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Abstract:

Eukaryotic parasites, like the casual agent of malaria, kill over one million people
around the world annually. Developing novel antiparasitic drugs is a pressing need
because there are few available therapeutics and the parasites have developed drug
resistance. However, novel drug targets are challenging to identify due to poor genome
annotation and experimental challenges associated with growing these parasites. Here,
we focus on computational and experimental approaches that generate high-confidence
hypotheses to accelerate labor-intensive experimental work and leverage existing
experimental data to generate new drug targets. We generate genome-scale metabolic
models for over 100 species to develop a parasite knowledgebase and apply these
models to contextualize experimental data and to generate candidate drug targets.



 

Maureen Carey




M. A. Carey iii

Figure 0.1: Image from blog.wellcome.ac.uk/2010/06/15/of-parasitology-and-comics/.

Preamble: Eukaryotic single-celled parasites cause diseases, such as malaria, African
sleeping sickness, diarrheal disease, and leishmaniasis, with diverse clinical presenta-
tions and large global impacts. These infections result in over one million preventable
deaths annually and contribute to a significant reduction in disability-adjusted life
years. This global health burden makes parasitic diseases a top priority of many
economic development and health advocacy groups. However, e�ective prevention and
treatment strategies are lacking. Like most infectious disease problems, social, eco-
nomic, and biological challenges converge, amplifying the disease burden and slowing
the development of sustainable solutions. The work described here focuses on only one
facet of this complex problem: the biology of the parasite, specifically its metabolism,
during infection. However, this work broadly aims to increase our understanding
of these parasites directly by studying disease-relevant phenotypes and indirectly
by developing computational tools to study these organisms. Moreover, the tool
development presented in this dissertation aims to increase accessibility and usability
of computational biology tools and foster solutions sensitive to and compatible with
the social and economic environment in which these diseases are most serious.
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1 Introduction

In this introduction, I will contextualize the biological challenges associated with
translational parasitology research by focusing on the diseases and then on the causal
parasites. See Table 1.1 for select parasitic diseases, their causal parasite, and
statistics on global burden.

Table 1.1: Disease overview. Select diseases dicussed throughout this dissertation with causal parasite
and disease burden noted. See Chapter 2 for more on malaria, toxoplasmosis, and cryptosporidiosis.

Disease Causal parasite Deaths
annu-
ally

Endemic
regions

Vector/
Transmis-
sion

Interesting disease/
parasite features

Malaria Plasmodium 500,000 Tropics (3
billion people)

mosquitos Infection induces a
cyclical fever.

Leishmaniasis Leishmania 20,000 Nearly
worldwide (1
billion)

sandfly Parasite has a mutable
genome with frequent
polyploidy.

Crypto-
sporidiosis
(diarrheal
disease)

Cryptosporidium 50,000+ Worldwide (dis-
proportionally
in low-income
countries)

fecal-oral Infection without
diarrhea is associated
with impaired growth.

Toxoplasmosis Toxoplasma
gondii

few Worldwide fecal-oral Infection induces
behavioral changes in
smaller mammals.

Giardia
(diarrheal
disease)

Giardia few Worldwide fecal-oral Parasites have two
nuclei.

Amebiasis
(diarrheal
disease)

Entamoeba spp. 100,000+ Worldwide (dis-
proportionally
in low-income
countries)

fecal-oral Malnutrition increases
host susceptibility.

Disease control can be broken down into two major classes of e�orts: prevention
and treatment. To prevent serious infection, steps are taken to reduce exposure to the
disease-causing agent and/or to prevent exposure from causing symptomatic infection.
Chief among these are the development of vaccines to bolster immune recognition of
pathogens, reducing both transmission and ameliorating disease severity, and reducing
human contact with infected agents (such as insect vectors, contaminated water, and
contagious individuals) (Gubler 1998). Vaccination has the potential to be extremely
e�ective (e.g. malERA Consultative Group on Vaccines (2011)), as an e�ective vaccine
paired with a global vaccination program eradicated smallpox (Belongia and Naleway
2003) and this approach has eliminated polio from many parts of the world (Kew et
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al. 2005). Transmission blocking approaches include the use of bed nets to prevent
exposure to the bite of malaria-infected mosquitoes, insecticides to kill infected vectors,
and water chlorination (Gonçalves and Hunziker 2016). Insecticides specifically have
been invaluable to the reduction of mosquito (malaria), also to a certain extent, tsetse
fly (trypanosomosis) and sand fly (leishmaniasis) populations (“World Malaria Report
2017” 2017; Berg et al. 2012).

Few drugs exist for many of these diseases, drug resistance is common, and
many drugs have stage specificity, leaving patients with few treatment options. Thus,
the development of novel, e�ective therapeutics is a pressing need. Beyond the
economic challenges associated with antimicrobial development, antiparasitic drug
development is technically challenging for two primary reasons, namely, these parasites
are eukaryotes and are challenging to grow in vitro. To elaborate, unlike prokaryotic
pathogens, these parasites share many targetable features with their eukaryotic host
and/or vector. To overcome the similarity between host and pathogen, strategies
similar to the development of cancer therapeutics are necessary to minimize the
negative e�ects on host. Enzyme kinetics can be leveraged such that the drug targets
the pathogen’s weak points while remaining below the lethal dose for host (Haanstra
et al. 2017). Alternatively, selection of pharmacological treatment can synergize with
the host immune response (e.g. Bogdan et al. (1991) and Kumaratilake et al. (1997)).
For example, parasites must often survive high redox stress caused by host immune
cells; a secondary redox stressor (i.e. drug) can synergize with this host response.
Unique features like atypical organelles (e.g. Dahl et al. (2006)) can also be targeted
if identified (see Chapter 2).

Drug development itself is hampered by experimental challenges shared by many
eukaryotic pathogens. Chief among these challenges, many parasites have complicated
life cycles in one or more hosts. For example, the malaria parasites infect multiple
tissue types in host (primate, rodent, bird, or reptile) and vector (mosquito); all of these
stages are required for complete development. These diverse environmental conditions
are hypothesized to maintain redundancy in each parasite’s genome, as genes and
functions may only be utilized during some life cycles; thus, drug development must
focus on function, not merely presence, of essential genes.

Some parasite species have unique experimental challenges due to their genomic
traits and extreme host specificity. For example, P. falciparum, the most lethal
human malaria parasite, was considered refractory to genetic modification until
recently (Ghorbal et al. 2014; Lee and Fidock 2014) due to extremely low transfection
e�ciency. E. histolytica, a diarrheal pathogen, has also been refractory to e�cient
genetic manipulation; CRISPR technology was developed even later in this organism
(unpublished). The genomes of Leishmania, which causes ulcers, develop significant
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aneuploidy when under selective pressure due to genomic flexibility (Downing et
al. 2011; Sterkers et al. 2012). P. vivax, another human malaria parasite, and
Cryptosporidium, a major cause of diarrheal disease, have no long-term in vitro culture
systems (Baydoun et al. 2017). Although many of these challenges can be circumvented
with new technology, the use of clinical samples, and reductionist approaches, there
are minimal historic data for reference.

Because these parasites are challenging to study, there is a lack of historic
knowledge as well as profiling data (genome-wide essentiality screens, growth profiling
in diverse media conditions, etc.). Accordingly, we do not have the knowledge to
rationally design drugs. Untargeted and unbiased screens of chemical compounds for
antiparasitic e�ects have proven useful (Boyom et al. 2014; Van Voorhis et al. 2016)
but this approach makes predicting and understanding drug resistance and resistance
mechanisms challenging.

As a result, data collected in one organism are frequently extrapolated to infer
knowledge about another parasite, across and within genera. Trypanosomes and
Toxoplasma are frequently used as model organisms for other parasites due to their
experimental manipulatability. Mouse models of malaria and cryptosporidiosis are
caused by di�erent species than their human analogs. However, the modest charac-
terization of functional di�erences among parasite species limits the utility of this
extrapolation approach. The following chapters leverage comparative genomics and
modeling approaches to address these challenges. This dissertation aims to provide
tools for the study of these organisms and evaluation criteria to assess these tools, and
an investigation of antimalarial drug resistance using these tools.
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2 Background

In this chapter, I briefly discuss three genera of human pathogenic parasites. Specifi-
cally, I discuss the parasites that cause malaria, cryptosporidiosis, and toxoplasmosis,
including the diseases as well as transmission, prevention, and treatment. Additionally,
I discuss challenges associated with disease control and the history of the study of
metabolism for each organism. This discussion is intended to motivate the value of
studying these organisms for public health and some of the experimental challenges
that are addressed by the computational approaches in this dissertation. Most impor-
tantly, I would like the reader to appreciate the history of antiparasitic repurposing
and the lack of rigorous experimental comparison between parasite species.

2.1 Plasmodium

2.1.1 Malaria

Malaria remains a major public health burden around the globe with an estimated 216
million cases and 445,000 deaths in 2016 (Table 1.1; (“World Malaria Report 2017”
2017)). Human disease is caused by five species in the Plasmodium genus, falciparum,
vivax, malariae, knowlesi, and ovale;1 however, species of Plasmodium infect primates,
small mammals, birds, and reptiles as well (Aikawa, Hu�, and Sprinz 1969). Like
many parasitic infections, malaria is a vector-borne disease; it is transmitted by
female mosquitoes in the genus Anopheles. Although more than 70 species with a
world-wide spread can carry malaria (Sinka et al. 2012), malaria infection only occurs
frequently in Sub-Saharan Africa, South America, and Southeast Asia. In fact, 80% of
the global disease burden is carried in 14 countries in Sub-Saharan Africa and India
(“World Malaria Report 2017” 2017). The majority of malaria deaths occur in children
under the age of 5 years (“World Malaria Report 2017” 2017), as adults in endemic
regions develop protective immunity (Doolan, Dobaño, and Baird 2009). Despite this
observation, there is not yet a clinically available vaccine for malaria.

2.1.2 Transmission and Pathogenesis

Humans acquire malaria following the bite of an infected mosquito; parasites in the
mosquito’s salivary gland are injected into the skin along with its itch-inducing saliva
(Churcher et al. 2017). It takes as few as 1 parasite to cause disease, and a patient

1All citations in the following section reference research conducted in Plasmodium falciparum,
unless noted otherwise.



M. A. Carey 7

Figure 2.1: Malaria parasites require host and vector. Malaria is caused by Plasmodium parasites
and is spread by mosquitoes and human-to-human via vertical transmission. The parasites infect two
human tissues, first hepatocytes and then erythrocytes. Symptoms (including cyclical fevers and
anemia) occur during blood infection. The parasite can be targeted at any stage of its lifecycle, but
antimalarials most frequently target blood stage infection. The complete life cycle requires vector
and each of these host tissues. Image from http://www.jenner.ac.uk/about-malaria.

without immunity to the disease has a 60% chance of infection if bitten even once by
an infected mosquito with fewer than 100 parasites in its salivary gland (Churcher et al.
2017). Following injection into a human host, the parasite navigates to the liver and
replicates asexually rapidly in hepatocytes before replicating in red blood cells (Figure
2.1). Both the liver and blood-stage parasite replicate asexually; gametocytes form
from a small fraction of blood-stage parasites. The remainder of the parasite’s sexual
development occurs in the mosquito. The malaria parasites are obligate intracellular
organisms when in the vertebrate host (Figure 2.2), requiring a host cell both to
evade the immune system (Wright and Rayner 2014) and for nutritional support
(Allary et al. 2007).

It is during asexual blood stage infection that symptoms are observed and parasites
amplify from the thousands to the millions of cells. Mild Plasmodium infection confers
flu-like symptoms with a cyclical fever as parasites synchronously rupture their host
cells to invade neighboring cells (Kwiatkowski and Greenwood 1989; Garcia, Markus,
and Madeira 2001).2 As the parasite replicates in a red blood cell, it remodels the host

2Multiple Plasmodium species.
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Figure 2.2: Plasmodium falciparum. Five species cause human malaria, with Plasmodium falciparum
as the most lethal causative agent. Laboratory-adapted P. falciparum (BEI Resources, NIAID, NIH;
Plasmodium falciparum, strain IPC 5202/IPC 5202/MRA-1240) shown. Prior to imaging, cells were
fixed with methanol and stained with Giemsa stain for 15 min. Images were obtained on a Nikon
Eclipse Ci microscope (100x) using an Imaging Source microscope camera. Representative image
shown.

cell by building vesicular networks throughout the host’s cytoplasm (Cyrkla� et al.
2011; Grüring et al. 2011). This makes the host red blood cell less flexible (Nash et al.
1989) and facilitates the export of parasite proteins to the host cell surface (Trelka et
al. 2000), making the host cells cytoadhere to epithelial tissue (Su et al. 1995; Kyes
et al. 1999). These two changes make the infected host cell become sequestered in
small blood vessels (MacPherson et al. 1985; Ho and White 1999).

Severe infection is associated with systemic complications such as anemia, lactic
acidosis, hypoglycemica, and coma (Idro et al. 2010), in part due to this sequestration
of blood cells. Thus, these proteins, encoded by the var (Su et al. 1995), rifin (Kyes
et al. 1999), or STEVOR gene families (Niang, Yan Yam, and Preiser 2009), can be
viewed as virulence factors as they mediate cytoadherance (Magowan et al. 1988)
and facilitate immune evasion (Craig and Scherf 2001; Bull et al. 1998) via frequent
antigenic variation (Scherf et al. 1998).

2.1.3 Prevention and treatment

To prevent infection, transmission blocking tools are available. Both bed nets and the
use of insecticides are e�ective by preventing human exposure to infected mosquitoes
(“World Malaria Report 2017” 2017). Antimalarial drugs (Table 2.1) can be extremely
e�ective if the causal parasite has not developed resistance to the treatment. In addition
to alleviating symptoms and improving patient outcomes, antimalarial treatment also



M. A. Carey 9

e�ectively reduces circulating parasite burden, and thus reduces the likelihood of
vertical or mosquito-mediated transmission. Moreover, select antimalarial drugs can
be used as prophylaxis for travelers in malaria endemic regions (e.g. Overbosch et al.
(2001)).

However, no vaccine currently exists for malaria, although several have been
explored and one is in advanced clinical trials (RTS,S Clinical Trials Partnership
2015). The antigenic variation in Plasmodium surface protein expression mediates
the parasite’s immune evasion. The challenges associated with vaccine development
are exacerbated by parasite-host species-specificities (Vaughan et al. 2012). Mouse
models of malaria do not use the parasite species that infect humans; Plasmodium
berghei is used to model severe (falciparum) malaria and P. yoelli is used to model less
severe malaria, especially vivax malaria. Even humanized mouse models of disease do
not support the complete P. falciparum life cycle (Minkah, Schafer, and Kappe 2018).

To treat infection, antimalarial drugs are available and active against all human
infective species (Table 2.1). Combination therapies are used to slow the development
of resistance (Eastman and Fidock 2009). However, antimalarial drug resistance is
a pressing concern (discussed in the next section, Parasite biology and previous
research).

2.1.4 Parasite biology and previous research

Humans have co-evolved with the malaria parasites for thousands of years, but the
parasites themselves were first studied in 1880 (Cox 2010). In 1976, an in vitro culture
system was developed for the direct study and manipulation of one species of these
parasites (Trager and Jensen 1976). Since then, the Plasmodium parasites have moved
from “neglected tropical” to “major human” pathogen, with billions or millions of
dollars invested in disease control or research (respectively) each year (“World Malaria
Report 2017” 2017). As a result, significant progress has been made in characterizing
the parasites, despite some experimental challenges.

Plasmodium metabolic genes are better characterized than signaling pathways;
for example, PlasmoDB identifies 43 genes in the genome of P. falciparum 3D7
associated with the term ‘signaling’ as opposed to 1112 genes associated with the term
‘metabolism’ (Aurrecoechea et al. 2009), and many antimalarials target metabolic
functions (Fidock et al. (2000); Peterson, Walliker, and Wellems (1988); Phillips and
Rathod (2010); Siregar et al. (2015)3). Moreover, metabolism has been described as the
best-understood cellular process (Fuhrer et al. 2017), making interpreting metabolic

3Plasmodium berghei
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Table 2.1: Clinically available antiparasitic drugs for apicomplexans.

Class Drug Organisms

amino alcohols quinine Plasmodium

4-aminoquinolones chloroquine Plasmodium

4-aminoquinolones amodiaquone Plasmodium

antifolates pyrimethamine Plasmodium and Toxoplasma

antifolates proguanil Plasmodium

sulonamides sulphadoxine Plasmodium

amino alcohols mefloquine Plasmodium

antimalarial, others atovaquone Plasmodium and Toxoplasma

8-aminoquinolines primaquine Plasmodium

endoperoxides artemisinin (and others) Plasmodium

amino alcohols halofantrine Plasmodium

antibiotics doxycycline Plasmodium

antibiotics clindamycin Plasmodium and Toxoplasma

antifolates cycloguanil Plasmodium

antibiotics fosmidomycin Plasmodium

antibiotics tetracycline Plasmodium

antibiotics sulfadiazine Plasmodium and Toxoplasma

antiviral/thiazolides nitazoxanide Cryptosporidium (sometimes)

antibiotics azithromycin Cryptosporidium (sometimes)

analyses more tractable. Additionally, NCBI’s PubMed returns 21,218 hits when
searching ‘plasmodium metabolism’; although this number is inflated because several
human metabolic disorders are associated with protection from malaria (e.g. glucose-
6-phosphate dehydrogenase deficiency (Mbanefo et al. 2017)) or the direct result of
infection (e.g. lactic acidosis (Sasi et al. 2007)), it still far exceeds the number of hits
when searching ‘plasmodium vaccine’ (6027) or ‘plasmodium signalling’/‘plasmodium
signaling’ (1087). Thus, despite the poor annotation of the Plasmodium genomes
(Table 2.2), metabolism is well studied. We focus on metabolism of the parasite for
this reason and because many existing antimalarial drugs target metabolic functions.

Subcellular compartmentalization (i.e. organelles) facilitate organization of
metabolic functions (Figure 2.3). Plasmodium are known to have a nucleus, api-
coplast, mitochondria, food (or digestive) vacuole, Golgi apparatus, and endoplasmic
reticulum (Singh et al. 2007; Fairhurst et al. 2003). The parasite also has a few unique
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Table 2.2: Example genome statistics for three parasite genera. Each EuPathDB community (i.e.
CryptoDB or PlasmoDB) guides the gene identifier nomenclature for that database. Because there
has been no experimental system for the Crypotosporidium parasites, CryptoDB has not extensively
utilized the ’putative’ status as nearly genes remain untested and with putative function. ORFs =
open reading frames.

species strain genome
size
(mbp)

ORFs hypothetical
genes

genes
with

putative
function

genes
with

unknown
function

percent
hypo-
thetical
or
unknown

percent
puta-
tive

Plasmodium
falciparum

3D7 23.33 5712 6 2053 1964 34.5% 35.9%

Toxoplasma
gondii

ME49 65.67 8920 4285 729 1 48.0% 8.2%

Cryptosporidium
parvum

Iowa II 9.10 4020 0 8 1480 36.8% 0.1%

organelles involved in invasion of the host cell, collectively called the apical complex
(shared by all apicomplexans (Katris et al. 2014)). In the host red blood cell, the
parasite creates a parasitophorus vacuole in which it resides and a network of vesicles,
including the Maurers’ cleft and transvesicular network (Figure 2.3), involved in
protein secretion (Beck et al. 2014; Cooke et al. 2006) and nutrient acquisition (Lauer
et al. 1997). The nucleus, apicoplast, and mitochondria each host their own genome
(Gardner et al. (2002) and Aurrecoechea et al. (2009)4); although many genes that
function in the apicoplast and mitochondria are encoded in the nucleus (Waller et al.
1998).

The apicoplast of P. falciparum, and presumably other Plasmodium, is only
required for one function: to produce isopentenyl pyrophosphate (Yeh and DeRisi
2011). Isopentenyl pyrophosphate is used in the synthesis of ubiquinone and N-
glycosylated and prenylated proteins (Yeh and DeRisi 2011). Antimalarials like
fosmidomycin and antibiotics target this function in di�erent ways. Fosmidomycin
inhibits an upstream enzyme in isopentenyl pyrophosphate synthesis (Jomaa et al.
1999), and antibiotics inhibit the maintenance functions of the apicoplast (Dahl et al.
2006), rendering it nonfunctional. These maintenance functions (i.e. DNA replication
and protein synthesis) are mechanistically more similar to bacteria than to eukaryotic
cells (Kalanon and McFadden 2010; Lim and McFadden 2010), so antibiotics designed
to kill prokaryotes are e�ective against this organelle. Under antibiotic pressure
(like doxycycline) and in the presence of isopentenyl pyrophosphate supplementation,
parasites can evolve to lose their apicoplast genome and nuclear-encoded apicoplast

4Multiple Plasmodium species
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host red blood cell
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Figure 2.3: Compartmentalization in the malaria parasite. Relevant organelles in the malaria
parasite are labeled. Organelles with star (*) are included in the model, as well as an extracellular
compartment that describes all regions outside of the parasite, including the parasitophorous vacuole,
host cytoplasm, and host extracellular environment.
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genes localize elsewhere in the cell (Yeh and DeRisi 2011).

The Plasmodium apicoplast is home to steps in two other metabolic pathways:
both fatty acid and heme synthesis. Both pathways also have steps in the mitochondria
and cytosol. Enzymes in fatty acid synthesis have been explored as a drug targets
(Surolia and Surolia 2001)5 before discovering its nonessentiality in the blood stage
(Vaughan et al. 2009).6 Heme synthesis is also essential in some life stages of
Plasmodium and explored as a drug target (Surolia and Padmanaban 1992); however
it is not essential during the blood stage (Ke et al. 2014). It was previously assumed
that host heme (from hemoglobin) was not accessible to the parasite for its own
metabolic functions, but the parasites survival despite genetic knockdowns of heme
synthesis enzymes indicates that the parasite can scavenge some form of host heme
(Ke et al. 2014). Notably, these observations are host cell-dependent as reticulocytes
but not erythrocytes are able to synthesize heme; experiments in Ke et al. (2014)
were performed in erythrocytes where de novo heme synthesis does not occur but
hemoglobin degradation may provide free heme.

The confusion on whether the apicoplast contains high-quality drug targets high-
lights the frequent o�-target e�ects of enzyme inhibitors and the value of genetic
modification to validate pathway essentiality. Both the inhibitors for fatty acid syn-
thesis (triclosan) and heme synthesis (succinylacetone) must have o� target e�ects;
results of early inhibitor studies misled the field for years about the utility of targeting
these pathways chemotherapeutically. Thus, whenever possible, we discuss genetic
inhibition rather than pharmacologic inhibition in this dissertation. However, genetic
modification is quite challenging. Genome-wide essentiality screens have been per-
formed in Plasmodium berghei and falciparum, recently (Bushell et al. 2017; Zhang et
al. 2018), dramatically transforming malaria research. However, these resources are
not available for many parasites, especially the unculturable.

The mitochondria, however, is absolutely essential for Plasmodium growth; ac-
cordingly, several existing antimalarial drugs target enzymes in the mitochondria (e.g.
atovaquone/proguanil, novel DSM compounds). However, unlike many other eukary-
otic cells, mitochondrial function for energy production is not essential, at least during
the asexual blood-stage of parasite development (Painter et al. 2007). The electron
transport chain is essential in Plasmodium because dihydroorotate dehydrogenase is
necessary for de novo nucleotide synthesis (specifically, pyrimidines) (Gutteridge and
Trigg (1970)7; Reyes et al. (1982); Painter et al. (2007)). Moreover, these parasites
are glycolytic during the blood stage. Enzymes within the tricarboxylic acid cycle

5Multiple Plasmodium species
6Tested in Plasmodium yoelii only.
7Plasmodium knowlesi
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are nonessential (Ke et al. 2015) and, if dihydroorotate dehydrogenase is expressed
in the cytoplasm, the electron transport chain is nonessential (Painter et al. 2007).
As a result, Plasmodium are distinctly tumor-like, and not surprisingly proposals to
repurpose antimalarials (specifically, artemisinin (Zhou, Li, and Xiao 2016; E�erth and
Oesch 2004; Das 2015)) as anticancer chemotherapies and vice versa (i.e. trimetrexate
or methotrexate (Nzila et al. 2010; Kiara et al. 2009)) have been explored.

Table 2.3: Non-inclusive experimentally characterized metabolic requirements or auxotrophies.
Cryptosporidium data is genetically, not experimentally, derived.

Genus Amino acids Nucleotides Lipids Other

Plasmodium isoleucine purines ? biotin, riboflavin,
riboflavin

Toxoplasma tryptophan,
arginine

purines ? riboflavin,
thiamine

Cryptosporidium all all ?, lipoic acid folates, thiamine
diphosphate,
pyridoxal
phosphate

Plasmodium have a number of other unique metabolic features, such as an
auxotrophy for isoleucine (Martin and Kirk (2007), see Table 2.3 for others), a
dependency on purine scavenging, using ubiquinone-8 rather than ubiquinone-10
(Skelton, Rietz, and Folkers 1970; Rietz et al. 1967)8, and significant redundancy
between metabolite scavenging and de novo synthesis (e.g. polyamines, and cholesterol).
The blood-stage parasite also scavenges many amino acids from the host cell, both
by direct import and via hemoglobin. The host red blood cell (erythrocytes for some
species and reticulocytes for others) contains a large amount of hemoglobin; it is
postulated that parasite digestion of hemoglobin in its food vacuole occurs both to
make physical space for the parasite in the host cell (Krugliak, Zhang, and Ginsburg
2002) and to supply the parasite with heme and amino acids. Heme, however, is toxic at
high concentrations and is detoxified through three known mechanisms: polymerization
into hemozoin crystals, detoxification through interactions with hydrogen peroxide in
the food vacuole, and a glutathione-mediated degradation process in the cytoplasm
(Francis, Sullivan, and Goldberg 1997; Sigala and Goldberg 2014; Zhang, Krugliak,
and Ginsburg 1999; Loria et al. 1999). Hemozoin crystallization is often thought to
be the primary mechanism of heme detoxification as hemozoin can be seen in blood
culture and patient blood smears; in fact, the antimalarial drug chloroquine binds to
the growing ends of hemozoin crystals, preventing crystallization and detoxification
(Sullivan et al. 1996; Pagola et al. 2000). However, between a third and 95% of

8Multiple Plasmodium species
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heme released from hemoglobin is sequestered into hemozoin, suggesting that some
is detoxified through alternative, less well characterized mechanisms (Loria et al.
1999; Nagababu, Chrest, and Rifkind 2003; Combrinck et al. 2002). Additionally,
environmental factors might influence which mechanisms are used, as studies find very
di�erent values for the percent of heme crystallization. Moreover, Plasmodium uses
only about 16% of the amino acids derived from hemoglobin (Krugliak, Zhang, and
Ginsburg 2002); together these observations indicate much is still uncharacterized
about hemoglobin digestion.

In addition to chloroquine, another antimalarial drug, artemisinin, interferes with
hemoglobin digestion (Pandey et al. 1999). Unfortunately, the mechanism of action
of artemisinin is not as clear as with chloroquine. Artemisinin in combination therapy
is the current frontline antimalarial treatment, as it is highly e�ective against wild
type parasites. In addition to interfering with hemoglobin digestion, artemisinin is
known to have wide ranging e�ects including the generation of free radicals (Klonis
et al. 2011; Juan Wang et al. 2010; Meshnick 2002; E�erth and Oesch 2004) that
damage DNA, alkylate heme and proteins, and induce lipid peroxidation. Additionally,
artemisinin depolarizes the parasite mitochondrial membrane potential (Antoine et al.
2014; Li et al. 2005) and potentially inhibits PfATP6 (an ortholog of the ER calcium
pump SERCA (Eckstein-Ludwig et al. 2003; Arnou et al. 2011)). Artemisinin also
seems to specifically target the parasite as it first invades the host cell as parasites are
halted in that life stage upon treatment (Cheng, Kyle, and Gatton 2012; Klonis et
al. 2013; Mok et al. 2011; Teuscher et al. 2010; Witkowski et al. 2010). Resistant
parasites, however, will survive this cell cycle disruption, called dormancy (Peatey et
al. 2015; Codd et al. 2011; Teuscher et al. 2010).

Artemisinin resistance is established in Southeast Asia (Ashley et al. 2014;
Miotto et al. 2015; Straimer et al. 2015); in that part of the world, P. falciparum
is the dominate malaria parasite species (“World Malaria Report 2017” 2017). The
artemisinin resistance phenotype is correlated with mutations in the P. falciparum
Kelch13 gene (Ashley et al. 2014; Miotto et al. 2015; Ariey et al. 2014; Brown et
al. 2015). PfKelch13 mutations e�ect phosphoinositide 3-kinase (PI3K) signaling
(Miotto et al. 2015; Straimer et al. 2015; Kamau et al. 2015; Isozumi et al. 2015)
because PfKelch13 facilitates the ubiquitination of PI3K and thus mutated PfKelch13
stabilizes PI3K protein, leading to increased phosphoinositide 3-phosphate (Mbengue
et al. 2015). Higher phosphoinositide 3-phosphate results in artemisinin resistance via
unknown mechanisms (Mbengue et al. 2015). However, PfKelch13 mutations alone
do not confer resistance in vitro (Breglio et al. 2018; Siddiqui et al. 2017) and clinical
resistance occurs without these mutations (Mukherjee et al. 2017).
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2.1.5 Challenges

While the incidence rate of malaria has decreased by 18% globally between 2010
to 2016 (“World Malaria Report 2017” 2017), incidence of infection has increased
since 2014 highlighting challenges associated with malaria control (Figure 2.4 from
(“World Malaria Report 2017” 2017)). Eradication of the disease is unlikely due to
the lack of vaccine and the prevalence of multidrug resistance (to insecticides and to
antimalarial treatment, shown in Figure 2.5 from McClure and Day (2014)).

This dissertation will focus on antimalarial resistance. Because only one new
antimalarial drug is in the clinical pipeline with a novel mechanism, the need for
novel antimalarial drugs and combination therapies is pressing. However, it is also
possible to leverage the weaknesses of antimalarial resistant parasites to develop
therapeutics. Broadly, I aim to gain a new perspective on resistance by viewing
it through a ‘metabolic lens’. By characterizing the metabolic shifts that occur in
association with resistance, we can begin to understand more about what it takes to
support new functions, such as novel survival signaling, drug detoxification, or stage
alterations in resistant parasites. Once we identify these compensatory changes, we
can target them.

2.2 Toxoplasma gondii

2.2.1 Toxoplasmosis

Unlike Plasmodium, Toxoplasma gondii has high global prevalence with few fatalities.
Between 4-84% of women of childbearing age are seropositive for Toxoplasma, with
prevalence varying by country (Flegr et al. 2014). Toxoplasma is most frequently
detected in immunocompromised or pregnant patients, as infection is asymptomatic
in immunocompetent individuals. Acute infection is associated with flu-like symptoms
(McAuley 2014) and the parasite is transmitted through contaminated food or water,
vertically from mother to fetus, or via exposure to infected animals (Hill and Dubey
2002). Vertical transmission can be extremely dangerous (like Plasmodium) and, in
the United States, congenital infection occurs between 1/3000 to 1/10,000 live births
(McAuley 2014). In addition to the immunocompetence of the host, pathogenicity of
T. gondii varies with parasite genetic background (Hill and Dubey 2018). Potential
neurologic symptoms associated with infection have highlighted Toxoplama in pop
science; preliminary research has implicated that host behavior shifts during chronic
infection, making hosts less risk averse or at increased risk of mood disorders.
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Figure 2.4: Trends in malaria incidence. Percentage change in malaria case incidence rate globally
and by WHO region, 2010–2016 and 2014–2016. Image from the World Health Organization’s World
Malaria Report
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Figure 2.5: Drug resistance has emerged to every antimalarial on the market. Like the trends
observed in antibiotic resistance (bottom), parasites have developed resistance to every antimalarial
drug. Colored bars indicate introduction of a clinically approved antimalarial. Color changes to
indicate when resistance was observed. Treatment e�cacy sometimes persists after first observation
of resistance (indicated by faded bar). Bar ends when the drug is no longer recommended for use.
Figure from McClure and Day, 2014

2.2.2 Transmission and Pathogenesis

Toxoplama has an interesting life cycle. Although cats are the parasite’s definite host,
many mammals including humans can be infected (Hill and Dubey 2018). T. gondii
can also promiscuously invade many di�erent cell types. As a result, rapid replication
throughout the body leads to a robust host immune response characterized by the
production of IFN-gamma (Lieberman and Hunter 2002). In an immunocompentent
host, the infection will be cleared quickly or the parasite can become dormant with
recurrent reactivation of infection over time; this is called chronic infection. Dormant
parasites can reside in a diverse set of tissues including skeletal and cardiac muscle,
the brain, and eye, as well as (less frequently) the lungs, liver, and kidneys (Hill and
Dubey 2018), and these cysts can reactivate, causing recurrent acute infection later in
life. In an immunocompromized host, encephalitis is common (Randall and Hunter
2011). Lastly, in a pregnant host, the fetus can become infected causing birth defects
or miscarriage; how the parasite invades the placenta is unknown (McAuley 2014).

2.2.3 Prevention and treatment

Despite the lack of a vaccine, prevention of toxoplasmosis is e�ective as the transmissible
stage of the parasite is easily killed and avoidable. Specifically, the transmissible stage
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is very sensitive to temperature change so cooking or freezing contaminated water or
meat will prevent transmission (Hill and Dubey 2018). Additionally, interaction with
infected animals can be avoided by at-risk individuals, such as the immunocompromised
or pregnant (Hill and Dubey 2018). Acute infection is treated with antiparasitic drugs,
such as atovaquone or other repurposed antimalarials (Table 2.1), but subclinical
infections involving dormant parasites cannot be treated (Hill and Dubey 2018).

2.2.4 Parasite biology and previous research

Like the Plasmodium parasites, Toxoplasma gondii is an apicomplexan eukaryotic
parasite, meaning the genera are phylogenetically related and both use an apical
complex for invading a host cell. Toxoplasma also has the rare nonphotosynthetic
plastid called an ‘apicoplast.’ Unlike Plasmodium, however, T. gondii can invade
most nucleated cells in warm-blooded animals (Blader and Koshy 2014), including in
immortalized human foreskin fibroblasts (Sidik et al. 2016). This growth promiscuity
makes T. gondii comparatively easy to grow in laboratory culture and, as a result,
Toxoplasma cell biology, and metabolism specifically, has been well studied. For
example, NCBI’s PubMed returns 7,587 hits when searching ‘toxoplasma metabolism’;
additionally, the genome has been better annotated than other parasites (Table 2.2).

There are many similarities in Plasmodium and Toxoplasma metabolism. For
example, the apicoplast is essential for T. gondii survival (Fichera and Roos 1997) and
contains the same metabolic pathways as the Plasmodium apicoplast. The apicoplast in
Toxoplasma also houses enzymes involved in heme biosynthesis (Ralph et al. 2004) and
fatty acid synthesis (McLeod et al. 2001). However, it has not been determined that
isopentenyl pyrophosphate synthesis is the sole essential function in the Toxoplasma
apicoplast like in Plasmodium (Yeh and DeRisi 2011).

In the mitochondria, Toxoplasma gondii has both the de novo and salvage
pathways for select pyrimidines (Hortua Triana et al. 2016); however de novo synthesis
is required for virulence (Fox and Bzik 2002). Thus, the antimalarial atovaquone,
which targets an enzyme in the electron transport chain necessary for pyrimidine
synthesis, is also e�ective against toxoplasmosis (Meneceur et al. 2008; McFadden et
al. 2000). The parasite is auxotrophic for purines and must salvage them from the host
(Chaudhary et al. 2004). T. gondii is also auxotrophic for tryptophan (Sibley, Messina,
and Niesman 1994) and arginine (Fox, Gigley, and Bzik (2004); see Table 2.3 for
others). Similar to Plasmodium, T. gondii has maintained redundant biosynthesis and
de novo synthesis pathways for many essential metabolites, like cholesterol (Coppens
and Joiner 2001), lipoic acid (Crawford et al. 2006), and sphingolipids (Pratt et al.
2013). Unlike Plasmodium however, Toxoplasma actively uses the tricarboxylic acid
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cycle during acute infection (MacRae et al. 2012) and it is essential (Fleige et al. 2008;
Sidik et al. 2016).

2.2.5 Challenges

Principle challenges to reduce toxoplasmosis burden are (1) the parasite’s broad
host range facilitates a large reservoir of parasites and (2) chronic and recurrent
disease associated with a dormant parasite phenotype. However, toxoplasmosis is a
preventable and largely treatable disease, easily studied in vitro and in natural in vivo
models of disease.

2.3 Cryptosporidium

2.3.1 Cryptosporidiosis

Cryptosporidium parasites inflict a major global health burden as a leading cause of
enteric disease (Platts-Mills et al. 2015). Beyond diarrheal infection, both symptomatic
and subclinical infections result in growth stunting and neurodevelopmental delay
(Steiner et al. 2018). Cryptosporidiosis and malnutrition coexist in a vicious cycle:
infection induces malnutrition (Korpe et al. 2016) and malnutrition is a risk factor for
diarrheal disease (Liu et al. 2016).

2.3.2 Transmission and Pathogenesis

Cryptosporidium parasites are most frequently transmitted via the fecal-oral route
and often through contaminated water because the transmissible stage is chlorine
resistant (Korich et al. 1990). Like Plasmodium and Toxoplasma, these parasites
have a complex life cycle with both asexual and sexual replication. However, this
entire cycle occurs in the host’s gut. Once the parasite has invaded host gut tissue,
symptomatic infection presents with gastroenteritis, including severe watery diarrhea
(Bouzid et al. 2013). Specific virulence factors are not known due to the lack of
experimental manipulatability of the parasite, but di�erent isolates are associated
with variable symptoms such as intestinal villus blunting; how much of this variability
is parasite or host-derived is unknown (Medema et al. 2009; Sayed et al. 2016).
Disease in immunocompetent individuals is self-limiting (2-3 weeks), but children
or immunocompromised individuals can become extremely dehydrated (Bouzid et
al. 2013). Surprisingly, even subclinical infection is associated with negative patient
outcomes in developing countries. Specifically, Cryptosporidium infection in children
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is associated with growth stunting and neurodevelopmental delay and the mechanism
of pathogenesis is not understood (Schnee et al. 2018; Steiner et al. 2018).

2.3.3 Prevention and treatment

Unfortunately, both prevention and treatment of cryptosporidiosis remain challenging.
No vaccine exists for this disease (Sparks et al. 2015) and the transmissible stage of
the parasite is resistant to chlorine treatment, making contaminated water a major
mode of transmission (Korich et al. 1990). Importantly, the currently available drugs
(nitazoxanide and azithromycin, Table 2.1) are ine�ective in the most vulnerable
populations (Sparks et al. 2015).

2.3.4 Parasite biology and previous research

Very limited data exists for these parasites due to the historic lack of in vitro culture
system. Several experimental systems using organoids have been developed in the past
year, but neither have been reproduced (Heo et al. 2018; Baydoun et al. 2017). Thus,
what is known about Cryptosporidium is inferred from the genome and orthologous
enzymes. Although the Cryptosporidium parasites are apicomplexans, they do not
have an apicoplast like Plasmodium or Toxoplasma (Abrahamsen et al. 2004; Xu
et al. 2004). Thus, the functions typically associated with this organelle, like fatty
acid and heme synthesis are thought to occur in the cytoplasm for these parasites
and are catalyzed by nonorthologous enzymes (Abrahamsen et al. 2004; Xu et al.
2004). Cryptosporidium do have a mitochondria, but it lacks a mitochondrial genome
(Abrahamsen et al. 2004; Xu et al. 2004). The genomes lack enzymes from the
tricarboxylic acid cycle and electron transport chain, and are accordingly thought to
be glycolytic (Abrahamsen et al. 2004; Xu et al. 2004). Thus, energy metabolism is
functionally similar to the blood-stage Plasmodium parasites.

Unlike Plasmodium, Cryptosporidium genomes do not encode any pyrimidine
synthesis enzymes and, therefore, are assumed to scavenge host pyrimidines and
purines for growth (Hyde 2008); thus, the adaptation of antimalarials like atovaquone
to treat cryptosporidiosis is not possible as with toxoplasmosis (Table 2.1; Giacometti,
Cirioni, and Scalise (1996)). Cryptosporidium genomes also do not contain any genes
encoding genes involved in folate synthesis (Hyde 2008), unlike Plasmodium and
Toxoplasma which both contain these genes and have been shown to synthesize and
import folates (Salcedo-Sora et al. 2011; Metz 2007; Massimine et al. 2005; Aspinall
et al. 2002). Accordingly, Cryptosporidium would not be sensitive to antimalarial
drugs that target folate synthesis (Table 2.1).
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Cryptosporidium parasites cannot synthesize amino acids de novo and encode
many amino acid transporters (Abrahamsen et al. 2004; Xu et al. 2004). See Ta-
ble 2.3 for other known metabolic auxotrophies of Cryptosporidium. Interestingly,
Cryptosporidium has laterally acquired several enzymes from neighboring gut bacteria,
including tryptophan synthase B, which converts serine to tryptophan (Sateriale and
Striepen 2016). This prokaryote-derived enzyme allows bacteria to tolerate a host im-
mune response, specifically tryptophan starvation via IFN-gamma-mediated conversion
of tryptophan to kyurenine, and might serve a similar role in Cryptosporidium survival
(Sateriale and Striepen 2016). Additionally, these parasites have acquired inosine
5’-monophosphate dehydrogenase and thymidine kinase via lateral transfer; these
enzymes mediate the conversion of nucleotides from scavenged precursors (Sateriale
and Striepen 2016; Huang et al. 2004).

2.3.5 Challenges

Challenges associated with cryptosporidiosis control are numerous. First, disease
surveillance is challenging. Diarrheal disease goes unreported as surveillance is often
conducted through hospitals (e.g. Saluja et al. (2014)). Thus, many less severe cases
are not reported. Additionally, it is challenging to pinpoint the causal pathogen in
many diarrheal episodes (Platts-Mills et al. 2015). Many other diarrheal pathogens
are spread by the same transmission mechanisms and, thus, coinfection is common in
developing nations (Platts-Mills et al. 2015). Without understanding the scope of
transmission or the burden of disease, it is challenging to unroll e�ective prevention
and treatment campaigns. Second, no drugs are approved for vulnerable populations
(Sparks et al. 2015).

Lastly, there are poor experimental systems for interrogation of the parasite
and thus very limited data exists. There is no in vitro culture system for any
Cryptosporidium species (Baydoun et al. 2017); e�cient genetic and pharmacologic
inhibitor screens for drug development cannot be performed without a culture system.
Additionally, the historic models of disease, C. parvum in a protein deficient mouse
(Liu et al. 2016) or in an immunocompromised mouse (i.e. Mead et al. (1991)) fail to
replicate features of disease, such as a self-clearing infection. Thus, the potential drug
targets against the parasite as well as much of the immune response to cryptosporidiosis
remain uncharacterized. However, both a novel natural model of cryptosporidiosis
is now available (unpublished, using Cryptosporidium tyzzeri) and an organoid-based
(‘mini gut’) culture system (Heo et al. 2018) have been developed recently. These
new technologies have the capacity to accelerate biological characterization of these
important human pathogens and drug development.
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2.4 Project motivation and shared challenges

Plasmodium, Toxoplasma, and Cryptosporidium parasites kill patients around the world
despite there being multiple treatment options for each infection. Novel therapeutics
are still necessary because (1) antiparasitic drugs have stage-specificities, meaning
they cannot target all stages of a parasites development (i.e. they may not cure
infection), (2) the parasites have evolved drug resistance, rendering old drugs useless,
and (3) some treatment options cannot be used in children or pregnant women, a
large proportion of the vulnerable patients. Novel therapeutics are challenging to
identify because (1) parasite genomes are poorly annotated, especially regarding
unique features of parasites, (2) many Plasmodium species and all Cryptosporidium
species cannot be grown in vitro preventing the use genetic or inhibitor screens, and (3)
immunological therapeutics cannot be extrapolated across parasite and host species,
slowing vaccine and immunotherapy development. Thus, we focus on computational
and experimental approaches that generate high-confidence hypotheses to accelerate
labor-intensive experimental work and leverage existing experimental data to combat
parasitic diseases.



Chapter 3: Building a parasite
knowledgebase

The work presented in this chapter was augmented by the work of two coauthors,
Gregory Medlock and Ana Untariou. Specifically, Gregory Medlock assisted
with adapting analyses to a high-performance computing environment and Ana
Untariou curated the Plasmodium falciparum 3D7 metabolic reconstruction
regarding glutathione-dependent heme degradation.

24
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3 Building a parasite knowledgebase

Modeling approaches, such as genome-scale metabolic modeling, highlight knowledge
gaps, generate high-confidence data-driven hypotheses, and contextualize sparse data.
Genome-scale metabolic models are built from genomic data and by inferring function
to complete or connect metabolic pathways; these reconstructions are supplemented
with functional genetic and biochemical studies. These models represent our best
understanding of an organism’s biochemistry and cell biology, and failed predictions
illuminate knowledge gaps or unappreciated experimental complexities. Here, we focus
on the construction of parasite genome-scale metabolic models from genetic data to
develop a parasite knowledgebase, Parasite Database for Genome-scale metabolic
Models (referenced as Paradigm) and the application of this knowledgebase to better
utilize existing experimental data and for drug development.

3.1 Synopsis

Experimentally tractable model organisms are used to interrogate disease and parasite
phenotypes, but characterization of functional di�erences between parasite species is
limited to post hoc and single target studies. Each parasite genome encodes unique en-
zymes; however, it is unclear whether these di�erences arise from divergent metabolism
or incomplete genome annotation. To address this challenge, we generated metabolic
reconstructions from 162 parasite genomes; with these 162 metabolic reconstructions,
representing 38 genera and 111 species, we compare metabolic capacity, gene es-
sentiality, and pathway utilization. All parasite genomes encode unique metabolic
functions, regardless of genome size, and parasites within the same genera tend to have
similar network topology overall. Host cell type is associated with genetically-encoded
transport ability from the extracellular environment to the parasite cytoplasm as well.
Lastly, we highlight di�erences in kinase reactions among reconstructions and the
potential e�ect on antiparasitic inhibitor screens.

3.2 Background

Data collected in one eukaryotic pathogen are frequently extrapolated to infer about
another parasite, across and within genera. For example, model in vitro systems or
in vivo systems, like mouse models of disease, are frequently used due to enhanced
experimental manipulability. However, characterization of functional di�erences among
parasite species is limited to post hoc and single target studies, limiting the utility
of this extrapolation approach. To address this challenge, we generated metabolic
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reconstructions for 162 genomes to serve as a knowledgebase for each parasite and to
leverage comparative functional genomic approaches. These 162 genomes represent 111
species in the Plasmodium, Toxoplasma, Cryptosporidium, Entamoeba, Trypanosoma,
Leishmania, and Giardia genera, and include all publically available genomes for human
eukaryotic pathogens. We identify similarities and di�erences in gene essentiality and
pathway utilization; this knowledge facilitates comparison of experimental findings.
Using this approach, we can improve genome annotation, identify species-specific
functions, interpret experimental results, and optimize selection of an experimental
system for fastidious species.

3.3 Methods

All analytic code is available on my GitHub page, see Appendix. R (R Core Team
2017) and R packages tidyverse, ggdendro, seqinr, Biostrings, msa, and reshape2 were
used for data processing and analysis (Wickham 2017, 2012; Vries and Ripley 2013;
Charif and Lobry 2007; Pages et al., n.d.; Bodenhofer et al. 2015). For visualization
of annotation similarity, we also used the package UpSetR (Gehlenborg 2017) and
ggdendro (Vries and Ripley 2013). Python 3.6.4, pandas, CobraPy 0.13.0 (Ebrahim et
al. 2013), and select code from CarveMe (Machado et al. 2018) and Memote (Lieven
et al. 2018) were used for genome-scale metabolic modeling.

Genomic Analyses: Genomes and amino acid sequences were obtained from
EuPathDB release 38 (Aurrecoechea et al. 2017). EuPathDB curates and compiles
genome annotation for all genomes hosted by the database. Genome annotations
are defined here as the identification of open reading frames through bioinformatic
and experimental approaches followed by the mapping of these open reading frames
to functional annotations, if possible. We used the open reading frames identified
on EuPathDB and supplemented EuPathDB functional annotations with de novo
Diamond annotations, described in the next paragraph. EuPathDB’s OrthoMCL was
also used for mapping orthology between Plasmodium species. In brief, orthology was
mapped within each EuPathDB database by the ‘map by orthology’ tool from the
genome of each organism with a curated reconstruction to all other genomes within
that database. The search protocol was ‘new search > genes > taxonomy > organism
[pick] > transform by orthology’.

We mapped each organism’s amino acid sequences using Diamond annotation
(Buchfink, Xie, and Huson 2015) against proteins referenced in the BiGG databases
(King et al. 2016) or against protein sequences obtained from OrthoMCL, part of
EuPathDB that contains orthologous groups of parasite genes (Li, Stoeckert, and Roos
2003). Diamond is a similar approach to BLAST, with sensitive and fast performance
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Figure 3.1: Metabolic modeling. Genome-scale metabolic models are build from an organism’s
genome. Open reading frames are annotated and mapped to enzymes. Enzymes are mapped
to metabolic reactions, which are compiled into a metabolic reconstruction. This is represented
mathematically such that linear optimization and mathematical constraints can be applied. This
framework allows us to explore the metabolic capacity of an organism and to generate predictions
about metabolic functions. Figure adapted from Medlock, Gregory Leonard, Maureen A. Carey,
Dennis G. McDu�e, Michael B. Mundy, Natasa Giallourou, Jonathan R. Swann, Glynis Kolling, and
Jason A. Papin. Metabolic mechanisms of interaction within a defined gut microbiota. *bioRxiv*
(2018): 250860.

on protein annotations (Buchfink, Xie, and Huson 2015).

Model Generation: We generated draft reconstructions (Figure 3.1) by first
annotating each organism’s amino acid sequences, obtained from EuPathDB (Aur-
recoechea et al. 2017), using Diamond annotation (Buchfink, Xie, and Huson 2015)
against proteins referenced in the BiGG databases (King et al. 2016). We next
mapped all functional annotations to reactions contained in the BiGG database (King
et al. 2016), inspired by the approach conducted with the reconstruction pipeline
CarveMe (Machado et al. 2018). Detailed methods are included in the analytic code
hosted on my GitHub page, see Appendix.

Unlike the CarveMe approach (Machado et al. 2018), we included all high-scoring
reactions. Rather than maximizing the number of high-scoring hits included in the
network to build a functional network, we added all reactions identified via orthologous
genes to draft models. This conservative approach generates broadly inclusive, but
incomplete reconstructions (i.e. that are not able to produce biomass until gapfilled,
see Chapter 7.2.1). However, this approach added redundant reactions from multiple
di�erent compartments (e.g. peroxisome, mitochondria, and cytosol) so all reaction
versions other than the cytosolic version were pruned unless contained in a relevant
compartment. Relevant compartments are defined in Table 3.1 (see also Figure 2.3);
for genera not included in Table 3.1, only the cytosol and extracellular space were
used. For example, if a Plasmodium reconstruction contained a reaction in the cytosol,
mitochondria, and chloroplast, only the cytoplasmic and mitochondrial versions would
be kept.
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Table 3.1: Subcellular compartments by genus.

Species/Database Compartments

BiGG database cytosol, extracellular, mitochondria, nucleus, lysosome, chloroplast, golgi,
vacuole, endoplasmic reticulum, peroxisome/glyoxysome, flagellum,
periplasm, thylakoid, thylakoid membrane, cytosolic membrane,
carboxyzome, intermembrane space of mitochondria, eyespot, unidentified

Plasmodium cytosol, extracellular, mitochondria, apicoplast, food vacuole

Leishmania cytosol, extracellular, mitochondria, kinetoplast, glycosome

Cryptosporidium cytosol, extracellular, pseudomitochondria

Toxoplasma cytosol, extracellular, mitochondria, apicoplast

Giardia cytosol, extracellular

Entamoeba cytosol, extracellular

All else cytosol, extracellular
Note:

Note: the BiGG database contains prokaryotes and eukaryotes.

Following this step, a large percentage of each reconstruction’s reactions remained
in unsupported compartments as there was no analogous cytosolic reaction. Thus,
reactions only found in an unsupported compartment were moved to the extracellular
space or cytosol; specifically, periplasmic metabolites were moved to the extracellular
space and all internal subcompartment metabolites were moved to the cytosol. How-
ever, this step removed all reactions that summarized a transport reaction from the
extracellular space to periplasm or from the cytosol to subcompartment. Note, the
extracellular compartment of the model corresponds to the parasitophorous vacuole
space contained within the host cell for intracellular parasites (i.e. Plasmodium,
Toxoplasma, Cryptosporidium) and the host serum for extracellular parasites (i.e.
Trypanosoma in vitro).

Manual Curation: We performed brief manual curation from literature sources,
building on our curation conducted in (Carey, Papin, and Guler 2017) and presented
in Chapter 4. Table 3.2 contains all modifications resulting from our literature
review; see code for implementation. Networks were manually curated with 8 types of
modifications to improve our Plasmodium falciparum reconstruction iPfal17 (Carey,
Papin, and Guler 2017); this manual curation (combined with automated curation
conducted in Chapter 6.2.2) generated a new model, named iPfal18. In brief, we
incorporate experimental evidence collected from the literature, leveraging in vitro
experiments. For example, if no gene supports import of metabolite X, but media
supplementation of metabolite X rescues inhibition of de novo synthesis of metabolite
X, we added a transporter. For more information, see Chapter 4. Because manual
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curation can (and should) be conducted on all models presented in this chapter, we
present the majority of the curation process in detail in the next chapter (Chapter
4) to demonstrate the canonical modeling workflow (also visualized in Figure 3.2A
and B).

Table 3.2: Manual modifications to our draft recontructions.

Model Modification

iPfal17 switch _D_ to __D_ to be BiGG compatible

iPfal17 update metabolite identifiers to be BiGG compatible

iPfal17 update gene IDs to newest PlasmoDB nomenclature

iPfal17 updated reaction IDs to be BiGG compatible

iPfal17 remove reaction (hcys_ex) because it is a duplicate with ’EX_hcys___L_e’

iPfal17 added necessary exchange reactions

iPfal17 added glutathione-dependent heme degradation

iPfal17 added H2O2 production by hemoglobin degradation

Automatic curation: We developed a novel automated curation approach
using orthologous transformation, similar to the approach taken by Abdel-Haleem
et al. (2018). This approach leverage the curation conducted in one organism for
closely related organisms. We applied this approach to all Plasmodium reconstructions
(generated using Diamond annotation to the BiGG database, see Figure 3.2A)
using iPfal18 (Figure 3.2B, see Chapter 4). We first mapped orthology of P.
falicparum to each other Plasmodium species to build an orthology thesaurus (Figure
3.2C). We then added genes and associated reactions from iPfal18 if there was
an orthologous gene in the target species’ reconstruction (Figure 3.2D) resulting
in a mean 42 genes added (SD = 10.38) and a mean 113 reactions added (SD =
4.14) to the draft reconstruction (Table 3.3). Notably, this approach facilitates the
compartmentalization of these reconstructions, a function many automated pipelines
fail to include. This is particularly important for parasite-specific compartments like
the apicoplast, which is not included in any database.

Gapfilling: Gapfilling is an analytic process used to bridge or complete
genetically-supported metabolic pathways to permit the network to fulfill metabolic
functions, and was used to generate functional Plasmodium models. The approach
is described in more detail in Chapter 7.2.1 and implications are described in
Biomass Formulation. We scored gapfilled reactions to summarize the confidence
of reaction addition. In short, each gapfilled reaction has a score associated with it for
each type of gapfilling performed. We gapfilled for three or four objective functions
(see next section) for ten iterations each. Gapfilling confidence is based on how
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Figure 3.2: Parasite Database for Genome-Scale Metabolic Models (Paradigm). A: De novo
reconstructions are built from putative protein sequences from EuPathDB for each organism. Amino
acid sequences are mapped to functional domains using Diamond. Next draft reconstructions are
built by mapping functional domains to known metabolic reactions. B: Reconstruction curation is an
iterative process. For P. falciparum., we have curated two versions of the reconstruction, based on a
network published by Plata, et al. C: Mapped orthology from the EuPathDB databases are used to
generated an orthology thesaurus, or a list of gene identifiers that have orthologous functions. D:
Draft reconstructions are curated into a semi-curated reconstruction by adding all orthologous genes
and associated reactions that are found in our well-curated reconstruction. This approach leverages
the curation conducted in one organism to closely related organisms.
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Table 3.3: Number of modifications added to each Plasmodium reconstruction based on orthology
transformation from iPfal18.

species Starting no. of
genes

Reactions added Metabolites added Genes added

PpraefalciparumG01 414 113 83 39
Pyoeliiyoelii17XNL 395 113 81 50
PinuiSanAntonio1 400 112 81 35
PbillcollinsiG01 396 113 83 39
Pyoeliiyoelii17X 404 113 81 44
PreichenowiG01 411 113 83 39
PcynomolgiB 382 112 81 36
Pgallinaceum8A 412 113 81 44
PvivaxP01 406 113 81 44
PgaboniG01 408 113 83 39
PyoeliiyoeliiYM 403 113 81 44
PreichenowiCDC 418 114 83 47
PadleriG01 415 113 83 39
PmalariaeUG01 402 113 81 45
PfalciparumIT 423 135 83 92
PovalecurtisiGH01 407 112 81 36
PgaboniSY75 412 113 83 39
PvinckeipetteriCR 413 112 81 36
Pchabaudichabaudi 414 113 81 44
PcynomolgiM 407 113 81 44
PknowlesiMalayanPk1A 403 112 81 36
Pfalciparum3D7 422 110 80 33
PrelictumSGS1-
like

410 113 81 44

PcoatneyiHackeri 402 112 81 35
PknowlesiH 408 113 81 44
Pvinckeivinckeivinckei 404 112 81 35
PfragileNilgiri 405 112 81 35
PvivaxSal1 414 113 81 45
PbergheiANKA 401 113 81 44
PblacklockiG01 406 113 83 39

frequently a reaction is added in any of the gapfilling solutions and is noted as follows.
For example, a reaction with the score ‘OF3_1:1’ appeared in 100% of solutions, but
only one solution was generated, whereas a reaction with score ‘OF3_3:2’ as necessary
in two out of three solutions. These scores are formatted as ObjectiveFunction_Y:X,
with ‘ObjectiveFunction’ indicating which objective functions were used for gapfilling
(note: this ranges from three to four for this study), ‘X’ indicating the number
of times a reaction is added, and ‘Y’ indicating the number of iterations used to
solve each gapfilling problem. Gapfilling was conducted following all steps involving
compartmentalization, manual curation, or automated curation.

Objective functions: We use two classes of objective functions here to robustly
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evaluate Plasmodium model performance. First, we maximize ATP production. Second,
we use biomasses reactions, including a species-specific curated biomass reaction and
a generic biomass reaction. Plasmodium falicparum has high-quality biomass reaction
(Carey, Papin, and Guler 2017) and this was used for all Plasmodium models. Our
generic biomass contains metabolites from several curated reconstructions (Table
3.4) and thus contains metabolites from the Plasmodium falicparum, Leishmania
major, and Cryptosporidium hominis species-specific biomasses with the stoichometry
contained in the iPfal18 biomass reaction; Toxoplasma gondii is excluded from this
analysis due to lack of direct mapping of id nomenclature (e.g. metabolite ID C00498
in Table 3.4). This generic biomass was used to capture the (most conservatively
defined) required biosynthetic capacity.

Table 3.4: Variable biomass components for published reconstructions.

C. hominis (2010) Leishmania (2008) T. gondii (2015) iPfal17

adp 1-2-Diacylglycerol (9Z)-Octadecenoic acid 10-
Formyltetrahydrofolate

ala-L ADP 1-Phosphatidyl-D-myo-
inositol

2-Octaprenyl-6-
hydroxyphenol

amp AMP Acetyl-CoA 2-Oxoglutarate
arg-L ATP Arachidonate 5-10-

Methylenetetrahydrofolate
asn-L Cardiolipin ATP 5-6-7-8-

Tetrahydrofolate
asp-L CMP ATP ADP
atp dAMP C00498 Ammonium
cdlp_CT dCMP C00550 ATP
cdp dGMP C02679 biomass
cmp dTMP C04574 Coenzyme-A
ctp Ergosterol C06424 CTP
cys-L Glycine Cholesterol dATP
d12dg_CT GMP CoA dCTP
datp H2O CTP dGTP
dctp H dATP Diphosphate
dgtp L-Alanine dCTP dTTP
dttp L-Arginine dGTP Fe2
gdp L-Asparagine dTTP Fe3
gln-L L-Aspartate FattyAcid Flavin-adenine-

dinucleotide-oxidized
glu-L L-Cysteine FMN Glycine
gly L-Glutamate GDP-mannose GTP
gmp L-Glutamine Geranylgeranyl

diphosphate
H

gtp L-Histidine Glutathione H2O
h L-Isoleucine Glycine hemozoin[e]
his-L L-Leucine GTP L-Alanine
ile-L L-Lysine H2O L-Arginine
leu-L L-Methionine Heme L-Asparagine
lys-L L-Phenylalanine Hexadecanoic acid L-Aspartate
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Table 3.4: Variable biomass components for published reconstructions. (continued)

C. hominis (2010) Leishmania (2008) T. gondii (2015) iPfal17

lysylpgly_CT L-Proline L-Alanine L-Cysteine
m12dg_CT L-Serine L-Arginine L-Glutamate
met-L L-Threonine L-Asparagine L-Glutamine
nad L-Tryptophan L-Aspartate L-Histidine
nadp L-Tyrosine L-Cysteine L-Isoleucine
nadph L-Valine L-Glutamate L-Leucine
pgly_CT Mannan L-Glutamine L-Lysine
phe-L monoacylglycerol L-Histidine L-Malate
pi Phosphate-HO4P L-Isoleucine L-Methionine
ppi phosphatidyl-1D-myo-

inositol
L-Leucine L-Phenylalanine

pro-L Phosphatidylcholine L-Lysine L-Proline
psetha_CT phosphatidylethanolamine L-Methionine L-Serine
ser-L Putrescine L-Phenylalanine L-Threonine
t12dg_CT Spermidine L-Proline L-Tryptophan
thr-L Triglyceride L-Selenocysteine L-Tyrosine
trp-L UMP L-Serine L-Valine
tyr-L Zymosterol L-Threonine lac-L[e]
utp L-Tryptophan lipid
val-L L-Tyrosine Nicotinamide-adenine-

dinucleotide
L-Valine Nicotinamide-adenine-

dinucleotide-phosphate
Linoleate Oxidized-glutathione
NAD+ Phosphate
NADP+ protein
Octadecanoic acid Protoheme
Oxaloacetate Putrescine
Phosphatidylcholine Pyridoxal-5-phosphate
PhosphatidylethanolamineReduced-glutathione
Phosphatidylserine Riboflavin
Protein
N6-(lipoyl)lysine

S-Adenosyl-L-
methionine

Protein
N6-(lipoyl)lysine

Spermidine

Pyridoxal phosphate Sulfate
S-Adenosyl-L-
methionine

Thiamine-diphosphate

Tetrahydrobiopterin UTP
Tetrahydrofolate
Thiamin diphosphate
UDP-N-acetyl-alpha-D-
glucosamine
UTP

Model Comparison: Networks were compared by euclidean distance of reaction
presence or of transporter capability. Transporter capability was identified by the
presence of a reaction in the reconstruction (prior to gapfilling) that transported
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a metabolite from the extracellular compartment to the intracellular compartment.
Thus, only genetically-supported transporters were analyzed.

3.4 Results

Comparative genomics in the field of eukaryotic pathogens and apicomplexan parasites
has primarily been limited to the study of parasite surface proteins that interact with
the host. Accordingly, we first explore an unbiased comparative genomics analysis
using 162 publically available genome sequences from the EuPathDB databases (Table
3.5); each EuPathDB is a rough phylogenetic grouping containing only organisms
from one genus or several closely related genera.

Table 3.5: Genomes from EuPathDB.

species database

AcastellaniiNe� AmoebaDB
EdisparSAW760 AmoebaDB
EhistolyticaHM1IMSS AmoebaDB
EhistolyticaHM1IMSS.A AmoebaDB
EhistolyticaHM1IMSS.B AmoebaDB
EhistolyticaHM3IMSS AmoebaDB
EhistolyticaKU27 AmoebaDB
EinvadensIP1 AmoebaDB
EmoshkovskiiLaredo AmoebaDB
EnuttalliP19 AmoebaDB
NfowleriATCC30863 AmoebaDB
Candersoni30847 CryptoDB
Chominis30976 CryptoDB
ChominisTU502 CryptoDB
ChominisTU502_2012 CryptoDB
ChominisUdeA01 CryptoDB
CmeleagridisUKMEL1 CryptoDB
CmurisRN66 CryptoDB
CparvumIowaII CryptoDB
CtyzzeriUGA55 CryptoDB
Cubiquitum39726 CryptoDB
CveliaCCMP2878 CryptoDB
GniphandrodesUnknown CryptoDB
VbrassicaformisCCMP3155 CryptoDB
GintestinalisAssemblageADH GiardiaDB
GintestinalisAssemblageAWB GiardiaDB
GintestinalisAssemblageBGS GiardiaDB
GintestinalisAssemblageBGS_B GiardiaDB
GintestinalisAssemblageEP15 GiardiaDB
SsalmonicidaATCC50377 GiardiaDB
AalgeraePRA109 MicrosporidiaDB
AalgeraePRA339 MicrosporidiaDB
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Table 3.5: Genomes from EuPathDB. (continued)

species database

EaedisUSNM41457 MicrosporidiaDB
EbieneusiH348 MicrosporidiaDB
EcuniculiEC1 MicrosporidiaDB
EcuniculiEC2 MicrosporidiaDB
EcuniculiEC3 MicrosporidiaDB
EcuniculiGBM1 MicrosporidiaDB
EhellemATCC50504 MicrosporidiaDB
EhellemSwiss MicrosporidiaDB
EintestinalisATCC50506 MicrosporidiaDB
EromaleaeSJ2008 MicrosporidiaDB
MdaphniaeUGP3 MicrosporidiaDB
NausubeliERTm2 MicrosporidiaDB
NausubeliERTm6 MicrosporidiaDB
NbombycisCQ1 MicrosporidiaDB
NceranaeBRL01 MicrosporidiaDB
NdisplodereJUm2807 MicrosporidiaDB
NparisiiERTm1 MicrosporidiaDB
NparisiiERTm3 MicrosporidiaDB
OcolligataOC4 MicrosporidiaDB
PneurophiliaMK1 MicrosporidiaDB
Slophii42_110 MicrosporidiaDB
ThominisUnknown MicrosporidiaDB
VcorneaeATCC50505 MicrosporidiaDB
Vculicisfloridensis MicrosporidiaDB
BbigeminaBOND PiroplasmaDB
BbovisT2Bo PiroplasmaDB
BmicrotiRI PiroplasmaDB
BovataMiyake PiroplasmaDB
CfelisWinnie PiroplasmaDB
TannulataAnkara PiroplasmaDB
TequiWA PiroplasmaDB
TorientalisShintoku PiroplasmaDB
TparvaMuguga PiroplasmaDB
PadleriG01 PlasmoDB
PbergheiANKA PlasmoDB
PbillcollinsiG01 PlasmoDB
PblacklockiG01 PlasmoDB
Pchabaudichabaudi PlasmoDB
PcoatneyiHackeri PlasmoDB
PcynomolgiB PlasmoDB
PcynomolgiM PlasmoDB
Pfalciparum3D7 PlasmoDB
PfalciparumIT PlasmoDB
PfragileNilgiri PlasmoDB
PgaboniG01 PlasmoDB
PgaboniSY75 PlasmoDB
Pgallinaceum8A PlasmoDB
PinuiSanAntonio1 PlasmoDB
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Table 3.5: Genomes from EuPathDB. (continued)

species database

PknowlesiH PlasmoDB
PknowlesiMalayanPk1A PlasmoDB
PmalariaeUG01 PlasmoDB
PovalecurtisiGH01 PlasmoDB
PpraefalciparumG01 PlasmoDB
PreichenowiCDC PlasmoDB
PreichenowiG01 PlasmoDB
PrelictumSGS1.like PlasmoDB
PvinckeipetteriCR PlasmoDB
Pvinckeivinckeivinckei PlasmoDB
PvivaxP01 PlasmoDB
PvivaxSal1 PlasmoDB
Pyoeliiyoelii17X PlasmoDB
Pyoeliiyoelii17XNL PlasmoDB
PyoeliiyoeliiYM PlasmoDB
CcayetanensisCHN_HEN01 ToxoDB
CsuisWienI ToxoDB
EacervulinaHoughton ToxoDB
EbrunettiHoughton ToxoDB
EfalciformisBayerHaberkorn1970 ToxoDB
EmaximaWeybridge ToxoDB
EmitisHoughton ToxoDB
EnecatrixHoughton ToxoDB
EpraecoxHoughton ToxoDB
EtenellaHoughton ToxoDB
HhammondiHH34 ToxoDB
NcaninumLIV ToxoDB
SneuronaSN3 ToxoDB
SneuronaSOSN1 ToxoDB
TgondiiARI ToxoDB
TgondiiFOU ToxoDB
TgondiiGAB2.2007.GAL.DOM2 ToxoDB
TgondiiGT1 ToxoDB
TgondiiMAS ToxoDB
TgondiiME49 ToxoDB
Tgondiip89 ToxoDB
TgondiiRH ToxoDB
TgondiiRUB ToxoDB
TgondiiTgCatPRC2 ToxoDB
TgondiiVAND ToxoDB
TgondiiVEG ToxoDB
TvaginalisG3 TrichDB
BayalaiB08.376 TriTrypDB
CfasciculataCfCl TriTrypDB
EmonterogeiiLV88 TriTrypDB
LaethiopicaL147 TriTrypDB
LarabicaLEM1108 TriTrypDB
LbraziliensisMHOMBR75M2903 TriTrypDB
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Table 3.5: Genomes from EuPathDB. (continued)

species database

LbraziliensisMHOMBR75M2904 TriTrypDB
LdonovaniBPK282A1 TriTrypDB
LenriettiiLEM3045 TriTrypDB
LgerbilliLEM452 TriTrypDB
LinfantumJPCM5 TriTrypDB
LmajorFriedlin TriTrypDB
LmajorLV39c5 TriTrypDB
LmajorSD75 TriTrypDB
LmexicanaMHOMGT2001U1103 TriTrypDB
LpanamensisMHOMCOL81L13 TriTrypDB
LpanamensisMHOMPA94PSC1 TriTrypDB
LpyrrhocorisH10 TriTrypDB
LseymouriATCC30220 TriTrypDB
LspMARLEM2494 TriTrypDB
LtarentolaeParrotTarII TriTrypDB
LtropicaL590 TriTrypDB
LturanicaLEM423 TriTrypDB
PconfusumCUL13 TriTrypDB
TbruceigambienseDAL972 TriTrypDB
TbruceiLister427 TriTrypDB
TbruceiTREU927 TriTrypDB
TcongolenseIL3000 TriTrypDB
TcruziCLBrener TriTrypDB
TcruziCLBrenerEsmeraldo.like TriTrypDB
TcruziCLBrenerNon.Esmeraldo.like TriTrypDB
TcruzicruziDm28c TriTrypDB
TcruziDm28c TriTrypDB
TcruzimarinkelleiB7 TriTrypDB
TcruziSylvioX10.1 TriTrypDB
TcruziSylvioX10.1.2012 TriTrypDB
TevansiSTIB805 TriTrypDB
TgrayiANR4 TriTrypDB
TrangeliSC58 TriTrypDB
TtheileriEdinburgh TriTrypDB
TvivaxY486 TriTrypDB

Sequence-based analyses investigating genetic similarity can be biased by AT
content, genome alignment and assembly, and structural genomic variants such as
genome size, presence of plastid genomes, or the number of chromosomes. These
organisms contain variable genome sizes (e.g. Table 2.2), organellar genomes (e.g.
Table 3.1), and chromosome number. Thus, we analyzed amino acid sequences
by examining a conserved open reading frame across nearly all genomes, lactate
dehydrogenase (Figure 3.3). Lactate dehydrogenase sequence clusters by genera, but
it is challenging to interpret similarities and di�erences across genera (Figure 3.3).

Additionally, it can be challenging to infer function from sequence alone. To
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Figure 3.3: Sequence similarity. We compare genome (colored by genus) by clustering the amino acid
sequence of a conserved open reading frame, the lactate dehydrogenase gene. Amino acid sequences
were obtained by searching ’lactate dehydrogenase’ on EuPathDB (omitting Fungi and Oomycetes),
including both putative genes and validated enzymes.
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Figure 3.4: Genome reannotation by species with the largest gene sets shown. Genomes were
reannotated to orthoMCL genes using Diamond. Plot can be read as a Venn Diagram. Bar plots
show the intersection of all gene annotations in each species indicated with a dot. For example, the
first column contains only gene annotations in T. cruzi cruzi Dm28c, whereas the fourth column
contains annotations shared by only C. velia CCMP2878 and V. brassicaformis CCMP3155.

explore functional genomic content, we reannotated all genomes using Diamond against
OrthoMCL genes and compared annotated genes in each genome. Each genome
has unique gene annotations but many are shared (examples in Figure 3.4). For
example, Trichomonas vaginalis G3 is the only complete genome on the Trichomonas
database (TrichDB); this genome has the second most unique annotations by genome
(Figure 3.4) and TrichDB has the third most unique annotations by genome despite
containing only one genome (Figure 3.5). Unsurprisingly, some of the larger genomes,
including Chromera velia CCMP2878 (CryptoDB, 193.4 megabases), Acanthamoeba
castellani Ne� (AmoebaDB, 42 megabases), and T. vaginalis G3 (176.3 megabases)
have the most unique annotations (Figure 3.4). Annotation similarities can generate
novel hypotheses about functional similarities. For example, the largest overlapping
annotation group (CryptoDB and AmoebaDB) contains two types gut pathogens,
the causes of cryptosporidiosis and amoebiasis, and these shared annotations may
be consistent with mechanisms of gut pathogenesis (Figure 3.5). However, there
are unique gene annotations associated with EuPathDB database, and it is unclear
whether these di�erences arise from divergent metabolic functionality or incomplete
genome annotation of these enzymes.

To address this challenge, we generated a metabolic reconstruction for each species
(Figure 3.6). Genome-scale metabolic models are built from genomic data and by
inferring function to complete or connect metabolic pathways; these reconstructions
can be supplemented with functional genetic and biochemical studies (see Methods).
Our de novo reconstructions contain only genetically supported information, and
reconstruction size correlates with genome size (Figure 3.7A). Unsurprisingly, the
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Figure 3.5: Genome reannotation by database. See previous figure for interpretation guidance.

large genome of Chromera velia CCMP2878 (CryptoDB, 31,799 ORFs, 2,943 reactions)
has the most unique reactions (92, Figure 3.6). However, even small reconstructions
contain unique reactions (Figure 3.7B). In fact, all reconstructions contain at least
one unique reaction (Figure 3.7B), and small reconstructions do not have fewer
unique reactions (Figure 3.7C). A core set of reactions are contained in all 162
reconstructions (right side of Figure 3.7D), and a large set of reactions are shared by
only a few models (left side of Figure 3.7D). Reactions shared by all models include
functions such as glycolysis.

We compare network structure and the predictions generated by each model, as
we compared genomic content and annotations (Figures 3.3, 3.4, and 3.5). Network
structures were minimally overlapping with 40 reactions shared by all reconstructions
and 999 reactions in at least 50% of models. By comparing metabolic reactions in
each reconstruction, we compare metabolic capacity of each species; two pairs, first P.
falciparum 3D7 and IT and second P yoelii yoelii YM and 17X, were most similar and
C. velia CCMP2878 and T. cruzi CL-Brener were most di�erent, in contrast with the
genetic similarity (Figure 3.3). As expected, models generated from genomes in the
same genus contain similar sets of reactions (Figure 3.8).
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Figure 3.6: Draft reconstructions for 162 genomes. Triangles represent genome size (no. of open
reading frames). Circle indicate model size (no. of reactions in the reconstruction). Bars represent
the number of unique reactions per reconstruction. Genomes are color coded by EuPathDB database.
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Figure 3.7: Draft reconstructions reveal unique functions in all organisms. A: Larger genomes
generate larger reconstructions; size of genome measured by number of open reading frames, or ORFs.
B: Larger reconstructions do not necessarily have more unique metabolic reactions, or reactions not
found in any of the other 161 models. All reconstructions contain at least one unique reaction. C:
Reconstructions of all sizes contain few unique features (defined as only one unique reaction), not
just small reconstructions. D: Over 400 reactions are found in one reconstruction only (left side),
whereas 40 reactions are found in all reconstructions (right side).
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Figure 3.8: Network similarity. Networks were clustered based on reaction presence. Color indicates
genus.

Table 3.6: Number and ratio of kinase-like reactions in each model.

species number percentage

BmicrotiRI 203 19.80
TgondiiGAB2-2007-GAL-DOM2 289 14.31
TgondiiTgCatPRC2 308 15.19
EbieneusiH348 181 31.53
PpraefalciparumG01 223 16.16
EromaleaeSJ2008 164 24.01
GintestinalisAssemblageADH 232 25.22
Pyoeliiyoelii17XNL 232 16.85
LmajorFriedlin 309 16.24
LpyrrhocorisH10 315 15.24
LmajorSD75 311 16.24
EmonterogeiiLV88 312 16.24
SsalmonicidaATCC50377 251 27.83
CtyzzeriUGA55 230 20.66
VcorneaeATCC50505 187 34.06
LdonovaniBPK282A1 310 15.83
GintestinalisAssemblageBGS 232 25.36
NausubeliERTm2 188 26.86
AalgeraePRA109 170 26.11
EpraecoxHoughton 206 22.29
PinuiSanAntonio1 248 17.83
CparvumIowaII 230 20.07
MdaphniaeUGP3 253 17.23
PbillcollinsiG01 225 16.63
CmeleagridisUKMEL1 232 21.07
NparisiiERTm3 162 24.11
TgondiiRUB 300 14.74
CfasciculataCfCl 296 14.50
LarabicaLEM1108 320 16.49
EhistolyticaHM1IMSS 263 20.05
TvaginalisG3 303 21.40
OcolligataOC4 159 26.99
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Table 3.6: Number and ratio of kinase-like reactions in each model. (continued)

species number percentage

LtarentolaeParrotTarII 283 14.82
Pyoeliiyoelii17X 227 16.19
GniphandrodesUnknown 264 18.37
TorientalisShintoku 205 19.98
PreichenowiG01 219 15.87
TcruziCLBrenerEsmeraldo-like 256 14.10
TbruceiTREU927 288 16.43
TrangeliSC58 295 15.32
ThominisUnknown 218 29.50
LtropicaL590 304 15.71
EnuttalliP19 227 19.34
EcuniculiEC2 181 25.64
EtenellaHoughton 259 15.25
EinvadensIP1 259 19.79
EmaximaWeybridge 221 15.25
ChominisTU502_2012 224 19.84
TparvaMuguga 185 18.33
PcynomolgiB 240 17.96
LspMARLEM2494 321 16.49
LaethiopicaL147 306 15.93
Pgallinaceum8A 226 16.11
TgrayiANR4 278 14.80
AalgeraePRA339 186 27.56
EmoshkovskiiLaredo 266 19.63
CfelisWinnie 208 18.96
PvivaxP01 242 16.97
TevansiSTIB805 286 16.29
PgaboniG01 227 16.38
TgondiiGT1 302 14.88
LenriettiiLEM3045 315 16.93
NbombycisCQ1 184 22.97
Chominis30976 227 20.12
PconfusumCUL13 303 15.13
PyoeliiyoeliiYM 229 16.35
CmurisRN66 240 20.51
TgondiiVAND 295 14.61
PreichenowiCDC 220 15.79
TgondiiVEG 303 14.96
PadleriG01 228 16.46
TannulataAnkara 192 18.46
EhistolyticaHM1IMSS-B 245 19.04
EmitisHoughton 186 17.97
BbovisT2Bo 188 18.01
HhammondiHH34 290 14.49
EcuniculiEC3 180 25.53
TcruzimarinkelleiB7 284 15.46
TcongolenseIL3000 272 15.80
LmexicanaMHOMGT2001U1103 307 15.79



M. A. Carey 45

Table 3.6: Number and ratio of kinase-like reactions in each model. (continued)

species number percentage

EhistolyticaHM3IMSS 246 19.59
LbraziliensisMHOMBR75M2904 314 16.43
AcastellaniiNe� 367 13.11
EhistolyticaHM1IMSS-A 234 19.42
TcruziSylvioX10-1-2012 270 14.60
BayalaiB08-376 336 18.42
NfowleriATCC30863 332 14.40
PmalariaeUG01 229 16.51
EacervulinaHoughton 273 17.83
EhistolyticaKU27 255 19.77
PfalciparumIT 232 16.75
BovataMiyake 186 21.58
CsuisWienI 298 15.10
Tgondiip89 302 14.96
LseymouriATCC30220 295 15.22
SneuronaSN3 274 14.92
GintestinalisAssemblageAWB 212 23.25
TvivaxY486 268 15.61
PovalecurtisiGH01 243 17.48
PgaboniSY75 233 16.84
EnecatrixHoughton 253 15.99
LturanicaLEM423 314 16.24
PvinckeipetteriCR 238 16.36
EhellemATCC50504 173 26.09
TcruziDm28c 285 15.97
SneuronaSOSN1 263 14.11
NdisplodereJUm2807 170 25.26
CcayetanensisCHN_HEN01 295 15.97
Pchabaudichabaudi 241 16.74
EfalciformisBayerHaberkorn1970 265 14.29
GintestinalisAssemblageBGS_B 232 25.33
BbigeminaBOND 194 18.00
TbruceiLister427 293 16.62
EdisparSAW760 280 21.07
TgondiiFOU 305 14.86
LpanamensisMHOMPA94PSC1 318 16.58
PcynomolgiM 253 18.08
EcuniculiEC1 180 26.12
TgondiiME49 302 14.88
PneurophiliaMK1 191 30.22
EbrunettiHoughton 234 18.81
NceranaeBRL01 170 29.26
NausubeliERTm6 201 27.99
EcuniculiGBM1 181 25.86
LmajorLV39c5 314 16.40
LpanamensisMHOMCOL81L13 333 17.42
Candersoni30847 239 20.38
TcruzicruziDm28c 291 15.12
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Table 3.6: Number and ratio of kinase-like reactions in each model. (continued)

species number percentage

PknowlesiMalayanPk1A 242 17.24
EhellemSwiss 178 27.55
Pfalciparum3D7 233 16.84
LgerbilliLEM452 305 15.89
TgondiiMAS 308 15.13
GintestinalisAssemblageEP15 227 25.45
PrelictumSGS1-like 234 16.44
ChominisTU502 224 21.50
TcruziSylvioX10-1 278 17.62
VbrassicaformisCCMP3155 366 12.00
Slophii42_110 185 26.13
PcoatneyiHackeri 242 17.52
ChominisUdeA01 226 20.43
PknowlesiH 244 17.22
TgondiiRH 5 20.00
TcruziCLBrenerNon-Esmeraldo-
like

278 14.72

Pvinckeivinckeivinckei 233 16.34
EaedisUSNM41457 176 22.62
PfragileNilgiri 249 17.50
NparisiiERTm1 175 25.51
PvivaxSal1 242 17.04
TtheileriEdinburgh 320 15.93
TgondiiARI 303 14.97
Vculicisfloridensis 209 30.33
EintestinalisATCC50506 172 26.88
LinfantumJPCM5 304 15.59
PbergheiANKA 236 16.56
PblacklockiG01 233 16.88
TequiWA 198 18.22
CveliaCCMP2878 401 12.51
LbraziliensisMHOMBR75M2903 316 16.54
Cubiquitum39726 244 22.24
TbruceigambienseDAL972 312 15.72
NcaninumLIV 302 15.16
TcruziCLBrener 59 23.41

To further compare network structure, we explore the kinome and metabolite
scavenging from the host. First, to approximate the kinome, we identified reactions
involving phosphate transfers; networks contained between 5 and 401 reactions that
transferred a phosphate from ATP to another metabolite. Between 12.004% and 34.06%
of an organism’s metabolic reactions included phosphate (Table 3.6). Toxoplasma
gondii is often used as a model apicomplexan parasite because it is experimentally
tractable (see Chapter 2) and some apicomplexan genera, such as Cryptosporidium
and Plasmodium, had an enrichment of kinase reactions when compared to Toxoplasma.
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Figure 3.9: Genetically-supported transporters. Dimensionality reduction of capacity for imported
metabolites. Dimensionality reduction is a technique to summarize variation in samples. Samples,
or models, are represented by a point. Points that are close together have similar transporters. A:
Reconstructions cluster by some genera. B: Extracellular parasites (blue) tend to have a negative
coordinate 1 score. C: Red blood cell-infecting parasites (blue) tend to have a slight positive score
for coordinates 1 and 2.

To explore each parasite’s metabolic dependence on their host cells, we identified
metabolites that could be imported via a genetically-supported transporter. We
conducted a pairwise similarity between the set of metabolites that could be imported
in each reconstructions. Following classical multidimensional scaling (or principal co-
ordinates analysis, Figure 3.9A), we compared transporter topology between genera
and parasite grouped by environmental niche. Reconstructions from organisms in the
same genera had similar transport ability (Figure 3.9A); additionally, reconstruc-
tions separate roughly by some host cell types, like the organism’s ability to divide
extracellularly (Figure 3.9B) or in a host red blood cell (Figure 3.9C).

Next, we performed automated curation. All Plasmodium reconstructions were
semi-curated using our automated curation pipeline and the curated reconstruction,
iPfal18 of Plasmodium falciparum metabolism (Figure 3.2) and gapfilled to generate
functional networks (i.e. networks that could product ATP and ‘grow’ as measured
by the ability to produce biomass). Many modification were made to each Plasmod-
ium reconstruction following semi-curation (Figure 3.2C and Table 3.3), greatly
improving the genome-wide coverage of the reconstructions.

3.5 Discussion

Here, we presented 162 novel draft or semi-curated metabolic reconstructions for major
human pathogens and closely related species and a pipeline for generating high-quality
reconstructions from genomes, including automated curation by leveraging orthology
(Figure 3.2). These reconstructions represent the first genome-scale metabolic recon-
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structions for many of these organisms (previous reconstructions shown in Table 3.7),
making Paradigm the broadest biochemical database for eukaryotic parasites to date.
Our draft reconstruction approach contains key features to generate comprehensive
networks for eukaryotic cells, making it unique among existing automated network
reconstruction pipelines. Our semi-curation approach leverages the curation conducted
in manually curated reconstructions for closely related organisms and genetic orthology,
generating reconstructions that are more comprehensive than draft reconstructions.
Both draft and semi-curated reconstructions can be used for comparative analyses,
further curated by the modeling community, and applied to interrogate clinically and
biologically relevant phenotypes.

Table 3.7: All previous metabolic reconstructions for eukaryotic parasites to our knowledge.

species strain previous reconstructions

Plasmodium falciparum 3D7 Plata, et al, 2010, Carey, et al, 2017,
Chiappino-Pepe, et al, 2017 and
Abdel-Haleem, et al, 2018

Plasmodium berghei unspecified Abdel-Haleem, et al, 2018

Plasmodium vivax unspecified Abdel-Haleem, et al, 2018

Plasmodium knowlesi unspecified Abdel-Haleem, et al, 2018

Plasmodium cynomolgi unspecified Abdel-Haleem, et al, 2018

Toxoplasma gondii unspecified Song, et al, 2013 and Tymoshenko, et
al, 2015

Cryptosporidium
hominis

unspecified Vanee, et al, 2010

Trypanosoma cruzi CL Brenner Roberts, et al, 2009 (not genome
scale)

Leishmania major unspecified Chavali, et al, 2008
Note:

There are several iterations of Plata, et al., 2010 not shown as they included only minor modifications.

Our approach has several key features tailored to eukaryotic pathogens. For exam-
ple, discussion of biomass formulation is sorely lacking in many novel reconstruction
papers and the assumptions used in formulated a biomass reaction for prokaryotes
may not apply to eukaryotes. These assumptions are important as the objective
function (like a biomass reaction) influences gapfilling and essentiality analyses. For
example, in the first genome-scale metabolic model of any Cryptosporidium species,
C. hominis (Vanee et al. 2010), 30 of 117 reactions involved in lipid synthesis were
unsupported by genetic evidence; to generate biomass precursors, these 30 reactions
were necessary and thus added despite lack of genetic evidence. The selection of
biomass precursor metabolites like lipid species impact these results; for example, the
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30 gapfilled reactions might not be added if ATP production only was used as an
objective function.

Thus, to address these biomass-induced biases, we used multiple objective func-
tions (ATP or biomass synthesis) and performed each gapfilling query 10 times to add
confidence to our gapfilled reactions. For our semi-curated Plasmodium reconstruc-
tions, we also generated biomass reactions at multiple di�erent scales: a universal and
a genus-level biomass. We gapfilled each model to each of these objective reactions
and added confidence scores to gapfilled reactions, corresponding to the number of
gapfill solutions in which the reaction was added. These confidence scores inform
our interpretation of model predictions (i.e. predictions involving low-confidence
gapfilled reactions are low-confidence predictions) and highlight reactions for future
manual curation. While including all gapfilled reactions (as opposed to just one
possible solution) is not standard within the field, previous work has highlighted the
uncertainty in network structure that gapfilling introduces (Biggs and Papin 2017).
Thus, we believe that this uncertainty should be presented for future users and our
confidence scores are a novel way to summarize this uncertainty.

Similarly, compartmentalization can induce biases in a model’s predictions, as
demonstrated at the end of Chapter 5.1.5. Compartmentalization is particularly
relevant for generating reconstructions for eukaryotic organisms and a weak step of
automated reconstruction approaches. To our knowledge, no automated approach
directly addresses compartmentalization and, thus, compartmentalization is added
manually. Both our de novo reconstruction and orthology-driven approaches addresses
this. Compartmentalization was incorporated into our de novo reconstruction pipeline
and implemented for several genera (Table 3.1). Furthermore, we used a curated
model to inform the compartmentalization of each Plasmodium model; genes associated
with compartmentalized reactions were mapped via orthology, assuming orthologous
genes has comparable localization across species.

However, our de novo approach regarding compartmentalization yields one prin-
ciple weakness; because genetically supported reactions were added to all feasible
compartments, this adds plausible, but hypothetical, network functionality. For ex-
ample, if a gene-encoded enzyme maps to mitochondrial and cytoplasmic reactions
in an organism that contains a mitochondria, both versions will be included, adding
network redundancy that may not be biologically accurate. Alternatively, if an enzyme
maps to a chloroplast reaction that is not included in the BiGG database in any
other subcellular compartment, we moved the reaction to the cytosol. It is plausi-
ble that chloroplast reactions like this example are not catalyzed by the parasite.
However, it is likely that parasite do have functionality not well summarized in this
database, which contains no parasite reconstructions, but 6 mammalian, 5 other
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eukaryotic, 52 E. coli, and 12 other bacterial reconstructions (King et al. 2016).
These modifications are encoded in our analytic pipeline for future reference (see code,
https://github.com/maureencarey/). Consequently, our reconstructions will require
manual network curation especially regarding pruning of excess functionality. This
is also a weakness of our orthology-driven curation approach, which adds function
without function removal, and of many modeling construction and validation (i.e.
metabolic tasks) approaches as it is di�cult to validate lack of function.

Directly answering our motivating biological question, we compared metabolic
networks to identify divergent or conserved metabolic pathways to better leverage
model systems for drug development. Network structures were quite unique with only
0.19952% of all reactions in more than 50% of the reconstructions; network topology
did however clustered by genus (Figure 3.8) and transport ability is associated with
host environment (Figure 3.9).

Despite structural similarities, minor topological di�erences in networks confer
key metabolic strengths or weaknesses. For example, we identified a significant vari-
ation in the number of phosphate transferring reactions in Toxoplasma gondii and
Cryptosporidium or Plasmodium (Table 3.6), making T. gondii a poor model system
for kinase and phosphatase-based inhibitor screens for these species as o�-target e�ects
may vary significantly between organisms. For both Plasmodium falciparum and Cryp-
tosporidium, inhibitors for phosphatidylinositol kinases are promising antiparasitics
(Hassett and Roepe 2018; Manjunatha et al. 2017). However, kinase inhibitors are
well-known for their promiscuity (Klaeger et al. 2017), and an enrichment of kinase-
like reactions in Cryptosporidium may result in enhanced e�cacy of the inhibitor.
Fortunately, there was an insignificant di�erence in the ratio of kinase reactions in
Plasmodium falciparum and Plasmodium vivax strains (Table 3.6). Because there
is no in vitro culture system for P. vivax, inhibitor screens can only be conducted in
P. falciparum; we predict the o�-target e�ects would be comparable in both virulent
Plasmodium species.

3.6 Conclusions

Here, we identified several novel findings, not readily apparent by genomic analysis
alone. First, all parasite genomes encode unique metabolic functions, regardless
of genome size, and parasites within the same genera tend to have similar network
topology overall. Host cell type is associated with genetically-encoded transport ability
from the extracellular environment to the parasite cytoplasm. Lastly, networks vary
in the number and ratio of phosphate-using reaction they contain and the e�ect of
this must be explored in inhibitor screens.
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Most importantly, Paradigm provides a framework for organizing and interpreting
our biochemical knowledge about eukaryotic parasites. This framework implements
and builds on field-accepted standards for genome-scale metabolic modeling and the
latest genome annotations in the parasitology field. Paradigm can be used broadly by
the community and re-implemented iteratively to incorporate new genome sequences,
novel datasets, and genome annotation updates. We call these networks ‘semi-curated’
to di�erentiate between the commonly used and referenced, uncurated ‘draft’ and
well-curated network states. However, each reconstruction will require additional
manual curation to maximize the utility and predictive accuracy, demonstrated in
Chapter 4.

These reconstructions can be used to generate targeted experimental hypotheses
for exploring di�erences between species and improving genome annotation by exploring
di�erences between in vitro observations and in silico predictions. By applying this
approach, we aim to develop a framework for identifying the best in vitro system or
non-primate infection model of disease for drug development, and hypothesize that
the best test system may vary by metabolic pathway for any one human pathogen.



Chapter 4: Curating a high quality
reconstruction of parasite metabolism

The following text, figures, and tables have been adapted from Carey, Maureen
A., Jason A. Papin, and Jennifer L. Guler. "Novel Plasmodium falciparum
metabolic network reconstruction identifies shifts associated with clinical anti-
malarial resistance." BMC Genomics 18.1 (2017): 543.

52
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4 Curating a high quality reconstruction of para-
site metabolism

Draft and semi-curated models, as presented in the previous chapter, are manually
curated to leverage biochemical data to expand our understanding of the organism’s
metabolism. Manual curation is an iterative process requiring updates as the field
develops, perspectives evolve, and data are collected. Additionally, a model can be
refined to ask particular biological questions or to represent a particular developmental
stage, di�erentiated state of a cell, or condition-specific phenotype. While manual
curation is time and labor intensive, it considered to be the best practice in the field
for generating a high-quality and predictive network.

4.1 Synopsis

Here, we curated the metabolic reactions, gene-protein-reaction relationships, and
subcellular compartmentalization contained in a genome-scale metabolic network
reconstruction of the asexual blood-stage P. falciparum parasite to expand our un-
derstanding of the parasite’s metabolism and, ultimately, to better understand the
parasite’s phenotype after developing resistance to clinically relevant antimalarial
drugs. To do so, we manually curated an existing model and developed a framework
for evaluating this iteration (and future iterations) of the model. We identified 11
metabolic tasks to evaluate iPfal17 performance. Predictions generated with iPfal17
are consistent with experimental literature, while generating novel hypotheses about
parasite biology.

4.2 Methods

Manual curation: Manual curation of an existing P. falciparum metabolic network
reconstruction (Plata et al. 2010) was conducted by a literature review and reference to
generic and Plasmodium-specific databases (KEGG, Expasy, and PlasmoDB, MPMP)
(Aurrecoechea et al. 2009; Kanehisa et al. 2016; Gasteiger et al. 2003; Ginsburg 2006).
Data obtained from these sources were used to evaluate the inclusion of reactions as well
as their stoichiometry, reversibility, localization, and gene annotations. Genetically and
biochemically supported reactions were kept and new reactions were added. Reactions
were removed if (1) explicitly determined to be false or (2) were nonfunctional and
not supported biochemically or genetically. Spontaneous reactions (reactions that
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occur without enzymes) are noted to di�erentiate from orphan reactions (reactions
with unknown enzyme catalysts).

Flux balance analysis is an approach to explore metabolic phenotypes in silico
(Orth, Thiele, and Palsson 2010). Flux balance analysis simulates steady-state flux
values for each of the network’s reactions that maximize subsequent flux through an
objective function given a set of constraints. We chose biomass production as the
objective reaction, consistent with previous studies interrogating gene essentiality
(Plata et al. 2010; Thiele and Palsson 2010; Tymoshenko et al. 2015; Oberhardt et al.
2010), and permitted flux through all transport reactions. Constraints on the system
include conservation of mass, reversibility of reactions, and reaction localization. Flux
variability analysis uses a related approach to find the range of fluxes permissible
given system constraints (Gudmundsson and Thiele 2010).

Objective reaction: In order to assess gene essentiality, we used a biomass reac-
tion as the modeling objective function. The biomass reaction includes all metabolites
known to be essential for growth. Thus, flux through this reaction was maximized for
all in silico experimental procedures. We used the biomass reaction from a previous
study (Plata et al. 2010) with modifications (outlined and motivated in the results
section, Metabolomics curation of biomass reaction). The biomass reaction
outlined in Plata et al. (2010) was created using field standard approaches; first it was
based on the biomass of the closest phylogenetically related organism for which there
is a metabolic reconstruction (at the time, Saccharomyces cerevisiae, Duarte, Herrgård,
and Palsson (2004)), then it was adjusted to reflect experimental Plasmodium data
such as lipid composition (Hsiao et al. 1991), genome and transcriptome nucleotide
distribution (Llinás et al. 2006), and estimated proteome amino acid distribution.

We integrated new experimental data into the biomass formulation, specifically
metabolomics studies (Cobbold et al. 2016; Gulati et al. 2015; Olszewski et al. 2009;
Sana et al. 2013); we assumed any metabolite found in all metabolomics experiments
were essential for cellular growth, consistent with field standards (Thiele and Palsson
2010; Lachance et al. 2018). However, if a metabolite was detected in a metabolomics
experiment, but there are no known catabolism or import pathways for the compound,
it was not added to the biomass reaction. Metabolite ratios were predicted from
metabolomics data using measured abundance ratios.

Metabolic tasks: We simulated in vitro experiments and in vivo data to evaluate
the model; these are our metabolic ‘tasks’ that the reconstruction should pass. We
simulate in vitro growth requirements by modifying media components or access to
particular metabolites. Metabolite import or production was eliminated from the
reconstruction, and subsequent biomass production was observed. E�ects of enzyme
inhibition, gene knockouts, and metabolite production were also used to evaluate the
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model. Lethal modifications were defined as changes that resulted in no production of
biomass; growth-reducing modifications were defined as producing less than 90% of
unconstrained flux value (Chavali et al. 2008; Oberhardt et al. 2010).

Table 4.1: Metabolites in the in silico extracellular environment.

1D-myo-Inositol 1-phosphate glucocerebroside oxidized glutathione
1D-myo-Inositol 1,3,4-trisphosphate Glycero-3-phospho-1-

inositol
Phosphate

1D-myo-Inositol 1,3,4,5-tetrakisphosphate Glycero-3-phosphocholine phosphatidyl
1D-myoinositol

1D-myo-Inositol 1,3,4,5,6-pentakisphosphate Glycerophosphoserine Phosphatidylcholine
1D-myo-Inositol 1,4-bisphosphate hemozoin phosphatidylethanolamine

1D-myo-Inositol 1,4,5-trisphosphate L-homocystein phosphotidylinositol
1D-myo-Inositol 1,4,5,6-tetrakisphosphate L-lactate prolyl glycine
1D-myo-Inositol 3,4-bisphosphate L-Leucine Propionate C30
1D-myo-Inositol 4-phosphate L-Lysine protein
2-Acyl sn-glycero-3-phosphoethanolamine C120 L-Malate proteins with

Asn-X-Ser/Thr residues

2-Acyl sn-glycero-3-phosphoethanolamine C140 L-Methionine Putrescine
2-Acyl sn-glycero-3-phosphoethanolamine C141 L-Phenylalanine Pyruvate
2-Acyl sn-glycero-3-phosphoethanolamine C160 L-Proline R-Pantothenate
2-Acyl sn-glycero-3-phosphoethanolamine C161 L-Serine Riboflavin
2-Acyl sn-glycero-3-phosphoethanolamine C180 L-Threonine selenide

2-Acyl sn-glycero-3-phosphoethanolamine C181 L-Tryptophan Spermidine
2-Acyl sn-glycero-3-phosphoglycerol C120 L-Tyrosine sphingomyelin
2-Acyl sn-glycero-3-phosphoglycerol C140 L-Valine Succinate
2-Acyl sn-glycero-3-phosphoglycerol C141 Maltose Sulfate
2-Acyl sn-glycero-3-phosphoglycerol C160 Methylglyoxal Superoxide anion

2-Acyl sn-glycero-3-phosphoglycerol C161 Nicotinamide tetradecanoate C140
2-Acyl sn-glycero-3-phosphoglycerol C180 Nicotinate tetradecenoate C141
2-Acyl sn-glycero-3-phosphoglycerol C181 Nitrate Thiamine
2-dodecanoyl sn-glycerol-3-phosphate Nitric oxide Uracil
ADP-ribose Nitrite Urea

Ammonium O2 Uridine
D-Mannose octadecanoate C180 Xanthine
D-Sorbitol octadecenoate C181 Xanthosine
dIMP octanoate C80 Xanthosine 5-phosphate
dolichol Ornithine

Essentiality: We predicted essentiality by performing single deletion studies
with both genes and reactions and double gene deletion studies in our curated model
and each expression-constrained sensitive and resistant models. All simulations were
performed in an in silico red blood cell environment (Table 4.1). Gene deletions
were simulated by removing the gene of interest from the model. This change results
in the inhibition of flux through all reactions that require that gene to function. If
the model could not produce biomass with these constraints, the gene was deemed
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Table 4.2: Asexual blood-stage Plasmodium falciparum parasite model, iPfal17, summary statistics.
iTH366 from Plata, et al., 2010, iPfa from Chiappino-Pepe, et al., 2017.

iTH366 iPfa iPfal17

Reactions 1001 1066 1192
Enzymatic reactions 658 670 721
Reactions with gene annotations 657 586 672
Reactions with annotated citations 0 0 231
Metabolites 915 1258 991
Genes 366 325 482
Biomass components 51 73 82
Metabolites in extracellular environment 108 236 152

essential. Growth reducing phenotypes were also observed and noted. For reaction
deletion studies, we removed reactions sequentially. Subsequent growth e�ects were
used to determine reaction essentially.

The COBRA Toolbox 2015, Tiger Toolbox (version 1.3.1), and MATLAB R2013b
were used for model generation and flux simulations in this section.

4.3 Results

Manual metabolic network curation: To maximize the predictive ability of the
metabolic network model, we curated an existing, well-validated reconstruction of
asexual blood-stage P. falciparum (iTH366, (Plata et al. 2010)) to improve its
scope, and species- and stage-specificity. Our curated reconstruction, iPfal17, includes
all metabolic reactions encoded by characterized genes in the parasite’s genome,
summarizing metabolic behavior during the asexual blood-stage parasite. It is larger
in scope from the previously published version due to the addition of 268 reactions
(Table 4.2, please see Appendix for Additional file 3, Table S1 & 4.3), with 9.6% more
enzymatic reactions and 2.3% more reactions with gene annotations. We also added
124 genes to the network (Table 4.2 & see Appendix for Additional file 3, Table S1).
It is larger in scope and gene coverage than a recent de novo reconstruction (Table
4.2). iPfal17 has gene annotations for 80.0% of enzymatic reactions, and 20.5% of
transport and exchange reactions (Figure 4.1). iPfal17 includes 25.4% of the 1178
EC annotations in the P. falciparum genome, adding 14 EC numbers (Aurrecoechea
et al. 2009) (see Appendix for Additional file 3, Table S1). We evaluated enzyme
complex or isozyme status and replaced 7 gene-protein-reaction relationships (see
Appendix for Additional file 3, Table S1).
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AminoAcids

Carbohydrates

Cofactors

Exchange

Hemoglobin/Hemozoin

Lipids

Nucleotides

Others

Redox

Transport

200 400 600
total reactions

with gene annotation

with citation

modified for iPfal17

Figure 4.1: iPfal17 model curation is broad and comprehensive. Number of reactions in the P.
falciparum reconstruction grouped by metabolic subsystems. Subsets of those reactions with gene
annotations, literature citations, and modifications in the curation e�ort for this reconstruction are
noted.
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Following curation, the species and stage-specificity of the model was also improved.
Gene annotations were evaluated against PlasmoDB resources (Aurrecoechea et al.
2009), resulting in 124 additional gene annotations. Importantly, we removed cellular
import of pyrimidines from the host erythrocyte, as P. falciparum relies on de novo
synthesis (Table 4.3) (Phillips and Rathod 2010; Painter et al. 2007). Blood-
stage specificity was improved by removing genes only used in other life stages
(specifically, the gene encoding chitinase (Langer and Vinetz 2001)). Additionally,
77 functionally unnecessary reactions were removed due to a lack of genetic and
biochemical support (Table 4.3). Reactions necessary for growth were added manually.
Reactions were individually curated, changing metabolite utilization and stoichiometry.
See supplemental table for all manual modifications or additions, not presented here
as it is too large to display, please see Appendix for Additional file 3, Table S1.

The iPfal17 reconstruction contains five compartments: extracellular space and
four intracellular compartments (cytoplasmic, mitochondrial, apicoplast, and food
vacuole; Figure 2.3). Few studies since the Plata et al. (2010) reconstruction
(iTH366) investigated protein localization and therefore, few changes were made to
compartmental assignments; the food vacuole compartment, containing two reactions,
was added in this version of the reconstruction. As in iTH366, reactions with unknown
localization were placed within the cytoplasm (Thiele and Palsson 2010). Again,
similar to iTH366, a mitochondrial inner matrix was not added, as there is no evidence
that the blood-stage parasite requires a proton gradient for energy production (Painter
et al. 2007; Sturm et al. 2015; Ginsburg 2002). Nonpolar metabolites generated in
one compartment and utilized in another were transported as needed for network
functionality by assuming passive di�usion (Thiele and Palsson 2010).

We also included annotations that will accelerate future curation e�orts. First,
we did not remove blocked reactions (those that do not carry flux due to their lack of
connectivity to other components of the network) because further research may add
connectivity to these network components. iPfal17 contains 303 blocked reactions and
78 dead-end metabolites (specifically, 32 metabolites are not consumed and 46 are not
produced). For example, 4-pyridoxate (a byproduct of vitamin B6 biosynthesis) is
included; production is supported by bioinformatic analyses of the parasite genome,
but the metabolite function or excretion pathway is not known. Second, citations
are included within iPfal17 to identify the date of discovery and degree of literature
support for each reaction (see Appendix for Additional file 3, Table S1 and Table 4.3).
Literature support was only added to modified reactions, resulting in 231 citations
(Table 4.2 & see Appendix for Additional file 3, Table S1).

Metabolomics curation of biomass reaction: For the newly curated iP-
fal17 model, we modified the Plasmodium biomass reaction to better represent in
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vitro data (Table 4.4). We added tRNA-ligated amino acids to the amino acid
requirements to force protein production, rather than only demanding free amino
acids. Additionally, lipid classes were added based on recently published metabolomics
findings; phosphatidylinositol, phosphatidylglycerol, sphingomyelin, diacylglycerides,
and triglycerides were added due to their observed increase in abundance between
uninfected and infected erythrocytes (Gulati et al. 2015). Phosphatidylcholine ethers,
acyl phosphatidylgycerol, lysophosphatidylinositol, bis(monoacyl-glyceryl)phosphate,
and monosialodihexosylganglioside were excluded from the biomass reaction, as there
is no known Plasmodium catabolism or import pathways for these lipids (Gulati et al.
2015). Analysis of metabolomics data enabled further curation of the biomass reaction
with the addition of malate, alpha-ketoglutarate, and glutathione (both reduced and
oxidized) (Cobbold et al. 2016; Olszewski et al. 2009; Sana et al. 2013). Importantly,
we included the requirement for cellular export of lactate and hemozoin. Lactate is
measured in extracellular in vitro metabolomics and in vivo via blood acidosis; it is
the terminal product of glycolysis, the sole energy production pathway used by the
blood-stage parasite (Biddau and Müller 2016; Ke et al. 2015; MacRae et al. 2013;
Yeh et al. 2004). By requiring lactate export, we force the model to utilize glycolytic
energy metabolism. Similarly, hemoglobin degradation is essential for the blood-stage
parasite to produce free amino acids. Parasites can also import and synthesize some
amino acids, but the breakdown of hemoglobin (and subsequent production of its
byproduct, hemozoin) is necessary for growth (Dalal and Klemba 2015; Liu et al. 2006;
Krugliak, Zhang, and Ginsburg 2002). Thus, by requiring hemozoin export, we force
the in silico parasite to degrade hemoglobin as the primary pathway for amino acid
production.
Table 4.4: Metabolic components of the biomass function. * = metabolites that have been added to
the iPfal17 and are not present in the biomass function of iTH266.

Metabolites

Complex metabolites

protein,composed of tRNA-ligated amino acids (20)*
lipid, composed of sphingomyelin*, cholesterol, phosphatidyl choline, phosphatidyl ethanoloamine,

triacylglycerides*, diacylglycerides*, phosphatidyl inositol*, phosphatidyl glycerol*, acyl phosphatidyl
glycerol*

reduced & oxidized glutathione*
protoheme

Amino acids

alanine
asparagine
cysteine
glutamine
histidine
leucine
methionine
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Table 4.4: Metabolic components of the biomass function. * = metabolites that have been added to
the iPfal17 and are not present in the biomass function of iTH266. (continued)

Metabolites

phenylalanine
threonine
tyrosine
arginine
aspartate
glutamate
glycine
isoleucine
lysine
serine
proline
tryptophan
valine

Carbohydrates

malate*
alpha-ketoglutarate*

Nucleotides

ATP
CTP
GTP
UTP
dATP
dCTP
dGTP
dTTP
thiamine diphosphate

Excreted metabolites

lactate*
hemozoin*

Vitamins

pyridoxal
5-phosphate riboflavin

Others

spermidine
putrescine
s-adenosyl-methionine
2-octaprenyl 6-hydroyphenol
folates (mthf, f-thf, thf)
FAD
NAD
Fe2+ & Fe3+
SO4
coenzyme-A
water
NADP
NH4+
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Table 4.5: Experimentally-derived metabolic tasks for evaluating iPfal17.

Metabolic Task In
vitro

iPfal17 Hypothesis for in vitro/in silico
discrepancies

1a Growth in the presence of
antimetabolite, riboflavin?

no no -

1b Growth in the presence of
antimetabolite, thiamine?

no yes Unknown antimetabolite mechanism;
O� target e�ects of antimetabolite

1c Growth in the presence of
antimetabolite, nicotinamide?

no yes Unknown antimetabolite mechanism;
O� target e�ects of antimetabolite

1d Growth in the presence of
antimetabolite, pyridoxine?

no yes Unknown antimetabolite mechanism;
O� target e�ects of antimetabolite

2a Grows without loops? no no -

2b ATP production if no exchange is
allowed?

no no -

3a Can produce purines? yes yes -

3b Growth with hypoxanthine as the
only purine source?

yes yes -

3c No growth if guanine, guanosine,
inosine, adenine, or adenosine are
only purine sources?

yes 60% -

4 Growth with IPP supplementation
and no apicoplast?

yes no Nuclear encoded proteins that
function within the apicoplast may
be expressed in the cytoplasm if the
organelle is not present.

5a Growth with glucose? yes yes -

5b Growth with alternative sugar
source (no glucose, with ribose,
mannose, fructose, galactose, or
maltose)?

no yes Central carbon metabolism contains
many reversible reactions. Carbon
sources that support growth are
debated.

6a Can produce all amino acids
except isoleucine?

yes yes -

6b Is growth reduced without
methionine, proline, tyrosine,
cystine, glutamate, or glutamine
supplementation?

yes no Model is not designed for growth
reduction experiments.

6c Growth without isoleucine
supplementation?

no no -

7 Growth without calcium
pantothenate?

no no -

8 Growth without p-aminobenzoic
acid?

no no -

9 Cannot produce any metabolites if
no exchange is allowed?

no no -
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Table 4.5: Experimentally-derived metabolic tasks for evaluating iPfal17. (continued)

Metabolic Task In
vitro

iPfal17 Hypothesis for in vitro/in silico
discrepancies

10 Accuracy of experimental
essentiality predictions

- 79.5%a See table \ref{tab:tab_4} and
associated supplemental

11 Accuracy of P. berghei essentiality
predictions

- 61.4%a See table \ref{tab:tab_s6}

iPfal17 validation and functional requirements: To validate the model
against experimental results, essential metabolic tasks of blood-stage growth were
identified and evaluated (Table 4.5). These tasks simulate experimental manipulations
of the parasite or culturing environment, or clinical observations. For example, the
parasite is able to grow in vitro with glucose as the sole carbon source and hypoxanthine
as the purine source, and in vivo the parasite induces blood acidosis via lactate (Asahi
et al. 1996; Geary et al. 1985; Miller et al. 2002). From these experimental or
clinical observations, we develop a task to test if the in silico parasite behaves the
same way. Additional tasks include the parasite’s failure to grow in the presence of
anti-metabolites for riboflavin, nicotinamide, thiamine, and pyridoxine (Geary, Divo,
and Jensen 1985); an anti-metabolite is a compound that inhibits the use of the
metabolite. We defined this set of in silico tasks to provide a framework for curation
and validation e�orts of future network reconstructions. Although iPfal17 fails to pass
all metabolic task simulations, we believe this is the most comprehensive and accurate
model to date due to the curation e�orts and results from tests of the metabolic tasks.
Failures generally exist in pathways that currently contain many reversible reactions
(i.e. tasks 5a–b for glycolysis) or if the experimental evidence is not mechanistic (i.e.
tasks 1a–d) or fully characterized (i.e. task 4; Table 4.5).

Table 4.6: Predicted lethal reactions in wild-type blood-stage Plasmodium falciparum.

Essential Reaction Reaction Name Reaction formula Reaction EC

SERTRS Serine-tRNA ligase atp[c] + ser_L[c] +
trnaser[c] => amp[c] +
ppi[c] + sertrna[c]

6.1.1.11

ILETRS Isoleucine-tRNA ligase atp[c] + ile_L[c] +
trnaile[c] => amp[c] +
iletrna[c] + ppi[c]

6.1.1.5

LEUTRS Leucine-tRNA ligase atp[c] + leu_L[c] +
trnaleu[c] => amp[c] +
leutrna[c] + ppi[c]

6.1.1.4

VALTRS Valine-tRNA ligase atp[c] + trnaval[c] +
val_L[c] => amp[c] +
ppi[c] + valtrna[c]

6.1.1.9
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Table 4.6: Predicted lethal reactions in wild-type blood-stage Plasmodium falciparum. (continued)

Essential Reaction Reaction Name Reaction formula Reaction EC

FMETTRS methionyl-tRNA
formyltransferase

10fthf[c] + mettrna[c]
=> fmettrna[c] + h[c]
+ thf[c]

2.1.2.9

TYRTRS Tyrosine-tRNA ligase atp[c] + trnatyr[c] +
tyr_L[c] => amp[c] +
ppi[c] + tyrtrna[c]

6.1.1.1

ALATRS Alanine-tRNA ligase ala_L[c] + atp[c] +
trnaala[c] => alatrna[c]
+ amp[c] + ppi[c]

6.1.1.7

CYSTRS Cysteine-tRNA ligase atp[c] + cys_L[c] +
trnacys[c] => amp[c] +
cystrna[c] + ppi[c]

6.1.1.16

HISTRS Histidine-tRNA ligase atp[c] + his_L[c] +
trnahis[c] => amp[c] +
histrna[c] + ppi[c]

6.1.1.21

THRTRS Threonine-tRNA ligase atp[c] + thr_L[c] +
trnathr[c] => amp[c] +
ppi[c] + thrtrna[c]

6.1.1.3

ENO phosphopyruvate
hydratase

2pg[c] <=> h2o[c] +
pep[c]

4.2.1.11

GAPD glyceraldehyde-3-
phosphate
dehydrogenase
(phosphorylating)

g3p[c] + nad[c] + pi[c]
<=> 13dpg[c] + h[c] +
nadh[c]

1.2.1.12

LDH_L L-lactate
dehydrogenase

lac_L[c] + nad[c] <=>
h[c] + nadh[c] + pyr[c]

1.1.1.27

TPI[ap] Triose-phosphate
isomerase

dhap[ap] <=> g3p[ap] 5.3.1.1

RPE Ribulose-phosphate
3-epimerase

ru5p_D[c] <=>
xu5p_D[c]

5.1.3.1

DPCOAK[ap] dephospho-CoA kinase atp[ap] + dpcoa[ap]
=> adp[ap] + coa[ap]
+ h[ap]

2.7.1.24

PNTK pantothenate kinase atp[c] + pnto_R[c] =>
4ppan[c] + adp[c] +
h[c]

2.7.1.33

PPCDC Phosphopantothenoylcysteine
decarboxylase

4ppcys[c] + h[c] =>
co2[c] + pan4p[c]

4.1.1.36

PPNCL2 phosphopantothenate-
cysteine
ligase

4ppan[c] + ctp[c] +
cys_L[c] => 4ppcys[c]
+ cmp[c] + h[c] +
ppi[c]

6.3.2.5

PTPATi pantetheine-phosphate
adenylyltransferase

atp[c] + h[c] + pan4p[c]
=> dpcoa[c] + ppi[c]

2.7.7.3

DHFR dihydrofolate reductase dhf[c] + h[c] +
nadph[c] <=> nadp[c]
+ thf[c]

1.5.1.3

DHFS dihydrofolate synthase atp[c] + dhpt[c] +
glu_L[c] => adp[c] +
dhf[c] + h[c] + pi[c]

6.3.2.12
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Table 4.6: Predicted lethal reactions in wild-type blood-stage Plasmodium falciparum. (continued)

Essential Reaction Reaction Name Reaction formula Reaction EC

DHPS2 dihydropteroate
synthase

4abz[c] + 6hmhptpp[c]
=> dhpt[c] + ppi[c]

2.5.1.15

HPPK2 2-amino-4-hydroxy-6-
hydroxymethyldihydropteridine
diphosphokinase

6hmhpt[c] + atp[c] =>
6hmhptpp[c] + amp[c]
+ h[c]

2.7.6.3

MTHFC methenyltetrahydrofolate
cyclohydrolase

h2o[c] + methf[c] <=>
10fthf[c] + h[c]

3.5.4.9

MTHFD methylenetetrahydrofolate
dehydrogenase
(NADP+)

mlthf[c] + nadp[c]
<=> methf[c] +
nadph[c]

1.5.1.5

NADS2 NAD+ synthase
(glutamine-
hydrolysing)

atp[c] + dnad[c] +
gln_L[c] + h2o[c] =>
amp[c] + glu_L[c] +
h[c] + nad[c] + ppi[c]

6.3.5.1

NAMNPP nicotinate phosphoribo-
syltransferase

atp[c] + h2o[c] + nac[c]
+ prpp[c] => adp[c] +
nicrnt[c] + pi[c] +
ppi[c]

2.4.2.11

NNATr nicotinate-nucleotide
adenylyltransferase

atp[c] + h[c] + nicrnt[c]
<=> dnad[c] + ppi[c]

2.7.7.18

RBFK riboflavin kinase atp[c] + ribflv[c] =>
adp[c] + fmn[c] + h[c]

2.7.1.26

CHORS chorismate synthase 3psme[c] => chor[c] +
pi[c]

4.2.3.5

DDPA 3-deoxy-7-
phosphoheptulonate
synthase

e4p[c] + h2o[c] + pep[c]
=> 2dda7p[c] + pi[c]

2.5.1.54

DHQS 3-dehydroquinate
synthase

2dda7p[c] => 3dhq[c]
+ pi[c]

4.2.3.4

DHQTi 3-dehydroquinate
dehydratase

3dhq[c] => 3dhsk[c] +
h2o[c]

4.2.1.10

PSCVT 3-phosphoshikimate 1-
carboxyvinyltransferase

pep[c] + skm5p[c]
<=> 3psme[c] + pi[c]

2.5.1.19

SHK3Dr shikimate
dehydrogenase

3dhsk[c] + h[c] +
nadph[c] <=> nadp[c]
+ skm[c]

1.1.1.25

CHRPL chorismate lyase chor[c] => 4hbz[c] +
pyr[c]

4.1.3.40

R07456 R07456 g3p[c] + gln_L[c] +
ru5p_D[c] <=>
glu_L[c] + pydx5p[c]

NA

EX_cholesterol EX cholesterol chsterol[e] <=> NA
EX_fe2(e) EX fe2 e fe2[e] <=> NA
EX_ile_L(e) EX ile L e ile_L[e] <=> NA
EX_phosphatidyl2 EX phosphatidyl2 pc[e] <=> NA
EX_pnto_R(e) EX pnto R e pnto_R[e] <=> NA
EX_ribflv1 EX ribflv1 ribflv[e] <=> NA
EX_so4(e) EX so4 e so4[e] <=> NA
FEROpp ferroxidase 4 fe2[c] + 4 h[c] + o2[c]

=> 4 fe3[c] + 2 h2o[c]
1.16.3.1
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Table 4.6: Predicted lethal reactions in wild-type blood-stage Plasmodium falciparum. (continued)

Essential Reaction Reaction Name Reaction formula Reaction EC

lipid3 lipid3 dag[c] <=>
12dgr120[c] +
12dgr140[c] +
12dgr141[c] +
12dgr160[c] +
12dgr161[c] +
12dgr180[c] +
12dgr181[c]

NA

CDPMEK[ap] 4-(cytidine
5-diphospho)-2-C-
methyl-D-erythritol
kinase

4c2me[ap] + atp[ap]
=> 2p4c2me[ap] +
adp[ap] + h[ap]

2.7.1.148

DMPPS[ap] 4-hydroxy-3-methylbut-
2-enyl diphosphate
reductase

h2mb4p[ap] + h[ap] +
nadph[ap] =>
dmpp[ap] + h2o[ap] +
nadp[ap]

1.17.1.2

DXPRIi[ap] 1-deoxy-D-xylulose-5-
phosphate
reductoisomerase

dxyl5p[ap] + h[ap] +
nadph[ap] =>
2me4p[ap] + nadp[ap]

1.1.1.267

DXPS[ap] 1-deoxy-D-xylulose-5-
phosphate
synthase

g3p[ap] + h[ap] +
pyr[ap] => co2[ap] +
dxyl5p[ap]

2.2.1.7

IPDPS[ap] 4-hydroxy-3-methylbut-
2-enyl diphosphate
reductase

h2mb4p[ap] + h[ap] +
nadph[ap] => h2o[ap]
+ ipdp[ap] + nadp[ap]

1.17.1.2

MECDPDH2[ap] MECDPDH2 ap 2mecdp[ap] +
nadph[ap] =>
h2mb4p[ap] + h2o[ap]
+ nadp[ap]

1.17.7.1

MECDPS[ap] 2-C-methyl-D-
erythritol
2,4-cyclodiphosphate
synthase

2p4c2me[ap] =>
2mecdp[ap] + cmp[ap]

4.6.1.12

MEPCT[ap] 2-C-methyl-D-
erythritol 4-phosphate
cytidylyltransferase

2me4p[ap] + ctp[ap] +
h[ap] => 4c2me[ap] +
ppi[ap]

2.7.7.60

DMATT dimethylallyltranstransferasedmpp[c] + ipdp[c] =>
grdp[c] + ppi[c]

2.5.1.1

GRTT geranyltranstransferase grdp[c] + ipdp[c] =>
frdp[c] + ppi[c]

2.5.1.10

ADSL1r adenylosuccinate lyase dcamp[c] <=> amp[c]
+ fum[c]

4.3.2.2

GK1 guanylate kinase atp[c] + gmp[c] <=>
adp[c] + gdp[c]

2.7.4.8

HXPRT hypoxanthine phospho-
ribosyltransferase

hxan[c] + prpp[c] =>
imp[c] + ppi[c]

2.4.2.8

ADSS Adenylosuccinate
synthase

asp_L[c] + gtp[c] +
imp[c] => dcamp[c] +
gdp[c] + 2 h[c] + pi[c]

6.3.4.4
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Table 4.6: Predicted lethal reactions in wild-type blood-stage Plasmodium falciparum. (continued)

Essential Reaction Reaction Name Reaction formula Reaction EC

DHORTS dihydroorotase dhor_S[c] + h2o[c]
<=> cbasp[c] + h[c]

3.5.2.3

DUTPDP dUTP diphosphatase dutp[c] + h2o[c] =>
dump[c] + h[c] + ppi[c]

3.6.1.23

OMPDC Orotidine-5-phosphate
decarboxylase

h[c] + orot5p[c] =>
co2[c] + ump[c]

4.1.1.23

ORPT orotate phosphoribosyl-
transferase

orot5p[c] + ppi[c] <=>
orot[c] + prpp[c]

2.4.2.10

ASPCT aspartate
carbamoyltransferase

asp_L[c] + cbp[c] =>
cbasp[c] + h[c] + pi[c]

2.1.3.2

TMDS thymidylate synthase dump[c] + mlthf[c] =>
dhf[c] + dtmp[c]

2.1.1.45

TRDR thioredoxin-disulfide
reductase

h[c] + nadph[c] +
trdox[c] => nadp[c] +
trdrd[c]

1.8.1.9

FE2t FE2t fe2[e] => fe2[c] NA
SO4ti SO4ti so4[e] => so4[c] NA
DPCOAtap DPCOAtap dpcoa[ap] <=>

dpcoa[c]
NA

NADPtap NADPtap nadp[ap] <=> nadp[c] NA
PPItap PPItap ppi[ap] <=> ppi[c] NA
CMPtap CMPtap cmp[ap] <=> cmp[c] NA
CO2tap CO2tap co2[ap] <=> co2[c] NA
CTPtap CTPtap ctp[ap] <=> ctp[c] NA
DHAPtap DHAPtap dhap[c] + pi[ap] =>

dhap[ap] + pi[c]
NA

DMPPtap DMPPtap dmpp[ap] <=>
dmpp[c]

NA

H2Otap H2Otap h2o[ap] <=> h2o[c] NA
Htap Htap h[ap] <=> h[c] NA
IPDPtap IPDPtap ipdp[ap] <=> ipdp[c] NA
NADPHtap NADPHtap nadph[ap] <=>

nadph[c]
NA

PEPPItap PEPPItap pep[c] + pi[ap] =>
pep[ap] + pi[c]

NA

PNTOt2 PNTOt2 h[e] + pnto_R[e] <=>
h[c] + pnto_R[c]

NA

RIBFLVt2 RIBFLVt2 h[e] + ribflv[e] => h[c]
+ ribflv[c]

NA

4HBZtmt 4HBZtmt 4hbz[m] <=> 4hbz[c] NA
DHORtmt DHORtmt dhor_S[m] <=>

dhor_S[c]
NA

OCTDPtmt OCTDPtmt octdp[m] <=> octdp[c] NA
OROTtmt OROTtmt orot[m] <=> orot[c] NA
PHEMEtmt PHEMEtmt pheme[m] <=>

pheme[c]
NA

PPItmt PPItmt ppi[m] <=> ppi[c] NA
EX_hb EX hb => hb[e] NA
HBtr HBtr hb[e] => hb[c] NA
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Table 4.6: Predicted lethal reactions in wild-type blood-stage Plasmodium falciparum. (continued)

Essential Reaction Reaction Name Reaction formula Reaction EC

CHSTEROLt CHSTEROLt atp[c] + chsterol[c] +
h2o[c] <=> adp[c] +
chsterol[e] + h[c] +
pi[c]

NA

trna_ala trna_ala trnaala[c] <=> NA
trna_asp trna_asp trnaasp[c] <=> NA
trna_cys trna_cys trnacys[c] <=> NA
trna_gly trna_gly trnagly[c] <=> NA
trna_his trna_his trnahis[c] <=> NA
trna_ile trna_ile trnaile[c] <=> NA
trna_leu trna_leu trnaleu[c] <=> NA
trna_lys trna_lys trnalys[c] <=> NA
trna_pro trna_pro trnapro[c] <=> NA
trna_ser trna_ser trnaser[c] <=> NA
trna_thr trna_thr trnathr[c] <=> NA
trna_tyr trna_tyr trnatyr[c] <=> NA
trna_val trna_val trnaval[c] <=> NA
trna_arg trna_arg trnaarg[c] <=> NA
trna_met trna_met trnamet[c] <=> NA
trna_asn trna_asn trnaasn[c] <=> NA
trna_phe trna_phe trnaphe[c] <=> NA
trna_trp trna_trp trnatrp[c] <=> NA
OCTDPS OCTDPS frdp[c] + 5 ipdp[c] =>

octdp[c] + 5 ppi[c]
2.5.1.90

NADK NADK atp[c] + nad[c] =>
adp[c] + h[c] + nadp[c]

2.7.1.23

ARGTRS ARGTRS arg_L[c] + atp[c] +
trnaarg[c] => amp[c] +
ppi[c] + argtrna[c]

6.1.1.19

PGM PGM 2pg[c] <=> 3pg[c] 5.4.2.1
HBZOPT_mt HBZOPT_mt 4hbz[m] + octdp[m]

=> 3ophb[m] + 2
ppi[m]

2.5.1.39

HMGLB HMGLB hb[c] => 36 ala_L[c] +
6 arg_L[c] + 10
asn_L[c] + 15 asp_L[c]
+ 3 cys_L[c] + 4
gln_L[c] + 12 glu_L[c]
+ 20 gly[c] + 19
his_L[c] + 36 leu_L[c]
+ 22 lys_L[c] + 5
met_L[c] + 15
phe_L[c] + 14 pro_L[c]
+ 16 ser_L[c] + 16
thr_L[c] + 3 trp_L[c]
+ 6 tyr_L[c] + 31
val_L[c] + pheme[fv]

NA

HCO3E HCO3E co2[c] + h2o[c] => h[c]
+ hco3[c]

4.2.1.1
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Table 4.6: Predicted lethal reactions in wild-type blood-stage Plasmodium falciparum. (continued)

Essential Reaction Reaction Name Reaction formula Reaction EC

TRPTRS TRPTRS atp[c] + trnatrp[c] +
trp_L[c] => amp[c] +
ppi[c] + trptrna[c]

6.1.1.2

TKT2 TKT2 e4p[c] + xu5p_D[c]
<=> f6p[c] + g3p[c]

2.2.1.1

DTMPK DTMPK atp[c] + dtmp[c] <=>
adp[c] + dtdp[c]

2.7.4.9

UMPK UMPK atp[c] + ump[c] <=>
adp[c] + udp[c]

2.7.4.14

NDPK3 NDPK3 atp[c] + cdp[c] =>
adp[c] + ctp[c]

2.7.4.6

NDPK4 NDPK4 atp[c] + dtdp[c] =>
adp[c] + dttp[c]

2.7.4.6

NDPK5 NDPK5 atp[c] + dgdp[c] =>
adp[c] + dgtp[c]

2.7.4.6

NDPK7 NDPK7 atp[c] + dcdp[c] =>
adp[c] + dctp[c]

2.7.4.6

NDPK8 NDPK8 atp[c] + dadp[c] =>
adp[c] + datp[c]

2.7.4.6

PPA PPA h2o[c] + ppi[c] => 2
h[c] + 2 pi[c]

3.6.1.1

OPHHX_mt OPHHX_mt 2oph[m] + nadph[m] +
0.5 o2[m] => 2ohph[m]
+ h2o[m] + nadp[m]

1.14.13.8

CYTK1 CYTK1 atp[c] + cmp[c] <=>
adp[c] + cdp[c]

2.7.4.14

SHKK SHKK atp[c] + skm[c] =>
adp[c] + h[c] +
skm5p[c]

2.7.1.71

HMBZ HMBZ pheme[fv] =>
hemozoin[fv]

4.99.1.8

HMBZex HMBZex hemozoin[fv] =>
hemozoin[e]

NA

LAC LAC lac_L[c] => lac_L[e] NA
METTRS METTRS atp[c] + met_L[c] +

trnamet[c] => amp[c]
+ mettrna[c] + ppi[c]

6.1.1.10

ASNTRS ASNTRS asn_L[c] + atp[c] +
trnaasn[c] => amp[c]
+ ppi[c] + asntrna[c]

6.1.1.22

FMNAT FMNAT atp[c] + fmn[c] + h[c]
=> fad[c] + ppi[c]

2.7.7.2

PHETRS PHETRS atp[c] + phe_L[c] +
trnaphe[c] => amp[c]
+ ppi[c] + phetrna[c]

6.1.1.20

RNDR1 RNDR1 adp[c] + trdrd[c] =>
dadp[c] + h2o[c] +
trdox[c]

1.17.4.1

RNDR2 RNDR2 gdp[c] + trdrd[c] =>
dgdp[c] + h2o[c] +
trdox[c]

1.17.4.1
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Table 4.6: Predicted lethal reactions in wild-type blood-stage Plasmodium falciparum. (continued)

Essential Reaction Reaction Name Reaction formula Reaction EC

RNDR3 RNDR3 cdp[c] + trdrd[c] =>
dcdp[c] + h2o[c] +
trdox[c]

1.17.4.1

PROTRS PROTRS atp[c] + pro_L[c] +
trnapro[c] => amp[c]
+ ppi[c] + protrna[c]

6.1.1.15

ASPTRS ASPTRS asp_L[c] + atp[c] +
trnaasp[c] => amp[c]
+ ppi[c] + asptrna[c]

6.1.1.12

GLYTRS GLYTRS atp[c] + gly[c] +
trnagly[c] => amp[c] +
ppi[c] + glytrna[c]

6.1.1.14

LYSTRS LYSTRS atp[c] + lys_L[c] +
trnalys[c] => amp[c] +
ppi[c] + lystrna[c]

6.1.1.6

OPHBDC_mt OPHBDC_mt 3ophb[m] + h[m] =>
2oph[m] + co2[m]

4.1.1.-

CYOOm_mt CYOOm_mt 4 focytc[m] + 6 h[m] +
o2[m] => 4 ficytc[m] +
2 h2o[m] + 6 h[c]

1.9.3.1

CYOR_u6m_mt CYOR_u6m_mt 2 ficytc[m] + q8h2[m]
=> 2 focytc[m] + 2
h[m] + q8[m]

1.10.2.2

DHORD2_mt DHORD2_mt dhor_S[m] + q8[m] =>
orot[m] + q8h2[m]

1.3.5.2

PGK PGK 13dpg[c] + adp[c] =>
3pg[c] + atp[c]

2.7.2.3

ILEt2r ILEt2r ile_L[e] + leu_L[c]
<=> ile_L[c] +
leu_L[e]

NA

PRPPS PRPPS atp[c] + r5p[c] =>
amp[c] + h[c] + prpp[c]

2.7.6.1

PCt PCt pc[c] <=> pc[e] NA
pc_prod pc_prod pc[c] => all_pc[c] NA
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Table 4.6: Predicted lethal reactions in wild-type blood-stage Plasmodium falciparum. (continued)

Essential Reaction Reaction Name Reaction formula Reaction EC

Protein Protein 0.1364 alatrna[c] +
0.0674 cystrna[c] + 0.1
fmettrna[c] + 0.3505
glutrna[c] + 0.1063
histrna[c] + 0.3566
iletrna[c] + 0.3405
leutrna[c] + 0.1019
mettrna[c] + 0.3055
sertrna[c] + 0.2045
thrtrna[c] + 0.1379
tyrtrna[c] + 0.203
valtrna[c] + 0.1349
argtrna[c] + 0.02095
trptrna[c] + 0.1353
glntrna[c] + 0.6245
asntrna[c] + 0.1823
phetrna[c] + 0.1085
protrna[c] + 0.2994
asptrna[c] + 0.1827
glytrna[c] + 0.5124
lystrna[c] => protein[c]

NA

Lipid_prod Lipid_prod 0.519 chsterol[c] + 14
sphmyln[c] + 1.5 tag[c]
+ 35 all_pc[c] + 18
all_pe[c] + 4.25
all_pi[c] + 1.5
all_pg[c] + 0.2
all_apg[c] + 4
all_dgl[c] => lipid[c]

NA
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Table 4.6: Predicted lethal reactions in wild-type blood-stage Plasmodium falciparum. (continued)

Essential Reaction Reaction Name Reaction formula Reaction EC

biomass biomass 0.000223 10fthf[c] +
0.000223 2ohph[m] +
0.01 akg[c] + 0.1364
ala_L[c] + 0.000223
amet[c] + 0.1349
arg_L[c] + 0.6245
asn_L[c] + 0.2994
asp_L[c] + 60.01 atp[c]
+ 0.000576 coa[c] +
0.0437 ctp[c] + 0.0674
cys_L[c] + 0.02721
datp[c] + 0.00655
dctp[c] + 0.00655
dgtp[c] + 0.02721
dttp[c] + 0.000223
fad[c] + 0.007106 fe2[c]
+ 0.007106 fe3[c] +
0.1353 gln_L[c] +
0.3505 glu_L[c] +
0.1827 gly[c] + 0.003
gthox[c] + 0.087
gthrd[c] + 0.06241
gtp[c] + 54.462 h2o[c]
+ 0.1063 his_L[c] +
0.3566 ile_L[c] +
0.3405 leu_L[c] +
0.5124 lys_L[c] + 0.01
mal_L[c] + 0.1019
met_L[c] + 0.000223
mlthf[c] + 0.001831
nad[c] + 0.000447
nadp[c] + 0.011843
nh4[c] + 0.1823
phe_L[c] + 0.000223
pheme[m] + 0.1085
pro_L[c] + 0.0479
ptrc[c] + 0.000223
pydx5p[c] + 0.000223
ribflv[c] + 0.3055
ser_L[c] + 0.003948
so4[c] + 0.00959
spmd[c] + 0.000223
thf[c] + 0.000223
thmpp[c] + 0.2045
thr_L[c] + 0.02095
trp_L[c] + 0.1379
tyr_L[c] + 0.2219
utp[c] + 0.203 val_L[c]
+ 0.1 hemozoin[e] +
0.01 lac_L[e] + 0.1
protein[c] + 0.1 lipid[c]
=> 59.81 adp[c] +
59.81 h[c] + 59.806
pi[c] + 0.7739 ppi[c] +
biomass[c]

NA
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Table 4.6: Predicted lethal reactions in wild-type blood-stage Plasmodium falciparum. (continued)

Essential Reaction Reaction Name Reaction formula Reaction EC

biomass_s biomass_s biomass[c] => NA

Table 4.7: Predicted lethal genes in wild-type blood-stage Plasmodium falciparum.

MAL13P1_186 PF11_0410 PFA0225w PFF1490w PF14_0439
MAL13P1_221 PF13_0044 PFA0340w PFI1170c PFE1360c
MAL13P1_292 PF13_0140 PFA0555c PFI1310w MAL8P1_140
MAL13P1_67 PF13_0159 PFB0130w PFI1365w PF10_0150
MAL8P1_58 PF13_0179 PFB0210c PFI1375w PF14_0327
MAL8P1_81 PF13_0287 PFB0280w PFI1420w PFE0355c
PF07_0018 PF13_0354 PFB0295w PFL0960w PFE0370c
PF08_0068 PF14_0053 PFB0420w PFL2465c PF11_0381
PF08_0095 PF14_0060 PFC0831w PF3D7_0714700 PF14_0574
PF10_0121 PF14_0097 PFD0830w PF3D7_1370100 PF02_0059
PF10_0147 PF14_0198 PFE0150c PF3D7_0706900 PF02_0060
PF10_0149 PF14_0248 PFE0410w PF3D7_0702800 PF3D7_0206400
PF10_0154 PF14_0288 PFE0630c PF3D7_0403000 PFB0279w
PF10_0155 PF14_0331 PFE1510c PF3D7_0514400 PF14_0446
PF10_0221 PF14_0352 PFF0160c PF3D7_1369900 mal_mito_2
PF10_0225 PF14_0373 PFF0370w PFI0650c mal_mito_1
PF10_0363 PF14_0415 PFF0450c PF14_0015 PF10_0120
PF11_0059 PF14_0428 PFF0530w PF14_0517 PF3D7_0211300
PF11_0169 PF14_0598 PFF1105c PFI1570c mal_mito_3
PF11_0270 PF14_0641 PFF1155w PF11_0174
PF11_0282 PF14_0697 PFF1410c PFL2290w
PF11_0295 PF14_0721 PFF1430c PF13_0322

Table 4.8: PlasmoGem (Plasmodium berghei) experimental results compared to iPfal17 predictions.

gene PlasmoGem orthologous results iPfal17 prediction

PFA0145c essential dispensible
PFA0340w essential essential
PFA0480w essential dispensible
PFB0130w essential essential
PFB0220w essential dispensible
PFB0295w essential essential
PFB0385w essential dispensible
PFB0435c essential dispensible
PFB0525w essential dispensible
PFC0470w essential dispensible
PFC0935c essential dispensible
PFC0995c essential dispensible
PFD0830w essential essential
PFE0150c essential essential
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Table 4.8: PlasmoGem (Plasmodium berghei) experimental results compared to iPfal17 predictions.
(continued)

gene PlasmoGem orthologous results iPfal17 prediction

PFE0370c essential essential
PFE0475w essential dispensible
PFE0485w essential dispensible
PFE0660c essential dispensible
PFE0765w essential dispensible
PFE1360c essential essential
PFE1510c essential essential
PFF0160c essential essential
PFF0370w essential essential
PFF0530w essential essential
PFF0895w essential dispensible
PFF1095w essential dispensible
PFF1115w essential dispensible
PFF1155w essential essential
PFF1190c essential dispensible
PFF1300w essential dispensible
PFF1350c essential dispensible
PFF1375c essential dispensible
PF07_0024 essential dispensible
PF07_0073 essential dispensible
MAL7P1.150 essential dispensible
MAL8P1.150 essential dispensible
MAL8P1.140 essential essential
MAL8P1.13 essential dispensible
PF3D7_0808200 essential dispensible
PF08_0095 essential essential
MAL8P1.17 essential dispensible
PF08_0011 essential dispensible
PFI0380c essential dispensible
PFI0680c essential dispensible
PFI0880c essential dispensible
PFI1020c essential dispensible
PFI1105w essential dispensible
PFI1140w essential dispensible
PFI1365w essential essential
PFI1370c essential dispensible
PFI1375w essential essential
PFI1375w essential essential
PF10_0051 essential dispensible
PF10_0086 essential dispensible
PF10_0120 essential essential
PF10_0132 essential dispensible
PF10_0150 essential essential
PF10_0154 essential essential
PF10_0155 essential essential
PF10_0175 essential dispensible
PF10_0221 essential essential
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Table 4.8: PlasmoGem (Plasmodium berghei) experimental results compared to iPfal17 predictions.
(continued)

gene PlasmoGem orthologous results iPfal17 prediction

PF10_0322 essential dispensible
PF10_0363 essential essential
PF11_0051 essential dispensible
PF11_0059 essential essential
PF11_0173 essential dispensible
PF11_0174 essential essential
PF11_0208 essential dispensible
PF11_0270 essential essential
PF11_0295 essential essential
PF11_0381 essential essential
PF11_0407 essential dispensible
PF11_0483 essential dispensible
PF11_0483 essential dispensible
PFL0110c essential dispensible
PFL0670c essential dispensible
PFL0675c essential dispensible
PFL0770w essential dispensible
PFL0900c essential dispensible
PFL1350w essential dispensible
PFL1515c essential dispensible
PFL1940w essential dispensible
PFL2000w essential dispensible
PFL2290w essential essential
PF13_0044 essential essential
MAL13P1.56 essential dispensible
MAL13P1.86 essential dispensible
MAL13P1.118 essential dispensible
MAL13P1.118 essential dispensible
PF13_0133 essential dispensible
PF13_0140 essential essential
PF13_0141 essential dispensible
PF13_0170 essential dispensible
PF13_0182 essential dispensible
PF13_0205 essential dispensible
MAL13P1.210 essential dispensible
PF13_0229 essential dispensible
MAL13P1.221 essential essential
PF13_0257 essential dispensible
PF13_0322 essential essential
MAL13P1.319 essential dispensible
PF13_0344 essential dispensible
PF13_0354 essential essential
PF14_0053 essential essential
PF14_0088 essential dispensible
PF14_0097 essential essential
PF14_0100 essential dispensible
PF14_0166 essential dispensible
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Table 4.8: PlasmoGem (Plasmodium berghei) experimental results compared to iPfal17 predictions.
(continued)

gene PlasmoGem orthologous results iPfal17 prediction

PF14_0198 essential essential
PF14_0248 essential essential
PF3D7_1430200 essential dispensible
PF14_0288 essential essential
PF14_0327 essential essential
PF14_0331 essential essential
PF14_0341 essential dispensible
PF14_0352 essential essential
PF14_0378 essential dispensible
PF14_0381 essential dispensible
PF14_0415 essential essential
PF14_0425 essential dispensible
PF14_0428 essential essential
PF14_0446 essential essential
PF14_0484 essential dispensible
PF14_0517 essential essential
PF14_0520 essential dispensible
PF14_0589 essential dispensible
PF14_0598 essential essential
PF14_0641 essential essential
PF14_0664 essential dispensible
PF14_0721 essential essential
PFA0160c dispensible dispensible
PFB0695c dispensible dispensible
PFB0890c dispensible dispensible
PFC0050c dispensible dispensible
PFC0430w dispensible dispensible
PFC0831w dispensible essential
PFC0910w dispensible dispensible
PFD0085c dispensible dispensible
PFD0465c dispensible dispensible
PFD0610w dispensible dispensible
PFE0405c dispensible dispensible
PFE0605c dispensible dispensible
PFE0775c dispensible dispensible
PFE0875c dispensible dispensible
PFE1050w dispensible dispensible
PFE1360c dispensible essential
PFF0360w dispensible dispensible
PFF0435w dispensible dispensible
PFF0945c dispensible dispensible
PFF1105c dispensible essential
PFF1130c dispensible dispensible
PFF1210w dispensible dispensible
PFF1210w dispensible dispensible
PFF1275c dispensible dispensible
PFF1335c dispensible dispensible
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Table 4.8: PlasmoGem (Plasmodium berghei) experimental results compared to iPfal17 predictions.
(continued)

gene PlasmoGem orthologous results iPfal17 prediction

PFF1360w dispensible dispensible
PFF1420w dispensible dispensible
PF07_0040 dispensible dispensible
PF07_0073 dispensible dispensible
PF07_0129 dispensible dispensible
MAL8P1.13 dispensible dispensible
MAL8P1.13 dispensible dispensible
PF08_0077 dispensible dispensible
PF08_0066 dispensible dispensible
MAL8P1.81 dispensible essential
PF08_0045 dispensible dispensible
MAL8P1.13 dispensible dispensible
PFI0735c dispensible dispensible
PFI0775w dispensible dispensible
PFI0815c dispensible dispensible
PFI0950w dispensible dispensible
PFI1110w dispensible dispensible
PFI1125c dispensible dispensible
PFI1170c dispensible essential
PFI1170c dispensible essential
PFI1195c dispensible dispensible
PFI1570c dispensible essential
PF10_0122 dispensible dispensible
PF10_0137 dispensible dispensible
PF10_0147 dispensible essential
PF10_0150 dispensible essential
PF10_0169 dispensible dispensible
PF10_0175 dispensible dispensible
PF10_0407 dispensible dispensible
PF10_0409 dispensible dispensible
PF10_0275 dispensible dispensible
PF10_0289 dispensible dispensible
PF3D7_1033800 dispensible dispensible
PF10_0334 dispensible dispensible
PF11_0036 dispensible dispensible
PF11_0145 dispensible dispensible
PF11_0157 dispensible dispensible
PF11_0172 dispensible dispensible
PF11_0174 dispensible essential
PF11_0294 dispensible dispensible
PF11_0453 dispensible dispensible
PFL0035c dispensible dispensible
PFL0255c dispensible dispensible
PFL0285w dispensible dispensible
PFL0420w dispensible dispensible
PFL0480w dispensible dispensible
PFL0630w dispensible dispensible
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Table 4.8: PlasmoGem (Plasmodium berghei) experimental results compared to iPfal17 predictions.
(continued)

gene PlasmoGem orthologous results iPfal17 prediction

PFL0725w dispensible dispensible
PFL0770w dispensible dispensible
PFL0780w dispensible dispensible
PFL1155w dispensible dispensible
PFL1260w dispensible dispensible
PFL2210w dispensible dispensible
PFL2290w dispensible essential
PFL2570w dispensible dispensible
MAL13P1.40 dispensible dispensible
PF13_0066 dispensible dispensible
PF13_0089 dispensible dispensible
PF13_0121 dispensible dispensible
PF13_0128 dispensible dispensible
PF13_0144 dispensible dispensible
PF13_0234 dispensible dispensible
MAL13P1.248 dispensible dispensible
MAL13P1.284 dispensible dispensible
PF13_0345 dispensible dispensible
PF13_0353 dispensible dispensible
MAL13P1.485 dispensible dispensible
PF14_0015 dispensible essential
PF14_0034 dispensible dispensible
PF14_0164 dispensible dispensible
PF14_0192 dispensible dispensible
PF14_0192 dispensible dispensible
PF14_0200 dispensible dispensible
PF14_0282 dispensible dispensible
PF14_0286 dispensible dispensible
PF14_0354 dispensible dispensible
PF14_0357 dispensible dispensible
PF14_0368 dispensible dispensible
PF14_0508 dispensible dispensible
PF14_0541 dispensible dispensible
PF14_0570 dispensible dispensible
PF14_0573 dispensible dispensible
PF3D7_1465700 dispensible dispensible
PF14_0694 dispensible dispensible
PF14_0751 dispensible dispensible
PF14_0761 dispensible dispensible
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Table 4.9: Experimental knockouts compared to iPfal17 predictions. Tg = Toxoplasma gondii; Pf
= Plasmodium falciparum; Pb = Plasmodium berghei; GR = growth reducing; L = lethal; NL =
nonlethal; KO = knockout; Caret indicates contrary to published results; Star indicates known o�
target e�ects.

Enzyme In vitro
method

Species Citation Experimental
Result

Plata iPfal17

Pantothenate
kinase

Inhibitors Pf Spry 2005 L L L

Dihydropteroate
sythetase

Inhibitors Pf Zhang and
Meshnick
1991

L L L

Dihydrofolate
reductase;
thymidylate
synthase

Inhibitor
(1843U89)

Pf Jiang 2000 L L L

Lactate
deydroge-
nase

Inhibitors
(Gossypol,
others)

Pf Razakantoanina
2000

L L L

1-Deoxy-D-
xylulose-5-
phosphate
reductoiso-
merase

Inhibitor
(Fos-
midomycin)

Pf Cassera
2007

L L L

Ornithine
decarboxylase/S-
Adenosylmethionine
decarboxy-
lase

Inhibitors
(3-
Aminooxy-
1-
aminopropane,
DFMO)

Pf Das Gupta
2005,
Ramya 2006

NA L^ Conditional
KO: L

Spermidine
synthase

Inhibitors
(4MCHA,
others)

Pf Haider 2005 NA L^ Conditional
KO: L

FABI,
enoyl-acyl
carrier
reductase

Inhibitor
(Triclosan)*

Pf Ramya 2007 L - NL

FABB/F
3-oxoacyl-
acyl-carrier
protein
synthase
I/II

Inhibitor
(Cerulenin)

Pf Ramya 2007 L - NL

Hypoxanthine
phosphori-
bosyl
transferase

Antisense
oligos

Pf Dawson
1993

L L L
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Table 4.9: Experimental knockouts compared to iPfal17 predictions. Tg = Toxoplasma gondii; Pf
= Plasmodium falciparum; Pb = Plasmodium berghei; GR = growth reducing; L = lethal; NL =
nonlethal; KO = knockout; Caret indicates contrary to published results; Star indicates known o�
target e�ects. (continued)

Enzyme In vitro
method

Species Citation Experimental
Result

Plata iPfal17

Adenylosuccinate
synthase

Inhibitor
(hadacidin)

Pf Webster
1984

L L L

Adenylosuccinate
lyase

Inhibitors
(5-
aminoimidazole-
4-
carboxamide
ribonucleo-
side)

Pf Bulusu 2009 L L L

Dihydroorotate
dehydroge-
nase

RNAi;
Inhibitors
(several)

Pf Deng 2009;
McRobert
&
McConkey
2002

L L L

Adenosine
deaminase

Inhibitor
(methylth-
ioco-
formycin)

Pf Ho 2009 L L^* Conditional
KO: NL

Purine
nucleoside
phosphory-
lase

Inhibitor
(immucillin-
H)

Pf Kicska 2002 L L^ Conditional
KO: L

Ribonucleoside
reductase

Oligodeoxynucleotide
phospho-
rothioate

Pf Chakrabarti
1993

L L L

Carbonic
anhydrase

Inhibitors
(several)

Pf Krungkrai
2008

L L L

Carbamoyl-
phosphate
synthase

Ribozymes Pf Flores 1997 L L L

Deoxyuridine
5-
triphosphate
nucleotido-
hydrolase

Inhibitors Pf Nguyen
2005

L NL L

Lactoylglutathione
lyase

Inhibitor
(S-p-
bromobenzylglutathione
diethyl
ester)

Pf Thornalley
1994

L NL NL



M. A. Carey 92

Table 4.9: Experimental knockouts compared to iPfal17 predictions. Tg = Toxoplasma gondii; Pf
= Plasmodium falciparum; Pb = Plasmodium berghei; GR = growth reducing; L = lethal; NL =
nonlethal; KO = knockout; Caret indicates contrary to published results; Star indicates known o�
target e�ects. (continued)

Enzyme In vitro
method

Species Citation Experimental
Result

Plata iPfal17

Thioredoxin
reductase
(NADPH)

Gene KO Pf Krnajski
2002

L L L

3-
Phosphoshikimate
1-
carboxyvinyl
transferase

Inhibitor
(glyphosate)

Pf Roberts
1998

L L L

Chorismate
synthase

RNAi Pf McRobert
&
McConkey
2002

L L L

SphingomyelinaseInhibitor
(Scypho-
statin)

Pf Hanada
2002

L NL NL (GR)

Plasmepsin
II

Inhibitors Pf PubMed
ID8816746

L - NL

cytosolic
lysyl-tRNA
synthetase

Inhibitor
(cla-
dosporin)

Pf doi:
10.1016/j.chom.2012.04.015

L - L

apicoplast-
targeted
isoleucyl-
tRNA
synthetase

Inhibitor
(mupirocin)

Pf doi:
10.1073/pnas.1011560108

L - L

cytosolic
isoleucyl-
tRNA
synthetase

Inhibitor
(Thi-
aisoleucine)

Pf doi:
10.1073/pnas.1011560108

L - L

gamma-
Glutamylcysteine
synthase

Inhibitor
(L-
buthionine
sulfox-
imine); fail
to Gene KO

Pf doi:
10.1111/j.1365-
2958.2011.07933.x

L - NL

glutathion
s-
transferase

Inhibitors
(ellagic
acid,
others)

Pf Sturm 2009 L - NL
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Table 4.9: Experimental knockouts compared to iPfal17 predictions. Tg = Toxoplasma gondii; Pf
= Plasmodium falciparum; Pb = Plasmodium berghei; GR = growth reducing; L = lethal; NL =
nonlethal; KO = knockout; Caret indicates contrary to published results; Star indicates known o�
target e�ects. (continued)

Enzyme In vitro
method

Species Citation Experimental
Result

Plata iPfal17

glutathione
reductase

Inhibitors;
fail to KO

Pf PMID:
23116403,
Muller 2015

L - NL

Farnesyl
diphosphate
synthase

Inhibitors Pf Mukkamala
2008

L L L

Farnesyl
diphosphate
synthase

Inhibitors Pf Mukkamala
2008

L L L

Glycerol
kinase

Gene KO Pf Schnick
2009

NL NL NL

Fructose-
biphosphate
aldolase

Antisense
oligos

Pf Wanidworanun
1999

NL NL NL

5-
aminolevulinic
acid
synthase

Gene KO Pf, Pb doi: 10.1074/jbc.M114.615831
and
10.1371/jour-
nal.ppat.1003522

NL - NL

ferrochelatase Gene KO Pf doi: 10.1074/jbc.M114.615831NL - NL

aconitase Gene KO;
Inhibitor
(Sodium
fluoroac-
etate)

Pf DOI: 10.1186/1741-
7007-11-67,
DOI:
10.1016/j.celrep.2015.03.011

NL - NL

glutamate
dehydroge-
nase a

Gene KO Pf DOI:
10.1186/1475-
2875-10-
193.

NL - NL

alpha-
ketoglutarate
dehydroge-
nase

Gene KO Pf doi:
10.1016/j.celrep.2015.03.011

NL - NL

succinyl-
CoA
synthetase

Gene KO Pf doi:
10.1016/j.celrep.2015.03.011

NL - NL

succinate
dehydroge-
nase

Gene KO Pf doi:
10.1016/j.celrep.2015.03.011

NL - NL

citrate
synthase

Gene KO Pf doi:
10.1016/j.celrep.2015.03.011

NL - NL
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Table 4.9: Experimental knockouts compared to iPfal17 predictions. Tg = Toxoplasma gondii; Pf
= Plasmodium falciparum; Pb = Plasmodium berghei; GR = growth reducing; L = lethal; NL =
nonlethal; KO = knockout; Caret indicates contrary to published results; Star indicates known o�
target e�ects. (continued)

Enzyme In vitro
method

Species Citation Experimental
Result

Plata iPfal17

isocitrate
dehydroge-
nase

Gene KO Pf doi:
10.1016/j.celrep.2015.03.011

NL - NL

Protoporphyrinogen
oxidase

Inhibitor
(Acifluor-
fen)

Pf Ramya 2007 L L NL

Acetyl-CoA
carboxylase

Inhibitor;
(Haloxy-
fops,
Fluazifops,
Quizalo-
fops)

Pf Ramya 2007 L - NL

alpha-
Amino-
levulinic
acid

Inhibitor Pf Ramya 2007 L L NL

dehydrogenase (Succinyl
acetone)

NA NA NA NA NA

Orotidine-
monophosphate

- Pb unpublished; L L L

decarboxylase NA NA Plata 2010 NA NA NA

glutathione
synthetase

fail to Gene
KO

Pb Patzewitz,
2012 (doi:
10.1111/j.1365-
2958.2011.07933.x)

L - NL

Chitinase Gene KO Pb Dessens
2001

NL NL NL

Arginase Gene KO Pb Olszewski
2009

NL NL NL

Beta-
Hydroxyacyl-
ACP
dehydratase

Gene KO Pb Vaughan
2009

NL NL NL

Beta-
Hydroxyacyl-
ACP
dehydratase

Gene KO Pb Vaughan
2009

NL NL NL
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Table 4.9: Experimental knockouts compared to iPfal17 predictions. Tg = Toxoplasma gondii; Pf
= Plasmodium falciparum; Pb = Plasmodium berghei; GR = growth reducing; L = lethal; NL =
nonlethal; KO = knockout; Caret indicates contrary to published results; Star indicates known o�
target e�ects. (continued)

Enzyme In vitro
method

Species Citation Experimental
Result

Plata iPfal17

Beta-
Hydroxyacyl-
ACP
dehydratase

Gene KO Pb Vaughan
2009

NL NL NL

FABI,
enoyl-acyl
carrier
reductase

Gene KO;
siRNA

Pb Vaughan
2009; Yu
2008

NL NL NL

FABB/F
3-oxoacyl-
acyl-carrier
protein
synthase
I/II

Gene KO Pb Vaughan
2009

NL NL NL

Thioredoxin
peroxidase

Gene KO Pb Yano 2006
and 2008

NL NL NL

gamma-
Glutamylcysteine
synthase

Gene KO Pb Vega-
Rodriguez
2009

NL NL NL

AquaglyceroporinGene KO Pb Promeneur
2007

NL NL NL

Phosphatidylcholine-
sterol
acyltrans-
ferase

Gene KO Pb Bhanot
2005

NL NL NL

glutathione
reductase

Gene KO Pb doi:
10.1074/jbc.M110.122275

NL - NL

Table 4.10: Knockout predictions with experimental validations. Predictions for 18 enzymes of
interest are included here. Tg = Toxoplasma gondii; Pf = Plasmodium falciparum; Pb = Plasmodium
berghei; GR = growth reducing; L = lethal; NL = nonlethal; KO = knockout; Caret indicates
contrary to published results; Star indicates known o� target e�ects.

Enzyme In vitro In
vitro method

Species iTH366 iPfal17

Dihydrofolate
reductase;
thymidylate
synthase

L Inhibitor
(1843 U89)

Pf L L
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Table 4.10: Knockout predictions with experimental validations. Predictions for 18 enzymes of
interest are included here. Tg = Toxoplasma gondii; Pf = Plasmodium falciparum; Pb = Plasmodium
berghei; GR = growth reducing; L = lethal; NL = nonlethal; KO = knockout; Caret indicates
contrary to published results; Star indicates known o� target e�ects. (continued)

Enzyme In vitro In
vitro method

Species iTH366 iPfal17

FABI,
enoyl-acyl
carrier
reductase

1) L, 2) NL 1) Inhibitor
(Triclosan*),
2) Gene KO;
siRNA

1) Pf, 2) Pb - NL&

FABB/F
3-oxoacyl-acyl-
carrier protein
synthase I/II

1) L, 2) NL 1) Inhibitor
(Cerulenin), 2)
Gene KO

1) Pf, 2) Pb - NL&

Dihydroorotate
dehydrogenase

L RNAi;
Inhibitors
(several)

Pf L L

Adenosine
deaminase

L Inhibitor
(methylthioco-
formycin)

Pf L^$ cKO: NL%

Deoxyuridine
5-triphosphate
nucleotido-
hydrolase

L Inhibitors
(several)

Pf NL L

Lactoyl
glutathione
lyase

L Inhibitor (S-p-
bromobenzylglutathione
diethyl ester)

Pf NL NL%

SphingomyelinaseL Inhibitor
(Scyphostatin)

Pf NL NL (GR)%

Plasmepsin II L Inhibitors
(several)

Pf - NL%

Cytosolic
lysyl-tRNA
synthetase

L Inhibitor
(cladosporin)

Pf - L

Gamma-
Glutamylcysteine
synthase

1) L, 2) NL 1) Inhibitor
(L-buthionine
sulfoximine);
fail to Gene
KO, 2) Gene
KO

1) Pf, 2) Pb - NL&

Glutathion
s-transferase

L Inhibitors
(ellagic acid,
others)

Pf - NL%
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Table 4.10: Knockout predictions with experimental validations. Predictions for 18 enzymes of
interest are included here. Tg = Toxoplasma gondii; Pf = Plasmodium falciparum; Pb = Plasmodium
berghei; GR = growth reducing; L = lethal; NL = nonlethal; KO = knockout; Caret indicates
contrary to published results; Star indicates known o� target e�ects. (continued)

Enzyme In vitro In
vitro method

Species iTH366 iPfal17

Glutathione
reductase

1) L, 2) NL 1) Inhibitors
(several); fail
to KO, 2)
Gene KO

1) Pf, 2) Pb - NL&

5-
Aminolevulinic
acid synthase

1) NL, 2) L 1) Gene KO,
2) Inhibitor
(Succinyl
acetone)

1) Pf, Pb, 2)
Pf

L NL&

Aconitase NL Gene KO;
Inhibitor
(Sodium
fluoroacetate)

Pf - NL

alpha-
Ketoglutarate
dehydrogenase

NL Gene KO Pf - NL

Succinyl-CoA
synthetase

NL Gene KO Pf - NL

Protoporphyrinoxygen
oxidase

L Inhibitor
(Acifluorfen)

Pf L NL%

We also evaluated predictions of the e�ects of gene knockouts and enzyme
inhibitors using previously published experimental results (Table 4.10 & 4.9). Our
updated model had improved accuracy of gene and reaction essentiality predictions,
compared to previous models (Table 4.10). We predict that there are 159 essential
reactions, and 107 lethal single gene knockouts (Table 4.6 and 4.7). Of experimentally
validated knockouts, iPfal17 accurately predicts essentiality of 79.5% of genes and
enzymes tested in P. falciparum and 61.4% for those tested in P. berghei (Tables
4.5, 4.10, & 4.8); predictions are also more accurate for gene knockouts and are less
accurate in predicting enzyme inhibition (Table 4.5 & 4.10).

4.4 Discussion

Data-driven model curation improves predictive capability: Several P. falci-
parum reconstructions have been generated since the publication of iTH366, including
those highlighting unique developmental stages within the blood-stage asexual cycle
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by integrating stage-specific expression (Fang, Reifman, and Wallqvist 2014), de novo
reconstructions to implement novel modeling approaches (Chiappino-Pepe et al. 2017),
integrated host and pathogen networks (Wallqvist et al. 2016), and those exploring
the other life stages of the parasite (Tymoshenko et al. 2013; Bazzani, Hoppe, and
Holzhütter 2012). iPfal17 represents the most comprehensive and validated metabolic
reconstruction of the asexual blood-stage malaria parasite, P. falciparum, to date.
With iPfal17, we can simulate growth and predict gene and reaction essentiality and
integrate datasets to probe targeted phenotypes, like resistance. It is larger in scope
than previous models, includes more gene annotations, and documents literature cita-
tions associated with its components (Table 4.2 & see Appendix for Additional file 3,
Table S1, Figure 4.1). Moreover, invalid reactions have been removed, improving
accuracy (Table 4.3). These curation e�orts improve the model validity by better
recapitulating experimental results, removing functions known to not occur in the
asexual blood-stage parasite, and adding functions for which there is experimental
evidence. Thus, gene and reaction knockout predictions generated with this model
are more accurate. Moreover, iPfal17 has greater interpretability as reaction citations
are included and accessible to users.

iPfal17 is similar in functional distribution and scope to other high quality models
of apicomplexans, despite its reduced genome size. The P. falciparum genome is
23.3 MB and contains 5423 genes (excluding the antigenic var genes) (Aurrecoechea
et al. 2009, 2017; Gardner et al. 2002); iPfal17 accounts for the function of 987
metabolites, 730 enzymatic reactions, 1195 total reactions, and 488 genes (Table 4.2).
For reference, the network reconstruction for Toxoplasma gondii, with a genome of 80
MB with 8000 genes (Gajria et al. 2008; Xia et al. 2008), accounts for 1019 metabolites,
1089 enzymatic reactions, 3387 total reactions, and 527 genes (Tymoshenko et al.
2015); with a genome of 32.8 MB and 8272 genes (Ivens et al. 2005), the Leishmania
major network reconstruction accounts for 1101 metabolites, 1047 enzymatic reactions,
1112 total reactions, and 560 genes (Chavali et al. 2008). These parasites all have
notably poor genome annotation (40–60% of the genes are unknown) (Aurrecoechea et
al. 2009, 2017) and, thus, have fewer associated genes than many other reconstructions
(e.g. the E. coli and S. cerevisiae reconstructions account for 1366 and 910 genes,
respectively (Orth et al. 2011; Heavner and Price 2015)).

Intracellular parasites, like Plasmodium, require more exchange and transport
reactions as they obtain many nutrients from the host environment (Olszewski et al.
2009; McConville 2014; Wellems and Fairhurst 2012; Imlay and Odom 2014; Mazumdar
and Striepen 2007). This reliance on the host for metabolic function permits the
parasite to increase fitness by reducing its genome and hijacking host function. P.
falciparum does just that: the parasite remodels the host erythrocyte, generating
a vesicular network for protein translocation and increasing host cell permeability
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for nutrient acquisition from the host serum (Lanzer et al. 2006; Bannister et al.
2000; Baumeister et al. 2006; Ginsburg et al. 1983; Staines et al. 2006). Thus,
the apicomplexan network reconstructions include more transport reactions, many of
which are not genetically mapped. Additionally, we chose to exclude an erythrocytic
host compartment from the extracellular environment, despite the parasite’s intra-host
growth (Olszewski et al. 2009; Geary et al. 1985; Geary, Divo, and Jensen 1985; Divo
et al. 1985). Other recent reconstructions (Wallqvist et al. 2016; Phaiphinit et al.
2016) have added this compartment, but the erythrocytic compartment is unlikely to
improve model function due to the gross disruption of the host membrane as a barrier
(Olszewski et al. 2009; Geary et al. 1985; Geary, Divo, and Jensen 1985; Divo et al.
1985).

We generated gene and reaction essentiality predictions with our curated network
model, prior to integration of expression data, and found results largely consistent
with previous models (Plata et al. 2010) (Table 4.10). We identified 159 essential
reactions and 107 essential metabolic genes (Table 4.6 & 4.7); 24 of these have been
empirically tested in cultured P. falciparum parasites (Table 4, and in P. berghei-
Table 4.8). iPfal17 better predicts experimentally determined essential reactions
than previous models, across a broad set of metabolic pathways (Table 4 and data
not shown). iPfal17 predictions fail when essential genes or reactions are involved
closely with spontaneous reactions (i.e. lactoylglutathione lyase is downstream of a
spontaneous reaction and upstream of non-metabolic redox products), are in pathways
with uncharacterized mechanisms (i.e. plasmepsin II in hemoglobin degradation) or if
experimental evidence is contradictory (i.e. heme biosynthesis pathway; Table 4.10).

Because pharmacological enzyme inhibition can be quite noisy and genetic modi-
fication has been challenging in Plasmodium, the development of CRISPR-Cas9 and
other technologies will make it possible to integrate new experimental observations
into the model with increasing accuracy (Ghorbal et al. 2014; Lee and Fidock 2014;
Wagner et al. 2014; Lu et al. 2016). Until then, the model can be used to identify
enzyme inhibitors with o�-target e�ects. For example, within the heme biosynthesis
pathway, pharmacological inhibition of aminolevulinic acid dehydrogenase and pro-
toporphyrinogen oxidase kills blood-stage parasites (Ramya et al. 2007); however,
disrupting the genes encoding the first (aminolevulinic acid dehydrogenase) and last
(ferrochetalase) genes is not lethal in blood-stage parasites (Ke et al. 2014; Nagaraj et
al. 2013). iPfal17 predictions are consistent with the gene knockout experiments in P.
falciparum of Ke et al. (2015), suggesting that the enzyme inhibitors used by Ramya
et al. (2007) have o� target e�ects (Table 4.10 and Table 4.9). iPfal17 also fails
to predict the lethal nature of adenosine deaminase in purine-free conditions (Ho et
al. 2009). Adenosine deaminase converts adenosine to hypoxanthine; as 38 reactions
produce AMP, which then generate hypoxanthine products, we propose adenosine
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deaminase may be essential for non-metabolic functions or the inhibitor of adenosine
deaminase has o�-target e�ects. Furthermore, these results generate hypotheses about
the di�erential metabolic capabilities of P. falciparum and P. berghei, as experimental
results in the rodent parasite conflict with some P. falciparum predictions (Table
4.10 & 4.10, Table 4.8).

4.5 Conclusions

Here, we curated a genome-scale metabolic reconstruction, iPfal17, to represent the
metabolism of the asexual blood-stage P. falciparum malaria parasite and identified a
set of metabolic tasks to evaluate both iPfal17 and future model iterations. Predictions
generate with iPfal17 are consistent with experimental literature (codified in metabolic
tasks), while generating novel hypotheses about parasite biology. iPfal17 was shared
with our published manuscript for broader usage. In fact, several research groups
have contacted us with questions about our approach and analysis implementation,
demonstrating its utility.

Curation is an iterative process requiring updates as the field develops and as per-
spectives evolve; for example, this reconstruction is further curated in Chapter 6.2.2
with metabolomics data and additional metabolic tasks were identified in Chapter
3. Future curation will include metabolomics-based curation, like in Chapter 6.2.2,
as well as validation against a novel genome-wide essentiality screen conducted in
P. falciparum (Zhang et al. 2018). The curation process, as well as model building
and applying models to answer biological questions, expand our understanding of the
parasite’s metabolism. Moreover, the model can be viewed as a framework for storing
thousands of hypotheses, such as hypotheses about gene-protein-reaction associations
or enzyme function (i.e. reaction formulas), as well as rigorously evaluating and
documenting these hypotheses.



Chapter 5: Applying metabolic models to
better understand drug resistance

Some of the following text, figures, and tables has been adapted from Carey,
Maureen A., Jason A. Papin, and Jennifer L. Guler. "Novel Plasmodium
falciparum metabolic network reconstruction identifies shifts associated with
clinical antimalarial resistance." BMC Genomics 18.1 (2017): 543. All analyses
in the chloroquine section were performed by Ana Untariou.
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5 Applying metabolic models to better under-
stand drug resistance

Well-curated reconstructions, such as our Plasmodium falciparum model, can be used
to contextualize sparse data (i.e. transcriptomics with few annotated transcripts)
and make predictions about condition-specific phenotypes. The antimalarial resistant
parasite is one such phenotype of great public health relevance. Malaria remains
a major public health burden and resistance has emerged to every antimalarial on
the market, including artemisinin, the frontline drug, and chloroquine, one of the
oldest antimalarials. Our limited understanding of Plasmodium biology hinders the
elucidation of resistance mechanisms. In this regard, systems biology approaches like
genome-scale metabolic modeling can facilitate the integration of existing experimental
knowledge and further understanding of these mechanisms.

5.1 Artemisinin

5.1.1 Synopsis

Here, we utilize our genome-scale metabolic network reconstruction of the asexual
blood-stage P. falciparum parasite, iPfal17, to expand our understanding of metabolic
changes that support artemisinin resistance. Integration of clinical parasite transcrip-
tomes into the iPfal17 reconstruction reveals patterns associated with antimalarial
resistance. Flux balance analysis and simulation of gene knockouts and enzyme
inhibition predict candidate drug targets unique to resistant parasites. These re-
sults predict that artemisinin sensitive and resistant parasites di�erentially utilize
scavenging and biosynthetic pathways for multiple essential metabolites, including
folate and polyamines. Our findings are consistent with experimental literature, while
generating novel hypotheses about artemisinin resistance and parasite biology. We
detect evidence that resistant parasites maintain greater metabolic flexibility, perhaps
representing an incomplete transition to the metabolic state most appropriate for
nutrient-rich blood. Using this systems biology approach, we can more productively
analyze and interpret clinical expression data for the identification of candidate drug
targets for the treatment of resistant parasites.

5.1.2 Background

Three billion people are at risk for malaria infection globally and treatment approaches
are failing. Malaria is caused by Plasmodium parasites, and most deaths are associated
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with human-infective P. falciparum. Without an e�cacious vaccine, antimalarials
are essential to combat the severity and spread of disease. Combination therapies
are implemented to preserve antimalarial e�cacy and slow resistance development
(Schwartz and Lachish 2016; Olliaro and Taylor 2004; Eastman and Fidock 2009);
despite this approach, this eukaryotic pathogen has developed resistance to every
antimalarial on the market (Chakraborty 2016; Cowman et al. 2016; Plowe et al.
2007).

Typically, resistance is conferred by genomic changes that lead to drug export
or impaired drug binding (for example (Sidhu, Verdier-Pinard, and Fidock 2002));
however, non-genetic mechanisms have also been implicated in Plasmodium resistance
development (Guler et al. 2015; Herman et al. 2014; Gabryszewski et al. 2016) and
other pathogenic organisms, such as Pseudomonas aeruginosa (Meylan et al. 2017)
(reviewed in (El-Halfawy and Valvano 2012)). These laboratory-based studies provide
insight into metabolic flexibility but the presence of relatively few examples limit our
understanding of this method of adaptation, especially in malaria. Here, we aim to look
beyond genetic mechanisms of resistance to identify resistance-associated metabolic
adaptation. We hypothesize that metabolic changes must occur to support the
resistance phenotype and resistance-conferring mutations. Ultimately, these changes,
or ‘shifts,’ are required to increase the fitness of resistant parasites, or support the
development of additional genetic changes that a�ect fitness. Metabolic or phenotypic
‘background’ could be as important as genetic background in the development of
resistance.

In clinical malaria infections, artemisinin resistance is established in Southeast
Asia (Ashley et al. 2014; Miotto et al. 2015; Straimer et al. 2015). This phenotype
is correlated with mutations in the P. falciparum Kelch13 gene (Ashley et al. 2014;
Miotto et al. 2015; Ariey et al. 2014; Brown et al. 2015) and changes in both
signaling pathways (Cheng, Kyle, and Gatton 2012; Codd et al. 2011; Straimer et
al. 2015; Mbengue et al. 2015) and organellar function (Yang, Little, and Meshnick
1994; Dalal and Klemba 2015; Klonis et al. 2011; Juan Wang et al. 2010; Chen et al.
2014; Vega-Rodríguez et al. 2015; Cobbold et al. 2016; Peatey et al. 2015). Overall,
due to the complexity of artemisinin’s mechanism of killing (see citations above and
(Meshnick 2002; Eckstein-Ludwig et al. 2003; Golenser et al. 2006; E�erth and Oesch
2004; Antoine et al. 2014; Sun et al. 2015; Li et al. 2005)), it has been challenging
to separate the causes and e�ects of resistance. For this reason, there are few novel
solutions to antimalarial resistance beyond altering the components of combination
therapies to regain e�cacy (e.g. artemisinin-atovaquone-proguanil (Schwartz and
Lachish 2016)).

We aim to gain a new perspective on resistance by viewing it through a ‘metabolic
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lens’. By characterizing the metabolic shifts that occur during or after resistance
acquisition, we can begin to understand more about what it takes to support new
functions, such as novel signaling (e.g. PI3K signaling is a�ected by PfKelch13 muta-
tions (Miotto et al. 2015; Straimer et al. 2015, 2015; Kamau et al. 2015; Isozumi et
al. 2015)), drug detoxification (e.g. regulating ROS stress associated with artemisinin
treatment (Klonis et al. 2011; Juan Wang et al. 2010; Meshnick 2002; E�erth and
Oesch 2004)), or stage alterations (e.g. dormancy of early ring stages (Cheng, Kyle,
and Gatton 2012; Klonis et al. 2013; Mok et al. 2011; Teuscher et al. 2010; Witkowski
et al. 2010)) in resistant parasites. Once we identify these compensatory changes, we
can potentially target them. Plasmodium metabolic genes are better characterized
than signaling pathways, as (for example) PlasmoDB identifies 43 3D7 genes associated
with the term ‘signalling’ as opposed to 1112 3D7 genes associated with the term
‘metabolism’ (Aurrecoechea et al. 2009), and many antimalarials target metabolic
functions (Fidock et al. 2000; Peterson, Walliker, and Wellems 1988; Siregar et al.
2015; Phillips and Rathod 2010). Moreover, metabolism has been described as the
best-understood cellular process (Fuhrer et al. 2017), making interpreting metabolic
analyses more tractable. Ultimately, if we can identify targetable conserved metabolic
di�erences that arise with or in support of resistance, we can develop more robust
antimalarial combination therapies aimed at preventing resistance.

Here, we use a systems biology approach to analyze the metabolic profile associated
with resistant and sensitive parasites. Using constraint-based metabolic modeling,
we integrated transcriptomic data from over 300 clinical isolates from Cambodia and
Vietnam with varying levels of artemisinin sensitivity. This approach identified innate
metabolic di�erences that arise with or in support of the resistant phenotype, despite
large clinical variability, over multiple genetic backgrounds. Additionally, we were able
to explore the functional consequences of expression changes by predicting essential
enzymes within these distinct metabolic contexts; these enzymes are candidate drug
targets for the prevention of drug resistance.

5.1.3 Methods

Normalized preprocessed data was obtained from GEO (GSE59097) (Mok et al. 2015).
Probes on the microarray platform GPL18893 were annotated using NCBI’s stand-
alone BLAST correcting the gene labels for 647 probes. Only top hits were used;
specifically, hits with greater than 95% identity, no gaps, and a score of over 100 were
used (supplemental table too large to display, please see appendix for Additional file
3, Table S8). The R package limma was used to compare artemisinin sensitive and
resistant samples collected from Cambodia and Vietnam (Ritchie et al. 2015). Samples
with predominantly ring-stage parasites with no detectable gametocytes were used.
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Figure 5.1: Ring-stage parasites are genotypically and phenotypically distinct, yet expression profiles
fail to separate resistance phenotypes. Genotypic clustering: Genotypic (any mutation in PfKelch13 )
and phenotypic markers (parasite clearance half-life) were used to define artemisinin resistance in
ring-stage parasites from GSE59097; using both markers, resistant and sensitive parasites from
Cambodia (A) and Vietnam (B) separated into distinct populations. Genotype was identified in
Mok, et al., 2015 with samples classified as containing the reference allele (blue), a mutant allele
(red, any in the PfKelch13 propeller domain), a mixed population (black, at least two reads from
each the reference and mutant alleles), or missing (grey, no sequencing data or fewer than 5 reads).
C: Phenotypic clustering: Resistant (red) and sensitive (blue) parasites from the two countries fail to
cluster with consideration of genome-wide gene expression data (data not shown) or expression of
metabolic genes alone.
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Figure 5.2: Computational pipeline. We curated an existing blood-stage P. falciparum reconstruction
to generate our iPfal17 network reconstruction. We integrated transcriptomics data into this model
using the MADE algorithm to generate four condition-specific models. We used these models to
predict reaction essentiality; we highlight consensus results across resistant or sensitive models.

Resistant parasites were defined as both having at least one mutant Kelch13 allele and
a parasite clearance half-life of greater than 5 hours (Figure 5.1) (Mok et al. 2015;
White et al. 2015). Sensitive parasites were defined by having at least no mutant
Kelch13 alleles and a parasite clearance half-life of less than 5 hours. Random Forest
classifiers were built using the R package randomForest, using all ring-stage samples
(Liaw, Wiener, and Others 2002). The metadata classifier used the variables listed
in Figure 5.4, as outlined in the original study (Mok et al. 2015). Cambodian and
Vietnamese ring-stage transcriptomes were compared separately to ensure patterns
associated with resistance status were reproducible across phylogeny. These countries
were chosen for large number of isolates and prevalence of resistance. Microarray
probes were screened to remove non-metabolic genes and to keep only one probe per
gene (consistent with standard practice). Multiple testing correction was conducted
using a false discovery rate to adjust for the potential false positives associated with as
standard p-value cuto� and multiple testing (Benjamini and Hochberg 1995; Benjamini
and Yekutieli 2001).

Gene expression data with calculations of fold changes and associated adjusted
p-value were incorporated into our curated model using the Metabolic Adjustment
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for Di�erential Expression (MADE) algorithm. MADE utilizes statistical significance
of gene expression changes along with network context to assign binary gene states
(‘on’/‘o�’) to each metabolic gene. This constrains the network by limiting flux through
reactions mapped to ‘o�’ genes while maintaining growth, or a similar objective. An
80% growth threshold was used given that there is no reported evidence that resistant
and sensitive parasites produce variable biomass as measured by the size of ring-stage
parasites; while varying this threshold a�ects sensitive parasite biomass yield, it does
not a�ect essentiality predictions (data not shown). Essential genes were predicted for
the resultant condition-specific models (Figure 5.2) by conducting single gene and
reaction deletions with established algorithms (Schellenberger et al. 2011). Consensus
lethal gene and reaction deletions from the Cambodian and Vietnamese parasite
models were used.

5.1.4 Results

Analysis of artemisinin sensitive and resistant transcriptomes: In order to
investigate the presence of a distinct metabolic phenotype in artemisinin resistant
parasites, we analysed a previously published expression dataset of clinical isolates
from Southeast Asia (NCBI Gene Expression Omnibus accession: GSE59097). Patient
blood samples were collected immediately prior to beginning artemisinin combination
therapy, and their relative expression was evaluated via microarray (Mok et al. 2015).
This dataset profiles (1) in vivo artemisinin naïve parasites, providing a view of
the innate di�erences between sensitive and resistance parasites, and (2) a diverse
population of parasites collected from multiple collection sites across two countries,
allowing us to summarize variable resistant phenotypes that laboratory adapted
parasites and in vitro assays cannot practically encompass.

We confined our analysis of this previously published expression data to ring-stage
parasites from Cambodia and Vietnam, two countries that had clear resistant and
sensitive parasite populations as defined by parasite clearance half-life, an in vivo
phenotypic measure of resistance, and PfKelch13 mutations, a commonly-used genetic
marker of resistance (Figure 5.1A & B). There were 97 and 24 ring-stage resistant
parasite expression profiles from Cambodia and Vietnam, respectively; resistant
parasites are defined by both the presence of PfKelch13 mutations and a parasite
clearance half-life of more than 5 hours. There were 141 and 43 ring-stage sensitive
parasite expression profiles from Cambodia and Vietnam, respectively, as defined by
wild-type PfKelch13 alleles and clearance half-life of less than 5 hours. Despite obvious
genotypic and phenotypic separation (Figure 5.1A & B), artemisinin sensitive and
resistant parasites do not separate well by hierarchical clustering of expression data
(Figure 5.1C).



M. A. Carey 108

●
●
●●●●
●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●
●●●●
●●●
●●
●●●●●●
●●●●
●●●
●●

●

0.5

1.0

1.5

2.0

gene

FC

●
●●●●
●●●
●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●
●●●●●
●●●
●●●●

●
●●

●

●●

0.5

1.0

1.5

2.0

gene

FC

A B

Figure 5.3: Distribution of genome-wide expression data demonstrates moderate di�erential ex-
pression between sensitive and resistant parasites. Fold change values from di�erential expression
between sensitive and resistant parasites from Cambodia (A) and Vietnam (B) with significantly
di�erentially expressed genes in red. Fold change is the ratio of mean expression in resistant parasites
to mean expression in sensitive parasites, for each respective country.

Additionally, when comparing sensitive parasites to resistant parasites in either
country, the fold change of transcript expression is moderate; no genes exhibited
notable di�erential expression across both analyses (fold change >2 or <0.5 for both
Cambodia and Vietnam sample sets, data not shown). Among metabolic genes
specifically, expression di�erences are small (maximum fold change 0.6 and 1.6) and
few are both significant and conserved between data sets (11 in common from 174 in
Cambodia and 37 in Vietnam; Figure 5.3A & B). Large amounts of transcriptional
variation (due to stage-dependent expression, genotypic variability, and host-pathogen
interactions) across the population of clinical parasites may hide di�erences in the
data sets. Moreover, we built a Random Forest classifier with expression data to
predict resistance outcomes; the classifier predicted resistance poorly, with only 30.77%
sensitivity (indicating only 30.77% of resistant samples were correctly identified) and
97.96% specificity (indicating 97.96% of sensitive samples were correctly identified;
Figure 5.4A).

Although the expression data classifier performed poorly, a similar classifier built
from metadata associated with each sample (patient and parasite characteristics) was
highly predictive of resistance status with 85.71% sensitivity and 88.91% specificity
(Figure 5.4B). In our analysis, two specific mutations and collection site were the
most predictive of resistance status; removing any of these three variables decreased
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Figure 5.4: Artemisinin resistance is better predicted by metadata classifier than expression classi-
fier. Using full expression profile (A) or metadata (B), including patient and parasite features (see
Methods), we can classify samples as artemisinin sensitive or resistant by Random forest analysis. Of
the top 25 most important variables (gene probes) in the expression classifier, 12 encoded exported
proteins, four genes of complete unknown function, three encoded a putative kinase and putative
phosphatases, one encoded a component of dynein, four were uncharacterized genes though to be
involved in protein folding or tra�cking, and one encoded a transcription factor. Abbreviation key
(all from Mok, et al., 2015 or Miotto, et al., 2015) aprs_mutation: apicoplast ribosomal protein S10
(PF3D7_1460900.1) mutation; fd_mutation = ferredoxin (PF3D7_1318100) mutation. Field_site
= location at which blood sample was collected; mdr_mutation = multidrug resistance protein 2
(PF3D7_1447900) mutation; partner_drug = Partner drug (Artemisinin based combination treat-
ment) administered from day 3 onwards; crt_mutation2 = second CRT (PF3D7_0709000) mutation
measured; crt_mutation1 = first CRT (PF3D7_0709000) mutation measured; Patient_age_yr = pa-
tient age in years; pRBC_sampling_vol_uL = Volume of packed RBC collected (uL); RNA_yield_ug
= Amount of Total RNA isolated for each sample (ug); Patient_temp_c = patient temperature at
time of admission in Celsius; ART_drug = Type and dosage of artemisinin drug given once a day on
days 0, 1 and 2; asexual_parasite_count = Total asexual parasite densities per uL on admission;
total_parasite_1000 = total number of parasites in whole sample of infected RBC collected (pRBC
collection vol. x total parasite count per uL) divided by 1000; SRCC_asexual_stage = Spearman rank
correlation coe�cient of the gene expression for the isolate sample to the projected hpi; Kmeans_Grp
= expression group; Asexual_stage_hpi = Projected hours post invasion (hpi) of the parasite asexual
stage; Gender = Patient gender; gam_count = Total gametocyte parasite densities per uL on
admission; Hct_percent = patient hematocrit (percent) on admission; Sampling_Time_24_hr =
Time of sample collection in 24 hour format.
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classifier accuracy by over 20%. If only parasite clearance half life is used to define
resistance (omitting the complementary use of Kelch13 mutations as done throughout
chapter), Kelch13 mutation is the most predictive feature in classifying resistance (data
not shown). Thus, metadata better predicts resistance than expression data. In order
to deconvolve this innate variability and identify functional cellular changes associated
with varying levels of artemisinin sensitivity, we integrated metabolic expression data
into a genome-scale metabolic model of blood-stage P. falciparum.

Integration of expression data into the metabolic model: With our cu-
rated metabolic network reconstruction, we integrated expression data from sensitive
and resistant parasites collected in Cambodia and Vietnam into iPfal17 using the
Metabolic Adjustment for Di�erential Expression algorithm (MADE (Jensen and
Papin 2011)). MADE constrains gene utilization in the model to maximally account
for statistically significant changes in expression while maintaining network function-
ality requirements (e.g. parasite viability). MADE integrates di�erential expression
by minimizing the di�erence between significant expression changes (up/down) and
model constraints (gene usage); this avoids arbitrary thresholding and ensures the
condition-specific model is consistent with experimental data. Essential genes and
genes supported by expression data (by having no change in expression or being
upregulated in that condition) remain in the model that represents that condition.
Conversely, if a gene is significantly down regulated in a condition and not functionally
necessary for metabolism, the reactions catalyzed by the encoded enzyme will be re-
moved from the model. Therefore, condition-specific models contain a reduced network
with a subset of reactions annotated in the original curated reconstruction that are
either necessary for network functionality (as defined by the objective function) and/or
are supported by expression data (Jensen and Papin 2011). Thus, MADE generates
functional condition-specific models representing the cell’s metabolic capability given
the condition-specific expression.

MADE integration of sensitive and resistant expression data from both countries
generated four condition-specific models (Figure 5.2). By comparing these models,
we identified di�erences in gene and pathway utilization between resistant and sensi-
tive parasites that are consistent between the isolates from the two countries Figure
5.5. First, we conducted an enrichment analysis on genes that remain in (i.e. can
be utilized by) each constrained model by comparing to the unconstrained curated
model. As expected, all four models were enriched with genes involved in pathways
with many essential reactions or little redundancy, such as transport reactions, tRNA
synthesis, purine metabolism, and others (Figure 5.6). Sensitive (wild type) models
corresponding to isolates from both Cambodia and Vietnam are uniquely enriched
with the utilization of genes involved in the metabolism of nicotinate/nicotinamide
(p-value = 0.0147), glutamate (p-value = 1.28e13), and selenocysteine (p-value =
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Figure 5.5: Functional di�erences in data-driven sensitive and resistant models. Gene states from
four condition-specific models, the results of MADE integration, cluster by sensitivity not by location.
Active genes in red/blue, with genes removed from expression-constrained models in white.

0.000585). Thus, sensitive models contain more reactions in these pathways than
the unconstrained model, resulting from increased expression of these pathways in
sensitive parasites (Figure 5.6). Resistant models from both countries are uniquely
enriched with the utilization of genes involved in pyrimidine (p-value = 0.000000218),
polyamine (p-value = 0.000439), redox reactions (p-value = 0.0000513), and cen-
tral carbon metabolism (glycolysis [p-value = 0.000439] and the pentose phosphate
pathway [p-value = 0.00606]). Thus, resistant models have a larger proportion of
their total reactions associated with these pathways than the original unconstrained
model, whereas sensitive models do not have this enrichment. This indicates that
these pathways are upregulated in resistant parasites and may remain important for
metabolism in the resistant state (Figure 5.6).

Table 5.1: Essential reactions unique to resistant parasites. All reactions in table are predicted to
be lethal when removed from both Cambodia and Vietnam resistant models. Starred reactions are
deleted from at least one resistant model due to expression constraints by MADE.

Reaction Reaction Formula EC Number Reaction Function Genes

CO2tmt CO2[m] < =>
CO2[c]

- CO2 transport -

EX_folate4 p-
aminobenzoate[e] < =>

- p-aminobenzoate
exchange

-

EX_fru(e) fructose[e] < => - fructose exchange -
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Table 5.1: Essential reactions unique to resistant parasites. All reactions in table are predicted to
be lethal when removed from both Cambodia and Vietnam resistant models. Starred reactions are
deleted from at least one resistant model due to expression constraints by MADE. (continued)

Reaction Reaction Formula EC Number Reaction Function Genes

EX_thm(e) thiamine[e] < => - thiamine exchange -
FRUt1r fructose[e] < =>

fructose[c]
- fructose transport PFB0210c

FUM_mt fumarate
[m] + H2O[m] < =>
malate[m]

4.2.1.2 fumarate
hydratase in the
TCA cycle

PFI1340w

FUMtmt fumarate[m] < =>
fumarate [c]

- fumarate
transport into
mitochondria

-

GHMT2r serine[c] + thf[c] < =>
glyine[c] + H2O[c] + mthf[c]

2.1.2.1 serine
hydroxymethyl-
transferase in
folate synthesis

PFL1720w

GLYCL_mt glycine[m] + NAD[m] + thf[m] < =>
CO2[m] + mlthf[m] + NADH[m] + NH4[m]

many glycine cleavage
system in folate
synthesis and
amino acid
metabolism

PF13_0345a;
PFL1550w;
MAL13P1.390;
PF14_0497;
PF11_0339

GLYtmt glycine[m] < =>
glycine[c]

- glycine transport
into mitochondria

-

HEX7 ATP[c] + fruc-
tose[c]
= > ADP[c] + fructose-
6-
phosphate[c] + h[c]

2.7.1.1 hexokinase of
glycolysis

PFF1155w

MDHm malate[m] + NAD[m] < =>
h[m] + NADH[m] + ox-
aloacetate[m]

1.1.1.37 malate
dehydrogenase in
the TCA Cycle

PFF0895w

MLTHFtmt mthf[m] < =>
mthf[c]

- mthf transport
into mitochondria

MAL8P1_13*;
PF11_0172

NA NA NA NA NA
NADPHtmt NADPH[c] < =>

NADPH[m]
- NADPH

transport into
mitochondria

-

NADPtmt NADPc] < =>
NADP[m]

- NADP transport
into mitochondria

-

NH4tmt NH4[m] < =>
NH4[c]

- NH4 transport
into mitochondria

-

OAAtmt oxaloacetate
[m] < =>
oxaloacetate[c]

- oxaloacetate into
mitochondria

-

THFtmt thf[m] < =>
thf[c]

- thf into
mitochondria

-

THMt3 h[c] + thi-
amine[e] < =>
h[e] + thiamine[c]

- thiamine import -
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Table 5.1: Essential reactions unique to resistant parasites. All reactions in table are predicted to
be lethal when removed from both Cambodia and Vietnam resistant models. Starred reactions are
deleted from at least one resistant model due to expression constraints by MADE. (continued)

Reaction Reaction Formula EC Number Reaction Function Genes

TMDPK ATP[c] + thi-
amine[c]
= > AMP[c] + h[c] + thi-
amine
diphosphate[c]

2.7.6.2 thiamine
diphosphokinase
in cofactor
metabolism

PFI1195c

pABAt p-
aminobenzoate[e] < =>
p-
aminobenzoate[c]

- p-aminobenzoate
import

MAL8P1_13a;
PF11_0172

Table 5.2: Essential reactions unique to sensitive parasites. All reactions in table are predicted to
be lethal when removed from both Cambodia and Vietnam sensitive models. Starred reactions are
deleted from at least one sensitive model due to expression constraints by MADE.

Reaction Reaction Formula EC Number Reaction Function Genes

2_7_8_3 CDP-
choline[c] + ce-
ramide[c] + h[c]
= > CMP[c] + sph-
ingomyelin[c]

2.7.8.3 sphingomyelinase
2 in lipid
metabolism

PFF1210w*;PFF1215w

AMETt2 adenosyl methion-
ine[e] + h[e]
= > adenosyl me-
thionine[c] + h[c]

- adenosyl
methionine
import

PF11_0334;
PFB0435c*;
PFE0775c*;
PFF1430c;
PFL0420w;
PFL1515c*

EX_o2(e) O2[e] < => - oxygen exchange -
EX_ptrc(e) putrescine[e] < => - putrescine

exchange
-

GAT_c diacylglycerol[c] + acyl-
coenzyme-A[c]
= > coenzyme-
A[c] + triacylglyc-
erol[c]

2.3.1.20 diacylglycerol
O-acyltransferase
in lipid
metabolism

PFC0995c

GPDDA4 glycerophosphoglycerol
[c] + H2O [c]
= > glycerol 3-
phosphate[c] + glyc-
erol[c] + h[c]

3.1.4.46 glycerophosphodiester
phosphodiesterase
in lipid
metabolism and
glycolysis

PF14_0060

O2t O2[e] < => O2[c] - oxygen import -
O2tmt O2[m] < =>

O2[c]
- oxygen transport

into mitochondria
-

PItap phosphate[ap] < =>
phosphate[c]

- phosphate
transport into
apicoplast

-
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Table 5.2: Essential reactions unique to sensitive parasites. All reactions in table are predicted to
be lethal when removed from both Cambodia and Vietnam sensitive models. Starred reactions are
deleted from at least one sensitive model due to expression constraints by MADE. (continued)

Reaction Reaction Formula EC Number Reaction Function Genes

PTRCt2 h[e] + pu-
trescine[e]
= > h[c] + pu-
trescine[c]

- putrescine import -

PYK ADP
[c] + h[c] + phos-
phoenol
pyruvate[c]
= > ATP[c] + pyru-
vate[c]

2.7.1.40 pyruvate kinase in
glycolysis

PFF1300w

amet_ex adenosyl methion-
ine[e] < =>

- adenosyl
methionine
exchange

-

Table 5.3: Consensus predicted lethal reactions across 4 expression-constrained models.

Reactions Formula EC Subsystems Genes

4HBZtmt 4hbz[m] <=> 4hbz[c] NA Transport MT NA
ADSL1r dcamp[c] <=> amp[c]

+ fum[c]
4.3.2.2 Nucleotides

PurineMetabolism
PFB0295w

ADSS asp_L[c] + gtp[c] +
imp[c] => dcamp[c] +
gdp[c] + 2 h[c] + pi[c]

6.3.4.4 Nucleotides
PurineMetabolism ;
AminoAcids
AsnAspMetabolism

PF13_0287

ALATRS ala_L[c] + atp[c] +
trnaala[c] => alatrna[c]
+ amp[c] + ppi[c]

6.1.1.7 AminoAcids tRNA PF13_0354

ARGTRS arg_L[c] + atp[c] +
trnaarg[c] => amp[c] +
ppi[c] + argtrna[c]

6.1.1.19 AminoAcids
ArgProMetabolism ;
AminoAcids tRNA

PFL0900c PFI0680c

ASNTRS asn_L[c] + atp[c] +
trnaasn[c] => amp[c] +
ppi[c] + asntrna[c]

6.1.1.22 AminoAcids
AsnAspMetabolism ;
AminoAcids tRNA

PFB0525w PFE0475w

ASPCT asp_L[c] + cbp[c] =>
cbasp[c] + h[c] + pi[c]

2.1.3.2 Nucleotides
PyrimidineMetabolism ;
AminoAcids
AsnAspMetabolism

MAL13P1_221

ASPTRS asp_L[c] + atp[c] +
trnaasp[c] => amp[c] +
ppi[c] + asptrna[c]

6.1.1.12 AminoAcids
AsnAspMetabolism ;
AminoAcids tRNA

PFA0145c PFE0715w

CDPMEK[ap] 4c2me[ap] + atp[ap]
=> 2p4c2me[ap] +
adp[ap] + h[ap]

2.7.1.148 Lipids
IsoprenoidsMetabolism

PFE0150c

CHLPCTD cholp[c] + ctp[c] + h[c]
=> cdpchol[c] + ppi[c]

2.7.7.15 Lipids Phosphatidyl-
cholineMetabolism

MAL13P1_86
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Table 5.3: Consensus predicted lethal reactions across 4 expression-constrained models. (continued)

Reactions Formula EC Subsystems Genes

CHORS 3psme[c] => chor[c] +
pi[c]

4.2.3.5 Cofactors
ShikimateBiosynthesis

PFF1105c

CHRPL chor[c] => 4hbz[c] +
pyr[c]

4.1.3.40 Cofactors
UbiquinoneMetabolism

NA

CHSTEROLt atp[c] + chsterol[c] +
h2o[c] <=> adp[c] +
chsterol[e] + h[c] + pi[c]

NA Transport e NA

CMPtap cmp[ap] <=> cmp[c] NA Transport AP NA
CO2tap co2[ap] <=> co2[c] NA Transport AP NA
CTPtap ctp[ap] <=> ctp[c] NA Transport AP NA
CYOOm_mt 4 focytc[m] + 6 h[m] +

o2[m] => 4 ficytc[m] +
2 h2o[m] + 6 h[c]

1.9.3.1 Others Mitochondrial-
ElectronFlow

PF14_0288 PF14_0331
PF14_0721 PFI1365w
PFI1375w mal_mito_2
mal_mito_1

CYOR_u6m_mt2 ficytc[m] + q8h2[m]
=> 2 focytc[m] + 2
h[m] + q8[m]

1.10.2.2 Others Mitochondrial-
ElectronFlow

PF14_0248 PF14_0373
PF10_0120
PF3D7_0211300
mal_mito_3

CYSTRS atp[c] + cys_L[c] +
trnacys[c] => amp[c] +
cystrna[c] + ppi[c]

6.1.1.16 AminoAcids tRNA PF10_0149

CYTK1 atp[c] + cmp[c] <=>
adp[c] + cdp[c]

2.7.4.14 Nucleotides
PyrimidineMetabolism

PFA0555c

DDPA e4p[c] + h2o[c] + pep[c]
=> 2dda7p[c] + pi[c]

2.5.1.54 Cofactors
ShikimateBiosynthesis

NA

DHAPtap dhap[c] + pi[ap] =>
dhap[ap] + pi[c]

NA Transport AP PFE0410w

DHFR dhf[c] + h[c] + nadph[c]
<=> nadp[c] + thf[c]

1.5.1.3 Cofactors
FolateBiosynthesis

PFD0830w

DHFS atp[c] + dhpt[c] +
glu_L[c] => adp[c] +
dhf[c] + h[c] + pi[c]

6.3.2.12 Cofactors
FolateBiosynthesis

PF13_0140

DHORD2_mt dhor_S[m] + q8[m] =>
orot[m] + q8h2[m]

1.3.5.2 Nucleotides
PyrimidineMetabolism ;
Others Mitochondrial-
ElectronFlow

PFF0160c

DHORTS dhor_S[c] + h2o[c]
<=> cbasp[c] + h[c]

3.5.2.3 Nucleotides
PyrimidineMetabolism

PF14_0697

DHORtmt dhor_S[m] <=>
dhor_S[c]

NA Transport MT NA

DHPS2 4abz[c] + 6hmhptpp[c]
=> dhpt[c] + ppi[c]

2.5.1.15 Cofactors
FolateBiosynthesis

PF08_0095

DHQS 2dda7p[c] => 3dhq[c] +
pi[c]

4.2.3.4 Cofactors
ShikimateBiosynthesis

NA

DHQTi 3dhq[c] => 3dhsk[c] +
h2o[c]

4.2.1.10 Cofactors
ShikimateBiosynthesis

NA

DMATT dmpp[c] + ipdp[c] =>
grdp[c] + ppi[c]

2.5.1.1 Lipids
TerpenoidMetabolism

PF11_0295

DMPPS[ap] h2mb4p[ap] + h[ap] +
nadph[ap] => dmpp[ap]
+ h2o[ap] + nadp[ap]

1.17.1.2 Lipids
IsoprenoidsMetabolism

PFA0225w



M. A. Carey 116

Table 5.3: Consensus predicted lethal reactions across 4 expression-constrained models. (continued)

Reactions Formula EC Subsystems Genes

DMPPtap dmpp[ap] <=> dmpp[c] NA Transport AP NA
DPCOAK[ap] atp[ap] + dpcoa[ap] =>

adp[ap] + coa[ap] +
h[ap]

2.7.1.24 Cofactors
CoABiosynthesis

PF14_0415

DPCOAtap dpcoa[ap] <=>
dpcoa[c]

NA Transport AP NA

DTMPK atp[c] + dtmp[c] <=>
adp[c] + dtdp[c]

2.7.4.9 Nucleotides
PyrimidineMetabolism

PFL2465c

DUTPDP dutp[c] + h2o[c] =>
dump[c] + h[c] + ppi[c]

3.6.1.23 Nucleotides
PyrimidineMetabolism

PF11_0282

DXPRIi[ap] dxyl5p[ap] + h[ap] +
nadph[ap] =>
2me4p[ap] + nadp[ap]

1.1.1.267 Lipids
IsoprenoidsMetabolism

PF14_0641

DXPS[ap] g3p[ap] + h[ap] +
pyr[ap] => co2[ap] +
dxyl5p[ap]

2.2.1.7 Lipids
IsoprenoidsMetabolism

MAL13P1_186

ENO 2pg[c] <=> h2o[c] +
pep[c]

4.2.1.11 Carbohydrates
Glycolysis

PF10_0155

EX_cholesterolchsterol[e] <=> NA Exchange NA
EX_fe2(e) fe2[e] <=> NA Exchange NA
EX_folate1 6hmhpt[e] <=> NA Exchange NA
EX_folate2 6hmhpt[e] <=>

6hmhpt[c]
NA Transport cofactor NA

EX_hb => hb[e] NA Exchange NA
EX_ile_L(e) ile_L[e] <=> NA Exchange NA
EX_nac(e) nac[e] <=> NA Exchange NA
EX_phosphatidyl2pc[e] <=> NA Exchange NA
EX_pnto_R(e)pnto_R[e] <=> NA Exchange NA
EX_ribflv1 ribflv[e] <=> NA Exchange NA
EX_so4(e) so4[e] <=> NA Exchange NA
EX_spmd(e) spmd[e] <=> NA Exchange NA
FE2t fe2[e] => fe2[c] NA Transport PFF0450c
FEROpp 4 fe2[c] + 4 h[c] + o2[c]

=> 4 fe3[c] + 2 h2o[c]
1.16.3.1 Ion NA

FMETTRS 10fthf[c] + mettrna[c]
=> fmettrna[c] + h[c]
+ thf[c]

2.1.2.9 Cofactors
FolateBiosynthesis ;
AminoAcids Met-
PolyamineMetabolism

MAL13P1_67

FMNAT atp[c] + fmn[c] + h[c]
=> fad[c] + ppi[c]

2.7.7.2 Cofactors
RiboflavinMetabolism

PF10_0147

GAPD g3p[c] + nad[c] + pi[c]
<=> 13dpg[c] + h[c] +
nadh[c]

1.2.1.12 Carbohydrates
Glycolysis

PF14_0598

GK1 atp[c] + gmp[c] <=>
adp[c] + gdp[c]

2.7.4.8 Nucleotides
PurineMetabolism

PFI1420w

GLYTRS atp[c] + gly[c] +
trnagly[c] => amp[c] +
ppi[c] + glytrna[c]

6.1.1.14 AminoAcids
GlySerMetabolism ;
AminoAcids tRNA

PF14_0198

GRTT grdp[c] + ipdp[c] =>
frdp[c] + ppi[c]

2.5.1.10 Lipids
TerpenoidMetabolism

PF11_0295
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Table 5.3: Consensus predicted lethal reactions across 4 expression-constrained models. (continued)

Reactions Formula EC Subsystems Genes

H2Otap h2o[ap] <=> h2o[c] NA Transport AP NA
HBZOPT_mt 4hbz[m] + octdp[m] =>

3ophb[m] + 2 ppi[m]
2.5.1.39 Cofactors

UbiquinoneMetabolism
PFF0370w

HBtr hb[e] => hb[c] NA Transport NA
HCO3E co2[c] + h2o[c] => h[c]

+ hco3[c]
4.2.1.1 Nucleotides

PyrimidineMetabolism ;
Lipids
FattyAcidSynthesis ;
Carbohydrates
PyruvateMetabolism

PF11_0410

HISTRS atp[c] + his_L[c] +
trnahis[c] => amp[c] +
histrna[c] + ppi[c]

6.1.1.21 AminoAcids tRNA PF14_0428

HMBZ pheme[fv] =>
hemozoin[fv]

4.99.1.8 Hemozoin production PF14_0446

HMBZex hemozoin[fv] =>
hemozoin[e]

NA Hemozoin production NA

HMGLB hb[c] => 36 ala_L[c] +
6 arg_L[c] + 10
asn_L[c] + 15 asp_L[c]
+ 3 cys_L[c] + 4
gln_L[c] + 12 glu_L[c]
+ 20 gly[c] + 19
his_L[c] + 36 leu_L[c]
+ 22 lys_L[c] + 5
met_L[c] + 15
phe_L[c] + 14 pro_L[c]
+ 16 ser_L[c] + 16
thr_L[c] + 3 trp_L[c]
+ 6 tyr_L[c] + 31
val_L[c] + pheme[fv]

NA Hemoglobin digestion MAL13P1_56
PFF1430c PF14_0076
PF14_0077 PF14_0078
PF14_0075 PF13_0133
PF3D7_0311700
PF3D7_1033800
PF3D7_1465700
PF3D7_1430200
PF3D7_0808200
PF11_0161 PF11_0162
PF11_0165 PF14_0015
PF14_0517 PFI1570c
PF11_0174 PFL2290w
PF13_0322 PF14_0439
PFE1360c
MAL8P1_140
PF10_0150 PF14_0327
PFE0355c PFE0370c
PF11_0381 PF14_0574

HPPK2 6hmhpt[c] + atp[c] =>
6hmhptpp[c] + amp[c]
+ h[c]

2.7.6.3 Cofactors
FolateBiosynthesis

PF08_0095

HXPRT hxan[c] + prpp[c] =>
imp[c] + ppi[c]

2.4.2.8 Nucleotides
PurineMetabolism

PF10_0121

Hfv pheme[fv] => pheme[c] NA Hemoglobin digestion NA
Htap h[ap] <=> h[c] NA Transport AP NA
ILETRS atp[c] + ile_L[c] +

trnaile[c] => amp[c] +
iletrna[c] + ppi[c]

6.1.1.5 AminoAcids
LeuIleValMetabolism

PF13_0179

ILEt2r ile_L[e] + leu_L[c]
<=> ile_L[c] +
leu_L[e]

NA Transport e PF11_0334 PFB0435c
PFE0775c PFF1430c
PFL0420w PFL1515c
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Table 5.3: Consensus predicted lethal reactions across 4 expression-constrained models. (continued)

Reactions Formula EC Subsystems Genes

IPDPS[ap] h2mb4p[ap] + h[ap] +
nadph[ap] => h2o[ap]
+ ipdp[ap] + nadp[ap]

1.17.1.2 Lipids
IsoprenoidsMetabolism

PFA0225w

IPDPtap ipdp[ap] <=> ipdp[c] NA Transport AP NA
LAC lac_L[c] => lac_L[e] NA Export PFB0465c PFI1295c
LDH_L lac_L[c] + nad[c] <=>

h[c] + nadh[c] + pyr[c]
1.1.1.27 Carbohydrates

Glycolysis
PF13_0141 PF13_0144

LEUTRS atp[c] + leu_L[c] +
trnaleu[c] => amp[c] +
leutrna[c] + ppi[c]

6.1.1.4 AminoAcids
LeuIleValMetabolism

PF08_0011 PFF1095w

LYSTRS atp[c] + lys_L[c] +
trnalys[c] => amp[c] +
ppi[c] + lystrna[c]

6.1.1.6 AminoAcids
LysMetabolism ;
AminoAcids tRNA

PF13_0262 PF14_0166

Lipid_prod 0.519 chsterol[c] + 14
sphmyln[c] + 1.5 tag[c]
+ 35 all_pc[c] + 18
all_pe[c] + 4.25
all_pi[c] + 1.5 all_pg[c]
+ 0.2 all_apg[c] + 4
all_dgl[c] => lipid[c]

NA Lipids LipidProduction NA

MECDPDH2[ap]2mecdp[ap] + nadph[ap]
=> h2mb4p[ap] +
h2o[ap] + nadp[ap]

1.17.7.1 Lipids
IsoprenoidsMetabolism

PF10_0221

MECDPS[ap] 2p4c2me[ap] =>
2mecdp[ap] + cmp[ap]

4.6.1.12 Lipids
IsoprenoidsMetabolism

PFB0420w

MEPCT[ap] 2me4p[ap] + ctp[ap] +
h[ap] => 4c2me[ap] +
ppi[ap]

2.7.7.60 Lipids
IsoprenoidsMetabolism

PFA0340w

METTRS atp[c] + met_L[c] +
trnamet[c] => amp[c]
+ mettrna[c] + ppi[c]

6.1.1.10 AminoAcids Met-
PolyamineMetabolism ;
AminoAcids tRNA

PF10_0053 PF10_0340

MTHFC h2o[c] + methf[c] <=>
10fthf[c] + h[c]

3.5.4.9 Cofactors
FolateBiosynthesis

PFF1490w

MTHFD mlthf[c] + nadp[c] <=>
methf[c] + nadph[c]

1.5.1.5 Cofactors
FolateBiosynthesis

PFF1490w

NACUP nac[e] => nac[c] NA Transport cofactor NA
NADK atp[c] + nad[c] =>

adp[c] + h[c] + nadp[c]
2.7.1.23 Cofactors NicotinateNi-

cotinamideMetabolism
PFI0650c

NADPHtap nadph[ap] <=>
nadph[c]

NA Transport AP NA

NADPtap nadp[ap] <=> nadp[c] NA Transport AP NA
NADS2 atp[c] + dnad[c] +

gln_L[c] + h2o[c] =>
amp[c] + glu_L[c] +
h[c] + nad[c] + ppi[c]

6.3.5.1 Cofactors NicotinateNi-
cotinamideMetabolism

PFI1310w

NAMNPP atp[c] + h2o[c] + nac[c]
+ prpp[c] => adp[c] +
nicrnt[c] + pi[c] + ppi[c]

2.4.2.11 Cofactors NicotinateNi-
cotinamideMetabolism

PFF1410c
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Table 5.3: Consensus predicted lethal reactions across 4 expression-constrained models. (continued)

Reactions Formula EC Subsystems Genes

NDPK3 atp[c] + cdp[c] =>
adp[c] + ctp[c]

2.7.4.6 Nucleotides
PyrimidineMetabolism ;
Nucleotides
PurineMetabolism ;
Lipids
DolicholMetabolism

PF13_0349 PFF0275c

NDPK4 atp[c] + dtdp[c] =>
adp[c] + dttp[c]

2.7.4.6 Nucleotides
PyrimidineMetabolism ;
Nucleotides
PurineMetabolism ;
Lipids
DolicholMetabolism

PF13_0349 PFF0275c

NDPK5 atp[c] + dgdp[c] =>
adp[c] + dgtp[c]

2.7.4.6 Nucleotides
PyrimidineMetabolism ;
Nucleotides
PurineMetabolism ;
Lipids
DolicholMetabolism

PF13_0349 PFF0275c

NDPK7 atp[c] + dcdp[c] =>
adp[c] + dctp[c]

2.7.4.6 Nucleotides
PyrimidineMetabolism ;
Nucleotides
PurineMetabolism ;
Lipids
DolicholMetabolism

PF13_0349 PFF0275c

NDPK8 atp[c] + dadp[c] =>
adp[c] + datp[c]

2.7.4.6 Nucleotides
PyrimidineMetabolism ;
Nucleotides
PurineMetabolism ;
Lipids
DolicholMetabolism

PF13_0349 PFF0275c

NNATr atp[c] + h[c] + nicrnt[c]
<=> dnad[c] + ppi[c]

2.7.7.18 Cofactors NicotinateNi-
cotinamideMetabolism

PF13_0159

OCTDPS frdp[c] + 5 ipdp[c] =>
octdp[c] + 5 ppi[c]

2.5.1.90 Lipids
TerpenoidMetabolism

PFB0130w

OCTDPtmt octdp[m] <=> octdp[c] NA Transport MT NA
OMPDC h[c] + orot5p[c] =>

co2[c] + ump[c]
4.1.1.23 Nucleotides

PyrimidineMetabolism
PF10_0225

OPHBDC_mt 3ophb[m] + h[m] =>
2oph[m] + co2[m]

4.1.1.- Cofactors
UbiquinoneMetabolism

NA

OPHHX_mt 2oph[m] + nadph[m] +
0.5 o2[m] => 2ohph[m]
+ h2o[m] + nadp[m]

1.14.13.8 Cofactors
UbiquinoneMetabolism

PF08_0068

OROTtmt orot[m] <=> orot[c] NA Transport MT NA
ORPT orot5p[c] + ppi[c] <=>

orot[c] + prpp[c]
2.4.2.10 Nucleotides

PyrimidineMetabolism
PFE0630c

PCt pc[c] <=> pc[e] NA Transport lipid NA
PEPPItap pep[c] + pi[ap] =>

pep[ap] + pi[c]
NA Transport AP PFE1510c

PGK 13dpg[c] + adp[c] =>
3pg[c] + atp[c]

2.7.2.3 Carbohydrates
Glycolysis

PFI1105w MAL13P1.40
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Table 5.3: Consensus predicted lethal reactions across 4 expression-constrained models. (continued)

Reactions Formula EC Subsystems Genes

PGM 2pg[c] <=> 3pg[c] 5.4.2.1 Carbohydrates
Glycolysis

PF11_0208 PFD0660w
PFC0430w

PHEMEtmt pheme[m] <=>
pheme[c]

NA Transport MT NA

PHETRS atp[c] + phe_L[c] +
trnaphe[c] => amp[c] +
ppi[c] + phetrna[c]

6.1.1.20 AminoAcids
PheTyrMetabolism ;
AminoAcids tRNA

PF11_0051 PFA0480w
PFF0180w PFL1540c

PNTK atp[c] + pnto_R[c] =>
4ppan[c] + adp[c] + h[c]

2.7.1.33 Cofactors
CoABiosynthesis

PF14_0200 PF14_0354

PNTOt2 h[e] + pnto_R[e] <=>
h[c] + pnto_R[c]

NA Transport cofactor PF11_0059

PPA h2o[c] + ppi[c] => 2
h[c] + 2 pi[c]

3.6.1.1 Nucleotides
PurineMetabolism ;
Lipids
TerpenoidMetabolism

PF14_0541 PFC0710w

PPCDC 4ppcys[c] + h[c] =>
co2[c] + pan4p[c]

4.1.1.36 Cofactors
CoABiosynthesis

MAL8P1_81

PPItap ppi[ap] <=> ppi[c] NA Transport AP NA
PPItmt ppi[m] <=> ppi[c] NA Transport MT NA
PPNCL2 4ppan[c] + ctp[c] +

cys_L[c] => 4ppcys[c]
+ cmp[c] + h[c] + ppi[c]

6.3.2.5 Cofactors
CoABiosynthesis

PF11_0036 PFD0610w

PROTRS atp[c] + pro_L[c] +
trnapro[c] => amp[c] +
ppi[c] + protrna[c]

6.1.1.15 AminoAcids
ArgProMetabolism ;
AminoAcids tRNA

PFI1240c PFL0670c

PRPPS atp[c] + r5p[c] =>
amp[c] + h[c] + prpp[c]

2.7.6.1 Carbohydrates
PentosePhosphateCycle

PF13_0143 PF13_0157

PSCVT pep[c] + skm5p[c] <=>
3psme[c] + pi[c]

2.5.1.19 Cofactors
ShikimateBiosynthesis

PFB0280w

PTPATi atp[c] + h[c] + pan4p[c]
=> dpcoa[c] + ppi[c]

2.7.7.3 Cofactors
CoABiosynthesis

PF07_0018
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Table 5.3: Consensus predicted lethal reactions across 4 expression-constrained models. (continued)

Reactions Formula EC Subsystems Genes

Protein 0.1364 alatrna[c] +
0.0674 cystrna[c] + 0.1
fmettrna[c] + 0.3505
glutrna[c] + 0.1063
histrna[c] + 0.3566
iletrna[c] + 0.3405
leutrna[c] + 0.1019
mettrna[c] + 0.3055
sertrna[c] + 0.2045
thrtrna[c] + 0.1379
tyrtrna[c] + 0.203
valtrna[c] + 0.1349
argtrna[c] + 0.02095
trptrna[c] + 0.1353
glntrna[c] + 0.6245
asntrna[c] + 0.1823
phetrna[c] + 0.1085
protrna[c] + 0.2994
asptrna[c] + 0.1827
glytrna[c] + 0.5124
lystrna[c] => protein[c]

NA AminoAcids
ProteinProduction

NA

R07456 g3p[c] + gln_L[c] +
ru5p_D[c] <=>
glu_L[c] + pydx5p[c]

NA Cofactors
VitB6Metabolism

PF11_0169

RBFK atp[c] + ribflv[c] =>
adp[c] + fmn[c] + h[c]

2.7.1.26 Cofactors
RiboflavinMetabolism

MAL13P1_292

RIBFLVt2 h[e] + ribflv[e] => h[c]
+ ribflv[c]

NA Transport cofactor NA

RNDR1 adp[c] + trdrd[c] =>
dadp[c] + h2o[c] +
trdox[c]

1.17.4.1 Nucleotides
PyrimidineMetabolism ;
Nucleotides
PurineMetabolism ;
Redox
RedoxMetabolism

PF10_0154 PF14_0053
PF14_0352

RNDR2 gdp[c] + trdrd[c] =>
dgdp[c] + h2o[c] +
trdox[c]

1.17.4.1 Nucleotides
PyrimidineMetabolism ;
Nucleotides
PurineMetabolism ;
Redox
RedoxMetabolism

PF10_0154 PF14_0053
PF14_0352

RNDR3 cdp[c] + trdrd[c] =>
dcdp[c] + h2o[c] +
trdox[c]

1.17.4.1 Nucleotides
PyrimidineMetabolism ;
Nucleotides
PurineMetabolism ;
Redox
RedoxMetabolism

PF10_0154 PF14_0053
PF14_0352

RPE ru5p_D[c] <=>
xu5p_D[c]

5.1.3.1 Carbohydrates
PentosePhosphateCycle

PFL0960w
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Table 5.3: Consensus predicted lethal reactions across 4 expression-constrained models. (continued)

Reactions Formula EC Subsystems Genes

SERTRS atp[c] + ser_L[c] +
trnaser[c] => amp[c] +
ppi[c] + sertrna[c]

6.1.1.11 AminoAcids Selenocys-
teineMetabolism ;
AminoAcids
GlySerMetabolism

PF07_0073 PFL0770w

SHK3Dr 3dhsk[c] + h[c] +
nadph[c] <=> nadp[c]
+ skm[c]

1.1.1.25 Cofactors
ShikimateBiosynthesis

NA

SHKK atp[c] + skm[c] =>
adp[c] + h[c] +
skm5p[c]

2.7.1.71 Cofactors
ShikimateBiosynthesis

PFB0280w PF02_0059
PF02_0060
PF3D7_0206400
PFB0279w

SMPD3l_host h2o[c] +
sphmyln_host[c] =>
cholp[c] + crm[c] + h[c]

3.1.4.12 Lipids Sphingomyelin-
CeramideMetabolism

PFL1870c

SM_ex sphmyln[e] <=> NA Exchange NA
SM_host sphmyln[e] =>

sphmyln_host[c]
NA Transport e NA

SO4ti so4[e] => so4[c] NA Transport NA
SPMDt2 h[e] + spmd[e] => h[c]

+ spmd[c]
NA Transport NA

THRTRS atp[c] + thr_L[c] +
trnathr[c] => amp[c] +
ppi[c] + thrtrna[c]

6.1.1.3 AminoAcids tRNA PF11_0270

TKT2 e4p[c] + xu5p_D[c]
<=> f6p[c] + g3p[c]

2.2.1.1 Carbohydrates
PentosePhosphateCycle

PFF0530w

TMDS dump[c] + mlthf[c] =>
dhf[c] + dtmp[c]

2.1.1.45 Nucleotides
PyrimidineMetabolism ;
Cofactors
FolateBiosynthesis

PFD0830w

TPI[ap] dhap[ap] <=> g3p[ap] 5.3.1.1 Carbohydrates
Glycolysis ; Lipids
IsoprenoidsMetabolism

PFC0831w

TRDR h[c] + nadph[c] +
trdox[c] => nadp[c] +
trdrd[c]

1.8.1.9 Redox
RedoxMetabolism ;
Redox Mitochondri-
alAntioxidantSystem ;
Nucleotides
PyrimidineMetabolism ;
Nucleotides
PurineMetabolism

PFI1170c

TRPTRS atp[c] + trnatrp[c] +
trp_L[c] => amp[c] +
ppi[c] + trptrna[c]

6.1.1.2 AminoAcids
TrpMetabolism ;
AminoAcids tRNA

PF13_0205 PFL2485c

TYRTRS atp[c] + trnatyr[c] +
tyr_L[c] => amp[c] +
ppi[c] + tyrtrna[c]

6.1.1.1 AminoAcids
PheTyrMetabolism

MAL8P1_125
PF11_0181

UMPK atp[c] + ump[c] <=>
adp[c] + udp[c]

2.7.4.14 Nucleotides
PyrimidineMetabolism

PFA0555c

VALTRS atp[c] + trnaval[c] +
val_L[c] => amp[c] +
ppi[c] + valtrna[c]

6.1.1.9 AminoAcids
LeuIleValMetabolism

PF14_0589 PFC0470w
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Table 5.3: Consensus predicted lethal reactions across 4 expression-constrained models. (continued)

Reactions Formula EC Subsystems Genes

biomass_s biomass[c] => NA Exchange NA
lipid3 dag[c] <=> 12dgr120[c]

+ 12dgr140[c] +
12dgr141[c] +
12dgr160[c] +
12dgr161[c] +
12dgr180[c] +
12dgr181[c]

NA Lipids NA

pc_prod pc[c] => all_pc[c] NA Lipids LipidProduction NA
trna_ala trnaala[c] <=> NA AminoAcids tRNA ;

Exchange
PF3D7_0411500
PF3D7_0620800
PF3D7_0702700

trna_arg trnaarg[c] <=> NA AminoAcids tRNA ;
Exchange

PF3D7_0529600
PF3D7_1370000
PF3D7_1369800
PF3D7_1341000

trna_asn trnaasn[c] <=> NA AminoAcids tRNA ;
Exchange

PF3D7_0403000

trna_asp trnaasp[c] <=> NA AminoAcids tRNA ;
Exchange

PF3D7_0714700

trna_cys trnacys[c] <=> NA AminoAcids tRNA ;
Exchange

PF3D7_1370100

trna_gly trnagly[c] <=> NA AminoAcids tRNA ;
Exchange

PF3D7_1103200
PF3D7_1370200

trna_his trnahis[c] <=> NA AminoAcids tRNA ;
Exchange

PF3D7_0706900

trna_ile trnaile[c] <=> NA AminoAcids tRNA ;
Exchange

PF3D7_0312700
PF3D7_0410200

trna_leu trnaleu[c] <=> NA AminoAcids tRNA ;
Exchange

PF3D7_0510600
PF3D7_0527800
PF3D7_0620900
PF3D7_0714800
PF3D7_1103300

trna_lys trnalys[c] <=> NA AminoAcids tRNA ;
Exchange

PF3D7_0707100
PF3D7_0707000

trna_met trnamet[c] <=> NA AminoAcids tRNA ;
Exchange

PF3D7_1438300
PF3D7_1339100

trna_phe trnaphe[c] <=> NA AminoAcids tRNA ;
Exchange

PF3D7_0514400

trna_pro trnapro[c] <=> NA AminoAcids tRNA ;
Exchange

PF3D7_1216800
PF3D7_1418400
PF3D7_1339200

trna_ser trnaser[c] <=> NA AminoAcids tRNA ;
Exchange

PF3D7_0410100
PF3D7_0621600
PF3D7_0714900
PF3D7_1337600

trna_thr trnathr[c] <=> NA AminoAcids tRNA ;
Exchange

PF3D7_0706800
PF3D7_0730700
PF3D7_1355400

trna_trp trnatrp[c] <=> NA AminoAcids tRNA ;
Exchange

PF3D7_1369900
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Table 5.3: Consensus predicted lethal reactions across 4 expression-constrained models. (continued)

Reactions Formula EC Subsystems Genes

trna_tyr trnatyr[c] <=> NA AminoAcids tRNA ;
Exchange

PF3D7_0702800

trna_val trnaval[c] <=> NA AminoAcids tRNA ;
Exchange

PF3D7_0312600
PF3D7_0730600
PF3D7_1251900

Identification of conserved and uniquely essential pathways: Beyond
general di�erences in pathway utilization, which encompasses both essentiality and
pathway-level di�erences in expression, artemisinin sensitive and resistant parasites
have unique essential genes and reactions. To identify these essential reactions and
provide insight on targetable metabolic enzymes in the clinical isolates, we performed in
silico single gene and reaction deletions with each of the four condition-specific models.
Datasets from the parasites from each country were initially analyzed separately and
then lists were compared to ensure resistance-associated trends are reproducible and
observed in independent analyses. As expected, we identified many essential functions
conserved in all models (Table 5.3), which is consistent with an active core metabolism
required for basic parasite survival. Importantly, 21 reactions were essential in only
resistant models, but not sensitive models (Table 5.1). Theoretically, drugs targeting
these reactions would kill resistant parasites and have no e�ect on sensitive parasites;
thus, there would be no selective pressure within the sensitive parasite population to
develop resistance to these drugs. This list included serine hydroxymethyltransferase
(PFL1720w in folate metabolism), the glycine cleavage system (PFL1550w and others
in folate metabolism), thiamine diphosphokinase (PFI1195c in cofactor metabolism,
specifically thiamine diphosphate), fumarate hydratase and malate dehydrogenase
(PFI1340W and PFF0895w, respectively, in the mitochondrial electron transport
chain and TCA cycle), and fructose hexokinase (PFF1155W in glycolysis; Table
5.1). We also identified 12 reactions that were essential only in artemisinin sensitive
parasites (Table 5.2). Drugs targeting these reactions should not be combined with
artemisinin, as they would not kill (and may select for) resistant parasites. Fortunately,
no existing drug targets were found in this list of essential genes and reactions (Table
5.2). Among those identified were several transport reactions highlights the potential
for condition-specific intra-organellar function (Table 5.1 & 5.2). Overall, our
systems biology-based approach reveals unique metabolic phenotypes associated with
artemisinin sensitivity; these di�erences were not detected in the original analysis of
the expression dataset or by separately analyzing Cambodian or Vietnamese isolates
((Mok et al. 2015) and data not shown).
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Figure 5.6: Artemisinin sensitive and resistant parasites utilize di�erent metabolic genes and path-
ways. Enrichment analysis of gene utilization in sensitive and resistant parasite models demonstrates
functional di�erences in expression data integration. Consensus gene utilization from resistant
and sensitive models (both Cambodian and Vietnamese datasets) were used and compared to
unconstrained model. Black = p < 0.001, grey = p < 0.01, light grey = p < 0.05, white = non sig-
nificant. Abbreviation key: Aminosugars = amino sugar metabolism; ArgPro = arginine and proline
metabolism; AsnAsp = asparagine and aspartate metabolism; BiosynthesisCytochrome = biosynthe-
sis of cytochromes; CoABiosynthesis = coenzyme-A biosynthesis; Dolichol = dolichol metabolism;
Exchange = exchange reactions; FattyAcidSynthesis = fatty acid synthesis; FolateBiosynthesis =
folate biosynthesis; Glu = glutamate metabolism; Glycolysis = glycolysis; GlySer = glycine and
serine metabolism; GPIAnchorBiosynthesis = GPI anchor biosynthesis; Hemoglobin = hemoglobin
degradation (including hemozoin formation); InositolPhosphate = inositol phosphate metabolism;
Isoprenoids = isoprenoid metabolism; LeuIleVal = leucine, isoleucine, and valine metabolism; Lys
= lysine metabolism; MannoseFructose = mannose and fructose metabolism; MetPolyamine = me-
thionine and polyamine metabolism; MitochondrialElectronFlow = mitochondrial electron transport
chain; MitochondrialTCACycle = mitochondrial tricarboxylic acid cycle; NicotinateNicotinamide =
nicotinate and nicotinamide metabolism; Nitrogen = nitrogen metabolism; PentosePhosphateCycle
= pentose phosphate cycle; PheTyr = phenylalanine and tyrosine metabolism; Phosphatidylcholine
= phosphatidylcholine metabolism; PhosphatidyletanolaminePhosphatidylserine = phosphatidyle-
tanolamine and phosphatidylserine metabolism; Porphyrin = porphyrin metabolism; Propionate =
propionate metabolism; Purine = purine metabolism; Pyrimidine = pyrimidine metabolism; Pyruvate
= pyruvate metabolism; Redox = redox metabolism; RedoxMitochondrialAntioxidantSystem =
mitochondrial redox metabolism; Riboflavin = riboflavin (vitamin B2) metabolism; Selenocysteine
= selenocysteine metabolism; ShikimateBiosynthesis = shikimate biosynthesis; SphingomyelinCe-
ramide = sphingomyelin and ceramide metabolism; Terpenoid = terpenoid metabolism; Thiamine
= thiamine biosynthesis; Transport = transport reactions; tRNA = tRNA and protein synthesis;
Trp = tryptophan metabolism; Ubiquinone = ubiquinone metabolism; UtilizationPhospholipids =
utilization of phospholipids; VitB6 = pyridoxal (vitamin B6) metabolism.
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5.1.5 Discussion

Systems biology approaches enable unbiased analyses of antimalarial resistance phe-
notypes. Here, we describe how a curated metabolic network reconstruction of the
malaria parasite can serve as a platform for the analysis of gene expression and other
‘omics data, and as a tool to generate testable hypotheses regarding essential genes
and metabolic phenotypes. In particular, we used this network reconstruction to
characterize key metabolic dependencies in resistant and sensitive parasites. We
revealed emergent patterns in pathway activity, di�erential utilization of organelles,
metabolic flexibility, and targetable weakness of resistant parasites.

Data integration reveals distinct metabolic patterns: The integration of
expression data from clinical parasites into our network reconstruction highlights the
di�erential utilization of metabolic genes and reveals metabolic shifts associated with
variation in innate artemisinin sensitivity (Figure 5.5 & Figure 5.6). Enriched
metabolic pathways detected in sensitive and resistant models are consistent with
previous experimental observations. For example, resistant models are uniquely
enriched with genes involved in pyrimidine biosynthesis and mitochondrial redox
reactions. This finding is consistent with the importance of mitochondrial function
in surviving artemisinin stress (Chen et al. 2014; Peatey et al. 2015) and the
physical interactions between artemisinin and proteins involved in glycolysis, nucleotide
synthesis, and the mitochondria in mammalian cells and P. falciparum (Zhou, Li, and
Xiao 2016; Ismail et al. 2016; Prieto et al. 2008). Additionally, the metabolic disruption
of the redox reactions in the electron transport chain upon artemisinin treatment
(via decreased production of orotate and fumarate, presumably via dihydroorotate
dehydrogenase and succinate dehydrogenase enzymes (Yang, Little, and Meshnick
1994; Cobbold et al. 2016; Creek et al. 2016)) suggests that changes in these pathways
may be important for survival in the presence of the drug. Thus, this metabolic
network analysis approach allows us to filter out noise from diverse clinical isolates
to identify alternative utilization of pathways associated with artemisinin resistance.
However, due to the nature of this type of analysis, these enrichment results do not
implicate specific reactions that are uniquely active in artemisinin sensitive or resistant
parasites.

Condition-specific models have unique metabolic requirements: Upon
integration of expression data and the identification of di�erentially utilized pathways
above, we next used these models to predict targetable di�erences in sensitive and
resistant parasites by identifying reactions that are essential within the context of the
metabolic network (Table 5.3, Table 5.1 & 5.2). We identified (1) di�erences in intra-
organellar function, (2) metabolic flexibility of scavenging and biosynthesis pathways,
and (3) targetable weakness of resistant parasites. These metabolic shifts primarily
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reside in mitochondrial metabolism, as well as folate and polyamine metabolism.
Together, these results highlight the overall plasticity of P. falciparum metabolism
and opportunities for further development of potential drug targets.

Interestingly, several transport reactions are found to be di�erentially essential in
our constrained models (Table 5.1 & 5.2). Many transport reactions (79.5%) have
no associated gene due to the incomplete characterization of the P. falciparum genome
(Figure 4.1). They are included in the model due to biochemical evidence or functional
necessity (i.e. a metabolite is produced in one compartment but it is a substrate
for an enzyme in another). Transcriptomic data integration does not constrain their
behavior explicitly: expression integration reduces the total number of reactions in
a model, forcing transport of metabolites among organelles if within-compartment
biosynthesis is non-functional. Function within organelles requires transport and
loss of function reduces transport needs. Specifically, several mitochondrial and
apicoplast transport reactions are uniquely essential in the sensitive and resistant
parasite populations (Figure 5.7). In resistant models, this includes the mitochondrial
transport of metabolites associated with the TCA cycle and electron transport chain
(fumarate, oxaloacetate, and NADPH) and those involved in generation of folates
(tetrahydrofolate, glycine, CO2, and NH4+) (Figure 5.7A). In sensitive models,
apicoplast transport of ADP, ATP, and phosphate is essential (Figure 5.7A). Overall,
these results indicate that sensitive and resistant parasites are di�erentially utilizing
pathways within these organelles, and have unique requirements for transport of
essential substrates. This observation is consistent with previous studies and our
enrichment results highlighting the influence of mitochondrial metabolism on survival
in the presence of artemisinin (Chen et al. 2014; Peatey et al. 2015). Moreover, oxygen
transport into the cell and then into the mitochondria is only essential in sensitive
parasites, further predicting di�erential use of the mitochondria in these parasites as
oxygen serves as the terminal step in the electron transport chain. Resistant parasites
are predicted to generate oxygen within the mitochondria via superoxide dismutase as
opposed to transport (Figure 5.7A).

We also identify di�erential utilization of transport pathways from the extracellu-
lar environment into the parasite. Plasmodium metabolism contains redundancies;
for many essential metabolites, the parasite’s genome encodes one or more biosyn-
thetic pathways, while there is also evidence for a parallel host-scavenging pathway
(Ginsburg et al. 1983) (e.g. lipid (Gulati et al. 2015) and amino acid (Gulati et al.
2015; Liu et al. 2006) scavenging). Upon model integration, we find that artemisinin
resistant and sensitive parasites utilize some of these metabolic pathways in alter-
native ways (Figure 5.7A). Bioinformatic analyses indicate Plasmodium can either
scavenge or synthesize putrescine (Aurrecoechea et al. 2009) and adenosylmethionine
(Aurrecoechea et al. 2009) (two essential polyamines and precursors to spermidine
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Figure 5.7: Artemisinin resistant and sensitive parasites have unique metabolite transport capabilities.
A: Transport di�erences: Resistant parasites exhibit greater metabolic flexibility, allowing either
import or biosynthesis of putrescine, p-aminobenzoate, adenosyl-methionine into the parasite’s
cytoplasm (grey). Sensitive parasites rely on import only Import or synthesis of ATP, ADP, and
phosphate into the apicoplast (green organelle) is essential for sensitive parasites. Resistant parasites
require transport of oxygen, fumarate, oxaloacetate, NADP, NADPH, tetrahydrofolate (thf), NH4,
and glycine into the mitochondria, in yellow. B: p-aminobenzoate in glycolysis: Resistant parasites
generate p-aminobenzoate via alternative components of the glycolysis pathway. Arrows colored for
flux via flux variability analysis and stars for essentiality.
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(Plata et al. 2010; Pretzel et al. 2016)). Similar redundancy has been identified
for the acquisition of p-aminobenzoate, a folate precursor generated by branch of
glycolysis necessary for nucleotide synthesis ((Aurrecoechea et al. 2009; Salcedo-Sora
et al. 2011); Figure 5.7A & B, Table 5.1 & 5.2). These metabolites are measurable
via blood sample metabolomics (Salcedo-Sora et al. 2011; Wishart et al. 2007);
therefore, host scavenging is a viable option for blood-stage parasites. We predict
that sensitive parasites rely on the import of putrescine, adenosylmethionine, and
p-aminobenzoate. Resistant parasite expression supports either host scavenging or
direct biosynthesis due to parasite survival upon reaction knockout in silico. Thus, we
expect that resistant parasites are more metabolically flexible for these metabolites;
perhaps resistant parasites have failed to appropriately modulate their transition to the
nutrient-rich blood-stage environment, and this unexpected flexibility is evolutionarily
beneficial once confronted with artemisinin treatment.

Interestingly, recent metabolomics studies demonstrate that intra-parasitic pu-
trescine levels are decreased upon artemisinin treatment (Creek et al. 2016). Further-
more, protein interaction studies indicate artemisinin covalently binds with spermidine
synthase and adenosylmethionine synthetase (Wang et al. 2015). Activity in both the
biosynthetic and scavenging pathway of putrescine and adenosylmethionine may allow
resistant parasites to compensate for artemisinin’s e�ect on polyamines. The essential
role of polyamines is well established in Plasmodium (Singh et al. 1997; Assaraf et
al. 1987). In other organisms, these compounds stabilize DNA and RNA (Stevens
1970) and signal a pause in the cell cycle (Mandal et al. 2013). In the presence of
artemisinin, perhaps polyamines act to stabilize the genome from oxidative stress
(Klonis et al. 2011; Meshnick 2002; E�erth and Oesch 2004) and trigger dormancy
(Cheng, Kyle, and Gatton 2012; Codd et al. 2011). As resistant parasites are more
likely to survive dormancy, flexibility in polyamine metabolism could provide more
routes for artemisinin survival (Peatey et al. 2015; Teuscher et al. 2012).

Our systems biology approach also identifies metabolic weaknesses of resistant par-
asites; these weaknesses can be used to identify drug targets for combination therapies
(Figure 5.8). For example, we identified the mitochondrial import of fumarate and
subsequent conversion to oxaloacetate (via fumarate hydratase, PFI1340W, and malate
dehydrogenase, PFF0895W) to be uniquely essential in resistant parasites (Figure
5.8A, Table 5.1). Expression data from sensitive parasites supports mitochondrial
import of malate and utilization of malate:quinone oxidoreductase (PFF0815W) to
generate oxaloacetate from malate, bypassing the need for fumarate and the associated
enzymes, fumarate hydratase and malate dehydrogenase. We predict that inhibitors of
fumarate transport or fumarate hydratase and malate dehydrogenase would specifically
kill artemisinin resistant parasites, o�ering an example of enhanced metabolic flexibil-
ity of sensitive parasites and a potential artemisinin-combination therapy target. The
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Figure 5.8: Artemisinin resistant parasites display unique metabolic weaknesses. A: Trycarboxylic
acid cycle: Resistant parasites rely on generation of oxaloacetate from the conversion of fumarate
to malate, using fumarate hydratase and malate dehydrogenase, in the mitochondria. Sensitive
parasites can also import malate into the mitochondria and use an alternative enzyme (malate:quinone
oxidoreductase) to convert malate to oxaloacetate. B: Folate metabolism: Inhibition of the serine
hydroxylmethltransferase (SHMT) enzyme (left) and the glycine cleavage system (right) is lethal in
resistant parasites. Sensitive parasites can use either of these enzyme complexes interchangeably to
produce methyltetrahydrofolate and tetrahydrofolate. C: Cofactor synthesis: The import of thiamine
and the conversion of thiamine to thiamine diphosphate via thiamine thiphosphokinase is essential in
resistant parasites. Sensitive parasites can also synthesize thiamine diphosphate de novo. Arrows
colored for flux via flux variability analysis and stars for essentiality. Gray background indicates
cytosolic localization, yellow indicates mitochondrial localization.
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TCA cycle is essential during the mosquito-stage of parasite development (MacRae et
al. 2013; Srivastava et al. 2016), but not the blood-stage (Ke et al. 2015; MacRae
et al. 2013); this once again highlights the possibility that resistant parasites exhibit
incomplete transition to the metabolic state most appropriate for nutrient-rich blood.

Additionally, we identified serine hydroxymethyltransferase (SHMT) and thiamine
diphosphokinase as potential drug targets of resistant parasites (Table 5.1, Figure
5.8B & C); see below for discussion of SHMT. Both the import of thiamine and
thiamine diphosphokinase are essential only in resistant parasites (Figure 5.8C), and
we predict inhibition of import or enzyme activity would specifically target resistant
parasites. These reactions are relatively uncharacterized as the parasite can likely
synthesize thiamine diphosphate (vitamin B1) de novo (Müller and Kappes 2007).
Thus, this approach can generate novel hypotheses and be utilized for the identification
of novel drug targets, and, importantly, targets to help prevent the development of
resistance.

Data-driven model implementation highlights knowledge gaps: Al-
though iPfal17 represents our best understanding of intra-erythrocytic P. falciparum
biochemistry as the most comprehensive reconstruction to date, predictions
occasionally contradict published experimental results. These results illuminate
experimental complexities and incompletely characterized pathways. For example,
our model predicted that cytosolic SHMT is only essential in resistant parasites
(Figure 5.8B left). In sensitive parasites, the essential metabolites can be generated
by SHMT or the mitochondrial glycine cleavage system, given the reversible nature of
these enzymes (Maenpuen et al. 2009; Salcedo, Sims, and Hyde 2005). Therefore,
in our sensitive models, neither SHMT nor the glycine cleavage system is essential
when knocked out individually. This observation conflicts with the literature, as
SHMT is essential in cultured parasites (Maenpuen et al. 2009; Pornthanakasem
et al. 2012; França et al. 2005). Thus, iPfal17 is unable to predict this intricacy
of parasite metabolism, revealing interesting regulatory e�ects, an uncharacterized
location dependency for metabolite generation, or in vivo/in vitro di�erences in
enzyme reversibility.

Similarly, model integration reveals that protein localization influences essentiality
predictions. We predicted that the cyclical oxidization and reduction of glutathione, a
key regulator of oxidative stress (Schulz et al. 2000; Mittler 2002; Becker et al. 2004;
Färber et al. 1996), and supporting reactions were essential only in resistant parasites
when the glutathione redox system was located within the mitochondria (data not
shown). This is consistent with artemisinin’s induction of reactive oxygen species, the
parasite’s obvious need to survive this stress (Klonis et al. 2011; E�erth and Oesch
2004; Antoine et al. 2014; Sun et al. 2015), data showing artemisinin sensitivity is
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correlated with glutathione levels in rodent Plasmodium (Vega-Rodríguez et al. 2015),
and artemisinin’s inhibition of mammalian glutathione s-transferases (Zhou, Li, and
Xiao 2016). However, upon moving these reactions to the cytosolic and apicoplast
compartments (as supported by (Kehr et al. 2010)), these reactions were no longer
essential. Thus, model analysis challenges the integration of previously incomparable
datasets by demonstrating that this localization and role of glutathione yield di�erent
predictions. Future studies will be required to clarify these findings.

5.1.6 Conclusions

Here, we have presented an investigation of the metabolic di�erences between
artemisinin sensitive and resistant parasites. Antimalarial resistance is a major public
health problem and we demonstrate that constraint-based modeling can be used
to reveal metabolic shifts that arise with or in support of the resistant phenotype
and discrepancies between otherwise incomparable datasets. We find inherent
di�erences in artemisinin resistant and sensitive parasite metabolism, even before
artemisinin treatment. Artemisinin resistant parasites have major metabolic shifts in
the mitochondria and in the synthesis of folates and polyamines, indicating incomplete
transition to the metabolic state most appropriate for the blood-stage environment.
These findings generate novel hypotheses about Plasmodium biochemistry and
perspectives on antimalarial resistance.

5.1.7 Experimental interrogation

In silico predictions can be explored experimentally. We focused on the subset of
predictions presented in Figure 5.7 highlighting the di�erent use of nutrient scavenging
and de novo synthesis in artemisinin sensitive and resistant parasites. Specifically, we
predicted the di�erential use of putrescine synthesis (further elaborated in Figure
5.9) by sensitive and resistant parasites. Resistant parasites are simulated to use both
scavenging and synthesis pathways to generate a putrescine pool for conversion to
spermidine and spermine; thus, we predicted that resistant parasites were not sensitive
to inhibition of scavenging or of de novo synthesis, due to their redundancy. Sensitive
parasites, however, have decreased expression of de novo enzymes and are accordingly
simulated to rely only on scavenging. We predict these parasites would be sensitive to
inhibition of putrescine transport. As previously mentioned, metabolomics studies
reveal putrescine abundance is decreased upon artemisinin treatment (Creek et al.
2016) and artemisinin interacts with downstream polyamine enzymes (spermidine
synthase and adenosylmethionine synthetase (Wang et al. 2015)). Thus, we performed
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Figure 5.9: Putrescine scavenging and synthesis in Plasmodium falciparum. Reactions in blue are
used by artemisinin sensitive clinical isolates and reactions in red are used by resistant isolates, prior
to drug treatment.

three sets of experiments on artemisinin sensitive and resistant parasites to explore
di�erences in putrescine metabolism.

To determine if putrescine supplementation enhances growth, parasites (P. fal-
ciparum from BEI Resources, NIAID, NIH, strains IPC 5202/MRA-1240 and IPC
4884/MRA-1238, contributed by Didier Menard) were growth under normal growth
conditions (see Parasite cultivation in Chapter 6.3) with 200uM putrescine. Pu-
trescine enhanced resistant parasite growth significantly in one experiment (n = 16-24,
t-test p-value = 8.6x10ˆ-8); however, this failed to replicate (n = 48, p-value = 0.7305).
Putrescine did not enhance sensitive parasite growth in either experiment.

To determine if sensitive and resistant parasites are di�erentially a�ected by an
inhibitor of de novo putrescine synthesis, parasites were growth with difluoromethy-
lornithine (DFMO; Figure 5.9). Sensitive and resistant parasites were plated into a
96-well plate at a parasite density of approximately 1% parasitemia and 0.5% hema-
tocrit. Parasites were treated with 0.01-27mM DFMO for 72 hours, and grown in
triplicate at each DFMO concentration. Following growth, total growth was measured
using Sybr green-based flow cytometry (Bei et al. 2010). Parasite proliferation was
expressed as a percentage of the media-only control. Resultant normalized growth
values were fit to a nonlinear regression with four parameters and fit with a least
square fit in R, per standard in the field, and an EC50 was calculated. Artemisinin
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Figure 5.10: Artemisinin sensitive and resistant parasites are sensitive to DFMO treatment. Sensitive
parasites in red and resistant parasites in blue. DFMO treatment in dotted line, DFMO with putrescine
rescue in solid line. Calculated EC50 is shown with large point.

sensitive and resistant parasites were equally sensitive to DFMO treatment (dotted
lines, Figure 5.10). Consistent with others in the field, we also rescued DFMO
treatment by added exogenous putrescine (200uM), and putrescine could rescue the
growth defect in both clonal lines (solid lines, Figure 5.10). However, independent
experimental replicates (data not shown) yielded unpredictable growth of untreated
parasite, making results challenging to interpret without adequate replicates.

Lastly, to test if the larger putrescine pool generated by redundant use of scav-
enging and de novo synthesis mediates artemisinin sensitivity, we tested parasite
sensitivity to artemisinin in the presence of putrescine using a ring stage survival
assay (Witkowski et al. 2013). In brief, a laboratory-adapted parasites (NF54; BEI
Resources, NIAID, NIH, strain MRA-1000) were tightly synchronized to the ring
stage (see Chapter 6.3 for methods) and exposed to artemisinin for 6 hours, with or
without putrescine treatment (200uM). After 6 hours, parasites were spun and washed
in fresh media to remove artemisinin. Growth was measured using Sybr green-based
flow cytometry (Bei et al. 2010) and microscopy. Sensitive parasites remained sensitive
to artemisinin even with concurrent putrescine treatment (Figure 5.11).

In conclusion, clinical isolates with varying sensitivity to artemisinin have dif-
ferential expression of the enzymes involved in putrescine synthesis prior to drug
treatment (Figure 5.9) and, following drug treatment, putrescine abundance drops
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in in vitro parasite lines (Creek et al. 2016). Artemisinin interacts with the enzyme
that consumes putrescine (Wang et al. 2015). We now show, in unreplicated studies,
that artemisinin sensitive and resistant P. falciparum strains (IPC 5202/MRA-1240
and IPC 4884/MRA-1238) are both sensitive to inhibitors of de novo putrescine
synthesis and this can be rescued by exogenous putrescine supplementation (Figure
5.10). Exogenous putrescine may enhance resistant parasite growth but a larger
putrescine pool does not mediate artemisinin resistance (Figure 5.11). Future work
remains to replicate these findings and continue to profile the role of putrescine in
artemisinin resistance. However, as polyamine concentrations (putrescine, spermine,
and spermidine, specifically) change as human erythrocytes age (Cooper, Shukla, and
Rennert 1976) and likely vary from individual-to-individual (Wishart et al. 2007), it is
possible that this variability results from distinct and dynamic host polyamine pools.
Blood batch-matched results will aid in the interpretation of these experiments.

5.2 Chloroquine

5.2.1 Synopsis

Using a similar systems biology approach and analytic pipeline, we identified metabolic
shifts in chloroquine resistant parasites when treated with chloroquine. All analyses
in this section were performed by a talented biomedical engineering undergraduate
student, Ana Untariou. We worked together for three years and I am grateful for this
experience, as well as training in mentorship and ‘PIship.’

5.2.2 Background

First introduced in 1934, chloroquine was a front-line antimalarial until the late
1950s when its heavy usage led to emergence of resistant P. falciparum strains near
the Cambodia-Thailand border (Payne 1987). Chloroquine resistance has now been
confirmed in over 40 countries, making resistance to this drug a global concern (Payne
1987). Despite e�orts to introduce novel and e�ective antimalarial therapeutics,
e�cacy is diminished by the development of multi-drug resistance, including resistance
for artemisinin-based combination therapies, mefloquine, quinine, atovaquone, and
sulfadoxine-pyrimethamine (Ashley et al. 2014; Price et al. 2004; Zalis et al. 1998;
Färnert et al. 2003; Rønn et al. 1996). Interestingly, when chloroquine usage is
removed from a community, the parasite population becomes resensitized to the
drug (Hayward, Saliba, and Kirk 2005; Ord et al. 2007). Accordingly, reinstating
chloroquine is appealing due to the lack of novel antimalarials. The mechanism
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of action and the resistance mechanism of chloroquine are well-studied; however,
leveraging these mechanisms has not yet realized combination therapies. Thus, it is
appealing to develop combination therapies that target chloroquine resistant parasites
under drug pressure as these parasites are weakened; this may slow the development
of resistance.

5.2.3 Methods

Normalized microarray expression values of in vitro K1 parasites untreated or treated
with IC50 concentrations of chloroquine for 4hr and 24hrs were used to investigate the
transcriptional e�ects of chloroquine treatment (GEO accession number: GSE31109,
Kritsiriwuthinan et al. (2011)). Expression data was analyzed with limma (Ritchie et
al. 2015) to calculate di�erential expression (specifically, fold change and associated
p-value). Condition-specific models were produced by integrating gene expression from
the 4 and 24 hour treatment conditions into our blood-stage P. falciparum genome-scale
metabolic reconstruction (Chapter 4) using the Metabolic Adjustment for Di�erential
Expression (MADE) algorithm (Jensen and Papin 2011). MADE constrains the
network by limiting flux through reactions mapped to lowly expressed genes while
maintaining growth. Essential reactions were predicted for the resultant condition-
specific models by conducting single gene and reaction deletions with established
algorithms. See Chapter 4 for more methodological details regarding reaction
essentiality and flux balance analysis. Exposure for 4 and 24 hours were defined as
short and long-term treatment, respectively.

5.2.4 Results and Discussion

To understand the e�ect of chloroquine treatment on resistant parasites, we imple-
mented our analytic pipeline described in the previous section to compare transcrip-
tomics data (GSE31109) from chloroquine resistant parasites in the presence or absence
of the drug. Strikingly, these resistant parasites downregulated gene expression fol-
lowing treatment (Figure 5.12). This indicates that despite being resistant to the
drug, these parasites are a�ected by chloroquine treatment. Longer exposure time
exacerbates this e�ect, as illustrated by the increase in di�erentially expressed genes
with the 24 hour drug treatment (Figure 5.12A to B). This observation is consistent
with growth defects observed in chloroquine-treated resistant parasites (Yayon et al.
1983).

We next integrated these expression profiles into our P. falciparum metabolic
model to generate condition-specific models for chloroquine-resistant (untreated) par-
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Figure 5.12: Resistant parasites respond to chloroquine by downregulating expression. Adjusted
p-values represent the significance level of changes in expression. Fold change quantifies the variation
in the gene expression relative to untreated resistant parasite expression during short term treatment
(A) or long-term treatment (B).

asites, and chloroquine-resistant parasites treated with short or long-term chloroquine
treatment. With the resultant condition-specific models, we identified essential reac-
tions to find targetable pathways in resistant parasites (Figure 5.13A). One hundred
and eighty metabolic reactions (out of 1192) are essential in all three models (Figure
5.13A, center). Consistent with previous studies, this work identified an increased
importance of lipid synthesis (Figure 5.13B) in chloroquine-treated resistant para-
sites. De novo synthesis of thiamine diphosphate, the active form of vitamin B1, is
uniquely essential during short-term chloroquine treatment (Figure 5.13C), when
normally these cells can import or synthesize thiamine. During long-term chloroquine
treatment, the conversion of chorismate into 4-aminobenzoate for folate metabolism
and import of oxidized glutathione are essential (Figure 5.13D).

Flux levels of these reactions generated from flux balance analysis were investigated
to understand thiamine diphosphate usage, in light of the thiamine production switch
occurring in Figure 5.13C. Because thiamine diphosphate-dependent enzymes are
in glycolysis and isoprenoid metabolism, two essential pathways, these reactions are
constitutively essential in all condition-specific models. Thus, we use flux balance
analysis to simulate steady-state flux values through the network’s reactions to see if
the flux in these essential pathways varies. We focus on isoprenoid metabolism because
nonessential steps in this pathway become essential in the long-term chloroquine
treatment model (Figure 5.13D). In response to drug treatment, flux through a
thiamine diphosphate-dependent reaction and several other reactions in isoprenoids
metabolism are consistently greater in response to chloroquine treatment (Figure
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Figure 5.13: Chloroquine-treated resistant parasites have new metabolic weaknesses. (A) Comparison
of essential reactions in the three condition models (short-term and long-term chloroquine treatment,
and untreated condition). (B-D) Illustrations of common essentiality predictions (bolded in A)
between the drug-treatment models. Panel B represents sphingomyelin and ceramide metabolism
and inositol phosphate metabolism. Panel C display essential reactions observed only in short-term
treatment, representing thiamine metabolism. Panel D displays essential reaction in only long-term
treatment, especially folate metabolism. Red depicts the host red blood cell, grey is the parasite’s
cytoplasm, and green represents the parasite’s mitochondria.
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Figure 5.14: Flux shifts in isoprenoids metabolism and folate biosynthesis in response to chloroquine.
Mean di�erences in flux values in (A) isoprenoids metabolism and (B) folate metabolism reactions in
the chloroquine-treated versus untreated models. Clinically available drugs target these pathways;
drug targets are labeled in the figure with red inhibitor arrows.

5.14A).

Thus, we predict a novel role for isoprenoids synthesis in chloroquine resistant
parasites. Under chloroquine treatment, there is increased flux through reactions in
the non-mevalonate pathway for isoprenoids metabolism (Figure 5.14A), the only
synthesis pathway for isoprenoids in P. falciparum (Vial, Philippot, and Wallach
1984; Grellier et al. 1994). This pathway is thiamine diphosphate-dependent and
we also observed a switch in thiamine scavenging to de novo synthesis early in
chloroquine treatment (Figure 5.13C), highlighting the dynamic state of these
pathways. Our computational analysis suggests that chloroquine-resistant parasites
have increased susceptibility to non-mevalonate pathway inhibitors due to increased
flux in this pathway. This pathway is targetable using drugs such as fosmidomycin
(Figure 5.14A) and its derivative, FR-900098 (Jomaa et al. 1999). Fosmidomycin is
moderately e�ective against chloroquine-resistant parasites (Tahar and Basco 2007);
we propose that these parasites are even more susceptible to fosmidomycin while
under chloroquine treatment. Thus, we have propose a novel combination therapies
involving readily available antimalarials that may inhibit the growth of chloroquine
resistant parasites.
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We also predict di�erential flux in folate metabolism. Folate metabolism is needed
for DNA synthesis and metabolism of certain amino acids (Metz 2007). During long-
term chloroquine treatment, synthesis of 4-aminobenzoate from chorismate is used,
rather than importing 4-aminobenzoate from the host cell (Figure 5.13D). Inter-
estingly, downstream steps in folate metabolism, including dihydropteroate synthase
and dihydrofolate reductase, carry more flux during chloroquine treatment (Figure
5.14B), implying they are necessary for survival or are overexpressed during treatment.
This suggests that this pathway has increased importance under chloroquine treatment
and could be targeted in combination therapies.

Recent clinical use of such a combination therapy supports this conclusion; chloro-
quine in combination with inhibitors of dihydrofolate reductase and dihydropteroate
synthase (sulfadoxine-pyrimethamine) is e�ective against chloroquine-resistant par-
asites (Bustos et al. 1999; Hallett et al. 2006; Menard et al. 2005). Our results
suggest that chloroquine-resistant parasites are more susceptible to these drugs than
sensitive parasites. Thus, we generated the novel observation that resistant parasites
carried greater metabolic flux in isoprenoids and folate metabolism when treated
with chloroquine. Inhibitors for these areas of metabolism have been identified for
P. falciparum and represent candidate drugs for chloroquine combination therapies.
Experimental validation of these hypotheses are underway.

5.2.5 Conclusions

New cellular functions (e.g. tolerance of artemisinin or chloroquine) result in collateral
changes to the genome and to cellular metabolism. We identified inherent di�erences
in artemisinin resistant and sensitive parasite metabolism, even before artemisinin
treatment, and unique ways chloroquine resistant parasites respond to drug treatment.
These findings generate areas of future research to elucidate Plasmodium biochemistry,
understand the evolution of resistant parasites, and tackle antimalarial resistance.



Chapter 6: Extending modeling with
metabolomics

Some of the following text, figures, and tables has been adapted from Carey,
Maureen A., Vincent Covelli, Audrey Brown, Gregory L. Medlock, Mareike
Haaren, Jessica G. Cooper, Jason A. Papin, and Jennifer L. Guler. "Influential
Parameters for the Analysis of Intracellular Parasite Metabolomics." mSphere
3.2 (2018): e00097-18. Many thanks to the other authors for their contributions
to this work. Specifically, experimental work was conducted by Vincent Covelli,
Audrey Brown, Mareike Haaren, and Jessica G. Cooper. Gregory L. Medlock
assisted with the design of machine learning analyses. Ana Untariou implemented
the analyses presented in Figures 6.1 and 6.2.
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6 Extending modeling with metabolomics

Models serve as tools to contextualize data and to generate data-driven, condition-
specific hypotheses. Throughout this dissertation, we have demonstrated the utility of
GENREs for data contextualization and interpretation. Moreover, with these modeling
approaches, we have identified divergent pathways in parasite metabolism that can
be leveraged for informing drug development (Chapter 3) and novel targets of drug
resistant parasites (Chapter 5). However, the predictions generated by these models
are limited by the quality and quantity of data used for their construction. Thus,
integrating high-quality, stage-specific data will improve their predictive capabilities.
Accordingly, parasite models are weakly predictive when compared to GENREs of
‘model’ organisms (i.e. E. coli, S. cerevisiae) due to the lack of historic data and poor
genome annotation.

Data integration into GENREs (like in Chapter 5) improves predictions but
o�ers additional challenges. Transcriptomic data is most frequently used to constrain
GENREs to generate condition-specific models. However, regulation occurs at the
translational level as well as transcriptional level, so constraining a GENRE with
proteomics data may generate more accurate models and, therefore, predictions than
transcriptomic-derived models. We explore the e�ects of using transcriptomic or
proteomic data to constrain metabolic reconstructions.

To investigate the di�erence between models derived from either transcriptomic
or proteomic data, annotated enzyme expression from matched transcriptomics and
proteomics data (from five biological conditions, with 3 replicates each from GSE65209
and PXD001659) was integrated into a GENRE (Bosi et al. 2016). We compared
reaction essentiality predictions generated to understand the e�ects of data type on
resulting predictions. As transcriptomic datasets have higher coverage than many
proteomics datasets, the e�ects of data coverage were investigated by sampling subsets
of data (10-100% of the dataset). These ‘matched’ predictions were, surprisingly, no
more similar than predictions generated from ‘mismatched’ models (Figure 6.1).

Transcriptomic-derived models predicted more essential reactions than proteomics
models, even when controlling for scope (i.e. number of data points, or enzymes,
integrated; Figure 6.2). This indicates transcriptomic-derived models are more
constrained than proteomics-derived models. This set of analyses identified incon-
sistencies between individual predictions generated by ‘matched’ proteomics- and
transcriptomics-derived conditional models and the scope of predictions generated
by these models. These results emphasize the importance of interpreting predictions
as both condition- and datatype-specific results and highlight the need for a better
understanding of the intricacies of datatype-specific results.
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Figure 6.1: Poor predictions overlap between transcriptomics- and proteomics-derived models.
Proportions of essential reaction overlap between condition-specific constrained models. Sample
numbers (I_, II_, etc.) indicate the timepoint for data collection and sample letter (_P, _T) indicate
the datatype, proteomics and transcriptomics, respectively. R indicates randomly generated datasets
were used to constrain the model, ten times. The diagonal column represents proportion of the
essential reaction overlap among transcriptomics- and proteomics-derived conditional models from
matched datasets. The rightmost vertical column represents the median prediction overlap among
proteomics-derived condition-specific models and matching random models (10 total random models).
The bottom horizontal column represents the median prediction overlap among transcriptomics-
derived condition-specific models and matching random models (10 total random models). Of note,
the matched datasets (diagonal comparison) are no more similar than models constrained with
unmatched datasets (o�-diagonal comparison).
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Figure 6.2: Transcriptomic data integration generates more constrained models. Each point represents
a model generated from a subset of data (for one biological condition, using the mean of three biological
replicates). To subset data, the data were bootstrapped 10 times at each subsetting threshold (10-
100% of the dataset). The X-axis represents the number of enzymes that were constrained. Proteomics
data are lower coverage than transcriptomic data; here, proteomics contained fewer than 800 enzymes,
whereas the transcriptomics contained data for over 1200 enzymes. The Y-axis indicates how many
essential reactions were predicted by each model.
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Fortunately, metabolomics data o�ers a new profiling method that is closer to
the phenotype than expression data and agnostic to genome annotation. Molecular
characterization of pathogens such as the malaria parasite can lead to improved
biological understanding and novel treatment strategies. Untargeted metabolomics
is a promising approach to learn about pathogen biology. By measuring many small
molecules in the parasite at once, we gain a better understanding of important path-
ways that contribute to the parasite’s response to perturbations such as drug treatment.
Although increasingly popular, approaches for intracellular parasite metabolomics
and subsequent analysis are not well explored. The findings presented in this chapter
emphasize the critical need for improvements in these areas to limit misinterpretation
due to host metabolites and to standardize biological interpretation. Such improve-
ments will aid both basic biological investigations and clinical e�orts to understand
important pathogens.

6.1 Synopsis

Utilizing metabolomics data to constrain a reconstruction is a common approach in
prokaryotes (Medlock et al. 2018), but no analytic tools are available to perform
this analysis and it has not been implemented for any eukaryotic parasites. Here,
we constrain our Plasmodium falciparum GENRE (iPfal18) with publically available
metabolomics data; this new analysis codifies experimental data to o�er a reproducible
approach for data integration. Moreover, we discuss the collection and analysis of
metabolomics data and the unique caveats of metabolomics in intracellular parasites.

6.2 Metabolomics as model constraints

6.2.1 Background

Genome-scale metabolic models summarize the metabolic capability of an organism.
Thus, they may overpredict metabolic functions (i.e. metabolic functions that are
condition-specific) and under-predicting can be used to focus curation. If a model
cannot perform a function, it must be added. Accordingly, metabolomics data is well
suited to curate these models as metabolomics measures the biochemical compounds
in a particular sample.
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6.2.2 Methods

Metabolomics data analysis: Metabolomics data were collected by Lewis, Baska,
and Llinas (unpublished, but publically available), and stored on PlasmoDB (Aur-
recoechea et al. 2009). Metabolites were measured from in vitro blood-stage culture
supernatant or cell lysate from three experimental groups at three pHs. Experimen-
tal groups included enriched infected red blood cells containing parasites, parasites
isolated from host cells, and uninfected red blood cells. To elaborate, blood-stage
Plasmodium faliparum parasites (strain not provided) were grown in human red blood
cells and RPMI media. Blood culture of Plasmodium faliparum is maintained with
fewer than 3% infected red blood cells, leaving 97% (or more) of the cells uninfected;
thus, infected cells can be enriched to increase the ratio of parasitized cells to unin-
fected cells. For the enriched infected red blood cell experimental group here, infected
cells were enriched using Percoll, leveraging the density di�erent between uninfected
and infected cells. To isolate parasites from host cells, infected red blood cells were
specifically lysed with saponin. See Chapter 6.3 for detailed metabolomics protocols
for reference. Next, enriched infected red blood cells, isolated parasites, or uninfected
red blood cells were incubated with media containing U-13 C glutamine at three
di�erent pHs (6.4, 7.4, and 8.4). Samples were pelleted to measure the extracellular
metabolome from the resultant supernatant. All samples were analyzed using mass
spectrometry. When a compound had multiple isotopomers, all isotopomers were
summed to provide the compound abundance.

For our analysis, we obtained metabolite supernatant abundances from PlasmoDB
(Aurrecoechea et al. 2009). We calculated a mean metabolite abundance for the
uninfected samples, at all pHs and then calculated a shared mean abundance for the
enriched infected red blood cells and isolated parasite samples at all pHs. From these
mean abundances, we identified metabolites that had a greater than 2 fold change
in either group. If the fold change was greater than 2 when comparing uninfected
cells to the parasitized groups, these metabolites were consumed by parasites. If the
fold change was greater than 2 when comparing parasitized groups to uninfected cells,
these metabolites were produced by parasites. This approach is extremely conservative
as it requires the metabolite trends to be conserved across pHs and to be conserved in
all parasitized samples (enriched infected cells and purified parasites). These lists were
then subsetted such that only metabolites contained in the BiGG reference database
(King et al. 2016) were included. Our analytic code is provided on my Github page,
github.com/maureencarey.

Automated metabolomics-driven curation: Automated curation of iPfal18
was performed by gapfilling for metabolites identified to be produced or consumed
by the parasite. First, excretion or import of these metabolites were added to the
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Figure 6.3: Metabolomics-based curation of iPfal17. Curation yields a subset of reproducible reaction
additions.

reconstruction. Next, the model objective was changed to each of these excretion or
import reactions sequentially and was gapfilled ten times per objective; this ensures
synthesis or consumption of each of these measured metabolites. Reaction added due
to gapfilling were given confidence scores. See gapfilling section of Chapters 3 and
7.2.1 for more information on this analytic tool and confidence scores.

6.2.3 Results and Discussion

Three metabolites (dTTP, GTP, and 5-methylthioadenosine) less abundant in the
supernatant in infected samples, indicating either the parasite consumes or the parasite
induces host consumption of these compounds. The metabolic network contained
these metabolites but none of their import reactions; thus, these three metabolic
functions were added to iPfal18.

Forty-five metabolites were more abundant in the supernatant of infected samples;
thus, these metabolites were produced by the parasite or by the infected host. Of
these, only 29 were contained in the database used for model construction. Five of
these were not yet in the reconstruction and were added. Six were contained in the
original reconstruction but could not be exported. The remaining metabolites were
found in the network, and could be exported.

For the six metabolites that could not yet be exported, we gapfilled for these
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function. Solutions included between one and 7 new reactions, including a total of 68
total reactions and 35 metabolites. In sum, 127 reactions and 68 metabolites were
added upon metabolomics-driven curation of the iPfal18 network.

Here, we define a gapfilling query as a particular task (e.g. exporting metabolite
X) and a gapfilling solution as one iteration of a query. For each gapfilling query, we
obtained 10 solutions, with 1-10 unique solutions; if multiple reactions were needed
for one solution, there tended to be more unique solutions (left side of Figure 6.3).
Six reactions were added with high confidence because they were required for every
solution for a particular query. This confidence score will inform future curation
e�orts.

The minority (28%) of reactions added were transport reactions, and only 17%
of high-confidence reactions were transport reactions. Thus, to replicate the in vitro
results, the in silico parasite needed increased metabolic capacity, indicating the
network did not support production or consumption of the metabolites. Additionally,
the reconstruction lacked the reactions to move the synthesized metabolites to or from
the media (i.e. extracellular environment), highlighting the underannotation of trans-
porters and export pathways, as previously discussed in the literature (Kenthirapalan
et al. 2016; Martin et al. 2005).

6.2.4 Conclusions

Here, we used metabolomics data to curate our model of Plasmodium falciparum
metabolism, adding network functionality and improving model predictions. However,
these results are biased by methodological challenges associated with metabolomics.
The data discussed here were collected by measuring metabolite abundance in media
following culture of Plasmodium falciparum-infected red blood cells (using multiple
experimental conditions) or uninfected red blood cells. Thus, the measured metabolites
might have been derived from the host cell, if metabolite abundance is dependent on
parasite infection. Moreover, it is plausible that the metabolites measured in infected
cultures were generated by host cells and only released during host cell lysis, as the
parasite ruptures its host during the replication process. Improved metabolomics
methods could disentangle the individual behavior of both host and parasite, but
current approaches are unable to distinguish between these possible interpretations.
The following section explores analytic choices a�ecting metabolomic interpretation.
We hypothesized that analytic controls could be used to classify metabolome into host
and parasite derived features.
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6.3 Intracellular pathogen metabolomics methodology

6.3.1 Background

Malaria continues to be responsible for hundreds of thousands of deaths annually, most
of which result from infection with the protozoan parasite Plasmodium falciparum.
Characterization of the biology of this important pathogen can lead to improved
treatment strategies. Omics approaches, such as genomics, transcriptomics, and
proteomics, are widely used, but the limited annotation of the parasite’s genome
makes these data sets challenging to interpret. One way to alleviate this lack of
functional knowledge is to use network-based modeling to contextualize noisy or
sparse data and facilitate the interpretation of complex data (Carey, Papin, and Guler
2017). Additionally, the measurement of direct mediators of the phenotype, such
as signaling and biosynthetic metabolites, can improve the ability to characterize
phenotypes mediated by proteins that are not yet annotated in the genome. For this
reason, metabolomics is becoming increasingly popular in studies of intraerythrocytic
stages of P. falciparum (Allman et al. 2016; Babbitt et al. 2012; Creek et al. 2016;
Olszewski et al. 2009; Park et al. 2015; Parvazi et al. 2016; Sana et al. 2013;
Sengupta et al. 2016; Teng et al. 2014; Siddiqui et al. 2017). These studies have
improved our understanding of malaria pathogenesis (Park et al. 2015), strain-specific
phenotypes (Teng et al. 2014), and host-parasite interactions (Sana et al. 2013).
Recent studies have successfully identified metabolic signatures that correlate well
with biological function, such as time- and dose-dependent responses to antimalarial
treatment (Allman et al. 2016; Creek et al. 2016) and resistance-conferring mutations
(Siddiqui et al. 2017).

Previous studies on P. falciparum have been confined to the larger, late-
intraerythrocyte-stage parasites. This is mainly due to the characteristics of the
available purification approaches used; for example, magnetic purification specifically
enriches late-stage parasites that contain paramagnetic hemozoin while excluding
early ring stages and uninfected host cells (Paul et al. 1981). Accordingly, the study
of the smaller, early-ring stage parasite is more challenging due to an inability to
isolate adequate amounts of parasite material from host material (Siddiqui et al.
2017). However, specific functionality (i.e., artemisinin resistance) can be observed
only in the early parasite stages and metabolic details would greatly advance our
understanding of such phenotypes.

There are distinct challenges that need to be considered in performing metabolomic
studies in obligate intracellular pathogens such as P. falciparum; chief among these
are acquiring adequate material and the potential for contamination from host cells.
Due to ine�cient purification methods, samples typically have few parasites and yet
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abundant host erythrocyte material. Uninfected host cells are often 10 times more
prevalent than P. falciparum-infected host cells in laboratory culture and clinical
infections, and the host erythrocyte contains up to 10-fold more cellular material
(Langreth et al. 1978; Canham and Burton 1968).

In this study, we sought to define critical parameters that can be used to overcome
these challenges and facilitate the collection of high-quality metabolomics data. We
chose to investigate an extreme case, namely, metabolically perturbing early-ring-stage
P. falciparum parasites, to determine if the extensive extraparasite contamination
present after employment of commonly used isolation methods can be removed an-
alytically. We show that both the choice of analytic parameters (in particular, the
normalization approach) and extraparasite contamination heavily influence the in-
terpretation of metabolic changes. However, even appropriate normalization fails to
remove environmental noise completely. Contamination from the media and host
cells is as influential on the metabolome as sample treatment. Thus, we propose
that the combination of improved purification and improved analytic parameters
could generate more-accurate measures of the metabolome, increasing the utility of
untargeted metabolomics to investigate intracellular parasite biology.

6.3.2 Methods

Table 6.1: Parasite sample reference table. Parasite samples were quantified by protein, DNA,
parasite number, parasitemia, and stage distribution.

Sample Clone Blood
batch

Antimalarial Protein
(mg)

DNA
(mg/mL)

Parasitemia
(%)

Parasite
no.

Stage

BAT-A
(+)

MRA-
1240

1 700nM
DHA

91.0 0.927 1.1 3270000 97%
early
rings

BAT-A
(-)

MRA-
1240

1 None 67.1 0.587 1.1 3270000 97%
early
rings

BAT-B
(+)

MRA-
1240

1 700nM
DHA

121.2 0.476 1.0 2890000 98%
early
rings

BAT-B
(-)

MRA-
1240

1 None 118.1 1.216 1.0 2890000 98%
early
rings

BAT-C
(+)

MRA-
1240

2 700nM
DHA

119.2 0.985 1.0 2930000 98%
early
rings

BAT-C
(-)

MRA-
1240

2 None 87.9 1.739 1.0 2930000 98%
early
rings
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Table 6.1: Parasite sample reference table. Parasite samples were quantified by protein, DNA,
parasite number, parasitemia, and stage distribution. (continued)

Sample Clone Blood
batch

Antimalarial Protein
(mg)

DNA
(mg/mL)

Parasitemia
(%)

Parasite
no.

Stage

BAT-D
(+)

MRA-
1240

2 700nM
DHA

98.3 0.656 1.9 6950000 98%
early
rings

BAT-D
(-)

MRA-
1240

2 None 130.1 0.557 1.9 6950000 98%
early
rings

BAT-E
(+)

MRA-
1240

3 700nM
DHA

125.9 1.326 2.2 6510000 93%
early
rings

BAT-E
(-)

MRA-
1240

3 None 128.5 2.083 2.2 6510000 93%
early
rings

PUR-A
(+)

MRA-
1238

1 700nM
DHA

120.2 0.325 0.6 1310000 96%
early
rings

PUR-A
(-)

MRA-
1238

1 None 125.4 0.547 0.6 1310000 96%
early
rings

PUR-B
(+)

MRA-
1238

1 700nM
DHA

123.3 0.259 1.0 2500000 98%
early
rings

PUR-B
(-)

MRA-
1238

1 None 121.0 0.673 1.0 2500000 98%
early
rings

PUR-C
(+)

MRA-
1238

2 700nM
DHA

104.6 0.648 0.6 2260000 97%
early
rings

PUR-C
(-)

MRA-
1238

2 None 100.4 0.543 0.6 2260000 97%
early
rings

PUR-D
(+)

MRA-
1238

3 700nM
DHA

120.7 0.599 1.0 3320000 96%
early
rings

PUR-D
(-)

MRA-
1238

3 None 110.3 1.563 1.0 3320000 96%
early
rings

PUR-E
(+)

MRA-
1238

3 700nM
DHA

128.5 0.869 1.0 2630000 96%
early
rings

PUR-E
(-)

MRA-
1238

3 None 114.5 1.118 1.0 2630000 96%
early
rings

Parasite cultivation. Laboratory-adapted P. falciparum clonal lines were cultured
in RPMI 1640 (Thermo Fisher Scientific, Waltham, MA) containing HEPES (Sigma-
Aldrich, St. Louis, MO) supplemented with 0.5% AlbuMAX II lipid-rich bovine serum
albumin (Sigma-Aldrich, St. Louis, MO) and 50 mg/liter hypoxanthine (Thermo
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Figure 6.4: Metabolomics pipeline and metabolite identification. A: Metabolomics purification
and analysis pipeline. Step 1: Laboratory-adapted Plasmodium falciparum clones are cultured in
host erythrocytes. Parasite count is collected at this step (total erythrocyte number multiplied by
percent parasitemia yields total parasite value; see Materials and Methods). Step 2: If enriching for
late-stage parasites is desired, cultures are passed through a magnetic column to retain paramagnetic
late-stage-infected erythrocytes. Note that this was not done for the present study. iHost, infected
host; uHost, uninfected host. Step 3: Host erythrocytes are lysed using saponin; parasites remain
intact. Samples are washed to remove hemoglobin and other intracellular host material and quenched
on liquid nitrogen. Total protein is quantified here (prior to freezing). Step 4: Soluble metabolites
are extracted from precipitated protein using methanol and centrifugation. Double-stranded DNA
is quantified here. Step 5: Metabolites are separated via liquid chromatography and identified
using mass spectroscopy. Metabolite spectra are compared to a library of authenticated standard
metabolites for high-confidence identification. Step 6: Abundance data for each metabolite are
normalized to an appropriate parameter (i.e., DNA content or parasite number), log transformed,
centered with respect to the median, and scaled with respect to variances, prior to employing
statistical comparisons. B: Experimental comparison. All samples were grown in RPMI media
supplemented with AlbuMAX and hypoxanthine and with one of three blood batches (matched
across treatment conditions). At the early ring stage (3 h postinvasion), 10 samples were treated with
dihydroartemisinin (DHA; 700 nM) for 6 h and 10 samples were matched with respect to protocol
and condition (blood batch, medium batch, and stage) without drug treatment. Images shown were
taken at the 6h time point (100x magnification); dormancy was observed at 24 h. C: Summary of
identified metabolites. Metabolites (each represented by one point) from various metabolic subgroups
were not uniformly detected in all five replicates for any sample group. How frequently a metabolite
was measured across replicates is indicated by the metabolite point placed in data corresponding to
1 to 5 replicates (y axis). The majority of metabolites detected were lipid species, as indicated by
the large number of blue dots. A full list of identified metabolites is provided in the supplemental
material.
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Fisher Scientific, Waltham, MA). Parasite cultures were maintained at 3% hematocrit
and diluted with human red blood cells (blood batch noted in Table 6.1) to maintain
parasitemia at between 1% and 3%, with changes of culture medium every other day
(Figure 6.4A; step 1). Cultures were incubated at 37 degrees C with 5% oxygen,
5% carbon dioxide, and 90% nitrogen (Trager and Jensen 1976). Some samples were
treated with artemisinin, an antimalarial with metabolic e�ects (dihydroartemisinin;
see antimalarial treatment details in Table 6.1) (Allman et al. 2016; Creek et al.
2016). Cultures were tested for Mycoplasma monthly using a LookOut Mycoplasma
PCR detection kit (Sigma-Aldrich); none tested positive.

Parasite isolation. Two distinct laboratory-adapted clinical isolates of P. falci-
parum (BEI Resources, NIAID, NIH; Plasmodium falciparum strains IPC 5202/MRA-
1240 and IPC 4884/MRA-1238, contributed by Didier Menard) containing mixed stages
with >50% rings were synchronized using 5% sorbitol (Sigma-Aldrich, St. Louis, MO)
(Lambros and Vanderberg 1979). The resultant early-stage cultures were incubated at
37 degrees C in AlbuMAX media to allow the development of a predominantly schizont
population. After the late-stage population was confirmed using microscopy, cultures
were checked every 1 to 2h for the development of newly invaded ring-stage parasites.
If the parasites were treated with dihydroartemisinin, the treatment was performed at
this stage. Fourteen 25cm3 flasks containing early ring-stage parasites (less than 3h
postinvasion, treated with dihydroartemisinin or left untreated) were subsequently
lysed from the erythrocyte membrane using 0.15% saponin, as previously described
(Moll et al. 2008) (Figure 6.4A; step 3). Prior to lysis, a sampling of parasite
material was taken for determination of erythrocyte count (hemocytometer) and
parasitemia (Sybr green-based flow cytometry (Bei et al. 2010)), which contributed to
parasite number determination (total number of erythrocytes x percent parasitemia
yields the total parasite count). Additional samples were obtained following erythro-
cyte lysis for protein quantification using Bradford reagent (Sigma-Aldrich, St. Louis,
MO). A series of three wash steps were then performed using 1x phosphate-bu�ered
saline (PBS) (Sigma-Aldrich, St. Louis, MO) and centrifugation at 2,000g to remove
soluble erythrocyte metabolites. Purified material was kept on ice until it was flash
frozen using liquid nitrogen (to quench metabolism), followed by storage at -80 degrees
C until sent for analysis. This procedure was performed five times for both parasite
clonal lines (strains IPC 5202/MRA-1240 and IPC 4884/MRA-1238) to provide 10
drug-treated replicates for metabolomic analysis. Additionally, matched parasites
(same parasite lineage, medium type, stage, blood batches, and purification methods)
were also grown without drug treatment (Table 6.1) to generate 10 additional control
samples (see comparison in Figure 6.4B).

Metabolite preparation, analysis, and identification. Metabolites were
identified using ultra-high-performance liquid chromatography coupled with tandem
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mass spectroscopy (UPLC/MS-MS) by Metabolon, Inc. (Durham, NC). All sample
preparations and metabolite identifications were performed according to standard
protocols of Metabolon, Inc. (briefly summarized here). Double-stranded DNA was
quantified in all samples using a Quant-it PicoGreen dsDNA assay kit (Thermo
Fisher, Waltham, MA) according to the manufacturer’s instructions. Proteins were
precipitated using methanol for 2 min with vigorous shaking and then centrifuged
for extraction (Figure 6.4A; step 4). Sample extracts were separated into aliquots,
dried, and suspended in appropriate standard-containing solvents for analysis by four
methods. These four methods facilitate the measurement of metabolites with di�erent
biochemical properties and include two reverse-phase UPLC/MS-MS methods, one
with positive ion electrospray ionization (ESI) optimized for hydrophilic compounds
and one optimized for hydrophobic compounds, and a third method with negative-
ion-mode ESI. Additionally, a UPLC/MS-MS method with negative-ion-mode ESI
following elution from a hydrophilic interaction chromatography column was used.
Waters Acquity ultraperformance liquid chromatography and a Thermo Scientific Q
Exactive high-resolution/accurate mass spectrometer were used for all metabolite
detection procedures (Figure 6.4A; step 5).

To evaluate the quality of the mass spectrometry pipeline, several controls were
used. Ultrapure water or the solvent alone or both were used as blank samples to
control for nonspecific signals in the pipeline. Technical controls were employed to
ensure that the instruments were working within specifications; a pooled sample of
human plasma and a pooled aliquot of experimental samples were used to distinguish
biological from technical variability. A set of recovery and internal standards were
also used to quantify variability and instrument performance. Variability scores for all
runs included in this analysis met the acceptance criteria specified by Metabolon, Inc.

Raw data were extracted using hardware and software developed by Metabolon,
Inc. Metabolites were quantified using the area under the curve and were identified
by comparison to a library of several thousands of preexisting entries of purified
standards or recurrent unknown compounds. Each library standard was uniquely
authenticated by retention time/indices, mass-to-charge ratios, and chromatographic
data. Named metabolites corresponded to library standards or were predicted with
confidence according to the standard protocols specified by Metabolon, Inc.

DNA quantification. Measurement of host-derived dsDNA levels was per-
formed by incubating uninfected erythrocytes at 3% hematocrit for 48 h in PBS
or RPMI 1640 alone or RPMI 1640 with 50 mg/liter hypoxanthine or RPMI with
50 mg/liter hypoxanthine and 0.5% AlbuMAX II lipid-rich BSA. Erythrocytes were
subjected to saponin lysing and washed prior to dsDNA quantification using a Quant-it
PicoGreen dsDNA assay kit as described above.



M. A. Carey 156

Microscopy. Laboratory-adapted P. falciparum clones (BEI Resources, NI-
AID, NIH; Plasmodium falciparum, patient line strain E/MRA-1000 or strain IPC
5202/MRA-1238, contributed by Didier Menard) at 1.5% parasitemia with >60% rings
were lysed using 0.15% saponin, as previously described (Moll et al. 2008). Samples
were washed twice using 1x PBS (Sigma-Aldrich, St. Louis, MO) and centrifugation
at 2,000xg for 5 min. For bright-field images, parasites were fixed with methanol and
stained with Giemsa stain for 15 min. Images were obtained on a Nikon Eclipse Ci mi-
croscope (100x) using an Imaging Source microscope camera and Nikon NIS Elements
imaging software. Representative images are shown. For production of fluorescent im-
ages, samples were stained on slides with either DAPI (4,6-diamidino-2-phenylindole)
(Sigma-Aldrich, St. Louis, MO) at 1:20,000 or CD235a-phycoerythrin (CD235a-PE)
antibody (Thermo Fisher Scientific, Waltham, MA) at 1:100. Fluorescent images were
acquired using an Evos FL cell imaging system (Thermo Fisher Scientific, Waltham,
MA). Representative images are shown, and quantification of 1,214 parasites associated
with erythrocyte membranes was performed for 11 preparations.

Data preprocessing and statistical analysis. Following the analytic proto-
col outlined in reference Xia and Wishart (2011), we first preprocessed metabolite
abundances for each sample by imputing missing values corresponding to half of the
lowest detectable metabolite abundance. Next, we normalized metabolite abundances
by sample features Figure 6.7, followed by normalization using metabolite features
with log transformation, centering, and scaling (Figure 6.4A, step 6) (Sugimoto et
al. 2012).

Specifically, to limit intersample variability, metabolite abundances for each
replicate were normalized to the sample value for double-stranded DNA, protein, or
parasite number. To limit intermetabolite variability, metabolite abundances were log
transformed, centered with respect to the median (Evans et al. 2009), and scaled by
standard deviation (Figure 6.4A; step 6).

The resultant processed metabolite abundances were used for calculation of uni-
variate and multivariate statistics, as well as for classification. All analyses were
conducted using R with tidyverse (Wickham 2017), knitr (Xie 2014), reshape2 (Wick-
ham 2007, 2012), pracma (Borchers 2015), grid and gridExtra (Auguie 2016), extrafont
(Chang 2014), and RSvgDevice (Luciani, Decorde, and Lise 2009) for data wrangling
and visualization and vegan (Wagner 2015) and base R (Team 2015) for analysis.
Analyses of variance (ANOVAs) were used to compare group means for determinations
of di�erential abundances, and P values were adjusted using the false-discovery rate
(Benjamini and Hochberg) (Benjamini and Hochberg 1995) to correct for multiple
testing. The significance cuto� was 0.05. PERMANOVAs were used to compare
population separation data. Correlations were conducted using a two-sided Pear-
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son’s product moment correlation with false-discovery rate (Benjamini and Hochberg)
in R. See the supplemental material for code and detailed analysis available at
github.com/gulermalaria/metabolomics.

Random forest analysis. Random forest analysis is a machine learning tech-
nique and was used here to classify sample groups. Within a random forest classifier,
individual trees are built from subsets of the data and internally validated with
respect to the remaining data set. With this approach, variables (metabolites) are
ranked by their e�ect on classifier accuracy, as measured by a change in performance
following removal of the variable. Classifiers were built with each data normalization
method to predict drug treatment or blood batch. These analyses were conducted
in R using the RandomForest package (Liaw, Wiener, and Others 2002) and base R
(Team 2015). See the supplemental material for code and detailed analysis available
at github.com/gulermalaria/metabolomics.

6.3.3 Results

Metabolomics. We conducted metabolomics on early-ring-stage (0h to 3h) Plas-
modium falciparum parasites lysed from host erythrocytes. Two parasite clones were
grown in matched conditions, lysed and washed from the host cell, and analyzed
via ultra-high-performance liquid chromatography coupled with mass spectrometry
(UPLC/MS) (Figure 6.4A). Prior to isolation, each clone (representing either a
drug-sensitive or a drug-resistant line) was either left untreated or treated with 700
nM dihydroartemisinin (for 6h), generating four sample groups with matched blood
batches, media, and purification approaches (Figure 6.4B). Dihydroartemisinin, the
active component of the antimalarial artemisinin, is a known metabolic disruptor
(Allman et al. 2016; Creek et al. 2016; Cobbold et al. 2016). Both sensitive and
resistant parasites are known to enter a unique metabolic state, called dormancy,
following treatment. Dormancy is characterized by reduced metabolic activity (Chen et
al. 2014; Cheng, Kyle, and Gatton 2012; Peatey et al. 2015); thus, treated ring-stage
parasites should have a metabolome distinct from that seen with untreated parasites.

Mass spectrometry analysis of these samples detected 297 identifiable metabolites;
155 metabolites were detected in every sample. Samples contained between 182
and 267 metabolites. The detected metabolites represented 10 energy-associated
metabolites, 159 lipid species, 108 peptides and amino acids, 40 nucleotides, 28
cofactors, 20 carbohydrates, and 10 in other categories (see raw data available at
github.com/gulermalaria/metabolomics). Lipid species were the most consistently
detected metabolites in every sample (as measured by the percentage of metabolite
found in every sample), and amino acids were often unique to individual samples
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Figure 6.5: Host persistence is detected using multiple approaches. A: Visualization of parasites
within erythrocyte ghosts. Fluorescent imaging (40x magnification) reveals parasites (blue, DAPI)
retained within erythrocyte ghosts (red, phycoerythrin-conjugated CD235a antibody) following
saponin treatment. Approximately 70% of the parasites remain associated with host membranes. B:
Sample characteristics. Samples were evaluated for levels of double-stranded DNA (dsDNA; quantified
in micrograms per milliliter on the x axis), protein amounts (black; quantified in micrograms on the
y axis, ranging from 67.0641 to 130.0936ug, in the left panel), and parasite counts (blue; quantified
on the y axis, ranging from 1,306,500 to 6,946,875 parasites, in the center panel) prior to analysis.
The total number of metabolites detected per sample (red; quantified on the y axis, ranging from 182
to 267 metabolites, in the right panel) was significantly correlated with sample dsDNA quantification
(P = 0.000098; r2 = 0.76). Protein amount and parasite count were not significantly correlated with
dsDNA. The fit line uses a linear model, and the shaded region represents the standard error.

(Figure 6.4C). Several metabolites were measured that are not known to be part of
P. falciparum metabolism, including kynurenine (detected in 25% of samples), phenol
red (phenolsulfonphthalein; detected in 95% of samples), and HEPES (detected in all
samples; see raw data available at github.com/gulermalaria/metabolomics).
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Table 6.2: Host entrapment of purified parasites. Parasites remain in host cells following purification.
Laboratory adapt (continued)

Image preparation date Free Parasites Total Parasites Counted

Table 6.2: Host entrapment of purified parasites. Parasites remain in host cells following purification.
Laboratory adapted Plasmodium falciparum clones (BEI Resources, NIAID, NIH: Plasmodium
falciparum, Strain Patient line E/MRA-1000 or IPC 4884/MRA-1238, contributed by Didier Ménard)
at >60centrifugation at 2000xg for 5 minutes. Samples were then stained on slides with either
DAPI at 1:20,000 (Sigma Aldrich, St Louis, MO) and CD235a-PE antibody at 1:100 (Thermo Fisher
Scientific, Waltham, MA) for fluorescence microscopy. Fluorescent images were acquired using the
EVOS FL Cell Imaging System (Thermo Fisher Scientific, Waltham, MA). Parasites not associated
with erythrocyte membranes were counted.

Image preparation date Free Parasites Total Parasites Counted

8.22.17 3 21
9.22.17 34 77
9.25.17 20 58
9.25.17 36 78
9.27.17 10 49
9.27.17 23 58
12.15.17 41 242
12.16.17 37 153
1.9.18 60 131
1.11.18 65 204
1.12.18 50 143
TOTAL 379 1214

Host contamination. Despite implementation of the current best practices,
including erythrocyte lysis and washing steps to remove parasites from their intra-
cellular milieu (Figure 6.4A; see, e.g., references Allman et al. (2016) and Parvazi
et al. (2016)), parasite separation from the host is poor. Microscopy confirmed that
the parasites lysed from host cells remained embedded in erythrocyte membranes
and that washes failed to isolate parasite material (Figure 6.5A) (Langreth 1977).
Importantly, over 68% of parasites remained associated with the host membrane
(Table 6.2). This result emphasized that erythrocyte “ghosts” (cell membranes with
associated metabolites) remained abundant in the sample and could have heavily
contributed to the metabolome. Thus, we sought analytic approaches to remove host
contamination post hoc.

Normalization. We first explored the use of normalization with three distinct
approaches. Metabolomics preprocessing methods can influence results (Ejigu et al.
2013; Kohl et al. 2012), but the role of normalization, particularly in intracellu-
lar pathogens, has not been extensively explored. Both host- and parasite-derived
metrics (double-stranded DNA or dsDNA, protein, and parasite levels) were eval-
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Figure 6.6: DNA contribution from host erythrocyte and media. Erythrocytes contribute DNA
despite being anucleated. Measurement of host-derived dsDNA levels was performed by incubating
uninfected erythrocytes at 3% hematocrit for 48 h in PBS or RPMI 1640 alone or RPMI 1640 with
50 mg/liter hypoxanthine or RPMI with 50 mg/liter hypoxanthine and 0.5% AlbuMAX II lipid-rich
BSA. Erythrocytes were saponin lysed and washed twice with PBS prior to dsDNA quantification
using a Quant-it PicoGreen dsDNA assay kit as described in Materials and Methods. Nondetectable
values (below the limit of detection) were imputed as 0. Data in the left panel demonstrate that DNA
abundance is concentration-dependent and does not represent mere instrument noise. Data in the
right panel demonstrate that components of media (such as AlbuMAX II lipid-rich BSA) contribute
to DNA quantification but that erythrocytes in PBS contribute the majority of the measured DNA.

uated in the experimental setup (Figure 6.4A). Sample replicates contained 1.3
to 6.9 million parasites (Table 6.1). As expected, no two normalization metrics
were correlated across samples (Figure 6.5B; see code for the full analysis available
at github.com/gulermalaria/metabolomics). Metabolite yield (as measured by the
number of identified metabolites) was correlated only with DNA abundance (p =
0.000098, r2=0.76) (Figure 6.5B), indicating that DNA abundance is associated best
with total biomass.

Initially, we anticipated that dsDNA should come primarily from the parasite
fraction, as host erythrocytes are anucleated and growth medium does not contain any
intact DNA; however, we found that host cells and AlbuMAX (a medium component)
did contribute to sample dsDNA (Figure 6.6). Protein was likely also derived from
all three culture components, namely, parasite, host erythrocyte, and media (via
AlbuMAX supplementation). Although parasite counts represent a direct measure of
the parasite fraction, this variable was collected several steps upstream of metabolome
quantification (Figure 6.4A) and may have been suboptimal compared to metrics
collected later in the pipeline.
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Figure 6.7: Normalization approaches impact the final metabolite abundance. Normalization controls
for sample-to-sample variation were performed. Normalization requires sample metabolite abundance
to be divided by the quantified normalization factor, the sample variable (the equation is in the blue
box; normalization factors are shown above the box). The examples of results shown in the table
indicate abundances of X metabolites given several di�erent sample metrics for normalization. For
example, identical samples with di�erence cell counts (sample 1 and sample 2) reveal the importance
of normal- ization; without it, the data corresponding to the identical samples show a 2-fold di�erence
in the values determined for metabolite X. The values determined for identical parasite samples 3
and 4 also show a nearly 2-fold di�erence in metabolite abundance after normalizing to protein levels,
due to host bias for protein measures.

We normalized metabolomes with respect to these parasite-derived and host-
derived metrics to determine if normalization reduces extraparasite noise to reveal
parasite metabolomes. Normalization of metabolite levels can be calculated by a
variety of methods (Table 6.3; Figure 6.7), all aiming to enhance interpretation
of results by controlling for technical or nonbiological variation. To normalize, we
divide the value representing the abundance of each metabolite in a sample by the
corresponding sample variable to control for sample-to-sample variation (Figure 6.7).
As illustrated in Figure 6.7, normalization can significantly a�ect interpretation of
results and should be selected carefully based on experimental design and knowledge
of samples.
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Table 6.3: Parameters in metabolomics analysis of intracellular parasites, including Plasmodium.
Most parameters are dependent on experimental design. (continued)

Parameter Options Factors to consider

Table 6.3: Parameters in metabolomics analysis of intracellular parasites, including Plasmodium.
Most parameters are dependent on experimental design.

Parameter Options Factors to consider

Limited biomass (12µm, Figs. 5.4A and B), haploid genome
Ring stage Few enrichment options

Larger in size (310µm), polyploid genome
Late stage Can use magnetic enrichment (Fig. 5.4A)

Mixed stages Consider e�ects of stage variation on data

Media batches Relevant if using serumbased media formulations

Must be recorded and matched within comparisons (Table S3)

Growth
conditions

Blood batches Useful to assess host contamination levels (Fig. 5.9 & 5.10)

Use to identify or control for host metabolitesAdditional
controls

Uninfected
erythrocytes Used in addition to normalization

Compatible with all stages (Fig. 5.4A)

Parasites remain in erythrocyte ghosts (Fig. 5.5A)Saponin, other lytic
reagents (Need improved methods that isolate parasite from host cell)Enrichment

methods
Magnetic purification Increases parasite to host ratio (Fig. 5.4A)

NMR Limited metabolite detection but higher confidence

Mass Spectrometry Industry standard for broad detection

Radio labeling Targeted approach with high confidence
Metabolite
Detection

Single metabolite
assays

Highconfidence, targeted approach with low throughput

Preanalysis
normaliza-
tion

Cell number
normalization

Can be combined with any postanalysis normalization but requires
sample manipulation

i.e. parasite number
Parasite derived
parameters Selection requires knowledge of experimental design

Parameters with
mixed derivation
(host, parasite)

i.e. protein, DNA; Can fail to remove undesired noise (Fig. 5.5 &
5.8)Postanalysis

normalization
Internal standards Dependent on metabolomics facilities

Mean Standard centering

Median Less sensitive to outliersCentering
Other See van den Berg, et. al, 2006 for summary of alternative approaches

Within group SD Requires no additional samples
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Table 6.3: Parameters in metabolomics analysis of intracellular parasites, including Plasmodium.
Most parameters are dependent on experimental design. (continued)

Parameter Options Factors to consider

Scaling Zscoring Requires control samples (i.e. untreated or uninfected erythrocytes)

Univariate Requires multiple comparison corrections

Multivariate Reveals group di�erences based on multiple variablesStatistical
analysis

Machine learning (e.g.
Random Forest)

Classification is more stringent than univariate tests, but can
identify nonlinear e�ects

Because the e�ect of normalization has not been explored in intracellular para-
sites, we normalized to parasite number (parasite derived), dsDNA amount (parasite,
medium, and host derived), and total protein amount (parasite, medium, and host de-
rived) and then performed principal component analysis with all sample metabolomes
(Figure 6.8A-D). The normalization methods all yield distinct principal component
structures, and yet none clearly separate the four sample groups (as measured by
clustering of the sample groups by permutational multivariate analysis of variance
[PERMANOVA]; p values are provided in the figure under the Normalization heading).
However, with DNA normalization, we are able to separate drug-treated parasites
from untreated parasites or clonal groups (Figure 6.8B); with parasite number
normalization, we can distinguish clonal groups (Figure 6.8D).

Consistent with the lack of distinct separation, univariate statistical analysis
revealed no metabolites that were di�erentially abundant among the four groups
(see code for the full analysis available at github.com/gulermalaria/metabolomics).
When normalization is employed, metabolome di�erences between groups are highly
dependent on the approach; the top di�erentially abundant metabolites are normal-
ization method-dependent (data not shown; see code for the full analysis available at
github.com/gulermalaria/metabolomics). These findings emphasize that biological
interpretations can change significantly depending on the chosen analytic parameters
and thus that the selected normalization metric is a critical parameter and must be
shared for analytic reproducibility.

Data filtering. We next examined and removed extraparasite metabolites in our
data set in order to explore the e�ect of sample contamination. Because there are no
unique metabolites associated with the host, we explored medium-specific metabolites,
specifically, phenol red and HEPES. Both phenol red (a pH indicator) and HEPES
(a bu�er) are components of the growth medium and should not be utilized by cells.
These metabolites are routinely excluded from metabolomics analysis for this reason.

Interestingly, the abundances of 82 (of a total of 298) metabolites were correlated
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Figure 6.8: Metabolomes are dependent on the normalization approach and are influenced by
extraparasite contamination. A-D: Normalization a�ects metabolome similarity. Principal-component
(PC) analysis was performed prior to normalization (A) as well as after using three di�erent
normalization methods (B: DNA normalization, C: total protein normalization, and D: parasite
count normalization) on all identified metabolites. PERMANOVA significance is listed for each
grouping. E: Metabolites associated with components of media. The raw abundance of 82 metabolites
was correlated with phenol red levels (unnormalized column), using a two-sided Pearson’s product
moment correlation with Benjamini and Hochberg false-discovery rate correction. These associations
were not removed with parasite number and protein normalization. DNA normalization best removes
associations with components of media (increases in numbers of insignificant correlations, in grey);
only 39% of correlations remain. F: Removal of medium-associated metabolites. Principal-component
analysis (PCA) of DNA-normalized samples with phenol red-correlated metabolites removed from
the data set yielded no improvement in sample clustering.
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Figure 6.9: Random forest analysis. A: Building a random forest classifier. Samples are randomly
classified into subsets (training and test data sets); from the training subsets, decision trees are
built to separate samples into groups (see panel B). Trees are evaluated by testing classification
performance on the remaining samples from the test data sets. See Materials and Methods for more
details on the analyses. B: Evaluating metabolite importance. Metabolite importance is calculated
by determining the e�ect of removal of the metabolite from the data set on classifier performance.
See Methods for further details.

with phenol red (Figure 6.8E) and the abundances of 76 metabolites were correlated
with HEPES (data not shown); the abundances of 59 metabolites were correlated
with both compounds. Many (39%) of these metabolites remained correlated with
the components of the media even after normalization (phenol red data are shown in
Figure 6.8E).

Because phenol red and HEPES appeared to increase in abundance in drug-treated
samples (nonsignificant trend; data not shown), we argue that this extraparasitic
fraction may influence the interpretation of drug treatment data. If we remove these
medium-associated metabolites from our analysis, surprisingly, sample separation into
the four treatment groups does not provide an improvement in comparison to the
results seen with DNA normalization alone (based on the remaining 216 metabolites;
see Figure 6.8F compared to Figure 6.8B). Thus, both post hoc data filtering
methods were insu�cient to remove the e�ect of extraparasite contamination in our
low-powered study.

Machine learning. We next used machine learning to attempt to separate
the extraparasite-associated metabolome from the parasite metabolome. Here, we
leveraged the multiple blood batches used in parasite culture (Figure 6.4A). Our four
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sample groups were grown in three di�erent blood batches (Table 6.1). Univariate
statistical analysis revealed only one metabolite with di�erential abundance results
among the blood batches (1-arachidonoyl-GPE; see code for the full analysis available
at github.com/gulermalaria/metabolomics). To further explore the host contribution
to the metabolome, we built random forest classifiers for analysis of blood batch and
drug treatment data (Figure 6.9A). Random forest analysis is an internally validated
machine learning approach, used here to classify samples into groups based on their
metabolome (Figure 6.9A) and to identify individual variables that are important
for prediction accuracy (Figure 6.9B).

We first built classifiers for analysis of blood batch data across all samples.
Ninety-five metabolites (of 298) improved classifier accuracy in analysis of blood batch
data (using the DNA normalized data set; see code for the full analysis available at
github.com/gulermalaria/metabolomics). Many of these metabolites are correlated
in abundance with the components of the media explored (Figure 6.8E), including
CDP-ethanolamine, AMP, ADP-ribose, and aspartate, which are among the top 10
most influential metabolites in this classifier. The remaining metabolites (203 in
total) had no e�ect on the performance of the classifier or worsened its predictive
ability, indicating they are not associated with blood batch due to high variability
or association with other features that di�erentiate samples. The classifier built
from DNA-normalized metabolomes predicted blood batch data with a 30% error
rate (Figure 6.10A). We also built a blood batch classifier from each of the other
normalization approaches (Figure 6.10A).

To determine if blood batch is as influential on the metabolome data as a potent
antimalarial drug treatment, we built similar classifiers for analysis of artemisinin
treatment. Parasites were classified into two treatment conditions with a 30% class
error rate using DNA-normalized metabolomes (Figure 6.10A). A total of 118
metabolites (of 298) improved the accuracy of this classification, including medium-
correlated metabolites such as pipecolate, several dipeptides, and phenol red (see code
for the full analysis available at github.com/gulermalaria/metabolomics).

The performance of our classifier (Figure 6.10A) was relatively poor due to
the small sample size, and the results indicated that only a subset of the measured
metabolomes was predictive of blood batch or drug treatment. Classifiers built from
data under alternative normalization approaches were comparable in performance,
but di�erent metabolites contributed to their accuracy (Figure 6.10B). Removal
of phenol red and associated metabolites from the data set (listed as phenol red
correction data; Figure 6.10A) reduced blood batch classifier performance more
than it did treatment classifier performance; this result is not surprising, because
both the components of the media and the host cells are extraparasitic. Thus, by
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Figure 6.10: Blood batch and antimalarial treatment influence metabolomes. A: Classifier perfor-
mance. Classifiers were built to predict blood batch or treatment conditions using the metabolomics
data with or without 4 normalization approaches. The classifier error rate varies with the normal-
ization approach. B: The normalization method determines the important metabolites. A sample
consisting of five metabolites associated with improved or worsened classifier accuracy is shown.
These metabolites are shown in accordance with their importance in classifier performance and their
interesting behavior across classifiers. Upward-pointing arrows indicate that the metabolite improves
classifier accuracy in one classifier, and downward-pointing arrows indicate they worsen accuracy in
one classifier (arrows represent the normalization approaches from panel A); if the metabolite does
not improve or worsen accuracy, a dash is shown. Contradictory results (both upward-pointing and
downward-pointing arrows for one metabolite) indicate that the normalization method changes the
importance of the metabolite. Note that valyl leucine, hypoxanthine, and phenol red were removed
upon phenol red filtering and, therefore, are present in only 4 classifiers, as indicated by the four
arrows and dashes.
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removing medium contamination, we may also be removing host contamination and
data associated with the blood batch. However, phenol red is associated with both
blood batch classifier accuracy and treatment classifier accuracy (Figure 6.10B);
this result supports the idea of the necessity of removing extraparasitic metabolites
during sample preparation, as they can skew meaningful biological interpretation.

Interestingly, when the classifier was built using a di�erent normalization ap-
proach, the set of metabolites that most extensively contributed to accuracy changed
(representative examples are shown in Figure 6.10B; code for the full analysis is
available at github.com/gulermalaria/metabolomics). Although some metabolites
(such as CDP-ethanolamine or valyl leucine) were consistently associated with blood
classifier accuracy or treatment classifier accuracy, respectively, some metabolites
(such as succinate and hypoxanthine) gave contradictory results depending on the
data normalization approach (Figure 6.10B). 1-Arachidonoyl-GPE, identified by
univariate statistics, was not among the top most predictive metabolites in any clas-
sifier but did contribute to accuracy in some blood batch classifiers. Thus, sample
metabolome can classify both blood batch and sample group, indicating that sample
treatment and blood batch influence the metabolome and that this is normalization
approach-dependent.

6.3.4 Discussion

The lifestyle of intracellular parasites presents challenges to implementing traditional
metabolomics protocols, predominately due to host metabolite contamination and
limitations in the amounts of parasite material. These challenges are exacerbated
when studying early parasite stages (such as the Plasmodium ring stage studied here),
when the parasite is smallest. In our study, we conducted a detailed assessment of
the impact of extraparasite contamination and investigated analytic approaches to
improve metabolome interpretation. We recommend improved discussion of normal-
ization methods in the metabolomics field, especially for intracellular parasites, as
normalization significantly e�ects the interpretation of a data set. Additionally, we
propose several analytic approaches to explore the e�ect of host contamination.

Metabolome interpretation is normalization approach-dependent. Normalization
limits nonbiological variation and is absolutely essential for biological interpretation
(Figure 6.7). Normalization factors can be calculated using a variety of methods,
and normalization is implemented either before or after metabolite quantification
and identification (described as preanalysis or postanalysis) (Table 6.3) (Ejigu et al.
2013; Kohl et al. 2012). Often, preanalysis normalization is conducted by isolating
the same number of cells for analysis (Ho�mann, Seidl, and Dugas 2002) but this
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is not typically used in the study of P. falciparum as generating adequate biomass
can be challenging (Allman et al. 2016; Creek et al. 2016; Siddiqui et al. 2017).
Furthermore, the use of inaccurate quantification methods may negate the utility of
this step by introducing more variability. Postanalysis normalization methods are
also routinely used; these include the use of internal standards (Babbitt et al. 2012;
Ejigu et al. 2013), corrections for protein amounts (often used for supernatant or
cell-free metabolomics (Silva, Cordeiro-da-Silva, and Coombs 2011)), DNA content
(an approach validated in mammalian cells (Silva et al. 2013) and applied to bacterial
cells (Medlock et al. 2018)), or cell number (typically used for bacterial populations
(Wu and Li 2016)).

To our knowledge, normalization was never described in detail in previous
metabolomics studies of P. falciparum, perhaps due to the technical challenges that
we explored here. We evaluated three postanalysis normalization approaches, namely,
the protein, double-stranded DNA, and parasite number approaches (Figure 6.7
and Figure 6.8A-D). Overall, we conclude that normalization significantly a�ects
the interpretation of results (Figure 6.8A and 6.10). The normalization approach
influences the metabolites with the greatest di�erential abundances (data not shown
because they did not reach significance) and the metabolites predictive of sample
group shift with data normalization (Figure 6.10).

In the present studies, only the parasite count data were entirely parasite derived.
The extracellular environment (including components of media and host erythrocyte)
likely contributes heavily to protein abundance. Accordingly, parasite count and protein
abundance are not correlated. We also show that the host cell contributes to dsDNA
levels, despite lacking a nucleus (Figure 6.6). This material may be contributed
by the small proportion of dying white blood cells that remain after erythrocyte
preparation. Despite this finding, our analysis shows that dsDNA normalization of
early-ring-stage metabolomes best distinguished sample and treatment groups and
removed medium contamination (Figure 6.8). Much variability still remained after
this step; we did not identify any di�erentially abundant metabolites even though
artemisinin has been reported to have metabolic e�ects on late-stage parasites (Allman
et al. 2016; Creek et al. 2016; Cobbold et al. 2016) and dormancy induces metabolic
shifts in ring-stage parasites (Chen et al. 2014; Cheng, Kyle, and Gatton 2012; Peatey
et al. 2015). Although dsDNA normalization was the most e�ective approach in our
data set, it is not appropriate for all experimental cases; for example, this type of
analysis would introduce variability in comparisons of groups of di�erent parasite
stages due to known genome copy number di�erences (Janse et al. 1986; Le Roch et
al. 2004).

Media and host contribute to the measured metabolome. We found that extra-
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parasite material contributed by host erythrocytes and components of media can
also heavily impact the metabolome. Many studies employ erythrocyte lysis prior to
sample purification (Allman et al. 2016; Parvazi et al. 2016; Sana et al. 2013; Siddiqui
et al. 2017). However, several results from our study show that this step does not
eliminate the potential for host contamination.

First, lipid species were the major class of metabolites detected in our analysis
(Figure 6.4C), perhaps due to the abundance of the erythrocyte membranes or
“ghosts” present in the preparations (Figure 6.5A). Second, more than a quarter
of the metabolome is correlated with the components of the media (phenol red,
Figure 6.8E, and HEPES, data not shown). Unlike HEPES (Teng et al. 2014),
phenol red has not been shown to be imported into the parasite; neither metabolite
is produced or biochemically consumed by the parasite. Thus, it is likely that these
medium-derived metabolites remained associated with cells following in vitro culture
in medium. This medium also contains high levels of other metabolites such as
glutathione, hypoxanthine, glutamine, and many amino acids, which are correlated
with phenol red and/or HEPES abundances. Third, we measured metabolites not
expected to be produced or consumed by Plasmodium (Carey, Papin, and Guler 2017).
For example, kynurenine is present in erythrocytes, derived from the amino acid
L-tryptophan (Y. Wang et al. 2010; Hartai et al. 2005), and is not known to be
involved in P. falciparum metabolism (Ginsburg 2006). Lastly, the only di�erentially
abundant metabolite in our entire analysis that reached significance was associated
with the blood batch (1-arachidonoyl-GPE). This metabolite has not been studied
in the context of erythrocyte or Plasmodium metabolism but can be explored as a
potential marker of host contamination.

In fact, we were able to predict a set of metabolites that are most likely to be
influenced or derived from the host erythrocyte by identifying the metabolites that
are most predictive of blood batch (Figure 6.9B and 6.10B; see figures in code
available at github.com/gulermalaria/metabolomics for a comprehensive list). Going
forward, it may be possible to use specific metabolite markers to assess levels of host
contamination and parasite sample purity and to control for host contamination during
analysis.

Future recommendations. Parasite metabolomics is a rapidly expanding field;
thus, well-documented methodologies and rigorous evaluation criteria will enhance data
reproducibility and the quality of metabolomics-derived observations. In this study,
we compiled evidence of host erythrocyte and medium contamination in untargeted
metabolomics studies of intracellular parasites and explored the analytic decisions
that influence metabolome interpretation. We showed that analytic approaches can
improve the accuracy and interpretability of intracellular parasite metabolomes but
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that, ultimately, better methods are needed to extract biological di�erences from
samples.

A common approach used in the study of P. falciparum involves the use of an
uninfected erythrocyte control to adjust for the presence of host metabolites (Babbitt
et al. 2012; Olszewski et al. 2009; Park et al. 2015; Sana et al. 2013; Sengupta et
al. 2016; Teng et al. 2014), but even with the use of this control, interpretation of
data remains challenging (see, e.g., (Olszewski et al. 2010)). Uninfected erythrocyte
controls are used for z score metabolite abundance calculations (infected relative to
uninfected), for di�erential abundance calculations (infected divided by uninfected),
or for calculations involving subtraction of “host” metabolite data from infected-
population data. However, we hypothesize that, in some cases, the use of the uninfected
erythrocyte control alone is not su�cient; as we show in Figure 6.8F and 6.10,
correcting the data set by removing extraparasite contamination data (medium-
associated metabolites) fails to improve treatment classification. We suggest that the
quantitative analytic methods applied here must also be used to evaluate the e�cacy
of the uninfected erythrocyte control.

Another common analytic step involves the removal of extraparasitic metabolites,
such as phenol red, as they are considered to represent noise from culture media.
However, these metabolites contain valuable information about experimental variation
and could be used for quality control, as indicated by the frequent correlation between
phenol red abundance and other metabolites (Figure 6.8E). For this reason, these
metabolites should not be excluded from the data set and subsequent analysis.

We suggest a set of considerations and recommendations for enhancing the
accuracy of parasite metabolomics (Table 6.3 and below). First, samples must be
better purified away from host material. Purification could involve enrichment methods
to increase parasitemia prior to lysis (reducing the ratio of uninfected host cells to
parasites) or the direct removal of host material postlysis. Currently, enrichment
approaches exist only for late-stage malaria parasites. Second, markers of host
contamination must be used to evaluate the level of medium and host contamination.
The number of metabolites with abundances correlated with phenol red or HEPES
can be used to assess the contribution of the media. The visual detection of ghost
material (via microscopy) combined with assessment of host-specific metabolite markers
is an e�ective option to assess sample purity. Additionally, analytic approaches
(such as blood batch classification) can be used to identify remaining or experiment-
specific markers of contamination. Finally, data must be normalized to appropriate
measurements to maximize the metabolome signal associated with the treatment of
interest; subsequent subtraction of metabolites associated with host or media (e.g.,
uninfected erythrocyte control or known components of media) can further reduce
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metabolite influence mediated by extraparasite conditions. Importantly, we propose
that, similarly to studies in Leishmania (Rojo et al. 2015; Westrop et al. 2015;
Akpunarlieva et al. 2017), normalization and discussion of the chosen normalization
metrics should become standard during metabolomics analysis of intraerythrocytic
parasites. With these considerations, metabolomics has the potential to become a
powerful tool in the study of intracellular parasites.

6.4 Conclusions

Metabolomics data o�ers a new profiling method that is agnostic to genome annotation
or many experimental challenges, an ideal approach for eukaryotic pathogens; however,
best practices for the analyses of these data has not been widely discussed. Parasite
metabolomics is a rapidly expanding field and, thus, well-documented methodology
and rigorous evaluation criteria will enhance data reproducibility and the quality of
metabolomics-derived observations. In this chapter, we compiled evidence of host cell
and media contamination in untargeted metabolomics studies of intracellular parasites
and explore analytic decisions that influence metabolome interpretation. We showed
that analytic approaches can improve the accuracy and interpretability of intracellular
parasite metabolomes but, ultimately, better methods are needed to extract biological
di�erences from samples.



Chapter 7: Becoming a computational
biologist

Some of the following text, figures, and tables has been adapted from Carey,
Maureen A., and Jason A. Papin. "Ten simple rules for biologists learning to
program." PLoS Computational Biology 14.1 (2018): e1005871, which has now
been viewed over 41,000 times with 29 percent of views leading to download.
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7 Becoming a computational biologist

This section contains ‘side projects’ essential to the completion of this work.

7.1 Learning to program

I began my PhD with no programming experience, and quickly learned that would
need to change. I remember a spring afternoon when a labmate helped me write a
short script to analyze and reorganize an expression dataset and I thought, ‘this is
magic. literally magic.’ From that moment on, I decided that I could still become
a wizard even if I had missed the boat on Hogwarts. I read tutorials and muddled
through to learn basic R and MATLAB and to implement analyses, and took a course
in programming (‘Computing as a Research tool’ with Ed Hall, highly recommended).
Most importantly, I devoted many hours of work and frustration to the cause. I
now think my data wrangling and analytics (or, the application of programming)
are my strongest skills. One visit home, my parents asked me what I wished I had
known before beginning this journey - inspiring this article for PLOS Computational
Biology’s Ten Simple Rules series (Carey and Papin 2018).

7.1.1 Ten Simple Rules for biologists learning to program

7.1.1.1 Introduction

As big data and multi-omics analyses are becoming mainstream, computational
proficiency and literacy are essential skills in a biologist’s tool kit. All “omics” studies
require computational biology: the implementation of analyses requires programming
skills, while experimental design and interpretation require a solid understanding of the
analytical approach. While academic cores, commercial services, and collaborations
can aid in the implementation of analyses, the computational literacy required to
design and interpret omics studies cannot be replaced or supplemented. However,
many biologists are only trained in experimental techniques. We write these 10 simple
rules for traditionally trained biologists, particularly graduate students interested in
acquiring a computational skill set.

7.1.1.2 Rule 1: Begin with the end in mind

When picking your first language, focus on your goal. Do you want to become a
programmer? Do you want to design bioinformatic tools? Do you want to implement
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Figure 7.1: The one tool to rule them all (or: how programming languages do not work).

tools? Do you want to just get these data analyzed already? Pick an approach and
language that fits your long- and short-term goals.

Languages vary in intent and usage. Each language and package was created
to solve a particular problem, so there is no universal “best” language (Figure 7.1).
Pick the right tool for the job by choosing a language that is well suited for the
biological questions you want to ask. If many people in your field use a language, it
likely works well for the types of problems you will encounter. If people in your field
use a variety of languages, you have options. To evaluate ease of use, consider how
much community support a language has and how many resources that community
has created, such as prevalence of user development, package support (documentation
and tutorials), and the language’s “presence” on help pages. Practically, languages
vary in cost for academic and commercial use. Free languages are more amenable to
open source work (i.e., sharing your analyses or packages). See Table 7.2 for a brief
discussion of several programming languages, their key features, and where to learn
more.

7.1.1.3 Rule 2: Baby steps are steps

Once you’ve begun, focus on one task at a time and apply your critical thinking and
problem solving skills. This requires breaking a problem down into steps. Analyzing
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Figure 7.2: A noninclusive discussion of programming languages. A shell is a command line (i.e.,
programming) interface to an operating system, like Unix operating systems. Low-level programming
languages deal with a computer’s hardware. The process of moving from the literal processor
instructions towards human-readable applications is called ’abstraction.’ Low-level languages require
little abstraction. Interpreted languages are quicker to test (e.g., to run a few lines of code), facilitating
learning through trial and error. Interpreted languages tend to be more human readable. Compiled
languages are powerful because they are often more e�cient and can be used for low-level tasks. The
distinction between interpreted and compiled languages is not always rigid. All languages presented
below are free unless noted otherwise. The Wiki page on programming languages provides a great
overview and comparison of languages.
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omics data may sound challenging, but the individual steps do not: e.g., read your
data, decide how to interpret missing values, scale as needed, identify comparison
conditions, divide to calculate fold change, calculate significance, correct for multiple
testing. Break a large problem into modular tasks and implement one task at a time.
Iteratively edit for e�ciency, flow, and succinctness. Mistakes will happen. That’s ok;
what matters is that you find, correct, and learn from them.

7.1.1.4 Rule 3: Immersion is the best learning tool

Don’t stitch together an analysis by switching between or among languages and/or
point and click environments (Excel, Microsoft, https://www.microsoft.com/en-us/,
etc.). While learning, if a job can be done in one language or environment, do it all
there. For example, importing a spreadsheet of data (like you would view in Excel)
is not necessarily straightforward; Excel automatically determines how to read text,
but the method may di�er from conventions in other programming languages. If the
import process “misreads” your data (e.g., blank cells are not read as blank or “NA,”
numbers are in quotes indicating that they are read as text, or column names are not
maintained), it can be tempting to return to Excel to fix these with search-and-replace
strategies. However, these problems can be fixed by correctly reading the data and by
understanding the language’s data structures. Just like a spoken language (Genesee
1994, 2014), immersion is the best learning tool (Campbell and Bolker 2002; Guzdial
2004). In addition to slowing the learning curve, transferring across programs induces
error. See References (Zeeberg et al. 2004; Ziemann, Eren, and El-Osta 2016; Linke
2009) for additional Excel or word processing–induced errors.

Eventually, you may identify tasks that are not well suited to the language you
use. At that point, it may be helpful to pick up another language in order to use the
right tool for the job (see Rule 1). In fact, understanding one language will make it
easier to learn a second. Until then, however, focus on immersion to learn.

7.1.1.5 Rule 4: Phone a friend

There are numerous online resources: tutorials, documentation, and sites intended
for community Q and A (StackOverflow, StackExchange, Biostars, etc.), but nothing
replaces a friend or colleague’s help. Find a community of programmers, ranging
from beginning to experienced users, to ask for help. You may want to look for both
technical support (i.e., a group centered around a language) and support regarding a
particular scientific application (e.g., a group centered around omics analyses). Many
universities have scientific computing groups, housed in the library or information
technology (IT) department; these groups can be your starting point. If your lab or
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Figure 7.3: Anatomy of an error message, Part 1 (or: How to write more than one line of code).
Here we show an example of the debugging process in R using the RStudio environment, with the
goal of concatenating two words.

university does not have a community of programmers, seek them out virtually or
locally. Coursera courses, for example, have comment boards for students to answer
each other’s questions and learn from their peers. Organizations like Software and
Data Carpentry or language user groups have mailing lists to connect members. Many
cities have events organized by language-specific user groups or interest groups focused
on big data, machine learning, or data visualization. These can be found through
meetup.com, Google groups, or through a user group’s website; some are included in
Table 7.2.

Once you find a community, ask for help. At the beginning stages, in-person
help to deconstruct or interpret an online answer is invaluable. Additionally, ask a
friend for code. You wouldn’t write a paper without first reading a lot of papers or
begin a new project without shadowing a few experimenters. First, read their code.
Implement and interpret, trying to understand each line. Return to discuss your
questions. Once you begin writing, ask for edits.

7.1.1.6 Rule 5: Learn how to ask questions

There’s an answer to almost anything online, but you have to know what to
ask to get help. In order to know what to ask, you have to understand the problem.
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Start by interpreting an error message. Watch for generic errors and learn from
them. Identify which component of your error message indicates what the issue is
and which component indicates where the issue is (Figure 7.3, Figure 7.4, Figure
7.5, Figure 7.6). Understanding the problem is essential; this process is called
“debugging.” Without truly understanding the problem, any “solution” will ultimately
propagate and escalate the mistake, making harder-to-interpret errors down the road.
Once you understand the problem, look for answers. Looking for answers requires
e�ective googling. Learn the vocabulary (and meta-vocabulary) of the language and
its users. Once you understand the problem and have identified that there is no
obvious (and publicly available) solution, ask for answers in programming communities
(see Rule 4 and Table 7.2 ). When asking, paraphrase the fundamental problem.
Include error messages and enough information to reproduce the problem (include
packages, versions, data or sample data, code, etc.). Present a brief summary of what
was done, what was intended, how you interpret the problem, what troubleshooting
steps were already taken, and whether you have searched other posts for the answer.

See the following website for suggestions: http://codereview.stackexchange.com/
help/how-to-ask and (Torres 2017). End with a “thank you” and wait for the help to
arrive.

7.1.1.7 Rule 6: Don’t reinvent the wheel

Rule 6 can also be found in “Ten Simple Rules for the Open Development of
Scientific Software” (PrliÊ and Procter 2012), “Ten Simple Rules for Developing Public
Biological Databases” (Helmy, Crits-Christoph, and Bader 2016), “Ten Simple Rules
for Cultivating Open Science and Collaborative R&D” (Masum et al. 2013), and “Ten
Simple Rules To Combine Teaching and Research” (Vicens and Bourne 2009). Use
all resources available to you, including online tutorials, examples in the language’s
documentation, published code, cool snippets of code your labmate shared, and, yes,
your own work. Read widely to identify these resources. Copy-and-paste is your friend.
Provide credit if appropriate (i.e., comment “adapted from so-n-so’s X script”) or
necessary (e.g., read through details on software licenses). Document your scripts by
commenting in notes to yourself so that you can use old code as a template for future
work. These comments will help you remember what each line of code intends to do,
accelerating your ability to find mistakes.

7.1.1.8 Rule 7: Develop good habits early on

Computational research is research, so use your best practices. This includes
maintaining a computational lab notebook and documenting your code. A compu-
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Figure 7.4: Anatomy of an error message, Part 2 (or: Just because it works, doesn’t mean it’s right).
Here we provide more examples of the debugging process. Examples shown in the next three figures
are conducted in Python using a Jupyter notebook. Environments like RStudio (previous figure) and
Jupyter notebooks are two examples of integrated development environments; these environments
o�er additional support, including built-in debugging tools. First, we show an error that does not
induce an error message, but the user must debug nonetheless.
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Figure 7.5: Anatomy of an error message, Part 3 (or: Trace your way back to the problem). Here
we show an explicit error message.
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Figure 7.6: Anatomy of an error message, Part 4 (or: Debugging a solution). Lastly, we show how
to debug a solution to understand a line of code found on the internet.
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tational lab notebook is by definition a lab notebook: your lab notebook includes
protocols, so your computational lab notebook should include protocols, too. Com-
putational protocols are scripts, and these should include the code itself and how to
access everything needed to implement the code. Include input (raw data) and output
(results), too. Figures and interpretation can be included if that’s how you organize
your lab notebook. Develop computational “place habits” (file-saving strategies). It
is easier to organize one drawer than it is to organize a whole lab, so start as soon
as you begin to learn to program. If you can find that experiment you did on June
12, 2011—its protocol and results—in under five minutes, you should be able to find
that figure you generated for lab meeting three weeks ago, complete with code and
data, in under five minutes as well. This requires good version control or documen-
tation of your work. Like with protocols, each time you run a script, you should
note any modifications that are made. Document all changes in experimental and
computational protocols. These habits will make you more e�cient by enhancing your
work’s reproducibility. For specific advice, see “Ten Simple Rules for a Computational
Biologist’s Laboratory Notebook” (Schnell 2015), “Ten Simple Rules for Reproducible
Computational Research” (Sandve et al. 2013), and “Ten Simple Rules for Taking
Advantage of Git and GitHub” (Perez-Riverol et al. 2016).

7.1.1.9 Rule 8: Practice makes perfect

Use toy datasets to practice a problem or analysis. Biological data get big, fast.
It’s hard to find the computational needle-in-a-haystack, so set yourself up to succeed
by practicing in controlled environments with simpler examples. Generate small toy
datasets that use the same structure as your data. Make the toy data simple enough
to predict how the numbers, text, etc., should react in your analysis. Test to ensure
they do react as expected. This will help you understand what is being done in
each step and troubleshoot errors, preparing you to scale up to large, unpredictable
datasets. Use these datasets to test your approach, your implementation, and your
interpretation. Toy datasets are your negative control, allowing you to di�erentiate
between negative results and simulation failure.

7.1.1.10 Rule 9: Teach yourself

How would you teach you if you were another person? You would teach with a
little more patience and a bit more empathy than you are practicing now. You are
not alone in your occasional frustration (Figure 7.7). Learning takes time, so plan
accordingly. Introductory courses are helpful to learn the basics because the basics are
easy to neglect in self-study. Articulate clear expectations for yourself and benchmarks
for success. Apply some of the structure (deadlines, assignments, etc.) you would
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Figure 7.7: “How to exit the vim editor?” (or: We all get stuck at some point). Now viewed >1.6
million times; see: http://stackoverflow.com/questions/11828270/how-to-exit-the-vim-editor.

provide a student to help motivate and evaluate your progress. If something isn’t
working, adjust; not everyone learns best by any one approach. Explore tutorials,
online classes, workshops, books like Practical Computing for Biologists (Haddock
and Dunn 2011), local programming meetups, etc., to find your preferred approach.

7.1.1.11 Rule 10: Just do it

Just start coding. You can’t edit a blank page.

Learning to program can be intimidating. The power and freedom provided in
conducting your own computational analyses bring many decisions points, and each
decision brings more room for mistakes. Furthermore, evaluating your work is less
black-and-white than for some experiments. However, coding has the benefit that
failure is risk free. No resources are wasted—not money, time (a student’s job is
to learn!), or a scientific reputation. In silico, the playing field is leveled by hard
work and conscientiousness. So, while programming can be intimidating, the most
intimidating step is starting.

7.1.1.12 Conclusion

Markowetz recently wrote, “Computational biologists are just biologists using
a di�erent tool” (Markowetz 2017). If you are a traditionally trained biologist, we
intend these 10 simple rules as instruction (and pep talk) to learn a new, powerful, and
exciting tool. The learning curve can be steep; however, the e�ort will pay dividends.
Computational experience will make you more marketable as a scientist (see “Top
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N Reasons To Do A Ph.D. or Post-Doc in Bioinformatics/Computational Biology”
(Bergman 2012)). Computational research has fewer overhead costs and reduces the
barrier to entry in transitioning fields (Kwok 2013), opening career doors to interested
researchers. Perhaps most importantly, programming skills will make you better able
to implement and interpret your own analyses and understand and respect analytical
biases, making you a better experimentalist as well. Therefore, the time you spend at
your computer is valuable. Acquiring programming expertise will make you a better
biologist.

7.1.1.13 Acknowledgments
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7.2 Contributioning to open source software

All modeling work presented in this dissertation used Cobra software. CobraPy is
an open source software toolkit for Costraint-Based Reconstruction and Analysis in
the (freely available) Python programming language. An analogous Cobra package,
written for the MATLAB programming language is also available. Both packages,
CobraPy available at github.com/opencobra/cobrapy, depend on user contributions
for development as few professional software developers are involved in the project.
This section presents several contributions I have made to the software.

7.2.1 Gapfilling

7.2.1.1 What is gapfilling?

Genome-scale metabolic reconstructions are built from genomic data - reactions
are added if there is genetic evidence for the associated enzyme. However, because
not every enzyme is annotated in the genome (due to incomplete genome annotation),
the reconstruction may not be complete. To increase the scope of a reconstruction
(i.e. to add reactions), we perform ‘gapfilling’ to ensure that the reconstruction can
complete a particular task (Figure 7.8). This optimization problem adds reactions
to allow the reconstruction to carry flux under given constraints.

7.2.1.2 Modifications and testing of the gapfilling code
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Figure 7.8: Gapfilling is a process to ensure functionality of a network by adding a reaction or
reactions to fill a gap. Here the functionality needed is the generation of biomass from Metabolite 4
(M4). Three metabolites (M1, M2, and M3) can be imported into the cell, but the conversion from
these metabolites to M4 is not annotated into the genome and, therefore, is not known. Reactions
from a reaction database (Solution 1 and Solution 2) could complete the network to ensure that the
cell can generate biomass from metabolites M1, M2, and M3. Alternative solutions are sometimes
found, as demonstrated here. Figure from Gregory Medlock.

This function was an existing part of CobraPy, but had several flaws. Most
importantly, if new metabolites were introduced during the gapfilling solution, no
solution could be found. Thus, I also changed the code for how it searched and
evaluated exchange reactions; these reactions will create or consume a metabolite
from nothing. Biologically, these represent the process of gas exchange from the
environment to a culture media or of changing media in an in vitro culture system.
Lastly, I added new tests to evaluate the new code.

7.2.2 Renaming genes

7.2.2.1 Why would you want to rename genes?

EuPathDB, and PlasmoDB in particular, has updated gene identifiers several
times. For example, the gene encoding lactate dehydrogenase in Plasmodium falciparum
3D7 was not included in the first generation of gene identifiers; in the second generation,
the open reading frame was named ‘PF13_0141’ as it was the 141st gene on the
13th chromosome of Plasmodium falciparum. It is now named ‘PF3D7_1324900’,
to highlight the species (Pf, meaning P. falciparum), the strain (3D7), and the
chromosome. Expression datasets tend to use only one generation of gene identifiers,
whereas the original model had a mixture of gene identifier generations. Single target
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Figure 7.9: Model structures. The Cobra package, a COnstraint-Based Reconstruction and Analysis
package, stores models as a series of objects, including gene, reaction, and metabolite objects. Each
object is mapped to other related objects. For example, the reaction object describing the reaction
catalyzed by lactate dehydrogenase maps to two genes and multiple metabolites, specifically the
reactions’s reactants and products. Figure from Gregory Medlock.

experimental datasets also tend to use a mixture of gene identifiers, typically using
the most ‘popular’ identifier, or the identifier that was used during the gene’s initial
characterization. To keep iPfal18 up to date with the most current nomenclature,
I updated all gene identifiers to the current generation. For some data integration,
however, it is useful to move to a previous generation of identifiers.

7.2.2.2 What was wrong with the rename genes code?

Cobra models have several attributes, like enzyme-encoding genes, reactions, and
metabolites, and these attributes are all interconnected (Figure 7.9). That is, a
reaction feature points to the metabolites that are involved in the reaction as well as
to the genes that govern the reaction. To change any of these attributes, the feature
itself must be changed and the pointers between attributes must be updated. Thus,
the process of updating gene identifiers requires a fair bit of code.

The existing rename_genes CobraPy function did not allow a subset of genes to
be updated. If only some genes were being renamed, all ‘old’ names were removed.
For example, if ‘gene1’ was being updated to ‘gene_1’ but ‘gene_2’ was not being
updated, the resultant model would only contain ‘gene_1.’ Accordingly, I added code
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to address this problem. One remaining problem exists however. If multiple genes are
being replaced with the same new identifier, the new identifier will be duplicated in the
gene-reaction rule. For example, if gene1_transcriptA and gene1_transcriptB are part
of a gene-reaction rule ‘gene1_transcriptA AND gene1_transcriptB’ (indicating both
gene1_transcriptA and gene1_transcriptB are necessary for the reaction to proceed)
and both are being replaced with the new gene identifier ‘gene1_transcripts’, then the
new gene-reaction rule will be ‘gene1_transcripts AND gene1_transcripts’. However,
I have identified no functional consequences to this problem.

7.2.3 Additional examples

Additional examples of new functions added to the CobraPy software can be found on
my Github page, https://github.com/maureencarey/.
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8 Reflections and Future Directions

The work presented here could springboard many scientific careers, and I hope to
pursue many of the remaining questions, directly or indirectly, throughout my career.
I will take this opportunity to focus on a few of my favorite future directions, both
scientific and professional.

8.1 Parasite phenotyping with host in mind

The malaria parasite resides within the human red blood cell, stealing its nutrients
and eventually rupturing the cell to invade neighbors. The parasite’s demands for
glucose are so great that it inhibits glycolysis in neighboring uninfected red blood
cells (Mehta, Sonawat, and Sharma 2006), e�ectively starving the host (Sasi et al.
2007). This idea has intrigued me since I began reading about these parasites. In vitro
blood stage culture of the malaria parasite is often treated as static, but the in vivo
environment is certainly much more dynamic. This kind of nutritional competition
and interaction with the host, as well as sheer stress and nutritional variation are
major variables not address in in vitro culture. I am interested in leveraging clinical
profiling data to address these in vitro limitations as my career progresses.

Also, experimental systems can be better characterized to address these in vivo/in
vitro, especially the metabolome of the aging red blood cell. The red blood cell is
often treated as a metabolically inactive entity (and directly referenced as such in Yeh
and DeRisi (2011); Lamb (2012); Pellé et al. (2015)), but these cells contain over 2000
proteins by some reports (Bryk and Wiúniewski 2017) with physiologically relevant
variation (Bordbar et al. 2015). In vitro, we grow P. falciparum in donor blood derived
from one individual (termed a ‘blood batch’) for up to 30 days. Metabolite abundance
varies amongst older and younger red blood cells in vivo (e.g. Cooper, Shukla, and
Rennert (1976)) and the metabolome of red blood cells changes over 30 days of storage
(Paglia et al., n.d.).1 We found in Chapter 6.3 that blood batch was more predictive
of sample metabolome than artemisinin drug treatment and experimental variation
hypothesized to be associated with blood age in Chapter 5. Thus, I hypothesize
there is a large amount of experimental variation explained by the assumption of a
“metabolically inactive” erythrocyte. Simple metabolomics experiments and growth
phenotyping in multiple blood conditions will address this.

Additionally, while the health consequences of acute infection are often well
characterized, I am also interested in the e�ects of chronic low level exposure to

1This was not tested using the same storage conditions used for Plasmodium blood culture.
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these parasites. Many of these parasites have co-evolved with their human host
(and, presumably, vector host as well). As disease fatality decreases with widespread
treatment campaigns, the e�ect of ‘asymptomatic’ or low level infection will become
even more important to understand. Thus, profiling these parasites in non-acute or
sub-clinical infections will become increasingly valuable.

8.2 Moving from malaria to more neglected tropical diseases

I began my PhD focusing on Plasmodium falciparum, the most lethal, common, and
well studied of the malaria parasites (“World Malaria Report 2017” 2017). Malaria,
too, is one of the most lethal and well studied of the parasitic diseases; this put me in an
excellent position to leverage computational tools to study a moderately understudied
organism. By ‘moderately understudied,’ I mean that there are enough genotypic and
phenotypic data on the parasite to build relatively high quality models, but these
models could still be useful in contextualizing sparse datasets. There are enough data
to learn the techniques (data analysis, model building, data interpretation) while
illuminating the Pandora’s box of the yet-undiscovered.

The other parasites presented in Chapter 3 are even more understudied Plas-
modium, making tool development for the interpretation and contextualization of
sparse data even more important. I am grateful that I had the opportunity to learn in
Plasmodium but I am excited to work in the field of the neglected tropical parasites. I
aim to apply the models generated in Chapter 3 to better understand these organ-
isms, especially the Cryptosporidium parasites, much like I have used our Plasmodium
models in Chapter 5.

8.3 Making modeling accessible

Biological modeling is currently a niche technique, the way that flow cytometry,
microfluidics, and even microscopy once were. I aim to make models and modeling
approaches more accessible. To do this, high quality models must be shared and the
technical approaches communicated to both traditionally and nontraditionally-trained
computational biologists. All models generated over the course of this work are or
will be made publically available.

In addition, I am working on an approach to communicate modeling concepts to
aspiring computational biologists. Inspired by both a ‘toy’ metabolic model generated
by several colleagues (Rawls, Dougherty, Blais, et al., in preparation) and the questions
I often received when presenting my research to non-modelers, I became interested in
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Figure 8.1: Textbook-like visualization of glycolysis and respiration summarized in our ’toy’ metabolic
network. Individual steps of glycolysis, the tricarboxylic acid (TCA) cycle, and the electron transport
chain (ETC) are aggragated into summary reactions. Major metabolites (in yellow) are presented, as
well as ATP generation (notated here as energy). Figure from Rawls, Dougherty, Blais, and Papin,
in preparation.

using simple models to demonstrate modeling concepts without the use of programming.
By decoupling the acts of learning the technical concepts and learning to program,
more researchers can be exposed to genome-scale metabolic modeling enabling them
to evaluate the utility of this modeling framework for their own biological questions.

I have to quote favorite saying in my family, “you have to pick the right tool for
the job.” Knives will cut almost anything, but sometimes scissors are a much more
appropriate tool. However, learning which tool is right requires an understanding
of the problem as well as usage of the tool and what assumptions that tool makes.
To continue our scissors analogy, you have to know both what you are trying to cut
and which end to hold the scissors. At minimum, basic programming is necessary to
use most computational tools, and thus, earning to program is a major obstacle to
obtaining this technical knowledge and picking the right tool.

For this reason, I am working in collaboration with Michal Stolarcyzk, a
visiting masters student, to develop a web-based tool that visualizes a small
metabolic network summarizing glycolysis (Figure 8.1) and performs common
simulations on it (Figure 8.2). The application, documentation linked here,
https://github.com/michalstolarczyk/shinyapp is presented from a biologist’s point
of view. For example, simulations are presented as three classes of experiments:
changing the model’s reaction bounds are described as (1) changing growth media, (2)
under/overexpressing enzymes, and (3) knocking out genes. This unprecedented (but
simple) shift in language retains all precision and accuracy of the technical details
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but is much more approachable to biologists. My goal with this project is to help
researchers decide if metabolic modeling is right for them and to motivate the learning
process.

8.4 Using computational biology to ‘level the playing field’

One of my first research experiences was in the field of public health; at an internship
with the International AIDS Society, I was asked to compile a literature review to
define ‘community-based research’ and explore the degree to which community-based
research practices were used in the HIV/AIDS field (the project eventually evolved
into the following publication: Brizay et al. (2015)). I quickly learned the benefit
of developing local capacity for science and advocacy, as the key stakeholders of any
public health problem will have some of the most creative and practical solutions.
For this reason, paired with my enjoyment of programming and desire to broadly
increase diversity in the sciences, I plan to work to increase capacity for computational
biosciences, particularly to address infectious disease public health problems, locally
and globally.

Computational tools allow researchers to generate high-confidence, data-driven
hypotheses before stepping in the lab - and are thus well-suited for use in research
groups with limited funding. In addition to a lower start-up cost, computational
research provides researchers more flexibility over their schedules, making it well-
suited for those with additional responsibilities (i.e. parents, students with additional
jobs, etc.). Computational sciences are underrepresented both in the international
research community and by minorities in the United States. In the United States, less
than 20% of computer science or engineering undergraduate degrees are granted to
women. The statistics for people of color are worse: less than 10% for both computer
science or engineering undergraduate degrees. Representation drops for higher degrees
(“Women, Minorities, and Persons with Disabilities in Science and Engineering,” n.d.).
Moreover, few biologists are trained in programming or basic computer science, and
this excludes the application-driven students from entering the field of computational
biology, leaving only students who entered the field from a technical background. Thus,
I aim to increase diversity in science by providing engaged mentorship to support
young scientists and research opportunities for aspiring scientists, and by investing in
traditional diversity initiatives.
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Figure 8.2: Model visualization depicts all reactions contained in the network. Here, metabolites are
in orange or red, and reactions in blue. Flux of each reaction is indicated by the arrow weight.
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9 Conclusions

In this dissertation, I present (1) Paradigm, a framework based on genome-scale
metabolic modeling for organizing and interpreting biochemical knowledge about
eukaryotic parasites, (2) the curation of an individual parasite metabolic reconstruction
for the most lethal malaria parasite, (3) the application of network-based modeling
approaches to understand and target antimalarial resistance, and (4) network-based
analytics for novel ’omics measurements and the current limitations of such analyses,
as well as highlight a few of my career aspirations. Throughout the chapters of
this dissertation, I demonstrate how network-based analyses are advantageous as
they reveal complex or emergent trends not readily apparent from more “traditional”
analytic methods.

Biological observations, whether they are species of parasitic eukaryotes, genes
in a genome, expressed transcripts, or metabolites detected in a cell, can be viewed
either as independent entities or nodes in a biological network. Statistical approaches
consistently view these observations as independent entities. For example, expression
data is often analyzed by calculating di�erential expression and associated significance,
and rank ordering transcript fold change; the largest significant changes are typically
the focus of downstream analyses and interpretation. In univariate statistical analyses,
each variable is analyzed in isolation, and post hoc corrections are used to account for
the fact that there are often multiple variables measured.

Network-based approaches, in contrast, treat these observations as nodes. Ex-
pression data might be analyzed using a network-based approach by creating a
co-expression network or by using network connectivity and function to set variable-
specific thresholds for interpreting expression changes (used here). These approaches
typically emphasize patterns of change, instead of or in addition to degree of change.
Multivariate statistical analyses and machine learning meet univariate statistical and
network-based approaches somewhere in the middle, while adding new alternative
assumptions, limitations, and benefits. Many forms of machine learning view these
biological observations from a less biased perspective, asking both “are there changes?”
and “are there patterns of changes?” rather than “what are the changes or patterns
of changes?”.

Throughout this dissertation, a combination of statistical (univariate and mul-
tivariate), network-based, and machine learning approaches are used. I hope it is
clear that more knowledge can be gleaned by using all of these analytic approaches
than any one in isolation. Most eukaryotic parasites are unculturable and/or not
experimentally tractable, limiting the collection of data. Thus, to better leverage data
collected in these organisms to understand clinically relevant parasite phenotypes,
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we must integrate data (i.e. diverse data types to better predict patterns of change)
or focus analyses on the interpretable subset of data (e.g. the annotated subset of
genes in a genome). Multivariate statistical, network-based, and machine learning
approaches are best suited for these goals. This dissertation emphasizes network-based
approaches because they are underutilized in the field (Table 3.7) and they have
immense potential to accelerate the drug development process (e.g. Agren et al.
(2014); Raökevi�ius et al. (2018); Kim et al. (2011)).

We first built Paradigm, a Parasite Database for Genome-scale metabolic Models,
to provide the field a framework for organizing and interpreting our biochemical
knowledge about eukaryotic parasites (Chapter 3). Both our approach and resultant
models can be used broadly by the computational and parasitology fields. These
reconstructions can be used to generate targeted hypotheses for exploring di�erences
between species and improving genome annotation. Paradigm will be made publicly
available following the examples of the Eukaryotic Pathogens Database (Aurrecoechea
et al. 2017) and the Biochemical, Genetic and Genomic database (King et al. 2016).
By sharing these tools, other research groups can use these models to answer their
own research questions as done with other large collections of metabolic models (King
et al. 2016; Magnúsdóttir et al. 2017).

We applied our Paradigm framework to begin to identify the most representative
in vitro system or non-primate infection model of disease for drug development. We
hypothesize that the best test system may vary by the metabolic pathway being
targeted. We highlight some such suggestions, especially regarding kinase inhibitor
screens, and future work will include simulations of gene essentiality to quantify
the accuracy of model predictions. Paradigm contains draft reconstructions, unlike
the curated P. falciparum 3D7 reconstruction curated in Chapter 4 and applied
in Chapter 5, and thus these models will require some manual curation as well.
Following curation, we will identify a conserved list of essential genes as well as ‘model
pathways’ that are comparable between model organisms and disease-causing parasites.

We focus on these common drug targets because drug repurposing has been
extremely useful in the fight against parasitic disease due to the biological challenges
in targeting eukaryotic cells and the limited funding available for drug development.
Antimalarials have been used to treat toxoplasmosis, and antibiotics have been used
to treat several parasitic diseases (Table 2.1). Anticancer drugs also have potential
to become antiparasitic therapies, and vice versa (Huijsduijnen et al. 2013; Nzila et
al. 2010). Additionally, it has been challenging to incentivise development and even
production of species-specific antiparasitics for the neglected tropical disease especially.
For example, an antiparasitic drug for African sleeping sickness was developed but
medical production stopped due to its cost; once eflornithine was discovered to also be



M. A. Carey 198

an e�ective way of removing facial hair, the commercial potential encouraged cosmetic
companies to resume production (McNeil, n.d.). Thus, the economic and biological
constraints on antiparasitic drug development make drugs that target multiple parasites
appealing.

Using genome-scale metabolic models to identify drug targets also lends insight
into the drug’s mechanism of action. Knowing the mechanism of action of a drug can
accelerate the understanding of resistance mechanisms and development of new drugs.
For example, the antimalarial atovaquone inhibits an enzyme in the electron transport
chain that is essential for nucleotide synthesis (Painter et al. 2007). By understanding
the drug target (Fry and Pudney (1992) and others), genetic association studies
can be focused on mutations within the drug’s target to identify the causal changes
(Syafruddin, Siregar, and Marzuki (1999) and others). Following the identification
of the causal mutation, researchers were able to identify that this mutation was
not transmissible as parasites with the mutation could not survive in the mosquito
vector (Goodman et al. 2016), and thus has reduced capacity to spread throughout
communities. Thus, rational drug design, especially using genome-scale metabolic
models, has advantages to accelerate the development and implementation of e�ective
therapies.

Next, we curated a genome-scale metabolic reconstruction, iPfal17, to represent
the metabolism of the asexual blood-stage P. falciparum malaria parasite and identified
a set of metabolic tasks to evaluate both iPfal17 and future model iterations (Chapter
4). This curation pipeline is an example of the manual steps that can be taken to
improve the quality of models generated in Paradigm. Both the processes of model
building and applying models to answer biological questions expand our understanding
of the parasite’s metabolism. Moreover, the model can be viewed as a framework
for storing thousands of hypotheses, such as hypotheses about gene-protein-reaction
associations or enzyme function (i.e. reaction formulas), as well as rigorously evaluating
and documenting these hypotheses.

However, all models have limitations and thus model construction is an iterative
process requiring regular curation for improvement. For example, iPfal17 was further
curated using metabolomics data in Chapter 6.2.2 adding functionality to our
already manually curated network. Future curation will include metabolomics-based
curation, like in Chapter 6.2.2, as well as validation against a novel genome-wide
essentiality screen conducted in P. falciparum (Zhang et al. 2018). Zhang et al. (2018)
o�ers an unprecedented opportunity for network curation in this organism. Curation
will require sequential knockout of genes in silico to identify essential genes, and
the comparison of this gene list to essential genes identified experimentally. These
discrepancies will be used to guide and focus experiments that identify the unknown
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biological phenomena that lead to the experimental result.

With our curated Plasmodium falciparum reconstruction, we generated new hy-
potheses about antimalarial drug resistance. We find that inherent di�erences exist in
artemisinin resistant and sensitive parasite metabolism, even before artemisinin treat-
ment. Artemisinin resistant parasites have major metabolic shifts in the mitochondria
and in the synthesis of folates and polyamines, indicating incomplete transition to the
metabolic state most appropriate for the blood-stage environment. We next focused
on polyamine synthesis due to literature support for this pathway being implicated in
artemisinin resistance. We experimentally interrogated putrescine scavenging and de
novo synthesis in artemisinin sensitive and resistant malaria parasites. Inconclusive
results highlight the role of the host cell, the human erythrocyte, as a metabolic
bu�er for the parasite. Human-to-human and temporal variation in the metabolome
of blood cells and serum may influence the development of resistance if polyamine
levels influence artemisinin resistance.

Similarly, we implicated collateral metabolic shifts in chloroquine resistance.
We find resistant parasites mount a metabolic response to chloroquine treatment,
particularly in thiamine, lipid, isoprenoid, and folate metabolism. Thiamine is me-
tabolized into thiamine diphosphate, an essential cofactor for isoprenoid synthesis.
As a result of this finding and the availability of experimental tools to manipulate
thiamine diphosphate levels, we are actively interrogating thiamine metabolism exper-
imentally. Specifically, we are using thiamine-free media, oxythiamine (an analog of
thiamine diphosphate that inhibits thiamine diphosphate-dependent enzymes), and
direct measurement of thiamine, thiamine monophosphate, and the active thiamine
diphosphate using precolumn derivatization, reversed-phase liquid chromatography
and fluorescence detection as previously described (Gerrits et al. 1997; Stuetz et al.
2012). By growing sensitive and resistant parasites in the presence or absence of
exogenous thiamine and/or oxythiamine, we will determine if sensitive and resistant
parasites predominately use de novo synthesis or scavenge thiamine.

The accuracy of these model predictions is limited by the quality of the model
construction and by how well suited the model is to address the biological question.
Thus, prediction accuracy can be improved by improving the quality of the model via
model curation. We have clearly address model improvement via curation in Chapter
4. To expand upon on our manual curation, we used metabolomics data to curate
our model of Plasmodium falciparum metabolism, adding network functionality and
improving model predictions in Chapter 6.2.2.

Alternatively, prediction accuracy can be improved by better matching the model
to the biological question. This is performed by the integration of high-quality
condition-specific data into the model with well validated integration algorithms, as
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implemented in Chapter 5. For example, to simulate essential enzymes in vivo, in
vivo expression data would better constrain the model than an in vitro dataset. Again,
intracellular metabolomics data is appealing as there are fewer layers of regulation
between the metabolome and phenotype, than (for example) there are between the
transcriptome and phenotype.

However, exploration of metabolomics data generated in the Guler lab highlighted
that these metabolomics results are biased by methodological challenges associated
with metabolomics (Chapter 6.3). Currently, it is not possible to distinguish metabo-
lites derived from the host cell versus metabolites derived from the parasite, for
any intracellular pathogen. Improved metabolomics methods could disentangle the
individual behavior of both host and parasite, but current approaches are unable to
distinguish between the two (Carey et al. (2018), see also, Olszewski et al. (2010)).
We hypothesize that enrichment of parasite material away from host material and
using uninfected host cells as a control will improve our ability to distinguish host
from parasite metabolome. Although we show that analytic approaches can improve
the accuracy and interpretability of intracellular parasite metabolomes, ultimately
better experimental methods are needed to extract biological di�erences from samples.
Thus, metabolomics data can be better used to profile the parasite phenotype and to
improve model predictions when the host and parasite metabolomes can be separated.

In sum, throughout this dissertation, I present my contributions to the fields of
parasitology and computational biology and demonstrate the utility of computational
tools including network-based modeling, multivariate statistics, and machine learning
in the study of the biology of eukaryotic parasites. All of these computational tools
are reliant on the user’s computational proficiency, and thus I also emphasize the
importance of learning to program and making the introduction of computational
techniques accessible to biologists.
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10 Appendix

This appendix contains links to the supplementary information referenced throughout
this document.

10.1 Supplementary Tables

Some tables were excluded from the for-print version of this document due to size
limitations. They can be obtained via the following links.

Chapter 4, Additional file 3, Table S1: See https://bmcgenomics.biomedcentral.com/
articles/10.1186/s12864-017-3905-1 for Additional file 3, Table S1

Chapter 4, Additional file 3, Table S8: See https://bmcgenomics.biomedcentral.com/
articles/10.1186/s12864-017-3905-1 for Additional file 3, Table S8

10.2 Code and analyses

All code used to generate the analyses and resultant tables and figures is hosted on
GitHub, either my personal page, the Guler Malaria Lab page, or the (Papin) Compu-
tational Systems Biology Lab page. If you are reading this document electronically,
all links throughout document are hyperlinked.

My personal page (hyperlinked here): https://github.com/maureencarey/

Guler Malaria Lab (hyperlinked here): https://github.com/gulermalaria/

Computational Systems Biology Lab (hyperlinked here): https://github.com/csbl
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