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Abstract

We introduce and explore multiple categorical frameworks which allow for a general inves-

tigation of the homotopy theory of equivariant operads. We extend the Cisinski-Moerdijk-

Weiss theory of dendroidal sets by suitably generalizing the category of trees in order to

record equivariant composition information. This formalism of G-trees is then applied to

a rebuilt free operad monad in order to endow the category of G-operads in V with an F-

semi-model structure for any weak indexing system F and fairly general model categories

V; as a consequence, we prove that all indexing systems can be realized as N∞-operads,

confirming a conjecture of Blumberg-Hill.

Also using G-trees, we define appropriate notions of inner G-horns and G-∞-operads.

Inspired by the internal algebra of G-trees and G-∞-operads, we extend G-operads to

the new algebraic notion of genuine equivariant operads, which allow us to record the

equivariance of our operadic compositions, while removing rigidity conditions on fixed points

without relaxing the strictness of the composition laws. Lastly show that there is a natural

homotopy strictification functor, sending G-∞-operads to an associated genuine G-operad.
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Introduction

Operads and related algebraic objects can encode a wide variety of structures - including

(commutative) monoids, Lie algebras, and modules over an algebra - by providing lists

of “n-ary operations” for each n. . As such, they have proved useful in characterizing

properties, analyzing theories, and ultimately answering questions in homotopy theory (e.g.

[May72, HHR16, EKMM97]).

Classically, in topological spaces, the E∞-operads of May [May72] provide a description

of “topological homotopy commutative monoids”, where algebras have (homotopy unique)

maps Rn → R which are associative and unital up to all higher homotopies; moreover,

(group-like) E∞-spaces have the geometric and stable structure of an infinite loop space.

As such, these are important objects in (stable) homotopy theory. They are characterized

by the property that each space O(n) is Σn-free and contractible.

Equivariantly, the story becomes more nuanced. Given a finite group G, commutative

G-ring spectra are additionally endowed with “norm maps” NAR → R for any H-set A,

where H is a subgroup of G and NAR is a “multiplicative induction” of R, with the diagonal

group action being twisted by the action on A. These maps were of paramount importance

to the solution in [HHR16] to the Kervaire Invariant One problem, and continue to be

important in many areas of equivariant homotopy theory. With this in mind, any model of

“equivariant E∞-operads” chosen should encode all of these norm maps.

A natural choice would be to make the following definition:

A G-operad O is a G-E∞-operad if each space O(n) is Σn-free and G-contractible. (�)
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However, the näıve first example, created by endowing an E∞-operad with the trivial G-

action, does not encode norm maps for any H-sets except the trivial ones. Analogously,

in G-spaces, it only encodes “infinite loop spaces with G-action”, as opposed to the signif-

icantly stronger notion of “equivariant infinite loop spaces” (which have deloopings for all

representation spheres).

The correct characterization was identified by Constenoble-Waner [CW91]. The main

issue is that (�) does not determine a unique G×Σn-homotopy type. In particular, it only

says that O(n)Γ = ∅ if Γ ∩ Σn 6= {e}, and O(n)Γ ' ∗ for Γ ≤ G. This does not specify

what occurs when Γ is a non-trivial graph subgroup, the graph of a partial homomorphism

G H Σn. Dual to the naive choice above, [CW91] define a genuine G-E∞-operad

to have O(n) contractible for all of these graph subgroups Γ. Indeed, algebras over these

have the full rich structure we desire: G-E∞-spectra have all norm maps, and (group-like)

G-E∞-spaces model equivariant infinite loop spaces.

Moreover, Blumberg-Hill show in [BH15] that there exists an entire lattice of oper-

ads scaling between the naive and genuine version; they call these N∞-operads (“N” for

“norm”). In terms of graph subgroups, they show that each N∞-operad O has O(n)Γ ' ∗

for a specified families Fn of graph subgroups of G×Σn. Moreover, the associated collection

of families F = {Fn} satisfies a variety of properties, which they use to define an indexing

system. In fact, they show that the homotopy category Ho(N∞-Op) maps fully-faithfully

into the poset I of indexing systems, and conjecture that this map is additionally essentially

surjective.

The upshot of this discussion is that the homotopy theory of (topological) G-operads

must distinguish each of these N∞-operads from each other, and hence must probe all of

the fixed points for all graph subgroups of each G× Σn.

Now, there is already machinery in place (e.g. [Ste16]) which lifts a model structure

on a category C to one on CG. However, this will be insufficient, as it will only see the

fixed points O(n)H , of the trivial graph subgroups. Similarly, the axiomatic approach of

Berger-Moerdijk [BM03, BM07, BM13] is also insufficient, as they build a model structure
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on operads by lifting a projective model structure on symmetric sequences, which has the

affect of ignoring any of the interesting fixed-point data.

In this thesis, we will provide the foundations to solve this problem and to better analyze

the homotopy theory of equivariant operads.

First, we expand and generalize the presentation of (G-)operads themselves, by rebuild-

ing the free operad monad as a particular left Kan extension:

Theorem (3.2.7; see also 4.2.40). The free operad monad F on a symmetric sequence X is

the left Kan extension of the nerve-evaluation map for X over the valence functor of trees.

This allows for a new description of a filtration of cellular extensions P → P[u] of V-

operads, for V a fairly general category (Theorem 3.5.10). These cellular extensions are

particular pushouts which have been extensively studied, as the Transfer Principle of Kan

or Schwede-Shipley says that these are of paramount importance to lifting model structures

across free-forgetful adjunctions F : AlgF (C) � C : F . These pushouts, and filtrations

of them, have been studied in various forms (e.g. [Hir03, SS00, Spi01, Whi14a, Whi14b,

WY15, Har09, Har10, Per16, HP15], to name just a few).

The Transfer Principle says, in particular, that if each step Pi → Pi+1 in the filtration is

a (trivial) cofibration for any F -algebra P, then the model structure on C lifts to the category

AlgF (C) of F -algebras. If instead, this property only holds for cofibrant F -algebras P, then

the model structure on C lifts to a semi -model structure, a weaker notion.

Using our filtration, we show the following.

Theorem (4.3.9). Let V satisfy Assumption 1, and let F be a weak indexing system. Then

the category VOpG of single-coloured G-operads in V can be endowed with the F-semi-model

structure, where f : O → P is a weak equivalence or fibration if, for any n, f(n)Γ is so for

any and all Γ ∈ Fn.

As an immediate corollary, we have

Corollary (4.3.11). For any weak indexing system F , there exists an operad NF such that
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NF (n)Γ ' ∗ if Γ ∈ F(n), and is empty otherwise. In particular, Ho(N∞-Op) → I is an

equivalence of categories.

The notion of “weak indexing system” is a relaxing of the definition in Blumberg-Hill,

which naturally falls out of a second lens through which this thesis studies equivariant oper-

ads. Generalizing the story of Moerdijk-Weiss and Cisinski-Moerdijk, we define and explore

the categories of G-trees and equivariant dendroidal sets. CMW used the dendroidal cate-

gory of trees Ω to probe the combinatorics of operadic compositions, using grafting of trees

and inner face maps (which is itself a generalization of the story of using ∆ to probe the

combinatorics of categorical compositions). In particular, they found a natural combina-

torial model of ∞-operads as objects in the presheaf category dSet = SetΩop satisfying a

lifting condition (for which operads were precisely those which satisfied the lifting condition

strictly).

Our category ΩG of G-trees (see 5.1.17) subtly extends and amalgamates Ω × OG,

where OG is the category of G-orbits and G-maps, and is used to probe and record the

equivariance of compositions of operads via grafting and inner face maps. Weak indexing

systems will correspond precisely to those subcategories which are closed under inner faces

and “pullbacks” (5.1.55).

We use ΩG to define G-∞-operads in dSetG = dSet(G×Ω)op via a lifting condition (for

which G-operads are precisely those which satisfy the lifting condition strictly ; see 5.2.37):

Definition (5.2.18). X ∈ dSetG is called a G-∞-operad if it has the right lifting property

against all inner horn inclusions ΛG.e[T ] ↪→ Ω[T ] for all G-trees T and edges e ∈ T .

Further, Pereira [Per16] has shown that, as in the non-equivariant case, the features

which define G-∞-operads yield a model structure on dSetG with fibrant objects precisely

the G-∞-operads.

Furthermore, in dSet, we can naturally associate to every ∞-operad a “strict” operad

in Op called its homotopy operad. While the parallel construction on G-∞-operads exists in

dSetG, the most natural target isn’t OpG, as forcing the functor to land here requires us to
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forget vast amounts of equivariant structure. Instead, G-∞-operads inspired the definition

of a more general algebraic structure than G-operads, which we call genuine equivariant

operads (6), denoted OpG. These should be thought of as “coefficient operads”, in the sense

that we have an adjunction VOpG � VOpG parallel to TopG � TopO
op
G ; in particular, we

fully expect the above adjunction to be a Quillen equivalence whenever the model structures

exist.

The definition of genuine operads is precisely an extension of the free operad monad

built earlier in the thesis, by replacing the use of Ω with ΩG:

Definition (6.3.7). A genuine G-operad is an algebra over the monad FG which sends X

to the left Kan extension below:

TopG,0 V

Σop
G

val

NX

LanvalNX'FX

Moreover, we indeed have a natural strictification functor, sending a G-∞-operad to its

“homotopy genuine equivariant operad” of sets (Proposition 6.3.41).



xii

Organization

This thesis is organized as follows.

Chapter 1: Preliminaries will provide a basic introduction to the notion and construc-

tions we will be using throughout the thesis.

Chapter 2: Operads and Trees will recall the various definitions of operads, the two

definitions of trees, and the category of dendroidal sets.

Chapter 3: Categorical Constructions on Single-Coloured Operads will repackage

and realize the free operad monad,various coproducts of operads, and cellular exten-

sions as left Kan extensions over categories of structured trees. We will also construct

the filtration of cellular extensions here.

Chapter 4: Equivariant Homotopy Theory and Equivariant Operads will rigorously

discuss and analyze much which was found here in the introduction, and will introduce

a free monad for operads with a G-set of colours. At the end, we will announce our

semi-model structure and N∞-realization results.

Chapter 5: Equivariant Dendroidal Sets will introduce and investigate the concepts

of G-trees and equivariant dendroidal sets, define G-∞-operads, and prove the tech-

nical cofibrancy results needed for the main theorems.

Chapter 6: Genuine Equivariant Operads will define and explore various models for

genuine equivariant operads, as well as compare them with each other and with normal

G-operads.

Appendix A: Kan Extensions collects various technical results about the naturality of

the left Kan extension with respect to other categorical constructions.

Appendix B: Counterexamples to the Candidates for NF shows that an initial guess

by Blumberg-Hill and May to realize an N∞-operad for any indexing system F fails

both to have the correct homotopy type and at being an operad for general groups G.
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Chapter 1

Preliminaries

The main object of study in this thesis will be operads. An operad is a gadget used to encode

“generalized multiplications”, and has been incredibly fruitful in describing structure and

enlightening theories in algebraic topology, algebraic geometry, homological algebra, and

representation theory, among other fields.

We begin by setting the language, notation, and certain constructions in category theory,

which will be useful in the rest of the thesis.

1.1 Category Theory

For the duration of this thesis, we will be working with a closed symmetric monoidal category

V = (V,⊗, I). In this section, we will briefly outline some of the major features and

structures of such a category. For a more complete analysis, see [Mac71] or [Hov99].

We begin by establishing the notations of category theory we will be using. Throughout,

we will ignore any “smallness” questions, and assume we are working in a sufficiently large

set universe. Given a category V, we denote its set of objects by Ob(V), but in general we

will write V ∈ V to mean V ∈ Ob(V). The set of arrows V → W in V will be denoted

V(V,W ). We will use V 'W to denote that V and W are isomorphic.

We say our category V is equipped with a monoidal structure if we have a “monoidal

product” functor ⊗ : V × V → V and a specified element I ∈ V, such that ⊗ is associative

and unital. We additionally call this structure
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• closed if each functor V ⊗ (−) : V → V has a right adjoint; we denote this adjoint

Hom(V,W ) the “internal Hom”;

• symmetric if we have a natural twisting isomorphism V ⊗ W ' W ⊗ V satisfying

coherency conditions;

• (co)Cartesian if the monoidal product is just the categorical (co)product of V.

Notation 1.1.1. In general, we will write adjoints R : C � D : L with the right adjoint on

the left; if this is impossible, the arrow representing the right adjoint will always be below

the arrow of the left adjoint.

Example 1.1.2. If V has all (co)limits, then V can be equipped with the (co)Cartesian

monoidal product.

Remark 1.1.3. If (V,⊗) is closed monoidal, then, in particular, V ⊗ (−) commutes with

all colimits.

Given a second category D, we will denote the category of functors D → V and natural

transformations between them by VD.

1.1.1 Internal Categorical Constructions

Let F denote the category of finite sets, and F0 the wide subcategory of sets and isomor-

phisms. We define an “action” of F on V for any category with coproducts.

Definition 1.1.4. Given a set A ∈ F, let

A · (−) : V → V

be the functor which sends V to A · V = qAV , called the copower of A with V .

Copowers can be viewed as a certain class of colimits. We describe two other important

classes.
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Definition 1.1.5. Given a functor F : Vop×V → V, define the coend to be the coequalizer

of the maps ∐
V ′→V ′′ F (V ′′, V ′)

∐
V F (V, V )

and is denoted with an integral as

∫ V ∈V
F (V, V ).

A particular type of coend will be very important to our discussion below, namely left

Kan extensions.

Definition 1.1.6. Given a span of category D i← C X−→ V, we define the left Kan ex-

tension of X over i, denoted LaniX, to be the universal functor D → V with a natural

transformation α : X → LaniX ◦ i.

C V

D

i

X

LaniX

α

If V has enough colimits, this can be described “point-wise”:

‘ LaniX(d) '
∫ c∈C

X(c) · D(c, d) =: colim
C↓d
c→d

X(c).

Equivalently, Lan is a particular left adjoint:

Lemma 1.1.7. For any Z : D → V, we have VD(LaniX,Z) = VC(X,Zi).

We will discuss some of the naturality of this construction in Appendix A. However, an

immediate application is the following result, known either as “Yoneda reduction” or the

“co-Yoneda Lemma”, among others.

Lemma 1.1.8. [Yoneda Reduction] Given a functor F : C → D and any c ∈ C, we have

F (c) '
∫ c′∈C

F (c′)× C(c′, c).
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1.1.2 External Categorical Constructions

One of the most powerful categorical tools for synthesizing information and building new

categories is the Grothendieck construction.

Definition 1.1.9. Given a functor F : Cop → Cat, define the Grothendieck construction∫
C F to be the category with objects all pairs (c,X) with c ∈ C and X ∈ F (c), and arrows

(c,X)→ (c′, X ′) pairs of maps (f, ϕ) with f : c→ c′ an arrow in C and ϕ : X → F (f)(X ′)

an arrow in F (c).

We have a canonical functor
∫
C F → C sending (c,X) to c, which is called a Grothendieck

fibration.

Example 1.1.10. We can think of the Grothendieck construction as a generalization of

the wreath product of groups (among other things). In particular, given a group G, viewed

categorically as each having a single object with a group of self-morphisms, then the functor

Σn → Cat sending the single object to G×n will have Grothendieck construction
∫

Σn
G×n '

Σn oG.

Lemma 1.1.11.
∫
C(−) is functorial in the category of functors Fun(Cop,Cat).

Proof. This follows immediately from unpacking the definitions. Given Φ : F ⇒ G, define∫
Φ on objects by (c,X) 7→ (c,Φ(c)(X)) and on arrows by (f, ϕ) 7→ (f,Φ(c)(f)); the map

on arrows is well-defined by the coherence requirements on Φ.

Additionally, we will reference “nerve-realization” adjunctions, generalizing the adjunc-

tion N : Cat � sSet : τ .

Lemma 1.1.12. Given any small category D and cocomplete V, and a functor D[−] : D →

V, there exists a unique colimit-preserving functor τ : SetD
op → V such that τ(D(−, d)) =

D[d]. Moreover, this forms an adjunction

D V

SetD
op

D[−]

Y
N

τ
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1.2 Model Categories

We very briefly discuss the main features of a Quillen model category; see [Qui67] or [Hov99]

for a more thorough analysis.

In general, a model category structure on C allows a mathematician to “do homotopy

theory” on C. More specifically, it allows for a well-behaved localization of C at a specific

class of “weak equivalences”. Importantly, it is defined in terms of “lifting properties”:

Definition 1.2.1. The pair (f, g) satisfy the lifting condition if for all commuting squares

· ·

· ·
f g∃

there exists a dotted arrow as denoted making the two triangles commute.

We say f has the left lifting property against g, and dually that g has the right lifting

property against f .

We say this is strict if the lift is always unique, and say f has the strict left lifting

property against g, and dually.

Definition 1.2.2. A model structure on a category C consists of the data of

• three classes of morphisms called cofibrations, fibrations, and weak equivalences, and

• two functorial factorization systems

such that

M1 C is complete and cocomplete;

M2 weak equivalences are closed out of “2-out-of-3”;

M3 all three subcategories are closed under retracts;

M4 trivial cofibrations, defined to be maps which are both cofibrations and weak equiva-

lences, have the left lifting property against fibrations, and dually, trivial fibrations

have the right lifting property against cofibrations;



6

M5 the factorization systems factor maps into either a cofibration followed by a trivial

fibration, or a trivial cofibration followed by a fibration.

We say an object x ∈ C is cofibrant (resp. fibrant) if the map from the initial object to x

(resp. x to the terminal object) is a cofibration (resp. fibration).

Most of the well-behaved examples which come up in homotopy theory are build cellu-

larly out of certain generating sets of morphisms.

Definition 1.2.3. Given a set of maps I, define a relative I-cell complex to be any trans-

finite composition of pushouts of elements of I; an object x ∈ C is an I-cell complex if the

map ∅ → x from the initial object is a relative I-cell complex. We denote the category of

relative I-cell complexes by I-cell.

Definition 1.2.4. A model category C is cofibrantly generated if there exist sets of maps I

and J such that a map f is a (trivial) fibration if and only if f has the right lifting property

against all maps in I (resp. J).

Lemma 1.2.5. If C is cofibrantly generated, then all (trivial) cofibrations are retracts of

maps in I-cell (resp. J-cell).

1.2.1 Building New Model Structures out of Old

It is often useful, possible, and necessary to place model structures on new categories D

are related to another model category C by means of an adjunction U : D ↔: C : F . We

can in fact carry the model structure across after checking a significantly reduced number

of conditions.

Theorem 1.2.6 ([Hir03, 11.3.2], Transfer Principle). Given a cofibrantly-generated model

category C with generating (trivial) cofibrations I (resp. J), and an adjunction U : D � C :

F , let FI = {F (i) | i ∈ I}, and FJ = {F (j) | j ∈ J}. Then, if

(1) the domains of FI and FJ are suitably “small”, and



7

(2) U takes relative FJ-cell complexes to weak equivalences,

there D has a cofibrantly generated model structure with generating (trivial) cofibrations FI

(resp. FJ), and weak equivalences those which get sent to one under U .

Remark 1.2.7. Some remarks:

(1) If the adjunction was monadic — that is, if D = AlgF (C) for some monad F — then

the first condition can be replaced with just checking that D has coequalizers.

(2) This second condition above is satisfied if pushouts over maps in FJ are underlying

trivial cofibrations.

In particular, this can be used to put model structures on all functor categories VD if V

is cofibrantly generated:

Theorem 1.2.8 (e.g. [Hir03, 11.6.1]). If C is a cofibrantly-generated model category, and D

is any small category, then the diagram category CD has a cofibrantly-generated projective

model structure, where weak equivalences and fibrations are detected levelwise.

Given generating (trivial) cofibrations I (resp. J) of C, the generating cofibrations in

CD are

ID = {D(d,−) · i | i ∈ I}

and similarly for generating trivial cofibrations JD.

1.2.2 Semi-Model Categories

Sometimes, it will not be possible to obtain the full structure of a model category across a

adjoint using the Transfer Principle; however, in more general scenarios, there is a weaker

notion of a semi -model structure which will exist. Heuristically, in a semi-model structure:

(1) we can only factor maps into a trivial cofibration followed by a fibration if the domain

is cofibrant, and
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(2) only trivial cofibrations with cofibrant domains have the left lifting property against

fibrations.

Specifically:

Definition 1.2.9. Suppose C is cofibrantly generated model category, D is complete and

cocomplete, and we have an adjunction U : D � C : F such that U preserves small colimits.

We call D a semi-model category (or J-semi-model category over C) if D has three classes

of morphisms, again called cofibrations, fibrations and weak equivalences, such that:

(1) U preserves fibrations and trivial fibrations;

(2) D satisfies M2 (2-out-of-3) and M3 (retracts);

(3) cofibrations have the left lifting property against trivial fibrations, and trivial cofibra-

tions with cofibrant domain have the let lifting property against fibrations;

(4) every map can be functorially factored into a cofibration followed by a trivial fibra-

tion, and every map with cofibrant domain can be functorially factored into a trivial

cofibration followed by a fibration;

(5) the initial object in D is cofibrant; and

(6) fibrations and trivial fibrations are closed under pullback.

D is called cofibrantly generated if there exist sets of maps I and J in D such that a map is

a (trivial) fibrations if and only if it has the right lifting property against I (resp. J), and

the domains of I and J satisfy a “smallness” condition.

In particular, we note that semi-model structures have cofibrant replacements by Prop-

erty (4).

Theorem 1.2.10 ([WY15, Theorem 2.2.2]). Suppose C is a cofibrantly generated model cat-

egory, with generating cofibrations I and trivial cofibrations J , and that we have a monadic

adjunction U : AlgF (C)↔ C : F for some monad F . Further assume that, for any F (I)-cell
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complex P, with cofibration u : X → Y and general map h : X → P in C, the pushout

P → P[u] given by

F (X) P

F (Y ) P[u]

F (u)

h

is an underlying cofibration in C, which is trivial whenever u is. Then AlgF (C) has an

induced cofibrantly-generated semi-model structure, with generating cofibrations F (I) and

trivial cofibrations F (J), such that fgt sends cofibrations with cofibrant domains to cofibra-

tions.

Here, we have restricted the condition from the Transfer Principle 1.2.6 to just consid-

ering the cases of pushouts of maps in FJ where the domain of the new map is cofibrant

in C (specifically, in FI-cell). This weaker condition is matched by the weaker structure of

a semi-model category.

See [Hov99, Spi01, Fre09, WY15] for more details.
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Chapter 2

Operads and Trees

In this chapter, we will recall the definitions of both operads and coloured operads, the

latter also known as symmetric multicategories. This second perspectives frames operads

as a generalization of categories, where arrows are allowed to have multiple input sources;

the original notion of operad will be a specific class of these operads.

2.1 Trees as Graphs

When working with operads, it will often be useful to visualize composition schema. It has

been known since Boardman-Vogt [BV73] that, in this way, trees control the combinatorics

of operads. We begin this chapter by introducing these objects geometrically.

Definition 2.1.1. A graph consists of a non-empty set E of edges, and a set V of tuples

of edges, such that every edge belongs to at most two different vertices. Edges that belong

to two distinct vertices are call inner edges, while others are outer. A graph is connected

if for every pair of edges e and e′, there exists a sequence of edges {e = e0, e1, . . . en = e′}

such that there exists vertices vi with vi ⊇ {ei−1, ei}.

Definition 2.1.2. A tree is a finite connected graph with no loops and a chosen outer

vertex call the root. The remaining outer edges are called leaves, the set of which is denoted

L(T ).

We draw trees as graphs in the plane, directed downward, with the root at the bottom,

and the leaves on top. Given a vertex v, denote by in(v) the (possibly empty) set of input
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edges of v, and by tv the output edge of v (so in the graph-theoretic notation, we have

v = in(v)q {tv}). We denote the root edge and the root vertex by r.

Definition 2.1.3. A leaf vertex is a vertex with a whose input edges are all leaves. A

stump is a vertex that only contains one edge; by definition of a tree, this means it only has

an output edge, and no input edges.

Definition 2.1.4. The degree of a tree T , denoted |T |, is the number of vertices.

Example 2.1.5. The tree T below has four leaves (equivalently, |L(T )| = 4), two stumps,

and six inner edges.

98

10
7

5

6

11
4

31

3

12

(2.1)

We highlight particular examples of trees.

Definition 2.1.6. The tree with a single edge and no vertex will be denoted η, and called

a “stick”. This is the only tree whose root is also a leaf.

Definition 2.1.7. The tree with a single vertex and n leaves will be denoted Cn and called

the n-corolla.

η Cn

n1

Given two trees S and T and a leaf l of S, define the grafting of T on S along l, denoted

S ◦l T , is the graph with edges E(T )q E(S)/(rT = l) and vertices V (T )q V (S).

This process can be iterated associatively. In particular, if we name the leaves of some

n-corolla L(Cn) = {ei}, and we have n different trees Ti, we denote the grafting of the Ti
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along the i-th leaf of the n-corolla by Cn(T1, . . . , Tn). Further, we note that the every tree

can be written in this way:

Lemma 2.1.8. Let T be a tree. If we name the non-root edges connected to the root

edge {e1, . . . , en}, and denote by Ti the tree above (and including) the edge ei, then T =

Cn(T1, . . . , Tn).

Planar Trees

Consider the tree from Example 2.1. We note that our depiction of it necessarily includes

additional structure than just the edges and vertices: it includes a choice of planarization:

Definition 2.1.9. A planarization of a tree T is a choice of linear orderings of in(v) for all

vertices v. A planar tree is a tree T equipped with a planarization.

We note that a planarization of T actually encodes a total order on all of E(T ), not just

each in(v), by labeling up from the top-left:

Example 2.1.10. The labeling of the edges from Example 2.1 above denote their total

ordering.

Further, the grafting of two (or more) planar trees S ◦ T is endowing with a unique

induced planarization, such that the planar subtree S ⊆ S ◦T is equal to the original planar

tree S, and similarly for T .

2.2 Operads

Operads encode “generalized multiplications”, by providing the data of “n-ary operations”

for each n, as well as rules to compose these operations together.

Given a cocomplete closed symmetric monoidal category V, we will define (single-

coloured) V-operads in three ways:

(1) with an explicit description;
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(2) as monoids in a (asymmetric) monoidal category; and

(3) as algebras over a monad (Section 3.2).

Definition 2.2.1. Let Σ denote the symmetric category, the disjoint union of all the finite

symmetric groups. Explicitly, objects are natural numbers {0, 1, 2, . . .}, with

Σ(n,m) =


Σn n = m

∅ n 6= m

The category of symmetric sequences is the functor category VΣop = Fun(Σop,V).

Remark 2.2.2. The “op” is not important now, as Σ is a groupoid. However, it will

eventually makes constructions more consistent.

Definition 2.2.3 ([May72]). An operad in V is a collection P ∈ VΣop equipped with a

unit map η : I → P(1) and composition structure maps γ : P(n)⊗ P(k1)⊗ . . .⊗ P(kn)→

P(k1 + . . .+kn) which are unital , natural in n and {ki}, and associative. A map of operads

is a map of symmetric sequences which preserves the composition structure. We denote the

category of V-operads by VOp{∗}.

Remark 2.2.4. We can equivalently define an operad with a unit and “partial composition”

structure maps γi : P(n)⊗ P(k)→ P(n+ k − 1).

The results of these compositions can be represented by planar trees of height ≤ 2:

Example 2.2.5. The tree on the left below represents the image of γ(x;x1, x2, x3) with

x ∈ P(3) and x1 ∈ P(2), x2 ∈ P(1), and x3 ∈ P(0). Similarly, the tree on the right

represents the image of γ2(x;x2) with x ∈ P(3) and x2 ∈ P(2)::

x

x3x2x1

x

x2

(2.2)
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Kelly [Kel05] and others (e.g. [Chi12]) state this in a more categorical way. The category

of collections is equipped with two monoidal products, one of which is symmetric:

Definition 2.2.6. Let X and Y be symmetric sequences.

(1) The tensor product of the collections X and Y is the coend

X ⊗ Y (−) :=

∫ n,m∈Σ

X(n)⊗ Y (m)⊗ Iso(n+m,−).

Σ(0,−) is the unit of this operation, and it can be checked that this is symmetric and

associative.

(2) The composition product of the collections X and Y is the coend

X ◦ Y =

∫ n∈Σ

X(n)⊗ Y ⊗n.

Here, Σ(1,−) is the unit, but note that clearly this is not symmetric (though it remains

associative).

Lemma 2.2.7 ([Kel05, Section 4]). An operad is a monoid in (VΣop , ◦).

Definition 2.2.8. An algebra over an operad O is some object X ∈ V with structure maps

O(n)⊗Σn X
⊗n → X

which are associative and unital. Equivalently, X has a map O ◦X → X.

2.2.1 Examples

We provide some standard examples of operads:

Example 2.2.9. Given any X ∈ V, the canonical operad is the endomorphism operad EndX

for X, with EndX(n) = V(X⊗n, X).
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Example 2.2.10. The commutative operad Comm(n) = ∗ for any n, where ∗ is the ter-

minal object of V. Dually, the associative operad Assoc(n) = Σn for any n. Algebras are

commutative and associative monoids in V, respectively.

Example 2.2.11. Specifically for V = Top, we say an operad O(n) is A∞ if each space

O(n) is contractible. Algebras over an A∞-operad are “associative algebras up to coherent

homotopy”, and grouplike A∞-algebras are equivalent to loop spaces X = Ω1Y .

Example 2.2.12. Again for V = Top, we say an operad O is E∞ if O(n) ' EΣn; that is,

if each space O(n) is Σn-free and contractible. Algebras are “commutative up to coherent

homotopy”. In [May72], May shows that grouplike E∞-space are infinite loop spaces (and

hence connective spectra); further in [EKMM97] that E∞-spectra and commutative ring

spectra (in any point-set model for spectra) are equivalent.

We should think of E∞ operads as universal “homotopical deformations” of the commu-

tative operads, in that E∞-algebras X have maps from Xn → X, which are not unique as

with commutative monoids, but instead “unique up to all higher homotopies”. This notion

is made slightly more precise in Lemma 2.2.27 below.

Indeed, E∞-algebras appear in many places in homotopy theory; see [May77] for more

details.

Notation 2.2.13. As above, we refer to objects in TopOp as “topological operads”. In

a possible of notation, we refer to objects in sSetOp as simply “simplicial operads”, and

denote the category by sOp; we observe that this category is a full subcategory of the

category Op∆op
of “simplicial objects in operads”.

2.2.2 Coloured Operads

Weiss07, BM07

In the above section, we restricted our attention to “single-coloured operads”, as pre-

pared by algebraic topologists. However, in many ways, allows for multiple colours is a more
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natural construction, as it demonstrates that operads are a generalization of the notion of

a category; indeed, coloured operads are also called symmetric multicategories. See the

introduction to [Wei07] for more on this perspective.

Heuristically, a coloured operad is a category where arrows are allowed to have multiple

source objects. Explicitly, we start with a set C of colours (or objects). Now, we define a

signature to be a tuple ξ = (c1, . . . , cn; c) in C×n × C for some n ∈ N0.

Definition 2.2.14. The category of signatures, Σ/C, is the Grothendieck construction on

Sig : Σ→ Cat sending n to C×n × C. A C-symmetric sequence is a functor Σ/C → Set.

Definition 2.2.15. A C-coloured operad is a C-symmetric sequence O with units 1c ∈

O(c; c) for each c ∈ C, and composition maps

O(a1, . . . , an; a0)×
∏
i

O(b1i , . . . , b
ki
i ; ai)→ O(b11, . . . , b

kn
n ; a0)

which are associative, C-equivariant, and unital..

Definition 2.2.16. Algebras over a C-coloured operad are collections X = {X(c) | c ∈ C}

of objects, with associative and unital structure maps

O(c1, . . . , cn; c0)×X(c1)× . . .×X(cn)→ X(c0).

Example 2.2.17. Any symmetric monoidal category C induces a coloured operad, where

the colours are the objects of C, and operations in O(A1, . . . , An;A0) are precisely maps

A1 ⊗ . . . An → A0 in C.

Coloured operads can also encode relationships between objects:

Example 2.2.18. Given any C-coloured operad O, there is a CqC-coloured operad whose

algebras are arrows f : A → B in which A and B are O-algebras and f is a map of

O-algebras.
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Similarly, there is a {m, l}-coloured operad Mod which encodes encodes a monoid X(m)

and a left X(m)-module X(l). See [FMY09, 2.10,2.11] for more details.

Example 2.2.19. For a fixed set C, there is a coloured operad whose algebras are C-coloured

operads; see [BM07] and [GV12] for details.

Remark 2.2.20. There is also a composition product description of coloured operads; see

the Appendix of [BM07].

2.2.3 Model Structures on Operads

We would like to describe the homotopy theory of operads in a category V, as it is often

useful to have a model category to work with.

First, if V = Set, we have the following extension of the “folk” model structure of

categories:

Theorem 2.2.21 ([Wei07, Theorem 1.6.2]). There exists a model structure on set-operads

where

• the weak equivalences are operadic equivalences (generalizing equivalences of cate-

gories);

• the cofibrations are maps f : O → P which are injective on colours;

• the fibrations are maps f : O → P such that j∗f : j∗O → j∗P is a categorical fibration

(where j∗ : Op→ Cat is the right adjoint to the inclusion of categories into operads).

In the more general settings of V-operads for general V, there has been significant work

in many directions to endow VOp with the model structure. We give two key results; each

source has additional references to similar works.

Definition 2.2.22. We say the category VOpC has the projective model structure if there

exists a (necessarily unique) model structure where f : O → P is a weak equivalence or

fibration if O(ξ)→ P(ξ) is for all signatures ξ.
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We have the following results:

Theorem 2.2.23 ([BM07, Theorem 2.1]). If V is a cofibrantly generated monoidal model

category with cofibrant unit and symmetric monoidal fibrant replacement functor, with a

co-commutative co-associative co-algebra interval, then the category of C-coloured operads

has the projective model structure.

In another vein:

Theorem 2.2.24 ([WY15, Theorem 6.1.1]). If V is a strongly cofibrantly generated monoidal

model category such that for each n ≥ 1 and each object X ∈ VΣopn , the function X ⊗Σn

(−)�n : V → V preserves trivial cofibrations, then, in particular, the category of C-coloured

operads has the projective model structure, where O → P is a weak equivalence or fibration

whenever O(ξ)→ P(ξ) is for all signatures ξ.

These two results come from two different approaches on applying the Transfer Principle;

the above uses Quillen Path Object Argument (e.g [BM03, 2.6]), while the latter approaches

cellular extensions directly; see the discussion in Section 3.5. Other sources include, e.g.

[Har09, Har10, PS15, Mur11].

We may also try put a model structure on all of VOp, for all C simultaneously. We have

the following:

Theorem 2.2.25 ([Cav14, Theorem 4.22]). Let V be a cocomplete closed monoidal model

category such that

• the unit is cofibrant,

• the model structure is right proper,

• there exists a set of generating V-intervals,

• the class of weak equivalences is closed under transfinite composition; moreover, which

is

• strongly cofibrantly generated
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• contains a co-commutative co-associative interval object,

then the category VOp of coloured V-operads has a model structure with good properties, in

particular extending the projective model structure above.

See loc. cite. for the definitions used in the above.

Example 2.2.26. As particular cases of all of the above results, we have that the category

of simplicial operads has the projective model structure.

Considering the model structure on operads in spaces, we have the following result

recording a homotopical charactierzation of E∞ operads:

Lemma 2.2.27 (Boardman-Vogt, Vogt, May, Berger-Moerdijk). If O → Comm is a cofi-

brant replacement of topological operads, then O is E∞.

2.3 The Category of Trees

Reference: [Wei07]

To fully exploit the combinatorial control of trees over operads, we will need a category

of trees. As has been done, we will mention two equivalent approaches: one operadic,

inspired by the geometry above, and one more algebraic.

These were both introduced in [MW07] and [Wei07].

2.3.1 Operadic Definition

This version highlights the fact that operads are generalizations of categories. In particular,

we have a nerve-realization adjunction

∆ Cat

sSet = Set∆op

∆−

Y
N

|−|
(2.3)
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where ∆ is the simplicial category of standard non-empty ordered finite sets and order-

preserving set maps.

This captures the fact that strings of arrows controls all the combinatorics of composi-

tions in categories. As compositions in coloured operads are controlled by trees, we expect

this triangle to lift to a nerve-realization adjunctions into Op by extending the category ∆.

Definition 2.3.1. Given a tree T , let Ω(T ) be the free coloured (symmetric) operad

as follows: the set of colours is the set of edges, and morphisms are generated by v ∈

Ω(T )(e1, . . . , en; e), where v ∈ V (T ) is a vertex, e is the outgoing edge of v, and in(v) =

{e1, . . . , en} is the set of input edges.

Equivalently, given edges a1, . . . , an, a of T , we have Ω(T )(a1, . . . , an; a) = ∅ if there

does not exist a subtree S of T which has leaves {ai} and root a; if such an S does exist,

this equals Σn (as we have symmetrized the non-symmetric operad generated by T ).

Definition 2.3.2. The dendroidal category Ω is defined to be the full subcategory of Op

spanned by the Ω(T ) for all trees T .

We observe that the image of the linear trees is precisely ∆, and we have a natural

inclusion l : ∆↪→Ω.

We will go over morphisms in more depth when discussing the broad poset formalism,

but we give a preview of it here. All maps in Ω can be decomposed, uniquely up to

isomorphism, into two types of maps: faces and degeneracies.

Definition 2.3.3. Given a tree T and a vertex v = {e, e′} ∈ V (T ), the operad Ω(T \ v) is

missing the colour e′ and the unary operation generated by v. We have a map σ : T → T \v

which on colors is the identity away from e and e′ but sends both e and e′ to the edge e,

and on operations sends the unary operation v ∈ Ω(T )(e′; e) to ide ∈ Ω(T \ v)(e; e) and is

the identity on everything else.

Maps of this form are called elementary degeneracy maps.
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Definition 2.3.4. Given a tree T and an inner edge e with input vertex v and output

vertex u, the operad Ω(T/e) ∈ Ω is missing the colour e and the generating operations

u ∈ Ω(T )(in(u); e) and w ∈ Ω(T )(in(v); tv), but instead has a new generating operation

s ∈ Ω(T/e)(in(u) q in(v) \ {e} ; tv). Further, we have a natural map ϕ : T/e → T which

sends s→ w ◦e u and is the identity elsewhere.

Maps of this form are called elementary inner face maps.

Definition 2.3.5. Given a tree T and and an “outer cluster” C, there is an operad Ω(T \C)

which is missing the specified outer edges in C, and well as the operation generated by the

vertex of C. Moreover, there is an obvious inclusion of operads T \ C → T .

Maps of this form are called elementary outer face maps.

2.3.2 Broad Posets

To give ourselves more precision when discussing operations on trees, we recall the notion of

a broad poset. Heuristically, broad posets are to posets as multicategories are to categories.

To begin, given a set E, let E∗ denote the free abelian monoid generated by E. Explicitly,

elements of E∗ are unordered words, e.g. ā = a1a2a3a4 = a2a4a3a1 with each ai ∈ E, and

we write ai ∈ ā if ai appears in the tuple.

Definition 2.3.6. A (commutative) broad relation is a set relation ≤ on (E∗, E). A (com-

mutative) broad poset structure on E is a broad relation ≤ such that, for all a, ai, b ∈ E

and c̄i ∈ E∗:

reflexivity a ≤ a;

antisymmetry if a ≤ b and b ≤ a then a = b;

broad transitivity if a1a2 . . . an ≤ b and c̄i ≤ ai, then c̄1 . . . c̄n ≤ b.

A map of broad posets is a set function which preserves broad relations, as expected.

As this notion will be used to model trees, we will refer to the elements of E as edges.
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Definition 2.3.7. Given an edge a ∈ E, we denote the poset of descendants of a by

â := {b ∈ E∗ | b � a}.

Definition 2.3.8. An edge a ∈ E is called

(1) a leaf if â = ∅;

(2) a stump if â is the monoid unit {ε};

(3) an internal node if â is neither empty nor equal to {ε}.

In either of the latter two cases, if â has a maximum element, denote this element by a↑

and call it the successor of a; the elements of a↑ will be called the children of a.

Definition 2.3.9. We call a broad poset simple if, for any relation a1 . . . an ≤ a, ai = aj

implies i = j.

A broad poset structure on E also induces two preorders, one on E, and one on E∗:

Definition 2.3.10. Given ā and b̄ = b1 . . . bn in E∗, we write ā ≤ b̄ if we can write

ā = ā1 . . . ān with each āi ≤ bi.

Definition 2.3.11. We say a is dominanted of b, written a ≤d b, if there exists a broad

relation ā ≤ b such that a ∈ ā. A ≤d-maximum element, if it exists, is denoted rE and

called the root of E.

Definition 2.3.12. A dendroidally ordered set is a simple finite broad poset E which

(1) has a root, and

(2) each a is either a leaf, or it has a successor.

Definition 2.3.13. If E is a dendroidally ordered set, and a 6= rE is not the root, the

parent of a, denoted a↓, is the unique edge such that a ∈ (a↓)
↑.

Definition 2.3.14. If E is dendroidally ordered, and a ∈ E is any edge, the set of de-

scendants has a minimum element, which we denote aλ. Equivalently, aλ is the set of

≤d-minimal elements in the poset {b ∈ A | b ≤d a} of elements dominated by a.
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Theorem 2.3.15 ([Wei07, Theorem 2.3.21]). The category of dendroidally ordered sets with

broad maps is equivalent to the category Ω.

With this in mind, we will refer to either notion as simply trees, and will denote them

by the letter T . To rectify notation and nomenclature between the two models:

(1) if v is a vertex, denote the output edge tv; then the children of tv are the input edges

of v: (tv)
↑ = in(v).

(2) a vertex may be referred to by its name v, by the broad relation t↑ ≤ t it generates,

or its output edge tv; if t is not a leaf, denote the vertex directly above t by vt.

(3) if a ∈ E(T ) is not the root, the parent a↓ is equal to the outgoing edge of the vertex

va.

(4) â is the set of all nodes above va.

(5) aλ is the set of “leaves above a”; that is, leaves of T whose leaf-root path contains a.

Definition 2.3.16. Let Ω0 denote the core groupoid of Ω, the wide subcategory with only

and all isomorphisms, and Υ the full subcategory of Ω0 spanned by the corollas (equivalently,

the broad posets with only one generating relation).

Υ is almost a full subcategory of Ω; however, it is missing the maps out of C1 which

factor through the degeneracy C1 → η.

Definition 2.3.17. We define the “valence” functor val : Ω → Υ by sending T to the

broad poset (L(T )q {rT } ,≤) with the single generating relation L(T ) ≤ rT . Note that we

have a canonical map val(T ) → T , which is an inclusion when T is not the stick η, and is

a degeneracy for T = η.

Subtrees are the relevant subobjects in the category Ω.

Definition 2.3.18. A subtree S of T , written S ⊆ T , is a subset whose induced broad

poset structure is again dendroidally ordered. A subtree S ⊆ T is maximal if |S| = |T | − 1.
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Definition 2.3.19. Given any edge a ∈ E(T ), we can form the descendancy subtree T≤da ⊆

T , the sub-broad poset of T spanned by those edges b ∈ T with b ≤d a. It is easy to check

that this indeed forms a tree.

We can also define the “image” of a vertex, or more generally any relation, under a map

of trees.

Definition 2.3.20. Given a map f : S → T of trees and a relation ē ≤ e in S, define the

subtree image of the relation under f to be defined as follows. Define the edges to be the

set

Tf(ē≤e) =
{
t ∈ T | t ≤d e and there exists e′ ∈ ē such that t ≥d e′

}
,

with relations all those t↑ ≤ t with {t} q t↑ ⊆ Tf(ē≤e) q ε, where ε is the monoid unit.

2.3.3 Morphisms

There are three generating classes of morphisms in Ω: isomorphisms, faces, and degenera-

cies. We begin with degeneracies.

Definition 2.3.21. An edge e ∈ T is called a only child if (e↓)
↑ = {e}; that is, the output

vertex of e is unary. An elementary degeneracy map is a broad poset morphism of the form

σa : T → T \ a, where a is an only child, and T \ a has the same generating relations as

T , except replacing a↑ ≤ a with a↑ ≤ a↓. If a1, . . . , an are (simultaneous) only children

of T , we denote by σa1,...,an the composite map T → T \ {a1, . . . , an}. A degeneracy is a

composition of elementary degeneracies and isomorphisms.

Degeneracies are surjective on edges, and moreover are the only non-injective maps.

The injective (but not surjective) maps are called faces:

Definition 2.3.22. An elementary face map is an inclusion of the form S↪→T , where S is

a maximal subtree of T . Denote by Φ1(T ) the set of elementary face maps. A face map is

a composite of elementary face maps and isomorphisms.
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Face maps can be classified into two different types: inner and outer.

Definition 2.3.23. An outer cluster of a tree T is a collection of outer edges C such that

C = a↑ for some edge a (in particular, C may be empty, as long as a↑ is the monoid unit).

Denote by vC An elementary outer face map is an inclusion of the form ∂C : T \ C ↪→ T ,

where C is an outer cluster and T \ C no longer has the generating relation a↑ ≤ a. If

C1, . . ., Cn are (simultaneous) outer clusters, we denote by ∂C1,...,Cn the composite map

T \ C1, . . . , Cn↪→T . A simple outer face map is a composite of elementary outer faces; an

outer face map is a composition of elementary outer face maps and isomorphisms.

Example 2.3.24. There are two types of outer clusters: a “leaf cluster” or a “root cluster”.

The following example gives a toy example with both types of clusters.

a
root←

ba leaf−−−→

b
a

Example 2.3.25. The following are also outer face maps:

• the inclusion of any edge into a corolla;

• the inclusion of any descendancy subtree;

• the subtree image in T of any vertex v ∈ V (S) over a map f : S → T .

Lemma 2.3.26. Given an injective map f : S → T , the following are equivalent:

(1) f is an outer face map;

(2) S = Tf(val(S)), where here val(S) is the relation in S corresponding to the single

generating relation in val(S);

(3) if ā ≤ a is a relation in T with {a} q ā ∈ Tf(val(S)), then ā ≤ a is a relation in S.

We now define the second type of face map.
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Definition 2.3.27. An elementary inner face map is an inclusion of the form ∂e : T/e↪→T ,

where e is an inner edge of T , and T/e has the induced broad poset structure from T ; that

is, T/e has all generating broad relations except e↑ ≤ e. Composites of elementary inner

face maps which remove the edges e1, . . . , en will be denoted T/ {e1, . . . , en} ↪→T .

A simple inner face map is a composite of elementary inner faces; an inner face map is

a composite of elementary inner face maps and isomorphisms.

Example 2.3.28. The following is an inner face map followed by a degeneracy:

d
c

ba

∂−→

dc

ba

σ−→

dc

b
a

Remark 2.3.29. As notated above, if T ∈ Ω is not the stick η, then val(T )→ T is equal

to the inclusion of the smallest inner face of T . If T = η, then val(η) = C1, and then the

map val(η)→ η is the degeneracy.

We note that simple outer faces and simple inner faces both form a poset:

Definition 2.3.30. The outer face poset (respectively, inner face poset), denoted Out(T )

(respectively, Inn(T )), has as objects all simple outer (inner) faces, thought of as subsets of

E(T ), with the relation given by inclusion.

We note that Q ≤ R is a relation if and only if there is a simple outer (inner) face map

Q→ R.

Interestingly, the outer face poset is functorial on T :

Lemma 2.3.31. There is a functor Out : Ω→ Poset, given by S 7→ Out(S).



27

Proof. Given a map of trees f : S → T , and a subtree S′ ⊆ S, define

Out(f) = Tf(val(S′)),

where by val(S′) we mean the relation in S given by the single relation in val(S′).

A particular subposet of Out(T ) will be of technical importance.

Definition 2.3.32. The core poset of a tree, denoted either Outc(T ) or Sc(T ), is the

subposet of simple outer faces which are corollas or sticks.

This is equivalent to the poset of vertices and edges, with relations generated by e ≤ v

if e is connected to v.

Theorem 2.3.33 ([Wei12, Theorem 6.1]). An elementary face map is either an elementary

outer face or an elementary inner face map.

Theorem 2.3.34 ([MW07, Lemma 3.1]). A map ϕ : S → T is a face map if and only

if it is injective. Moreover, any face map ϕ : S → T has a decomposition, unique up to

isomorphism, as f : S
ϕi−→ S′

ϕo−→ T of an inner face ϕi followed by an outer face ϕo.

In general, isomorphisms can be tricky to state. However, we can use the following

inductive description of a tree to produce an inductive description of the group of automor-

phisms of a tree.

Lemma 2.3.35. For any T ∈ Ω, let e1 . . . en ≤ r denote the root vertex of T , and let Ti be

the broad poset {e ∈ T | e ≤d ei} (that is, the tree branch above ei). Then T is obtained via

grafting the Ti onto the root n-corolla, and we denote this decomposition by

T = Cn ◦ (T1, . . . , Tn)

Lemma 2.3.36 ([BM03]). Let T ∈ Ω, and suppose T has a decomposition T ' Cn ◦

(T1, . . . , Tn) = Cn ◦ (T 1
1 , . . . , T

1
k1
, T 2

1 , . . . T
r
kr

) such that T ij ' T i
′
j′ iff i = i′. Then the group of
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automorphisms of T is isomorphic to

Aut(T ) ∼= Σk1 oAut(T 1
1 )× . . .× Σkr oAut(T 1

r ).

Finally, we have a fundamental decomposition theorem for morphisms in Ω:

Theorem 2.3.37 ([Wei07, Theorem 2.2.6]). Any map f : S → T has a decomposition,

unique up to isomorphism, as f : S
σ−→ S′

ϕ−→ T of a degeneracy σ followed by a face map ϕ.

We specify another type of map, which will become useful later.

Definition 2.3.38. A map ϕ : S → T is tall if ϕ(rS) = rT and ϕ(L(S)) = L(T ). We

denote by Ωt the wide subcategory of trees and tall maps.

Lemma 2.3.39. A map ϕ : S → T is tall if and only if ϕ(rs) = rT and ϕ restricts to a

bijection ϕ : L(S)→ L(T ).

Proof. It suffices to prove the “only if” statement, as the “if” is clear. Suppose l1 and l2 in

L(S) have the same image in L(T ). Then the relation rλS ≤ rS maps to ϕ(rλS) ≤ ϕ(rS) = rT

with ϕ(rλS) ⊆ L(T ). However, since T is a simple broad poset, we conclude that all entries

of ϕ(rλS) must be distinct, and hence l1 = l2.

These morphisms will be put to heavy use in Chapter 3.

2.3.4 Planar Trees

It will be technically convenient to have a description of Ω which includes planarizations

of trees. Geometrically, this is equivalent to specifying a planarization of the tree T before

generating Ω(T ), and remembering this choice. In terms of broad posets, this can be stated

as follows:

Definition 2.3.40 (Pereira). A planarization of a tree T ∈ Ω is an extension of the partial

order (E(T ),≤d) to a total order ≤p such that, for all edges a, b, c ∈ E(T ), if a ≤p b while
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a 6≤d b, then b ≥d c implies a ≤p c (note the appearance of a discrepency between the

directions of these relations).

Proposition 2.3.41. The above notion corresponds to the geometric notion from Section

2.1. Explicitly, there is a bijection of sets

{planarizations ≤p of T} −→
∏

v∈V (T )

Iso([n], in(v))

betweens planarizations of T and choices of total orderings of the input edges for each vertex

of T .

Definition 2.3.42. Let T denote a choice of category of planar trees and non-planar mor-

phisms, such that there is exactly one representative of each planarization — that is, the

only planar isomorphisms are the identity. Let T0 (respectively, Tt) denote the wide sub-

categories of isomorphisms (respectively, isomorphisms and planar tall maps).

Remark 2.3.43. Our category T0 is equivalent to the category denoted T from [BM03].

Lemma 2.3.44. Let S and T be planar trees, and C a planar corolla.

(1) If there exists a planar tall map f : S → T , then f is the unique planar tall map from

S → T .

(2) C = val(T ) if and only if there exists a planar tall map C → T .

We let Σ denote the symmetric category Σ =
∐
n Σn, the disconnected category with

objects N and morphisms Σ(n, n) = Σn.

Lemma 2.3.45. The full subcategory of T spanned by the (planar) corollas is equal to

Σ.

We note that the categories Ω and T (respectively Ω0 and T0) are equivalent. However,

the latter categories provide slightly more structure, which allows us to make canonical

categorical constructions.
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Definition 2.3.46. Define the functor C(−) : Σ→ T by sending n to the (planar) n-corolla.

Definition 2.3.47. Given T ∈ T, we denote also by val the planarized valence functor val :

Tt → Σ by T 7→ val(T ), where val(T ) is the (now) totally ordered set (L(T ) q {rT } ,≤p).

This provides a natural group homomorphism Aut(T )→ Σ|L(T )| for all trees T .

Locally, given a vertex v = (e↑ ≤ e) ∈ V (T ), define Tv to be either (1) the totally ordered

set (e↑ q {e} ,≤p), or (2) the totally ordered set (e↑,≤p). Note that any automorphism ϕ

on T induces canonical elements in Σ|in(v)| = Aut(Tv) = Aut(Tϕ(v)) for each v ∈ V (T ).

Remark 2.3.48. The two observations, that we have canonical homomorphisms Aut(T )→

Σ|L(T )| and Aut(T )→
∏
v∈V (T ) Σ|in(v)|, underly much of the benefit of having planar struc-

tures around.

Abusing notation further, we will also denote by val the restriction of the above functor

to T0.

Remark 2.3.49. We observe that val : T0 → Σ is not a Grothendieck construction, as

for most trees T with n-leaves, the homomorphism Aut(T ) → Σn is not surjective: e.g.

T = C2 ◦ (C3, C4) has automorphism group Σ3 × Σ4.

We could force this map to be one, as done in [BM03], by additionally equipping our

planar trees with an independent ordering of the leaves. However, this additional structure

would not be compatible with some of the later constructions, and moreover, we can prove

most of the desired properties that being a Grothendieck fibration could give us by direct

methods.

2.4 Dendroidal Sets

Reference: [Wei07, CM11, CM13a, CM13b, MW09]

Dendroidal sets, introduced by Moerdijk-Weiss [MW07, MW09], generalize simplicial

sets, and provide a combinatorial analysis of operads parallel to the combinatorial analysis of
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categories provides by sSet. As a large part of this thesis will be generalizing this framework,

in this Section we will highlight the major definitions and results.

Recall from Section 2.3 that Ω denotes the category of dendroidally ordered broad posets,

or equivalently the full subcategory of coloured operads spanned by the free operads Ω(T )

ranging of all trees T .

Definition 2.4.1. The category dSet of dendroidal sets is the category of presheaves SetΩop .

Given a tree T , let Ω[T ] denote the representable presheaf dSet(−,Ω(T )).

Given any dendroidal set X ∈ dSet, elements of X(T ) are called dendrices (or a dendrix ),

and are uniquely determined by a characterizing map Ω[T ] → X of dendroidal sets. We

say a dendrix x ∈ X(T ) is degenerate if the characterizing map factors through some

Ω[σ] : Ω[T ]→ Ω[S] with σ a degeneracy in Ω; otherwise, we say x is non-degenerate.

We list some of the main properties:

Proposition 2.4.2. The following hold:

(1) dSet ↓ Ω[η] is canonically equivalent to ∆, and we have an adjunction

i! : sSet � dSet : i∗

(2) The functor i! is fully-faithful (with sSet the subcategory of linear trees), and only

linear trees can map to linear trees

(3) We have a nerve-realization adjunction, generalizing Diagram (2.3)

Ω Op

dSet

Ω[−]

Ω(−)

Nd

τd (2.4)

where NO is called the dendroidal nerve of O, and τ(X) is the operad generated by

X.
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We observe that any map T → T ′ of trees induces a map Ω[T ] → Ω[T ′] between

the representable presheaves. Moreover, if there original map were a monomorphism, the

induced map would be as well. Now, given a face map ϕ : S → T , let ∂ϕΩ[T ] be the

image in Ω[T ] of the induced map Ω[ϕ] : Ω[S]→ Ω[T ]; if ϕ is an elementary inner face map

T/e→ T , we denote it by ∂e. We define the boundary of Ω[T ] inclusion, denoted

∂Ω[T ]↪→Ω[T ],

to be the colimit over the inner face poset of these ∂ϕΩ[T ].

If e is an inner edge of T , we define the colimit of all faces except ∂e to be the inner

horn associated to e, denoted

Λe[T ]↪→Ω[T ].

Further, we can a map inner anodyne if it is in the saturation of the set of inner horn

inclusions under retracts of transfinite compositions of pushouts.

This precisely generalizes the notions of boundaries, horns, and anodyne maps of sim-

plicial sets; in particular, if T = [n] were linear, then ∂Ω[n] = ∂∆[n] and Λi[T ] = Λi[n].

Definition 2.4.3. We say a dendroidal set X ∈ dSet is a (dendroidal) inner Kan complex,

or ∞-operad, if for all T and any inner edge e of T , X has the right lifting property against

the inner horn inclusion Λe[T ]↪→Ω[T ]. Equivalently, the map

X(T ) = dSet(Ω[T ], X)→ dSet(Λe[T ], X)

is surjective. It is additionally called strict if this map is a bijection, or equivalently the

lifts are unique.

We denote by Kan and SKan the full subcategories spanned by (strict) inner Kan com-

plexes.

More generally, we call a map an inner fibration if it has the right lifting property against

all inner horn inclusions.
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It is immediate that the nerve NO of an operad is a strict inner Kan complex, agreeing

with the naming convention of ∞-operads as “weak operads”. More, the converse of this

statement is true:

Proposition 2.4.4 ([MW09, Proposition 5.3, Theorem 6.1]). A presheaf X ∈ dSet is a

strict inner Kan complex if and only if X ' NO for some operad O.

This is shown by constructing a “homotopy operad” Ho(X) for any inner Kan complex

X, and the following results:

Proposition 2.4.5 ([MW09, Proposition 6.6, 6.10]). For any inner Kan complex X,

(1) there is a natural map X → N(Ho(X)), which is an isomorphism if X is strict; and

(2) there is a natural map τ(X)→ Ho(X), which is an isomorphism of operads.

We briefly discuss the construction of the homotopy operad Ho(X); the full details can

be found in [MW09]. First, we define the set of colours of Ho(X) to be the set X(η).

Now, given f, g ∈ X(Cn), we say that f is homotopic to g, written f ' g, if there is some

γ ∈ X(Cn ◦e C1) such that

• the root cluster outer face ∂rγ is degenerate;

• the leaf cluster outer face ∂lγ = f ; and

• the inner face ∂eγ = g;

where e is any edge of Cn. It can be shown that this is independent of the choice of edge e,

and forms an equivalence relation on X(Cn).

Now, given f ∈ X(Cn) and g ∈ X(Cm), and a leaf e ∈ Cn, we say h observes the

composition f ◦e g, written h ' feg, if there exists a dendrix χ ∈ X(Cn ◦e Cm) with

• the root cluster outer face ∂rγ = g;
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• the leaf cluster outer face ∂lγ = f ; and

• the inner face ∂eγ = h.

It can be shown that this is transitive under the homotopy operation, in that if h and

h′ both observe the same composition, they are homotopic, and that the compositions of

homotopic dendrices are homotopic.

Definition 2.4.6. Given colors a1, . . . , an, a0 ∈ X(η), define X(a1, . . . , an; a0) ⊆ X(Cn) to

be those dendrices x such that (ei)
∗x = ai, where ei : η → Cn is the inclusion of the edge

ei (and e0 is the root).

Define Ho(X)(a1, . . . , an; a0) := X(a1, . . . , an; a0)/ ∼ to be the set of equivalences

classes under the homotopy relation. Then, by the above discussion, the composition

[f ] ◦e [g] = [h] with h ' f ◦e g determines a well-defined operadic structure on Ho(X).

We give another model for the image of the nerve functor.

Definition 2.4.7. The Segal core of a tree, denoted Sc[T ], is the union Sc[T ] =
⋃
Sc(T ) Ω[CTv ]

over the images of the inclusion of each vertex corolla (where we recall Sc(T ) := Outc(T )).

Equivalently, Sc[T ] = ΛI [T ] is the smallest inner face of T .

Lemma 2.4.8 ([CM13a, Corollary 2.6]). X ∈ dSet is isomorphic to some NP if and only

if X is uniquely determined by its evaluation on corollas:

X(T ) = Hom(Ω[T ], X) ' Hom(Sc[T ], X) '
∏

v∈V (T )

X(Tv)/ ∼ .

2.4.1 Model Structure and the Homotopy Coherent Nerve

The series of papers [CM11, CM13a, CM13b] showed that the homotopy theory of den-

droidal sets was equivalent to that of simplicial operads, again paralleling the Quillen equiv-

alence between quasi-categories and simplicial categories. Moreover, in these works, they

generalize all the models for (∞, 1)-categories (e.g. [Ber17] into the dendroidal-operadic

setting.
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In particular, they build a model structure on dSet such that ∞-operads are the fibrant

objects. We briefly describe this structure.

Definition 2.4.9. A monomorphism f : X → Y in dSet is call normal if for all T ∈ Ω and

non-degenerate y ∈ Y (T ) \X(T ), the stabilizer StabAut(T )(y) is trivial.

Theorem 2.4.10 ([CM11, Theorem 2.4]). The category dSet can be endowed with a left

proper cofibrantly generated model structure such that

(1) cofibrations are the normal monomorphisms;

(2) anodyne extensions are trivial cofibrations;

(3) ∞-operads are the fibrant objects;

(4) fibrations f : X → Y between ∞-operads are inner fibrations such that the map on

categories induced by f is a categorical fibration;

(5) the weak equivalences are the smallest class containing the inner anodyne extensions

and the trivial fibrations which is closed under 2-out-of-3.

Theorem 2.4.11 ([CM11, Corollary 6.17]). The adjoint τ : dSet � Op : N is a Quillen

pair.

Now, restricting to simplicial operads, we Boardman-Vogt W -construction extends to a

nerve-realization adjunction

Ω sOp

dSet

W (−)

hcN

W!

such that W!hcN precisely recovers the W -construction.

The series of papers [CM11, CM13a, CM13b] mentioned above culminate in proving

that this adjunction is a Quillen equivalence. They do not show this directly; instead, as

mentioned above, they pass through passes through many intermediate stages: dendroidal

Segal spaces, Segal operads, pre-operads, etc. While this thesis will note elaborate further on
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this aspect of the dendroidal sets story, the framework developed here provides a baseline

to begin the equivariant analysis of the above work of Cisinski-Moerdijk in the future,

by specifically providing good candidates for the various intermediate stages, as well as

suggesting a categorical definition of W via Kan extensions.

We note that independent analysis of equivariant dendroidal sets and equivariant Segal

spaces by Bergner-Gutierrez and Bergner-Chadwick is in progress.
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Chapter 3

Categorical Constructions on
Single-Coloured Operads

In this chapter, we will rebuild many categorical constructions on operads, including the

coproduct of free operads, the coproduct with a free operad, and cellular extensions. Our

discussion is organized such that we can easily construct a filtration on (in particular) cel-

lular extensions, simply by creating a filtration on some indexing category (of “structured”

trees). Much of this is inspired and built off of the work of Berger-Moerdijk in [BM03], as

well as the organization schema of [Per16].

Much of the discussion below almost certainly generalizes in its entirety to coloured trees

and multicoloured operads. However, as the notation is significantly more cumbersome in

that case (cf. [WY15]), and since we did not find that it provided any additional clarity,

we will restrict ourselves to the analysis of operads with a single colour.

To that end, we fix a cocomplete closed symmetric monoidal category, and we will write

“(symmetric) sequence” to mean an object in VΣop , and “operad” to mean an object in

VOpG{∗}.

3.1 Nerve Evaluation Maps

We begin by building some of the categorical framework which provides us with the tools

to study operads. First, we define an functor which synthesizes the dendroidal nerve and

the underlying symmetric sequence.
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Notation 3.1.1. We let F denote the category of totally ordered finite sets, and F0 the

subgroupoid of finite sets and isomorphisms (i.e. ∆ and Σ are categorical skeleta of F and

F0).

Definition 3.1.2. Given any category C, consider the functor Fop → Cat which sends a

finite set A to the functor category CA, and denote by F oC → F the associated Grothendieck

fibration (see 1.1.9). Explicitly, objects of FoC are pairs (A,D : A→ Ob(C)), and morphisms

(A,D) → (A′, D′) are pairs of maps (f, ϕ), where f : A → A′ is a map of sets, and

ϕ : D → f∗D′ is an arrow in CA′ .

This construction also works for any subcategory of F, namely F0.

Unpacking the definitions, the following is immediate.

Definition 3.1.3. Given a symmetric monoidal category V, there is a natural map ⊗ :

(F0 o Vop)op → V which sends a tuple of elements in V to their (unordered) symmetric

monoidal product.

Remark 3.1.4. If V were in fact Cartesian monoidal, then this functor would naturally

extend to all of (F o Vop)op.

This operation is “associative” in the following sense:

Definition 3.1.5. Let δ1 = coll : F0
o2V → F0 oV be the functor which sends takes an object

(A, a 7→ (Ba, (a, b) 7→ xa,b)) to (qABa, (a, b) 7→ xa,b).

Lemma 3.1.6. There is a natural “re-collating” or “re-partitioning” isomorphism Φ⊗ as

below:

F0
o2V F0 o V

F0 o V V

F0o⊗

coll ⊗
⊗

Additionally, we have σ0, σ1 : F0 o V → Fo20 V sending (A, (va)) to (∗, (A, (va))) and

(A, (∗, va)) respectively (in fact, with these maps, the iterates Fon0 V form a sort of weak sim-

plicial object in categories, with the weakness encoded in these re-collating isomorphisms).
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Furthermore, every sequence Y ∈ VΣ induces a natural functor Y ⊗ : (F0 o Σ)op → V

given by the composition

Y ⊗ : (F0 o Σ)op
F0oY−−−→ (F0 o Vop)op

⊗
−→ V.

Explicitly, this is given by Y ⊗(A,D) =
⊗

d∈D Y (A(d)).

Planar trees provide salient examples of elements of functors to F o Σ:

Definition 3.1.7. Given T ∈ T, recall that V (T ) denotes the set of vertices of T , while for

each v ∈ V (T ), Tv = Te↑≤e is the corolla e↑ q e surrounding v; abusing notation, we will

also let Tv just denote the set e↑, ordered by the planar structure.

Define the vertex functor V : T0 → F0 o Σ by T 7→ (V (T ), val) with val : V (T ) → Σ

denoting the map v 7→ Tv.

Definition 3.1.8. Given a sequence Y , the nerve evaluation functor, denoted by NY :

Top0 → V, is defined as the composite

Top0 (F o Σ)op (F0 o Vop)op V.V F0oY ⊗

NY can also be defined inductively (c.f. the appendix of [BM03]) by letting NY (η) = I,

and for T = tn(T1, . . . , Tn), define

NY (T ) = Y (n)⊗NY (T1)⊗ . . .⊗NY (Tn).

On morphisms, NY is induced by the Σ-action on Y and the symmetry isomorphisms in V.

Remark 3.1.9. If V = sSet, and Y ∈ sOp is a simplicial operad, then is it easy to check

that NY is isomorphic to the image of Y under the composite

sOp Op∆op
s(dSet) ' d(sSet) sSetT

op
0 .

(N)∆op fgt

If Y is actually an operad, then N extends to Tt, the category of planar trees and planar
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tall maps, acting as the composition structure map on inner faces, and the inclusion of the

unit on degeneracies. More, we have the following:

Lemma 3.1.10. For any operad P, P is isomorphic to the left Kan extension

Topt V

Σop

val

NP

LanvalN

Proof. Let Q = LanvalN . Then Q(n) ∼= colimTopt ↓nNP(T ). Then again composition is

well-defined by grafting of trees, with unitality enforced by degeneracies. But we also have

that Σop ↓ n is final in Topt ↓ n, so in fact

Q(n) ∼= colim
Topt ↓n

NP(Cn) ∼= colim
σ∈Σn

P(n)× {σ} ∼= P(n).

3.1.1 Pullbacks, Assembly, and Planar Tall Maps

Our general methodology for presenting the constructions in this chapter will to be to as-

semble categories of “structured trees”, and exploit this structure to encode the information

we aim to investigate.

We begin with the following definition:

Definition 3.1.11. Let T1 be the following pullback category:

T1 F0 o T0

T0 F0 o Σ

d1

V

F0oval

V

Explicitly, objects are trees along with “assembly data”. Explicitly, each vertex Tv is

equipped with a tree Sv such that val(Sv) = Tv.
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By Lemma 2.3.44, this is the same data as a collection of planar tall maps Tv → Sv,

one for each vertex v ∈ V (T ).

Equivalently, we have a tree T equipped with a functor S(−) : Outc(T ) → T and a

natural transformation U : id⇒ S(−) consisting of planar tall maps.

We call this “assembly data”, because there is a second natural map T1 → T0, which

assembles these trees Sv together to form a new tree:

Proposition 3.1.12 (Pereira). Given (T, (Sv)) ∈ T1, the colimit colimV (T ) S
(−) in the

category T exists, and is denoted T ∧ (Sv).

Explicitly, T ∧ (Sv) is the broad poset with underlying set the colimit of the underlying

sets, and broad relations generated by the Sv.

Heuristically, T ∧ (Sv) “inserts” the tree Sv at the node Tv of T , where the planar tall

map identifies the outer edges of Sv with the edges of Tv. We highlight that if Tv is unary

and Sv is a stick, this deletes the node v.

Proof. Since vertices are determined by their output edge, we can write assembly data as a

tuple (T, (St)) where now t ranges over all non-leaf edges of T .

A priori, we only know that the colimit is a “pre-broad poset”: it is a set with a broad

relation ≤ which is reflexive and transitive. We need to first check that ≤ is antisymmetric,

and then that it is dendroidally ordered.

We begin by characterize the underlying set qV (T )V (Sv) of T ∧ (Sv). We note that in

this set, every inner edge t of T identifies the root of St with a particular leaf of St↓ , where

we recall that t↓ is the unique edge such that t ∈ (t↓)
↑. Thus, two distinct edges of T can

only be identified if there exists some St
′

which has a leaf that is also a root; that is, if there

exists an St
′

which is a stick. However, this implies, in particular that vt′ is unary, and

hence we can consider the degeneracy T → T \{vt′}. The assembly data (T, (St)) forgets to

an assembly data (T \{v}t′ , (St)), and moreover these have the same colimit. Thus, without

loss of generality, we may assume that no St are sticks, and hence, for an edge t in T , the
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complete set of relations in the underlying set of T ∧ (St) is given by

[t] =


[lt↓ ] = [rt] t an inner edge of T

[lt↓ ] t a leaf of T

[r] t the root of T

where l is a leaf of St↓ , r is the root of St, and [e] is the equivalence class of the edge e in

the set of edges in T ∧ (St).

Hence, we can write each edge of T ∧(St) uniquely as (e, t), with e ∈ St not a root unless

vt ∈ V (T ) is the root vertex. Further, there is at most one generating relation (e, t)↑ ≤ (e, t),

where the tuple of edges (e, t)↑ is defined as

(e, t)↑ =


(e↑, t) e is not a leaf in St

(r↑, t′) e is a leaf in St, [e] = [t′] = [r], and r the root of St
′

undefined otherwise

where for a tuple ē = e1 . . . en, we let (ē, t) denote (e1, t) . . . (en, t).

Now, having determined the sets of edges and relations, it suffices to prove that this

broad poset actually is a tree. We first note that any broad relation u1,t1 . . . un,tn ≤ tv in

T ∧ (St) must satisfy the following properties:

(1) ti ≤d t in T

(2) if ti 6= t then ti ≤d t′ for some t′ ∈ t↑ such that [rt′ ] = [lt] and l ≥d e in St

(3) if ti = t, then ei ≤d e in St

(4) if ti = t and ei = e, then n = 1 and the relation is reflexive.

Indeed, these hold for the generating relation, and are preserved by broad transitivity.

Now, (1), (3), and (4) imply that the generated broad relation is antisymmetric, and
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hence we have a broad poset. Moreover, the dominant relation ≤d is also antisymmetric,

and hence is itself an order relation.

Since it is clear that rr, with r the root of Sr, is the only minimal element, it suffices

to show that this broad poset is simple. Given ē = (e1, t1) . . . (en, tn) ≤ (e, t), we go by

downward induction on ≤d of (e, t). Since (e, t) is only the start of one non-trivial generating

relation, we know that this factors ē ≤ (e, t)↑ ≤ (e, t), with (e, t)↑ = ε1 . . . εm, ē = ē1 . . . ēm,

and ēi ≤ εi. Here, εi = (εi, t
′) for some fixed t′, with either t = t′ or t′ ∈ t↑ By the induction

hypothesis, it suffices to show that the ēi have no edges in common. However, as the εi are

≤d-incomparable in St
′
, this follows from (2) and (3) above. Hence, T ∧ (St) is in fact a

tree.

Finally, since T and each Sv are planar, the resulting tree has a natural inherited planar

structure.

This construction provides our second map d0 : T1 → T0, sending (T, (Sv)) to T ∧ (Sv).

We highlight a particular observation:

Lemma 3.1.13. There is a natural “re-planarization” isomorphism filling the following

diagram:

T1 F0 o T0 F0
o2Σ

T0 F0 o Σ

d0

V

Φp

F0oV

coll

V

Proof. We have V (T ∧ (Sv)) = qV (T )V (Sv), and Φp just enforces the planar structure for

T (Sv) onto the collated set.

We have two sections s0 and s−1 of d0, defined by

s0(T ) = (T, (Tv)), the “trivial assembly” data, and

s−1(T ) = (val(T ), T ), the “co-trivial assembly” data.

We observe that d1s−1 is not the identity, but instead equals C(−)◦val. These again look
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like simplicial identities; indeed, iterating this construction will create a simplicial object in

categories.

Definition 3.1.14. Inductively, suppose Tk has been defined for k < n. Define Tn be the

following pullback category:

Tn F0 o Tn−1

Tn−1 F0 o Tn−2

dn

V

F0odn−1

V

Abusing notation, let val denote the composite Tn
d1...dn−1dn−−−−−−−→ T0

val−−→ Σ for any n ≥ 1.

Since pullback squares are preserved by “stacking”, we have the following:

Lemma 3.1.15. Tn is equivalently the pullback

Tn F0 o Tn−1

T0 F0 o Σ

val

V

F0oval

V

Lemma 3.1.16 (Pereira). Tn is equivalent to the category of “n-fold strings of planar tall

maps”: objects are strings of composable morphisms T0 → T1 → . . . → Tn of planar tall

maps, and morphisms are sets of connecting isomorphisms

T0 T1 . . . Tn

T ′0 T ′1 . . . T ′n

' ' '

Moreover, these Tn naturally form a simplicial object in categories, and the assembly maps

discussed above are induced by the obvious simplicial maps d0 and dn.

Proof. For n = 1, we note that any assembly data (T, (Sv)) induces a natural planar tall

map T → T ∧ (Sv). Conversely, given a planar tall map T → S and a vertex e↑ ≤ e, define

Sv = Sf(e↑≤e). Then (T, (Sv)) is a well-defined assembly data. Moreover, it is clear that
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these two constructions are mutually inverse.

Inductively, objects in Tn are trees T where each vertex is equipped with a string of

n− 1 planar tall arrows starting with Tv:

Tv → Sv,1 → Sv,2 → . . .→ Sv,n−1.

Starting with Tv → Sv,1, we convert the first step into a planar tall map T → T ∧Sv,1 = T1,

but now the planar tall maps S∗,1 → S∗,2 become assembly data for T1. Continuing in this

manner yields the desired result

Under these identifications, the di and si are precisely as they would be for the nerve of

a category.

3.2 Free Operads

In this section, we provide a new description of the free operad monad F as a particular left

Kan extension, allowing for more categorical exploitation.

We begin with some review:

Definition 3.2.1. The free operad functor is the left adjoint of the forgetful functor below.

fgt : VOp{∗} ↔ VΣop : F (3.1)

The above definition repackages an explicit description of the free operad monad origi-

nally constructed by Spitzweck [Spi01, Proposition 5], and reformulated by Berger-Moerdijk

[BM03] after Getzler-Kapronov [GK95]; it can also be found in [BO15] and [MSS07].

Recall the nerve evaluation and valence functors from Sections 2.3 and 3.1. Now, let

T0(n)/ ∼ be the set of isomorphism classes [T ] of trees T with val(T ) = n. The Appendix

of [BM03] states the following (using the inductive description of NX):
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Lemma 3.2.2. Suppose X ∈ VΣop is a symmetric sequence. For each n ∈ N0, the n-th

level of the free operad generated by X is given by

∐
[T ]∈T0(n)/∼

NX(T )⊗Aut(T ) Σn.

We will be using the naturality of the left Kan extension many times in this chapter in

order to build desired maps. In Appendix A.1, we show that Lan is natural on the category

WSpan(Σ,V), defined as follows. An object is a span (C, X)

C V

Σop

X

while a map (C′, X ′)→ (C, X) consists of a pair (F,Φ)

C′

C V

Σop

F

X′

X

Φ

such that the left triangle commutes and Φ is a natural transformation filling the right

triangle.

We begin by defining an endofunctor on the category of sequences.

Definition 3.2.3. Define the endofunctor F : VSym → VSym by sending a sequence X to

the left Kan extension

Top0 V

Σop

val

NX

FX:=LanvalX

Since maps X → Y induce maps NX ⇒ NY , functoriality on morphisms is given by applying
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Lemma A.1.2 to the diagram

Top0 (F0 o Σ)op (F0 o Vop)op V

Σop

V

val

F0oX

F0oY

F0oϕ

The resulting arrow is characterized as the unique map such that the following diagram

commutes.

NX NY

FX ◦ val FY ◦ val

F0oϕ

αX αY

L(F0oϕ)◦val

Unpacking definitions, we immediately have the following:

Lemma 3.2.4. F(X) is levelwise isomorphic to the description of the free operad on X

given by Lemma 3.2.2.

We will now build a monad structure onto this endofunctor.

Remark 3.2.5. In many of the larger diagrams in the remainder of this section, we will be

drawing the opposite of the diagrams we desire. This is strictly for notational convenience:

the prevalence of the notation (−)op becomes detrimental very quickly to visually following

the flow of information, and drawing the opposite diagram minimizes their appearances.

Using the categories Tn of “iterated assembly data”, we can iterate F:

Lemma 3.2.6. Given a sequence X, the sequence FFX is isomorphic to the left Kan

extension

FFX ' Lanval◦π0(⊗ ◦ F0 oNX ◦ V).

Proof. Denote the given left Kan extension L. Consider the (opposite of the) following

commuting diagram (where empty 2-cells are the identity), whose outermost span is the
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defining span for L:

T1 F0 o T0 F0 o V V

T0 F0 o Σ

Σ

V

d1 F0oval

F0oNX ⊗

val

V
F0oFX

L′

L

F0oαFX

(3.2)

By Lemma A.1.8, L′ is the left Kan extension of ⊗◦F0 oNX over F0 o val. But then Lemma

A.1.9 implies that L′V is the left Kan extension of the top row. However, we note that

L′V = NFX is the nerve evaluation map for FX, whose left Kan extension over val is

precisely FFX. Thus, the result is proved by applying Lemma A.0.2.

We denote the solid natural transformation in Diagram (3.2) by d′1.

Now, for any sequence X, the above plus Lemma A.1.2 provides the description of a

natural map µX : FFX → FX, via the (opposite of the) following diagram in WSpan(Σ,V);

we denote the rectangular natural transformation by d′0.

T1 F0 o T0 F0
o2Σ F0

o2Vop F0 o Vop Vop

T0 F0 o Σ F0 o Vop Vop

Σ

d0

V F0oV

coll

F0
o2X

coll

F0o⊗ ⊗

V
val

F0oX
⊗

Φ⊗Φp

(3.3)

We also have a natural map ε : X → FX induced similarly; denote this natural transfor-

mation s′:

Σ Vop

T0 F0 o Σ F0 o Vop Vop
s=C(−)

σ

X

V

(3.4)

where C(−) is the inclusion of the corollas.

Theorem 3.2.7. The triple (F, µ, ε) is a monad on the category of symmetric sequences.
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We delay the proof until Chapter 6, as this is the special case G = {∗} of Theorem 6.3.6.

Corollary 3.2.8. F is the free operad monad.

This allows us to repackage much of the additional data of an operad. In particular, an

operad P comes equipped with a natural transformation µ̃ : NP ⇒ P ◦ val,

Top0 V

Σop

val

NP

P

given by µ ◦ α, where µ : FP ⇒ P and αP : NP ⇒ FP ◦ val. All together, this can be

packaged as follows:

Lemma 3.2.9. An F-algebra structure on X is equivalent to the data of a morphism µ̃ :

NX ⇒ X ◦ val such that

(1) (unitality) µ̃ is the identity on corollas; and

(2) (associativity) the following two (compositions of) natural transformations are equal:

Top1 F o Top0 F o V V

Top0 F o Σop V

Σop V

V

d1 val

FoNX ⊗

val

V

FoX

X

Foµ̃

µ̃

(3.5)

and

Top1 F o Top0 F o F o Σop F o F o V F o V V

Top0 F o Σop F o V V

Σ V

V

d0

FoV

FoNX

coll

FoFoX Fo⊗

coll

⊗

V

val

FoX ⊗

X

Φp

µ̃

Φ⊗

(3.6)
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where Φ⊗ and Φp are the re-collating and re-planarizing natural isomorphisms.

Explicitly, a symmetric sequence X is an operad if and only if, for all trees T , we have

structure maps NX(T )→ X(val(T )) which are associative, unital, and Aut(T )-equivariant.

Remark 3.2.10. We unpack multiplicative unitality, as it is recorded as a synthesis of

the conditions given in the previous lemma. The key observation is that val(η) = C1, but

NX(η) = I is the monoidal unit. Now, given a tree T , let T+ denote T ◦1 C1, and note that

val(T ) = val(T+). We consider the object (T+, (S
v)) in T1 where Sv = Tv if v ∈ V (T ), and

Sv = η if v is the added node +. Now, the compatibilities of Lemma 3.2.9 say precisely

that the two maps

NX(T )⊗ I NX(T )⊗X(1) X(val(T ))

NX(T )⊗ ∗ NX(T ) X(val(T ))

id⊗µ̃(η) µ̃

µ̃

are equal.

We can use this framework to build the canonical split coequalizer for an algebra over

a monad:

FFX FX X
Fµ

αFX

µ

We recall that a split coequalizer in C consists of the following data:

A B C

d0

d1

s0

s−1

d

s

(3.7)

such that s0 is a section of both di, s is a section of d, and sd = s−1d1.
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Lemma 3.2.11. The maps

Top1 V

Top0

Σop

N1
X

d1 d0

val

N0
X

X

are part of a split coequalizer diagram in WSpan(Σ,V).

Proof. We recall that split coequalizers are absolute: any diagram of the form (3.7) must

have d a coequalizer of the pair (d0, d1). Thus, it will suffice for us to just build maps

satisfying the above relations. We define:

d0 = (d0, d
′
0)

d1 = (d1, d
′
1)

d = (val, µ̃).

We note that the natural transformation d is precisely the bottom portion of both Diagrams

3.6 and 3.5, and hence Lemma 3.2.9 implies that it equalizes d0 and d1.

For the degeneracies:

s0 = (s0, id)

s−1 = (s−1, id)

s = (C(−0, id).

We observed previously that s0 and s−1 are sections of d0, and that s−1 is a section of d0.

It remains to verify that d1s−1 = sd. On functors, this is clear, as both send T to

Cval(T ). On natural transformations, this is straightforward, as both are just µ̃; the F0 o (−)

in d1s−1 is recording an indexing over a singleton set, and hence has no effect.

Thus we have an absolute coequalizer diagram, and hence a (split) coequalizer in
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WSpan(Σ,V).

This gives us our categorical description of the canonical coequalizer:

Corollary 3.2.12. X is the coequalizer of the induced maps d0, d1 : FFX ⇒ FX.

Proof. This follows from Lemma 3.2.11, and the identifications from Lemma 3.2.4, Lemma

3.2.6, and Theorem 3.2.7, by an application of Proposition A.1.2.

We can also repackage the property of being a morphism of operads using this formalism.

Recall that a map of sequences ϕ : X → Y between F-algebras is an F-algebra morphism if

the diagram

FX FY

X Y

Fϕ

αX αY

Φ

commutes. Combining this with the universal property of Fϕ from above, we see that the

following two diagrams of natural transformations are equal:

T0 F0 o Σ F0 o Vop Vop

Σ

F0oX

F0oY
FY

Y

F0oϕ

αY

µY

(3.8)

T0 F0 o Σ F0 o Vop Vop

Σ

F0oX

FX

FY

Y

αX

Fϕ

µY

(3.9)
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Lemma 3.2.13. A map of sequences ϕ : X → Y is an F-algebra morphism iff the two

diagrams of natural transformations below agree:

T0 F0 o Σ F0 o Vop Vop

Σ

F0oX

F0oY

Y

F0oϕ

µ̃Y
(3.10)

T0 F0 o Σ F0 o Vop Vop

Σ

F0oX

X

Y

µ̃X

ϕ
(3.11)

Proof. We first note that Diagram (3.10) is equal to Diagram (3.8) by definition of µ̃. Now,

the “only if” is immediate from the discussion before the lemma and the universal property

of Fϕ. The “if” follows by the universal property of coproducts and the explicit description

of FX(n) and αY , and the observation that val is (split) surjective as an arrow in the

category of categories, after again noting µ̃X = µX ◦ αX .

Remark 3.2.14. Using the above, it is easy to check that the maps induced by Lemma

3.2.11 are indeed operad maps.

3.3 The Coproduct of Operads

In the previous section, we built the operads FY and FFY as left Kan extensions over

categories of trees. In this subsection, we expand the previous description to build the

operadic coproduct qFYi q P for arbitrary sequences Y1, . . . , Yn−1 and operads P as a left

Kan extension (Proposition 3.3.6).



54

3.3.1 Passive Labeled Trees

We begin this process by constructing appropriate categories of trees, whose nodes are

labeled as either “active” of “passive” (with multiple possible flavors of passive labelings).

Eventually, these active nodes will correspond to the operad P, the passive nodes to the

various Yi, and the flexibility on the active nodes to the composition structure maps in P.

The choice we make for our fundamental category of labeled trees is not necessarily

where one would expect to start, as it is not “trees with labelings”. Instead, our base

category is more rigid, which will eventually provide us with a cleaner presentation.

We first make a quick definition:

Definition 3.3.1. Given a tree T , the height of a vertex is the number of vertices (inclusive)

in the unique descending path from that vertex to the root vertex. We call a vertex odd if

the height is odd. We call a tree odd if V (T ) 6= ∅ and every leaf vertex is odd.

Equivalently, a tree is odd if every leaf-root path has an odd number of vertices in it.

Example 3.3.2. Some examples:

(1) the root vertex is always odd, and corollas are always odd trees;

(2) the black nodes below are all odd, as is the tree itself: the stumps are not part of any

leaf-root path, and hence in particular the white stump does not affect the parity of

the tree.

Definition 3.3.3. Let λn1T−1 be the category of “alternating n-passive trees” and isomor-

phisms, described as follows. Objects are odd (planar) trees T equipped with a labeling
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λ : V (T )→ {a, p1, . . . , pn} such that a vertex is in the preimage of a iff it is odd. Mor-

phisms (T, λ) → (T ′, λ′) are non-planar isomorphisms of the underlying trees ϕ : T → T ′

which preserve labelings.

Notationally, we call vertices in λ−1(a) active, and denote the set of active nodes Va(T );

similarly, the preimage λ−1({p1, . . . , pn}) will be denoted Vp(T ) = qVpi(T ) as the set of

passive nodes, with Vpi(T ) the set of pi-labeled passive nodes.

More explicitly, alternating n-passive trees are odd trees such that the root and leaf

vertices are active, as is every alternating vertex coming up from the root. The remaining

nodes may be tagged by any of the passive labelings. For this reason, these may also be

called “n-alternating trees”.

These alternating n-passive trees form the foundation of our study of the desired co-

product. The “-1” notation is suggestive, and will become more natural as we move through

the section.

We now generalize the definitions from Section 3.1 into the alternating setting.

Definition 3.3.4. Define the alternating n-passive vertex functor

V = (Vpi)
×n × Va : λn1T−1 → (F0 o Σ)×n × F0 o Σ

as the mapping

(T, λ) 7→ (Vpi(T ), v 7→ Tv)
×n × (Va(T ), v 7→ Tv),

partitioning V (T ) into its labeled pieces.

Definition 3.3.5. Given sequences Yi and X, define the alternating n-passive nerve eval-

uation functor N−1
(Yi),X

: λn1T
op
−1 → Vop to be the opposite of the composite

λn1T−1 (F0 o Σ)×n × F0 o Σ (F0 o Vop)×n × F0 o Vop VopV (F0oYi)×n×F0oX ⊗

(3.12)

where the last arrow is (n+ 1)-copies of ⊗ followed by ⊗ : Vn+1 → V.
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If the sequences Yi and X have been fixed, we will denote this functor just by N .

Explicitly, N sends an alternating n-passive tree T to the tensor product

⊗
i

⊗
v∈Vpi (T )

Yi(Tv)⊗
⊗

v∈Va(T )

X(Tv).

There is also natural map fl : λn1T−1 → T0 which just forgets labels. Abusing notation

as before, we call the composite val ◦ fl also by just val.

We will spend the remainder of this section proving the following proposition:

Proposition 3.3.6. The sequence underlying the operad qiFYiqP is equivalent to the left

Kan extension

LanvalN
−1
(Yi),P .

3.3.2 The Coproduct of Free Operads

We begin with an easier construction, namely qFYi q FX for generic sequences Yi and X.

Remark 3.3.7. The asymmetry will not be important for this section, but provides the

framework for replacing FX with P.

Again, this process will be rooted in constructing appropriate categories of trees.

Definition 3.3.8. Define λn1T0 to be the category of “alternating n-passive assembly data”

and isomorphisms, given by the pullback

λn1T0 (F0 o Σ)×n × F0 o T0

λn1T−1 (F0 o Σ)×n × F0 o Σ

d

V

id×F0oval

V

Explicitly, objects are alternating trees T such that each active node Tv is equipped

with a planar tall map Tv → Sv. We will refer to the top map V as the “n-passive vertex

functor”.
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We have an obvious section s : λn1T−1 → λn1T0 sending T to the trivial active assembly

data (T, (Tv)).

This construction is mimeographing a more obvious concept, but provides the asym-

metric framing that we will need.

Definition 3.3.9. Define the category λnT0 of “n-labeled trees” and isomorphisms to be

the category with objects trees T equipped with a labeling λ : V (T )→ {a, p1, . . . , pn}, with

label-preserving tree isomorphisms.

Lemma 3.3.10 (Pereira). λn1T0 is isomorphic to λn+1T0.

Proof. The assembly functor d0 : T1 → T0 extends naturally to a functor d0 : λn1T0 →

λn+1T, where all “new” vertices are labeled as active. Conversely, given an (n+ 1)-labeled

tree T , we will define an n-alternating tree T alt and associated assembly data. Let
{
St
}

denote the collection of maximal subtrees of T with only active vertices, with t the root

edge of St; we particularly include subtrees with zero active nodes, corresponding to an edge

adjacent to two passive vertices. Heuristically, T alt will be the broad poset with relations

generated by the val(St) and the passive vertices.

Explicitly, we first consider the case where none of the St are sticks; that is, T has no

adjacent passive nodes. We define T alt to be the inner face of T obtained by removing all

inner edges of the St. We note that this is indeed alternating, and moreover (T, (St) is

alternating assembly data for T .

If some St are sticks, we produce T alt in two steps:

T alt → T/a → T

First, build T/a from T as above, but this time ignoring those St which are sticks. T/a ∈

λn+1T0 will not be alternating, but will not have any adjacent active nodes. Next, construct

T alt from T/a by adding a new edge e′t for each St = {et} which is a stick, and two new

generating relations: (e′t) ≤ et and (et)
↑ ≤ e′t (that is, split the edge of St by adding a new
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unary vertex). Now, there is a natural degeneracy map T alt → T/a which sends both et and

e′t to et. Moreover, T alt is now alternating, and (T alt, (St)) is again alternating assembly

data for T .

Finally, there is always a map T → d0(T, (Sv)) = T ∧ (Sv) in λn+1T0 whose underlying

map of trees is planar tall. If we consider the subset {Sw} ⊆ {Sv} of those selected maximal

subtrees which are sticks, then

T → T ∧ (Sw)→ T ∧ (Sv)

is an (inner)face-degeneracy decomposition of this map, with T ∧(Sw) precisely (T ∧(Sv))/a.

From this observation, plus the uniqueness of these decompositions of planar tall maps, we

conclude that these functors defined above are mutually inverse.

Diagrammatically, we have the following:

λn1T0 λn+1T0

λn1T−1

d

d0

(−)alt
'

(−)alt

We have two natural sections of d, inspired by the non-labeled case, namely s0 : T 7→

(T, (Tv)) and s−1 : T 7→ (T alt, (St)), with the St defined as in the proof above.

We now lift the definitions from the previous section:

Definition 3.3.11. Given sequences Yi andX, define the n-passive nerve evaluation functor

N0
(Yi),X

: λn1T
op
0 → V to be the opposite of the composite

λn1T0 F0 o T0 F0 o F0 o Σ F0 o F0 o Vop F0 o Vop VopV F0oV F0oF0oX F0o⊗ ⊗

where we have omitted what happens for passive nodes, as it is identical to Equation (3.12).

Remark 3.3.12. It is clear that N−1
(Yi),X

is equal to the composite N0
(Yi),X

◦ s.
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Abusing notation, denote also by d0 the composite

λn1T0 λn1 T̃0 T0.
d0 fl

We now come to the main result of this subsection:

Lemma 3.3.13. The coproduct in operads qFYiqFX is isomorphic to the left Kan exten-

sion

λn1T
op
0 V

Top0

Σop

N0
(Yi),X

d0

val

LanvalN
0
(Yi),X

Proof. By Lemma A.0.2, it suffices to show that NqYiqX = Land0 N
0
(Yi),X

;

λn1T
op
0 V

Top0

Σop

N0
(Yi),X

d0

NqYiqX

val Lanval◦fc N'LanvalN

This is clear on objects:

Lanfl N
0
(Yi),X

(T ) ' colim
T↓fl(T ′,λ′)

N0
(Yi),X

(fl(T ′, λ)) ' colim
T'fl(T ′,λ′)

N0
(Yi),X

(T )

'
∐

λ:V (T )→{a,p1,...,pn,b}
Aut(T )

(N0
(Yi),X

(T, λ)
⊗

Aut(T,λ)

Aut(T ))

'
∐

λ:V (T )→{a,p1,...,pn,b}
Aut(T )

⊗
v∈V (T )

Yλ(v)(Tv)
⊗

Aut(T,λ)

Aut(T )

' NqYiqX(T ).
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where we have denoted Y0 = X for convenience. Lastly, since fl is full and morphisms

just act by permuting indices, it is clear that NqYiqX is in fact the left Kan extension on

morphisms as well.

For our next step, we will now categorically describe the free operad F(qYi q FX).

Again, we begin by defining a new layer in our tower of alternating trees.

Definition 3.3.14. Let λn1T1 be the category of “alternating n-passive iterated assembly

data”, given by the pullback

λn1T1 (F0 o Σ)×n × F0 o T1

λn0T0 (F0 o Σ)×n × F0 o T0

d1

Vp×Va

id×F0od1

Vp×Va

Explicitly, we have that objects consist of a pair (T, (Sv →W v)) with

(1) and alternating n-passive tree T , and

(2) planar tall maps Tv → Sv →W v for each v ∈ Va(T ).

Now, consider the (opposite of the) following diagram, where we have omitted the parts

referring to the passive nodes:

λn1T1 F0 o T1 F0
o2T0 F0

o3Σ F0
o2Vop F0 o Vop Vop

λn1T0 F0 o T0 F0
o2Σ

Va

d1

F0oV

F0od1 F0
o2val

F0
o2V F0

o2X⊗ F0o⊗ ⊗

Va F0oV

F0
o2FX

F0oL1

L2

(3.13)

Here, L1 is the (opposite of the) composite

Lop1 : F0 o Σ F0 o Vop VopF0oFX ⊗

while L2 is a composite which includes the information omitted in the above diagram;
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specifically, it is the (opposite of the) composite

Lop2 : (F0 o Σ)×n × F0 o (F0 o Σ) Vop × F0 o (Vop) Vop(Yi)
⊗×F0o(L) ⊗

where (Yi)
⊗ is a synthesis of the individual Y ⊗i , given as the (opposite of the) composite

(Y ⊗i )op : (F0 o Σ)×n (F0 o Vop)×n (Vop)×n Vop.(F0oYi)×n ⊗n ⊗
(3.14)

Finally we note that, after including the omitted passive information (namely the (Yi)
⊗),

Diagram (3.13) commutes (where empty 2-cells are the identity). We denote the composite

of the completed top row in Diagram (3.13) by N1
(Yi),X

, or just N1 if the sequences are clear;

note that the bottom row is precisely (the opposite of) N0
(Yi),FX :

λn1T0 (F0 o Σ)×n × F0 o T0 (F0 o Σ)×n × F0
o2Σ Vop × F0 o Vop Vop.V (Yi)

⊗×F0o(⊗◦F0oFX) ⊗

Two consecutive applications of Lemma A.1.8 imply the following results:

Lemma 3.3.15. L1 is the left Kan extension of the (opposite of the) outermost span in the

following diagram.

F0 o T0 F0 o Vop Vop

F0 o Σ

F0oΣ

F0oX⊗ ⊗

F0oFX

L1

Lemma 3.3.16. L2 is the left Kan extension of the (opposite of the) outermost span in the

following diagram.

(F0 o Σ)×n × F0 o (F0 o T0) Vop × F0 o Vop Vop

(F0 o Σ)×n × F0 o (F0 o Σ)

(Yi)
⊗×F0o(⊗◦F0oX⊗) ⊗

(Yi)
⊗×F0oL1

L2
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Lemma 3.3.17. N0
(Yi),FX is equivalent to the left Kan extension of N1

(Yi),X
over d1.

Proof. This follows from Lemma 3.3.16 from Lemma A.1.9. Indeed, the functors F0 o (−)

and E × (−) preserve pullbacks, so the second square in Diagram (3.13), once the diagram

is extended to include the passive nodes, is a pullback; the first square is a pullback by

definition.

Hence, an application of Lemma 3.3.13 and Lemma A.0.2 yields the following:

Corollary 3.3.18. The coproduct in operads qFYiqFX) is isomorphic to left Kan exten-

sion of N1
(Yi),X

over val.

3.3.3 The Coproduct of a Free Operad and a Generic Operad

For this section, we will still have sequences Yi, but now a generic operad P (taking the place

of the sequence X). We will build a categorical description of qFYi q P as a coequalizer

F(qYi q FP) F(qYi q P) qFYi q P
d0

d1

d (3.15)

As in Lemma 3.2.11, this will be accomplished by constructing an appropriate split

coequalizer in WSpan(Σ,V) and identifying its image under the left Kan extension, using

Proposition A.1.2.

Proposition 3.3.19. The maps

λn1T
op
1 V

λn1T
op
0

λn1T
op
−1

d1 d0

N1
(Yi),P

(−)alt

N0
(Yi),P

N−1
(Yi),P

are part of a (split) coequalizer in WSpan(Σ,V).
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Proof. This data will be build directly out of the split coequalizer data from Lemma 3.2.11.

For completeness and clarity, we will still build each piece individually:

(1) d0 = (d0, d
′′
0):

Consider the following diagram:

λn1T1 F0 o T1 F0 o Vop Vop

λn1T0 F0 o T0

d0

Va

F0od0

F0o (F0o⊗ ◦ F0
o2NP ◦ F0oV) ⊗

Va F0oNP

F0od′0

This extends uninterestingly to the passive vertices, via (Yi)
⊗. Call the opposite of

this extended diagram d′′0.

(2) d1 = (d1, d
′′
1):

Similarly, consider the diagram

λn1T1 F0 o T1 F0 o Vop Vop

λn1T0 F0 o T0

d1

Va

F0od1

F0o (F0o⊗ ◦ F0
o2NP ◦ F0oV) ⊗

Va F0oNP

F0od′1

Again, this extends uninterestingly to the passive vertices, and we call the opposite

of this extended diagram d′′1.

(3) d = ((−)alt, d′′):

Consider the following diagram:

λn1T0 F0 o T0 F0 o Vop Vop

λn1T−1 F0 o Σ

Va

(−)alt F0oval

F0oNP ⊗

Va F0oP

F0oµ̃

In the above, note that the left squares all commute. Moreover, since (−)alt equalizes

d1 and d0 while µ̃ equalizes d′0 and d′1 (by Lemma 3.2.11), we have that d coequalizers

d0 and d1.
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(4) s = (s, id):

Consider the diagram,

λn1T−1 F0 o Σ

λn1T0 F0 o T0 F0 o Vop Vop
s

Va

F0oC(−)

F0oP

Va F0oNP ⊗

and note that is commutes. Again, this extends uninterestingly to the passive vertices,

where it still commutes, as does its opposite diagram; hence s = (s, id) is well-defined.

As we already have that the functor s is a section of the (−)alt, and since µ̃ is the

identity of corollas (as in Lemma 3.2.11), (s, id) is a section of d.

(5) s0 = (s0, id):

Define s0 : λn1T0 → λn1T1 by mapping (T, (Sv)) to the trivial iterated assembly data

(T, (Sv → Sv)). Clearly the functor s0 is a section of d1 and d0; in fact, N0 = N1 ◦ s′′0.

As before, since µ̃ remains the identity on corollas, the arrow (s0, id) is a section of

(d0, d
′′
0) and (d1, d

′′
1).

(6) s−1 = (s−1, id):

Define s−1(T, (Sv)) = (T, (Tv → Sv)) to be the co-trivial iterated assembly data.

Again, that this is a section of (d0, d
′′
0) follows from the non-labeled case.

Lastly, we need to verify that d1s−1 = sd. As in Lemma 3.2.11, we have to reconcile an

additional F0 o (−), and again, this is only recording an indexing over a singleton set, and

hence does not affect the natural transformations.

Thus, we have a strict coequalizer diagram, and hence a coequalizer in WSpan(Σ,V), as

desired.

By Corollary A.1.2, each map above induces a map between the associated left Kan

extensions. By Corollary 3.3.18 and Lemma 3.3.13, we have induced maps

d0, d1 : qFYi q FFP → qFYi q FP)



65

and, since split coequalizers are absolute, by Proposition 3.3.19 the induced map

d : qFYi q FP → Lanval(N
−1
(Yi),P)

is a coequalizer:

Corollary 3.3.20. Lanval(N
−1
(Yi),P) is the coequalizer of the pair of maps

d0, d1 : qFYi q FFP ⇒ qFYi q FP.

Finally, we have our proof of Proposition 3.3.6:

proof of Proposition 3.3.6. This follows immediately from Corollary 3.3.20 and the canoni-

cal coequalizer description of an algebra over a monad as seen in Diagram (3.15).

Remark 3.3.21 (The Coproduct of Two Generic Operads). The coproduct of (singled

coloured) operads has been discussed in many places, including [BO15]. The author expects

to be able to construct this object with technology similar to the above. There are, however,

a couple of key technical issues that are more complicated in this scenario, namely controlling

the unit and the iterated mixed identifications of trees, and these have not yet been properly

tackled. This, along with the W -construction, will be the subject of a sequel.

3.4 Cellular Extensions

Consider the following special case of a pushout in the category of operads:

Definition 3.4.1. Let P be an operad, with u : Y0 → Y1 and h : Y0 → P maps of symmetric
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sequences. The following pushout in operads

FY0 P

FY1 P[u]

Fu

is call the cellular extension of P over u and h, as is denoted P[u].

Continuing to generalize the technology from the previous sections, we will build this

operation as a left Kan extension. Pushouts of this form have been studied in many settings,

since D. M. Kan [Hir03] showed that understanding these pushouts was the key to lifting

modeling structures to algebras over a monad. This has been explored and exploited many

times; for example, by Schwede-Shipley [SS00, Lemma 6.2] filtering cellular extensions over

the commutative monoid monad, Spitzweck [Spi01] and Berger-Moerdijk [BM03] studying

operads, White [Whi14a, Whi14b] and White-Yau [WY15] studying (algebras over) coloured

operads, Harper [Har09, Har10], Pereira [Per16] and Pereira-Hausmann [HP15] studying

spectral operads, along with many others.

Following in the footsteps of the many references above, we will then construct a filtra-

tion of the map P → P[u] in the underlying category of sequences.

Many aspects of the discussion below can be found in [BM03]. Specifically, Berger-

Moerdijk filtered precisely these pushouts above in the Appendix of [BM03]. We restructure

the results on a more categorically rigorous footing, and build a structure that may be

generalized to different settings (see, e.g. Chapter 6). Additionally, the organization of this

filtration is a generalization of the proof of Proposition 5.20 in [Per16].

To begin, we recall that the pushout defining the cellular extension is equivalent to the

coequalizer

P[u] ' coeq (FY0 q FY1 q P FY1 q P)
u∗

h∗

where u∗ and h∗ are induced by u and h respectively.

Previously, we were able to realize this coequalizer in categories, before applying Lan.
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However, in this case, we will not have that flexibility. Instead, we will use the universal

property of the desired coequalizer, as described in Lemma A.1.7.

We begin by constructing the above maps categorically via Corollary A.1.2, as before.

We first note that the left Kan extension diagrams below are two particular cases of

Corollary 3.3.6:

λ2
1T

op
−1 V

Σop

N−1
(Y0,Y1),P

val FY0qFY1qP

λ1
1T

op
−1 V

Σop

N−1
(Y1),P

val FY1qP

We will think of λ2
1T−1 as controlling all three labelings, while λ1

1T−1 will only have p1

passive nodes. Now, consider the following maps in WSpan(Σ,V).

(1) du = (du,Φu):

There is an obvious map du : λ2
1T−1 → λ1

1T−1 which is the identity on the underlying

trees, but changes the labels of all p0-nodes to p1. Moreover, we have the following natural

transformation:

λ2
1T−1 (F0 o Σ)×2 × F0 o Σ F0 o Vop × F0 o Vop Vop

λ1
1T−1 F0 o Σ× F0 o Σ F0 o Vop × F0 o Vop Vop
du

V

q×id
u∗×F0oP

F0oY0×F0oY1×F0oP

V F0oY1×F0oP

where u∗ on the pair ((A, fA), (B, fB)) is given by

⊗
A

Y0(fA(a))⊗
⊗
B

Y1(fB(b))
⊗u(fA(a))⊗id−−−−−−−−−→

⊗
A

Y1(fA(a))⊗
⊗
B

Y1(fB(b)).

Abusing notation, u∗ will refer to this map and the map induced after applying Lan.

(2) dh = (dh,Φh):

The functor dh will necessarily be more complicated, as the obvious functor “turn all

p0-nodes active” does not land in alternating trees. However, we can circumvent this issue
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by passing to λnT0. Define ∆h : λ3T0 → λ2T0 by sending (T, λ) to (T, δhλ) where δh :

{p0, p1, a} → {p1, a} is the identity on p1 and a, and sends p0 to a. Now, define dh as the

composite

λ2
1T−1 λ2

1T0 ' λ3T0 λ2T0 λ1
1T0 λ1

1T−1.
s ∆h ' d1

Heuristically, this mapping first changes the labelings, and then collapses all the new

connected components of active nodes together.

We define Φh as the following commutative diagram, where empty 2-cells are the identity;

λ2
1T−1 (F0 o Σ)×2 × F0 o Σ (F0 o Vop)×2 × F0 o Vop (Vop)×3 Vop

λ1
1T0 (F0 o Σ)×2 × F0 o T0 (F0 o Σ)×2 × Fo20 Σ (F0 o Vop)×2 × Fo20 Vop (Vop)×3 Vop

λ3T0 (F0 o Σ)×2 × F0 o Σ (F0 o Vop)×2 × F0 o Vop (Vop)×3 Vop

λ2T0 F0 o Σ× F0 o Σ F0 o Vop × F0 o Vop (Vop)×2 Vop

λ1
1T0 F0 o Σ× F0 o Ω0 F0 o Σ× Fo20 Σ F0 o Vop × Fo20 Vop (Vop)×2 Vop

λ1
1T−1 F0 o Σ× F0 o Σ F0 o Vop × F0 o Vop (Vop)×2 Vop

s F0oC(−)
σ1 σ1

' coll coll

∆h q q ⊗×id

'

d1

V

F0oY1×F0oµ̃

coll

σ0

coll

Φ⊗

Φp Φ−1
⊗

Example 3.4.2. We demonstrate this functor on an example element in λ2
1T−1 below. The

source object T is on the left; the (non-alternating) tree ∆h(T ) which has converted the

p0-nodes active is in the middle; and the right tree has collapsed all the connected active

components. As before, black nodes are active, while white are passive, and we have labeled



69

the interior of the node to denote which kind of passive it is.

T

0

1

f

1

e

0

dc

1

b

1

0

yx

z

a

∆h(T )

1

f

1

e

dc

1

b

1

yx

z

a

dh(T )

1

f

1

e

dc
1

b

1

yx

z

a

It is now clear why we cannot build a categorical equalizer of these two maps: objects

would have to be equivalences classes of two-coloured trees, among other things. However,

we will instead build a category (more precisely, an object in WSpan(Σ,V)) which real-

izes this coequalizer after taking Lan, by building in extra maps which exactly make the

identifications we desire.

Definition 3.4.3. Let Te (“e” for “extension”) be the category with objects (T, λ) ∈

Ob(λ2
1T−1), and with arrows generated by:

(1) isomorphisms in λ2
1T−1;

(2) “passive relabeling” maps ∆v: identity map on the underlying tree, but change the

labeling on a vertex v ∈ V (T ) from p1 to p0;

(3) “active substitution” maps θw,Sw : underlying inner face map, which take an active

node Tw and substitute a (p0, a)-alternating height 3 tree Sw such that dh(Sw) = Tw.

Relations are generated by the following:

(1) any two passive relabeling maps commute;

(2) compositions of active substitutions are identified if they induce the same underlying

map in T0 after forgetting labels; and
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(3) if δv and θw,Sw are passive relabeling and active substitution maps respectively, with

v, w ∈ V (T ), then ∆vθw,Sw = θw,Sw∆v.

Example 3.4.4. The following is a composite of passive relabelings followed by some active

substitutions:

0

0

c

1

e

b

0

a

−→ 0

1

c

1

e

b

1

a

−→ 0

0

1

c

1

00

e

b

1

a

Remark 3.4.5. Some remarks:

(1) We observe that any map f has a unique decomposition (up to isomorphism) as

f = Θ∆ = ∆Θ, where ∆ (respectively Θ) is a composite of passive relabeling maps

(respectively, active substitution maps).

(2) If we have a map Θ : S → T , then dh(S) = dh(T ).

(3) λ2
1T−1 embeds into Te as a faithful subcategory, and val extends over this inclusion

(as inner face maps are tall).

We extend our nerve evaluation functors to this category, on the condition that our

preferred sequence X is again actually an operad P:

Definition 3.4.6. Define N e
(Y0,Y1),P = N e : Tope → V as N−1

(Y0,Y1),P on objects and isomor-

phisms. On passive relabeling maps δv, N
e is given by an application of u in the v-th

component; on active substitution maps θw,Sw , it is given by an application of h in the
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appropriate components, followed by the operad structure map µ̃Sw on those same compo-

nents.

Note that N e extends N−1 over the faithful inclusion mentioned above.

While Te will provide us with the most flexibility for building our desired filtration, the

proof that this category indexes cellular extensions requires one more finality result.

Definition 3.4.7. Let T0
e denote the full subcategory of Te spanned by those trees T with

|T |p0 = 0. More, let ~Te denote the wide subcategory of Te which has

(1) all isomorphisms;

(2) maps dh : dh(T )→ T ; and

(3) maps du : du(T )→ T .

We note that, by construction, the source of any non-invertible map in ~Te is in T0
e.

Lemma 3.4.8. For all n, ~Tope ↓ n is final in Tope ↓ n.

Proof. Since ~Te is a wide subcategory, it is clear that each relevant overcategory (~Tope ↓ n) ↓ (T ↓ n)

is inhabited. Further, we observe that to show such an overcategory is connected, it suffices

to show that any map f : S → T in Te factors as a zig-zag of maps in ~Te. Given such a

map f , we may factor f in Te as

f : S
∆h−−→ S′

Θu−−→

where ∆h is a composite of passive relabelings, and Θu a composite of active substitutions.

Note then, by 3.4.5, that dh(S) = dh(S′) and du(T ) = du(S′). Thus, we have our zig-zag

factorization

T
du←− duT = duS

′ du−→ S′
dh←− dhS′ = dhS

dh−→ S,

completing the argument.
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One final piece of notation for this subsection. If Ξ denotes any of our categories of trees

constructed in this section, let Ξ(n) denote the full subcategory of trees with n leaves.

This leads us to our categorical description of P[u]:

Proposition 3.4.9. LanvalN
e is isomorphic to the coequalizer of the pair

(du, dh) : FY0 q FY1 q P ' LanvalN
−1
(Y0,Y1),P ⇒ LanvalN

−1
(Y1),P ' FY1 q P;

In particular, LanvalN
e ' P[u].

Proof. By Lemma 3.4.8, we have

LanvalN
e(n) ' colim

Tope ↓n
val(T )←n

N e(T ) ' colim
~Tope ↓n

val(T )←n

N e(T )

Since T0
e contains all the minimal elements of ~Te, we may write

LanvalN
e(n) '

∐
T0
e(n)

N e(S)⊗Aut(S) Σn/ ∼

for relations ∼ generated by the morphisms in ~Te. Specifically, we that LanvalN
e has the

following universal property: for any Z ∈ VΣop , a map VΣop(LanvalN
e, Z) is given by a

collection of maps of the form

f(T ) : N e(T )⊗Aut(T ) Σn → Z(n)

indexed by the objects in ~Te(n), such that for any maps ϕ : S → T and ϕ′ : S′ → T in ~Te,

we have that the diagram

N e(T ) N e(S)

N e(S′) Z(n)

ϕ∗

ϕ′∗ f(S)

f(S′)

commutes, with both compositions equal to f(T ). Since for every target T there are exactly
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two maps (up to isomorphism), dh and du, in ~Te, we conclude that map LanvalN
e → Z are

given by collections {f(S)}, this time indexed over the elements of T0
e, such that for all ∆

and Θ as before, we have that the diagram

N e(T ) N e(S)

N e(S′) Z(n)

∆

Θ ϕ(T )

ϕ(S′)

commutes. Unpacking the notation, this is precisely the condition for the desired coequalizer

as given by Lemma A.1.7.

3.5 Filtration of Cellular Extensions

In the previous section, we built the cellular extension P[u] as a left Kan extension out of

Te. Thus, if we can construct a filtration of Te, we will get a filtration of P[u].

To that end, we make the following definitions, beginning with establishing some nota-

tion.

Definition 3.5.1. Given T ∈ Te, define |T |p0 , |T |p1 , and |T |a to be the number of p0-, p1-,

and a-labeled vertices, respectively. Further, define |T | = |T |p = |T |p0 + |T |p1 .

Now, we begin to filter our category Te:

Definition 3.5.2. (1) Let Te[≤ k] (respectively Te[k]) be the full subcategory of Te

spanned by trees T with |T | ≤ k (respectively, |T | = k).

(2) Let T−−e [≤ k] (respectively T−e [k]) be the full subcategory of Te[≤ k] (respectively

Te[k]) spanned by trees T with |T |p1 6= k.

(3) Let T0
e[≤ k] (respectively T0

e[k]) be the full subcategory of Te[≤ k] (respectively Te[k])

spanned by trees T with |T |p1 = k.

Remark 3.5.3. The categories Te[k] and T−e [k] have only very limited morphisms, as there
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cannot be any “active substitutions”. Thus, any map S → T included just changes some

p1-labelings into p0-labelings, while the underlying alternating tree in λ1
1T−1 remains fixed.

The next three lemmas will allow us to connect the various levels of the filtration,

providing the necessary means to bootstrap out way up our construction.

Lemma 3.5.4. The category Te[≤ k − 1]op ↓ n is terminal in T−e [≤ k]op ↓ n

Proof. We need to show that, for fixed n → val(T ) with T ∈ T−e [≤ k], the overcategory

(Te[≤ k − 1]op ↓ n) ↓ (n → val(T )) is non-empty and connected. Since |T |p0 6= 0 by

assumption, dh(T ) ∈ Te[≤ k − 1], and so we have the natural object

val(T ) val(dh(T ))

n

in the desired overcategory. Moreover, given any other object

n→ val(S)
val(f)−−−−→ val(T )

in this overcategory, Remark 3.4.5 says we have a factorization f : S
∆−→ S′

Θ−→ T , and

moreover that dh(T )→ T factors through S′:

val(T )

val(dh(T )) val(S′) val(S)

n

val(Θ′)

val(Θ)

val(∆)

val(f)

Thus this overcategory is connected, and hence the result is shown.

Lemma 3.5.5. T0
e[k]op ↓ n is terminal in Te[k]op ↓ n.

Proof. Analogously to the above, we have that the arrow du(T ) → T provides a canonical

element in the necessary overcategory, and since the only maps in Te[k] are of type (2), any
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map ∆ : S → T induces a factorization of du(T )→ T through S.

Lemma 3.5.6. Te[≤ k] is the isomorphic to the pushout below.

T−e [k] T−e [≤ k]

Te[k] Te[≤ k]

In fact, it is a nervous pushout of fully-faithful functors (see A.1.4). Moreover, this result

also holds if we restrict to the subcategories of trees with exactly n leaves.

Proof. Since maps in Te can only increase | − | by adding to | − |p0 , if T is a tree with

|T |p+1 = k, and S is the source (respectively, target) of an arrow to (respectively, from)

T in Te[≤ k], then |S| = k, and hence the arrow is actually in Te[k]. The result is then

immediate from unpacking definitions. The moreover follows from the fact that no map in

Te changes the number of leaves.

Abusing notation, we will denote by N e the restriction of that functor to any of the

subcategories of Te described above.

We now define the sequences which will make up our filtration of P[u]:

Definition 3.5.7. Let Pk denote the left Kan extension

Te[≤ k]op V

Σop

val

Ne

Pk

Note that by Lemma A.1.2, we have natural maps Pk−1 → Pk.

3.5.1 Notation

In order to state our filtration result, we will need to identify another categorical construc-

tion. This filtration will be built out of “pushout products over trees of maps of sequences”.

This subsection will be dedicated to making the components of that statement precise.
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Recall the categorical wreath product, defined in Definition 3.1.2.

Definition 3.5.8. Given a map u : Y0 → Y1 of sequences and (A,D) ∈ F0 o Σ, we borrow

notation from [BM03] and define the functor [u]D : (0→ 1)A → V as the composite

(0→ 1)A → F0 o V
⊗−→ V

where the first map is defined on ε : A→ {0, 1} by

(ε(a))a 7→ (A, (Yε(a)(D(a)))a).

We recall that, in a general category C, a subcategory C′ ⊆ C is called convex if whenever

c′ ∈ C′ and c 7→ c′ is an arrow in C, then both c′ and the map are in C′.

Definition 3.5.9. Let C be a convex subcategory of (0 → 1)A. We define QAC [u]D :=

colimC [u]D; moreover, given nested convex subcategories C′ ⊆ C, let

[u]D�CC′ : QAC′ [u]D → QAC [u]D

denote the unique natural map.

In particular, if C is the full “punctured cube” subcategory (0→ 1)A\{(1)a}, we simplify

the notation as follows:

Q[u]D := QC [u]D

[u]�D := [u]D�(0→1)A

C : Q[u]D →
⊗
a∈A

Y1(D(a)).

3.5.2 Filtration Result

We can now state our filtration of the cellular extension P → P[u]:

Theorem 3.5.10. Let P be an operad, and suppose we are given a map of symmetric

sequences u : Y0 → Y1. Then we have a levelwise filtration in sequences of the cellular
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extension P → P[u]. Specifically, for each n, in the underlying category VΣn we have a

filtration

P[u](n) ∼= colim(P0(n)→ P1(n)→ P2(n)→ . . .)

of P(n) → P [u](n), where P0 := P and the Pk are build inductively via pushout diagrams

of the form

∐
[T ]∈T0

e[k](n)/'

 ⊗
v∈Vb(T )

P(Tv)⊗Q[u]Vp(T )

⊗Aut(T ) Σn Pk−1(n)

∐
[T ]∈T0

e[k](n)/'

 ⊗
v∈Vb(T )

P(Tv)⊗
⊗

v∈Vp(T )

Y1(Tv)

⊗Aut(T ) Σn Pk(n)

where the left vertical map is the iterated box product

∐
�

Vb(T )
ιP (Tv)�[u]�Vp(T )

where ιP (Tv) denotes the canonical map ∅ → P(Tv) out of the initial object, and T0
e[k](n)

is as above (Definition 3.5.2).

Proof. Combining Lemmas A.1.5 and 3.5.6, we have that Pk(n) can be computed as the

pushout

colimT−e [k]op↓nN
e colimT−e [≤k]op↓nN

e

colimTe[k]op↓nN
e colimTe[≤k]op↓nN

e := Pk(n)

(3.16)

By Lemma 3.5.4, the top right corner can be identified with Pk−1(n). Thus, it remains to

identify the left hand side.

By Lemma 3.5.5, we may replace the bottom left corner with colimT0
e[k]op↓nN

e. Now,

given T ∈ T0
e[k], let [T ] denote the isomorphism class of T in T0

e[k]. With this notation, the
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bottom left corner can further be identified with

∐
[T ]∈T0

e[k](n)/'

N e(T )⊗Aut(T ) Σn =
∐
[T ]

 ⊗
v∈Va(T )

P(Tv)⊗
⊗

v∈Vp1 (T )

Y1(Tv)

⊗Aut(T ) Σn.

Next, we observe that the non-invertible morphisms of T−e [k]op ↓ n are just those which

change the labeling of some nodes from p0 to p1. Given S and T in T−e [k], write S ∼ T

if they are in the same path component, and again note that this implies |S|p = |T |p, and

moreover that S and T forget to the same object in λ1
1T−1. Denote the path component of

T by (T ).

We note that the set of path components is equal to the set of isomorphism classes in

T0
e[k], as both are just determined by their forgetful image in λ1

1T−1.

To account for the Σn-action on the indexing category, we note that each connected

component of T−e [k]op ↓ n has an action of Aut([T ]). Thus, the top left corner of Diagram

(3.16) can be identified with the image on the right below:

∐
[T ]∈T0

e[k](n)/∼

 ∐
S∈(T )\{T}

N e(S)

⊗Aut(T ) Σn

∐
[T ]

 ⊗
v∈Va(T )

P(Tv)⊗Q[u]Vp(T )

⊗Aut(T ) Σn

colim

where Q[u]Vp(T ) is the source of the pushout product map defined in Definition 3.5.9.

Lastly, this left-side map is induced, via Lemma A.1.2, by an inclusion of categories, in

particular the product of multiple inclusions of categories, each corresponding the inclusion

of a punctured cube into the full cube. Thus, after taking colimits, we have that the left-side

map in Diagram (3.16) is in fact (multiple copies of) the pushout-product maps

[u]�Vp(T ) : Q[u]Vp(T ) →
⊗

v∈Vp(T )

Y1(Tv)),
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as desired.

3.6 An Aside on the Composition Product

We end this chapter by briefly using the above notations and analysis to present the com-

position product description of operads in a new language. To do so, we build another

category of structured trees.

Definition 3.6.1. Let T0[ 2
m ] denote the full subcategory of T0 height-2 trees with root

vertex Cm; that is, all trees of the form T = Cm ◦ (Cki).

This has a natural vertex functor

V : T0[ 2
m ]→ Σm o Σ

(where we are thinking of Σm as the full subcategory of F0 spanned by {[m]}), sending

Cm ◦ (Cki) to the tuple ([m]; k1, . . . , kn), and an underlying valence functor

val : T0[ 2
m ]→ Σ.

Let T−0 [ 2
m ] denote the subcategory of T0[ 2

m ] where we restrict arrows to just vertex-

preserving (non-planar) isomorphisms; in particular, the automorphism group of T = Cm ◦

(Cki) is just Σk1 × . . . × Σkm with no wreath products. In this case, V lands in simply

Σ×m × Σm.

Definition 3.6.2. Given symmetric sequences Y1, . . . , Ym and X, let Nm,−
(Yi),X

denote the

composite functor

Nm
(Yi),X

: T0[ 2
m ]op

V−→ (Σ×m)op × Σop
m

Y1×...×Ym×X−−−−−−−−−→ V×m+1 ⊗−→ V.
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If the Yi are all equal, then we have a similar functor Nm
(Y ),X given by

Nm
(Y ),X : T0[ 2

m ]op
V−→ Σm o Σop ΣmoY×X−−−−−−→ Σm o V × V

⊗−→ V.

Lemma 3.6.3. Suppose we are given symmetric sequences Y1, . . . , Ym, and X in VΣop.

(1) The tensor product Y1⊗. . .⊗Ym is isomorphic to the left Kan extension LanvalN
m,−
(Yi),∗,

where ∗ is the constant presheaf to the unit of V.

T−0 [ 2
m ]op V

Σop

val

Nm,−
(Yi),∗

Lan'Y1⊗...⊗Ym

(2) The composition product X◦Y is isomorphic to the left Kan extension Lanval(qNm
(Y ),X);

∐
m T0[ 2

m ]op V

Σop

val

qNm
(Y ),X

Lan'X◦Y

Proof. These follow formally from unpacking the explicit description and universal proper-

ties of the coends from Definition 2.2.6 and left Kan extensions.

Remark 3.6.4. We expect to be able to show that the structure maps of being a monoidal

product in V can be constructed in this language, similarly to the monad structure maps

above, in fact using similar technology of categorical pullbacks. The precise formulation

will be explored in a sequel.
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Chapter 4

Equivariant Homotopy Theory and
Equivariant Operads

One of the major goals of rebuilding the construction of general operads given in the first

chapters of this thesis is to provide categorical frameworks which are robust enough to be

generalized in many different directions, particularly to the world of equivariant operads.

In this chapter, we begin by discussing some of the basics of equivariant homotopy theory,

and specifically the complexities of equivariant operads mentioned in the introduction. After

remodeling the theory of G-coloured operads using the machinery from Chapter 3, we will

end by giving partial results on the existence of genuine model structures on VOpG{∗} for

general V. In particular, we will prove a conjecture of Blumberg-Hill comparing “N∞-

operads” with indexing systems.

To that end, we fix a finite group G, and a closed symmetric monoidal category V.

Remark 4.0.1. While some of the following discussion may hold for compact Lie groups,

much of it would have to be reworked significantly; see, e.g. [Blu06] for some examples of

issues that can arise homotopically when working with infinite groups.

4.1 Introduction to Equivariant Homotopy Theory

We will briefly discus some of the major components of equivariant homotopy theory; see

[Ada84] for a standard introduction, or [LMSM86] and [May96] for a comprehensive look.



82

Definition 4.1.1. Let FG denote the category of G-sets and G-maps, and OG the full

subcategory of FG spanned by the transitive G-sets G/H for H a subgroup of G.

We think of G also as a groupoid with one object and the set G of morphisms. More

generally, given any G-set A, let BAG denote the groupoid with objects A and morphisms

g : a→ g.a for all pairs (g, a) ∈ G×A.

Definition 4.1.2. Given any category V, we denote by VG the category of left G-objects

and G-maps; equivalently, functors Gop → V.

Lemma 4.1.3. If H is a subgroup of G, the natural map H → BG/HG sending ∗ 7→ eH

induces an equivalence of categories VH � VBG/HG.

Definition 4.1.4. For a subgroup H of G, define the H-fixed point functor (−)H : VG → V

by the composition

VG → VH lim−−→ V

of the restriction functor with the limit functor. Considered all together, this provides a

functor

VG → VO
op
G

where VO
op
G is the category of G-coefficient systems in V, sending V to its fixed-point system.

Example 4.1.5. For V the category of spaces, simplicial sets, vector spaces, etc, this gives

the usual notion. In particular, if A ∈ FG, then AH = {a ∈ A | h.a = a for all a ∈ A}.

Analogous to the fact that any cocomplete category V is copowered over sets, any VG

is copowered over G-sets: given A ∈ FG and V ∈ V, define A · V = qAV , where the G-

action acts both on the indices and the object V . This in fact defines a left adjoint to the

fixed-point functors above:

Lemma 4.1.6. The functors (−)H : VG � V : G/H · (−) form an adjoint pair.

Moreover, if V is enriched over E (e.g. E = Set), the category VG is enriched over EG,

as G acts on hom(V,W ) ∈ E by conjugation. Then we observe that VG(V,W ) = V(V,W )G.
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Given a homomorphism ϕ : H → G, we have a collection of adjoints encoding a change

of groups

VH VG

coindGH

indGH
resGH

given by

ind(V ) = G ·H V

coind(V ) = homH(G,V )

res(W ) = ϕ∗W

Now, one of the first results in equivariant homotopy theory is Elmendorf’s Theorem,

which says that the “correct” homotopy theory of G-spaces (V = Top or sSet) requires

understanding the homotopy type of each fixed-point space.

Definition 4.1.7. A G-map f : X → Y of G-spaces is called a (genuine) weak equivalence

(respectively, (genuine) fibration) if fH : XH → Y H is so in Top for all H ≤ G. We call

f a (genuine) cofibration if it has the left lifting property against fibrations which are also

weak equivalences.

In the category of coefficient systems, it is enough to consider the homotopy of the

underlying objects:

Definition 4.1.8. A map of G-coefficient systems of spaces f : A→ B is a weak equivalence

(respectively, fibration) if f(G/H) : A(G/H)→ B(G/H) is so in Top for all H ≤ G.

Theorem 4.1.9. [[Elm83, Pia91]] There are Quillen model structures on G-spaces and G-

coefficient systems with the above weak equivalences and fibrations. Moreover, the adjunction

(evG/e,Φ) is a Quillen equivalence.

Φ(−) : TopG
'Q−−→ TopO

op
G : evG/e.
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The above model structure on TopG is often referred to as the “genuine” model structure.

This definition of the homotopy theory of G-spaces is necessary to have, for example,

Whitehead-type theorems.

Definition 4.1.10. A G-CW complex is a G-space built out of sequential pushouts of the

form ∐
iG/Hi · Sn−1 Xn−1

∐
iG/Hi ·Dn Xn.

Theorem 4.1.11 ([L0̈5, Theorem 1.6]). A map f : X → Y between G-CW complexes is a

weak G-equivalence if and only if it is a strong G-homotopy equivalence: there eixsts a map

f ′ : Y → X such that ff ′ and f ′f are G-homotopic to idY and idX , respectively.

The existence of this and similar results allows us to conclude that this notion of weak

G-equivalence captures the correct homotopy theory of G-spaces.

Analogous results to Theorem 4.1.9 remain true for other base model categories V besides

spaces: simplicial presheaves [Gui06], the Thomason model structure on small categories

[BMO+15], simplicial groups [Ste16], chain complexes [Ste16], and simplicial categories

[Ber17], among many others. Much of this follows from the work of Piacenza [Pia91],

Guillou [Gui06] and Stephan [Ste16], which says that model structures of that form on VG

exist given some assumptions of good behavior by the fixed-point functors on VG.

In fact, Stephan’s results are slightly more general. We have already used the notation

of the orbit category OG of G, which has as objects all orbits G/H, and G-maps between

them. Certain full subcategories of OG are of particular importance.

Definition 4.1.12. Given a group G, we will denote by L(G) the lattice of subgroups of

G under inclusions. For any subset F ⊆ L(G), denote by OF the full subcategory of OG

spanned by objects G/H with H ∈ F .

A family of subgroups of G is a subset F ⊆ L(G) of subgroups of G such that F is

closed under subgroups and conjugation; that is, if H ∈ F , then so is Kg for any K ≤ H
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and g ∈ G. Equivalently, F ⊆ L(G) is a family if and only if the associated orbit category

OF is a sieve of OG: for any arrow A→ B in OG with B ∈ OF , A is also in OF .

Now, let V be some cofibrantly generated model category, with generating cofibrations

and trivial cofibrations I and J . We recall (cf. 1.2.8) that, for any family F , VOF admits

the projective model structure.

Definition 4.1.13. Given a family F , we say VG admits the F-model structure if there is

a model structure on VG where f : A→ B is a weak equivalence (respectively, fibration) if

fH : AH → BH is so for all H ∈ F .

Definition 4.1.14 ([Gui06, Ste16][BMO+15, Proposition 1.5]). Let G be a group, and F

a collection of subgroups of G. We call V F-cellular if, for all H ∈ F , the H-fixed point

functor (−)H

(1) preserves directed colimits of diagrams in VG, where each underlying arrow in V is a

cofibration;

(2) preserves pushouts of diagrams where one leg is given by

G/K ⊗ f : G/K ⊗A→ G/K ⊗B

for a subgroup K ≤ G and a generating cofibration f : A→ B in V; and

(3) for any subgroup K ≤ G and any object A of V, the induced map

(G/K)H ⊗A→ (G/K ⊗A)H

is an isomorphism in V.

There is a natural adjunction

τ∗ : VG � VO
op
F : τ∗
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induced by the inclusion of categories τ : G↪→OF which sends the unique object to G/e.

Explicitly, τ∗X(G/H) = XH , while τ∗Y = Y (G/e).

Proposition 4.1.15 ([Ste16, Proposition 2.6, Theorem 2.10]). Let G be a group and F

a collection of subgroups of G such that the cofibrantly generated model category V is F-

cellular. Then VG admits the F-model structure, where the generating cofibrations are given

by

IF = {G/H · i | H ∈ F , i ∈ I}

and similarly for the generating trivial cofibrations. Moreover, the adjunction (τ∗, τ∗) is a

Quillen equivalence between F-coefficient systems with the projective model structure and

G-objects with the F-model structure.

Lastly, families also allow us to specify certain universal homotopy types:

Definition 4.1.16. Given a family F of subgroups of G, define a universal space for the

family, if it exists, to be a space EF such that

EFH ∼


∗ H ∈ F

∅ otherwise

Lemma 4.1.17 ([L0̈5]). For all families F , there exist models for EF which are G-CW

complexes.

4.2 Equivariant Operads

In this section, we will investigate the properties of the category of G-operads.

Definition 4.2.1. The category of G-operads in V is the category VOpG of G-objects in

VOp.

We will begin our discussion by restricting our consideration to just G-operads with a

single colour. This subcategory VOpG{∗} is equivalent to the category VGOp{∗} of single-
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coloured operads in VG; that is, objects are symmetric sequences O = {O(n)} of G × Σn-

objects O(n), with G-equivariant composition maps, and a G-fixed unit.

Definition 4.2.2. We denote the category of symmetric G-sequences (VG)Σop ' VG×Σ by

SymG.

4.2.1 Homotopical Considerations

Now, as we saw above in Section 2.2.3, the category VOp{∗} of (single-coloured) V-operads

often has a model structure induced by the forgetful functor

fgt : VOp{∗} → VN

where the category of non-symmetric sequences is given the projective model structure:

an arrow f : O → P of V-operads is a weak equivalence (respectively fibration) if f(n) :

O(n)→ P(n) is one in V.

This leads us to a natural question: does the technology of [Ste16] endow the category

of G-operads with a model structure, and if yes, it is a useful one?

Let us consider what this model structure would give us. We would be declaring that

f : O → P is a weak equivalence of G-operads if fH : O(n)H → P(n)H were weak

equivalences in V for all H ≤ G. In order for this to be a useful model structure, this

should not, for example, identify any G-operads with substantially different algebras.

We return to the discussion in the introduction. Restricting to V = Top, we recall

the E∞-operads of Section 2.2.1, which encoded “commutative monoids up to coherent ho-

motopy”, providing models for infinite loop spaces, connective spectra, and commutative

ring spectra; these are characterized by the fact that each space O(n) is Σn-free and con-

tractible. In particular, if O is cofibrant in the above model structure, and the natural map

O → Comm is a weak equivalence, then O is E∞.

Equivariantly, there is a stronger notion of an infinite loop space:

Definition 4.2.3. Given a finite dimensional orthogonal G-representation V , let SV denote
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the one-point compactification V q {∞} of V ; this is naturally a G-space, and we will call

SV a representation sphere.

Definition 4.2.4. A G-space X is called an equivariant infinite loop space if for all repre-

sentations V there exists another G-space XV such that X ∼ hom(SV , XV ).

We again have a natural correspondence between equivariant infinite loop spaces and

connective G-spectra. Moreover, we note that commutative G-monoids have unique maps

not just of the form Xn → X, but instead NAX → X, where A is an H-set for H ≤ G, and

NAX is a “multiplicative norm” of X, where G acts not only on the copies of X, but also on

the indexing set A. In [HHR16], these unique (up to coherent homotopy) maps associated

to “genuine commutative G-ring spectra” (up to coherent homotopy) were fundamental in

the solution to the Kervaire Invariant One problem. As this structure is found on “universal

deformations” of commutative monoids, again these objects should all be described by the

same G-operad, as they were in the non-equivariant case.

Thus, we would like to generalize the notion of E∞ so that it covers all of this additional

behavior. A “natural” guess would be the following:

“A G-operad O is an E∞-operad if each space O(n) is Σn-free and G-contractible.”

Example 4.2.5. If O is a non-equivariant E∞-operad, and we endow it with the trivial

G-action, the resulting object has the G× Σn-homotopy type given by

O(n)Λ ∼


∗ Λ ≤ H

∅ otherwise

and in particular, it satisfies the above condition.

However, these operads encode structure strictly weaker than the above desiderata.

In particular, such O only encode “infinite loop spaces with G-actions”, or non-genuine

commutative G-ring spectra with no norm maps [CW91, BH15].
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Instead, the correct notion was later identified by Costenoble-Waner [CW91]. The main

issue is that “Σn-free and G-contractible” does not determine a unique G × Σn-homotopy

type. In particular, it just tells us that

(1) if Λ ≤ G, O(n)Λ ' ∗;

(2) if Λ ∩ Σn 6= {e}, O(n)Λ = ∅.

If H ≤ G were the only subgroups of G × Σn that did not intersect Σn non-trivially, we

would be done. However, there are often many more such subgroups:

Lemma 4.2.6 ([BH15]). Λ ≤ G × Σn is such that Λ ∩ Σn = {e} if and only if Λ = Γ(ϕ)

for some group homomorphism

G H Σn.
ϕ

Definition 4.2.7. We call such subgroups graph subgroups, and, as it is clear that these

form a family, denote the family of all graph subgroups of G× Σn by Γ(G,Σn).

Thus, “Σn-free and G-contractible” does not specify the homotopy type of O(n)Γ for

non-trivial graph subgroups Γ, and our example above is the model with the G×Σn-action

as free as possible, with all the extra fixed-point spaces empty. Dually, we have the following:

Definition 4.2.8 ([CW91]). A G-E∞-operad is an operad in G-spaces such that, for each

n,

O(n)Λ ∼


∗ Λ = Γ(ϕ) is a graph subgroup of G× Σn

∅ otherwise

Equivalently, O(n) = EGΣn is a universal space for G-equivariant Σn-bundles.

Algebras over these have the rich structure we desire:
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Theorem 4.2.9 ([CW91, Theorem 1]). If X is a group-like G-space of the homotopy type

of a G-CW complex, which further has an action of a G-E∞-operad, then X is G-homotopy

equivalent to an equivariant infinite loop space.

The upshot of this discussion is that the model structure on topological G-operads

induced by the technology of Stephan on the orbit category is insufficient, as it is too

coarse to detect the differences between G-trivial E∞-operads encoding infinite loop spaces

with G-actions and genuine G-E∞-operads encoding equivariant infinite loop spaces.

Thus, in order to talk about the homotopy theory of G-operads, we must be able to

detect the fixed-point information for all graph subgroups.

Definition 4.2.10. We say VOpG{∗} admits the genuine equivariant model structure if there

exists a model structure where f : O → P is a weak equivalence (respectively, fibration) if

f(n)Γ : O(n)Γ → P(n)Γ is one in V for all graph subgroups Γ ≤ G× Σn and all n.

A fundamental challenge to proving the existance of such a model structure is that said

structure is no longer the lifting of a projective model structure on a diagram category: for

each indexing element n ∈ N, there is a different model structure we need to worry about.

Thus, in particular, the machinery of [BM03] will also not provide us with an easy solution.

4.2.2 N∞ Operads

While the original definition of equivariant E∞-operad we gave did not sufficiently capture

all of the equivariant complexities, precisely the idea that it is insufficient leads us to the

following conclusion:

there are multiple notions of equivariant homotopy commutativity.

The two examples in the previous section provide two different versions. However, as

we noted, there is an entire family worth of subgroups we can play around with. To that

end, Blumberg-Hill made the following definition:
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Definition 4.2.11 ([BH16]). An N∞-operad is any G-operad of spaces such that O(n) ∼

EFn(O), where Fn(O) is family of graph subgroups of G×Σn which contains all “trivial”

graph subgroups of the form H × {1}.

That is, O(n)Γ ' ∗ for all Γ ∈ Fn(O), and is empty otherwise. In particular, for all N∞

operads, O(n) is Σn-free and G-contractible.

Lemma 4.2.12. The underlying non-equivariant operad of any N∞-operad is an E∞-

operad.

Example 4.2.13. Examples include generalizations of non-equivariant E∞-operads, namely

the linear isometries, little disks, and Steiner operads for (not-necessarily-complete) G-

universes U , where we recall a G-universe is a countably infinite-dimensional orthogonal

G-representation which contains each finite-dimensional subrepresentation infinitely often

and for which UG is non-empty.

Definition 4.2.14. We say a map f : O → P of N∞-operads is a weak equivalence if

fΓ : O(n)Γ → P(n)Γ is a weak equivalence of spaces for all graph subgroups Γ ≤ G × Σn.

Denote by Ho(N∞) the homotopy category of N∞-operads under weak equivalences.

Blumberg-Hill characterized N∞-operads up to weak equivalence, by studying the re-

quired compatibilities between the various families Fn in the defining structure of some

N∞-operad O. This led to the notion of an indexing system.

Definition 4.2.15. A symmetric monoidal coefficient system is a contravariant functor

C : OopG → CatSym, the category of symmetric monoidal categories and strong symmetric

monoidal functors.

Example 4.2.16. The canonical example is the system Set, which sends G/H to (SetH ,q).

We will be interested in specific sub-systems of Set.

Definition 4.2.17. An indexing system is a full symmetric monoidal sub-coefficient system

F of Set that contains all trivial H-sets for each H ≤ G and is closed under
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(1) finite limits and

(2) “self-induction”: if H/K ∈ F(G/H) and A ∈ F(G/K), then H ·K A ∈ F(G/H).

Let I denote the poset category of indexing systems under inclusion.

In particular, we note that any indexing system F is closed under isomorphisms, restric-

tions, subobjects, products, coproducts, and self-induction.

Any subsystem F ⊆ Set induces a collection F = {Fn} of families of graph subgroups

of G× Σn, and vice versa.

Definition 4.2.18. Given F ⊆ Set, we say Γ(ϕ) ≤ G× Σn is F-admissible if {1, 2, . . . , n}

with the H-set structure induced by ϕ is in F(G/H).

Conversely, given a collection F = {Fn} of graph subgroups, we say an H-set A of

cardinality n is F-admissible if, for any choice of bijection A→ |A|, the map ϕ : H → Σ|A|

defining the H-set structure on A, we have Γ(ϕ) ∈ Fn. We will abuse notation and denote

by ΓA any graph subgroup Γ(ϕ) constructed as above (though we note that ΓA is defined

up to conjugation by elements in Σ|A|).

Lemma 4.2.19. These are inverse operations.

Definition 4.2.20. We call a collection F = {Fn} indexing if F is an indexing system.

By definition, we have a collection F(O) = {Fn(O)} associated to any N∞-operad $O,

and hence a subsystem F(O) of Set.

Theorem 4.2.21 ([BH16, Corollary 5.6]). For any N∞-operad O, the associated coefficient

system F(O) is an indexing system. Moreover, F defines a fully-faithful functor Ho(N∞)→

I.

Blumberg-Hill also make the following conjecture:

Conjecture 4.2.22 ([BH16]). The natural functor Ho(N∞) → I is essentially surjective,

and hence an equivalence of categories.
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This conjecture will be confirmed below in Corollary 4.3.11.

Remark 4.2.23. Gutierrez-White [GW] have independently announced a confirmation of

this conjecture.

Remark 4.2.24. Blumberg-Hill also offer a candidate for a more categorical model for

these N∞-operads, based on the equivariant Barrett-Eccles operad of [GMM12]. However,

the author has shown that these candidate objects fail to have the desired structure for

almost any group or any indexing system; see Appendix B for more details.

We note that the structure theorem says that F(O)-admissible sets are closed un-

der restrictions, conjugations, isomorphisms, products, coproducts, subobjects, and self-

induction.

Remark 4.2.25. The algebra of indexing systems has also been studied by Blumberg-Hill

[BH16]. In particular, they have shown that the poset of indexing systems is isomorphic

to the poset of subcategories D of FG such that the category of restricted polynomials of

G-sets

X ← A
f−→ B → Y

with f ∈ D is a subcategory of the full category of polynomials.

4.2.3 Evaluation on G-Sets

Given a single-coloured G-operad O, one method to access the desired fixed-point data

needed for the genuine equivariant model structure (cf. 4.2.10) more explicitly is to change

the underlying category of symmetric sequences, in particular so our operad is evaluated on

all finite G-sets (and finite H-sets for H ≤ G). Specifically, given a symmetric G-sequence
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X ∈ (VG)Σop , consider the left Kan extension induced by the span

Σ VG VG

FG

FG

i

X

Lan=i!X

where we recall CG is the G-set-enriched category of G-objects in C. Explicitly, we see that

i!X(A) ' X(|A|)×Σ|A| Iso(n,A).

Remark 4.2.26. We make a couple of observations:

(1) By first forgetting to an H-operad, this construction yields evaluations on all H-sets

for all H ≤ G.

(2) If A is an H-set of cardinality n, then X(A) is non-equivariantly isomorphic to

X(n). However, the G-action on A is “twisting” the Σn-action, and in fact X(A) ∈

VGnIso(A,A).

(3) For the same A, we note that X(A)H ' X(n)ΓA where ΓA = Γ(ϕ) for some (any)

homomorphism

G←↩ H ϕ−→ Σn

which encodes the H-set structure on A.

Moreover, it is not hard to check that i!X is in fact an enriched functor, nor that the

following lemma holds.

Lemma 4.2.27. The left Kan extension over i induces an adjoint pair

i! : SymG � FunG(FG,VG) : i∗
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where FunG(−,−) is the category of G-enriched functors. Moreover, this adjunction is in

fact an equivalence of categories.

Previous work of the author [Bon16] has shown that these evaluations on G-sets can be

incorporated into an operadic structure, yielding composition structure maps

X(A)×
∏
a∈A

X(Ba)→ X(qaBa)

for any G-sets A and Ba, which are associative, unital, natural in the A and (Ba), and

“almost equivariant”. This last property refers to the fact that we are taking a G-set-

indexed product over a collection of G-sets with no known compatibility, and thus we

cannot “act on the indices” as we would like to; this would require the Ba to be StabG(a)-

sets, and compatibly so. This is one of the major flaws of the model of equivariant operads

presented thus far: structure maps of the form, for example,

O(H/K)H ×

∏
H/K

O(h∗K/L)K

H

→ O(H/L)H (4.1)

where h∗K/L = hKh−1/hLh−1, cannot be easily seen or analyzed effectively.

This will be one of the motivations to develop “genuine equivariant operads”, as we do

in Chapter 6.

4.2.4 Equivariantly Coloured Operads and another Free Operad Monad

We now analyze the situation where our G-set C of colours need not be trivial. Thus, in

addition to the structure found in Definition (cf. 2.2.15), we have an action of G on set of

signatures, and the composition structure maps need to be natural over this action.

We can encode this categorically. As before (cf. Section 2.2.2), let Σ/C denote the set

of (n+ 1)-tuples ξ = (c1, . . . , cn; c) ∈ C×n× C. However, unlike in the non-equivariant case,

Σ/C now has a G-action which is not currently being recorded. To that end, we define the

following Grothendieck category:
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Definition 4.2.28. Let Σ/C =
∫
G×Σ Sig(C) denote the Grothendieck construction associ-

ated to the functor

G× Σ
Sig(C)−−−−→ Set↪→Cat

defined by (∗, n) 7→ C×n × C, where Σn acts on C×n by permutations, and G acts on C×n+1

diagonally.

Explicitly, objects of Σ/C are signatures, or (n+ 1)-tuples ξ = (c1, . . . , cn; c0) of colours,

and maps ξ → ξ′ are pairs (g, σ) ∈ G × Σn such that ci = gc′σ−1i for all i ∈ {0, 1, . . . , n}

(where σ is the identity on 0).

A C-symmetric sequence is a functor X : Σ/C → Set.

For any C-symmetric sequence X and signature ξ ∈ C×n × C, we observe that X(ξ) ∈

VStabG×Σn (ξ).

Definition 4.2.29. A C-coloured operad is a C-symmetric sequence O with units 1c ∈

O(c; c) for each c ∈ C, and composition maps

O(a1, . . . , an; a0)×
∏
i

O(b1i , . . . , b
ki
i ; ai)→ O(b11, . . . , b

kn
n ; a0)

which are associative, G- and C-equivariant, and unital.

We denote by VOpGC the category of C-coloured operads and maps of sequences which

preserve the given structure.

Definition 4.2.30. The category VOpG is the Grothendieck construction on the functor

FG → Cat sending C to VOpGC . Explicitly, maps O → P are given by G-maps of colours

f : C(O)→ C(P) and a map O → f∗P in VOpGC .

Remark 4.2.31. Operads in the category VGOp do not have a G-action on their sets of

objects; instead, for each signature ξ ∈ C×n × C, we have O(ξ) ∈ VG×StabΣn (ξ).

We observe that there is a natural forgetful functor VOpGC → VΣ/C . In fact, more is

true:
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Theorem 4.2.32. The forgetful functor is part of a monadic adjunction

VOpGC VΣ/C .
fgt

F
(4.2)

Remark 4.2.33. If C = {∗}, then this is precisely the adjunction (3.1) for VG.

We observe that this agrees with our notion of morphism of C-coloured operads above,

as maps of sequences which preserve the structure.

We prove this theorem by a series of lemmas, generalizing the methods of Section 3.2

to build the left adjoint directly.

Definition 4.2.34. Let T0/C be the category of “C-coloured planar trees” defined as the

Grothendieck of the following functor:

T0 ×G Cat

(T, ∗) BCG
E(T )

Explicitly, objects are pairs (T, c) with T ∈ T0 a planar tree, and c : E(T )→ C is a colouring

of the edges. Morphisms are given by pairs

(ϕ, g) : (T, c)→ (T ′, g∗ϕ
∗c)

where ϕ : T → T ′ is non-planar isomorphism of trees in T0, g ∈ G, and g∗ϕ
∗c is the

composite

g∗ϕ
∗c : E(T ′)

ϕ−1

−−→ E(T )
c−→ C

g−→ C.

Relations are just given by composition in T0 and G: (ϕ, g) ◦ (ψ, h) = (ϕψ, gh).

Lemma 4.2.35. Σ/C is isomorphic to the subcategory of T0/C spanned by corollas. In

particular, the “valence” functor extends to a map val : T0/C → Σ/C.

More, the vertex functor (and hence the nerve-evaluation maps) also extend:
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Definition 4.2.36. Define V : T0/C → F0 o Σ/C by

(T, c) 7→ (V (T ), v 7→ (Tv, c|Tv)).

Definition 4.2.37 (cf. Definition 3.2.3). Define the endofunctor F/C on VΣ/C by sending

X to the left Kan extension

T0/C F0 o Σ/C F0 o Vop V

Σ/C

val

V X ⊗

Lan:=F/CX

As before, we can present iterates of this endofunctor by considering certain left Kan

extensions over pullbacks.

Definition 4.2.38 (cf. Definition 3.1.11). Define T1/C to be the pullback in categories

T1/C F0 o T0/C

T0/C F0 o Σ/C

d1

V

val

V

The proof of the following is completely analogous to the proof of Lemma 3.2.6.

Lemma 4.2.39. Given X ∈ VΣ/C, the sequence F/CF/CX is isomorphic to the left Kan

extension

F/CF/CX ' Lanval◦d1(⊗ ◦ F0 oNX ◦ V).

Moreover, we also have the assembly map d0 : T0,/C → T0/C , as the colours and equiv-

ariance are coherent via the pullback construction.

Now, the statements in Section 3.2 and the proofs in Section 6.3 completely generalize

to this small increase in complexity, yielding the following:

Proposition 4.2.40 (cf. Proposition 3.2.7). F/C is a monad on the category VΣ/C.
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Finally, the following result, that this monad precisely describes objects in VOpGC , com-

pletes our proof of Theorem 4.2.32.

Proposition 4.2.41. The categories VOpGC and F/C-algebras in VΣ/C are equivalent, and

F/C = F in the adjunction from (4.2).

Proof. Given an F/C-algebra X, we define our composition structure maps γ by noting that

the domain of said maps

X(a1, . . . , an; a0)⊗X(b11, . . . , b
k1
1 ; a1)⊗ . . .⊗X(b1n, . . . , b

kn
n ; an)

has a natural map into F/CX(bk1
1 , . . . , b

kn
n ; a0) along the inclusion given by the object T =

Cn ◦ (Cki) in T0/C, with the obvious edge colourings. Composing this with the algebra map

of X provides us our structure map γ. We note that this is associative by the naturality

with assembly data. Similarly, the unit corresponds to c ∈ C is produced by assembling the

c-coloured stick. Finally, the appropriate action of G×Σn on {X(ξ)}|ξ|=n+1 is given by the

functoriality of val with respect to those morphisms in Σ/C and T0/C.

Conversely, any C-coloured operad O has a natural F/C-algebra structure via iterated

composition structure maps and the inclusion of the unit.

Remark 4.2.42. At this point, it is worth noting that the above construction of F seems

to be fairly general: given a span D ← C → F o D, there should be necessary conditions so

that we can build an F-like monad on sequences VD. We expect to return to analyzing the

details of this generality in the future.

4.3 Conjectured and Semi Model Structures

We would like to use Theorem 4.2.32 to endow the category VOpGC (and ultimately VOpG)

with a Quillen model structure that captures the interesting homotopical information dis-

cussed in Section 4.2.2. While we are ultimately unsuccessful (so far), we have successfully
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used it endow VOpG{∗} with a semi -model structure, which is sufficient, for example, to

confirm Conjecture 4.2.22.

To that end, we fix a collection F = {Fn} of families of graph subgroups of G× Σn.

Definition 4.3.1. For a G-set C and a signature ξ ∈ Cn × C, define Fξ to be the family

Fn ∩ StabG×Σn(ξ).

We identify the following maps in VOpGC .

Definition 4.3.2. A map f : O → P in VOpGC is called a

• F-fibration (resp. F-weak equivalence) if for all n and all signatures ξ ∈ C×n×C, f(ξ) :

O(ξ)→ P(ξ) is one in VStab(ξ)
Fξ ; that is, f(ξ)Γ is a fibration (resp weak equivalence) in

V for all Γ ∈ Fn ∩ Stab(ξ).

• F-cofibration if it has the left lifting property against all map which are both F-

fibrations and F-weak equivalences.

• F-level-cofibration if for all n and all signatures ξ in C×n × C, f(ξ) is a cofibration in

VStab ξ
Fξ .

In particular, O is F-cofibrant if ∅ → O is an F-cofibration, where ∅ is the initial object

of V.

Definition 4.3.3. The F-model structure is the unique model structure on VOpGC , if it

exists, with (co)fibrations and weak equivalences as just defined above. If it does, we say

that the pair (V,C) is F-admissible.

The following is expected to be true.

Conjecture 4.3.4. For suitable V (including sSet, Top, Ch(R), and Sp), (V,C) is F-

admissible for any G-set C.

We expect to be able to adapt our proof of Theorem 5.3.5 below to prove this for “suit-

able” categories V. Any choice of “suitable” will necessarily include at least the following

properties:



101

Definition 4.3.5. We say V satisfies Assumption 1 if the following hold:

(1) V is a cofibrantly-generated closed symmetric monoidal model category, and

(2) for all finite groups G and all families Fn of graph subgroups of G × Σn, VG×Σn is

F-cellular (4.1.14).

Let us now repackage the F-model structure so that the relevance of the adjunction

(4.2) becomes evident. If C = {∗}, this is immediate by definition, as VΣ/C =
∏
n V

G×Σn ,

and we can just endow each VG×Σn with the Fn-model structure via Theorem 4.1.15. For

general C, we need to ensure we can endow VΣ/C with an appropriate F-model structure.

To that end, we first prove an equivariant strengthening of Theorem 1.2.8:

Theorem 4.3.6. Suppose V satisfies Assumption 1, and D is any small category such

that for all d ∈ D, the set of endomorphisms D(d, d) is in fact a group Πd. Further, suppose

we are given families Fd ⊆ L(Πd) for all d ∈ D. Then the diagram category VD has a

cofibrantly-generated projective model structure, where f : X → Y is a weak equivalence

(respectively, fibration) if f(d) : X(d)→ Y (d) is so in VΠd
Fd.

Moreover, if X ∈ VD is cofibrant, it is also cofibrant levelwise.

Proof. This is a straightforward synthesis of [Hir03, 11.6.1] with the technology of Stephan

[Ste16]. Let I and J be the generating (trivial) cofibrations of V, we have

IFd = {Πd/H · i | i ∈ I, H ∈ Fd}

and similarly JFd are generating cofibrations for VΠd
Fd . Similarly, the product category

VOb(D) has a cofibrantly-generated levelwise model structure built by [Ste16, Theorem A.1]

along the adjoints

VObD VΠd
Fdevd

(−)d

sending V to Vd = δd(−) · V , where δd evaluates to the tensor unit I on d, and the initial
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object of V otherwise. Thus we have generating cofibrations

IObD
F = {δd(−) ·Πd/H · i | d ∈ D, i ∈ I, H ∈ Fd} ,

and similarly for trivial cofibrations.

Lastly, we have the forgetful adjunction

VD
∏
d∈D
VΠd
Fdfgt

F

where F sends X to the diagram

FX(d) =
∐
c∈D

X(c) ·Πc D(c, d).

Define our set of trivial cofibrations in VD by IDF := F (IObD
F ), and we observe

IDF = {D(d,−) ·Πd Πd/H · i | d ∈ D, i ∈ I, H ∈ Fd} ;

similarly define JDF . To confirm that this is indeed a model structure, using the Transfer

Principle 1.2.6, it suffices to check that pushouts of the form

FA X

FB Y

Fci

with ι : A → B in
∏
d V

Πd
Fd , c ∈ D, and X ∈ VD, if i is a generating (trivial) cofibration,

then the pushout X → Y is an underling (trivial) cofibration in
∏
d V

Πd
Fd . Indeed, Fι is of

the form

D(d,−) ·Πd Πd/H · i

for some i ∈ I (or j ∈ J), and since pushouts in VD are computed levelwise, at any c the

left hand side is just a coproduct (over D(d, c)) of generating (trivial) cofibrations in VΠd
Fd ,
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and hence the pushout is one as well.

The moreover is immediate from the discussion of the pushout above.

We observe that Σ/C(ξ, ξ) is precisely StabG×Σn(ξ) (where ξ is a signature in C×n × C).

Thus, the following is a special case of the above:

Corollary 4.3.7. Suppose V satisfies Assumption 1. Then, for any G-set C, and any

collection F = {Fn} of graph subgroups, the diagram category VΣ/C has the projective

F-model structure, where f : X → Y is a weak equivalence (respectively, fibration) if

f(ξ) : X(ξ) → Y (ξ) is so in VStabG×Σn (ξ)
Fn , for ξ a signature of length n + 1 and Fξ =

Fn ∩ StabG×Σn(ξ).

Moreover, if X ∈ VD is cofibrant, then it also is so levelwise.

We denote this model category by VΣ/C
F . The following is then immediate:

Proposition 4.3.8. The F-model structure on VOpGC , if it exists, is precisely the transfered

model structure from VΣ/C
F via the adjunction (4.2).

Thus, as is often the case, the existence of the F-model structure comes down to the

Transfer Principle, and in particular showing that all maps in J
Σ/C
F -cell are weak equiva-

lences.

4.3.1 Partial Results

We have partial results in the case where C = ∗ and F = {Fn} is a “weak indexing system”

(see 5.1.55). In particular, while we cannot say that the F-model structure exists, we do

have that the F-semi -model structure exists:

Theorem 4.3.9. Let V satisfy Assumption 1, and let F be a weak indexing system.

Then VOpG{∗} can be endowed with the F-semi-model structure, where the (co)fibrations are

the F-(co)fibrations, and the weak equivalences are the F-weak equivalences. Moreover,

F-cofibrations with cofibrant domains are level F-cofibrations.
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Proof. This is an immediate corollary of Theorem 5.3.3 and Corollary 5.3.5 from Section

5.3, by applying Theorem 1.2.10.

We will delay the stating and proof of these two technical results until we have the

terminology and technology of “F-admissible trees”.

Remark 4.3.10. In particular, the two cited results say that all maps in J
Σ/C
F with cofibrant

source are F-weak equivalences in VΣ/C (as trivial cofibrations are preserved by transfinite

compositions). Thus, if we could relax this condition, then the Transfer Principle 1.2.6

would imply that the above semi-model structure is in fact a Quillen model structure. We

expect this will come from analyzing the proof of Theorem 5.3.3, and carefully noting what

stronger conditions of V could replace the cofibrancy of P.

While this structure is weaker than a true model structure, it is sufficient to prove the

following:

Corollary 4.3.11. For V = Top and F any weak indexing system, there exists an operad

NF such that NF(n)Γ ' ∗ if Γ ∈ F(n), and is empty otherwise. In particular, Ho(N∞-

Op)→ I is an equivalence of categories, proving Conjecture 4.2.22.

Proof. Recall that Comm(n) = ∗ for all n. Consider the functorial factorization

∅→ NF ∼−→ Comm

in VOpG with the F-semi-model structure. Since the initial operad is cofibrant, Theorem

4.3.9 implies that ∅ → NF is a level F-cofibration, and hence each NF(n) is cofibrant in

TopG×Σn
Fn ; hence, for all Γ 6∈ Fn, NF(n)Γ = ∅. Further, since NF is F-equivalent to ∗,

NF(n)Γ ' ∗ for all Γ ∈ Fn. Hence, each NF(n) is a universal space for Fn, as desired.
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Chapter 5

Equivariant Dendroidal Sets

In the previous chapter, we saw the need for more subtle control over the combinatorics and

equivariance of G-operads. Moreover, we saw that some of these subtleties were mediated

by certain closure conditions on “indexing systems” of finite G-sets.

In this chapter, we construct an equivariant generalization of the dendroidal category,

and show that presheaves on this category provide a diagrammatic interpretation of these

closure constraints. This in turn will allow us to encode equivariant operads combinatorially.

Lastly, we will mention the first homotopical comparison between the standard equivariant

operads and these combinatorial models.

This chapter — specifically, the definition of G-trees and ΩG, the categories dSetF , the

notions of equivariant face and horn maps, and the determination of the generating (trivial)

cofibrations — is all joint with Luis Pereira; in fact, conversations leading to this work was

the genesis of our current collaborative efforts on many fronts. The technical proof of the

existence of the model structure (Theorem 5.2.23) is his alone.

5.1 Equivariant Trees

Again, we fix a finite group G.

In this section, we will introduce the new combinatorial object of an equivariant tree, or

just “G-tree”. Section 2.2 showed that trees encode operadic composition information; G-

trees will additionally describe the G-equivariance of this structure. In particular, G-trees
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will be able to both

• record information about the fixed points on graph subgroups, and

• encode the combinatorics of compositions via grafting,

and do so in a way that these two pieces of structure interact coherently.

5.1.1 Examples

We will motivate the formal definition by first discussing some examples of equivariant trees.

A näıve first guess might be to consider “trees with G-action”, or just ΩG. These end up

being necessary, but not sufficient, for our discussion. However, they are still of importance,

and we will use them as our first examples.

Example 5.1.1. Let G = Z/4. The following two diagrams provide representations of an

element of ΩG:

b+ 1

a+ 3

a+ 1

c+ 1
d+ 1d

b
a+ 2

a

c

e

G/2G+ d

G/2G+ bG+ a

G/2G+ c

G/G+ e

Representations of the kind on the left will be called the expanded representation. These are

simply planar representations of the corresponding tree, where we have labeled the edges

by names which reflect the G-action. In this example, 1 ∈ G acts by sending a to a + 1,

a + 1 to a + 2, b to b + 1, etc. We highlight the fact that, implicitly, a + 4 = a, b + 2 = b,

c+ 2 = c, and d+ 2 = d.

Representations of the kind on the right will be called the orbital representation. This

reduced presentation is in fact the quotient of the expanded representation, by identifying

edges in the same orbit. Importantly, we now label the edges by the orbit which has been

collapsed.
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Definition 5.1.2. Given a G-tree T , define VG(T ) := V (T )/G, where V (T ) is the G-set

of vertices in the expanded representation. Equivalently, VG(T ) is the set of vertices in the

orbital representation. Given G.v ∈ VG(T ), let TG.v denote the G-corolla “surrounding”

G.v, namely the G-tree with elements

∐
v∈G.v

t↑v q tv

and generating relations t↑v ≤ tv. In the orbital representation, TG.v is also equivalent to

the corolla “surrounding” the node representing G.v.

The degree of a G-tree T is defined by deg(T ) = |VG(T )|.

Remark 5.1.3. We note that the expanded representation of an object T ∈ ΩG necessarily

includes additional data not found in the category, namely

(1) a planar structure on each tree component (c.f. Section 2.3.4) and on the root G-set;

and

(2) a choice of basepoint in each orbit of E(T ).

Note that (2) is only a naming convention in the expanded representation, but on the orbital

representation affects the identification of the orbit of edges with a particular orbit in G.

With that in mind, we record that the expanded notation is only unique up to non-planar

isomorphism, and the orbital representation is only unique up to (edge-wise) isomorphism

in the orbit category OG.

Example 5.1.4. Let G = D8 = 〈r, s | r2 = s4 = rsrs = 1〉, and consider the subgroups

H = 〈r, s2〉 and K = 〈r〉. We again give two representation of the G-tree below.

s3 · bs · b

s · c

s2 · bb

c

d

G/K · b

G/H · c

G/G · d
(5.1)
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We note that, as above, we have chosen representatives of the cosets in G/H and G/K,

i.e. we could have written {c, rs · c} as opposed to {c, s · c} — as before, we are making the

implicit assumption that s · c = rs · c.

Now, let’s consider the root corolla C from Example 5.1.1:

C

v
d+ 1

dc+ 1

c

e v
G/2G+ dG/2G+ c

G/G+ e

(5.2)

At this point, it is natural to ask:

What operadic information is encoded by this tree with G-action?

That is, which operations ϕ of an operad P can live at the node v? We note that the

input edges of v form a G-set A = {b, b+ 1, c, c+ 1} ' G/2GqG/2G, and so ϕ should be

in P(A) (using the notation from Section 4.2.3). However, there is another restriction: the

operation in Ω(C) generated by v is fixed by G, and hence we have ϕ ∈ P(A)G.

Equivalently, if we pick an (arbitrary) planarization of C, say the one given implicitly

by our depiction above, and consider ϕ as an element of P(4), we see that this planar tree

is preserved by the graph of the homomorphism α : G → Σ4, 1 7→ (12)(34), and hence we

must have ϕ ∈ P(4)Γ(α). Note that by Observation 4.2.26, P(4)Γ(α) ' P(A)G.

Remark 5.1.5. We observe and record that the homomorphism α defines a G-action on

the set {1, 2, 3, 4} equivalent to G/2G qG/2G, which is suggested by the orbital notation.

In fact, this relationship between the orbital notation and the represented G-set will always

be true, and is one of the motivating features of our definition.

The above examples allow us to access graph fixed points for G-sets. However, as we

saw in Chapter 4, in order to encode all the interesting G-homotopy information about

G-operads, we need a way to access graph fixed points for all H-sets for any subgroup

H ≤ G.
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Additionally, as we mentioned earlier, trees are only useful in encoding operadic infor-

mation because there is a way to graft them together. However, there is currently no rule

to combine two trees with G-action into a third, and in fact in general there cannot be, as

there is no way to ensure the resulting object will have a G-action that reflects the original

ones. The only way to guarantee that the resultant of grafting has a well-defined inherited

G-action is to allow ourselves to graft trees with smaller group actions, and further to be

able to graft multiple copies at once in order to cover an entire orbit’s worth of leaf edges

simultaneously. Thus, it makes sense for us to also consider “trees” of the from G ·H TH for

any tree with H-action TH ∈ ΩH , and to allow ourselves to graft G ·H TH to a leaf orbit

isomorphic to G/H.

Example 5.1.6. G = Z/6. The equivariant tree S with orbital representation

S

G/2G+ aG+ b

G/2 + c

“should” encode operations ϕ ∈ P(3)Γ2Gq2G/2G . Indeed, the above tree S has expanded

representation

b

a+ 2
a

c

b+ 1

a+ 3

a+ 1

c+ 1

and hence encodes ϕ ∈ P(3)Γ(β), for β : G/2G→ Σ3 sending 1 7→ (12)(3); however, it also

encodes the entire orbit of ϕ, namely ϕ+ 1 ∈ P(3)Γ(β+1).

Remark 5.1.7 (A Remark on Grafting of Subtrees). We note that the tree from Example

5.1.6 is a G-equivariant sub-broad poset of the tree in Example 5.1.1, and in fact this will

be a subtree once we establish our formal definitions. Moreover, we may equivariantly

graft the tree from Example 5.1.6 onto the root corolla from Diagram (5.2) — via gluing

together edges with the same names — to reconstruct the tree from Example 5.1.1. This
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grafting encodes the equivariance of the composition structure maps, in that it restricts to

the following map of fixed points:

P(4)ΓG/2GqG/2G ×
(
P(3)Γ2Gq2G/2G × P(3)Γ2Gq2G/2G

)ΓG/2G −→ P(6)ΓGqG/2GqG/2G ,

as recorded earlier in 4.2.26. Moreover, we note that this grafting is suggested by the orbital

representation. Indeed, grafting is defined whenever we can identify an orbital root with an

orbital leaf. We will return too this discussion in Section 5.1.5.

We now highlight a particular type of G-tree, namely the corollas:

Example 5.1.8. Given any H-set A ' qH/Ki, define a corolla for A, denoted CA, to be

any tree with an orbital representation

G/KnG/K1

G/H

In the expanded representation, this will be a G-tree with [G : H]-many tree components,

such that there exists a root r and a generating relation r↑ ≤ r such that StabG(r) = H,

and r↑ ' A as H-sets (the other roots and leaves will give conjugations of this H-set). We

will also refer to this G-tree by the tuple (G/K1, . . . , G/Kn;G/H).

Operadically, these encode operations ϕ ∈ P(Σ[H : Ki])
ΓHqH/Ki = P(A)H .

We give some more explicit examples:

Example 5.1.9. Again, let G = D8 and H = 〈r, s2〉. Then we have the following equivari-

ant tree, representing the trivial H-set H/H qH/H:

ee′

f

s · es · e′

s · f

G/H · eG/H · e′

G/H · f
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This encodes operations ϕ ∈ P(2)
ΓH
H/HqH/H = P(2)H .

Lastly, we consider “free G-corollas”.

Example 5.1.10. Let G = Z/3. The following equivariant tree encodes the free G-set

GqG; operadically, this encodes ϕ ∈ P(6) (more accurately, an entire orbit G.ϕ, but with

no restrictions or relations enforced between them):

ba

c

b+ 1a+ 1

c+ 1

b+ 2a+ 2

c+ 2

b+Ga+G

c+G

5.1.2 Forests and the Definition of Equivariant Trees

We again remark that our examples of equivariant trees above don’t look so much like trees,

but instead look like forests, the objects in the coproduct completion of the category Ω of

trees. Indeed, in this section, we will formally define G-trees as a particular class of forests.

Definition 5.1.11. A forestly ordered set is a finite simple broad poset F such that

(1) each edge is either a leaf, a node, or a stump; and

(2) for each edge e there is a unique ≤d-maximal element r ∈ T such that e ≤d r.

We denote by r̄F the set of ≤d-maximal elements of F , and refer to it as the set of roots.

We will refer to such objects simply as “forests”, and let Φ denote the category of forests

and morphisms of broad posets.

There are many possible types of morphisms we can consider between forests; however,

we will restrict our discussion to the kinds of arrows which arise equivariantly. For a more

complete analysis, see [Per17].

Definition 5.1.12. Given maps fi : Ti → T̄i of trees, the coproduct f : qTi → qT̄i is an

arrow Φ.
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Lemma 5.1.13. A map f : F → F̄ of forests is a coproduct of maps of trees if whenever

f(rF,i) ≤d rF̄ and f(rF,j) ≤d rF̄ , we must have i = j. Equivalently, the map r̄F → r̄F ′

sending r to the root of the component containing f(r) is bijective.

Definition 5.1.14. Suppose f : T → T ′ is an isomorphism of trees. Then, for any forest

F ∈ Φ we have maps:

(1) ∇ : T q T ′ q F → T ′ q F which are the identity on the F and T ′ components, and

send T isomorphically via f to T ′. Similarly, maps which combine more than two

components are also in Φ. All of these are called fold maps.

(2) σf : T q T ′ q F → T q T ′ q F which is the identity on F , sends T to T ′ via f , and

T ′ to T via f−1. Similarly, maps which (twist and) permute multiples trees are in Φ,

and are called shuffles.

Similarly to Ω, we may break down maps into faces and degeneracies.

Definition 5.1.15. A map of forests is a degeneracy (respectively, face) if it is a coproduct

of degeneracy maps (respectively, the composition of coproducts of face maps and fold

maps).

Example 5.1.16. Consider the following trees:

S

ba

c

T

b
a

U

e′′

e′w

V

e′′

e′

w′w′′

w

R

e

Then the following is the composition of a face map, a fold map, and a degeneracy map:

S q T q U S q S q V S q V S qR
id q ∂c q ∂w′,w′′ ∇ q id id q σe′,e′′
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The above morphisms are sufficient to define and discuss our category of equivariant

trees. First, let ΦG denote the category of forests with G-action.

Definition 5.1.17. The category of G-trees, denoted ΩG, is the full subcategory of ΦG

such that the root set is a transitive G-set.

Example 5.1.18. The examples of G-trees from Section 5.1.1 clearly are G-trees under

this definition.

Remark 5.1.19. At first glance, it may be odd to call such objects “trees”, as they generi-

cally have an underlying forest. However, just as trees are forests which are indecomposable

under the coproduct, so too equivariant trees are G-forests which are indecomposable un-

der the coproduct. Moreover, the orbital representation (as seen in the previous section)

encodes much of the data, and is itself always a tree.

It is immediate from transitivity of the root G-set that the non-equivariant tree compo-

nents of a G-tree T are pairwise isomorphic in Ω.

Definition 5.1.20. Given T0 ∈ Ω, we say T ∈ ΩG (respectively TH ∈ ΩH) has underlying

shape T0 if all tree components of T (respectively TH) are non-equivariantly isomorphic to

T0.

Objects in ΩG have multiple descriptions coming from different decompositions:

Lemma 5.1.21. Let T be a G-tree with shape T0.

(1) T is equivalent to a tree of the form G ·H TH for some H ≤ G and TH ∈ ΩH of shape

T0, unique up to conjugations of H and pushforwards g∗TH of TH by elements g ∈ G;

(2) T is isomorphic to G · T0/N , where N is a graph subgroup of G×Aut(T0), unique up

to conjugation of N by elements of G.

Proof. These are immediate from the definition of G-tree, by choosing a component TH of

T , with H defined to be the stabilizer of the root rH ∈ TH , and N the graph subgroup

corresponding to the homomorphism H → Aut(T0) identifying the H-action on TH .
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Remark 5.1.22. Given T ∈ ΩG of shape T0, we observe that T has a decomposition of the

form G ·H TH if and only if T has a decomposition of the form G · T0/N with π1(N) = H

if and only if T has an orbital representation with the root edge labeled by G/H.

Remark 5.1.23. Notationally and conceptually, we record the difference between ΩG, the

category ofG-trees, and ΩG, the category of trees withG-action. There is a natural inclusion

ΩG↪→ΩG of the G-trees with a single underlying tree component; equivalently, those with

a decomposition T ' G · T0/N where N is the graph of a homomorphism G→ Aut(T0).

Definition 5.1.24. We record several important functors landing in ΩG.

(1) We have a fully-faithful inclusion i : Ω × G ↪→ ΩG sending (∗, T ) to the free G-tree

G · T ; that is, Ω×G consists of the free G-trees, with all edges labeled in the orbital

representation labeled by simply G. With that in mind, we will refer to objects in

Ω×G by either (T0, ∗) or their image G · T0.

(2) More generally, we have a fully-faithful functor Ω×OG → ΩG, sending (T0, G/H) to

G ·H T0. For this reason, we often think of ΩG as a very general amalgamation of Ω

and OG.

(3) For any H ≤ G, we also have a fully-faithful “induction” map ΩH → ΩG, sending TH

to G ·H TH ;

We see something stronger is true.

Lemma 5.1.25. ΩG is equivalent to the Grothendieck construction on the functor

OopG → Cat

which sends G/H to the category ΩBG/HG.

Proof. An object in the above Grothendieck construction is a G-tree with a chosen de-

composition T ' G ·H TH ; as isomorphisms need not preserve this choice, the result is

clear.
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Denoting G ·H η by just G/H, we can repackage this result as follows.

Lemma 5.1.26. ΩG is equivalent to the category whose objects are G-maps of broad posets

p : T → G ·H η, such that p−1(eH) is dendroidally ordered, and whose morphisms are gen-

erated by

(1) maps of G-broad posets over G/H; and

(2) pullbacks over maps q : G/K → G/H

where two maps are identified if they have the same underlying map of G-broad posets.

We use the above two descriptions of ΩG to characterize the morphisms. We see that

morphisms in these latter categories can be factored uniquely (up to isomorphism) in the

form

G ·H TH
G·Hf−−−→ G ·H T̄H

q−→ G ·K TK

with f : TH → T̄H an arrow in ΩBG/HG ' ΩH , and q is a Cartesian map. We discuss the

two factors separately.

Faces and Degeneracies

It is clear that the face-degeneracy factorization on Ω ascends to one on ΩH . In ΩG, these

induce face or degeneracy maps which occur in tandem over an entire orbit (and hence

across all tree components).

Definition 5.1.27. Let T ' G ·H TH be a G-tree.

(1) Given an outer cluster C of T0, there is an elementary outer G-face map

G ·H (∂H.C : TH \H.C ↪→ TH), or equivalently ∂G.C : T \G.C ↪→ T ;

(2) Given an inner edge e of TH , we have an elementary inner G-face map

G ·H (∂H.e : TH \H.e ↪→ TH), or equivalently ∂G.e : T/G.e ↪→ T ;
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(3) Given a unary vertex v = (e′ = e↑ ≤ e) of TH , we have an elementary G-degeneracy

map

G ·H (σH.v : TH → TH \H.v = TH \H.
{
e, e′

}
),

or equivalently

σG.v : T → T \G.v = T \G.e, e′.

As in the non-equivariant case, we call compositions of elementary outer G-faces (re-

spectively, inner G-faces, G-degeneracies) simple, and compositions of elementary arrows

and isomorphism by outer G-faces (inner G-faces, G-degeneracies).

The above describes what happens in the expanded representation. However, it is

enlightening to consider how these maps affect the orbital representation. In particular, we

will observe that an equivariant faces and degeneracies act on the orbital representation as

actual faces and degeneracies on the underlying unlabeled tree (see Example 5.1.38 below).

Remark 5.1.28. One word of caution: the degeneracies (respectively, root-cluster outer

faces) of the tree underlying the orbital representation which are induced by degeneracy

(respectively, face) maps of trees with H-action are only those such that both edges sur-

rounding the unital node (respectively, all edges of the root vertex) are labeled by isomorphic

G-orbits. For degeneracies, this ensures that the resulting nodes in the expanded represen-

tation are actually unital; for the root-cluster outer faces, this ensures we remain in the

image of ΩH .

While this observation cannot be challenged for degeneracies, root-cluster outer face

maps on the orbital representation which are not of this form are still face maps; however,

they will be the composite of an outer G-face with a quotient map (Section 5.1.2 below).

See Example 5.1.41 for more details.

Remark 5.1.29. Dually, elementary inner face G-maps induce face maps on the orbital

notation, but the possible labelings on the new edge are restricted. Thinking of vertices

as maps of G-sets, if we add an edge whose parent is labeled by G/H and whose children
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are labeled by {G/L1, . . . , G/Ln} (and without loss of generality we may assume Li ⊆ H),

then the new edge must be labeled by an orbit (isomorphic to one) which factorizes these

maps. That is, the new labeling G/K must have L1, . . . , Ln ≤ K ≤ H.

As is the case non-equivariantly, we can consider posets of simple face maps.

Definition 5.1.30. The equivariant outer face poset of a G-tree T (respectively, inner

face), denoted OutG(T ) (resp. InnG(T )), has as objects all equivariant outer (inner) faces,

thought of as subsets of E(T ), with the relation given by inclusion.

Definition 5.1.31. The (equivariant) core poset of a G-tree, denoted OutGc (T ), is the

subposet of equivariant outer faces which are G-corollas or G-sticks.

This is equivalent to the poset of the orbits of vertices and edges, with relations generated

by G.e ≤ G.v if g.e is connected to v for some g ∈ G.

We will also consider non-equivariant face (resp. degeneracy) maps in ΩH , inducing

non-equivariant face (resp. degeneracy) maps in ΩG.

Definition 5.1.32. A (non-equivariant) face of T is a map ϕ : S0 → T of forests (with

S0 ∈ Ω) such that ϕ is a face map onto its image component. These are designated inner

or outer accordingly.

Equivalently, this is a map which can be factored

G · S0
G·ϕ′−−−→ G · T0

q−→ G · T0/N = T,

for T ' G · T0/N and ϕ′ : S0 → T0 is a face map in Ω.

We recall the outer and inner face posets Out(T0) and Inn(T0) associated to T0 ∈ Ω

(e.g. 2.3.30). Generalizing to forests F = qFi, define Out(F ) = qOut(Fi), and similarly

for Inn(F ). In particular, for a G-tree T ' G ·H TH , Out(T ) is isomorphic to be the G-poset

G ·H Out(TH), and similarly Inn(T ) ' G ·H Inn(TH)

There will be certain classes of non-equivariant face maps which “look equivariant” when

translated into the orbital representation. We will naturally call these “orbital face maps”.
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Definition 5.1.33. A (non-equivariant) face ϕ : S0 → T is called an orbital face map if

ϕ(S0) is an H-closed subtree of T , where H = StabG(ϕ(rS)), rS the root of S0.

Denote by ΦOrb(T ) the poset of orbital face. We will see many example of these maps

in Section 5.1.3 below.

Quotient Maps

Lastly, we unpack the associated Cartesian maps. We will refer to these as quotients for

reasons which will become apparent. Unpacking the definitions, we see that every quotient

map is isomorphic to a map of the form

q : G ·K (TH)|K → G ·H TH .

with K ≤ H ≤ G.

We first note that on the underlying forests, these are fold maps. Second, restricting to

the root orbit yields a quotient map G/K → G/H, and this will be reflected on the orbital

representation. In fact, a direct consequence of the definition of a Grothendieck fibration

and Lemma 5.1.25 is the following:

Lemma 5.1.34. Given a G-tree T with root orbit isomorphic to G/H and any G-map

f : G/K → G/H, there is a unique (up to isomorphism) tree S with root orbit G/K, and

a quotient map f : S → T .

See Example 5.1.38 below.

Notation 5.1.35. Let Ωq
G = ΩG,0 denote the wide subcategory of G-trees and quotient

maps (including isomorphisms).

Combining Lemma 5.1.25 and Theorem 2.3.37, we have the decomposition result:

Corollary 5.1.36. Any map f : S → T in ΩG has a decomposition, unique up of isomor-

phism, as

f : S
σ−→ S′

ϕi−→ T ′
ϕo−→ T ′′

q−→ T
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where σ is a G-degeneracy, ϕi is an inner G-face, ϕ0 is an outer G-face, and q is a quotient.

5.1.3 Examples of Maps of Equivariant Trees

We demonstrate several maps of G-trees.

Example 5.1.37. Let G = Z/8. The following in the inner face map ∂G.c.

G/8 + bG/2 + a

G/2 + d

∂G.c−→

G/8 + bG/2 + a

G/4 + c

G/2 + d

b+ 6

b+ 4b+ 2b

a

d

b+ 7

b+ 5b+ 3b+ 1

a+ 1

d+ 1

∂G.c−→

b+ 6

b+ 4

c+ 2a

b+ 2

b

c

d

b+ 7

b+ 5

c+ 3
a+ 1

b+ 3

b+ 1

c+ 1

d+ 1

Example 5.1.38. Let G = D8, H = 〈r, s2〉, and K = 〈r〉. Consider the following composite
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f : S → T , shown first in expanded representation:

G/H ·

S

rs2 · as2 · a

s2 · b̄

s2 · b

r · aa

b̄

b

c

f−→

T

s3 · ars · a

s3 · b

s · ars3 · a
s · b

s · c

rs2 · as2 · a

s2 · b

r · aa

b

c

d

↓ σb̄

G/H ·

rs2 · as2 · a

s2 · b

r · aa

b

c

∂c−→ G/H·

rs · ars3 · ar

s · bs2
rs3 · ars · ar

s3 · bs2

cs

rs2 · as2 · a

s3 · b

r · aa

b

c

d

↑ q

and in orbital representation:

f :

G · a

G/K · b̄

G/K · b

G/H · c

σG.b̄,b−→
G · a

G/K · b

G/H · c

∂G.v−→
v

G · ar

G/K · bs2

G/H · cs

G · a

G/K · b

G/H · c
G/H · d

q−→

G · a

G/K · b

G/H · c

G/G · d

where we have labeled the edges to identify how the quotient map acts: an edge labeled eg

is in a separate orbit from e, but under q is sent to g.e.

Example 5.1.39. The same tree can be the source for multiple quotient maps. For example,

let G = Z/4; then the below is the subcategory (sans isomorphisms) of G-corollas with
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|L(G)/G| = 4.

G· G/2

G/2

G

G/2

G/2·

GG

G/2

G/G·

G/G

G/G

G/2

G/G

G/2G/2

G/G

G

G/G

Example 5.1.40. Let A be an H-set, and CA some A-corolla. As in the non-equivariant

case, we have maps which include a stick into the edges of the corolla. However, equivari-

antly, this is only an outer face map if the label on the stick matches (i.e. is isomorphic to)

the label on the corolla; otherwise, it is the composite of an outer face and a quotient.

G/Ki

−→ G/Kn

G/Ki

G/K1

G/H

Remark 5.1.41. Recalling the warning at the end of Remark 5.1.28, one may ask why we

don’t consider the inclusion of G-trees in orbital representation below, with G = Z/4, an

outer face map.

G

G/2
−→

G

G/2

G/2

G/G
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In expanded notation:

a+ 2a

b

a+ 3a+ 1

b+ 1
−→

a+ 3a+ 1

b+ 1

c+ 1c

a+ 2a

b

d

We observe that this is not a coproduct of maps of trees, nor is it an underlying outer

face. We see that {a, a+ 2 ≤ b} into T0 is a (non-equivariant) outer face, but this cannot

be extended to a G-fixed outer face on T0. Further, we can factor this map as an outer face

followed by a quotient (similarly to those in Example 5.1.38).

As this does look like a face map on orbital representations, we will call this a “face”

map, just not an outer or inner face.

Remark 5.1.42. We recall that the original Ω is homotopically a particularly nice diagram

category, in that it’s dualizably Reed : both Ω and Ωop are generalized Reedy categories

[BM11]. While ΩG is Reedy (with Ω+
G the faces and quotients, and Ω−G the degeneracies), it

is not dualizably so unless G = {e} is the trivial group. For example, given any non-trivial

H/K, consider the quotient

	σ

GG

G

q−→
G/K

G/H

where the first tree has n = [H : K] many leaves. We note that Σn acts on this first tree by

permuting the leafs. Moreover, qσ = q for any σ ∈ Σn, violating [BM11, Definition (iv)′]

with f = q and θ = σ non-trivial.

In the generality of F-trees defined in the following section, ΩF will not be dualizably

Reedy as soon as any non-trivial H-set is admissible for any H ≤ G.
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Non-Equivariant Faces

We recall that non-equivariant faces are just underlying face maps ϕ : S0 → T (equivalently,

G · S0 → T with specified unit component of the source). As such, their actual orbital

representation is often fairly unenlightening.

Example 5.1.43. Recall the D8-trees S and T from Example 5.1.38. We consider several

non-equivariant maps into T below, where edges have been labeled by their image in T ; we

again remind ourselves that these source maps have the free G-action, and what it written

below is just the image of the component corresponding to the unit e ∈ G.

R1

s2 · b

r · aa

b
c

R2

s3 · bs · b

s · c

s2 · bb

c

d

“R2”

G/K · b

G/H · c

G/G · d
R3

s2 · b̄

s2 · b

b̄

b
c

“R3”

G/K · b̄

G/K · b

G/H · c

R4

s3 · b

s · bs2 · b

b

d

“R4”

G/K · b

G/G · d
R5

s2 · bb

c

“R5”

G/K · b

G/H · c

where we have

• R1 is non-orbital into T ;

• R2 is an orbital leaf-cluster outer face of T ;

• R3 is an orbital degeneracy of S

• R4 is an orbital inner face of T ; and

• R5 is an orbital root-cluster outer face of T .

In particular, the “Ri” orbital representations are not in fact recording the orbital repre-

sentation of the trees (as they are all free), but instead are recording the associated “face

or degeneracy of the orbital representation”.
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5.1.4 G-Corollas

Let us consider the category of G-corollas.

Definition 5.1.44. Let ΥG denote the full subcategory of Ωq
G = ΩG,0 spanned by all

equivariant corollas.

As is true non-equivariantly, ΥG is almost a full subcategory of ΩG; however, we are

excluding degeneracies, in particular maps out of CH/H which factor through the degeneracy

CH/H → H/H · η.

Lemma 5.1.45 (c.f Lemma 5.1.25, Lemma 5.1.26). The following categories are equivalent:

(1) the category of G-corollas ΥG;

(2) the Grothendieck construction on the functor

OopG Cat

G/H ΥBG/HG

(3) the subcategory of arrows in SetG spanned by those of the form A → G/H, for any

H, with only pullback squares as morphisms.

Remark 5.1.46 (c.f. Example 5.1.8). We have a surjection
∐
H≤G Ob(SetH/ ') →

Ob(ΥG/ '), where in either case A ' B if A is isomorphic to B; two sets are set to

the same G-corolla if and only if they are conjugate.

As is the case non-equivariantly, we have a (non-planar) “valence” functor ΩG → ΥG.

Abstractly, we have valence functors valH : ΩH → ΥH , and hence the equivariant val exists

by Lemmas 1.1.11, 5.1.25 and 5.1.45.

Explicitly, this maps sends the G-tree T to the G-broad poset with objects r̄T q L(T ),

and generating (actually, only non-trivial) relations rλ ≤ r for all r ∈ r̄T . It is immediate
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that this G-broad poset is in fact a G-corolla. With this description, it may also be referred

to as the leaf-root functor.

Example 5.1.47. Recall the tree from Example 5.1.1. It’s image under val is the following

G-corolla:

b+ 1

a+ 3a+ 1
d+ 1d

ba+ 2

a

e

G/2G+ b

G/2G+ d

G+ a

G/G+ e

The inclusion map s : ΥG → ΩG is a section of val. We note that this inclusion can also

be built the synthesizing the various inclusions s : ΥH ↪→ΩH .

5.1.5 Grafting and F-Trees

We update the notion of grafting to the category of G-trees.

Definition 5.1.48. Let T be a G-tree, and G.e ' G/H and an orbit of leaves. Given

another G-tree S with an isomorphism r̄S ' G.e, define the grafting T ◦G.e S to be the

G-broad poset with edges T qG.e S, and with generating broad relations as in T and S; it

is clear that this resulting object is in fact a G-tree.

This operation can be visualized as a grafting on the orbital representation of our G-trees

along leaf edge of T and the root edge of S which have isomorphic labels.
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Example 5.1.49. Let G = Z/8, and consider the G-trees T and S below:

T = c+ 2c

a+ 2a

b

d

c+ 3
c+ 1

a+ 3a+ 1

b+ 1

d+ 1

G/2G+ c

G/4G+ a

G/2G+ b

G/2G+ d

S =

β + 4β

α

β + 5β + 1

α+ 1

β + 6β + 2

α+ 2

β + 7β + 3

α+ 3

G+ β

G/4 + α

We may graft S onto T via the isomorphism α 7→ a, yielding the following G-tree:

T ◦G.a S = c+ 2c

β + 6β + 2

a+ 2

β + 4β

a

b

d

c+ 3
c+ 1

β + 7β + 3

a+ 3

β + 5β + 1

a+ 1

b+ 1

d+ 1

G/2G+ b

G+ β

G/2G+ a

G/4G+ b

G/4G+ d

As in the non-equivariant case, we have a G-tree decomposition via grafting:

Lemma 5.1.50. If T is a G-tree with root corolla CA such that |L(C)/G| = n (equivalently,

A is the disjoint union of n different orbits), then T ' CA ◦ (T1, . . . , Tn) for some G-trees

Ti.

Now, we saw above in Section 4.2.2 the notion of an indexing system. These provide

examples of useful subcategories of ΩG, by restricting the types of nodes we see in the

orbital representation. In fact, more general notion, inspiring by the grafting of G-trees,

will work in this context.

Definition 5.1.51. Let F be a sub coefficient system of Set. We recall that an H-set A is

called F-admissible if A ∈ F(G/H).

(1) A G-corolla C is called F-admissible if, for any (equivalently, all) roots e of C, the



127

StabG(e)-set e↑ is F-admissible. Equivalently, for any choice of orbital representation

(G/K1, . . . , G/Kn;G/H) of C, we have that qH/Ki is F-admissible.

(2) A G-tree T ∈ ΩG is called F-admissible if for each vertex (i.e. generating relation)

e↑ ≤ e, the StabG(e)-set e↑ is F-admissible; equivalently, each node in any orbital

representation is an F-admissible corolla.

(3) Given T0 ∈ Ω, we call a graph subgroup N ≤ G×Aut(T0) F-admissible if the induced

G-tree G · T0/N is F-admissible. We denote by FT0 the family of all F-admissible

graph subgroups.

Remark 5.1.52. We will return to the characterization of the family FT0 of graph sub-

groups of G×Aut(T0) in Section 5.3.

Definition 5.1.53. Let F be a sub coefficient system of Set.

(1) We say F is closed under broad self-induction if whenever qiH/Ki q H/K0 and

qjK0/Lj are F-admissible, then so is qiH/Ki qqjH/Lj .

(2) We say F is closed under grafting induction if for all F-admissible trees T , the G-

corolla val(T ) is also F-admissible.

Lemma 5.1.54. F is closed under broad self-induction if and only if it is closed under

grafting induction.

Proof. It is clear that grafting induction along G-trees with |VG(T )| = 2 (i.e. a single inter-

nal edge orbit) is equivalent to broad induction. Moreover, by induction along the grafting

decomposition from Lemma 5.1.50, this is sufficient to generate all grafting induction.

This inspires a (weaker) notion of a “well-behaved” sub-system of Set.

Definition 5.1.55. A weak indexing system (cf. 4.2.17) is a sub coefficient system F of

Set that contains all trivial orbits H/H for H ≤ G, and is closed under grafting induction.
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Lemma 5.1.56. Weak indexing systems are closed under conjugation, restriction, and

products with an orbit.

Proof. Closure under conjugation and restriction is necessary for F to be a sub-coefficient

system of Set. Now, if qH/Ki and H/L are admissible, consider the corolla which encodes

H/L|Ki for each i; as F is closed under restriction, these are admissible. Now, if we graft

these on top of the corolla encoding qH/Ki (e.g. third tree in Diagram (5.3)), this will

yield a tree whose image under val is precisely the corolla encoding (qH/Ki) ×H/L , as

specified by the double coset formula.

We note that weak indexing systems are not necessarily closed under coproducts or

subobjects, in particular, as F need not contain the empty H-set, nor any trivial H-set

with more than one element, for any H ≤ G.

Lemma 5.1.57. A weak indexing system is actually a (strong) indexing system if it contains

all trivial H-sets for all H ≤ G.

Proof. As self-induction is a particular kind of grafting induction (e.g. fourth tree in 5.3),

it suffices to show that such weak indexing systems are closed under subobjects, products,

and coproducts. Subobjects can be created by selectively grafting equivariant 0-corollas on

particular leaf orbits and applying grafting induction (first tree in 5.3), while the coproduct

of the H-sets A1,. . ., An can be created by grafting each CAi onto the corolla CH/Hqn

encoding the trivial H-set of cardinality n (second tree in 5.3). Lastly, since weak indexing

systems are closed under products with an orbit, and general products are coproducts of

these, we are done.

The grafting operations used in the proofs of the above two lemmas are displayed in the
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orbital representation below:

qm1 G/Ki↪→qG/Kj

G/Kn

G/Km+1G/Km

G/K1
G/H

AqA

A

G/H

A

G/H
G/H

H/K ×H/L

G/K ∩ LrG/K ∩ L
G/K

G/H

H ×K qK/Li

G/K ∩ LmG/K ∩ L1

G/K

G/H

(5.3)

Definition 5.1.58. Let F be a weak indexing system. Define ΩF to be the full subcategory

of ΩG spanned by F-admissible trees, and ΥF the full subcategory of F-admissible corollas.

Here, the set of objects of ΥF is in bijection with the set of F-admissible sets, modulo

isomorphisms.

Precisely since F is closed under grafting induction, the valence functor restricts to a

functor val : ΩF → ΥF .

Lemma 5.1.59. Suppose we have a map f : S → T of G-trees, and F a weak indexing

system.

(1) If T is F-admissible, and f is an inner or outer face map, then S is also F-admissible;

(2) If T is F-admissible, and f is a quotient, then S is also F-admissible;

(3) If f is a degeneracy, then S is F-admissible if and only if T is.

Proof. Parts (i) and (iii) are clear, since inner faces and degeneracies do not affect the image

under val, and F-admissibility is determined on vertices. For (ii), we observe that if e↑ ≤ e

is a vertex in T and ē ∈ f−1(e), we have that ē↑ = e↑|StabG(ē). Hence, since F is closed

under restriction, all vertices are F-admissible, and thus so is S.

In fact, these properties characterize weak indexing systems F :

Lemma 5.1.60. F is a weak indexing system if and only ΩF is a sieve of Ω; that is, given

any f : S → T in ΩG, if T ∈ ΩF then both S and the map are also in ΩF .
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Example 5.1.61. These ΩF capture most of the relevant subcategories of ΩG:

(1) If F = Set, then ΩF = ΩG.

(2) If F = F∅ is the indexing system with only the trivial {e}-sets, then ΩF = Ω×G.

(3) If F = F triv is the indexing system of all trivial sets, then ΩF ' Ω×OopG .

(4) If F = F∆ is the weak indexing system with all trivial sets of cardinality one, then

ΩF ' ∆×OopG .

5.2 F-Equivariant Dendroidal Sets

We now define our equivariant generalization of dendroidal sets, using the above notions of

G-trees. In particular, we have models of equivariant dendroidal sets for each weak indexing

system F .

5.2.1 The Presheaf Categories

We now consider various presheaf categories indexed by the ΩF of Section 5.1.5 and 5.1.5.

Definition 5.2.1. Define the category of F-equivariant dendroidal sets, denoted dSetF , to

be the presheaf category SetΩopF . Given any G-tree T , let ΩF [T ] denote the representable

presheaf

ΩF [T ](S) = ΩG(S, T ).

As ΩF will always be a restriction of ΩG, we will abuse notation and just write Ω[T ]

whenever the underlying F is unambiguous.

The main two examples we will consider are the extremes:

• dendroidal sets with G-action dSetG := dSetF∅ ; and

• genuine equivariant dendroidal sets dSetG := dSetSet.
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Given an inclusion j : F ↪→ F̄ of weak indexing systems, we have an associated diagram

dSetF dSetF̄

j∗

j!

j∗

with (j!, j
∗) and (j∗, j∗) pairs of adjoint functors.

In the case j = i : F∅↪→Set, we can be more explicit: given X ∈ dSetG and Y ∈ dSetG,

we have

i!X(G× T0/N) ' X(T0, ∗) if N = {e}, and ∅ otherwise (5.4)

i∗X(G× T0/N) = Hom(i∗ΩG[G · T0/N ], Y ) ' Y (T0, ∗)N (5.5)

i∗Y (T0, ∗) = Y (G · T0) (5.6)

It is easily directly verified that the formula for i∗X yields a right adjoint to i∗. In particular,

we use that any map Y (G · S0/M)→ X(S0, ∗)M factors through Y (G · S0)M :

dSetG(ΩG[G · S0/M ], Y ) dSetG(ΩG[G · S0/M ], i∗X)

dSetG(ΩG[G · S0]/M, Y ) dSetG(ΩG[G · S0]/M, i∗X).

More, as each j : ΩF → ΩF̄ is fully-faithful, we have the following.

Lemma 5.2.2. The functors j∗ and j! are both sections of j∗; hence dSetF is both a reflective

and coreflective subcategory of dSetF̄ whenever F ⊆ F̄ .

Remark 5.2.3. The condition expressed in (5.5) should be interpreted analogously to

the condition that in the fixed-point coefficient system ΦX of a G-space X, we have

ΦX(G/H) = ΦX(G/e)H . We will come back to this idea in a later section, exploring

the image of nerve functors.

Lemma 5.2.4. For any G-tree T and inclusion j : F → F̄ of weak indexing systems, we

have
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(1) j∗ΩF [T ] ' ΩF̄ [T ], and

(2) j∗ΩF̄ [T ] = ΩF [T ].

Proof. Since ΩF̄ [T ] = (jG)∗Ω[T ] for j : ΩF̄ ↪→ΩG, it suffices to show that (jG)∗ : dSetG → dSetG

sends Ω[T ] to Ω[T ]. But we have

(jG)∗Ω[T ](G · S0/N) = Ω[T ](S0, ∗)N = ΩG(G · S0, T )N = ΩG(G · S0/N, T ).

Remark 5.2.5. We record certain parallels with the definitions of orthogonal G-spectra,

in that there is a choice of how much equivariance is encoded in the indexing. In [HHR16],

it is shown that working with the complete indexing category of a complete G-universe is

often the most practically useful, while [Lew95, EM97, MM02] show that all possible choices

of categories are equivalent, and in fact [Sto11, HW13] show that for any universe U there

exist model structures on all possible categories which are Quillen equivalent to the natural

U -model structure on U -indexed spectra.

Homotopically, we expect this situation to be similar. Again, we have categories dSetF̄

for any choice of weak indexing system F̄ — though these categories will not be equivalent;

in particular, objects in dSetF do not have strict fixed-point conditions when evaluated on

F̄-admissible sets, and this certainly induces a categorical dependence on F̄ . However, as

we will see in Theorem 5.2.23, dSetF has an F ′-model structure for any other indexing

family F ′, which we fully expect to be Quillen equivalent to the F ′-model structure on any

other dSetF̄ ′ .

Below the minimum equivariant level dSetG, we have the natural inclusion iG : Ω↪→Ω×G,

inducing a diagram

dSet dSetG

(iG)∗

(iG)!

(iG)∗
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where again ((iG)!, (iG)∗) and ((iG)∗, (iG)∗) are adjoint pairs. Explicitly, given W ∈ dSet

and X ∈ dSetG, we have:

i!W (T0, ∗) = G×W (T0)

i∗W (T0, ∗) = Set(G,W (T0))

i∗X(T0) = Y (T0, ∗)

Unpacking definitions, this yields the following descriptions of Ω[T ] in dSetG.

Lemma 5.2.6. Given T ∈ ΩG with decompositions T ' G · T0/N ' G ·H TH , we have

Ω[T ] ' i∗ΩG[T ] ' i∗ΩG[G · T0]/N

' G×H Ω[TH ]

' (iG)!Ω[T0]/N

where here Ω[TH ] is just Ω(−, TH) with the induced H-action.

Remark 5.2.7. There is another perspective to view the the “initial” representable functor

Ω[T ]. We recall the non-equivariant Yoneda embedding Ω[−] : Ω↪→dSet. This naturally

extends to a map out of the category Φ of forests, sending F = qTi to qΩ[Ti]. Passing to

the categories of G-objects, and restricting along the inclusion ΩG↪→ΦG, yields a map

Ω[−] : ΩG → dSetG,

for which is it easy to check is isomorphic to Ω[−] = ΩF∅ above.

For the remainder of this section, we will mainly be focusing on dSetG. While dSetG is

the most interesting of these categories, in that it has the most flexibility and records the

most data (in particular, the nerve functor on genuine equivariant operads of Chapter 6 will

land here), it has some technical difficulties which will require some future manipulation to

overcome (e.g. Remark 5.1.42).
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5.2.2 Faces, Boundaries, and Horns

We will now build the standard presheaves used to define model structures and various

other important constructions in a generalized Reedy categories or EZ-categories, such as

boundaries and horns.

For this section, while we will be working mostly in dSetG, we fix a (new) weak indexing

system F which we will use to generate the components of the F-model structure on dSetG.

The most important example will be the complete indexing system F = Set; in the below,

to refer to this particular example, we replace all instances of “F” with “G” (e.g. G-inner

horn inclusions, G-normal monomorphisms, G-∞-operads).

We will now describe several different classes of maps in dSetG. These will play a similar

role as the classes with similar names in [CM11].

Definition 5.2.8. Given X ∈ dSetG and T0 ∈ Ω, we call x ∈ X(T0, ∗) degenerate if the

characterizing map Ω[G · T0]→ X factors

Ω[G · T0]
σ−→ Ω[G · S0]→ X

where σ : T0 → S0 is a degeneracy in Ω. Otherwise, we call x non-degenerate.

Definition 5.2.9. A monomorphism f : X → Y in dSetG is call F-normal if for all T0 ∈ Ω

and non-degenerate y ∈ Y (T0, ∗)\X(T0, ∗), the stabilizer StabG×Aut(T0)(y) is a F-admissible

graph subgroup of G×Aut(T0).

In order to define the boundaries in dSetG, we add to our discussion about non-equivariant

faces at the end of Section 5.1.2.

Definition 5.2.10. Given T ∈ ΩG, R0 ∈ Ω, we recall that a non-equivariant face is just

a map ϕ : R0 → T of forests which is a face map on the image component. We call the

associated map ϕ : Ω[G · R0] → Ω[T ] a face of Ω[T ]. We denote by ∂ϕΩ[T ] ∈ dSetG the
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image of this map in Ω[T ]. Explicitly, we have

∂ϕΩ[T ](S0, ∗) = {f : Ω[G · S0]→ Ω[T ] | f factors through ϕ} .

Definition 5.2.11. The boundary inclusion of Ω[T ] is the map

∂Ω[T ] := colim
ϕ∈Inn(T )

∂ϕΩ[T ].

Non-equivariantly, we can also define boundaries on forests F = qFi by ∂Ω[F ] =

q∂Ω[Fi]. In fact, these definition agree:

Lemma 5.2.12. Given any decompositions T ' G · T0/N ' G ·H TH , we have that the

boundary inclusion for T is equivalent to both

i!(∂Ω[T0]↪→Ω[T0])/N

and

G ·H (∂Ω[TH ]↪→Ω[TH ]),

where again Ω[TH ] ∈ dSetH.

Proof. This is immediate after unpacking definitions. We state the first correspondence

explicitly; the second is similar. We note that dSetG(∂Ω[T ], X) is equivalent to tuples (xϕ)

of elements xϕ ∈ X(G · R0), ϕ : R0 → T a elementary face map (of forests), with the ϕ

compatible over equalizing maps. Conversely, maps dSetG((iG)!∂Ω[T0]/N,X) is similarly

equivalent to tuples (xϕ) ∈ i∗GX(R0) = X(G ·R0) for all elementary face maps ϕ : R0 → T0

which are “N -equivariant” — that is, xϕ = xϕ̄ if T0 → T equalizes ϕ and ϕ̄. Thus both

objects define the same representable functor, and hence are isomorphic.

We will define two types of horns, underlying and orbital, each capitalizing on a different

aspect of ΩG. We begin with the former, which are more standard.
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In either case, we quickly realize that elementary inner horns will very rarely be equiv-

ariant: if e ∈ T is an inner edge, then Λe[T ] is an H-object if and only if e is H-fixed. To

fix these peculiarities, we will need to consider horns over an entire orbit’s worth of edges.

To that end, we first recall (non-equivariant) generalized inner horns (see [MW09, Section

8]).

Definition 5.2.13. If A is a set of inner edges of some T0 ∈ Ω, define ΛA[T0] to be the

union of all simple faces not of the form ∂A′ for A′ ⊆ A.

More generally, if F = qTi is a forest, and A = qAi for Ai a set of inner edges of Ti,

define

ΛE [F ] := qΛEi [Ti].

Definition 5.2.14. The elementary inner F-horn inclusions are maps in dSetG of the form

ΛG.e[T ]↪→Ω[T ]

where T is an F-admissible G-tree and G.e is the G-orbit of some inner edge e.

Remark 5.2.15. We note that ΛG.e[T ] is in fact an object in dSetG. Indeed, ΛG.e[T ](S0, ∗)

is the set of maps Ω[G · S0] → Ω[T ] that factor through a face map which misses G.e;

precisely because G.e is a full orbit, this set has the appropriate G-action.

The following result is proved analogously as to Lemma 5.2.12.

Lemma 5.2.16. Elementary inner F-horn inclusions are isomorphic to maps of the form

i!(Λ
H.e[T0]↪→Ω[G · T0])/N

where N is an F-admissible graph subgroup of G×Aut(T0) with π1(N) = H.

Definition 5.2.17. We call a map in dSetG inner F-anodyne if it is in the saturation of

the set of elementary inner F-horn inclusions under retracts of transfinite compositions of

pushout.
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We now introduce our combinatorial models for “G-homotopical operads”.

Definition 5.2.18. A dendroidal set X ∈ dSetG is called an F-∞-operad, or an inner

F-Kan complex, if X has the right lifting property with respect to all elementary inner

F-horn inclusions.

We call such an X strict if it has unique liftings.

More generally, we call a map a (strict) inner F-fibration if it has the (strict) right

lifting property with respect to all elementary inner F-horn inclusions.

It is clear that if F ′↪→F is an inclusion of weak indexing systems and f : X → Y is an

inner F-fibration, then f is also an inner F ′-fibration.

We can extend these definitions to the other presheaf categories besides dSetG:

Definition 5.2.19. If F̄ is another weak indexing system, then an arrow f : X → Y in

dSetF̄ is called an (strict) inner F-fibration if i∗f is an (strict) inner F-fibration in dSetG.

The following observations are straightforward:

Lemma 5.2.20. Suppose we have inclusions F̄ ′ j−→ F̄ j′−→ F̄ ′′ of weak indexing systems, and

an arrow f : X → Y in dSetF̄ . The following are equivalent:

(1) f is an inner F-fibration.

(2) j∗f ∈ dSetF̄ ′ is an inner F-fibration.

(3) j∗f ∈ dSetF̄ ′′ is an inner F-fibration.

Remark 5.2.21. As the ∞-operads of Moerdijk-Weiss and Cisinski-Moerdijk have non-

canonical composition of operations over trees, G-∞-operads have “non-canonical compo-

sition over G-trees”. Additionally, they can be strictified to equivariant operads. More

completely, they can be strictified to “genuine equivariant operads”, a algebraic construc-

tion designed to capture the information inherent in a G-∞-operad. We will explore this

connection further in Chapter 6.
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Example 5.2.22. Let G = Z/4, F = Set, and recall the G-tree T from Example 5.1.1.

The following are the collection of (inner) faces which are not included in the inner horn

ΛG.c[T ]:

b+ 1

a+ 3

a+ 1

c+ 1

d+ 1d
b

a+ 2

a

c

e

b+ 1

a+ 3

a+ 1

c+ 1

d+ 1d
b

a+ 2

a

e

b+ 1

a+ 3
a+ 1

d+ 1d

b

a+ 2

a

c

e

b+ 1

a+ 3a+ 1

d+ 1d
b

a+ 2

a

e

The nomenclature used here is meant to be suggestive of [CM11]. Indeed, F-∞-operads

are the fibrant objects in a model structure on dSetG:

Theorem 5.2.23 ([Per17, Theorem 2.2]). For any weak indexing system F , the category

dSetG can be endowed with the F-model structure: a left proper cofibrantly generated model

structure such that

(1) cofibrations are the F-normal monomorphisms;

(2) F-anodyne extensions are trivial cofibrations;

(3) F-∞-operads are the fibrant objects;

(4) fibrations X → Y between F-∞-operads are inner F-fibrations such that for all H ≤

G, the map on categories induced by XH → Y H is a categorical fibration;

(5) the weak equivalences are the smallest class containing the inner F-anodyne extensions

and the trivial fibrations which is closed under 2-out-of-3.



139

The following conjecture would naturally extend the above result to other presheaf

categories, and is currently under development

Conjecture 5.2.24. For any weak indexing systems F̄ and F , the category dSetF̄ can be

endowed with an analogous F-model structure: a left proper cofibrantly generated model

structure on dSetF̄ such that F-∞-operads are the fibrant objects.

The different model structures specify different amounts of relaxing on the fixed-point

rigidity found in SetG (as opposed to SetO
op
G ), and on the equivariance of the weak compo-

sition will be, with F̄ = F∅ being the most rigid, and F̄ = Set the least. In particular, we

will find that F-∞-operads are strictifiable to genuine F-operads.

We record some results about inner G-anodyne maps.

Lemma 5.2.25 ([Per17, Lemma 6.14], cf. [MW09, Lemma 5.1]). Given T ∈ ΩG and a

G-closed set A of inner edges of T . Then the G-inner horn inclusion

ΛA[T ]→ Ω[T ]

is inner G-anodyne.

Proof. We note that it is sufficient to show that maps of the form

ΛE [T ]→ ΛE−G.e[T ]

are inner anodyne. We will add all the missing faces by a series of pushouts, indexed over

an equivariant poset we now describe. Picking any e ∈ G.e chooses a tree component TH of

T and a decomposition T ' G ·H TH , where H = StabG(rT ) is the stabilizer of the root edge

of TH . We let InnH.e(TH) denote the H-poset of inner faces of TH (under inclusion) which

collapse only edges in H.e. Thus, it suffices to check that for any H-equivariant convex
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subsets B ⊆ B′ ⊆ InnH.e(TH), we have that

ΛE [T ] ∪G ·H

 ⋃
TH\b̄∈B

Ω[TH \ b̄]

→ ΛE [T ] ∪G ·H

 ⋃
TH\b̄∈B′

Ω[TH \ b̄]

 (5.7)

is inner G-anodyne. We may assume that B′ = B qH.(TH \ b̄), so let H̄ = StabG(b̄). Now,

we claim that the map 5.7 is a pushout of

G ·H̄
(

Λ(E\G.e)∩TH [TH \ b̄]→ Ω[TH \ b̄]
)
.

This is straightforward, once we observe that theG-stabilizer of any face not in Λ(E\G.e)∩TH [TH\

b̄] is contained in H̄; this observation follows from the fact that the set of edges (E\G.e)∩TH

contains none of the conjugates of any edges b ∈ b̄.

Thus, the result is proved via lexicographic induction on (|G|, |E/G|).

Lemma 5.2.26 ([Per17, Proposition 6.16], cf. [MW09, Lemma 5.2]). Suppose we have a

grafting of G-tree W = T qG.e S with G.e ' G/H. Then

Ω[T ]
∐

Ω[G/H·η]

Ω[S]→ Ω[W ]

is inner G-anodyne.

Proof. Let Out(W ) denote the G-poset of outer faces (i.e. non-inner non-quotient faces) of

the grafted tree W , and OutT,S(W ) the G-subposet of those outer faces contained in their

T nor S.

It now suffices to show that for all G-equivariant convex subsets B ⊆ B′ of OutT,S(W ),

we have

Ω[T ]qG/H Ω[S] ∪
⋃
R∈B

R→ Ω[T ]qG/H Ω[S] ∪
⋃
R∈B′

R (5.8)

is inner G-anodyne.

By induction, it suffices to consider the case where B′ = B ∪G.U for some single outer
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face S. Letting H ≤ G be the stabilizer of rU , consider the G-tree G ·H U , and let IU be

the set of inner edges. Then (5.8) is the pushout of

ΛIS [G ·H U ]→ Ω[G ·H U ]

and the result follows via induction and the factorization

Ω[T ]qG/H Ω[S]→ ΛIW [W ]→ Ω[W ].

Orbital Horns

We now define our second class of horn inclusions. While the underlying horns were nat-

ural generalizations via the expanded representation, as suggestively named, these will we

inspired by the orbital representation of our G-trees.

Recall the poset ΦOrb(T ) of orbital faces of T from Section 5.1.2, with examples described

in Section5.1.3; in particular, they look like face maps on the orbital representation.

Definition 5.2.27. We define the orbital boundary inclusion of Ω[T ] to be the map

∂OrbΩ[T ] := colim
ϕ∈ΦOrb(T )

∂ϕΩ[T ]

Given a G-tree T and an orbit E of inner edges, we note that any choice of element e ∈ E =

G.e induces a decomposition T ' G ·H TH , where TH contains e. Let ΦG.e
Orb(T ) be poset of

orbital maps which “miss outside of G.e”; since G.e is a single orbit, this is the equivalently

the subposet of ΦOrb(T ) excluding the orbits of faces G · (T0 → T ) and G · (T0/H.e→ T ).

Finally, define the orbital horn inclusion of Ω[T ] to be the map

ΛG.eOrb[T ] := colim
ϕ∈ΦG.eOrb(T )

∂ϕΩ[T ].
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Example 5.2.28. Let G = Z/4, and consider the G-tree T = C2G/G ◦G CG/G ◦G/G CG/G:

T

a+ 2

b+ 2

c+ 2

a

b

c
d

T

G+ a

G+ b

G+ c

G/2 + d

The orbital horn ΛG.cOrb[T ] is generated by (the orbits of) the following non-equivariant face

maps:

R1

b+ 2

c+ 2

b

c
d

R2

a+ 2

c+ 2

a

c
d

R3

a

b
c

where

• R1 is the orbital face associated to the outer G-face T \G.va;

• R2 is the orbital face associated to the inner G-face T \G.b; and

• R3 is the (one of the two) orbital face associated to the root-cluster G-face map

T \G.vd.

A lifting diagram

ΛG.cOrb[T ] X

Ω[T ]

h

h̄

encodes dendrices fi ∈ X(Ri, ∗) and a lifting dendrix h̄ ∈ i∗X(T ) such that the inner face

γ̄ := ∂∗G.ch̄ has the following compatibilities:

q∗(∂∗G.va γ̄) = ∂∗{c,c+2}f1

q∗(∂∗G.bγ̄) = ∂∗{c,c+2}f2

q∗(∂∗G.vd γ̄) = ∂∗E\{a,b}q
∗γ̄ = ∂∗vcf3
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We will now devote the rest of this subsection to prove the following result:

Proposition 5.2.29. For any G-tree T and any orbit of inner edges G.e, the orbital horn

inclusion is inner G-anodyne.

This will be necessary in order to build the homotopy strictification of a G-∞-operad as

a “genuine G-operad”. This begs the question as to why we use underlying horns to define

G-∞-operads as opposed to these. We expect the following to hold.

Conjecture 5.2.30. All (underlying) horn inclusions can be built cellularly out of orbital

horn inclusions.

Consequently, lifting conditions against one type hold if and only if they hold against

the other. This would mean that, homotopically, they induce the same structure on dSetG.

This conjecture seems likely, especially if we interpret lifting against orbital horns as a weak

“Segal-type” condition.

We will prove Proposition 5.2.29 using a “characteristic edge” argument (cf. [MW09,

Lemma 9.7]), coupled with a poset induction schema (cf. [Per17]). We begin with the first

piece, more abstractly.

Definition 5.2.31. Suppose we are given a decomposition T ' G·HTH of a G-tree T , and a

subtree U ⊆ T , with UK = U∩TH andK = StabH(UK). Further, supposeX ⊆ Ω[T ] ⊇ Ω[U ]

contains all (non-equivariant) outer faces of U . We say an edge orbit K.e ∈ UK is a

characteristic edge orbit if either of the two equivalent conditions hold:

(1) InnX [U ] = G ·K (InnXK.e[UK ]× (0→ 1)H.e); or

(2) A face R0 ∈ InnXe [UK ] if and only if R0/Ke ∈ InnXe [UK ] (equivalently, if and only if

R0/ē ∈ InnXe [UK ]),

where

• InnX [U ] is the poset of inner faces of U not in X (or equivalently, the poset of inner

edges of U not in X);
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• InnXK.e[UK ] is the poset of inner faces UK/(E ∪K.e) which are not in X; and

• InnXe [UK ] is the poset of inner faces UK/E which contain e and are not in X.

Proposition 5.2.32. If K.e is a characteristic edge orbit of X ⊆ Ω[T ] ⊇ Ω[U ], then

X → X ∪ Ω[U ] is inner G-anodyne.

Proof. We note that this is trivial if U (hence if U/K.e) are already in X. Assume otherwise.

Then, it suffices to show that for all C ⊆ C ′ K-equivariant concave subsets of InnXK.e[UK ],

the map

X ∪G ·K

( ⋃
E∈C

Ω[UK \ E]

)
→ X ∪G ·K

( ⋃
E∈C′

Ω[UK \ E]

)
(5.9)

is inner G-anodyne; the last step would be the pushout

G ·K (ΛK.e[Uk]) X ∪G ·K
(⋃

E∈InnXK.e
Ω[UK \ E]

)

G ·K Ω[UK ] ' Ω[U ] X ∪ Ω[U ],

finishing the proof.

Now, it suffices to consider the case where C ′ is C ∪ K.D, the inclusion of a single

additional orbit worth of edge subsets. Without loss of generality, e 6 inD and UK \ D is

not in the domain. Let K̄ := StabK(D).

We claim that ΛK.e[UK \D] is in the domain. Indeed, if F is an outer face of UK \D,

then F factors through an outer face of UK , and hence is in X. Further, if F = UK \(D∪E)

with E ∩K.e = ∅, concavity implies F is in the domain. Thus we are left with considering

faces of the form F = UK \ D ∪ ē with ē ⊆ K.e. We must show these cannot be in the

domain. Suppose U \D ∪ ē is in some U \E already attached; then since E ∩K.e = ∅, we

have U \D ⊆ U \E, and hence U \D is in the domain, a contradiction. Similarly, if U \D∪ ē

is in X, then U \ D ∪ K.e in X, and hence U \ D in X (by definition of a characteristic

orbit); so again U \D is in the domain, a contraction.

Thus, we are just missing precisely ΛK.e[UK \ D]. Further, any of the missing faces
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U \D ∪ ē also has stabilizer K̄, or else we’d have D ∩K.e 6= ∅. Thus, we have that (5.9) is

a pushout of

G ·K̄
(

ΛK̄.e[UK \D]→ Ω[UK \D]
)

(where this last isotropy condition ensures that the target really is freely added), and hence

is anodyne, as desired.

Lemma 5.2.33. Let U0 be a minimal outer face of T ' G ·H TH not in ΛG.eOrb[T ], and

suppose e ∈ U0. Then K.e is a characteristic edge orbit for ΛG.eOrb[T ] ⊆ Ω[T ] ⊇ Ω[U0]

Proof. This follows from the characterization of faces in ΛG.eOrb[T ]. Indeed, let U0\D be some

inner face of U0, with Stab(U \ D) = K̄, and suppose U \ (D ∪ K̄.e) is in ΛG.eOrb[T ]. Then

there exists an entire L-orbit of edges in D ∪ K̄.e away from L.e, and hence such an orbit

exists in D away from L.e, where L := StabG(rU0). Thus U \D ∈ ΛG.eOrb[T ], as required.

proof of Proposition 5.2.29. Let OutX(T ) be the poset of outer faces U0 of T which are not

in ΛG.eOrb[T ]. It suffices to show that for any G-convex subsets B ⊆ B′ ⊆ OutX(T ), the map

ΛG.eOrb[T ] ∪
⋃
R∈B

Ω[R]→ ΛG.eOrb[T ] ∪
⋃
R∈B′

Ω[R′]

is inner G-anodyne. Again, it suffices to consider the case B′ = B ∪ {U0} for some outer

face U0; without loss of generality, e ∈ U0. Let K = StabG(U0).

The base case B = ∅ is given by the previous lemma. Generally, we have that

• ΛG.eOrb[T ] ∪
⋃
R∈B Ω[R] contains all outer faces of Ω[U ], by convexity; and

• K.e is a characteristic edge orbit for ΛG.eOrb ∪
⋃
R∈B Ω[R] ⊆ Ω[T ] ⊇ Ω[U ].

Indeed, let U \D be an inner face of U0 with stabilizer K̄. Then, we have U \ (D ∪ K̄.e) is

in the domain if either

(1) U \D ∪ K̄.e ⊆ R, for some other outer face R; but R containing an inner face of U

implies R contains U , and thus, in particular, U \D ⊆ R.
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(2) U \ D ∪ K̄e ∈ ΛG.eOrb[T ], but then by the arguments in the previous lemma, U \ D ∈

ΛG.eOrb[T ] as well.

Finally, by Proposition 5.2.32, we have our result.

Lastly, generalized orbital horns are also inner G-anodyne.

Lemma 5.2.34. Let T ∈ ΩG be a G-tree, and E a G-closed subset of the edges of T . Then

the generalized orbital horn inclusion

ΛEOrb[T ] ↪→ Ω[T ]

is inner G-anodyne.

Proof. It suffices to show that maps of the form

ΛEOrb[T ] ↪→ Λ
E\G.e
Orb [T ]

are inner G-anodyne. However, by observation, we note that the right-hand-side is missing

precisely one generating orbital dendrix, namely T \G.b. Thus we have a pushout

ΛE\G.b[T \G.b] ΛEOrb[T ]

Ω[T \G.b] Λ
E\G.b
Orb [T ]

concluding the proof.

5.2.3 Kan Complexes

As mentioned in the previous section, there are different strengths of inner Kan complexes.

For a weak indexing system F , let KanF denote the full subcategory of dSetG spanned by

inner F-Kan complexes; if F = Set, we write KanG. Similarly, let SKanF denote the full

subcategory of strict inner F-Kan complexes.
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We first consider the weakest notion, when F = F∅ and dSetF = dSetG. If J denotes

the set of (non-equivariant) inner horn inclusions in Ω, and (iG)!J denotes it’s image in

dSetG, we have X is a (strict) inner F∅-Kan if and only if X has the (strict) right lifting

property against (iG)!J . The following is immediate.

Lemma 5.2.35. A presheaf X ∈ dSetG has the (strict) right lifting property against (iG)!J

if and only if (iG)∗X has the (strict) right lifting property against J .

Corollary 5.2.36. KanF∅ = KanG and SKanF∅ = SKanG.

We will now further analyze the “strictness” condition. Equivariantly, this is a much

more rigid property than its analogue in dSet, as it can be determined entirely by restricting

to a subclass of inner horn inclusions, namely those into free G-trees:

Proposition 5.2.37. If X ∈ dSetG is a strict inner F∅-Kan operad, then X is a strict

inner G-Kan operad. That is, SKanG = SKanG.

Explicitly, this is saying that if X has the strict right lifting property against all maps

of the form ΛG.eΩ[G · T0]↪→Ω[G · T0], then X has the strict right lifting property against all

inner G-horn inclusions.

We begin the proof with a lemma:

Lemma 5.2.38. If X is a strict inner F∅-Kan operad, then X has strict lifts against

generalized inner F∅-horn inclusions ΛG.AΩ[G · T0]↪→Ω[G · T0].

Proof. By the proof of Lemma 5.2.25, we suspect that X must have (non-strict) lifts against

these inclusions; we will show that these lifts do exist, and are unique. Given a free G-

tree G · T0 and a subset of inner edges E of T0, we go by induction, lexicographically on

(deg(T0), |E|).

We begin by showing that X has strict lifts against inclusions of smaller generalized
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inner F∅-horns into larger ones. For any a ∈ A, we have a pushout in dSetG

(iG)!Λ
E\e[T0/e] (iG)!Λ

E [T0] X

(iG)!Ω[T0/e] (iG)!Λ
E\e[T0]

f

∃!F ∃!F ′

For any map f , induction implies that the map F exists and is unique. By the universal

property of the pushout, there is a map F ′ which depends uniquely on F and f , as desired.

Iterating this, we find that X has unique lifts against inclusions of the form ΛG.A[G ·

T0]↪→ΛG.A
′
[G · T0] for any A′ ⊆ A.

Now, suppose by induction we know that X has unique lifts against generalized inner

G-horn inclusions (iG)!Λ
E [T0]↪→Ω[T0] for all |E| < n. Given a subset of inner edges E′ with

|E′| = n, let E = E′ \ e for any choice of edge e ∈ E′; then the E′-horn inclusion factors

through the E-horn inclusions. Given any f : (iG)!Λ
E′ [T0] → X, we have the following

diagram.

(iG)!Λ
E′ [T0] X

(iG)!Λ
E [T0] X

(iG)!Ω[T0]

f

i

j

∃!g

∃ψ

∃ϕ

where the dotted arrows are lifts: g is the unique lift of f against i, ϕ is the unique lift of

g against j, and ψ is some lift of f over ji (where we note that ϕ is an example of such a

lift). However, ψj is a lift of f over i, so by uniqueness ψj = g; but then ψ is a lift of g

over j, and again by uniqueness we have ψ = ϕ. Thus ϕ is the unique lift of f over ji.

proof of Proposition 5.2.37. Given a G-tree T and a horn inclusion i : ΛA[T ]→ Ω[T ] where

A is a transitive G-set of edges in T , picking any e ∈ A yields a decomposition T ' G·HTH '

G · T0/N (where e is in the T0 = TH -th tree component) and an identification of i with

j : (iG)!Λ
H.e[T0]/N↪→(iG)!Ω[T0]/N . Now, given f : ΛG.e[T ] → X, consider the following
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diagram:

(iG)!Λ
{H.e}[T0] (iG)ΛH.e[T0]/N X

(iG)!Λ
{H.e}[T0]

(iG)!Ω[T0] (iG)!Ω[T0]/N

(iG)!Ω[T0]

j

n

j/N=i

f

∃!ϕ

n ∃!ϕ

where n is any element N , and the dashed arrows are lifts. We note that this diagram

commutes everywhere: the horn inclusion is N -equivariant, action by N is equalized in the

quotient, and the lifts exist and are unique (and hence equal) by the above Lemma. Thus

ϕ = n.ϕ for all n ∈ N , and hence factors through the quotient; i.e. ϕ is a lift of f over j,

and is unique, as desired.

5.2.4 Nerves and Strictifications

In this section, “operad” will mean a G-object in the category of set operads. That is,

a symmetric multicategory with a G-set of objects and appropriately equivariant sets of

multimorphisms.

Recall the nerve operation from Diagram (2.4), built out of the inclusion Ω
T 7→Ω(T )−−−−−→ Op.

Lifting to the categories of G-objects, we have the following diagram

ΩG OpG

dSetG

Ω[−]

NG

τ

where N = NG is the G-dendroidal nerve functor, and (τ,N) is an adjoint pair. As before,

if P ∈ OpG, we have NP(TG) = OpG(Ω(TG),P). Elements are tuples operations in P,

indexed and equivariantly colour-coordinated by the vertices of TG.
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Note that we also have a nerve-evaluation diagram out of ΩG: the original functor Ω(−)

extends to the category of forests via the coproduct of coloured operads, and again passing

to G-objects and restricting along ΩG↪→ΦG, we have the diagram

ΩG OpG

dSetG

Ω[−]
NG

τ

However, this factors through dSetG:

Lemma 5.2.39. The following diagram commutes.

OpG

dSetG dSetG

NG

NG

i∗

Proof. If T = CA is a G-corolla induced by an H-set A, then NGP(CA) ' P(|A|)ΓA , where

ΓA : H → Σ|A| encodes the H-structure on A. Inductively, since the operad Ω(T ) is free,

we see, for general G-trees T , that

NGP(T ) ' lim
Outc(T )

NGP(Tv) ' lim
Outc(T )

P(#Tv)
NTv

'
(

lim
Outc(T )

P(#Tv)

)N
' NGP(G · T0)N ' i∗NP(T )

where Tv is the G-corolla on the vertex v ∈ V (T ), and for any T ' G · T0/N , #T is the

number of leaves of T0.

Remark 5.2.40. Again, this is really the same observation that ΦX(G/H) = ΦX(G/e)H

for the fixed-point coefficient system of a G-space — it’s highlighting the fixed-point rigidity

of equivariant operads, by showing that all the combinatorial information lands in the

category dSetG, which has that same rigidity, as opposed to dSetG, which is more flexible,

fixed-point wise.
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Analogously to [Wei07, Theorem 3.5.12], we will show the following result:

Proposition 5.2.41. Given X ∈ dSetG, we have that X is strict inner G-Kan operad if

and only if X ' NP for some P ∈ OpG.

Remark 5.2.42. This is the strongest level of rigidity and strictness, as Lemma 5.2.20

implies that for any F and F̄ , NF̄P is a strict inner F-Kan complex.

Proof. By Proposition 5.2.37, we can replace the first condition with X ∈ SKanG. Now, we

may apply the “homotopy operad” machinery discussed in Section 2.4 by post-composing;

N∗ = N : OpG → dSetG as before, and new maps Ho∗ : KanG → OpG.

Op OpG

Kan KanG

N N∗Ho(−) Ho∗

In particular, we have a natural transformation id ⇒ N ◦ Ho in the category of Kan

complexes, which is an isomorphism on strict complexes; hence X ' NHo∗X for all strict

inner G-Kan complexes X.

Conversely, as observed above, elements of NP(T ) are tuples of operations in P, indexed

and color-coordinated by the vertices of T . Since outer faces, or more specifically and

relevantly the core outer poset, is always included in any inner horn of T , NP is clearly

strict inner G-Kan.

Remark 5.2.43. This proposition could have been proved directly be rebuilding the ho-

motopy functor on inner G-Kan complexes from [MW09]. However, that construction is

no more enlightening or complicated than the above proof. In particular, Ho(X) can be

constructed for any X with the right lifting property against just the (iG)!J , and aside from

small checks that ∼ is equivariant (e.g. f ∼ f ′ implies g.f ∼ g.f ′ and h ' f ◦i f ′ implies

g.h ∼ g.f ◦i g.f ′), the construction and proofs go through identically as in [MW09], but

now landing in OpG.
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This again demonstrates the rigidity of OpG, and how it forces the “homotopy operad”

to forgot much of the equivariant information: as any horn is the quotient of a free one,

and since any two lifts (i.e. “compositions”) are identified in the homotopy operad, all the

extra equivariant data collapses.

Instead, we will need a new, more flexible notion of “coefficient” or “genuine equivariant

operads” to allow this input to matter in the creation of the strict algebraic structure. This

concept will be explored in Chapter 6.

5.3 Cofibrancy of Single-Coloured Equivariant Operads

With the technology of F-trees, we now return to the discussion in Section 4.3. In particular,

let V satisfy Assumption 1 (see 4.3.5), and let F = {Fn} be a weak indexing system. In

this section, we will investigate the properties of F-cofibrant operads in VOpG{∗} = VGOp{∗}.

As is typical, we will use the filtration built in Section 3.5 to analyze the closure properties

of (trivial) cofibrations.

Remark 5.3.1. The definitions and analysis here should carry over immediately to the

multicoloured case, as begun in Section 4.2.4.

We recall (Definition 4.3.2 that a map f : O → P is called an F-fibration (resp. F-weak

equivalence, level F-cofibrations) if each f(n) is so in VG×Σn
Fn , and an F-cofibration if it has

left lifts against F-trivial F-fibrations.

We say P ∈ VOpG is level F-cofibrant if the unique map ∗ → P is a level F-cofibration.

Remark 5.3.2. With G trivial and Fn = {1} for each n, this recovers the notion of a

“Σ-cofibration” found in previous works (e.g [BM03]).

We will now prove our results. The main result says that cellular extensions from an

F-cofibrant source are F-cofibrations.

Theorem 5.3.3. Let F be a weak indexing system, and V a category satisfying Assumption

1. Further, let P ∈ VOpG{∗} be level F-cofibrant operad, u : X → Y a cofibration of
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symmetric sequences
∏
VG×Σn
Fn , and h : FX → Y a map of operads. Then the cellular

extension P → P[u] given by the pushout

FX P

FY P[u]

F(u)

h

is a level F-cofibration, trivial if u is so.

Notation 5.3.4. While we use the notion of weak indexing systems and F-admissible trees

from the above sections, the only trees we will be referring to are the usual non-equivariant

objects of Ω, and hence we will denote them by just T (as opposed to T0 used in the previous

part of this chapter).

Proof. We first use the observation that VOpG{∗} = VGOp{∗}, and hence we can use our

filtration from Section 3.5. Now, using the notations from Definition 3.5.9, and according

to Theorem 3.5.10, it suffices to check that the map

(
�

Va(T )
ιP (Tv) � [u]�Vp(T )

)
⊗Aut(T ) Σn

is a (trivial) cofibration in VG×Σn
Fn given our assumptions.

By Lemma 5.3.7,

Σn ⊗Aut(T ) (−) : VG×Aut(T )
FT → VG×Σn

Fn

is left Quillen if and only if val(Γ) ∈ Fn whenever Γ ≤ G×Aut(T ) defines an F-admissible

tree with n leaves. Thus, we see this holds precisely when F is a weak indexing system.

It remains to show that the given map in VG×Aut(T )
FT is a (trivial) cofibration. We observe

that this map is a large indexed box product, in particular over a list of (trivial) cofibrations

f(v) ∈ VG×ΣTv
FTv

such that f(v) = f(α(v)) for all v ∈ V (T ) and α ∈ Aut(T ). The fact that

this is again a (trivial) cofibration is the content of Proposition 5.3.27.
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Corollary 5.3.5 (cf. [BM03, Corollary 5.2, Proposition 4.3]). The class of level F-cofibrant

operads in VOpG{∗} is closed under cellular extensions. Moreover, if O ∈ VOpG is F-

cofibrant, then the underlying symmetric sequence is level cofibrant.

Proof. The main result is an immediate consequence of Theorem 5.3.3. For the moreover, we

recall that any F-cofibrant operad O can be built out of a retract of a composite of cellular

extensions of generating F-cofibrations u : X → Y of symmetric sequences, starting with

the initial operad. As the initial operad is just the initial object of V in each level, it is level

F-cofibrant for all F . Thus, the moreover follows from the main result and the observation

that level F-cofibrations are closed under retracts.

We spend the rest of this section proving Proposition 5.3.27. This will follow from a

discussion of the interplay between different families, symmetric products, and trees.

Remark 5.3.6. The outline of the following story, in particular a description of the types

of constructions needed, was conveyed to me by Pereira.

We first note some basic relations.

Lemma 5.3.7. Suppose we are given two groups Π and Π̄, families of subgroups F and F̄ ,

and a homomorphism ϕ : Π→ Π̄ of groups. Then the induced adjunction

fgt : VΠ̄
F̄ � VΠ

F : Π̄ ·Π (−)

is a Quillen pair if and only if for all H ∈ F , ϕ(H) ∈ F̄ .

Proof. We have that Π̄ ·Π (Π/H) = Π̄/ϕ(H), and thus under precisely these conditions do

generating cofibrations Π/H · i) in VΠ
F get sent to generating cofibrations in VΠ̄

F̄ .

Dually:

Lemma 5.3.8. Given ϕ as above, the induced adjunction

HomΠ(Π̄,−) : VΠ
F � VΠ̄

F̄ : fgt
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is a Quillen pair if and only if for all H̄ ∈ F̄ , we have ϕ−1(H̄g) ∈ F .

Proof. The generalized double coset formula tells us that

resΠ̄
Π(Π̄/H̄) =

∐
g∈ϕ(H)\Π̄/H̄

Π/ϕ−1(H̄g),

and so again the result follows immediately.

The results above lead us to create the following definitions:

Definition 5.3.9. Given a homomorphism ϕ : Π→ Π̄, and families F and F̄ , we define

ϕ∗(F̄) =
{
H ≤ Π | ϕ(H) ∈ F̄

}
(5.10)

ϕ!(F) =
{
ϕ(H)ḡ ≤ Π̄ | ḡ ∈ Π̄, H ∈ F

}
(5.11)

ϕ∗(F) =
{
H̄ ≤ Π̄ | ϕ−1(H̄ ḡ) ∈ F for all ḡ ∈ Π̄.

}
(5.12)

Remark 5.3.10. We see the results of Lemma 5.3.7 hold if and only if F ⊆ ϕ∗(F̄) if and

only if ϕ!(F) ⊆ F̄ ; dually, the results of Lemma 5.3.8 hold if and only if F̄ ⊆ ϕ∗(F ) if and

only if ϕ∗(F̄) ⊆ F .

Given multiple families of subgroups, we can combine them in different ways for form

new families. First, if F and F̄ are both families of subgroups of the same group Π, we let

F ∩ F̄ denote their internal intersection, their intersection as sets.

Lemma 5.3.11. Let F and F̄ be families of subgroups of Π; then

⊗ : VΠ
F × VΠ

F̄ → V
Π
F∩F̄

is left Quillen.

Proof. This again follows from the double coset formula, the description of generating cofi-
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brations, and the fact that families are closed under subgroups:

(Π/H · i)�(Π̄/H̄ · ī) = (Π/H × Π̄/H̄) · (i�ī) =
(∐

Π/H ∩ H̄g
)
· (i�ī).

Second, if F and F̄ are families of subgroups of different groups Π and Π̄, respectively,

we define their external intersection, denoted F u F̄ , to be their internal intersection in

Π× Π̄ after pulling back:

F u F̄ := π∗F ∩ π̄∗F̄ ,

where π : Π× Π̄→ Π and π̄ : Π× Π̄→ Π̄ are the projections.

Lemma 5.3.12. The natural map

⊗ : VΠ
F × VΠ̄

F̄ → V
Π×π̄
FuF̄

is left Quillen.

Proof. This follows from Lemmas 5.3.8 and 5.3.11 via the composite

VΠ
F × VΠ̄

F̄
fgt−→ VΠ×Π̄

π∗1F
× VΠ×Π̄

π∗2 F̄
⊗−→ VΠ×Π̄

FuF̄ .

5.3.1 Box Products

Given a family F of subgroups of Π, we would like to construct a natural family F⊗k of

subgroups of Σk oΠ for any k ∈ N. In particular, we would like the family so that H ∈ F⊗k

only if the projection of H onto each of the k copies of Π is admissible. However, the set

function

Σk oΠ = Σk nΠ×k
πi−→ Π



157

is not a group homomorphism. It is, however, if we restrict to (Σ{i} × Σk\{i}) n Π×k. So,

we will first pullback F along this map, and then push-forward the resultant along the

inclusion into Σk oΠ.

Definition 5.3.13. Given a family F of subgroups of Π, define F⊗k to be the family of

subgroups given by

F⊗k =
k⋂
i=1

(ωi)∗π
∗
i (F),

where

πi : (Σ{i} × Σk\{i})nΠk → Π

projects onto the i-th Π coordinate, and

ωi : (Σ{i} × Σk\{i})nΠk ↪→ Σk oΠ

is the inclusion.

Unpacking definitions, this says that H ∈ F⊗k if and only if

πi

(
Hg ∩

(
(Σ{i} × Σk\{i})nΠk

))
∈ F

for every g ∈ Π and i ∈ {1, . . . , k}. However, it is clear that this family is over-defined. In

particular, if τii′ = ((ii′), (id)) ∈ Σk oΠ, then

πi′
(
Hg ∩

(
(Σ{i′} × Σk\{i′})nΠk

))
= πi

(
Hg◦τii′ ∩

(
(Σ{i} × Σk\{i})nΠk

))
.

Hence:

Lemma 5.3.14. For any i, i′ ∈ {1, . . . , k}, we have

(ωi′)∗π
∗
i′F = (ωi)∗π

∗
iF .
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Moreover, if g = (τ, (gj)) ∈ Σk oΠ such that τ(i′) = i, then we determine that

πi

(
Hg ∩

(
(Σ{i} × Σk\{i})nΠk

))
= giπi′

(
H ∩

(
(Σ{i′} × Σk\{i′})nΠk

))
g−1
i ,

using the observation that if σ fixes i, then τστ−1 (τ as above) fixes i′. Thus, we have an

equivalent characterization of F⊗k:

Lemma 5.3.15. H ∈ F⊗k if and only if πi
(
H ∩

(
(Σ{i} × Σk\{i})nΠk

))
∈ F for all i ∈

{1, . . . , k}.

The following will allow us to use the machinery of [Per16] to prove Proposition 5.3.17.

Lemma 5.3.16. For any family F of subgroups of Π, we have

F⊗k1 u F⊗k2 ⊆ ω∗
(
F⊗(k1+k2)

)
,

where ω is the inclusion

ω : Σk1 oΠ× Σk2 oΠ = (Σk1 × Σk2) oΠ→ Σk1+k2 oΠ.

Proof. By definition of u, we see that H ≤ Σk1 oΠ×Σk2 oΠ = (Σk1×Σk2)oΠ is in F⊗k1uF⊗k2

if and only if

πi

(
H ∩

(
(Σ{i} × Σk1\{i} × Σk2)nΠk1+k2

))
∈ F for all i ∈ {1, . . . , k1}

πi′
(
H ∩

(
(Σk1 × Σ{i′} × Σk2\{i′})nΠk1+k2

))
∈ F for all i′ ∈ {k1 + 1, . . . , k1 + k1}.

Moreover, for any j ∈ {1, . . . , k1 + k2}, ω(H) ∩
(
(Σ{j} × Σk1+k2\{j})nΠk1+k2

)
is equal

to

H ∩
(

(Σ{j} × Σk1\{j} × Σk2)nΠk1+k2

)
if j ∈ {1, . . . , k1}, and

H ∩
(

(Σk1 × Σ{j} × Σk2\{j})nΠk1+k2

)
if j ∈ {k1 + 1, . . . , k1 + k2}.
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Hence ϕ(H) ∈ F⊗k1+k2 , and the result follows.

We will now prove the following analogue of [Per16, Theorem 1.2].

Proposition 5.3.17. If f is a (trivial) cofibration in VΠ
F , then so is f�k ∈ VΣkoΠ

F⊗k .

The technology used it that proof can be applied here, using Lemmas 5.3.16 and 5.3.7.

We break down the results into lemmas themselves.

Notation 5.3.18. We recall a simplification of the notation in 3.5.9. Given a convex

subposet C of (0→ 1)×k and a diagram u : A0 → A1 in V(0→1), define QkC [u] := colimC [u].

In particular, let Ct be the subposet of (0→ 1)×k of tuples with at most t 1-entries, and

Qkt [u] := QkCt [u].

More generally, given a poset D, a convex subposet C of D×k, and a diagram i : D → V,

define QnC [i] := colimC(i
⊗k).

In particular, given ē ∈ D×k, let Cē :=
{
ē′ ∈ D×n | ē′ < ē

}
. This comes with natural

latching maps λkē(i) : QkCē [i]→ i⊗k(ē).

Lemma 5.3.19. [cf. [Per16, Lemma 4.8]] Letting D denote the diagram category (0 →

1→ 2), and d : D → VΠ the diagram

Z0
f1−→ Z1

f2−→ Z2.

Suppose that f�ki : Qk[fi] → Z⊗ki is a (trivial) cofibration in VΣkoΠ
F⊗k for i ∈ {0, 1}. Then,

for all C ⊆ C′ symmetric convex subposets of (0→ 1 to2)×n which contain all tuples with at

least one 0-entry, the map

QkC [i]→ QkC′ [i]

is a (trivial) cofibration in VΣkoΠ
F⊗k .

Proof. Without loss of generality, C′ = C ∪ Σn.e for some tuple ē = eo q e1 q e2 with k0
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0-entries, k1 1-entries, and k2 2-entries. We note that Cē ⊆ C, and hence we have a pushout

Σk ·Σk0
×Σk1

×Σk2
QkCē [i] QkC [i]

Σk ·Σk0
×Σk1

×Σk2
Z⊗k0

0 ⊗ Z⊗k1
1 ⊗ Z⊗k2

2 QkC′ [i].

Σk·Σk0
×Σk1

×Σk2
λkē [i]

Lemmas 5.3.16 and 5.3.7 imply it suffices to show that λkē [i] is a cofibration in VΣk0
×Σk1

×Σk2
oΠ

F⊗k0uF⊗k1uF⊗k2
.

This follows by observing that this latching map has a decomposition

λkē [i] = λk0
ē0 [i]�λk1

ē1 [i]�λk2
ē2 [i] = Z⊗k0

0 ⊗ (f�k1
1 �f�k2

2 ).

By assumption on C and C′, we have that k0 = 0, and hence an application of Lemma 5.3.12

finished the proof.

Corollary 5.3.20. [cf. [Per16, Lemma 4.10]] Let Z0
f1−→ Z1

f2−→ Z2 be as above. Then

Qkk−1[f2f1]
∐

Qkk−1[f1]

Z⊗k1 → Z⊗k2

is a cofibration in VΣkoΠ
F⊗k .

Proof. This immediately follows from the above by identifying each as a model of QkC [i]:

• Qkk−1[f1] = QkC1
k−1

[u] with C1
k−1 the set of tuples with no 2-entries and at most (k− 1)

1-entires;

• Qkk−1[f2f1] = QkC2
k−1

[u] with C2
k−1 the set of tuples with at most k − 1 1- or 2-entries.

proof of Proposition 5.3.17. This is immediate on generators, as

(Π/H · i)�k = (Π/H)×k · i�k ' (Σk oΠ/Σk oH) · i�k,

and Σk oH is clearly in F⊗k.
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Given a general trivial cofibration f , we write

f : A0
f0−→ A1

f1−→ A2 → . . .→ Aκ = colim
β<κ

Aβ,

with

• fβ : Aβ → Aβ+1 the pushout of a generating cofibration iβ of VΠ
F ;

• Aβ = colimγ<β Aγ for any limit ordinals β < κ; and

• f̄β : A0 → Aβ the composition for any β < κ.

Since Qkk−1[−] and ⊗ preserve filtered colimits, it suffices to show that the vertical maps

below are cofibrations in VΣkoΠ
F⊗k ;

Qkk−1[f0] Qkk−1[f1f0] Qkk−1[f2f1f0] . . . Qkk−1[f̄κ]

A⊗k1 A⊗k2 A⊗k3 . . . A⊗kκ

By induction, it suffices to check that the relative latching maps

A⊗kβ

∐
Qkk−1[f̄β ]

Qkk−1[f̄β+1]→ A⊗kβ+1

are cofibrations in VΣkoΠ
F⊗k ; the base case has Qkk−1[f̄0] = A⊗k0 and hence is trivial, as is

the case for any limit ordinal by our convention above. Now, by assumption, f̄�kβ is a

(trivial) cofibration, while Lemma 5.3.19 (applied to iβ and fβ) and the case for generating

(trivial) cofibrations implies that f�kβ is a (trivial) cofibration. Thus, applying Lemma

5.3.20 A0
f̄β−→ Aβ

f0−→ Aβ+1 yields that the latching map is indeed a (trivial) cofibration, as

desired.
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5.3.2 Graph Subgroups

When are families are now specifically families of graph subgroups of G × Π, our analysis

needs to be twisted accordingly.

Definition 5.3.21. Given F and F̄ families of graph subgroups of G × Π and G × Π̄

respectively, we define the G-external intersection, denoted F uG F̄ , as family of subgroups

of G×Π× Π̄ given by

F uG F̄ := ∆∗(F u F̄),

where ∆ : G×Π× Π̄→ G×Π×G× Π̄ is the diagonal map.

Equivalently, we see that

F uG F̄ =
{

Γ(ϕ× ϕ̄) | G←↩ H ϕ×ϕ̄−−−→ Π× Π̄, Γ(ϕ) ∈ F , Γ(ϕ̄) ∈ F̄
}
.

Lemma 5.3.22. F uG F̄ is a family of graph subgroups of G×Π× Π̄.

Proof. Both subgroups and conjugation preserve the product structure; hence this follows

since F and F̄ are families of graph subgroups.

Lemma 5.3.12 extends to this context.

Lemma 5.3.23. Given F and F̄ families of graph subgroups of G×Π and G×Π̄ respectively,

the map

VG×Π
F × VG×Π̄

F̄
⊗−→ VG×Π×Π̄

FuGF̄

is left Quillen.

Proof. This also follows by Lemmas 5.3.8 5.3.11, via the factorization

VG×Π
F × VG×Π̄

F̄
fgt−→ VG×Π×G×Π̄

π∗F × VG×Π×G×Π̄
π∗F̄

⊗−→ VG×Π×G×Π̄
FuF̄

fgt−→ VG×Π×Π̄
FuGF̄

.
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We will also twist the families F⊗k to account for the special purpose of G.

Definition 5.3.24. Given a family F of graph subgroups of G×Π, we define F⊗Gk to be

the family of subgroups of G× Σk oΠ given by

∆∗
(
F⊗k

)
,

where ∆ : G× Σk oΠ→ Σk o (G×Π) is the diagonal map on G.

Proposition 5.3.17 extends to this context.

Proposition 5.3.25. Let F be a family of graph subgroups of G × Π. If f is (trivial)

cofibration in VG×Π
F , then so is f�n in VG×ΣnoΠ

FnGn .

Proof. This follows from a single application of Lemma 5.3.8 along the map

VΣko(G×Π)

F⊗k
fgt−→ VG×ΣkoΠ

F⊗Gk .

5.3.3 Tree Families

We now provide a description of the family of graph subgroups of F-admissible trees. Given

a tree T , let

πG×Σm = G× πCm : G×Aut(T )→ G× Σm

πi = πG×Ti = G× πTi : G×Aut(T )→ G×Aut(Ti)

denote the restrictions to the root corolla and the i-th branch component, respectively.

Lemma 5.3.26. For an collection of families F = {Fn}, and T ∈ Ω not a corolla, we have

FT ∼= (πG×Σm)∗(Fm) ∩
(
F⊗Gk1
Ti1

uG . . . uG F⊗GkrTir

)
,
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where T ' Cm(T1, . . . , Tm) = Cm(T 1
1 , . . . , T

k1
1 , T 1

2 , . . . , T
kr
r ) is a grafting decomposition of

T .

Proof. Let F̄T denote the right-hand side. Unpacking definitions, we see that Γ ∈ F̄T if,

for all i ∈ {1, . . . ,m}, we have

πi

(
πG×Σki oAut(Ti)Γ ∩

(
G× (Σi × Σkji

)nAut(Ti)
kji

))
∈ FTi .

However, by just including the rest of Aut(T ), we have this is equivalent to the condition

πi

Γ ∩

G× (Σi × Σkji
)nAut(Ti)

kji ×
∏
j 6=ji

Σkj oAut(Tj)

 ∈ FTi .
Moreover, in this expanded representation, it is clear that what πi is pushing forward is in

fact precisely

Γ ∩
(
G× π−1

Cm
(Σ{i} × Σn\{i})

)
.

Now, let us assume that Γ is a graph subgroup Γ(α) of G × Aut(T ). Then Γ ∩ (G ×

π−1
Cm

(Σ{i}×Σn\{i})) is precisely Γ(α|Hi), where Hi = Stab(ei) is the stabilizer of the root of

Ti under the action on T induced by Γ; we further note that πi(Γ|Hi) = Γ|Ti is the graph

subgroup describing the induced action on the branch Ti. Similarly, πCm(Γ) = Γ|Tvr is the

graph subgroup describing the induced action on the root corolla Tvr . Thus, with this graph

subgroup assumption, we have

Γ ∈ F̄T ⇔ Γ|Ti ∈ FTi for all i ∈ {1, . . . ,m} and Γ|Tvr ∈ Fn

⇔ Γ|Ti and Γ|Tvr induce F-admissible structures on the Ti for all i and on the root corolla

⇔ Γ ∈ FT .

Thus, it suffices to show that all Γ ∈ F̄T are in fact graph subgroups. That is, given

(1, σ) ∈ Γ, we claim σ is also the identity. Indeed, since π∗G×Σm
(Γ) ∈ Fm, any γ ∈ Γ that is
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of the form (1, σ) must have σ act as the identity on Σm. This implies σ =
∏
σi for some

σi ∈ Aut(Ti). But then (1, σi) ∈ πiΓ ∈ FTi implies that these σi must also be the identity,

as desired.

Now, we finally have all the pieces to prove the key technical result of this section.

Proposition 5.3.27. Let F be a collection of families (not necessarily a weak indexing

system), and T ∈ Ω. Further, suppose we are given (trivial) cofibrations f(v) ∈ VG×Σn
Fn for

each v ∈ V (T ), such that f(v) = f(α(v)) for all α ∈ Aut(T ). Then the box product

f�V (T ) = �
v∈V (T )

f(v)

is a (trivial) cofibration in VG×Aut(T )
FT .

Proof. Using the grafting decomposition T ' tm(T 1
1 , . . . , T

k1
1 , T 1

2 , . . . , T
kr
r ), we go by induc-

tion on the number of vertices of T . The base case of |V (T )| = 0 or 1 is trivial. Now, we

note that we have a decomposition

f�V (T ) = f(vr)�
r
�
i=1

((
f�V (Ti)

)�ki)
.

We build this map progressively, preserving (trivial) cofibrancy in each step.

• By induction, for each i, f�V (Ti) is a (trivial) cofibration in VG×Aut(Ti)
FTi

(where we are

using that Aut(Ti) ⊆ Aut(T ), and hence f |V (Ti) satisfies the necessary assumptions

for Ti).

• By Proposition 5.3.25, we have

(
f�V (Ti)

)�ki
∈ VG×Σki oAut(Ti)

F⊗GkiTi

is a (trivial) cofibration, for each i.
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• By Lemma 5.3.23, we have

r
�
i=1

((
f�V (Ti)

)�ki)
∈ VG×

∏
Σki oAut(Ti)

F⊗Gk1
T1

uG...uGF
⊗Gkr
Tr

is a (trivial) cofibration.

• Finally, after applying Lemma 5.3.8 to show that f(vr) is a (trivial) cofibration in

VG×Aut(T )
π∗r (Fn) , and using Lemmas 2.3.36 and 5.3.26 identifying the target category below,

by Lemma 5.3.11 we have

f�V (T ) = f(vr)�
r
�
i=1

((
f�V (Ti)

)�ki)
∈ VG×Aut(T )

FT

is a (trivial) cofibration, as desired.

Remark 5.3.28. As stated earlier, we expect to be able to use the filtration and analysis

above to build the F-model structure on VOpGC in certain interesting cases, such as V = sSet,

Top, or ChR. As is usually the case, this will require relaxing the dependency on P being

F-cofibrant.
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Chapter 6

Genuine Equivariant Operads

Again, we fix a finite group G, as well as an indexing system F = {Fn}, which will be weak

unless otherwise stated.

In this chapter, we introduce a new algebraic framework called “genuine F-equivariant

operads”. These objects encode operations with specific isotropy, and record precisely how

the equivariance of components determines the equivariance of their composition.

We begin by motivating the need and desire for such structures. We will then define

multiple categorical models for this structure, as well as a preliminary list of examples,

including the homotopy genuine G-operad associated to a G-∞-operad.

Research in this topic is ongoing; in particular, complete descriptions and analysis of

algebras over these structures, as well as a complete comparison of the models below, are

in progress.

6.1 Motivation

There are three main motivations for the necessity and construction of genuine equivariant

operads:

First, recall our discussion at the end of Section 4.2.3. One of the downfalls of that

analysis was that the operadic information for different subgroups H ≤ G did not interact

with each other, even though we know that the composition structure maps for G-operads

have an additional level of equivariance which pulls from different subgroups (see Diagram
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(4.1)). However, this information cannot be recorded in the structure of a G-operad, as

we have competition between the number of inputs allowed verses the number of orbits of

inputs desired, as specified by the equivariance of the root operation. We desire a notion

of operad with structure maps that record the initial equivariance, and restrict the possible

inputs to only have that orbital structure.

Second, recall that the natural diagram connecting G-spaces and coefficient systems of

sets

SetG TopG

SetO
op
G TopO

op
G

π0

(π0)G
Φ

π0

does not commute. In particular, the G-set can miss important homotopical fixed-point

information, which is not discarded by the coefficient system of sets.

Analogously, consider the top row of the diagram below.

OpG sOpG

C1 C2

π0

Φ′
(π0)G

π0

Again, π0 : sOpG → OpG misses homotopical fixed-point information, particularly that

π0(O(n)Γ) 6' (π0O(n))Γ. As in the diagram above, there should be two categories, denoted

C1 and C2 in the diagram above, which play the role of SetO
op
G and TopO

op
G — taking into

account the combinatorial complexities of operads, of course. Note that the naive guess of

OpO
op
G does not suffice: it allows us to record the homotopical information of O(n)H , but not

of any of the non-trivial graph subgroups O(n)Γ. Incorporating control over those subgroups

while maintaining an operadic structure will require a new organizational framework.

Similarly, when we built the homotopy operad associated to an inner G-Kan complex in

Section 5.2.4, we were only able to record the information about G-free compositions, and

all others were discarded. We desire a category of operads which allows for strictification

of G-∞-operads which incorporates all of the information present.
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Third, after discovering the category of (planar) G-trees, it became clear that they

had an algebraic structure analogous to that for regular planar trees. However, just as

with the homotopy G-operad above, no amount of manipulation or categorical gymnastics

would allow it to have the structure of a coloured operad. The grafting structure of G-trees

both inspired and motivation our definitions below, as well as provided visual heuristics for

understanding.

As with operads, the new structure comes in many equivalent descriptions, generalizing

different ideas we have seen throughout this thesis. We devote this chapter to identifying

and comparing these models.

Remark 6.1.1. Two words of warning.

(1) Unlike the non-operadic cases of equivariant spaces, categories, or spectra, the cate-

gory of “genuine equivariant V-operads” will not be a category of (enriched) presheaves

on VOp. Instead, the comparison between VOpG and the genuine operads will happen

on the underlying symmetric sequences.

(2) Every model currently understood has the additional requirement that the underlying

symmetric monoidal category V is in fact Cartesian. We hope to remove this barrier

in the future.

Remark 6.1.2. The different definitions below serve different utilities. Some of them are

more straightforward to state, while others require significant technology. Some are immedi-

ately able to capture both single- and multi-coloured operads, as well as restrictions to any

weak indexing system F , while others will require significant effort for either generalization.

Some are monoids, some are algebras, and some are neither. Some we expect to be easier

to endow with model structures, while others will be more troublesome. For completeness,

we present them all.
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6.1.1 Planar G-Trees and G-Symmetric Sequences

Two models (the “monadic” and “coend”) are generalizations of the idea that operads

are “symmetric sequences with structure”, whether that structure is as a monoid over the

composition product, or an algebra over the free operad monad. To begin, we define the

equivariant version of this underlying structure. This requires us to first discuss planar

G-trees.

We remark that the definition of a planar structure on a tree T ∈ Ω from Section 2.3.4

extends immediately to the category of forests, by providing a planar structure on each

component and a total ordering of the root orbit.

Definition 6.1.3. A planar G-tree is a G-tree T along with a planarization of the underly-

ing forest. Let TG denote a choice of category of planar G-trees and non-planar morphisms,

such that there is exactly one representative of each planarization (c.f. Definition 2.3.42);

both TqG and TG,0 will denote the wide subcategory of (non-planar) isomorphisms and

quotients, and ΣG ⊆ TG,0 will denote the full subcategory of G-corollas and (non-planar)

quotients.

More generally, let TF denote the full subcategory of TG spanned by F-admissible trees,

and ΣF similarly.

Definition 6.1.4. Let TF ,0 (resp. TtF ) denote the wide subcategory of planar G-trees with

G-isomorphisms (respectively planar tall G-maps).

Remark 6.1.5. We saw for non-equivariant trees that the condition ϕ(L(S)) = L(T ) and

ϕ : L(S)→ L(T ) is a bijection are equivalent. However, this is not the case for G-trees. In

particular, in addition to inner faces and degeneracies, quotient maps are considered tall.

To clarify, we say a map is (planar) strictly tall if it is planar tall and ϕ : L(S)→ L(T )

is a bijection; denote this wide subcategory by TstG.

Lemma 6.1.6 (c.f Lemma 5.1.45). The following categories are equivalent (and all have

some notion of “planarity”):
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(1) the category of G-corollas ΣG;

(2) the Grothendieck construction on the functor

OopG Cat

G/H ΣBG/HG

(3) The disjoint union ∐
n≥0

OΓn

where OΓn ⊆ OG×Σn is the subcategory generated by the family of graph subgroups;

i.e. spanned by the G× Σn/Γ for Γ a graph subgroup.

Lemma 6.1.7. The following categories are equivalent:

(1) the category of F-corollas ΣF ;

(2) The disjoint union ∐
n≥0

OFn

where OFn ⊆ OG×Σn is the subcategory spanned by the G × Σn/Γ for Γ a graph

subgroup in Fn.

As before, the functor which forgets the planar structure yields an equivalence of cat-

egories ΣG ' ΥG, so in fact ΣG is also equivalent to all the categories listed in Lemma

5.1.45.

Our valence functor val : Ωq
G → ΥG extends naturally to the planar categories val :

TG,0 → ΣG. Similarly, if T ∈ TG and G.v ∈ VG(T ), we (abusively) denote by TG.e the

G-corolla with its inherited planar structure.
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Remark 6.1.8. As in the non-equivariant case, val is not a Grothendieck construction;

if the data of a object included an additional independent total ordering on the leaves, it

would be.

Remark 6.1.9. The inclusion of G-corollas is again a section s : ΣG → TG of val, extending

the non-planar section s : ΥG↪→ΩG.

Lemma 6.1.10. Strictly planar tall maps, if they exist, are unique between two G-trees.

Further, if val(T ) = C for some G-corolla C, then there is a (necessarily unique) planar

strictly tall map C → T .

Now, recall that SymG denoted the category Fun(Σ×G,V) of symmetric G-sequences.

We generalize these in a natural way.

Definition 6.1.11. A G-symmetric sequence in V is a functor X : Σop
G → V, and we denote

the category of such functors by SymG.

The natural inclusion i : T×G→ TG restricts to one i : Σ×G↪→ΣG, yielding a diagram

SymG SymG

i!

i∗
i∗

Notation 6.1.12. If X is a G-symmetric sequence, following Lemma 5.1.46 we may denote

X(CA) by X(A), for some (totally ordered) A ∈ FH , H ≤ G.

Remark 6.1.13. We observe that the target category of G-symmetric sequences is V, as

opposed to VG. This is because ΣG is acting as both Σ and G when compared against

symmetric G-sequences Fun(Σ×G,V) = Fun(Σ,VG).

6.2 Sheaf Model

We begin with the model which is by far the easiest to state, is simple to motivate, and is

defined in the largest of generalities.
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Definition 6.2.1. A (sheaf) genuine G-operad is a genuine equivariant dendroidal set

X ∈ dSetG which satisfies a strict Segal condition:

X(T ) ' lim
OutGc (T )

X =
∏

v∈VG(T )

X(TG.v)/ ∼:= lim
v∈V (T )

X(Tv) (6.1)

where ∼ is induced by edges.

In the special case where X(G ·H η) = ∗ for all H, this says that, for all T , X(T ) is

isomorphic to the product of its evaluation on the vertices of T .

More generally, a (sheaf) genuine G-operad in V is a presheaf X ∈ VΩopG such that X(T )

is isomorphic to the product of its evaluation on the vertices of T (modulo edge relations).

Most generally, a (sheaf) genuine F-operad in V is a presheaf X ∈ VΩopF such that X(T )

is isomorphic to the product of its evaluation on the vertices of T (modulo edge relations).

We say a sheaf genuine G-operad is single-coloured if X(G ·H η) = ∗ for all H ≤ G;

otherwise, X is called multicoloured.

Remark 6.2.2. In the non-equivariant case, the analogous condition to (6.1) holds for

X ∈ dSet if and only if X is the nerve of an operad (Lemma 2.4.8). However, this need

not be true in the equivariant case, for the reasons outlined above, and exemplified in the

simple Example 6.3.29. Moreover, we also note that this definition manifestly requires V to

be Cartesian.

Algebraically, given any sheaf genuine G-operad X, we have the following necessary

data:

(1) a coefficient system of colours CX : OopG → Set given by G/H 7→ X(G/H · η);

(2) colour-coordinated multiplicative structure maps, induced by inner faces;

X(T ) ' lim
v∈V (T )

X(Tv)→ X(val(T ))
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(3) a unit per colour, induced by the degeneracy maps.

X(G/H · η)→ X(CH/H)

This structure is subject to the conditions that the multiplication maps are associative

(via composition schema for inner faces), unital (via composition schema for degeneracies),

T -equivariant (via actions by Aut(T )), and natural with respect to quotient maps.

Remark 6.2.3. We note that this is an obvious strictification of G-∞-operads (cf. 5.2.18),

which requires composition to be truly well-defined, but has relaxed the equivariant restric-

tions. Specifically, we have not enforced any strict fixed-point conditions: each X(G·T/(−))

is a proper coefficient system in OΓ(G,Aut(T )).

We briefly unpack this last condition of “quotient naturality” in the special case that

our genuine operad is single-coloured.

Example 6.2.4. Let G = Z/4, and consider the following quotient map q : S → T .

S

G+ a+2

G+ b+2

G+ a

G+ b
G/2 + c

T

G+ a

G/2 + b

G/G+ c

(6.2)

Any genuine Z/4-operad would have structure maps γ below such that the diagram com-

mutes:

NX(T ) = X(G/2G)×X(2G/e) X(G/e)

NX(S) = X(2G/2Gq 2G/2G)×X(2G/e)×X(2G/e) X(2G/eq 2G/e)

q∗

γ

q∗

γ

where q∗ is the diagonal on vertices which combine under the quotient map, and we have

denoted X(A) for X(CA) and any H-set A.
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We importantly observe that this quotient naturality extends over operations with dif-

ferent “numbers of inputs”. This follows from the fact that, even though the resulting

operation has the same “cardinality” of four, what is most important to count is the num-

ber of orbits in target H-set. The fact that this number is not preserved under restriction

is what has required us to define these algebraic objects: recording the equivariance of the

operations properly requires us to step away from rigidly counting inputs.

Example 6.2.5. Given any operad O ∈ VOpG, the push-forward of the nerve i∗NO ∈

dSetG is a genuine G-operad.

We will explore the more algebraic comparison between operads and genuine operads

below in Section 6.3.4.

We observe that this definition is quite robust:

(1) it is efficiently defined;

(2) it encodes both single-coloured and multicoloured genuine G-operads;

(3) it is well-defined for any weak indexing system F .

However, while this definition is easy to state and quite well motivated, it is difficult to

prove theorems about, and can be difficult to work with on its own. For example, it does

not immediately lend itself to a nice definition of algebras, nor is it clear what the correct

model structure of genuine G-operads should be: for example colimits are not constructed

underlyingly in dSet, indicating that our intuition from dSet is most likely incorrect.

As we move forward, we will keep this definition in mind.

6.3 Monad Model

Our next model of genuine G-operads will be constructed by generalizing technology we

developed in Chapter 3.

Recall from Section 3.2 that single-coloured V-operads are equivalent to F-algebras,

where F is the monad on VΣop defined by the left Kan extension of NX over val. This story
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generalizes to the equivariant setting.

Warning 6.3.1. As mentioned above, we require our category V to be Cartesian monoidal.

In this model, the quotient maps in ΩG will require our category V to have functorial arrows

of the form

(F o Cop)op → C,

exploiting diagonal maps.

Remark 6.3.2. The entire discussion below also works when restricted to TF ,0 and ΣF for

any weak indexing system F (using that, by definition, val restricts to a functor between

these two categories). For ease of notational burden and convenience, we will work with the

strongest possible structure of genuine G-operads (i.e., with F = Set).

This should also work (with minor adjustments, cf. 4.2.4) in the G-coloured context,

though that will require further meticulous, if not challenging, elaborations of the technology

below.

We observe that planar G-trees provide salient examples of elements of functors to the

wreath category F o ΣG, where we recall F is the category of finite sets.

Definition 6.3.3. Given T ∈ TG, define the vertex functor V : TG,0 → F o ΣG by T 7→

(VG(T ), val) where val sends G.v to the G-corolla TG.v.

Note that by including quotient maps, we can no longer land in F o ΣG, as these maps

are surjections (and certainly not always injections).

Definition 6.3.4. Given a G-symmetric sequence Y , the nerve evaluation functor, denoted

NY : TopG,0 → V,

is defined as the composite

TopG,0 (F o ΣG)op (F o Vop)op VV FoY ×
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Definition 6.3.5 (c.f. Definition 3.2.3). Define FG to be the endofunctor on G-symmetric

sequences X ∈ VΣopG defined by the left Kan extension below.

TopG,0 V

Σop
G

NX

val FGX:=LanvalNX

Given a morphism ϕ : X → Y , define FG(ϕ) to be the map induced by Lemma A.1.2

applied to the natural transformation below:

TG,0 F o Σ F o V V

Σ

V

val

FoX

FoY

Foϕ

The main result of this section is the following:

Theorem 6.3.6. FG has the structure of a monad.

Definition 6.3.7. We call algebras over FG (monadic) genuine equivariant operads.

We will define the structure maps of this monad, generalizing what we observed in

Section 3.2

We begin by lifting the definitions in Section 3.1.1 to the setting of G-trees.

Definition 6.3.8. Let TG,1 denote the pullback in categories

TG,1 F o TG,0

TG,0 F o ΣG

V

d1 Foval

V

Explicitly, objects in TG,1 are G-trees with equivariant assembly data: each vertex orbit

G.v is equipped with a G-tree SG.v such that val(SG.v) = TG.v. Equivalently, we have
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a collection of planar tall maps TG.v → SG.v. As before, this data can equivalently be

packaged as a functor

S(−) : OutGc (T )→ TG,0

and a natural transformation U : id⇒ S(−) of planar tall G-maps.

We additionally have assembly maps d0 : TG,1 → TG,0. Indeed, we note that the proof

of Proposition 3.1.12 generalizes immediately to handle forests, and since the assembly data

in TG,1 are equivariant, the colimit will again be a G-tree:

Proposition 6.3.9. Given (T, (SG.v)) ∈ TG,1, the colimit

T ∧ (SG.v) := colim
VG(T )

S(−)

in the category TG,0 exists.

We have two sections s0 and s−1 of d0:

s0(T ) = (T, (TG.v)) is the trivial assembly data, and

s−1(T ) = (val(T ), T ) is the co-trivial assembly data.

We note that s−1 is not a unit of d1, but instead we have a commuting diagram

TG,0 ΣG

TG,1 TG,0

val

s−1 s

d1

As in Lemma 3.2.6, we can build iterates of this endofunctor by using these pullbacks.

Lemma 6.3.10 (c.f. Lemma 3.2.6). Given any G-symmetric sequence X, the sequence

FGFGX is isomorphic to the left Kan extension

FGFGX ' Lanval◦d1(× ◦ F oNX ◦ V).
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Proof. The proof follows exactly as it does for Lemma 3.2.6.

We can moreover iterate this “assembly data” construction, as we did in Section 3.2.

Definition 6.3.11. Suppose we have define TG,k for all k < n. Define TG,n to be the

pullback

TG,n F o TG,n−1

TG,n−1 F o TG,n−2

V

dn dn−1

V

We again have maps d0 : TG,n → TG,n−1, created by assembling the last two components

together. Moreover, the proof of Lemma 3.1.16 immediately generalizes to the equivariant

setting:

Lemma 6.3.12. TG,n is equivalent to the category of n-fold strings of planar tall G-maps,

with quotients connecting strings. Moreover, these TG,∗ form a simplicial object in cate-

gories, and the assembly maps are induced by the simplicial morphisms.

Now, let us construct the monad structure maps.

Definition 6.3.13. Given any G-symmetric sequence X, define the monad multiplication

natural transformation γX : FGFGX ⇒ FGX to be the arrow induced by Lemma A.0.2

from the (opposite of the) natural transformation in WSpan(ΣG,V) below:

TG,1 F o TG,0 Fo2ΣG Fo2Vop F o Vop Vop

TG,0 F o ΣG F o Vop Vop

ΣG

π1

V

Φp

FoV

coll

Fo2X

coll

Fo⊗

Φ×

×

V

val

FoX
×

(6.3)

The monad unit εX : X → FGX is defined by the arrow induced by Lemma A.0.2 from

the (opposite of the) identity natural transformation below, where we recall σi from the
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discussion after 3.1.2.

ΣG Vop

TG,0 F o ΣG F o Vop Vop

ΣG

X

s
σ0

val

V FoX × (6.4)

proof of Theorem 6.3.6. We begin by showing unitality. To start, we note that the maps

FGεX and εFX are given by the (opposite of the) top face and back face, respectively, of the

following diagrams, induced by Lemma A.1.2.

ΣG

TG,0 F o ΣG F o Vop Vop

TG,0 F o ΣG F o Vop Vop

TG,1 F o TG,0 Fo2ΣG Fo2Vop F o Vop

V

val

d1

FGX

val

×

×

s0

V

s σ0

×

V V X ×

×

×
×

X

σ0

(6.5)

ΣG Vop

TG,0 F o Σ F o Vop Vop

TG,0 F o Σ Vop

TG,1 F o TG,0 Fo2Σ Fo2Vop F o Vop Vop

ΣG

FX

val

s−1

σ0

σ1

FoFGX

d1 val

X

σ1

(6.6)
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It is a straightforward verification that both of these diagrams (of natural transforma-

tions) commute. More, we observe that the curved bottom face in Diagram 6.5 is a left

Kan extension, by combining Lemmas A.0.2, A.1.8, and A.1.9; similarly, both the top and

bottom faces of 6.6 are left Kan extensions. Thus, by Lemma A.1.6, the desired maps are

induced by the left Kan extension over the front faces.

Hence, to check unitality, it suffices to show that the composition of these front faces

stacked on top of the natural transformation in Diagram (6.3) is the identity; this too is

straightforward. Hence their left Kan extensions produce the same maps, proving unitality.

For associativity, we observe that the natural maps γFGX and FG(γX) are induced via

left Kan extension by the back face of the following diagrams.
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⊗
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In both Diagrams (6.7) and (6.8), the top and bottom faces are left Kan extensions, via

Lemmas A.0.2, A.1.8, and A.1.9. Moreover, the left-most box in (6.7) with front and back

sides both filled by the 2-cell Φp commutes, as the re-planarization is ignoring the last piece

of assembly data. Similarly, we verify that these entire diagrams of natural transformations

commute. Thus, again by Lemma A.1.6, we have that the desired maps are induced by the

front faces.

Finally, it is a straightforward verification that the horizontal composites of these faces

with the natural transformation from Diagram (6.3) are equal. Hence, their left Kan ex-

tensions produce the same maps, and thus our monad is associative, as desired.

Definition 6.3.14. A genuine equivariant operad is an FG-algebra in the category of G-

symmetric sequence. We denote the category of FG-algebras by OpG.

The structure of being a genuine equivariant operad can be unpacked in many ways.

First, we have the following:

Lemma 6.3.15 (cf. Lemma 3.2.9). An FG-algebra structure on X is equivalent to the data

of a morphism µ̃ : NX ⇒ X ◦ val such that

(1) (unitality) µ̃ is the identity on all G-corollas; and

(2) (associativity) the following two (compositions of) natural transformations are equal:

TopG,1 F o TopG,0 F o V V

TopG,0 F o Σop
G F o V V

Σop
G V

V

d1 val

FoNX

Foµ̃

×

val

V FoX

X

µ̃

(6.9)
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and

TopG,1 F o TopG,0 F o F o Σop
G F o F o V F o V V

TopG,0 F o Σop
G F o V V

ΣG V

V

d0

FoV

FoNX

coll

FoFoX Fo×

coll

×

V

val

FoX ×

X

Φp

µ̃

Φ×

(6.10)

where Φ× and Φp are the re-collating and re-planarizing natural isomorphisms.

More explicitly, a genuine equivariant operad is equipped with structure maps

γ : NX(T )→ X(val(T ))

for all G-trees T , which are associative (encoded by tall maps of G-trees), unital, T -

equivariant, and natural under quotients. As is the case non-equivariantly (Remark 3.2.10),

multiplicative unitality is encoded by a combination of the above conditions, observing the

effect of assembly data containing sticks. Thus, such X have a whole coefficient system

of units: for each stick G/H · η, there is a map µ̃ : ∗ → X(CH/H) (where ∗ is the empty

product, i.e. the unit of our Cartesian V).

Using these maps, and continuing to unpack definitions, we have the following results

Lemma 6.3.16. Via unit, composition, and projection maps, the nerve evaluation NX

functor on genuine G-operads extends to all of dSet.

Proposition 6.3.17. The functors X 7→ NX(−) and Y 7→ s∗Y comparing G-symmetric

sequences and genuine equivariant dendroidal sets restricts to an equivalence of categories

between monadic genuine operads and sheaf genuine operads.
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Lemma 6.3.18 (c.f. Lemma 3.1.10). For any genuine G-operad O, NO extends to a functor

on TtG, incorporating units and the structure maps. Moreover, O is isomorphic to the left

Kan extension below.

Tt,opG V

Σop
G

NO

val LanvalNO∼=O

Remark 6.3.19. We could have generalized Definition 3.2.3 slightly differently, by instead

replacing T0 with TG0 (as opposed to TG,0). In this way, we would have defined FGX to be

the left Kan extension

TG0 FG o Σ FG o Vop V

Σ

V

val

X ⊗

FGX

This would indeed capture some of the data we are looking for, in particular maps of the

form in Equation (4.1), but just for the cases where H = G. So we would be able to analyze

the equivariant information, but only in restricted settings. Indexing over all of TG,0 allows

us to view all of this data simultaneously.

6.3.1 Modules and Algebras

These will be more naturally constructed in the “composition product” language of the

upcoming section. However, we can also describe them in this context, using modifications

of our machinery above.

Heuristically, modules over a genuine G-operad X will be sequences M with structure

maps (X,M)(T ) → M(val(T )) for all G-trees T , while algebras will be modules “concen-

trated in degree 0”.

Definition 6.3.20. We say a G-symmetric sequence Y is concentrated in degree 0 if Y =

j∗Z, for some Z ∈ VO
op
G and j : OG↪→TG is the inclusion of the equivariant 0-corollas.
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Explicitly, Y (C) = ∅ unless the underlying G-forest of the corolla C has no leaves.

Definition 6.3.21. Let λ2TG,0 denote the category of planar G-trees with a labeling of

the vertices Outc(T ) → {a,m}, where “a” stands for “active” and “m” for “module”, and

isomorphisms which preserve these labelings.

Let λ1
1TtG denote the category of labeled planar G-trees and maps which are the identity

on m-labeled nodes, and tall on a-labeled nodes. Rigorously, for such a map f : S → T , if

the vertex e↑ ≤ e is labeled a (respectively m), then the subtree image Tf(e↑≤e) (Definition

2.3.20) has all vertices labeled by a (respectively, is isomorphic to Se↑≤e and is labeled m).

Finally, let λ1
1TtG(0) denote the full subcategory of λ1

1TtG of those trees such that the

underlying G-forest has no leaves.

We note that given a genuine G-operad X and a G-symmetric sequence M (respectively,

Y concentrated in degree 0), we have a natural nerve evaluation maps

N(M),X : λ1
1TtG → V

N(Y ),X : λ1
1TtG(0)→ V.

Definition 6.3.22. Given a G-symmetric sequence M , an X-module structure on M is a

natural transformation

λ1
1TtG V

Σop
G .

N(M),X

val M

If M is concentrated in degree 0, then an X-algebra structure on M is a natural transfor-

mation

λ1
1TtG(0) V

ΣG(0)op = OopG .

N(M),X

val M
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Unpacking this somewhat, an X-algebra structure on M in particular encodes maps

X(CqH/Ki)×
∏
i

M(CKi/∅)→M(CH/∅)

where H/∅ is the empty H-set, which are unital, associative, Σ− and G-equivariant, and

natural under quotients.

Lemma 6.3.23. If G = e, this recovers the usual notion of algebra over an operad.

Proof. Restricting to trees of the form Cm◦(C0) yields the usual form of the structure maps

of an algebra M over an operad X; associativity and unitality are encoded by the naturality

in the tall maps of λ1
1TtG(0). Conversely, collapsing all the edges connecting active nodes in

a given tree in λ1
1TtG(0) yields precisely a tree of the form given above; it is clear that this

induces the desired structure maps.

The author expects to return to this structure very soon, and explore further what

variety of structures can be encoded.

In particular, note the following:

Lemma 6.3.24. Let Z ∈ sSetG be thought of as a symmetric G-sequence in sSet concen-

trated in degree 0, and F a (strong) indexing system. Then the G-symmetric sequence i∗Z

(also concentrated in degree 0) is an NF -algebra if and only if Z is a strict NF -algebra,

where NF is the genuine F-commutative operad and NF is the N∞-operad in simplicial sets

associated to F .

Proof. We see that a NF -algebra structure on i∗Z includes structure maps of the form

NF (CG/H)×A(CH/∅) ' AG/H → A

which are equivariant, associative, and unital. This is precisely the information of a strict

NF -algebra.
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With that in mind, we expect the following to be true:

Conjecture 6.3.25. Given a G-symmetric sequence M concentrated in degree 0 whose

underlying G-symmetric sequence is cofibrant, and a (strong) indexing system F , if M is

an NF -algebra, then i∗M is an NF -algebra.

This will be discussed further in Section 6.6

6.3.2 Examples of (Monadic) Genuine G-Operads

The classic examples of (G-)operads can be rebuilt in this context.

Example 6.3.26. The commutative genuine G-operad Comm is defined to be the constant

G-symmetric sequence which evaluates to the unit of V on each level. Algebras over Comm

are coefficient systems of commutative monoids in V.

More generally, given any weak indexing system F̄ ⊆ F , define the F̄-commutative

genuine G-operad NF̄ to be the G-symmetric sequence which is the unit {∗} when evaluated

on any F̄-admissible corollas, and empty otherwise.

Example 6.3.27. The associative genuine G-operad Assoc has underlying G-symmetric

sequence O(C) = L(C) ' G×Σn/N . Similarly, algebras over Assoc are coefficient systems

of associative monoids in V.

Example 6.3.28. The G-tree genuine G-operad has underlying G-symmetric sequence

O(C) given by all planar G-trees S with val(S) = C, with composition given by grafting,

with units the sticks.

Example 6.3.29. If X is any coefficient system, consider the G-symmetric sequence which

is equal to X on the 0-corollas, and is empty otherwise. It is immediate that this is a

genuine operad. Algebras are just maps of coefficient systems out of X.
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6.3.3 The Homotopy Genuine G-Operad

As the last motivating examples, we now build the homotopy genuineG-operad associated to

any G-∞-operad X ∈ dSetG, where we restrict to the single-coloured case of X(η, ∗) = {∗}.

This construction follows by carrying the results in [MW09] forward by using the fol-

lowing definitions, and liberally applying Lemma 5.2.29.

For any X ∈ dSetG, we recall that a dendrix x ∈ X(T0, ∗) is degenerate if the character-

izing map factors Ω[T0]
σ−→ Ω[S0]→ X through a degeneracy map σ : T0 → S0. For sheaves

Y ∈ dSetG, we can make a similar definition:

Definition 6.3.30. Given Y ∈ dSetG and T ∈ ΩG, a dendrix y ∈ Y (T ) is called G-

degenerate if the characterizing map factors Ω[T ]
σ−→ Ω[S] → Y where σ : T → S is a

degeneracy in ΩG.

This is in fact an extension of the earlier definition, in the following manner.

Lemma 6.3.31. Given Y ∈ dSetG, a G-tree T , and y ∈ Y (T ). Then a sub G-face of y is

G-degenerate if and only if any associated orbital subface is degenerate.

In particular, y itself is G-degenerate if and only if any associated orbital face is degen-

erate.

Proof. This follows by observing that the diagram below commutes, where T ' G · T0/N

and S ' G · S0/M .

Y (G · T0) Y (T )

Y (G · S0) Y (S)

q∗

(G·σ′)∗

q∗

σ∗

The top-right triangle commutes whenever ψ is the orbital face associated to the equivariant

face ϕ. More, σ exists if and only if σ′ exists, and when they do the lower-left triangle

commutes.

This allows us to make the following definition unambiguously.



190

Definition 6.3.32. Let X ∈ dSetG be a G-∞-operad. We define an equivalence relation

on i∗X(C) for all G-corollas C.

Let A = qH/Ki qH/K ∈ SetH , and f, f̄ ∈ i∗X(CA). We say that f is homotopic to f̄

over H/K, written f ∼K f̄ , if there exists γ ∈ X(CA ◦K CK/K) such that

(1) the inner G-face ∂G.eγ ∈ i∗X(CA) equals f̄ ;

(2) every root cluster face ∂rγ ∈ i∗X(G ·k C1) is degenerate; and

(3) the leaf-cluster outer G-face ∂G.vγ ∈ i∗X(CA) equals f ,

where G.e is the set of inner edges of CA ◦K CK/K , and G.v is the set of non-root vertices.

We say γ observes the given homotopy.

Similarly, we say f ∼H f̄ if there exists γ ∈ X(CH/H ◦H CA) with analogous properties.

We can also record the properties of γ diagrammatically.

f

σ
G/K

G/K

G/H

∂G.e←− f̄
G/K

G/H

Remark 6.3.33. Two quick remarks:

(1) The above and below will continue to work in more generality, in particular, whenever

the quotient structure maps q∗ on Y ∈ dSetG are injections.

(2) The “every” in Condition (2) refers to the choices of inclusion and quotient maps

G.K · C1↪→G/K · (C[H:K] ◦ (C1))
q−→ CH/K ◦K CK/K

(where without loss of generality we have ignored the other orbits in A) By Lemma

6.3.31, this is equivalent to saying any associated orbital face ∂rγ ∈ i∗X(G · C1) is

degenerate.

Lemmas 6.3 and 6.4 in [MW09] carry through to this setting, using Lemma 5.2.29.
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Lemma 6.3.34 (cf. [MW09, Lemma 6.3]). The relation ∼K is an equivalence relation on

X(CA).

Proof. To prove reflexivity, we just note that σG.ef ∈ i∗X(CA ◦K.e CK/K) observes the

homotopy f ∼K f .

For symmetry, suppose we are given f, f̄ ∈ X(CA), and a homotopy γf̄f ∈ X(CA ◦K

CK/K). We will now build an orbital G.c-horn ΛG.cOrb[T ] of T = CA ◦K.c CK/K ◦K.b CK/K :

G·H

T

g.a

g.b

g.c

a

b

c

...

G/K · a

G/K · b

G/K · c

...

G/H

This consists of the compatible data for all of the orbital faces except T \G.c and T .

(1) for T \G.b, we select σ∗q∗ f = q∗σ∗ f ∈ X(C|A| ◦{K} (C1));

(2) for T \G.va: we select q∗ γf̄f ∈ X(C|A| ◦{K} (C1)); and

(3) for any root-cluster face map CK/K ◦K.c CK/K , we select the degeneracy σ∗(∗) ∈

X(C1 ◦ C1), with {∗} = X(η, ∗).

These are in fact compatible, and determine an orbital horn: we have

∂{H.va}(σ
∗q∗f) = q∗f = ∂{H.vb}(q

∗γf̄f ) = q∗∂G.vbγ
f̄
f ,

and the two root-cluster faces factor through a degeneracy. Thus, by Lemma 5.2.29, there

exists χ ∈ X(CA ◦K.c CK/K ◦K.b CK/K) such that γ̄ := ∂G.cχ has the properties that

(1) the quotient of the inner face is q∗f ;

q∗(∂G.bγ̄) = ∂∗{H.c}σ
∗q ∗ f = q∗f
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(2) the quotient of the leaf-cluster outer face is q∗f̄ ;

q∗(∂G.va γ̄) = ∂{H.c}q
∗γf̄f = q∗∂∗G.cγ

f̄
f = q∗f̄

(3) each root cluster orbital face map is a degeneracy.

Since every q∗ is injective, this implies that γ̄ observe a homotopy f̄ ∼K f , as desired.

Transitivity is proved analogously, by following the proof in [MW09].

Similarly, we prove:

Lemma 6.3.35 (cf. [MW09, Lemma 6.4]). The equivalence relations ∼Ki on i∗X(CA) are

all equal.

We denote the equivalence class of f by [f ].

Remark 6.3.36. Non-equivariantly, we note that if we have a dendrix γ ∈ X(Cn ◦ (C1))

such that the smallest outer face is f and the smallest inner face is f̄ , then f ∼ f̄ .

Indeed, if {a1, . . . , an} denote the inner edges, we let fi = ∂a1...,ai∂vai+1 ,...,van
γ. Then

∂a1,...,ai∂vai+2 ,...,van
γ observes a homotopy fi ∼ fi+1. We say that γ observes an iterated

homotopy f ∼ f̄ .

Moreover, it is clear that the same story will hold over equivariantly.

We can now define the underlying sequence of our homotopy operad.

Definition 6.3.37. Given a G-∞-operad X ∈ dSetG with X(G ·H η) = ∗ for all H ≤ G,

define Ho(X) to be the G-symmetric sequence defined by Ho(X)(C) = i∗X(C)/ ∼.

The definition of composition of elements is again similar to that in [MW09]:

Definition 6.3.38. Given A = qH/Ki qH/K, B ∈ SetK , f ∈ X(CA), and f̄ ∈ X(CB),

we say that p is a composition of f and f̄ if there exists a dendrix γ ∈ X(CA ◦K.e CB) such

that
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• the leaf cluster outer G-face ∂∗G.veγ = f ; and

• the root cluster face ∂∗G.vrγ = g.

• the inner G-face ∂∗G.eγ = p;

We say γ observes the composition, and write γ : p ∼ f ◦K f̄ .

Lemma 6.3.39 (cf. [MW09, Lemma 6.8]). Given γ : p ∼ f ◦K f̄ and γ′ : p′ ∼ f ◦K f̄ , then

we must have p ∼ p.

Proof. Without loss of generality, we may assume A = H/K and B = K/L. Let T =

CH/K ◦K.c CK/L ◦L.b CL/L. We consider the horn ΛG.cOrb[T ] given by:

(1) for T \G.va, we select the dendrix q∗γ;

(2) for T \G.b, we select the dendrix q∗γ′; and

(3) for any root-cluster face CK/L ◦K.b CL/L, we select the dendrix q∗γf̄ , the degenerate

homotopy f̄ ∼ f̄ .

Again, it is easy to check that these are compatible, and thus define an orbital horn; let

x ∈ i∗X(T ) be a lift. The inner face χ := partialG.cx has the properties that:

q∗(∂G.bχ) = ∂{H.e}q
∗γ′ = q∗∂G.cγ

′ = q∗p′

q∗(∂G.vaχ) = ∂{H.e}q
∗γ = q∗∂G.cγ = q∗p.

Finally, q∗ injective implies χ observe a homotopy p ∼ p′.

An identical argument paralleling the original source (as the two proofs above demon-

strate) yields the following.

Lemma 6.3.40 (cf. [MW09, Lemma 6.9]). If f ∼ f ′ and f̄ ∼ f̄ ′, and p ∼ f ◦K f̄ and

p′ ∼ f ′ ◦K f̄ , then p ∼ p′.
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Combining the above two lemmas shows us that Ho(X) has a well-defined composition.

Moreover, an analogous proof as in [MW09], replacing the use of Lemma 5.1 (loc. cit) with

the above Lemma 5.2.34, shows that in fact this composition is associative and unital.

Proposition 6.3.41 (cf. [MW09, Proposition 6.6]). The operation [f ] ◦H [g] = [f ◦H g]

gives a well-defined map

Ho(X)(A)×Ho(X)(B)→ Ho(X)(∂K(A ◦K B)).

Moreover, this endows Ho(X) with the structure of a (monadic) genuine G-operad.

Proof. Since this composition is associative, we have a (unique) map

NHo(X)(T )→ Ho(X)(val(T )).

It suffices to check that this map is natural in quotient maps. By Remark 6.3.36, we

observe that if γ observes a homotopy f ∼K f̄ , then q∗γ observes an iterated homotopy

q∗f ∼ q∗f̄ . Finally, if γ observes the composition p : f ◦K f̄ , then q∗γ will observe the

iterated composition q∗p : q∗f ◦ (q∗f̄), where the q∗ affects f̄ will change, depending on the

orbital structure of q∗f . As this is precisely what happens monadically, we are finished.

6.3.4 Comparison with G-Operads

We observed above that i∗NO ∈ dSetG for any operad O was a (sheaf) genuine G-operad.

We can show this using a more algebraic comparison between the monads F and FG. Indeed,

recall that we have an underlying adjunction SymG � SymG.

Proposition 6.3.42. The above adjunction lifts to an adjunction of operads

OpG OpG

i!

i∗
i∗

We prove this using a series of lemmas and propositions relating the structure monads
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of these categories. We begin by establishing some notation.

Definition 6.3.43. We identify the following unit and counit natural transformations from

the above adjunction.

ηr : id
'⇒ i∗! ηl : id⇒ i∗i

∗

εr : i!i
∗ ⇒ id εl : i∗i∗

'⇒ id

Moreover, we let θ : i! ⇒ i∗ denote either equal composite

i! i!i
∗i∗

i∗i
∗i! i∗

ε−1
l

ηl εr

η−1
r

As i∗FGX only depends on i∗X, we have the following:

Lemma 6.3.44. The three natural transformations below are invertible.

i∗FG · (ηl) : i∗FG ⇒ i∗FGi∗i∗

i∗FG · (εr) : i∗FGi!i∗ ⇒ i∗FG

i∗FG · (θ) : i∗FGi! ⇒ i∗FGi∗

Corollary 6.3.45. The following composite is the identity.

i∗FG i∗FGi∗i∗ i∗FGi!i∗ i∗FG.
ηl θ−1 εr

Proof. This follows by the construction of θ, and the fact that (ηl, εl) define an adjunction

by unpacking definitions.

Similarly, FGi!X is empty on non-free G-trees, yielding the following:
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Lemma 6.3.46. εFGi! : i!i
∗FGi! ⇒ FGi! is a natural isomorphism.

As a first step in our comparison, we make the following observation.

Proposition 6.3.47.

F ' i∗ ◦ FG ◦ i!.

Proof. This result reduces to the claim that, for any X ∈ SymG, the value of FGA(G · T0)

only depends on the evaluation of A on free G-corollas. This follows since the overcategory

Top0 ↓ G · T0 consists entirely of free G-trees, with free G-corollas as vertices.

With this identification, we have that the structure maps for F are given by the composite

i ∗ FGi!i∗FGi!
εr⇒ i∗FGFGi!

γ−→⇒i∗FGi!

and either composite

i∗i!X X i∗i∗X

i∗FGi!X i∗FGi∗X
1FG

ηr

ε−1
l

1FG 1FG

θ−1

where again γ : FGFG ⇒ FG is the monadic structure map, and 1FG is the unit transforma-

tion of FG.

proof of Proposition 6.3.42. We will show that these functors lift to functors between op-

eradic categories, and then show that the adjunction units and counits are maps of operads.

First, let X ∈ OpG, and consider i∗X ∈ SymG. We define the FG structure map on i∗X

as the composite

µ : FGi∗X
ηl−→ i∗i

∗FGi∗X
θ−1

−−→ i∗i
∗FGi!X

µ−→ i∗X

where µ also refers to the structure map FX = i∗FGi!X → X. This map is associative, as
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demonstrated by the following commuting diagram:

FGFGi∗X FGi∗i∗FGi∗X FGi∗i∗FGi!X FGi∗X

i∗i
∗FGFGi∗X i∗i

∗FGi∗i∗FGi∗X i∗i
∗FGi∗i∗FGi!X i∗i

∗FGi∗X

i∗i
∗FGi!i∗FGi∗X i∗i

∗FGi!i∗FGi!X i∗i
∗FGi!X

FGFGi∗X i∗i
∗FGFGi∗X i∗i

∗FGFGi!X

FGi∗X i∗i
∗FGi∗X i∗i

∗FGi!X i∗X

ηl

ηl

ηl

θ−1

ηl

µ

ηl

ηl

θ−1

θ−1

θ−1

µ

θ−1

εr

θ−1

εr

µ

µ

ηl

γ

ηl

γ

θ−1

γ

ηl θ−1 µ

The bottom right large square commutes as the F-action on X is associative, the left large

square commutes via the above Corollary, and the rest commute by naturality.

For unitality, we have the following commuting diagram, where the bottom triangle

encodes the unitality of X as an F-algebra, and the rest commutes by naturality or by

definition.

i∗X FGi∗X

i∗i
∗i∗X i!i

∗FGi∗X

i∗X i∗i
∗i! i!i

∗FGi!X

i∗X

ηl

1FG

ηl

εl

1FG

θ−1

ηr

θ

1FG

µ

Now we consider i!X, and define it’s FG-structure map as the composite

µ : FGi!X
ε−1
r−−→ i!i

∗FGi!X
µ−→ i!X,
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This structure is associative and unital by noting that the following diagrams commute:

FGFGi!X FGi!i∗FGi!X FGi!X i!X i!X FGi!X

i!i
∗FGFGi!X i!i

∗FGi!i∗FGi!X i!i
∗FGi!X i!i

∗i!X i!i
∗FGi!X

FGFGi!X i!i
∗FGFGi!X X

FGi!X i!i
∗FGi!X i!X

ε−1
r

ε−1
r

ε−1
r

µ

ε−1
r

ηr

1FG

ε−1
r

εr

ε−1
r

εr

µ

µ

1FG

µ

γ

ε−1
r

γ

ε−1
r µ

where the bottom right of the left diagram, and the left stairwell of the right diagram,

commute since µ : F→ X is associative and unital.

Finally, given X ∈ dSetG, consider i∗X. This has an F-algebra structure given my the

composite

µ : Fi∗X = i∗FGi!i∗X
εr−→ i∗FGX

µ−→ i∗X.

Associativity and unitality are confirmed by the following commuting diagrams.

i∗FGi!i∗FGi!i∗X i∗FGi!i∗FGX i∗FGi!i∗X i∗X i∗i!i
∗X i∗FGi!i∗X

i∗FGFGi!i∗X i∗FGFGX i∗FGX i∗X i∗FGX

i∗FGi!i∗X i∗FGX i∗X i∗X

εr

εr

εr

µ

εr

ηr

εr

1FG

εr

γ

εr

γ

µ

µ

1FG

µ

εr µ

Lastly, we show that the four unit and counit maps are given by maps of operads. For

ηr and εl, this is immediate as they are isomorphisms on sequences. For ηl (respectively
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εr), consider the left (resp. right) diagram below.

FGX FGi∗i∗X FGi!i∗X FGX

i∗i
∗FGX i8i

∗FGi∗i∗X i!i
∗FGi!i∗X FGi!i∗X

i∗i
∗FGi!i∗X i!i

∗FGX FGX

FGX i∗i
∗FGX i!i

∗X X

X i∗i
∗X

ηl

ηl

ηl ε−1
r

εr

ε−1
r

ηl

θ−1 εr

εr

µi∗X

εr

εr

µi∗X

µ

εr

µ

ηl

µ

ηl

µ

εr

ηl

where each square commutes either by the naturality of ηl” (resp. εr) or by the definition

of θ−1.

This finishes the proof.

This also provides a solution to one of our motivating issues:

Example 6.3.48. As a particular example of the above, we have a map i∗ : sOpG → sOpG

with i∗O(G ·Cn/N) := O(n)N . Moreover, we can post-compose with π0 levelwise, yielding

a non-commutative diagram

OpG sOpG

OpG sOpG

i∗

π0

i∗

π0

6.4 Arrow Composition Product Model

In the monadic model above, we generalized the free operad monad of Section 3.2, and

found that any reasonable equivariant generalization yielded an algebraic structure with

significantly more data than regular equivariant operads. In this section, we generalize

the coend description of the composition product. In Section 4.2.3, we referenced a new

presentation of this product by changing the underlying symmetric sequence to an equivalent

but more expressive category. This allowed us to present more of the data which is already
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present in G-operads. We will now again update this indexing category, but this time

to a much larger and more interested category, capturing more information. Again, the

underlying principal is exploit a different presentation of G-corollas.

Definition 6.4.1. Let PullG be the subcategory of the category of arrows Arrow(FG), where

morphisms between arrows are only allowed if they are pullbacks. More generally, if F is

a (strong) indexing system, let PullF be the analogous subcategory of arrows in FF , where

FF is the the wide subcategory of FG where f : S → T is in FF if and only if for all

s ∈ S, StabG(f(s)).s is F-admissible (see [BH16, Theorem 3.10], where they show that FF ,

notated SetGO, is in fact a category).

These all have an obvious symmetric monoidal product given by the coproduct of maps.

Lemma 6.4.2. PullG is equivalent to the coproduct completion of ΣG. Thus, the category

of G-symmetric sequences is equivalent to the category Fun×(PullG,V) of functors sending

coproducts to products.

Proof. Any arrow in FG has a decomposition qi(Ai → Bi) with A,B ∈ SetG and the Bi

transitive (and the Ai possibly empty). Any map to a transitive G-set can be represented as

a G-corolla, so this map can be represented as a coproduct of corollas. In both situations,

the maps allowed are just quotient maps, as desired.

Definition 6.4.3. Let Pull1G denote the pullback category

Pull1G PullG

PullG FG

s

t

where s and t are the “source” and “target” maps. Explicitly, objects are pairs (f1, f2)

of composable arrows in FG, and objects are stacked squares which are each individually

pullbacks.

Definition 6.4.4. Given X,Y ∈ Fun×(PullG,V), define the composition product to be the
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coend

X ◦ Y (−) =

∫ (f1,f2)∈Pull1G
X(f1)× Y (f2)× PullG(−, f2f1).

Proposition 6.4.5. The composition product induces a monoidal product on the category

Fun×(PullG,V).

Proof. An easy calculation with Yoneda reduction (Lemma 1.1.8) shows that iterated com-

position products are given by

X1 ◦ . . . ◦Xm '
∫ f1,...,fm

X1(f1)⊗ . . .⊗Xm(fm) · PullG(−, fm . . . , f2f1).

so the operation is clearly associative. The unit J is given by

J(−) = PullG(−, idG/G),

as can be verified easily, again using Yoneda reduction.

Definition 6.4.6. A (coend) genuine G-operad is a monoid O in (Fun×(PullG,V), ◦).

Definition 6.4.7. We say X ∈ Fun×(PullG,V) is concentrated in degree 0 if X(f) = ∅ for

all maps with source not equal to the empty set.

Definition 6.4.8. Given X ∈ Fun×(PullG,V) and a genuine G-operad O, an O-module

structure on X is a module over O is the monoidal category under ◦. That is, we have a

map O◦X → X which is unital and associative. If the module X is concentrated in degree

0, we call it an algebra.

In this description, since we are just considering monoids in a monoidal category, there is

a lot of straightforward category theory to work with about algebras and modules. However,

putting on model structure on this version would be quite difficult, as the monoidal product

we are working with is not particularly conducive to analysis. However, we have a similar-

looking conjecture:
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Conjecture 6.4.9. For any (strong) indexing system F̄ ⊆ F , the category of (coend)

genuine F-operads has the F̄-projective model structure induced by the forgetful functor

OpF → SymF → SymF̄ ,

where ϕ : X → Y is a weak equivalence (respectively, fibration) if for all F̄-admissible

arrows f in FF̄ , ϕ(f) : X(f)→ Y (f) is so.

Additionally, there should be a model of coend genuine equivariant operads for any weak

indexing system F ; however, it is not currently understood what the category FF should

be in this case. If such a structure does not exist, there should be a proper reason why not.

This too will be the subject of further research.

6.5 Composition Product Model

In this section, we present our last model of genuine G-operads, during which again we

restrict to the single-coloured case. We continue to generalize the composition product,

but instead this time build off of the version of the composition product given in Section

3.6, again replacing the use of trees with G-trees. As for the monad above, this natural

generalizes to a algebraic structure which is richer than G-operads.

We ignoring the tensor product (which can be defined analogously), we move straight

to defining the composition product:

Definition 6.5.1. Let TG,0 {2} denote the full subcategory of TG,0 of height-2 G-trees; that

is, those trees T with a decomposition T = CA ◦ (CBG.e) with BG.e some StabG(e)-set.

Given G-symmetric sequences X and Y in VΣopG , we have a nerve-evaluation map

N(Y ),X {2} : TG,0 {2}op
V−→ (F o ΣG)op

FoY×X−−−−→ (F o Vop)op ×−→ V

sending a tree T = CA ◦ (CBG.e) to X(CA)×ΠY (CBG.e).
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Definition 6.5.2. The composition product X ◦ Y of G-symmetric sequences is defined to

be the left Kan extension LanvalN(Y ),X {2};

TG,0 {2}op V

Σop
G

val

N(Y ),X{2}

Lan'X◦Y

Conjecture 6.5.3. The above composition product is a (non-symmetric) monoidal product

on the category of G-symmetric sequences, with unit ΣG(−, CG/G).

Definition 6.5.4. A (composition) genuine G-operad is a monoid under this composition

product.

Conjecture 6.5.5. The categories of monoids under the composition product in SymG is

equivalent to the category of FG-algebras in SymG.

This will be analogous to the similar comparison in the non-equivariant case, between

the usual composition product description and our F-algebra model.

6.6 Conjectured Model Structure

Given any weak indexing systems F ⊆ F̄ , the monadic and composition product models

for genuine F̄-operads provide a natural candidate for an F-model structure:

Definition 6.6.1. The F-model structure, if it exists, is the projective model structure

along the forgetful functor

OpF̄ → VΣF̄ → VΣ
F →

∏
C∈ΣF

V.

That is, f : O → P is a weak equivalence (respectively, fibration) if f(C) : O(C) → P(C)

is so in V for all F-admissible G-corollas C.
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This follows the idea that OpG is playing the role of “coefficient systems”, and as such

should have the projective model structure like TopO
op
G .

We expect to be able to extend the results from Sections 3.5, 4.3, and 5.3 into the

(monadic) genuine-equivariant context. This would provide proofs of the following conjec-

tures:

Conjecture 6.6.2. Suppose V satisfies Assumption 1, and let F ⊆ F̄ be weak indexing

systems. Then VOp
{∗}
F̄ has the F-semi-model structure.

Conjecture 6.6.3. For any weak indexing system F , the F-model structure on VOpG exists

if and only if it exists on VOpG{∗}.

Furthering the parallels with TopG � TopO
op
G , we believe the following holds:

Conjecture 6.6.4. [cf. Elmendorf’s Theorem] X ∈ OpG is cofibrant if and only if X ' i∗Y

for some Y ∈ OpG.

Moreover, an immediate corollary of 6.6.4 would be that our models of G-operads are

Quillen equivalent.

Corollary 6.6.5. If Conjecture 6.6.4 holds and the F-model structures exist on VOpG{∗}

and VOpG, then the adjunction

OpG OpG
i∗

i∗

is a Quillen equivalence.

Proof. It is immediate that i∗ would preserve (trivial) fibrations, and thus these form a

Quillen pair. Moreover, 6.6.4 would imply that the cofibrant replacement for i∗O could be

chosen to be equal to i∗O, and hence the composite i∗((i∗O)cof)→ O would be the identity,

thus an F-equivalence in VOpG{∗} as desired.

Additionally, this would provide another proof of the N∞-realization Conjecture 6.3.25:

taking a cofibrant replacement CNF of NF , we would then have that i∗CNF ' NF in OpG.
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Appendix A

Kan Extensions

We collect some technical results about the naturality of Kan extensions on their input

data, and their preservation under certain categorical constructions.

Remark A.0.1. For all of the results below, their formal dual result is true of right Kan

extensions.

We begin with an easy result about “stacking” Kan extensions.

Lemma A.0.2. Suppose we have functors

C′

C V

D

i
X

j

Y

such that Y = LaniX. Then LanjiX ' Lanj Y .

Proof. This follows from the Yoneda Lemma by directly unpacking the universal properties

of the two functors.

A.1 Naturality

We formulate precisely what data Kan extensions are natural over.
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Definition A.1.1. Let WSpan(D,V) be the following category. Objects are spans of func-

tors
C V

D

while morphisms are pairs (F,Φ)

C′

C V

Σ

F Φ

with F a functor such that the left triangle commutes, and Φ a natural transformation.

Proposition A.1.2. The left Kan extension operation is a functor WSpan(D,V)→ VD.

Proof. This is a straightforward diagram chase via the universal property of the left Kan

extension. Indeed, suppose we are given the following data:

C

C′ V

D

Xi

Y

j

Φ

Then, since we always have a natural transformation Lani Y ◦ i⇒ Y , we have the following

chain of bijections and maps:

VD(Lanj Y,Lanj Y ) = VC′(Y,Lanj Y ◦ j)
(̃id)∗−−−→ VC′(Lani(Y i),Lanj Y ◦ j) = VC(Y i,Lanj Y ◦ ji)

Φ∗−−→ VC(X,Lanj Y ◦ ji) = VD(LanjiX,Lanj Y ).

The image of the identity, denoted Φ∗, is the desired natural transformation. It can similarly

be shown that this process preserves compositions.
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Diagrammatically, Φ∗ : LanjiX → Lanj Y is the unique map such that the diagram

below commutes:

X Y ◦ i Lanj Y ◦ ji

LanjiX ◦ ji

Φ

αX

αY ◦ i

Φ∗ ◦ ji
(A.1)

We highlight a special case:

Corollary A.1.3. Suppose we have functors C i−→ C′ j−→ D and X : C′ → V. Then we have

a natural transformation Φ : LanjiXi→ Lanj X.

C

C′ V

D

Xii

X

j

A.1.1 Left Kan Extensions and Pushouts

While dealing with general pushouts of categories requires solving a “word problem” on

morphisms, there is a stronger notion which is much easier to understand. We recall that,

given a square of categories

A C′

B C

if the nerve of this square is a pushout in sSet, then the above is a pushout of categories

(since the nerve is the inclusion of a reflective subcategory). The pushouts that most concern

us in this thesis are of this form.

Definition A.1.4. We call such squares nervous pushouts of categories.

If we further assume that the span of functors is built out of fully-faithful inclusions,

these pushouts behave as nicely as possible with respect to left Kan extensions.
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Lemma A.1.5. Giveny any diagram in categories of the form

C C′

B C V

D

f

i

g Y

j

such that the square is a nervous pushout of fully-faithful functors, then Lanj Y is the

pushout of the induced span

Lanjif (Y if) Lanji(Y i)

Lanjg(Y g).

Proof. By the universal property of left Kan extensions, it suffices to show that, for any

functor Z : V → D, the natural map

VD(Y, Zj) −→ VB(Y g, Zjg)
∏

VA(Y if,Zjif)

VC(Y i, Zji)

is a bijection. These two sets give the same data: a collection of maps Φb : Y (b) → Z(b)

and Φc : Y (c) → Z(c) for all b ∈ B and c ∈ C, such that Φb = Φc whenever b = c ∈ A.

In general, the compatibilites required on the right are less demanding. However, with the

above assumptions, a map d → d′ in D is uniquely a map in A, B \ A, or C \ A, and thus

all the necessary compatibilities are covered by (at least) one of the {Φb} or {Φc}.

The following result will also be useful to our analysis.

Lemma A.1.6. Suppose we have the following commutative diagram of natural transfor-
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mations
C′ V

E ′ V

C V

E V

D

such that the left and right faces commute, the front and back faces are some natural trans-

formations Φ and Ψ, and the top and bottom faces are left Kan extension. Then the maps

induced by Lemma A.1.2 from Φ and Ψ are isomorphic.

Proof. We know the sources and targets are isomorphic by Lemma A.0.2. The result then

follows as in the proof of Lemma A.1.2.

A.1.2 A Universal Property

Now, suppose we are given parallel maps d0, d1 : X → Y in WSpan(C,V)

C′

C V

D

Xπ1π0

Y

j

with di = (πi, d
′
i). By Corollary A.1.2, this induces a pair of parallel maps

LanjiX Lanj Y
(d1)∗

(d0)∗

We will now describe a universal property of the coequalizer of these two maps:

Lemma A.1.7. Let Q = coeq((d0)∗, (d1)∗). Then, for any Z : D → V, the set of natural
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transformations VD(Q,Z) is in bijection with the set of functors F : Y → Z ◦ j such that

the diagram

Y ◦ d0

X Zji

Y ◦ d1

F ◦ d0d0

d1 F ◦ d1

commutes.

Proof. By definition, we have that

VD(Q,Z) ' VD(Lanj Y,Z)
∏

VD(LanjiX,Z)×VD(Lanj Y,Z)

VD(Lanj Y, Z)

' VC(Y,Zj)
∏

VC′ (X,Zji)×VC(Y,Zj)

VC(Y, Zj)

where the maps in the first pullback are ((d0)∗)
∗ × id and ((d1)∗)

∗ × id, and in the second

these maps are surrounded by adjoint isomorphisms. These latter compositions can then be

identified, as desired, with (d0)∗ ◦ (π0)∗(−) and (d1)∗ ◦ (π1)∗(−), where (πi)
∗(−) : VC → VC′

acts as precomposition on both functors; this follows from the factorization description of

the (di)∗ from Diagram (A.1) and the fact that any map F : Y → Z ◦ j must factor through

αY .

A.1.3 Left Kan Extensions and Pullbacks

Recall the construction F o C of Definition 3.1.2. We will show that this operation is com-

patible in many senses with left Kan extensions.

Lemma A.1.8. Given a functor Y : E → V and the following diagrams of categories
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Cop V E × (F o Cop)op V × (F o Vop)op V

Dop E × (F o Dop)op
i

X

id×Foi

Y×FoX ⊗

L Y×FoR

where L := LaniX and V is a cocomplete symmetric monoidal category such that the

monoidal product ⊗ commutes with colimits, we have that the dashed arrow in the second

diagram is the left Kan extension of the top row over id× F o i.

Proof. Using the point-wise description of left Kan extensions, we have that the desired left

Kan extension L′ is given by

L′(e, (A, (da))) ' colim
E×(FoCop)op↓(e,(A,(da)))
(e,(B,(xb)))←(e,(A,(da)))

Y (e)⊗
⊗
b∈B

X(xb) ' Y (e)⊗ colim
(FoCop)op↓(A,(da))

⊗
b∈B

X(xb).

However, every map (f, (fa)) : (A, (da))→ (B, (xb)) factors through (A, (xf(a))), and hence∏
a(Cop ↓ da) is a reflexive subcategory of (F o Cop)op ↓ (A, (da))), and hence is final. Thus,

continuing our equation, we have

' Y (e)⊗ colim
Π(Cop↓da)

⊗
a∈A

X(ca).

The result then follows by using the fact that ⊗ commutes with limits to compare this

versions the explicit description of the given composite.

Many of our indexing categories of structured or labeled trees are built as pullbacks

involving the F o (−) construction. In many settings, these pullbacks also act well with left

Kan extensions.
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Lemma A.1.9. Consider the following pullbacks of categories:

T1 F0 o T0 TG,1 F o TG,0 λn1T1 (Fo0Σ)×n × F0 o T1

T0 F0 o Σ TG,0 F o ΣG λn0T0 (F0 o Σ)×n × F0 o T0

In each case, right Kan extensions are preserved by the pullback.

Proof. We show the result for the first diagram; the rest are completely analogous. Un-

packing definitions, the pointwise formula for right Kan extensions yields that it suffices to

check that for each T ∈ T0, the functor

T ↓ T1 → V (T ) ↓ F0 o T0

is initial. We first observe that
∏
v∈V (T ) Tv ↓ T0 is initial in V (T ) ↓ F0 o T0. Similarly,

T ↓' T1 is initial in T ↓ T1, where the former is the subcategory spanned by those arrows

T → d1(S) which are isomorphisms of trees.

Finally, we have a natural isomorphism T ↓' T1 '
∏

v∈V (T )

Tv ↓ T0. Indeed, the left hand

side encodes replanarizations of T equipped with assmebly data, while the right hand side

encodes replanarizations of the vertices of T equipped with assembly data. By Proposition

2.3.41, we’re done.
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Appendix B

Counterexample to N∞ Realization
Candidate

We come back to the discussion of N∞-operads from Section 4.2.2. In particular, Blumberg-

Hill have shown that the coefficient system associated to any N∞-operad is an indexing

system. Further work by Blumberg-Hill [BH16] has shown that indexing systems also

algebraically capture “norm” information via incomplete Tambara functors. Thus, it is

very natural to expect that, for any indexing system F , there is some N∞-operad NF with

associated coefficient system F .

In their paper, Blumberg-Hill describe a candidate for a categorical model of NF , based

on the categorical Barratt-Eccles operad of [GMM12], a categorical model for a complete

N∞-operad (i.e. a G-E∞-operad). However, we will show that this model fails in two ways:

(1) to have the correct homotopy type, and

(2) to be a suboperad of the Barratt-Eccles operad.

B.1 Introduction

B.1.1 Barratt-Eccles operad

We begin by recalling the categorical Barratt-Eccles operad:

Definition B.1.1. Let Ob∗ : Set → Cat be the right adjoint of the “objects” forgetful

functor. Explicitly, Ob∗(X) has object set X, and a unique arrow between any two objects.
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These have also been called “chaotic categories” [GMM12].

Example B.1.2. If G is a group, then Ob∗(G) is equivalent to BGG, the translation

groupoid of G.

In fact, we have the following classic result.

Lemma B.1.3. The realization |Ob∗(G)| of the chaotic category generated by a group is a

model for EG.

These can be assembled to form operads; in particular, this is a simple way to construct

an E∞-operad.

Definition B.1.4. The collection {Σn} is an operad in sets; thus, {Ob∗(Σn)} is an operad

is categories, called the Barratt-Eccles operad. The realization is a model for an E∞-operad.

Generalizing to the equivariant setting, the above can be paralleled to great affect.

Definition B.1.5 ([GMM12]). The collection {Set(G,Σn)} forms an operad in G-sets by

post-composition with the operad {Σn}. Define On = Ob∗Set(G,Σn), and call the G-

categorical operad O = {On} the (categorical) equivariant Barratt-Eccles operad.

Theorem B.1.6 ([GMM12]). The realization of On is a universal (G,Σn)-bundle; equiva-

lently, On is a universal space for the family of all graph subgroups of G×Σn. That is, the

realization of O is a G-E∞-operad of spaces.

B.1.2 The Candidate

Now, we would like to form universal spaces for smaller families of graph subgroups, retain-

ing operadic structure. The following is a natural choice to investigate.

Definition B.1.7. For any indexing system F = {Fn}, define

SetF (G,Σn) := {f ∈ Set(G,Σn) | Stab(f) ∈ Fn} ,

and let OnF be the subcategory Ob∗SetF (G,Σn) ⊆ Ob∗Set(G,Σn).
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Conjecture B.1.8 ([BH15], The Model Conjecture). The realization |OFn | ' EFn.

Moreover:

Conjecture B.1.9 ([BH15], The Suboperad Conjecture). If F = {Fn} is an indexing

system, then the categories OF∗ form a suboperad of the Barratt-Eccles operad O∗.

A direct consequence of these two conjectures would be a (different) proof of Conjecture

4.2.22: sending C to the operad OF would be a clear inverse of the functor Ho(N∞-Op)→ I.

However, the above results are false for general groups and indexing systems.

Proposition B.1.10. Conjecture B.1.8 is false for generic groups G; e.g. G = Z/2×Z/2.

Moreover, even if this conjecture holds for a particular group G, the resulting symmetric

G-sequences may not be a suboperad:

Proposition B.1.11. There exist groups G and indexing systems F = {Fn} over G for

which the following hold simultaneously:

• OFn is a model for EFn,

• OF is not a suboperad of O.

B.1.3 Computing Stabilizers

Due to our definition of OF , much of the discussion will revolve around calculations of

stabilizers. We have:

Lemma B.1.12. For any f ∈ Set(G,Σn), we have

Stab(f) =
{

(h, f(h)−1f(1)) | f(hx) = f(x)f(1)−1f(h) for all x ∈ G
}
.

Proof. g Suppose (g, σ) ∈ Stab(f), so f(x) = ((g, σ).f)(x) = f(g−1x)σ−1 for all x ∈ G.

In particular, taking x = g, we find σ = f(g)−1f(1), and then taking x = gx, we produce

f(gx) = f(x)f(1)−1f(g).
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We writeHf =
{
h ∈ G | f(hx) = f(x)f(1)−1f(h) for all x ∈ G

}
; then Stab(f) = Γ(f |Hf ).

Remark B.1.13. Two warnings:

(1) Even if f(1) = 1, this Hf is not necessarily the largest subgroup H of G such that f |H

is a group anti-homomorphism; clearly Hf ≤ H, but they do not have to be equal.

Consider the example whereG = C4 =
{

1, t, t2, t3
}

, k >> 0 so that {zn | 0 ≤ n ≤ 7} =

C8 ≤ Σk, and we have a map f : G→ Σk defined by

1 7→ 1

t 7→ z

t2 7→ z4

t3 7→ z.

Then the largest Hf such that f(hg) = f(g)f(h) for all h ∈ Hf , g ∈ G is the trivial

subgroup. Indeed, f(t · t) 6= f(t)f(t), f(t2 · t) 6= f(t)f(t2), and f(t3 · t) 6= f(t)f(t3).

However, f |{1,t2} is clearly a group (anti-)homomorphism.

(2) The stabilizer of f |K for some subgroup K ≤ G can again be larger than Hf ∩K; the

previous example also shows this, with K =
{

1, t2
}

.

We will also need to know when set maps f are fixed by subgroups Λ:

Lemma B.1.14. For ρ ∈ Hom(H,Σn) and f ∈ Set(G,Σn), Γ(ρ) ≤ Stab(f) if and only if

f(hx) = f(x)ρ(h)−1 for all x ∈ G and h ∈ H.

Proof. Assuming f is stabilized by Γ(ρ), we have ρ(h) = f(h)−1f(1) for all h ∈ H. Thus,

for all h ∈ H,

f(hx) = f(x)f(1)−1f(h) = f(x)f(1)−1 · f(1)ρ(h)−1 = f(x)ρ(h)−1.

Conversely, we have f(h · 1) = f(1)ρ(h)−1, so ρ(h)−1 = f(1)−1f(h), and thus f(hx) =

f(x)ρ(h)−1 = f(x)f(1)−1f(h), as desired.
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Definition B.1.15. We call a set map f with Γ(ρ) ≤ Stab(f) a stabilizer extension of ρ.

Lemma B.1.16. If f ∈ Set(G,Σn) is a stabilizer extension of ρ ∈ Hom(H,Σn), then

gi ∈ Hf if and only if Hgi ⊆ Hf .

Proof. We have f(gix) = f(x)f(1)−1f(gi) for all x ∈ G, and moreover f(hx) = f(x)ρ(h)−1

for all x ∈ G and h ∈ H. Thus

f(hgix) = f(gix)ρ(h)−1 = f(x)f(1)−1f(gi)ρ(h)−1 = f(x)f(hgi).

Lemma B.1.17. If there exists f ∈ Set(G,Σn) with Stab(f) = Λ, then there exists f̃ ∈

Set(G,Σn) with f̃(1) = 1 and Stab(f̃) = Stab(f) = Λ.

Proof. We let f̃(x) = f(1)−1f(x). The verification is straight-forward.

Remark B.1.18. These last three lemmas imply that if we are trying to build a stabilizer

extension of ρ, we only need to choose values for f on a transversal {gi} of H\G with g1 = 1

and f(1) = 1; indeed, we then must define f by f(kgi) = f(gi)ρ(k)−1. That is, f must

“repeat” itself (shifted by the values of f(gi)) on cosets of H.

B.2 The Model Conjecture

B.2.1 A Counterexample

For determining whether |OFn | is a universal space for the family Fn, it suffices to check

that SetF (G,Σn)Λ 6= ∅ if and only if Λ ∈ Fn. Indeed, since OFn is a chaotic category, it is a

connected groupoid where every element has trivial automorphism group; thus its realization

is contractible if and only if it is non-empty. Moreover, since fixed points commute with

geometric realization and right adjoints, we have

|OFn |Λ = |i∗SetF (G,Σn)|Λ = |i∗(SetF (G,Σn)Λ)|.



218

We now give a counterexample to Conjecture B.1.8, proving Proposition B.1.10:

Example B.2.1. Let G = C2 × C2, and consider the indexing system defined by let-

ting C(1 × 1) = C(1 × C2) = C(C2 × C2) be just the trivial H-sets, and C(C2 × 1) =

{
∐
nC2 × 1}n∈N ∪N. Then, in particular Λ = Γ(ρ) = {((1, 1), 1), ((τ, 1), τ)} is in F2, where

τ is the non-trivial element in C2 = Σ2 and ρ the obvious associated non-trivial homomor-

phism C2 × 1 → Σ2. However, any map ρ̃ ∈ Set(C2 × C2,Σ2) having Λ = Γ(ρ) ≤ Stab(ρ̃)

has a strictly larger stabilizer. Indeed, no matter where we send (1, τ) and (τ, τ), they will

both be in the stabilizer:
(1, 1) 1

(τ, 1) τ

(1, τ) x

(τ, τ) τ · x;

a ρ̃((1, τ) · a) ρ̃(a) · ρ̃((1, τ))

(1, 1) x 1 · x = x

(τ, 1) τx τ · x

(1, τ) 1 x · x = 1

(τ, τ) τ τx · x = τ

for x either 1 or τ . Thus any map in Set(G,Σn)Λ has stabilizer Γ(β) for some β ∈

Hom(G,Σ2), and hence cannot be in F2. Thus SetF (G,Σn)Λ = ∅ for some Λ ∈ F2,

and hence |OF2 | is not a universal space for F2.

B.2.2 Property (E) and the Model Conjecture

The above subsection showed that our original guess will not work for all groups G and all

the sequences F = {Fn} of families we want to consider. Let us try to salvage something

from OFn . In particular, we would like to know when |OFn | is in fact a universal space for

Fn. Our counterexample shows what can go wrong: the map f 7→ Stab(f) might not have
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a large enough target. This is the defining feature of groups that will work.

Definition B.2.2. We say a group G satisfies Property (E) if for all ρ ∈ Hom(H,Σn)

non-trivial, there exists f ∈ Set(G,Σn) such that Stab(f) = Γ(ρ)

Equivalently, G satisfies Property (E) if the image of the map

Set(G,Σn)→ {Λ ≤ G× Σn | Λ ∩ Σn = 1}

given by f 7→ Stab(f) contains the subset {Λ ≤ G× Σn | Λ ∩ Σn = 1}\{H × {1} ≤ G× Σn}

for all n ∈ N.

Proposition B.2.3. G satisfies Property (E) if and only if Conjecture B.1.8 holds for G.

Proof. In the “only if” direction, we just need to show that SetF (G,Σn)Λ is non-empty. But

since Λ ∈ Fn there exists f ∈ Set(G,Σn) with Stab(f) = Λ, and hence f ∈ SetF (G,Σn)Λ.

Conversely, suppose we have ρ ∈ Hom(H,Σn) non-trivial such that for all f ∈ Set(G,Σn)

with Stab(f) ≤ Γ(ρ) (that is, f ∈ Set(G,Σn)Γ(ρ)), Stab(f) is strictly larger than Γ(ρ). Then

we construct the family F “generated” by Γ(ρ) by collecting all subgroups, all conjugates,

and all conjugates of subgroups. In particular, H and it’s conjugates are maximal elements

in the lattice of F . But since all f ∈ Set(G,Σn)Γ(ρ) have stabilizers in a strictly higher

stratum of the lattice, SetF (G,Σn)Γ(ρ) is empty.

Remark B.2.4. Example B.2.1 above exactly says that C2 × C2 does not have Property

(E). Moreover, a similar argument shows that G×C2, G abelian and non-trivial, never has

Property (E).

So the question now becomes: when does a group satisfy Property (E)? We start by

looking at some extension properties: for fixed ρ ∈ Hom(H,Σn), are there some properties

of the pair (G,H) that can allow us to construct an f ∈ Set(G,Σn) with Stab(f) = Γ(ρ)?

By Lemma B.1.18, we only need to define our new set map f on a transversal of H\G:

f(kgi) := f(gi)ρ(k)−1, k ∈ H and gi in our transversal.
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A Sufficient Condition

Suppose we have a given fixed ρ ∈ Hom(H,Π).

Lemma B.2.5. Suppose there exists π0 ∈ Π such that π2
0 6= 1, and there exists h0 ∈ Z(G)

such that ρ(h0) 6= 1. Then there exists a map f ∈ Set(G,Σn) such that Stab(f) = Γ(ρ).

Proof. We will build our function f ∈ Set(G,Π) coset by coset, by choosing our representa-

tives and their images carefully by induction, again setting f(kgi) = f(gi)ρ(k)−1 for k ∈ H

and {gi} our chosen transversal.

For each gi 6= 1, we will show that gi /∈ Hf , and by the above lemmas that will be

enough.

We start by letting g1 = 1 and letting f(1) = 1. Now, by induction, suppose we have

choose g1, . . . , gn−1 such that gi ∈ Hf if and only if i = 1, and let gn ∈ G \ (∪n−1
i=1 Hgi) be

arbitrary.

Case I Hg−1
n = Hgn.

Let hn be defined by g−1
n = hngn.

Case IA ρ(hn) 6= 1.

Then define f(gn) = 1. We observe that gn /∈ Hf :

1 = f(gn · g−1
n ) 6= f(g−1

n )f(gn) = ρ(h2)−1 · 1,

Case IB ρ(hn) = 1.

Then define f(gn) = π0. We observe that gn /∈ Hf :

1 = f(gn · g−1
n ) 6= f(g−1

n )f(gn) = 1 · π0.

Case II Hg−1
2 6= Hgi for any i ∈ {1, . . . , n− 1}.

Then define gn+1 such that g−1
n = h0gn+1 (i.e. gn+1 = h−1

0 g−1
n ), and let f(gn) =
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f(gn+1) = 1. We observe that neither gn nor gn+1 are in Hf :

1 = f(gn · g−1
n ) 6= f(g−1

n )f(gn) = f(h0gn+1)f(gn) = 1 · ρ(h0)−1 · 1;

1 = f(gn+1 · g−1
n+1) 6= f(g−1

n+1)f(gn+1) = f(gnh0)f(gn+1) = f(h0gn)f(gn+1) = 1 · ρ(h0)−1 · 1.

Case III Hg−1
n = Hgi for some i ∈ {1, . . . , n− 1}; say g−1

n = hngi.

Case IIIA ρ(hn) 6= 1.

Define f(gn) = f(gi)
−1. We observe that gn /∈ Hf :

f(g−1
n )f(gn) = f(hngi)f(gi)

−1 = f(gi)ρ(h2)f(gi)
−1, and this equals 1 = f(gng

−1
n )

if and only if ρ(hn) = 1, a contradiction.

Case IIIB ρ(hn) = 1.

Define f(gn) to be 1 if f(gi) = π0 or π−1
0 , and π0 if f(gi) = 1. We observe that

gn /∈ Hf :

1 = f(gn · g−1
n ) 6= f(g−1

n )f(gn) = f(hngi)f(gn) = f(gi)f(gn).

This again may seem restrictive, but for abelian groups it simplifies matters greatly:

Corollary B.2.6. If G is abelian, we only need to check that Property (E) holds for the

case n = 2.

Proposition B.2.7. Cyclic groups satisfy Property (E).

Proof. Let G = Cn =< t >, and H ≤ G, say H =< tm >, with m minimal, and let b be

such that n = mb. Let ρ ∈ Hom(H,Σ2).

Case I: m = 1.

Choose f = inv ◦ ρ.
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Case II: m 6= 1.

Since ρ is non-trivial, ρ(tm) = π 6= 1 and ρ((tm)k) = πk. We have a transversal{
1, t, t2, . . . , tm−1

}
for G/H, and we define f(tl) = π if l 6= 0, and f(t0) = f(1) = 1.

Thus, globally, we have f(tmk+l) = πεπk, for 0 ≤ l � m, 0 ≤ a � b, with ε = 0 if

l = 0 and ε = 1 if l 6= 0. In particular, this satisfies f(hx) = f(x)ρ(h)−1 for all h ∈ H,

x ∈ G (since every element of C2 is its own inverse). By Lemma B.1.16, it suffices

to check that these tl are not in Hf unless l = 0. If tl were in Hf , then in particular

we would have f(tl · tm−l) = f(tm−1)f(tl). Since l 6= 0, both f(tl) and f(tm−l) are

equal to π, and hence the right hand side is equal to π2 = 1. However, the left hand

side is f(tm) = π. Hence no non-trivial tl are in Hf , and hence Hf is precisely H, so

Stab(f) = Γ(ρ), as desired.

B.3 Counterexample to the Suboperad Conjecture

We can now describe a family of counterexamples to Conjecture B.1.9 which proves Propo-

sition B.1.11:

Example B.3.1. Let G = C2N be any even-ordered cyclic group. Consider the map

ϕ ∈ Set(C2N ,Σ3) which sends t2m to 1, and t2m+1 to σ := (1 3 2) for all 0 ≤ m < N .

Then, a straightforward calculation shows that Stab(ϕ) =< t2 > ×1, where < x > is the

subgroup generated by the element x. Now, let f1, f2, and f3 be trivial maps from C2

to Σ5, Σ3, and Σ2, respectively, and γ := γ(ϕ; f1, f2, f3) be their Barratt-Eccles operadic

composition. We compute that γ(t2m) equals 1, and γ(t2m+1) equals the block permutation

τ := (1 3 2)(5, 3, 2). However, since τ2 = 1, Hγ is all of C2N , and in particular is the graph

of a non-trivial homomorphism out of G.

Thus, if C is any indexing system for G = C2N such that C(G) contains only the trivial

G-sets, then this lands outside SetF (C2N ,Σ∗), and hence SetF (C2N ,Σ∗) is not a suboperad

of the Barratt-Eccles operad Set(C2N ,Σ∗).
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Remark B.3.2. This example is fairly ad-hoc, and we can create many other similar fami-

lies of counterexamples. Moreover, this counterexample came from composing set functions

with trivial graphs as stabilizers. This just emphasizes the fact that the stabilizers exert

very little control over the composition.
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