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Abstract 
Inspection and assessment are necessary steps to maintain and ensure the safety and 

capacity of critical infrastructure systems such as bridges and other civil structures. Traditional 

sensors, including accelerometers, strain gauges, and string potentiometers, can be difficult to 

place in remote, offshore, and complex environments where the structure is very tall or hard to 

reach. Vision-based systems offer an innovative approach for structural health monitoring because 

they do not require contact with the target structure. This work proposes a contactless vision-based 

system for structural displacement measurement with real-time processing potential. Image 

acquisition and processing was implemented on an NVIDIA Jetson TX2 connected to a CMOS 

camera using the Lucas-Kanade-based optical flow method for feature tracking. A series of lab 

tests studied the performance of the system under a variety of targets, lighting conditions, and 

motion frequencies to validate the tracking algorithm against a cross-correlation method and a 

traditional displacement measurement device. Field testing measured the end displacement of a 

traffic signal mast arm and results show that the system captured movement on a subpixel level. 

With confirmation of feasibility of the proposed system to provide contactless vision-based 

displacement measurement through feature tracking, recommended steps for deployment of the 

system in the built environment for short-term monitoring of bridges or traffic signal structures 

will be offered.  
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1 Introduction 
1.1 Background and Motivation 

With an average age of 43 years, many bridges in the U.S. will soon reach their design life 

and require rehabilitation or replacement (Infrastructure Report Card 2017). The state of the 

country’s infrastructure, which extends beyond bridges, requires owners and transportation 

authorities to support diligent asset management and seek cost-effective methods for repairing or 

replacing such systems. Before large investments are made, regular assessment will occur to 

extend the design life as much as possible.   

Inspection and assessment are necessary steps to maintain and ensure the safety and 

capacity of critical infrastructure systems such as bridges and other civil structures. Bridges, for 

example, are generally inspected every two years, as determined by the structure’s age and 

condition. These inspections are typically visual, as structures that do not merit large concerns can 

be assessed well from the outside. For structures that are aging and not performing well in visual 

inspections, additional measures can be taken to assess their structural capacity using 

nondestructive evaluation and load testing. Traditional sensors, including accelerometers, strain 

gauges, and string potentiometers, can be difficult to place in remote, offshore, and complex 

environments where the structure is very tall or hard to reach. Vision-based systems offer an 

innovative approach for structural health monitoring because they do not require contact with the 

target structure. Innovative methods for sensing and evaluation can save time and money, while 

potentially providing more quantitative results than traditional subjective human inspections. 

 

1.2 Research Objectives 

Previous work has confirmed the accuracy of a camera-based system using two-

dimensional digital image correlation (2D-DIC) for post-processed bridge deflection measurement 

(Alipour et al. 2019). Experience from that work led to interest in a smart camera system capable 

of onboard image acquisition and processing. With the previous work as a baseline, this thesis 

research seeks to answer the following questions: 

(1) Can you use a vision-based system to monitor a structure that cannot be reached for 

attachment of traditional sensors? 

(2) Can you visually track a structure’s natural features so that manmade target cards do 

not need to be mounted on the structure? 
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(3) Can you develop a field deployable system that can be instrumented on the structure 

itself for monitoring when no fixed ground is available adjacent to the structure?  

(4) Can you create a vision-based system that can process images in the field quickly so 

that results can be reviewed before leaving the site? 

 

Based on the questions proposed, the objective of this work was to develop a vision-based 

monitoring system that could collect contactless displacement measurements by tracking natural 

structural features with potential for real-time processing.  

 

1.3 Thesis Outline  

This thesis explores the development of a contactless vision-based system for structural 

displacement measurement with real-time processing potential. Chapter 1 introduces the 

motivation and objectives for the work. Chapter 2 will provide an overview of relevant background 

information from the literature, including current vision-based structural health monitoring 

practices, image processing techniques, and computational methods. Chapter 3 will explore the 

specific methods to implement these objectives, including methods for image acquisition and 

algorithms for image processing. Chapter 4 will describe the final system, a series of lab tests and 

feasibility studies conducted to calibrate the parameters and validate the system under a variety of 

conditions, and field testing conducted to evaluate performance capabilities. Chapter 5 will present 

the results from the lab testing and field studies. Chapter 6 will draw conclusions from the results, 

discuss system limitations, and recommend steps for deployment of the system in the built 

environment.  
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2 Literature Review of Structural Health Monitoring 
This literature review will explore the current state of vision-based structural health 

monitoring (SHM) to present ample background surrounding the questions that this thesis seeks to 

answer regarding contactless displacement measurement, feature tracking, and real-time 

processing. Section 2.1 will describe traditional methods for SHM and their limitations. Section 

2.2 will introduce vision-based SHM methods, review their applications, and provide some 

examples of their recent use. Section 2.3 will provide background on image processing methods 

that are typically used for such vision-based systems. Section 2.4 will provide background on 

computing methods in SHM and discuss the benefits of processing optimization.   

 

2.1 Traditional Methods for Monitoring 

Structural systems such as bridges are monitored to study their in-service behavior. 

Monitoring systems can be designed for short term deployment, e.g. during controlled load tests, 

or long-term deployment to understand the behavior of a structure over time. With developments 

in electrical and computing technologies, monitoring methods are able to extend far beyond the 

capabilities of human-based visual inspection, which still remains standard for bridge inspections. 

Human-conducted visual inspection is very subjective to the user’s vision, lighting conditions, and 

access (Hellier 2003). An inspector has the potential to miss small defects or any irregularities that 

are not visible on the surface-level, which may be critical. Visual inspection also lacks quantitative 

results, which makes measurement-based monitoring appealing.  

Measurement-based monitoring of bridges, for example, typically occurs during ambient 

traffic or controlled load testing. Load testing provides a way to characterize the structural response 

of a bridge by quantifying the load distribution across the structure and its dynamic response. The 

results from load testing can be applied to load rating equations to predict if a structure is meeting 

or exceeding its capacity. Based on the result of load rating, a structure may be posted, so that only 

trucks up to a certain weight can drive across it, or be designated for further inspections (“Manual 

for Bridge Evaluation” 2018).   

Traditional measurements typically found within SHM include but are not limited to 

acceleration, strain, tilt, temperature, and deflection. The main acquisition system for collecting 

accelerations is through accelerometers. Acceleration data is used to conduct a dynamic analysis 

of a structure, such as identifying natural frequencies, mode shapes, and damping ratios. 
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Acceleration measurements can also be collected using fiber-optics, as previous work has proved 

(Kim and Feng 2007). Additionally, smartphones are an innovative source for collecting deck 

acceleration measurements without requiring extensive wiring (Min et al. 2015). Strain gauges are 

the main source for strain measurements and are used in static or dynamic testing. Strain data from 

a collection of devices can be combined to understand the distribution of strain across a structure, 

which can be utilized in load rating procedures. Tiltmeters measure tilt, which is the rotation of a 

structure along an axis. Thermistors or thermocouples measure the thermal properties at specific 

points on a structure and are typically used alongside other measurement devices, such as strain 

gauges, to obtain a full-field structural response.   

Deflection is displacement due to a load and deflection-based measurement acquisition 

typically occurs during static, quasi-static, or dynamic loading. Deflection distribution across a 

structure is another input option for load rating calculations. Some examples of deflection-based 

measurement systems include linear variable differential transducers (LVDTs), string 

potentiometers, GPS, lasers, and radar. LVDTs are highly accurate and can measure small scale 

displacements when fixed to a target structure (Ribeiro et al. 2014). String potentiometers can 

capture larger linear displacement measurements, but can be tedious to instrument and require a 

fixed ground position directly under the structure (Bartilson et al. 2015). GPS uses satellite 

connectivity to collect static displacements in real-time (Im et al. 2013). This poses difficulties 

when the system cannot maintain an unobstructed view with a satellite. Additionally, GPS devices 

can be expensive compared to other monitoring systems (Ribeiro et al. 2014). Laser vibrometers 

use laser interferometry to map the bridge response, but require a fixed ground point underneath 

the bridge (Nassif et al. 2005). Radar-based sensors are low-cost, small, and scalable, as well as 

suitable for short or long-term monitoring (Bartoli et al. 2008; Guan et al. 2019; Rice et al. 2012). 

However, they must be within 6 m of the target, or fixed onto the structure, in order to minimize 

error, which can limit their application in complex field conditions.  

The methods described here either require placement on a fixed point on the structure or 

on ground within a prescribed distance from the structure. This can be limiting for structures in 

complex environments, such as offshore bridges over long waterways, bridges over traffic, or tall 

traffic structures, which are difficult to reach or have limited adjacent fixed ground locations. 

Deflection sensors are especially difficult to instrument in such scenarios. To solve these 

difficulties, vision-based systems offer an innovative solution for displacement measurement.  



 

 

 

5 

 

2.2 Introduction of Vision-based SHM Methods 

Vision-based methods provide an innovative solution to some of the issues posed by 

traditional measurement systems because they do not require extensive wiring, do not require 

contact with the target structure (depending on the processing algorithms used), can be low-cost, 

and are usually easy to set up and operate (Feng and Feng 2018). They may be used to obtain 

displacement measurements from multiple points on a structure without needing to move the 

system. Additionally, vision-based SHM systems have many applications beyond displacement 

measurement.  

 

2.2.1 Applications of Vision-based SHM  

The science of photogrammetry is the cornerstone of vision-based monitoring systems. 

Photogrammetry is the use of photography to make measurements by taking the spatial coordinates 

of discrete points within the photograph (Jáuregui et al. 2003). Movement between photographs 

can be correlated to displacements, which can then be scaled into distances from calibration with 

known reference points. Displacement can be the final measurement based on the movement or 

the relationships can be applied to calculate strains within a region or to measure vibrations.  

Vision-based monitoring systems have structural health monitoring (SHM) applications 

for: damage detection (Dworakowski et al. 2016; Kong and Li 2018; Zaurin et al. 2016); vibration 

monitoring (Busca et al. 2014; Caetano et al. 2011; Ji and Chang 2008; Xu et al. 2018); vehicle 

detection, classification, and tracking (Taylor and Lydon 2017); weigh-in-motion systems (Ojio et 

al. 2016); remote inspection via unmanned aerial vehicles (UAVs) (Brooks et al. 2018; Reagan et 

al. 2017; Yoon et al. 2018); load rating (Catbas et al. 2012; Peddle 2011); structural identification 

and model updating (Shafiei Dizaji et al. 2017); strain measurement (Pan et al. 2009a; b); and 

displacement measurement (Chiang et al. 2011; Feng et al. 2015a; Fukuda et al. 2013; Jáuregui et 

al. 2003; Pan et al. 2016; Peddle et al. 2011; Ribeiro et al. 2014; Shariati and Schumacher 2017; 

Xu et al. 2019; Ye et al. 2013; Yoneyama and Ueda 2012). The application of vision-based SHM 

for displacement measurement will be explored next.  
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2.2.2 Current Vision-based Displacement Systems 

The use of vision-based monitoring for displacement measurement constitutes the focus of 

this research. Most vision-based displacement measurement systems use global methods by 

featuring the camera placed on fixed ground a set distance away from the point of interest on the 

structure. For example, the Feng group measures dynamic displacement of bridges using a 

camcorder running at 10 fps on a tripod on an adjacent ground reference location 300 m away 

(Feng and Feng 2017). Similarly, the Pan group performed real-time measurement of global 

vertical deflections of a railway bridge that reported subpixel accuracy and included calibration 

for off-axis camera alignment (Pan et al. 2016). Some parameters to account for when designing 

vision-based systems include: availability of space to position camera near the structure; 

perpendicularity of camera to target (Pan et al. 2016); lighting availability (Lee et al. 2017; Luo et 

al. 2018); camera movement (Xu et al. 2019; Yoneyama and Ueda 2012); desired computation 

speed, etc. The methods for image processing of such vision-based systems will be reviewed next.  

 

2.3 Background on Image Processing Methods  

The use of vision-based systems presents three main processing-related tradeoffs: the need 

for physical targets vs. contactless acquisition; computational speed vs. accuracy; and overall 

computational cost. These factors are all accounted for based on the robustness of the algorithm 

used. Image processing algorithms can be divided into two main fields: area-based template 

matching and feature-based template matching. For both approaches, template matching forms the 

basis for tracking through which an image is processed by comparing a predefined region of 

interest (ROI) of the image to that of a source image. A pixel by pixel comparison between the 

template and source occurs. Scale calibration then allows for a matching of the pixel result with a 

physical displacement value. This constitutes the ability to track an object between consecutive 

images or video frames.  

 

2.3.1 Area-based Template Matching  

Area-based template matching includes the installation of a target card or panel on the 

structure being monitored and follows changes in area on the card, which can be correlated with 

movement of the structure. With the use of a card comes questions of card pattern, size, etc., which 

are developed based on the requirements of the algorithm utilized. Target patterns that have been 
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used previously include speckle dots (Alipour et al. 2019), solid black with four white circles 

(Fukuda et al. 2010; Ribeiro et al. 2014), QR code-type patterns (Feng and Feng 2017; Shariati 

and Schumacher 2017), and a bullseye target with a plus sign at the center (Jáuregui et al. 2003). 

Some examples of area-based algorithms include digital image correlation (DIC) (Pan et al. 2013; 

Shafiei Dizaji et al. 2017; Yoneyama et al. 2007), orientation code matching (OCM) (Feng and 

Feng 2017; Feng et al. 2015b; Fukuda et al. 2013; Ullah et al. 2001), upsampled cross correlation 

(UCC) (Feng et al. 2015a; Guizar-Sicairos et al. 2008), and the use of virtual visual sensors (VVS) 

(Shariati and Schumacher 2017; Song et al. 2014). Area-based techniques such as DIC offer the 

ability to use full-field deformation data to calculate strain measurements (Baker and Matthews 

2001; Bruck et al. 1989; Pan et al. 2009b; Sutton et al. 2009).  

 

2.3.2 Feature-based Template Matching  

Feature-based template matching detects and tracks local features on the object of interest 

(such as bolts, cracks, edges of structural members, etc. (see Figure 2.1)) and thus does not require 

installation of a physical target card. Some examples of feature-based algorithms include Kanade-

Lucas-Tomasi (KLT) tracking (Kong and Li 2018; Lucas and Kanade 1981; Morlier and Michon 

2010; Taylor and Lydon 2017; Yoon et al. 2016) and the optical flow method (Caetano et al. 2011; 

Horn and Shunk 1981; Ji and Chang 2008; Lim et al. 2005). Part of the process of feature tracking 

requires the detection of features to track, which typically take the form of key-points, blobs, or 

corners. Some algorithms that facilitate feature detection include Harris corner detection (Harris 

and Stephens 1988), Shi-Tomasi feature detection (Shi and Tomasi 1994), scale-invariant feature 

transform (SIFT) (Lowe 2004), features from accelerated segment test (FAST) (Rosten and 

Drummond 2006), speeded-up robust features (SURF) (Bay et al. 2008), binary robust independent 

elementary features (BRIEF) (Calonder et al. 2010), binary robust invariant scalable keypoints 

(BRISK) (Leutenegger et al. 2011), and fast retina key-point (FREAK) (Alahi et al. 2012). The 

feature-based tracking methods listed have commonly been applied to vibration measurement (of 

cables or other structural components), crack detection, and displacement measurement.  
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Figure 2.1. Trackable structural features. 

 

2.4 Background on Computing Methods in SHM 

2.4.1 Real-time vs. Post-processing 

The photographs obtained during field testing must be processed using algorithms from 

Section 2.3. Depending on the design of the system and robustness of the algorithm, this processing 

is either completed in real-time while the testing is conducted or post-processed afterwards. Based 

on the quantity of images collected over the duration of the testing, post-processing can take hours, 

if not days, in order to analyze all of the images. Because of this computational cost, real-time 

processing can be very desirable. Real-time processing is achieved when the total time for 

computation is less than the sampling rate of the system (Torbol 2014). The higher the sampling 

rate is, the harder it will be for the system to process the data as it comes in.  

The opportunity for real-time computing of vision-based measurements is limited by the 

ability to connect the camera to a computer. In laboratory environments, this is typically the 

general setup. However, the application of real-time processing in the field is more difficult. With 

most off-shore applications (e.g. where the camera is located on fixed ground), this can be done, 

and thus a relatively standard computer can process the images as they come in (Pan et al. 2016). 

For more remote acquisition, this is only possible if the camera is connected wirelessly to a 

computer or if a “smart camera” is employed. While the technology used for real-time processing 

is commonplace for UAVs and autonomous vehicles (Betke et al. 2000; Brooks et al. 2018; Reagan 

et al. 2017; Yoon et al. 2018), the application of it to the field of civil engineering for static 

purposes is highly underutilized. As the use of real-time image processing for remote acquisition 

has not been explored in depth in SHM literature, the potential for real-time processing will serve 

as motivation throughout this study.   
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2.4.2 Introduction of GPUs for Computing 

Data processing is primarily limited by the ability of the processing unit used. The growth 

of graphics processing units (GPUs) for gaming systems has contributed to the development of 

computational power with research applications. Instead of sending data through a central 

processing unit (CPU), it can be sent to a GPU, which is made up of hundreds or thousands of 

cores, compared to a CPUs’ 2 to 16 cores (Torbol 2014). Thus, this allows for faster processing, 

given that a code can be parallelizable. GPUs have developed significantly over the past two 

decades due to advances in circuitry. An illustration of the increase in memory bandwidth of GPUs 

versus CPUs over a thirteen-year period is shown in Figure 2.2. As can be seen, the processing 

power of two NVIDIA GPUs (GeForce and Tesla) has increased dramatically compared to that of 

the Intel CPU given.  

 

 
Figure 2.2. CPU vs. GPU bandwidth trends from 2003 to present (adapted from NVIDIA 

Corporation 2018). 
 

GPUs are common for high-level computing especially for image processing applications 

where the graphics can be processed more efficiently than by a CPU (Almeida 2015; Asano et al. 

2009). The strength of GPUs lies in the opportunity for parallelization. Parallelization allows 

different parts to be individualized with iteration through the different GPU cores. One work using 

parallelization for normalized cross correlation computation of ultrasound strain images through 

Matlab, a CPU, and a GPU found that the GPU reduced the computation time by a factor of 130 
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(templates of pixel size 256 x 9) to 376 (16 x 9 pixels) over the Matlab processing (Idzenga et al. 

2014).  

In the field of civil engineering, GPUs and code parallelization have been utilized for post-

processing for several years (Adeli and Kamal 1993). One study applied parallel processing 

techniques to enhance the speed of finite element analysis, which is notably computationally costly 

when large matrices are used (Sotelino 2003). Another work collected images of a bridge cable 

during field testing and then post-processed those images on a laboratory GPU using parallel 

computing (Park et al. 2018), while another study used a GPU to reduce the time of modal analysis 

computations using a parallel frequency domain decomposition algorithm (Torbol 2014). With 

these notable advantages, there are also some constraints presented by the use of GPUs when it 

comes to smooth integration into real-time systems (Elliott and Anderson 2011). Overall, the use 

of GPUs for real-time computing has proven to be a valuable computational tool and will be 

considered in the development of this work.  
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3 Experimental Methods 
3.1 Motivation  

The goal of this work was to develop a field deployable, contactless vision-based 

monitoring system that can acquire and quickly process images for localized displacement 

measurements of civil engineering structures. Vision-based systems offer an innovative approach 

to structural health monitoring because they do not require contact with the target structure in the 

way that traditional sensors, such as accelerometers, strain gauges, and string potentiometers, do. 

This chapter will explore the methods for image acquisition and algorithms for image processing 

to develop the system. Section 3.2 will browse computing devices and camera and lens pairs. 

Section 3.3 will introduce available software and describe two relevant area and feature-based 

tracking algorithms.   

 

3.2 Image Acquisition  

3.2.1 Computing Device  

To support onboard processing and manipulation of images, a computing device was 

necessary to control the camera to be used in this computer vision-based system. Essentially, this 

enables control of the system on the level of a “smart” camera. In previous work, all image 

processing was performed after the completion of the testing back in the lab on desktop computers 

(Alipour et al. 2019). This process, specific to the image processing algorithms used, proved to be 

time consuming. Additionally, there was no way to check the quality of the obtained images before 

departing the field site. Thus, investigation into the use of a field deployable computing device 

increases the capability of this system to obtain measurement results while still at the field site.  

A basic smart camera that was explored is the Raspberry Pi. Raspberry Pi is a credit card-

sized single board computer that offers a moderate level of computational capacity. The Raspberry 

Pi 3 is shown in Figure 3.1 and the specifications of this model evaluated are shown in Table 3.1. 

One benefit of the Raspberry Pi system is the connectivity offered by such devices, which creates 

the ability to sync a collection of the devices together to create a network of sensors. The Raspberry 

Pi initially served as a small-scale exploration into the desired type of computing system for civil 

engineering field applications; however, it was not chosen for use in this work. The main 

limitations of this system were due to the lack of remote connectivity (requires WiFi or ethernet) 

and the computational capacity of the onboard processing unit. A processing unit that had a 



 

 

 

12 

capacity for more complex computing was desired to enable work with large quantities of high-

resolution images (requiring a high acquisition rate) and processing through a system architecture 

with potential for real-time processing. These were deemed system requirements based on 

inefficiencies in the previous work.   

 

 
Figure 3.1. Raspberry Pi 3 Model B. 

 

Table 3.1. Raspberry Pi 3 specifications. 
Component Specification 
Model Raspberry Pi 3 Model B 
CPU ARM v8 quad core (64-bit) 
CPU Speed 1.2 GHz 
Memory 1 GB SDRAM @ 400 MHz 

 

Beyond the Raspberry Pi, other single board computers on the market included ODROID, 

Arndale, and NVIDIA products. After preliminary review of the capacities of these systems, their 

applications by other researchers, and the depth of documentation for their use, NVIDIA was 

chosen as the main product line to consider.  

NVIDIA computing devices are popular due to their versatility, GPU processing 

capabilities, functionality of the CUDA interface, and cost effectiveness. NVIDIA products are 

frequently upgraded and a large user community exists through an online forum for developers. 

The computational capabilities of NVIDIA devices have been studied in the literature (Amert et 

al. 2017; Otterness et al. 2017; Torbol 2014). NVIDIA’s Jetson line of computing devices is 

designed for applications in embedded computing, particularly for autonomous systems requiring 

real-time image processing and machine learning, and was selected for this study. 
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The Jetson TK1, the first edition of NVIDIA’s Jetson modules, was released in 2014 with 

the computing power equivalence of four Raspberry Pi’s, all on a single chip (Wolfer 2015). The 

most recent Jetson module, the Jetson TX2, was released in 2017, while its predecessor the TX1 

was released in 2015 (Smith 2017). The Jetson TX2 developer kit (the credit card-sized computer 

attached to a carrier board) is shown in Figure 3.2 (TX1 looks similar) and a comparison of the 

main specifications between the TX1 and TX2 is presented in Table 3.2.  

 

 
Figure 3.2. NVIDIA Jetson TX2. 

 

Table 3.2. Comparison of specifications between NVIDIA Jetson TX1 and TX2. 
Component  Jetson TX1 Jetson TX2 
GPU NVIDIA Maxwell NVIDIA Pascal 
CPU Quad ARM A57/2 MB L2 HMP Dual Denver 2/2 MB 

L2 + Quad ARM A57/2 MB 
L2 

Video 4K x 2K 30 Hz Encode 
(HEVC) 

4K x 2K 60 Hz Decode (10-
Bit Support) 

4K x 2K 60 Hz Encode 
(HEVC) 

4K x 2K 60 Hz Decode (12-
Bit Support) 

Memory 4 GB 64-bit LPDDR4 
25.6 GB/s 

8 GB 128-bit LPDDR4 
59.7 GB/s 

CSI Connection Speed 1.5 Gbps/Lane 2.5 Gbps/Lane 
Data Storage 16 GB 32 GB 
Operating Life 5 years 

 

As the TX2 is a generation after the TX1, thus serving as an upgraded version of its 

abilities, it exceeds and practically doubles the computing power of the TX1. All of the 

specifications listed in Table 3.2 were considered relevant to evaluate for the purposes of the 

proposed vision-based work. At the time of this research, the two modules were on the market for 
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the same price, so the newer Jetson TX2 and its development kit were chosen for creation of the 

vision-based system. NVIDIA also produces a version of the TX2, called the Jetson TX2i, which 

features similar processing capabilities but a more rugged design and a longer operating life (10 

years) for use in industrial environments (NVIDIA Corporation 2019). Based on the goals of this 

work, the TX2i was deemed unnecessary for this initial exploration.     

The Jetson TX2 features a Linux-based operating system running Linux for Tegra (specific 

version at time of flash was L4T 28.2.1). The software package that can be flashed onto the system 

is called JetPack. JetPack 3.3 was installed on the TX2 with the following components: CUDA 

toolkit for the host (Ubuntu) and target platform, the latest NVIDIA Developer Tools (Tegra 

Graphics Debugger 2.5 and NVIDIA System Profiler 4.0), VisionWorks 1.6, cuDNN v7.1.5, 

Multimedia API v28.2, OpenCV 3.3.1, and TensorRT 4.0 GA. Some of the relevant physical 

components contained in the 17 x 17 cm Jetson TX2 developer kit include: DC power port, 

integrated antennas, micro USB port, USB Type A port, HDMI port, ethernet port, and a camera 

module. Ultimately, the Jetson TX2 promised to meet the needs of this work including high-quality 

image acquisition and processing with potential for field deployment.  

 

3.2.2 Camera and Lens 

Next, a camera needed to be selected for use in this smart camera system based on optical 

specifications and compatibility with the chosen computing device. An appropriate lens must be 

paired with the camera in order to meet the desired magnification requirements. One measure of 

applicability of a camera and lens pair is checking that the field of view is within the desired range 

of testing based on the internal imaging system parameters. Equation 3.1 provides the field of view 

(FOV) proportional relationship, where w is the width of the camera sensor, W is the width of the 

FOV, f is the lens focal length, and d is the distance to the target. To calculate the height H of the 

FOV, the heights h and H can be substituted for the widths w and W in Equation 3.1, respectively. 

Thus, given a sensor size w x h, lens focal length f, and a distance d, the minimum FOV dimensions 

W x H can be determined. Conversely, required sensor size or lens focal length can be determined 

based on a desired FOV size. The relationship between these parameters can be visualized in 

Figure 3.3(a). To determine an effective target size (t) within the given image (assuming a square 

target of size t x t), a nominal margin (m) around the target can be considered, as represented in 

Equation 3.2 and shown in Figure 3.3(b). The required focal length of the lens (freq) can be 
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determined by rearranging Equation 3.2 into Equation 3.1, as shown by Equation 3.3. By further 

rearranging Equation 3.3, the minimum target size (tmin), based on the maximum focal length of a 

known lens (fmax), can be determined through Equation 3.4.  
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(a) (b) 
Figure 3.3. (a) Field of view estimation and (b) Image dimensions. 

 

Previous testing was conducted at a distance of 37.5 ft, which represents half of a bridge 

with a 75 ft span (Alipour et al. 2019). For this work, a representative distance of 30 ft was used 

in subsequent calculations for reference. For target size, a 6 x 6 in. card and a nominal margin of 

0.5 in. was used. The 6 x 6 in. card was chosen because that was the card size used previously for 

bridge field testing as it fits under girders, provides enough surface area for adhesion, and works 

within the imaging distance and desired magnification level (Alipour et al. 2019). The nominal 

margin represents a comfortable window around this. This target card size and margin led to a 

minimum FOV size of 6.5 x 6.5 in. Therefore, the ideal camera and lens for this study would meet 

these geometric requirements of being capable of viewing a 6 x 6 in. target with a 0.5 in. margin 

from at least 30 ft away.   
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As introduced in Section 3.2.1, the Raspberry Pi was explored as a smart camera system. 

During its investigation, a camera module supported by a pan-and-tilt mechanism was added to 

the system and offered basic functionality (see Figure 3.4). The specifications for the camera 

module are presented in Table 3.3. The camera sensor was a Sony IMX219. Using Equation 3.1 

and the given system specifications, the minimum field of view at 30 ft was 435.1 x 326.8 in. Thus, 

this camera was deemed inadequate for the distances and magnification required by this work, 

which served as another reason for why the Raspberry Pi system was not continued with.  

 

 
Figure 3.4. Raspberry Pi camera module with pan-and-tilt mechanism. 

 

Table 3.3. Raspberry Pi camera module specifications. 
Component Specification 
Camera Model Raspberry Pi Camera Module v2 
Camera Sensor 1/4” (3.674 x 2.760 mm) 
Camera Resolution 3280 x 2464 pixels 
Lens Focal Length 3.04 mm 

 

The Jetson TX2 includes an onboard camera module and the specifications for it are 

provided in Table 3.4. This camera is capable of taking high resolution images up to 5 MP and can 

be accessed through a GStreamer pipeline. However, increasing the resolution of the images 

decreases the acquisition frame rate. The sensor size is the same as the Raspberry Pi camera 

module, so it was also deemed incapable of providing the depth of field required for this work.  
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Table 3.4. NVIDIA Jetson TX2 camera module specifications. 
Component Specification 
Camera Model Jetson TX2 Camera Module 
Camera Sensor 1/4” (3.674 x 2.760 mm)  
Camera Resolution  2560 x 1920 pixels 
Lens Focal Length Fixed Focus 

 

The main requirements for a camera and lens combination were that it meets the field of 

view required dimensions and can connect to the TX2. External camera types available for use and 

supported by the TX2 include CSI (camera serial interface), USB 2.0 (webcams), and USB 3.0 

cameras. Previous vision-based work (lab study and field application) used the GoPro Hero 3+ 

camera with a Tamron A17 70-300 mm lens for deflection sensing (Alipour et al. 2019). The 

GoPro Hero 3+ is shown in Figure 3.5(a) and the specifications are provided in Table 3.5. This 

camera offered WiFi connectivity, image and video acquisition capabilities, and high-resolution 

images (single image up to 10 MP). The Hero 3+ has two relevant modes of image collection: 

time-lapsed imagery and high-definition video. Previous work evaluated both modes and 

determined that time-lapse images brought limitations when it came to image acquisition rate and 

video brought limitations with video compression. For this work, the Hero 3+ was considered with 

the Tamron Model A17 70-300 mm lens, which is shown in Figure 3.5(b) and whose specifications 

are provided in Table 3.6. The lens aperture was modified to f/8 to adjust the exposure for low-

light scenarios, such as a dark testing room or evening field test. From a distance of 30 ft at 

maximum focal length (300 mm), the Hero 3+ can view a minimum target of size 4.8 x 6.4 in. This 

field of view is within the requirements of this work. However, the Hero 3+ was less desirable in 

terms of other criteria. Previous testing showed that sometimes the WiFi connectivity delayed or 

disappeared completely during testing. Outside of WiFi, the Hero 3+ features an HDMI connection 

and thus requires a connector module to interface physically with the TX2. Thus, a camera that 

did not run over WiFi strictly and that could connect with the Jetson TX2 was desired. A camera 

that could interface with the TX2 in such a way that could enable the potential for processing in 

the field was deemed important.  
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(a) (b) 
Figure 3.5. (a) GoPro Hero 3+ and (b) Tamron A17. 

 

Table 3.5. GoPro Hero 3+ camera specifications. 
Component Specification 
Camera Model GoPro Hero 3+ Silver 
Camera Sensor 1/2.7” CMOS (4.04 x 5.36 mm) 
Camera Resolution Single image: 3680 x 2760 pixels 

Video: 1920 x 1080 pixels 
 

Table 3.6. Tamron A17 lens specifications. 
Component Specification 
Lens Model Tamron Di LD Macro Model A17 
Lens Focal Length 70-300 mm 
Lens Aperture f/4-5.6 (modified to f/8) 

 

Some cameras with direct application to the Jetson are manufactured by e-con Systems, 

FLIR, and Leopard Imaging. Ideally, a camera that did not require a connector module would be 

chosen in order to minimize the programming requirements. The TX2 features a USB3 connection, 

so the rest of this study explored cameras that include USB3 connectivity. As some of these 

cameras can be very expensive, low-cost options were primarily considered for this feasibility 

study. FLIR (formerly Point Grey) was the main manufacturer evaluated.  

FLIR’s Grasshopper 1394b (Model GRAS-50S5M-C) camera was studied. The sensor on 

this camera is a Sony ICX625 with 2/3” dimensions and it is capable of 5.0 MP image resolution. 

However, it features Firewire connectivity and is unable to connect to the TX2 directly, which was 

not favorable. Additionally, the FOV at 30 ft with a 300 mm lens was 10.6 x 7.9 in. The next 

camera studied was FLIR’s Grasshopper3 (Model GS3-U3-23S6M). The Grasshopper3 (GS3) has 

the ability to interface with ARM devices like the TX2 and can run through a USB3 connection, 

so it was able to connect directly to the TX2. The GS3 is shown in Figure 3.6(a) and specifications 
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of the specific model of GS3 are provided in Table 3.7. Like the Hero 3+, it has a CMOS image 

sensor, but it is monochrome so it only produces gray scale images. The sensor is a Sony IMX174, 

which was larger than the Hero 3+ sensor. The GS3 was paired with the Tamron Model 672D 75-

300 mm lens, which is shown in Figure 3.6(b) and whose specifications are provided in Table 3.8. 

This lens features an adjustable aperture setting with seven exposure levels: f/4 (wide aperture, 

brightest exposure), f/5.6, f/8, f/11, f/16, f/22, and f/32 (small aperture, darkest exposure). The 

adjustable aperture allows for manual control of the lens exposure, which may need to be 

manipulated at times based on the given lighting conditions during use and the desired depth of 

field. For example, brighter exposure levels can be used in low-light scenarios to increase image 

visibility, while the darker exposure levels can be used in brighter scenarios to balance the image. 

From 30 ft and at maximum focal length of 300 mm, the FOV of this system was 13.6 x 8.5 in. 

This did not meet the previously stated requirement of 6.5 x 6.5 in. However, the TX2 connectivity 

offered by this camera was desirable and available, so the FOV parameters were adjusted to accept 

this camera and lens combination as the primary optical equipment for use with the Jetson. If a 

larger margin of 8 in. around the target was allowed, the total image size becomes 14 x 14 in., 

which can be seen by the system at a focal length of 290.6 mm (covered by the 300 mm lens). The 

consequences of increasing the field of view will be discussed in the context of the experimental 

setup in the next chapter.  

 

  
(a) (b) 

Figure 3.6. (a) FLIR Grasshopper3 and (b) Tamron 672D. 
 

Table 3.7. FLIR Grasshopper3 camera specifications. 
Component Specification 
Camera Model Grasshopper3 (GS3-U3-23S6M) 
Camera Sensor 1/1.2” CMOS (11.3 x 7.1 mm) 
Camera Resolution 1920 x 1200 pixels 
Camera Firmware 2.30.3.0 
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Table 3.8. Tamron 672D lens specifications. 
Component Specification 
Lens Model Tamron Macro Model 672D 
Lens Focal Length 75-300 mm 
Lens Aperture f/4-5.6 

 

3.3 Image Processing for Displacement Measurement 

3.3.1 Open-source and Commercial Software 

The goal of this work was to create a vision-based system for displacement measurements. 

Thus, in addition to image acquisition using the camera system as controlled by the computing 

device, the images need to be processed to provide displacement measurements. Some area and 

feature-based template matching algorithms that have previously been applied to monitoring of 

civil engineering structures were presented in Section 2.3. Using these known methods as a 

foundation, research was conducted to locate open-source and commercial software applying these 

methods. Several examples of area and feature-based template matching software packages are 

listed in Table 3.9 and Table 3.10. The commercial software VIC-2D from Correlated Solutions 

was used previously (Alipour et al. 2019). This digital image correlation-based package proved 

accurate, but required hours to process large sets of high-resolution images. For this main reason, 

other software packages were studied. 

 

Table 3.9. Commercial software for image processing. 
Software Owner Function  
ARAMIS Trilion/gom 3D-DIC displacement, strain 
DaVIS LaVision 3D-DIC deformation, strain 
VIC-2D Correlated Solutions 2D-DIC displacement, strain 
VIC-3D Correlated Solutions 3D-DIC displacement, strain 
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Table 3.10. Open-source software for image processing. 
Software Platform Function  
CR Toolbox (Barbacci et al. 2014) Matlab Compute optical flow and feature 

tracking from video 
Digital Image Correlation Engine 
(DICe) (Turner 2015)  

Custom Find displacement and strain for 
material characterization  

Digital Image Correlation and Tracking 
(DICT) (Eberl et al. 2010) 

Matlab Find displacement and strain in images 

Efficient Subpixel Image Registration 
by Cross-Correlation (ESR) (Guizar-
Sicairos et al. 2008) 

Matlab Image registration 

Fast Iterative Digital Image Correlation 
(FIDIC) (Bar-Kochba et al. 2015) 

Matlab Find displacements in 2D images 

Feature Tracker (Dilshan 2017) Matlab Track features using KLT algorithm 
Ncorr (Blaber et al. 2015) Matlab Find displacement and strain in images 
OpenCV (Intel Corporation 2019) Custom Computer vision and machine learning 

software library  
Yet Another Digital Image Correlation 
Software (YADICS) (Seghir et al. 
2014) 

Custom Find displacement and strain in images 
for 2D fluid and solid and 3D 

tomographic applications 
 

As commercial software had proven to be accurate, it was assumed that the other 

commercial packages listed in Table 3.9 would provide, essentially, similar capabilities to VIC-

2D. Open-source software is usually updated frequently due to the nature of online collaboration 

and, unlike commercial software, available at little to no cost. However, open-source software can 

be very specific to the creator’s purpose, making it less versatile for other applications, and may 

be less user friendly and require substantial background knowledge in image processing for proper 

use. Of the open-source software presented in Table 3.10, all are Matlab-based except for DICe, 

OpenCV, and YADICS. Most of the open-source software presented are built around the use of 

correlation and are focused on material characterization, making them more robust than needed 

for rigid body displacement measurements. Because of this and because correlation had been used 

previously, feature tracking methods were of primary interest.  

The feature-based software presented had similarities. CR Toolbox uses optical flow and 

Feature Tracker uses Kanade-Lucas-Tomasi tracking methods. Both of these methods appeared to 

be promising for the rigid body displacement measurement goals of this work. Building off of 

these methods, it was found that the OpenCV library was accessible on the TX2 through C++ and 

Python. The OpenCV library provides many different image processing functions and capabilities. 
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This led to the decision to use the KLT-based optical flow method through OpenCV functions. 

Throughout the rest of this work, KLT-based optical flow will serve as the primary image 

processing method and correlation will be used in order to validate it. The specific open-source 

software studied here will be referenced in the development of algorithms that meet the exact 

image processing requirements of this work.   

 

3.3.2 Normalized Cross-Correlation  

Correlation is an area-based template matching technique that compares the similarities 

between images. Its methods can be applied to both 2D and 3D measurements and this work will 

focus on 2D. Normalized cross-correlation is a conservative form of correlation that can be used 

for image processing. From a template image, a region of interest (ROI) is chosen that is searched 

for over subsequent images using prescribed step and subset sizes. Chosen step and subset sizes 

primarily affect the processing speed of images and the spatial resolution of the results. Through 

this act of template matching, a correlation between images can be enumerated which corresponds 

to the difference between them. The normalized cross-correlation calculates the correlation 

coefficient between a template image and a new image, which is in the range of [-1,1] where 1 

indicates perfect correlation (100% match), 0 indicates no correlation (0% match), and -1 indicates 

perfect anti-correlation (100% opposite match). Between identical images, the correlation would 

be 100%.  

The method of normalized cross-correlation to obtain correlation coefficients between two 

images has three steps: (1) calculation of cross-correlation between the two images; (2) calculation 

of the local sums; and (3) use of local sums to normalize the cross-correlation (Lewis 1995). These 

steps are all combined within Equation 3.5, which computes the correlation coefficient C in terms 

of x and y, where T is the template image, I is the new image, µ is the mean, s is the standard 

deviation, and n is the number of pixels in the image. Because Equation 3.5 includes subtraction 

of the means, it is called zero-normalized cross-correlation. Removing the local mean subtraction 

would create the normalized cross-correlation equation. In this work, zero-normalized cross-

correlation was conducted using the Matlab function normxcorr2 (The MathWorks, Inc. 2019).  
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In these applications, the peak correlation in x and y planes can be used to calculate the 

displacement in x and y between two images. The difference in location of the peak between two 

images is the displacement between them. This displacement is in pixel coordinates and can be 

scaled to physical units using a known distance in the images as a scale factor. The displacement 

can be calculated for each of the subsets, but overall for a rigid body acting uniformly, the 

displacement is the same for the entire object. When the displacement is known over a region, the 

deformation between two points can be quantified and this can be used to construct a strain field 

for the object. The described template matching between images within the broader field of digital 

image correlation (DIC) is illustrated in Figure 3.7. 

 

 
Figure 3.7. Digital image correlation process. 

 

One of the required conditions for correlation includes the use of a patterned target. 

Traditionally, this is a high-contrast random speckle pattern of a particular speckle size and spacing 

based on the desired resolution of the system. The pattern can be applied manually to the object 

(drawing points with a marker) or feature the use of a printed card to be placed on the object. The 

size of the speckles is determined by the desired spatial resolution of the results. Minimum speckle 

size can be calculated using Equation 3.6 and 3.7. Equation 3.6 exhibits the relationship between 

the dimensions of the image and the object, both in pixel size and physical length (millimeters). 

Equation 3.7 calculates the size of the objects (speckle dots) (Sm) using the field of view (FOV), 

image width (or height) in pixels (Wp), and object size in pixels (Sp). Previous work used a speckle 

size of 2 mm for a 6.5 x 9.5 in. FOV and an image resolution of 1080 x 1920 pixels (2 MP) given 

a desired speckle pattern of 15 pixels (Alipour et al. 2019).  
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The advantages of using correlation for image processing include the quality of processing 

and the ability to calculate strain. High resolution images can lead to a fine representation of 

displacement with a high accuracy. For example, noted resolutions of DIC specific applications 

include 0.03 mm (Peddle et al. 2011) and 0.05 pixels (Pan et al. 2016).  

Disadvantages of this correlation include the need to use a target pattern, which limits the 

ability to perform fully contactless measurements, as the artificial target must be installed on the 

target structure. For this 2D estimation, the deformation or displacement of the object must be in-

plane. Additionally, the algorithm can be computationally expensive because each image is 

evaluated as a series of subsets based on the given ROI. This leads to high quality processing, but 

at a loss of speed of the computations. 2D digital image correlation was used previously with high 

accuracy (0.2 mm [0.0075 in.]) through the commercial software VIC-2D, but proved to be 

computationally costly, which is why other processing alternatives are being considered in this 

study (Alipour et al. 2019).  

 

3.3.3 Optical Flow Method 

Optical flow is the estimated motion of an object or image through differential tracking. 

Figure 3.8 illustrates the estimated flow based on the motion of an object over time. The connecting 

arrow represents the displacement vector of the object over five consecutive points of motion. One 

method of solving for optical flow is the Lucas-Kanade method. This feature-based method of 

template matching assumes constant flow and solves for the flow using least squares (Lucas and 

Kanade 1981). The Lucas-Kanade-based optical flow method (OFM) has three steps: (1) feature 

selection; (2) feature tracking; and (3) displacement measurement.  
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Figure 3.8. Optical flow estimation of an object through space. 

 

 To select features, Shi-Tomasi feature point detection is implemented to decide on features 

that are “good” for tracking (Shi and Tomasi 1994). They define a “good” feature as one that can 

be tracked easily by the tracker because the feature itself optimizes the quality of the tracker’s 

tracking. Such features may be defined by dissimilarity with the surrounding region or having high 

texture content. This detection and selection are important steps to improve the overall tracking 

accuracy. The Shi-Tomasi feature detection process is based on defining the dissimilarity between 

two points as a “corner.” To do this, a threshold value must be provided and if a pixel is above the 

threshold value, it is “selected” as a corner. This corner selection is based on Equation 3.8, where 

l1 and l2 are the eigenvalues from the image matrix and lt is the predefined threshold. Figure 3.9 

illustrates the thresholding criteria where lmin is the predefined threshold set as a minimum. When 

the eigenvalues are above the threshold, they are considered corners (green region). If one 

eigenvalue passes but the other does not, the point is defined as an edge (gray region). If both 

eigenvalues are lower than the threshold, they are rejected as corners (red region). Thus, an entire 

image is scanned and, based on the given criteria, a set of corner points that fit within the given 

threshold values are determined. The threshold can be highly selective or more inclusive based on 

the amount of contrast expected in the images to be evaluated and the desired number and quality 

of feature points. The Shi-Tomasi method is similar to Harris corner detection, which uses a 

slightly different formulation for calculating the minimum of the two eigenvalues (Harris and 

Stephens 1988). 

 

min([\, []) > [_ (3.8) 
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Figure 3.9. Shi-Tomasi corner detection using threshold values (adapted from Intel Corporation 

2019). 
 

For this feature point detection, the OpenCV function goodFeaturesToTrack was used 

(Intel Corporation 2019). The parameters are: number of corners, quality level, minimum distance, 

and block size. The number of corners limits the maximum number of corners to be returned. 

Quality level is a value between 0 and 1 which is multiplied by the quality measure of the best 

corner to create a minimum quality measure. Corners below this measure are rejected. For 

example, if the quality measure of the best corner is 1000 and the quality level is set to 0.9, all 

detected corners with a quality measure below 900 will be rejected (this example represents a 

highly selective scenario). Alternatively, a lower quality level will result in a larger quantity of 

corners to be retained with the natural tradeoff of these corners being of lower quality. The next 

parameter is minimum distance, which is the minimum Euclidean distance between the corners 

detected to prevent bunching up of feature points. This takes the best corner from the sorted list of 

corners after the quality check and removes any corners within that minimum distance around it, 

then evaluates the next best corner. Block size creates a square block of the given size around each 

pixel in the image which is used to solve for the eigenvalues l1 and l2 for each block of that size 

within the image. After these last three parameters have been evaluated in the given image, a series 

of corners no greater than the maximum number of corners will be returned.  

After features have been selected, they are tracked using the estimation of optical flow. 

The differential optical flow equation is used to compute the optical flow vector where Ix(qi), Iy(qi), 

and It(qi) are the partial derivatives of image I with respect to x, y, and t (time) at the pixel instance 

qi and Vx and Vy are the image flow (velocity) vectors (Equation 3.9). This equation is for a single 

image I and will be applied across the pixels from q1 to qn.  



 

 

 

27 

 

C:(`7)): + CI(`7))I = −C_(`7) (3.9) 

 

With a system of n equations and two unknowns, this system is overdetermined and requires 

another step for determination of the system. Applying the least squares principle, the Lucas-

Kanade tracking equation solves for the velocity vector with the sums iterated from i to n in the 

image I (Equation 3.10).  
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The velocity vectors computed contain the iterative movement of the selected points 

through the image sequence. The OpenCV function used for this was calcOpticalFlowPyrLK. This 

sparse iterative method uses pyramids to reach convergence among the residual differences 

between the images (Bouguet 2001). The parameters are: Shi-Tomasi feature points, window size, 

maximum level, and termination criteria. Window size is the size of the search window used to 

search for the feature points across the images, which can be large or small based on the expected 

amount of movement of the features. Maximum level sets an upward limit on the number of 

pyramid levels to be used. Termination criteria defines the termination point of the iterative search 

algorithm, which is based on when it reaches a maximum number of iterations or when the search 

window moves by less than a minimum distance e in pixels.  

The tracked velocity vector of the features can then be corresponded to a displacement. If 

the original location of the pixel in (x, y) cartesian coordinates is (a, b) and the point moves to 

position (c, d), as noted by the velocity vector, the motion of the point is the difference between 

the original and new points, per Equation 3.11 and as illustrated in Figure 3.10. The motion of the 

object is quantified by the change in x (dx) and change in y (dy). For a series of feature points on 

a rigid body, the average of all tracked points can be taken to estimate an overall motion in x and 

y for the rigid body. The illustration in Figure 3.10 tracks the motion of a single point of an object 

over time where each point of motion of the object represents a new image. This leads to results 

of x and y movement between each pair in a set of images. The initial results of this are found in 
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pixel coordinates, which can then be scaled to physical units. Displacement scaling occurs by 

applying a scale factor based on a known distance in the images.   

 

f
=

?g = f
K − U

S − %
g (3.11) 

 

 
Figure 3.10. Tracking of an object through space using optical flow. 

 

Overall, this process of optical flow estimation using multiple points on an object over time 

can be visualized through Figure 3.11. This graphic illustrates the process of a template image 

being taken, the selection of high-contrast corner feature points, and the iterative tracking of those 

feature points in x and y through n subsequent images.  

 

 
Figure 3.11. Feature tracking across a set of images using optical flow. 

 

The use of the Lucas-Kanade-based optical flow method relies on three main assumptions. 

These assumptions are: (1) movement of the object is small and predictable between images 

(constant flow); (2) all motion is in-plane and 2D; and (3) brightness is consistent between images 

(Kim et al. 2009; Lim et al. 2005). These assumptions limit the robustness of the tracking, but do 
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not limit the applicability of this method to the tracking of displacements in civil infrastructure. 

Slow, predictable movement typically fits within the realm of testing of civil infrastructure. 

Though movement is never truly predictable, it can be expected to a certain degree (e.g. a bridge 

girder will deflect vertically under the load of a truck). Most rigid body targets (e.g. bridge girder, 

traffic signal structure, etc.) will act this way. A strong image acquisition rate supports the ability 

of the images to capture all movement of the object and avoid any image aliasing. Temporal 

aliasing occurs when the frequency signal of the target object is greater than the camera frame rate, 

which results in gaps in the motion tracking of the object (Feng and Feng 2018). To mitigate this, 

the camera acquisition rate should be at least twice the expected frequency of the target per the 

Nyquist frequency criterion (Bartilson et al. 2015). For rigid structures (such as a bridge girder), 

natural frequencies are low and no significant local 3D or out of plane movement is expected. For 

full field measurement of a structure, where measurement of local or global 3D motions is desired, 

other measurement systems should be used. Finally, brightness can be maintained between images 

by manipulating the ambient lighting with lights and using a high contrast target that is easily seen 

against its background even with ambient changes in lighting. In a lab setting, lighting can be fully 

controlled. Outdoor field tests should be conducted during short periods of consistent natural light 

to facilitate the greatest brightness consistency between images. 

The benefits of the optical flow method outweigh its limitations. Unlike correlation 

methods, optical flow-based tracking does not require the use of a patterned target card. This 

creates the opportunity for tracking of high-contrast natural features. Additionally, this algorithm 

is computationally fast and, because neither the feature points nor the images themselves are 

dependent on each other, opportunities for parallel computing arise (Kim et al. 2009). A natural 

tradeoff between robustness and accuracy exists; however, previous research studies using optical 

flow-based methods have proven to be relatively accurate. Two field tests resulted in error 

resolutions of 0.1 to 0.4 mm for cable vibration measurement (Ji and Chang 2008) and 2.14 mm 

for bridge displacement measurement using an unmanned aerial system (Yoon et al. 2018).  
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4 Experimental Validation 
4.1 Motivation 

The previous chapter proposed a vision-based displacement measurement system using 

feature tracking. Next, this proposed system was validated through a series of laboratory studies 

and field testing. The purpose of this validation was to ascertain the conditions necessary for 

applying the system, the overall accuracy and reliability of the methods, and the limitations 

inherent to the key assumptions. Section 4.2 will present the final design of the system based on 

the methods introduced in Chapter 3. Section 4.3 will introduce a series of four lab tests to evaluate 

both the hardware and software aspects of the system among the unique factors that are present in 

vision-based measurement systems. Section 4.4 will present a field test that applies this system to 

contactless displacement measurement of a civil structure. The results from these lab and field 

studies will be presented in the following chapter.  

 

4.2 Final System Design 

This vision-based system entails image acquisition and image processing for displacement 

measurement. Among the methods presented in Chapter 3, the final system features the NVIDIA 

Jetson TX2 as the main computing device, the FLIR Grasshopper3 (GS3) camera and a Tamron 

lens (various models) for image acquisition, and the Lucas-Kanade-based optical flow method 

(OFM) for image processing in order to produce measurement results of pixel displacement. Using 

a scale factor, this pixel displacement can be scaled to physical units. Validation of the system will 

include comparison of the OFM displacement results to that of a normalized cross-correlation 

algorithm as well as a traditional displacement measurement device. Figure 4.1 illustrates this 

process. 
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Figure 4.1. System process diagram. 

 

4.3 Lab Testing 

After the system was designed, experimental testing was conducted to contribute to the 

overall development of the system by testing the components together and gaining an 

understanding of the parameters required. A series of lab tests were performed to evaluate the 

feasibility and reliability of the proposed system under various controlled conditions. First, the 

initial feasibility of the system was studied. Subsequent testing focused on lighting conditions, 

tracking of natural features, and comparison against a ground truth displacement measurement. 

These tests will be introduced in detail in the following sections. 

 

4.3.1 Feasibility Study 

For this feasibility study, the purpose was to collect a standard set of images using the GS3 

camera controlled by the Jetson TX2. Because of this, the variables studied were limited to 

frequency of the target, lighting, and the target pattern. Additionally, previous work had proven 

the effects and applicable correction methods for factors such as camera tilt, eccentricity, 

blurriness, and speckle pattern size under a similar system configuration (Alipour et al. 2019).  

Two black and white target cards were created for the experimental tests based on designs 

from similar vision-based testing, some of which were presented in Section 2.3.1. As mentioned 

in Section 3.2.2, the GS3 camera at full focal length (300 mm) and 30 ft was capable of a minimum 

FOV of 13.6 x 8.5 in. As this did not fit within the 6.5 x 6.5 in. FOV of previous testing, a 14 in. 
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window was used for the image widths, but the target size of 6 x 6 in. was still used. Essentially, 

this resulted in the images viewing more than just the target, which opened up the potential for 

background noise. To avoid the consequences of this, test backgrounds must be well selected or 

images can be cropped as needed during post-processing.  

To optimize area-based tracking, one target was a random speckle pattern. The previous 

study used a speckle size of 2 mm, which came from a range of desired speckle size of 10-15 

pixels. Applying the equations from Section 3.3.2 to this application, an image size of 1920 x 1200 

pixels from the GS3 (2.3 MP) at the field of view of 14 in. and desired pixel size of 10-15 pixels 

determined a speckle size between 1.85 and 2.78 mm. Based on this range, the speckles were sized 

to a median value of 2.40 mm. This was within the range of acceptable speckle size (greater than 

0.5 mm and less than 3 mm) determined by the specific parameters of the previous study (Alipour 

et al. 2019). Specifying a desired speckle size of 10-15 pixels ensured that the object (speckles) 

were large enough for accuracy of pixel level tracking by creating sufficient regions of unique and 

distinct patterns. Target 1, shown in Figure 4.2, features the random speckle pattern of 2.40 mm 

speckles that was generated digitally.  

 

 
Figure 4.2. Speckle pattern. 

 

To optimize feature-based tracking, the second target was a checkerboard pattern with 

distinct points of contrast. Target 2, shown in Figure 4.3, featured a checkerboard with two white 

circles and a single black dot within them. This pattern was designed to create several high-contrast 

points of interest that could serve as trackable features. These main points of interest were the 

center intersection of the checkerboard and the black dots centered in the two white circles. The 

black dots are 1.70 mm and the diameter of the white circles are 13 mm, which were sized visually 

to meet a desirable appearance. Both targets were printed and placed on metal cards that were 6 x 

6 in.  
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Figure 4.3. Checkerboard pattern. 

 

A motorized linear translation stage manufactured by Zaber Technologies Inc. was used to 

control the movement of the targets. The target cards were supported on the translation stage by a 

metal bar that was fixed to the stage. Photos of the target cards mounted onto the translation stage 

are shown in Figure 4.4. The specifications for the translation stage are documented in Table 4.1. 

The motion of the translation stage was programmed so that it did not need to be managed 

manually.  

 

 
Figure 4.4. Target cards mounted on translation stage. 

 

Table 4.1. Zaber translation stage specifications. 
Component Specification 
Model Zaber X-LSQ075-E 
Maximum Distance 75 mm 
Maximum Speed 280 mm/s 
Accuracy  45 µm 

 

As pictured, an LED light was attached to the cards to indirectly light the targets to create 

an optimal level of brightness. The camera was always properly focused and perpendicular to the 

face of the target card. The eccentricity of the setup was minimal and a visual of the distance (30 
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ft) between the camera and the target is shown in Figure 4.5. The testing matrix featuring all 12 

tests with the varied parameters is shown in Table 4.2. The translation stage was programmed to 

move the target an amplitude of 0.5 in. every test. The speed of the targets was varied between 0.1 

Hz (slow), 1.0 Hz (medium), and 3.0 Hz (fast). Half of the tests were conducted with the room 

lights off and the other half were conducted with the presence of ambient room lighting (both with 

the LED). The same scenarios were tested for each target pattern. The lens used was the Tamron 

A17 with an aperture setting of f/8 for all tests. The rate of image acquisition was 10 fps. Overall, 

the factors studied are summarized as system connectivity (ability of Jetson to control image 

acquisition), speed of capture related to speed of target, lighting, and target pattern.    

 

 
Figure 4.5. Feasibility test setup. 
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Table 4.2. Feasibility test matrix. 
Test No. Frequency (Hz) Lighting Target Card 
1 0.1 Dark Speckle 
2 0.1 Ambient Speckle 
3 1.0 Dark Speckle 
4 1.0 Ambient Speckle 
5 3.0 Dark Speckle 
6 3.0 Ambient Speckle 
7 0.1 Dark Checkerboard 
8 0.1 Ambient Checkerboard 
9 1.0 Dark Checkerboard 
10 1.0 Ambient Checkerboard 
11 3.0 Dark Checkerboard 
12 3.0 Ambient Checkerboard 

 

4.3.2 Lighting Study 

Lighting is one of the most critical factors that affects the efficacy of vision-based 

measurement systems. In the initial feasibility tests in Section 4.3.1, lighting was varied by taking 

images under ambient room lighting and in a dark room, both with an LED light to illuminate the 

target card. This proved to affect the quality of the images and therefore the results of the image 

processing. This variability of lighting conditions furthered interest in assessing the effect of the 

camera settings on the quality of images and the subsequent ability of the OFM algorithm to 

process them accurately. This new series of tests would serve to determine the ideal image quality 

settings for this controlled application of the OFM algorithm.  

The main lighting parameter from the camera that can be manipulated is the aperture 

setting. Aperture is a hole that controls the amount of light allowed into the camera sensor. The 

size of the aperture is one of the factors that affects depth of field in images. The ideal aperture 

setting for a given scenario may vary based on the external lighting, exposure, and the desired 

visibility of the images. Some cameras have a fixed aperture setting, while others allow for manual 

modification of the aperture setting. As introduced in Section 3.2.2, the Tamron 672D lens has 

seven exposure settings: f/4 (wide aperture, brightest exposure), f/5.6, f/8, f/11, f/16, f/22, and f/32 

(small aperture, darkest exposure). Thus, testing was completed with the Tamron 672D to evaluate 

the effect of change in aperture setting on the images. For this test, aperture settings in the middle 

range were studied: f/8 and f/16. The settings f/4, f/5.6, f/22, and f/32 were deemed extreme and 
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not necessary to be iterated on as part of testing; however, sample images at each of these levels 

were taken to evaluate their effect on visibility of the images.   

This testing repeated the setup of the feasibility tests conducted in Section 4.3.1 using the 

speckle and checkerboard pattern targets under dark and ambient lighting conditions, as listed in 

Table 4.3. The distance between the camera and the target was 30 ft. The targets moved on the 

translation stage at “slow” and “medium” speeds of 0.1 Hz and 1.0 Hz, respectively, for the extent 

of the translation stage distance. All of the feasibility tests in Section 4.3.1 were conducted with 

the aperture setting of f/8, so all new images here were taken at f/16 for comparison of the two sets 

of images. The faster tests (3.0 Hz) were not repeated. All images were captured at the previous 

rate of 10 fps.  

 

Table 4.3. Lighting test matrix. 
Test No. Frequency (Hz) Lighting Target Card 
1 0.1 Dark  Speckle 
2 0.1 Ambient Speckle 
3 1.0 Dark  Speckle 
4 1.0 Ambient Speckle 
5 0.1 Dark  Checkerboard 
6 0.1 Ambient Checkerboard 
7 1.0 Dark  Checkerboard 
8 1.0 Ambient Checkerboard 

 

4.3.3 Natural Feature Tracking Study 

The next series of lab tests were conducted to evaluate the ability of the algorithm to track 

natural features instead of a patterned target card. This enables contactless measurement if high-

contrast features that are already part of the target structure can be tracked, which removes some 

of the field test difficulties imposed by the previous digital image correlation-based method. Such 

trackable features include concrete cracks, steel bolts, and high-contrast edges of a target object.  

For this testing, a T-shaped steel section and cracked concrete cylinder were used as targets, 

as shown in Figure 4.6. The steel section was evaluated from both a forward facing and a side 

orientation. From the forward view, the steel section was 104.5 mm wide. From the side view, the 

steel section was 90.0 mm wide. The concrete cylinder had a diameter of 102.3 mm in the visible 

orientation. The setup followed that of previous tests with the targets at 30 ft away from the camera. 

The amplitude of the motion of the translation stage was 0.5 in. at speeds of 0.1 Hz and 1.0 Hz. 
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The scenarios tested are shown in Table 4.4. The Tamron 672D lens was used and the aperture 

setting was varied between f/8 and f/16 for continued evaluation of the optimal lighting conditions 

on these new targets. The LED light was again used to indirectly light the targets. Images were 

acquired using the GS3 at 10 fps.  

This stage of testing was designed for the purpose of tracking of the bolts of the steel 

section and the crack on the concrete cylinder. A solid background was placed during this test to 

remove any discrepancies due to points of contrast in the background of images.   

 

 
Figure 4.6. Steel section (side and forward orientations) and concrete cylinder on translation 

stage. 
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Table 4.4. Natural feature test matrix. 
Test No. Frequency (Hz) Lighting Aperture Target 
1 0.1 Ambient f/8 Steel (side) 
2 1.0 Dark f/8 Steel (side) 
3 1.0 Ambient f/8 Steel (side) 
4 1.0 Ambient f/16 Steel (side) 
5 0.1 Dark f/8 Steel (forward) 
6 0.1 Ambient f/8 Steel (forward) 
7 1.0 Dark f/8 Steel (forward) 
8 1.0 Dark f/16 Steel (forward) 
9 1.0 Ambient f/8 Steel (forward) 
10 1.0 Ambient f/16 Steel (forward) 
11 0.1 Dark f/8 Concrete 
12 0.1 Dark f/16 Concrete 
13 0.1 Ambient f/8 Concrete 
14 0.1 Ambient f/16 Concrete 
15 1.0 Dark f/8 Concrete 
16 1.0 Dark f/16 Concrete 
17 1.0 Ambient f/8 Concrete 
18 1.0 Ambient f/16 Concrete 

 

4.3.4 Comparison Against Traditional Displacement Measurement 

Lab testing up to this point focused on determination of the ideal image acquisition settings 

for OFM processing with comparison of results to the translation stage’s ideal sinusoidal motion 

and a conservative cross-correlation algorithm. In addition, a comparison with a traditional 

displacement measurement system was desired to serve as a ground truth validation for the 

proposed vision-based displacement system. To conduct this validation, the next phase of testing 

used a string potentiometer to obtain comparative displacement measurements. A string 

potentiometer (“string pot”) is a traditional displacement measurement system which features a 

cable that extends to measure linear position. The string pot used in this study was manufactured 

by Bridge Diagnostics, Inc. (BDI) and has been used in previous bridge load testing field studies, 

as shown in Figure 4.7. When mounted to the bottom of a bridge girder, it can measure the vertical 

deflections of the girder. However, it requires a fixed ground point, such as a camera tripod, to 

support it. Depending on the conditions underneath a bridge, this can pose difficulties during 

instrumentation that limit the ability to use such a device. Additionally, the displacement wire must 

be calibrated so that it is taut and does not sag, which would lead to imprecise measurements. 
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These required conditions already prove some of the advantages of a vision-based system that does 

not require attachment to the structure and that can measure displacements in two directions.  

 

 
Figure 4.7. Extended string potentiometer supported by tripod under bridge girder. 

 

Instead of using the programmed translation stage, a cantilever frame was built in order to 

have a structure that would support semi-controlled motions and attachment of a string pot. The 

frame primarily allowed horizontal motions, so the string pot was attached horizontally for this 

measurement. Whether the string pot collected either vertical or horizontal motions was not 

deemed to be a significant factor in the testing, as long as it could measure one of the two. Manual 

excitation of the cantilever in primarily the horizontal direction, with some inherent vertical motion 

due to the cantilever not being truly fixed longitudinally at its support, created non-linear 

horizontal displacements. The length of the cantilever increased the amount that the frame moved. 

A smaller cantilever was considered, but might have been too stiff within the frame connection to 

create enough quantifiable movement. Some inherent difficulty existed with the string pot because 

the tension in the cable sought to dampen the cantilever frame motion, but upon evaluation of this 

it was decided that extended periods of motion were unnecessary, so this factor did not affect the 

suitability of the setup.  



 

 

 

40 

The GS3 camera with Tamron 672D lens was set to acquire images at 10 fps. The BDI 

string pot data acquisition rate was 100 Hz, with measurements of displacement in inches. The 

distance between the camera and the target was 30 ft, which followed the setup of previous tests. 

The overall test setup is shown in Figure 4.8. The parameters varied during the tests are shown in 

Table 4.5. The cantilever was manually excited by an operator shaking it at two motion amplitudes: 

“large” and “small.” Most tests were conducted for approximately 5 seconds, while two lasted for 

up to 20 seconds. The lighting and aperture settings varied as usual, with ambient and dark room 

lighting, both with an LED to illuminate the target, though no new results were expected from 

these. The checkerboard pattern was connected to the end of the cantilever as the primary target. 

The string pot cable was connected to the end of the cantilever on the back face of the target card, 

making them essentially on the same plane.  

 

  
(a) (b) 

Figure 4.8. String pot comparison test setup: (a) Close-up of target and (b) Camera to target 
view. 
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Table 4.5. String pot comparison test matrix. 
Test No. Excitation Lighting Aperture Target 
1 Large Dark f/8 Checkerboard 
2 Large Dark f/16 Checkerboard 
3 Large Ambient f/8 Checkerboard 
4 Large Ambient f/16 Checkerboard  
5-6 Small Dark f/8  Checkerboard 
7 Small Dark f/16 Checkerboard 
8-9 Small Ambient f/8 Checkerboard 
10 Small Ambient f/16 Checkerboard 

 

4.4 Field Testing 

A field test was conducted to validate the proposed system in an uncontrolled environment. 

The progress from lab testing influenced the factors studied through the field test. The field test 

entailed a full implementation of the system for measuring displacement of a traffic signal 

structure.  

 

4.4.1 Traffic Signal Structure Deflection Study 

Traffic signal structures pose difficulties for instrumentation of traditional sensors. 

Locations of interest are typically tall and over active roadways, so instrumenting them requires 

stopping traffic, use of a crane for access, use of fall protection, etc. Direct application of 

displacement sensors, such as string pots that require fixed ground, is especially difficult under 

these circumstances, so accelerometers would likely be used. From the vibration data and known 

modal parameters, vertical displacement can be estimated, though this has not always proven to 

be a reliable method for obtaining displacements (Brown et al. 2019). Amidst these difficulties, 

reasons exist to study the motions of traffic signal structures. If such motions are above a certain 

threshold, typically due to environmental loads, the owner may be interested in taking preventative 

measures to stabilize the flexible structure to avoid buildup of fatigue due to this cyclic stress. 

Thus, the application of vision-based measurement technology creates new opportunities for 

monitoring such structures (Bartilson et al. 2015). 

Measurement of the end displacement of a traffic signal structure mast arm evaluated the 

ability of this proposed vision-based system to acquire measurements in an uncontrolled field 

setting. The system was applied to track ambient wind excitations without a reference of traditional 

sensors. The traffic signal structure chosen for monitoring rests above the westbound lanes of 
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Fontaine Ave at the intersection of Fontaine Ave and Ray C Hunt Dr in Charlottesville, Virginia. 

A plan view of this intersection, with the instrumentation location and the structure under 

consideration noted, is shown in Figure 4.9.  

 

 
Figure 4.9. Plan view of Fontaine Ave at Ray C Hunt Dr (adapted from Google Maps 2019). 

 

This contactless testing utilized the FLIR GS3 camera and Tamron 672D lens controlled 

by the NVIDIA Jetson TX2. The system was placed in a median separating the east and westbound 

lanes of the roadway at a distance about 45 ft away from the traffic signal structure, which was at 

a height of 25 ft. Additionally, the GoPro Hero 3+ with the Tamron A17 lens was utilized as a 

second acquisition source. The cameras were at a height of 46.5 in. (3.875 ft) and aimed at the end 

of the mast arm. This created a camera-to-target angle of 25.15 degrees from the horizontal and a 

perpendicular distance of 49.71 ft between the camera and the target. Instead of attaching a target 

card to the structure, the end of the mast arm was to be used as a region with trackable feature 

points for this contactless testing. Over one foot from the end of the mast arm, there was a 12 x 18 

in. traffic sign that consisted of many trackable features. If displacement was obtained at the 

location of the sign, the displacement at the very end of the mast arm could be extrapolated based 

on assumption of linear increase in displacement along the length of the cantilever. Figure 4.10 

and Figure 4.11 illustrate the instrumentation setup and provide annotations of the dimensions. 

Applying the field of view equations from Section 3.2.2 to this distance (49.71 ft) and with the full 

focal length of the lenses (300 mm), the field of view of the GS3 camera was 22.5 x 14.1 in. and 

that of the GoPro camera was 8.0 x 10.7 in. As these dimensions represent the minimum possible 
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camera view, they show that both cameras were appropriate for obtaining the desired field of view 

of a sign that is 18 in. With a nominal margin around the sign, the images will view the sign within 

the limits of the maximum focal length. 

 

 
Figure 4.10. Traffic signal structure test instrumentation setup. 

 

 
Figure 4.11. Traffic signal structure test setup with dimensions. 
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The GS3 was set to an image acquisition rate of 10 fps. As noted in Section 3.2.2, the 

GoPro is capable of both image and video acquisition. For this purpose of secondary acquisition, 

the GoPro was set to record color video at a rate of 60 fps. As video frames can be extracted for 

image processing, this would enable another reference for tracking of image frames in case the 10 

fps rate was within the frequency of motion of the structure and led to image aliasing. The GoPro 

app running on an iPad controlled the video acquisition through a visual interface. Aperture 

settings of f/8 and f/16 were utilized on the Tamron 672D-GS3 and the fixed setting of f/8 was 

utilized on the Tamron A17-GoPro.  

Images and video were collected during six periods of environmental loading, as listed in 

Table 4.6. Half of the tests were conducted for a period under 20 seconds and the others were less 

than 60 seconds, which was chosen based on the amount of motion exhibited by the structure. 

During the testing period, wind excitation was low, with an average wind speed of 1 mph SSW 

and with gusts up to 5 mph per the daily wind data for Charlottesville-Albemarle (WindAlert 

2019). However, it was observed that the movement of large passenger vehicles and box trucks 

under the structure excited the structure more than the wind alone. Thus, acquisition periods were 

chosen to align with such vehicles approaching the intersection, which led to the most visible 

vibration of the structure. The late afternoon setting optimized the ambient lighting, which was not 

too bright or too dark (fairly consistent). Table 4.6 also documents the variation of the aperture of 

the GS3, which was calibrated based on the ambient lighting brightness (f/16 ultimately chosen to 

create darker images given the amount of ambient light).  

 

Table 4.6. Traffic signal structure test camera acquisition periods. 
Test No. Acquisition Time (seconds) Tamron 672D Aperture 

Setting 
1 17 f/8 
2 53 f/16 
3 17 f/16 
4 17 f/16 
5 52 f/16 
6 52 f/16 
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5 Experimental Results 
The previous chapter introduced four controlled lab studies and one field test. In this 

chapter, the results from these tests will be presented and discussed. Section 5.1 will present the 

lab test results and Section 5.2 will present the field test results. Evaluating the performance of the 

proposed system under a variety of test conditions will help to draw conclusions about its 

feasibility for further applications and open up the discussion for recommended next steps, which 

will be presented in the following chapter. 

 

5.1 Lab Testing Results 

Results from all of the lab tests described in Section 4.3 will be presented in the following 

sections. The results from the lab tests will determine the optimal conditions for the use of the 

vision-based system in order to prepare the system for field testing applications. Results presented 

will primarily take the form of visual inspection of the quality of the optical flow tracking, 

correlation of displacement between image processing methods, or comparison of displacement 

with a reference instrument.   

 

5.1.1 Feasibility Study Results 

The purpose of the feasibility study was to calibrate the image processing parameters 

(inputs for feature selection and tracking) and the test conditions (image acquisition rate, target 

speed, lighting, target pattern). The results for this calibration are presented through visual 

inspection of the optical flow tracking and correlation of displacement results between the two 

image processing algorithms presented previously.  

The baseline set of images were processed using the Lucas-Kanade-based optical flow 

method (OFM) per the functions introduced in Section 3.3.3. As a sensitivity study for the 

algorithm parameters, all 12 sets of test images were processed under five iterations. The 

parameters studied for both feature selection and tracking for each of the iterations are listed in 

Table 5.1. The parameters listed here were defined in Section 3.3.3. For the feature selection 

parameters, maximum corners was maintained as a high upper limit to encourage the return of all 

strong features and not reject the selection of any good features. Quality level, minimum distance, 

and block size were varied. As these three parameters increased, the number of points selected 

decreased. For the feature tracking parameters, window size was varied and maximum level and 
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termination criteria remained constant. Increasing window size improved the ability of the tracking 

to follow the movement of features, with a tradeoff of speed.  

 

Table 5.1. Iteration of Lucas-Kanade-based optical flow method processing parameters. 

Iteration 
Feature Selection Feature Tracking 

Max 
Corners 

Quality 
Level 

Min 
Distance 

Block 
Size 

Window 
Size 

Max 
Level 

Termination 
e | Count 

1 100 0.3 7 7 15, 15 2 0.03 | 10 
2 100 0.9 20 20 15, 15 2 0.03 | 10 
3 100 0.9 12 12 15, 15 2 0.03 | 10 
4 100 0.5 12 12 15, 15 2 0.03 | 10 
5 100 0.5 12 12 30, 30 2 0.03 | 10 

 

The first iteration began with a sample set of parameters. This consisted of a very low 

quality level and small required distance between features, so many features were selected. The 

results outputted were the averages of the horizontal and vertical motion of all of the feature points.  

In the second iteration, the parameters were refined to be more selective so that fewer points would 

be tracked. This involved increasing the quality level, minimum distance between points, and 

block size. The number of features tracked became very sparse, so these parameters were then 

decreased below this threshold. In the third iteration, the quality level was maintained and the area 

selection parameters were decreased to 12 to allow for less space between feature points. This led 

to a small number of features being selected, but the ones that were chosen were strong. Thus, in 

the fourth iteration, the quality level was lowered to create a less conservative selection of features. 

This would serve to increase the number of features selected, which would create a larger sample 

size for more accurate measurement when points were all averaged together. These first four 

iterations were focused on the sensitivity of the feature selection parameters. After this calibration 

led to an agreeable selection of features, the final iteration evaluated change in a feature tracking 

parameter. The tracking window size was increased to improve the consistency of tracking of the 

feature points based on their expected movement. This increased the flexibility of the tracking 

based on the amount of movement expected between images, at a minor loss of speed due to the 

need to scan a larger region. This final iteration saw a convergence of the results, so the parameters 

used in it were applied to all subsequent image processing. 

 The parameter sensitivity study sought to optimize the tracking results for all images; 

however, it was discovered that the checkerboard was more successfully tracked than the speckle 
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pattern. An example of the optical flow tracking of both targets under the final parameters is 

illustrated in Figure 5.1. The results revealed that tracking performance for the speckle pattern was 

consistently poor due to the point-based nature of the optical flow algorithm. OFM looks for high 

contrast points and because the speckle pattern consists of black dots on a white background, there 

is an excessive number of high contrast points. This does not limit the ability of the feature 

selection, but ensures that the feature points that are selected are less unique. This means that the 

feature point can be hard to follow between frames when there are multiple points within its 

tracking window that look exactly the same. The points may jump around, essentially tracking the 

displacement of a combination of locations in one velocity vector. This leads to extremely 

inconsistent tracking that is mostly noise. Conversely, the checkerboard design allowed for the 

algorithm to follow the centers of the circles and the center of the card because these features were 

distinct and located outside of the minimum distance from each other.  

 

 
Figure 5.1. Feasibility test: Sample optical flow tracking for speckle and checkerboard target 

patterns. 
 

In the sample tracking shown in Figure 5.1, the feature points tracked on the speckle pattern 

included a collection of points on the white background and adjacent to the speckles, as well as 

some speckles themselves. The results of the feature point selection here are based on the level of 

contrast identified between the speckle points and the surrounding white region. The tracking of 

these points showed some linearity, but also saw vertical jumps when the tracked points were 

misidentified. The feature points tracked on the checkerboard pattern included the centers of both 

circles, two points at the intersection of the center of the target, and one point on the LED light. 

The tracking of these first four points was primarily linear, aligning with the motion of the target. 
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The tracked point on the LED light showed some erratic motion and the reasons for this will be 

discussed later. As noted, a smaller number of distinct points proved more consistent than a larger 

number of similar features grouped closely together, as occurs in the speckle pattern. Thus, the 

final parameters selected favored tracking of the checkerboard pattern.  

To provide a comparison for OFM as an image processing method, a normalized cross 

correlation (NCC) algorithm was applied to the image sets using the criteria presented in Section 

3.3.2. NCC has similarities to previous applications of digital image correlation (DIC) (Alipour et 

al. 2019) and its comparison with OFM can be justified because it is a conservative area-based 

algorithm. Where OFM is weak, NCC is strong, and this dichotomy will serve to validate both 

image quality and OFM results. For example, if NCC produces realistic displacement results and 

OFM is poor, it is likely that the images are good and there is a weakness with OFM. If NCC and 

OFM are both off, the images being processed may be of poor quality. If NCC and OFM both 

produce visually accurate results, it confirms both the images and the algorithms.  

A generous region of interest (ROI) was manually selected for each set of images to ensure 

that the tracked points would remain in the frame given the extent of the target movement. The 

size of the ROI, shown in Figure 5.2 for both targets, decreased the speed of the tracking, but 

increased the accuracy of the results. As an example of the processing speeds occurring in this 

study, the OFM processing occurred at an average rate of 22.2 images/sec for the speckle pattern 

and 24.4 images/sec for the checkerboard. The NCC processing occurred at a significantly slower 

rate of 0.70 images/sec for the speckle pattern and 0.66 images/sec for the checkerboard. However, 

this comparison of processing speeds has little merit for this study as the NCC method was not 

optimized for speed but for accuracy by processing a large region of the image. The OFM 

processing, contrarily, had not yet been optimized for accuracy. Thus, a more comprehensive 

comparison of processing speeds between the methods will be presented in a following section.  
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Figure 5.2. Original ROI for speckle and checkerboard target patterns. 

 

Sample displacement plots comparing the OFM and NCC results for the tests from which 

the tracking results presented in Figure 5.1 originate are shown in Figure 5.3 and Figure 5.4. The 

plots include the sinusoidal shape of the 1.0 Hz idealized motion of the translation stage for 

reference. All displacements were scaled from pixels to physical units in inches using the 

dimensions of the target card (6 in. horizontal). A small amount of error can be produced from this 

determination of the scale factor, but it would be on the order of pixels in this study and is 

considered negligible.  

 

 
Figure 5.3. Feasibility test: Sample horizontal displacement for speckle target pattern. 
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Figure 5.4. Feasibility test: Sample horizontal displacement for checkerboard target pattern. 

 

The results show that the NCC processing was able to track the motion better for both 

targets when compared to OFM. The NCC algorithm successfully tracked movement in all of the 

images and was unaffected by variations in lighting. OFM tracking was lacking due to factors in 

both image acquisition and image processing. The OFM tracking result was particularly poor for 

the speckle pattern tests and the reasons for this were discussed previously. As an area-based 

technique, NCC did not struggle to track the speckle pattern in the way that OFM did. OFM 

performed decent tracking of the checkerboard pattern, but even for this pattern the NCC results 

more fully captured the motion of the target.  

To quantify the difference between the NCC and OFM results, a point by point comparison 

was conducted. The difference between the displacement measured at every point by each method 

was recorded. Using this set of differences, an average correlation between the set of displacements 

was computed for each test. Average percent correlation results between the NCC and OFM 

displacements in both the horizontal and vertical directions are presented in Table 5.2. When 

calculating the correlation coefficient presented, a hypothesis test was performed to determine the 

significance of the correlation. The result of the hypothesis test was a p-value, with lower p-values 

(e.g. 0.001) implying more significant correlation. Some tests had high p-values which implied 

that the correlation was not significant. Comparisons that led to high p-values, implying 

insignificant correlation, were removed from the comparison if the p-value was greater than 0.2. 

Raw correlation results are presented along with the correlations after this removal, which served 

to remove some of the outliers. Overall, the results show that the checkerboard pattern resulted in 

a more consistent similarity of tracking between OFM and NCC, essentially doubling the result 
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from the speckle pattern. It is to be noted that there is a difference between correlation for 

horizontal and vertical displacement. The tests in this study only consisted of horizontal motions. 

NCC consistently measured zero change in vertical motion, while some vertical motion was 

measured by OFM, which can be used to quantify the accuracy resolution of the processing. 

Because NCC consistently measured zero change in vertical motion, but OFM did not, this led to 

a lower correlation between the two results. Overall, these results show that the correlation between 

the methods can be improved, which will be explored through discussion of several factors 

observed in this testing.  

 

Table 5.2. Feasibility test: Average percent correlation between NCC and OFM displacement 
results. 

Target Pattern Horizontal (%) Horizontal 
(p < 0.2) (%) Vertical (%) Vertical 

(p < 0.2) (%) 
Speckle 38.7 42.8 14.3 27.6 
Checkerboard 62.8 77.0 40.6 75.0 

 

The results from this testing, which can be represented by the sample plots provided, 

pointed to two main areas of concern in the setup: rate of camera acquisition and lighting. The 

conditions of the image acquisition affected the robustness of the displacement tracking of the 

system. It was observed in both the OFM and NCC processing results that the camera frame rate 

defined in the code was not fast enough to fully capture the 3.0 Hz movement, leaving the 

displacement plots to appear jagged and at times fail to capture the extent of motion of the target. 

The 0.1 Hz rate was slow enough to capture the entire sinusoidal movement of the object and the 

1.0 Hz was enough to create an acceptable sequence of the motion. Per the Nyquist frequency 

criterion mentioned in Section 3.3.3, a minimum frame rate of 6 fps was required to capture 3.0 

Hz motion. As the rate of 10 fps proved insufficient for the desired resolution, a larger 

multiplication factor between frame rate and motion frequency is recommended to fully capture 

the motion of the target.  

The initial tests revealed some constraints regarding the ideal lighting condition for the 

setup. Initially, it was assumed that, due to the inclusion of an LED light on the target card in the 

setup, the dark tests would perform well. However, the camera acquisition was affected by the 

darkness of the room, even though the target was well lit, so every few images appeared completely 

dark. Some flickering of the LED occurred that created this inconsistency. This severely affected 
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the results because in some of the tests points on the LED were tracked by OFM. When the light 

flickered, the points were lost completely, leaving holes in the tracking. This affected the NCC 

results as well, as the entire image would appear darker than the template, making correlation 

difficult. Thus, further testing was conducted to find suitable camera settings given this knowledge 

about the influence of lighting conditions.  

 

5.1.2 Lighting Study Results  

A lighting study was conducted to evaluate the effect of image brightness on processing. 

The results presented focus on visual inspection of the optical flow tracking and correlation of 

displacement results between the two image processing algorithms presented previously using this 

new set of images.  

The beginning of this study involved an exploration of the aperture settings of the Tamron 

672D lens. Sample images at six of the seven aperture levels, under both ambient lighting and a 

dark room, are illustrated in Figure 5.5 and Figure 5.6, respectively. The figures show the 

progression of image visibility from f/5.6 (left) to f/32 (right). Mild aperture settings of f/8 (second 

from left) and f/16 (fourth from left) were selected for further evaluation. The feasibility tests were 

all taken at f/8, so the results of the tests presented here are under the darker f/16 for a comparison 

between the two.  

 

 
Figure 5.5. Various aperture settings under ambient lighting. 

 

 
Figure 5.6. Various aperture settings under dark conditions. 

 

In the initial phase of testing, images were originally taken with a lens at f/8 and exhibited 

variability in the lighting due to flickering of the LED light. The setting of f/8 was intentionally 
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bright for low-light conditions, such as previous field testing underneath a bridge at night. This 

setting combined with the flickering decreased the quality of the image processing. New images 

taken with a lens at f/16 proved to be more consistent. Even though the images were darker and 

appeared poor to the human eye, they were processed more accurately by the OFM algorithm due 

to the brightness constancy offered at this setting. It should be noted that the ideal aperture setting 

will vary based on the ambient lighting conditions, so sample images should be evaluated before 

testing is conducted in order to verify the appropriate setting. Middle range apertures (f/8 or f/16) 

will typically be appropriate. Examples of this tracking for both targets are shown in Figure 5.7. 

This new set of images proved the inadequacy of the speckle pattern for OFM tracking, no matter 

the lighting, as it struggled to track selected feature points between images. This misidentification 

of feature points again led to erratic tracking. Tracking of the checkerboard pattern was more 

consistent. In the sample image shown, two feature points at the center intersection of the target 

and one point on the LED were tracked. 

 

 
Figure 5.7. Lighting test: Sample optical flow tracking for speckle and checkerboard target 

patterns. 
 

Processing by the NCC algorithm for this set of images included the selection of a smaller 

ROI to optimize the speed and accuracy tradeoff. The ROI was iterated five times for each target 

pattern, as illustrated in Figure 5.8. Regions of distinct patterns were chosen to be as small as 

possible while minimizing the accuracy tradeoff. For the speckle pattern, iteration #3 had the best 

tradeoff, as iterations #4 and #5 lost accuracy because the regions of speckles were less distinct 

when compared across the rest of the image. For the checkerboard pattern, iteration #5 provided 
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the best tradeoff as the smallest unique trackable region. For the speckle pattern, the largest ROI 

(#1) was processed at 0.72 images/sec and the chosen ROI (#3) was processed at 1.07 images/sec. 

For the checkerboard pattern, the largest ROI (#1) was processed at 0.63 images/sec and the chosen 

ROI (#5) was processed at 1.56 images/sec. On average, selecting the smaller ROI doubled the 

speed of the NCC processing. The OFM processing rate was 24.1 images/sec for the speckle 

pattern and 25.8 images/sec for the checkerboard, resulting in an overall average processing speed 

that was 19x faster than NCC, which is illustrated in Figure 5.9. The smaller ROIs optimized NCC 

over previous processing speeds, but it was still much slower than OFM. The ability of the OFM 

algorithm to process images around 25 fps under an image acquisition rate of 10 fps shows the 

potential for real-time processing of the system, as images can be processed more quickly than 

they are acquired. 

 

 
Figure 5.8. ROI iteration for speckle and checkerboard target patterns. 
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Figure 5.9. Average processing rates for speckle and checkerboard target patterns. 

 

Sample horizontal displacement plots of the NCC and OFM results for both targets are 

shown in Figure 5.10 and Figure 5.11. The displacement was scaled from pixels to inches using 

the known dimensions of the target card (6 in. horizontal). The target motion was not sinusoidal 

like the previous tests, as the targets were instead translated across the length of the translation 

stage at a constant rate. Overall, NCC tracked the motion of both targets well due to the higher 

quality images captured by these new tests. Thus, when OFM struggled to track the object, it 

pointed to issues with OFM rather than with the images. As Figure 5.10 shows, OFM failed to 

track the feature points for the speckle pattern across the images, again due to misidentification of 

the feature points between frames. For the checkerboard pattern, OFM consistently tracked the 

linear horizontal displacement of the target and only exhibited a small margin of difference with 

the NCC displacement.  
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Figure 5.10. Lighting test: Sample horizontal displacement for speckle target pattern. 

 

 
Figure 5.11. Lighting test: Sample horizontal displacement for checkerboard target pattern. 

 

To quantify the difference between the NCC and OFM results, a point by point comparison 

was again conducted. The difference between the displacement measured at every point by each 

method was recorded. Using this set of differences, an average correlation between the set of 

displacements was computed for each test. The average percent correlation results between NCC 

and OFM for this new set of images are presented in Table 5.3. The results show that correlation 

was stronger for the checkerboard pattern, though that of the speckle pattern increased from the 

previous tests. The p-values were very low for all tests, implying significant correlation results. 

Again, there appears to be a difference of about 10% between the horizontal and vertical 
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correlation for each target, the reasons for which were discussed in the previous section. Because 

the images were of more consistent quality due to the change in aperture setting, these new results 

give a more accurate view of what the true correlation between methods is for each target. The 

high correlation between NCC and OFM confirms both the images and the algorithms. Thus, the 

results from this study confirm the parameters chosen from the previous testing for optimization 

of the OFM algorithm and the ability of OFM to track the movement of the checkerboard target 

pattern. 

 

Table 5.3. Lighting test: Average percent correlation between NCC and OFM displacement 
results. 

Target Pattern Horizontal (%) Horizontal 
(p < 0.2) (%) Vertical (%) Vertical 

(p < 0.2) (%) 
Speckle 79.7 79.7 68.8 68.8 
Checkerboard 99.3 99.3 90.3 90.3 

 

5.1.3 Natural Feature Tracking Study Results 

This study was conducted to evaluate the ability of the newly parametrized OFM algorithm 

to track natural features such as steel bolts or concrete cracks. Success would encourage further 

development of the algorithm for target-less purposes as a true feature tracking algorithm. The 

results are presented in the form of visual inspection of the behavior of the optical flow tracking 

and visual comparison of the displacement result across the targets.  

Initial processing of the steel section and concrete cylinder test images found that the large 

field of view and background noise led to the tracking of stationary background features that were 

not associated with the moving target. Thus, all images were cropped to contain only the target 

object and a nominal margin around it. This included cropping of the LED light out of the images. 

In past target card-based testing, tracking of the LED light was acceptable because the LED was 

attached to the card and moved with the target. In these scenarios, however, the LED was 

stationary, so tracking of it (which occurred during some of the dark room tests) affected the 

accuracy of the displacement result. This created images of size 800 x 600 pixels for the side steel 

section, 700 x 380 pixels for the forward steel section, and 600 x 735 pixels for the concrete 

cylinder.  

A sample graphic of the OFM tracking of each of the targets is shown in Figure 5.12. As 

mentioned, these targets were selected to evaluate the potential for tracking of the steel bolts and 
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the concrete crack. In the steel tests, the edges of the steel were tracked instead of the bolts. For 

the side view section, three of the four corners of the section were selected as feature points. 

Additionally, a point in the background was tracked in the sample result shown. For the forward 

view section, three points at the bottom intersection of the steel and the metal bar were selected as 

feature points. There was no discernable difference in the tracking results between the two steel 

orientations. For the concrete cylinder, five points adjacent to the crack were selected as feature 

points. The concrete tracking shows linear motion, but also experienced some variation due to 

misidentification of feature points across frames. In other tests, the crack itself served as a point of 

contrast and was tracked in addition to the edge of the cylinder or points in the background. For 

all targets, the dark lighting tests experienced the most consistent tracking because they removed 

background noise. Among each of the targets, the specific points that were selected for feature 

tracking were all due to the level of contrast in those regions, as was previously discussed. A 

significant factor that affected this level of contrast was the illumination of the target. In future 

applications, it is recommended that primary points of interest are individually illuminated in order 

to manipulate the contrast level. If future testing requires explicit tracking of features such as bolts 

or cracks, machine learning capabilities would need to be applied to the processing algorithm to 

train it to track such features specifically.  

 

 
Figure 5.12. Natural feature test: Sample optical flow tracking of steel and concrete targets. 

 

 Processing rates for OFM were similar to previous tests, with vast improvements for the 

cropped images due to the decrease in image size. The side steel images had an average processing 

speed of 23.4 images/sec for the full image and 87.4 images/sec for the cropped image. The 

forward steel images had an average processing speed of 24.6 images/sec for the full image and 
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161.4 images/sec for the cropped image. The concrete images had an average processing speed of 

24.5 images/sec for the full image and 89.7 images/sec for the cropped image.  

 Sample displacement results for each of the targets along with the idealized motion of the 

translation stage are shown in Figure 5.13. The displacement results were scaled from pixels to 

physical units using the known dimensions of the targets. The results shown here serve as a general 

representation of the results from the collection of tests across the variations in speed and lighting. 

The measured displacement of the forward steel section aligned with the shape of the translation 

stage motion, only experiencing a small amount of displacement error when measuring the peak 

magnitude. The side steel section exhibited the appropriate shape, but the magnitude of the 

displacement was off. This was due to the tracking of a stationary point in the background during 

this specific test, so the displacement average included that, which had the effect of scaling down 

the displacement result. Cropping of the test images sought to mitigate this issue by removing most 

of the background noise; however, not all background points could be completely removed 

because a nominal margin around the target itself was required that was at least equal to the 

magnitude of the expected motion. In the concrete displacement result, the feature points tracked 

measured the motion for about half of the test and then were misidentified during tracking when 

the motion reached its peak. Overall, this test proved that the system was capable of tracking more 

than just designed target cards by exhibiting natural feature tracking potential, given appropriate 

lighting conditions and distinct features that create points of high contrast on the desired target. 

 

 
Figure 5.13. Natural feature test: Sample horizontal displacement for steel and concrete targets. 
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5.1.4 Comparison Against Traditional Displacement Measurement Results   

Testing was conducted to obtain a direct comparison of the proposed vision-based system 

against a traditional displacement measurement device. A cantilever frame was manually excited 

primarily in the horizontal direction, but was not fixed against vertical displacement. Results are 

presented in the form of visual inspection of the optical flow tracking and comparison between the 

displacement magnitudes found by each system. 

Post-processing of the images using OFM measured displacement both horizontally and 

vertically. Initial processing of the images found that the field of view was too wide, leading to 

tracking of stationary high-contrast points on the adjacent string pot. Thus, images were cropped 

to a size of 1200 x 800 pixels to contain only the target card for more accurate displacement 

tracking. The full-size images (1920 x 1200 pixels) were processed at an average rate of 26.7 

images/sec. The cropped images (1200 x 800 pixels) were processed twice as fast at a rate of 60.3 

images/sec, which was expected given that this size was a fraction of that of the original image. 

Sample optical flow tracking between the initial image and the final image of one of the 

tests is shown in Figure 5.14. The flow of the feature points due to the motion of the cantilever 

over time can be visualized. Based on the given lighting conditions, the selected features for 

tracking included three points on the checkerboard pattern (two points at the center and the middle 

of one of the white circles). The tracking of these three points on the card validated the design of 

the pattern for use in this feature point tracking application. Outside of the target card, four points 

on the light and two on the metal bracket holding the string pot to the end of the frame were tracked. 

The image could be cropped further to avoid tracking of points outside the target card; however, 

since the features tracked all moved uniformly as a rigid body, the tracking of this particular set of 

points did not affect the accuracy of the results. Points on the LED light were commonly selected 

as features in these tests because the brightness of the LED offered a high level of contrast against 

surrounding regions. The test images under darker conditions (dark room and f/16 aperture setting) 

only consisted of tracked points on the LED. As shown through the sample image, lighter settings 

allowed for the tracking of other features as well. This difference, however, neither proved nor 

disproved the accuracy of either condition, since the specific points to be tracked under either 

setting vary based on the context of the background. For example, though less points on the target 

card were tracked, the darker tests created more consistent images due to the removal of some of 

the background features, including the hand motion of the cantilever frame operator.  
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Figure 5.14. String pot comparison test: Sample optical flow tracking between initial and final 

image. 
 

 Results from the OFM processing were scaled from pixels to physical displacement using 

the known dimensions of the target card (6 in. horizontal). Both displacement measurements for 

one of the tests are plotted together in Figure 5.15. The string pot measured the horizontal 

movement at the tip of the cantilever where it was connected. The erratic motion of the cantilever 

was tracked well by the string pot at its high data acquisition rate. It can be seen that the OFM 

result followed the shape of the string pot displacement, but the OFM displacement is sharper due 

to a lower acquisition frequency than the string pot. Additionally, it can be noticed that the OFM 

displacement at peaks does not consistently equal that measured by the string pot.  

 



 

 

 

62 

 
Figure 5.15. String pot comparison test: Sample string pot and OFM horizontal displacement. 

 

A point by point correlation between the measurement results was not compiled because 

of differences in sampling rate between the devices. Instead, the ability of each measurement set 

to capture the magnitude of the local maximum and minimum displacements was evaluated. In the 

displacements shown in Figure 5.15, for example, the average difference in magnitude between 

the maximum displacements was -0.0058 in. and that of the minimum displacements was 0.0031 

in. Visually, this can be seen in that the OFM displacement matched with the string pot 

displacement at the negative peaks more consistently than it did with the positive peaks. This 

pointed to a trend of OFM displacement error being on the order of at least 0.0058 in., if the string 

pot measurements are considered a ground truth reference of the studied motion. Additionally, it 

was observed that there was no significant difference in image processing quality between the 

aperture settings or room lighting conditions. Frequency of motion was maintained as the primary 

factor affecting accuracy of OFM displacements and its ability to capture the maximum or 

minimum displacement magnitudes. However, the use of OFM provided an advantage for this type 

of displacement measurement when compared against the string pot as the string pot was only 

capable of uniaxial measurements, while OFM was able to track both horizontal and vertical 

motion. Overall, this study proved the applicability of OFM as a displacement measurement device 

while noting the accuracy of the method, which will be particularly useful in scenarios when use 

of traditional measurement sources like a string pot may not be feasible. 
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5.2 Field Testing Results 

Field testing data from the testing scenario described in Section 4.4 was processed and the 

results are presented in the following section.    

 

5.2.1 Traffic Signal Structure Deflection Study Results  

The vision-based system was applied to track ambient wind excitations of a traffic signal 

structure without a reference of traditional sensors. All GS3 images from the six tests were post-

processed using the OFM algorithm to determine the end displacement of the structure over time. 

The entire image was processed (no cropping) because it contained a sufficient field of view with 

minimal background noise and decent resolution of the target features. The OFM processing 

occurred at an average rate of 29.5 images/sec for all tests, which is about 7 seconds for a set of 

200 images of size 1920 x 1200 pixels. Overall, the results show that the system was able to capture 

movement on a subpixel level. Depending on the specific level of contrast in the image, 13 to 16 

points on a traffic sign on the mast arm were tracked (see Figure 5.16).  

 

 
Figure 5.16. Traffic signal structure test: Sample optical flow feature point selection. 

 

Pixel displacements were scaled to inches using a scale factor calculated from the known 

dimensions of the traffic sign (12 in. horizontal). Under ambient wind conditions, the cantilevered 

mast arm exhibited harmonic motion with peak displacements above 0.015 in., as illustrated in 

Figure 5.17. Testing conditions noted minimal wind, so the displacement magnitude was 

reasonable. The scale that displacements were able to be captured at points to the resolution of the 

system due to the limited motion present. The extent of the horizontal movement, in this specific 
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scenario, was considered the order of error of the system (level of accuracy), as horizontal motion 

of the structure was expected to be relatively fixed. In the test shown in Figure 5.17, this constituted 

an accuracy of 0.005 in., which was consistent with the accuracy presented in the string pot 

displacement comparison study. The rest of the data from the other five tests is graphically 

presented in the Appendix Figures A1 to A6. 

 

 
Figure 5.17. Traffic signal structure test: Sample OFM horizontal and vertical displacement. 

 

This field test proved the robustness of the OFM algorithm under uncontrolled field 

conditions in its ability to capture small, damped oscillations of the traffic signal structure. OFM 

performed well with minor background noise such as a bird flying and the clouds moving. The 20-

minute late afternoon testing period optimized the consistency of the lighting, but even within this, 

small variations were apparent in the image processing results. Slightly different points were 

tracked between some of the tests, based on the specific variations of light during the time of the 

test. The first test used an aperture setting of f/8 which was changed to f/16 for subsequent tests 

based on the level of brightness of the ambient light. The darker aperture setting created a more 

favorable level of contrast in the later images. Finally, it should be noted that displacement 

presented was not corrected due to the eccentricity between the structure and the camera. The 

displacement calculation uses point-based measurements which, opposed to area-based 

measurements, are independent of each other. Therefore, the level of angle of the sign was assumed 
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to have a minimal effect on the displacement tracking of the rigid body. As mentioned, the GoPro 

images were acquired as a secondary source and the processing results are not presented here.  

Because there was no target pattern, these test images were not optimized for the use of the 

NCC algorithm. A comparison was not be compiled; however, one set of images was processed 

using NCC for baseline validity. The NCC algorithm was able to capture the magnitude of the 

displacement but did a poor job of tracking the oscillatory motion of the sign. On top of that, the 

NCC computation speed extremely lagged behind that of OFM, as it processed 0.35 images/sec, 

meaning that the OFM processing was 84x faster for this set of images. Thus, the development of 

the OFM algorithm and processing onboard the Jetson created a great opportunity to test the system 

by tracking traffic signal structure displacement, which could not have been done using previous 

methods alone.  
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6 Conclusion 
This work has proven the feasibility of a contactless vision-based system for structural 

displacement measurement with real-time processing potential. The work developed here has led 

to the creation of a vision-based system that can: 

(1) Monitor a structure in a complex environment that cannot be reached for attachment of 

traditional sensors, such as a traffic signal structure, and obtain subpixel displacement 

measurements of low frequency structural motions under variable lighting conditions.  

(2) Visually track a structure’s natural features using optical flow with accuracy on the 

order of 0.005 in. so that manmade target cards do not need to be mounted.  

(3) Process images quickly by using a feature-based method so that results can be reviewed 

before leaving the field site. Final results were not processed in real-time, but the 

algorithm proved to be very fast, so such a capability has the potential to become a part 

of the process.  

 

The main application of this work is for short-term monitoring of bridges or traffic signal 

structures. Though it was not evaluated in the experimental studies presented here, the ability to 

instrument the system on the structure itself for monitoring when no fixed ground is available 

adjacent to the structure should be studied next as it creates opportunities for monitoring of bridges 

in complex environments. The application for localized girder deflection measurement for bridge 

load rating purposes is possible based on this proposed direction.  

A main limitation of this system relates to its current computational capabilities. The image 

acquisition rate affected the sampling rate of the images and therefore the quality of the 

displacement measurements. Optimizing this rate will increase the ability of the system to work 

with a variety of motion frequencies and avoid aliasing. Another tradeoff is due to the image 

processing itself. The algorithm implemented proved to be quick (exhibiting potential for real-time 

processing) and suitable for capturing displacements due to low frequency motions under 

relatively controlled lighting conditions, but lacked robustness in the face of changes in these 

conditions. Overall, the current level of accuracy was acceptable based on the order of 

displacement typically seen in civil structure monitoring, but improvements can always be made. 

Thus, next steps for expanding this work will be discussed in the following section.  
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6.1 Future Work 

Building off of the foundation of this initial work, this vision-based system has the potential 

for further development in order to extend its processing capabilities and applications for field 

deployment. Recommended steps for future work to enable deployment of the system in the built 

environment for short-term monitoring of bridges or traffic signal structures will be offered here. 

Further development of this work will be separated into two areas: physical requirements and 

computational capabilities.  

 

6.1.1 Physical Requirements  

In the testing conducted, the system was always plugged into a consistent power source. 

This took the form of a wall power outlet and a gas-powered generator for the lab and field testing, 

respectively. The ability of the system to be powered on its own or while connected to a remote 

battery will need to be studied. The Jetson TX2 is lauded for its efficient energy usage, which will 

need to be taken advantage of. The power consumption requirements of the system will determine 

the necessary battery extensions for field deployment and serve as a limiting factor for the duration 

of such deployment.  

The system was also connected to a desktop monitor, which allowed for live visualization 

of the image acquisition (including camera focusing) and user control of the acquisition through a 

command line interface. During the field test of the traffic signal structure, this same setup was 

used, but it is expected that most field applications of this system would not allow for such a 

luxury. Thus, to prepare for circumstances in which the system is not able to be connected to a 

monitor directly, wireless methods for such control should be explored. The system could be 

connected via remote Wi-Fi to a tablet, for example, where the user can then verify the 

performance of the acquisition by viewing the live data feed. This was the control method for the 

GoPro camera introduced in this study. This level of connectivity allows the user to maintain 

vigilance of any issues in data acquisition almost instantaneously through this form of remote 

access. A system setup that is based on not having a visual interface for camera control would 

require a high level of computer vision capabilities, which will be referenced in the following sub-

section.  

A main application of this system is for deployment under a bridge for collection of 

localized bridge deflection measurements when there is no adjacent fixed ground for camera 
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placement. Such a setup was used in previous testing to measure DIC-based displacements of a 

patterned target card that was mounted at the mid-span underside of a bridge girder (Alipour et al. 

2019). The camera itself was mounted on a pier cap in order to measure girder deflections, as 

depicted in Figure 6.1. The instrumentation of a camera directly to a bridge structure, rather than 

on nearby fixed ground, creates some uncertainty regarding movement of the camera. Naturally, 

the camera will experience any rotation that the pier cap itself, though a rigid body, experiences. 

Vertical bridge deflection measurement using DIC has been validated (Peddle et al. 2011), but 

mounting the camera to the bridge in order to obtain such measurements has not. Thus, there is 

interest in quantifying this motion so that it can be subtracted out of the system for this sort of 

measurement. In previous testing, it was assumed that this movement was negligible or, at least, 

relative compared to the overall deflection of the structure under truck loading, but some results 

created uncertainty regarding this assumption.  

 

 
Figure 6.1. Camera mounted on bridge pier cap. 

 

As part of this work, a field test was performed to quantify pier cap movement to determine 

the amount of mounted camera movement and its effect on deflection measurements. The data was 

not usable due to inaccurate assumptions regarding the sensors chosen for measurements under 

dynamic loading, but the intent of the study is valuable and would contribute to future use of the 

system under bridges without fixed ground placement. Thus, the premise of that study will be 

presented here for future evaluation.  

The Brattons Creek Bridge in Rockbridge Country, Virginia, was selected for the study 

due to ground accessibility underneath one of its spans and because it was the subject of previous 
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load testing (Ndong 2018). This 3-span simply supported reinforced concrete bridge has a total 

length of 98 ft 2 in. with zero skew and is shown in Figure 6.2. Each of the spans is 32 ft long and 

the bridge is 23 ft 8 in. wide and spans Brattons Creek. The bridge is configured with four 

reinforced concrete longitudinal T-beams supporting an 8 in. reinforced concrete deck and 

supported by solid reinforced concrete piers and concrete abutments. The rectangular T-beams 

each have a stem width of 16 in. and height of 24 in. 

 

 
Figure 6.2. Brattons Creek Bridge. 

 

The bridge was instrumented per Figure 6.3. The instrumentation included cameras for 

DIC-based deflection measurements, string potentiometers (SP) for deflection measurements, and 

tiltmeters (T) for rotation measurements. Patterned target cards with speckles of size 2 mm were 

mounted to the underside of the beam at mid-span on each of the beams. Three GoPros were 

mounted on the right pier cap adjacent to each beam, one GoPro was mounted on the left pier cap 

adjacent to the middle beam, and two GoPros were placed on tripods next to beams 1 and 2. This 

setup allowed for comparison between the results of the cameras on fixed ground and the cameras 

mounted on the pier caps. These deflections would also be compared to the string pot-measured 

deflections using the tiltmeter data. One string pot was attached to each beam at mid-span and one 

was placed on an exterior location of the pier cap. The string pots were supported by tripods and 

sat on a block-frame interface. The three tiltmeters were mounted on the pier cap underneath each 

of the three beams. This setup followed the points of interest from the previous load testing, 

without the instrumentation of strain gauges or accelerometers.  

 



 

 

 

70 

 
Figure 6.3. Pier cap study: Bridge instrumentation. 

 

The goal of this was to collect data on how the pier cap moved under traffic loading in 

order to quantify its magnitude to decide if it was negligible or not and, if not, to include it in the 

deflection calculations. If not negligible, the rotation measured by the tiltmeters can be correlated 

with a deflection (as shown in Figure 6.4) and subtracted from the mounted camera’s DIC 

measured deflection at mid-span to calibrate a final DIC-based deflection, per Equation 4.1. 

Ideally, this final DIC-based deflection would be equal to the ground truth deflection measured by 

the string pot and that of the camera on fixed ground, per Equation 4.2. The deflection measured 

by the camera placed on the tripod on fixed ground should equal this measurement as well.  

 

 
Figure 6.4. Deflection due to pier cap rotation. 

 

hiEj	k789l = hiEj	mno8_3p − hio3	_n	qn_9_7n8	 (4.1) 

hr_278s	tn_	m39uo23p = hiEj	k7:3p = hiEj	k789l	 (4.2) 
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In order to facilitate accurate measurement acquisition by the sensors, controlled static 

loading should occur with the load vehicle stopped on the bridge at the location of the tiltmeters, 

allowing the devices to settle, and then recording data. This is recommended because the tiltmeters 

are not suitable for dynamic testing due to a “fluid bubble” technology that calculates tilt after 

settlement. This requires settlement time for zeroing and thus increases the response time needed 

for use, thus limiting their application for dynamic testing (Bridge Diagnostics, Inc. 2012). 

Appropriate use of the tiltmeters under the instrumentation described will allow for quantification 

of pier cap movement and its effect on deflection measurements.   

 

6.1.2 Computational Capabilities  

The NVIDIA Jetson TX2 brings top of the line computing capabilities, such as a GPU, that 

were hardly utilized in this preliminary work. Utilization of the GPU itself, in addition to the 

computer architecture of the TX2, creates many opportunities for real-time processing. The OFM 

processing speeds noted in this study provide a strong foundation for advancing the efficiency of 

the overall system processing.  

The use of computer vision can be expanded to optimize several features of the proposed 

system. Machine learning can be used to automate the camera focus and image capture process. 

This would involve training the computer to create good quality images by knowing what the 

desired target is and what a good quality image consists of. The system could subsequently be 

designed to specifically track certain features such as steel bolts or concrete cracks, as was hinted 

at previously. The TX2 is highly capable of machine learning processes, which would further the 

development of the system to become autonomous and require less user control.  
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Appendix A 

 
Figure A1. Traffic signal structure test: OFM displacement for test #1. 

 

 
Figure A2. Traffic signal structure test: OFM displacement for test #2. 
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Figure A3. Traffic signal structure test: OFM displacement for test #3. 

 

 
Figure A4. Traffic signal structure test: OFM displacement for test #4. 
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Figure A5. Traffic signal structure test: OFM displacement for test #5. 

 

 
Figure A6. Traffic signal structure test: OFM displacement for test #6. 

 


