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Abstract

Heterogeneous computers, with a multi-core central processing unit (CPU) and one or more

many-core graphical processing units (GPUs) capable of running general purpose applications,

are becoming standard on the desktop and in cluster and supercomputing platforms. Using

programming languages and extensions such as CUDA or OpenCL, application developers

can write code that can run on any of the heterogeneous devices available on the system. As

these tools mature, contention for device resources will become more prevalent, especially

in systems that utilize an application queue. Current application scheduling methods only

consider single applications and preferentially schedule each application for a device regardless

of other applications in the queue. This degrades overall computational throughput, and

leads to device underutilization.

Scheduling application kernels across all heterogeneous components to maximize applica-

tion throughput is nontrivial and requires the scheduler to have knowledge of the location of

data that will be needed for each kernel, the state of the system when each kernel will be

launched, and the scheduler be able to predict runtimes for individual applications. Further-

more, a scheduler can utilize historical information about prior kernel run times to further

influence its decision.

This dissertation investigates these elements of heterogeneous scheduling and develops

a novel methodology for e�ciently making dynamic scheduling decisions that maximize

computational throughput when multiple applications are run on a heterogeneous computer.

This dissertation describes an innovative taxonomy for describing data transfer requirements
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Abstract ii

for a heterogeneous application, and it also shows that dynamic scheduling for heterogeneous

computers benefits from knowledge about system state information, including data locality

and contention among running processes. Finally, this dissertation investigates a novel

technique to increase GPU throughput by running concurrent kernels on a device, based

upon their orthogonal use of device resources.
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Chapter 1

Introduction

Graphics Processing Units (GPUs) that are capable of executing general purpose code have

become ubiquitous on both the desktop and in cluster and supercomputing platforms. Because

GPUs contain many processing cores, they are also able to run parallel code e�ciently, and

for certain applications can deliver tremendous performance increases over equivalent code

written for a general purpose processor. By leveraging one or more GPUs to perform a subset

of tasks in a heterogeneous computer consisting of CPUs and GPUs, it is possible to increase

the overall computational throughput of the machine. If some of these tasks can be run on

either the CPU or GPU, it becomes necessary to make a scheduling decision about when and

where the tasks will be run in order to maximize this throughput.

Parallel programming languages targeted for GPUs, such as CUDA [NVIDIA, 2011b] and

OpenCL [Stone et al., 2010], have started to gain a following among application developers

who want to leverage general purpose GPU computation. Both languages require the

application developers to explicitly schedule kernels (the computation performed on the

device, not including data transfer) onto a particular processing unit. Each application

developer must determine when to schedule kernels for the devices on a system, and there is

no built-in coordination between applications if multiple applications wish to schedule kernels

on a particular device. As more application developers write programs that run on GPUs,

1
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contention for the devices will increase, due to general purpose code and also due to graphics

code that the GPU handles as its main function. The need for a dynamic scheduler to handle

this increased contention will continue to grow in importance.

Ideally, a computer system should be able to utilize all of its processors, e�ciently

delivering work to the processor that is best suited to complete the work as quickly as

possible. Modern operating systems for commodity and scientific computing have the ability

to run multiple applications at once, and OS schedulers are already able to partition work

across a number of homogeneous cores on a multi-core CPU. However, there are many

challenges associated with extending those schedulers to include a GPU, which has di↵erent

strengths and weaknesses than a CPU, and may or may not be the best place to run a

section of code. Incompatible instruction set architectures between CPUs and GPUs further

complicate running the same code on both devices. Even when using a programming language

such as OpenCL that can target both architectures, it is beneficial to tune code specifically

for one device. In addition, because discrete CPUs and GPUs have independent memories,

necessary data must be moved between the two processors, and we will show that a scheduler

must also take this data movement overhead into consideration.

Given the aforementioned factors, scheduling decisions change drastically, and must take

into account the di↵erences in application runtimes between the CPU and GPU, the location

of the data that will be used in the computation, and which device (either the CPU or GPU)

is available to complete the work. In other words, the scheduler must have a certain amount

of metadata associated with the application, about the processors, and must have knowledge

of the environment in order to make a worthwhile decision about where to run the task. GPU

scheduling methods prior to the work in this dissertation assume that GPUs are unloaded

when queuing work for a device. If the device is currently processing another task, the new

work must wait to run, even if other devices could be utilized. This leads to bottlenecks on

the GPU, and underutilization of the CPU, and this dissertation addresses these issues by

considering the metadata available.
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This dissertation shows that ignoring system state information, including data locality

and contention among running processes leads to incorrect scheduling decisions that are

detrimental to maximum computational throughput. By utilizing historical runtime data for

heterogeneous kernels and by making use of how those kernels interact with each other while

running concurrently, we can dynamically determine a schedule that provides better overall

throughput than current scheduling methods.

1.1 Scheduling Decision Examples

0! 500! 1000! 1500!

Both on CPU!
A on CPU, B on GPU!
A on GPU, B on CPU!

Both on GPU! A!
B!

Best Time!

Task! GPU! CPU!
A! 300ms! 1000ms!
B! 50ms! 150ms!

Figure 1.1: An example of a scheduling decision that produces the maximum throughput by
running one task on a slower device. In this system, both tasks are capable of running on
either the CPU or GPU, and both tasks run faster on the GPU. A näıve placement of both
tasks on the fastest device produces a slower overall runtime.

Näıve scheduling has clear weaknesses, particularly when only one device is targeted for all

applications. For example, Figure 1.1 demonstrates a simple scheduling example by showing

two tasks that can run on either a CPU or a GPU in a heterogeneous computer. Both tasks

run faster on the GPU, but scheduling both for the GPU results in a slower overall finish

time than the optimal scheduling of task A on the GPU and task B on the CPU. Although

task B takes more time on the CPU, the utilization of both devices in parallel leads to a

better overall throughput. This dissertation shows that the current technique of making

scheduling decisions without considering queue wait times, or when applications will finish
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on a given device, leads to suboptimal throughput for multiple applications that have the

ability to run on either device.0! 500! 1000! 1500!

Both on CPU!
A on CPU, B on GPU!
A on GPU, B on CPU!

Both on GPU! A!
B!

0" 500" 1000"
Best Time!

Task! GPU! CPU! Data 
Transfer!

A! 300ms! 1000ms! 400ms!
B! 50ms! 150ms! 40ms!

0" 500" 1000"

Both"on"CPU"

A"on"CPU,"B"on"GPU"

A"on"GPU,"B"on"CPU"

Both"on"GPU"

Data"Transfer"A"
Data"Transfer"B"
Execu;on"A"
Execu;on"B"

0" 500" 1000"

Both"on"CPU"

A"on"CPU,"B"on"GPU"

A"on"GPU,"B"on"CPU"

Both"on"GPU"

Data"Transfer"A"
Data"Transfer"B"
Execu;on"A"
Execu;on"B"

Both"on"GPU"

A"on"GPU,"B"on"CPU"

A"on"CPU,"B"on"GPU"

Both"on"CPU"

GPU"
CPU"

GPU"
CPU"

GPU"
CPU"

GPU"
CPU"

Figure 1.2: An example of a scheduling decision that includes data transfer time, and when
the data initially resides in CPU memory. Because the transfer time for task A is significant,
the best scheduling decision is to run task A on the CPU and task B on the GPU.

Figure 1.2 shows an example of a case where the optimal scheduling decision necessitates

knowing not only the execution time on each device, but where the data resides on the

machine. Discrete CPUs and GPUs have independent memory, and data must be explicitly

transferred between the two devices across the PCI-Express bus. In figure 1.2, the data starts

in CPU memory and is transferred to the GPU for computation and then returned to the

CPU after the computation completes. Given the execution and data transfer times, the

best schedule is to run task A on the CPU and task B on the GPU, even though the task

runs significantly slower on the CPU than on the GPU. Prior work that has looked at GPU

speedup and scheduling [Lee et al., 2010b; Topcuoglu et al., 1999] has ignored data transfer

times, leading to poor overall runtime comparison and suboptimal schedules.

Figures 1.1 and 1.2 demonstrate the need for sophisticated scheduling decisions based on

at least three factors:

1. Knowledge of task runtimes on individual heterogeneous components. Runtime predic-

tions must be accurate enough and must be made quickly.
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2. The workload currently executing on each device. By managing contention for processing

units, overall computational throughput can be increased. For many-core GPUs,

maximum utilization of individual cores can be increased by scheduling more than one

task at a time on the GPU.

3. The location of data relative to the processing units. A scheduler must take into account

data transfer overhead when considering where to run a task.

These items provided the initial motivation for the work in this dissertation, leading to

the contribution of a scheduling methodology for heterogeneous computers that includes the

essential factors for maximizing the throughput for a set of tasks in a realistic execution

scenario.

1.2 Contributions of this Work

The thesis of this work is that dynamically scheduling compute kernels for a heterogeneous

computer is essential for high compute throughput and high device utilization. Historical

runtime data and system state information must be used in a dynamic scheduling algorithm,

and will provide better overall throughput than current scheduling methods. A dynamic

scheduler that uses this information will produce schedules that approach the runtime of an

oracle scheduler.

This dissertation investigates the components necessary for a dynamic heterogeneous

scheduler for computers that contain at least one CPU and one GPU. It addresses data

locality for scheduling across processors with independent memories, runtime prediction for

heterogeneous kernels, and presents a general scheduling algorithm based on the results of

that work. Additionally, the dissertation investigates co-scheduling of heterogeneous kernels

on a single device, leveraging the fact that individual kernels tend to underutilize di↵erent

device resources. Finally, this dissertation shows that running two orthogonal kernels together

can improve aggregate throughput for a single device.
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1.2.1 Analysis of Data Locality for Discrete Devices

We perform a study of the data transfer times for a set of heterogeneous benchmark kernels

across a number of devices. We show that the time to transfer data can contribute significantly

to the overall runtime of a kernel and that data transfer times should not be ignored when

comparing runtimes between heterogeneous devices. We also demonstrate that knowing

how data will be consumed after a kernel finishes can also provide insight into total device

throughput. Chapter 3 investigates:

• The Necessity of Including Data Transfer Times in Runtime Comparisons:

We show that the time to transfer data across a PCI-Express bus can significantly

impact overall runtimes, and kernels that show better performance on a device are

a↵ected the most.

• Data Transfer Patterns: We provide a taxonomy for describing data locality patterns

for a heterogeneous kernel, and recommendations for how to use the taxonomy for

application comparisons when data must be transferred between device memories.

1.2.2 Runtime Prediction for Heterogeneous Devices

Because of the runtime di↵erences between heterogeneous devices, a scheduler must have

access to runtime predictions or models in order to make e↵ective scheduling decisions.

We explore runtime prediction models based on a history database of previous runtimes.

Chapter 4 investigates:

• Using Historical Runtime Data for Future Runtime Predictions: We demon-

strate the feasibility of collecting runtime data and utilizing it to make future runtime

predictions. We provide a novel method for keeping database sizes small while retaining

enough information for fast and precise predictions.
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• Runtime Prediction Models: We introduce a novel hybrid kernel runtime prediction

model based on historical runtime data that provides fast and precise prediction suitable

for a dynamic heterogeneous scheduler.

1.2.3 Contention-Aware Dynamic Heterogeneous Scheduling

Using the results from Chapters 3 and 4, we examine heterogeneous scheduling that utilizes

data locality and is aware of device contention. Chapter 5 investigates:

• Necessary Heterogeneous Scheduling Information: We provide a characteriza-

tion of the information necessary to inform heterogeneous scheduling decisions, including

data locality and device contention.

• A Dynamic Heterogeneous Scheduling Algorithm: We introduce a novel het-

erogeneous scheduling algorithm that utilizes runtime prediction and system state

information. We test the algorithm on a set of OpenCL benchmarks, and we show that

it produces schedules that are within 12% of an oracle schedule. We also compare the

scheduling results to four alternate scheduling algorithms and show that the dynamic

scheduling algorithm is superior in each case.

• Dynamic Scheduling With and Without Data Transfer Predictions: We com-

pare implementations of our dynamic scheduling algorithm with and without utilizing

data transfer predictions, and we show that by including those predictions, the schedules

produced are, on average, 40% faster. This further validates the results from Chapter 3.

• System Device Utilization: We show that dynamically scheduling work across

multiple devices increases device utilization compared to other scheduling algorithms.

Our dynamic scheduler can achieve over 95% device utilization across both the CPU

and GPU. We also show that greater device utilization improves aggregate throughput

across all devices.
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1.2.4 Co-scheduling Heterogeneous Kernels on a Single GPU

We analyze GPU kernel operation and show that kernels can demonstrate a range of memory-

bound and compute-bound behaviors. Using this insight, we show that orthogonally bound

kernels can be run concurrently on a device and demonstrate improved aggregate throughput

compared to running the kernels independently. Chapter 6 investigates:

• Orthogonally Bound Kernels: An analysis of contention and symbiotic behavior

between concurrent GPU kernels. We demonstrate that individual kernels can under-

utilize GPU resources, but when a memory-bound kernel is run concurrently with a

compute-bound kernel, overall throughput can be improved, and greater device utiliza-

tion occurs. We show improved computational throughput when concurrent kernels are

scheduled intelligently, and degraded throughput with näıve scheduling.

• Concurrent Scheduling on Real Devices: We provide a novel prototype OpenCL

kernel scheduler that demonstrates concurrent scheduling at workgroup granularity.

The scheduler has two modes of operation. In the first, the scheduler proportionally

allocates GPU resources to two kernels, at workgroup granularity. The second mode

allocates workgroups of individual kernels to GPU compute devices as those devices

become available (“work-stealing”). We show that the work-stealing scheduler pro-

duces schedules that approximate the throughput for the best proportionally allocated

schedules.

These contributions provide clear evidence demonstrating the need for and benefits of

dynamic heterogeneous scheduling on a CPU/GPU computing platform. The rest of this

dissertation is laid out as follows. Chapter 2 provides the background for the work, including

the current state of General Purpose Graphics Processing Unit (GPGPU) computing and a

prediction of how GPGPU computing will evolve in the next decade. The chapter will also

discuss the di↵erences in CPU and GPU architectures, and describes the di�culties in simply

extending current Operating System schedulers to include GPUs. Chapters 3–6 provide the
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nucleus of the dissertation and the contributions discussed above. We review related work in

Chapter 7, including previously described heterogeneous schedulers. Chapter 8 concludes the

dissertation and details a proposal for future work integrating heterogeneous scheduling into

an operating system at the kernel level.

1.3 Citations to Previous Publications

Large portions of this dissertation appeared in the following publications:

C. Gregg, J. Dorn, K. Skadron, K. Hazelwood.“Fine-Grained Resource Sharing for
Concurrent GPGPU Kernels,”4th USENIX Workshop on Hot Topics in Parallelism
(HotPar ’12). June 2012.

C. Gregg, M. Boyer, K. Hazelwood, K. Skadron. “Dynamic Heterogeneous Schedul-
ing Decisions Using Historical Runtime Data,” Proceedings of the 2nd Workshop on
Applications for Multi- and Many-Core Processors. San Jose, CA, June 2011.

C. Gregg and K. Hazelwood. “Where Is the Data? Why You Cannot Debate CPU vs.
GPU Performance Without the Answer,” International Symposium on Performance
Analysis of Systems and Software (ISPASS). Austin, TX. April 2011.

C. Gregg, J. Brantley, and K. Hazelwood. “Contention-Aware Scheduling of Parallel
Code for Heterogeneous Systems,” 2nd USENIX Workshop on Hot Topics in Parallelism
(HotPar ’10). June 2010.

M. Guevara, C. Gregg, K. Hazelwood, and K. Skadron,“Enabling Task Parallelism in
the CUDA Scheduler,” in Programming Models and Emerging Architectures Workshop
(Parallel Architectures and Compilation Techniques Conference, 2009).



Chapter 2

Background

2.1 The Current State of GPGPU and Heterogeneous

Computing

General-purpose computing on graphics processing units (GPGPU) describes the use of

GPUs to perform conventional computing that is not specifically targeted for output to a

graphical display. When GPGPU programming was originally conceived⇤, only graphics APIs

were available and exposed to programmers, and in order to solve general purpose problems

using a GPU, they had to be framed in terms of graphics-specific functions and memory

models [Owens et al., 2008]. This was a tedious, low-level process, and GPGPU programming

was generally limited to researchers who were curious about the possibility of large speedups

and who had the time to dedicate to translating their code into a non-intuitive framework.

The situation changed significantly when GPU vendors started producing drivers and APIs

for the sole purpose of writing general purpose code. ATI (now AMD) created the Close To

Metal (CTM) low-level programming interface in 2006, and this became commercially available

(and with higher level tools) the following year as the AMD Stream SDK [AMD, 2012a].

⇤GPGPU computing can be nominally traced back to 1978 with the Ikonas Graphics Systems [England,
1978], but GPGPU programming on modern GPUs began around 1999–2000 when NVIDIA released the
GeForce 256 [Wu and Liu, 2008].

10
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NVIDIA released Compute Unified Device Architecture (CUDA) in 2008, which enables access

to a low-level virtual instruction set and to the GPU memory system. [NVIDIA, 2011b]

NVIDIA also provided both C and Fortran compilers to allow high level programming through

CUDA. Also in 2008, the OpenCL specification was released, and OpenCL provides a C-based

language for parallel programming on both GPUs and multicore CPUs [Stone et al., 2010].

Because languages such as OpenCL are targeted towards both GPUs and multicore CPUs ⇤,

the term Heterogeneous Computing (instead of GPGPU ) has come into favor when discussing

applications written in these languages. We will be using this term for the remainder of this

dissertation.

2.1.1 Kernel Scheduling

Heterogeneous computing applications have two distinct parts: the coordination code, which

runs as a regular process on a CPU, and the kernels, which run on the GPU or on the CPU.

When running heterogeneous code on a GPU, the coordination code runs on the CPU and

the kernels run on the GPU, and when running heterogeneous code on a multicore CPU,

both the coordination code and the kernels run on the CPU, in di↵erent processes.

With OpenCL and CUDA, all scheduling of kernels and all memory transfers are explicitly

handled by the individual application developer who writes heterogeneous code. Unless

application development is done by a single developer or by coordinating developers, ap-

plications do not communicate with each other, and kernels are launched onto a device

when the coordinating code for each application calls a library function. Kernels go into a

first-in-first-out (FIFO) queue for the device, and only one kernel is run on a device at a time.

CUDA has a rudimentary ability to launch multiple kernels concurrently, but the mechanics

of this process have to be carefully coordinated by an application developer [NVIDIA, 2011b].

If a computing platform has more than one device that is capable of running heterogeneous

kernels, application developers must also explicitly decide which device to run the kernels

⇤Although CUDA is o�cially limited to running on NVIDIA GPUs, there have been research e↵orts that
have aimed at translating CUDA for CPUs [Stratton et al., 2008].
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on. When writing applications, developers do not know the state of the system, and may

not know what specific devices will be available at runtime. Therefore, they cannot predict

whether a device is currently running a kernel, or whether there are other kernels queued up

behind one that is currently running, or whether data transfer overhead will considerable

a↵ect overall runtime. Developers do have the ability to query the system to determine

what devices are available to run heterogeneous code, but the decision about which device to

launch kernels on is currently determined prior to runtime, or logic must be built into the

individual application that makes this determination at runtime. Again, unless two or more

applications are created in tandem, there is no dynamic method for scheduling the kernels

except through the FIFO queue.

2.2 The Future of Heterogeneous Computing

One of the goals of this dissertation is to provide a motivation for developing a heterogeneous

scheduler that considers all applications that have heterogeneous kernels. This motivation

is based on the idea that as more developers write heterogeneous code, there will be more

contention for heterogeneous devices in a system. Current static scheduling techniques based

on device driver queues does not provide any method for managing contention between

independent applications.

Figure 2.1 shows the number of publications listed in Google Scholar [2012] that refer

to CUDA or OpenCL in the context of programming, showing a linearly increasing trend.

As more applications are written to take advantage of heterogeneous resources, dynamic

scheduling for kernels across the available devices will be necessary to avoid bottlenecks and

to fully utilize the devices. Applications written by di↵erent developers will have to share

access to preferred devices, but if overall throughput for all applications is the goal, it will

not matter which device an application kernel runs on as long as it finishes sooner than it

would have on a di↵erent device.
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Figure 2.1: The increasing trend in the number of publications per year that refer to
“programming AND (CUDA OR OpenCL)”. Source: Google Scholar [Google, 2012]

The obvious place to build a heterogeneous scheduler that handles multiple applications

running simultaneously is the operating system. The OS already handles homogeneous

scheduling tasks, and adding the ability to schedule for heterogeneous devices is an eventual

progression. This dissertation investigates a number of features that would enhance an OS

scheduler that included support for heterogeneous processors.

Although discrete CPUs and GPUs will continue to be available in the foreseeable future,

hardware vendors have also begun building heterogeneous processors onto a single chip, with

both devices sharing a single main memory [AMD, 2010], and both are capable of running

general purpose code. The integrated main memory allows kernels to run on either device

without needing to transfer data. For this reason, data locality would be less important,

however other memory-specific issues would then arise, such as increased contention for

memory resources such as memory controllers and caches.
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2.3 Many-core GPU Architectures

GPUs are designed to e�ciently handle the graphics pipeline, which consists of a large

number of graphics elements that can be altered and manipulated by applying the same

function to each element. Because each pixel can be independently rendered, the elements

can be processed in a highly parallel fashion. In order to leverage the parallel nature of

the data, GPUs have a large number of processing cores with tremendous floating point

throughput capabilities and fast memory bandwidth. In addition, GPUs partition the cores

into groups of cores, each with their own shared memory. Figure 2.2 shows NVIDIA’s

streaming multiprocessor model, which is repeated multiple times on a single chip.
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Figure 2.2: The NVIDIA GPU Streaming Multiprocessor Architecture. Each set of processing
cores can access the same shared memory. The Multithreaded Instruction Unit handles
thread launching for the multiprocessor.

GPUs fall under the Single Instruction, Multiple Data (SIMD) classification of Flynn’s

Taxonomy [Flynn, 1966], and successful general purpose code that is run on GPUs follows

this model for its algorithms. In the SIMD model, the same instruction is executed for a

stream of data, and because the graphics pipeline necessitates applying functions over a

stream of pixel data, the model fits nicely. Data parallel algorithms are common in scientific

computing, and scientific applications have led the push for GPGPU computing across a

wider variety of computing systems.

Because of the vast amount of data that potentially streams through the processors on

a GPU, GPUs have a wide and fast main memory bus. The shared memory on streaming

multiprocessors is even faster. This is in contrast to the much slower PCI-Express (PCI-E)
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bus that allows data transfer between CPU and GPU memory, and this leads to the memory

transfer bottleneck that will be discussed in chapter 3.
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Figure 2.3: The abstract OpenCL programming model and the GPU memory model.

2.4 OpenCL and CUDA Terminology

In this disseration we will be discussing specific OpenCL and CUDA terminology, and

this section will provide a brief overview of the terms we will use. OpenCL and CUDA

generally have di↵erent terms for similar device components and language models, and a more

thorough mapping can be found in other references, such as NVIDIA’s OpenCL Optimization

Guide [NVIDIA, 2012c]. Parentheses in this section denote whether a term is specific to

OpenCL or CUDA, and a lack of parenthesis means the term is shared between the two

languages. In general we will use the OpenCL terminology if we are discussing an idea generic

to both OpenCL and CUDA.

Figure 2.3 shows the abstract OpenCL programming model and the GPU memory model;

this section describes the former, and the next section describes the latter. An OpenCL or

CUDA computational device (e.g., a CPU or GPU) is referred to generically as a device.

Devices can be discrete or integrated, as in the case of AMD’s Fusion architecture. Discrete

devices contain independent global memory, while integrated devices share global memory.

In the latter case, data is explicitly transferred between devices in order for each device to
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perform calculations on that data, and on current hardware the transfer takes place via the

PCI-Express bus.

Each device contains multiple compute units (OpenCL) or multiprocessors (CUDA) that

perform the computation. All compute units share access to global memory, but devices also

have local (OpenCL) or shared (CUDA) memory that is allocated on a per-compute unit

basis and cannot be shared between compute units.

Programs that run on a device are called kernels. Kernels are launched from a CPU

thread, and kernels are managed by a device driver, generally provided by device vendors (e.g.,

AMD, NVIDIA, and Intel). The device driver also handles data transfer between devices, and

in OpenCL the data is encapsulated into bu↵ers that are passed during the data transfer.

Each instance of a kernel is called a workitem (OpenCL) or thread (CUDA), and each

workitem executes the same instructions on di↵erent parts of the kernel data. Workitems

each have a unique global ID, and workitems are organized into workgroups that can be

synchronized by the use of a barrier. Each workitem in a workgroup shares a workgroup ID,

as well, and workitems have unique local IDs in their workgroups. Workgroups share access

to local memory on the compute unit on which they reside, although workgroups that reside

on the same compute unit cannot share local memory with each other.

In both CUDA and OpenCL, applications have the ability to query the system to determine

what devices are available and what features they support. Additionally, applications can

receive information about kernel runtimes and bu↵er transfer times through device driver

function calls.

2.5 The GPU Memory Model

Discrete GPUs contain multiple levels of memory, with global memory available to all

workitems, local memory available to individual workgroups, and private memory available

to individual workitems. Global memory can contain multiple gigabytes of system RAM, and
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private memory is allocated from system RAM as well. Local memory is limited to tens of

kilobytes, and allocated on a per-workgroup basis. Chapter 6 discusses the problems with

running multiple kernels concurrently with such a limited amount of local memory.

Figure 2.3 shows how the memory fits into the OpenCL model. Local memory can be

up to 5x faster than global memory, and accessing global memory is up to 10x faster than

transferring data across the PCI-E bus. Chapter 3 discusses the importance of limiting the

amount of transfer between devices, particularly because of the amount of transfer time

relative to kernel runtimes. Because PCI-E transfer time is so slow relative to onboard GPU

memory accesses, the location of the data becomes important.

While the OpenCL programming model should remain the same, di↵erences arise in the

actual GPU memory model for integrated CPU/GPU devices, such as AMD’s Fusion line

of heterogeneous processors. With an integrated model, there is generally one main DRAM

memory system that can be used by both the CPU and the GPU. Because the GPU relies on

high throughput access to memory for massively multithreaded code, GPU designers may

provide di↵erent types of busses from each device. In the case of AMD’s Fusion, there is a

non-coherent but extremely fast bus (i.e., it can saturate the available bandwidth) that can

be used by the GPU for local memory, and separate bus that can be used for coherent access.

There is also a separate bus for the CPU to access memory, as well.

Because of the vast di↵erences in memory models between discrete and integrated hetero-

geneous devices, this dissertation considers only the discrete case.

2.6 Scheduling for CPUs and GPUs

As discussed in chapter 1, the operating system handles CPU scheduling, and individual

applications send work to GPUs through GPU vendor device drivers that enforce a strict

in-order kernel queue. Because of this separation of scheduling duties, no single scheduling

entity has a view of processor utilization for all devices. The operating system does not
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make any scheduling decisions for the GPU; rather, the programmer for each kernel decides

whether to run that kernel on the CPU or GPU. There are a number of factors that make

automating that decision di�cult, and this dissertation investigates those elements. It is not

simply a matter of updating the OS scheduling algorithms to use the GPU, and data transfer

between devices, much di↵erent device runtimes, and the inability to preempt work that has

started on the GPU all play important roles in the decision.

With an increased number of applications trying to use GPU resources, a mismatch can

occur where some devices are under-utilized, and others are over-utilized. For example, if

multiple applications running on the CPU attempt to run a kernel on the GPU simultaneously

and also wait until kernel completion before continuing on the CPU, all but the first into the

queue will be blocked, and CPU utilization will drop significantly.

Operating system schedulers are able to partition independent work across multiple CPU

cores with the simplifying assumption that homogeneous cores will have equal runtimes, and

therefore the cores will behave identically. The scheduler does not need to know absolute

runtimes for complete applications in order to schedule work, and ensuring high core utilization

and load balancing is a matter of distributing processes to each core depending on the current

load on individual cores. More importantly, processes can be migrated between cores as

they run. The scheduler regularly checks the load on each core, and migrates processes as

necessary to maintain high overall core utilization. This can have negative ramifications for

cached data—if a process that has cached data on one core is moved to another, the data

needs to be migrated as well—but device utilization remains high.

Enhancing an operating system scheduler to include both CPUs and GPUs would necessi-

tate solving a number of challenges, and this dissertation addresses those challenges in detail.

The primary di�culty arises because GPUs do not have the ability to interrupt or migrate

processes – once a kernel begins, it runs until completion on the device. Whereas CPU cores

can be monitored to assess their load, GPUs are either running a single kernel or not, and

fine-grained thread switching between kernels is not natively possible with current GPU
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architectures. Therefore, in order for an OS scheduler to attempt load balancing between

CPUs and GPUs, there must be some knowledge or prediction of the runtime for individual

kernels on a device. We analyze the problem of runtime prediction in chapter 4, and we

demonstrate a scheduling algorithm that utilizes these predictions in chapter 5. In chapter 6

we analyze some solutions for running multiple kernels on GPUs concurrently.

Even if it becomes possible to easily migrate tasks between a CPU and a GPU, data

migration is still a major concern. As already discussed, transferring data between CPU

and GPU memories is bandwidth limited, and can incur large overheads on top of kernel

runtime. Chapter 3 addresses the data transfer overhead problem, but an operating system

scheduler that depended on process migration in a CPU-GPU system would need to ensure

data was also migrated between devices (or left in place on both), and either choice would

add considerable overhead.

2.7 Characteristic Heterogeneous Workloads

This dissertation focuses on workloads consisting of applications with kernels that can

be executed on the CPUs and GPUs in a heterogeneous computing system. Individual

applications do not have dependencies on each other, and have no knowledge of each other

(i.e., they could have been independently written by di↵erent developers). The dynamic

scheduler discussed in this dissertation places kernels into a queue and attempts to produce the

greatest throughput for all applications without unfairly penalizing an individual application,

either by starvation (i.e., preempting an application indefinitely), or by scheduling a kernel to

finish later than it would have if it was run on an alternate device. The notion of scheduling

fairness is described in detail in Chapter 5.

We envision the types of workloads described above to emerge in both single-user desktop

computing and in multiple-user cluster computing where the cluster nodes are comprised of

heterogeneous CPU/GPU computers. A number of such clusters are currently in service [Kin-
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dratenko et al., 2009; Morgan, 2012], and because individual applications on such devices

are generally independent of each other, the scheduling methodology we describe in this

dissertation can be used to increase throughput in such clusters.



Chapter 3

Where is the Data? Debating CPU vs.

GPU Performance

Numerous papers have demonstrated the impressive computing power of GPUs, and speedups

of 1000x across a number of di↵erent types of applications have been reported over similar

algorithms written for CPUs (for example Che et al. [2008] and Ryoo et al. [2008]). However,

there is an ongoing discussion about the quantitative speedup that GPUs can provide over

CPUs and whether real applications truly can benefit by two or more orders of magnitude

improvement by utilizing GPU computing. Lee et al. [2010b] provide a compelling argument

that fair comparisons are necessary; CPU and GPU performance evaluations are only valid

when both have been fully optimized for their respective platforms, taking into consideration

specific architectural features for each device and optimizing the kernels to take advantage of

these as much as possible. We will show that even this argument lacks an important factor:

the location of the data that is being processed before, during, and after kernel execution. As

we show in this chapter, it is not simply the speed at which a certain algorithm processes data

that is important, but where the data is prior to running on a device, and where it will be used

after the kernel completes. GPU kernels are fast, and in many cases kernels are completed in

the tens of milliseconds time frame. With short kernel runtimes, the movement of data to and

21
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from the GPU becomes relevant, both because of the amount of data that needs to be moved,

and because of the inherent bottleneck from the interconnect between the CPU and GPU.

Without acknowledging (or rationalizing) the time for these data transfers, comparisons do

not provide a true representation of the real speedup provided by a device. Our objective in

this chapter is not to challenge the benefits of using GPUs to accelerate computational work;

rather, we would like to emphasize the importance of including data transfer overhead when

making comparisons to CPU applications that have the data accessible on-chip.

It is one thing to acknowledge that for most GPU kernels, data must be moved onto

the device prior to being used by the kernel, but it is more important to recognize that

calculations performed on data are only worthwhile when the results of those calculations

are further utilized. For example, if an array of integers has been sorted, the newly sorted

array is useful only if the data will be analyzed by a follow-on function or algorithm. Unless

the data will be used by another kernel on the GPU, some data must be returned to the

CPU via the interconnect, whether it is the full data set, or a result based on the data (e.g.,

the result of summing an array of integers). Disregarding this aspect when reporting GPU

kernel performance is deceptive, until such a time as there are shared memory CPU/GPU

systems and there is no need to transfer data across a device-to-device interconnect for further

processing or output.

We have two goals in this chapter. The first is to demonstrate the necessity of reporting

memory transfer overhead costs for CPU/GPU performance comparisons, and to show

that many performance results have been misleading because they have disregarded this

information. We have run benchmarks on eleven diverse GPU kernels and have included

timing data for CPU/GPU memory transfers. Our results show that data transfer time can

be as significant as kernel runtime, and that the faster the GPU, the more important it is

to consider the data transfer overhead. The latter observation demonstrates the increasing

importance of our findings, given the expected increases in GPU performance over time.
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Many of the benchmarks transfer a significant amount of data onto the GPU before the

kernel begins, and a transformed data set back to the CPU after the kernel completes. In

some cases, however, a large amount of data is transferred onto the GPU but only a small

amount of data is returned to the CPU. For example, the search kernel transfers a large text

string to the GPU but only returns an integer value of the location of a found string. When

the one-way transfer time is taken into account, the search kernel takes 2x longer than the

GPU processing time, on average. In other cases, data does not need to be transferred to

the GPU but a large amount of data is transferred back from the GPU. For example, the

Mersenne Twister benchmark generates pseudorandom numbers on the device with a single

integer as the only input data, but if the results are brought back to the CPU, this adds

an average time of 7x over the GPU processing time alone. If instead the results remain

on the GPU for use by another kernel, then there would be no memory transfer overhead

at all. Finally, in the Monte Carlo kernel, only a small amount of data is transferred onto

the device, and a small amount o↵; this kernel does many thousands of iterations, and the

memory transfer is inconsequential. We chose what we believe to be “normal” usage cases,

and we explain when data transfer assumptions can be modified; for instance, when a kernel

might likely be run in between two other kernels such that the data is already present on the

GPU.

Our second goal is to introduce a taxonomy that can be used for future comparisons that

provides data transfer requirements while at the same time being flexible enough for the

myriad of situations for which a kernel might be used. We present five broad categories for the

classification of kernels, based on the memory-transfer overhead such a kernel would experience

in a typical usage case: Non-Dependent (ND), Dependent-Streaming (DS), Single-Dependent-

Host-to-Device (SDH2D), Single-Dependent-Device-to-Host (SDD2H), and Dual-Dependent

(DD). Depending on the actual usage scenario, most kernels could fit into more than one

category, but we show that when reporting performance results it is important to include
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results from the most likely categories, and to explain situations when the di↵erent categories

would be applicable.

3.1 Summary of Novelty and Related Work

The idea for the work in this chapter came after Lee et al. published their comparison

of CPU -vs- GPU runtimes, and determined that GPU speedups were generally not as

impressive as much of the literature presumes [2010b]. They acknowledge that data transfer

requirements can further degrade GPU speedups, but they do not provide specific research

related to the issue. Other researchers have explicitly stated that data transfer between

devices should be kept to a minimum (e.g., [Fan et al., 2004; Cohen and Molemaker, 2009;

Dotzler et al., 2010]), but our work is the first that we know of that provides a taxonomy

of data transfer requirements. It is also the first that provides a tool that can be used to

compare CPU and GPU performance with the inclusion of data transfer requirements. Other

researchers, such as Becchi et al. [2010], have included data transfer considerations into

heterogeneous schedulers, but our work broadens the data transfer space and extends the

idea to provide a comprehensive treatment of the topic. Further related work for this chapter

is in chapter 7.

3.2 Benchmarks

Test Setup We chose a broad range of kernels that demonstrate a variety of memory-

transfer overhead scenarios, and we chose GPUs and test CPU / PCI Express systems to

show the di↵erences that communications overhead can have depending on the speed of the

GPU and the PCI Express setup in the system. All kernels were written in CUDA and were

run on four platforms, as shown in Table 3.1. Of note in the table is that the GTX 480 GPU

provides the fastest raw computing power but has the slowest bandwidth between the CPU

and GPU, and the 330M (a laptop GPU) is the slowest card but provides one of the fastest
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GPU Type
Compute
Capability

Cores
Memory
(MB)

Clock
(MHz)

Host-Dev
BW

(MB/s)

Dev-Host
BW

(MB/s)

Tesla C2050 2.0 480 3072 1150 2413.9 2359.2
GTX 480
(Fermi)

2.0 480 1024 1401 1428.0 1354.2

9800 GT 1.1 112 1024 1500 2148.8 1502.5
330 M 1.2 48 256 1265 2396.2 2064.7

Table 3.1: GPUs Tested. All GPUs are from NVIDIA and run the CUDA programming
language. The 330M GPU is a laptop GPU and the others are desktop GPUs. “Host-Dev”
shows transfer times from main memory to GPU memory, and “Dev-Host” shows transfer
times from GPU memory to main memory.

bandwidth of any of the devices. For some of the benchmarks, the larger data sets would not

fit onto the 330M, nor onto the 9800 GT. This is reflected in the figures as fewer bars; if there

are only three bars in a set, the 330M did not have enough memory to run the benchmark

for that data size, and if there are only two bars neither the 330M nor the 9800GT could run

the benchmark for that data size.

The PCI Express Standard The PCI Express standard provides the motherboard

interconnect between the CPU and the GPU, and all memory transfers between the CPU main

memory and the GPU main (shared) memory flow over the PCI Express connection. Table

3.1 shows the PCI Express bandwidth for each CPU/GPU combination, and the bandwidth

results were gathered using the CUDA SDK bandwidthTest application for each device. As

we will show in the benchmark results, in many cases data transfer over this connection

contributes the majority of the time to certain benchmarks executions. It is possible to

asynchronously stream data over the PCI Express while data is being acted upon on the GPU,

and the CUJ2K kernel we investigated demonstrates this feature. Memory transfers that take

advantage of streaming must be used on page-locked CPU memory (because it is accomplished

via direct memory access), and this adds to the complexity of adding the streaming function

to an application. Furthermore, regardless of the amount of streaming used, most applications
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require that the full amount of data passes across the PCI Express interconnect during the

kernel execution, and therefore the limiting factor for most applications is still this transfer.

There is one other type of memory transfer, called “zero-copy” that can be used to transfer

data back and forth from the CPU to the GPU. It is a direct memory access function that

also utilizes page-locked CPU memory, and the benefits of using zero-copy are that the GPU

takes full control of the memory transfers (without CPU interaction), and can also utilize the

CPU main memory as if it were the main memory on the GPU. Again, however, all of the

data does have to eventually pass across the PCI Express in order for the GPU to manipulate

it. As with streaming memory, the speedup is still limited by the PCI Express bandwidth.

It is important to note that faster GPUs are a↵ected more by the PCI Express overhead,

simply because the amount of time they spend completing kernels is proportionally smaller

than for a slower GPU with a similar PCI Express bandwidth. As new GPUs provide

greater compute performance, it becomes even more important to include this overhead when

reporting performance comparisons.

The Kernels and Benchmark Results Table 3.2 shows the kernels we benchmarked,

and the relative amount of data that each kernel transfers to the GPU and back from the

GPU after the kernel completes. For example, the Sort algorithm we analyzed requires all

of the data to be present on the GPU in order to run, but it does not send any data back

to the CPU. The Mersenne Twister algorithm requires only an integer as input and creates

pseudorandom numbers on the GPU, but a common case is to return them to the CPU after

the kernel completes.

When running our benchmarks, we focused on testing a range of data sizes, culminating in

finding the largest data set that would allow the application to complete on a respective GPU.

Having a large data size is important, particularly for applications that are not considered to

be bandwidth bound. For instance, SGEMM, a compute bound application, still experiences

a 50% slowdown for fast GPUs (in this case, the Tesla C2050 and the GTX 480) with large

matrix sizes because the kernels complete so quickly.
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Kernel Data to GPU Data to CPU

Sort Large None
Convolution Large Large
SAXPY Large Large
SGEMM Large Large
FFT Large Medium
Search Large Small
SpMV Large Medium

Histogram Large Small
Mersenne Twister None Large

Monte Carlo Small Small
CUJ2K Large Large

Table 3.2: Benchmark Kernels. The data size sent to the GPU assumes that the data is not
already present on the GPU when the kernel launches. The data size returned to the CPU
assumes the data will be used next by the CPU.

1. Sort is a fast radix sorting method that has been shown to sort over one billion 32-bit

keys on a GTX-480 GPU [Merrill and Grimshaw, 2010]. The benchmark we tested first

places all of the keys into GPU main memory, runs the kernel, and then leaves the sorted

array on the GPU for further processing. Figure 3.1 shows our benchmark results with these

assumptions, and it is clear that the fast GPUs with a large data set are a↵ected the most by

the memory-transfer overhead. For the GTX 480 to sort 32MB of keys, 175ms was spent

transferring the data to the GPU, while only 67ms was spent performing the sort; in other

words, the overall time for the sort was 3.6 times longer than for the GPU-only portion.

Discussions with the author of the application we benchmarked acknowledged this overhead,

but also stated that it is just as likely that the sort kernel acts on data that was on the GPU

for a previous kernel. While we agree with that assessment, the fact that there is a factor of

over three between the two usage cases is significant. If the data had been returned to the

CPU (a common usage case), the total application would have been over six times slower

than the kernel alone.

2. Convolution is a widely used image filtering application that can be used for smoothing,

edge detection, and blur, among other functions. We benchmarked the separable convolution
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Figure 3.1: Sort benchmark. Faster GPUs are a↵ected more by the memory transfer overhead.
For instance, when sorting 64M values, the application time on the GTX 480 is 3.6x slower
than the kernel itself.

application example from the NVIDIA CUDA SDK toolkit [Podlozhnyuk, 2007]. A typical

use for an image convolution on a GPU would transfer image data to the GPU, run the

kernel, and transfer the convoluted image back to the CPU, and Figure 3.2 shows the results

of the benchmark. For the large data set, the application takes more time to run on the fast

GTX 480 than on the slower 9800 GT because the memory-transfer bandwidth is better for

the 9800 GT.

Figure 3.2: Convolution benchmark. The benchmark time is dependent on data transferred
to the GPU and also on data transferred back to the CPU. Note that the slower 9800GT
GPU has a faster overall run time than the much faster GTX 480 because of the slower
transfer times on the GTX 480.
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3. SAXPY stands for “Scalar Alpha X Plus Y” and is a function in the Basic Linear

Algebra Subprograms package. It is a straightforward multiply-and-add algorithm that is

pleasingly parallel. NVIDIA provides an optimized, CUDA version of SAXPY in the CUBLAS

package [NVIDIA, 2011a] and this is what we benchmarked. Figure 3.3 shows the results of

the benchmark, and it is obvious that the memory-transfer overhead is overwhelming to the

runtime for the application. On average, the kernel plus memory-transfer times took 43x

longer than the kernel processing time alone.

Figure 3.3: SAXPY benchmark. Because the CUBLAS version of SAXPY is well optimized
and pleasingly parallel, the memory-transfer overhead comprises almost all of the application
run time. Again, for large data sets the faster GTX 480 performs worse for the overall
benchmark than the slower 9800 GT.

4. SGEMM is the Single Precision General Matrix Multiply algorithm. The CUBLAS

package also includes SGEMM, and we ran our benchmark on the CUBLAS application. Like

SAXPY, SGEMM is pleasingly parallel, but because it is an n

3 algorithm, it performs more

calculations on the matrices than SAXPY, and Figure 3.4 shows that the memory-transfer

overhead is not as overwhelming to the application as for SAXPY, especially as the data set

increases. However, the run time for the Tesla C2050 is still almost twice as slow for the

largest data set as it would be without the memory-transfer overhead.

5. FFT is the Fast Fourier Transform algorithm, which transforms signals in the time

domain into the frequency domain. NVIDIA provides the CUFFT library [NVIDIA, 2011c],
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Figure 3.4: SGEMM benchmark. SGEMM is another pleasingly parallel application, but
the n

3 algorithm in the kernel does spend a significant amount of time relative to the
memory-transfer overhead.

which we benchmarked. Figure 3.5 shows that for large data sets, there is more than 100%

overhead for data transfer on fast devices. FFT returns less data than is passed into the

function, so it does take slightly less time for the transfer back from the GPU. It is still

apparent that the fast GPUs are constrained significantly by the memory-transfer overhead.

Figure 3.5: FFT benchmark. FFT produces a similar profile to SGEMM, and the fast GPUs
incur a time penalty for memory-transfer of over 100% for the largest data set.

6. Search is a simple textual search for a short random lowercase alphabetic string in

a long random string of lowercase alphabetic characters. The code we benchmarked was

based on an example from an online supercomputing performance and optimization analysis

tutorial [Supercomputing Blog, 2010]. For each benchmark, we measured the total time to
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find 1000 di↵erent search strings in a certain length sample text. As the sample text gets

larger, the likelihood for finding the search string increases, and as Figure 3.6 shows, when

the size of the sample text reaches roughly two million characters, the average search time

levels out. The Tesla C2050 incurs a memory-transfer penalty of 2.5x at this point, and the

GTX 480 incurs a penalty of 5x. The GT 9800, with CUDA compute capability 1.1⇤, has

comparably poor performance compared to all three other GPUs because the benchmark

uses atomic operations that were significantly optimized for later compute capabilities.

Figure 3.6: Search benchmark. The bars represent the time to search for 1000 random
4-character strings in random text string that increases in size. The text string is transferred
to the GPU for each iteration. The 9800 GT’s poor performance is due to the lack of
optimized atomic operations in GPUs with compute capabilities less than 1.2.

7. SpMV, or Sparse Matrix Vector multiplication, is an important sparse linear algebra

application, and it is a bandwidth-intensive operation when matrices do not fit into on-chip

memory. We benchmarked an implementation described in Bell and Garland [2009] for

the coordinate (or “triplet”) format that has a storage size proportional to the number of

non-zeros in the sparse matrix. Figure 3.7 shows the results for three di↵erent matrices

(suggested by Bell and Garland [2009] and used originally for the work in Williams et

al. [2009]). The application transfers much more data to the GPU than it returns, and thus

⇤The compute capability of a device denotes the CUDA features an NVIDIA GPU supports; it is akin to a
version number.
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the data transfer time is weighted to the amount transferred to the GPU. In the case of

the largest two data sets, mc2depi.mtx and webbase-1M.mtx, the device memory-transfer

bandwidth completely dictates the time for the application, and the less powerful 330M GPU

completes the application faster than the GTX 480 simply because it has a higher CPU-GPU

bandwidth.

Figure 3.7: The SpMV benchmark was run on three sparse matrices stored in memory in
coordinate format. The matrix size is in parentheses next to each label.

8. Histogram is an image processing algorithm that combines a stream of pixel light

values into a series of bins that represent the distribution of light across an image. We

benchmarked the CUDA SDK histogram application that computes both a 64-bin histogram

and a 256-bin histogram on a set of data [Podlozhnyuk, 2011]. The histogram application

sends a large amount of data to the GPU, but simply returns either a 64-byte or 256-byte

array representing the bins. Therefore, as can be seen in Figure 3.8, the memory-transfer

overhead for the data sent to the GPU is significant, while the memory-transfer overhead for

the data sent back is not.
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Figure 3.8: Histogram benchmark. A large amount of data is sent to the GPU, but only one
small vector (64-bytes or 256-bytes) is returned to the CPU.

9. Mersenne Twister is an algorithm for generating pseudorandom numbers. There is

no transfer of data to the GPU (except a single integer seed) and the algorithm produces the

values solely on the device. Figure 3.9 shows that the only memory-transfer overhead comes

from returning the results to the CPU.

10. Monte Carlo is an algorithm that repeatedly and randomly samples a function

many times, averaging the results. We benchmarked a financial option pricing application

from the CUDA SDK [Podlozhnyuk and Harris, 2008], with 2048 options, with 256K to

32M sample paths. In terms of this study, Monte Carlo is almost perfectly suited to run on

a GPU, as only 32KB of data is passed to the device and 16KB is returned to the GPU,

regardless of how many sample paths are computed. Figure 3.10 shows that in many cases

the memory-transfer overhead is inconsequential compared to the run time of the algorithm

itself.

11. CUJ2K is a CUDA application that converts BMP images to the JPEG 2000

format [Fürst et al., 2011]. By default it runs in asynchronous streaming mode, moving data
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Figure 3.9: Mersenne Twister benchmark. All pseudorandom numbers are generated on the
GPU, so the only memory-transfer overhead comes from transferring the results back to the
CPU.

on and o↵ the GPU at the same time it encodes data already on the device. We measured

kernel times for both streaming and non-streaming conversions, as shown in Figure 3.11.

For CUJ2K, asynchronous streaming improves performance when more than one image is

processed by the application, and for the Tesla C2050, the speedup when converting 16

images is 5x over the non-streaming version. Utilizing asynchronous memory transfers is the

optimal solution if data must be moved between devices, as computation and data transfer

happen concurrently.

3.3 A Taxonomy for Memory Transfer Overhead

The previous section demonstrated that data transfer times are often a critical aspect of

overall GPU application times. We have identified five di↵erent types of application usages

that categorize the dependence on memory transfer for GPU kernels. Broadly, the categories

indicate whether there is a significant dependence on transferring data to or from the GPU,

which is important for both CPU/GPU comparison reporting and also for informing decisions

about scheduling and other heterogeneous computing scenarios.



3.3 A Taxonomy for Memory Transfer Overhead 35

Figure 3.10: Monte Carlo benchmark. Regardless of the number of sample paths, only 32KB
of data is transferred to the GPU and only 16KB is returned to the CPU. The values are
insignificant compared to the overall run time of the application.

Categories of Application Kernels

GPU kernels fit into five specific categories:

1. Non-Dependent (ND) Those that do not depend on data transfer to or from the

GPU, or the dependence is extremely small (a single value as a seed, for instance, or

an integer returned as a result).

2. Dependent-Streaming (DS) Those that are dependent on data transfer to or from

the GPU but hide this dependency with asynchronous streaming memory.

3. Single-Dependent-Host-to-Device (SDH2D) Those that depend on data transfer

to the GPU.

4. Single-Dependent-Device-to-Host (SDD2H) Those that depend on data transfer

from the GPU.

5. Dual-Dependent (DD) Those that depend on data transfer to and from the GPU.
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Figure 3.11: CUJ2K benchmark. The asynchronous streaming version of the application
performs up to 5x better for faster devices. The x-axis denotes the number of BMPs that
were converted to JPEG-2000 at a time. Each BMP was 2048⇥ 1361 pixels and 24-bit color.
Note: the 330M was replaced with a GTX 280 for this experiment.

It is possible for a kernel to fit into more than one category for di↵erent usage cases; for

instance a kernel that can either run independently on a set of data, or can run as a part

of a sequential set of kernels on the same set of data would be in two di↵erent categories

depending on the scenario. It is the responsibility of whomever is presenting the performance

data to indicate which categories make the most sense for the kernel in question (as we have

done in Table 3.3).

Kernels that fit into the ND category process data that is already on the GPU and either

do not return the data to the CPU or return a single value or a small number of values (e.g.,

the integer location of search). If a sequence of kernels all act on a single set of data that

is loaded onto the GPU initially and moved back from the GPU after all the kernels have

run, all kernels except for the first and the last will fall into this category. The ND category



3.3 A Taxonomy for Memory Transfer Overhead 37

provides the GPU-speedup proponents with their best results, and is indeed where most of

the performance comparisons are generated.

Some applications that would not generally fit into the ND category can show similar

results if they are able to take advantage of streaming memory to asynchronously transfer

data to the GPU while it is simultaneously acting on part of the data. NVIDIA’s CUDA

has had the ability to stream data since compute capability 1.1 [NVIDIA, 2011b], and the

OpenCL API supports asynchronous data transfer as well [Stone et al., 2010]. An application

must specifically be written to synchronize the pipelining of such data, and there are some

overheads to this synchronization.

Applications that fit into the DS category include those that implement streams to overlap

data transfers with computation. Wu et al. [2009] implement a GPU version of the K-Means

clustering algorithm and demonstrates the use of streaming to hide data transfer overhead.

They focus on huge data sets with billions of points that do not fit onto the GPU at once.

Kernels that fit into the either the SDH2D or the SDD2H categories have similar overhead

in that they must transfer data either to or from the GPU, but not both. Examples of the

former would be a search algorithm that moves data onto the GPU, performs the search, and

returns an integer value for the location of the search term, if found. An example of the latter

would be Mersenne Twister, which produces a set of pseudorandom numbers on the GPU

and returns them to the CPU. The di↵erence between the two categories is simply at which

point the memory transfer overhead is applied, at the beginning or at the end. For example,

if a heterogeneous scheduler knows that there will be a memory transfer dependency at the

beginning of a kernel launch, it knows that the CPU memory will be busy immediately, and

it can take that into consideration for scheduling decisions.

Kernels that fit into the DD category have the most overhead to consider. Any kernel

that has the sole purpose to act on data that first needs to be moved to the GPU and then

moved back to the CPU main memory will be in the DD category, and this includes most of

the types of kernels reported on in the literature. However, DD kernels also have the most
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potential to be optimized to either fit into a di↵erent category, either by streaming data, or

by being incorporated into a sequence of kernels that all act on the same data.

As a rule, kernels can move between categories depending on their eventual use, as

demonstrated with kernels such as sort that may work with data in situ as part of a larger

application (or as part of a pipeline of kernels acting on a set of data), or as a standalone

sorting function where the only use for the GPU is to perform the sort. GPU speedup

comparisons should discuss the types of cases that would be relevant for the kernel being

measured, and if there is a proposed general-use case that should be mentioned as well.

3.4 The Benchmarks Categorized

Table 3.3 shows the benchmarks from section 3.2, and the categories they fit in, based upon

the benchmark results. The table also lists the secondary categories that each benchmark is

likely to fall into if it was used in a more general application. For example, the search kernel

we analyzed loads the entire array to be searched into GPU memory and then performs the

search on the entire data set. It could be improved with a streaming memory implementation

that searches the data as it arrives onto the GPU. Virtually all kernels would fit into the

ND category if they were part of a sequential set of kernels and were run in between two

other kernels. Similarly, if those same kernels were either the first or last of a sequential set

of kernels they would either fall into the SDH2D or SDD2H categories.

Half of the applications we investigated fit into the DD category (Convolution, SAXPY,

SGEMM, FFT, and SpMV). There are significant memory transfers both to the GPU before

the kernels run and back to the CPU after the kernels finish. We can also envision most

these applications in the ND secondary category. We placed FFT in the SDH2D secondary

category because there are many signals processing applications that gather data o↵ of a

sensor in the time domain, perform FFT to move the data into the frequency domain, and

then use the data directly, which could also be done on the GPU.
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Application Category Secondary Category

Sort SDH2D ND
Convolution DD ND
SAXPY DD ND
SGEMM DD ND
FFT DD SDH2D
Search SDH2D DS
SpMV DD DS

Histogram SDH2D DS
Mersenne Twister SDD2H DS

Monte Carlo ND –
CUJ2K DS DD

Table 3.3: Default and secondary memory transfer categories for each benchmark. Most
applications fit into the Dual-Dependent category. The secondary category lists a most-likely
scenario for a more generalized inclusion of the benchmark in a real application.

It is clear from the benchmark results that the Sort, Search, and Histogram applications

fit into the SDH2D as they all need data moved to the GPU in order to begin their kernels,

but they do not return much data. StoreGPU [Al-Kiswany et al., 2008] fits into the SDH2D

category, and the data transferred onto the GPU is many magnitudes greater than the

amount that is transferred o↵. We have listed ND as the secondary category for Sort because

there are many cases where a set of values needs to be sorted as part of a larger sequence of

operations. Both Search and Histogram would benefit from streaming, and we have included

DS as their secondary categories.

Mersenne Twister is the only application we benchmarked that fits into the SDD2H as a

primary category. It would benefit from streaming the data back to the CPU, so we placed

it into the DS secondary category. If the data was left on the GPU for further processing

by other kernels, it would fit into the ND category. As seen from Figure 3.10, Monte Carlo

has no significant dependencies for large data sets and fits nicely into the ND category. For

some applications, such as the database applications listed in chapter 7, there is a large

initial memory transfer that implies a SDD2H category, but the data then resides on the

device for future kernel calculations, indicating that a long-term ND categorization would
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be appropriate. There are many situations in which a kernel forms a part of a larger set of

calculations, and the data can reside on the GPU throughout each kernel. In this case, the

kernels in the middle of this pipelined scenario would fall in the ND category. Hoberock et

al. [2009] utilize a sort kernel that sorts data already present on the device and does not

return it after the kernel is complete.

CUJ2K utilizes asynchronous streaming memory to partially hide data transfer between

the CPU and the GPU, and therefore it has a DS classification. It can also run as a

non-streaming application, so its secondary category is DD.

3.5 CPU/GPU Reporting Recommendations

We now propose a methodology for reporting on GPU performance based on our analysis

of CPU/GPU memory-transfer overhead. Performance gains that include this information

will provide a truer picture of not only the real speed increases that can be expected in a

heterogeneous system, but will also yield more information for scheduling decisions and for

more finely targeted optimizations.

Describing the “Typical Usage” of an Application: The value of a good algorithm

comes when it is actually used. Histogram is widely used in image processing, and one

common use is to take a histogram of an image and then find the minimum or maximum

threshold values to use for edge detection. Therefore, a typical use would move image data

onto the GPU, where a histogram kernel precedes a threshold algorithm, which could also

occur on the GPU. Therefore, a typical use for Histogram would include moving data onto

the GPU and leaving the data there for a follow-on algorithm. This is important because it

demonstrates that there is a dependency for memory-transfer onto but not o↵ of the device. If

a typical usage reduces the dependency to move data from the CPU to the GPU or vice-versa,

this is important to report. All typical usage cases should be included; e.g., if it is likely that

a sorting algorithm will act on data that is already present on the GPU and the data will
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remain on the GPU, but the algorithm might also be the last kernel to run before data is

transferred back to the CPU, this should be noted.

Using the Taxonomy: Our proposed taxonomy provides a broad amount of information

about otherwise hidden memory-transfer dependencies of GPU kernels. Mersenne Twister

is an excellent example: labeling it as SDD2H indicates that there is no dependence on

data transferred to the GPU, but that the data will come back to the CPU for further

use. Using the taxonomy is even more critical when there are di↵erent usage cases, so that

someone wishing to use an algorithm can understand the performance based on how it will

be used. If Mersenne Twister is going to return pseudorandom numbers to the CPU that

will immediately be used, it would be nice to know that the algorithm is, in general, SDD2H

but can also be coded as DS to indicate that it can be streamed back to the CPU as well.

Indicating the Amount of Data that will be Moved: We purposefully developed the

memory-transfer overhead taxonomy to be broad in order to limit the number of categories.

However, there might be cases where the amount of data transferred does not allow an

algorithm to fit nicely into a specific category. A Histogram that includes many more

than 256 bins would be an example, and it might be the case that a histogram on a small

amount of data with many bins might be better described as DD instead of SDH2D. Our

recommendation is to simply indicate that this is a borderline case, or to ensure that the

typical use description is robust.

3.6 Heterogeneous Scheduling Ramifications

One key piece of information necessary when trying to make a decision about whether it

is worthwhile to launch a GPU kernel or to perform the same function on the CPU is the

projected overall time for the kernel, including all data transfers. As we have shown in

this chapter, profiling the kernel on the GPU without including the data transfer times to

and from the GPU overestimates the GPU speedup, and would lead to poor scheduling
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decisions if used. The taxonomy we propose provides a way for a scheduler to obtain the

extra information about memory transfer overhead but also allows flexibility for the way a

kernel will be utilized in an overall application.

We envision that a CPU/GPU scheduler will need to apply a taxonomic category to any

kernel that it might schedule on a GPU. If the kernel is categorized as SDH2D and the data

is only on the CPU and not on the GPU, the scheduler can calculate the added overhead time

for the kernel based on the amount of data that needs to be transferred. If, on the other hand,

the data is already on the GPU, the scheduler does not need to apply this overhead, and will

make its decision of whether or not to launch the kernel based on this extra information.

3.7 Observations

In this chapter, we have shown that traditional reporting of CPU/GPU performance compar-

isons falls short because it does not adequately describe the memory-transfer overhead that

applications incur in typical use cases. We benchmarked eleven diverse applications for a

number of di↵erent data sizes on a range of heterogeneous platforms, and showed that the

memory-transfer overhead adds a significant amount of time to virtually all applications. For

some applications with large data sets, the memory-transfer overhead combined with the

kernel time took longer than 50x the GPU processing time itself. However, the amount of

overhead can vary drastically depending on how a GPU kernel will be used in an application,

or by a scheduler. We therefore proposed a taxonomy for labeling applications to indicate

these dependencies, and we made recommendations on how to utilize this taxonomy for future

performance reporting.
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Fast Hybrid Runtime Prediction

Heterogeneous kernels may have runtimes that di↵er by orders of magnitude when run on

di↵erent devices, but scheduling a kernel for the fastest device does not necessarily produce

an overall schedule that maximizes either computational throughput or device utilization.

For example, if all kernels in a workload are faster on one device, running them all on that

device underutilizes the other devices, which could potentially share some of the work to

increase overall throughput. Consequently, there is a need to develop e↵ective schedulers

that make scheduling decisions based on the runtime of individual kernels on the devices in

a system. This chapter focuses on how to make runtime predictions that can drive such a

scheduler.

A number of recent papers [Jiménez et al., 2009; Augonnet et al., 2009; Diamos and

Yalamanchili, 2008; Gregg et al., 2010; Luk et al., 2009; Becchi et al., 2010] have investigated

dynamic heterogeneous scheduling strategies that use kernel runtime predictions in their

scheduling decision. Much of the research has focused on dynamic scheduling of heterogeneous

kernels by predicting how long a kernel will run on a device and basing the scheduling data

on these estimations, and the researchers have described a number of methods for making the

predictions. One technique [Meng and Skadron, 2009; Hong and Kim, 2010] uses hardware

performance models to predict runtimes based on how applications should behave on various

43
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platforms. However, these models are time consuming and hard to automate for new

devices. Another method for making runtime predictions utilizes historical runtime data

and extrapolates runtimes for queued kernels. Algorithms for making these historical data

predictions have been shown to deliver precise predictions [Page, 2009; Iverson et al., 1999],

but gain this accuracy with a tradeo↵ of time and the necessity for a large set of training data.

In a dynamic scheduling situation the amount of time to make the scheduling decision can

itself provide a restrictive overhead that reduces the benefits dynamic over static scheduling.

In order for a prediction model to provide su�ciently precise runtime estimates, the

underlying data must show some relationship that can be exploited to make the predictions.

Figure 4.1 shows nine of the ten OpenCL benchmark results run on an NVIDIA GTX 480

GPU. The graphs show kernel runtimes versus a randomly selected input parameter or a

linear combination of input parameters. Five out of the ten benchmarks show a definite

linear relationship. One benchmark (Reduction) shows a linear relationship but there are a

few anomalous points that skew the linear regression slightly. Another benchmark (Mersenne

Twister) shows a stepwise relationship, yet another (Needleman-Wunsch) shows a polynomial

(x2, indicated by a second regression line) relationship. The final two benchmarks demonstrate

relationships that show some linearity but are not completely regular. Benchmarks that show

linear behavior are common for GPU kernels because many serial algorithms that have this

behavior can be parallelized easily and show drastic speedup when run using the GPU’s

SIMD engine. Benchmarks also frequently demonstrate a stepwise relationship, because

the GPU’s SIMD architecture requires a number of lock-step calculations, and if a set of

data does not fit into the number of SIMD cores precisely, the extra processing power goes

unused, leading to the same processing time for a range of data input sizes. As with any

data, sometimes there is a relationship that is regular but is not reflected in the data, as

the reduction example shows from Figure 4.1. As the last two graphs in Figure 4.1 show,

heterogeneous applications can also demonstrate a range of other relationships between input
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data and runtime (including no relationship), but our experience shows that the linear is the

most common.
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Figure 4.1: Benchmarks showing linear regression lines with R

2 values. Values close to 1
indicate excellent linear correlation.

If a kernel demonstrates a linear relationship between input characterizations and the

kernel runtime, prediction for other inputs can be modeled with a simple and fast linear

regression, leading to low overhead for input into a dynamic scheduling decision. Individual

data about previous kernel runtimes do not need to be retained, and only aggregate values of

the data (e.g.,
P

xi,
P

yi, etc.) need to be kept in order to continue to improve the regression

as new data becomes available. For kernels that are not linear, other models are available,

and a model that works well across a number of relationships, given a large enough set of

training data, is the k-Nearest Neighbors algorithm. k-NN does not rely on an analytical

model for the relationship; instead, it finds an average of close points in the set of known

values and uses that value as its prediction. k-NN is, however, computationally slower than
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linear regression, and using a k-NN model does necessitate retaining individual runtimes to

compute nearest neighbor distances.

Utilizing historical data in the dynamic scheduling decision is sound, but we demonstrate

that a hybrid model for prediction can provide better overall predictions than relying on a

single model to fit di↵erent types of kernels. We also show that the precision of the prediction,

while important, can be relaxed if a significant amount of time is saved by using a fast

prediction algorithm. In other words, dynamic scheduling decisions that are based on runtime

predictions are not adversely a↵ected by reasonably less precise estimates, and for the most

part they will determine the same schedule in most cases. We describe such a scenario in

Section 4.4.

Given our assumption that a faster scheduling decision is a better one, and given that

there are many GPU compute kernels that follow a linear relationship between input data

and runtime, we have chosen to implement a runtime prediction model that initially assumes

a linear input-to-runtime relationship and computes a fast linear regression estimation of

runtimes based on random input training data. For the kernels that do not follow a linear

relationship, our model falls back onto a 1-dimensional k-Nearest Neighbors (k-NN) model,

which can produce a more accurate prediction but takes longer to compute and needs a

larger set of training data for its accuracy. Our model can easily be expanded to include a

multidimensional k-NN model if desired, but our results show that the 1-D model produces

su�ciently precise runtime predictions. Our approach produces average runtime predictions

that are 7% better than linear regression models alone and 5% better than k-NN models

alone across a set of ten diverse benchmarks.

4.1 Summary of Novelty and Related Work

Runtime prediction itself is a relatively well-researched idea, with a number of researchers in-

vestigating k-NN prediction models (e.g., [Page, 2009; Iverson et al., 1999]). Other researchers
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have proposed using runtime prediction models for heterogeneous scheduling [Jiménez

et al., 2009; Augonnet et al., 2009; Diamos and Yalamanchili, 2008; Becchi et al., 2010;

Topcuoglu et al., 1999]. However, our work is the first to combine two runtime prediction

models (linear and k-NN) into a single model that switches between the two original models

based on a threshold. We demonstrate that the combined model outperforms both individual

models, and also provides more precise prediction than hardware performance models, such

as those described by Meng and Skadron [2009] and Hong et al. [2010]. Finally, we also

show that our hybrid runtime prediction model is superior to single models for heterogeneous

scheduling. Further related work for this chapter is in chapter 7.

4.2 Runtime Prediction Using Historical Data

Each time a heterogeneous kernel is run, valuable data can be collected that can be used to

inform a prediction for subsequent kernel invocations. This data includes input data size,

data transfer time to and from device memory, and system state such as other tasks currently

running on a device. As long as the kernel has been seen at least once on a device, additional

kernel runtimes can be predicted, and as more data is collected, the prediction improves. A

kernel scheduler can collect the data by intercepting function calls to kernel libraries (e.g., the

CUDA or OpenCL libraries) and by timing the data transfer and kernel times using simple

timers or by using built-in timing functions provided by the libraries (e.g., OpenCL provides

event timers for all data transfers and kernel launches). At the end of each kernel run, the

running linear regression can be updated, and the next time a kernel is seen a prediction can

be made with a fast calculation using the new input data size.

Figure 4.1 shows the benchmarks we tested for this research on an NVIDIA GTX 480,

annotated with linear regression lines through a set of 128 random inputs. The figure also

shows the associated R

2 correlation coe�cient values, which shows the goodness of fit for the

results; those results that have R

2 values close to 1 are considered good fits. Five of the ten
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benchmarks have R

2 values that are above 0.99, indicating that the linear relationship is a

very good fit for the data.

For kernels that do not demonstrate a linear relationship between the input data size and

the runtime, the k-NN algorithm can be used to make a runtime prediction. With a large

enough historical data set, k-NN can provide an extremely precise prediction without making

any assumptions about the underlying relationship between the data input and the runtime.

However, k-NN takes more time than linear regression as it has to make a calculation for

each data point and the input data. k-NN can also perform poorly for a small data set for

which the new input data is not particularly near any of the historical data points, so it is

not as useful if there are only a few previous kernel times recorded.

The database that holds the information about previous kernel data inputs and runtimes

keeps the input size and kernel times for each kernel, and also holds some aggregate values in

order to speed up the linear regression calculation for new kernels. The database also holds

a (calculated) value for the correlation coe�cient, in order to determine how well the data

actually fits the linear model.

Each time a kernel finishes the values for that kernel are updated to reflect the finished

kernel’s runtime and data input size, and all aggregate values are updated as well. By data

input size refers to the parameter passed to the kernel via an argument; in most cases this is

a number that reflects a quantity of data, but in other cases it can reflect an iteration count

(such as the number of steps in the Monte Carlo simulation).

The following two subsections describe the linear regression and k-NN algorithms in detail.

4.2.1 The Linear Regression Model

The linear regression model predicts the runtime of a kernel based on the vectors of previous

input data and runtimes, (xi, yi). The slope, intercept, and correlation coe�cient squared,

(m, b, r

2), are calculated as shown in equations (4.1)–(4.3).
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These values can be computed online (as new values are obtained) without having to

recompute the individual summations, as long as the following values are kept in the runtime

database:
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2

As more runtime data is collected, the correlation coe�cient will either improve or degrade,

indicating whether or not the data fits the linear model. In practice, values that are above

0.99 indicate an excellent fit. For small data sets (less than ten measurements), the linear

model will generally provide predictions that are as good or better than the k-NN solution

described below.

4.2.2 The k-Nearest Neighbors Model

If the correlation coe�cient falls below 0.99 after ten or more values are in the database, the

linear model will generally stop producing acceptable runtime predictions. At this point, the

k-NN model should be applied to the history database for subsequent kernels. The k-NN

model does necessitate using each value of the input size vector, and it therefore takes more

time to produce a prediction.
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The first step in the k-NN algorithm is to compute the distance from each of n input

values for previous runtimes for a particular kernel stored in the history database to the input

value for the kernel under consideration. With a 1-dimensional vector of size n and a new

input of n+ 1, the distance di is the absolute value of the di↵erence between the two values:

di = |xi � xn+1|

After the distance vector < d0, d1, ..., dn > is created, the runtimes of the nearest k

distances are averaged to establish the predicted runtime for the kernel. Determining the

closest k values involves a partial sort of the distance vector, although it is possible to keep

track of the closest points as the distance vector is calculated. Choosing the value for k is

important, and k should grow as n grows. Iverson et al. [1999] found that k = n

4/5 produced

good results for the multidimensional k-NN algorithm, but our results show that by keeping

k as low as k = n

1/5 produced the best results for the benchmarks we tested.

A secondary consideration is whether or not to weigh neighbors according to how close

they are to the point of interest. Giving values a weight function of W (i) = 1/di is typical,

although this tends to approximate linear regression, and we avoided this as we already know

that the data is not linear. Another option is to discard any neighbors that fall outside of a

given radius, even those values would be among the k closest values. This has the benefit of

localizing the results, but in some cases all distances may fall outside the radius, leaving no

basis for a prediction. Because we chose a smaller value of k to begin with, we do not limit

the radius of results for our runtime prediction model. We will evaluate the relative speed of

the k-NN algorithm compared to the linear algorithm in Section 4.3.

The following summarizes the k-NN algorithm:

1. Create a distance vector, d =< d0, d1..., dn > of input size values to the (n+ 1)th input

size value for the kernel runtime we want to predict.

2. Run a partial sort to find the k nearest distances, with k = n

1/5.
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3. Find the average runtime of the k-nearest neighbors:

tpredicted =

P
k
(t(dk))

k

4.3 Evaluation

We evaluated the linear regression and k-NN prediction models across a number of heteroge-

neous benchmarks and inputs in order to determine the prediction precision and overhead

for each model. We found that the linear regression model was always faster than the k-NN

model, and also that it provided better precision for smaller data sets. k-NN performs better

for large data sets that do not show a linear relationship between the data input size and the

kernel runtime.

4.3.1 Benchmarks and Workloads

For our experiments, we chose ten OpenCL benchmarks that included a wide range of compute

kernels. The workloads were chosen from among the AMD and NVIDIA OpenCL SDK

examples and from applications from the Rodinia [Che et al., 2009] suite that were converted

to OpenCL applications. We chose typical applications that run on GPUs that show a

linear relationship between input data parameters and runtime (e.g., Matrix Multiplication,

Histogram, DCT), and we also chose applications that illustrate non-linear behavior, in

order to demonstrate how the k-NN model is able to provide su�ciently precise predictions

without knowledge of any relationship between input and runtime (e.g., Needleman-Wunsch,

Mersenne Twister, and Gaussian Elimination).

We used the OpenCL event functions to directly measure kernel runtimes. We first ran

each benchmark with a set of 10 random inputs but did not include the results in the historical

database. We then trained the database with powers-of-two sets of inputs and after each set

we tested each prediction model on the original 10 inputs. In other words, after our history
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database contained (2,4,8,16,32,128) data points, we ran the prediction models on each of

the 10 original inputs.

4.3.2 Evaluation Platform

We ran the experiments on two GPUs and one CPU:

AMD Radeon HD 5870 GPU has 1600 Stream Processing Units (SIMD cores) running

at 850MHz, and 2GB of GDDR5 memory that runs at 1.2GHz.

NVIDIA GeForce GTX 480 GPU has 480 CUDA SIMD Cores running at 1.4GHz,

and 4GB of GDDR5 memory that runs at 1.8GHz.

AMD Phenom II 1090T CPU has 6 CPU cores running at 3.7GHz, and 4GB of

DDR3 memory, 6MB of shared L3 cache, 512KB per core of L2 cache, 64KB L1 cache for

instructions, and 64KB L1 cache for data.

All experiments were run using the OpenCL 1.1 runtime (either AMD or NVIDIA) on

the Linux Ubuntu 10.04 operating system.

4.3.3 Results

We ran each benchmark on the three di↵erent devices and in general behavior for each

benchmark was similar across all devices. As examples of the similar behavior, Figure 4.2

shows the results for the Matrix Multiplication benchmark, the Mersenne Twister benchmark,

and the Gaussian Elimination benchmark. All three benchmarks show similar behavior, but

Mersenne Twister does not show as definitive a stepwise function on the AMD 5870 GPU

as it does on the other two devices. The k-NN algorithm in our runtime prediction model

accounts for this discrepancy because it does not assume an underlying pattern to the data.

The R

2 linear correlation coe�cient for the linear Matrix Multiply benchmarks are above

0.99 for each device, indicating a linear fit for the benchmark on all devices. The Gaussian

Elimination benchmark shows that each device behaves similarly, but the data is not linear.
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(c) Gaussian Elimination

Figure 4.2: Comparison between devices. Most benchmarks show similar input-to-kernel
runtime behavior across multiple devices. However, as can be seen for Mersenne Twister, the
behavior is not always identical.

We attempted to fit a number curves to the Gaussian Elimination data (e.g., exponential,

power), but none produced an acceptable fit.

Figures 4.3-4.6 show the results from our prediction model for benchmarks run on the

NVIDIA GTX 480. The x-axis of each figure shows the training data count, which indicates

how many previous runtime values are in the database. All training inputs were randomly

selected, as were the inputs to the predicted values. The y-axis of each figure shows the

average percent error between the predicted runtimes for ten inputs and the actual runtimes

that were collected.
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Figure 4.3 shows the results for the benchmarks that demonstrated a linear relationship

between input data and kernel runtime. As can be seen from the graphs, the linear regression

model immediately starts predicting runtimes precisely, while the k-NN model performs poorly

with a small history database. As the history database grows, the k-NN model gradually

approaches the precision of the linear regression model.

Figure 4.4 shows the results for the Reduction benchmark, which had some outlying data

that lowers the R

2 value. The linear regression is hindered by the outlying data, but the

k-NN model is not a↵ected and continually improves as more data is collected.

Figure 4.5 shows the results for benchmarks that demonstrate a stepwise relationship

between input data and kernel runtime.

Figure 4.6 shows the results from the benchmarks that did not demonstrate a relationship

that is easily quantifiable, although there is enough of a trend for k-NN to perform better

as the history database grows. In the case of Gaussian Elimination, Linear Regression does

not improve as more data is collected, while k-NN improves significantly. For Quasi-Random

Sequence, both methods improve marginally, but the data is irregular enough that neither

model can predict below 20% error on average.

Figure 4.7 shows the increase in prediction value by using the hybrid model versus either

the linear regression model or the k-NN model alone. Because the hybrid model combines

the best predictions of both models for many of the benchmarks, the average prediction is

better than each of the models individually.

4.4 Prediction Precision in Dynamic Schedulers

While it would be optimal to produce exact kernel runtime predictions, it is infeasible to

do so, and any runtime estimation model is going to produce imprecision. As we showed

in Section 4.3, runtime predictions can vary from within 5% of actual runtimes to more

than 100% error. Our goal is generally to produce the best runtime prediction, but because
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(a) DCT (b) Matrix Transpose

(c) Matrix Multiplication (d) Black Scholes

Figure 4.3: Prediction percent error for Linear Regression and k-NN when underlying data is
linear. Both k-NN and linear regression get progressively more precise as the history database
gets larger, however the linear regression model performs better when the database is small.
A 1-sided, paired T-Test showed a significance level (p-value) of less than 0.05 for each set
of linear-regression and k-NN averages except for the largest data set, in which case the
predictions were indistinguishable. The Histogram benchmark results are not shown but
demonstrate similar performance.
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Figure 4.4: Reduction Prediction percent error for Linear Regression and k-NN for the
Reduction benchmark. Linear regression predictions are hindered by outlying data, even
though the relationship is linear. However, k-NN continually improves as the database grows,
and ends up with better predictions than the linear regression. A 1-sided, paired T-Test
showed a significance level (p-value) of less than 0.05 for each set of linear-regression and
k-NN averages.

the linear regression algorithm can be up to 10x faster than the k-NN algorithm, it may

be worthwhile to trade precision for a faster prediction in order to make the scheduling

decision quicker. One consideration with heterogeneous kernel scheduling (across a number

of di↵erent devices) is that runtime predictions between two devices will, in many cases, be

significantly di↵erent, and therefore imprecision in the predictions will not a↵ect the scheduling

decision if that decision is based on running the kernel on the faster device. However, a

number of papers [Jiménez et al., 2009; Maheswaran et al., 1999; Topcuoglu et al., 1999;

Gregg et al., 2011] have discussed basing scheduling on which device will be free first or which

particular kernel will finish first on a device. Both of these scheduling ideas may necessitate

precise predictions in order to determine an optimal schedule.

We investigated how a scheduler based on runtime predictions would behave through a

range of prediction errors. We fed the data we collected on runtimes into a simulated scheduler

that uses a greedy algorithm to attempt full utilization for a system with a single CPU
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Figure 4.5: Mersenne Twister Prediction percent error for Linear Regression and k-NN
for the Mersenne Twister benchmark. Linear regression stops improving as more data is
collected. k-NN continually improves as the database grows, surpassing the linear model
and becoming very precise when the history database is large. A 1-sided, paired T-Test
showed a significance level (p-value) of less than 0.05 for each set of linear-regression and
k-NN averages.

and a GPU. The scheduler takes a workload (in our case, ten sets of our ten benchmarks),

places the kernels into a main queue and then schedules kernels onto each device based on

a prediction of which device will allow the next kernel in the queue to finish first. In most

cases, many kernels get scheduled on the GPU, because most of the benchmarks are between

5x and 10x faster on the GPU. However, once enough kernels get scheduled for the GPU,

the scheduler will predict that it will take longer to finish those kernels than to run the next

kernel in the queue on the CPU, even though it will run slower on the CPU. In this way, the

scheduler keeps both the GPU and the CPU at maximum utilization, preferring the GPU in

the case of a predicted tie. We ran the scheduler multiple times against di↵erent inputs with

forced prediction errors of between -100% and 100% of individual benchmark runtimes. In

other words, for the first experiment, we forced all predictions to be 0 seconds, and therefore

the scheduler simply placed all kernels onto the GPU. In the second experiment, we forced
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(a) Gaussian Elimination (b) Quasi-Random Sequence

Figure 4.6: Prediction percent error for Linear Regression and k-NN when underlying data
shows a trend that is not easily quantifiable. Linear regression starts out more precise for
smaller data sets, but either stops improving or starts to get worse as more data is collected.
k-NN continually improves as the database grows, surpassing the linear model and becoming
very precise when the history database is large. A 1-sided, paired T-Test showed a significance
level (p-value) of less than 0.05 for each set of linear-regression and k-NN averages.

all predictions to be -90% of the measured time, and we continued this pattern through 0%

(perfect runtime prediction) and up to an error percent of 100%.

Figure 4.8 shows the results of one run of the scheduling experiment, but other runs

with di↵erent data produced similar results. Between -20% and 50%, the scheduler produces

virtually the same schedule (and in most cases the exact same schedule, even though the

runtime predictions are incorrect. The reason this is the case is because there is a large

di↵erence between the CPU and GPU runtimes for each benchmark. When determining

when a kernel will finish on a device, the relative di↵erence in time between one device and

another is generally large enough that prediction di↵erences can be be tolerated, even if they

are o↵ by a significant percentage.

One benefit of the hybrid prediction model we are proposing is that there is flexibility in

when the decision is made to switch between the two algorithms. We propose that a 0.99R2

correlation coe�cient be used as the inflection point between the two models, but if some

precision can be sacrificed in order to continue to use the faster algorithm, the value could

be lowered, and the R

2 knob can therefore become a powerful one when tuning the model
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kNN 2 4 8 16 32 64 128
kNN 2 4 8 16 32 64 128 All+Sum Sum+16+ Sum+64+ Min+of+both+LR+and+kNN
Bitonic+Sort+NVIDIA+480GTX194.941062 45.4234234 45.3933934 10.618293 0.09018054 0.09018054 5.64859438 43.172161 4.11181211 2.86938746 8 16 32 64 128
Black+Scholes+NVIDIA+480GTX306.62428 97.7858961 94.8168595 22.2907729 8.21590909 1.30765221 1.21590909 76.0367541 8.25756082 1.26178065 23.2757013 10.618293 0.09018054 0.09018054 5.64859438
DCT+NVIDIA+480GTX 80.8014799 53.9890444 25.4948099 9.60231098 7.58930837 5.93806376 2.10076003 26.5022539 6.30761079 4.0194119 40.6428906 20.043075 8.21590909 1.30765221 1.21590909
Gaussian+Elimination+NVIDIA+GTX+4805707.60564 3103.37819 28.9917564 15.3808512 11.5081953 5.87904934 0.30759029 1267.57875 8.26892153 3.09331982 0.65963439 0.75366096 0.855925 0.87535602 0.77543564
Histogram+NVIDIA+480GTX 66.5717811 27.5175126 27.5175126 17.4271373 7.69525156 9.3660751 11.5307242 23.9465707 11.504797 10.4483996 28.9917564 15.3808512 11.5081953 5.87904934 0.30759029
Matrix+Multiplication+NVIDIA+480GTX42.5838634 11.5333829 4.4778273 3.25787265 1.68860858 1.28074108 1.08346217 9.4151083 1.82767112 1.18210163 13.3918799 13.2325188 7.69525156 9.3660751 11.5307242
Matrix+Transpose++NVIDIA+480GTX19.0630596 15.6289165 8.5890618 3.71992641 2.39922635 1.89209828 1.57554793 7.55254812 2.39669974 1.73382311 0.73241958 0.72276961 0.72578343 0.71089863 0.7072152
Mersenne+Twister+NVIDIA+480GTX38.1154841 25.3519892 19.3996082 6.36174097 3.0403124 2.78420523 0.17857143 13.6045588 3.09120751 1.48138833 1.26317671 1.54543355 1.1986808 1.2718264 1.38592439
Monte+Carlo+NVIDIA+480GTX73.6660348 34.6457712 21.7286893 18.4841973 14.0652688 5.18729685 4.78063421 24.6511275 10.6293493 4.98396553 13.7215597 6.36174097 3.0403124 2.78420523 0.17857143
Prefix+Sum+NVIDIA+480GTX 96.10026 29.0163339 5.20410065 0.33212341 0.60239368 0.46725855 0.73752882 18.922857 0.53482611 0.60239368 1.32601969 1.20198137 1.30621726 1.37784994 0.61647749
QuasiURandom+Sequence+NVIDIA+480GTX47.023913 32.9281222 27.3616775 33.6859405 32.1840632 25.5362557 21.2254614 31.4207762 28.1579302 23.3808585 5.20410065 0.33212341 0.60239368 0.46725855 0.73752882
Radix+Sort+NVIDIA+480GTX 166.005181 151.042678 49.0834772 49.0668313 0.8644819 0.68885118 0.43168695 59.5975982 12.7629628 0.56026906 27.2886284 27.7848799 25.5375696 25.5023484 21.2254614

569.92517 302.353438 29.8382311 15.8523332 7.49526664 5.03481065 4.2347059 133.533422 8.15427909 4.63475828 14.2270698 8.9070298 5.52512897 4.51206367 4.02994839

Training+Data+CountkUNN Training+Data+CountHybrid+(LR+++kNN) Diff+from+kNNDiff+from+LR
2 569.92517 8 18.6388847 11.1993464 0
4 302.353438 16 8.9070298 6.94530336 6.089523
8 29.8382311 32 5.52512897 1.97013767 8.4487752
16 15.8523332 64 4.51206367 0.52274698 8.92816133
32 7.49526664 128 4.02994839 0.20475752 9.1726871
64 5.03481065
128 4.2347059 4.16845839 6.52782933

NVIDIA+GTX+480 Sum+64+
Linear+Regression 13.314706
Bitonic+Sort+NVIDIA+480GTX194.941062 24.3362886 23.2757013 18.8974137 19.4798997 16.6840721 16.7097854 All+Sum Sum+16+ 0.82539583
Black+Scholes+NVIDIA+480GTX306.62428 24.5106457 40.6428906 20.043075 16.5847922 13.2487877 13.3806244 62.1478708 15.8143198 #REF!
DCT+NVIDIA+480GTX 0.9024719 0.6104376 0.65963439 0.75366096 0.855925 0.87535602 0.77543564 0.77613164 0.8150944 12.0855847
Gaussian+Elimination+NVIDIA+GTX+48051.619864 55.133602 48.5788304 53.2977316 54.3393059 47.4233244 48.4282805
Histogram+NVIDIA+480GTX 16.6007536 15.7239619 13.3918799 13.2325188 11.342253 11.9505758 12.2205937 13.4946481 12.1864853 1.32887539
Matrix+Multiplication+NVIDIA+480GTX4.52750797 0.75838525 0.73241958 0.72276961 0.72578343 0.71089863 0.7072152 1.26928281 0.71666672 6.891663
Matrix+Transpose++NVIDIA+480GTX1.51641172 1.65164412 1.26317671 1.54543355 1.1986808 1.2718264 1.38592439 1.40472824 1.35046628 0.99716371
Mersenne+Twister+NVIDIA+480GTX15.4976788 14.6299329 13.7215597 8.64687958 7.72667264 7.14232445 6.64100154 10.5722928 7.53921955 13.6421247
Monte+Carlo+NVIDIA+480GTX2.19998406 1.3517031 1.32601969 1.20198137 1.30621726 1.37784994 0.61647749 1.34003327 1.12563151 23.5994209
Prefix+Sum+NVIDIA+480GTX 96.10026 42.6881823 14.8372929 14.3057001 13.5702492 13.7194003 13.5648491 29.826562 13.7900497 21.8404406
QuasiURandom+Sequence+NVIDIA+480GTX33.8667274 26.8910161 27.2886284 27.7848799 25.5375696 25.5023484 21.6964933 26.9382376 25.1303228
Radix+Sort+NVIDIA+480GTX 163.73135 39.3614237 37.9485832 19.5265894 15.0195013 21.3759359 22.3049453 45.6097613 19.556743 #REF!

74.0106959 20.6372686 18.6388847 14.9965528 13.9739042 13.440225 13.2026355 19.3379548 9.8024999

Training+Data+CountLinear+Regression
2 74.0106959
4 20.6372686
8 18.6388847
16 14.9965528
32 13.9739042
64 13.440225
128 13.2026355
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Figure 4.7: The hybrid model versus the linear regression model and the k-NN model, across
all benchmarks tested. The hybrid model allows for better initial prediction with the linear
model, and when the R

2 correlation coe�cient for the linear regression drops below 0.99, it
switches to the more precise k-NN model. The hybrid model produces better average runtime
predictions than either of the other two models individually.

for a particular dynamic scheduler. Furthermore, there are other algorithms that could be

substituted for either the linear model or the k-NN model, depending on whether more or less

precision is needed; for example, a Lagrangian interpolating polynomial is a more complicated

algorithm but could produce even better predictions for hard-to-correlate data. Another

example would be to expand the k-NN model to a multidimensional model that can include

more than one input parameter in its prediction. While we believe that the two-tiered model

we have described is su�cient for most heterogeneous kernel prediction cases, there could also

be a case made for expanding the model to include a third tier with even better precision.

Figure 4.9 shows the scheduling benefits from using the hybrid model we have described.

We ran all three models with the scheduler mentioned above, and as can be seen in the figure,

the hybrid model is consistently faster than either of the other models individually. The

same trend can be seen as in Figure 4.7, where the linear regression model starts out well

but gradually does worse compared to the k-NN model as more training data is gathered and

as more benchmarks turn out to be non-linear. One of the reasons that the hybrid model

does better for the overall scheduling is that it leverages the fast predictions of the linear
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Figure 4.8: An example scheduler with forced prediction error. The far left bar shows the
schedule when all kernel predictions are 0 seconds, and all kernels are run on the GPU. The
middle bar at 0% shows the schedule with perfect prediction ability, and the bars to the right
show over-prediction, up to 100%. The scheduler produces virtually the same schedule from
-20% to 50% prediction error.

regression model for the linear benchmarks. The average time to make a scheduling decision

for the linear regression model is less than one microsecond, while the k-NN algorithm takes

between 10 and 15 microseconds.

4.5 Other Factors A↵ecting Kernel Runtimes

A number of researchers have demonstrated that kernel computation time itself is a lower

bound on the overall kernel runtime, and we have shown that additional factors such as data

transfer time (both from a host to a device and vice versa), kernel compilation time, and

device contention can increase the amount of time a device takes to complete a kernel [Gregg

and Hazelwood, 2011; Becchi et al., 2010]. Runtime predictions must take these factors into

account when necessary, and in many cases they too can be quickly calculated with a minimal

amount of historical data. For example, the memory transfer time between CPU memory

and GPU memory (across the PCI Express bus) is linearly related to the amount of data



4.6 Observations 61

��

��

��

��

��

��

��

��

��

��

���

�� �� �� ��� ��� ��� ����

��
�	

��

	
��
��

�

	�

��
��
��

	�
��
��

�������
������������

��
	����	
�	����
�

�����

�������

Figure 4.9: The three models providing predictions for a heterogeneous scheduler. Each
model produces runtime predictions for a greedy scheduler that schedules kernels depending
on the device that is predicted to finish each kernel first. The hybrid model provides better
overall predictions for the scheduling decision, and the time saved with the linear regression
model is significant.

transferred, and kernel compilation time is roughly constant on a given processor. A scheduler

that utilizes our runtime prediction model could easily apply similar prediction models to

data transfer times, kernel compilation times (if necessary), and contention information, all

of which can a↵ect kernel runtimes.

4.6 Observations

In this chapter, we described a hybrid heterogeneous kernel runtime prediction model that uses

a historical database of previously run kernels. The model combines a fast linear regression

algorithm with a k-Nearest Neighbors algorithm and switches between the two models if

the linear regression correlation coe�cient indicates that the underlying data is not linear.

The linear regression algorithm works well when the database is small and particularly well

for linear relationships, and the k-NN algorithm works well for hard to correlate data but
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is the more time consuming of the two. One clear advantage of the hybrid model is that it

dynamically modifies its behavior as the historical runtime data is improved.

We evaluated the model on a number of benchmarks, and demonstrated that the hybrid

model produces better runtime predictions than either the linear regression model or the

k-NN model alone, and we showed that our model produces runtime predictions that are, on

average within 15% of measured runtimes with eight historical data points, and can drop to

under 5% error when the database is larger.



Chapter 5

Dynamic Scheduling Using Runtime

and Data Transfer Prediction

In chapter 3, we described the importance of knowing the data transfer requirements for

individual kernels when run on a CPU/GPU heterogeneous computer. In cases where data

must be transferred between device memories, the transfer time can significantly change

computational throughput and should be included in the runtime for the application. In

chapter 4, we described a fast and precise model for predicting kernel runtimes. In this chapter

we use the results from chapters 3 and 4 to inform a dynamic heterogeneous scheduling

algorithm that schedules work between a CPU and a GPU in order to provide a high

throughput for multiple applications.

As we discussed in chapter 2, in OpenCL, the task of scheduling heterogeneous kernels

is left to the application itself. In general, an application chooses a device based solely on

whether that device would, if available, run the kernel the fastest. Most kernels perform better

on a GPU than on a CPU as they are optimized for a GPU’s highly parallel architecture

and GPUs typically provide higher peak throughput. Therefore, applications preferentially

schedule kernels on GPUs, leading to device contention and limiting overall throughput.

63
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Because the scheduling methodology we describe analyzes a queue of kernels that are

ready to launch, some kernels later in the queue may finish prior to those that were placed

into the queue earlier. Kernels can run concurrently on di↵erent devices, and therefore finish

times may be out of queue order. However, the algorithm we describe does not unfairly

penalize individual kernels, and we show that kernels continue to progress in the queue (i.e.,

they are not starved), and they will almost always finish no later than they would have

finished using other scheduling methods that launch kernels in the order they were placed

into the queue. We investigate the fairness of the algorithm in Section 5.4.1.

In this chapter we present an algorithm that analyzes a queue of kernels and launches

them onto the devices of a heterogeneous system such that overall computational throughput

is increased over a statically scheduled solution. We demonstrate that even if all kernels

natively run faster on one device, there are situations where running a kernel on a slower

device allows that kernel to complete before it would have if it had waited to run on the faster

device. Furthermore, this solution preserves fairness for an individual kernel’s placement in

the queue.

We implement the scheduler on a set of twenty OpenCL benchmark applications and

demonstrate the improvement of the algorithm over other scheduling decisions for a system

that has a CPU and a GPU. We also show that the scheduler produces an improved schedule

and a high utilization for both devices even when all kernels individually run faster on the

GPU. Furthermore, we show the scheduling improvement when the scheduler takes into

account data transfer time predictions verses when it ignores them.

Finally, we compare the dynamic scheduler to five other scheduling algorithms, including

an oracle scheduler. We demonstrate that the dynamic scheduler that uses history data

predictions and includes predicted data transfer times produces schedules that are, on average,

12% slower than an oracle scheduler.
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5.1 Summary of Novelty and Related Work

Our work for this chapter focuses on heterogeneous scheduling for CPU-GPU systems. Het-

erogeneous scheduling in general has been heavily researched, but due to the recent advent of

GPGPU computing, more researchers are targeting CPU-GPU scheduling. Although there are

other heterogeneous schedulers in the literature (e.g., Jimenez et al. [2009], StarPU [Augonnet

et al., 2009] and Becchi et al. [2010]), ours is the first to integrate data locality and fast

runtime prediction into a task-based scheduler that targets kernels that run on either the

CPU or the GPU. Furthermore, our algorithm specifically considers scheduling fairness, which

is not discussed in work by others. We also compare our scheduler against a number of

other algorithms, specifically HEFT [Topcuoglu et al., 1999], which is a finish-first algorithm

without data transfer, and Jiménez et al. [2009], which uses a first-free algorithm to run its

schedule. Our algorithm out-performs this prior work, as we demonstrate in section 5.5.3.

Further related work for this chapter is in chapter 7.

5.2 Scheduling Algorithm Considerations

Scheduling computational work for heterogeneous computer systems is substantially di↵erent

than scheduling for systems with homogeneous processing cores, and in this chapter we focus

on two of these di↵erences. The first di↵erence is that a kernel can have a drastically di↵erent

running time between two devices. Reports of GPU kernels running one hundred times faster

than comparable CPU kernels are in the literature (for example, Che et al. [2008] and Ryoo

et al. [2008]), although more recent research has shown that carefully controlled experiments

demonstrate speedups that generally fall in the 2x to 10x range [Lee et al., 2010b]. Because

of these runtime di↵erences, scheduling a kernel between two devices necessitates knowing

which device will run the kernel faster.

A second di↵erence between scheduling for heterogeneous CPU/GPU systems and for

homogeneous CPU systems is that GPU processors do not have the capability to time-slice
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workloads; i.e., kernels that are launched on a GPU run sequentially, one at a time. The

latest GPUs have limited ability for multiple kernels to run in parallel, but there must be

careful coordination to ensure that all kernels and their data fit onto the card, and that they

do not have any dependencies. Without the ability to time-slice, a kernel launched behind

other kernels must wait until all other kernels finish completely before starting its own work.

In a time-sliced environment, a scheduler has the ability to interleave kernels, which enables

kernels with a small amount of work to finish in a shorter time period than if they had to

wait for longer kernels to finish before running. The algorithm we describe in Section 5.4

provides a similar result, because kernels farther back in the queue that will finish quickly

end up on the device on where they will finish first.

Typically, when using a language framework such as OpenCL or CUDA, an application

that wishes to run a kernel on a heterogeneous platform queries the system to determine

which devices are available, and it preferentially chooses the device that will run the kernel

the fastest. In most cases, this is a GPU, and the kernel is optimized to run on this device.

Applications therefore tend to all choose the same device, and if a number of applications

attempt to launch kernels concurrently, this leads to contention on a device. Furthermore,

this type of scheduling ignores devices on the system that can potentially run the kernels

and finish them before they would be finished if they were launched on the faster device in

queue-order. We propose that instead of launching kernels to a specific device, applications

should launch kernels into a queue that schedules them using an algorithm that determines the

best device at a given time for each kernel. This scheduler has historical runtime information

about the other kernels in the queue, and knows which, if any, kernels are currently running

on each device.

Given a set of queued kernels that are not queued for a specific device, the scheduling

problem becomes one of judiciously launching the kernels onto devices to maximize computa-

tional throughput while remaining fair to the queue order. Many factors can go into this

scheduling decision for a given kernel, including the number of kernels ahead in the queue, the
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kernel or kernels that are currently running on the devices on the system and their runtimes,

how much data must be transferred between device memory systems, and the relative speed

of the kernels on each device in the system.

One assumption that we make in order to implement our scheduling algorithm is that

kernels can be run on more than one device in a system. Our implementation utilizes

OpenCL, which supports running the same kernel across both CPUs and GPUs. Kernels

can be compiled for available devices prior to or at runtime, and when a kernel is launched

onto a specific device, the OpenCL runtime uses the correct binary for that device. Not

all frameworks support running kernels on di↵erent devices, however our scheme allows for

implementations that have separate versions of a kernel for each available device (e.g., one

written in CUDA for GPUs and in OpenMP for CPUs), and the runtime similarly chooses

the correct binary once a device decision has been made. Indeed, if an application developer

knew that a program is going to be run on a heterogeneous system, it might be appropriate

to provide optimized copies of the kernels for all available computational devices. We believe

that in the future more frameworks will be cross-compilable for multiple devices (as OpenCL

is already), and more applications will ship with kernels that are able to run on more than

one device.

In homogeneous systems, we can typically assume that a kernel’s performance is indepen-

dent of the processor on which it is scheduled. This assumption fails to hold in heterogeneous

systems, making scheduling for heterogeneous systems fundamentally more di�cult than

scheduling for homogeneous systems.

5.3 Collecting and Using Historical Runtime Data

Our method for heterogeneous scheduling relies on historical data about kernel runtimes.

In chapter 4 we proposed a method for collecting and amalgamating this data using a fast
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hybrid runtime prediction model, and we use those results to provide the history database

for our proposed scheduler.

In order to train the scheduler, we run each application multiple times with di↵erent input

values for each kernel. In practice, the scheduler is continually trained as new applications

are added to the queue. In the results section we show the results of this training, which

demonstrates that the runtime prediction model quickly stabilizes to precise values.

Application GPU (ms) CPU (ms) GPU
Transfer
(ms)

Speedup
(w/out
Transfer)

Speedup
(w/Transfer)

BinarySearch 69.31 48.21 672.20 0.70 0.07
BitonicSort 692.87 9991.50 538.85 14.42 8.11
BlackScholes 526.25 1613.82 207.51 3.07 2.20

DCT 102.50 212.68 726.00 2.07 0.26
DwtHaar1D 40.53 716.38 91.35 17.68 5.43
EigenValue 565.31 763.48 22.27 1.35 1.30

FastWalshTransform 172.80 1102.44 788.29 6.38 1.15
FFT 2.25 0.52 27.98 0.23 0.02

FloydWarshall 28.94 382.53 91.62 13.22 3.17
Histogram 130.46 397.91 5.85 3.05 2.92

MatrixMultiplication 42.19 7458.86 342.17 176.79 19.41
MatrixTranspose 1232.35 3747.92 2045.41 3.04 1.14
MersenneTwister 89.64 1306.31 90.23 14.57 7.26

PrefixSum 137.65 4.07 1.06 0.03 0.03
QuasiRandomSequence 10.45 368.66 300.28 35.27 1.19

RadixSort 1297.84 4360.29 1938.39 3.36 1.35
Reduction 31.50 290.24 2.09 9.21 8.64

ScanLargeArrays 16.27 138.26 507.71 8.50 0.26
SimpleConvolution 267.93 521.44 818.98 1.95 0.48

SobelFilter 5.40 6.51 3.42 1.21 0.74

Table 5.1: Dynamic Scheduling Application Benchmarks. The values shown are the actual
runtimes for the input values that are used in the test scheduler. The speedup columns
designate the GPU speedup (or slowdown) of the kernels over the CPU time, with and
without data transfer times.
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5.4 The Scheduling Algorithm

In this section we describe our dynamic scheduling algorithm that uses the history database

described in Chapter 4. We assume that applications place kernels in a first-in-first-out queue

and each kernel can run on the available devices. For clarity, we also assume that there are

two devices available, a CPU and a GPU, although the algorithm could easily be extended

to include an arbitrary number of devices. We also assume that most kernels will run faster

on the GPU.

5.4.1 Overview of the Algorithm

In essence, the scheduler we describe implements a greedy algorithm that assigns kernels to

run on a device based on a comparison between the predicted times for the kernel to finish

on all available devices. Even if a kernel runs faster on a device, if there are enough kernels

ahead of it in the queue for that device, it may finish faster on the slower device because

that device is free.

Our scheduling algorithm is laid out as follows. We create a sub-queue for each device,

and place kernels in those sub-queues from the main queue according to the following rules:

1. If the main queue contains kernels, attempt to keep all devices busy running kernels. If

a sub-queue has kernels and the device for that sub-queue becomes free, run the next

kernel in the sub-queue on that device.

2. If one device is busy but the other device is free and the next kernel in the main queue

has not been run on that device before, run it on that device in order to build the

database. This is a one-time penalty for kernels that run slowly on a device, but it is

necessary to build the database. Assume that most kernels will run faster on the GPU,

so if a kernel only has GPU runtime data but the GPU is free, run the kernel on the

GPU.
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3. If only one device is free and the next kernel in the main queue runs slower on that

device, estimate how long the other device will be busy using the history database and

include other kernels also scheduled for that device in its sub-queue. If the next kernel

in the main queue will finish faster by being run on the slower device, run it on that

device. If not, put it into the sub-queue for the busy device.

4. Continue through the main queue until both devices are busy running kernels. As a

kernel finishes on a device, update the historical database with the runtime information,

calculating the average runtime and the standard deviation, and repeat the algorithm

from the beginning.

The scheduling algorithm described above continues to improve as more data is entered

into the historical database, and each kernel is penalized at most once when it runs on a

slower device in order to build the database. Runtimes and data transfer times are included

in the history database. Because kernel runtimes are averaged into the previous runtime for a

device, outlying points that could be caused by factors unknown to the scheduler (e.g., GPU

contention due to video processing associated with the display) are smoothed out over time.

Because our scheduler places kernels on devices that are not necessary optimal for each

individual kernel, we must discuss scheduling fairness. We define a schedule to be fair if

each kernel finishes no later than it would have finished if it were allowed to execute on its

preferred device. In other words, a fair schedule does not penalize a kernel even if the kernel

is forced to run on its non-preferred device. Accordingly, no starvation occurs, and kernels are

scheduled for a device in queue order. Specifically, kernels are always scheduled on the device

for which they are predicted to finish earliest. The algorithm presented earlier generates fair

schedules except in two cases: if the predicted runtimes are significantly incorrect or when a

kernel is first encountered and runs on a slower device.
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5.4.2 Scheduling Overhead

Although we discuss running kernels on both the CPU and the GPU as being independent

from each other, this is not strictly the case. In current CPU/GPU architectures, the

applications that launch kernels run themselves on the CPU, and the scheduler that runs

also uses a CPU thread to coordinate the scheduling. When scheduling kernels to run on

the CPU, the kernels utilize standard operating system threads, and therefore contribute

to overall CPU usage. Any scheduler that launches kernels on the CPU inflicts a penalty

on any applications running on the CPU, including other applications that are or will be

running kernels.

Any scheduling decision incurs an overhead simply because of the time necessary to

run through the scheduling algorithm. It would be imprudent if the overhead of making

a dynamic scheduling decision decreased computational throughput relative to a statically

scheduled solution. The algorithm we have presented is lightweight, especially compared to

the application runtimes we have investigated. With the kernel database loaded into memory,

our results show that the time to make a scheduling decision averages 0.7ms with a standard

deviation of 0.2ms on our test platform, described in Section 5.5. GPU kernels average 273ms,

making the scheduling decision average 0.3% overhead.

5.5 Experimental Results

We first describe the real workload we used to test our scheduling algorithm, and then present

the experimental results compared to other scheduling algorithms. We then show simulated

comparisons of all the scheduler algorithms over a randomized set of applications, in order to

demonstrate the applicability across a wide range of application runtimes.
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5.5.1 Workload and test environment

In order to test our algorithm, we used twenty OpenCL benchmark applications and ran the

set of applications sequentially, for a total of twenty kernel launches. The applications we

used in our experiments represent a number of computational algorithms that are commonly

used in scientific computing. Table 5.1 shows the applications and the absolute and relative

kernel run times for the data sets that we tested. As expected, most applications had kernels

that ran faster on the GPU. In order to demonstrate the scheduler when some kernels were

faster on the CPU, we set the data size small enough for three applications such that this

was the case (Binary Search, FFT, and Prefix Sum). In Section 5.5.4 we show the result of

the scheduling algorithms when all kernels are faster on the GPU, including data transfer

overhead.

Our test environment was comprised of a 6-core, 3.7GHz AMD Phenom II 1090T CPU

with 4GB of main memory and an AMD 5870 GPU with 2GB of memory. All tests were run

on Ubuntu Linux, with the 2.6.35 kernel. In order to run and test the OpenCL applications,

we wrote a Python application that places all twenty applications into a scheduling queue

and schedules them according to our dynamic algorithm.

5.5.2 Training the scheduler

Figure 5.1 shows the improvement of our dynamic scheduler as the historical database

improves. For the purpose of our experiments, we trained the scheduler by running the

same applications in our benchmark suite, but with a random set of kernel input sizes. We

also chose a sample fixed set of input sizes to test with the database after each training

run, in order to normalize the results for Figure 5.1. Initially, with limited or no historical

information, kernels are run on the GPU if it is free, and if the GPU is busy, a kernel is run

on the CPU. Compared to a GPU-only scheduling solution, the scheduler initially performs

worse as the history database is populated, but it quickly improves its performance. The

database gets continually cross-trained as it collects data on all the kernels that it sees, and
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the scheduler benefits any time it sees a kernel more than once, regardless of the data set size.

The scheduler always performs better than a CPU-only solution for this set of applications.

Results in the following section reflect data taken after the scheduler has been trained for

only five runs.
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Figure 5.1: Scheduler training. The scheduler was run multiple times against the queue of
twenty applications, starting with no initial historical data. The dashed line denotes the time
for all applications to run on the GPU.

5.5.3 Results

Figure 5.2 shows the speedup over an oracle scheduler, of the set of twenty applications for

seven di↵erent scheduling algorithms, with the oracle scheduler normalized to 1. The oracle

schedule was obtained by running a brute-force exhaustive search of all possible schedule

combinations. The figure shows two di↵erent dynamic scheduling results: one that includes

device transfer time predictions, and one that does not. The dynamic scheduler that uses the

data transfer times is only 11% slower than the oracle scheduler, and the dynamic scheduler

that does not include data transfer predictions is 35% slower than the oracle, and 29% slower

than the dynamic scheduler that does include data transfer predictions. The Preferred Device

schedule schedules a kernel based on which device it runs fastest on, regardless of whether a
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Figure 5.2: Overall results for dynamic scheduling compared against five other algorithms.
The dynamic scheduler results are broken into results when the scheduler included the transfer
time predictions and when it did not. Preferred Device uses the runtime predictions to select
the device for which each kernel will run fastest, regardless of what else is running on the
device. First Free Device places a kernel on whichever device is free, regardless of the runtime
on that device. All GPU and All CPU run all kernels one device, respectively.

device is free or not. This scheduler requires runtime predictions, and produces a scheduler

that is 33% slower than the best dynamic scheduler. The First Free Device schedule places

kernels on the first device that is free, regardless of the runtime on each device. This scheduler

is 38% slower than the best dynamic scheduler. Finally, the GPU only and CPU schedulers

run on each kernel on their respective device, and the GPU only schedule is 50% slower than

the best dynamic scheduler and the CPU only schedule is 78% slower than the best dynamic

scheduler.

Figures 5.3–5.9 show the kernel schedule for each of the algorithms. Each bar represents

the time that a kernel ran. Light (blue) bars indicate that a kernel ran on the GPU, and dark

(red) bars indicate that the kernel ran on the CPU. The dashed line in each figure denotes

the time for the dynamic scheduler that uses data transfer times for its prediction. Each

figure caption reports the utilization of each device. The oracle schedule (figure 5.3) was able
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to obtain 100% utilization for both the CPU and GPU, and the dynamic scheduler that used

Figure 5.3: The oracle schedule. The oracle schedule was obtained by performing an exhaustive
search of all possible schedule combinations. The dashed line denotes the runtime for the
dynamic scheduler that includes data transfer predictions. GPU Utilization: 100%, CPU
Utilization: 100%, Time: 6.5 seconds.

data transfer times was able to obtain 97% utilization on the CPU and 100% utilization on

the GPU.

In order to demonstrate the utility of the dynamic scheduler across a large number of

applications and runtime di↵erences, we ran simulations of each schedule algorithm on a

randomized set of kernel runtimes. Figure 5.10 shows the results of running each algorithm

on one hundred di↵erent sets of twenty benchmarks. As the figure shows, the results are

in line with the results from the test with real benchmarks. The dynamic scheduler that

includes data transfer times is only 12% slower than the oracle scheduler, and the produces

the best average scheduler compared to all other algorithms.
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Figure 5.4: The dynamic scheduler with the inclusion of data transfer predictions. This
schedule is only 11% slower than the oracle schedule. GPU Utilization: 98%, CPU Utilization:
100%, Time: 7.4 seconds.

5.5.4 Running the scheduler when all kernels are faster on the

GPU

So far, we have described scheduling results from a mixed set of kernels that includes some

kernels that run faster on the CPU than on the GPU. In practice, it is rare to find kernels

that run faster on the CPU for other than very small data sets, as application developers

generally target and optimize kernels to run on GPUs. Our dynamic scheduler is still able to

produce excellent scheduling results even when all of the kernels are faster on one device,

especially as kernel queue sizes increase. As an illustration, consider a queue of ten identical

kernels that each run 5x faster on the GPU than on the CPU. As soon as the sixth kernel gets

scheduled for the GPU, it is beneficial to run the seventh kernel on the CPU, even though it

will take five times as long, and it will finish before it would have if it waited for the previous

six kernels to finish on the GPU. Furthermore, instead of 0% utilization of the CPU, the

schedule attains a very high utilization.
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Figure 5.5: The dynamic scheduler without including data transfer predictions. This
schedule is 29% slower than the dynamic schedule that includes data transfer predictions.
GPU Utilization: 100%, CPU Utilization: 58%, Time: 10.1 seconds.

Figure 5.11 shows the results of running the dynamic scheduler on a set of twenty

applications where all kernels run faster on the GPU. The scheduler is able to decrease the

runtime for all kernels by using the CPU to run a number of kernels, and this schedule

produces a 98% CPU utilization, and is only 9% slower than the oracle schedule, and the

GPU-only schedule is 38% slower than the dynamic schedule.

5.6 Observations

In this chapter, we described and demonstrated a dynamic scheduling algorithm for heteroge-

neous computers that schedules kernels based on a historical database of runtime values. We

showed that by using the historical information, a scheduler can determine how to launch

kernels on heterogeneous processors that utilize all devices available and allow for a greater

computational throughput than simply launching all kernels on one device, or by other static

scheduling means. The resulting schedule fairly schedules kernels according to their order

in the queue, and if the runtime prediction is relatively accurate, kernels will finish running
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Figure 5.6: The schedule when the preferred device is used for each kernel. This schedule
is 33% slower than the dynamic schedule that includes data transfer predictions. GPU
Utilization: 100%, CPU Utilization: 8%, Time: 11.3 seconds.

prior to when they would have given an alternate schedule. Furthermore, we demonstrated

that a scheduler that utilizes all available devices even when all kernels run faster on one

particular device can still provide better overall throughput even though some kernels get

scheduled for slower devices.

We demonstrated that our dynamic scheduling algorithm can increase the computational

throughput for a set of twenty applications by over 1.8x over a GPU-only static scheduling

solution, and we showed that the algorithm also provides device utilization that is over 90%

for all devices in the system.

We compared the dynamic scheduler described in this chapter to an oracle scheduler

and found that it approaches the oracle schedule time and on average provides only a 12%

slowdown compared to the oracle schedule. We also compared the scheduler to five other

scheduling methods, and demonstrated that it significantly outperforms them all. Finally, we

showed that including data transfer time predictions in the dynamic scheduling algorithm

improves the performance of the schedules produced.
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Figure 5.7: The schedule when the first free device is used for each kernel. The BitonicSort
kernel runs much slower on the CPU than on the GPU, and this was particularly detrimental
to this schedule. This schedule is 33% slower than the dynamic schedule that includes data
transfer predictions. GPU Utilization: 78%, CPU Utilization: 100%, Time: 10.9 seconds.

Figure 5.8: The schedule when the GPU is used for each kernel. This schedule is 50% slower
than the dynamic schedule that includes data transfer predictions. GPU Utilization: 100%,
CPU Utilization: 0%, Time: 14.7 seconds.
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Figure 5.9: The schedule when the CPU is used for each kernel. Note that the x-axis extends
to 35s on this figure as opposed to 15s on the other related figures. This schedule is 78%
slower than the dynamic schedule that includes data transfer predictions. GPU Utilization:
0%, CPU Utilization: 100%, Time: 33.4 seconds.
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Figure 5.10: Simulated results for one hundred sets of twenty benchmarks, with randomized
values for runtimes. The oracle schedule is normalized to 1. The error bars show the maximum
and minimum schedule times for each algorithm. The average dynamic scheduler that uses
data transfer predictions is 12% slower than the oracle scheduler.
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(a) Oracle Schedule. GPU utilization: 100%, CPU
utilization: 100%. Time: 26.3 seconds.

(b) Dynamic decision taking into account data
transfer times. GPU utilization: 100%, GPU uti-
lization: 98%. Time: 28.6 seconds.

(c) GPU only. CPU utilization: 0%, GPU utiliza-
tion: 100%. Time: 10.1 seconds.

Figure 5.11: Execution when all kernels inherently run faster on the GPU. The dynamic
scheduling finishes all applications 9% slower than the oracle scheduler but is 1.8x faster than
the statically scheduled GPU-only solution. The dashed line on each figure shows the time
for the dynamic scheduler.



Chapter 6

GPU Kernel Merging

In Chapters 3–5 we discussed scheduling multiple applications on di↵erent heterogeneous

devices. In this chapter, we investigate how to improve multiple-kernel throughput on a

single GPU. Specifically, we explore concurrent kernel execution and the utilization of GPU

resources. When a kernel runs on a GPU, there are two orthogonal sources of contention:

the memory system and the compute resources. When a kernel performs a large number of

memory reads and writes and the memory system becomes saturated, the kernel demonstrates

bandwidth-bound behavior. In other words, the rate at which the computation progresses is

limited by the bandwidth that the memory system can provide. Conversely, when a kernel

performs many computations and the compute resources limit the rate at which computation

progresses, the kernel demonstrates compute-bound behavior.

In this chapter, we introduce KernelMerge, a novel prototype OpenCL kernel scheduler

that we designed in order to investigate concurrent kernel execution. KernelMerge takes two

independent OpenCL kernels and runs them concurrently on a single device. KernelMerge

presents the OpenCL driver with a single merged kernel, with the scheduling integrated

into the kernel code. Figure 6.1 illustrates the function of KernelMerge. In the figure, two

kernels are combined into one, and the workgroups from the individual kernels are interleaved

onto the device by the KernelMerge scheduler. KernelMerge also has the ability to schedule

82
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kernels such that a fixed number of workgroups from each kernel run concurrently, in essence

partitioning the device and dedicating a percentage of the device to one kernel and the rest

of the device to the second kernel. We describe both scheduling algorithms in section 6.2.1.

Kernel A

Kernel B

Merged Kernel

Figure 6.1: An example of the KernelMerge scheduler. Two independent OpenCL kernels
are merged into a single kernel. In this example, workgroups from each kernel are interleaved
onto a device to run concurrently. KernelMerge also has the ability to partition a device
such that a percentage of the device is dedicated to one kernel, and the rest of the device is
dedicated to the second kernel.

Even highly performance-optimized kernels may have bandwidth- or compute-bound

behavior, leaving some resources underutilized. We propose that running another kernel

concurrently with this first kernel can take advantage of these underutilized resources,

improving overall system throughput when many kernels are available to run. Concurrent

execution provides the additional benefit of exploiting the entire device, even when executing

less than fully-optimized kernels. This eases the programmer burden, since optimization

requires time that may be profitably reallocated.

Current GPGPU frameworks do not have the ability to run concurrent kernels with

fine-grained control over resources available to each kernel, and we argue that such a feature
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will be increasingly necessary as the popularity of GPU computing grows. In this chapter,

we demonstrate the benefits and describe KernelMerge. We demonstrate a case study using

KernelMerge to find the optimal resource allocation for two kernels running simultaneously,

and we show that a näıve approach to this static assignment can lead to a degradation in

performance over running the kernels sequentially.

As described earlier, GPGPU code can provide tremendous speed increases over multicore

CPUs for computational work. However, the nature of GPU architectural designs can lead to

underutilization of resources: GPU kernels can show compute-bound or bandwidth-bound

behavior, or they can be tuned to match compute and memory utilization. Application

developers are cautioned to attempt to balance bandwidth- and compute-bound behavior

so that a GPU kernel performs most e�ciently, but this optimization can be tedious and in

many cases algorithms cannot be rewritten to balance computation and memory bandwidth

equally [NVIDIA, 2010; Lee et al., 2010a]. Figure 6.2 shows an example of a compute-bound

kernel. To generate the figure, both the GPU memory clock and the GPU processor clock

were independently adjusted for a Merge Sort benchmark kernel, which uses shared memory

to decrease the number of global memory writes, leading to compute-bound behavior. As the

figure shows, changing the memory clock frequency does not change the runtime, but changing

the processor clock frequency does. In other words, the kernel is compute-bound. Figure 6.3

shows an example of a bandwidth bound kernel, Vector Add. In contrast to Figure 6.2, the

bandwidth-bound kernel is a↵ected by the memory clock frequency adjustments, and not the

processor clock adjustments.

When a compute-bound or bandwidth-bound kernel runs alone on the GPU, it may not

fully utilize the resources that the GPU has to o↵er. In the cases where it does not realize

the ideal utilization, our goal is to change the ratio of compute instructions to memory

instructions so that the device is fully utilized. Specifically, when a compute-bound kernel

runs, the memory controllers may be idle while waiting for the computational units, and when

a bandwidth-bound kernel is running, ALUs and other computational circuits may be forced
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Figure 6.2: Merge Sort: a compute-bound example. The horizontal axis shows a sweep of the
GPU memory clock, which does not change the kernel running time. The depth axis shows
a sweep of the GPU processor clock, and as the frequency is lowered, the running time is
significantly increased.

to wait for memory loads or stores. The premise for this work is that it is possible to increase

utilization of the entire device by judiciously running multiple concurrent kernels that will

together utilize the available resources. Using KernelMerge we saw up to 18% speedup for

two concurrent kernels over the time to run the same kernels sequentially.

6.1 Summary of Novelty and Related Work

In this chapter, we describe KernelMerge, a novel OpenCL kernel scheduler that combines two

kernels together and runs them concurrently. KernelMerge provides two scheduling algorithms

(described in section 6.2.1), and provides workgroup granularity per kernel. NVIDIA’s CUDA

driver has limited ability to run concurrent kernels, but application developers cannot control

the number of workgroups that run per kernel [NVIDIA, 2010]. As of May, 2012, OpenCL

does not have the ability to run multiple kernels on a GPU. AMD has described future

hardware which will include support for interrupts and exceptions, which may allow concurrent

execution in a time-sliced manner. Our work-stealing algorithm (see section 6.2.1) would
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Figure 6.3: Vector Add: a memory bandwidth-bound example. The horizontal axis shows a
sweep of the GPU memory clock, and as the frequency is lowered, the kernel running time
increases. The depth axis shows a sweep of the GPU processor clock, which does not a↵ect
the running time.

benefit from this development. With interrupts, KernelMerge could provide a superior

method for supplying more work to a streaming processor than what we have described in

this chapter.

As we discuss in section 6.2.4, KernelMerge would benefit from other changes to current

GPU architectures as well. NVIDIA’s Kepler architecture promises a more robust ability

to execute multiple concurrent kernels, but it is unclear how the available hardware will be

divided in order to run multiple kernels [NVIDIA, 2012a]. If device vendors allow individual

applications to declare a subset of the hardware on which to run, KernelMerge will be able to

take advantage of that to a large extent. Further related e↵orts are described in more detail

in Chapter 7.

6.2 KernelMerge

The goal of KernelMerge is to enable concurrent kernel execution on GPUs and to provide

application developers and GPGPU researchers a set of knobs to change scheduler parameters.
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Consequently, KernelMerge can be used to tune performance when running multiple kernels

simultaneously (e.g., to maximize kernel throughput) and as a platform for research into

concurrent kernel scheduling. For example, KernelMerge can set the total number of work-

groups running on a GPU and can set a fixed number of workgroups per kernel in order to

dedicate a percentage of resources to one or both kernels. By sweeping through these values

and capturing runtimes (which KernelMerge provides), developers can determine the best

parameters for their kernels, or researchers can see trends that may allow runtime predictions.

KernelMerge is a software scheduler, built in C++ and OpenCL for the Linux platform,

that meets the need for simultaneous kernel execution on GPUs without overly burdening

application developers with significant code rewrites. The C++ code hijacks the OpenCL

runtime, providing its own implementation of many OpenCL API calls. For example, a

custom implementation of clEnqueueNDRangeKernel, which dispatches kernels to the device,

uses the current scheduling algorithm to determine when to invoke the kernel instead of

the default OpenCL FIFO queue. The calling code is unchanged, using the same API call

with the same arguments but gaining the new functionality. In fact most host code can take

advantage of the scheduler with no changes save a single additional #include declaration.

KernelMerge includes additional features that are of interest to GPGPU developers and

researchers. It has the ability to determine the maximum number of workgroups of two

kernels that will run at once on a device, which can influence the partitioning scheme that

the scheduler uses, and can also be useful when analyzing performance or algorithm design.

We envision KernelMerge evolving from its current form as mainly a research tool into

a robust scheduler that could be implemented by an operating system for high-throughput

GPGPU scheduling. We developed KernelMerge to allow us to run independent OpenCL

kernels simultaneously on a single OpenCL-capable device. KernelMerge also has the ability

to run single kernels by themselves, which allows measurement of scheduler overhead and

also enables using the scheduler settings to investigate how a single kernel behaves.
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At the highest level, KernelMerge combines two invocations of the OpenCL

enqueueNDRangeKernel (one from each application wishing to run a kernel) into a single

kernel launch that consists of the scheduler itself. In other words, as far as the GPU is

concerned, there is a single kernel running on the device. Before launching the scheduler

kernel, the scheduler passes the individual kernel parameters and bu↵er, workgroup, and

workitem information to the device, which the scheduler uses to run the individual kernels on

the device.

The scheduler creates a parametrically defined number of scheduler workgroups, that the

device sees as a single set of workgroups for the kernel. The scheduler then dispatches a

workgroup (a kernel workgroup) from the individual kernels to each scheduler workgroups.

There are two main scheduling algorithms that we have developed: work stealing and

partitioning by kernel, described in section 6.2.1. The scheduler workgroups execute their

assigned kernels as if they were the assigned kernel workgroup, using a technique we call

spoofing.

OpenCL kernels rely on a set of IDs to determine their role in a kernel algorithm. Because

a kernel workgroup can get launched into any scheduler workgroup, the real global, workgroup,

and workitem IDs will not correspond to the original IDs that the kernel developer had

designated. Therefore, when the scheduler dispatches the kernel workgroups into the scheduler

workgroups, it must spoof the IDs so that the kernel workgroup sees the correct values. One

benefit to the spoofing is that the technique transparently allows us to concurrently schedule

a kernel that uses a linear workgroup with another that uses a two-dimensional workgroup.

This spoofing is responsible for a significant portion of the scheduler overhead, as discussed

in Section 6.2.3. Table 6.1 shows the ID information that the scheduler spoofs.

Once the spoofing is established, the scheduler dispatches the workgroups which carry

out the work they have been assigned. The scheduler continues to partition out the work

until no work remains, at which point the scheduler (and thus the kernel that the device sees)

completes.
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Function Returns

get global id() The unique global work-item ID
get global size() The number of global work-items
get group id() The work-group ID
get local id() The unique local work-item ID
get local size() The number of local work-items

get num groups() The number of work-groups that will execute a kernel

Table 6.1: Workitem and workgroup identification available to a running OpenCL kernel.

The scheduler collects runtime data for the scheduler kernel and can report on the

runtime for the overall kernel. Unfortunately, because the GPU sees the scheduler as a single

monolithic kernel, the scheduler cannot obtain runtimes for the individual kernels.

6.2.1 Scheduling Algorithms

There are two di↵erent scheduling algorithms that KernelMerge utilizes. The first is a

round-robin work-stealing algorithm that assigns work from each kernel on a first-come,

first-served basis. The second algorithm assigns a fixed percentage of workgroups to each

individual kernel.

Figure 6.4 shows a graphical representation of the work-stealing algorithm on the left,

and the static assignment of a fixed percentage of scheduler workgroups to each kernel on

the right. For the work-stealing algorithm, Kernel workgroups are assigned alternating

locations in a queue. If there are more workgroups of one kernel, the extra workgroups occupy

consecutive positions at the end of the queue. Scheduler workgroups are assigned the kernel

workgroups in a first-come, first-served fashion, so that at the beginning half the scheduler

workgroups are running one kernel and the other half are running the other kernel. As each

scheduler workgroup finishes, it is re-assigned more work from the head of the queue. With

this algorithm, the allocation of resources to each kernel is not fixed, as it depends on the run

time of each kernel. Once one kernel has finished running, all of the scheduler workgroups

will be running the remaining kernel workgroups until it, too, completes.
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Figure 6.4: Work-stealing –vs– partitioning. The black boxes represent one kernel and the
white boxes represent the other. In (b), one-fourth of the available scheduler workgroups
are assigned the short-running kernel (1,3,5), and the remaining scheduler workgroups are
assigned to the long-running kernel. As scheduler workgroups finish, work is replaced from
their assigned kernel.

In the partitioning algorithm, when a scheduler workgroup finishes, it is only reassigned

work from one kernel. This ensures that the percentage of device resources assigned to

each kernel remains fixed. This algorithm runs as few as one workgroup of the first kernel

while dedicating all remaining device resources to workgroups of the second kernel (and

vice-versa). This ability is one of the most powerful settings available to KernelMerge,

allowing high precision tuning of device resources assigned to each kernel. For example, if

a highly bandwidth-bound kernel is run concurrently with a highly compute-bound kernel,

the percentage of device resources can be adjusted so that the bandwidth-bound kernel is

assigned just enough such that it is barely saturating the memory system, and the rest of the

resources can be dedicated to running the compute-bound kernel, maximizing throughput for

both kernels.
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6.2.2 Results

Figure 6.5 shows a comparison between pairs of kernels that were run sequentially and were

also run concurrently using KernelMerge. The figure shows that 39% of the paired kernels

showed a speedup when run concurrently. However, näıvely scheduling kernels to run together

can be highly detrimental; in some cases running two kernels concurrently leads to over

3x slowdown, because the kernels contend for the same resources. These results provide a

further motivation for the use of KernelMerge as a research tool: being able to predict when

two kernels will positively or negatively a↵ect the concurrent runtime is non-trivial. The

settings provided within KernelMerge have the potential to help identify general conditions

that result in either beneficial or adverse concurrent kernel parings, which can in turn lead to

the ability to predict runtimes and therefore make informed decisions about whether or not

to run kernels concurrently. We defer the results of the partitioning algorithm to section 6.3

where we show a case study using this algorithm.
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Figure 6.5: Merged runtimes compared to sequential runtimes. In this figure, pairs of OpenCL
kernels were run concurrently using KernelMerge and compared to the time to run the pair
sequentially. 39% of the pairs ran faster than they would run sequentially. However, one
pair ran over 3x slower than the sequential runs, indicating that näıvely scheduling kernels
together could lead to poor performance. Not all combinations of the seven benchmark
kernels run together because some applications only contain a single kernel invocation.
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6.2.3 Limitations and Runtime Overhead

As with any runtime scheduler, there are overhead costs to running kernels with KernelMerge.

Figure 6.6 shows the overhead of running a set of kernels individually and then from within

KernelMerge. The runtime overhead can be broken down into the following components

1. Processing a data structure in global memory to select which requested kernel workgroup

to run, and to ensure that each such workgroup is run exactly once.

2. Computing the translation from the actual workitem IDs to the IDs needed for the

selected workgroup (i.e., spoofing).

3. Additional control flow necessary because the compute unit ID (i.e., the ID di↵erentiating

the groups of cores) is not accessible through the API.
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Figure 6.6: KernelMerge overhead. Overhead does not a↵ect all kernels the same. Short
running kernels that contain a large number of kernel workgroups are adversely a↵ected (e.g.,
Bitonic Sort).

The complexity of the scheduler along with the fact that every potentially schedulable

kernel is included in a single kernel combine to increase the kernel’s register usage. This

reduces the number of workgroups that may simultaneously occupy the device, even if only a
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single kernel is actually scheduled, due to limitations on the number of available registers on

the device. Similarly, the number of concurrent workgroups is limited by the available shared

memory; if any schedulable kernel uses shared memory, all schedulable kernels are limited by

it, even if no kernel that uses shared memory is actually scheduled.

One final limitation of the KernelMerge approach a↵ects the use of barriers within kernels.

If two kernels that use di↵erent total numbers of workitems are scheduled, the unused

workitems must be disabled. If the kernel with the smaller workgroup uses a barrier, the

disabled workitems will never execute the barrier, causing the entire workgroup to deadlock.

6.2.4 Suggested GPU Architecture Changes

Many of the limitations discussed above arise because today’s GPUs are built on the as-

sumption that a single kernel runs at a time. We recommend that future GPU architectures

explicitly support concurrent execution of independent kernels at workgroup granularity. We

believe that implementing the scheduler in software remains the most appropriate and flexible

method and that the concerns from the previous subsection can be relieved through relatively

simple hardware changes. First, allowing the registers used to determine workgroup IDs

to be written would eliminate the need for spoofing. Second, there are resources that need

to be allocated per workgroup, such as local memory and barriers. For instance, because

workgroups of di↵erent kernels may contain di↵erent numbers of workitems, the hardware

must allow the scheduler to specify to the barriers how many workitems to expect. Third,

exposing the compute unit ID through the API would eliminate extra control flow and would

expand the space of possible scheduling algorithms. For instance, a scheduler could assign all

instances of a kernel to a particular compute unit or set of compute units.

Currently, KernelMerge incurs significant overhead because of the necessity of working

around hardware limitations to multiple kernel execution. The minimal hardware changes we

suggest would enable easier creation of schedulers that implement multiple kernel execution

we have presented in this chapter.
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6.3 Case Study: Determining Optimal Workgroup Bal-

ance

We now show how KernelMerge can be used to find the optimal workgroup partitioning for

concurrent kernels. Section 6.2.1 described the KernelMerge scheduling algorithm whereby

each kernel is given a set number of workgroups out of the total workgroups available

(determined by a helper application) for the kernel pair. In order to find the minimal runtime

for each kernel pair, we wrote a script that sweeps through all workgroup combinations for

each pair and runs the scheduler accordingly. We also ran each kernel pair sequentially and

calculated the total sequential time.

Figure 6.7 shows a graph of six kernel pairs and the minimum times for each pair. For the

benchmarks we used, the device (an NVIDIA GTX 460) was able to run 28 workgroups on

the device at one time. The first 27 bars on the graph of each kernel pair show the combined

runtime with the workgroup combinations, and the last bar on each graph shows the sequential

runtime. The darker column shows the minimum runtime, and thus the optimal runtime

for the pair. Many of the graphs show a bathtub shape, indicating that both kernels su↵er

significantly when their computation resources (i.e. scheduler workgroups) are restricted. In

the cases that show an increasing trend towards the right, the first kernel is able to execute

e�ciently, even with limited computation resources. In one case (bitonicSort-kmeans-kernel-c),

the sequential runtime is less than all of the scheduler runtime combinations, indicating that

running the kernels concurrently is detrimental.

This case study demonstrated that KernelMerge can be used for determining the optimal

workgroup partitioning for concurrent kernels, and it also demonstrates that näıvely scheduling

the kernels together can produce undesirable results.

Figure 6.8 compares the results of the work-stealing algorithm to the sweet spots found

by the partitioning algorithm. As the figure shows, the work-stealing algorithm approaches
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Figure 6.7: Runtimes for concurrent kernels with the partitioning algorithm. The dark
column with the arrow indicates the minimum value. The final column indicates the combined
sequential runtime for each merged kernel pair.

the optimal results found by the partitioning algorithm, without needing to perform an

exhaustive search.

6.4 Observations

We have presented a justification for our argument that running concurrent kernels on a GPU

can be beneficial for overall compute throughput. We also showed that näıvely scheduling

kernel pairs together can have a negative e↵ect, and therefore it is necessary to dynamically

schedule kernels together. We demonstrated KernelMerge, an OpenCL concurrent kernel

scheduler that has a number of dials important for concurrent kernel research. We have
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Figure 6.8: Results of the work-stealing scheduler compared to the sweet spot partitioning
scheduler result. In most cases, the work-stealing algorithm approaches the partitioning sweet
spot.

also demonstrated that a work-stealing algorithm for merging two kernels can approximate

optimal workgroup partitioning.



Chapter 7

Related Work

Related work in the field of scheduling for task scheduling on multiple processors can be

separated into work on scheduling for homogeneous multiprocessor systems and scheduling

for heterogeneous multiprocessor systems. Furthermore, both types of scheduling also have

subcategories that include distributed systems for which the processors are allocated to

multiple computers on a network and local single-computer machines with multiple processors

that share a bus. Sections 7.1 and 7.2 describe the related work in each category as it applies

to the type of scheduling described in this dissertation, and Section 7.2 is further broken

down to include both distributed systems and General Purpose Graphics Processing Unit

(GPGPU) systems. The remaining sections of this chapter address in more detail the related

work for Chapters 3 – 6.

7.1 Scheduling for homogeneous multiprocessor systems

Scheduling research for homogeneous multiprocessor systems mostly focuses on individual

thread scheduling in an attempt to balance computational load across the available processors.

The biggest di↵erence between scheduling for homogeneous systems and heterogeneous

systems is that in the former there is an implied assumption that a thread will behave the

same regardless of the processor, and important scheduling concerns focus on load balancing

97
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and cache usage. The research most closely related to the work for this dissertation involves

resource-aware scheduling for architecturally homogeneous systems, in particular processor

resource contention. Fedorova et al. [2010], Parekh et al. [2000], Zhuravlev et al. [2010]

and von Behren [2003] monitor thread behavior and make scheduling decisions based on

resource requirements per thread. Processor utilization is a key concern in many scheduling

methodologies, and many scheduling ideas attempt to utilize all of the available processors

as much as possible. Ousterhout [1982] provides a number of straightforward scheduling

techniques to improve processor utilization, and Gupta et al. [1991] show that traditional

busy-waiting policies need to be modified to enable better processor utilization. The work

in this dissertation focuses on high utilization for all the devices in a heterogeneous system,

in the e↵ort to provide the maximum computational throughput. It is distinct from the

homogeneous scheduling work discussed above in three significant ways. First, processes

can be migrated on most homogeneous systems, and this is not the case for today’s CPU-

GPU systems. Our assumption that a kernel cannot be preempted underlies the scheduling

algorithms we discuss in chapter 5. Second, resource contention can be balanced among

processors in a homogeneous system without knowing process runtimes. In a heterogeneous

system, balancing tasks becomes a matter of understanding the di↵erence in runtime between

devices, otherwise a scheduler can easily make a decision that hurts performance. Finally,

instruction sets on CPUs and GPUs are incompatible, and an application must be compiled

for all available platforms in order to schedule between them.

Task profiling is also frequently mentioned in homogeneous scheduling research. Ho↵man

and Rauber [2007] discuss task waiting time and its importance in making scheduling decisions.

They also discuss making performance predictions and demonstrate waiting time prediction

by relying solely on profiling as opposed to looking at program code or binaries, as do

Marin and Mellor-Crummey [2004]. The historical data scheduling scheme from Chapter 5

relies on historical profiling instead of application details. Our work is distinct from prior

research in that we use historical profiling that compares the runtime on di↵erent devices,
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specifically CPUs and GPUs. We also use a history database of transfer times, which is a

novel contribution.

7.2 Scheduling for heterogeneous multiprocessor sys-

tems

GPGPU computing is a recent development in the heterogeneous computing arena, but

distributed heterogeneous systems have been in production since the early 1990s. Before

GPU era, “heterogeneous” generally meant that a single application binary would run at

di↵erent speeds on di↵erent compute nodes, but the nodes would use the same instruction

set, and this is not the case with applications that run on both a CPU and a GPU. However,

many research papers that discuss distributed heterogeneous scheduling contain applicable

ideas to CPU/GPU heterogeneous systems.

Scheduling for Distributed Heterogeneous Systems

As of version 3.0, NVIDIA’s CUDA has a limited ability to run concurrent kernels devices with

compute capability 2.0 or above (e.g., Fermi GPUs) [NVIDIA, 2010]. The kernels must be

run in di↵erent CUDA streams that are explicitly set up by the programmer, and the CUDA

runtime does not guarantee that kernels will run concurrently. Furthermore, the number

of workgroups per kernel that are run concurrently is not definable by the programmer.

KernelMerge allows workgroup counts to be set in the scheduler, and although there are

crucial overheads at this point in time, minimal hardware changes would significantly increase

the e�ciency of KernelMerge.

Chen et al. [2010] propose a dynamic load balancing scheme for single and multiple

GPUs. They implement a task queue that has similar functionality to KernelMerge and

that launches thread blocks (the CUDA equivalent of OpenCL workgroups) independently

of the normal CUDA launch behavior. They show a slight increase in performance on a
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single GPU using their scheduler, due to their scheduler’s ability to begin execution of new

thread blocks while other thread blocks are still running longer kernels. They do not discuss

load balancing as it relates to the type of bounding exhibited by individual kernels, and

we discuss this in chapter 6. Wang et al.[2010] propose a source-code level kernel merging

scheme in the interest of better device utilization for decreased energy usage. Their tests

are limited to GPGPU-Sim [Bakhoda et al., 2009], but their experiments indicate significant

energy reduction for fused kernels over serial execution. Our work di↵ers from theirs in that

we focused on combining kernels based on how they are bound, not on energy e�ciency.

Furthermore, we built KernelMerge for real hardware, and therefore were able to test the

results under actual conditions.

Li et al. [2011] propose a GPU virtualization layer that allows multiple microprocessors

to share GPU resources. Their virtualization layer implements concurrent kernels in CUDA,

and they discuss computation and memory boundedness (which they call “compute intensive”

and “I/O-intensive”) as it relates to running kernels concurrently. It is not clear how they

classified the individual kernels in order to determine how they were bound. Menasce et

al. [1995] and Kafil and Ahmad [1997] were among the first to investigate scheduling for

heterogeneous systems, and they discuss both dynamic and static scheduling policies and

the benefits and drawbacks of both. Static schedulers have lower (or no) runtime overhead,

and can utilize sophisticated algorithms that can run before applications are run. However,

they also need to know enough about the runtime profile and input data to make scheduling

decisions, and the uncertainty inherent in this model can lead to an unbalanced load. Dynamic

scheduling, on the other hand, makes decisions with more knowledge of the system and

the application inputs, but incurs extra cost in runtime overhead. These scheduling issues

translate directly into the desktop heterogeneous world. Siegel and Ali [2000] and Radulescu

and Van Gemundalso [2000] look at the tradeo↵s between static and dynamic scheduling for

heterogeneous tasks for distributed systems. In particular, Siegel and Ali focus on scheduling

independent tasks onto heterogeneous nodes, and they provide a number of heuristics that
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are applicable to desktop heterogeneous systems. Their min-min algorithm attempts to

determine the device which will complete a task fastest, and the idea we have presented using

historical data for scheduling uses a similar algorithm. Topcuoglu et al. [1999] also describe

an algorithm that looks at when applications will finish on a processor. Their heterogeneous

earliest-finish-time (HEFT) algorithm attempts to minimize when individual applications

finish, although they do not discuss how they are gathering the data used for the prediction.

Our work is distinct from Siegel and Ali’s work and from HEFT in that we developed an

algorithm that uses device runtimes as well as data transfer times to make our scheduling

decisions.

Scheduling for Heterogeneous Systems

There have been a number of recent papers on heterogeneous scheduling. Jiménez et al. [2009],

which was completed in parallel with our work, demonstrate two predictive algorithms that

use performance history to schedule a queue of applications between a CPU and a GPU:

history-gpu, that schedules work on the first available device that can run an application, and

estimate-hist, that estimates the waiting time for each device and schedules an application

to the device that will be free the soonest. Their work does not take into consideration

data transfer overhead, nor do they discuss how they make the runtime predictions for their

scheduler. The scheduler we present in Chapter 5 schedules kernels on the devices that will

enable them to finish first, instead of simply looking at which device will be free soonest, and

we also consider data transfer overhead and provide a model for runtime prediction across

devices.

Augonnet et al. [2009] use performance models to provide scheduling hints for their

StarPU scheduler, and programmers who write applications for StarPU can provide a “cost

model” for each application that enables the scheduler to predict relative runtimes. Our

method does not require programmers to provide any additional information to the scheduler,

and does not require performance models for specific hardware.
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Becci et al. [2010] use performance and data transfer overhead history to guide a dynamic

heterogeneous scheduler for legacy kernels, focusing on postponing data transfer between

devices until it is actually needed. They choose not to migrate data when the overhead is too

high, and their scheduling method attempts to move the computation to the data, if that is

possible. Our work takes a di↵erent approach: we look at data transfer overhead as part of

the overall kernel runtime, and account for it explicitly in the scheduling decision, based on a

prediction of which device will complete the kernel sooner. Furthermore, our work does not

require programmer input, nor does it postpone data transfers.

Other researchers have proposed using performance models to predict runtime, which

could be used for making scheduling decisions (e.g., Meng and Skadron [2009] and Hong

and Kim [2010]). However, performance models have high overhead and are generally not

portable between hardware generations. Shelepov et al. [2009] describe a static heterogeneous

scheduler that uses architectural signatures to match an application to heterogeneous cores.

It does not have to rely on dynamic profiling, making it more e↵ective for workloads that

have significantly di↵erent run times from one run to the next. Rather, it makes scheduling

decisions based specifically on a history database of runtimes, and work is scheduled in the

order it is received in the task queue.

The method for heterogeneous scheduling in Chapter 5 looks at entire kernels and schedules

them on one of the available devices in a heterogeneous computer. Others have looked at

finer-grain scheduling methods, which partition kernels such that one kernel launches across

multiple devices. An example is Luk et al. [2009], which also uses a historical database for

Qilin that holds runtime data for applications it has seen before. Their approach dynamically

compiles kernels to run across multiple devices at once, which is distinct from our method of

running independent tasks on di↵erent devices.
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7.3 Data Transfer and Overhead

It is well known that PCI Express bandwidth can cause a throughput bottleneck when a

significant amount of data is transferred between a CPU and a GPU in a heterogeneous

system. A number of researchers have discussed bandwidth troubles that can arise with

frequent or poorly managed data movement between devices. Schaa and Kaeli [2009] examine

multiple GPU systems and acknowledge that unless a full working set of data can fit into

the memory on a GPU, the PCI Express will be a bottleneck. Owens et al. [2008] express

similar concerns. Fan et al. [2004], Cohen and Molemaker [2009] and Dotzler et al. [2010] all

recommend rewriting algorithms to limit PCI Express transfers as much as possible. The

aforementioned studies served as our motivation for this work, and we decided to quantify

the memory transfer overheads for a number of benchmarks and to develop an an overhead

taxonomy for discussing the overhead in more detail.

Some researchers have made suggestions about how to mitigate data transfer overhead

limitations. Al-Kiswany et al. [2008] describe StoreGPU, a distributed storage system that

uses pinned, non-pageable memory on the host system to reduce the impact of data transfer.

Gelado et al. [2010] introduce an “Asymmetric Distributed Shared Memory” (ADSM) model

that provides two types of memory updates (“Lazy” and “Rolling”) that determine when to

move data on and o↵ the GPU.

An important GPGPU research area involves migrating database operations to the GPU,

and moving all or portions of a database to the GPU involves a significant cost. Bakkum

and Skadron [2010] describe a SQL database GPGPU solution that demonstrates a 1.4x

performance degradation when considering data transfer overhead in their results, and the

entire database must also be located on the device. Volk et al. [2010] implement a GPU

database that also requires the entire database to be moved to the GPU in order to keep data

transfer at a minimum. Additionally, they recognize that in order to benefit from a GPU

solution, they must amortize the cost of moving the database to the device by performing

multiple database operations. Govindaraju et al. [2006] use a bitonic sort algorithm to
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perform database sort operations, and they specifically optimize their code to limit memory

transfers between devices due to memory transfer overhead. Our work takes a broader

view of the subject of data transfer, and categorizes the required types of data transfer

into a comprehensive taxonomy. Whereas other related work looked at individual data

transfer requirements related to specific algorithms or problems, our work treats the idea

comprehensively and is algorithm-agnostic.

7.4 Runtime Prediction

Most of the research into predicting runtime for heterogeneous processors has targeted

distributed heterogeneous systems that consist of CPUs from di↵erent hardware generations,

and not CPU/GPU systems [Nadeem and Fahringer, 2009; Page, 2009; Iverson et al.,

1999]. A number of those papers describe a multidimensional k-NN regression algorithm for

predicting task run times based on historical data, and this algorithm can be directly applied

to CPU/GPU heterogeneous kernels. Iverson et al. [1999] and Page [2009] proposed modeling

heterogeneous task inputs as a vector of random variables and applying a multidimensional

k-NN regression algorithm to new inputs in order to predict task runtimes for new inputs.

Their results demonstrate the precise nature of the algorithm, but they do not discuss the

time required to make the prediction calculations. Our work is the first to provide a combined

runtime prediction model that dynamically adjusts (and improves) as more runtime data is

collected. In chapter 4 we demonstrate the improvement of our algorithms over using k-NN

and linear prediction alone.

The use of performance models to predict heterogeneous runtimes have also been discussed

in the literature (e.g., Meng and Skadron [2009] and Hong et al. [2010]), but performance

models also have high overhead and must be redesigned for each new hardware generation.

A number of researchers have proposed using historical data in order to make runtime

predictions for heterogeneous scheduling decisions [Jiménez et al., 2009; Augonnet et al., 2009;
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Diamos and Yalamanchili, 2008; Becchi et al., 2010; Topcuoglu et al., 1999], but they do

not discuss how precise the predictions need to be in order to be useful for their scheduling

algorithms, nor do they discuss how those predictions are calculated. However, Armstrong et

al. [1998] investigated four task mapping scheduling algorithms based on expected runtimes

and found that exact runtime prediction was not necessary for su�cient task mapping, even

when the predictions showed significant variance. These results motivate our reasoning that

it is better to provide a faster runtime prediction that sacrifices precision than to take more

time to refine the prediction results. Our work provides an algorithm that could be used in

the above cited works in order to make the runtime predictions.

7.5 Dynamic Scheduling Algorithms

The idea of using historical data for heterogeneous scheduling decisions has been discussed in

other work, although very few have targeted GPU computing. Siegel et al. [1996] discuss

automated heterogeneous scheduling where one stage profiles tasks and performs performs

analytical benchmarking of individual tasks. This information is then used in a later stage to

predict runtimes for kernels based on current processor loads. Similarly, our approach profiles

kernels as they run, but also extrapolates runtimes for kernels with di↵erent input sizes from

an analytical assessment of the collected data. Topcuoglu et al. describe the “Heterogeneous

Earliest-Finish-Time” (HEFT) algorithm [Topcuoglu et al., 1999], which, like our approach,

attempts to minimize when individual kernels finish, but does not consider fairness or make

any data transfer considerations. Maheswaran et al. [1999] describe a set of heuristics that

inform a dynamic heterogeneous scheduler. Their Min-min heuristic calculates which device

will provide the earliest expected completion time across a set of tasks on a system. The task

in the queue that will complete first is scheduled next. Both works of Topcuoglu et al. and

Maheswaran et al. were written prior to the advent of GPU computing, and they simulated

their algorithms. Our approach di↵ers from both Topcuoglu et al. and Maheswaran et al. by
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considering fairness, ensuring that kernels do not get pre-empted by other kernels, and we

also tested our scheduler on CPU/GPU heterogeneous hardware.

Harmony [Diamos and Yalamanchili, 2008] also uses performance estimates in order

to schedule kernels across a heterogeneous system. They propose an online monitoring of

kernels and describe a dependence-driven scheduling that analyzes how kernels share data

and decides on processor allocation based on which applications can run without blocking.

Our approach considers kernels to be independent, and schedules kernels from multiple

applications concurrently.

7.6 Kernel Merging

As of version 3.0, NVIDIA’s CUDA has a limited ability to run concurrent kernels devices with

compute capability 2.0 or above (e.g., Fermi GPUs) [NVIDIA, 2010]. The kernels must be

run in di↵erent CUDA streams that are explicitly set up by the programmer, and the CUDA

runtime does not guarantee that kernels will run concurrently. Furthermore, the number

of workgroups per kernel that are run concurrently is not definable by the progarmmer.

Our main contribution, KernelMerge (Chapter 6), allows workgroup counts to be set in the

scheduler, and although there are crucial overheads at this point in time, minimal hardware

changes would significantly increase the e�ciency of KernelMerge [Gregg et al., 2012].

Guevara et al. [2009] discuss a CUDA scheduler that runs orthogonally bound kernels to

increase throughput for both kernels, although all kernels must be hand-merged and analyzed

by hand. Wang et al. [2011] demonstrate the benefits of kernel “funneling” of CUDA kernels

into a context so that they can be run concurrently. They do not discuss how the kernels

interfere with each other on a GPU, although their benchmarks are most likely memory

bound as they perform relatively few calculations per memory access.



Chapter 8

Conclusions

This dissertation has characterized a dynamic heterogeneous scheduling methodology that

increases computational throughput when a set of applications are run on a computer with a

multicore CPU and one or more GPUs and when each application has the ability to run on

either type of device. The dissertation presents a taxonomy that encapsulates data transfer

requirements for kernels based on the location of data prior to running a kernel, whether

the data will need to be moved prior to or after the kernel runs, and whether the data is

created or consumed during kernel execution. The dissertation also describes a novel hybrid

runtime prediction model to provide precise and rapid kernel runtime forecasts for use in

a heterogeneous scheduler. The prediction model, along with data locality and contention

information, is used in a prototype dynamic scheduler that can produce schedules that

are 33% faster than GPU-only schedules and provide 90% CPU utilization. Finally, the

dissertation demonstrates that orthogonally bound kernels (i.e., memory bound and compute

bound) can be run concurrently on a GPU and can show improved throughput compared to

running the kernels sequentially.

Heterogeneous scheduling for CPU/GPU systems will continue to become more important

as more application developers write general purpose code for GPUs, and as they use

programming languages that are agnostic towards the target device for their programs.

107
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Current scheduling techniques are insu�cient when multiple applications wish to use the

GPU for general purpose computation, leading to contention for the GPU and underutilization

of the CPU. Scheduling for a heterogeneous computer is not trivial, and we have shown

that it requires knowledge of data locality and must be able to make runtime predictions for

applications on each device.

8.1 Impact

Operating system schedulers have become e�cient at scheduling work for multiple homo-

geneous cores, especially at the thread-level. However, with the advent of general purpose

computing for GPUs, desktop computers are no longer homogeneous, and operating schedulers

do not schedule work for heterogeneous cores. If an application developer wants general

purpose work completed on a GPU, he or she must explicitly schedule it for that device,

and it may not be the best device to complete the work, especially given data locality and

contention concerns. Heterogeneous scheduling has all of the demands of homogeneous

scheduling plus its own set of challenges. This research has demonstrated dynamic scheduling

in heterogeneous systems using a combination of historical data, statistical information, and

environment state information, and frees application developers from manually performing the

scheduling. Furthermore, this dynamic scheduling results in greater processing throughput

than in a statically scheduled system. The impact of the findings in this dissertation provide

a foundation for dynamic heterogeneous scheduler improvements, and will be necessary for

e�cient heterogeneous scheduling. The following subsections describe this dissertation’s

impact on specific aspects of the heterogeneous scheduling problem.

8.1.1 Data Location and Transfer Overhead

Discrete GPUs have an independent memory system from the CPU, and in order to perform

computation on a set of data, the data must be located in GPU memory. In many cases data
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must be transferred between devices as an application progresses. A scheduler that ignores

this overhead will not be able to schedule the work appropriately in cases where the data

transfer time is large enough to negate the benefits of running on a device that can complete

the work faster. If significant data needs to be transferred either to or from a device, the

transfer times must be considered in order to make a valuable scheduling decision. This

research describes a novel classification scheme for describing memory transfer requirements

for individual kernels, and makes suggestions for properly utilizing this information in a

dynamic scheduler and when reporting on and comparing runtimes between di↵erent devices.

The advent of integrated CPU-GPU processors such as AMD’s Accelerated Processing Unit

(APU) systems will modify the impact of the data locality components of this dissertation. In

particular, single-memory systems will not su↵er from slowdowns related to moving the data

between processor memories. However, both the CPU and GPU will be competing for the

same memory system, and therefore similar arguments about where data is located will have

to be considered. Contention for memory controllers, and for bandwidth on the memory bus

will share some of the same memory transfer issues that we considered for this dissertation.

For example, it may be the case that data for a particular application should be spread

out across a memory system so that one memory controller does not have bottlenecks when

attempting to deliver a large amount of data to the GPU processing elements. In principle,

this is the same problem we tackled with moving data between the CPU to the GPU, except

that it is within one memory system.

A secondary impact of the classification scheme is the ability to use the taxonomy when

comparing application runtimes between CPUs and GPUs. Without considering data transfer,

simple runtime comparisons provide results that are not useful for real world systems, and

are disingenuous. It may be the case that a GPU can run a kernel ten or twenty times faster

than a CPU, but if the data needs to be transferred to and from the GPU, the runtime results

by themselves do not provide a fair comparison. In order to make a fair comparison about
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the usefulness of using a GPU for a particular application, data transfer use cases must be

included.

8.1.2 The Necessity of Precise and Rapid Runtime Prediction

In a CPU/GPU heterogeneous computer, applications that can run on both devices typically

have significantly di↵erent runtimes. In order to build a schedule for such a system, the

scheduler must be able to predict runtimes for each application on each device. We have

demonstrated that this can be accomplished with the use of historical runtime information,

and we have described a novel fast runtime prediction model. The ability to predict runtimes

is necessary for a heterogeneous scheduler for two primary reasons. First, because runtimes

can be drastically di↵erent, schedules that ignore runtimes run the risk of low device utilization

and poor overall throughput across the tasks. Second, load balancing on a set of homogeneous

CPUs can be achieved by migrating processes between devices and by time slicing processes

on a single device. Neither is possible on GPUs, with the ramification that once a process

begins on a GPU, it must complete before another application can be scheduled on that

device. Precise runtime prediction provides the scheduler with important information to

improve scheduling decisions.

A second impact of the hybrid prediction model is to demonstrate the tradeo↵s for precise

and fast prediction. The time to make scheduling decisions is an important consideration,

especially when kernel runtimes are on the order of microseconds or milliseconds. Benefits

from a precise prediction can be lost if the time to make the prediction contributes significantly

to a decrease in throughput. The hybrid prediction model described in this dissertation has

demonstrated the ability to control the knob for prediction precision and speed.

The impact that runtime prediction provides to heterogeneous scheduling will change if

GPU kernel pre-emption and kernel migration are implemented into future devices, however

it will still provide important information to a scheduler. For example, migration will always
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incur overhead costs, and a scheduling decision that limits the amount of migration will

lessen the overhead, and have a positive impact on overall throughput.

8.1.3 Workgroup Level Granularity for GPU Scheduling

KernelMerge (Chapter 6) demonstrates the benefit of scheduling two GPU kernels with a

workgroup level granularity. Two kernels that tax separate architectural components of the

GPU can run concurrently and have the potential to complete faster than if each kernel

were run sequentially. The impact of workgroup level GPU scheduling goes beyond running

orthogonally bound kernels, however. Being able to schedule multiple kernels concurrently

may not always improve throughput for each kernel, however it could benefit a dynamic

heterogeneous scheduler that needs to schedule multiple applications. The scheduler described

in Chapter 5, for instance, would have greater scheduling flexibility if more than one kernel

could be scheduled onto a GPU. Furthermore, long-running and short-running kernels could

potentially be run concurrently, thereby enhancing the ability for a scheduler to ensure

that short running jobs are handled e�ciently. Finally, as operating system schedulers

already schedule multiple applications on one device at a time (generally through time-

slicing), integrating GPU scheduling into an OS scheduler will be easier with the ability to

concurrently run multiple GPU applications.

8.1.4 The Role of the Heterogeneous Scheduler

Heterogeneous scheduling can take on a variety of forms, both static and dynamic, and

from within individual applications, from a runtime separate from the operating system

itself, or from within the operating system. Arguably, the operating system has the best

information about system state and can provide the most precise scheduling, but current

OS schedulers are optimized for scheduling work across homogeneous processors and only

consider devices that are identical. This work demonstrates that a runtime scheduler for
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heterogeneous devices can complement the OS scheduler to make decisions that do take into

consideration information specific to a heterogeneous system.

This work can be directly integrated into an operating system scheduler. We expect that

this type of OS scheduler evolution is the next step in more throughly uniting CPUs and

GPUs in a single system. This could happen most e�ciently if GPU vendors collaborate

with OS vendors to consider hardware changes that would improve the integration, in much

the same way CPU and OS vendors worked together to make changes for better operating

system virtualization [Adams and Agesen, 2006]. For example, the ability to stop a GPU

process and to report on its current state or progress would drastically improve a scheduler’s

ability to predict when a device will become free. Likewise, being able to easily run multiple

kernels concurrently on a device, or to be able to migrate processes between heterogeneous

devices would improve load balancing.

8.2 Future Work

Dynamic heterogeneous scheduling will become even more critical in the next five to ten

years, as more developers take advantage of the general purpose capabilities of GPUs. More

applications will request the use of GPU resources, and therefore a method for dynamically

scheduling work for GPUs is imperative. Multicore scheduling became essential as single-core

computers disappeared from the marketplace; powerful GPUs are prevalent on computers

already, and processor heterogeneity will continue to proliferate on commodity computers

in the next decade. This work prompts continued exploration of heterogeneous scheduling

methods, and further investigation on increasing the general purpose utilization of all of the

processors, CPU and GPU, available in a system.

We will discuss two avenues for future work related to dynamic heterogeneous scheduling:

integration into operating system schedulers, and dynamic kernel merging for concurrent GPU
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kernels. We will also examine specific GPU features as announced by AMD and NVIDIA,

and will discuss the ramifications of future trends to the work in this dissertation.

8.2.1 Heterogeneous Scheduling in the OS Scheduler

As described in Section 8.1.4, many of the results of this dissertation could be integrated into

an operating system scheduler that is enhanced to include dynamic scheduling for GPUs as

well as CPUs. Mainstream OS schedulers (e.g., on Linux, Mac OS X, and Windows) only

schedule for homogeneous CPU systems. All scheduling for GPUs is done through GPU vendor

supplied drivers and is coordinated by individual GPGPU application developers. Although it

would entail considerable changes to current schedulers, and would almost certainly necessitate

substantial collaboration with GPU vendors, the possibility of a mainstream operating system

that could dynamically and automatically schedule work across CPUs and GPUs is the next

step in furthering GPGPU computing.

An OS scheduler that has the ability to schedule for all computing devices on a system

would significantly increase the worth of the GPU to an equipped system. Application

developers would be relieved of targeting for a specific device, although it is feasible to leave

the ability to preferentially target a GPU or CPU, with the understanding that the scheduler

would schedule dynamically based on the best device at the time. The OS scheduler would

deconflict contention among applications that would otherwise compete for a particular

device, allowing device utilization to improve across all devices.

As of May, 2012, both AMD and NVIDIA have indicated that they would welcome better

integration of GPU scheduling into next generation operating systems [AMD, 2012b; NVIDIA,

2012a]. Both vendors foresee a tighter fusion of task-based scheduling for heterogeneous

devices, and AMD has introduced the “Fusion System Architecture,” (FSA) which is a

task-based queuing model that they will implement in the future. In particular, they have

described FSA as having a task dispatch model that closely resembles the ideas we have

presented for our scheduler. Applications will send generic work to a scheduler, which will
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determine which of the available devices to run each task on, and will queue the work for

each chosen device. The decision about where to run the work can be determined using the

ideas we have presented in this dissertation, and e�cient task queueing will continue to be

an important research area.

8.2.2 Dynamic Kernel Merging for Concurrent GPU Kernels

Chapter 6 describes running concurrent GPU kernels at workgroup level granularity. The next

step in this work is to describe a prediction model that enables dynamic merging to increase

throughput for multiple kernels. One method that we have already done some preliminary

work on mimics the Bubble-Up characterization model described by Mars et al. for use in

warehouse scale computing systems [2011]. Bubble-Up measures the sensitivity of a CPU

application to memory system pressure, and also characterizes the contentiousness of the

application by how much pressure it places on the memory system. Likewise, a GPU version

of Bubble-Up would run concurrently with other GPU kernels to provide characterization

and sensitivity information. GPU Bubble-Up would stress the GPU memory system by

continuously reading from global memory, and using the KernelMerge, GPU Bubble-Up

could be tailored to produce a varying amount of memory pressure. “Bubble scores,” which

indicate how sensitive applications are to memory pressure, would be subsequently created for

individual applications. The bubble scores would indicate whether an application is memory

bound or compute bound, and could be integrated into a dynamic scheduler that would

concurrently run kernels that have orthogonal boundedness. The results from Chapter 6

demonstrate the promise that such a scheduler could improve throughput for a suitably

diverse set of GPU kernels.

8.2.3 GPU Trends and Heterogeneous Scheduling

Both AMD and NVIDIA have made recent announcements that include information about

their future plans for scheduling on their devices. This includes a greater ability for concurrent
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execution of independent tasks on a device, and the possibility of future devices that include

context switching and interrupt handling [AMD, 2012b; NVIDIA, 2012a]. These trends will

vastly improve the outlook for the conclusions we have drawn in this work; namely, having

the ability to schedule concurrent work on a GPU increases the possibility of better overall

device utilization, and higher task throughput. Furthermore, a scheduler that can request

task switching on a GPU has the potential to time-slice work sent to the device, although it

remains to be seen whether this is an optimal solution given the memory transfer overheads

we have described.

NVIDIA has released the first version of the Kepler line of discrete GPUs, which promise

the ability to have multiple CPU cores launch concurrent work on a GPU [NVIDIA, 2012b].

In a task-based queue scheduler like the one we present in chapter 5, being able to schedule

concurrent work for a device presents scheduling challenges beyond those that we discussed

in this dissertation. In order to maintain the fairness of the schedule as we have described

it, kernels must be carefully launched in order to guarantee that they will finish before they

would have if run on other devices in the system. Kernels that are concurrently scheduled

may be slowed down by virtue of running together, and therefore it will be more di�cult

to use runtime history to make scheduling predictions. However, overall task throughput

could be improved by concurrent scheduling, and more research would need to be completed

to make that determination. Our work on kernel boundedness for chapter 6 is particularly

applicable to the question of whether or not two or more kernels should be run concurrently

on a given device.

AMD has recently described their outlook on the future of what they call “Command and

Dispatch Flow” for heterogeneous scheduling in their Fusion System Architecture (FSA) [AMD,

2012b]. In their model, task scheduling is similar to what we have proposed and will employ

user-based task queueing that will be scheduled for available devices. Our work on dynamic

scheduling will remain relevant because their proposed model must make a determination on

which processors will run which tasks, as we discussed in chapter 5.
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