
Historical Archived IP List: Leveraging AWS to Persist Slack Security Data

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Jason Yu

Fall, 2022

On my honor as a University Student, I have neither given nor receivseed unauthorized aid on

this assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Advisor

Roseanne Vrugtman, Department of Computer Science

Technical Report

Historical Archived IP List: Leveraging AWS to Persist Slack Security Data

CS4991 Capstone Report, 2022

Jason Yu

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

jiy6krm@virginia.edu

ABSTRACT

Slack security harnesses a tool called RAINS

(Rapid Analysis, Internal Network Scan) to

provide visibility into Slack’s AWS (Amazon

Web Services) infrastructure in order to alert

engineers about unauthenticated services and

defend against subdomain takeover attacks.

However, RAINS does not keep an historical

log of facts and findings, making it difficult to

determine the cause of a potential security

incident. To solve this problem, I implemented

HAIL (Historical Archived IP List), consisting

of a database to store RAINS findings and a

backend API, allowing users to query past

results. I leveraged AWS RDS (Relational

Database Service) for the data layer, created

the backend service using Flask, and used

AWS Lambda and S3 (Simple Storage

Service) in conjunction with the Risk and

Compliance team’s Security Data Warehouse

project, enabling users to easily view RAINS

results. I also modified the RAINS codebase

(written in Go) to call the Flask backend and

pass the findings to RDS. By the end of the

internship, I successfully deployed HAIL to a

production environment and configured

metrics and dashboards using Prometheus and

Grafana. One area for future improvement of

the project is configuring default querying

options within Security Data Warehouse,

simplifying the process of extracting insights

from historical RAINS results.

1. INTRODUCTION

Slack is a messaging application designed for

workplaces and office productivity. Because

Slack customers primarily include businesses,

Slack is a likely target for cyberattacks. To

defend against certain attacks, Slack owns a

tool called RAINS (Rapid Analysis, Internal

Network Scan) that provides visibility into

Slack’s AWS infrastructure, alerting engineers

about cyber risks such as services lacking

proper authentication and dangling DNS

entries.

1.1. Unauthenticated Services

Slack manages a number of internal services

intended to be accessed only by authorized

Slack employees. To ensure security, these

sites must be placed behind an authentication

portal. If RAINS detects an internal service

that does not require authentication, then

RAINS sends an alert to Slack security

engineers. Unauthenticated internal services

allow attackers to steal sensitive information

or company secrets.

1.2. Dangling DNS Entries

Slack routinely spins up and tears down

thousands of hosts on a daily basis, and each

host is associated with a human-readable

CNAME (canonical name) via DNS (Domain

Name System). A dangling DNS entry occurs

when Slack tears down a host but does not

remove the corresponding DNS record. In

some cases, a dangling CNAME record in one

of Slack’s subdomains is all that an attacker

needs to take control of the content served by

the subdomain in question. Such an attack is

known as a subdomain takeover, and the

potential risks include company defacement

and stealing session cookies, allowing

attackers to pose as Slack employees.

1.3. RAINS Limitations

RAINS solves the problem of detecting

unauthenticated services and dangling DNS

entries by scanning Slack’s AWS

infrastructure every 30 minutes. Indeed, Slack

has historically paid tens of thousands of

dollars through its bug bounty program due to

such risks. However, RAINS does not keep a

historical log of facts and findings, a limitation

that makes it difficult to determine the source

of a possible breach. To remedy this problem,

HAIL (Historical Archived IP List) is a project

designed to store RAINS scan results for

future reference.

2. RELATED WORKS

Several existing projects accomplish similar

goals to those of RAINS and HAIL. Nmap

("Network Mapper") is a free and open-source

utility for network discovery and security

auditing. Nmap works by checking a network

for hosts and services (Lyon, 2009). Once

found, the software platform sends a packet

over TCP (Transmission Control Protocol) to

those hosts and services which then respond.

Nmap reads and interprets the response that

comes back and uses the information to create

a map of the network. The functionality of

Nmap is akin to RAINS in that RAINS sends

packets over the top 100 ports to hosts in

Slack’s AWS infrastructure, reading and

interpreting the response to determine if a

given host requires authentication [1].

Bhartiya (2021) developed an open-source

tool written in Go that scans any number of

user-specified domains for dangling DNS

entries [2]. This tool allows users to check

whether a subdomain can be overtaken for

reasons ranging from a CNAME pointing to a

CMS (content management system) provider

(e.g., Heroku) that can be taken over to a

dangling CNAME pointing to a non-existent

domain name.

While a service that stores the same type of

information as HAIL is not known to exist, the

pattern of using a backend API to store and

retrieve data in a relational database is a

common use case for Flask and AWS RDS

(Wattamwar, 2020) [3].

3. PROPOSED DESIGN

The system design for HAIL is shown in

Figure 1.

Figure 1. System Architecture

3.1. Data Layer

For the data layer, I used AWS RDS (MySQL

5.7), a fully managed, open-source cloud

database service. RDS is an appropriate choice

because the type of data that RAINS collects

can be easily represented in a relational

database model. Additionally, I decomposed

the tables in order to conserve space.

Specifically, I first assigned an incrementing,

numerical value for every full scan of Slack’s

AWS infrastructure, occurring every 30

minutes). HAIL stored every RAINS finding

in the database along with a start scan ID and

an end scan ID, indicating the time range for

which the given RAINS finding persisted. If a

given RAINS scan result persisted from the

previous RAINS scan to the current RAINS

scan, then instead of storing an entirely new

record with the same data, the existing record’s

end scan ID was simply updated with the

current scan ID. The final schema statements

are shown below:

Run(run_id, time)

IPScanResult(id, ip_address, start_run_id,

end_run_id, instance_name, instance_id,

account_name, account_id, is_auth)

DNSScanResult(id, ip_address, cname,

start_run_id, end_run_id, is_dangling)

I specified and deployed the desired RDS

instance using HashiCorp Terraform, an open-

source infrastructure-as-code tool.

3.2. Backend API

I used Flask, a Python web application

microframework, to create a RESTful API to

insert data into and retrieve data from the RDS

database. I used the package PyMySQL to

allow the HAIL API to programmatically

communicate with the database by simply

passing in the database account credentials.

Additionally, I used SQLAlchemy, a Python

SQL toolkit and Object Relational Mapper that

automatically converts Python code into SQL

operations, forgoing the need to write SQL

code and mitigate related security issues such

as SQL injections. After creating Python class

models representing the database tables, I

coded a number of API endpoints that serve

GET and POST requests for each of the

database tables. For each of the endpoints, the

HAIL API returned the relevant records along

with a status code. HAIL returned a status code

of 200 for successful GET requests, a status

code of 201 for successful POST requests, a

status code of 404 in the case of an invalid user

input, and a code of 500 in the case of some

other error.

3.3. RAINS Modifications

After coding the API endpoints, I modified the

RAINS tool to send POST requests to the

HAIL API with RAINS scan findings. In order

to allow RAINS to communicate with HAIL, I

onboarded both services to Nebula, a Slack-

owned, open-source global overlay network.

To minimize traffic from RAINS to HAIL,

configured the HAIL API endpoints and the

corresponding RAINS code to accept lists of

up to 1000 records of RAINS findings rather

than calling the HAIL API for every individual

RAINS finding, reducing the total volume of

traffic by a factor of approximately 1000. For

every full RAINS scan, RAINS collects

approximately 100,000 scan results.

3.4. Security Data Warehouse

In order to present RAINS findings in a

human-readable format, I harnessed the

Security Data Warehouse, an existing project

managed by the Risk and Compliance team.

The Security Data Warehouse ingests security-

related data from an AWS S3 (Simple Storage

Service) bucket and exposes the data on a

webpage in which authorized users can write

SQL queries to retrieve data. To transfer

RAINS results from RDS to S3, I wrote a

Python script that calls GET request endpoints

from the HAIL API and transforms the data

into JSON (JavaScript Object Notation)

format. This script was run via AWS Lambda,

a serverless, event-driven compute service

allowing users to run code on a periodic basis.

I configured this Lambda script to run once a

day, automatically retrieving the most up-to-

date RAINS results from RDS and storing it in

S3 to be ingested by the Security Data

Warehouse.

3.5. Testing

To ensure code quality and correctness, I set

up automated test cases using the PyTest tool.

Such test cases included unit tests and

integration tests, resulting in the entire HAIL

codebase having complete code coverage. In

order to ensure that database transactions were

working properly, I created a mock SQLite

database and tested the API endpoints against

the mock database, setting up mock tables at

the beginning of the tests and removing the

tables at the end of the tests so that each run of

the test cases began with a clean start.

Furthermore, I configured the Slack

continuous deployment pipeline to run the test

cases anytime a contributor pushed a new

commit to the GitHub repo.

3.6. Metrics and Dashboards

To provide visibility into the health of the

HAIL service over time, I configured metrics

such as request rates, request counts, and

latencies for each of the API endpoints using

Prometheus, a software application used for

event monitoring and alerting. In addition to

gross metrics, I also recorded P50, P90, and

P99 metrics for each of the aforementioned

statistics, presenting the corresponding graphs

in a Grafana dashboard.

3.7. Security

I incorporated security best practices into my

design decisions. For example, instead of

hard-coding database credentials in the HAIL

codebase, I stored the secrets in HashiCorp

Vault, which secures, stores, and tightly

controls access to tokens and passwords.

When HAIL needed to connect to RDS, it first

called Vault to retrieve the secrets and

subsequently gained access to the database.

Additionally, I placed the HAIL API behind

authentication, ensuring that only employees

with a secret access token could call the API.

4. RESULTS

By the end of my internship at Slack, I

successfully deployed HAIL and RAINS

modifications to a production environment,

thereby persisting RAINS scan results from

Slack’s actual AWS infrastructure in real time.

I also presented HAIL to the security team at

the end of the internship.

5. CONCLUSION

I successfully deployed HAIL, a project

completed for the Slack product security team.

HAIL keeps a historical record of facts and

findings related to Slack’s AWS

infrastructure, providing valuable insight into

Slack’s attack surface and security posture.

6. FUTURE WORK

One area for future improvement of the project

is configuring default querying options within

Security Data Warehouse, simplifying the

process of extracting insights from historical

RAINS results.

7. UVA EVALUATION

My UVA coursework prepared me very well

for this internship program. One helpful course

was CS 3240 (Advanced Software

Development Techniques), which taught me

principles of software engineering and gave

me experience with Django, a Python web

application framework with many similarities

to Flask. By taking CS 4750 (Databases), I

learned about database design, schema

statements, table decomposition, indexing, and

writing SQL queries, all of which proved

helpful during my internship. CS 4457

(Networks) taught me about DNS as well as

the mechanics behind network scanning,

which allowed me to easily understand the

RAINS codebase and the rationale behind

defending against subdomain takeover attacks.

Finally, CS 4740 (Cloud Computing) provided

me an introduction to AWS and gave me a

head start when deciding which AWS services

to use for HAIL.

REFERENCES

[1] Lyon, G. 2009. Nmap Network Scanning.

Nmap Project.

[2] Bhartiya, A. 2021. Tko-subs. tko-subs,

(2009), GitHub repository. Retrieved October

10, 2022 from

https://github.com/anshumanbh/tko-subs

https://github.com/anshumanbh/tko-subs

[3] Wattamwar, A. 2020. AWS RDS with

MySQL using Flask. (August 2020).

Retrieved September 8, 2022 from

https://medium.com/aws-rds-with-mysql-

using-flask-f1c6d8cc7ef

https://medium.com/aws-rds-with-mysql-using-flask-f1c6d8cc7ef
https://medium.com/aws-rds-with-mysql-using-flask-f1c6d8cc7ef

