan. An
Overflow-free Quantized Memory Hierarchy in General-purpose Processors. In Proceedings of the IEEE
International Symposium on Workload Characterization, 2019.

[19] Ramyad Hadidi, Bahar Asgari, Burhan Ahmad Mudassar, Saibal Mukhopadhyay, Sudhakar Yala-
manchili, and Hyesoon Kim. Demystifying the characteristics of 3d-stacked memories: A case study
for hybrid memory cube. In Proceedings of the IEEE International Symposium on Workload Charac-
terization , pages 66–75, 2017.

[20] Amin Farmahini-Farahani, Sudhanva Gurumurthi, Gabriel Loh, and Michael Ignatowski. Challenges
of high-capacity dram stacks and potential directions. In Proceedings of the Workshop on Memory
Centric High Performance Computing, pages 4–13, 2018.

[21] Donghyuk Lee, Saugata Ghose, Gennady Pekhimenko, Samira Khan, and Onur Mutlu. Simultaneous
multi-layer access: Improving 3d-stacked memory bandwidth at low cost. ACM Transactions on
Architecture and Code Optimization (TACO), 12(4):1–29, 2016.

[22] Shaizeen Aga, Supreet Jeloka, Arun Subramaniyan, Satish Narayanasamy, David Blaauw, and Reetu-
parna Das. Compute caches. In Proceedings of the International Symposium on High Performance
Computer Architecture, pages 481–492, 2017.

[23] Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Ausavarungnirun, Gennady
Pekhimenko, Yixin Luo, Onur Mutlu, Phillip B Gibbons, Michael A Kozuch, et al. RowClone: Fast
and energy-efficient in-DRAM bulk data copy and initialization. In Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 185–197, 2013.

[24] Vivek Seshadri, Kevin Hsieh, Amirali Boroum, Donghyuk Lee, Michael A Kozuch, Onur Mutlu,
Phillip B Gibbons, and Todd C Mowry. Fast bulk bitwise AND and OR in DRAM. IEEE Computer
Architecture Letters, pages 127–131, 2015.

[25] Shuangchen Li, Cong Xu, Qiaosha Zou, Jishen Zhao, Yu Lu, and Yuan Xie. Pinatubo: A processing-
in-memory architecture for bulk bitwise operations in emerging non-volatile memories. In Proceedings
of the 53rd Annual Design Automation Conference, page 173, 2016.

Bibliography 107

[26] Quan Deng, Lei Jiang, Youtao Zhang, Minxuan Zhang, and Jun Yang. DrAcc: a DRAM based acceler-
ator for accurate CNN inference. In Proceedings of the 55th Annual Design Automation Conference,
page 168, 2018.

[27] Mahdi Nazm Bojnordi and Engin Ipek. Memristive boltzmann machine: A hardware accelerator for
combinatorial optimization and deep learning. In Proceedings of the IEEE International Symposium
on High Performance Computer Architecture, pages 1–13, 2016.

[28] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian, John Paul Strachan,
Miao Hu, R. Stanley Williams, and Vivek Srikumar. ISAAC: A convolutional neural network acceler-
ator with in-situ analog arithmetic in crossbars. In Proceedings of the 43rd International Symposium
on Computer Architecture, pages 14–26, 2016.

[29] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu Wang, and Yuan Xie.
Prime: A novel processing-in-memory architecture for neural network computation in ReRAM-based
main memory. In Proceedings of the 43rd International Symposium on Computer Architecture, pages
27–39, 2016.

[30] Mohsen Imani, Saransh Gupta, Yeseong Kim, and Tajana Rosing. FloatPIM: In-memory accelera-
tion of deep neural network training with high precision. In Proceedings of the 46th International
Symposium on Computer Architecture, 2019.

[31] 3D XPoint Technology. https://www.micron.com/products/advanced-solutions/

3d-xpoint-technology.

[32] Minxuan Zhou, Mohsen Imani, Saransh Gupta, Yeseong Kim, and Tajana Rosing. Gram: graph
processing in a reram-based computational memory. In Proceedings of the 24th Asia and South Pacific
Design Automation Conference, 2019.

[33] David Patterson, Krste Asanovic, Aaron Brown, Richard Fromm, Jason Golbus, Benjamin Gribstad,
Kimberly Keeton, Christoforos Kozyrakis, David Martin, Stylianos Perissakis, et al. Intelligent
ram (IRAM): the industrial setting, applications, and architectures. In Proceedings International
Conference on Computer Design VLSI in Computers and Processors, pages 2–7, 1997.

[34] David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm, Kimberly Keeton, Christoforos
Kozyrakis, Randi Thomas, and Katherine Yelick. A case for intelligent RAM. IEEE MICRO, pages
34–44, 1997.

[35] Justin Hensley, Mark Oskin, Diana Keen, Lucian-Vlad Lita, and Frederic T Chong. Active page
architectures for media processing. In First Workshop on Media Processors and DSPs, 32nd Annual
Symposium on Microarchitecture, 1999.

[36] Mark Oskin, Diana Keen, Justin Hensley, L-V Lita, and Frederic T Chong. Reducing cost and
tolerating defects in page-based intelligent memory. In Proceedings 2000 International Conference on
Computer Design, pages 276–284, 2000.

[37] Christoforos E Kozyrakis and David A Patterson. Scalable, vector processors for embedded systems.
IEEE Micro, pages 36–45, 2003.

[38] Ngeci Bowman, Neal Cardwell, Chris Kozyrakis, Cynthia Romer, and Helen Wang. Evaluation of
existing architectures in IRAM systems. In Workshop on Mixing Logic and DRAM, 24th International
Symposium on Computer Architecture, page 23, 1997.

[39] Andreas Nowatzyk, Fong Pong, and Ashley Saulsbury. Missing the memory wall: The case for
processor/memory integration. In 23rd Annual International Symposium on Computer Architecture
(ISCA’96), pages 90–90. IEEE, 1996.

[40] UPMEM. https://www.upmem.com/.

https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://www.upmem.com/

Bibliography 108

[41] Gokcen Kestor, Roberto Gioiosa, Darren J Kerbyson, and Adolfy Hoisie. Quantifying the energy cost
of data movement in scientific applications. In Workload Characterization , 2013 IEEE International
Symposium on, pages 56–65, 2013.

[42] Dhinakaran Pandiyan and Carole-Jean Wu. Quantifying the energy cost of data movement for
emerging smart phone workloads on mobile platforms. In Workload Characterization , 2014 IEEE
International Symposium on, pages 171–180, 2014.

[43] Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul
Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, et al. Google work-
loads for consumer devices: mitigating data movement bottlenecks. In Proceedings of the Twenty-
Third International Conference on Architectural Support for Programming Languages and Operating
Systems, 2018.

[44] Elaheh Sadredini, Reza Rahimi, Vaibhav Verma, Mircea Stan, and Kevin Skadron. A scalable and
efficient in-memory interconnect architecture for automata processing. IEEE Computer Architecture
Letters, 2019.

[45] Ismail Akturk and Ulya R Karpuzcu. AMNESIAC: Amnesic Automatic Computer. In 22nd ACM In-
ternational Conference on Architectural Support for Programming Languages and Operating Systems,
2017.

[46] Marzieh Lenjani and Mahmoud Reza Hashemi. A novel arbitration scheme for bandwidth and jitter
guarantees in asynchronous NoCs. In 2009 14th International CSI Computer Conference, pages
231–235. IEEE, 2009.

[47] Marzieh Lenjani and Mahmoud Reza Hashemi. Tree-based scheme for reducing shared cache miss
rate leveraging regional, statistical and temporal similarities. IET Computers & Digital Techniques,
8(1):30–48, 2014.

[48] Marc Henneaux and Claudio Teitelboim. Quantization of gauge systems. 1994.

[49] Robert M Gray. Vector quantization. In Readings in speech recognition, pages 75–100. 1990.

[50] Allen Gersho and Robert M Gray. Vector quantization and signal compression. 2012.

[51] Verilog implementation of quantizer and de-quantizer modules . https://github.com/

quantizerdequantizer/QuantizerDeQuantizer.

[52] NYSE Stock Exchange. http://online.wsj.com/mdc/public/page/2_3024-NYSE.html.

[53] Nacereddine Hammami and Mouldi Bedda. Improved tree model for arabic speech recognition. In
Computer Science and Information Technology (ICCSIT), 2010 3rd IEEE International Conference
on, pages 521–526, 2010.

[54] Spoken Arabic Digit Data Set . https://archive.ics.uci.edu/ml/datasets/Spoken+Arabic+

Digit.

[55] EEG Eye State Data Set. https://archive.ics.uci.edu/ml/datasets/EEG+Eye+State.

[56] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

[57] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The CIFAR-10 dataset. https://www.cs.

toronto.edu/~kriz/cifar.html.

[58] Amir Yazdanbakhsh, Divya Mahajan, Pejman Lotfi-Kamran, and Hadi Esmaeilzadeh. AXBENCH:
A Multi-Platform Benchmark Suite for Approximate Computing. IEEE Design & Test, 2016.

[59] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Neural acceleration for general-
purpose approximate programs. In Proceedings of the 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 449–460, 2012.

https://github.com/quantizerdequantizer/QuantizerDeQuantizer
https://github.com/quantizerdequantizer/QuantizerDeQuantizer
http://online.wsj.com/mdc/public/page/2_3024-NYSE.html
https://archive.ics.uci.edu/ml/datasets/Spoken+Arabic+Digit
https://archive.ics.uci.edu/ml/datasets/Spoken+Arabic+Digit
https://archive.ics.uci.edu/ml/datasets/EEG+Eye+State
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

Bibliography 109

[60] Gennady Pekhimenko, Vivek Seshadri, Yoongu Kim, Hongyi Xin, Onur Mutlu, Phillip B Gibbons,
Michael A Kozuch, and Todd C Mowry. Linearly compressed pages: A low-complexity, low-latency
main memory compression framework. In Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 172–184, 2013.

[61] Credit Card Fraud Detection . https://www.kaggle.com/dalpozz/creditcardfraud.

[62] Air Quality Data Set . https://archive.ics.uci.edu/ml/datasets/Air+quality.

[63] Forest Fires Dataset . http://www3.dsi.uminho.pt/pcortez/forestfires/.

[64] Parkinson Speech Dataset with Multiple Types of Sound Recordings Data Set . https://archive.

ics.uci.edu/ml/datasets/Parkinson+Speech+Dataset+with++Multiple+Types+of+Sound+

Recordings.

[65] Kdd Cup 99 dataset . http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

[66] Energy Efficiency dataset . http://archive.ics.uci.edu/ml/datasets/energy+efficiency.

[67] Sales Transactions Dataset Weekly Data Set . https://archive.ics.uci.edu/ml/datasets/Sales_
Transactions_Dataset_Weekly.

[68] Jason W Osborne and Amy Overbay. The power of outliers (and why researchers should always check
for them). Practical assessment, research & evaluation, pages 1–12, 2004.

[69] Vic Barnett, Toby Lewis, et al. Outliers in statistical data. 1994.

[70] Jan Van den Broeck, Solveig Argeseanu Cunningham, Roger Eeckels, and Kobus Herbst. Data
cleaning: detecting, diagnosing, and editing data abnormalities. PLoS medicine, page e267, 2005.

[71] Hancong Liu, Sirish Shah, and Wei Jiang. On-line outlier detection and data cleaning. Computers &
chemical engineering, pages 1635–1647, 2004.

[72] Amir Roth and Gurindar S Sohi. Effective jump-pointer prefetching for linked data structures. In
ACM SIGARCH Computer Architecture News, volume 27, pages 111–121. IEEE Computer Society,
1999.

[73] Chi-Keung Luk and Todd C Mowry. Automatic compiler-inserted prefetching for pointer-based
applications. IEEE Transactions on Computers, 48(2):134–141, 1999.

[74] Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K Chang, Amirali Boroumand, Saugata
Ghose, and Onur Mutlu. Accelerating pointer chasing in 3D-stacked memory: Challenges, mechanisms,
evaluation. In 2016 IEEE 34th International Conference on Computer Design (ICCD), pages 25–32.
IEEE, 2016.

[75] Jeremy Kepner, David Bade, Aydın Buluç, John Gilbert, Timothy Mattson, and Henning Meyer-
henke. Graphs, matrices, and the GraphBLAS: Seven good reasons. arXiv preprint arXiv:1504.01039,
2015.

[76] Animesh Jain, Parker Hill, Michael A Laurenzano, Md E Haque, Muneeb Khan, Scott Mahlke,
Lingjia Tang, and Jason Mars. CPSA: Compute Precisely Store Approximately. In Workshop on
Approximate Computing Across the Stack, 2016.

[77] Intel 64 and IA-32 Architectures Developerś Manual . https://https:

//www.intel.com/content/www/us/en/architecture-and-technology/

64-ia-32-architectures-software-developer-manual-325462.html.

[78] Full description of metadata . https://github.com/quantizerdequantizer/

quantizerdequantizer/blob/master/Full_description_of_metadata/.

https://www.kaggle.com/dalpozz/creditcardfraud
https://archive.ics.uci.edu/ml/datasets/Air+quality
http://www3.dsi.uminho.pt/pcortez/forestfires/
https://archive.ics.uci.edu/ml/datasets/Parkinson+Speech+Dataset+with++Multiple+Types+of+Sound+Recordings
https://archive.ics.uci.edu/ml/datasets/Parkinson+Speech+Dataset+with++Multiple+Types+of+Sound+Recordings
https://archive.ics.uci.edu/ml/datasets/Parkinson+Speech+Dataset+with++Multiple+Types+of+Sound+Recordings
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://archive.ics.uci.edu/ml/datasets/energy+efficiency
https://archive.ics.uci.edu/ml/datasets/Sales_Transactions_Dataset_Weekly
https://archive.ics.uci.edu/ml/datasets/Sales_Transactions_Dataset_Weekly
https://https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
https://https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
https://https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
https://github.com/quantizerdequantizer/quantizerdequantizer/blob/master/Full_description_of_metadata/
https://github.com/quantizerdequantizer/quantizerdequantizer/blob/master/Full_description_of_metadata/

Bibliography 110

[79] Emery David Berger. Memory management for high-performance applications. PhD thesis, University
of Texas at Austin, 2002.

[80] Norman P Jouppi. Improving direct-mapped cache performance by the addition of a small fully-
associative cache and prefetch buffers. In Computer Architecture, 1990. Proceedings., 17th Annual
International Symposium on, pages 364–373, 1990.

[81] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali Saidi, Arkaprava Basu,
Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh Sardashti, et al. The Gem5 simulator. ACM
SIGARCH Computer Architecture News, pages 1–7, 2011.

[82] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen, and Norman P
Jouppi. McPAT: An integrated power, area, and timing modeling framework for multicore and many-
core architectures. In Microarchitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM International
Symposium on, pages 469–480, 2009.

[83] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

[84] Mario Drumond, Alexandros Daglis, Nooshin Mirzadeh, Dmitrii Ustiugov, Javier Picorel, Babak
Falsafi, Boris Grot, and Dionisios Pnevmatikatos. The mondrian data engine. In Proceedings of the
ACM/IEEE 44th Annual International Symposium on Computer Architecture , 2017.

[85] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pages 1097–1105,
2012.

[86] James E Fowler. QccPack: An open-source software library for quantization, compression, and coding.
In Applications of digital image processing xxiii, 2000.

[87] Mehrzad Samadi, Janghaeng Lee, D Anoushe Jamshidi, Amir Hormati, and Scott Mahlke. SAGE:
Self-tuning approximation for graphics engines. In Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 13–24, 2013.

[88] Comparing Fixed- and Floating-Point DSPs . http://www.ti.com/lit/wp/spry061/spry061.pdf.

[89] Fixed-Point Digital Signal Processors . http://www.ti.com/lit/ds/symlink/tms320c6413.pdf.

[90] Joshua San Miguel, Jorge Albericio, Andreas Moshovos, and Natalie Enright Jerger. Doppelgänger:
a cache for approximate computing. In Proceedings of the 48th International Symposium on Microar-
chitecture, pages 50–61, 2015.

[91] Joshua San Miguel, Jorge Albericio, Natalie Enright Jerger, and Aamer Jaleel. The bunker cache
for spatio-value approximation. In Microarchitecture , 2016 49th Annual IEEE/ACM International
Symposium on, pages 1–12, 2016.

[92] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad Alisafaee, Djordje
Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia Ailamaki, and Babak Falsafi. Clearing
the clouds: A study of emerging scale-out workloads on modern hardware. In Proceedings of the
17th International Conference on Architectural Support for Programming Languages and Operating
Systems, pages 37–48, 2012.

[93] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan, Tipp Moseley, Gu-
Yeon Wei, and David Brooks. Profiling a warehouse-scale computer. In Proceedings of the 42Nd
Annual International Symposium on Computer Architecture, pages 158–169, 2016.

[94] Dongping Zhang, Nuwan Jayasena, Alexander Lyashevsky, Joseph L Greathouse, Lifan Xu, and
Michael Ignatowski. TOP-PIM: Throughput-oriented programmable processing in memory. In
Proceedings of the 23rd International Symposium on High-performance Parallel and Distributed
Computing, pages 85–98, 2014.

http://www.ti.com/lit/wp/spry061/spry061.pdf
http://www.ti.com/lit/ds/symlink/tms320c6413.pdf

Bibliography 111

[95] Shuangchen Li, Alvin Oliver Glova, Xing Hu, Peng Gu, Dimin Niu, Krishna T Malladi, Hongzhong
Zheng, Bob Brennan, and Yuan Xie. SCOPE: A stochastic computing engine for dram-based in-situ
accelerator. In Proceedings of the 51st Annual IEEE/ACM International Symposium on Microarchi-
tecture , pages 696–709, 2018.

[96] Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike O’Connor, Nandita Vi-
jaykumar, Onur Mutlu, and Stephen W Keckler. Transparent offloading and mapping (TOM): En-
abling programmer-transparent near-data processing in GPU systems. In Proceedings of the 43rd
International Symposium on Computer Architecture, 2016.

[97] Daichi Fujiki, Scott Mahlke, and Reetuparna Das. In-Memory Data Parallel Processor. In Proceed-
ings of the 23rd International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 1–14, 2018.

[98] Ytong-Bin Kim and Tom W Chen. Assessing merged dram/logic technology. Integration, 27(2):179–
194, 1999.

[99] Compute Express Link. https://www.computeexpresslink.org/.

[100] Tao Zhang, Ke Chen, Cong Xu, Guangyu Sun, Tao Wang, and Yuan Xie. Half-DRAM: a high-
bandwidth and low-power DRAM architecture from the rethinking of fine-grained activation. In
Proceedings of the ACM/IEEE 41st International Symposium on Computer Architecture , pages
349–360, 2014.

[101] CACTI-3DD: Architecture-level modeling for 3d die-stacked dram main memory.

[102] Donghyuk Lee, Yoongu Kim, Vivek Seshadri, Jamie Liu, Lavanya Subramanian, and Onur Mutlu.
Tiered-latency dram: A low latency and low cost dram architecture. In International Symposium on
High Performance Computer Architecture, 2013.

[103] FULCRUM ALPU. https://github.com/MarziehLenjani/FULCRUM_ALPU.

[104] Shuai Che, Jeremy W Sheaffer, and Kevin Skadron. Dymaxion: Optimizing memory access patterns
for heterogeneous systems. In Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, page 13. ACM, 2011.

[105] cuBLAS. https://docs.nvidia.com/cuda/cublas/index.html.

[106] cuSPARSE. https://docs.nvidia.com/cuda/cusparse/index.html.

[107] Thrust. https://docs.nvidia.com/cuda/thrust/index.html.

[108] Profiler User’s Guide. https://docs.nvidia.com/cuda/profiler-users-guide/index.html.

[109] A benchmark suit for In-situ computing. https://github.com/MarziehLenjani/InSituBench.

[110] CUDA Code Samples. https://developer.nvidia.com/cuda-code-samples.

[111] knn. https://github.com/vincentfpgarcia/kNN-CUDA.

[112] Vincent Garcia, Eric Debreuve, and Michel Barlaud. Fast k nearest neighbor search using GPU. In
2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops,
pages 1–6, 2008.

[113] DBMS Bitmap Indexing. https://www.geeksforgeeks.org/dbms-bitmap-indexing/.

[114] Bitmap Indexes. https://docs.oracle.com/cd/A87860_01/doc/server.817/a76994/indexes.htm.

[115] Bitmap Index vs. B-tree Index: Which and When? https://www.oracle.com/technetwork/

articles/sharma-indexes-093638.html.

https://www.computeexpresslink.org/
https://github.com/MarziehLenjani/FULCRUM_ALPU
https://docs.nvidia.com/cuda/cublas/index.html
https://docs.nvidia.com/cuda/cusparse/index.html
https://docs.nvidia.com/cuda/thrust/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://github.com/MarziehLenjani/InSituBench
https://developer.nvidia.com/cuda-code-samples
https://github.com/vincentfpgarcia/kNN-CUDA
https://www.geeksforgeeks.org/dbms-bitmap-indexing/
https://docs.oracle.com/cd/A87860_01/doc/server.817/a76994/indexes.htm
https://www.oracle.com/technetwork/articles/sharma-indexes-093638.html
https://www.oracle.com/technetwork/articles/sharma-indexes-093638.html

Bibliography 112

[116] Kesheng Wu. FastBit: An efficient indexing technology for accelerating data-intensive science. In
Journal of Physics: Conference Series, page 556, 2005.

[117] Scott Beamer, Krste Asanović, and David Patterson. Direction-optimizing breadth-first search.
Scientific Programming, pages 137–148, 2013.

[118] Jeremy Appleyard. Optimizing recurrent neural networks in cudnn 5. https://devblogs.nvidia.

com/optimizing-recurrent-neural-networks-cudnn-5/.

[119] MoveProf: integrating NVProf and GPUWattch for extracting the energy cost of data movement.
https://github.com/MarziehLenjani/MoveProf.

[120] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung Kim, Tor M.
Aamodt, and Vijay Janapa Reddi. GPUWattch: Enabling energy optimizations in GPGPUs. In
Proceedings of the 40th Annual International Symposium on Computer Architecture, pages 487–498,
2013.

[121] Data Sheet: Tesla P100. https://images.nvidia.com/content/tesla/pdf/

nvidia-tesla-p100-PCIe-datasheet.pdf.

[122] Mahdi Soltan Mohammadi, Tomofumi Yuki, Kazem Cheshmi, Eddie C Davis, Mary Hall,
Maryam Mehri Dehnavi, Payal Nandy, Catherine Olschanowsky, Anand Venkat, and Michelle Mills
Strout. Sparse computation data dependence simplification for efficient compiler-generated inspec-
tors. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2019.

[123] Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal Crago, Aamer Jaleel, Edgar
Solomonik, Joel Emer, and Christopher W Fletcher. Extensor: An accelerator for sparse tensor
algebra. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitec-
ture. ACM, 2019.

[124] Elaheh Sadredini, Reza Rahimi, Vaibhav Verma, Mircea Stan, and Kevin Skadron. eAP: A Scalable
and Efficient In-Memory Accelerator for Automata Processing. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, pages 87–99. ACM, 2019.

[125] Elaheh Sadredini, Reza Rahimi, Marzieh Lenjani, Mircea Stan, and Kevin Skadron. Impala: Algorith-
m/architecture co-design for in-memory multi-stride pattern matching. In Proceedings of The 26th
IEEE International Symposium on High-Performance Computer Architecture. IEEE, 2020.

[126] Elaheh Sadredini, Reza Rahimi, Marzieh Lenjani, Mircea Stan, and Kevin Skadron. FlexAmata:
A universal and efficient adaption of applications to spatial automata processing accelerators. In
Proceedings of the International Conference on Architectural Support for Programming Languages
and Operating Systems. ACM, 2020.

[127] Elaheh Sadredini, Reza Rahimi, Mohsen Imani, and Kevin Skadron. Sunder: Enabling low-overhead
and scalable near-data pattern matching acceleration. In MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 311–323, 2021.

[128] Elaheh Sadredini, Reza Rahimi, Marzieh Lenjani, Mircea Stan, and Kevin Skadron. Impala: Algorith-
m/architecture co-design for in-memory multi-stride pattern matching. In 2020 IEEE international
symposium on high performance computer architecture (HPCA), pages 86–98. IEEE, 2020.

[129] Elaheh Sadredini, Reza Rahimi, and Kevin Skadron. Enabling in-sram pattern processing with
low-overhead reporting architecture. IEEE Computer Architecture Letters, 19(2):167–170, 2020.

[130] Nastaran Hajinazar, Geraldo F Oliveira, Sven Gregorio, João Dinis Ferreira, Nika Mansouri Ghiasi,
Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gómez-Luna, and Onur Mutlu. SIMDRAM: a
framework for bit-serial SIMD processing using DRAM. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS),
2021.

https://devblogs.nvidia.com/optimizing-recurrent-neural-networks-cudnn-5/
https://devblogs.nvidia.com/optimizing-recurrent-neural-networks-cudnn-5/
https://github.com/MarziehLenjani/MoveProf
https://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf
https://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf

Bibliography 113

[131] Sukhan Lee, Shin-haeng Kang, Jaehoon Lee, Hyeonsu Kim, Eojin Lee, Seungwoo Seo, Hosang Yoon,
Seungwon Lee, Kyounghwan Lim, Hyunsung Shin, et al. Hardware Architecture and Software Stack
for PIM Based on Commercial DRAM Technology. In Proceedings of the 48nd Annual International
Symposium on Computer Architecture (ISCA), 2021.

[132] Nagadastagiri Challapalle, Sahithi Rampalli, Linghao Song, Nandhini Chandramoorthy, Karthik
Swaminathan, John Sampson, Yiran Chen, and Vijaykrishnan Narayanan. Gaas-x: graph analytics
accelerator supporting sparse data representation using crossbar architectures. In Proceedings of the
47th Annual International Symposium on Computer Architecture (ISCA), 2020.

[133] Fazle Sadi, Joe Sweeney, Tze Meng Low, James C Hoe, Larry Pileggi, and Franz Franchetti. Efficient
SPMV operation for large and highly sparse matrices using scalable multi-way merge parallelization.
In International Symposium on Microarchitecture, 2019.

[134] Subhankar Pal, Jonathan Beaumont, Dong-Hyeon Park, Aporva Amarnath, Siying Feng, Chaitali
Chakrabarti, Hun-Seok Kim, David Blaauw, Trevor Mudge, and Ronald Dreslinski. Outerspace: An
outer product based sparse matrix multiplication accelerator. In International Symposium on High
Performance Computer Architecture (HPCA), 2018.

[135] Mingxuan He, Choungki Song, Ilkon Kim, Chunseok Jeong, Seho Kim, Il Park, Mithuna Thot-
tethodi, and TN Vijaykumar. Newton: A dram-maker’s accelerator-in-memory (aim) architecture for
machine learning. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 372–385. IEEE, 2020.

[136] Ariful Azad and Aydin Buluç. A work-efficient parallel sparse matrix-sparse vector multiplication
algorithm. In 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages
688–697. IEEE, 2017.

[137] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and John D Owens.
Gunrock: A high-performance graph processing library on the gpu. In Proceedings of the 21st ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, 2016.

[138] Yuwei Hu, Yixiao Du, Ecenur Ustun, and Zhiru Zhang. Graphlily: Accelerating graph linear algebra
on hbm-equipped fpgas. ICCAD, 2021.

[139] Jeremy Kepner, Peter Aaltonen, David Bader, Aydin Buluç, Franz Franchetti, John Gilbert, Dylan
Hutchison, Manoj Kumar, Andrew Lumsdaine, Henning Meyerhenke, et al. Mathematical foundations
of the graphblas. In 2016 IEEE High Performance Extreme Computing Conference (HPEC), pages
1–9, 2016.

[140] Eriko Nurvitadhi, Asit Mishra, Yu Wang, Ganesh Venkatesh, and Debbie Marr. Hardware accelerator
for analytics of sparse data. In 2016 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 1616–1621. IEEE, 2016.

[141] Carl Yang, Yangzihao Wang, and John D Owens. Fast sparse matrix and sparse vector multiplication
algorithm on the gpu. In 2015 IEEE International Parallel and Distributed Processing Symposium
Workshop, pages 841–847. IEEE, 2015.

[142] Xinyu Chen, Hongshi Tan, Yao Chen, Bingsheng He, Weng-Fai Wong, and Deming Chen. Thundergp:
Hls-based graph processing framework on fpgas. In The 2021 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, pages 69–80, 2021.

[143] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun, and Saman Amaras-
inghe. Graphit: A high-performance graph dsl. Proceedings of the ACM on Programming Languages,
2:1–30, 2018.

[144] Carl Yang, Aydin Buluc, and John D Owens. Graphblast: A high-performance linear algebra-based
graph framework on the gpu. arXiv preprint arXiv:1908.01407, 2019.

Bibliography 114

[145] Shijie Zhou, Rajgopal Kannan, Viktor K Prasanna, Guna Seetharaman, and Qing Wu. Hitgraph:
High-throughput graph processing framework on fpga. IEEE Transactions on Parallel and Distributed
Systems, 30(10):2249–2264, 2019.

[146] Xinfeng Xie, Zheng Liang, Peng Gu, Abanti Basak, Lei Deng, Ling Liang, Xing Hu, and Yuan Xie.
SpaceA: Sparse Matrix Vector Multiplication on Processing-in-Memory Accelerator. In 2021 IEEE
International Symposium on High-Performance Computer Architecture (HPCA), 2021.

[147] Chuang-Yi Gui, Long Zheng, Bingsheng He, Cheng Liu, Xin-Yu Chen, Xiao-Fei Liao, and Hai Jin. A
survey on graph processing accelerators: Challenges and opportunities. Journal of Computer Science
and Technology, 34(2):339–371, 2019.

[148] Dong Uk Lee, Kyung Whan Kim, Kwan Weon Kim, Hongjung Kim, Ju Young Kim, Young Jun
Park, Jae Hwan Kim, Dae Suk Kim, Heat Bit Park, Jin Wook Shin, et al. 25.2 a 1.2 v 8Gb 8-channel
128gb/s high-bandwidth memory (HBM) stacked DRAM with effective microbump i/o test methods
using 29nm process and tsv. In 2014 IEEE International Solid-State Circuits Conference Digest of
Technical Papers (ISSCC), pages 432–433. IEEE, 2014.

[149] Mingxing Zhang, Youwei Zhuo, Chao Wang, Mingyu Gao, Yongwei Wu, Kang Chen, Christos
Kozyrakis, and Xuehai Qian. GraphP: Reducing communication for PIM-based graph processing
with efficient data partition. In 2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 544–557. IEEE, 2018.

[150] Xiaowei Zhu, Wentao Han, and Wenguang Chen. Gridgraph: Large-scale graph processing on a single
machine using 2-level hierarchical partitioning. In 2015 {USENIX} Annual Technical Conference
({USENIX}{ATC} 15), pages 375–386, 2015.

[151] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin. Powergraph:
Distributed graph-parallel computation on natural graphs. In Presented as part of the 10th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 12), pages 17–30, 2012.

[152] Young-Cheon Kwon, Suk Han Lee, Jaehoon Lee, Sang-Hyuk Kwon, Je Min Ryu, Jong-Pil Son,
O Seongil, Hak-Soo Yu, Haesuk Lee, Soo Young Kim, et al. 25.4 A 20nm 6GB Function-In-Memory
DRAM, Based on HBM2 with a 1.2 TFLOPS Programmable Computing Unit Using Bank-Level
Parallelism, for Machine Learning Applications. In 2021 IEEE International Solid-State Circuits
Conference (ISSCC), volume 64, pages 350–352. IEEE, 2021.

[153] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. A scalable processing-
in-memory accelerator for parallel graph processing. In Proceedings of the 42nd Annual International
Symposium on Computer Architecture (ISCA), 2015.

[154] Yuze Chi, Guohao Dai, Yu Wang, Guangyu Sun, Guoliang Li, and Huazhong Yang. Nxgraph: An
efficient graph processing system on a single machine. In 2016 IEEE 32nd International Conference
on Data Engineering (ICDE), pages 409–420. IEEE, 2016.

[155] Seongyun Ko and Wook-Shin Han. TurboGraph++ A scalable and fast graph analytics system. In
Proceedings of the 2018 international conference on management of data, pages 395–410, 2018.

[156] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. X-stream: Edge-centric graph processing using
streaming partitions. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 472–488, 2013.

[157] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. Graphchi: Large-scale graph computation on just
a {PC}. In Presented as part of the 10th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 12), 2012.

[158] NVLINK AND NVSWITCH, The Building Blocks of Advanced Multi-GPU Communication . https:
//www.nvidia.com/en-us/data-center/nvlink/.

https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/

Bibliography 115

[159] Tae Jun Ham, Lisa Wu, Narayanan Sundaram, Nadathur Satish, and Margaret Martonosi. Graphi-
cionado: A high-performance and energy-efficient accelerator for graph analytics. In 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 1–13. IEEE, 2016.

[160] Collective Operations . https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/
collectives.html.

[161] Timothy A Davis and Yifan Hu. The university of florida sparse matrix collection. ACM Transactions
on Mathematical Software (TOMS), 38(1):1–25, 2011.

[162] Yangzihao Wang, Yuechao Pan, Andrew Davidson, Yuduo Wu, Carl Yang, Leyuan Wang, Muham-
mad Osama, Chenshan Yuan, Weitang Liu, Andy T Riffel, et al. Gunrock: Gpu graph analytics. ACM
Transactions on Parallel Computing (TOPC), 4(1):1–49, 2017.

[163] Mike O’Connor, Niladrish Chatterjee, Donghyuk Lee, John Wilson, Aditya Agrawal, Stephen W
Keckler, and William J Dally. Fine-grained DRAM: Energy-efficient DRAM for extreme bandwidth
systems. In 2017 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
2017.

[164] Yasuko Eckert, Nuwan Jayasena, and Gabriel H Loh. Thermal feasibility of die-stacked processing in
memory. 2014.

[165] Amir Yazdanbakhsh, Choungki Song, Jacob Sacks, Pejman Lotfi-Kamran, Hadi Esmaeilzadeh, and
Nam Sung Kim. In-DRAM near-data approximate acceleration for GPUs. In Proceedings of the 27th
International Conference on Parallel Architectures and Compilation Techniques, 2018.

[166] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P Jouppi. CACTI 6.0: A tool to
model large caches. HP Laboratories, pages 22–31, 2009.

[167] Guohao Dai, Tianhao Huang, Yuze Chi, Jishen Zhao, Guangyu Sun, Yongpan Liu, Yu Wang, Yuan
Xie, and Huazhong Yang. GraphH: A processing-in-memory architecture for large-scale graph process-
ing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 38(4):640–653,
2018.

[168] Lifeng Nai, Ramyad Hadidi, Jaewoong Sim, Hyojong Kim, Pranith Kumar, and Hyesoon Kim. Graph-
PIM: Enabling instruction-level PIM offloading in graph computing frameworks. In 2017 IEEE
International symposium on high performance computer architecture (HPCA), pages 457–468. IEEE,
2017.

[169] Patricia Gonzalez-Guerrero, Tommy Tracy II, Xinfei Guo, Rahul Sreekumar, Marzieh Lenjani, Kevin
Skadron, and Mircea R Stan. Towards on-node machine learning for ultra-low-power sensors using
asynchronous σ δ streams. ACM Journal on Emerging Technologies in Computing Systems (JETC),
16(4):1–20, 2020.

[170] Muhammet Mustafa Ozdal, Serif Yesil, Taemin Kim, Andrey Ayupov, John Greth, Steven Burns,
and Ozcan Ozturk. Energy efficient architecture for graph analytics accelerators. ACM SIGARCH
Computer Architecture News, 44(3):166–177, 2016.

[171] Guohao Dai, Tianhao Huang, Yuze Chi, Ningyi Xu, Yu Wang, and Huazhong Yang. Foregraph:
Exploring large-scale graph processing on multi-FPGA architecture. In Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pages 217–226, 2017.

[172] Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu. Revisiting memory errors in large-scale
production data centers: Analysis and modeling of new trends from the field. In 2015 45th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, 2015.

[173] Elias Stehle and Hans-Arno Jacobsen. A memory bandwidth-efficient hybrid radix sort on gpus. In
ACM International Conference on Management of Data, pages 417–432, 2017.

https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html

Bibliography 116

[174] Weikang Qiao, Jihun Oh, Licheng Guo, Mau-Chung Frank Chang, and Jason Cong. FANS: FPGA-
Accelerated Near-Storage Sorting. In 29th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2021.

[175] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science,
286(5439):509–512, 1999.

[176] Duncan J Watts and Steven H Strogatz. Collective dynamics of ’small-world’ networks. nature,
393(6684):440–442, 1998.

[177] Scott Beamer, Krste Asanovic, and David Patterson. Direction-optimizing breadth-first search. In
Proceedings of the International Conference on High Performance Computing, Networking, Storage
and Analysis, 2012.

[178] Robert Ryan McCune, Tim Weninger, and Greg Madey. Thinking like a vertex: a survey of vertex-
centric frameworks for large-scale distributed graph processing. ACM Computing Surveys (CSUR),
48(2):1–39, 2015.

[179] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn, Naty Leiser,
and Grzegorz Czajkowski. Pregel: a system for large-scale graph processing. In Proceedings of the
2010 ACM SIGMOD International Conference on Management of data, pages 135–146, 2010.

[180] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw, Michael J Franklin, and Ion
Stoica. Graphx: Graph processing in a distributed dataflow framework. In 11th {USENIX} Sympo-
sium on Operating Systems Design and Implementation ({OSDI} 14), 2014.

[181] Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez. Phi: Architectural support for
synchronization-and bandwidth-efficient commutative scatter updates. In Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture, 2019.

[182] Graph500 benchmark. www.graph500.org.

[183] Scott Beamer, Krste Asanovic, and David Patterson. Locality exists in graph processing: Workload
characterization on an ivy bridge server. In IEEE International Symposium on Workload Characteri-
zation, 2015.

[184] Daichi Fujiki, Scott Mahlke, and Reetuparna Das. Duality cache for data parallel acceleration. In
Proceedings of the 46th International Symposium on Computer Architecture, 2019.

[185] Leslie G Valiant. A bridging model for parallel computation. Communications of the ACM, 33(8):103–
111, 1990.

[186] Bahar Asgari, Ramyad Hadidi, Tushar Krishna, Hyesoon Kim, and Sudhakar Yalamanchili. Al-
rescha: A lightweight reconfigurable sparse-computation accelerator. In Proceedings of the 26th IEEE
International Symposium on High-Performance Computer Architecture. IEEE, 2020.

[187] GraphCore. https://www.graphcore.ai/.

[188] Shengen Yan, Chao Li, Yunquan Zhang, and Huiyang Zhou. yaSpMV: Yet Another SpMV Framework
on GPUs. In Proceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 107–118, 2014.

[189] Matthew Poremba, Tao Zhang, and Yuan Xie. Fine-granularity tile-level parallelism in non-volatile
memory architecture with two-dimensional bank subdivision. In Proceedings of the 53rd Annual
Design Automation Conference, 2016.

[190] Eriko Nurvitadhi, Asit Mishra, and Debbie Marr. A sparse matrix vector multiply accelerator for sup-
port vector machine. In Proceedings of the 2015 International Conference on Compilers, Architecture
and Synthesis for Embedded Systems, 2015.

www.graph500.org.
https://www.graphcore.ai/

Bibliography 117

[191] The STREAM2 Home Page. https://www.cs.virginia.edu/stream/stream2/.

[192] Qing Guo, Xiaochen Guo, Ravi Patel, Engin Ipek, and Eby G Friedman. Ac-dimm: associative
computing with stt-mram. Proceedings of the 40th Annual International Symposium on Computer
Architecture, 2013.

[193] Paul Dlugosch, Dave Brown, Paul Glendenning, Michael Leventhal, and Harold Noyes. An efficient
and scalable semiconductor architecture for parallel automata processing. IEEE Transactions on
Parallel and Distributed Systems, 2014.

[194] STREAM: Sustainable Memory Bandwidth in High Performance Computers. http://www.cs.

virginia.edu/stream/.

[195] D Anoushe Jamshidi, Mehrzad Samadi, and Scott Mahlke. D 2 MA: accelerating coarse-grained data
transfer for GPUs. In Proceedings of the 23rd international conference on Parallel architectures and
compilation, pages 431–442, 2014.

[196] Abhijeet Gaikwad and Ioane Muni Toke. Parallel iterative linear solvers on GPU: a financial engineer-
ing case. In 2010 18th Euromicro Conference on Parallel, Distributed and Network-based Processing,
pages 607–614, 2010.

[197] Luc Buatois, Guillaume Caumon, and Bruno Lévy. Concurrent number cruncher: An efficient sparse
linear solver on the GPU. In International Conference on High Performance Computing and Com-
munications, pages 358–371, 2007.

[198] Akrem Benatia, Weixing Ji, Yizhuo Wang, and Feng Shi. Sparse matrix format selection with multi-
class SVM for SpMV on GPU. In 2016 45th International Conference on Parallel Processing (ICPP),
pages 496–505, 2016.

[199] Xintian Yang, Srinivasan Parthasarathy, and Ponnuswamy Sadayappan. Fast sparse matrix-vector
multiplication on GPUs: implications for graph mining. Proceedings of the VLDB Endowment, pages
231–242, 2011.

[200] Xuanhua Shi, Zhigao Zheng, Yongluan Zhou, Hai Jin, Ligang He, Bo Liu, and Qiang-Sheng Hua.
Graph processing on GPUs: A survey. ACM Computing Surveys (CSUR), page 81, 2018.

[201] Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li, Dongliang Xie, Hong Luo, Song
Yao, Yu Wang, et al. Ese: Efficient speech recognition engine with sparse lstm on fpga. In Proceedings
of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pages 75–
84, 2017.

[202] Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Marianna Pensky. Sparse convo-
lutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 806–814, 2015.

[203] Arun Subramaniyan, Jingcheng Wang, Ezhil RM Balasubramanian, David Blaauw, Dennis Sylvester,
and Reetuparna Das. Cache automaton. In Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 259–272, 2017.

[204] Tesla’s Auto driving processor . https://youtu.be/Ucp0TTmvqOE?t=4381.

[205] Reza Farivar, Harshit Kharbanda, Shivaram Venkataraman, and Roy H Campbell. An algorithm for
fast edit distance computation on gpus. In 2012 Innovative Parallel Computing (InPar), pages 1–9,
2012.

[206] Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it). In 2014 IEEE
international solid-state circuits conference digest of technical papers (ISSCC), pages 10–14, 2014.

https://www.cs.virginia.edu/stream/stream2/
http://www.cs.virginia.edu/stream/
http://www.cs.virginia.edu/stream/
https://youtu.be/Ucp0TTmvqOE?t=4381

Bibliography 118

[207] Jochen Blom, Tobias Jakobi, Daniel Doppmeier, Sebastian Jaenicke, Jörn Kalinowski, Jens Stoye,
and Alexander Goesmann. Exact and complete short-read alignment to microbial genomes using
Graphics Processing Unit programming. Bioinformatics, pages 1351–1358, 2011.

[208] Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S Meredith, Philip C Roth, Kyle Spafford,
Vinod Tipparaju, and Jeffrey S Vetter. The scalable heterogeneous computing (SHOC) benchmark
suite. In Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics Processing
Units, pages 63–74, 2010.

[209] Michael Pellauer, Yakun Sophia Shao, Jason Clemons, Neal Crago, Kartik Hegde, Rangharajan
Venkatesan, Stephen W Keckler, Christopher W Fletcher, and Joel Emer. Buffets: An Efficient and
Composable Storage Idiom for Explicit Decoupled Data Orchestration. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Programming Languages and Operating
Systems, pages 137–151, 2019.

[210] BLAS Level 1 Routines and Functions . https://software.intel.com/en-us/

mkl-developer-reference-fortran-blas-level-1-routines-and-functions.

[211] BLAS Level 2 Routines and Functions . https://software.intel.com/en-us/

mkl-developer-reference-fortran-blas-level-2-routines.

[212] BLAS Level 3 Routines and Functions . https://software.intel.com/en-us/

mkl-developer-reference-fortran-blas-level-3-routines.

[213] Mohsen Imani, Saransh Gupta, Atl Arredondo, and Tajana Rosing. Efficient query processing in
crossbar memory. In Low Power Electronics and Design (ISLPED, 2017 IEEE/ACM International
Symposium on, pages 1–6, 2017.

[214] Mohsen Imani, Saransh Gupta, Sahil Sharma, and Tajana Rosing. NVQuery: Efficient Query Process-
ing in Non-Volatile Memory. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2018.

[215] Leonid Yavits, Shahar Kvatinsky, Amir Morad, and Ran Ginosar. Resistive associative processor.
IEEE Computer Architecture Letters, pages 148–151, 2015.

[216] Qing Guo, Xiaochen Guo, Yuxin Bai, and Engin Ipek. A resistive TCAM accelerator for data-intensive
computing. In Proceedings of the 44th Annual IEEE/ACM International Symposium on Microarchi-
tecture, pages 339–350, 2011.

[217] Andrew D Kent and Daniel C Worledge. A new spin on magnetic memories. Nature nanotechnology,
page 187, 2015.

[218] Luc Thomas et al. Basic Principles, Challenges and Opportunities of STT-MRAM for Embedded
Memory Applications. MSST 2017, 2017.

[219] Jing Fan, Adalbert Gerald Soosai Raj, and Jignesh M Patel. The Case Against Specialized Graph
Analytics Engines. In CIDR, 2015.

[220] Derrick E Wood and Steven L Salzberg. Kraken: ultrafast metagenomic sequence classification using
exact alignments. Genome biology, page R46, 2014.

[221] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, pages
1735–1780, 1997.

[222] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. PIM-enabled instructions: a low-
overhead, locality-aware processing-in-memory architecture. In 2015 ACM/IEEE 42nd Annual
International Symposium on Computer Architecture , pages 336–348, 2015.

[223] Leslie Lamport. LATEX: A Document Preparation System. Addison-Wesley, Reading, Massachusetts,
2nd edition, 1994.

https://software.intel.com/en-us/mkl-developer-reference-fortran-blas-level-1-routines-and-functions
https://software.intel.com/en-us/mkl-developer-reference-fortran-blas-level-1-routines-and-functions
https://software.intel.com/en-us/mkl-developer-reference-fortran-blas-level-2-routines
https://software.intel.com/en-us/mkl-developer-reference-fortran-blas-level-2-routines
https://software.intel.com/en-us/mkl-developer-reference-fortran-blas-level-3-routines
https://software.intel.com/en-us/mkl-developer-reference-fortran-blas-level-3-routines

Bibliography 119

[224] Firstname1 Lastname1 and Firstname2 Lastname2. A very nice paper to cite. In Proceedings of the
33rd Annual ACM SIGPLAN Conference on Programming Language Design and Implementation,
2012.

[225] Firstname1 Lastname1, Firstname2 Lastname2, and Firstname3 Lastname3. Another very nice paper
to cite. In Proceedings of the 22nd ACM Symposium on Operating Systems Principles, 2011.

[226] Firstname1 Lastname1, Firstname2 Lastname2, Firstname3 Lastname3, Firstname4 Lastname4, and
Firstname5 Lastname5. Yet another very nice paper to cite, with many author names all spelled out.
In Proceedings of the 38th Annual International Symposium on Computer Architecture, 2011.

[227] David A Patterson. Computer architecture: A quantitative approach. 2011.

[228] Shekhar Borkar. Role of interconnects in the future of computing. Journal of Lightwave Technology,
pages 3927–3933, 2013.

[229] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

[230] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa,
Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-Datacenter Performance Analysis of
a Tensor Processing Unit. 44th International Symposium on Computer Architecture, 2017.

[231] Scott Grauer-Gray, Lifan Xu, Robert Searles, Sudhee Ayalasomayajula, and John Cavazos. Auto-
tuning a high-level language targeted to GPU codes. In Innovative Parallel Computing (InPar), 2012,
pages 1–10, 2012.

[232] Altaf Abdul Gaffar, Oskar Mencer, and Wayne Luk. Unifying bit-width optimisation for fixed-point
and floating-point designs. In Field-Programmable Custom Computing Machines, 2004. FCCM 2004.
12th Annual IEEE Symposium on, pages 79–88, 2004.

[233] William G Osborne, Ray CC Cheung, José Gabriel F Coutinho, Wayne Luk, and Oskar Mencer.
Automatic accuracy-guaranteed bit-width optimization for fixed and floating-point systems. In Field
Programmable Logic and Applications, 2007. FPL 2007. International Conference on, pages 617–620,
2007.

[234] Xi Chen, Lei Yang, Robert P Dick, Li Shang, and Haris Lekatsas. C-pack: A high-performance
microprocessor cache compression algorithm. IEEE transactions on very large scale integration (VLSI)
systems, pages 1196–1208, 2010.

[235] Angelos Arelakis and Per Stenstrom. SC2: A statistical compression cache scheme. In Proceeding of
the 41st Annual International Symposium on Computer Architecuture, 2014.

[236] Alaa R Alameldeen and David A Wood. Frequent pattern compression: A significance-based compres-
sion scheme for L2 caches. Dept. Comp. Scie., Univ. Wisconsin-Madison, Tech. Rep, 2004.

[237] Alaa R Alameldeen and David A Wood. Adaptive cache compression for high-performance processors.
In Computer Architecture. Proceedings. 31st Annual International Symposium on, pages 212–223,
2004.

[238] M. Lichman. UCI machine learning repository, 2013.

[239] Xiaolong Jin, Benjamin W Wah, Xueqi Cheng, and Yuanzhuo Wang. Significance and challenges of
big data research. Big Data Research, pages 59–64, 2015.

[240] Mehrzad Samadi, Davoud Anoushe Jamshidi, Janghaeng Lee, and Scott Mahlke. Paraprox: Pattern-
based approximation for data parallel applications. In Proceedings of the 19th International Conference
on Architectural Support for Programming Languages and Operating Systems, 2014.

Bibliography 120

[241] Budirijanto Purnomo, Jonathan Bilodeau, Jonathan D Cohen, and Subodh Kumar. Hardware-
compatible vertex compression using quantization and simplification. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, pages 53–61, 2005.

[242] Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor Aamodt, Natalie Enright Jerger, Raquel
Urtasun, and Andreas Moshovos. Proteus: Exploiting Precision Variability in Deep Neural Networks.
Parallel Computing, 2017.

[243] Adrian Sampson, Jacob Nelson, Karin Strauss, and Luis Ceze. Approximate storage in solid-state
memories. ACM Transactions on Computer Systems (TOCS), page 9, 2014.

[244] Woongki Baek and Trishul M. Chilimbi. Green: A Framework for Supporting Energy-conscious
Programming Using Controlled Approximation. In Proceedings of the 31st ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2010.

[245] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Architecture Support for Disci-
plined Approximate Programming. In Proceedings of the Seventeenth International Conference on
Architectural Support for Programming Languages and Operating Systems, 2012.

[246] Cumulative Percent Distribution of Population by Height and Sex: 2007 to 2008 . https://www2.

census.gov/library/publications/2010/compendia/statab/130ed/tables/11s0205.pdf.

[247] Parasoft Development Testing Platform . https://docs.parasoft.com/display/DTP533/Parasoft+
Development+Testing+Platform.

[248] Robert Gray. Vector quantization. IEEE Assp Magazine, pages 4–29, 1984.

[249] Brian Chen and Gregory W Wornell. Quantization index modulation: A class of provably good
methods for digital watermarking and information embedding. IEEE Transactions on Information
Theory, pages 1423–1443, 2001.

[250] Arshid Syed. Tradeoffs Between Combinational and Sequential Dividers. https://www.synopsys.

com/dw/dwtb.php?a=fp_dividers.

[251] John Paul Shen and Mikko H Lipasti. Modern processor design: fundamentals of superscalar proces-
sors. 2013.

[252] Vijay Sathish, Michael J Schulte, and Nam Sung Kim. Lossless and lossy memory I/O link compres-
sion for improving performance of GPGPU workloads. In Parallel Architectures and Compilation
Techniques (PACT), 2012 21st International Conference on, pages 325–334, 2012.

[253] Daniel Citron. Exploiting low entropy to reduce wire delay. IEEE Computer Architecture Letters,
pages 1–1, 2004.

[254] How to Manipulate Data Structure to Optimize Memory Use on 32-Bit In-
tel Architecture . https://software.intel.com/en-us/articles/

how-to-manipulate-data-structure-to-optimize-memory-use-on-32-bit-intel-architecture.

[255] Jeff Bonwick et al. The Slab Allocator: An Object-Caching Kernel Memory Allocator. In USENIX
summer, 1994.

[256] Tiancong Wang, Sakthikumaran Sambasivam, Yan Solihin, and James Tuck. Hardware supported
persistent object address translation. In Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 800–812, 2017.

[257] Martin Burtscher and Paruj Ratanaworabhan. FPC: A high-speed compressor for double-precision
floating-point data. IEEE Transactions on Computers, pages 18–31, 2009.

[258] Cortex-M3 Technical Reference Manual . http://infocenter.arm.com/help/index.jsp?topic=

/com.arm.doc.ddi0337e/BABBCJII.html.

https://www2.census.gov/library/publications/2010/compendia/statab/130ed/tables/11s0205.pdf
https://www2.census.gov/library/publications/2010/compendia/statab/130ed/tables/11s0205.pdf
https://docs.parasoft.com/display/DTP533/Parasoft+Development+Testing+Platform
https://docs.parasoft.com/display/DTP533/Parasoft+Development+Testing+Platform
https://www.synopsys.com/dw/dwtb.php?a=fp_dividers
https://www.synopsys.com/dw/dwtb.php?a=fp_dividers
https://software.intel.com/en-us/articles/how-to-manipulate-data-structure-to-optimize-memory-use-on-32-bit-intel-architecture
https://software.intel.com/en-us/articles/how-to-manipulate-data-structure-to-optimize-memory-use-on-32-bit-intel-architecture
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/BABBCJII.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/BABBCJII.html

Bibliography 121

[259] Hadi Asghari-Moghaddam, Young Hoon Son, Jung Ho Ahn, and Nam Sung Kim. Chameleon: Versa-
tile and practical near-DRAM acceleration architecture for large memory systems. In The 49th Annual
IEEE/ACM International Symposium on Microarchitecture, page 50, 2016.

[260] Venkatraman Govindaraju, Chen-Han Ho, Tony Nowatzki, Jatin Chhugani, Nadathur Satish,
Karthikeyan Sankaralingam, and Changkyu Kim. Dyser: Unifying functionality and parallelism
specialization for energy-efficient computing. IEEE Micro, 2012.

[261] Mingyu Gao and Christos Kozyrakis. HRL: Efficient and flexible reconfigurable logic for near-data
processing. In 2016 IEEE International Symposium on High Performance Computer Architecture ,
2016.

[262] Amin Farmahini-Farahani, Jung Ho Ahn, Katherine Morrow, and Nam Sung Kim. NDA: Near-DRAM
acceleration architecture leveraging commodity DRAM devices and standard memory modules. In
2015 IEEE 21st International Symposium on High Performance Computer Architecture , 2015.

[263] Natalie D Enright Jerger, Li-Shiuan Peh, and Mikko H Lipasti. Virtual tree coherence: Leveraging
regions and in-network multicast trees for scalable cache coherence. In Microarchitecture, 2008.
MICRO-41. 2008 41st IEEE/ACM International Symposium on, 2008.

[264] Byn Choi, Rakesh Komuravelli, Hyojin Sung, Robert Smolinski, Nima Honarmand, Sarita V Adve,
Vikram S Adve, Nicholas P Carter, and Ching-Tsun Chou. DeNovo: Rethinking the memory hierarchy
for disciplined parallelism. In Parallel Architectures and Compilation Techniques (PACT), 2011
International Conference on, 2011.

[265] Jason F. Cantin, Mikko H. Lipasti, and James E. Smith. Improving Multiprocessor Performance with
Coarse-Grain Coherence Tracking. In Proceedings of the 32Nd Annual International Symposium on
Computer Architecture, pages 246–257, 2005.

[266] Julien Dusser, Thomas Piquet, and André Seznec. Zero-content augmented caches. In Proceedings of
the 23rd international conference on Supercomputing, 2009.

[267] Andreas Moshovos. RegionScout: Exploiting Coarse Grain Sharing in Snoop-Based Coherence. In
Proceedings of the 32Nd Annual International Symposium on Computer Architecture, pages 234–245,
2005.

[268] Tongping Liu and Emery D. Berger. SHERIFF: Precise Detection and Automatic Mitigation of False
Sharing. In Proceedings of the 2011 ACM International Conference on Object Oriented Programming
Systems Languages and Applications, pages 3–18, 2011.

[269] amoeba-cache: Adaptive blocks for eliminating waste in the memory hierarchy.

[270] Avoiding and Identifying False Sharing Among Threads . https://software.intel.com/en-us/

articles/avoiding-and-identifying-false-sharing-among-threads.

[271] Ananthanarayanan, Ganesh and Hung, Michael Chien-Chun and Ren, Xiaoqi and Stoica, Ion and
Wierman, Adam and Yu, Minlan. GRASS: trimming stragglers in approximation analytics. 2014.

[272] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden, and Ion Stoica.
BlinkDB: queries with bounded errors and bounded response times on very large data. In Proceedings
of the 8th ACM European Conference on Computer Systems, 2013.

[273] Interactive Big Data analysis using approximate answers . https://www.oreilly.com/ideas/

interactive-big-data-analysis-using-approximate-answers.

[274] libfixmath . https://en.wikipedia.org/wiki/Libfixmath.

[275] libfixmatrix . https://github.com/PetteriAimonen/libfixmatrix.

[276] Q (number format . https://en.wikipedia.org/wiki/Q_(number_format).

https://software.intel.com/en-us/articles/avoiding-and-identifying-false-sharing-among-threads
https://software.intel.com/en-us/articles/avoiding-and-identifying-false-sharing-among-threads
https://www.oreilly.com/ideas/interactive-big-data-analysis-using-approximate-answers
https://www.oreilly.com/ideas/interactive-big-data-analysis-using-approximate-answers
https://en.wikipedia.org/wiki/Libfixmath
https://github.com/PetteriAimonen/libfixmatrix
https://en.wikipedia.org/wiki/Q_(number_format)

Bibliography 122

[277] Santosh G. Abraham and David E. Hudak. Compile-time partitioning of iterative parallel loops to
reduce cache coherency traffic. IEEE Transactions on Parallel and Distributed Systems, 1991.

[278] Qing Guo, Karin Strauss, Luis Ceze, and Henrique S. Malvar. High-Density Image Storage Using Ap-
proximate Memory Cells. In Proceedings of the Twenty-First International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 413–426, 2016.

[279] Djordje Jevdjic, Karin Strauss, Luis Ceze, and Henrique S. Malvar. Approximate Storage of Com-
pressed and Encrypted Videos. In Proceedings of the Twenty-Second International Conference on
Architectural Support for Programming Languages and Operating Systems, pages 361–373, 2017.

[280] Fixed-Point vs. Floating-Point Digital Signal Processing. http://www.analog.com/en/education/
education-library/articles/fixed-point-vs-floating-point-dsp.html.

[281] Nandita Vijaykumar, Abhilasha Jain, Diptesh Majumdar, Kevin Hsieh, Gennady Pekhimenko,
Eiman Ebrahimi, Nastaran Hajinazar, Phillip B Gibbons, and Onur Mutlu. A case for richer cross-
layer abstractions: Bridging the semantic gap with expressive memory. In 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architecture , 2018.

[282] Nandita Vijaykumar, Eiman Ebrahimi, Kevin Hsieh, Phillip B Gibbons, and Onur Mutlu. The
Locality Descriptor: A Holistic Cross-Layer Abstraction to Express Data Locality in GPUs. In In
2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture, 2018.

[283] Prasanna Venkatesh Rengasamy, Anand Sivasubramaniam, Mahmut T Kandemir, and Chita R Das.
Exploiting staleness for approximating loads on CMPs. In Parallel Architecture and Compilation
(PACT), 2015 International Conference on, 2015.

[284] Blocked Matrix Multiplication . https://malithjayaweera.com/2020/07/

blocked-matrix-multiplication/.

[285] Daichi Fujiki, Xiaowei Wang, Arun Subramaniyan, and Reetuparna Das. In-/near-memory computing.
Synthesis Lectures on Computer Architecture, 16(2):1–140, 2021.

[286] Xinfeng Xie, Peng Gu, Yufei Ding, Dimin Niu, Hongzhong Zheng, and Yuan Xie. MPU: Towards
Bandwidth-abundant SIMT Processor via Near-bank Computing. arXiv preprint arXiv:2103.06653,
2021.

[287] Juan Gómez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo F Oliveira, and
Onur Mutlu. Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-
Memory Architecture. arXiv preprint arXiv:2105.03814, 2021.

[288] Peng Gu, Xinfeng Xie, Yufei Ding, Guoyang Chen, Weifeng Zhang, Dimin Niu, and Yuan Xie. iPIM:
Programmable in-memory image processing accelerator using near-bank architecture. In 2020
ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA), pages 804–
817. IEEE, 2020.

[289] Lingxi Wu, Rasool Sharifi, Marzieh Lenjani, Kevin Skadron, and Ashish Venkat. Sieve: Scalable
In-situ DRAM-based Accelerator Designs for Massively Parallel k-mer Matching. 2021.

[290] Decadal Plan for Semiconductors. https://www.src.org/about/decadal-plan/.

[291] A New Golden Age for Computer Architecture: Domain-Specific Hardware/Software Co-Design,
Enhanced Security, Open Instruction Sets, and Agile Chip Development. https://www.acm.org/

hennessy-patterson-turing-lecture.

[292] Lotfi Belkhir and Ahmed Elmeligi. Assessing ICT global emissions footprint: Trends to 2040 &
recommendations. Journal of cleaner production, 177:448–463, 2018.

[293] Joe Jeddeloh and Brent Keeth. Hybrid memory cube new DRAM architecture increases density and
performance. In 2012 symposium on VLSI technology (VLSIT), pages 87–88. IEEE, 2012.

http://www.analog.com/en/education/education-library/articles/fixed-point-vs-floating-point-dsp.html
http://www.analog.com/en/education/education-library/articles/fixed-point-vs-floating-point-dsp.html
https://malithjayaweera.com/2020/07/blocked-matrix-multiplication/
https://malithjayaweera.com/2020/07/blocked-matrix-multiplication/
https://www.src.org/about/decadal-plan/
https://www.acm.org/hennessy-patterson-turing-lecture
https://www.acm.org/hennessy-patterson-turing-lecture

Bibliography 123

[294] Tayo Oguntebi and Kunle Olukotun. Graphops: A dataflow library for graph analytics acceleration. In
Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
pages 111–117, 2016.

[295] Shaahin Angizi and Deliang Fan. GraphiDe: A graph processing accelerator leveraging in-DRAM-
computing. In Proceedings of the 2019 on Great Lakes Symposium on VLSI, pages 45–50, 2019.

[296] Kyomin Sohn, Won-Joo Yun, Reum Oh, Chi-Sung Oh, Seong-Young Seo, Min-Sang Park, Dong-Hak
Shin, Won-Chang Jung, Sang-Hoon Shin, Je-Min Ryu, et al. A 1.2 V 20 nm 307 GB/s HBM DRAM
with at-speed wafer-level IO test scheme and adaptive refresh considering temperature distribution.
IEEE Journal of Solid-State Circuits, 52(1):250–260, 2016.

[297] Chad D Kersey, Hyesoon Kim, and Sudhakar Yalamanchili. Lightweight SIMT core designs for
intelligent 3D stacked DRAM. In Proceedings of the International Symposium on Memory Systems,
pages 49–59, 2017.

[298] waferScale. https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/.

[299] Jun Liu, Jagadish Kotra, Wei Ding, and Mahmut Kandemir. Network footprint reduction through
data access and computation placement in noc-based manycores. In Proceedings of the 52nd Annual
Design Automation Conference, pages 1–6, 2015.

[300] Gwangsun Kim, Niladrish Chatterjee, Mike O’Connor, and Kevin Hsieh. Toward standardized near-
data processing with unrestricted data placement for GPUs. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, pages 1–12, 2017.

[301] Application task and data placement in embedded many-core numa architectures.

[302] Jagadish B Kotra, Seongbeom Kim, Kamesh Madduri, and Mahmut T Kandemir. Congestion-aware
memory management on numa platforms: A vmware esxi case study. In 2017 IEEE International
Symposium on Workload Characterization (IISWC), pages 146–155. IEEE, 2017.

[303] Yuho Jin. Unifying router power gating with data placement for energy-efficient noc. In 2015 27th
International Symposium on Computer Architecture and High Performance Computing (SBAC-
PAD), pages 74–81. IEEE, 2015.

[304] Deferred updates and data placement in distributed databases.

[305] Sharad Agarwal, John Dunagan, Navendu Jain, Stefan Saroiu, Alec Wolman, and Habinder Bhogan.
Volley: Automated data placement for geo-distributed cloud services. 2010.

[306] Ann Chervenak, Ewa Deelman, Miron Livny, Mei-Hui Su, Rob Schuler, Shishir Bharathi, Gaurang
Mehta, and Karan Vahi. Data placement for scientific applications in distributed environments. In
2007 8th IEEE/ACM International Conference on Grid Computing, pages 267–274. IEEE, 2007.

[307] André Brinkmann, Kay Salzwedel, and Christian Scheideler. Efficient, distributed data placement
strategies for storage area networks. In Proceedings of the twelfth annual ACM symposium on Parallel
algorithms and architectures, pages 119–128, 2000.

[308] DLRM: An advanced, open source deep learning recommendation model. https://ai.facebook.com/
blog/dlrm-an-advanced-open-source-deep-learning-recommendation-model/.

[309] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[310] Aydın Buluç and John R Gilbert. The combinatorial blas: Design, implementation, and applications.
The International Journal of High Performance Computing Applications, 25(4):496–509, 2011.

[311] William J Dally, Yatish Turakhia, and Song Han. Domain-specific hardware accelerators. Communica-
tions of the ACM, 63(7):48–57, 2020.

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/
https://ai.facebook.com/blog/dlrm-an-advanced-open-source-deep-learning-recommendation-model/
https://ai.facebook.com/blog/dlrm-an-advanced-open-source-deep-learning-recommendation-model/

	Contents
	List of Tables
	List of Figures

	Introduction
	Contributions
	An Overflow-free Quantized Memory Hierarchy in General-Purpose Processors
	Fulcrum: a Simplified Control and Access Mechanism toward Flexible and Practical In-situ Accelerators
	Gearbox: A Case for Supporting Accumulation Dispatching and Hybrid Partitioning in PIM-based Accelerators
	Pulley: An Algorithm/Hardware Co-optimization for Multi-device In-memory Sorting

	Overview of Dissertation

	Background and Related works
	Background
	Related Work
	Bit-width Reduction Techniques.
	In-situ Computing with Bitwise Operations
	In-situ NVM-based Computing
	Flexible Cores in DRAM Layers

	An Overflow-free Quantized Memory Hierarchy in General-Purpose Processors
	Introduction
	Motivation
	Quantization in Hardware versus Software
	Quantization versus Omitting the LSBs.
	Quantization versus Cache Compression.

	Key Observations and Key Ideas
	Mechanism
	How to Determine the Quantization Parameters (Metadata)?
	How to Transfer Metadata to Hardware?
	 How to Retrieve Metadata?
	How to Locate Quantized Values?
	How to Quantize and De-quantized Values?
	How to Handle Corner Cases?
	How to Avoid Overflows?

	More Walk-Through Examples
	Evaluation
	Methodology
	Performance Improvement and Error Analysis
	Energy Consumption
	Source of Improvement
	Comparison with Prior Works
	Sensitivity Analysis
	Quantization vs. Compression
	Software-based Quantization vs Hardware-based Quantization
	Quantization vs. Prefetching
	Hardware Overhead

	Related Work

	Fulcrum: a Simplified Control and Access Mechanism toward Flexible and Practical In-situ Accelerators
	Introduction
	Problem statement
	Lack of flexibility
	Lack of support for complex operations
	Inefficient peripheral logic
	Interleaving

	Key ideas
	A simplified control and access mechanism
	Narrow and simple ALU
	Efficient peripheral logic
	Reuniting interleaved bits

	Implementation detail
	Hardware
	Software

	Evaluation
	Methodology
	Performance improvement over GPU
	Comparison against an ideal model and bitwise row-wide ALUs
	The effect of application characteristics
	The impact of each problem
	Area evaluation
	Energy consumption
	Power evaluation
	Performance under power budget

	Related Work
	Conclusion and Future works

	Gearbox: A Case for Supporting Accumulation Dispatching and Hybrid Partitioning in PIM-based Accelerators
	Introduction
	Background
	HMC-like configuration vs HBM-like configuration
	Sparse operations
	Sparse matrix representations

	Motivation and key ideas
	Support for column-oriented processing using accumulation dispatching
	Reducing remote accumulations and balancing the load by supporting Hybrid partitioning

	Proposed Architecture
	Walkers and indirect accesses
	A walk-through example
	Dispatcher and the bank-level switch

	SpMSpV walk-through
	Software stack
	Evaluation
	Methodology
	Speedup
	The effect of each optimization
	Execution time and energy breakdown
	Comparison against non-in-memory-layer approaches
	The effect of load balancing
	Power and temperature constraints
	Area evaluation
	Evaluation for regular kernels
	Evaluation per dataset

	Related Work
	Conclusions

	Pulley: An Algorithm/Hardware Co-optimization for Multi-device In-memory Sorting
	Introduction
	Background and Motivation
	Parallel Radix Sorting

	Our proposed method
	Baseline PIM architecture
	Fulcrum's shortcomings for Sorting
	Local sorting
	Histogram generation
	Prefix-sum
	Merging and key placement

	Evaluation
	Methodology
	Throughput
	Power and temperature constraints

	Conclusions and future Work

	Conclusions and Future Works
	Bibliography

